
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 2, MARCHIAPRIL 1991 327

Plan Recognition and Generalization in Command
Languages with Application to Telerobotics

Wael I. Yared and Thomas B. Sheridan, Fellow, IEEE

Abstract-A method for pragmatic inference as a necessary accompa-
niment to command languages is proposed. The approach taken focuses
on the modeling and recognition of the human operator’s intent, which
relates sequences of domain actions (“plans”) to changes in some model of
the task environment. The salient feature of this module is that it captures
some of the physical and linguistic contextual aspects of an instruction.
This provides a basis for generalization and reinterpretation of the
instruction in different task environments. The theoretical development
is founded on previous work in computational linguistics and some
recent models in the theory of action and intention. To illustrate these
ideas, an experimental command language to a telerobot is implemented;
the program consists of three different components: a robot graphic
simulation, the command language itself, and the domain-independent
pragmatic inference module. Examples of task instruction processes are
provided to demonstrate the benefits of this approach.

I. MODELING PRAGMATICS IN COMMAND LANGUAGES

A. The Problem
KEY ISSUE in command language design is the modeling A and communication of the human user’s intent. Intent relates

sequences of domain actions (“plans”) to changes in some model
of the task environment. Its representation clearly constitutes,
therefore, an issue in pragmatics. (For an introductory text on
pragmatics, or the contextual use of language, see Levinson
[15]. Some of the original papers in philosophy of language that
have pioneered the field of linguistic pragmatics can be found
in Martinich [171-in particular, articles by GRICE, Austin,
and Searle.) Command languages for interactive systems such
as telerobots have been traditionally restricted to the syntactic
and semantic aspects of the interaction, thus giving rise to
two main limitations. First, commands are supported as single,
isolated utterances rather than as interrelated steps in a cohesive
discourse. Second, little or no contextual information is captured
from the human operator’s instruction, such as the relevance of
a particular step in the instruction to the overall task. Without
a common underlying representation of action interrelationships
and intentionality, no amount of computation can perform the
reasoning expected in a truly cooperative process, such as gen-
eralizing a plan of action or exploiting contingencies in the task
environment. A human-computer interaction that lacks these
notions is artificial-not in the sense of requiring the human
to learn a formal syntax, but in the more aggravating one of
lacking the purposive dimension of any human language.

To illustrate, consider the following scenario, chosen from the
machine learning literature (Andreae [3]). A robot is to pick a
block from the first row of a warehouse and return with it to

Manuscript received March 6, 1990; revised August 5, 1990. This work was
supported in part by the National Aeronautics and Space Administration, and
in part by the Jet Propulsion Laboratory, Califomia Institute of Technology.

The authors are with the Man-Machine Systems Laboratory, Department of
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
MA 02139.

IEEE Log Number 9040003.

its starting position, somewhere outside the warehouse (Fig. 1).
The operator types (in some robot command language, e.g., VAL
or RAPT (Lozano-Perez [16]) a sequence of commands that
achieves this particular operation, which the robot then executes.

Suppose now the first row becomes depleted of blocks. A
relevant question would be whether the robot can benefit from
any part of the previous instruction to face this new situation,
where it has to try the second row. There is more to this problem
than a simple substitution of parameters: the general block-
retrieval procedure may turn out to have a complex structure
(with branching forks, iterative loops, etc.) not present in the
initial formulation of the task by the operator. Recovery of the
general procedure from a linear sequence of commands provided
by the human operator partly involves identifying the operator’s
intent behind each element of the sequence.

The motivation for this research stems from the difficulty
of interfacing with semiautonomous telerobots operating in un-
structured environments such as outer space. These systems are
typically called on to perform nonrepetitive tasks, and methods
must be developed to achieve on-line task instruction and plan
generalization.

B. The Approach
We approach the procedure-acquisition problem from a plan

recognition perspective. A plan recognition system reasons about
a set of described or observed actions, which it attempts to ex-
plain by constructing a plan that contains them (Kautz and Allen
[131). Classical plan recognition essentially revolves around a
search and match method applied to a library of possible plans.
We are departing from the classical plan recognition formalism
in two ways. First, we are extending it from the domain of
question-answering, in which it had been developed (Allen and
Perrault [l]) and is traditionally applied (e.g., Perrault and Allen
[19], Allen [2], Sidner [23]) to that of acquiring procedures
from traces. Second, we are applying it to recognize intentions
and generalize from plans. In other words, the human operator
provides the entire plan as a sequence of actions applicable in
one particular instance, and it is the recognition system’s burden
to infer the operator’s intentions. It is important to point out
what this entails: first, since the entire plan is provided by the
operator, the usual search control problems are avoided and the
closed-world assumption necessary to current plan recognition
systems can be lifted. This enables the system to deal with novel
situations and plans, a vital capability for systems that learn.
Intention recognition, as used here, is not a search and match
process but one of nondeductive inference. Second, a general-
ization technique is added to the recognition algorithms. This
generalization (or “plan reinterpretation”) algorithm makes use of
the information inferred in the recognition stages, and evaluates
the relevance of the intended acts of the plan in the new context.
The intention recognition and plan reinterpretation algorithms are

0018-9472/91/0300-0327$01.00 0 1991 IEEE

Page 1 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

328 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 2, MARCWPqRIL 1991

ROW I 1 p e d
I I

Fig. 1. Sample task instruction

s t a r t

move 3 6.- 146)

move 1,180)
grasp f

t
t

ungrasp

stop

based on a representation of action interrelationships and a model
of intentional action that are explained in the next section. The
central feature of this representation is the emphasis it places
on the relevance of an action in a plan, or the role each act
plays in the plan. We draw a parallel here between utterances in
a natural language discourse and physical actions as steps in a
plan: just as the context of a discourse provides constraints on the
interpretation of each of its utterances, so does the overall plan
form the role of each of its actions. We focus on just two features
of context here, the physical and the “linguistic.” The physical
context of an action in a plan is the particular configuration of
the task environment at the onset of that action, including the
location and physical features of each object, the agent, and the
complete state of the agent. The “linguistic” context of an action
in an instruction is meant here to include the other steps of the
instruction (the remaining actions).’

To illustrate these ideas, we present a simple command lan-
guage for an instructible two degree of freedom Cartesian ma-
nipulator as a case study.

11. ACTION INTERRELATIONSHIPS IN PLANS

A. Background
The AI literature defines a plan to be a temporal order on a

finite number of steps (Chapman [7]), which almost invariably
represent actions.’ Following the early STRIPS model (Fikes and
Nilsson [9]), actions are usually represented by operators; each
operator instance is characterized by finite sets of prerequisites,
positive effects and negative effects (Genesereth and Nilsson
[lo]). States of the world are represented by situations, or
sets of propositions. A planning problem then consists of an
initial situation, a goal situation, and a database of operators
that describes the available actions. An adequate plan must
demonstrably achieve the goal situation when executed in the
initial state.

Standard plan recognition systems explain a set of described
or observed actions by constructing a plan that contains them
(Kautz and Allen [13]). Typically, they need a plan library to do
so. The plan library is assumed to be correct and complete: thus,

‘The parallel between utterances and physical acts is generally credited
to Austin (see [4] in particular] in the philosophy of language literature. Its
earliest Occurrence in the computational literature is in Bruce [6], expanded
upon in Cohen and Perrault [8]. While Austin’s essential point was to see
utterances as being “performative,” or similar to physical acts, we adopt here
the reverse view and model the interpretation of physical acts after that of
natural language utterances.

‘But see Lansky [14] for an event-based representation. The classical
(“state-based”) definition given previously runs into several problems, for
example, in representing concurrent or continuous actions.

Operator Library

Input: a or {a,} Plan Recognition o u t p u t : II, En

Fig. 2. Standard plan recognition.

not only must the operator library (the repertoire of primitive
actions) contain representations of all valid actions in the domain,
it must also contain representations of all propositions and actions
that can be related to any encoded action. In other words, all
valid action combinations that occur in a particular domain must
be encoded. A plan recognizer is then a search and matching
process (Goodman and Litman [12]) that takes the input-e.g.,
a described action or set of actions-and finds all the plans in
the plan library that are consistent with the input. See Fig. 2.

As stated in Pollack [20], three different relations (and special
cases thereof) can exist between two actions a and /3 of a plan:

1) a causes p: there is an operator with header a in the

2) a is-a-precondition-of p: there is an operator with header
in the operator library that has a on its precondition list.

3) a is-a-way-to p: there is an operator with header /3 in the

The first two relate actions that are at the same hierarchical
level in a plan-in other words, siblings. The third relation
differs from the previous two in that it depicts a as part of a
step decomposition of ,l3 and not as a sibling of p. Consider the
following typical operators:

HEADER: pickup(x)
PRECONDITIONS: ontable(x) handempty clear(x)
EFFECTS: -ontable(x) A -handempty A holding(x)

PRECONDITIONS: holding(x)
EFFECTS: ontable(x) A handempty.

The symbols A and - denote the logical connectives AND
and NOT. In a pickup(block) + ungrasp(block) sequence the link
between the two operators is an example of the precondition
relationship because pickup (block) asserts (among other things)
holding(block), the precondition for the ungrasp operator.

The basic shortcoming of the STRIPS/NOAH (Sacerdoti [21])
representation of action interrelationships is that it underspecifies
the role each act plays in the plan. Stated differently, the precon-
dition/body/effect representation is not conducive to reasoning
about actions in their context. For example in the definition
of a plan comprising a pickup-iungrasp sequence, it is not
explicitly specified just how the actions are related: for one
thing, any realistic action operator is likely to have several side
effects, besides the relevant one(s) for the purposes of the current
sequence. In trying to reconstruct an agent’s plan from one or
more observed actions, an observer using this representation will
encounter the problem of deciding how to “thread the actions
together. The view of plans as sequences of operators having lists
of preconditions and effects is intuitive from a programmer’s
perspective, and pervades most of the early computer science
literature on planning. Following Bratman [5] and Pollack [20],
we refer to this as the “data structure” view of plans.

We alter the data-structure view of plans in order to achieve

operator library that has p on its effect list.

operator library that has a (as part of) its body.

HEADER: ungrasp(x)

Page 2 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

YARED AND SHERIDAN: PLAN RECOGNITION AND GENERALIZATION IN COMMAND LANGUAGES 329

WAREHOUSE

///////////

Fig. 3. Initial state.

Gripper

what Bratman and others have called the mental phenomenon
view of plans (Bratman [5, pp. 28-35], or Pollack [20, chs.
2 and 31). The latter view is chronologically posterior to the
data structure view. It was recognized even as researchers were
representing plans as sequences of NOAH operators (see for
example Allen [2]). What the mental phenomenon view of plans
emphasizes is the configurations of beliefs and intentions that
must underlie any plan of rational action. We earmark plans by
their underlying intentions, and use that information for later
reasoning about and re-interpretation of plans.

In summary, the present work attempts to go beyond the
traditional data structure view of plans in two ways. First, it
relates the plan of action to the concrete situation surrounding it.
This requires an understanding of the relevance of each action to
its corresponding situation. Second, whereas most previous work
in planning essentially models plan languages more or less after
formal programming languages, Pollack’s example is followed
here in carefully building the action representation on foundations
laid (informally) by philosophers of action. By combining these
two steps, we obtain a system able to interpret and execute plans
not just mechanically, by following a program counter, but in
relation to their surroundings.

B. Enablement

In a sequence of actions forming a plan 11, some of these
actions may be related to each other in a (yet to be defined)
causal sense, while others may not. Consider, for example, the
situation depicted in Fig. 3. The goal here is to have block-A
outside the warehouse. The robot is constrained in its workspace
by the walls of the warehouse and, in this example, in its motion
by the two obstacles (blocks B and C). A plausible plan of action
consists in removing block B, removing block C, and then getting
blockA out of the warehouse. Let us assume that a nonprimitive
“Remove” procedure has already been defined as shown in Fig. 4:
it assumes its argument is a movable object in the environment
to which the robot has clear access from its current position; the
robot grasps that object and slides it along the row into oblivion,
and then returns to the row entry point. The plausible plan to get
A out of the warehouse is given by the operator as

where

a1 (Remove block-B)
a2 (Remove block-C)
a3 (move-to block-A)
aq G (grasp block-A)
a5 = (move-to [RE-x, R E y])
as (move-to <targetgt>). (2)

Remove blockx:
rem [XJ] ;remember current position
move-to b l o c k
grasp b l o c k
move-to [1oooO.O,y]
rotate(180)
ungrasp
movefo [x,y]
rotate(l80)

Fig. 4. Remove procedure.

This should be read as “the plan II defined in initial situation
So and consisting of the temporal sequence a1 to as.’’ Focus for
the moment on the first 3 acts: al , cy2, and a3. It is evident that
a1 and a2 belong to the category of acts in a plan that are not
causally related to each other. a1 and a2 are independent, and it
is reasonable to assume that the operator is not committed to any
particular ordering of a1 and a2. Furthermore, the performance
of one leaves the other totally unaffected, save for occupying the
robot’s resources temporarily. As a matter of fact, if we assume
a robot with infinite resources, then a1 and a2 might as well
be carried out simultaneously without disrupting the rest of the
plan. Contrast the relation of a1 to a2 with that of a2 to a3: a2
and a3 are also in simple sequence and they do not overlap, but
they are certainly not exchangeable. Even more important, the
performance of a2 is vital to that of a3: a fact that does not hold
for the first pair. The relationship of al to a2 is one of simple
concatenation. This relationship is rather trivial, and is of little
interest for our purposes. We shall return to it later, however,
when we come to examine acts that are enabled by several of
their predecessors.

In contrast to concatenation, the relation of enablement has
the following necessary properties.

1) The enabling act, when and if it occurs, must be prior to

2) The enabled act is not executable by the agent prior to the

3) The enabled act becomes executable by the agent after the

To refer back to the example of Fig. 3, it is clear that prior to
the occurrence of a2, a3 is not executable: even though cy3 is a
move-to act, and moves are basic in the present robot domain,
the robot does not have clear access to its destination point and
cannot therefore execute the move. This situation is altered after
the performance of a2 since the only obstacle between the current
robot position and blockA is removed. What about the relation of
a1 to a3? Clearly, it should also be an enabling relationship since
a1 and a2 are similar and exchangeable. Yet, it fails the definition
because the robot is still not in standard conditions with respect
to a3 after the occurrence of al. More generally, as given above,
the definition fails to capture the enablement of an act by two
or more enabling acts, and fails to capture instances of remote
enablement links. The properties of the definition do not uniquely
characterize enablement, i.e., they are not sufficient conditions for
enablement. The second and third stages of recognition presented
in the next section provide these conditions in an algorithmic
fashion.

the enabled act.

occurrence of the enabling act.

occurrence of the enabling act.

111. THE INTENTION RECOGNITION ALGORITHMS

A. The Three Stages of Zntention Recognition

The three-stage recognition algorithm identifies the relation-
ships between actions of a given plan II, and based on this
information infers that acts in II are enabling acts (in the sense

Page 3 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

330 IEEE TRANSACTIONS ON SYSTEMS, MAN,’AND CYBERNETICS, VOL. 21, NO. 2, MARCHIAF’RIL 1991

Input n={o,) i=1.6 introduced in the preceding section), and which acts are intended
acts.

I) Enablement Necessary Conditions: The first stage of recog-
nition accepts a plan definition given by the human operator
as a linear sequence of commands, and attempts to recognize
the enabling acts in the plan. The algorithm for this first stage
corresponds to the necessary property of enablement: namely,
that the enabling act places the agent in standard conditions
with respect to the enabled act. To establish whether or not the
enablement relationship holds between two successive acts a,
and a,+, in the sequence { a J } j = 1 , . . . , n that constitutes the
plan n, three mechanisms are needed.

1) A mechanism that captures the context V, of an act a, in II:
in other words, the state V, of the world model-including
the robot’s perception of it-prior to the occurrence of a,.

2) A mechanism that updates V, to V,,,: in other words, a
means of simulating the occurrence of a, without disturb-
ing the actual model of the world.

3) A pointer from each domain act to its list of standard con-
ditions that must be satisfied for the act to be executable.
The pointer is passed to the recognition algorithm, and the
latter evaluates whether or not an act is executable based
on this information.

A description of how these mechanisms *are actually imple-
mented is postponed until Section 1V. It should already be hinted,
however, that these mechanisms afford considerable generality
in that they are totally domain- and application-independent.
Specifically, by capturing and updating the V,’s nothing more
needs to be encoded to determine whether or not an agent is
in standard conditions with respect to an act a,. Illustrative
examples will be provided in the next section.

With these three mechanisms in hand, the first stage of the
recognition process is straightforward and corresponds directly
to the second and third clauses in the definition of enablement
as follows.

1) If a, were an enabling step for a,+,, then the robot (the
“agent”) would not be in standard conditions with respect
to a,+l prior to a,:

+j’C(a,+i, G, V ,)

The predicate SC denotes the “standard conditions” that
the agent must be in to be able to perform a certain act:
thus, the expression SC(a, G, V ,) indicates that the agent
G is in standard conditions with respect to a in state V,. See
Yared [25] for a detailed explanation of the SC predicate.

2) if the above condition holds and the agent becomes in
standard conditions with respect to a,+, after the occur-
rence of a, (or SC(a,+,, G, V,+l)) then we can assert
enables(a,, Q , + ~) . ~

3) if, on the other hand, the agent is in standard
conditions with respect to a,+, even prior to a,-or
SC(a,+l, G, V,)-then the enabling relation doesn’t hold
and a, corresponds to a shift in the user’s intention. a, is
identified as an intended act.

4) the last act in the plan, a, is always assumed to be an
intended act.

Note that under this interpretation any act a, in II is either
an intended act or an enabling act, but cannot be both. All
three recognition algorithms depend on this simplicity condition,

31f the agent is still not in standard conditions with respect to a,+1 after
the Occurrence of a, then the plan is unexecutable and a warning is issued to
the user.

After stage 1: - - * * - *
01‘-a~-013-01~-a~-ag

\ L , I V
11 Iz 13

Fig. 5 . Sample output from stage 1 of recognition.

that each act plays only one role in the plan. Fig. 5 shows
an unprocessed linear sequence of commands and its processed
version after stage 1 of recognition. The intended acts are labeled
with an asterisk and signal different intentional groups. The
directed arcs denote enabling pairs, The intentional groups are
indicated under their corresponding acts. It is possible for a single
act to constitute an intentional group of its own.

2) Dealing with Pragmatic Ambiguity: As given, the first
stage of recognition suffers from two main limitations. The first
limitation concerns cases of pragmatic ambiguity and is treated
presently.

The simplicity condition allows for only one role for each act
in a plan. We will call plans where at least one act a, plays
more than one role instances of pragmatic ambiguity. In such
plans, the system will only attribute one role to a,, possibly one
that is not its most important role in the plan. An example of a
pragmatically ambiguous act can readily be seen in the situation
of Fig. 6. The plan II = {a1 + a4} depicted in Fig. 6 would
normally carry the following interpretation:

In other words, moving to the target enables the robot to grasp it;
grasping signals a shift in intention; grasping the block, moving
to a conveyor belt, and ungrasping it are intended acts in their
own right. However, the output from the first stage of recognition
yields the following interpretation:

The reason for this misinterpretation is that the pair (az,a3),
when taken out of the context of the overall plan, does indeed
have the central properties of an enablement pair: once the robot
is stationed at the block (the situation depicted in Fig. 6), if
told to move upward towards the conveyor belt without having
first grasped the block it will simply collide with the block.
Once block A is grasped, however, it is no longer a free-floating
obstacle in the robot’s trajectory, and the robot is then in standard
conditions with respect to moving to the conveyor belt. Thus,
there seems to be some justification for inferring that the grasp
operation enables the subsequent move-to operation. Put in
concrete terms, grasping a potential obstacle can be narrowly
interpreted as a means of freeing the path of the robot. In this

Page 4 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

YARED AND SHERIDAN. PLAN RECOGNITION AND GENERALIZATION IN COMMAND LANGUAGES

CONVEYOR BELT

Fig. 6. Case of pragmatic ambiguity (state of the world after occurrence
of cY1).

case, of course, when one looks beyond the pair (a2, a3) it
becomes apparent that a2 plays quite a different role in the plan.
Its purpose is not to enable the robot to move toward the conveyor
belt, because that could have been achieved prior to moving to
the block: SC(a3, G, Vl) is true. There must be then some other
reason for grasping the block, and we would rather obtain:

The latter result is obtained by performing a more thorough check
on the executability of intended acts. The pragmatic ambiguity
is resolved by taking into account contexts V, (1 5 j 5 n) in
addition to the ones adjacent to the intended act a,. The first
recognition algorithm only took into account adjacent pairs of
acts (a t , a,+1) and their surrounding and intervening contexts
V; and V;,, respectively. To rectify that situation a second
recognition stage is applied to the output of the first.

The second recognition algorithm performs essentially the
same work as the first, with two main differences as follows.

1) It only analyzes acts the first stage identified as being

2) It performs a more exhaustive analysis on each a: by
that belong to the same

The algorithm enters a loop and forward searches for the next
intended act (a;) , provided there is one left. Once it has
identified an intended act and its corresponding intentional group
(I a J) , it proceeds to test for the standard conditions of the
intended act in the context of each enabling act in the intentional
group in sequence . If none of the tests is
positive it then proceeds to the next intended act and intentional
group; if one enabling act passes the test then the algorithm
breaks the enabling link between that act and its successor, and
establishes that act as an intended act.

intended

examining all the contexts
intentional group as a:.

SC a’, G, V , ((’1)

331

Note that in the plan of Fig. 6, the pragmatic ambiguity is
resolved by taking into account more contextual information. But
there are plans where the ambiguity is more deeply entrenched
and cannot be resolved by the second algorithm. Consider, for
example, a variant of the plan in Fig. 6 where the robot is told
to 1) move to A , 2) grasp A, 3) move to some point inside the
warehouse. As before, the second algorithm outputs the following
structure:

But then the second algorithm leaves that structure intact, since
it confirms that

and, therefore, confirms enables(a2, a3). Such plans are truly
ambiguous-as opposed to the previous one, in which the
ambiguity is only apparent. They simply do not contain sufficient
information to determine which role of the critical a, is dominant,
and for all practical purposes a, can be taken to play several
equally important roles in II. It is not clear that a human observer
could resolve the ambiguity based on a single instance of II.

3) Multiple and Nonadjacent Enabling Acts: The second lim-
itation of the definition of enablement is its inability to capture
cases of multiple enabling acts, and the related cases of remote
(non-adjacent) enabling acts. Fig. 3 exemplifies such situations.
The plan for Fig. 3 consists of the following acts:

n/so = {a1 + a s)

a1 E remove B
ai2 remove C

a3 5 locate A
a4 move-to A

aj 3 grasp A
as move-to<start>

where locate, move-to and grasp are appropriately defined
domain-basic acts and remove some previously defined
procedure. The principal feature of this plan is that a1 and a2
taken together co-enable a4. The algorithm of Stage 1 is faced
with the dual problem here of misunderstanding the relationship
of al to a2-which is one of temporal concatenation only-and
of missing completely that of the first two acts to the non-adjacent
a4. The output of the first recognition stage when applied to this
plan yields

What is desired is the following interpretation

Page 5 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

