SELF-TUNING OF ROBOT PROGRAM PRIMITIVES

David A. Simon

Lee E. Weiss

Arthur C. Sanderson™

The Robotics Institute - Camegie Mellon University
Pittsburgh, PA 15213

Abstract

A robot and its interaction with the task environment can be viewed as a pro-
cess to be controlled. In this formulation, the robot program can be viewed
as a task level controller. Robot programs, which are synthesized from
sets of parameterized motion control primitives, embed control strategies

to implement particular tasks. The develop of robot prog , either
by experienced prc s Or using aut c code generatmn systems
is a difficult process which is often comphcated by uncertain, p

Pprimitive strategies may be appropriate. A current trend in product design
for automated robotic assembly is to incorporate parts geometries which can
be reliably mated with basic single primitive strategies, thus simplifying the

Many researchers have attempted to build planning systems which au-
tomatically synthesize robot motion control strategies and select motion
primitive parameters. These problems have proven to be very difficult due
to lex and i p dels of the sy {7). Recent approaches

and varying models of the task environment. In this paper we address the
strategy and parameter selection problems by describing an approach to self-
tuning of robot program parameters. In this approach, the robot program
incorporates control primitives with adjustable parameters and an associ-
ated cost function. A hybrid gradient-based and direct search algorithm
uses experimentally measured performance data to adjust the parameters to
seek optimal performance and track system variations. Alternative control
strategies, which have first been optimized with the same cost function are
then assessed in terms of their opti d behavior. We d ate that the
optimal control strategy for a particular task is a function not only of task
geometry, but also of the desired performance.

1 Introduction

The development of robot program code the i ion of ab-
stract robotic task descriptions into desu'ed robot motions. This transfor-
mation is a difficult problem which is often complicated by uncertain, in-
complete and varying models of the task environment including the robot,
manipulated objects, and sensors. The transformation includes the selection
of a control strategy to implement each task. In conventional programming
environments the strategy is encoded in the robot program as logically con-
nected sets of motion control primitives. Each primitive has an associated
parameter list. For example, a representative primitive MOVES *, V)
tells the robot to move to position X with velocity V along a straight line
trajectory. Primitives can also incorp sensory feedback to -
date rtain and changing envi Force g is often used in
robotic assembly applications to accommodate contact motion constraints
(13]. For example, a simple force monitored *guarded motion” primi-
tive, MOVES (X, V, F,,,,,,;,) terminates the motion if force thresholds are
exceeded. Primitives which explicitly specify dynamic sensory feedback
strategies such as active stiffness control are also feasible {5].

While simple strategies may consist of a single program control com-
mand or motion primitive, more complex strategies are formed by logically
sequencing multiple primitive commands. For example, consider the peg-
in-hole mating task. If the peg and the hole are not chamfered and the
tolerance between them is tight, then one possible multi-primitive strategy
is as follows. First, tilt the peg slightly to increase the range of relative
positions where initial entry in the hole is guaranteed. Second, move the
peg along the axis of the hole with a force monitored motion. The mon-
itor tests lateral and axial forces. If lateral forces are exceeded, realign
the peg in the hole using a force feedback primitive to minimize lateral
forces, then continue axial motion. If axial forces are exceeded then ter-

te the i In ¢ if the peg and hole are chamfered, and
the end-effector has sufficient passive compliance then simpler single move

*A.C. Sanderson is with the ECSE Dept., Rensselaer Polytechnic Inst., Troy, NY 12180

708

CH2876-1/90/0000/0708$01.00 © 1990 IEEE

DOC KET

_ ARM

Find authenticated court docume

have d to reason about uncertainties present in a world model, and
to utilize sensor-based control to reduce this uncertainty whenever task fail-
ure would otherwise result [3,4]. Dufay and Latombe {2] discuss a system
which performs inductive learning to generate robot program code for fine
motion tasks from expenence gained during a human gmded training phase.
This syst sy Tt by adding sensory feedback strateg
when existing code fmls Smithers and Malcolm [11]} outline a research
agenda which suggests a more systematic method for automatic program
generation. They propose the identification of a set of basic robot behav-
iors which will act as building blocks for the construction of robot programs.
In their approach, external sensory control would be incorporated into the
behaviors in order to eliminate the need for sensory control at higher levels
of the control hi hy. The develop of a complete set of such generic
behaviors would greatly simplify the task planning problem. However, our
research suggests that the identification of such generic strategies is com-
plicated because strategy selection depends not only on task geometry, but
also on the desired performance.

In practice, robot programming has been left to experienced program-
mers since automatic planning systems have had limited success in real
applications. Robot programmers typically rely on intuition and trial-and-
error experimentation to select a strategy and manually tune the program
p 5. A good p will have abstract notions of performance
optimization in mind as a basis for designing the program. For example, in
assembly tasks, the programmer seeks a strategy and a set of parameter val-
ues which perform the task quickly, while attaining nominal mating forces,
and minimizing the probability of mating failures. Humans, however, are
not very efficient at searching parameter and symbolic spaces for optimal so-
lutions. Manual searching is tedious and typically the resulting performance
could be improved. The process of parameter tuning by a programmer, or
automated parameter selection by a planning system, is further complicated
by the fact that real robotic systems drift with time due to variations in the
robot and environment, and thus require periodic p readjustment.

In this paper we address one aspect of the strategy and parameter se-
lection problem by describing an approach to self-tuning of robot program
In this approach, the robot program incorporates motion control
primitives with adjustable bounded value parameters and an associated cost
function. Search algorithms, which use experimental cost function evalua-
tion, and which do not rely on explicit robot and environment models, adjust
the parameters to seek optimal performance and to track system variations.
Alternative control strategies, which have first been optimized with the same
cost function, can then be assessed in terms of their optimized behavior, In
this paper, we discuss this approach for force monitored primitives applied
to parts mating tasks.

The remainder of this paper is organized as follows. In section 2, we
outline the self-tuning formulation. In section 3, we discuss the implemen-
tation of our self-tuner and describe the underlying optimization algorithms.
In section 4, we di force tasks and present experimental results

paramet:
)

ABB Inc.

EXHIBIT 1039

alarm.com.

https://www.docketalarm.com/

which. demonstrate the operation of the self-tuner for these tasks. In sec-
" tion 5, we describe an important class of assembly tasks commonly referred
to as “snap-fits.” Because these tasks exhibit several complex characteris-
tics such as drift and stochastic variation in task performance, they provide
an interesting case study for the application of the self-tuning approach to
a realistic and practical problem. We show that the relative success of a
given strategy is a function of the task to which it is applied, and of the
desired behavior as specified by a task-specific cost function. In section 6,
we propose a method for updating motion primitive parameters in response
to performance drifts. Finally in section 7, we summarize the findings of
our research and suggest areas for future work.

2 Self-Tuning Formulation

The self-tuning approach has been widely studied at the servo level to opti-
mize control system tracking performance [12]. A few researchers, however,
have explored self-tuning approaches at the program or strategy level. These
approaches, including the system described in this paper, seek to optimize
motion primitive parameters at the program level. This formulation may fa-
cilitate both manual and automated programming techniques which currently
use such primitives as their fundamental building blocks. Simons et al. [10]
demonstrate the application of stochastic automata to tune the positioning
parameters of a quasi-static force feedback strategy. While the formulation
of their approach is similar to ours, stochastic automata are best suited to
parameter spaces which have a small number of discrete values. Whitney
[14] applies Kalman filter theory to adjust the position parameter values
for fine-motion control, and suggests varying the velocity as a function of
confidence in the position estimates. This approach however requires ex-
plicit position estimation and does not generalize for tuning other parameter
values.

In the self-tuning approach described here and illustrated in Figure 1, we
view the robot/task environment as a physical process to be controlled. The
underlying robot dynamics may be described by:

X = h(X, 1) [¢)]
where X is the state variable vector and 7 is the vector of kinematic model
parameters. Closed-loop control is achieved by a set of position feedback
control parameters, ¢
@)

which responds to some preplanned reference trajectory. Such a system
description is sufficient for simple robot positioning tasks. However, for
many tasks which involve interaction with the environment, the closed-loop
dynamics of the robot/task environment involves other parameters:

X = g(¥, i, &)

X=f@ m ¢, 0y,0,, 6,7,) 3)
where 1, are geometric constraint parameters, (7, are force constraint pa-
rameters, & are sensor sampling parameters, 7 are computational delay pa-
rameters, /7 are task-level control parameters, and the reference inputs, 13”,,
are expressed as position and force trajectories. For example, in the motion
primitive MOVES X, V., Fivesn) » V and iy, are the task-level control
parameters, 7. Execution of the robot program requires specification of 7,
while resulting performance of the system also depends on /.

Design of the control strategy for these cases is difficult due to the uncer-
tainty of the task parameters (01.02. &, 7), and the complexity in accurately
modeling them. This uncertainty occurs due to trial-to-trial variations and
slowly varying changes with time. As a result, performance of the system
for a given task may vary between trials for a given implementation. For a
given task-specific cost function, J(X; /), we would like to achieve

minJ(: /) o)
for best average performance and tracking of performance over time. For
example, for a parts mating task the cost function may have the form

ki AT + by (Frey — Fy)* + k3 [MaX((Fpeak — Frep). OF
i-»P,

J(;?,,T):E[5)

DOC KET

_ ARM

709

[

MOTION-LEVE 5
PROGRAY Ry ROBOT ENVIRONMENT
(%) SYSTEM —1 i)
i=gzme < o
MONITOR
(]
T EXTERNAL
SENSORS
T @)
PERFORMANCE
ADJUSTMENT
MUE‘::':IAHISH S MEAS:lu)tuzur
J

Figure 1: Self-Tuning Approach

where AT is task cycle time, Frer, Fs, and Fp..t are the desired steady-state
force, the measured steady-state force, and the peak overshoot force respec-
tively, P, is the probability of a mating failure, and k,, k;, k3 are constants
which weight the relative importance of each performance component. This
process control description of the system suggests the use of optimization
techniques to tune the program parameters. In this paper we will describe
an implementation of a system which combines gradient-based and direct
search techniques to accomplish this. While the robot program code used in
our experiments has been manually derived, these optimization techniques
could be used to tune the p ter sets of d code.

ically

3 Search Algorithms

The design goal for a self-tuning system is to achieve stable response with
fast convergence properties. The attainment of these goals is especially dif-
ficult if the performance space is characterized by multi-modal behavior. As
will be shown in the next section, the performance space of monitos-based
control primitives is often characterized by a complex multi-modal func-
tion which causes simple gradient-based optimization methods to fail. In
our approach we use a hybrid gradient-based and direct search algorithm to
achieve stable response. As suggested above, the cost function is evaluated
experimentally by the robot at various points in parameter space, which
can be a time consuming process. Thus, search techniques which do not
require a large number of cost function evaluations are preferred for this
application.

Driven by the above requirements, the three-stage self-tuning process
depicted in Figure 2 has been designed. The goal of the first stage is to
obtain a rough estimate of the optimal parameter set using a relatively small
number of experimental trials. In the second stage, a fine resolution tuner

pts to find a p r set which globally minimizes the expected
value of performance. Once an optimal operating point has been found, an
operational/ftracking stage is invoked. While the first two stages are useful
during the setup and testing of a robot system, the operational/tracking stage
would be used during normal operation of the system. In this stage, shifts
in the optimal operating point can be caused by tool wear, part tolerance
variations, and drifts within the robot. Therefore, task performance should
be monitored to ensure that operation remains within pre-determined toler-
ance bounds. If these bounds are exceeded, the performance can often be
improved by re-adjusting the task par while the robot is in operation.
In order to perform this tracking, we propose a technique which is based
upon the fine tuning search, but over a very small window in parameter
space.

In the first stage, least squares regression analysis is used to fit exper-
imentally collected performance data to a simple analytic model of the
performance surface. This model, which is described in the next section,
does not incorporate the complex multi-modal component of the actual sur-
face, but only the underlying “low-frequency” trends. The minimum of the
resulting analytic model is then found using a “quasi-Newton” optimization
algorithm known as Successive Quadratic Programming (SQP) [1].

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 2: Overview of the Self-Tuner

As we will demonstrate shortly, in order to apply the self-tuner to cer-
tain types of monitor-based operations, it is necessary to account for the
possibility of a “task failure.” Failures can occur when a motlon primi-
tive does not complete the specified task b of i
of the motion primitive p In the fine lesoluhon tuner, txsk fail -
ure has been incorporated by the addition of a term to the cost function
which degrades the calculated performance when failures occur. In the
roarse resolution tuner, however, this technique would add discontinuities
to the performance surface and thus complicate the least-squares model fit.
Therefore, we have developed a scheme which uses experimentally deter-
mined “success regions” to constrain the search for an optimal parameter
set. During data collection, a binary success/failure flag is recorded along
with the corresponding performance value. Least-squares regression is then
performed only over those performance data points which result in success-
ful completion of the task. The accumulated ffailure infor
is then used by an Augmented SQP algorithm to find the minimum of the
least-squares surface model within success regions, or on a region boundary
91

The second stage of the self-tuner uses the minimum found in the first
stage as the starting point for a “fine-tuning” high resolution search. Various
approaches have been evaluated, each of which uses a small window in pa-
rameter space centered around the current minimum estimate. In this region,
we have found that the amplitude of the multi-modal periodic component is
often relatively small. Unfortunately, efficient approaches such as Hooke-
Geeves [6] pattem search and the aforementioned gradient-based algorithm
resulted in unpredictable and often unstable behavior. Such behavior is in-
evitable when a complex multi-modality is not explicitly accounted for in
the model, even in a region where its amplitude is relatively small. Thus,
to keep our approach simple we used a less efficient non-patterned direct
search which samples points within a window around the current minimum

710

estimate. Using the minimum estimate found in the coarse tuning stage as
the starting point for its search, the fine tuner collects experimental data
within a small window, and then selects a new minimum from the col-

COARSE Jected data. This process iterates until the change in performance from one
RESOLUTION iteration to the next is below a specified threshold.

LARGE 'l'u"/.',‘,‘,“”” For tasks which do not exhibit task fail or hastic variation in
WINDOW performance, the above approach is sufficient. When stochastic variation
:;”A;,f;, i and failures characterize a task, these characteristics must be explicitly ac-
RO [F avest counted for in the fine-tuner. To account for this variation, we average each
measurement at a given parameter set over several experimental samples.
From the averaged data, a failure probability can be calculated and used in

the cost function to penalize operating points which lead to task failures.

FINER 4 Force Monitor Tasks
RESOLUTION

In order to study the self-tuning approach on practical robot tasks, an ex-
SALLER perimental test-bed has been set up. It consists of an IBM 7565 robot with
the AML programming/control environment, a robot gripper with adjustable
compliance along the tool Z axis, and a force sensor capable of measuring
forces along the tool Z axis. Several “tools” have been used in the experi-
ments, each of which can be firmly grasped by the robot’s gripper. In this
paper, we shall refer to the robot’s tool-tip as the portion of a tool which
comes into contact with the environment. The search algorithms were im-
plemented on a Sun-2 workstation, while an IBM-PC was used to implement

several complex monitoring strategies which were not available in AML.
TRACKING The use of an AML force monitor primitive is illustrated by the task of
SMALLER affixing two flat surfaces with an adhesive. More specifically, the task is to
VINDOW bring the parts into contact as quickly as possible, while achieving a final
steady-state force of F,.p. To implement this task, the robot’s tool-tip (one

of the surfaces) was programmed to contact the other surface using the force
monitored motion primitive command, MOVE XV, Fihresh)- Thls primitive
instructs the robot joint level controllers to move to position X with velocity
V, but stop if the measured force in the direction of motion exceeds Fonresh.
The actual force achieved is a function of the task-level control parameters
7= (V, Fppes), and the sensor monitor sampling period. For this task, the
cost function is:

J = ki AT + ko(Frep

~Fa) ©)

Note that J only contains cycle-time and steady-state force error components
since neither overshoot nor mating failures were present. Also, performance
at any point was highly repeatable for this simple experiment, thus averaged
performance data were not required.

The goal of the self-tuning algorithm is to vary V and Fy.s to minimize J.
A plot of expetimentally measured J vs. V and Fss is shown in Figure 3.
In this figure, the coefficients i and k, have been adjusted so that maximum
values of the cycle time and the steady-state force error components are
approximately equal. While this particular coefficient setting is arbitrary, in
general, specified limits to cycle times and forces should be considered. For
example, if the cycle time at the ophmal operating point exceeds constraints
specified in bly q then the value of k; should be
increased. Conversely, if the pa.tts being assembled are extremely fragile,
then the relative weight of k, should increased. Development of systematic
approaches for weighting cost function components remains an open issue.

The multi-modal surface characteristic is clearly seen in Figure 3. This
characteristic results from the finite sampling interval (20 msec) at which
the monitor trip conditions are tested. Delays between the physical satisfac-
tion of a trip condition and acknowledgement of this condition within the
AML system result in complex, non-linear periodic behavior in performance
space. We have developed an analytic model of this behavior to verify our
experimentally measured results [9]). This multi-modal behavior is typical
of robots using sensory monitored motions and is thus an important case
study. For example, similar observations have been made on a PUMA 560
robot running the VAL-II control system.

To optimize the force monitoring task, the self-tuning algorithms of sec-
tion 3 are applied. The coarse resolution tuner fits the experimentally col-
lected performance data shown in Figure 3 to the function S given by:

§=7 10, V, Fitresh, YFuresh. V2, Fopuir 1/V. Firresn/ VI o

DOC KET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

\ /4 Fihresh

\

Figure 3: Adhesive Mating Task: Performance vs. V and Freen

The form of the surface model, S, is based on an understanding of the
underlying physical processes of the task [9]. No explicit models of the
robot were used to derive it. The first six terms of S form a quadratic in
V and Fy., and are used to model the steady state force error component
of the surface. The remaining two terms are inversely dependent on V,
and were added specifically to model the cycle time component of the cost
function.

Figure 4 is a plot of optimum performance value versus the number of
experimentally collected data points. Performance is plotted at the comple-
tion of each self-tuning iteration. Roughly 175 data points were collected to
generate the least-squares surface model. The minimum of this surface was
found yielding a performance value of about 1.35. The first iteration of the
fine tuner used 100 data points and yielded a performance value of 0.10.
Future iterations of the fine tuner did not result in improved performance.
An independent high resolution direct search of the entire parameter space
has verified that the resulting minimum is the “true” minimum within the
resolution of the tuner. Similar results have been achieved with the self
tuner using a variety of cost function gains, reference forces and tool com-
pliances. Typically, the minimum is found within one or two iterations of
the fine-tuner which suggests the appropriateness of the simple model fit
used in the coarse tuner.

- 140
h

S EEE BB

60 200 260 300 350 400 450 800 850 600
& experiments

Figure 4: Performance vs. # of Experiments

5 A Snap-Fit Assembly Task Example

We have studied the self-tuning approach on a variety of snap-fit tasks
[15]). Reliable snap-fit operations are a major requirement for mating of
parts which have been designed for automated assembly. Because of the
relative simplicity of performing snap-fit operations, product designers uti-
lize snap-fits frequently in their designs. Assembly robots often incorporate
single-primitive motion strategies to perform snap-fit operations, while more
complex multiple-primitive stx may be d to perform conven-
tional fastening operations. In the previous section, the adhesive mating task

was useful for demonstrating the basic operation of the self-tuner because
of the task’s well behaved ch istics. I ion between the robot
and the environment was very simple, resulting in highly controlled, deter-
ministic behavior of the fundamental force monitored strategy. Conversely,
the more complex snap-fit tasks have been implemented with alternative
strategies each of which exhibits significant stochastic variation in perfor-
mance. In addition, long term variation in performance has been observed
for snap-fit tasks due to wear in parts and fixtures, and drifts within the
robot. Because of these characteristics and the importance of this operation,
the behavior of the self-tuner on snap-fit tasks provides an interesting and
important case study.

As we have suggested, there are often a number of altemative feasible
strategies for performing a task. Typically, a robot programmer will select
a strategy based upon ease of implementation, successful use of the strat-
egy in the past, and often upon intuition. Without complete models and
a methodology for comparing competing strategies for a given task, it is
difficult to ensure that the selected strategy is the best one for the job. In
our approach, the strategy selection process for a given task is based on
comparing the performance of strategies which have first been optimized
with the same cost function. The optimized cost function provides a uni-
fying metric by which al ive strat can be cc d. We have
also explored whether there is a single generic strategy, amongst the alter-
native strategies, which is optimum over a broad range of “designed for
assembly” snap-fit operations. The existence of a generic strategy would
facilitate the design of automatic robot code generation systems. The de-
signed for assembly constraint is specified because it is well known that
for more general assembly and manipulation tasks the concept of a generic
strategy is not feasible. Even small variations in parts geometry will change
the appropriate strategy [8]. Our research demonstrates, however, that even
for fixed geometric constraints, the optimum strategy is a function of the
performance requirements. This suggests that the specification of generic
strategies would need to incorporate performance requirements, even for
designed for assembly operations.

We have implemented three snap-fit tasks in our study of the self-tuning
approach. The three tasks will be referred to as the “snap-ball”, “snap-
shaft”, and “phono-plug” tasks. For each of these tasks, a special tool-tip
and matching receptacle have been used. The goal of each of the tasks is to
insert a ball, shaft, or phono-plug into the corresponding receptacle as fast
as possible such that the actual steady-state force, F,, is equal to a reference
steady-state force, F,r, while minimizing the overshoot force, Fp.at, and
minimizing the probability of mating failures, P..

One characteristic which is common to all snap-fit operations is a sharp
decrease in mechanical resistance to an applied force shortly before the
operation is complete. This is clearly illustrated in Figure 5 which is a plot
of insertion force vs. end-effector position for the phono plug task. In the
discussion which follows, we will refer to the maximum force which occurs
before insertion as the maximum pre-insertion force (MPIF).

-~ 4.00

tons,

3 3.50

(Ne:

<300

x0.1

2.50
8

'E 2.00
1.50
1.00

0.50

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Tip Position (inches)

Figure 5: Force vs. Position Signature - Phono Plug
To illustrate the strategy selection problem, three alternative guarded mo-

tion strategies are described. The first strategy uses the aforementioned
absolute force monitor motion primitive, MOVE (X, V, Fyp,ee), With ad-

711

DOC KET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

D
A

justable parameters V and Fayes. The second strategy, referred to as the
rate of change strategy, uses the primitive, MOVE (X, V, df / dtthresn), With
adjustable parameters V and df/dtupess , Where df /diinress is a threshold on
the rate of change of the insertion force. In this strategy, df/dtmees is con-
strained to negative values so that the monitor trips during the decrease in
force after the MPIF. In most situations, this strategy has a much smaller
probability of insertion failure than the absolute force strategy. There are
cases, however, when the rate of change strategy can be fooled by a “false”
MPIF, resulting in insertion failure. The third strategy, referred to as the
absolute position strategy, uses the primitive MOVE (X, V, Pipyes) With ad-
justable parameters V and Puresh, Where Pravesh is a threshold on the position
of the tool-tip relative to the receptacle. Due to the compliance of the force

ing unit, the di b the tool-tip and the robot gripper is not
constant, but varies as a function of applied force.

The results of applying the strategy selection technique to the snap-shaft
task using a “fragile parts” cost function are illustrated in Figure 6. For this
type of cost function, the optimal operati g point will favor small steady-
state and overshoot forces rather than fast cycle times. Each of the curves
in the plot was generated by self-tuning the snap-shaft task using one of
the three strategies described above. From the plot, it is evident that the
rate of change strategy has the smallest optimized performance value among
the competing strategies. This result can be explained as follows. Due to
frictional and geometric characteristics of the snap-shaft task, the MPIF in-
creases significantly with increasing insertion velocity. It follows, therefore,
that in order to minimize peak forces, the insertion velocity should be small.
At low velocities, however, both the absolute force and position strategies
often result in insertion failures due to the stochastic nature of the frictional
interaction between components. The rate of change strategy, on the other
hand, operates well at small velocities, since the monitor does not trip until
after the MPIF has been reached. A more detailed analysis can be found in
91

~ 0.40
0.35
0.30 9———© Absolute Force Strategy
@----- O Rate of Change Strategy
0.25 a— - - 4 Absolute Position Strategy
0.20
0.15
0.10
0.05 ... e T
000 e PO Log
O 100 200 300 400 500 600 700 800 900 1000 1100

experiments

Figure 6: Snap-Shaft Task Performance Curves
ky=1.0, k2=0.0, k3=0.25, F;=0.3

With sufficient insight into the physics behind the previous example, it
may have been possible to predict the optimum strategy without use of this
strategy selection approach. However, a detailed physical understanding of
a task or strategy can often be very difficult to establish. Often, it may be
impossible to derive a model which is accurate enough to determine the
optimum strategy. The strategy selection approach discussed, however, al-
lows an engineer to select an optimal strategy without developing a detailed
understanding of task and strategy.

In the interest of identifying generic task strategies it would be convenient
if the rate of change strategy was optimal for all snap-fit tasks over a range
of altemative cost functions. Unfortunately, as we now demonstrate, this
is not the case. Using the strategy selection approach, we show that the
optimal strategy is dependent upon subtle differences between tasks, which
can be difficult to model. Figure 7, shows the results of applying the
strategy selection technique to the snap-ball task using the fragile parts cost
function. In this case, both the absolute force and absolute position strategies
are superior to the rate of change strategy. This change in behavior can
be traced to subtle differences in geometric and frictional characteristics

OCKET

LARM

712

between the snap-ball and the snap-shaft tasks. For the snap-ball task,
the value of the MPIF is not very dependent on insertion velocity. Large
insertion velocities do not necessarily lead to large peak forces, and thus
to decreased performance. In addition, at high velocities the rate of change
strategy exhibits significant stochastic variation in steady-state force error.
Together, these two factors result in reduced relative performance for the
rate of change strategy.

~0.65
0.60|
0.55
0.50

0.45

0.40!

°'3?oo 200 300 400 S00 600 700 800 900 1000 1100 1200
experiments
Figure 7: Snap-Ball Task Performance Curves
k1=1.0, k3=0.0, k3=0.25, Fr¢s=0.3

We have demonstrated that the best strategy for a task can vary as a
function of even subtle differences in tasks. A more interesting observa-
tion, however, is that the best strategy varies as a function of the desired
performance. Each of these observations have important implications for
the design of practical automatic robot code generation systems. One prob-
lem which must be solved before such systems can be built is how to select
an appropriate strategy for a given task. This problem would be simplified
if generic strategies capable of performing a wide range of tasks could be
identified. For example, a single strategy capable of performing all snap-fit
tasks would eliminate the need to determine an appropriate strategy each
time a new snap-fit task is to be performed. As we have alrcady demon-
strated, generic strategies are hard to find since the success of a strategy
is a function of the task upon which it operates. In addition, we will now
show that the success of a strategy applied to a given task depends on the
desired behavior as specified by the cost function. This suggests that truly
generic strategies must work well not only for a variety of tasks, but also
over a range of cost function coefficients.

In the previous examples, we assumed that the parts being assembled
were fragile, and that task cycle time was not critical. We now consider
another example using the snap-shaft task for which the parts to be mated
can tolerate large forces, and emphasis is shifted to minimizing the task
cycle time. The plot in Figure 8 illustrates the results of this strategy
selection example. Recall that for the snap-shaft task using the fragile-parts
cost function, the rate of change strategy was optimal. In the present case,
however, the rate of change strategy has inferior performance relative to the
other strategies. To understand this result recall that the cost function has
shifted emphasis to the task cycle time. Thus, large velocities are preferred
over smaller ones. As we noted earlier, the rate of change strategy always
trips after the MPIF. The absolute force and absolute position strategies,
however, will trip before the MPIF when the desired force, Fy, is less
than the MPIF. It follows that the absolute force and position strategies can
operate at larger velocities and still decel before a d d steady-state
force is reached. Since the rate of change strategy must operate at smaller
velocities, the resulting longer task cycle times will degrade performance.

6 Tracking of Snap Fit Tasks

Once a strategy has been selected for a given task and the motion primitive
parameters have been optimized, the robot can be put into an operational
mode during which it repeatedly executes a set of tasks. During normal
operation, long-term drift in performance may occur due to such factors

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

