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Plan Recognition and Generalization in Command 
Languages with Application to Telerobotics 

Wael I. Yared and Thomas B. Sheridan, Fellow, IEEE 

Abstract-A method for pragmatic inference as a necessary accompa- 
niment to command languages is proposed. The approach taken focuses 
on the modeling and recognition of the human operator’s intent, which 
relates sequences of domain actions (“plans”) to changes in some model of 
the task environment. The salient feature of this module is that it captures 
some of the physical and linguistic contextual aspects of an instruction. 
This provides a basis for generalization and reinterpretation of the 
instruction in different task environments. The theoretical development 
is founded on previous work in computational linguistics and some 
recent models in the theory of action and intention. To illustrate these 
ideas, an experimental command language to a telerobot is implemented; 
the program consists of three different components: a robot graphic 
simulation, the command language itself, and the domain-independent 
pragmatic inference module. Examples of task instruction processes are 
provided to demonstrate the benefits of this approach. 

I. MODELING PRAGMATICS IN COMMAND LANGUAGES 

A. The Problem 
KEY ISSUE in command language design is the modeling A and communication of the human user’s intent. Intent relates 

sequences of domain actions (“plans”) to changes in some model 
of the task environment. Its representation clearly constitutes, 
therefore, an issue in pragmatics. (For an introductory text on 
pragmatics, or the contextual use of language, see Levinson 
[15]. Some of the original papers in philosophy of language that 
have pioneered the field of linguistic pragmatics can be found 
in Martinich [ 171-in particular, articles by GRICE, Austin, 
and Searle.) Command languages for interactive systems such 
as telerobots have been traditionally restricted to the syntactic 
and semantic aspects of the interaction, thus giving rise to 
two main limitations. First, commands are supported as single, 
isolated utterances rather than as interrelated steps in a cohesive 
discourse. Second, little or no contextual information is captured 
from the human operator’s instruction, such as the relevance of 
a particular step in the instruction to the overall task. Without 
a common underlying representation of action interrelationships 
and intentionality, no amount of computation can perform the 
reasoning expected in a truly cooperative process, such as gen- 
eralizing a plan of action or exploiting contingencies in the task 
environment. A human-computer interaction that lacks these 
notions is artificial-not in the sense of requiring the human 
to learn a formal syntax, but in the more aggravating one of 
lacking the purposive dimension of any human language. 

To illustrate, consider the following scenario, chosen from the 
machine learning literature (Andreae [3]). A robot is to pick a 
block from the first row of a warehouse and return with it to 
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its starting position, somewhere outside the warehouse (Fig. 1). 
The operator types (in some robot command language, e.g., VAL 
or RAPT (Lozano-Perez [16]) a sequence of commands that 
achieves this particular operation, which the robot then executes. 

Suppose now the first row becomes depleted of blocks. A 
relevant question would be whether the robot can benefit from 
any part of the previous instruction to face this new situation, 
where it has to try the second row. There is more to this problem 
than a simple substitution of parameters: the general block- 
retrieval procedure may turn out to have a complex structure 
(with branching forks, iterative loops, etc.) not present in the 
initial formulation of the task by the operator. Recovery of the 
general procedure from a linear sequence of commands provided 
by the human operator partly involves identifying the operator’s 
intent behind each element of the sequence. 

The motivation for this research stems from the difficulty 
of interfacing with semiautonomous telerobots operating in un- 
structured environments such as outer space. These systems are 
typically called on to perform nonrepetitive tasks, and methods 
must be developed to achieve on-line task instruction and plan 
generalization. 

B. The Approach 
We approach the procedure-acquisition problem from a plan 

recognition perspective. A plan recognition system reasons about 
a set of described or observed actions, which it attempts to ex- 
plain by constructing a plan that contains them (Kautz and Allen 
[ 131). Classical plan recognition essentially revolves around a 
search and match method applied to a library of possible plans. 
We are departing from the classical plan recognition formalism 
in two ways. First, we are extending it from the domain of 
question-answering, in which it had been developed (Allen and 
Perrault [l]) and is traditionally applied (e.g., Perrault and Allen 
[19], Allen [2], Sidner [23]) to that of acquiring procedures 
from traces. Second, we are applying it to recognize intentions 
and generalize from plans. In other words, the human operator 
provides the entire plan as a sequence of actions applicable in 
one particular instance, and it is the recognition system’s burden 
to infer the operator’s intentions. It is important to point out 
what this entails: first, since the entire plan is provided by the 
operator, the usual search control problems are avoided and the 
closed-world assumption necessary to current plan recognition 
systems can be lifted. This enables the system to deal with novel 
situations and plans, a vital capability for systems that learn. 
Intention recognition, as used here, is not a search and match 
process but one of nondeductive inference. Second, a general- 
ization technique is added to the recognition algorithms. This 
generalization (or “plan reinterpretation”) algorithm makes use of 
the information inferred in the recognition stages, and evaluates 
the relevance of the intended acts of the plan in the new context. 
The intention recognition and plan reinterpretation algorithms are 
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based on a representation of action interrelationships and a model 
of intentional action that are explained in the next section. The 
central feature of this representation is the emphasis it places 
on the relevance of an action in a plan, or the role each act 
plays in the plan. We draw a parallel here between utterances in 
a natural language discourse and physical actions as steps in a 
plan: just as the context of a discourse provides constraints on the 
interpretation of each of its utterances, so does the overall plan 
form the role of each of its actions. We focus on just two features 
of context here, the physical and the “linguistic.” The physical 
context of an action in a plan is the particular configuration of 
the task environment at the onset of that action, including the 
location and physical features of each object, the agent, and the 
complete state of the agent. The “linguistic” context of an action 
in an instruction is meant here to include the other steps of the 
instruction (the remaining actions).’ 

To illustrate these ideas, we present a simple command lan- 
guage for an instructible two degree of freedom Cartesian ma- 
nipulator as a case study. 

11. ACTION INTERRELATIONSHIPS IN PLANS 

A. Background 
The AI literature defines a plan to be a temporal order on a 

finite number of steps (Chapman [7]), which almost invariably 
represent actions.’ Following the early STRIPS model (Fikes and 
Nilsson [9]), actions are usually represented by operators; each 
operator instance is characterized by finite sets of prerequisites, 
positive effects and negative effects (Genesereth and Nilsson 
[lo]). States of the world are represented by situations, or 
sets of propositions. A planning problem then consists of an 
initial situation, a goal situation, and a database of operators 
that describes the available actions. An adequate plan must 
demonstrably achieve the goal situation when executed in the 
initial state. 

Standard plan recognition systems explain a set of described 
or observed actions by constructing a plan that contains them 
(Kautz and Allen [13]). Typically, they need a plan library to do 
so. The plan library is assumed to be correct and complete: thus, 

‘The parallel between utterances and physical acts is generally credited 
to Austin (see [4] in particular] in the philosophy of language literature. Its 
earliest Occurrence in the computational literature is in Bruce [6], expanded 
upon in Cohen and Perrault [8]. While Austin’s essential point was to see 
utterances as being “performative,” or similar to physical acts, we adopt here 
the reverse view and model the interpretation of physical acts after that of 
natural language utterances. 

‘But see Lansky [14] for an event-based representation. The classical 
(“state-based”) definition given previously runs into several problems, for 
example, in representing concurrent or continuous actions. 

Operator Library 

Input: a or {a,} Plan Recognition o u t p u t :  II, En 

Fig. 2. Standard plan recognition. 

not only must the operator library (the repertoire of primitive 
actions) contain representations of all valid actions in the domain, 
it must also contain representations of all propositions and actions 
that can be related to any encoded action. In other words, all 
valid action combinations that occur in a particular domain must 
be encoded. A plan recognizer is then a search and matching 
process (Goodman and Litman [12]) that takes the input-e.g., 
a described action or set of actions-and finds all the plans in 
the plan library that are consistent with the input. See Fig. 2. 

As stated in Pollack [20], three different relations (and special 
cases thereof) can exist between two actions a and /3 of a plan: 

1) a causes p: there is an operator with header a in the 

2) a is-a-precondition-of p: there is an operator with header 
in the operator library that has a on its precondition list. 

3) a is-a-way-to p: there is an operator with header /3 in the 

The first two relate actions that are at the same hierarchical 
level in a plan-in other words, siblings. The third relation 
differs from the previous two in that it depicts a as part of a 
step decomposition of ,l3 and not as a sibling of p. Consider the 
following typical operators: 

HEADER: pickup(x) 
PRECONDITIONS: ontable(x) handempty clear(x) 
EFFECTS: -ontable(x) A -handempty A holding(x) 

PRECONDITIONS: holding(x) 
EFFECTS: ontable(x) A handempty. 

The symbols A and - denote the logical connectives AND 
and NOT. In a pickup( block) + ungrasp( block) sequence the link 
between the two operators is an example of the precondition 
relationship because pickup (block) asserts (among other things) 
holding( block), the precondition for the ungrasp operator. 

The basic shortcoming of the STRIPS/NOAH (Sacerdoti [21]) 
representation of action interrelationships is that it underspecifies 
the role each act plays in the plan. Stated differently, the precon- 
dition/body/effect representation is not conducive to reasoning 
about actions in their context. For example in the definition 
of a plan comprising a pickup-iungrasp sequence, it is not 
explicitly specified just how the actions are related: for one 
thing, any realistic action operator is likely to have several side 
effects, besides the relevant one(s) for the purposes of the current 
sequence. In trying to reconstruct an agent’s plan from one or 
more observed actions, an observer using this representation will 
encounter the problem of deciding how to “thread the actions 
together. The view of plans as sequences of operators having lists 
of preconditions and effects is intuitive from a programmer’s 
perspective, and pervades most of the early computer science 
literature on planning. Following Bratman [5]  and Pollack [20], 
we refer to this as the “data structure” view of plans. 

We alter the data-structure view of plans in order to achieve 

operator library that has p on its effect list. 

operator library that has a (as part of) its body. 

HEADER: ungrasp(x) 
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Fig. 3. Initial state. 
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what Bratman and others have called the mental phenomenon 
view of plans (Bratman [5, pp. 28-35], or Pollack [20, chs. 
2 and 31). The latter view is chronologically posterior to the 
data structure view. It was recognized even as researchers were 
representing plans as sequences of NOAH operators (see for 
example Allen [2]). What the mental phenomenon view of plans 
emphasizes is the configurations of beliefs and intentions that 
must underlie any plan of rational action. We earmark plans by 
their underlying intentions, and use that information for later 
reasoning about and re-interpretation of plans. 

In summary, the present work attempts to go beyond the 
traditional data structure view of plans in two ways. First, it 
relates the plan of action to the concrete situation surrounding it. 
This requires an understanding of the relevance of each action to 
its corresponding situation. Second, whereas most previous work 
in planning essentially models plan languages more or less after 
formal programming languages, Pollack’s example is followed 
here in carefully building the action representation on foundations 
laid (informally) by philosophers of action. By combining these 
two steps, we obtain a system able to interpret and execute plans 
not just mechanically, by following a program counter, but in 
relation to their surroundings. 

B. Enablement 

In a sequence of actions forming a plan 11, some of these 
actions may be related to each other in a (yet to be defined) 
causal sense, while others may not. Consider, for example, the 
situation depicted in Fig. 3. The goal here is to have block-A 
outside the warehouse. The robot is constrained in its workspace 
by the walls of the warehouse and, in this example, in its motion 
by the two obstacles (blocks B and C). A plausible plan of action 
consists in removing block B, removing block C, and then getting 
blockA out of the warehouse. Let us assume that a nonprimitive 
“Remove” procedure has already been defined as shown in Fig. 4: 
it assumes its argument is a movable object in the environment 
to which the robot has clear access from its current position; the 
robot grasps that object and slides it along the row into oblivion, 
and then returns to the row entry point. The plausible plan to get 
A out of the warehouse is given by the operator as 

where 

a1 (Remove block-B) 
a2 (Remove block-C) 
a3 (move-to block-A) 
aq G (grasp block-A) 
a5 = (move-to [RE-x, R E y ] )  
as (move-to <targetgt>).  (2)  

Remove blockx: 
rem [XJ] ;remember current position 
move-to b l o c k  
grasp b l o c k  
move-to [1oooO.O,y] 
rotate( 180) 
ungrasp 
movefo  [x,y] 
rotate(l80) 

Fig. 4. Remove procedure. 

This should be read as “the plan II defined in initial situation 
So and consisting of the temporal sequence a1 to as.’’ Focus for 
the moment on the first 3 acts: al ,  cy2, and a3. It is evident that 
a1 and a2 belong to the category of acts in a plan that are not 
causally related to each other. a1 and a2 are independent, and it 
is reasonable to assume that the operator is not committed to any 
particular ordering of a1 and a2. Furthermore, the performance 
of one leaves the other totally unaffected, save for occupying the 
robot’s resources temporarily. As a matter of fact, if we assume 
a robot with infinite resources, then a1 and a2 might as well 
be carried out simultaneously without disrupting the rest of the 
plan. Contrast the relation of a1 to a2 with that of a2 to a3: a2 
and a3 are also in simple sequence and they do not overlap, but 
they are certainly not exchangeable. Even more important, the 
performance of a2 is vital to that of a3: a fact that does not hold 
for the first pair. The relationship of al to a2 is one of simple 
concatenation. This relationship is rather trivial, and is of little 
interest for our purposes. We shall return to it later, however, 
when we come to examine acts that are enabled by several of 
their predecessors. 

In contrast to concatenation, the relation of enablement has 
the following necessary properties. 

1) The enabling act, when and if it occurs, must be prior to 

2)  The enabled act is not executable by the agent prior to the 

3) The enabled act becomes executable by the agent after the 

To refer back to the example of Fig. 3, it is clear that prior to 
the occurrence of a2, a3 is not executable: even though cy3 is a 
move-to act, and moves are basic in the present robot domain, 
the robot does not have clear access to its destination point and 
cannot therefore execute the move. This situation is altered after 
the performance of a2 since the only obstacle between the current 
robot position and blockA is removed. What about the relation of 
a1 to a3? Clearly, it should also be an enabling relationship since 
a1 and a2 are similar and exchangeable. Yet, it fails the definition 
because the robot is still not in standard conditions with respect 
to a3 after the occurrence of al.  More generally, as given above, 
the definition fails to capture the enablement of an act by two 
or more enabling acts, and fails to capture instances of remote 
enablement links. The properties of the definition do not uniquely 
characterize enablement, i.e., they are not sufficient conditions for 
enablement. The second and third stages of recognition presented 
in the next section provide these conditions in an algorithmic 
fashion. 

the enabled act. 

occurrence of the enabling act. 

occurrence of the enabling act. 

111. THE INTENTION RECOGNITION ALGORITHMS 

A.  The Three Stages of Zntention Recognition 

The three-stage recognition algorithm identifies the relation- 
ships between actions of a given plan II, and based on this 
information infers that acts in II are enabling acts (in the sense 
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Input n={o,) i=1.6 introduced in the preceding section), and which acts are intended 
acts. 

I )  Enablement Necessary Conditions: The first stage of recog- 
nition accepts a plan definition given by the human operator 
as a linear sequence of commands, and attempts to recognize 
the enabling acts in the plan. The algorithm for this first stage 
corresponds to the necessary property of enablement: namely, 
that the enabling act places the agent in standard conditions 
with respect to the enabled act. To establish whether or not the 
enablement relationship holds between two successive acts a, 
and a,+, in the sequence { a J }  j = 1 , .  . . , n that constitutes the 
plan n, three mechanisms are needed. 

1) A mechanism that captures the context V,  of an act a, in II: 
in other words, the state V,  of the world model-including 
the robot’s perception of it-prior to the occurrence of a,. 

2) A mechanism that updates V,  to V,,,: in other words, a 
means of simulating the occurrence of a, without disturb- 
ing the actual model of the world. 

3) A pointer from each domain act to its list of standard con- 
ditions that must be satisfied for the act to be executable. 
The pointer is passed to the recognition algorithm, and the 
latter evaluates whether or not an act is executable based 
on this information. 

A description of how these mechanisms *are actually imple- 
mented is postponed until Section 1V. It should already be hinted, 
however, that these mechanisms afford considerable generality 
in that they are totally domain- and application-independent. 
Specifically, by capturing and updating the V,’s nothing more 
needs to be encoded to determine whether or not an agent is 
in standard conditions with respect to an act a,. Illustrative 
examples will be provided in the next section. 

With these three mechanisms in hand, the first stage of the 
recognition process is straightforward and corresponds directly 
to the second and third clauses in the definition of enablement 
as follows. 

1) If a, were an enabling step for a,+,, then the robot (the 
“agent”) would not be in standard conditions with respect 
to a,+l prior to a,: 

+j’C(a,+i, G, V , )  

The predicate SC denotes the “standard conditions” that 
the agent must be in to be able to perform a certain act: 
thus, the expression SC(a, G, V , )  indicates that the agent 
G is in standard conditions with respect to a in state V,. See 
Yared [25] for a detailed explanation of the SC predicate. 

2) if the above condition holds and the agent becomes in 
standard conditions with respect to a,+, after the occur- 
rence of a, (or SC(a,+,, G, V,+l)) then we can assert 
enables(a,, Q , + ~ ) . ~  

3) if, on the other hand, the agent is in standard 
conditions with respect to a,+, even prior to a,-or 
SC(a,+l, G, V,)-then the enabling relation doesn’t hold 
and a, corresponds to a shift in the user’s intention. a, is 
identified as an intended act. 

4) the last act in the plan, a, is always assumed to be an 
intended act. 

Note that under this interpretation any act a, in II is either 
an intended act or an enabling act, but cannot be both. All 
three recognition algorithms depend on this simplicity condition, 

31f the agent is still not in standard conditions with respect to a,+1 after 
the Occurrence of a, then the plan is unexecutable and a warning is issued to 
the user. 

After stage 1: - - *  * - *  
01‘-a~-013-01~-a~-ag 

\ L , I V  
11 Iz 13 

Fig. 5 .  Sample output from stage 1 of recognition. 

that each act plays only one role in the plan. Fig. 5 shows 
an unprocessed linear sequence of commands and its processed 
version after stage 1 of recognition. The intended acts are labeled 
with an asterisk and signal different intentional groups. The 
directed arcs denote enabling pairs, The intentional groups are 
indicated under their corresponding acts. It is possible for a single 
act to constitute an intentional group of its own. 

2) Dealing with Pragmatic Ambiguity: As given, the first 
stage of recognition suffers from two main limitations. The first 
limitation concerns cases of pragmatic ambiguity and is treated 
presently. 

The simplicity condition allows for only one role for each act 
in a plan. We will call plans where at least one act a, plays 
more than one role instances of pragmatic ambiguity. In such 
plans, the system will only attribute one role to a,, possibly one 
that is not its most important role in the plan. An example of a 
pragmatically ambiguous act can readily be seen in the situation 
of Fig. 6. The plan II = {a1 + a4} depicted in Fig. 6 would 
normally carry the following interpretation: 

In other words, moving to the target enables the robot to grasp it; 
grasping signals a shift in intention; grasping the block, moving 
to a conveyor belt, and ungrasping it are intended acts in their 
own right. However, the output from the first stage of recognition 
yields the following interpretation: 

The reason for this misinterpretation is that the pair (az,a3),  
when taken out of the context of the overall plan, does indeed 
have the central properties of an enablement pair: once the robot 
is stationed at the block (the situation depicted in Fig. 6), if 
told to move upward towards the conveyor belt without having 
first grasped the block it will simply collide with the block. 
Once block A is grasped, however, it is no longer a free-floating 
obstacle in the robot’s trajectory, and the robot is then in standard 
conditions with respect to moving to the conveyor belt. Thus, 
there seems to be some justification for inferring that the grasp 
operation enables the subsequent move-to operation. Put in 
concrete terms, grasping a potential obstacle can be narrowly 
interpreted as a means of freeing the path of the robot. In this 
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CONVEYOR BELT 

Fig. 6.  Case of pragmatic ambiguity (state of the world after occurrence 
of cY1). 

case, of course, when one looks beyond the pair (a2,  a3) it 
becomes apparent that a2 plays quite a different role in the plan. 
Its purpose is not to enable the robot to move toward the conveyor 
belt, because that could have been achieved prior to moving to 
the block: SC(a3, G, Vl) is true. There must be then some other 
reason for grasping the block, and we would rather obtain: 

The latter result is obtained by performing a more thorough check 
on the executability of intended acts. The pragmatic ambiguity 
is resolved by taking into account contexts V, (1 5 j 5 n) in 
addition to the ones adjacent to the intended act a,. The first 
recognition algorithm only took into account adjacent pairs of 
acts (a t ,  a,+1) and their surrounding and intervening contexts 
V; and V;,, respectively. To rectify that situation a second 
recognition stage is applied to the output of the first. 

The second recognition algorithm performs essentially the 
same work as the first, with two main differences as follows. 

1) It only analyzes acts the first stage identified as being 

2) It performs a more exhaustive analysis on each a: by 
that belong to the same 

The algorithm enters a loop and forward searches for the next 
intended act (a; ) ,  provided there is one left. Once it has 
identified an intended act and its corresponding intentional group 
( I a J ) ,  it proceeds to test for the standard conditions of the 
intended act in the context of each enabling act in the intentional 
group in sequence . If none of the tests is 
positive it then proceeds to the next intended act and intentional 
group; if one enabling act passes the test then the algorithm 
breaks the enabling link between that act and its successor, and 
establishes that act as an intended act. 

intended 

examining all the contexts 
intentional group as a:. 

SC a’, G,  V ,  ( ( ’1) 

331 

Note that in the plan of Fig. 6, the pragmatic ambiguity is 
resolved by taking into account more contextual information. But 
there are plans where the ambiguity is more deeply entrenched 
and cannot be resolved by the second algorithm. Consider, for 
example, a variant of the plan in Fig. 6 where the robot is told 
to 1) move to A ,  2) grasp A, 3) move to some point inside the 
warehouse. As before, the second algorithm outputs the following 
structure: 

But then the second algorithm leaves that structure intact, since 
it confirms that 

and, therefore, confirms enables(a2, a3).  Such plans are truly 
ambiguous-as opposed to the previous one, in which the 
ambiguity is only apparent. They simply do not contain sufficient 
information to determine which role of the critical a, is dominant, 
and for all practical purposes a,  can be taken to play several 
equally important roles in II. It is not clear that a human observer 
could resolve the ambiguity based on a single instance of II. 

3) Multiple and Nonadjacent Enabling Acts: The second lim- 
itation of the definition of enablement is its inability to capture 
cases of multiple enabling acts, and the related cases of remote 
(non-adjacent) enabling acts. Fig. 3 exemplifies such situations. 
The plan for Fig. 3 consists of the following acts: 

n/so = {a1 + a s )  

a1 E remove B 
ai2 remove C 

a3 5 locate A 
a4 move-to A 

aj 3 grasp A 
as move-to<start> 

where locate, move-to and grasp are appropriately defined 
domain-basic acts and remove some previously defined 
procedure. The principal feature of this plan is that a1 and a2 
taken together co-enable a4. The algorithm of Stage 1 is faced 
with the dual problem here of misunderstanding the relationship 
of al to a2-which is one of temporal concatenation only-and 
of missing completely that of the first two acts to the non-adjacent 
a4. The output of the first recognition stage when applied to this 
plan yields 

What is desired is the following interpretation 
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