
Page 1 of 110

(12) United States Patent
Brown et al.

US008073557B2

US 8,073,557 B2

Dec. 6, 2011

(10) Patent No.:

(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(60)

MOTION CONTROL SYSTEMS

Inventors: David W. Brown, Bingen, WA (US); Jay
S. Clark, Bingen, WA (US)

Assignee: ROY-G—BIV Corporation, Bingen, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 11 days.

Appl. No.: 12/406,921

Filed: Mar. 18, 2009
Prior Publication Data

US 2009/0271007 A1 Oct. 29, 2009

Related US. Application Data

Continuation of application No. 10/316,451, filed on
Dec. 10, 2002, now abandoned, which is a
continuation-in-part of application No. 10/021,669,
filed on Dec. 10, 2001, now Pat. No. 6,516,236, which
is a continuation of application No. 09/191,981, filed
on Nov. 13, 1998, now abandoned, which is a
continuation of application No. 08/656,421, filed on
May 30, 1996, now Pat. No. 5,867,385, which is a
continuation-in-part of application No. 08/454,736,
filed on May 30, 1995, now Pat. No. 5,691,897, said
application No. 10/316,451 is a continuation-in-part of
application No. 09/795,777, filed on Feb. 27, 2001,
now Pat. No. 6,513,058, which is a continuation of
application No. 09/205,627, filed on Dec. 3, 1998, now
Pat. No. 6,209,037, which is a continuation of
application No. 09/191,981, filed on Nov. 13, 1998,
now abandoned, which is a continuation ofapplication
No. 08/656,421, filed on May 30, 1996, now Pat. No.
5,867,385, which is a continuation-in—part of
application No. 08/454,736, said application No.
10/316,451 is a continuation-in—part ofapplication No.
09/633,633, filed on Aug. 7, 2000, now Pat. No.
6,941,543, which is a continuation of application No.
09/191,981, which is a continuation ofapplication No.
08/656,421, which is a continuation-in-part of
application No. 08/454,736.

Provisional application No. 60/067,466, filed on Dec.
4, 1997.

26

IXMC_XXXAPI

34

lXMCfXXXSPI

30

, _vaXSEIfEK¥iE>YJ"mgvc++ APPUCATION
BCW APR, etc, 5

. |Unknown

|XMC_xxxAF'| . DRIVERADMIN.

COMPONENT

IXMC_UDxxxSl

. lUnknown

Int. Cl.

G053 19/42 (2006.01)
G053 19/18 (2006.01)
US. Cl. 700/86; 700/20; 700/56
Field of Classification Search 700/19,

700/20, 21, 23, 28, 56, 87, 86; 717/107,
717/ 126

See application file for complete search history.

(51)

(52)
(58)

(56) References Cited

U.S. PATENT DOCUMENTS

4,078,195 A 3/1978 Mathias et a1.

(Continued)

FOREIGN PATENT DOCUMENTS

CA 2222235 12/1996

(Continued)
OTHER PUBLICATIONS

GE Fanuc; “Pleadings: Invalidity Contentions 0f DefendantsiEx-
hibit EE-058”, Jul. 11, 2008, pp. 1-15.

(Continued)

Primary Examiner 7 Charles R Kasenge
(74) Attorney, Agent, or Firm 7 Michael R. Schacht;
Schacht Law Ofiice, Inc.

(57) ABSTRACT

A motion control system comprising an application program,
a plurality ofmotion controllers, a set of software drivers, and
a motion component. Each software driver exposes a service
provider interface comprising a set ofdriver functions. Driver
code of at least one software driver associates at least one
driver function with at least one control command. The

motion component exposes an application programming
interface comprising a set of component functions and com-
ponent code associates at least one of the component func-
tions with at least one ofthe driver functions. The at least one

selected software driver generates at least one control code
from the motion controller language associated with the at
least one selected motion controller based on the at least one

component function called by the application program, the
component code, and the driver code of the at least one
selectable software driver.

59 Claims, 64 Drawing Sheets

32

ABB Inc.

36

Page 1 of110

EXHIBIT 1024

Page 2 of 110

US 8,073,557 B2

5,917,840 6/1999 Cheney et 31.5,287,199 2/1994 Zoccolillo

Page2

U.S. PATENT DOCUMENTS 5,465,215 A 11/1995 Strickland et al.
. 5,483,440 A 1/1996 Aono et al.

1333233 A 333333 3:11:11)“:ng 5,485,545 A 1/1996 Kojima etal.
4,418,381 A 11/1983 Molusisetal. 3233232 A 333332 :13fo if;
4,422,150 A 12/1983 Kelleretal. 5’493’281 A 2/1996 Owenys '
4444961 A “984 Mathias 5,511,147 A 4/1996 Abdel-Malek
4,494,060 A 1/1985 Chitayatetal. 5’541’838 A 7/1996 K t 1
4531182 A 7/1985 Hyatt ’ ’ oyamae 3'
4’563’906 A “1986 Mathias 5,566,278 A 10/1996 Pateletal.
4,688,195 A 8/1987 Thompson etal. 3232333 A 3333332 Andergem't 1
4,713,808 A 12/1987 Gaskilletal. 5’577’253 A “/1996 stinfrge 3'
4,716,458 A 12/1987 Heitzmanetal. 5’596’994 A “1997 Brloc ””1
4750388 A “988 Allardet‘fl' 5,604,843 A 2/1997 Shaw et a14,767,334 A 8/1988 Thorne et al. ’ ’ '
4769771 A 9/1988 Lippmann etal 5,607,336 A 3/1997 Lebensfeldetal.
4,782,444 A 11/1988 Munshietal. 5,608,894 A 3/1997 Kawakamletal.
4800521 A 1/1989 Cart t 1 5,613,117 A 3/1997 DaV1dsonetal.
4’809’335 A 2/1989 Runfsree 3' 5,617,528 A 4/1997 Stechmannetal.
4,815,011 A 3/1989 Mizungetal 5,618,179 A 4/1997 Coppermanetal.
4,829,219 A 5/1989 P k ' 5,623,582 A 4/1997 Rosenberg
4’829’419 A 5/1989 Heinz“ 5,625,821 A 4/1997 Recordetal.

A 252225222: 7133; :83, 1
4,843,566 A 6/1989 Gordonetal. 5’655’945 A 8/1997 Janie eta'
4’846’693 A ”989 Ba“ 5,659,753 A 8/1997 Murphy etal.
4,852,047 A 7/1989 Lavalleeetal. 5,666,161 A 9/1997 Kh' t 14 853 877 A 8/1989 Parkhurst et a1 ’ ’ ° ‘yamae 3'
4’855’725 A 8/1989 F d ~ 5,666,264 A 9/1997 Chandleretal.
4’857’030 A 8/1989 Rem“ ez 5,670,992 A 9/1997 Yasuhara etal.
4’868’474 A 9/1989 Loseaf 1 5,691,897 A * 11/1997 Brownetal. 700/56
4’887’966 A ”/1989 Girlllzrrmtaita 5,691,898 A 11/1997 Rosenbergetal.
4,897,835 A 1/1990 Gaskilletal. 5’692’195 A 11/ 1997 COWeIAtM'
4901218 A 2/1990 C 11 5,697,829 A 12/1997 Chalnanletal.
4’912’650 A 3/1990 TOTE? 1 5,701,140 A 12/1997 Rosenbergetal.
4’923’428 A 5/1990 can aeta' 5,704,837 A 1/1998 Iwasakietal.
4’937’737 A 6/1990 Slim“ 1 5,707,289 A 1/1998 Watanabeetal.
4’937’759 A 6/1990 Vglyaneeta' 5,724,074 A 3/1998 Chainanietal.
4,987,537 A 1/1991 Kawata 3%; A 3333;: in b 1
5005134 A 4/1991 Nakashima et a1 ’ ’ “en erg eta'
5’005’135 A 4/1991 M 1 ' 5,737,523 A 4/1998 Callaghanetal.
5’014’208 A 5/1991 W331?” 5,739,811 A 4/1998 Rosenbergetal.
5,020,021 A 5/1991 Kajietal. 5’746’602 A “998 man.“
5025 385 A “991 med 5,752,880 A 5/1998 Gaba1eta1.
5:095:445 A ”992 Sekiguchi 5,752,976 A 5/1998 Duffinetal.
5119318 A 6/1992 Paradjes etal 5,764,155 A 6/1998 Kerteszetal.
5,120,065 A 6/1992 Driscolletal. 5’766’077 A “998 ango
5126 932 A “992 Wolfsonetal 5,790,178 A 8/1998 Sh1b21taetal.
5,162,986 A 11/1992 Graberetal. 338332: A 33333: 841112110161315,168,441 A 12/1992 Onarheimet a1. ’ ’ . '
5175 684 A ”/1992 Ch 5,802,365 A 9/1998 Kathznletal.
5’175’817 A ”/1992 Adzlrfsetal 5,805,442 A 9/1998 Crateretal.
5,175,856 A 12/1992 Van Dyke etal. 5’805’785 A 9/1998 D‘aset‘fl'
5204 599 A 4/1993 H hn 5,825,361 A 10/1998 Rub1netal.
5’230’049 A 7/1993 Cfiangem 5,836,014 A 11/1998 Fairnan, Jr.
5,231,693 A 7/1993 Backesetal. 5’846’132 A , ””998 Junkm
5245 703 A 9/1993 H b n 5,867,385 A 2/1999 Brownetal. 700/56
5’247’650 A 9/1993 Jade 31 5,889,670 A 3/1999 Schuleretal.

, , A 11 et ~ A. 5,926,389 A 7/1999 Trounson

33353;? A £3333: $1211!“ 1 6,209,037 B1* 3/2001 Brown etal. 700/56
5’329’381 A 7/1994 PC mneta' 6,219,032 B1 4/2001 Rosenbergetal.
5’341’451 A 8/1994 Lizard 6,295,530 B1 9/2001 Ritchieetal.
5,368,484 A 11/1994 Copperman etal. 6’305’0“ B1 10/2001 SAfOHOV
5377 258 A ”/1994 B 6,480,896 B1 11/2002 Brownetal.
5’382’026 A “1995 H“) d t 1 6,513,058 B2* 1/2003 Brownetal. 700/56
5’390’304 A 2/1995 Lmfirtela' 6,516,236 B1 2/2003 Brownetal.
5’390’330 A 2/1995 T2131 e 3' 6,542,925 B2 4/2003 Brown etal.
5,392,207 A 2/1995 Wilson etal. g’ggé’éfi 33 33388; 3:23:
5,392,382 A 2/1995 Schoppers ’ ’
5400 345 A 3/1995 R J 6,879,862 B2 4/2005 Brownetal.
5’402’518 A 3/1995 L631: r' 6,885,898 B1 4/2005 Brownetal.
5,405,152 A 4/1995 Katanrgsetal 6,941,543 131* 9/2005 BIOWIletal. 700/56
5,412,757 A 5/1995 Endo ' 7,024,255 B1 4/2006 Brownetal.
5,413,355 A 5/1995 Gonzalez 7924566 Bl “006 Brown
5,417,210 A 5/1995 Fundaetal. 7,031,798 B2 4/2006 Brownetal.
5,418,964 A 5/1995 Conner et 31. 7,035,697 Bl 4/2006 Brown
5,438,529 A 8/1995 Rosenberg etal. 7,113,833 Bl 9/2006 BIOWII etal.
5,450,079 A 9/1995 Dunaway 7,137,107 B1 11/2006 Brown
5,453,933 A 9/1995 Wright et a1. 7,139,843 B1 11/2006 Brown et a1.
5,459,382 A 10/1995 Jacobus et a1. 2001/0020944 A1 9/2001 Brown et al.

Page 2 0f110

Page 3 of 110

US 8,073,557 B2
Page 3

2001/0032268 A1* 10/2001 Brown et a1. 709/230
2001/0032278 A1 10/2001 Brown et a1.
2002/0044297 A1 4/2002 Tanaka
2002/0156872 A1 10/2002 Brown
2002/0165627 A1 11/2002 Brown et a1.
2003/0069998 A1 4/2003 Brown et a1.
2005/0114444 A1 5/2005 Brown et a1.
2005/0132104 A1 6/2005 Brown
2006/0064503 A1 3/2006 Brown et a1.
2006/0206219 A1* 9/2006 Brown et a1. 700/56
2006/0241811 A1* 10/2006 Brown et a1. .. . 700/245
2006/0247801 A1* 11/2006 Brown et a1. .. 700/56
2006/0282180 A1* 12/2006 Brown et a1. 700/56
2007/0022194 A1 1/2007 Brown et a1.
2008/0275576 A1 11/2008 Brown et a1.
2008/0275577 A1 11/2008 Brown et a1.
2009/0030977 A1 1/2009 Brown et a1.
2009/0063628 A1 3/2009 Brown et a1.
2009/0082686 A1 3/2009 Brown et a1.
2009/0157199 A1 6/2009 Brown et a1.
2009/0157807 A1 6/2009 Brown et a1.
2009/0271007 A1 10/2009 Brown et a1.
2010/0005192 A1 1/2010 Brown et a1.
2010/0064026 A1 3/2010 Brown et a1.

FOREIGN PATENT DOCUMENTS

CA 2586401 12/1996
CA 2389183 5/2001
CA 2625283 5/2001
EP 0275826 7/1988
EP 0281427 9/1988
EP 0442676 8/1991
EP 0508912 10/1992
EP 0583908 2/1994
EP 0829039 3/1998
EP 1260891 11/2002
EP 1560093 8/2005
EP 1678589 7/2006
EP 1690173 8/2006
EP 2081094 7/2009
GB 2244896 12/1991
JP 59-228473 12/1984
JP 06-168157 6/1994
JP 11506234 6/1999
JP 2003513348 4/2003
JP 2004078904 3/2004
JP 2007102796 4/2007
JP 2008159046 7/2008
WO 9211731 7/1992
WO 9308654 4/1993
WO 9507504 3/1995
WO 96/38769 12/1996
WO 0067081 11/2000
WO 0131408 5/2001
WO 0163431 8/2001
WO 02054184 7/2002
WO 02071241 9/2002
WO 03019397 3/2003
WO 2005031542 4/2005
WO 2005048086 5/2005

OTHER PUBLICATIONS

GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit EE-236”, Jul. 11, 2008, pp. 1-13.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit EE-543”, Jul. 11, 2008, pp. 1-17.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit EE-897”, Jul. 11, 2008, pp. 1-30.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit F-058”, Jul. 11, 2008, pp. 1-24.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit FF-058”, Jul. 11, 2008, pp. 1-24.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit FF-236”, Jul. 11, 2008, pp. 1-18.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit FF-543”, Jul. 11, 2008, pp. 1-18.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit FF-897”, Jul. 11, 2008, pp. 1-37.

GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit G-058”, Jul. 11, 2008, pp. 1-24.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit G-236”, Jul. 11, 2008, pp. 1-16.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit G-543”, Jul. 11, 2008, pp. 1-18.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit G-897”, Jul. 11, 2008, pp. 1-32.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit GG-543”, Jul. 11, 2008, pp. 1-14.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit H-543”, Jul. 11, 2008, pp. 1-5.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit HH-058”, Jul. 11, 2008, pp. 1-68.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit HH-236”, Jul. 11, 2008, pp. 1-41.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit HH-543”, Jul. 11, 2008, pp. 1-63.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit HH-897”, Jul. 11, 2008, pp. 1-92.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit II-058”, Jul. 11, 2008, pp. 1-143.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit II-236”, Jul. 11, 2008, pp. 1-84.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit II-543”, Jul. 11, 2008, pp. 1-144.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit II-897”, Jul. 11, 2008, pp. 1-179.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit J-058”, Jul. 11, 2008, pp. 1-104.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit J-236”, Jul. 11, 2008, pp. 1-76.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit J-543”, Jul. 11, 2008, pp. 1-73.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit J-897”, Jul. 11, 2008, pp. 1-169.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit JJ-058”, Jul. 11, 2008, pp. 1-80.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit JJ-236”, Jul. 11, 2008, pp. 1-56.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit JJ-543”, Jul. 11, 2008, pp. 1-65.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit JJ-897”, Jul. 11, 2008, pp. 1-129.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit K-543”, Jul. 11, 2008, pp. 1-4.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit L-058”, Jul. 11, 2008, pp. 1-47.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit L-236”, Jul. 11, 2008, pp. 1-34.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit Q-236”, Jul. 11, 2008, pp. 1-53.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit Q-543”, Jul. 11, 2008, pp. 1-90.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit Q-897”, Jul. 11, 2008, pp. 1-110.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit S-058”, Jul. 11, 2008, pp. 1-26.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit S-236”, Jul. 11, 2008, pp. 1-17.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit S-543”, Jul. 11, 2008, pp. 1-29.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit S-897”, Jul. 11, 2008, pp. 1-38.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit T-058”, Jul. 11, 2008, pp. 1-43.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit T-236”, Jul. 11, 2008, pp. 1-31.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit T-543”, Jul. 11, 2008, pp. 1-48.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit T-897”, Jul. 11, 2008, pp. 1-80.

Page 3 0f110

Page 4 of 110

US 8,073,557 B2
Page 4

GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit V—058”, Jul. 11, 2008, pp. 1-43.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit V—236”, Jul. 11, 2008, pp. 1-37.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit V—543”, Jul. 11, 2008, pp. 1-47.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit V—897”, Jul. 11, 2008, pp. 1-91.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit W-058”, Jul. 11, 2008, pp. 1-93.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit W-236”, Jul. 11, 2008, pp. 1-68.
Bruel & Kj aer, “Bruel & Kj aer Product Brochure: A System to Build
Systems”, 1991, pp. 1-64.
Bruel & Kjaer, “Major Challenges in Test Systems for the 1990’s”,
1991, pp. 1-22.
Bruel & Kjaer, “Modular Test System: A Second Generation VXI
Architecture”, date unknown, pp. 1-23.
VME Bus Extensions for Instrumentation, “System Specification
VXI-1, Draft 1.4”, 1991, pp. 1-24.
Bruel & Kjaer, “Short Form Catalog 1991”, pp. 1-68.
Bruel & Kjaer, “Modular Test System Software Presentation”, date
unknown, pp. 1-36.
Ability Systems Corporation, “Development in Motion”, 1990, p. 1.
Ability Systems Corporation, “Indexer LPT Version 5”, 1989, pp.
1-214.

Furness, Harry, “New Family of ‘NR’ Process Software Set to Move
in”, Control Engineering, Apr. 1993, 2 pages.
Agrusa, Russell L., “Is Windows NT the PCT Platform for the
Future?”, Control Engineering, Apr. 1993, 3 pages.
Faber, Tom, “From Distributed Control to Integrated Information”,
Control Engineering, Mid-Mar. 1992, 3 pages, published by Cahners
Publishing Company.
Daniel A. Norton, “Writing Windows Device Drivers”, 1992, pp.
1-202, Addison-Wesley Publishing Company, Inc.
Daniel A. Norton, “Writing Windows Device Drivers”, 1992, pp.
202-436, Addison-Wesley Publishing Company, Inc.
VIicrosoft Corporation, “Win32 Programmer’s Reference: vol.
IiWindows Management and Graphics Device Interface”, 1993, pp.
1-428, Microsoft Press.
VIicrosoft Corporation, “Win32 Programmer’s Reference: vol.
IiWindows Management and Graphics Device Interface”, 1993, pp.
429-876, Microsoft Press.
VIicrosoft Corporation, “Windows NT Device Driver Kit: Win32
Subsystem Driver Design Guide”, 1993, pp. 1-80, Microsoft Corpo-
ration.

VIicrosoft Corporation, “Windows NT Device Driver Kit: Network
Drivers”, 1993, pp. 1-12, Microsoft Corporation.
VIicrosoft Corporation, “Windows NT Device Driver Kit: Win32
Subsystem Driver Reference”, 1993, pp. 1-11, Microsoft Corpora-
tion.

VIicrosoft Corporation, “Windows NT Device Driver Kit: Program-
ming Guide”, 1993, pp. 1-11, Microsoft Corporation.
VIicrosoft Corporation, “Windows NT Device Driver Kit: Kernel-
VIode Driver Design Guide”, 1993, pp. 1-7. Microsoft Corporation.
VIicrosoft Corporation, “Windows NT Device Driver Kit: Kernel-
VIode Driver Reference”, 1993, pp. 1-5. Microsoft Corporation.
VIartin Marietta, “Next Generation Workstation/Machine Controller
(NGC): vol. VIiSensor/Effector Standardized Application
(SESA)”, 1992, pp. 1-38.
VIartin Marietta, “Next Generation Workstation/Machine Controller
(NGC): vol. V%ontrols Standardized Application (CSA)”, 1992,
pp. 1-95.
VIartin Marietta, “Next Generation Workstation/Machine Controller
(NGC): vol. IViWorkstation Planning Standardized Application
(WPSA)”, 1992, pp. 1-120.
VIartin Marietta, “Next Generation Workstation/Machine Controller
(NGC): vol. IHiWorkstation Management Standardized Applica-
tion (WMSA)”, 1992, pp. 1-85.
VIartin Marietta, “Next Generation Workstation/Machine Controller
(NGC): vol. IIiNGC Data”, 1992, pp. 1-309.

Martin Marietta, “Next Generation Workstation/Machine Controller
(NGC): vol. IiSpecification for an Open System Architecture Stan-
dard (SOSAS)”, 1992, pp. 1-259.
Steven K. Sorensen, “An Off-line Approach to Task Level State
Driven Robot Programming”, 1989, pp. 1-229.
Sercos Interface, Inc., “Sercos Interface: Digital Interface for Com-
munications Between Controls and Drives for Numerically Con-
trolled Machines”, 1991, pp. 1-366.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
1-95 (Chapters 1 and 2), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
96-180 (Chapters 3 and 4), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
181-268 (Chapters 5 and 6), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
269-341 (Chapters 7 and 8), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
342-408 (Chapter 9), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
409-496 (Chapter 10), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
497-609 (Chapters 11 and 12), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
610-718 (Chapters 13 and 14), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
719-777 (Chapters 15), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
778-877 (Chapters, 16, 17, and 18), Microsoft Press.
Charles Petzoid, “Programming Windows: The VIicrosoft Guide to
Writing Applications for Windows 37Second Edition”, 1990, pp.
878-952 (Chapter 19 and Index), Microsoft Press.
Paul Wright et al., “Mosaic: An Open-Architecture Machine Tool for
Precision Manufacturing”, 1993, pp. 1-10.
Steven Ashley, “A Mosaic for Machine Tools”, Mechanical Engineer-
ing Cime, 1990, pp. 1-6.
Adrian King, “Inside Windows 95”, 1994, pp. 1-129 (Chapters 1, 2,
and 3), Microsoft Press.
Adrian King, “Inside Windows 95”, 1994, pp. 129-247 (Chapters 4
and 5), Microsoft Press.
Adrian King, “Inside Windows 95”, 1994, pp. 248-505 (Chapters
6-10), Microsoft Press.
Tele-Denken Resources, Inc.; “VIEWpoint Product Documenta-
tion”, May 18, 1992, DEFS 00014912-00015830.
Tele-Denken Resources, Inc.; “VIEWpoint Product Documenta-
tion”, May 18, 1992, DEFS 00014912-00015830.
Tele-Denken Resources, Inc.; “VIEWpoint Product Documenta-
tion”, May 18, 1992, DEFS 00014912-00015830.
Tele-Denken Resources, Inc.; “VIEWpoint Product Documenta-
tion”, May 18, 1992, DEFS 00014912-00015830.
Tele-Denken Resources, Inc.; “VIEWpoint Product Documenta-
tion”, May 18, 1992, DEFS 00014912-00015830.
Sercos Interface; “Digital Interface for Communication between
Controls and Drives in Numerically Controlled Machines”, Jul. 1,
1992, DEFS 00041190-00041207.
Hewlett Packard Company; “PCL 5 Printer Language Technical Ref-
erence ManualiPart 1”, Oct. 1, 1992, HP 0001-0369.
Hewlett Packard Company; “PCL 5 Printer Language Technical Ref-
erence ManualiPart 1”, Oct. 1, 1992, HP 0001-0369.
Shaw, L., Bidstrup, E., Wu, 2.; “United States Pat. 5,604,843 (with
DEFS)”, USPTO, Dec. 23, 1992, RGB00061667-RGB00061713.
Smith, M.; “CNC Machining Technologyivol. III Part Program-
ming Techniques”, Springer-Verlag, Inc., 1993, DEFS 00010649-
00010723.

Page 4 0f110

Page 5 of 110

US 8,073,557 B2
Page 5

Intellution, Inc.; “Fix DMACS Recipe Manual”, 1993, DEFS
00035624-00035793.

Ability Systems; “HPGL Controller Design Reference”, 1993, DEFS
00043010-00043052.

Intellution, Inc.; “I/O Driver Manual Eurotherm 800 Series”, 1993,
DEFS 00036515-00036600.

Fanuc Robotics America, Inc; “Kfloppy-DOS PS-100/200 Floppy
Disk Drive EmulatoriVersion 3.07P”, 1993, DEFS 00058306-
00058404.

Fanuc Robotics North America, Inc., “Robot Controller Terminal
Emulator Manual (Version 3.0)”, 1993, DEFS 00058405-00058428.
Cahners Publishing Company; “The First Open Architecture,
Multitasking Machine Controller Plus Computer”, 1993, DEFS
00045272-00045237, Article in Jan. 1993 issue of Control Engineer-
ing.
Fanuc Robotics North America, Inc.; “Pontiac Truck and Bus
PAINTworks II Manual”, 1994, DEFS 00055734-00055920.
Fanuc Robotics North America, Inc.; “Pontiac Truck and Bus
PAINTworks II Manual”, 1994, DEFS 00055734-00055920.
Fanuc Ltd.; “Fanuc MMC-IV Operator’s Manual”, Mar. 1, 1994,
DEFS 00053795-00054125.

Fanuc Ltd.; “Fanuc MMC-IV Operator’s Manual”, Mar. 1, 1994,
DEFS 00053795-00054125.

GE Fanuc Automation; “MMC-IV Descriptions Manual”, Mar. 1,
1994, DEFS 00054457-00054479.
GE Fanuc Automation; “MMC-IV Operator’s Manual”, Mar. 1,
1994, DEFS 00054126-00054456.
GE Fanuc Automation; “MMC-IV Operator’s Manual”, Mar. 1,
1994, DEFS 00054126-00054456.
Wonderware; “Extensibility Toolkit for InTouch”, Jul. 1, 1994, DEFS
00016606-00016955.

Wonderware; “Extensibility Toolkit for InTouch”, Jul. 1, 1994, DEFS
00016606-00016955.

Wonderware; “Extensibility Toolkit for InTouch”, Jul. 1, 1994, DEFS
00016606-00016955.

GE Fanuc Automation; “MMC-IV Connection and Maintenance
Manual”, Dec. 1, 1994, DEFS 00054480-00054537.
Hibbard, S.; “Open Drive Interfaces for Advanced Machining Con-
cepts”, Indramat Division, Rexroth Corporation, 1995, DEFS
00051134-00051151.

Mitchell, D.; “OLE Based Real-Time Device Interface”, USDATA,
Mar. 24, 1995, DEFS 00007882-00007908.
Schofield, S.; “Open Architecture Controllers for Advanced Machine
Tools”, Dec. 12, 1995, DEFS 00030394-00030590.
Schofield, S.; “Open Architecture Controllers for Advanced Machine
Tools”, Dec. 12, 1995, DEFS 00030394-00030590.
“OSACA Open System Architecture for Controls within Automation
Systems Final Report”, Feb. 21, 1996, DEFS 00009106-00009173.
Compumotor Division, Parker Hannifin; “Compumotor Motion
Builder Start-Up Guide and Tutorial”, Oct. 1, 1996, DEFS
00009960-00010053.

Fredriksson, L.; “A CAN Kingdom”, 1995, Kvaser AB, pp. 1-109,
Rev 3.01.

Fanuc Ltd.; “Fanuc Robot i series Product Manual”, 1995, pp. 1-8.
Brockschmidt, K.; “Inside OLEiSecond Edition”, 1995, Microsoft
Press, (1236 pages) Copyright 1995.
National Instruments; “LabVIEW Graphical Programming for
Instrumentation”, 1995, pp. 1-16.
Wizdom Controls, Inc.; “Paradym-31 Software Brochure”, 1995, pp.
1-4.

Webb, J .; Reis, R.; “Programmable Logic ControllersiPrinciples
and Applications (Third Edition)”, 1995, Prentice-Hall, Inc., All
pages. (Copyright 1995).
Fanuc Robotics North America; “SpotTool Application Software”,
1995, pp. 1-2.
Farsi, M.; “A Production Cell Communication Model in Factory
Automation Using the Controller Area Network”, 1995, pp. 90-95.
Iconics, Inc.; “Configuring Input/Output (I/O) Devices (Genisis
Product Guide)”, Feb. 15, 1995, pp. 1-31.
Quinn, T.; George, G.; “Windows 95 Marks a New Era in PC-Based
Automation”, Mar. 1, 1995, Cahners Publishing Company, pp. 19-20,
22 (Control Engineering, Mar. 1995).

Automation and Control; “PLC Programming Stande Expands”,
Apr. 1, 1995, pp. 3-4 (Reprinted from Automation and Control, Apr.
1995).
Cahners Publishing Company; “PC Control Software Combines
Ladder Logic, HMI and I/O”, May 1, 1995, pp. 1-3 (reprint from
Control EngineeringiMay, 1995).
Koizumi, A.; “Pursuing Design Development with a Focus on Com-
patibility and Permeability with Incorporation of Worldwide Stan-
dard Specifications”, May 1, 1995, Instrumentation: Instrumentation
and Control Engineering, vol. 38, No. 5, pp. 58-62.
Electronic Industries Association; “ANSI/EIA-484-A: Electrical and
Mechanical Interface Characteristics and Line Control Protocol

Using Communication Control Characters for Serial Data Link
Between a Direct Numerical Control System and Numerical Control
Equipment Employing Asynchronous Full Duplex Transmission”,
Jun. 1, 1995, ANSI/EIA Specification 484-A.
Oasys Group, Inc.; “OASYS Open Architecture System”, Jul. 11,
1995, pp. 1-23.
Schuett, T.; “The Benefits and Data Bottlenecks of High Speed Mill-
ing: Conference paper presented at Southeastern Michigan Chapter
American Mold Builders Association”, Aug. 1, 1995, Creative Tech-
nology Corporation.
ISOilnternational Standards Organization; “ISO/CD 10303 -2 147
Application protocol: Core Data for Automotive Mechanical Design
ProcessiDraft”, Aug. 8, 1995, pp. 1-1967.
Cahners Publishing Company; “PC Software Adds ‘Joy-of-Use’ to
Power and Flexibility”, Sep. 1, 1995, pp. 2-3 (reprinted from Control
Engineering, Sep. 1995).
Wonderware; “InTouch 5.6 (Product Data Sheet)”, Sep. 15, 1995, pp.
1-4.

Arc Advisory Group; “PC-Based Control Strategies”, Oct. 1, 1995.
Leitao; Lopes; Machado; “A Manufacturing Cell Integration Solu-
tion: paper developed at CCP as a part of the ESPRIT 5629 Project”,
Oct. 1, 1995.
Fedrowitz; “IRL-Based Expansion of the Commonly Used High-
Level Language C for Robot Programming”, Oct. 1, 1995, 5 pages.
Kramer, T.; Proctor, F.; “The NIST RS274/NGC InterpreteriVer-
sion 2”, Oct. 26, 1995, NIST, pp. 1-58.
Pirjanian; Christensen; “Hierarchical Control for Navigation Using
Heterogeneous Models”, Nov. 1, 1995, 19 pages, Denmark.
Wonderware; “InTrack Manufacturing Execution System (Product
Data Sheet)”, Nov. 15, 1995, pp. 1-5.
Selamoglu, H.; “Component Categories”, Dec. 1, 1995, Microsoft
Development Library, pp. 1-19.
OPC Foundation; “OLE for Process Control StandardiVersion 1.0
Draft”, Dec. 22, 1995, pp. 1-70.
Kagami, S.; Tamiya, Y.; Inaba, M.; Inoue, H.; “Design of Real-Time
Large Scale Robot Software Platform and its Implementation in the
Remote-Brained Robot Project”, 1996, IEEE, pp. 1394-1399.
FactorySoft, Inc .; “FactorySoft Report Product Literature”, 1996, pp.
1-2.

Kruglinski, D.; “Inside Visual C++7The Stande Reference for
Programming with Microsoft Visual C++ version 4”, 1996,
Microsoft Press, (946 pages) Copyright 1996.
JPO; “Japanese Patent Application No. JP20035133487FileHist:
Office Action”, Jun. 10, 2010, (13 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/728,801)
Notice ofAllowance”, Jun. 16, 2010, (72 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 10/966,848)7
Notice ofAllowance”, Jun. 22, 2010, (50 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 10/966,848)7
Notice ofAllowance”, Jul. 12, 2010, (17 pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 5,691,897
Ex-Partes Reexamination (Control No. US. Appl. No.
90/009,282)7Appeal Brief”, Jul. 12, 2010, (75 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/271,724)7
Office Action”, Apr. 27, 2010, (153 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/370,082) File HistoryiResponse to OfficeAction”, Jul. 16,2010,
(10 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/375,502) File
History; Final Office Action”, Jul. 21, 2010, (195 pages).

Page 5 0f110

Page 6 of 110

US 8,073,557 B2
Page 6

Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
10/966,848)7Amend After Notice of Allowance, Formal Draw-
ings”, Jul. 29, 2010, (19 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 10/405,883) File
History; Non-Final Office Action”, Aug. 5, 2010, (30 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
12/27 1,724)7Response to Non-Final Office Action”, Aug. 27, 2010,
(10 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: 7110.00002(U.S.
Appl. No. 12/263,953) File History: Response to Non-Final Office
Action”, Aug. 31, 2010, (7 pages).
LSPTO; “USPTO Patent FileHist: 7110.00001 (U.S. Appl. No.
12/400,098) File History”, Feb. 11, 2010, (1075 pages).
LSPTO; “USPTO Patent FileHist: 7110.00002 (U.S. Appl. No.
12/263,953) File History”, Feb. 11,2010, (1054 pages).
LSPTO; “USPTO Patent FileHist: 7110.00003 (U.S. Appl. No.
12/326,565) File History”, Feb. 11,2010, (1063 pages).
LSPTO; “USPTO Patent FileHist: 7110.00004 (U.S. Appl. No.
12/390,779) File History”, Feb. 11, 2010, (968 pages).
L SPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/454,053) File
History”, Feb. 11, 2010, (835 pages).
L SPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/244,673) File
History”, Feb. 11, 2010, (1005 pages).
L SPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/494,163) File
History”, Feb. 11, 2010, (384 pages).
L SPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/244,673) File
History: Terminal Disclaimer”, Feb. 16, 2010, (13 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File History: Response to Office Action”, Feb. 22,2010,
(14 pages).
JP0; “JP0 FileHist: Japanese Patent Application No.
JP2003513348: Office Action”, Jun. 10, 2010, (7 pages).
Black, Lowe and Graham; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Response after PTO’s Notice
Dated Feb. 4, 2010”, Feb. 19, 2010, (52 pages).
Black, Lowe and Graham; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Response after PTO’s Notice
Dated Feb. 4, 2010”, Feb. 19, 2010, (59 pages).
Roy-G-Biv Corporation; “ReEx: RGRX706 Exhibit Index”, Feb. 24,
2010, (7 pages).
Black, Lowe and Graham; “ReEx: US. Patent No. 5,691,897 Ex-
PaItes Reexamination (Control No. 901009,282)7Response after
Final Office Action”, Mar. 12, 2010, 43 pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Response after PTO’s Notice
Dated Feb 4, 2010”, Mar. 19, 2010, (56 pages).
Individual; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Third Party Certificate of Service”, Jun. 11,
2009, all pages.
Individual; “ReEx: US. Patent No. 6,516,236 Reexamination (Con-
trol No. 95/000,396)7Third Party Certificate of Service”, Jun. 11,
2009, all pages.
Individual; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Petition and Request for Return of 3rd Party
Req. Comments Without Consideration”, Jun. 12, 2009, all pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Petition and Request of 3rd
Party Req. Comments Without Consideration”, Jun. 12, 2009, all
pages.
Armstrong Teasdale LLP; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Third Party Request”, Sep.
23, 2009, all pages.
USPTO; “ReEx: US. Patent No. 5,691,897 Reexamination (Control
No. 90/009,282)7Final Office Action”, Jan. 13, 2010, all pages.
USPTO; “ReEx: US. Patent No. 6,516,236 Reexamination (Control
No. 95/000,396)7Non-Final Office Action #2”, Feb. 4, 2010, all
pages.
USPTO; “ReEx: US. Patent No. 6,941,543 Reexamination (Control
No. 95/000,397)7Non-Final Office Action #2”, Feb. 4, 2010, all
pages.
USPTO; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Non-Final Office Action #2”, Feb. 8, 2010, all
pages.

Black, Lowe and Graham; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Response after Non-Final
Office Action”, Feb. 16, 2010, all pages.
USPTO; “ReEx: US. Patent No. 5,691,897 Reexamination (Control
No. 90/009,282)7Returned Postcards”, May 6, 2009, all pages.
Armstrong Teasdale LLP; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Third Party Requester Com-
ments after Non-Final Office Action”, May 22, 2009, all pages.
Individual; “ReEx: US. Patent No. 6,516,236 Reexamination (Con-
trol No. 95/000,396)7Third Party Requester Comments after Non-
Final Office Action: Exhibits A-1 thru A-47”, May 22, 2009, all
pages.
Individual; “ReEx: US. Patent No. 6,516,236 Reexamination (Con-
trol No. 95/000,396)7Third Party Requester Comments after Non-
Final Office Action: Exhibits B thru Q”, May 22, 2009, all pages. See
Uanscript%ontains multiple refs. with varying pub. dates. Exh Q
not provided by requestor.
Individual; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Third Party Certificate of Mailing”, May 28,
2009, all pages.
Armstrong Teasdale LLP; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Third Party Requester Com-
ments after Non-Final Office Action”, May 28, 2009, all pages.
Individual; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Third Party Requester Comments after Non-
Final Office Action: Exhibits A-1 thru A-55”, May 28, 2009, all
pages.
Individual; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Third Party Requester Comments after Non-
Final Office Action: Exhibits B thru S”, May 28, 2009, all pages.
Armstrong Teasdale LLP; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Third Party Requester Com-
ments after Non-Final Office Action”, May 29, 2009, all pages.
Individual; “ReEx: US. Patent No. 6,941,543 Reexamination (Con-
trol No. 95/000,397)7Third Party Requester Comments after Non-
Final Office Action: Exhibits T thru V”, May 29, 2009, all pages.
Petzold, C.; “ReEx: US. Patent No. 6,941,543 Reexamination (Con-
trol No. 95/000,397)7Response Declaration: Petzold”, Apr. 29,
2009, (declaration712 pages) and (supporting Exhibit A-B, where
Exhibit B includes sub-exhibits A-G778 pages).
Richter, J .; “ReEx: US. Patent No. 6,941,543 Reexamination (Con-
trol No. 95/000,397)7Response Declaration: Richter”, Apr. 29,
2009, (declarationi27 pages) and (supporting Exhibits A-B where
Exhibit B includes sub-exhibits A-G780 pages).
Stone, M.; “ReEx: US. Patent No. 6,941,543 Reexamination (Con-
trol No. 95/000,397)7Response Declaration: Stone”, Apr. 29, 2009,
(declaration713 pages) and (supporting Exhibit A~4 pages).
USPTO; “ReEx: US. Patent No. 6,941,543 Reexamination (Control
No. 95/000,397)7Returned Postcards”, Apr. 29, 2009, all pages.
Black, Lowe and Graham; “ReEx: L .S. Patent \Io. 6,941,543 Reex-
amination (Control No. 95/000,397)7Transmittal Letter”, Apr. 29,
2009, all pages.
Black, Lowe and Graham; “ReEx: L .S. Patent \Io. 5,691,897 Reex-
amination (Control No. 90/009,282)4Certificate of Service”, May
1, 2009, all pages.
Black, Lowe and Graham; “ReEx: L .S. Patent \Io. 5,691,897 Reex-
amination (Control No. 90/009,282)7Fee Transmittal”, May 1,
2009, all pages.
Black, Lowe and Graham; “ReEx: L .S. Patent \Io. 5,691,897 Reex-
amination (Control No. 90/009,282)7Information Disclosure State-
ment”, May 1, 2009, all pages.
Black, Lowe and Graham; “ReEx: L .S. Patent \Io. 5,691,897 Reex-
amination (Control No. 90/009,282)7Response after Non-Final
Office Action”, May 1, 2009, all pages.
Black, Lowe and Graham; “ReEx: L .S. Patent \Io. 5,691,897 Reex-
amination (Control No. 90/009,282)7Transmittal Letter”, May 1,
2009, all pages.
Black, Lowe and Graham; “ReEx: L .S. Patent \Io. 6,941,543 Reex-
amination (Control No. 95/000,397)4Certificate of Service”, Apr.
29, 2009, all pages.
Black, Lowe and Graham; “ReEx: L .S. Patent \Io. 6,941,543 Reex-
amination (Control No. 95/000,397)7Fee Transmittal”, Apr. 29,
2009, all pages.

Page 6 0f110

Page 7 of 110

US 8,073,557 B2
Page 7

Black, Lowe and Graham; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Response after Non-Final
Office Action”, Apr. 29, 2009, all pages.
Ard, J .; “ReEx: US. Patent No. 6,941,543 Reexamination (Control
No. 95/000,397)7Response Declaration: Ard”, Apr. 29, 2009, (dec-
larationi8 pages) and (supporting Exhibits A-BB7237 pages). See
supporting Exhibit CC listed in “RGRX706 Exhibit Index”.
Chouinard, D.; “ReEx: US. Patent No. 6,941,543 Reexamination
(Control No. 95/000,397)7Response Declaration: Chouinard”, Apr.
29, 2009, (declarationi8 pages) and (supporting Exhibit A~4
pages).
Levy, A; “ReEx: US. Patent No. 6,941,543 Reexamination (Control
No. 95/000,397)7Response Declaration: Levy”, Apr. 29, 2009,
(declarationi9 pages) and (supporting Exhibits A-Ci7 pages).
Malina, R.; “ReEx: US. Patent No. 6,941,543 Reexamination (Con-
trol No. 95/000,397)7Response Declaration: Malina”, Apr. 29,
2009, (declarationi34 pages) and (supporting Exhibits A-F719
pages).
Mathias, R.; “ReEx: US. Patent No. 6,941,543 Reexamination (Con-
trol No. 95/000,397)7Response Declaration: Mathias”, Apr. 29,
2009, (declarationi73 pages). See supporting Exhibits AAl-AA3,
Y1-Y25, and 21-2107listed in “RGRX706 Exhibit Index”.
McConnell, S.; “ReEx: US. Patent No. 6,941,543 Reexamination
(Control No. 95/000,397)7Response Declaration: McConnell”,
Apr. 29, 2009, (12 pages).
Omoigui, N.; “ReEx: US. Patent No. 6,941,543 Reexamination
(Control No. 95/000,397)7Response Declaration: Omoigui”, Apr.
29, 2009, (22 pages) and (supporting Exhibit C78 pages). See sup-
porting Exhibits A-Bilisted in “RGRX706 Exhibit Index”.
Mathias, R.; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Response Declaration: Mathias”, Apr. 28,
2009, See supporting Exhibits AAl-AA3, Y1-Y25, and 21-2107
listed in “RGRXi06 Exhibit Index”.
McConnell, S.; “ReEx: US. Patent No. 6,513,058 Reexamination
(Control No. 95/000,398)7Response Declaration: McConnell”,
Apr. 28, 2009, (12 pages).
Omoigui, N.; “ReEx: US. Patent No. 6,513,058 Reexamination
(Control No. 95/000,398)7Response Declaration: Omoigui”, Apr.
28, 2009, (declarationi22 pages). See supporting Exhibits A-Bi
listed in “RGRXi06 Exhibit Index”.
Petzold, C.; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Response Declaration: Petzold”, Apr. 28,
2009, (declarationill pages) and (supporting Exhibit A-B, where
Exhibit B includes sub-exhibits A-G778 pages).
Richter, J .; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Response Declaration: Richter”, Apr. 28,
2009, (declarationi27 pages) and (supporting Exhibits A-B where
Exhibit B includes sub-exhibits A-G780 pages).
Stone, M.; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Response Declaration: Stone”, Apr. 28, 2009,
(declaration713 pages) and (supporting Exhibit A~4 pages).
USPTO; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Returned Postcards”, Apr. 28, 2009, all pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Transmittal Letter”, Apr. 28,
2009, all pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Information Disclosure State-
men ”, Apr. 28, 2009, all pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Response after Non-Final
Office Action”, Apr. 29, 2009, all pages.
Richter, J .; “ReEx: US. Patent No. 6,516,236 Reexamination (Con-
trol No. 95/000,396)7Response Declaration: Richter”, Apr. 23,
2009, (declarationi27 pages) and (supporting Exhibits A-B where
Exhibit B includes sub-exhibits A-G780 pages).
Stone, M.; “ReEx: US. Patent No. 6,516,236 Reexamination (Con-
trol No. 95/000,396)7Response Declaration: Stone”, Apr. 23, 2009,
(declaration713 pages) and (supporting Exhibit A~4 pages).
Black, Lowe and Graham; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Transmittal Letter”, Apr. 23,
2009, all pages.

Black, Lowe and Graham; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)4Certificate of Service”, Apr.
28, 2009, all pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Fee Transmittal”, Apr. 28,
2009, all pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Information Disclosure State-
ment”, Apr. 28, 2009, all pages.
Ard, J.; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Response Declaration: Ard”, Apr. 28, 2009, (dec-
larationi8 pages) and (supporting Exhibits A-BB7237 pages). See
supporting Exhibit CC listed in “RGRX706 Exhibit Index”.
Chouinard, D.; “ReEx: US. Patent No. 6,513,058 Reexamination
(Control No. 95/000,398)7Response Declaration: Chouinard”, Apr.
28, 2009, (declarationi8 pages) and (supporting Exhibit A~4
pages).
Levy, A; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Response Declaration: Levy”, Apr. 28, 2009,
(declarationi9 pages) and (supporting Exhibits A-Ci7 pages).
Malina, R.; “ReEx: US. Patent No. 6,513,058 Reexamination (Con-
trol No. 95/000,398)7Response Declaration: Malina”, Apr. 28,
2009, (declarationi34 pages) and (supporting Exhibits A-F719
pages).
Black, Lowe and Graham; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Fee Transmittal”, Apr. 23,
2009, all pages.
Black, Lowe and Graham; “REx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Information Disclosure State-
men ”, Apr. 23, 2009, all pages.
Ard, J .; “ReEx: US. Patent No. 6,516,236 Reexamination (Control
No. 95/000,396)7Response Declaration: Ard”, Apr. 23, 2009, (dec-
larationi8 pages) and (supporting Exhibits A-BB7237 pages). See
supporting Exhibit CC listed in “RGRX706 Exhibit Index”.
Chouinard, D.; “ReEx: US. Patent No. 6,516,236 Reexamination
(Control No. 95/000,396)7Response Declaration: Chouinard”, Apr.
23, 2009, (declarationi8 pages) and (supporting Exhibit A~4
pages).
Levy, A; “ReEx: US. Patent No. 6,516,236 Reexamination (Control
No. 95/000,396)7Response Declaration: Levy”, Apr. 23, 2009,
(declarationi9 pages) and (supporting Exhibits A-Ci7 pages).
Malina, R.; “ReEx: US. Patent No. 6,516,236 Reexamination (Con-
trol No. 95/000,396)7Response Declaration: Malina”, Apr. 23,
2009, (declarationi34 pages) and (supporting Exhibits A-F719
pages).
Mathias, R.; “ReEx: US. Patent No. 6, 5 1 6,236 Reexamination (Con-
trol No. 95/000,396)7Response Declaration: Mathias”, Apr. 23,
2009, (declarationi74 pages). See supporting Exhibits AAl-AA3,
Y1-Y25, and 21-2107listed in “RGRX706 Exhibit Index”.
McConnell, S.; “ReEx: US. Patent No. 6,516,236 Reexamination
(Control No. 95/000,396)7Response Declaration: McConnell”,
Apr. 23, 2009, (12 pages).
Omoigui, N.; “ReEx: US. Patent No. 6,516,236 Reexamination
(Control No. 95/000,396)7Response Declaration: Omoigui”, Apr.
23, 2009, (declarationi22 pages) and (supporting Exhibit C78
pages). See supporting Exhibits A-Bilisted in “RGRX706 Exhibit
Index”.

Petzold, C.; “ReEx: US. Patent No. 6,516,236 Reexamination (Con-
trol No. 95/000,396)7Response Declaration: Petzold”, Apr. 23,
2009, (declaration712 pages) and (supporting Exhibit A-B, where
Exhibit B includes sub-exhibits A-G778 pages).
Chouinard, D.; “ReEx: US. Patent No. 5,691,897 Reexamination
(Control No. 90/009,282)7Response Declaration: Chouinard”, Apr.
23, 2009, (declarationi8 pages) and (supporting Exhibit A~4
pages).
Levy, A; “ReEx: US. Patent No. 5,691,897 Reexamination (Control
No. 90/009,282)7Response Declaration: Levy”, Apr. 23, 2009,
(declarationi9 pages) and (supporting Exhibits A-Ci7 pages).
Malina, R.; “ReEx: US. Patent No. 5,691,897 Reexamination (Con-
trol No. 90/009,282)7Response Declaration: Malina”, Apr. 23,
2009, (declarationi34 pages) and (supporting Exhibits A-F719
pages).

Page 7 0f110

Page 8 of 110

US 8,073,557 B2
Page 8

Mathias, R.; “ReEx: US. Patent No. 5,691,897 Reexamination (Con-
trol No. 90/009,282)7Response Declaration: Mathias”, Apr. 23,
2009, (declarationi73 pages). See supporting Exhibits AA1-AA3,
Y1-Y25, and Zl-2107listed in “RGRX706 Exhibit Index”.
McConnell, S.; “ReEx: US. Patent No. 5,691,897 Reexamination
(Control No. 90/009,282)7Response Declaration: McConnell”,
Apr. 23, 2009, (12 pages).
Omoigui, N.; “ReEx: US. Patent No. 5,691,897 Reexamination
(Control No. 90/009,282)7Response Declaration: Omoigui”, Apr.
23, 2009, (declarationi22 pages) and (supporting Exhibit C78
pages). See supporting Exhibits A-Bilisted in “RGRX706 Exhibit
Index”.

Petzold, C.; “ReEx: US. Patent No. 5,691,897 Reexamination (Con-
trol No. 90/009,282)7Response Declaration: Petzold”, Apr. 23,
2009, (declaration712 pages) and (supporting Exhibit A-B, where
Exhibit B includes sub-exhibit A-G778 pages).
Richter, J .; “ReEx: US. Patent No. 5,691,897 Reexamination (Con-
trol No. 90/009,282)7Response Declaration: Richter”, Apr. 23,
2009, (declarationi27 pages) and (supporting Exhibits A-B where
Exhibit B includes sub-exhibits A-G780 pages).
Stone, M.; “ReEx: US. Patent No. 5,691,897 Reexamination (Con-
trol No. 90/009,282)7Response Declaration: Stone”, Apr. 23, 2009,
(declaration713 pages) and (supporting Exhibit A~4 pages).
Black, Lowe and Graham; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)4Certificate of Service”, Apr.
23, 2009, all pages.
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
B”, Dec. 6, 2008, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
C”, Dec. 6, 2008, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
D”, Dec. 6, 2008, pp. 1-2 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
E”, Dec. 6, 2008, pp. 1-17 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
F”, Dec. 6, 2008, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
G”, Dec. 6, 2008, pp. 1-2 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
H”, Dec. 6, 2008, pp. 1-2 (pdfpages).
GE Fanuc; “Pleadings: Declaration ofChri stina M. FinniExhibit I”,
Dec. 6, 2008, pp. 1-8 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
J”, Dec. 6, 2008, pp. 1-9 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
K”, Dec. 6, 2008, pp. 1-8 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Christina VI. FinniExhibit
L”, Dec. 6, 2008, pp. 1-5 (pdf pages).
GE Fanuc; “Pleadings: Declaration of Melvin Ray Mercer”, Dec. 6,
2008, pp. 1-34 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Melvin Ray MerceriExhibit
A”, Dec. 6, 2008, pp. 1-22 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Melvin Ray MerceriExhibit
B”, Dec. 6, 2008, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Declaration of Melvin Ray MerceriExhibit
C”, Dec. 6, 2008, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Declaration of Melvin Ray MerceriExhibit
D”, Dec. 6, 2008, pp. 1-2 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Melvin Ray MerceriExhibit
E”, Dec. 6, 2008, pp. 1-2 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Markman
BriefiExhibit 7”, Nov. 21, 2008, p. 1.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Markman
BriefiExhibit 8”, Nov. 21, 2008, pp. 1-10 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Markman
BriefiExhibit 9”, Nov. 21, 2008, pp. 1-3 (pdf pages).
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Supplemental
Joint Claim Construction and Prehearing Statement of Plaintiff and
Defendant”, Nov. 21, 2008, pp. 1-4.
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Supplemental
Joint Claim Construction and Prehearing Statement of Plaintiff and
DefendantiExhibit B”, Nov. 21, 2008, pp. 1-13 (pdf pages).

Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Supplemental
Joint Claim Construction and Prehearing Statement of Plaintiff and
DefendantiExhibit A”, Nov. 21, 2008, pp. 1-2 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff’ s Answer to Defen-
dant’s Second Amended Answer and Counterclaims”, Dec. 5, 2008,
pp. 1-15 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff’ s Motion to Dismiss
GE Fanuc Intelligent Platforms, Inc. and General Electric Compa-
ny’s Infringement Claims or, Alternatively, Motion to Severiand
Proposed Order”, Dec. 5, 2008, pp. 1-11 (pdfpages).
GE Fanuc; “Pleadings: Claim Construction Brief of Defendants”,
Dec. 6, 2008, pp. 1-46 (pdfpages).
GE Fanuc; “Pleadings: Claim Construction Brief of Defendantsi
Exhibit A”, Dec. 6, 2008, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Claim Construction Brief of Defendantsi
Exhibit B”, Dec. 6, 2008, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Claim Construction Brief of Defendantsi
Exhibit C”, Dec. 6, 2008, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Claim Construction Brief of Defendantsi
Exhibit D”, Dec. 6, 2008, pp. 1-2 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Christina M. Finn”, Dec. 6,
2008, pp. 1-6 (pdfpages).
GE Fanuc; “Pleadings: Declaration of Christina M. FinniExhibit
A”, Dec. 6, 2008, pp. 1-13 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 2”, \Iov. 21, 2008, pp. 1-64 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 2”, \Iov. 21, 2008, pp. 65-130 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 3”, \Iov. 21, 2008, pp. 1-40 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 3”, \Iov. 21, 2008, pp. 41-81 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 4”, \Iov. 21, 2008, pp. 1-50 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 4”, \Iov. 21, 2008, pp. 51-99 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 6”, \Iov. 21, 2008, pp. 1-50.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 6”, \Iov. 21, 2008, pp. 51-94.
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Supplemental
Joint Claim Construction and Prehearing Statement of Plaintiff and
DefendantiExhibit C”, Nov. 21, 2008, pp. 1-64 (pdf pages).
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Supplemental
Joint Claim Construction and Prehearing Statement of Plaintiff and
DefendantiExhibit C”, Nov. 21, 2008, pp. 65-131 (pdf pages).
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Supplemental
Joint Claim Construction and Prehearing Statement of Plaintiff and
DefendantiExhibit D”, Nov. 21, 2008, pp. 1-50 (pdf pages).
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Supplemental
Joint Claim Construction and Prehearing Statement of Plaintiff and
DefendantiExhibit D”, Nov. 21, 2008, pp. 51-98 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 1”, Nov. 21, 2008, pp. 1-12 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 10”, \Iov. 21, 2008, pp. 1-21 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 11”, \Iov. 21, 2008, pp. 1-20 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 12”, \Iov. 21, 2008, pp. 1-11 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 13”, \Iov. 21, 2008, pp. 1-11 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 14”, \Iov. 21, 2008, pp. 1-6 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 15”, \Iov. 21, 2008, pp. 1-4 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 16”, \Iov. 21, 2008, pp. 1-19 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 17”, \Iov. 21, 2008, pp. 1-3 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Vlarkman
BriefiExhibit 18”, \Iov. 21, 2008, pp. 1-11 (pdf pages).

Page 8 0f110

Page 9 of 110

US 8,073,557 B2
Page 9

Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Markman
BriefiExhibit 19”, Nov. 21, 2008, pp. 1-8 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Markman
BriefiExhibit 20”, Nov. 21, 2008, pp. 1-3 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Markman
BriefiExhibit 21”, Nov. 21, 2008, pp. 1-2 (pdfpages).
GE Fanuc; “Pleadings: Defendants Proposed Terms and Claim Ele-
ments for Construction Pursuant to Patent Rule 4-1”, Jul. 25, 2008,
pp. 1-16 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Proposed Terms and
Claim Elements for Construction”, Jul. 25, 2008, pp. 1-4 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Identification of Ten
Asserted Claims”, Aug. 8, 2008, pp. 1-3.
GE Fanuc; “Pleadings: Defendants Claim Constructions and Prelimi-
nary Identification of Extrinsic Evidence Pursuant to Patent Rule
4-2”, Oct. 3, 2008, pp. 1-13 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Proposed Claim Con-
structions and Extrinsic Evidence”, Oct. 3, 2008, pp. 1-22 (pdf
pages).
GE Fanuc; “Pleadings: Defendant’s Preliminary Constructions for
Three Terms Identified by Plaintiff”, Oct. 16, 2008, pp. 1-2.
GE Fanuc; “Pleadings: Defendant’s Second Set of Interrogatories to
Plaintiff”, Oct. 17, 2008, pp. 1-9 (pdf pages).
GE Fanuc; “Pleadings: Defendants Preliminary Claim Constructions
and Preliminary Identification of Extrinsic Evidence Pursuant to
Patent Rule 4-2”, Oct. 17, 2008, pp. 1-29 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiffs Proposed Construc-
tions and Extrinsic Evidence for Terms Identified in Defendant’s

Letter Dated Oct. 7, 2008”, Oct. 17, 2008, pp. 1-9.
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Joint Claim Con-
struction and Prehearing Statement ofPlaintiff and Defendant”, Oct.
24, 2008, pp. 1-5 (pdfpages).
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Joint Claim Con-
struction and Prehearing Statement of Plaintiff and Defendanti
Exhibit A”, Oct. 24, 2008, pp. 1-2 (pdfpages).
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Joint Claim Con-
struction and Prehearing Statement of Plaintiff and Defendanti
Exhibit B”, Oct. 24, 2008, pp. 1-19.
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Joint Claim Con-
struction and Prehearing Statement of Plaintiff and Defendanti
Exhibit C”, Oct. 24, 2008, pp. 1-64.
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Joint Claim Con-
struction and Prehearing Statement of Plaintiff and Defendanti
Exhibit C”, Oct. 24, 2008, pp. 65-133.
Roy-G-Biv Corporation and GE Fanuc; “Pleadings: Joint Claim Con-
struction and Prehearing Statement of Plaintiff and Defendanti
Exhibit D”, Oct. 24, 2008, pp. 1-22.
GE Fanuc; “Pleadings: Sixth Supplemental Objections and
Responses of Defendants to Plaintiffs First Set of Interrogatories
(Nos. 3-5)”, Nov. 12, 2008, pp. 1-11 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiffs Answers and Obj ec-
tions to Defendant’s Second Set of Interrogatories”, Nov. 20, 2008,
pp. 1-9 (pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff Opening Markman
Brief’, Nov. 21, 2008, pp. 1-43 (pdfpages).
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit W-543”, Jul. 11, 2008, pp. 1-67.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit W-897”, Jul. 11, 2008, pp. 1-161.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit X-236”, Jul. 11, 2008, pp. 1-37.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit X-543”, Jul. 11, 2008, pp. 1-51.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit X-897”, Jul. 11, 2008, pp. 1-73.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibitY—058”, Jul. 11, 2008, pp. 1-28.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibitY—236”, Jul. 11, 2008, pp. 1-15.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibitY—543”, Jul. 11, 2008, pp. 1-19.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibitY—897”, Jul. 11, 2008, pp. 1-34.

GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit Z-058”, Jul. 11, 2008, pp. 1-117.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit Z-236”, Jul. 11, 2008, pp. 1-103.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit Z-543”, Jul. 11, 2008, pp. 1-97.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit Z-897”, Jul. 11, 2008, pp. 1-227.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Indentification of Ten
Asserted Claims”, Aug. 8, 2008, p. 1.
GE Fanuc; “Pleadings: Fourth Supplemental Objections and
Responses ofDefendants to PlantiffFirst Set of Interrogatories (Nos.
1 and 2)”, Aug. 14, 2008, pp. 1-26.
GE Fanuc; “Pleadings: Fifth Supplemental Objections and
Responses ofDefendants to PlantiffFirst Set of Interrogatories (Nos.
1)”, Aug. 26, 2008, pp. 1-23.
Roy-G-Biv Corporation; “Pleadings: RGB Internal Document #8”,
\Iov. 6, 2008, p. 4 (RGB00055568).
Roy-G-Biv Corporation; “Pleadings: RGB Internal Documents #9”,
\Iov. 6, 2008, p. 14 (RGB00056075).
Roy-G-Biv Corporation; “Pleadings: RGB Related Document #1”,
\Iov. 6, 2008, Pdfpp. 1-23 (RGB00051652-RGB00051674).
Roy-G-Biv Corporation; “Pleadings: RGB Related Document #2”,
\Iov. 6, 2008, Pdfpp. 1-5 (RGB00052822-RGB00052826).
Roy-G-Biv Corporation; “Pleadings: RGB Related Document #3”,
\Iov. 6, 2008, Pdfp. 1 (RGB00004196).
Roy-G-Biv Corporation; “Pleadings: RGB Related Document #4”,
\Iov. 6, 2008, Pdfp. 1 (RGB00004200).
Roy-G-Biv Corporation; “Pleadings: RGB Related Document #5”,
\Iov. 6, 2008, Pdfp. 1 (RGB00004201).
Roy-G-Biv Corporation; “Pleadings: RGB Related Document #6”,
\Iov. 6, 2008, Pdfp. 1 (RGB00004202).
Roy-G-Biv Corporation; “Pleadings: RGB Related Document #7”,
\Iov. 6, 2008, Pdfpp. 1-3 (RGB00052984-RGB00052986).
VIicrosoft Development Library; “INF: Banding, Printing, and the
\Iumber ofBands”, May 6, 1994, Jul. 1994 MSDN, Knowledge Base
Article, PSS ID No. Q72691.
VIicrosoft Development Library; “INF: Basics ofBanding Printing in
Windows”, May 6, 1994, Jul. 1994 MSDN, Knowledge Base, PSS ID
\Io. Q75471, pdfpp. 1-2.
ISO/IEC; “ISO/IEC 9506-6: Industrial automation systemsiManu-
facturing message specificationiPart 6: Companion Standard for
Process Control”, Jun. 1, 1994, pp. 1-267.
Sakai, K.; “Object Orientation and C++ Language: Facts of Object-
Oriented Programming”, Jun. 1, 1994, CQ Publishing Co., Ltd., vol.
20, No. 6, pp. 83-93.
Control; “Simulation Software Helps Troubleshoot PLC Code”, Jun.
1, 1994, p. 1 (reprinted from Control, Jun. 1994).
Tele-Denken Resources, Inc.; “SoftPLC (Product Data Sheet)”, Jun.
1, 1994, pp. 1-5.
Blasvaer; Pirjanian; “An Autonomous Mobile Robot System”, Jun. 8,
1994, pp. 52-61 and 122-124, Chapters 4 and 6.7.
Galil Motion Control; “Galil ServoTrends vol. X. No. 2”, Jul. 1, 1994,
pp. 1-4.
ISO/IEC; “ISO/IEC 9545: Information technologyiOpen Systems
InterconnectioniApplication Layer structure”, Aug. 15, 1994, pp.
1-20.

Ford, W.; “What Is an Open Architecture Robot Controller”, Aug. 16,
1994, IEEE, pp. 27-32.
Richter, J .; “Advanced Windows NTiThe Developer’s Guide to the
Win32 Application Programming Interface”, 1994, Microsoft Press,
(732 pages) Copyright 1994.
Lin, S.; “Computer Numerical ControliFrom Programming to Net-
working”, 1994, Delmar Publishers, Inc, All pages. (Copyright
1994).
Intellution, Inc.; “Fix Product Brochure”, 1994, 6 pages.
Kruglinski, D.; “Inside Visual C++7Version 1.5; Second Edition”,
1994, Microsoft Press, (754 pages) Copyright 1994.
National Instruments; “LabWindows/CVI Product Literature”, 1994,
pp. 1-8.
Microsoft Press; “Microsoft Windows NT(TM) 3.5 Guidelines for
Security, Audit, and Control”, 1994, (296 pages) Copyright 1994.

Page 9 0f110

Page 10 of 110

US 8,073,557 B2
Page 10

Proctor, F.; Damazo, B.;Yang, C.; Frechette, S.; “Open Architectures
for Machine Control”, 1994, NIST, pp. 1-17.
PID, Inc; “OpenBatch Product Brief”, 1994, 6 pages.
Honeywell Inc.; “SDS Physical Layer Specification”, 1994, pp. 1-34.
Tal, J .; “Step-By-Step Design of Motion Control Systems”, 1994,
Galil Motion Control.

Miller, D.; “Using Generic Tool Kits to Build Intelligent Systems
(AIAA 94-1214)”, Mar. 9, 1994, Sandia National Laboratories, pp.
1-9.

Tele-Denken Resources, Inc.; “The History of Programmable Con-
trollers”, Apr. 1, 1994, pp. 1-26.
Wonderware; “InTouch 5 Lite (Product Data Sheet)”, Apr. 14, 1994,
pp. 1-4.
Wonderware; “InTouch 5 (Product Data Sheet)”, Apr. 19, 1994, pp.
1-4.

Wonderware; “InTouch 5 PDIONT (Product Data Sheet)”, Apr. 19,
1994, pp. 1-4.
Can in Automation (CIA); “CAN Physical Layer for Industrial Appli-
cations”, Apr. 20, 1994, pp. 1-4, CiA Draft Stande 102, Version 2.0.
Kramer, T.; Proctor, F.; Michaloski, J .; “The NIST RS274/NGC
InterpreteriVersion 1”, Apr. 28, 1994, NIST, pp. 1-26.
ISOiInternational Standards Organization; “ISO/CD 10303-204:
Application protocol: Mechanical design using boundary represen-
tationiDraft”, Apr. 29, 1994, pp. 1-214.
Chu; Wang; “Development of a Practical SFC System for CNC
Machine Shop: International Conference on Data and Knowledge
Systems for Manufacturing and Engineering”, May 1, 1994, pp.
362-367, vol. 1; pp. xx+745, vol. 2.
Microsoft Development Library; “INF: An Alternative to
SpoolFile()”, May 6, 1994, Jul. 1994 MSDN, Knowledge Base
Article, PSS ID No. Q111010, pdfpp. 1-5.
Steeplechase Software, Inc.; “Visual Logic Controller (Product Lit-
erature)”, 1994, pp. 1-3.
Trihedral Engineering Ltd; “Web 3.0 Product Brochure”, 1994, 6
pages.

Xanalog; “Model NL-SIM Product Brochure”, 1994, 4 pages.
Farsi, M.; “Device Communication for Flexible Manufacturing:-A
New Concept”, 1994, pp. 328-334.
Sisco, Inc.; “Overview and Introduction to the Manufacturing Mes-
sage Specification (MMS)”, 1994, pp. 1-47, Revision 2.
Chen, S.; Lin, S.; “Computer Numerical Control: Essentials in Pro-
gramming and Networking”, 1994, Delmar Publishers, Inc, pp. 824-
848, Part V, Chapter 27.
US Department of Energy; “Robotic Technology Development Pro-
gram”, Feb. 1, 1994, pp. 1-114.
Microsoft Development Library; “Using Passthrough Escape to Send
Data Directly to Printer”, Feb. 2, 1994, Jul. 1994 MSDN, Knowlege
Base Article, PSS ID No. Q96795, pdfpp. 1-2.
Microsoft Corporation; “Open Systems: Technology, Leadership,
and Collaboration”, Mar. 1, 1994, Backgrounders and Whitepapers:
Operating System ExtensionsiMSDN Archive Edition, pp. 1-15.
Microsoft Corporation; “The Microsoft Object Technology Strat-
egy”, Mar. 1, 1994, Backgrounders and Whitepapers: Operating Sys-
tem ExtensionsiMSDN Archive Edition, pp. 1-33.
Katayama, Y.; Nanjo, Y.; Shimokura, K.; “A Motion Control System
with Event-driven Motion-module Switching Mechanism for
Robotic Manipulators”, Jul. 1, 1993, IEEE, International Workshop
on Robot and Human Communication pp. 320-325, U.S.
Microsoft Corporation; “WOSA Backgrounder: Delivering Enter-
prise Services to the Windows-based Desktop”, Jul. 1, 1993,
Backgrounders and Whitepapers: Operating Systems Extensionsi
MSDN Archive Edition, pp. 1-19.
Wallace, S.; Senehi, M.; Barkmeyer, E.; Ray, S.; Wallace, E.; “Con-
trol Entity Interface Specification”, Sep. 1, 1993, pp. 10-20.
Galil Motion Control; “Galil ServoTrends vol. IX. No. 2”, Sep. 1,
1993, pp. 1-4.
Microsoft Corporation; “Object Linking and Embedding 2.0
Backgrounder”, Sep. 1, 1993, pp. 1-15.
Cahners Publishing Company; “Control Engineering Software”, Oct.
1, 1993, p. 184 of Oct. 1993 issue of Control Engineering.

Christensen, J .; “Programmable controller users and makers to go
global with IEC 1131-3”, Oct. 1, 1993, Instrument and Control Sys-
tems, pp. 1-4 (reprint from Instrument and Control SystemsiOct.
1993).
Tuggle, E.; “Introduction to Device Driver Design”, Oct. 5, 1993,
Proceedings of the Fifth Annual Embedded Systems Conference, pp.
455-468, vol. 2.
Microsoft Development Library; “How to Send Printer Escape Codes
from a WinWord Document”, Oct. 25, 1993, Jul. 1994 MSDN,
Knowledge Base Article, PSS ID No. Q93658, pdf p. 1.
Microsoft Corporation; “Microsoft OLE Today and Tomorrow:
Technology Overview”, Dec. 1, 1993, pp. 1-9.
Software Horizons, Inc.; “Operator Interface Software for Supervi-
sory Control, Monitoring and Reporting for Windows Operating
System (Product Literature)”, 1993, pp. 1-12.
Oregon Micro Systems, Inc.; “Precision Motion Controls At Afford-
able Prices Product Guide”, 1993, pp. 1-20.
Pro-Log Corporation; “Pro-Log Motion Control for Allen-Bradley
PLCs (Product Literature)”, 1993, pp. 1-5.
Iconics, Inc.; “Software Products for Industrial Automation”, 1993, 6
pages.
Tele-Denken Resources, Inc.; “VIEWpoint (Product Data Sheet)”,
1993, pp. 1-11.
DICTIONARY.COM LLC; “www.dictionary.com definition of ‘per-
sistent’”, 1993.
Farsi, M.; “Flexible and Reliable Robotics Cells in Factory Automa-
tion”, 1993, pp. 520-525.
Anderson, R.; “Smart: A Modular Architecture for Robotics and
Teleoperation”, 1993, IEEE, pp. 416-421.
Pritchard, K.; “PC-based Simulation in Control System Design”,
Feb. 1, 1993, Cahners Publishing Company, pp. 1-2 (reprinted from
Control Engineering, Feb. 1993).
Laduzinsky, A.; “An Open Look for PLC Programs”, May 1, 1993,
Cahners Publishing Company, p. 1 (reprint from Control Engineer-
ingiMay 1993).
Microsoft Corporation; “Windows for Workgroups 3.1 Resource
Kit”, 1992, Network Dynamic Data Exchange, Chapter 11, 19 pages.
Smith, M.; “An Environment for More Easily Programming a
Robot”, May 1, 1992, International Conference on Robotics and
Automation, pp. 10-16.
Nielsen, L.; Trostmann, S.; Trostmann, E.; “Robot Off-line Program-
ming and Simulation As a True CIME-Subsystem”, May 1, 1992,
International Conference on Robotics and Automation, pp. 1089-
1094.

Allen-Bradley Company, Inc.; “CNCnet Software Library”, Oct. 1,
1992, Publication 8000-6.1.1.
Ambrose, C.; “The Development ofan Interactive Synthesis Tool for
Intelligent Controllers of Modular Reconfigurable Robots”, Dec. 1,
1992, pp. 1-304.
Albus, J .; “A Reference Model Architecture for Intelligent Systems
Design”, 1993, NIST, pp. 1-38.
TA Engineering Co., Inc; “AIMAX-WIN MMI Software for the New
DCS Era”, 1993, 8 pages.
Compumotor Division, Parker Hannifin; “Compumotor Digiplan
Positioning Control Systems and Drives”, 1993, 1993-1994 Catalog,
pp. 10-11.
Gerry Engineering Software, Inc.; “ExperTune PID Tuning Software
Product Brochure”, 1993, 6 pages.
National Instruments; “IEEE 488 and Vleus Control, Data Acqui-
sition, and Analysis (Catalog)”, 1993, pp. Main Table of Contents,
Introduction pp. II-XI, Section 1 Instrumentation Software Products.
Microsoft Development Library; “Chapter 7 Minidriver”, 1992, Jul.
1994 MSDN, International SDKS: Hanguel Windows DDK, pdf pp.
1-8.

Lynch, M.; “Computer Numerical Control for Machining”, 1992,
McGraw-Hill Inc., All pages. (Copyright 1992).
USdata; “FactoryLink IV for Microsoft Windows and NT”, 1992, pp.
1-4.

Motion Engineering, Inc.; “PC/DSP-Series Motion Controller C Pro-
gramming Guide”, 1992, pp. 1-54.
Delta Tau Data Systems, Inc.; “PMAC Product Catalog”, 1992, p. 43.
Semi; “Semi E30-1103 General Model for Communications and
Control of Manufacturing Equipment (GEM)”, 1992.

Page 10 0f110

Page 11 of 110

US 8,073,557 B2
Page 11

Microsoft Development Library; “Win32 SDK Programmers API
Reference, Escape Function”, 1992, Jul. 1994 MSDN, Win32 SDK
Programmers API Reference, vol. 3, pdf pp. 1-2.
Microsoft Development Library; “Windows 3.1 SDK: Programmers
Reference vol. 2: FunctionsiSpoolFile”, 1992, Jul. 1994 MSDN,
Windows 3.1 Programmers Reference vol. 2: Functions, pdf p. 1.
Microsoft Corporation; “Win32 SDK Programming Reference vol.
2”, 1992, Dynamic Data Exchange Management Library, Chapter 77,
26 pages.
Microsoft Corporation; “Windows 3.1 SDK Guide to Programming”,
1992, Dynamic Data Exchange, Chapter 22, 21 pages.
Microsoft Development Library; “1.1 Printer Driver Operation”,
1992, Jul. 1994 MSDN, Windows NT DDK: Win32 Subsystem
Driver Design Guide, pdf pp. 1-6.
Vaataja, H.; Hakala, H.; Mattila, P.; Suoranta, R.; “3 -D Simulation of
Ultrasonic Sensor System in Mobile Robots”, 1992, IEEE, pp. 333-
336.

Microsoft Development Library; “3.1.1 Using Unitool”, 1992, Jul.
1994 MSDN, Windows NT DDK: Win32 Subsystem Driver Design
Guide, pdfpp. 1-101.
Microsoft Development Library; “3 .4 Specifying Cursor-Movement
Commands”, 1992, Jul. 1994 MSDN, Windows NT DDK: Win32
Subsystem Driver Design Guide, pdf pp. 1-7.
Microsoft Development Library; “4.1.22 Banding Drivers”, 1992,
Jul. 1994 MSDN, Windows 3.1 DDK: Device Driver Adaptation
Guide, pdf pp. 1-3.
Amy, L.; “Automation Systems for Control and Data Acquisition”,
1992, Instrument Society of America, (235 pages).
Microsoft Development Library; “Chapter lliGraphics-Driver
Escapes”, 1992, Jul. 1994 MSDN, Windows 3.1 DDK: Device Driver
Adaptation Guide, pdf pp. 1-50.
Microsoft Development Library; “Chapter 2 Supporting DDI Print-
ing and User Interface Functions”, 1992, Jul. 1994 MSDN, Windows
NT DDK: Win32 Subsystem Driver Design Guide, pdf pp. 1-5.
Microsoft Development Library; “Chapter 47Specifying Control
Information”, 1992, Jul. 1994 MSDN, Windows 3.1 DDK:
Minidriver Development Guide, pdf pp. 1- 16.
Microsoft Development Library; “Chapter 5 Printer Escapes”, 1992,
Jul. 1994 MSDN, Windows 3.1 SDK: Programmers Reference, vol.
3: Messages, Structures, Macros, pdf pp. 1-54.
Hori, K.; “Protocol Conversion Software That Makes Possible Com-
munication between Different Types ofField Devices”, Sep. 1, 1994,
Cosmo Technica, pp. 1-12.
Brockschmidt, K.; “Notes on Implementing an OLE Control Con-
tainer”, Sep. 21, 1994, Microsoft Development Library, pp. 1-47.
Daiyo, M.; “The Full Color Era Has Arrived with Scanner and Printer
Development”, Oct. 1, 1994, Nikkei Byte, No. 130, pp. 160-172.
Tele-Denken Resources, Inc.; “TopDoc (Product Data Sheet)”, Oct.
1, 1994, pp. 1-7.
Senehi, M.; Kramer, T.; Michaloski, J .; Quintero, R.; Ray, S.; Rippey,
W.; Wallace, S.; “Reference Architecture for Machine Control Sys-
tems Integration: Interim Report”, Oct. 20, 1994, pp. 1-52.
ISO/IEC; “ISO/IEC 7498-1 Information Technology; Open Systems
Interconnection-Basic Reference Model: The Basic Model”, Nov. 1,
1994.

Putnam, F.; “The WinSEM OLE Messaging Architecture Working
Paper”, Dec. 1, 1994, Labtech.
OMAC Users Group; “Requirements of Open Modular Architecture
Controllers for Applications in the Automotive Industry”, Dec. 13,
1994, pp. 1-13,Version 1.1.
ISOiInternational Standards Organization; “ISO 10303-1: Indus-
trial automation systems and integrationiProduct data representa-
tion and exchangeiPart 1: Overview and fundamental principles:
First Edition”, Dec. 15, 1994, pp. 1-28.
ISOiInternational Standards Organization; “ISO 10303-11: Part
11: Description methods: The Express language reference manual”,
Dec. 15, 1994, all pages.
Compumotor Division, Parker Hannifin; “6000 Series Programmer’s
Guide”, 1991, all pages.
Iyengar, S.; Elfes, A.; “Autonomous Mobile Robots: Control, Plan-
ning, and Architecture”, 1991, IEEE Computer Society Press, All
pages.

Iyengar, S.; Elfes, A.; “Autonomous Mobile Robots: Perception,
Mapping, and Navigation”, 1991, IEEE Computer Society Press, All
pages.

Paidy; Reeve; “Software Architecture for a Cell Controller”, 1991,
IEEE, pp. 344-349.
Miller, D.; Lennox, C.; “An Obj ect-Oriented Environment for Robot
System Architectures”, Feb. 1, 1991, IEEE Control Systems, pp.
14-23.

Yared, W.; Sheridan, T.; “Plan Recognition and Generalization in
Command Languages with Application to Telerobotics”, Mar. 1,
1991, IEEE, vol. 21, No. 2, pp. 327-338.
Senehi, M.; Wallace, S.; Barkmeyer, E.; Ray, S.; Wallace, E.; “Con-
trol Entity Interface Document”, Jun. 1, 1991, pp. 1-38.
Payton, D.; Bihari, T.; “Intelligent Real-Time Control of Robotic
Vehicles”, Aug. 1, 1991, ACM, pp. 49-63, vol. 34, No. B.
Robert Bosch GMBH; “CAN Specification”, Sep. 1, 1991, 72 pages,
Version 2.0.

Takase, K.; “Project of a robot performing in an extreme situation”,
Oct. 15, 1991, vol. 9, No. 5, pp. 79-82, p. 59.
Galil Motion Control; “Galil Servotrends vol. V. No. 3”, Jul. 1, 1989,
pp. 1-3.
Galil Motion Control; “Galil OPINT600 Press Release”, Jul. 10,
1989, pp. 1-2.
Popovic, D.; Bhatkar, V.; “Distributed Computer Control for Indus-
trial Automation”, 1990, Marcel Dekker, Inc., (721 pages).
Bloom, H.; “Software and Computer Integrated Manufacturing”,
1990, pp. 1-14.
Wright, P; Greenfeld, 1.; “Open Architecture Manufacturing: The
Impact of Open-System Computers on Self-sustaining Machinery
and the Machine Tool Industry”, 1990, Proc. Manuf. Int. 90, Part2:
Advances in Manufacturing, pp. 41-47.
Stewart; Schmitz; Khosla; “Implementing Real-Time Robotic Sys-
tems Using Chimera II”, 1990, IEEE, pp. 254-255, Sections 3.1 and
3.2.

Kasahara, T.; “Map 3.0 Entering the Practical Use Period in the CIM
Era: Map 3.0 MMS Architecture and Mounting Method”, Mar. 1,
1990, Ohmsha Ltd., pp. 57-62, Computer and Network LAN vol. 8,
No. 3.

Altintas, Y.; Peng, J.; “Design and Analysis of a Modular CNC
System”, Mar. 14, 1990, Elsevier Science Publishers B. V, pp. 305-
316, vol. 13, Computers in Industry.
Salkind, L.; “Robotics Research Technical ReportiSage A Real-
Time Operating System for Robotic Supervisory Control”, May 1,
1990, NewYorkUniversity, pp. 1-132. (DEFS 00040941-00041085).
ISO/IEC; “ISO/IEC 8824: Information Technologywpen Systems
InterconnectioniSpecification of Abstract Syntax Notation One”,
Dec. 15, 1990, all pages.
Petzold, C.; “The GDI Philosophy”, 1988, Microsoft Development
Library, Jul. 1994 MSDN, Programming Windows 3.1, pdf pp. 1-2.
Mangaser, A.; Wang, Y.; Butner, S.; “Concurrent Programming Sup-
port for a Multi-Manipulator Experiment on RIPS”, 1989, IEEE, pp.
853-859.

Stegbauer, W.; “Intertask-Communication Inside a Real-Time Data-
base”, 1989, IFAC Distributed Databases in Real-time, pp. 63-69.
Tal, J .; “Motion Control Applications”, 1989, Galil Motion Control.
Electronic Industries Association; “EIA-511 Manufacturing Mes-
sage SpecificationiService Definition and Protocol”, Mar. 1, 1989,
pp. 1-177.
Galil Motion Control; “Galil G-Code Translator News Release”, Apr.
14, 1989, pp. 1-2.
Electronic Industries Association; “EIA-511 Errata”, Apr. 18, 1989,
pp. 1-7.
Pritchard, K.; “Applying Simulation to the Control Industry”, May 1,
1989, Cahners Publishing Company, pp. 1-3 (reprinted from Control
Engineering, May 1989).
Tesar, D.; Butler, M.; “A Generalized ModularArchitecture for Robot
Structures”, Jun. 1, 1989, American Society of Mechanical Engi-
neers, pp. 91-118.
Galil Motion Control; “Galil OPINT600 Product Literature”, Jun. 1,
1989, pp. 1-2.
Semi; “Semi E5-1 104 Semi Equipment Communications Stande 2
Message Content (Secs-II)”, 1982, Sections 1-9 (pp. 1-9).

Page 11 0f110

Page 12 of 110

US 8,073,557 B2
Page 12

ISOiInternational Standards Organization; “ISO 6983/1: Numeri-
cal control of machinesiProgram format and definition of address
words: Part 1: Data format for positioning, line motion and contour-
ing control systems: First Edition”, Sep. 15, 1982, pp. 1-16.
Tal, J .; “Motion Control by Microprocessors”, 1984, Galil Motion
Control.

Fitzgerald, M.; Barbera, A.; “A Low-Level Control Interface for
Robot Manipulators”, 1985, Robotics and Computer-Integrated
Manufacturing, vol. 2, No. 3/4, pp. 201-213.
Rembold, J .; Blume, C.; Frommherz, B.; “The Proposed Robot Soft-
ware Interfaces SRL and IRdata”, 1985, Robotics and Computer-
Integrated Manufacturing, vol. 2, No. 3/4, pp. 219-225.
ISOiInternational Standards Organization; “ISO 4342: Numerical
control of machinesiNC processor inputiBasic part program ref-
erence language, First Edition”, Dec. 15, 1985, all pages.
Taylor, R.; “A General Purpose Control Architecture for Program-
mableAutomation Research”, 1986, IBM T.J. Watson Research Cen-
ter, pp. 165-173.
Hayward, V.; Paul, R.; “Robot Manipulator Control under Unix
RCCL: A Robot Control “C” Library”, 1986, The International Jour-
nal of Robotics Research, vol. 5, No. 4, pp. 94-111.
Mack, B.; Bayoumi, M.; “Design and Integration of New Software
for the Robot Controller Test Station”, 1988, IEEE, pp. 866-873.
Lloyd, J .; Parker, M.; Mcclain, R.; “Extending the RCCL Program-
ming Environment to Multiple Robots and Processors”, 1988, IEEE,
pp. 465-469.
Fanuc Robotics North America; “Manufacturing solutions for value-
minded companies (Product Brochure)”, Date Unknown, pp. 1-5.
Intec Controls Corp; “Paragon TNT Product Brochure”, Date
Unknown, 6 pages.
Highland Technology, Inc.; “Perfect Parts Product Literature”, Date
Unknown, pp. 1-4.
Precision Microcontrol; “Precision MicroControl Product Guide”,
Date Unknown, pp. 11, 27-28.
Mitutoyo; “Quick Vision Product Literature”, Date Unknown, pp.
1-8.

Fanuc Robotics North America; “Robotic Palletizing Provides Flex-
ibility at High Speeds”, Date Unknown, pp. 1-2.
Penton Media, Inc.; “Technology Trends section of American
Machinist”, Date Unknown, all pages (publish date unknown, from
American Machinist).
Seven Technologies NS; “The complete, computer-based automa-
tion tool%ontrol at your fingertips (IGSS)”, Date Unknown, 6
pages.
Fanuc Robotics North America; “The Growing Demand for
Advanced Robotic Packaging Systems”, Date Unknown, pp. 1-2.
Semi; “Semi E4-0699 Semi Equipment Communications Stande 1
Message Transfer (SECS-I)”, Jan. 2, 1980.
Numerical Control Society; “Who’s Who in Numerical Controli
1972”, 1972, all pages.
Numerical Control Society; “Who’s Who in Numerical Controli
1973”, 1973, all pages.
Greenfeld, 1.; Wright, P.; “A Generic User-Level Specification for
Open-System Machine Controllers”, Date Unknown, NewYork Uni-
versity, pp. 1-17.
Pacific Scientific; “Advanced Motion Language”, Date Unknown,
pp. C-2 thru C-11.
Moore; “Advanced Process Automation and Control System
(APACS Product Literature)”, Date Unknown, pp. 1-13.
Aerotech, Inc.; “Aerotech Motion Control Product Guide”, Date
Unknown, pp. 233-234.
Katila, P.; “Applying Total Productive MaintenanceiTPM Prin-
ciples in the Flexible Manufacturing Systems”, Date Unknown,
Lulea Tekniska Universitet, pp. 1-41.
Silma; “CimStation Product Literature”, Date Unknown, pp. 1-12.
Galil Motion Control; “Galil Dynamic Data Exchange Server for
DMC-1000”, Date Unknown, pp. 1-2.
Galil Motion Control; “Galil OPINT600 Product Features”, Date
Unknown, pp. 1-3.
Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Pleadings: Defendants
and Counterclaim Plaintiffs Fourth Set of Requests for Production to
Plaintiff and Counterclaim Defendant (Nos. 144-183)”, Feb. 19,
2009, pp. 1-11.

Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Pleadings: Objections
and Responses of Defendants to Plaintiff’ s Second Set of Interroga-
tories (Nos. 17-18)7Redacted”, Mar. 16, 2009, All pages.
Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Pleadings: Defendant’s
Markman Claim Construction Hearing Tutorial”, Apr. 15, 2009, all
pages.

Roy-G-Biv Corporation; “Pleadings: Plaintiff Markman Claim Con-
struction Tutorial”, Apr. 15, 2009, all pages.
Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Pleadings: Defendant’s
Markman Presentation for Claim Construction Hearing”, Apr. 16,
2009, all pages.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Markman Claim Con-
struction Argument”, Apr. 16, 2009, all pages.
Everingham IV, C.; “Order: (Granted in Part) Plaintiff Motion for
Proctective Order re Experts”, Jun. 4, 2009, US Dist Court EDTX,
Marshal Div, All pages.
Everingham IV, C.; “Order: (Granted) Plaintiff Motion to Compel re
Fanuc Witnesses”, Jun. 4, 2009, US Dist Court EDTX, Marshal Div,
All pages.
Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Pleadings: Defendant’s
Request for Leave to File a Motion for Summary Adjudication of
Non-Infringement”, Jun. 15, 2009, All pages.
Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Pleadings: Defendants
Motion for Reconsideration ofOrder Granting Plaintiff’ s (Amended)
Motion for Protective Order (DE. 170)”, Jun. 15, 2009, All pages.
Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Pleadings: Defendants
Third Set ofInterrogatories to Plaintiff(Nos. 19-28)”, Jun. 17, 2009,
All pages.
Roy-G-Biv Corporation; “Pleadings: Plaintiffs Fourth Set of Inter-
rogatories (Nos. 25-27) for Each Defendan ”, Jun. 19, 2009, All
pages.
Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Pleadings: Objections
and Responses of Defendants to Plaintiffs Fourth Set of Interrogato-
ries (Nos. 25-27)”, Jul. 2, 2009, All pages.
Individual; “Order: (Denying) Defendants Motion for Reconsidera-
tion re Protective Order”, Jul. 9, 2009, All pages.
Folsom, D.; “Order: (Granting) Motion for Continuance”, Aug. 25,
2009, US Dist Court EDTX, Marshal Div, p. 1.
Folsom, D.; “Order: Claim Construction (‘897, '058, ‘236 and '543
Patents)”, Aug. 25, 2009, US Dist Court EDTX, Marshal Div, pp.
1-64.

Folsom, D.; “Order: Judgment Dismissing Action by Reason of
Settlement”, Oct. 19, 2009, US Dist Court EDTX, Marshal Div, pp.
1-2.

Folsom, D.; “Order: Reopen and Dismissal ofCase”, Nov. 20, 2009,
US Dist Court EDTX, Marshal Div, p. 1.
GE Fanuc; “Pleadings: Defendants Fanuc Ltd.’s, Fanuc Robotics
America, Inc.’s, GE Fanuc Automation Americas, Inc.’s, and GE
Fanuc Intelligent Platforms, Inc.’s First Set of Interrogatories to
Plaintiff Roy-G-Biv Corporation”, Jan. 25, 2008, pp. 1-10.
GE Fanuc; “Pleadings: Defendants Fanuc Ltd.’s, Fanuc Robotics
America, Inc.’s, GE Fanuc Automation Americas, Inc.’s, and GE
Fanuc Intelligent Platforms, Inc.’s First Set of Requests for Produc-
tion to Plaintiff Roy-G-Biv Corporation”, Jan. 31, 2008, pp. 1-25.
GE Fanuc; “Pleadings: Defendant’s Initial Disclosures Pursuant to
Federal Rule of Civil Procedure 26(a)(1)”, Feb. 1, 2008, pp. 1-6.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Roy-G-Biv Corpora-
tion’s Initial Disclosures”, Feb. 1, 2008, pp. 1-5.
Roy-G-Biv Corp, Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Plead-
ings: Notice ofCompliance With P.R. 4-5(d)”, Jan. 9, 2009, pp. 1-3.
Roy-G-Biv Corp, Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Plead-
ings: Supplemental Joint Claim Construction and Prehearing State-
mentiExhibit A”, Jan. 9, 2009, pp. 1-2.
Roy-G-Biv Corp, Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Plead-
ings: Supplemental Joint Claim Construction and Prehearing State-
mentiExhibit B”, Jan. 9, 2009, pp. 1-9.
Roy-G-Biv Corp, Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Plead-
ings: Supplemental Joint Claim Construction and Prehearing State-
mentiExhibit C”, Jan. 9, 2009, pp. 1-110.
Roy-G-Biv Corp, Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Plead-
ings: Supplemental Joint Claim Construction and Prehearing State-
mentiExhibit D”, Jan. 9, 2009, pp. 1-80.

Page 12 0f110

Page 13 of 110

US 8,073,557 B2
Page 13

Roy-G-Biv Corp, Fanuc Ltd, Fanuc Robotics, and GE Fanuc; “Plead-
ings: Supplemental Joint Claim Construction and Prehearing State-
men ”, Jan. 9, 2009, pp. 1-4.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Roy-G-Biv Corpora-
tion’s Complaint for Patent Infringement and Demand for Jury
Trial”, Sep. 19, 2007, pp. 1-9.
GE Fanuc; “Pleadings: Defendants Fanuc Ltd., Fanuc Robotics
America, Inc., GE Fanuc Automation Americas, Inc., and GE Fanuc
Intelligent Platforms, Inc.’s Answer to Plaintiff’s Complaint for
Patent Infringement and Counterclaims for Invalidity and
Noninfringement”, Nov. 15, 2007, pp. 1-12.
GE Fanuc; “Pleadings: Motion to Dismiss”, Nov. 21, 2007, 9 pages.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Roy-G-Biv Corpora-
tion’s Reply to Defendants’ Counterclaims for Invalidity and
Noninfringement”, Dec. 10, 2007, pp. 1-5.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Roy-G-Biv Corpora-
tion’s Response to GE Fanuc Automation Corporation’s Motion to
Dismiss”, Dec. 13, 2007, pp. 1-54.
GE Fanuc; “Pleadings: Defendant GE Fanuc Automation Americas,
Inc.’s Notice ofChange ofCorporate Name”, Dec. 14, 2007, pp. 1-3.
GE Fanuc; “Pleadings: GE Fanuc Automation Corporation’s Reply
in Support of Its Motion to Dismiss for Lack of Personal Jurisdic-
tion”, Dec. 28, 2007, pp. 1-25.
Roy-G-Biv Corporation; “Pleadings: Joint Conference Report”, Jan.
4, 2008, pp. 1-6.
Roy-G-Biv Corporation; “Pleadings: Roy-G-Biv Corporation’s First
Set ofInterrogatories (Nos. 1-16) for Each Defendan ”, Jan. 18, 2008,
pp. 1-16.
Roy-G-Biv Corporation; “Pleadings: Roy-G-Biv Corporation’s First
Set of Requests to Defendants for Document, Electronically Stored
Information, and Things”, Jan. 18, 2008, pp. 1-19.
GE Fanuc; “Pleadings: Declaration of Melvin Ray MerceriExhibit
F”, Dec. 6, 2008, pp. 1-5 (pdf pages).
GE Fanuc; “Pleadings: Declaration of Melvin Ray MerceriExhibit
G”, Dec. 6, 2008, pp. 1-8 (pdfpages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff’ s Motion to Dismiss
GE Fanuc Intelligenc Platforms, Inc. and General Electric Compa-
ny’s Infringement Claims or, Alternatively Motion to Sever”, Jan. 8,
2009, pp. 1-7 (pdf pages).
GE Fanuc; “Pleadings: Defendant’s Reply in Support of Their
Motion to Stay the Litigation Plending the Outcome of the Reexami-
nation Proceedings”, Jan. 12, 2009, pp. 1-8 (pdf pages).
GE Fanuc; “Pleadings: Defendant’s Reply in Support of Their
Motion to Stay the Litigation Plending the Outcome of the Reexami-
nation ProceedingsiExhibit 1”, Jan. 12, 2009, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Defendant’s Reply in Support of Their
Motion to Stay the Litigation Plending the Outcome of the Reexami-
nation ProceedingsiExhibit 2”, Jan. 12, 2009, pp. 1-2 (pdf pages).
GE Fanuc; “Pleadings: Defendant’s Reply in Support of Their
Motion to Stay the Litigation Plending the Outcome of the Reexami-
nation ProceedingsiExhibit 3”, Jan. 12, 2009, pp. 1-2 (pdf pages).
US Dist Court EDTX, Marshal Div; “Order: Order Resetting Mark-
man Date”, Jan. 14, 2009, p. 1.
Roy-G-Biv Corporation; “Pleadings: Plaintiff’ s Opposition to
Defendant’s Motion to Stay the Litigation Pending the Outcome of
the Reexamination Proceedings (Corrected)”, Jan. 27, 2009, pp. 1-8
(pdf pages).
Roy-G-Biv Corporation; “Pleadings: Plaintiff’ s Second Set of Inter-
rogatories (Nos. 17-18) for Each Defendant”, Feb. 6, 2009, pp. 1-4.
Roy-G-Biv Corporation; Pleadings: Plaintiff Opening Markman
BriefiExhibit 5, Nov. 21, 2008, pp. 1-50.
Roy-G-Biv Corporation; Pleadings: Plaintiff Opening Markman
BriefiExhibit 5, Nov. 21, 2008, pp. 51-92.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit P-058”, Jul. 11, 2008, pp. 1-24.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit P-236”, Jul. 11, 2008, pp. 1-24.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit P-543”, Jul. 11, 2008, pp. 1-28.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit P-897”, Jul. 11, 2008, pp. 1-55.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit Q-058”, Jul. 11, 2008, pp. 1-83.

GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit L-543”, Jul. 11, 2008, pp. 1-39.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit L-897”, Jul. 11, 2008, pp. 1-66.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit LL-058”, Jul. 11, 2008, pp. 1-55.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit LL-236”, Jul. 11, 2008, pp. 1-41.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit LL-543”, Jul. 11, 2008, pp. 1-59.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit LL-897”, Jul. 11, 2008, pp. 1-98.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit MM-543”, Jul. 11, 2008, pp. 1-3.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit NN-058”, Jul. 11, 2008, pp. 1-37.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit NN-236”, Jul. 11, 2008, pp. 1-35.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit NN-543”, Jul. 11, 2008, pp. 1-33.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit NN-897”, Jul. 11, 2008, pp. 1-63.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit O-058”, Jul. 11, 2008, pp. 1-44.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit O-236”, Jul. 11, 2008, pp. 1-24.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit O-543”, Jul. 11, 2008, pp. 1-35.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit O-897”, Jul. 11, 2008, pp. 1-58.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit OO-058”, Jul. 11, 2008, pp. 1-24.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit OO-543”, Jul. 11, 2008, pp. 1-8.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit AA-897”, Jul. 11, 2008, pp. 1-148.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit B-058”, Jul. 11, 2008, pp. 1-19.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit B-236”, Jul. 11, 2008, pp. 1-22.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit B-543”, Jul. 11, 2008, pp. 1-16.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit B-897”, Jul. 11, 2008, pp. 1-42.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit BB-543”, Jul. 11, 2008, pp. 1-18.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit C-543”, Jul. 11, 2008, pp. 1-11.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit CC-058”, Jul. 11, 2008, pp. 1-25.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit CC-236”, Jul. 11, 2008, pp. 1-25.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit CC-543”, Jul. 11, 2008, pp. 1-20.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit CC-897”, Jul. 11, 2008, pp. 1-57.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit D-058”, Jul. 11, 2008, pp. 1-24.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit D-236”, Jul. 11, 2008, pp. 1-22.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit D-543”, Jul. 11, 2008, pp. 1-26.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit D-897”, Jul. 11, 2008, pp. 1-49.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit DD-543”, Jul. 11, 2008, pp. 16
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit E-543”, Jul. 11, 2008, pp. 1-5.
Schneeman, R.; “Device Driver Development for Microsoft Win-
dows NT: Accessing Motion Control Hardware Using a Multimedia
Framework (with DEFS)”, NIST, Oct. 1, 1996, DEFS 00010531-
00010580.

Page 13 0f110

Page 14 of 110

US 8,073,557 B2
Page 14

Compumotor Division, Parker Hannifin; “Motion Toolbox User
Guide”, Jul. 1, 1997, DEFS 00010095-00010214.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Roy-G-Biv Corp.’s
Answers and Objections to Defendants First Set of Interrogatories”,
Feb. 28, 2008.
GE Fanuc; “Pleadings: Objections and Responses of Defendants to
Plaintiff First Set of Requests for Documents (Nos. 1-25)”, Mar. 7,
2008, pp. 1-31.
Roy-G-Biv Corporation; “Pleadings: Plaintiff Roy-G-Biv Corp.’s
First Supplementary Answers and Objections to Defendants’ First
Set of Interrogatories”, Mar. 20, 2008, pp. 1-6.
GE Fanuc; “Pleadings: Defendant’s Objections and Responses to
Plaintiff’s Second Set of Requests for Documents (Nos. 26-94)”,
Mar. 24, 2008, pp. 1-60.
Roy-G-Biv Corporation; “Pleadings: Plaintiff’ s First Supplemental
Objections and Responses of Defendant’s First Set of Interrogatories
(Nos. 1, 2, 8, 11, and 12)”, Apr. 14, 2008, pp. 1-15.
GE Fanuc; “Pleadings: Defendant’s Second Set of Document
Requests (Nos. 88-123) to Plaintiff”, Apr. 18, 2008, pp. 1-16.
“Pleadings: Plaintiff’ s Second Supplemental Answers and Objec-
tions to Defendant’s First Set of Interrogatories”, Apr. 25, 2008, pp.
1-1 1 .

GE Fanuc; “Pleadings: Invalidity Contentions of Defendants
(Redacted)”, Jul. 11, 2008, pp. 1-87.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit A-058”, Jul. 11, 2008, pp. 1-37.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit A-236”, Jul. 11, 2008, pp. 1-50.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit A-543”, Jul. 11, 2008, pp. 1-47.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit A-897”, Jul. 11, 2008, pp. 1-129.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit AA-058”, Jul. 11, 2008, pp. 1-85.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit AA-236”, Jul. 11, 2008, pp. 1-74.
GE Fanuc; “Pleadings: Invalidity Contentions of DefendantsiEx-
hibit AA-543”, Jul. 11, 2008, pp. 1-74.
Hewlett Packard Company; “The HP-GL/2 and HP RTL Reference
Guide”, 1993, DEFS 00031028-00031418.
Hewlett Packard Company; “The HP-GL/2 and HP RTL Reference
Guide”, 1993, DEFS 00031028-00031418.
Hewlett Packard Company; “The HP-GL/2 and HP RTL Reference
Guide”, 1993, DEFS 00031028-00031418.
Pritschow, G., Daniel, C., Junghans, G., Sperling, W.; “Open System
Controllers: A Challenge for the Future of the Machine Tool Industry
(with DEFS)”, Jan. 15, 1993, RGB00076341-RGB00076344,
Annals of the CIRP, pp. 449-452, vol. 42.
Microsoft Corporation; “WOSA Backgrounder: Delivering Enter-
prise Services to the Windows-based Desktop (with DEFS)”, Jul. 1,
1993, RGB00078542-RGB00078560, Backgrounders and
Whitepapers: Operating Systems ExtensionsiMSDN Archive Edi-
tion, pp. 1-19.
National Instruments; “LabVIEW for Windows User Manual”, Aug.
1, 1993, DEFS 00031588-00032047.
National Instruments; “LabVIEW for Windows User Manual”, Aug.
1, 1993, DEFS 00031588-00032047.
National Instruments; “LabVIEW for Windows User Manual”, Aug.
1, 1993, DEFS 00031588-00032047.
National Instruments; “LabVIEW Networking Reference Manual”,
Aug. 1, 1993, DEFS 00032048-00032154.
Wonderware; “Wonderware NetDDE for Windows Users Guide”,
Nov. 1, 1993, DEFS 00017524-00017663.
Ace Technical Sales; “Third Party I/O Driver List”, Dec. 7, 1993,
DEFS 00055557-00055565.

Wonderware; “InTouch Getting Started Reference”, 1994, DEFS
00016956-00017007.

Wonderware; “InTouch User’s Guide”, 1994, DEFS 00017008-
00017523.

Wonderware; “InTouch User’s Guide”, 1994, DEFS 00017008-
00017523.

Wonderware; “InTouch User’s Guide”, 1994, DEFS 00017008-
00017523.

Wonderware; “InTouch User’s Guide”, 1994, DEFS 00017008-
00017523.

Wonderware; “InTouch User’s Guide”, 1994, DEFS 00017008-
00017523.

Proctor, F., Damazo, B.,Yang, C., Frechette, S.; “Open Architectures
for Machine Control (with DEFS)”, NIST, 1994, DEFS 00010471-
00010487.

Intellution, Inc.; “I/O Driver Manual Allen-Bradley KT/KT2”, 1991,
DEFS 00020252-00020340.

IEC/TC; “Electrical Equipment of Industrial MachinesiSerial Data
Link for Real-time Communications Between Controls and Drives”,
Nov. 22, 1991, DEFS 00039926-00040070.
IEC/TC; “Electrical Equipment of Industrial MachinesiSerial Data
Link for Real-time Communications Between Controls and Drives”,
Nov. 22, 1991, DEFS 00039926-00040070.
Intellution, Inc.; “Fixdmacs Product Documentation”, 1992, DEFS
00018984-00019624.

Intellution, Inc.; “Fixdmacs Product Documentation”, 1992, DEFS
00018984-00019624.

Intellution, Inc.; “Fixdmacs Product Documentation”, 1992, DEFS
00018984-00019624.

Intellution, Inc.; “Fixdmacs Product Documentation”, 1992, DEFS
00018984-00019624.

Intellution, Inc.; “Fixdmacs Product Documentation”, 1992, DEFS
00018984-00019624.

Intellution, Inc.; “I/O Driver Manual I/O Driver Toolkit”, 1992,
DEFS 00020348-00020516.

Intellution, Inc.; “I/O Driver Manual I/O Driver Toolkit (Duplicate
with different DEFS)”, 1992, DEFS 00035971-00036139.
GE Fanuc Automation; “MMC-II Application Reference Manual”,
1992, DEFS 00054848-00055222.
GE Fanuc Automation; “MMC-II Application Reference Manual”,
1992, DEFS 00054848-00055222.
GE Fanuc Automation; “MMC-II Programming Manual”, 1992,
DEFS 00054538-00054847.

GE Fanuc Automation; “MMC-II Programming Manual”, 1992,
DEFS 00054538-00054847.

GE Fanuc Automation; “MMC-II Programming Manual”, 1992,
DEFS 00054538-00054847.

Fanuc Ltd.; “Fanuc MMC-II Product Literature”, Aug. 1, 1989,
DEFS 00055223-00055228.

Reeker, L., Wright, P, Greenfeld, I., Hansen, F., Fehlinger, J.,
Pavlakos, L.; “Investigation and Design of Open System Controllers
for Machine Tools”, Defense Advanced Research Projects Agency,
Nov. 1, 1989, DEFS 00030700-00030946.
Reeker, L., Wright, P, Greenfeld, I., Hansen, F., Fehlinger, J.,
Pavlakos, L.; “Investigation and Design of Open System Controllers
for Machine Tools”, Defense Advanced Research Projects Agency,
Nov. 1, 1989, DEFS 00030700-00030946.
Fanuc Ltd.; “Fanuc MMC-II Programming Manual”, 1990, DEFS
00055273-00055555.

Fanuc Ltd.; “Fanuc MMC-II Programming Manual”, 1990, DEFS
00055273-00055555.

Fanuc Ltd.; “Fanuc MMC-II Programming Manual”, 1990, DEFS
00055273-00055555.

Microsoft Corporation; “Microsoft Windows Software Development
Kit Referenceivol. 2”, 1990, DEFS 00050303-00050674.
Microsoft Corporation; “Microsoft Windows Software Development
Kit Referenceivol. 2”, 1990, DEFS 00050303-00050674.
Microsoft Corporation; “Microsoft Windows Software Development
Kit Referenceivol. 2”, 1990, DEFS 00050303-00050674.
Microsoft Corporation; “Microsoft Windows Software Development
Kit Referenceivol. 2”, 1990, DEFS 00050303-00050674.
Denardo, P., Lapage, S., Staniulis, E.; “Network Communications
with DAE 1.0”, IBM Corporation, Mar. 6, 1990, DEFS 00002923-
00002935.

Aerotech, Inc.; “Unidex 31 Integrated Machine Controller Software
Manual”, Jun. 29, 1990, Aerotech 001-357.
Aerotech, Inc.; “Unidex 31 Integrated Machine Controller Software
Manual”, Jun. 29, 1990, Aerotech 001-357.
Compumotor Division, Parker Hannifin; “Compumotor 6000 Series
Software Reference Guide”, 1991, RGBINSP00001703-
RGBINSP00001970.

Page 14 0f110

Page 15 of 110

US 8,073,557 B2
Page 15

Compumotor Division, Parker Hannifin; “Compumotor 6000 Series
Software Reference Guide”, 1991, RGBINSP00001703-
RGBINSP00001970.

Compumotor Division, Parker Hannifin; “Compumotor 6000 Series
Software Reference Guide”, 1991, RGBINSP00001703-
RGBINSP00001970.

Compumotor Division, Parker Hannifin; “Compumotor 6000 Series
Software Reference Guide”, 1991, RGBINSP00001703-
RGBINSP00001970.

Thomas, R.; “The Languages of Tape”, American Machinist, Jan. 6,
1964, DEFS 00011360-00011367, Special Report No. 545.
Aerotech, Inc.; “Aerotech Unidex 31 Series Machine Controller Bro-
chure”, Date Unknown, Aerotech 613-623.
Mishra, B., Antoniotti, M.; “ED I: NYU Educational Robot”, Date
Unknown, DEFS 00007791-00007873.
Wright, P., Hong, J., Tan, X., Pavlakos, L., Hansen, F.; “MOSAIC:
Machine-tool, Open-System, Advanced Intelligent Controller”, Date
Unknown, DEFS 00030957-00030962.
Wizdom Controls, Inc.; “Paradym-31 User’s Guide and Reference”,
Date Unknown, DEFS 00047946-00048274.
Wizdom Controls, Inc.; “Paradym-31 User’s Guide and Reference”,
Date Unknown, DEFS 00047946-00048274.
Wizdom Controls, Inc.; “Paradym-31 User’s Guide and Reference”,
Date Unknown, DEFS 00047946-00048274.
Precision Microcontrol; “Precision MicroControl Product Guide
(with DEFS)”, Date Unknown, RGB00076292-RGB00076323.
Wright, P., Hansen, F., Pavlakos, L.; “Tool Wear and Failure Moni-
toring on an Open-Architecture Machine Tool”, New York Univer-
sity, Date Unknown, DEFS 00031419-00031436.
Allen-Bradley Company, Inc.; “Servo Positioning Assembly User
Manual”, Oct. 1, 1985, DEFS 00034317-00034563.
Allen-Bradley Company, Inc.; “Servo Positioning Assembly User
Manual”, Oct. 1, 1985, DEFS 00034317-00034563.
GMFanuc Robotics Corporation; “GMFCOMM Communications
Program Reference ManualiVersion 2.11”, 1986, DEFS 00058429-
00058553.

GMFanuc Robotics Corporation; “KCS-PC Karel Communications
Software Reference ManualiVersion 1.0”, 1986, DEFS 00058611-
00058786.

GMFanuc Robotics Corporation; “Karel OLPC Off-line Program-
ming Software Operations GuideiVersion OLPC-V1.50P”, 1987,
DEFS 00058098-00058305.

GMFanuc Robotics Corporation; “Karel-VAX Communication Soft-
ware Reference ManualiVersion 1.1”, 1987, DEFS 00057536-
00057757.

Greenfeld, I., Hansen, E, Wright, P; “Self-Sustaining, Open-System
Machine Tools”, NAMIUSME, 1989, DEFS 00030204-00030210,
1989 Transactions of NAMIUSME.

Greenfeld, I., Hansen, F., Fehlinger, J ., Pavlakos, L.; “Robotics
Research Technical Report”, New York University, Jun. 15, 1989,
DEFS 00040323-00040398.

L SPTO; “ReEx: L .S. Patent \Io. 6,941,543 Inter-Partes Reexamina-
tion (Control No. 95/000,397)4Granted”, Nov. 25, 2008, all pages.
L SPTO; “ReEx: L .S. Patent \Io. 6,516,236 Reexamination (Control
No. 95/000,396)7Non-Final Office Action”, Jan. 23, 2009, all
pages.
L SPTO; “ReEx: L .S. Patent \Io. 6,513,058 Reexamination (Control
No. 95/000,398)7Non-Final Office Action”, Jan. 29, 2009, all
pages.
L SPTO; “ReEx: L .S. Patent \Io. 6,941,543 Reexamination (Control
No. 95/000,397)7Non-Final Office Action”, Jan. 29, 2009, all
pages.
L SPTO; “ReEx: L .S. Patent \Io. 5,691,897 Reexamination (Control
No. 90/009,282)7Non-Final Office Action”, Feb. 4, 2009, all pages.
L SPTO; “ReEx: L .S. Patent \Io. 5,691,897 Reexamination (Control
No. 90/009,282)7Decision for Petition for Extension ofTime”, Feb.
12, 2009, all pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Decision on Petition Exten-
sion for Time”, Feb. 12, 2009, all pages.
Black, Lowe and Graham; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Decision for Petition for
Extension of Time”, Feb. 13, 2009, all pages.

USPTO; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Decision for Petition for Extension ofTime”, Feb.
17, 2009, all pages.
Ard, J .; “ReEx: US. Patent No. 5,691,897 Reexamination (Control
No. 90/009,282)7Response Declaration: Ard”, Apr. 23, 2009,
Black, Lowe and Graham, (declarationi8 pages) and (supporting
Exhibits A-BB - 237 pages). See supporting Exhibit CC listed in
“RGRX706 Exhibit Index”.
National Electrical Manufacturers Association; “ReEx: Malina
Exhibit BiExcerpts from NEMA Motion Control Handbook”, Nov.
1, 1992, all pages.
Armstrong Teasdale LLP; “ReEx: US. Patent No. 5,691,897 Reex-
amination (Control No. 90/009,282)7Third Party Request”, Sep.
23, 2008, all pages.
Armstrong Teasdale LLP; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Third Party Request”, Sep.
23, 2008, all pages.
Armstrong Teasdale LLP; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Third Party Request”, Sep.
23, 2008, all pages.
L SPTO; “ReEx: US. Patent No. 5,691,897 Reexamination (Control
No. 90/009,282)7Notice ofAssignment ofRequest”, Sep. 26,2008,
pp. 1-2.
L SPTO; “ReEx: US. Patent No. 6,516,236 Reexamination (Control
No. 95/000,396)7Notice ofAssignment of Request”, Oct. 2, 2008,
all pages.
L SPTO; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Notice ofAssignment of Request”, Oct. 6, 2008,
all pages.
LSPTO; “ReEx: US. Patent No. 5,691,897 Ex-Partes Reexamina-
tion (Control No. 90/009,282)4Granted”, Nov. 10, 2008, all pages.
L SPTO; “ReEx: US. Patent No. 6,516,236 Inter-Partes Reexamina-
tion (Control No. 95/000,396)4Granted”, Nov. 20, 2008, all pages.
L SPTO; “ReEx: US. Patent No. 6,513,058 Inter-Partes Reexamina-
tion (Control No. 95/000,398)4Granted”, Nov. 25, 2008, all pages.
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
11/368,231) File History”, Mar. 3, 2006, Now Abandoned (113
pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
11/370,082) File History”, Mar. 6, 2006, Pending (1226 pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
11/375,502) File History”, Mar. 13, 2006, Pending (1306 pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
11/583,233) File History”, Oct. 18, 2006, Now Abandoned (664
pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
11/728,801) File History”, Mar. 26, 2007, Pending (1338 pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
12/271,724) File History”, Nov. 14, 2008, Pending (361 pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
12/546,566) File History”, Aug. 24, 2009, Pending (646 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/370,082) File
History4ffice Action”, Mar. 16, 2010, pp. 1-88.
Health Hero Network, Inc.; “USPTO Patent FileHist: (U.S. Appl. \Io.
08/944,529) File History”, Oct. 7, 1997, Now Abandoned (123
pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
09/191,981) File History”, Nov. 13, 1998, Now Abandoned (290
pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
09/882,800) File History”, Jun. 14, 2001, Now Abandoned (132
pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
10/074,552) File History”, Feb. 11, 2002, Now Abandoned (115
pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
10/150,237) File History”, May 17, 2002, Now Abandoned (39
pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
10/405,883) File History”, Apr. 1, 2003, Pending (1144 pages).
Roy-G-Biv Corporation; “L SPTO Patent FileHist: (L .S. Appl. \Io.
10/409,393) File History”, Apr. 7, 2003, Now Abandoned (140
pages).

Page 15 0f110

Page 16 of 110

US 8,073,557 B2
Page 16

Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
10/412,166) File History”, Apr. 10, 2003, Now Abandoned (282
pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
10/643,533) File History”, Aug. 18, 2003, Now Abandoned (311
pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/067,327) File History”, Feb. 25, 2005, Now Abandoned (311
pages).
USPTO; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Action Closing Prosecution”, Sep. 22, 2010, (144
pages).
USPTO; “ReEx: US. Patent No. 6,516,236 Reexamination (Control
No. 95/000,396)7Action Closing Prosecution”, Sep. 22, 2010, (147
pages).
USPTO; “ReEx: US. Patent No. 6,941,543 Reexamination (Control
No. 95/000,397)7Action Closing Prosecution”, Sep. 22, 2010, (141
pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Petition Requesting Termina-
tion of Reexamination Proceedings”, Sep. 28, 2010, (34 pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Petition Requesting Termina-
tion of Reexamination Proceedings”, Sep. 28, 2010, (34 pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Petition Requesting Termina-
tion of Reexamination Proceedings”, Sep. 28, 2010, (34 pages).
Brown, D.; Clark, J .; “Foreign FileHist: Canadian Patent Application
No. CA 2,705,4047File History”, Jun. 1, 2010, CIPO, (190 pages).
EPO; “Foreign FileHist: European Patent Application No.
EP048098047Search Report”, Sep. 2, 2010, (3 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/728,801)
Notice ofAllowance (second received)”, Sep. 13, 2010, (31 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/728,801) Amendment after Notice ofAllowance”, Sep. 17, 2010,
(2 pages).
LSPTO; “USPTO Patent FileHist: 7110.00001 (U.S. Appl. No.
12/400,098) File HistoryiNon-Final Office Action”, Sep. 28, 2010,
(479 pages).
LSPTO; “USPTO Patent FileHist: 7110.00004 (U.S. Appl. No.12/
390,779) File HistoryiNon-Final Office Action”, Sep. 30, 2010,
(352 pages).
L SPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/370,082) File
HistoryiFinal Office Action”, Oct. 5, 2010, (122 pages).
Brown, D.; Clark, J .; “Foreign FileHist: European Patent Application
No. EP080132377File History”, Oct. 8, 2010, EPO, (198 pages).
L SPTO; “ReEx: US. Patent No. 5,691,897 Reexamination (Control
No. 90/009,282)7All Rejections Withdrawn”, Oct. 4, 2010, (6
pages).
L SPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/454,053) File
HistoryiFinal Office Action”, Oct. 14, 2010, (127 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File HistoryiRequest for Reconsideration After Final
Rejection”, Oct. 26, 2010, (4 pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 6,516,236 Reex-
amination (Control No. 95/000,396)7Patent Owner’s Comments in
Response to the Action Closing Prosecution”, Oct. 8, 2010, (40
pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 6,513,058 Reex-
amination (Control No. 95/000,398)7Patent Owner’s Comments in
Response to the Action Closing Prosecution”, Oct. 12, 2010, (38
pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Patent Owner’s Comments in
Response to the Action Closing Prosecution”, Oct. 13, 2010, (43
pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
12/557,722) File HistoryiResponse to Non Final Office Action”,
Mar. 21, 2011, (8 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/390,779) File
HistoryiFinal Office Action”, Mar. 22, 2011, (41 pages).
CIPO; “Foreign FileHist: Canadian Patent Application No. CA
2,625,2837Notice of Reinstatement”, Mar. 8, 2011, 1 page.

Brown, D.; Stein, S.; “USPTO Patent FileHist: (U.S. Appl. No.
12/896,750) File HistoryiPublished Application US 2011/
0071652”, Mar. 24, 2011, USPTO, (33 pages).
Brown, D.; Clark, J.; “Foreign FileHist: European Patent Publication
No. EP2302475”, Mar. 30, 2011, EPO, (149 pages).
EPO; “Foreign FileHist: European Patent Application No.
EP080132377Examination Report”, Apr. 5, 2011, (5 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/370,082) File
HistoryiNon-Final Office Action”, Apr. 11, 2011, (34 pages).
USPTO; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Notice of Intent to Issue Inter PaItes ReExamina-
tion Certificate”, Mar. 28, 2011, (5 pages).
USPTO; “ReEx: US. Patent No. 6,516,236 Reexamination (Control
No. 95/000,396)7Notice of Intent to Issue Inter PaItes ReExamina-
tion Certificate”, Mar. 28, 2011, (5 pages).
Various Entities; “ReEx: US. Patent No. 6,941,543 Reexamination
(Control No. 95/000,397)7Patent Owner’s Appeal Brief Evidence
Appendix”, Apr. 22, 2011, (161 pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Patent Owner’s Appeal
Brief”, Apr. 22, 2011, (23 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/084,673) File History”, Jun. 25, 2008, (800 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
10/844,025) File History”, Dec. 2, 2008, (1318 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 10/844,025) File
HistoryiFinal Office Action”, Dec. 29, 2008, (22 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 10/405,883) File
HistoryiNon-Final Office Action”, Feb. 25, 2009, (65 pages).
JPO; “Foreign FileHist: Japanese Patent Application No.
JP20071027964ffice Action”, Nov. 12, 2009, (1 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/557,722) File
HistoryiNon Final Office Action”, Oct. 20, 2010, (441 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/728,801)7Response After Notice of Allowance”, Nov. 1, 2010,
(2 pages).
Roy-G-Biv Corporation; “Foreign FileHist: European Patent Appli-
cation No. EP048 169577Response to Examination Report”, Nov. 9,
2010, (7 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/271,724)7
Final Office Action”, Nov. 10, 2010, (269 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 10/966,848)7
Issue Notification”, Nov. 23, 2010, (1 page).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/454,053)7
Final Office Action”, Nov. 23, 2010, (20 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: 7110.00002(U.S.
Appl. No. 12/263,953)7Letter to Examiner”, Nov. 24, 2010, (4
pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/244,673) File
HistoryiFinal Office Action”, Nov. 29, 2010, (228 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
10/405,883) Amendment and Response to Non-Final OfficeAction”,
Dec. 6,2010, (8 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/728,801)7
Notice ofAllowance”, Dec. 14, 2010, (8 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File History7Second Request for Reconsideration
After Final Rejection”, Dec. 22, 2010, (4 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: 7110.00001 (U.S.
Appl. No. 12/400,098) File HistoryiResponse after Non-Final
Office Action”, Dec. 28, 2010, (8 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: 71 10.00004 (U.S.
Appl. No. 12/390,779) File HistoryiResponse after Non-Final
Office Action”, Dec. 30, 2010, (9 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
12/244,673) File HistoryiResponse after Final Office Action”, Jan.
5, 2011, (4 pages).
USPTO; “ReEx: US. Patent No. 5,691,897 Ex-Partes Reexamina-
tion (Control No. 90/009,282)7Ex PaIte Reexamination Certificate
(7971st)”, Jan. 11, 2011, 9 pages.
USPTO; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Right of Appeal Notice”, Jan. 26, 2011, (10
pages).

Page 16 0f110

Page 17 of 110

US 8,073,557 B2
Page 17

USPTO; “ReEx: US. Patent No. 6,516,236 Reexamination (Control
No. 95/000,396)7Right of Appeal Notice”, Jan. 26, 2011, (10
pages).
USPTO; “ReEx: US. Patent No. 6,941,543 Reexamination (Control
No. 95/000,397)7Right of Appeal Notice”, Jan. 26, 2011, (13
pages).
EPO; “Foreign FileHist: European Patent Application No.
EP048098047Examination Report”, Dec. 15, 2010, (5 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/454,053) File
HistoryiAdvisory Action after Final Office Action”, Jan. 13, 2011,
(3 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/244,673) File
HistoryiAdvisory Action after Final Office Action”, Jan. 13, 2011,
(2 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File HistoryiSecond Request for Reconsideration
After Final Rejection”, Feb. 4, 2011, (3 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
12/244,673) File HistoryiSecond Request for Reconsisderation
after Final Office Action”, Feb. 4, 2011, (3 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 10/405,883) File
HistoryiFinal Office Action”, Feb. 10, 2011, (28 pages).
Roy-G-Biv Corporation; “Canadian Patent FileHist: Canadian Patent
Application No. 2,625,283 Petition for Reinstatemen ”, Feb. 16,
2011, (7 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/244,673) File
HistoryiFinal Office Action”, Feb. 25, 2011, (17 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/454,053) File
HistoryiFinal Office Action”, Mar. 1, 2011, (21 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/370,082) File HistoryiRequest for Continued Examination”,
Mar. 7, 2011, (9 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 11/728,801) Issue
Notification”, Mar. 8, 2011, (1 page).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File HistoryiPetition for Extension ofTime”, Mar. 14,
2011, (2 pages).
USPTO; “USPTO Patent FileHist: 7110.00001 (U.S. Appl. No.
12/400,098) File HistoryiFinal Office Action”, Mar. 17, 2011, (37
pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 5,691,897 Reex-
amination (Control No. 90/009,282)7Certificate of Correction Fil-
ing”, Feb. 24, 2011, (9 pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 6,941,543 Reex-
amination (Control No. 95/000,397)7Notice of Appeal”, Feb. 24,
2011, (4 pages).
Galil Motion Control; “Motion Control Product Catalog”, 1996, pp.
1-10,82-91,106-125.
GE Fanuc Automation; “PowerMotion Servo and Machine Control
(Product Brochure)”, 1996, pp. 1-8.
Shinskey, F.; “Process Control Systems: Application, Design, and
TuningiFourth Edition”, 1996, McGraw-Hill Inc., (450 pages).
Compumotor Division, Parker Hannifin; “Step Motor and Servo
Motor Systems and Controls”, 1996, pp. 1, 28-29.
GE Fanuc; “TCP/IP Ethernet Communications for the Series 90-70
PLC”, 1996.
Chappell, D.; “Understanding ActiveX and OLEiA Guide for
Developers and Managers”, 1996, Microsoft Press, (347 pages)
Copyright 1996.
McGraw; “A Friendly Command, Control, and Information System
for Astronomy”, 1996, ASP Conference Series, pp. 356-367.
Farsi, M.; “CANopen: The Open Communications Solution”, 1996,
pp. 1 12-1 16.
Sisco, Inc.; “MMS-Ease”, 1996, pp. 1-4.
Jackman; “Robotic Control Using Sequential Function Charts”,
1996, SPIE, pp. 120-128, vol. 2911.
Schuett, T.; “The Ultimate DNC; Direct CNC Networking (DCN)”,
1996, Modern Machine Shop, Creative Technology Corporation.
Proctor, F.; “Validation of Stande Interfaces from a Machine Con-
trol”, 1996, NIST, NIST Internal Report, pp. 659-664.
Team ICLP API Working Group; “Technologies Enabling Agile
Manufacturing (TEAM) Intelligent Closed Loop Processing”, Jan.
11, 1996, pp. 1-30.

Baruch, J .; Cox, M.; “Remote control and robots: an Internet solu-
tion”, Feb. 1, 1996, Computing and Control Engineering Journal.
Burchard, R.; Feddema, J .; “Generic Robotic and Motion Control
API Based on GISC-Kit Technology and Corba Communications”,
Apr. 1, 1996, Sandia National Laboratories, pp. 712-717.
Sperber, B.; “Try These Two Little Disks for a Bit Step in Stream-
lined, Object-Oriented SCAD ”, Apr. 1, 1996, Control, pp. 1-2
(reprinted from ControliApr. 1996).
Esprit 5629 Project; “Open System Architecture for Controls within
Automation Systems EP 6379 and EP 9115, OSACA I and II Final
Report”, Apr. 30, 1996, pp. 1-79.
GE Fanuc Automation; “GE Fanuc Automation Product Guide”, May
1, 1996, pp. 1-8.
Sperling, W.; Lutz, P.; “Enabling Open Control Systems: An Intro-
duction to the OSACA System Platform”, May 1, 1996, ASME Press,
Robotics and Manufacturing, pp. 1-8, vol. 6.
Schuett, T.; “Advanced Controls for High Speed Milling”; confer-
ence paper presented at the SME “High Speed Machining”, May 7,
1996, Creative Technology Corporation.
General Motors; “Open, Modular Architecture Controls at GM
Powertrain”, May 14, 1996, 39 pages, Version 1.
National Instruments; “Lookout Product Literature”, May 15, 1996,
pp. 1-12.
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File HistoryiTerminal Disclaimer”, Apr. 23, 2010, 2
pages.
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
12/244,673) File HistoryiRemarks”, Apr. 23, 2010, 2 pages.
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
12/244,673) File HistoryiSupplemental Amendment After Non-
Final Rejection”, Apr. 23, 2010, 1 page.
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
12/244,673) File HistoryiTerminal Disclaimer”, Apr. 23, 2010, 2
pages.
Brown, D.; Clark, J.; “FileHist: Canadian Patent Application No.
2,586,4017Notice of Allowance”, Oct. 27, 2009, CIPO, (641
pages).
EPO; “FileHist: European Patent Application No. EP048169577
Search Report”, Mar. 24, 2010, (4 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
10/405,883) File History; Amend after Final Rejection Office
Action”, Mar. 29, 2010, (6 pages).
USPTO; “USPTO Patent FileHist: 7110.00002 (U.S. Appl. No.
12/263,953) File History; Non-Final Office Action”, Mar. 31, 2010,
(476 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/375,502) File History; Response After Oct. 1, 2009 Non-Final
Office Action”, Mar. 31, 2010, (13 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File History; Supp Amend after Non-Final Office
Action”, Apr. 1, 2010, (15 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File History; Supp Amend after Non-Final Office
Action”, Apr. 5, 2010, (8 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 10/405,883) File
History; Notice ofAllowance”, Apr. 19, 2010, (58 pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File HistoryiRemarks”, Apr. 23, 2010, 2 pages.
Roy-G-Biv Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
11/454,053) File HistoryiSupplemental Amendment After Non-
Final Rejection”, Apr. 23, 2010, 1 page.
USPTO; “ReEx: US. Patent No. 5,691,897 Reexamination (Control
No. 90/009,282)7Examiner Interview Summary”, May 12, 2010, (9
pages).
Roy-G-Biv Corporation; “ReEx: US. Patent No. 5,691,897 Reex-
amination (Control No. 90/009,282)7Supplemental Response to
Final Office Action”, May 18, 2010, (48 pages).
USPTO; “ReEx: US. Patent No. 5,691,897 Reexamination (Control
No. 90/009,282)7Examiner Advisory Action”, May 24, 2010, (5
pages).
Roy-G-Biv Corporation; “USPTO Patent FileHist (U.S. Appl. No.
10/405,883) File HistoryiAmendment After Final Rejection”, May
10, 2011, (9 pages).

Page 17 0f110

Page 18 of 110

US 8,073,557 B2
Page 18

USPTO; “USPTO Patent FileHist (U.S. Appl. No. 12/494,163)7
Non Final Office Action”, May 12, 2011, (7 pages).
USPTO; “USPTO Patent FileHist (U.S. Appl. No. 10/405,883) File
History; Notice ofAllowance”, May 26, 2011, (8 pages).
Roy-G-BiV Corporation; “USPTO Patent FileHist 7110.00002 (U.S.
Appl. No. 12/263,953)7Request for Continued Examination”, Jun.
9, 2011, (7 pages).
Roy-G-BiV Corporation; “Foreign FileHist: European Patent Appli-
cation No. EP048098047Response to Examination Report”, Jun.
16, 2011, (16 pages).
Individual; “USPTO Patent FileHist (U.S. Appl. No. 12/557,722)
File HistoryiNotice ofAllowance”, Jun. 16, 2011, (48 pages).
USPTO; “ReEx: US. Patent No. 5,691,897 Ex-Partes Reexamina-
tion (Control No. 90/009,282)4Certificate of Correction”, May 24,
2011, (4 pages).
CIPO; “Foreign FileHist: Canadian Patent Application No. CA
2,705,40440ffice Action Cancelled”, Aug. 3, 2011, (1 page).
Roy-G-BiV Corporation; “USPTO Patent FileHist: (U.S. Appl. No.
12/494,163)7Amendment and Response to Non-Final Office
Action”, Aug. 11, 2011, (7 pages).

USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/557,722) File
HistoryiNotice ofAllowability”, Aug. 12, 2011, (8 pages).
CIPO; “Foreign FileHist: Canadian Patent Application No. CA
2,705,40440ffice Action”, Jul. 4, 2011, (4 pages).
CIPO; “Foreign FileHist: Canadian Patent Application No. CA
2,625,28340ffice Action”, Jul. 11, 2011, (2 pages).
USPTO; “USPTO Patent FileHist: (U.S. Appl. No. 12/557,722) File
HistoryiNotice ofAllowability”, Jul. 18, 2011, (22 pages).
USPTO; “ReEx: US. Patent No. 6,513,058 Reexamination (Control
No. 95/000,398)7Inter Partes Reexamination Certificate (0276th)”,
Jun. 28, 2011, (10 pages).
USPTO; “ReEx: US. Patent No. 6,516,236 Reexamination (Control
No. 95/000,396)7Inter Partes Reexamination Certificate (0277th)”,
Jun. 28, 2011, (10 pages).
CIPO; “Foreign FileHist: Canadian Patent Application No. CA
2,705,40440ffice Action”, Aug. 31, 2011, (4 pages).

* cited by examiner

Page 18 0f110

Page 19 of 110

US. Patent Dec. 6, 2011 Sheet 1 of 64 US 8,073,557 B2

I7K3.|£\

TO/FROMFIG.IB

-UNKNOWN

STANDARD OLE INTERFACES - MOTION
CORE INTERFACES - CONTROL

DRIVERA
EXTENDED INTERFACES °

EXTENDED Ul INTERFACES ' HAWAII/ARE
CODE GENERATION INTERFACES ' LANGUAGE
VENDOR SPECIFIC INTERFACES DEPENDENT

TO/FROM FIG. ID

Page 19 0f110

Page 20 of 110

US. Patent Dec. 6, 2011 Sheet 2 of 64 US 8,073,557 B2

FIG. I B

38 ' UNKNOWN

DRIVER

ADMINISTRATOR DRIVER
CPL ADMIN

4O

32

- STANDARD OLE
INTERFACES

- CUSTOM OLE
INTERFACES

DDE SERVER

IUKNOWN

STANDARD OLE INTERFACES -

GENRAL INTERFACES - MOTION 35
CODE GENERATION INTERFACES - CONTROL

DIAGNOSTIC INTERFACES - COMPONENT TO/FROMFIG.IA TO/FROMFIG.IC
IUN KNOWN

STANDARD OLE INTERFACES'

EXTENDED INTERFACES -

EXTENDED UI INTERFACES

MOTION

CONTROL
DRIVER STUB

i .UNKNOWN
MSTANDARD OLE INTERFACES OTION 30b

CONTROL
CORE INTERFACES '

EXTENDED INTERFACES - gfig‘gflgii
EXTENDED UI INTERFACES ° B

CODE GENERATION INTERFACES ° LANGUAGE
VENDOR SPECIFIC INTERFACES - DEPENDENT

36

TO/FROM FIG. IE

Page 20 of 110

Page 21 of 110

US. Patent Dec. 6, 2011 Sheet 3 of 64 US 8,073,557 B2

FIG. IC

TO/FROMFIG.IB
- UNKNOWN

STANDARDOLE INTERFACES MOTION

CORE INTERFACES SSIQI/Egcg-
EXTENDED INTERFACES - HARDWARE

cEXTENDED UI INTERFACES ~

CODE GENERATION INTERFACES - LANGUAGE

VENDOR SPECIFIC INTERFACES - DEPENDENT

30c

r

TO/FROM FIG. IF

Page 210f110

Page 22 of 110

US. Patent Dec. 6, 2011 Sheet 4 of 64 US 8,073,557 B2

FIG. ID

TO/FROM FIG. IA

[UNKNOWN
 ISTREAM

MOTION CONTROL INK NOWN

TEXT FILE

STREAM ISTREAM MOTION CONTROL
TEXT PC BUS

COMMUNICATION STREAM

PROTOCOL 280 PC BUS
COMMUNICATION

PROTOCOL

OUTPUT FILE

PERSONAL COMPUTER HARDWARE BUS

IIIIIIIIIII

PERSONAL COMPUTER HARDWARE \ll‘II‘HARDWARE
CONTROLLER A

I MECHANICAL
SYSTEM A

TO/FROMFIG.IE
l80

200

MOTION CONTROL

DEVICE A

Page 22 of 110

Page 23 of 110

US. Patent Dec. 6, 2011 Sheet 5 of 64 US 8,073,557 B2

FIG. IE

TO/FROIVI FIG. IB

IUNKNOWN

MOTION CONTROL
PC BUS

STREAM

PC BUS

COMMUNICATION
PROTOCOL

ISTREAM '

28b

I L“
HARDWARE

CONTROLLER B

I MECHANICAL
SYSTEM A

l'—-—

IIIIiII IITO/FROMFIG.ID TO/FROMFIG.IF
I8b

20b

MOTION CONTROL
DEVICE B

Page 23 0f110

Page 24 of 110

US. Patent Dec. 6, 2011 Sheet 6 of 64 US 8,073,557 B2

FIG. IF

TO/FROM FIG. IC

IUNKNOWN

MOTION CONTROL

HARDWARE C

PC BUS STREAM

SPECIAL PC BUS

COMMUNICATION

PROTOCOL FOR

HARDWARE C

 I STREAM

28c

I4

-'
I'l—_llllll ll

II %‘
HARDWARE

LER CCONTROL

I MECHANICAL
SYSTEM A

TO/FROMFIG.IE 2“

—

I80
20c

MOTION CONTROL

DEVICE C

Page 24 of 110

Page 25 of 110

US. Patent Dec. 6, 2011 Sheet 7 of 64 US 8,073,557 B2

FIG- 2 Module Interaction—Map

VB APPLICATION i

5 VC++ APPLICATION E

BCW APP, etc. '

. IUnknown

|XMC__xxxAPI

 COMPONENT”

 34

lXMC_UDxxxSPl

 36
 o IUnknown

 IXMC_xxxSP|

Page 25 OfllO

Page 26 of 110

US. Patent Dec. 6, 2011 Sheet 8 of 64 US 8,073,557 B2

" lUnknown

DRIVER

ADMIN. ,

FIG . 3 Object Interaction-Map 32
IXMC__XXXAP| 0

VB APPLICATION g

. VC++ APPLICATION '

BCW APP, etc.

._..,....u.-...._‘.
.“'..‘Iu,uuv.u.-n

V

CCmpntDisp CDriverAdmin

34b 49

CDrIvengr CUnitMapper

CDriver

-—

34d

' lUnknown

IXMC_UDXXXSPIO DRIVER

STUB

36

’ lUnknown

IXMCfiXXXSPI o DRIVER

30

Page 26 0f110

Page 27 of 110

US. Patent Dec. 6, 2011 Sheet 9 of 64 US 8,073,557 B2

.IUnknown

FIG . 4 Scenario Map - Initialization
iXMC__xxxAPl a

7

.9. CDriverAdmin
349

34d .
a m o lUnknown

IXMC*UDxxxSPi o DRIVER

STUB

36

.lUnknown

IXMC__XXXSPI O DRIVER

30

Page 27 0f110

Page 28 of 110

US. Patent Dec. 6, 2011 Sheet 10 of 64 US 8,073,557 B2

F IG - 5 Scenario Map - Core SPI Operation

CUnitMapper

.lUnknown

DRIVER

IXMC_xxxSPI

30

Page 28 0f110

Page 29 of 110

US. Patent Dec. 6, 2011 Sheet 11 of 64 US 8,073,557 B2

FIG - 6 Scenario-Map - Unit Mapping

VB APPLICATION

VC++ APPLICATION .

BCW APP., etc.

PCS Measurements

.IUnknown

 PCS Measurements

34e

 CUnitMapper

. IUnknown

MCS .h 6
Measurements lXMC_UDxxxSPI o DRIVER

STUB

36

.IUnknown

IXMC__XXXSPI . DRIVER

30

Page 29 0f110

Page 30 of 110

US. Patent Dec. 6, 2011 Sheet 12 of 64 US 8,073,557 B2

FIG. 7 Scenario-Map - Extended SPI Operation

VB APPLICATION

VC++ APPLICATION

BCW APP., etc.

 u-n-n-un-nunnn—uuu-5

0 . IUnknown

lXMCflxxxAPl o COMPONENT

h '. n 'u I ‘~ ~ '- 'a c
.... ‘- n n 'o u t. - .. '- 'v 0.

CUnitMapper

o lUnknown

DRIVER

STUB

IXMC_UDxxxSPI o

36

Page 30 0f110

Page 31 of 110

US. Patent Dec. 6, 2011 Sheet 13 of 64 US 8,073,557 B2

F IG - 8 Scenario-Map - Clean-up.

VB APPLICATION ;

VC++ APPLICATION g

E BCW APP. etcy ..

26

o IUnknown

IXMC~UDXXXSPIO DRIVER
STUB

36

.IUnknown

IXMCHXXXSPI 6 DRIVER

30

Page 310f110

Page 32 of 110

US. Patent Dec. 6, 2011 Sheet 14 of 64 US 8,073,557 B2

F IG . 9 Interface-Map

IUnkncwn

Standard OLE 2.0 Interface

(implemented by MFC)

Standard OLE 2.0 Interface

(ImpI. by MFC and AFX basecode)

CComponentOjbect

ICIassFactory .

Standard OLE 2.0 Interface

(ImpI. by MFC and ClassWizard

generated code)

AP] Interfaces """"""""""""""""""""""

XMCAPImmHmm#1

XMCAPI Interface #2

IDispatch .

IXMC_APLJ .

|XMC_APL2 .

O

O

O

XMCAPI Interface #nIXMCnAPLn'.

Page 32 0f110

Page 33 of 110

US 8,073,557 B2Sheet 15 of 64Dec. 6, 2011U.S. Patent

A

 A...

”8:62:35bm>mozun3.mEmthfiE9:50amEmafiEOaazwaozx
v

cuzmeooxmgfixgma53m

:moEmEzflcxflxmia

:DOIHw,EI:XI._.Xw>MD

,«mofimmkzmcxmkxmiaEofimmfiz.:xwa>mm
V

memofimmpzficxfixmin525vV|..Ezfimofimmkzixmintamm,$2."Es..,»...823
3015Ewaxmhxmio501me:x5min

U,

mnEoEmslcxnpmeo:55

2anEonx5:5mmflu.6250OF.mu-m

Page 33 0f110

Page 34 of 110

US. Patent Dec. 6, 2011 Sheet 16 of 64 US 8,073,557 B2

FIG-11 Module Interaction-Map
32 ‘

lXMCmXXXAPl ‘

., [Unknown

34 ., Qummwn

IXMCWXXXAPI

. lUnknown

o lUnknown

STREAM
lXMC_xxxUDSP|

28

Page 34 0f110

Page 35 of 110

US. Patent Dec. 6, 2011 Sheet 17 of 64 US 8,073,557 B2

FIG.12 Object Interaction-Map
32 .lUnknown

3 ADMEN.

;. {Unknown34

|XMC__xxxAPl

OMPONENT

. | nknown

. l Unknown

lXMCflxxxUDSPI STREAM

Page 35 0f110

Page 36 of 110

US. Patent Dec. 6, 2011 Sheet 18 of 64 US 8,073,557 B2

FIG.13 Scenario-Map - Registration
32

IXMC__XXXAPI

. lUnknown

_ DRIVER

ADMIN.

FIG-14 Scenario-Map - lnit. by Driver Admin.

32

lXMC__xxxAP|

. [Unknown

.-I'-ul'.n-
u.una"Il".-l.I'

.......-l.I'-"-"--'...-,..:!'
.......n"..

Page 36 0f110

Page 37 of 110

US. Patent Dec. 6, 2011 Sheet 19 of 64 US 8,073,557 B2

FIG.15 Scenario—Map - Adding a Stream

32

IXMC_xxxAP|

lUnknown

CLSID

DRIVER (of the stream)

ADMIN.

FIG-16 Scenario-Map - Query Operation

32 o IUnknown

|XMC_xxxAPI DRIVER

ADMIN.

. [Unknown

Page 37 0f110

Page 38 of 110

US. Patent Dec. 6, 2011 Sheet 20 of 64 US 8,073,557 B2

FIG.17 Scenario—Map - Clean-Up by
UN. Admin.

32 .IUnknown

IXMCWXXXAPI

DRIVER

ADMIN.

...-
-------.-,-n.-

. lUnknown

u.-......n--.u-...-.u--.n-.u--.u------u.-n.-......ua-u..-u...I.....

FIG . 18 Scenario-Map - Init. by Component
34 .lUnknown

..........

Page 38 0f110

Page 39 of 110

US. Patent Dec. 6, 2011 Sheet 21 of 64 US 8,073,557 B2

FIG 19 Scenario-Map - Command Operations

. lUnknown

34

IXMCWXXXAPI OMPONENT

. IUnknown

II"nu-
"""""""""nnnnnn

30e

Page 39 0f110

Page 40 of 110

US. Patent Dec. 6, 2011 Sheet 22 of 64 US 8,073,557 B2

FIG 20 Scenario-Map - Clean-up by
Component

. IUnknown

34

. IUnknown

u...-
..........----------

309

Page 40 of 110

Page 41 of 110

US. Patent Dec. 6, 2011 Sheet 23 of 64 US 8,073,557 B2

FIG . 21 Interface-Map
. lUnknown

CDriverObject

Stan-oar I .I ne ac

(implemented by MFC)

ano-ar I .I n e ace ’

lClaSSFaCtOW ' (impl. by MFC and AFX basecode)

SP1 Core Interfaces ------------------

lXlVlC__Derore_
StaticState tat, a of er met 03 are

specific to the satic state used

when working with motion control)

ni Ia Ize, a 0 er me os are

specific to the dynamic state used

when working with motion control)

lXMCflDerore’

DynamicState 0

lXMC_Derore__

SPI__3 XMCSPI Core Interface #3

lXMC_Derore_

SP|__n XMCSPl Core Interface #n

SPl Extended interfaces ------------

lXMC DrvExt _
— '— ‘u, emove, nae, nae rm,0

StreamMgmt Lock (all methods operate on strms
lXMC_DrvExt__

SpLg XMCSPl Extended Interface #2

o

lXMC__DrvExt__ 8
SPLn XMCSPl Extended Interface #n

Page 410f110

Page 42 of 110

US. Patent Dec. 6, 2011 Sheet 24 of 64 US 8,073,557 B2

FEG- 22 Module Interaction-Map
32 ‘ IUnknown

IXMC__xxxAPI . DRIVER
' ADMIN.

3O ' IUnknown

IXMmexxSPl. DRIVER

o IUnknown

44

42 |XMC_XXXUDSPI. STREAM I DBG
MONITOR

28 .3—

 43

Page 42 of 110

Page 43 of 110

US. Patent Dec. 6, 2011 Sheet 25 of 64 US 8,073,557 B2

FIG. 23 Object Interaction-Map 0 [Unknown

IXMC3<>0<API . DRIVER ,
ADMIN.

30 0 [Unknown

IXMC_XXXSPI . ‘ - DRIVER 32

. lUnknown

SERIAL l/O

Page 43 of 110

Page 44 of 110

US. Patent Dec. 6, 2011 Sheet 26 of 64 US 8,073,557 B2

FIG. 24 Scenario-Map -Initialization

' lUnknown

IXMC_XXXAP| -. DRIVER
ADMIN.

Page 44 of 110

Page 45 of 110

US. Patent Dec. 6, 2011 Sheet 27 of 64 US 8,073,557 B2

HG. 25 Scenario-Map - Registration
3 ' IUnknown

FIG. 26 Scenario-Map-Setup ”Unknown

Page 45 of 110

Page 46 of 110

US. Patent Dec. 6, 2011 Sheet 28 of 64 US 8,073,557 B2

FIG 27 Scenario-Map — Clean—up
0 IUnknown

CStreamDisp‘ 6 CRegistryMgr
289

2d 28
a 9

CIOHAL CIIHAL CIOHAL

NT3.5 Win95 Win3.1

Page 46 of 110

Page 47 of 110

US. Patent Dec. 6, 2011 Sheet 29 of 64 US 8,073,557 B2

FIG 29 Scenario-Map - Opening the Stream

30

IXMC_xxxSPl .

' IUnknown

DRIVER

. iUnknown

Page 47 of 110

Page 48 of 110

US. Patent Dec. 6, 2011 Sheet 30 of 64 US 8,073,557 B2

FIG. 30 Scenario-Map - Writing Data

30

IXMC_XXXSPI

C lUnknown

DRIVER

Page 48 0f110

Page 49 of 110

US. Patent Dec. 6, 2011 Sheet 31 of 64 US 8,073,557 B2

FIG . 31 Scenario-Map — Reading Data

30 ' lUnknown

IXMC_xxxSPl . DRIVER

Page 49 of 110

Page 50 of 110

US. Patent Dec. 6, 2011 Sheet 32 of 64 US 8,073,557 B2

FIG 32 Scenario-Map -— Clean-up (Drv)

30

IXMC_XXXSPI .

0 lUnknown

DRIVER

. lUnknown

 svs

5 ' » _ -' . SERIAL ”0m“‘@‘

Page 50 0f110

Page 51 of 110

US. Patent Dec. 6, 2011 Sheet 33 of 64 US 8,073,557 B2

FIG- 33 Interface-Map
0 lUnknown

Stan-tar I .0 nte ace

(implemented by MFC)

tan-oar o .I n e ace

(lmpl. by MFC and AFX basecode)

SP! " UnDocumented ----------------

ead, Write, Enable, Stat, lsEnabIed

nitiallze Open Close Setup,

Stat, CreateStream

FIG. 34 Module Interaction-Map.

34 .lUnknown

lClassFactory .

 lXMC__Stream .

lXMC__Streamlnit .

lXMC_xxxAPl OMPQNENT

. lUnknown

lXMC_xxxSPl

Page 510f110

Page 52 of 110

US. Patent Dec. 6, 2011 Sheet 34 of 64 US 8,073,557 B2

FIG 35 Objectlnteraction-Map

34 _ .IUnknown

 IXMC_XXXAPI OMPONENT

. IUnknown

'XMQDnglt. DRIVER
36 ’'- In
uuuuuu I.
................,,,,,I 'h. -.....‘0 -.

CDriverStubiisp CSPIMgr

363 36c

C impleDriver

. lUnknown

IXMmexxSPI DRIVER

30

Page 52 0f110

Page 53 of 110

US. Patent Dec. 6, 2011 Sheet 35 of 64 US 8,073,557 B2

FIG . 36 Scenario-Map - Initialization
34 .IUnknown

IXMC_xxxAPlCLSID ' OMPONENT

(of Driver)
/

CLSID

of Driver)

Page 53 0f110

Page 54 of 110

US. Patent Dec. 6, 2011 Sheet 36 of 64 US 8,073,557 B2

FIG - 37 Scenario-Map - Operations
34 .lUnknown

lXMcoxxxAPl OMPQNENT=

iXMC__DrvExt

mxxxSPl '

Page 54 0f110

Page 55 of 110

US. Patent Dec. 6, 2011 Sheet 37 of 64 US 8,073,557 B2

FlG- 38 Scenario~Map-Clean-up
34 lUnknown

IXMCnxxxAPI ,

OMPONENT

Page 55 0f110

Page 56 of 110

US. Patent Dec. 6, 2011 Sheet 38 of 64 US 8,073,557 B2

FIG- 39 Interface-Map
'0 [Unknown

Standard OLE 2.0 Interfac-

(Implemented by MFC)

Standard OLE 2.0 Interface

(lmpl. by MFC and AFX basecode)

515% Specific Interfaces -------------

RegisterDriver, UnRegisterDriver

SP] Extended Interfaces ''''''''''

lCIassFactory .

lXMC_DrvStub .

lXMC__DrvExt_

SPU XMCSPI Extended Interface #1

IXMCflDrvExL

SP|~2 XMCSPI Extended "Interface #2
o

8
IXMCWDrvExL

SPl_n XMCSPI Extended Interface #n

Page 56 0f110

Page 57 of 110

US. Patent Dec. 6, 2011 Sheet 39 of 64 US 8,073,557 B2

FEG - 40 Module Interaction-Map
34 olUnknown

COMPONEN ,

pDriverlnfoMap

DRWER (i\iXMCJXXAPSoADMkN CPL poum

I,rlver

pDriverinfo

hStream, olUnknown

pStreamInfo

IXMC_XXXAPI a DRIVER
ADMIN.

32

0 {Unknown

STREAM

[0{Unknown[DRIVER
lXMC_
xxxSPl

30

UDxxxSPl

28

Page 57 0f110

Page 58 of 110

US. Patent Dec. 6, 2011 Sheet 40 of 64 US 8,073,557 B2

F IG . 41 Object Interaction-Map
’ 34 OlUnknown

DRIVER pDnverlnfoMap .
ADMIN.CPL‘L‘ ‘XMCJXXAP' OMPONEN

hDri\/_1I3_r,>

38 ’ ,

pDrvlnfo, pDrvEfium 42
hStream,

PStrmlnfo "unknown *W
n
.._. ‘- ~ - ., ~. -- '- . .,~ ~- 0.. .._ ...

CDriverAdminDis CDriverlnfoMa-

ModuleM o r

. CSimP'eDriver I!l

‘CSim pleD river II!‘
II_I|1"W-'
"um-um—

gym
Ixmc_ . DRIVER 1
xxxSPl

3O

28

Page 58 0f110

Page 59 of 110

US. Patent Dec. 6, 2011 Sheet 41 of 64 US 8,073,557 B2

F HG , 42 Scenario—Map — initialization

34‘ O-iUnknown

DRIVER

ADMIN.

Page 59 0f110

Page 60 of 110

US. Patent Dec. 6, 2011 Sheet 42 of 64 US 8,073,557 B2

F'G- 4'3 Scenario-Map - Registering a Driver

pDriverinfoMap

 DRIVER

ADMIN. CPL

38

.-ul'.‘nl".I"
"""""I",n-.1,.-n.---“

CSimpieDriver

1-?“ lUnknown
iXMCwxxxSPI DRIVER

30

Page 60 of 110

Page 61 of 110

US. Patent Dec. 6, 2011 Sheet 43 of 64 US 8,073,557 B2

FIG- 44 Scenario-Map - Registering a Stream

DRIVER

ADMIN. CPL ,

 pDriverCLSlD,

Page 610f110

Page 62 of 110

US. Patent Dec. 6, 2011 Sheet 44 of 64 US 8,073,557 B2

FIG- 4-5 Scenario-Map - Setting Driver lnfc.
32 OlUnknown

lXMwaxxAPl . DRIVER
DRIVER ' hDriver,

ADMIN. CPL pDrvInfo ,
*9 uuuuuuuuuuuuuuuuuuuuu

38 -----------------------------------

CDriverAdminDIs'

CSimpleDriver

I CSImpleDrIver
“CSImpleDriver
II

.9.

IUnknown

IXMC_xxxSP!. DRIVER ll
30

Page 62 of 110

Page 63 of 110

US. Patent Dec. 6, 2011 Sheet 45 of 64 US 8,073,557 B2

FIG. 46 Scenario-Map - Setting Stream lnfo.
DRIVER

ADMIN. CPL

38
 \hDriver,hStream,pDriver|nfo

I lUnknown

 DRIVER

ADMIN.. ..a- .u ' "-

IXMC_XXXAPI 0

.
........u .
.....n ...- nu I..-n H.....u ..I- n.I -.u .u ..- .

...........

ModuleMr

csmwmeonver , aha-J
CSimpIeDriver w]

CSimpIeDriver g Impe ream I

 ‘7

Page 63 0f110

Page 64 of 110

US. Patent Dec. 6, 2011 Sheet 46 of 64 US 8,073,557 B2

FIG. 47 Scenario-Map - Querying Driver Enum.
34 o-IUnknown

'XMC.. o OMPONEN
xxxAPI

O IUnknown
* 32

' ' _XxxAPI . DRIVER

o pDriverEnum ADMIN

thver9

CDriverAdminDis- CMOoouleMr

 CSimpleDriver ’
I CSimpleDriver
"CSimpleDriver
II

II

@ lUnknown

|XMC__xxxSPI . DRIVER ll
30

Page 64 of 110

Page 65 of 110

US. Patent Dec. 6, 2011 Sheet 47 of 64 US 8,073,557 B2

FIG. 48 Scenario-Map - Querying Drv Info. Map
DRIVER

ADMIN. CPL

38

0 \pDrvlnfoMap

o IUnknown

lXMC__xxxAPI O DRIVER

ADMIN.I
............. ~

......................
.................u' '

.........- ‘
.......

 9_____19J CSimpleDrivera :3: Impe ream !II

ilCSimpleDrivera lmpe ream !
9m]m- .

um
P—E’J

IUnknown (IUnkmwn

Page 65 0f110

Page 66 of 110

US. Patent Dec. 6, 2011 Sheet 48 of 64 US 8,073,557 B2

FIG 49 Scenario-Map -Clean-up
34 OIUnknown

ADMIN..
............. 'u 'n n '- 'n I.

..... '- '- ~- -. 'n ‘-

 , Impe ream _lCSimpleDrIvera

|CSimPIeDr~erét
CSimpIeDrIvera Impeream
W

oLannown ! lUnknown, o

- 1 bIXMC_ . DRIVER lXMC.~ o STREAM

XXXSPI UDXXXSPI I
30 28

Page 66 0f110

Page 67 of 110

US. Patent Dec. 6, 2011 Sheet 49 of 64 US 8,073,557 B2

FIG. 50 Interface-Map.
. IUnknown

tan-oar .0 ne ace

Implemented by MFC)

Standard OLE 2.0 Interface

(ImpI. by MFC and AFX basecode)

Standard OLE 2.0 Interface

(ImpI. by MFC and CIassWizard

generated code)

Specific Std. Interfaces --------------

Standard IEnumX OLE 2.0 Interface

API Interfaces """"""""""""""""""

EnumDrIver, EnumIfaceSupport,

GetDriverInfoMap

 CDriverAdmianbect

ICIassFactory .

 IDispatch .

IXMC_EmmflMv.

DrvAdmin

IXMC__ . EnableLogging,lsLoggingOn,
DrvAdmIan EnabIeDiagnosticTesting,

IsDiagnosticTestIngOn,

SetLoggingStream

Page 67 0f110

Page 68 of 110

US. Patent Dec. 6, 2011 Sheet 50 of 64 US 8,073,557 B2

FIG . 51 Module Interaction-Map

BROWSE DLG

(OpenFile)

pDriverlnfo

hStream,

pStrmInfo

DRIVER

ADMIN. CPL

uriverinfoMapT i olUnknown
lXMC_xxxAPI a DRIVER

ADMIN.

32

pDriver-

InfoMap

5O

DIALOG

hDriver,pDriverlnf0,hStream,

pStrmlnfo

 38

Page 68 0f110

Page 69 of 110

US. Patent Dec. 6, 2011 Sheet 51 of 64 US 8,073,557 B2

HG 52 ijecflnteraction-Map

42

38a ‘I i I A
38b -_
_ 7 m— DrIverAdmin- :

o penFi eDIalog Dial0.g(standard.MFC)I
‘pDriver hDriver,

lnfo— lpDriverlnfoj_— 5

- Ylew upport— Map T hStream a
Diaiog 33d pStrmlnfo

CDnverinfoMap

38e
CComCPL

hDrEver, CDriverlnfo

pDriverlnfoi CStreaminfo
38 hStream, 38f

pStreamtnfo pDriverlnfoMap

CDriverAdmin

pDriverInfOMap :
.Unknown§

hDriver,

pDriverlnfo, 3

hStream,

pStreamlnfo IXMC_XXXAP .

Page 69 0f110

Page 70 of 110

US. Patent Dec. 6, 2011 Sheet 52 of 64 US 8,073,557 B2

FIG , 53 Scenario-Map - Initializing the App.
42

Page 70 of 110

Page 71 of 110

US. Patent Dec. 6, 2011 Sheet 53 of 64 US 8,073,557 B2

FIG_ 54 Scenario-Map — Main Dialog lnit.

38

DnverAdmm—

Dialog

 IXMCmXXXAP' o

32

 DRIVER

ADMIN.

Page 710f110

Page 72 of 110

US. Patent Dec. 6, 2011 Sheet 54 of 64 US 8,073,557 B2

FIG . 55 Scenario-Map - Adding a Driver

 (standard MFC) ,

--

DRIVER

ADMIN.
IXMC__xxxAP o

32

FIG 58 Module Interaction-Map
OIUnknown

lCOM_xxx. MOTION
IXMC_xxxAPI. COMPONENT

‘ 'IUnknown

34 ICOM__xxx. DRIVER
ADMIN.

ILNG_xxx.

IXMC‘API

IXMC_XX§SPI . IUnknown

IXMC__XXXU58PI .

28 .

 OIUnknown

LANGUAGE

DRIVER

ICOM xxx 0

Page 72 of 110

Page 73 of 110

US. Patent Dec. 6, 2011 Sheet 55 of 64 US 8,073,557 B2

FIG _ 56 Scenario-Map - Removing a Driver

 DriverAdmin- "

Dialog

h D river,

hStreami 9

38i

C D riverAdm in— "

Dialog

View upport—

Dialog

IXMwaxxAP "o

32

 DRIVER

ADMIN.

Page 73 0f110

Page 74 of 110

US. Patent Dec. 6, 2011 Sheet 56 of 64 US 8,073,557 B2

FIG 59 Object Interaction-Map
0 IUnknown

ICOM__>0<X MOT’ON I
lXMC XXXAPI . COMPONENT

‘ lUnknown

3

LANGUAGE

DRIVER
u

-.
n
o‘ua

u
CResonse .

Page 74 of 110

Page 75 of 110

US. Patent Dec. 6, 2011 Sheet 57 of 64 US 8,073,557 B2

FIG. 60 Scenario—Map - Init. by Drv. Admin.

9

:529
DATABASE angDrvExtDisp ang oreExtDisp

m5".
CStreamMgr DriverlnfoMgr

EgCCommandMgr

éCCmdDaJta case gcgrwerlnfoa CSPllnfog

@
Page 75 0f110

Page 76 of 110

US. Patent Dec. 6, 2011 Sheet 58 of 64 US 8,073,557 B2

F§G_ 61 Scenario-Map - Adding a Stream
32 IUnknown

ICOM xxx.

ICOM xxx. DRIVER
ADMIN.

iLNGCxxx.

IXMO:API .

0 IUnknown

DRIVER
 .-nn

H, .._.
.......... u" u.

StreamMgr

6 52p
CSimpleStream;

ECSimpleStream...

Page 76 0f110

Page 77 of 110

US. Patent Dec. 6, 2011 Sheet 59 of 64 US 8,073,557 B2

FIG- 62 Scenario-Map - Query Operation
32 O lUnknown

ICOM xxx. DRIVER
ADMIN.IXMO:API .

0 [Unknown

DRIVER

lCOM_xxx .
'LNG_XXX Q

IXMC_XXXSPI
u-

.......

CDrv tDisp

' angDrvExtDisp.
52b

CSimpieStream...

Page 77 0f110

Page 78 of 110

US. Patent Dec. 6, 2011 Sheet 60 of 64 US 8,073,557 B2

FIG- 63 Scenario-Map-Registration loading
32 OIUnknown

 ..,
------- -... -. -.

......
........

CCore xtDisp

‘ angCoreExtDisp

CRegistryMgr

52p a

CSimpleStream m'

CSimpleStream a

“a

 lCOM__xxx .

IXMC_XXXUDSP! .

28

Page 78 0f110

Page 79 of 110

US. Patent Dec. 6, 2011 Sheet 61 of 64 US 8,073,557 B2

HG. 64 Scenario-Map - Clean-up
0 lUnknown

O

o»:
SPI

DATABASE gm
. ngDrvExtDisp...........................

Page 79 0f110

Page 80 of 110

US. Patent Dec. 6, 2011 Sheet 62 of 64 US 8,073,557 B2

FIG. 55 Scenario-Map - Command Operation

0 IUnknown

....
........ -._

‘‘‘‘‘‘‘~~~~~ ------ uuuuu .. -..
........u.

ur—
921m

Page 80 0f110

Page 81 of 110

US. Patent Dec. 6, 2011 Sheet 63 of 64 US 8,073,557 B2

F IG - 66 Interface-Map
IUnknown

CDriverObject .

Standard OLE 2.0 Interface

(Implemented by MFC)

ICIassFactory . Standard OLE 2.0 Interface

(ImpI. by MFC and AFX basecode)

COM interfaces """"""""""""""""

ICOM_Base2 . InitiaIize, UnlnitiaIize, GetErrStrIng,
GetStateHandIe, SetStateHandIe

ICOM_Persist2 . GetID, GetModuIeType, GetCIassID

ICOM__ . Load, Save, Clear, IsDirty

PersistRegDB _________
Language Driver Interfaces

Create, Destroy, Setup, Stat,

Register, Unregister, IsRegistered,

Enable, IsEnabIed

AddStream, RemoveStream,

RemoveAIIStreams, GetStrmlnit,

GetStrmInitAt, GetStrmEnum.

etStreamCount, EnabledStrmOnIy

5P1 Core Interfaces -------------------

SEE FIGURE 21 (same Interfaces)

SP' Extended Interfaces -------------

SEE FIGURE 21 (same interfaces)

ILNG_ .
Derore_InIt

 lLNG_DrvExt__.
StreamMgmt

Page 810f110

Page 82 of 110

US 8,073,557 B2Sheet 64 of 64Dec. 6, 2011U.S. Patent

AAAAAAAAAAAAAzOFfiZwEwEE

vvvv>100QZNvvvvvvvvvvvg!A$35532%2A35mi»EBARankEE38$.2,:E28582,:EE2335EIIIIIll5....ATEQEET.ass532%.A.3ms5%“8..8so2%2mmam$3).2:“x9ms583%ms.K.8:22$2.. $50$3%msv5Egg9.asEEm@0993.329.ma“326*Eoemcohoxgm“ms9%,9me35.2a.
g8308‘sedans.533as

g858%b325we5.2:03%Em2;I333.:E_m_§w52_e__%nm:$£2355ENE;555.8:EEmsuueswaagagam.89.élllIIIII.9039523281IIIasF68uasIllééllls@232n2.x.8025a@292ua.»IéécmgglEEO.8>_m¢.>omEIQ?$2stEmAEBmsov

Page 82 0f110

Page 83 of 110

US 8,073,557 B2

1
MOTION CONTROL SYSTEMS

RELATED APPLICATIONS

This application Ser. No. 12/406,921 is a continuation of
US. patent application Ser. No. 10/316,451 filed on Dec. 10,
2002, which is incorporated herein in its entirety.

US. patent application Ser. No. 10/316,451 is a continua-
tion-in-part of US. patent application Ser. No. 10/021,669
filed on Dec. 10, 2001, now US. Pat. No. 6,516,236 which
issued on Feb. 4, 2003, which is incorporated by reference in
its entirety and which is a continuation of US. patent appli-
cation Ser. No. 09/191,981 filed on Nov. 13, 1998, which is a
continuation of US. patent application Ser. No. 08/656,421
filed on May 30, 1996, now US. Pat. No. 5,867,385 which
issued on Feb. 2, 1999, which is a continuation-in-part ofU.S.
patent application Ser. No. 08/454,736 filed on May 30, 1995,
now US. Pat. No. 5,691,897 which issued on Nov. 25, 1997.

US. patent application Ser. No. 10/316,451 is also a con-
tinuation-in-part of US. patent application Ser. No. 09/795,
777 filed on Feb. 27, 2001, now US. Pat. No. 6,513,058
which issued on Jan. 28, 2003, which is incorporated by
reference in its entirety and which is a continuation of US.
patent application Ser. No. 09/205,627 filed on Dec. 3, 1998,
now US. Pat. No. 6,209,037 which issued on Mar. 27, 2001,
which claims benefit of US. Provisional Patent Application
Ser. No. 60/067,466 filed on Dec. 4, 1997, and which is a
continuation of US. patent application Ser. No. 09/ 191,981
filed on Nov. 13, 1998, which is a continuation ofUS. patent
application Ser. No. 08/656,421 filed on May 30, 1996, now
US. Pat. No. 5,867,385 which issued on Feb. 2, 1999, which
is a continuation-in-part of US. patent application Ser. No.
08/454,736 filed on May 30, 1995, now US. Pat. No. 5,691,
897 which issued on Nov. 25, 1997.

US. patent application Ser. No. 10/316,451 is also a con-
tinuation-in-part of US. patent application Ser. No. 09/633,
633 filed onAug. 7, 2000, now US. Pat. No. 6,941,543 which
issued on Sep. 6, 2005, which is incorporated by reference in
its entirety and which is a continuation of US. patent appli-
cation Ser. No. 09/191,981 filed on Nov. 13, 1998, which is a
continuation of US. patent application Ser. No. 08/656,421
filed on May 30, 1996, now US. Pat. No. 5,867,385 which
issued on Feb. 2, 1999, which is a continuation-in-part ofU.S.
patent application Ser. No. 08/454,736 filed on May 30, 1995,
now US. Pat. No. 5,691,897, which issued on Nov. 25, 1997.

TECHNICAL FIELD

The present invention relates to motion control systems
and, more particularly, to interface software that facilitates
the creation of hardware independent motion control soft-ware.

BACKGROUND OF THE INVENTION

The purpose ofa motion control device is to move an object
in a desired manner. The basic components of a motion con-
trol device are a controller and a mechanical system. The
mechanical system translates signals generated by the con-
troller into movement of an object.

While the mechanical system commonly comprises a drive
and an electrical motor, a number of other systems, such as
hydraulic or vibrational systems, can be used to cause move-
ment of an object based on a control signal. Additionally, it is
possible for a motion control device to comprise a plurality of
drives and motors to allow multi-axis control of the move-

ment of the object.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

The present invention is of particular importance in the
context of a mechanical system including at least one drive
and electrical motor having a rotating shaft connected in some
way to the object to be moved, and that application will be
described in detail herein. But the principles of the present
invention are generally applicable to any mechanical system
that generates movement based on a control signal. The scope
of the present invention should thus be determined based on
the claims appended hereto and not the following detailed
description.

In a mechanical system comprising a controller, a drive,
and an electrical motor, the motor is physically connected to
the object to be moved such that rotation of the motor shaft is
translated into movement of the object. The drive is an elec-
tronic power amplifier adapted to provide power to a motor to
rotate the motor shaft in a controlled manner. Based on con-

trol commands, the controller controls the drive in a predict-
able manner such that the object is moved in the desired
manner.

These basic components are normally placed into a larger
system to accomplish a specific task. For example, one con-
troller may operate in conjunction with several drives and
motors in a multi-axis system for moving a tool along a
predetermined path relative to a workpiece.

Additionally, the basic components described above are
often used in conjunction with a host computer or program-
mable logic controller (PLC). The host computer or PLC
allows the use of a high-level programming language to gen-
erate control commands that are passed to the controller.
Software running on the host computer is thus designed to
simplify the task of programming the controller.

Companies that manufacture motion control devices are,
traditionally, hardware oriented companies that manufacture
software dedicated to the hardware that they manufacture.
These software products may be referred to as low level
programs. Low level programs usually work directly with the
motion control command language specific to a given motion
control device. While such low level programs offer the pro-
grammer substantially complete control over the hardware,
these programs are highly hardware dependent.

In contrast to low-level programs, high-level software pro-
grams, referred to sometimes as factory automation applica-
tions, allow a factory system designer to develop application
programs that combine large numbers of input/output (I/O)
devices, including motion control devices, into a complex
system used to automate a factory floor environment. These
factory automation applications allow any number of I/O
devices to be used in a given system, as long as these devices
are supported by the high-level program. Custom applica-
tions, developed by other software developers, cannot be
developed to take advantage of the simple motion control
functionality offered by the factory automation program.

Additionally, these programs do not allow the programmer
a great degree of control over the each motion control device
in the system. Each program developed with a factory auto-
mation application must run within the context of that appli-
cation.

PRIOR ART

In the following discussions, a number of documents are
cited that are publicly available as of the filing date of the
present invention. With many of these documents, the Appli-
cant is not aware of exact publishing dates. The citation of
these documents should thus not be considered an admission

Page 83 0f110

Page 84 of 110

US 8,073,557 B2

3

that they are prior art; the Applicant will take the steps nec-
essary to establish whether these documents are prior art if
necessary.

As mentioned above, a number of software programs cur-
rently exist for programming individual motion control
devices or for aiding in the development of systems contain-
ing a number of motion control devices.

The following is a list of documents disclosing presently
commercially available high-level software programs: (a)
Software Products For Industrial Automation, iconics 1993;
(b) The complete, computer-based automation tool (IGSS),
Seven Technologies A/S; (c) OpenBatch Product Brief, PID,
Inc.; (d) FIX Product Brochure, Intellution (1994); (e) Para-
gon TNT Product Brochure, Intec Controls Corp.; (f) WEB
3 .0 Product Brochure, Trihedral Engineering Ltd. (1994); and
(g) AIMAX-WIN Product Brochure, TA Engineering Co.,
Inc. The following documents disclose simulation software:
(a) ExperTune PID Tuning Software, Gerry Engineering
Software; and (b) XANALOG Model NL-SIM Product Bro-
chure, XANALOG.

The following list identifies documents related to low-level
programs: (a) Compumotor Digiplan 1993-94 catalog, pages
10-11; (b) Aerotech Motion Control Product Guide, pages
233-34; (c) PMAC Product Catalog, page 43; (d) PC/DSP-
Series Motion Controller C Programming Guide, pages 1-3;
(e) Oregon Micro Systems Product Guide, page 17; (f) Pre-
cision Microcontrol Product Guide.

The Applicants are also aware ofa software model referred
to as WOSA that has been defined by Microsoft for use in the
Windows programming environment. The WOSA model is
discussed in the book Inside Windows 95, on pages 348-351.
WOSA is also discussed in the paper entitled WOSA Back-
grounder: Delivering Enterprise Services to the Windows-
based Desktop. The WOSA model isolates application pro-
grammers from the complexities ofprogramming to different
service providers by providing an API layer that is indepen-
dent of an underlying hardware or service and an SPI layer
that is hardware independent but service dependent. The
WOSA model has no relation to motion control devices.

The Applicants are also aware of the common program-
ming practice in which drivers are provided for hardware such
as printers or the like; an application program such as a word
processor allows a user to select a driver associated with a
given printer to allow the application program to print on that
given printer.

While this approach does isolates the application program-
mer from the complexities ofprogramming to each hardware
configuration in existence, this approach does not provide the
application programmer with the ability to control the hard-
ware in base incremental steps. In the printer example, an
application programmer will not be able to control each step-
per motor in the printer using the provided printer driver;
instead, the printer driver will control a number of stepper
motors in the printer in a predetermined sequence as neces-
sary to implement a group of high level commands.

The software driver model currently used for printers and
the like is thus not applicable to the development of a
sequence of control commands for motion control devices.

OBJECTS OF THE INVENTION

From the foregoing, it should be clear that one primary
object of the invention is to provide improved systems and
methods for moving objects.

SUMMARY OF THE INVENTION

The present invention may be embodied as a motion con-
trol system comprising an application program, a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

4

motion controllers, a set of software drivers each comprising
driver code, and a motion component comprising component
code. The application program comprises at least one call to
at least one component function. Each of the motion control-
lers is capable of causing a motion control operation. A plu-
rality of motion controller languages are associated with the
plurality of motion controllers. Each motion controller lan-
guage comprises control commands, where at least one con-
trol command is capable of processing information associ-
ated with the movement of an object. At least one of the
plurality of motion controller languages is associated with at
least one of the motion controllers. Each software driver is

associated with at least one ofthe plurality ofmotion control-
ler languages. Each software driver exposes a service pro-
vider interface comprising a set ofdriver functions, where the
driver functions are independent of the plurality of motion
controller languages. At least one driver function is an
extended driver function that is associated with a non-primi-
tive motion operation that can be performed using at least one
primitive motion operation, where the at least one primitive
motion operation cannot be performed using a combination
ofprimitive or non-primitive motion operations. At least one
driver function is a core driver function that is associated with

a primitive motion operation. The driver code of at least one
software driver associates at least one driver function with at
least one control command of the at least one motion control-

ler language associated with at least one of the software
drivers. At least one selected software driver is associated
with at least one selected motion controller. The motion com-

ponent exposes an application programming interface com-
prising a set of component functions. Each component func-
tion is implemented by component code. At least the
component code is independent of the plurality of motion
controller languages. The component code associates at least
one of the component functions with at least one of the driver
functions. The at least one selected software driver generates
at least one control code from the motion controller language
associated with the at least one selected motion controller

based on the at least one component function called by the
application program, the component code, and the driver code
of the at least one selectable software driver.

The present invention may also be embodied as a motion
control system comprising an application program compris-
ing at least one call to at least one component function, a
plurality of motion control devices, a set of software drivers
each comprising driver code, and a motion component com-
prising component code. A plurality of unique controller
languages are associated with the plurality of motion control
devices. Each controller language comprises control com-
mands for processing information associated with motion
control devices. Each ofthe motion control devices comprises
a controller capable of generating electrical signals based on
at least one control command ofthe controller language asso-
ciated with the motion control device and a mechanical sys-
tem capable of causing a motion control operation based on
electrical signals generated by the controller. Each software
driver is associated with one of the plurality of controller
languages. Each software driver exposes a service provider
interface defining a set of driver functions. The driver func-
tions are independent ofthe plurality of controller languages.
At least one driver function is an extended driver function that

is associated with a non-primitive motion operation that can
be performed using at least one primitive motion operation,
where the at least one primitive motion operation cannot be
performed using a combination ofprimitive or non-primitive
motion operations. At least one driver function is a core driver
function that is associated with a primitive motion operation.

Page 84 of 110

Page 85 of 110

US 8,073,557 B2

5
The driver code of at least one software driver associates at
least one driver function with at least one control command of

the at least one controller language associated with at least
one of the software drivers. At least one selected software
driver is associated with at least one selected motion control

device. The motion component exposes an application pro-
gramming interface comprising a set ofcomponent functions.
Each component function is implemented by component
code. At least the component code is independent of the
plurality of controller languages. The component code asso-
ciates at least one ofthe component functions with at least one
of the driver functions. The at least one selected software

driver generates a set of control commands in the controller
language associated with the at least one selected motion
control device based on the calls to component functions of
the application program, the component code, and the driver
code of the at least one selected software driver.

The present invention may also be embodied as a motion
control system comprising an application program compris-
ing at least one call to at least one component function, a
plurality of motion controllers, a set of software drivers each
comprising driver code, and a motion component comprising
component code. Each of the motion controllers is capable of
causing a motion control operation. The plurality of sets of
hardware control commands are associated with the plurality
of motion controllers. Each set of hardware control com-

mands comprises at least one control command that is
capable ofprocessing information associated with the move-
ment of an object. At least one of the plurality of sets of
hardware control commands is associated with each of the
motion controllers. Each software driver is associated with

one ofthe plurality of sets ofhardware control commands. At
least one selected software driver is associated with at least

one selected motion controller. Each software driver exposes
a service provider interface defining a set of driver functions.
The driver functions are independent ofthe plurality of sets of
control commands. At least one driver function is an extended

driver function that is associated with a non-primitive motion
operation that can be performed using a combination of
primitive motion operations, where primitive motion opera-
tions cannot be performed using a combination ofprimitive or
non-primitive motion operations. At least one driver function
is a core driver function that is associated with a primitive
motion operation. The driver code of at least one software
driver associates at least one driver function with at least one
control command of the at least one set of hardware control
commands associated with at least one of the software driv-

ers. The motion component exposes an application program-
ming interface comprising a set of component functions.
Each component function is implemented by component
code. At least the component code is independent of the
plurality of controller languages. The component code asso-
ciates at least one ofthe component functions with at least one
of the driver functions. The at least one selected software

driver generates a sequence ofcontrol commands from the set
ofcontrol commands associated with the at least one selected

controller based on the calls to component functions of the
application program, the component code, and the driver code
of the at least one selected software driver.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system interaction map of a motion control
system constructed in accordance with, and embodying, the
principles of the present invention;

FIG. 2 is a module interaction map of a motion control
component of the system shown in FIG. 1;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 is an object interaction map ofthe component shown
in FIG. 2;

FIGS. 4 through 8 are scenario maps of the component
shown in FIG. 2;

FIG. 9 is an interface map of the component shown in FIG.
2;

FIG. 10 is a data map showing one exemplary method of
accessing the data necessary to emulate extended driver func-
tions using core driver functions;

FIG. 11 is a module interaction map ofthe driver portion of
the system shown in FIG. 1;

FIG. 12 is an object interaction map of the driver portion
shown in FIG. 11;

FIGS. 13 through 20 are scenario maps related to the driver
shown in FIG. 11;

FIG. 21 is an interface map for the driver shown in FIG. 11;
FIG. 22 is a module interaction map ofthe streams used by

the system shown in FIG. 1;
FIG. 23 is an object interaction map of the streams shown

in FIG. 22;
FIGS. 24 through 32 are scenario maps of the streams

shown in FIG. 22;
FIG. 33 is an interface map of the objects comprising the

stream shown in FIG. 22;
FIG. 34 is a module interaction map of the driver stub

portion of the system shown in FIG. 1;
FIG. 35 is an object interaction map of the driver stub

shown in FIG. 34;
FIGS. 36 through 38 are scenario maps of the driver stub

shown in FIG. 34;
FIG. 39 is an interface map ofthe driver stub portion shown

in FIG. 34;
FIG. 40 is a module interaction map of the driver admin-

istrator portion of the system shown in FIG. 1;
FIG. 41 is an object interaction map ofthe driver adminis-

trator shown in FIG. 40;
FIGS. 42 through 49 are scenario maps relating to the

driver administrator shown in FIG. 40;
FIG. 50 is an interface map ofthe objects that comprise the

driver administrator shown in FIG. 40;
FIG. 51 is a module interaction map of the driver admin-

istrator CPL applet portion of the system shown in FIG. 1;
FIG. 52 is an object interaction map ofthe driver adminis-

trator CPL applet shown in FIG. 51;
FIGS. 53 through 57 are scenario maps related to the driver

administrator CPL applet shown in FIG. 51;
FIG. 58 depicts a Module Interaction-Map showing all

binary modules that interact with the driver and how they
interact with one another;

FIG. 59 depicts an Object Interaction-Map which corre-
sponds to the module interaction map ofFIG. 58 expanded to
display the internal C++ objects making up the language
driver 44, and how these objects interact with one another;

FIGS. 60-65 depict a number ofScenario Maps that display
the interactions taking place between the C++ objects
involved during certain processes;

FIG. 66 depicts an interface map that describes the inter-
faces exposed by the language driver component 44, all data
structures used, and the definitions of each C++ class used;
and

FIG. 67 depicts a table illustrating how a typical database
employed by the language driver 44 may be constructed.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawing, depicted therein at 10 in
FIG. 1 is a motion control system constructed in accordance

Page 85 0f110

Page 86 of 110

US 8,073,557 B2

7

with, and embodying, the principles of the present invention.
This system 10 comprises a personal computer portion 12
having a hardware bus 14, a plurality of motion control hard-
ware controllers 16a, 16b, and 160, and mechanical systems
18a, 18b, and 180 that interact with one or more objects (not 5
shown) to be moved.

The personal computer portion 12 of the system 10 can be
any system capable of being programmed as described
herein, but, in the preferred embodiment, is a system capable
of running the Microsoft Windows environment. Such a sys- 10
tem will normally comprise a serial port in addition to the
hardware bus 14 shown in FIG. 1.

The hardware bus 14 provides the physical connections
necessary for the computer 12 to communicate with the hard-
ware controllers 16. The hardware controllers 16 control the 15

mechanical system 18 to move in a predictable manner. The
mechanical system 18 comprises a motor or the like the
output shaft of which is coupled to the object to be moved.
The combination of the hardware controllers 16a, 16b, and
160 and the mechanical systems 18a, 18b, and 180 forms 20
motion control devices 20a, 20b, and 200, respectively.

The hardware bus 14, hardware controllers 16, and
mechanical systems 18 are all well-known in the art and are
discussed herein only to the extent necessary to provide a
complete understanding of the present invention. 25

The personal computer portion 12 contains a software sys-
tem 22 that allows an application user 24 to create software
applications 26 that control the motion control devices 20.

More particularly, based on data input by the user 24 and
the contents of the application program 26, the software sys- 30
tem 22 generates control commands that are transmitted by
one or more streams such as those indicated at 28a, 28b, 280,
and 28d. The streams 28 transmit control commands incor-

porating the hardware specific command language necessary
to control a given motion control device to perform in a 35
desired manner. As will be discussed in more detail below, the
streams 28 implement the communication protocol that
allows the control commands to reach the appropriate motion
control device 28 via an appropriate channel (i.e., PC bus,
serial port). 40

Using the system 22, the application program 26 is devel-
oped such that it contains no code that is specific to any one of
the exemplary hardware controllers 16. In the normal case,
the application program 26, and thus the user 24 that created
the program 26, is completely isolated from the motion con- 45
trol devices 20. The user 24 thus need know nothing about the
hardware specific command language or communication pro-
tocol associated with each ofthese devices 20; it may even be
possible that the command language of one or more of the
hardware controllers 16 was not defined at the time the appli- 50
cation program 26 was created.

The software system 22 comprises a combination of ele-
ments that allow the application program 26 to be completely
isolated from the hardware controllers 16. In the following
discussion, the framework of the software system 22 will be 55
described in terms of a method of moving an object and/or a
method of generating control commands. After this general
discussion, each component of the system 22 will be
described in detail in a specific operating environment. 60

I. Method of Generating Control Commands for
Controlling a Motion Control Device to Move an

Object

Initially, it should be noted that, in most situations, the 65
method described in this section will normally but not neces-
sarily involve the labors of at least two and perhaps three

8

separate software programmers: a software system designer;
a hardware designer familiar with the intricacies of the
motion control device; and a motion control system designer.
The application user 24 discussed above will normally be the
motion control system designer, and the roles of the software
system designer and hardware designer will become apparent
from the following discussion.

The software system designer develops the software sys-
tem 22. The software system designer initially defines a set of
motion control operations that are used to perform motion
control. The motion control operations are not specifically
related to any particular motion control device hardware con-
figuration, but are instead abstract operations that all motion
control device hardware configurations must perform in order
to function.

Motion control operations may either be primitive opera-
tions or non-primitive operations. Primitive operations are
operations that are necessary for motion control and cannot
be simulated using a combination of other motion control
operations. Examples of primitive operations include GET
POSITION and MOVE RELATIVE, which are necessary for
motion control and cannot be emulated using other motion
control operations. Non-primitive operations are motion con-
trol operations that do not meet the definition of a primitive
operations. Examples of non-primitive operations include
CONTOUR MOVE, which may be emulated using a combi-
nation of primitive motion control operations.

Given the set of motion control operations as defined
above, the software system designer next defines a service
provider interface (SPI) comprising a number of driver func-
tions. Driver functions may be either core driver functions or
extended driver functions. Core driver functions are associ-

ated with primitive operations, while extended driver func-
tions are associated with non-primitive operations. As with
motion control operations, driver functions are not related to
a specific hardware configuration; basically, the driver func-
tions define parameters necessary to implement motion con-
trol operations in a generic sense, but do not attach specific
values or the like to these parameters. The SPI for the exem-
plary software system 22 is attached hereto as Appendix A.

The software system designer next defines an application
programming interface (API) comprising a set of component
functions. For these component functions, the software sys-
tem designer writes component code that associates at least
some of the component functions with at least some of the
driver functions. The relationship between component func-
tions and driver functions need not be one to one: for example,
certain component functions are provided for administrative
purposes and do not have a corresponding driver function.
However, most component functions will have an associated
driver function. The API for the exemplary software system
22 is attached hereto as Appendix B.

The overall software model implemented by the software
program 22 thus contains an API comprising component
functions and an SPI comprising driver functions, with the
API being related to the SPI by component code associated
with the component functions.

In order for the system 22 to generate the control com-
mands, at least two more components are needed: the appli-
cation program 26 and at least one software driver such as the
drivers indicated at 30a, 30b, and 300 in FIG. 1.

The software drivers 30 are normally developed by a hard-
ware designer and are each associated with a single motion
control device. The hardware designer writes driver code that
dictates how to generate control commands for controlling

Page 86 0f110

Page 87 of 110

US 8,073,557 B2

9

the motion control device associated therewith to perform the
motion control operations associated with at least some ofthe
driver functions.

In the exemplary software system 22, the software drivers
30a, 30b, and 300 are associated with the motion control

devices 20a, 20b, and 200, respectively. As a software driver
exists for each of the motion control devices 20a, 20b, and

200, these devices 20a, 20b, and 200 form a group of sup-
ported motion control devices.

A careful review of the framework of the software system
22 as described above will illustrate that, of all the compo-
nents of this system 22, only the software drivers 30 are
hardware dependent.

The motion control system designer, normally also the user
24, develops the application program 26. The application
program 26 comprises a sequence of component functions
arranged to define the motion control operations necessary to
control a motion control device to move an object in a desired
manner. The application program 26 is any application that
uses the system 22 by programming the motion control com-
ponent 35. Applications may program the system 22 either
through OLE Automation or by using any ofthe custom OLE
interfaces making up the API.

As mentioned above, the component code associates many
ofthe component functions with the driver functions, and the
driver functions define the parameters necessary to carry out
the motion control operations. Thus, with appropriately
ordered component functions, the application program 26
contains the logic necessary to move the object in the desiredmanner.

Once the application program 26 has been written and the
software drivers 30 have been provided, the user 24 selects at
least one motion control device from the group of supported
motion control devices 20a, 20b, and 200. Using a driver
administrator module 32, the user 24 then selects the software
driver associated with the selected motion control device.

This driver administrator module 32 is used to install, unin-
stall, register, and setup each stream.

As currently implemented, the driver administrator 32
allows only one software driver to be selected. In future
versions of the software system 22, the driver administrator
will allow the user to select one or more software drivers.

The software system 22 thus generates control commands
based on the component functions contained in the applica-
tion program 26, the component code associated with the
component functions, and the driver code associated with the
selected software driver 28.

As the control commands are being generated as described
above, they may be directly transmitted to a motion control
device to control this device in real time or stored in an output
file for later use. The software system 22 employs the streams
28 to handle the transmission of the control commands to a
desired destination thereof.

In the exemplary system 22, the destinations of the control
commands may be one or more ofan output file 34 and/or the
controllers 16. Other possible destinations include a debug
monitor or window or other custom output mechanism
defined for a specific situation. The software system designer,
or in some cases the hardware system designer, will write
transmit stream code for each stream 28 that determines how

the control commands are to be transferred to a given one of
the control command destinations 16 and 34. Using the driver
administrator 32, the user 24 selects one or more ofthe control
command destinations 16 and 34, and, later when run, the
system 22 transfers the control commands to the selected
control command destination 16 and/or 34 based on the trans-

10

15

20

25

30

35

40

45

50

55

60

65

10
mit stream code in the stream 28 associated with the selected
control command destination 16 and/or 34.

Many control command destinations such as 16 and 34 are
capable of transmitting data back to the system 22. Data
transmitted from a control command destination back to the

system 22 will be referred to as response data. The software
system designer thus further writes data response stream code
for each ofthe streams 28a, 28b, and 280 that determines how
response data is transmitted from the controllers 16 to the
system 22. The system 22 thus processes the response data
sent by the controllers 16 based on the data response stream
code contained in the streams 28.

Referring again to FIG. 1, this Figure shows that the system
22 further comprises a motion control component 35 and a
driver stub module 36. The motion control component mod-
ule 35 is the portion of the software system 22 that relates the
component functions to the driver functions. The motion
control component module 35 thus contains the component
code that makes the association between the component func-
tions contained in the application program 26 and the driver
functions.

The driver stub module 36 is not required to implement the
basic software model implemented by the system 22, but
provides the system 22 with significantly greater flexibility to
accommodate diverse motion control hardware configura-
tions with minimal effort.

More particularly, when the driver stub module 36 is
employed, the hardware designer need not develop driver
code to implement all of the driver functions; to the contrary,
the hardware designer must write driver code for implement-
ing the core driver functions but need not write driver code to
implement the extended driver functions. The software sys-
tem designer provides the motion control driver stub 36 with
stub code that identifies the combinations ofcore driver func-

tions that are employed to emulate the functionality of
extended driver functions.

The motion control component 24 will determine for the
selected software driver 30 which extended functions, if any,
the selected driver 30 supports. For extended functions that
are not supported, referred to herein as non-supported
extended driver functions, the motion control component 35
refers to the driver stub module 36 to determine the appropri-
ate combination of core driver functions to emulate the func-

tionality of the non-supported extended driver functions. The
system 22 thus generates the control commands necessary to
implement the non-supported extended driver functions
using the appropriate combination of core driver functions.

The process of determining when extended driver func-
tions need to be emulated can be optimized by providing the
motion control component 35 with a function pointer table
that contains a pointer to each of extended functions. When
building the function pointer table, the motion control com-
ponent 35 checks the selected driver module 30 to see if it
supports each extended function. If the selected driver mod-
ule 30 supports the extended function, the motion control
component module 35 stores a pointer to the function, imple-
mented by the selected driver module 3 0, in the table location
corresponding to the extended function. In the event that the
selected driver module 30 does not support the extended
function, the motion control component module 35 stores a
pointer to the extended function implementation located in
the driver stub module 36. The driver stub module 36 imple-
mentation of the extended function contains calls to a plural-
ity ofcore functions implemented by the selected driver mod-
ule 30.

Therefore, the driver stub module 36 allows the motion
control system designer to use, with minimal time and effort

Page 87 0f110

Page 88 of 110

US 8,073,557 B2

11

by the hardware designer, a working software driver 28 that
contains driver code to implement only the core functions.
The software driver 28 developed to implement the core
driver functions can then be improved by developing driver
code to implement extended driver functions as desired.

The use of driver code specifically designed to implement
extended driver functions is, in general, preferable to relying
on the driver stub module 36 to emulate the extended driver

functions; driver code specifically written to implement an
extended driver function will almost always obtain a more
optimized implementation of the driver function than the
emulation of that driver function with a combination of core
driver functions.

Referring again for a moment to FIG. 1, this Figure illus-
trates that the system 22 additionally comprises a driver
administrator CPL applet 38 and a DDE server 40. The driver
administration CPL applet 38 generates the user interface
through which the user 24 communicates with the driver
administrator module 32. The DDE server 40 provides the
software interface through which the application program 26
communicates with the motion control component module
35.

II. Motion Control Component

The motion control component 35 will now be described in
further detail with reference to FIGS. 2-10. The motion con-

trol component 35 is used by every application programming
the system 22 to perform motion control operations. The
major set oftheAPI is implemented by this component. When
operating, the motion control component 35 interacts with the
driver administrator 32, to get the current driver, and the
driver 30 and driver stub 36, to carry out motion control
operations. Applications, using system 22, only interact with
the motion control component 35.

This section describes the design of the motion control
component 35 in three main parts. First, all binary modules
that affect the component 35 are described along with their
interactions with the component 35. Next, the module inter-
action-map is drawn in more detail to show the interactions
between all C++objects used to implement the motion control
component 35. Next, the object interaction-map is tested by
displaying the specific interactions that take place during
certain, key process that the component 35 is requested to
perform.

The module interaction-map shown in FIG. 2 displays all
binary modules and their interactions with the motion control
component 35. As can be seen from the module interaction-
map, applications only communicate with the motion control
component 35. From this point, the component 35 coordi-
nates all interactions between the driver administrator 32,
driver 30, and driver stub 36 components.

Breaking the module interaction-map and adding the inter-
actions taking place between all C++ objects used to imple-
ment the motion control component 35, produces the object
interaction-map shown in FIG. 3.

Each object in the diagram is described as follows. The
CCmpntDisp object is the dispatch object used to dispatch
exposed interface methods. During the dispatch process, all
raw data is converted into the appropriate C++ form. For
example, collections of data passed between OLE compo-
nents is usually packaged in a raw block of memory. The
CCmpntDisp object takes care of packing outgoing data and
unpacking incoming data. Data packing involves converting
the data between a raw and native C++ format.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

The CDriverAdmin object is used to communicate directly
with the driver administrator component. All OLE related
details are encapsulated within this class.

The CDrivengr object is used to control all unit mapping
taking place before calling the appropriate Driver function.
The CUnitMapper object is used to do the actual mapping
between units.

The CUnitMapper object is used to map units between the
Part Coordinate System (PCS) and the Machine Coordinate
System (MCS). Both directions of unit mapping are done by
this object.

The CDriver object is used to buildthe SPI table containing
both core and extended Driver functions. Depending on the
level ofdriver support, the extended functions in the SPI table
may point to functions implemented in either the driver stub
36 or the driver 30.

The following discussion of FIGS. 4-8 describes all main
scenarios, or operations, that occur on the motion control
component 35. Each scenario-map displays all objects
involved, and the interactions that take place between them in
the sequence that they occur.

As shown in FIG. 4, before an application can use the
motion control component 35, it must create an instance of
the object, using the CoCreateInstance OLE function, and
then initialize the instance calling the exposed Initialize cus-
tom interface method implemented by the component 35.
FIG. 4 displays the sequence of events that take place when
the Initialize method is called.

During initialization, the following steps occur. First the
application must create an instance of the motion control
component 35 by calling the standard OLE function CoCre-
ateInstance. Once loaded, the application must call the com-
ponent 35’s exposed Initialize method. When first loaded, the
component 35 loads any registration data previously stored.
Next, the component 35 directs the CCmpntDisp to initialize
the system. The CCmpntDisp directs the CDriverAdmin to
get the current driver(s) to use. The CDriverAdmin, first,
loads the driver administrator 32 using the standard OLE
CoCreateInstance function. Next, it initializes the driver
administrator. Then, it queries the driver administrator for the
driver(s) to use and their SPI support information. Finally, the
driver administrator returns the driver(s) and the support
information to the component 35, and releases all interfaces
used from the driver administrator component 32.

Once receiving the active driver(s) 30 and their support
information, the motion control component 35 passes the
driver(s) 30 to the CDrivengr and directs it to initialize the
system During its initialization, the CDrivengr initializes
the CUnitMapper. Also while initializing, the CDrivengr
initializes a CDriver for each driver used. After initializing
each CDriver, the support information is used to build each
SPI table inside each CDriver object. When building the SPI
table, all core and supported extended SPI interfaces are
queried from the driver. Also, when building the SPI table, the
CDriver queries all interfaces, not supported by the driver 30,
from the driver stub 36.

Referring now to FIG. 5, once the motion control compo-
nent 35 is initialized, the application 26 may perform opera-
tions on it. There are two types of operations that may take
place on the component 35: Operations that use core Driver
functions, and operations that use extended Driver functions.
Even though the difference between the two is completely
invisible to the application using the component 35, the inter-
nal interactions are different between the two. The following
discussion outline these differences.

The following interactions take place when the component
35 performs an operation that uses core Driver functions only.

Page 88 ofllO

Page 89 of 110

US 8,073,557 B2

13

First the application must request the operation and pass all
pertinent parameters to the component 35. Next, the compo-
nent 35 directs the CCmpntDisp to carry out the operation.
The CCmpntDisp then directs the CDrivengr to perform the
operation and passes all pertinent parameters to it. Before
carrying out the operation, the CDrivengr uses the CUnit-
Mapper to convert all units to the Machine Coordinate Sys-
tem (MCS). Next, the CDrivengr directs the CDriver object
to carry out the operation and passes the newly mapped
parameters to it. The CDriver object uses its internal SP1 table
to communicate directly with the core Driver function imple-
mented by the driver component.

FIG. 6 shows the sequence of events that occurs when the
component 35 is directed to carry out an operation that hap-
pens to use extended SP1 not supported by the driver 30. The
following steps occur when the operation is requested.

First the application must request the operation and pass all
pertinent parameters to the component 35. Next, the compo-
nent 35 directs the CCmpntDisp to carry out the operation.
The CCmpntDisp then directs the CDrivengr to perform the
operation and passes all pertinent parameters to it. Before
carrying out the operation, the CDrivengr uses the CUnit-
Mapper to convert all units to the Machine Coordinate Sys-
tem (MCS). Next, the CDrivengr directs the CDriver object
to carry out the operation and passes the newly mapped
parameters to it. The CDriver object uses its internal SP1 table
to communicate directly with the core Driver function imple-
mented by the driver component.

As briefly discussed above, when using the system 22,
there are several types of units and two different coordinate
systems used. The process of unit mapping involves convert-
ing measurements between the Part and Machine coordinate
systems. FIG. 7 illustrates this process, and the following
steps occur when the operation is requested.

First the application must request the operation and pass all
parameters to the component 35. Note, all parameters are in
the PCS. Next, the component 35 directs the CCmpntDisp to
carry out the operation. The CCmpntDisp directs the CDriv-
engr to carry out the operation and passes the PCS param-
eters to it. The CDrivengr takes all measurements and uses
the CUnitMapper to convert them to the MCS. The newly
mapped parameters are then passed to the Cdriver. The
CDriver directs either the driver or the driver stub component
to carry out the operation.

When the application is finished using the motion control
component 35 it directs the component 35 to free all of its
resources by calling its exposed Release method. This pro-
cess is depicted in FIG. 8. During the clean-up process, the
following steps occur.

First the application must direct the component 35 to
release all of its resources by calling its Release method.
When invoked, the component 35 passes the call on to the
CCmpntDisp object. The CCmpntDisp object directs the
CDrivengr to release any resources it is using. The CDriv-
engr directs each CDriver object to release any of its
resources, then deletes the CDriver objects. First, the CDriver
object releases any interfaces it is using from the driver com-
ponent. Then, the CDriver object releases any interfaces it is
using from the driver stub component.

FIG. 9 is an interface map related to the motion control
component 35. FIG. 10 is a data map showing how data
relating to the whether extended driver functions need to be
emulated is stored. Attached hereto as Appendix C is a docu-
ment that describes the actual OLE 1nterfaces exposed, the
definitions of the data structures used when passing data
around, and the definitions ofeach class used internally by the
motion control component 35.

10

15

20

25

30

35

40

45

50

55

60

65

14
111. Software Drivers

The driver 30 is used by both the driver administrator 32
and the component 35. Its main purpose is to implement
functionality that generates motion control commands for the
specific hardware supported. For example, theAT6400 driver,
used to control the Compumotor AT6400 motion control
hardware, generates AT6400 command codes. During the
initialization phase of the system 22, the driver administrator
32 communicates with each driver 30, allowing the user to
add, remove, or change the configuration of the driver. When
an application, using the system 22, is run, the component 35
communicates with the driver 30 directing it to carry out the
appropriate motion control operations.

This section describes the complete design of a generic
driver 30. All drivers are designed from the base design
described in this manual. This section is divided into three

parts. First, a module interaction-map that describes all
binary modules that interact with the driver 30 is discussed.
Next, the module interaction-map is drawn as an object inter-
action-map, where all the internals of the driver are exposed.
In this map, all C++ objects, making up the driver, and their
interactions are shown. Next, several scenario-maps are
drawn. Each scenario-map displays the interactions taking
place between the C++ objects involved during a certain
process. Finally, this section describes the interfaces exposed
by the driver component, all data structures used, and the
definitions of each C++ class used.

Referring now to FIG. 11, the module interaction-map
displays all binary modules and their interactions with the
driver 30. There are two modules that interact directly with
the driver: the motion control component 35, and the driver
administrator 32. The driver administrator 32 queries and
changes the driver settings and the component 35 directs the
driver to carry out motion control operations, such as moving
to a certain location in the system. Shown at 42 in FIG. 11 is
the standard Windows registration database, referred to
herein as the registry.

Breaking the module interaction-map down into more
detail by including the interactions taking place between all
C++ objects used to implement the driver, produces the object
interaction-map. The object interaction-map for the driver 30
is shown in FIG. 12.

Each object in the diagram is described as follows.
CDriverDisp is the dispatch object used to dispatch

exposed interface methods. During the dispatch process, all
raw data is converted into the appropriate C++ form. For
example, collections of data passed between OLE compo-
nents is usually packaged in a raw block of memory. The
CDriverDisp object takes care of packing outgoing data and
unpacking incoming data. Data packing involves converting
the data between a raw and native C++ format.

The CStreamMgr object is responsible for managing the
set of streams registered with the driver. Streams, may be
added, removed, and enabled. Only enabled streams are sent
data. The CLSID and enabled status of each stream regis-
tered, is stored in the registration database. When communi-
cating to streams, the CStreamMgr is used to send the com-
mand string to all enabled streams.

The CCommandMgr object is used to build commands
sent to the stream, and extracting responses received from the
stream. The CCommandMgr is the controlling object that
manages the CResponse, CCommandList, and CStream
objects.

Page 89 ofllO

Page 90 of 110

US 8,073,557 B2

15

The CCommandList object stores the complete list ofcom-
mands making up the motion control command language.
Such commands may be stored as text resources or in a text
file.

The CCommand object builds command strings that are 5
then sent to the CStream. Each command built is a complete
motion control command string.

The CResponseList object builds CResponse objects that
are initialized with the parsing format for the expected
response. 10

The CResponse object converts raw response strings,
returned by the CStream, and converts them into C++ data
types. For example, a response string containing position data
may be converted into a set of double values.

The CStream object is used to communicate directly with 15
the underlying stream component.

FIGS. 14-20 contain scenario maps that describe all main
scenarios, or operations, that occur on the driver 30. Each
scenario-map displays all objects involved, and the interac-
tions that take place between them in the sequence that they 20occur.

There are two types of operations that occur on the driver
30. First, the driver administrator 32 may initiate operations,
such as adding streams or configuring the driver. Next, the
motion control component 35 may initiate operations on the 25
driver when an application is actually running. The following
discussion describes each perspective, starting with the
operations directed by the Driver Administrator; all opera-
tions made on the driver by the driver administrator are dis-
cussed in the order that they may occur when using the driver. 30

Before a driver may be used, it must be registered in the
OLE system. In order to register a driver the driver adminis-
trator first verifies that the module being registered is actually
an driver 30, then it calls the DLLRegisterServer exported
function to register the driver. Each module of the system 22 35
exports a function called DLLGetModuleType. This function
is used to verify that the module is an driver 30 component.
FIG. 13 displays the interactions that take place when regis-
tering a driver.

During the registration process shown in FIG. 13, the fol- 40
lowing steps occur. First, the driver administrator must load
the DLL, containing the stream component, verify that the
module is an driver 3 0. To do so, the driver administrator calls
the DLLGetModuleType function, exported by the driver. If
the function returns a value that contains the value 45

XMC_DRIVER_MT in the high byte, then the driver admin-
istrator proceeds and registers the driver by calling its
exported function, DLLRegisterServer. When called, the
implementation ofthe DLLRegisterServer writes all OLE 2.0
registration information to the Windows registration data- 50
base.

Referring now to FIG. 14, after the driver is registered, the
driver administrator can load the component 35 using the
OLE CoCreateInstance function. During the initialization
process, the driver loads all registration data and initializes 55
both the CDriverDisp and CStreamMgr C++ objects.

During initialization, the following steps occur.
Before loading the driver component, the driver adminis-

trator must query the driver module for its CLSID. Calling the
driver’s exported function, DLLGetCLSID, returns the 60
CLSID. Once it has the CLSID, the driver administrator may
create an instance of the driver by calling the standard OLE
function CoCreateInstance. When first loaded, the driver
loads any registration data previously stored. Next, the driver
directs the CDriverDisp object to initialize the system. When 65
notified, the CDriverDisp object initializes itself and then
directs the CStreamMgr to initialize itself. During its initial-

16

ization, the CStreamMgr loads all stream settings from the
registration database. For example, the CLSID and enabled
state of all streams previously registered with the driver, are
loaded.

After initializing the driver, the driver administrator may
perform operations on it. For example, the driver administra-
tor may request the driver to add or remove a stream. FIG. 15
displays the sequence of events occurring when the driver is
requested to add a new stream. When adding a stream, the
following steps occur.

First the driver administrator directs the stream to add a

new stream and passes CLSID of the stream, to be added, to
the driver. The driver then passes the CLSID to the CDriver-
Disp object and directs it to add the stream. The CDriverDisp
object passes the information on to the CStreamMgr and
directs it to add the stream. In the final step, the CStreamMgr
assumes that the module is a valid stream component 28 and
adds the CLSID to the drivers set of information in the reg-
istration database.

Another operation requested of the driver, after initializa-
tion, is that of querying it for its current settings. Before
displaying information about the driver, like the name of the
hardware it supports, the driver administrator must query the
driver for the information. For example, FIG. 16 displays the
process of querying the driver for an enumeration of the
streams registered with it. When querying the driver for infor-
mation, the following steps occur.

First the driver administrator, calls the interface method
used to query the driver’s stream enumeration. Next, the
driver directs the CDriverDisp to create the stream enumera-
tion. The CDriverDisp object then directs the CStreamMgr to
prepare the stream enumeration. The CStreamMgr checks the
registration database and makes sure its internal state is in
sync with the data stored in the registry. Next, it sets a lock
that will cause all stream management operations, such as
adding or removing streams, to fail. The CStreamMgr pre-
pares the list ofstreams and loads them into memory using the
CStream object. The CStream object loads the stream com-
ponent using the OLE CoCreateInstance API.

After the driver administrator is done using the driver, it
must release the driver by calling its exposed Release method.
Calling this method, directs the driver to release all resources
used. FIG. 17 displays the process of releasing the driver
component. During the clean-up process, the following stepsoccur.

First the driver administrator must direct the driver com-

ponent to clean itselfup by calling its Release method. When
invoked, the driver component passes the call on to the
CDriverDisp object. The CDriverDisp object then directs the
CStreamMgr to save all data. The CStreamMgr saves all data,
including the state ofeach stream, in the registration database.
Finally, the driver saves all internal data in the registration
database.

After a driver is successfully installed into the system 22
and configured using the driver administrator, it is ready for
use by the motion control component 35. The component 35
uses the driver 3 0 when performing motion control operations
requested from the application using the component 35. The
following discussion describes the component 35 directed
operations that can take place on the driver.

Before using the driver, it must be initialized by the com-
ponent 35. This operation is different from the driver initial-
ization taking place on the driver when used by the driver
administrator because the system must be prepared for send-
ing and receiving commands. In order to prepare for the data
communication, the stream must be initialized and then

Page 90 of 110

Page 91 of 110

US 8,073,557 B2

17

opened. FIG. 18 describes the initialization process. The fol-
lowing steps occur during the initialization process.

First the component 35 must direct the driver to initialize
itself. This is usually a two step process. In the first step, the
component 35 creates and instance of the driver using the
standard OLE CoCreateInstance function, Next, the Initialize
method, exposed by the driver, is called to prepare the driver
for data transmissions. When the Initialize method is called,
the driver first loads any internal data stored in the registration
database 42. Next, the driver directs the CDriverDisp to ini-
tialize the internal system. The CDriverDisp then directs the
CStreamMgr to initialize the streams. Next, the CStreamMgr
loads all data from the registration database, including the set
of all CLSID’s and enabled status’ for all streams registered
with the driver. Then the CStreamMgr loads each enabled
stream by creating a new CStream object for each enabled
stream. When creating each CStream object, the CLSID for
the underlying stream is passed to the CStream object. When
each CStream object is created and attached to a stream
component it loads the component 35 by calling the standard
OLE CoCreateInstance function. Once the CStreamMgr is
done, the CDriverDisp directs the CCommandMgr to initial-
ize itself. During its initialization process, the CCommand-
Mgr initializes and loads the CCommandList. Also, when the
CCommandMgr is initializing, it loads the CResponseList
corresponding to the CCommandList.

Once the system is initialized, the motion control compo-
nent 35 can direct the driver to carry out certain command
operations. Command operations are standard motion control
operations such as moving to a specific location in the system,
or querying the system for the current position. FIG. 19
describes the process of commanding the driver to carry out a
certain operation. When commanding the driver to perform a
certain operation the following steps occur.

First, the component 35 directs the driver to perform the
operation, such as moving to a position or querying the sys-
tem for the current position. Next, the driver directs the
CDriverDisp object to perform the operation. The CDriver-
Disp object then directs the CCommandMgr to build the
appropriate command. Any parameters related to the com-
mand are passed to the CCommandMgr. For example, when
directing the driver to move to a certain position, the position
information is passed to the CCommandMgr. Next, the
CCommandMgr requests the CResponseList to create a CRe-
sponse object. The CResponseList looks up the response
format and uses it to create a new CResponse object that is
returned to the CCommandMgr. Then, the CCommandMgr
directs the CCommandList to create the command. Any
parameters related to the command are passed to the CCom-
mandList. The CCommandList creates a new CCommand

object, looks up the raw command string, andpasses it and the
command parameters to the CCommand object who then
builds the command string.

The CCommandMgr, then passes the CCommand object,
returned by the CCommandList, and the previously created
CResponse object to the CStreamMgr object. The CStream-
Mgr object is directed to process the objects. The CStream-
Mgr passes the CCommand and CResponse objects to all
enabled CStream objects. The CStream object queries the
CCommand object for the full command string in raw text
form. The raw text command is passed to the stream compo-
nent. Next, the CStream object waits for the response, then
reads the raw text response into a buffer. The raw text
response is then passed to the CResponse object. Next the
CRETONNE object is returned to the CStreamMgr, who
returns it to the CCommandMgr, who returns it to the
CDriverDisp object. Eventually the CResponse returns to the

10

15

20

25

30

35

40

45

50

55

60

65

18

CDriverDisp object, who then directs the CResponse to con-
vert the response into a generic C++ type. The generic type is
returned to the motion control component 35.

Once the component 35 is finished using the driver, the
driver must be released by calling its Release method. Releas-
ing the driver frees all resources used by the driver. FIG. 20
describes the process of releasing the driver. The following
steps occur when cleaning up and freeing all resources used
by the driver.

First, the component 35 must call the driver’s Release
method. When called, the driver directs the CDriverDisp
object to release any resources used. The CDriverDisp then
directs the CStreamMgr to free any resources used. The
CStreamMgr then frees all active CStream objects. Each
CStream object releases all stream component interfaces
used. Next the CDriverDisp directs the CCommandMgr to
free all of its resources. During its clean-up, the CCommand-
Mgr frees the CCommandList object. To complete its clean-
up, the CCommandMgr frees the CResponseList object.

Attached hereto as Appendix D is a document that
describes the actual OLE Interfaces exposed, the definitions
of the data structures used when passing data around, and the
definitions of each class used internally by the driver.

IV. Streams

This section describes the stream component 28 used as the
data transport layer between the driver 30 component and the
destination output location such as the motion control device
20 and/or the output file 34. For example, when using motion
control hardware that is connected to the PC Bus, the driver

30 Component will communicate with the PC Bus stream
component 28.

The design of a stream component 28 will be discussed in
three parts. First, a Module Interaction-Map describes the
modules that are involved, with respect to the stream, and how
they interact with one another. Next, the Object Interaction-
Map breaks the Module Interaction-Map down into a more
detailed view that not only displays the interactions occurring
between modules, but also the interactions taking place
between the C++ objects within the stream component 28.
Then, the Object Interaction-Map is “tested” by running it
through several Scenario-Maps. Each Scenario-Map displays
the object interactions taking place during a certain operation.

The Module Interaction-Map shown in FIG. 22 displays all
modules that interact with the stream component 28. Interac-
tions begin from two different perspectives. First, the driver
administration 32 interacts with the stream component 28
when installing, removing, and configuring the stream. Next,
when used, each driver 30 interacts with the stream while
sending and retrieving data to and from the destination. For
example, when a driver writes data to a text file stream, the
stream takes care of writing the data out to the file. Or, if the
driver reads data from a PC Bus stream, the stream does the
actual read from the hardware and passes the data back to the
driver.

Drivers only communicate with streams that have been
specifically connected to the driver. Once connected, the
stream is used to communicate with the destination object,
like the PC Bus, serial I/O connection, text file, or debug
monitor.

The stream component 28 shown in FIG. 22 is the object
that operates as the data transport layer for each driver. Each
stream has a different target that defines the type of the
stream. The following are the current stream targets.

Page 910f110

Page 92 of 110

US 8,073,557 B2

19
PC Bus/WinNTiThis Windows NT stream uses a Win-

dows NT .SYS device driver to communicate directly
with the motion control hardware connected to the PC
Bus.

PC Bus/Win957This Windows 95 stream uses a Windows

95 VxD to communicate directly with the motion control
hardware connected to the PC Bus.

PC Bus/Win 3.17This Windows 3.1 stream communi-

cates directly with the motion control hardware con-
nected to the PC Bus.

SerialiThis stream uses the COMM API to communicate
with the motion control hardware connected to the serial

port.

Text FileiThis stream is write-only and sends all data to a
text file.

Debug MonitoriThis stream is write only and sends all
data to the debug monitor.

CustomiThis is a custom stream that sends data to an
unknown location.

Similar to the Module Interaction-Map, the Object Inter-
action-Map displays interactions between modules. In addi-
tion, this map, shows all interactions taking place between
each C++ object within the stream component 28. FIG. 23 is
the Object Interaction-Map for the stream component 28.

Each object in the diagram is described as follows. The
CStreamDisp object is the dispatch object used to dispatch
exposed interface methods. During the dispatch process, all
raw data is converted into the appropriate C++ form. For
example, collections of data passed between OLE compo-
nents is usually packaged in a raw block of memory. The
CStreamDisp object takes care of packing outgoing data and
unpacking incoming data. Data packing involves converting
the data between a raw and native C++ format.

The CRegistryMgr object takes care of managing all data
stored in the registration database. Since many streams of the
same type may exist at the same time, each stream is assigned
a handle. The handle assigned, is used by the stream to look up
the location it uses to load and store data in the registration
database, much as an library index is used to locate a library
book.

All input and output is funnelled through the CIOMgr
manager. Management of input and output operations con-
sists ofbuffering data and controlling primitives used to trans-
port data to and from the target location.

The CIOHAL object is the input/output hardware abstrac-
tion layer. With in this object lay all hardware dependent code
such as calls to inp and outp. Each different type of stream
contains a different implementation of this object.

Scenario-Maps are specialized Object Interaction-Maps
that display how each module and the objects inside the
stream component interact with one another during the opera-
tion described by the map. The Scenario-Maps in FIGS.
24-32 are broken into two different categories; those that are
initiated by the driver administrator 32, and those that are
initiated by the driver 30.

Operations directed by the driver administrator are usually
related to initializing, uninitializing, and configuring the
stream. The following sections describe all operations,
directed by the driver administrator, that take place on the
stream.

Before a stream component can be used by anyone, it must
be registered in the Windows registration database. Registra-
tion is a standard OLE 2.0 operation required in order to use
any OLE 2.0 component, such as the stream component. FIG.
24 describes this process. During the registration process, the
following steps occur.

10

15

20

25

30

35

40

45

50

55

60

65

20

First, the driver administrator must load the DLL, contain-

ing the stream component, verify that the module is an stream
component 28. To do so, the driver administrator calls the
DLLGetModuleType function, exported by the stream. If the
high byte in the return value contains the value XMC_
STREAM_MT, then the driver administrator proceeds and
registers the stream by calling its exported function, DLL-
RegisterServer. When called, the implementation ofthe DLL-
RegisterServer writes all OLE 2.0 registration information to
the Windows registration database.

After the stream component is successfully registered, it is
ready for initialization. During initialization, the stream com-
ponent not only initializes itself, but also initializes any
device drivers used by registering the driver with the operat-
ing system. For example, the Windows NT stream component
registers the Windows NT .SYS driver with Windows NT and
starts the service. FIG. 25 describes this process. During
initialization, the following steps occur.

First the driver administrator must direct the stream to

initialize itself. When making this call, the name and location
ofthe driver used, and the handle ofthe stream are passed into
the method as arguments. Once directed to initialize itself, the
stream component calls the CStreamDisp and directs it to
initialize the system. The CStreamDisp object then directs the
CRegistryMgr to load all pertinent data for the stream using
the handle passed to it. The CRegistryMgr loads all data from
the registration database. After all information is loaded from
the registry, the CStreamDisp directs the CIOMgr to register
the appropriate driver with the operating system. The
CIOMgr directs the CIOHAL to register the driver, if appro-
priate. If running in Windows NT, the CIOHAL registers the
.SYS driver with the Windows NT operating system and starts
the driver. If running in Windows 95, the VxD integrity is
verified with a quick, dynamic, load and unload.

After initializing the stream component, it may be queried
for its current settings or directed to set new settings. Since
both operations are very similar, only changing settings will
be described. Stream settings include data such as: port
addresses, IRQ levels, file names, etc. Any data needed to
communicate with the output/input target are included in the
stream settings. FIG. 26 describes the process ofchanging the
streams settings. During the setup process, the following
steps occur.

First the driver administrator directs the stream to use the

data passed to change its internal data. Once directed, the
stream component passes the interface method invocation to
the CStreamDisp object. The CStreamDisp object then
directs the CRegistryMgr to store the new settings. The
CRegistryMgr stores the new values in the registration data-
base.

When the driver administrator is done using a stream com-
ponent, it must clean up the resources used. FIG. 27 describes
this process. During the clean-up process, the following steps
occur. First the driver administrator must direct the stream

component to clean itself up by calling its Release method.
When invoked, the stream component passes the call on to the
CStreamDisp object. The CStreamDisp object then directs
the CRegistryMgr to save all data. All persistent data is saved
to the registration database by the CRegistryMgr.

Driver directed operations occur when each driver 30 uses
the stream component 28 connected to it. Remember, each
stream component is used as the data transport layer. Each
driver uses the stream to transfer the motion control command

data, it generates, to the output target. Streams are also used to
transfer data back to the driver when read operations occur.
Only certain streams are readable.

Page 92 of 110

Page 93 of 110

US 8,073,557 B2

21

Before the driver can perform operations on the stream, the
stream must be initialized. Initialization occurs in two steps.
First the OLE stream component must be loaded, and then
once it is, the stream must be explicitly initialized. FIG. 28
describes the second portion ofthe initialization process. The
following steps occur during the initialization process.

First the driver must invoke the Initialize methods exported
by one of the stream interfaces. When calling Initialize, the
driver passes to the stream, the stream handle. Next, the
stream passes the directive on to the CStreamDisp object for
dispatching. The CStreamDisp object first directs the CReg-
istryMgr to load all settings stored in the location defined by
the stream handle. The CRegistryMgr reads in the data stored
in the registry at the handle. After the data is loaded, the
CStreamDisp, directs the CIOMgr to initialize itself. As part
of its initialization, the CIOMgr initializes the CIOHAL
object that it is using.

Once a stream has been initialized, it must be opened.
Opening a stream places the stream in a state where it can pass
data between the driver and the target. FIG. 29 describes the
process of opening a stream. When opening a stream, the
following steps occur.

First the driver directs the stream to open itself, by calling
the Open exposed interface method. Once directed, the
stream passes the call on to the CStreamDisp object. Next, the
CStreamDisp object directs the CIOMgr to open the stream.
At this time, the CIOMgr prepares any buffers that will later
be used when transferring data through the stream. After the
buffers are ready, the CIOMgr directs the CIOHAL object to
interact with the target and open it. CIOHAL directly com-
municates with the target or with a device driver and opens the
stream. When operating with hardware streams, the device
driver, or Serial IO directly communicates with the hardware
and prepares it for operation.

After opening a stream, it is ready to perform data transport
operations. There are two main data transport operations
available: Reading data, and writing data. FIG. 30 describes
the process ofwriting data to the stream. When writing to the
stream, the following steps occur. First the driver directs the
stream to write data to the target and passes the data to the
stream. Next, the stream passes the data to the CStreamDisp
object. The CStreamDisp object passes the block of data to
the CIOMgr and directs it to write it to the target. The
CIOMgr object eitherpasses the complete block ofdata to the
CIOHAL object, or stores the block in an internal buffer and
then passes pieces of the buffer to the CIOHAL object until
the complete buffer is sent. The CIOHAL object takes the
data passed to it and either sends it directly to the target,
passes it to a device driver, or calls COMM API to send the
data to the Serial IO port. The device driver or COMM API
sends the data directly to the hardware controlled.

Certain streams, like the PC Bus and Serial IO streams,
return data after write operations occur on them. The data
returned may be specific to a previous request for data, or
status describing the success or failure of the previous write
operation. FIG. 31 describes the process ofreading data from
the stream. It should be noted that not all streams are readable.

Currently, the only readable streams are the PC Bus and Serial
streams. During the operation ofreading data from the target,
the following steps occur.

First the driver directs the stream to read data from the

target. The stream passes the call on to the CStreamDisp
object. The CStreamDisp object directs the CIOMgr to per-
form the read. Depending on how the stream is implemented,
the CIOMgr may either make one call or multiple calls to the
CIOHAL object. If multiple calls are made, all data read is
stored in CIOMgr internal buffers. The CIOHAL object either

10

15

20

25

30

35

40

45

50

55

60

65

22

directly communicates to the hardware, uses the COMM API,
or a device driver to read the data. If a device driver or the

COMM API are used, they directly communicate with the
hardware to read the data.

Once the driver is done using the stream, it must direct the
stream to clean-up all resources used. To do so, the driver calls
the standard Release method. FIG. 32 displays the sequence
of events taking place after the Release method is called. The
following steps occur when cleaning up and freeing all
resources used by the stream.

First the driver must call the stream’s Release method.

Next, the stream directs the CStreamDisp object to release all
resources used. The CStreamDisp object then directs the
CIOMgr to free any resources used in buffers, etc. Next, the
CIOMgr directs the CIOHAL to free any resources used.
During its clean-up and depending on the type of stream, the
CIOHAL will delete text files used, close the debug monitor,
shut-down the hardware, or direct any device drivers to shut-
down the hardware. If device drivers or the COMM API are

used, they direct the hardware to shut-down.
FIG. 33 depicts an interface map for the stream 28.

Attached hereto in Appendix E is a document that describes
the actual OLE Interfaces exposed, the definitions of the data
structures used when passing data around, and the definitions
of each class used internally by the stream.

V. Driver Stub Module

The driver stub module 36 is used to fill in the extended

Driver functions that the driver 30 is unable to support or
implement. By simulating the extended SPI, applications are
able to use a larger set of motion control functionality than
would be available ifthe application directly programmed the
motion control hardware. In order to implement the extended
SPI, the driver stub uses software algorithms that call core SPI
interface methods implemented by the driver 30. During the
initialization of the driver stub, the driver 30 to use is regis-
tered with the driver stub.

This section describes all aspects of the driver stub 36 in
three basic parts. The first part of this section describes all
binary modules affecting the driver stub. Next, a more
detailed view, that includes all C++ objects used inside the
driver stub, is described. Then several processes that take
place on the driver stub are described.

The module interaction-map displays all binary modules
and their interactions with the driver stub 36. As can be seen

from FIG. 34, the driver stub is used by the component 35.
More or less, the driver stub acts as a helper to the component
35 by filling in all extended Driver functionality possible.

By taking the module interaction-map in FIG. 34 and dis-
playing all interactions taking place with all C++ objects
implementing the driver stub, we produce what is called the
object interaction-map. FIG. 35 is the object interaction-map
for the driver stub 36 component.

Each object in the diagram is described as follows.
The CDriverStubDisp object is the dispatch object used to

dispatch exposed interface methods. During the dis-
patch process, all raw data is converted into the appro-
priate C++ form. For example, collections ofdata passed
between OLE components is usually packaged in a raw
block of memory. The CDriverStubDisp object takes
care of packing outgoing data and unpacking incoming
data. Data packing involves converting the data between
a raw and native C++ format.

Page 93 0f110

Page 94 of 110

US 8,073,557 B2

23

The CSP1Mgr object is responsible for managing all SP1
issues such as managing the CSimpleDriver by directing
it to connect to the appropriate SP1 core interfaces
exposed by the driver.

The CSimpleDriver object is used to directly communicate
with the driver implementing the SP1 core interfaces.
The CSimpleDriver only communicates with the core
SP1 interfaces implemented by the driver.

The following discussion describes all main scenarios, or
operations, that occur on the driver stub 36. Each scenario-
map displays all objects involved, and the interactions that
take place between them in the sequence that they occur. All
operations on the driver stub originate from the motion con-
trol component 35. In addition to the motion control compo-
nent 35, the XMC Setup Component interacts with the driver
stub when installing the system 22. It should be noted that all
scenarios below assume that the driver stub 36 has already
been registered in the OLE system. Registering this compo-
nent is the responsibility of the setup application and setup
component.

This discussion describes all operations made on the driver
stub by the motion control component 35. Each section is
discussed in the order that they may occur when using the
driver.

As shown in FIG. 36, before using the driver stub 36, the
motion control component 35 must initialize it by creating an
instance of the driver stub, and then initializing the instance
created. Calling the standard OLE function CoCreate1nstance
completes the first step. After an instance is created, the
component 35 must call the driver stub exposed Initialize
interface method. During initialization, the following stepsoccur.

The component creates an instance of the driver stub by
calling the standard OLE function CoCreate1nstance. Once
loaded, the CLSID of the driver to use is passed to the driver
stub when calling its Initialize exposed interface method.
When first loaded, the driver loads any registration data pre-
viously stored. Next, the component 35 passes the CLSID, of
the driver to use, to the CDriverStubDisp object and directs it
to initialize the system. The CDriverStubDisp object then
directs the CSP1Mgr to initialize itself and passes the driver
CLSID to it. The CSP1Mgr passes the CLSID to the CSim-
pleDriver and directs it to only query the core SP1 interfaces
exposed by the driver. The CSimpleDriver loads an instance
of the driver then queries all core interfaces exposed by the
driver.

Once the driver stub is initialized, it is ready to perform
operations such as performing extended Driver functions.
FIG. 37 describes the steps that occur when the component 35
directs the driver stub to perform an extended SP1 operation.
The following steps occur when the operation is requested.

First the component 35 must request the operation and pass
all pertinent parameters to the driver stub. Next, the driver
stub directs the CDriverStubDisp to handle the operation. The
CDriverStubDisp then directs the CSP1Mgr to perform the
SP1 extended function and passes the appropriate
XMC_EXT_SPI identifier as a parameter. The CSP1Mgr calls
the appropriate function corresponding to the
XMC_EXT_SPI identifier. The function simulates the

extended Driver function and calls the CSimpleDriver for
core operations. When directed, the CSimpleDriver performs
SP1 core functions by directly calling the exposed interfaces
implemented by the driver.

When the motion control component 35 is finished using
the driver stub 36, it must release it by calling the exposed
Release method. Calling the Release method causes the

10

15

20

25

30

35

40

45

50

55

60

65

24

driver stub to free all the resources it uses. FIG. 38 displays
this sequence of events. During the clean-up process, the
following steps occur.

First the component 35 must direct the driver stub to
release all of its resources by calling its Release method.
When invoked, the driver component passes the call on to the
CDriverStubDisp object. The CDriverStubDisp object then
directs the CSP1Mgr to release any resources that it was using.
The CSP1Mgr releases all resources including the CSim-
pleDriver object used. When freed, the CSimpleDriver
releases any interfaces used from the driver.

FIG. 39 is an interface map of the driver stub module 36.
Attached hereto as Appendix F is a document that describes
the actual OLE Interfaces exposed, the definitions of the data
structures used when passing data around, and the definitions
of each class used internally by the driver.

V1. Driver Administrator Module

The driver administrator 32 is used from two different

perspectives. When the driver administrator Control Panel
Applet 38 is used to configure the system, the applet directs
the driver administrator 32 to carry out the operations. The
applet 38 simply provides the user-interface, and the compo-
nent 35 does the real work of managing drivers and streams
used with the system 22. Using the driver administrator com-
ponent with the control panel applet is the first perspective on
using the component 35.

In the second perspective, the motion control component
35 uses the driver administrator component to query for the
current set of enabled the driver 30. It should be noted that,
currently, only single driver operation is allowed. Clearly, the
system 22 may support multiple drivers that are virtualized.
For example, if two, four axis, drivers are installed, applica-
tions using the system could act as though they were using an
eight axis system.

This section describes the driver administrator 32 in three

main parts. First, all modules interacting with the driver
administrator component are described along with their inter-
actions. Next, the module interaction-map is expanded to
display all interactions taking place between the C++ objects
used to implement the driver administrator 32 Component.
This description is called the object interaction-map. Then,
the object interaction-map is tested by running it through
several scenarios, or scenario-maps. Each scenario-map dis-
plays the events and the order in which they occur in a certain
process taking place on the driver administrator component.

The module interaction-map shown in FIG. 40 displays all
binary modules and their interactions with the driver admin-
istrator 32 Component. Both the driver administrator CPL 38
and the motion control component 35 are the main modules
that interact with the driver administrator 32 Component.

The driver administrator CPL module 38 provides the user-
interface that allows the user to add, configure, and remove
drivers and streams in the system 22. The driver administrator
32 handles all driver and stream management. Even though
the control panel applet provides the user-interface, this mod-
ule 32 does the actual management work.

In addition, the driver administrator is used by the compo-
nent 35 to access the current driver(s) to use when carrying
out motion control operations. For example, if the AT6400
driver is selected as the current driver when the component 35
queries the driver administrator, the driver administrator
returns the CLSID of the AT6400 driver.

Taking the driver administrator 2, displayed in the module
interaction-map, and displaying all interactions occurring
between the C++ objects used to implement the administrator

Page 94 of 110

Page 95 of 110

US 8,073,557 B2

25

34, produces the object interaction-map therefor. The object
interaction-map for the driver administrator 32 is shown in
FIG. 41.

Each object in the diagram is described as follows.
The CDriverAdminDisp object is the dispatch object used

to dispatch exposed interface methods. During the dispatch
process, all raw data is converted into the appropriate C++
form. For example, collections of data passed between OLE
components is usually packaged in a raw block of memory.
The CDriverAdminDisp object takes care of packing outgo-
ing data and unpacking incoming data. Data packing involves
converting the data between a raw and native C++ format.

The CDriverlnfoMap object is used to build the informa-
tion used by the driver administrator CPL 38 when displaying
information about each driver or stream.

The CModuleMgr object is responsible for managing all
stream and driver modules in the system. A list of all drivers
registered are stored persistently in the registration database
by the CModuleMgr. Each time a driver or stream is accessed
the CModuleMgr is used to get the module.

The CSimpleDriver object is used to directly communicate
with the driver component. All OLE specific details are
encapsulated within this object.

The CSimpleStream object is used to directly communi-
cate with the stream component. All OLE specific details are
encapsulated within this object.

FIGS. 42-49 describe all main scenarios, or operations, that
occur on the driver administrator 32. Each scenario-map dis-
plays all objects involved, and the interactions that take place
between them in the sequence that they occur.

Referring now to FIG. 42, before using the driver admin-
istrator component, it must be initialized. FIG. 42 describes
the process of initializing the driver administrator component
from either the driver administrator control panel applet or the
motion control component. During initialization, the follow-
ing steps occur.

First, either the control panel applet or the motion control
component must create an instance ofthe driver administrator
component by calling the standard OLE function CoCre-
ateInstance. Next, the exposed Initialize interface method
must be called. When the Initialize method is called, the
driver administrator component directs the CDriverAdminD-
isp to initialize the system. Next, the CDriverAdminDisp
directs the CModuleMgr to initialize itself and any modules
that it is managing. The CModuleMgr, first, loads all infor-
mation from the registration database. Then for each driver
registered, the CModuleMgr creates an instance of the driver
by calling the standard OLE function CoCreateInstance.
Next, the CModuleMgr calls each drivers Initialize method,
passing to the method the CLSID of the driver component to
attach. The CSimpleDriver attaches to the driver component
by calling the standard OLE function CoCreateInstance.

The driver administrator 32 can register both drivers and
streams. Registering drivers is very direct, since the driver
administrator manages the drivers registered in the system.
Registering streams, on the other hand, is more complex,
since each stream must be registered with a driver and the
driver manages the streams registered with it, not the driver
administrator. The following discussion describes the process
of registering both drivers and streams.

Registering a driver entails verifying that the module is
actually a driver, verifying that the driver can be loaded, and
storing the driver information in a persistent location. FIG. 43
describes this process. When registering a driver, the follow-
ing steps occur.

First, the driver administrator CPL passes the name of the
driver and directs the driver administrator component to reg-

5

10

15

20

25

30

35

40

45

50

55

60

65

26

ister it. Next, the driver administrator component passes the
driver name to the CDriverAdminDisp and directs it to reg-
ister the module. The CDriverAdminDisp directs the CMod-
uleMgr to register the new driver. The CModuleMgr creates a
new CSimpleDriver and requests it to register the driver. First
the CSimpleDriver verifies that the driver is valid by calling
its DLLGetModuleType exported function. If the function
returns XMC_DRIVER_MT the CSimpleDriver then calls
the driver’s exported function DLLRegisterServer to register
the module in the OLE system. Next the CLSID is queried
from the module by calling its exported DLLGetCLSID func-
tion. The CLSID returned is then used to load the driver by
calling the standard OLE function CoCreateInstance. If the
CSimpleDriver is successful, the CModuleMgr stores the
driver CLSID in the registration database.

Registering a stream is similar to registering a driver, but a
little more complex, since each stream must be registered
with a specific driver. FIG. 44 displays the process of regis-
tering a stream. When registering a stream, the following
steps occur.

First, the driver administrator CPL passes the CLSID ofthe
driver and the filename of the stream to register with the
driver, to the driver administrator component. The driver
administrator component directs the CDriverAdminDisp to
register the stream. The CDriverAdminDisp object directs the
CModuleMgr to register the stream and passes the CLSID of
the driver and the name of the stream along to it. First, the
CModuleMgr verifies that the CLSID ofthe driver one of the
registered drivers. If it is not, the driver is registered as dis-
cussed above.

Next, the CModuleMgr creates a new CSimpleStream
object and directs it to verify and load the stream component.
The CSimpleStream first verifies that the module is actually
an stream component 28 by calling its exported DLLGet-
ModuleType function. If the function returns XMC_
STREAM_MT, the CSimpleStream continues and registers
the stream component by calling its DLLRegisterServer
exported function. Finally, the CSimpleStream object queries
the new module for its CLSID by calling the module’s
exported DLLGetCLSID function. The new CLSID is used,
by the CSimpleStream, to load the stream component using
the standard OLE function CoCreateInstance. If the CSim-

pleStream succeeds, the CLSID ofthe stream is passed along
to the CSimpleDriver who is directed to register the stream.
The CSimpleDriver passes the CLSID to the driver compo-
nent and directs it to register the stream.

The following discussion describes setting information in
either a driver or stream. When the user edits information in

the driver administrator control panel applet 38, the applet 38
directs the driver administrator 32 to edit the settings for the
stream or driver being edited. The following discussion
describes how this configuration process works.

Editing the settings of a driver takes place when the user
changes the driver settings displayed in the driver adminis-
trator CPL. Changing these settings causes the process
described in FIG. 45 to occur within the driver administrator

component. The following steps occur when setting the driver
configuration.

When driver settings are changed in the CPL 38, the driver
administrator CPL directs the driver administrator compo-
nent to make the appropriate changes to the driver corre-
sponding to the driver handle. A XMC_DRIVER_INFO
structure is passed to the component 35, describing the new
values for the driver. The driver administrator component
takes the XMC_DRIVER_INFO structure and the handle to

the driver and passes the information to the CDriverAdmin-
Disp object, directing it to change the settings in the driver.

Page 95 0f110

Page 96 of 110

US 8,073,557 B2

27

The CDriverAdminDisp object directs the CModuleMgr to
edit the driver corresponding to the driver handle. The CMod-
uleMgr locates the CSimpleDriver with the handle and directs
it to change its settings to those stored in the XMC_DRIV—
ER_INFO structure. The CSimpleDriver passes the
XMC_DRIVER_INFO structure to the driver component and
directs it to change its settings.

As shown in FIG. 46, when the user edits stream settings in
the driver administrator CPL 38, the following steps occur.

After the user changes settings for the stream in the CPL,
the driver administrator CPL directs the driver administrator

component to change the stream’s settings and passes a
handle to the driver containing the stream, a handle to the
stream, and a XMC_STREAM_INFO structure describing
the new values. The driver administrator component directs
the CDriverAdminDisp object to change the streams settings.
The CDriverAdminDisp object directs the CModuleMgr to
change the settings ofthe stream corresponding to the handle.

First, the CModuleMgr locates the driver corresponding to
the driver handle. Next, it requests the CSimpleDriver to
change the settings for the stream corresponding to the stream
handle. The CSimpleDriver searches for the stream corre-
sponding to the stream handle and directs it to change its
settings to those stored in the XMC_STREAM_INFO struc-
ture. The CSimpleStream directly communicates with the
stream component and directs it to change its settings to those
in the XMC_STREAM_INFO structure.

There are two different types of information that may be
queried from the driver administrator 32: the enumeration of
all drivers registered, and the driver information map. The
motion control component 35 uses the driver enumeration
when selecting the set of drivers to use and control during
motion control operations. The driver information map, on
the other hand, is used by the driver administrator CPL 38 to
update the user-interface display describing all drivers and
streams registered in the system. The following discussion
describes the process ofquerying for both the driver enumera-
tion and the driver information map. Querying for the driver
enumeration occurs during the initialization of the motion
control component 35. When initializing, the component 35
must know what drivers to use when performing motion
control operations. The driver administrator 32 Component is
used for that very purpose. Querying the driver enumeration
just returns a pointer to the IXMC_EnumDriver interface
exposed by the driver administrator 32 Component. FIG. 47
displays the events that occur when using the interface to get
each driver in the enumeration. Using the interface causes, the
following steps occur.

First, the motion control component 35 queries the driver
administrator 32 Component for the next driver. Next, the
driver administrator 32 Component directs the CDriverAd-
minDisp to get the next driver supported. The CDriverAd-
minDisp directs the CModuleMgr to get the next driver. The
CModuleMgr then directs the CSimpleDriver to either return
the CLSID or a pointer to the IUnknown interface for the
driver, depending on the parameters ofthe enumeration. Ifthe
CSimpleDriver is requested to return a pointer to the IUn-
known interface, the interface is queried from the driver com-
ponent.

Another set of information that may be queried from the
driver administrator 32 consists of the driver information

map. This data is used by the driver administrator CPL 38
when displaying information describing the drivers and
streams registered in the system. As shown in FIG. 48, when
querying the system for the driver interface map, the follow-
ing steps occur.

10

15

20

25

30

35

40

45

50

55

60

65

28

First, the driver administrator CPL 38 queries the driver
administrator 32 Component for the current driver informa-
tion map. When queried, the driver administrator component
directs the CDriverAdminDisp to create and load a CDriver-
InfoMap class. The CDriverAdminDisp creates the CDriver-
InfoMap. Next, the CDriverAdminDisp passes the CDriver-
InfoMap to the CModuleMgr and directs it to load the
information map. The CModuleMgr queries each driver reg-
istered for its internal information. Each CSimpleDriver com-
municates directly with the driver component and queries it
for all pertinent driver information. Next, the CModuleMgr
queries each driver for a list of all streams registered with the
driver. Using the stream enumeration, each CSimpleDriver
creates an array of CSimpleStream objects and returns the
array to the CModuleMgr. For each CSimpleStream object in
each array, the CModuleMgr queries for all pertinent stream
information. Each CSimpleStream communicates directly
with the stream component and queries it for all information
describing the stream.

After the driver administrator CPL 38 or the motion control

component 35 are finished using the driver administrator 32,
they must release the component 35 to free any resources it
was using. FIG. 49 describes this process. When cleaning up
after a call to the Release method, the following steps occur.

First, either the driver administrator CPL 38 or the motion
control component 35 must direct the driver administrator 32
Component to release itself by calling its Release method.
Next, the driver administrator component directs the CDriv-
erAdminDisp object to free all resources used in the system.
The CDriverAdminDisp then directs the CModuleMgr to free
any resources that it is using. First, the CModuleMgr traces
through all CSimpleDriver objects, querying each for their
CLSID and enabled state. Next, each CSimpleDriver is freed.
Each CSimpleDriver object freed, frees all arrays of CSim-
pleStream objects registered with it. When freed, each CSim-
pleStream object releases all interfaces that it was using from
the stream component. In its final clean-up, each CSim-
pleDriver releases all interfaces that it was using from the
driver component. All CLSID and enabled state information
is stored persistently in the registration database.

FIG. 50 depicts an interface map for the driver administra-
tor 32. Also, attached hereto as Appendix G is a document that
describes the actual OLE Interfaces exposed, the definitions
of the data structures used when passing data around, and the
definitions of each class used internally by the driver admin-
istrator 32 component.

VII. Driver Administrator CPL Applet

This document describes the design of the driver adminis-
trator control panel applet 38 (CPL) that is used by the user to
add, configure, and remove both drivers 30 and stream com-
ponents 28 later used by the component 35 when directed to
carry out motion control operations. With regard to design,
there are three main types of “views” used to look at how the
control panel applet works.

First, a module interaction map shown in FIG. displays all
main executable and user-interactable items, or modules, that
the CPL uses and interacts with. For example, when a dialog
is displayed by the CPL executable, both the dialog and the
CPL modules are considered to interact with one another.

Technically, the dialog is not a module since it is a figment
displayed on the screen, but none the less, module interaction
maps classify them as such since they are key destination
points for user-input.

Second, an object interaction map shown in FIG. 52 dis-
plays all main objects making up the modules described in the

Page 96 ofllO

Page 97 of 110

US 8,073,557 B2

29

module interaction map. Objects consist of the actual
instances ofC++ classes defining each object. All interactions
between the objects are drawn out in this interaction map.

Finally, FIGS. 53-57 display a set of scenario maps are
drawn out using the object interaction map as a basis. Sce-
nario interaction-maps describe the interactions taking place
during a specific operation. Initialization, Adding a driver to
the system, andViewing the support offered by a driver, are all
examples of a scenario interaction-map.

The design goals for the driver administrator 32 are the
following:

1. User-interface separationilmplement all user-interface
elements used to control the driver administrator 32

Component.
2. Upgradeable to OCX ClientiEventually each driver

and stream may implement all UI elements with an OCX
that then passes all input to the corresponding driver or
stream. The driver administrator CPL 38 must be

designed in a way that is easy to upgrade to become an
OCX client.

3. Provide Stream Independencegdrivers 30 should not be
required to use streams 28 in order to operate. The design
of the driver administrator 32 must make amends to

ensure that it is not dependent on stream component 28
operations to operate.

4. Use Windows 95 UliWhen ever possible, Windows 95
UI elements should be used. For example, TreeViews,
ImageLists, Button Bars, Tab Dialogs and any other UI
elements should be put to use to ensure a Windows 95
look-and-feel.

The following discussion describes the module interaction
map for the control panel applet 38. A module is defined as
either an executable binary, an external data file, or a main
user-interface element used when interacting with the user.
FIG. 51 is a drawing of all modules that interact with each
other when running the driver administrator control panel
applet.

The driver administrator CPL 38 is a control panel applet.
And, a control panel applet is a special DLL that exports
several functions allowing the Windows Control Panel to
communicate with the applet.

The Driver Administrator Dialog is the main dialog that
appears when selecting the control panel applet icon from the
Windows Control Panel.

The Browse Dialog is used to query the user for a filename.
For example when adding a new stream or driver, the driver
administrator uses this dialog to ask the user for the location
of the new driver or stream to add.

The View Support Dialog displays the support provided by
the selected driver 30. Each driver may support a different set
of extended functionality. This dialog shows the user exactly
how much support is provided by each driver allowing them
to determine which functions within their application may not
operate when using the driver.

Unlike the Module Interaction-Map described above, the
Object Interaction-Map shown in FIG. 52 describes how the
actual instances of C++ objects interact with one another
within each module.

Other than showing that each dialog is managed by the
object, whose name is displayed in the dialog, the main dif-
ference from the module IA-map are both the CComCPL and
CDriverAdmin C++ objects. Both objects are described
below.

As the description of each dialog class is fairly straight
forward and very similar to the dialog description above they
will not be described in this section. This section will describe

all other C++ objects.

10

15

20

25

30

35

40

45

50

55

60

65

30

The CComCPL is a C++ object that is generated by the
COMBuilder application from a template. It is used to handle
all Windows messages sent from the Control Panel Applica-
tion.

The CDriverAdmin object is used to drive, control, and
manage the use of the driver administrator 32 Component.
For example, all OLE 2.0 interface management and data
translation is handled by this object. Data translation involves
translating data from a standard C++ format to a raw format
that is handled easily with the OLE 2.0 data transfer mecha-
nisms.

Scenario Interaction-Maps are almost identical to object
interaction-maps but they only display the objects and inter-
actions taking part in a specific operation. Also, each interac-
tion is numbered by the sequence in which they occur while
the operation is running. The following discussion describes
several key operations that occur while running the driver
administrator CPL 38 Applet.

Initialization occurs when the user first runs the CPL

Applet. During this process all other objects are initialized
and several modules are loaded. There are two steps that take
place during the initialization process: First the application is
initialized, and second the dialog is initialized with values
queried from the driver administrator 32 Component. The
following sections describe each.

Initializing the application, which is shown in FIG. 53,
occurs when the application is first run and the main dialog
has not yet been displayed. When initializing the application,
the following steps occur.

Through a Windows message, Windows notifies the
CComCPL object that the Control Panel Applet has just been
loaded. CComCPL then loads the CDriverAdminDialog and
tells it to do any dialog prepping before going modal. Next,
CDriverAdminDialog loads any settings stored in the Regis-
tration Database. For example, the current window position
and active tab may be stored in the database. CDriverAdmin-
Dialog then Loads the CDriverAdmin class and directs it to
initialize itself. During initialization, CDriverAdminDialog
creates an instance of the driver administrator 32 and queries
all interfaces that will be used.

Once the application is initialized, the default settings to be
displayed in the dialog must be set. These values are set when
the dialog is initialized, just before displaying it. FIG. 54
describes this process. During the process of initializing the
dialog, the following steps occur.

During the dialog preparation that occurs before the
DoModal call, CDriverAdminDialog queries the CDriverAd-
min object for the driver enumeration to be used when setting
initial values to be displayed in the dialog box. CDriverAd-
min uses the driver administrator 32 Component to query for
the driver information map, which is then passed back to the
CDriverAdminDialog. Once receiving the driver information
map, the CDriverAdminDialog uses the information to
update all user-interface items related to either drivers or
streams.

Adding a driver to the system 22 can be broken down into
two steps. First, the module name must be added to the sys-
tem. Next, the driver administrator 32 main dialog must
update itself to reflect the new driver just added.

Adding a driver occurs when the user presses the
“Add . . . ” button on the driver administrator 32 ’ s main dialog.
FIG. 55 describes this process. When adding a new driver, the
following steps occur.

When adding a driver, first the user must press the
“Add . . . ” button. After pressing the button, CDriverAdmin-
Dialog opens up the common open file dialog. The user must
enter in the filename ofthe driver to add and close the dialog.

Page 97 ofllO

Page 98 of 110

US 8,073,557 B2

31

CDriverAdminDialog then passes the filename to the CDriv-
erAdmin object and calls the RegisterDriver method passing
in the name of the module to register as a driver. CDriverAd-
min then passes the driver filename to the driver administrator
32 Component and directs it to register the driver in the
system 22.

The process of updating the main dialog is identical to the
process of initializing the dialog discussed above.

Similar to the process of adding a new driver, removing a
driver involves both removing the driver from the system and
then updating the main dialog. Pressing the “Remove” button
removes a driver from the XMC software system. FIG. 56
describes this process. The following steps occur when
removing a driver.

To remove a driver, the user must first select the “Remove”

button. After pressing the button, the selected driver or parent
driver to the selected stream will be removed. CDriverAd-

minDialog passes the XMC_HDRIVER of the driver to the
CDriverAdmin and directs it to remove the driver by calling
its UnRegister method. CDriverAdmin passes the XMC_
HDRIVER to the driver administrator 32 Component and
directs it to UnRegister the driver.

The process of updating the main dialog is identical to the
process of initializing the dialog discussed above.

Viewing Support involves viewing the level of support
implemented by the selected driver. FIG. 57 describes the
process ofproviding this information to the user via the View
Support Dialog. The following steps occur when viewing the
support provided by the driver.

First the user must select the “View Support” button on the
driver administrator main dialog. When selected, CDriverAd-
minDialog queries CDriverAdmin for the driver support
information. CDriverAdmin passes the query on to the driver
administrator 32 component who actually fills out the infor-
mation. Once the queried information is returned, the CDriv-
erAdminDialog passes it on to CViewSupportDialog.
CViewSupportDialog initializes itself using the driver sup-
port information.

Attached hereto as Appendix H is a document that
describes the actual OLE Interfaces exposed, the definitions
of the data structures used when passing data around, and the
definitions of each class used internally by the driver admin-
istrator 32.

VIII. Driver Administrator CPL Applet

This section contains a description of the driver adminis-
trator control panel applet 38. When using the driver admin-
istrator 32 to configure the motion control system, there are
two main items that the user will work with: drivers and

streams. Each driver 30 generates the hardware specific, con-
trol codes that are then sent to the selected stream component
28. Streams facilitate the data transport layer between the
driver and the control-code destination.

Depending on the current hardware setup, different
streams may be used. For example, if the hardware is con-
nected to the PC Bus, a PC Bus stream will be used to
communicate to it. On the other hand, if the hardware is
connected through a serial cable to a serial I/O Port, the serial
stream will be used. Finally, all hardware configurations may
use the file stream. When using the file stream, all control-
codes are sent to the specified file that can be downloaded to
the hardware at a later time.

This section describes both drivers and streams, and how
each is configured. This section initially describes the driver
items and all property pages used to edit them. This section

10

15

20

25

30

35

40

45

50

55

60

65

32

also contains a description of the streams and their property
pages. Finally, this section describes the about box containing
details on the Software.

The main purpose of each driver is to generate the hard-
ware-specific control-codes directing the hardware to carry
out specific motion control actions. For example, such actions
may include querying the hardware for the current position or
directing the hardware to move to a predetermined location in
the system. The following discussion describes the property
pages used to configure each driver.

There are two types of properties affecting each driver.
First, a set of defaults may be set that are used by the motion
control component 35 as recommended values. The scaling
and units used are several example default values. In addition
to setting default values, ifthe driver supports more advanced
configuration, pressing the Advanced . . . button will display
a dialog box used to set the driver configuration. For example,
if a driver does not support streams, the advanced configura-
tion dialog, provided by the driver, will allow the user to set
the I/O Port and IRQ settings.

The properties affecting drivers 30 are as follows.
Scalingisetting the scaling property affects the default

scaling used on all axes within the motion control sys-
tem. The range for scaling values is (0.0, 1.0]. Default
setting may be overridden when programming XMC by
using the IXMC_StaticState interface.

Unitsisetting the units property affects all coordinates
used when programming the system 22.

The unit descriptions are as follows:
MM_ENGLISH7Inches are used as the base unit for all

coordinates

MM_METRIC7Millimeters are used as the base unit for
all coordinates.

MM_NATIVE7The native coordinates defined by the
hardware system are used. Coordinates used to program
XMC are mapped 1:1 to the hardware coordinates.

Advanced . . . iPressing this button will display a dialog
used to edit any advanced properties for the driver that
may be edited by the user.

In addition to allowing the user to set properties, each driver
property page displays the full names of both the hardware
supported and the hardware vendor who makes the hardware.

The buttons along the bottom ofthe windows work with the
selected driver or stream. The following discussion describes
each button and what it does.

Pressing the Make Default button selects the current driver
to be the default. If a stream is selected, its parent driver
becomes the default driver. The default driver is later used by
the motion control component 35

Selecting the Add . . . button, displays the Add Module
dialog. This dialog is used to add new drivers and streams to
the system 22. Once selected, the new driver or stream will be
displayed in the Driver tree view. When adding a stream, the
stream is added under the currently selected driver. To enable
the stream, you must select the enable check box located in
the streams property page.

Selecting the Remove button, removes the current driver or
stream selected. If a driver is removed all of its streams are
also removed.

Selecting the View Support . . . button displays a dialog
used to view the level of XMC support implemented by the
driver. For example, all API interfaces and subsequent meth-
ods are displayed. If a lack of implementation within the
driver prohibits an API interface from operating, the driver
stub 3 6 is used. Ifthe lack of implementation within the driver
30 cannot be replaced by operations within the driver stub 36,
the interface or method is disabled.

Page 98 0f110

Page 99 of 110

US 8,073,557 B2

33

The following are descriptions ofeach graphic found in the
XMC Support Vrew Dialog.

DiThis graphic means that the interface or method is
implemented by the driver 30.

SiThis graphic means that the interface or method is
implemented within the driver stub 36.

XiThis graphic means that the interface or method is
disabled because of a lack of implementation within the
driver 30.

Like the properties page, a debug page is also provided to
set all debugging settings for the driver. Each driver may
specify that all API calls used to control the driver are logged.
The logging settings only affect the current driver selected.
The Output field allows you to select the output stream where
all debug information is sent. When Streams is enabled,
debug information is sent to the specified text file. When
Debug Monitor is enabled, debug information is sent to the
debug monitor if it is running. Using Enable to enable a
stream turns it on causing all debug information generated to
be sent to the stream. More than one stream may be enabled at
one time.

Stream Settings are available for each debug stream sup-
ported. Text File allows the name of the text file may be set.
The Debug Monitor can only be enabled and disabled.

A stream is the transport layer used by the driver to pass
data to the destination location. The destination location may
be the actual motion control hardware or even a text file.

Usually the control language used by a hardware vendor is
supported by several different flavors of their motion control
hardware. For example, some vendors have both PC Bus
based and Serial I/O based motion control hardware that

understand the same control language. In such a case, the
same driver would be used for each hardware setup but it
would communicate with different streams depending on the
specific hardware setup. Graphically, each stream is listed
below each driver that uses the stream.

This section describes the streams supported by the system
22 and how they are configured.

The PC Bus stream sends all data directly to a PC Bus
based motion control hardware system by writing to the
specified I/O Ports and IRQ’s defined by the hardware. This
section describes both the properties and debug settings avail-
able for the PC Bus Stream.

Stream properties only affect the currently selected stream.
The user is required to select certain settings, such as the I/O
Port and IRQ. Without setting these values, the PC Bus
Stream will not be able to communicate with the hardware.

The properties affecting PC Bus Streams are described below.
The I/O Port is the base port used to communicate with the

motion control hardware that the stream is to send data to.

The IRQ is the interrupt request level used by the hardware.
Pressing the Advanced . . . button will display a dialog

allowing the user to edit more advanced stream options. For
example, if the stream supports a Port I/O map that the user
can edit, the port map would be displayed in this dialog. This
button is only enabled for streams supporting advanced fea-
tures that the user may edit.

When debugging an application program it may be useful
to see what codes are actually sent to the hardware. The
Debug Settings page for streams allows the user to enable and
disable both the Cmd and Bit Streams. The Cmd Stream is

used to log all command-codes sent to the hardware. If this
level of detail does not provide you with enough information,
the Bit Stream may be used. When enabled, the Bit Stream
logs all values sent through each hardware port. All values
read from and written to each port used by the hardware are

10

15

20

25

30

35

40

45

50

55

60

65

34

logged. Note, when enabled, both streams may significantly
slow down the application programming the motion control
system.

Serial RS-232 Streams are used to send data from the driver

to motion control hardware connected to the computer
through the serial I/O port. Both property and debug settings
only affect the selected Serial RS-232 Stream. The following
discussion describes the available settings in each in detail.

All Serial RS-232 property settings must be set by the user
for they let the stream know what I/O port and communica-
tion protocol to use when communicating with the hardware.
The properties affecting Serial RS-232 Streams are as
described below.

The Port is the serial port that the hardware is connected to.
COMl -COM4 are valid ports that can be used.

The Baud Rate is the speed of data transmission supported
by the hardware.

When Hardware is selected a more efficient, but less com-

patible, communication protocol is used to communicate to
the hardware. If errors occur when this protocol is selected,
use the XON/XOFF communication protocol.

When the XON/XOFF communication protocol is selected
a simple and more compatible communication protocol is
used.

Debug settings for the Serial RS-232 Stream are very simi-
lar to those supported by the PC Bus Stream. Serial RS-232
Streams only support command logging through the Cmd
Stream and do not support bit logging.

The Text File Stream is used to build control-code pro-
grams for later use. Using this stream facilitates running the
XMC software in code-generation-mode. No motion control
actions take place when running in this mode. Instead, con-
trol-code programs may be built and stored to file. Later, after
programs are built and saved, they may be downloaded to the
motion control hardware and run. The following discussion
describes the property and debug settings for the Text File
Stream.

The main property set, when configuring a Text File
Stream, is the actual name and location ofthe file to use. Once
set, the stream is ready for use.

The following properties may be configured for the Text
File Stream:

Filename is the filename and location of the file used to

store all control-codes generated by the driver 30 selected.
Pressing the Browse . . . button displays a dialog allowing you
to graphically select the location and filename to use.

No debug settings are available for the Text File Stream.

IX. Language Driver

FIG. 58 contains a module interaction map depicting a
language driver 44 and illustrating how that language driver
44 interacts with the streams 28, the driver administrator 32,
the motion control component 35, and the registry 42.

As with the software drivers 30 described above, one lan-
guage driver 44 is used for each of the motion control devices
20 of the group of supported motion control devices. The
language drivers 44 perform the same basic function as the
software drivers 30 described above with reference to FIGS.

1 and 12-21. To the software system 22, the language drivers
44 are accessed and respond in the same manner as the soft-
ware drivers 30; the differences between the language drivers
44 and the software drivers 30 are entirely internal.

The primary difference between these drivers 30 and 44 is
that the language drivers 44 use a database the key fields of
which are an index field, a command format field, and a

Page 99 0f110

Page 100 of 110

US 8,073,557 B2

35

response format field. Each record or row in the database
corresponds to a given Driver function.

The purpose of the command and response format tem-
plates is to formalize and simplify the process ofconstructing
command data strings and format data strings which contain
commands and parameters to be transmitted to the motion
control devices 20. The format templates define how, for a
given SPI command, the software system 22 communicates
with a vendor specific hardware command language associ-
ated with a given motion control device 20 associated with a
given language driver 44. Accordingly, one database contain-
ing command format templates and response format tem-
plates will be created for each such language.

The command format field contains a command format

template, and the response format field contains a response
format template. Each of these templates comprises a
sequence of data type identifiers, macro identifiers, syntax
characters, and/or ASCII characters.

The index field contains a value unique to each Driver
function that facilitates the process of looking up the com-
mand and response format templates associated with a given
Driver function.

The software system designer defines the data type identi-
fiers, macro identifiers, and syntax characters discussed
above. In general, the data type identifiers and syntax char-
acters are common to both the command format template and
the response format template.

The macro identifiers will normally correspond to macros
that are associated with either the command format templates
or the response format templates. The ASCII characters are
defined by the Driver function and the particular motion con-
trol device 20 with which a given language driver 44 is asso-
ciated.

An Excel spreadsheet may be used as an organizational
tool that facilitates creation of the database used by the lan-
guage driver 44. An example of a Excel spreadsheet that may
be used for this purpose is shown in FIG. 67. The spreadsheet
shown in FIG. 67 is saved as a tab-delimited file and then

copied into the SPI database shown in FIG. 59.
The spreadsheet shown in FIG. 67 is simply an organiza-

tional tool and will not be described herein in detail. But it

should be noted that the exemplary spreadsheet shown in FIG.
67 sets forth a list oftypical command and response data type
identifiers, along with descriptions thereof, and lists of com-
mand and response macros. These will be supplemented by
an additional STRUCT data type that allows the programmer
to define a data type that combines the other primitive data
types as necessary for a given template.

The language drivers thus operate generally as follows. As
described above, the motion component 35 will call the driver
function implemented by the language driver 44 and, in many
cases, will pass parameters necessary to carry out that func-
tion. The language driver 44 will use the index for that driver
function to look up the command format template and the
response format template associated with the appropriate
driver function.

Using the command format template, the language driver
44 will construct a command data string containing ASCII
characters. The command data string carries the commands
and parameters necessary to implement the given driver func-
tion in a desired manner on the motion control device 20

associated with the language driver 44.
Similarly, the language driver 44 uses the response format

template to parse a response data string sent by the particular
motion control device 20 in response to the command data
string. The response format template thus allows the language
driver 44 to pass from the motion control device 20 to the

10

15

20

25

30

35

40

45

50

55

60

65

36

motion control component 35 any commands and/or param-
eters necessary to enable the controlling application 26 to
function as intended.

The following sets forth examples of the process of gener-
ating a command data string and parsing a response data
string given a set of command and response format templates
associated with a single SPI.

EXAMPLE 1

The first example illustrates how the language driver 44
might deal with the Driver function IXMC_DrvExt_Test::
Move.

Cmd Format:
Rsp Format:
Driver function Call:

D%d,+:@[snd]GO%b+:@[snd]
@[Crlfl>@[rCV]@[Crlfl>@[rcvl
pXMCDrvExtTest->Move(20.0, 30.0)

This function call directs the motion control device to

move 20 units in the x direction and 30 units in the y direction.
The driver communicates with the stream as follows:

Step 1. Perform the operation in the command format
template up to the first @ symbol. This builds a raw command
string of“D20.0,30.0:”

Step 2. After the first @ symbol is the send command,
which sends the string that was built in step 1. The language
driver has now reached the G in the command format tem-

plate.

Step 3. After the send command, the language driver reads
a response from the stream to confirm that the command
string was received and processed correctly. The response
string received from the stream is as follows: “\r\n>”.

Step 4. The language driver next uses the response format
template to parse the raw response string to verify operation
and extract data. The language driver then picks up at the G in
the command format template and constructs the next raw
command string of “G01 1”, leaving off at the last macro.

Step 5. The language driver, picking up at last macro in the
command format template, then sends the raw command
string created in step 4 to the stream, completing the com-
mand format template.

Step 6. Again, after the send command the language driver
receives a response data string from the stream as follows:
‘<\r\n>,,

Step 7. The language driver next parses the response data
string received in step 6.

EXAMPLE 2

The second example illustrates how the language driver 44
might deal with the Driver function IXMC_DrvExt_Test::
SetVelocity.

Cmd Format: V%lf,+@[snd]
Rsp Format: @[crlf]>@[rcv]
Driver function Call: pXMCDrvExtTest->SetVelocity(NOP, 22.0)
Explanation Set the velocity ofthe y axis to 22.0.
Raw Command String:
Raw Response String:

“V,22 .0 : ”
“\r\n>” (expected)

Page 100 0f110

Page 101 of 110

US 8,073,557 B2

37
EXAMPLE 3

The third example illustrates how the language driver 44
might deal with the Driver function

IXMCiDrvExtiTest: :GetVelocity.

Cmd Format: GV%b+:@[snd]
Rsp Format: %d,+@[crli]>@[rcv]
Driver function pXMCDrvExtTest->GetVelocity(NOP, &de7Vel)
Call:
Explanation Get the velocity set for the y axis.
Raw Command “GV01:”
String:
Raw Response “,44.0\r\n>” (expected)
String:

deiVel = 44.0

EXAMPLE 4

The fourth example illustrates how the language driver 44
might deal with the Driver function IXMC_DrvExt_Test::
Reset.

lRESET:@[snd]MAO:MCO:LHO:@[snd]
@[crli] *VENDOR NAME -
MODEL@[rcv]@[crli]>@[rcv]
pXMCDrvExtTest->Reset()
Reset the hardware.

Cmd Format:
Rsp Format:

Driver function Call:
Explanation
Raw Command Stringl: “!RESET:”
Raw Response Stringl: “\r\n*VENDOR NAME - MODEL” (expected)
Raw Command String2: “MAO:MCO:LHO:”
Raw Response String2: “\r\n>” (expected)

While the language driver 44 is ofparticular importance in
the context of the software system 22 described above, this
technology may have broader application to any hardware in
which ASCII strings are employed to transmit commands to
and receive responses from hardware.

The language driver 44 will now be described in more
detail. The language driver 44 is used by both the driver
administration 32 and the motion control component 35. Its
main purpose is to implement functionality that generates
motion control commands for the specific hardware sup-
ported.

For example, the AT6400 driver used to control the Com-
pumotor AT6400 motion control hardware, generates
AT6400 command codes. During the initialization phase of
the system 22, the driver administrator 32 communicates with
each language driver 44, allowing the user to add, remove, or
change the configuration of the driver 44. When an applica-
tion using the system 22 is run, the component 35 communi-
cates with the language driver 35 directing it to carry out the
appropriate motion control operations.

Unlike the driver 30 described above, which communicates
with motion control devices 20 by directly sending binary
codes, the language driver 44 sends ASCII text to the stream
28, which then sends the information on to the motion control
device 20.

This section makes reference to a number of drawings to
describe the features implemented in the language driver 44:
(a) the Module Interaction-Map in FIG. 58 that displays all
binary modules that interact with the driver and how they
interact with one another; (b) an Object Interaction-Map
(FIG. 59), which corresponds to the module interaction map

10

15

20

25

30

35

40

45

50

55

60

65

38

expanded to display the internal C++ objects making up the
language driver 44, and how these objects interact with one
another; (c) a number of Scenario Maps (FIGS. 60-65) that
display the interactions taking place between the C++ objects
involved during a certain process; (d) an interface map that
describes the interfaces exposed by the language driver com-
ponent 44, all data structures used, and the definitions of each
C++ class used; and (b) a table illustrating how a typical
database employed by the language driver 44 is constructed
(FIG. 67).

The module interaction-map in FIG. 58 displays all binary
modules and their interactions with the Language Driver 44.
There are two modules that interact directly with the driver
44: the Motion Control Component 35, and the Driver
Administrator 32. The driver administrator 32 queries and
changes the drivers settings and the component 35 directs the
driver 44 to carry out motion control operations, such as
moving to a certain location in the system.

Mores specifically, the module interaction-map shown in
FIG. 58 contains the following modules:

The Driver Administrator module 32 is used to install,
uninstall, register, and setup each driver and stream
module.

The Motion Component is the motion control component
35 used by applications 26. The component 35 commu-
nicates with the current driver 44 passed to it by the
driver administrator 32 to carry out motion control
operations requested by the application 26.

The Language Driver 44 generates the ASCII codes mak-
ing up the hardware command language. A given lan-
guage driver 44 only communicates with a stream 28
that has been specifically connected to that driver 44.
Once connected, the stream 28 is used to communicate
with the destination object, such as the PC Bus, serial I/O
connection, text file, or debug monitor.

The Streams 28 are the actual objects that operate as the
data transport layer for each driver 44. Each stream 28
has a different target that defines the type of the stream.

The Registry 42 is the standard Windows registration data-
base.

The object interaction-map in FIG. 59 breaks the module
interaction-map shown in FIG. 58 down into more detail by
including the interactions taking place between all C++
objects used to implement the driver 44.

Each object in the diagram is described as follows.
CDriverObject This is the main C++ object that imple-

ments all OLE specific functionality including the func-
tion shells for all OLE interfaces exposed by the object.

CDeroreDisp This is the C++ object used to dispatch all
core SPI OLE interface functions to their respective
internal implementations. In addition to the methods
inherited from the CLangDeroreDisp object, this
object dispatches driver specific SPI, such as the core
XMCSPI OLE interface methods.

CLangDeroreDisp All language driver core functionality
is dispatched through this object to its internal imple-
mentation. For example, the generic language driver
implementation for initialization is dispatched through
this object to its implementation residing in the
LANG_DRV basecode library.

CDrvExtDisp This is the C++ object used to dispatch all
extended SPI OLE interface functions to their respective
internal implementations. In addition to the methods
inherited from the CLangDrvExtDisp object, this object
dispatches driver specific SPI, such as the extended
XMCSPI OLE interface methods.

Page 101 of110

Page 102 of 110

US 8,073,557 B2

39

CLangDrvExtDisp All language driver extended function-
ality is dispatched through this object to its internal
implementation. For example, all stream handling is
dispatched through this object to its implementation
residing in the LANG_DRV basecode library.

CCommandMgr This object is used to build commands
sent to the stream, and extracting responses received
from the stream. The CCommandMgr is the controlling
object that manages the CCommand, CResponse, and
CCommandDatabase objects.

CCommand The CCommand object builds command
strings that are then sent to the CSimpleStream. Each
command built is a complete motion control command
string.

CResponse This object converts raw response strings,
returned by the CSimpleStream, and converts them into
C++ data types. For example, a response string contain-
ing position data may be converted into a set of double
values.

CCommandDatabase This object stores the complete data-
base of commands making up the motion control com-
mand language. The database may be represented as an
actual external database (such as a SQL database), a text
file, or stored inside the driver as a custom resource.
Currently, the language driver only supports databases
stored as a custom resource within the driver module.

CSPIInfo This object makes up one database entry stored
within the CCommandDatabase object.

CStreamMgr This object is responsible for managing the
set ofstreams registered with the driver. Streams, may be
added, removed, and enabled. Only enabled streams
actually send data to their targets. For example, only an
enabled PCBus stream will send data to the motion

control card plugged into the PCBus.
CSimpleStream This object is used to initialize, create, and

communicate directly with the underlying stream com-
ponent.

CDriverInfoMgr This object is responsible for creating the
CDriverInfo object.

CDriverInfo This object contains the complete set of state
data making up the Language driver 44. All driver set-
tings and a list of all XMC Streams used are stored
within this object. Basic queries are routed directly to
this object. More complex operations are handled by one
of the various manager objects, who connect to this
object, perform the operation, and then disconnect from
it.

CRegistryMgr This object is used to save and load the
information, stored within the CDriverInfo object, to
and from the registration database. In specific, contains
the code called when the lCOM_PersistRegDB inter-
face is invoked.

CRegistry This object performs all registration database
operations such as creating keys, saving values, and
querying values.

All main scenarios, or operations, that occur on the Lan-
guage Driver 44 will now be described with reference to
FIGS. 60-66. Each scenario-map contained in these figures
displays all objects involved and the interactions that take
place between them in the sequence that they occur.

There are two types of operations that occur on the Lan-
guage driver 44. First, the Driver administrator 32 may ini-
tiate operations, such as adding streams or configuring the
driver. And second, the Motion control component 35 may
initiate operations on the driver when an application is actu-
ally running.

10

15

20

25

30

35

40

45

50

55

60

65

40

Referring now to FIGS. 60-64, all operations made on the
driver 44 by the driver administrator 32 will be described.
Each figure is discussed in the order that it may occur when
using the driver 44.

Before a driver may be used by the XMC Motion Compo-
nent, it must be registered in the OLE system. As shown in
FIG. 60, in order to register a driver the driver administrator,
first verifies that the module being registered is actually an
appropriate language driver, then it calls the DLLRegis-
terServer exported function to register the driver. Each mod-
ule ofthe system 22 exports a function called DLLGetModu-
leType. This function is used to verify that the module is an
appropriate driver component.

Next, the driver administrator can load the component
using the OLE CoCreateInstance function. During the initial-
ization process, the driver loads all registration data and ini-
tializes the CDriverInfo and all C++ manager objects.

The following describes in detail each of the steps set forth
in FIG. 60.

1. During initialization, the driver administrator must load
the DLL, containing the stream component, verify that the
module is an XMC Driver. To do so, the driver administrator
calls the DLLGetModuleType function, exported by the
driver. If the function returns a value that contains the value

XMC_DRIVER_MT in the high byte, then the driver admin-
istrator proceeds and registers the driver by calling its
exported function, DLLRegisterServer. When called, the
implementation ofthe DLLRegisterServer writes all OLE 2.0
registration information, needed to register the OLE compo-
nent, to the Windows registration database.

2. Next, the driver administrator must query the driver
module for its CLSID. Calling the driver’ s exported function,
DLLGetCLSID, returns the CLSID. Once it has the CLSID,
the driver administrator may create an instance of the driver
by calling the standard OLE function CoCreateInstance.

3. CoCreateInstance automatically initializes the compo-
nent by calling the ICOM_Base: :Initialize method imple-
mented by the CDriverObj ect.

4. The implementation of ICOM_Base::Initialize directs
both the CDeroreDisp to initialize itself.

5. Within its initialization, the CDeroreDisp object ini-
tializes each of its manager objects, starting with the Ccom-
mandMgr.

6. During its initialization, the CCommandMgr directs the
CCommandDatabase to load itself.

7. To load the database, the CCommandDatabase object
reads in the database and builds the CSPIInfo list of database
elements.

8. After initializing the CCommandMgr, the CDerore-
Disp object directs the CDriverInfoMgr object to create the
CDriverInfo object, that will later store the internal state of
the Language driver 44 component.

9. The CDriverInfoMgr object creates the CDriverInfo
object and passes it back to the dispatch object. The pointer to
this object is later stored in the components state handle,
when the CDriverObject calls ICOM_Base2: :SetState-
Handle.

10. Next, the CDeroreDisp object initializes the
CStreamMgr, that is used to perform all stream operations.

1 1. Next, the CDeroreDisp object initializes the CRegis-
tryMgr, that is used to perform all registration database opera-
tions.

12. Finally, the CDriverObj ect initializes the CDrvExtDisp
object.

It should be noted that all initialization is initiated through
the COM Auto-Init mechanism. Auto-init occurs when cre-

ating an object. When calling either CoCreateInstance, or

Page 102 ofllO

Page 103 of 110

US 8,073,557 B2

41

calling the IClassFactory::CreateInstance method, the inter-
nal COM implementation calls the ICOM_Base::Initialize
method. This method triggers the complete initialization pro-
cess described in this section.

After initializing the driver, the driver administrator may
perform operations on it. For example, the driver administra-
tor may request the driver to add or remove a stream. FIG. 61
displays the sequence of events occurring when the driver is
requested to add a new stream.

When adding a stream, the following steps occur:
1. The driver administrator directs the driver to add a new

stream and passes the filename and CLSID ofthe stream, to be
added, to the driver.

2. The driver then passes the filename and CLSID to the
CDriverObject object and directs it to add the stream by
calling its CLNGStreamMgmtzzAddStream embedded C++
class method.

3. The embedded C++ object, that implements the OLE
interface, directs the CDrvExtDisp object to add the stream,
passing it a handle of the component state data.

4. The CDrvExtDisp object first typecasts the component
state data into a pointer to the CDriverInfo object.

5. Next, the CStreamMgr, is connected to the CDriverInfo
object pointer, and directed to add a new stream.

6. In order to add the new stream, the CStreamMgr, uses a
CSimpleStream to load and create the stream component.

7. The CSimpleStream object first sets function pointers to
the DllGetCLSID, DllGetModuleType and DllRegis-
terServer functions exported by the component. Before load-
ing the module, the CSimpleStream, first makes sure that the
module is actually an XMC Stream by comparing its module
type with the XMC_STREAM_MT module type. If it is, the
component is registered in the registration database as a n
OLE component.

8. Using the DllGetCLSID queried in the previous step, the
CSimpleStream gets the components CLSID and calls
CoCreateInstance to load an instance of the OLE object.

9. After the CSimpleStream completes the CStreamMgr
adds the stream to the CDriverInfo’s stream array.

Another operation requested from the driver, after initial-
ization, is that of querying it for its current settings. Before
displaying information about the driver, like the name of the
hardware it supports, the driver administrator must query the
driver for the information. FIG. 62 displays an exemplary
process of querying the driver for its driver settings.

When querying the driver for information, the following
steps are performed.

1. The driver administrator, calls the interface method used

to query the driver’ s information and passes the call a pointer
to the XMC_DRIVER_INFO structure.

2. The call is handled by the implementation of the OLE
interface method, implemented by on ofthe CDriverObj ect’ s
embedded C++ classes.

3. The embedded C++ object, used to handle the interface,
directs either the CDeroreDisp or CDrvExtDisp object to
carry out the operation, and passes the object th handle to the
component state data.

4. The dispatch object type casts the state handle to a
CDriverInfo object pointer. Once converted, the CDriverInfo
object is queried for the appropriate data.

Upon request, the driver may either save or load its entire
configuration to or from the registration database. This opera-
tion is used by the XMC Driver Administration component
who stores all XMC configuration data in the registration

10

15

20

25

30

35

40

45

50

55

60

65

42

database. FIG. 63 displays the sequence of events that take
place when the XMC Driver Administration component
directs the driver to load its information from the registry.

During the registration process, the following steps occur.
1. First, using the ICOM_PersistRegDB OLE interface,

exposed by the driver, the driver administrator directs the
component to load its configuration data.

2. The CDriverObject’s embedded object, used to handle
all ICOM_PersistRegDB calls, is invoked and performs the
operation.

3. Once invoked, the embedded object directs the CDrv-
CoreDisp object to perform the load, and passes it a handle to
the components state data.

4. The CDeroreDisp object, first typecasts the state
handle to a CDriverInfo object pointer.

5. Next, the CRegistryMgr is connected to the CDriverInfo
pointer, and directed to load its contents to or from the regis-
tration database.

6. The CRegistryMgr loads all general driver information
and fills out the drivers XMC_DRIVER_INFO data structure,

stored in the CDriverInfo object.
7. If the driver has any streams information stored, the

CRegistryMgr loads the stream information and fills out an
XMC_STREAM_INFO structure. The structure is then used

to create a new CSimpleStream object.
8. When creating the stream, the CSimpleStream object

first queries and calls the DllGetModuleType exported func-
tion and verifies that the module is in fact a stream compo-
nent. If the module is, the CSimpleStream then queries and
calls the DLLRegisterServer function exported by the com-
ponent to register the component.

9. After registering the component, the CSimpleStream
object queries and calls the DllGetCLSID exported function
to get the components CLSID. Using the CLSID, CoCre-
ateInstance is called to create an instance of the OLE object.

10. Once the CSimpleStream completes, the CRegis-
tryMgr connects a temporary instance of the CStreamMgr to
the CDriverInfo object pointer, and directs it to add the new
stream.

11. The CStreamMgr directly manipulates the CDriverIn-
fo’s stream array to add the new stream. When added, a new
instance ofthe CSimpleStream object is created and attached
to the CSimpleStream passed to the CStreamMgr.

12. When attaching itself to the stream, the new CSim-
pleStream queries the IXMC_StreamInit interface, passed to
it, for all interfaces used it bump up the reference counts for
the component.

After the driver administrator is done using the driver, it
must release the driver by calling its exposed Release method.
Calling this method, directs the driver to release all resources
used. FIG. 64 displays the process of releasing the driver
component.

During the clean-up process, the following steps occur.
1 . First, either the XMC Driver Administrator, or the XMC

Motion Component call the final IUnknownzzRelease.
2. When invoked, the IUnknownzzRelease method imple-

mented by the CDriverObject is called. After calling this
method causes the internal OLE reference count to go to zero,
driver calls its implementation of ICOM_BasezzUninitialize
to clean up all resources used.

3. First, ICOM_BasezzUninitialize directs the CDrvExt-

Disp to clean up any resources that it was using.

Page 103 0f110

Page 104 of 110

US 8,073,557 B2

43

4. Next, ICOM_BasezzUninitialize directs the CDerore-

Disp object to clean up any resources that it was using.
5. Since the CDeroreDisp object contains instances of all

manager objects, it begins cleaning them up by first directing
the CCommandMgr to destroy any resources that it was
using. Internally, the CcommandMgr destroys the CCom-
mandDatabase and all of its contents.

6. Next, the CDeroreDisp object implicitly destroys all
other manager objects by calling their destructors.

7. And as a final step, the ICOM_BasezzUninitialize
method deletes the state handle containing a pointer to the
CDriverInfo object. When destroyed, the CDriverInfo object
deletes each CSimpleStream object, which in turn release
their instance ofthe XMC Stream component. Upon releasing
the final instance of the XMC Stream component, the com-
ponent dll is freed from memory.

After a driver is successfully installed into the XMC sys-
tem and configured using the driver administrator, it is ready
for use by the XMC Motion Control Component. The com-
ponent uses the driver when performing motion control
operations requested from the application using the compo-
nent. FIG. 65 describes the component directed operations
that can take place on the driver.

Before operating, the XMC Motion Component must
query the Driver administrator 32 component for its driver
enumeration. The enumeration returned is used to access all

enabled drivers that are directed to perform XMC SPI opera-
tions by the XMC Motion Component.

Once the driver enumeration is acquired, the Motion con-
trol component 35 can direct the enabled driver, or drivers, to
carry out certain command operations. Command operations
are standard motion control operations such as moving to a
specific location in the system, or querying the system for the
current position. FIG. 65 describes the process of command-
ing the driver to carry out a certain operation.

When commanding the driver to perform a certain opera-
tion, the following steps occur.

1 . First, the motion component directs the driver to perform
the operation, such as moving to a position or querying the
system for the current position.

2. The XMCSPI invocation is handled by the CDriverOb-
ject who implements all OLE interfaces exposed by the com-
ponent.

3. The CDriverObj ect directs either the CDeroreDisp, or
CDrvExtDisp object to perform the operation, depending on
whether the operation is a core or extended XMCSPI. The
component state handle is passed to the dispatch object when
called.

4. The dispatch object then typecasts the state handle into a
CDriverInfo object pointer.

5. Next, the dispatch object connects the CCommandMgr
to the CDriverInfo object pointer and directs it to carry out the
operation corresponding to the database index sent. The data-
base index corresponds to the XMCSPI called and is used to
locate the language database entry for that SPI call.

6. The CCommandMgr searches the CCommandDatabase
for the index and builds a CCommand object corresponding
to the XMCSPI operation.

7. Next, the CCommandMgr directly accesses the CDriv-
erInfo and passes the command string, built by the CCom-
mand object, to all enabled streams.

8. Each enabled stream sends the ASCII text to its target.
For example, the PCBus steam sends its data to the motion

10

15

20

25

30

35

40

45

50

55

60

65

44

control card located on the PCBus. The text file stream, on the
other hand, sends its data to its associated text file.

9. If directed, the CCommandMgr then queries the first
readable stream for the results of the commands sent to itl.

10. The CSimpleStream reads the raw response from the
target and returns it to the CCommandMgr.

11. Once receiving the raw response, the CCommandMgr
uses the CResponse object to parse the raw response based on
the response format corresponding to the XMCSPI database
entry. All response parameters are returned back up the call-
ing chain, and eventually end up in the hands of the original
caller, the XMC Motion Component.

The clean-up initiated by the XMC Motion Component by
releasing the XMC Driver component is the same as that
which occurs when the Driver administrator 32 object
releases the component.

The following discussion describes the actual OLE Inter-
faces exposed, the definitions ofthe data structures used when
passing data around, and the definitions of each class used
internally by the driver.

The following diagram describes all interfaces exposed by
the driver specific to driver-component interpretability. FIG.
66 graphically displays the interfaces exposed by the compo-
nent.

Other than the two standard interfaces exposed, such as
IUnknown and IClassFactory, there are three categories of
interfaces exposed by the component. The three categories
are as follows.

COM: All interface names with the COM_prefix, imple-
ment general COM functionality. For example, the
ICOM_Base, ICOM_Base2, ICOM_Persist2, and

ICOM_PersistRegDB interfaces all fall into this cat-
egory.

LNG: All interface names with the LNG_prefix, imple-
ment general language driver functionality. For
example, the ILNG_Derore_Init, and the
ILNG_DrvExt_StreamMgmt interfaces fall into this
category.

XMC: All interfaces name with the XMC_prefix, imple-
ment XMCSPI (driver) functionality.

The following sections describe the interfaces falling into
both the COM and LNG categories. All other interfaces are
XMCSPI specific and are used for the sole purpose of per-
forming motion control operations.

The following exposed methods in the ICOM_Base inter-
face are used when initializing and uninitializing the compo-
nent. Each of these methods call the hidden initialize and

uninitialize interface methods implemented by all ofthe com-
ponent’s interfaces.

DECLARE,INTERFACE,(ICOMiBase, IUnknown)
{

STDMETHOD (Initialize)(THIS, LPVOID pInitInfo) PURE;
STDMETHOD (Uninitialize)(THIS) PURE;

};

The ICOM_Base2 interface inherits from the ICOM_Base

interface and adds several methods used to manage the inter-
nal component state handle. In addition, a method allows the
user to translate any HRESULT returned by the component
into a human readable text string. The following is a descrip-
tion of the ICOM_Base2 interface.

Page 104 ofllO

Page 105 of 110

US 8,073,557 B2

45

DECLARE,INTERFACE,(ICOM,Base2, ICOM,Base)
{

STDMETHOD (SetStateData)(THIS, COM,STATEHANDLE
hState) PURE; 5

STDMETHOD (GetStateData)(THIS, LPCOM,STATEHANDLE
phState) PURE;

STDMETHOD (GetErrorString)(THIS, HRESULT hr, LPSTR
pszErr, DWORD deaX) PURE;
};

10

The ICOM_Persist2 interface inherits from the IPersist
standard OLE interface and adds several methods used to

query the CLSID and module type. The following is a

description of the ICOM_Persist2 interface. 15

DECLARE,INTERFACE,(ICOM,Persist2, IPersist)
{

STDMETHOD (GetID)(THIS, LPDWORD pdeD) PURE;

46

DECLARE,INTE {FACE,(ILNG,Derore,Init, IUnknown)
{

STDMETI OD (Create)(THIS, LPLNG,DRIVER,INFO pDI)
PURE;
STDMETI OD (Destroy)(THIS) PURE;
STDMETI OD (Setup)(THIS, LPLNG,DRIVER,INFO pDI)
PURE;
STDMETI OD (Stat)(THIS, LPLNG,DRIVER,INFO pDI)
PURE;
STDMETI OD (Register)(THIS) PURE;
STDMETI OD (UnRegister)(THIS) PURE;
STDMETI OD (IsRegistered)(THIS, LPBOOL pregistered)
PURE;
STDMETI OD (Enable)(THIS, BOOL fEnable) PURE;
STDMETI OD (IsEnabled)(THIS, LPBOOL prnabled)
PURE;

The ILNG_DrvExtS_treamMgmt interface1s used to per-

0form all stream operations. The following1s a description of
the LNG_DrvExt_StreamMgmt interface.

DECLARE,INTE {FACE,(ILNG,DrvEXt,StreaInMgmt, IUnknown)
{ S")M
*ppEnumStream)

‘ , O D (GetStreamEnumera ion)(THIS, LPENUMUNKNOWN FAR

PURE;
S" O D (GetStreamCount)("HIS, LPDWORD pdwCount) PURE;
S” O D (GetStreaInInit)(THIS, XMC,STREAMID idStreaIn,
L)XMCSTRzAMINIT FAR *ppStreaInInit) PURE;
S”)M S , O D (GetStreaInInitAt)(‘H,IS DWORD dedX,
L)XMCSTRzAMINIT FAR *ppStreaInInit) PURE;
S”)M S , O D (AddStreaIn)(THIS, LPXMCSTREAMINIT pStreaInInit) PURE;
S”)M S , O D (RemoveStreaIn)(T IIS, LPXMCSTREAMINIT pStreaInInit,
BOOL Destroy) PURE;
S”)M S , O D (RemoveStreaIn)(T IIS, XMC,STREAMID idStreaIn, BOOL

bDestroy)
PURE;
S")M l , O D (RemoveAllStreams)(THIS, BOOL bDestroy) PURE;
S")M l , O D (EnabledStreamsOn y)(THIS, BOOL bEnabledOnly,
L) 3OOL 3bOldEnabledOnly) PURE;

};

-continued The following are the functions exported by the driver
— DLL.

STDMETHOD (GetModuleType)(THIS, LPDWORD pdeT) 45
PURE;

};

The ICOM_PersistRegDB interface implements similar
functionality to that provided by the IPersistFile standard 50
OLE interface. Instead of saving and loading data to and from
a file, the ICOM_PersistRegDB operates on the registration
database. The following is a description of the ICOM_Per-
sistRegDB interface. 55

DECLARE,INTERFACE,(ICOM,PersistRegDB, IUnknown)
{

STDMETHOD (IsDiIty)(THIS) PURE;
STDMETHOD (Load)(THIS,HKEY hKey) PURE; 60
STDMETHOD (Save)(THIS, HKEY hKey) PURE;
STDMETHOD (Clear)(THIS, HKEY hKey) PURE;

};

The ILNG_Derore_Init interface is used to initialize the 65

language driver component. The following is a description of
the ILNG_Derore_Init interface.

XMC,DRIVER,MODULETYPE DLLGetModuleType(void);
LPCLSID DLLGetCLSID(void);
BOOL DLLRegisterServer(void);
BOOL DLLUnRegisterServer(void);

The following discussion defines all structures, enumera-
tions, and defines used by the driver.

The XMC_DRIVER_MODULETYPE enumeration

defines the type of drivers available. Each driver must return
its type when the user calls the exported DLLGetModuleType
function.

enum XMC,DRIVER,MODULETYPE
{

XMC,DRIVER,MT = 0x4000,
XMC,DRIVER,MT,AT6400 = 0x4001,
XMC,DRIVER,MT,DMC1000 = 0x4002,
XMC,DRIVER,MT,DT2000 = 0x4003,
XMC,DRIVER,MT,CUSTOM = 0x4004

};

Page 105 0f110

Page 106 of 110

US 8,073,557 B2

47

The XMC_DRVCORE_CMD enumeration defines an

identifier for every command known to the XMC Driver. For
example, every core Driver function has a corresponding
XMC_DRVCORE_CMD identifier. This index is used to

look up the string block for the command. The definition of
the enumeration is as follows.

enurn XMC7DRVCORE7CMD
{

XMC7DCC7MOTION7MOVEABS,
XMC7DCC7MOTION7KILL,

};

The XMC_DRVEXT_CMD enumeration defines an iden-

tifier for every extended command known to the XMC Driver.
Even though the identifiers exist, the driver may or may not
implement the set ofcommands. For example, every extended
Driver function has a corresponding XMC_DRVEXT_CMD
identifier. This index is used to look up the string block for the
command (if the driver implements the command). The defi-
nition of the enumeration is as follows.

enurn XMCiDRVEXTiCMD
{

XMCiDCEiMOTlONiMOVEREL,

};

The LNG_PARAM_DATATYPE enumeration defines all

types ofdata blocks that may be parsed from response strings
returned by stream targets.

typedef enum ,LNGiPARAMiDATATYPE
{

LNGiADTiNOP,
LNGiADTiNOTYPE,
LNGiADTiNUMBER,
LNGiADT,STAT,STRING,
LNGiADTiMEMis TRING

} LNGiPARAMiDATATYPE;

The LNG_PARAM_DATA structure stores all types of
data that describe a parameter either built into a command, or
parsed from a response.

struct LNGiPARAMiDATA
{ //---- Constructor & Destructor ----

LNG,PARAM,DATA(void);
~LNG7PARAM7DATA(void);
//---- Data ----
LNGiPARAMiDATATYPE adt;
union

{
double df;
LPTSTR ps2;

};

The LNG_DRIVER_INFO structure is used when setting
up and querying the state of the driver.

5

10

15

20

25

30

35

40

45

50

55

60

65

48

typedef struct ,LNGiDRIVERilNFO
{

DWORD mimt;
LNGiDRIVERID milD;
TCHAR m,szName[LNGiDRIVER,

NAMEiLEN+1];
TCHAR m,szDescription[

LNG,DRIVER,DESC,LEN+1];
TCHAR m,szHWVendor[

LNGiDRIVERiNAMEiLENH] ;
} LNGiDRIVERilNFO;

Each XMC Driver is responsible for managing all streams
used. In order to manage each stream over time in a persistent
manner each driver and stream module implement the persis-
tent functionality exposed through the lCOM_PersistRegDB
interface. When the driver’s implementation of lCOM_Per-
sistRegDB::Save is called, the data is saved to the registry in
the following order.

XMCDriverAdminObj ect. 100
l---- Drivers

---- dwCount = <# of drivers>
---- XMCDrv70

l---- CLSID = {clsid}
l---- dwFlags = <driver flags>
l---- dwlD = <d.river lD>
l---- deoduleType = XMC7DRIVER7MT7xxx
l---- szDescription = <user desc of the driver>
l---- Streams

l---- Count = <# of streams>
l---- XMCStrnLO
l l---- CLSID = {clsid}
l l---- dwlD = <strm id>
l l---- deoduleType =

XMC7STREAM7MT7xxx
l l---- <stream specific values>
l
l ---- XMCStrm7<n>

---- XMCDrv7<n>

It should be clear from the foregoing that the present inven-
tion may be embodied in other specific forms without depart-
ing from the essential characteristics thereof. The present
embodiments are therefore to be considered in all respects as
illustrative and not restrictive, the scope of the invention
being indicated by the appended claims rather than by the
foregoing description; all changes which come within the
meaning and range of equivalency of the claims are therefore
intended to be embraced therein.

We claim:

1. A motion control system, comprising:
an application program comprising at least one call to at

least one component function;
a plurality of motion controllers, where

each of the motion controllers is capable of causing a
motion control operation,

a plurality ofmotion controller languages are associated
with the plurality of motion controllers,

each motion controller language comprises control com-
mands, where at least one control command is capable
of processing information associated with the move-
ment of an object, and

at least one of the plurality of motion controller lan-
guages is associated with at least one of the motion
controllers;

Page 106 0f110

Page 107 of 110

US 8,073,557 B2

49

a set of software drivers each comprising driver code,
where
each software driver is associated with at least one of the

plurality of motion controller languages,
each software driver exposes a service provider interface

comprising a set of driver functions, where
the driver functions are independent ofthe plurality of

motion controller languages,
at least one driver function is an extended driver func-

tion that is associated with a non-primitive motion
operation that can be performed using at least one
primitive motion operation, where the at least one
primitive motion operation cannot be performed
using a combination of primitive or non-primitive
motion operations,

at least one driver function is a core driver function

that is associated with a primitive motion opera-
tion,

the driver code of at least one software driver associ-
ates at least one driver function with at least one
control command of the at least one motion con-

troller language associated with at least one of the
software drivers, and

at least one selected software driver is associated with

at least one selected motion controller;

a motion component comprising component code, where
the motion component exposes an application program-
ming interface comprising a set ofcomponent functions,
where

each component function is implemented by component
code, and

at least the component code is independent of the plu-
rality of motion controller languages, and

the component code associates at least one of the com-
ponent functions with at least one of the driver func-
tions; whereby

the at least one selected software driver generates at least
one control code from the motion controller language
associated with the at least one selected motion control-

ler based on the at least one component function called
by the application program, the component code, and the
driver code of the at least one selectable software driver.

2. A motion control system as recited in claim 1, in which:
the component code associates at least one component

function with a plurality of core driver functions; and
the component code associates at least one component

function with one of the core driver functions.

3. A motion control system as recited in claim 1, in which:
the component code implements at least one extended

driver function by associating at least one component
function with a plurality of core driver functions; and

the component code implements at least one core driver
function by associating at least one component function
with one of the core driver functions.

4. A motion control system as recited in claim 1, in which:
the component code emulates at least one extended driver

function by associating at least one component function
with a plurality of the core driver functions;

the component code implements at least one extended
driver function by associating at least one component
function with one of the extended driver functions; and

the component code implements at least one core driver
function by associating at least one component function
with one of the core driver functions.

5

10

15

20

25

30

35

40

45

50

55

60

65

50

5. A motion control system as recited in claim 1, in which
the application program further comprises at least one call to
a component function comprising at least one parameter,
where:

the at least one parameter is associated with a data item
associated with the selected motion controller; and

the at least one parameter is passed from the application
program to the selected software driver by the motion
component.

6. A motion control system as recited in claim 1, in which
the software drivers are binary modules.

7. A motion control system as recited in claim 1, in which
the software drivers conform to the service provider interface
such that the software drivers may be interchanged without
changing the component code.

8. A motion control system as recited in claim 1, further
comprising a plurality of streams, where each stream contains
transmit stream code that determines how control commands
are transmitted to a destination of control commands.

9. A motion control system as recited in claim 8, in which
the destination of the control commands is the at least one
selected motion controller.

10. A motion control system as recited in claim 8, where in
at least one stream is a stream binary module that can be
interchanged with other stream binary modules without
changing the software driver that uses the stream.

11. A motion control system as recited in claim 8, in which
the destination of the control commands is a file.

12.A motion control system as recited in claim 1, in which:
the motion component is a component binary module;
the software drivers are driver binary modules; and
the driver binary modules may be interchanged without

changing the component binary module.
13. A motion control system as recited in claim 1, wherein

the control commands of each of the plurality of motion
controller languages comprise binary codes.

14. A motion control system as recited in claim 1, in which
the component code uses a function table that associates at
least one of the component functions with at least one of the
driver functions.

15. A motion control system as recited in claim 13, in
which the function table is a function pointer table.

16. A motion control system, comprising:
an application program comprising at least one call to at

least one component function;
a plurality of motion control devices, where

a plurality ofunique controller languages are associated
with the plurality of motion control devices,

each controller language comprises at least some control
commands for processing information associated
with motion control devices, and

each of the motion control devices comprises
a controller capable of generating electrical signals

based on at least one control command of the con-

troller language associated with the motion control
device, and

a mechanical system capable of causing a motion
control operation based on electrical signals gener-
ated by the controller,

a set of software drivers each comprising driver code,
where
each software driver is associated with at least one ofthe

plurality of controller languages, and
each software driver exposes a service provider interface

defining a set of driver functions, where
the driver functions are independent ofthe plurality of

controller languages,

Page 107 0f110

Page 108 of 110

US 8,073,557 B2

51
at least one driver function is an extended driver func-

tion that is associated with a non-primitive motion
operation that can be performed using at least one
primitive motion operation, where the at least one
primitive motion operation cannot be performed
using a combination of primitive or non-primitive
motion operations,

at least one driver function is a core driver function

that is associated with a primitive motion opera-
tion,

the driver code of at least one software driver associ-
ates at least one driver function with at least one
control command of the at least one controller lan-

guage associated with at least one of the software
drivers, and

at least one selected software driver is associated with

at least one selected motion control device;
a motion component comprising component code, where

the motion component exposes an application program-
ming interface comprising a set ofcomponent functions,
where

each component function is implemented by component
code,

at least the component code is independent of the plu-
rality of controller languages, and

the component code associates at least one of the com-
ponent functions with at least one of the driver func-
tions;

wherein

the at least one selected software driver generates at least
one control command in the controller language associ-
ated with the at least one selected motion control device

based on the calls to component functions of the appli-
cation program, the component code, and the driver code
of the at least one selected software driver.

17. A motion control system as recited in claim 16, in
which:

the component code associates at least one component
function with a plurality of core driver functions; and

the component code associates at least one component
function with one of the core driver functions.

18. A motion control system as recited in claim 16, in
which:

the component code implements at least one extended
driver function by associating at least one component
function with a plurality of core driver functions; and

the component code implements at least one core driver
function by associating at least one component function
with one of the core driver functions.

19. A motion control system as recited in claim 16, in
which:

the component code emulates at least one extended driver
function by associating at least one component function
with a plurality of the core driver functions;

the component code implements at least one extended
driver function by associating at least one component
function with one of the extended driver functions; and

the component code implements at least one core driver
function by associating at least one component function
with one of the core driver functions.

20. A motion control system as recited in claim 16, in
which the application program further comprises at least one
call to a component function comprising at least one param-
eter, where:

the at least one parameter is associated with a data item
associated with the at least one selected motion control

device; and

10

15

20

25

30

35

40

45

50

55

60

65

52

the at least one parameter is passed from the application
program to the at least one selected software driver by
the motion component.

21. A motion control system as recited in claim 16, in
which the software drivers are binary modules.

22. A motion control system as recited in claim 16, in
which the software drivers conform to the service provider
interface such that the software drivers may be interchanged
without changing the component code.

23. A motion control system as recited in claim 16, further
comprising a plurality of streams, where each stream contains
transmit stream code that determines how control commands
are transmitted to a destination of control commands.

24. A motion control system as recited in claim 23, in
which the destination of the control commands is the at least
one selected motion control device.

25. A motion control system as recited in claim 23, where
in at least one stream is a stream binary module that can be
interchanged with other stream binary modules without
changing the software driver that uses the stream.

26. A motion control system as recited in claim 23, in
which the destination of the control commands is a file.

27. A motion control system as recited in claim 16, in
which:

the motion component is a component binary module;
the software drivers are driver binary modules; and
the driver binary modules may be interchanged without

changing the component binary module.
28.A motion control system as recited in claim 16, wherein

the control commands of each of the plurality of controller
languages comprise binary codes.

29. A motion control system as recited in claim 16, in
which the component code uses a function table that associ-
ates at least one of the component functions with at least one
of the driver functions.

30. A motion control system as recited in claim 29, in
which the function table is a function pointer table.

31. A motion control system, comprising:
an application program comprising at least one call to at

least one component function;
a plurality of motion controllers, where

each of the motion controllers is capable of causing a
motion control operation,

a plurality of sets of control commands are associated
with the plurality of motion controllers,

each set of control commands comprises at least one
control command that is capable of processing infor-
mation associated with the movement of an object,
and

at least one of the plurality of sets of control commands
is associated with each of the motion controllers;

a set of software drivers each comprising driver code,
where
each software driver is associated with at least one ofthe

plurality of sets of control commands,
at least one selected software driver is associated with at

least one selected motion controller;
each software driver exposes a service provider interface

defining a set of driver functions, where
the driver functions are independent ofthe plurality of

sets of control commands,
at least one driver function is an extended driver func-

tion that is associated with a non-primitive motion
operation that can be performed using a combina-
tion of primitive motion operations, where primi-

Page 108 0f110

Page 109 of 110

US 8,073,557 B2

53

tive motion operations cannot be performed using a
combination of primitive or non-primitive motion
operations,

at least one driver function is a core driver function

that is associated with a single one of the primitive
motion operations, and

the driver code of at least one software driver associ-
ates at least one driver function with at least one
control command of the at least one set of control
commands associated with at least one of the soft-

ware drivers, and
a motion component comprising component code, where

the motion component exposes an application program-
ming interface comprising a set ofcomponent functions,
where

each component function is implemented by component
code,

at least the component code is independent of the plu-
rality of sets of control commands, and

the component code associates at least one of the com-
ponent functions with at least one of the driver func-
tions; whereby

the at least one selected software driver generates a
sequence of one or more control commands from the set
of control commands associated with the at least one

selected controllerbased on the calls to component func-
tions of the application program, the component code,
and the driver code of the at least one selected software
driver.

32. A motion control system as recited in claim 31, in
which:

the component code associates at least one component
function with a plurality of core driver functions; and

the component code associates at least one component
function with one of the core driver functions.

33. A motion control system as recited in claim 31, in
which:

the component code implements at least one extended
driver function by associating at least one component
function with a plurality of core driver functions; and

the component code implements at least one core driver
function by associating at least one component function
with one of the core driver functions.

34. A motion control system as recited in claim 31, in
which:

the component code emulates at least one extended driver
function by associating at least one component function
with a plurality of the core driver functions;

the component code implements at least one extended
driver function by associating at least one component
function with one of the extended driver functions; and

the component code implements at least one core driver
function by associating at least one component function
with one of the core driver functions.

35. A motion control system as recited in claim 31, in
which the application program further comprises at least one
call to a component function comprising at least one param-
eter, where:

the at least one parameter is associated with the at least one
selected motion controller; and

the at least one parameter is passed from the application
program to the at least one selected software driver by
the motion component.

36. A motion control system as recited in claim 31, in
which the software drivers are binary modules.

37. A motion control system as recited in claim 31, in
which the software drivers conform to the service provider

10

15

20

25

30

35

40

45

50

55

60

65

54

interface such that the software drivers may be interchanged
without changing the component code.

38. A motion control system as recited in claim 31, further
comprising a plurality of streams, where each stream contains
transmit stream code that determines how control commands
are transmitted to a destination of control commands.

39. A motion control system as recited in claim 38, in
which the destination of the control commands is the at least
one selected motion controller.

40. A motion control system as recited in claim 38, where
in at least one stream is a stream binary module that can be
interchanged with other stream binary modules without
changing the software driver that uses the stream.

41. A motion control system as recited in claim 38, in
which the destination of the control commands is a file.

42. A motion control system as recited in claim 31, in
which:

the motion component is a component binary module;
the software drivers are driver binary modules; and
the driver binary modules may be interchanged without

changing the component binary module.
43 . A motion control system as recited in claim 31, wherein

the control commands of each of the plurality of controller
languages comprise binary codes.

44. A motion control system as recited in claim 31, in
which the component code uses a function table that associ-
ates at least one of the component functions with at least one
of the driver functions.

45. A motion control system as recited in claim 43, in
which the function table is a function pointer table.

46. A motion control system, comprising:
an application program comprising at least one call to at

least one component function;
a plurality of controllers, where

each of the controllers is capable of causing a motion
control operation,

a plurality of sets of control commands are associated
with the plurality of controllers,

each set of control commands comprises at least one
control command that is capable of processing infor-
mation associated with the movement of an object,
and

at least one of the plurality of sets of control commands
is associated with each of the controllers;

a set of software drivers each comprising driver code,
where
each software driver is associated with at least one ofthe

plurality of sets of control commands,
at least one selected software driver is associated with at

least one selected controller;
each software driver exposes a service provider interface

defining a set of driver functions, where
the driver functions are independent ofthe plurality of

sets of control commands,
at least one driver function is an extended driver func-

tion that is associated with a non-primitive motion
operation that can be performed using a combina-
tion of primitive motion operations, where primi-
tive motion operations cannot be performed using a
combination of primitive or non-primitive motion
operations,

at least one driver function is a core driver function

that is associated with a single one of the primitive
motion operations, and

the driver code of at least one software driver associ-
ates at least one driver function with at least one

Page 109 0f110

Page 110 of 110

US 8,073,557 B2

55
control command of the at least one set of control
commands associated with at least one of the soft-

ware drivers, and

a motion component comprising component code, where
the motion component exposes an application program-
ming interface comprising a set ofcomponent functions,
where

each component function is implemented by component
code,

at least the component code is independent of the plu-
rality of sets of control commands, and

the motion component uses a function table to associate
at least one of the component functions with at least
one of the driver functions, and

whereby
the at least one selected software driver generates at least

one control command from the set ofcontrol commands
associated with the at least one selected controller based

on the calls to component functions of the application
program, the component code, and the driver code of the
at least one selected software driver.

47. A motion control system as recited in claim 46, in
which the motion component uses a function table to associ-
ate at least one component function with a plurality of core
driver functions.

48. A motion control system as recited in claim 46, in
which:

the component code implements at least one extended
driver function by associating at least one component
function with a plurality of core driver functions; and

the component code implements at least one core driver
function by associating at least one component function
with one of the core driver functions.

49. A motion control system as recited in claim 46, in
which:

the component code emulates at least one extended driver
function by associating at least one component function
with a plurality of the core driver functions;

the component code implements at least one extended
driver function by associating at least one component
function with one of the extended driver functions; and

10

15

20

25

30

35

40

56

the component code implements at least one core driver
function by associating at least one component function
with one of the core driver functions.

50. A motion control system as recited in claim 46, in
which the application program further comprises at least one
call to a component function comprising at least one param-
eter, where:

the at least one parameter is associated with a data item
associated with the at least one selected controller; and

the at least one parameter is passed from the application
program to the at least one selected software driver by
the motion component.

51. A motion control system as recited in claim 46, in
which the software drivers are binary modules.

52. A motion control system as recited in claim 46, in
which the software drivers conform to the service provider
interface such that the software drivers may be interchanged
without changing the component code.

53. A motion control system as recited in claim 46, further
comprising a plurality of streams, where each stream contains
transmit stream code that determines how control commands
are transmitted to a destination of control commands.

54. A motion control system as recited in claim 53, in
which the destination of the control commands is the at least
one selected controller.

55. A motion control system as recited in claim 53, where
in at least one stream is a stream binary module that can be
interchanged with other stream binary modules without
changing the software driver that uses the stream.

56. A motion control system as recited in claim 53, in
which the destination of the control commands is a file.

57. A motion control system as recited in claim 46, in
which:

the motion component is a component binary module;
the software drivers are driver binary modules; and
the driver binary modules may be interchanged without

changing the component binary module.
58.A motion control system as recited in claim 46, wherein

the control commands of each of the plurality of controller
languages comprise binary codes.

59. A motion control system as recited in claim 46, in
which the function table is a function pointer table.

* * * * *

Page 110 ofllO

