o 12

ABB Inc.

EXHIBIT 1011

Page 1 of 221

OLE 2

The Fast Track
to Building
Powerful
Object-Oriented

Applications

KRAIG BROCKSCHMIDT B

Page 2 of

&

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright @ 1994 by Kraig Brockschmidt

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Brockschmidt, Kraig, 1968
Inside OLE 2 / Kraig Brockschmidt.
. c.
Includes index.
ISBN 1-55615-618-9
1. Object-oriented programming (Computer science} 2, Microsoft
Windows {Computer file) 1. Title.
QA76.64.876 1993
005.4'3--dc20 93-34953
CIP

Printed and bound in the United States of America.
123456789ACAG987654

Distributed to the hook trade in Canada by Macmillan of Canada, a division of Canada
Publishing Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Darta available.

Microsoft and MS-DOS are registered trademarks and Visual C++, Windows, and
Windows NT are trademarks of Microsoft Corporation. Apple is a registered trademark
and Macintosh is a registered trademark of Apple Computer, Inc. Borland is a registered
trademark of Borland International. Smalltalk is a registered trademark of Xerox
Corporation.

Acquisitions Editor: Dean Holmes
Project Editor: Ron Lamb
Technical Editor: Seth McEvoy

Page 3 of 221

CONTENTS

Preface® T Y ORGP P P T LA e XV
Using the Companion Disks xxii

SECTION 1

WINDOWS OBJECTS

CHAPTER 1

ANOVERVIEWOFOLE2 ... oo 3
Windows Objects: The Component ObjectModel, 5
Objectsand Interfaces i 8
Structured Storage and Compound Files 5 Byl e 12
Uniform Data Transfer and Notification 15
Notification 17
Data Objects and the Clipboard SN i LA R RS B 6 17
Data Objects and Drag-and-Drop 17
Data Objects and Compound Documents0oo0iiin.. 18
Data Objectsand DDE i 19
Compound Documents: Object Embedding 19
Compound Documents: Object Linking and Monikers 21
Compound Documents: In-Place Activation (Visual Editing) 23
ANTEMATION™ S0l 2.kt st oW s e o b e S Bonre oy et et et Sviy ot 24

CHAPTER 2

CONVENTIONS, C++ AND SAMPLECODEc.ove.. 27
To Cor Not to C (with Apologies to Shakespeare) ; v 27
User-Defined Types: C++ Classeso ... 29
Access Rights N S S— . S S——— .. 33
Single INReFATGE Loy, .00 Uil . bbb b fhereiohi bl on | Do pve e 4 i 203 34
Virtual Functions and Abstract Base Classes momte 137
Multiple Inheritance 39
SAMPICICOTT . 1 .cy. 1o Jregsm e 30 37 5o SIS R Al Pl Woma LN o el 2 S 41
Include Files: The INC Directory sy 42
Libraries: The LIB Directory c..oiiiiiiniianon.. .. 43
The BUILD Directory 43
Three Amigos: BttnCur, GizmoBar, and StatStrip - P
Class Libraries: The CLASSLIB Directoryoooviiii... 45

Page 4 of 221

INSIDE OLE 2

Interface Templates: The INTERFAC Directory ive pm v 48
Chapter Sources: The CHAPxx Directories 48
Cosmo: A Graphical Editor (with Apologies to No One in Particular) .. 49
Patron: A Page Container (with Apologies to Merriam-Webster) 51
Building and Testing Environment i it D4

CHAPTER 3

OBJECTS AND INTERFACES 57
The Ultimate Question to Life, the Universe, and Objects
(with Apologies to Douglas Adams) 58
Windows Objects vs. C++ Objects S S A DS 64
Let’s Go Traveling ... o B4
Other Differences Between Windows Objects and G+ Objects 67
A Simple Objectin C and C++: RECTEnumerator -
RECTEnumerator and the IEnumRECT Interface ; cesie wivn s L
Creating the RECTEnumerator Object iiiiiii... 94
Using an [EnumRECT Pointer swew 95
Reference Countingo i 96
My Kingdom for Some Optimizations! 98
Call-Use-Release 100
{Unknown, the Rootof All Evil T
Queryinterfacevs. Inheritance 0 0 0L 103
Chueryinterface Properties and Interface Lifetimes 104
Some Data Types and Calling Conventions 106
STDMETHOD and Associateso . 106
HRESULT and SCODE 107
Globally Unique Identifiers: GUIDs, 1IDs, CLSIDs, 109
OLE 2 Interfaces and API Functions 110
Custom Interfaces ol | 0.0 S S—— o L1
Interfaces vs. API Functtons 112
What Is a Windows Object? (Reprlse) {5) S e e s Sea s s 1 13
Summary ... i TR AT W S G SRR a7k 114

CHAPTER 4

COMPONENT OBJECTS

(THE COMPONENT OBJECT MODEL) 117

Where the Wild Things Are (with Apologies to Maurice Sendak) 119
The New Application for Windows Objects iy ERtHE Rl 121
Enlarge the Message Queue R T N A o122
Verity the Library Build Verston e - ..o 123
Call Colnitialize ox Olefratialize, o .. 124
Call CoUninitinlize or eUninitialize 125

Vi

Page 5 of 221

Contents

Memory Management and Allocator Objects 126
Component Objects from Class Identifiers: A Component User 138
#include guid h and Precompiled Headers 148
Instantiate a Component Object 149
Manage the Object and Call CoFreel/nusedLibraries 152
Implementing a Component Objectand a Server 153
Register CLSIDscoiiiiiinnnn. caels o174
Implement the Class Factory A S A S TR R . 176
Expose the Class Factory s e T A W 178
Provide an Unloadmg Mechanlsm e e PR iiwa ve 102
Cosmo’s Polylineasa DLL Object oot 187
Object Reusability Fa Rl S e ST S . 191
Case 1: OblectCOHtalnment Lo W e W |
Case 2: ObJect Aggregatlon RS TR bR A S A A e . 195
Summary . R NrEP R~ O |

SECTION 11

OBJECT-ORIENTED SYSTEM FEATURES:
FILES AND DATA TRANSFER

CHAPTER 5

STRUCTURED STORAGE AND COMPOUND FILES 205
MOUVALION ..o st e v e v v 00 R B BT B e e e o aDE B 3 208
Patron Files with the Jitters Sy S TR TR TR BEE SRR L e 209
The Decaffeinated Alternative 211
Energy Boosts Without the Jitters: Compound Files 213
Features of Compound Files ceeio.. 215
Stream, Storage, and LockBytes Objects civieean. 215
Flement Naming _ — R—h
Access Modes B T g, ¢ e 8 o 217
Transacted Storages T i e e e 219
Incremental Access ‘v S diise s e e20
Shareable Elements Ve e e P TR R 2282
Compound File Objects and Interfaces 223
Storage Objects and the [Storage Interface 223
Stream Objects and the IStream Inrerface Sl o 227
LockBytes Objects and the ILockBytes Interface 229
Compound Files in Practice i B ERRITRRT SN S SR S . 233
Simple Storage: Cosmo 234
Pulling Rabbits from a Hat with STGM_CONVERT 240
Streams vs, Files 00 i, AT 5 e alfe ¥y o241
vii

Page 6 of 221

INSIDE OLE 2

Complex Compound Files: Patron 244
The Root Storage and Temporary Files 263
Managing Substorages SRR B el R » 264
Multilevel Commits 265
File Save As Operations 268
Low-Memory Save As Operations T ks iy .. 269
Streams as Memory Structures e s wise 27 1

Other OLE 2 Technologies and Structured Storage 272
The [PersistStorage, IPersistStream, and IPersistFile Interfaces 273
A Heavy Dose of Protocol with IPersistStorage 275
Of Component Users and IPersistStorage: Component Cosmo 278
Of Component Objects and IPersistStorage: Polyline 281

Compound File Defragmentation e 288

BUIMIMATY sinecsareacs aiives S5 2 ol S38H 47 §iame s v 297

CHAPTER 6

UNIFORM DATA TRANSFER USING DATA OBJECTS 299
WhatIsaData Object? 301
New and Improved Ultra-Structures! 7S R SRR e ke s . 302
Data Objects and the IDataObject Interface 308
FORMATETC Enumerators and Format Ordering 312
Component Data Objects coire swi e 318
Some CDataObject Features oo W R W 329
Implementing IDataObject G A A SRS, BT S 330
A (Component) Data Object User S SR R S siEhe viGE 331
Advising and Notification with Data Objects 345
Establishing an Advisory Connection 351
Sending Notifications as a Data Object 356
Special Considerations for Remoted Notifications 359
Inside the Advise Sink 360
IDataObject as a Standard for Object Data Transfer 363
View Objects and the /ViewObject Interface 365
WViewObject::Draw 367
Rendering for a Specific Device S, 369
Drawing 160 a MEtarile' su o s 05 S6575 %50 5as 8 ooes o dmmne o 370
Aborting Long Repaints 370G
Other I'ViewObject Member Functions £ O NN e 371
IViewObject and Notification 372
Freeloading from OLE2DLL 373
IDataObjectand DDE e T 383
Summary R SRR TR AR SRS S 385

Vil Page 7 of 221

Contents
CHAPTER 7
CLIPBOARD TRANSFERS USING DATA OBJECTS 387
The OLE 2 Clipboard Protocol 389
But All I Want to Do Is Copy Some Simple Data! 3N
A Data Transfer Component Object 393
If You Already Have a Data Object...Component Cosmo 405
If You Already Have Extensive Clipboard-Handling Code 407
Simple Data Source and Consumer: Cosmo 408
Startup/Shutdown 408
COpY/ Cub s s iy wpmen b, LT =00 0 0 STt ol B 409
Enabling Edit/Paste 411
PSR il S I Bl posmr g s s e g e Smemons Sy MEs) RS S 412
Paste Special and a Functional Patron 414
The Paste Special Dialog Box and the OLE2UI Library 416
Tenant Creation, Paste 420
Saving and Loading Tenants A S S TR By 424
Copyand Cut w.cus smegum: svivsisnipas T co... 425
SUMMALY ..ot T . 426

CHAPTER 8
DRAG-AND-DROP OPERATIONS USING DATA OBJECTS 429

Sources and Targets: The Drag-and-Drop Transfer Model 430
A Step-by-Step Drag-and-Drop Implementation: Cosmo e sy, GO
Design and Implement Drop Target User Feedback 454
Implement a Drop Target Object and the IDropTarget Interface 456
IDropTarget::Draghinter i e 408
IDvopTarget::DragQuer e Y T L1
IDropTarget::Dragleave AT 4 R R A R T 460
SOTOPTErgINO oo oo oo e s 24 S00A 908 S BT Rt fmA ST n e e s 461
Register and Revoke the Drop Target Object 462
Design and Implement Drop Source User Feedback,. . 464
Determine the Pick Event 464
Implement a Drop Source Object and the IDropSource Interface ... 465
Call DolDrvagDrop G ST el I BRI £ S ... 466
INnTermussionc..ovmrvs s e e e e 468
Advanced Drag-and-Drop: Feedback and Scrolling in Patron 469
Tenant Pick Regions and Drop Sourcing 470
More Advanced Drop Target Hit-Testing 472
A Feedback Rectangle ... 474
Scrolling the Page B A AR AN possiesmw s s A0
Summaryo..0. ... D N 15 A G O OSSP SN 482

Page 8 of 221

INSIDE OLE 2

SECTION 111

COMPOUND DOCUMENTS: OLE

CHAPTER 9

COMPOUND DOCUMENTS
AND EMBEDDED CONTAINERS

Compound Document Mechanisms . . . SR SR
The Passive State L R ST T
The Loadéd Btate i sui vamiia s v

Case 1. InProcServer R e RV

Case 2 InProcHandler
Case 3: The Default Handler L
Loading the Object: All Cases

Drawing the Object
The Running State
Mommy, Daddy, Where Do New Objects Come From? .

The Structure of a Container Application
Embedding Containers StepbyStep

Call Initialization Functions at Startup and Shutdown ;

Define Sites and Manage Site Storage
Implement Site Interfaces and Add Site Variables . . .

Implement Site Shading o
Invoke the Insert Object Dialog Box 2 il B
Call QlelUlinsertOlgect

Call OleCreate or OleCreateFromFile

Initialize the Object

Draw and Print Objeets . comovaiii it cuss, o it
Activate Objects and Add the Object Verb Menu . ..
Mouse Double-Clicks i Ty

ODBject Verb Menu sass fawsin . 555 riamm. s darbion wem o

. 487
489
.. 490
Lo A9
.. 492
.. 493

. 484

. 496

AURRITR 197
............ 500

. b2
... 504
. b6
507

. BOY
511

Implement TAdviseSink i SR e .. 516

Implement [OleClientSite T SR e

519
525
T T .
.......... . 530
532
534
............ 538
............ 539
542
. 543

The Right Mouse Button Pop-Up Menu 547

Create Objects from the Clipboard and Drag-and-Drop Transfers ... 549

Copy and Source Embedded Objects

Close and Delete Objects

Save and Load the Document with Embedded Objects
Handle Iconic Presentations (Cache Control)

SUMMATY oo crvtt w45 wks F5@ 08 - 0 b i B

. bb2
............ 555
..... 556

....... 560

. He2?

Page 9 of 221

Contents

CHAPTER 10

COMPOUND DOCUMENTS AND

EMBEDDED OBJECT SERVERS (EXEs) 565

The Structure of a Server Application 566
Linking Support and Mini-Servers vs. Full-Servers 568
VErsion NUTNDETS v wsieiiesnmiaiive sud sama iy M inam sl S ol 569
Installation H69

Embedding Servers Step by Step ... oo 570
Call Initialization Functions at Startup and Shutdown 571
Create Registration Database Entries | o RO
implement and Register a Class Factory s v D07
Implement an Initial Object with fnknown v siaer 080
Implement the [PersistStorage Interface 594
Implement the [DataObjest Interface o s, 601
Implement the I0{Object Interface . . : BN SRR R SR 610
Modify the Server’s User Interface 629
Send Notifications e 633
(Full-Servers) Add OLE 2 Clipbeoard Formats 637
(Optional) MDI Servers, User Interface, and Shutdown 638

SWIAMATY . Ly oguprn e 8By v g e R s T e e et 639

CHAPTER 11

IN-PROCESS OBJECT HANDLERS AND SERVERS 641
The Structure of In-Process Modules , 641
Why Usea Handler? i 644
Why Use an In-Process Server? ol 646
Why Not Use an In-Process Server? 647
Delegating to the Default Handler 648
TOBOBESEo AN EVR IR o a 649
IDataObject e 651
TPersistStorage (on the Cache) e e e 652
TVIGOBIEEL. = ie i i e ari e o TiwE BB orerarars T e e S 652
Implementing an Object Handler 853
Obtain a Default Handler fUnknown o oot 656
Expose Default Handler Interfaces in Queryinterface 639
Implement IPersistStorage N R T 662
Implement [OleObject:: GetExtent i 666
Implement IViewObject - .. 668
Synchronized Swimming with Your Local Server 674
Year-End Bonuses, e 678
Notes on Implementing an In-Process Server o st wasans 019
SUTAMEATY s $86 6 iR Sines e sl Siea WA TR B 692

Page 10 of 251

INSIDE OLE 2

CHAPTER 12

MONIKERS AND LINKING CONTAINERS 695
Will Someone Please Explain Just What a Moniker Is? 698
Moniker Classes £99
Where Do I Get Monikers? 703
Step-by-Step Linking Container 704
Enable Links from Insert Object 705
Enable Linking from Clipboard and Drag-and- -Drop Operatlons siiea L0
Paste Link and Paste Special Commands ..., ... 23 e e 711
Drag-and-Drop Linking Feedback o S SRS s S 713
Test Your Linking e RN R T 715
Implement the Show Objects Command 717
Manage a File Moniker, Call JOlObject:: SetMoniker,
and Implement [OkClientSite:: GetMoniker 722
‘The Links Dialog Box and the IOlUILinkContainer Interface 727
Invoke the Links Dialog Box 744
Update Links on Loading a Document vt BT e e 747
Summary ... 751

CHAPTER 13

MONIKER BINDING AND LINK SOURCES 753
Moniker Binding Mechanisms 755
A Simple Linked Object: Single File Moniker N o &
A Linked Object with a Composite File/ftem Moniker 758
Binding a Composite File/ltem!Ttem!Hem!ftem... Moniker 762
Bind Contents 764
The Running Object Table 785
A Simple Link Source: Cosmo 766
Create, Register, and Revoke a File Moniker 767
Provide Link Source Formats in Data Transfer immsraimewaran 4 LG
Implement the IPersistFile Interface cemann {74
Implement IOkObject::SetMoniker and 10leObject:: GetMoniker 77T
Complex Linking and Linking to Erbetddings' vemrsms v s s 09
Why Linking to Embedding? T P o 780
Create and Manage the Composite Moniker 782
Source the Composite Moniker 787
Implement a Class Factory for Document Objects with IPersistFile ... 789
Implement IOlkeltemContainer for Each Item Moniker 792
Summary S S TR A e o - N So...... 806
X Page 11 of 221

e —— L e

Contents

CHAPTER 14

CONVERSION, EMULATION,

AND COMPATIBILITYWITHOLE 1 809

The Convert Dialog Box for Containers 810
Support a Convert Menu Item and Invoke the Convert Dialog Box . 813
Handle the Convert To Case VR SRR 816
Handle the Activate As Case B18
Handle Display As Icon Changes 820

Conversion Between Servers o i 822
Registration Database Entries for Conversion 823
[PersistStorage Modifications g ophee Eaese R i S20

OLE 1 Embedded Object Conversion and Emulation 828

Notes on OLE 1 Compatibility for Containers 833
OLE 1 8erver Quirksoivivviiiinninniannn i RS S H e 833
File Conversion N CH 834

Summary o 2 507 o At e A YRR A9 ..o.... B39

SECTION 1V

COMPOUND DOCUMENTS:

IN-PLACE ACTIVATION

CHAPTER 15

VISUAL EDITING:

IN-PLACE ACTIVATION AND IN-PLACE CONTAINERS 843

Motivations and the Guts of an In-Place Session s 845
Where Does Tt All Start? S G AT - T . 846
An Innocent Little DoVerbo it i, . 848
Activating In-Place 0L cee...... B49
Manipulations of an Active Objectccoiiunnn.. N, 21807
Pulling the Plug: Deactivation B8O
Active vs. Ul Active and Inside-Out Objects RSN 361
Yes, This Actually Does Work o oL 861

In-Place Container Step By Step 862
Prepare the Container 863
Implement Skeletal In-Place Container Interfaces 865
Activate and Deactivate the Object, 875
Mix-a-Memu Shaken, Not Stirred oot 877
Negotiate Tool Space 555 S) S W s e OO

Page 12 of 22i

INSIDE GLE 2

Provide In-Place Accelerators and Focus o 892
Round the Corners: Other Miscellany : grmcolm el 895
Summary i S SRV PO AN @ T A ... 805

CHAPTER 16
IN-PLACE ACTIVATION FOR

COMPOUND DOCUMENT OBJECTS 907
In-Place Objects Step by Step ...t e 908
Drivers, Prepare Your Objectso . 909
Implement Skeletal In-Place Object Interfaces
and Object Helper Functionso.oo e 912
Implement Simple Activation and Deactivationo... 2 915
Assemble and Disassemble the Menu R e Al et . 927
Create and Destroy In-Place Tools — s, . 934
Manage and Process Accelerators ... 938
Rounding Third...and Heading for Home 940
Where In-Place Activation Can Take Us S e 950
Summary . vE R B i T S STV St S e S SR SR 955
Index B o eI T R o AR RS S 957

Xiv

Page 13 of 221

=y

] ﬂ\l\\lj\\ l\\\\\\\\kkk\ ~LL

PRETFACE

Give me a fish and you feed me for a day.
Teach me to fish and you feed me for a lifetime.
A proverb

This is a book about fish. But because without knowing how to catch them,
you’d eventually starve, it’s also about fishing. The fish are all those pieces of
information that you need as a developer in order to exploit OLE 2 features in
your application. Teaching you to fish involves describing why the specific
pieces you are using were designed and what path they lay toward the future.
Of course, you always need a reason to keep fishing even if you're currently
well fed, so at the beginning of each chapter I will attempt to motivate you
enough to read it.

It has been said that authors write books not so that they will be un-
derstood, but so that they themselves understand. Certainly this work has
been such an experience for me. When I started working with OLE 2 in the
middle of 1992 as part of my job in Microsoft’s Developer Relations Group, [
saw the technology as merely a way to create applications that support what is
called “Compound Documents,” as OLE version 1 was. This attitude was well
accepted at Microsoft because OLE 2 was a refinement of OLE 1; in fact, the
OLE 2 design specifications are organized around a Compound Document
core with a number of other technologies hanging off the sides to solve the
most critical problems exposed in OLE 1.

For a number of months, I plodded through prerelease information
about OLE 2 to create some sample applications to demonstrate compound
documents. With the help of various members of the OLE 2 development
team, with whom I've worked closely for all this time, I gave a number of
classes inside and outside of Microsoft to help others use OLE 2 to create
Compound Document applications. In the back of my mind something was
telling me that there was much more to OLE 2 than I had originally per-
ceived, but it was very hard to break away from equating OLE 2 and Com-
pound Documents because every available piece of documentation made the
two terms synonymous.

XV
Page 14 of 221

INSIDE OLE 2

xvi

In the tirst few weeks of January, 1993, I started to see that, in the process
of solving the most important problems in OLE 1, the OLE 2 architects had
actually created a much larger system for object-ortented programming
under Windows. 1 began to see that OLE 2 has technologies that are separate
from the true Compound Document technologies. In fact, I started to see ex-
actly how one might use those other technologies without ever coming into
contact with Compound Documents. I was not the first person to realize this.
In fact, OLE 2 was actually designed this way, but this aspect of the design
unfortunately was lost somewhere between the minds of the OLE 2 architects
and the actual OLE 2 Design Specification. But I was slowly beginning to
rediscover the elegant underlying architecture of the entire group of tech-
nologies. My position within Microsoft allowed me to explore OLE 2 in depth
and even to browse the OLE 2 sources, letting me truly get “Inside OLE 2.”

One Sunday afternoon in mid-January, 1993, while doing something
totally unrelated to OLE 2, I achieved what Eric Matfei (editor of Microsoft Sys-
tems Journal) describes as ““OLE Nirvana.”” All the little subtechnologies in
OLE 2 fell into place and I saw clearly, after six months of mental fog, what
OLE 2 was all about. [realized that you could exploit very small pieces of OLE
2 in incremental steps and that the best way to communicate the entire vision
was to write a book. I quickly fired up my notebook computer and spent the
next three hours pounding out the outline. The book you now hold follows
that original outline closely.

My goal in writing this book was to provide an organization for OLE 2 in
such a way that each chapter depends solely on information in previous chap-
ters, with no dependencies on later chapters. Because OLE 2 is not a tech-
nology for writing whole applications (because we still use many Windows
API functions), I had the luxury of concentrating on OLE 2'sfeatures and the
way you use those features in your applications. I have presented the material
a little at a time, in order to help you solidify your understanding of that
building block before moving on. I hope the book takes you on an evolution-
ary path, on which the work you do early in the book will be reusable in work
you do in the later stages.

This same idea is present even within any given chapter, where I have
provided finely detailed step-by-step instructions for implementing specific
features and where each step depends on the prior steps but not on any later
step. This sort of process enables you to add a little code, compile your appli-
cation, and actually see something working! Personally, I find the incre-
mental feedback of this sort of process extraordinarily motivating. In fact,

Page 15 of 221

Preface

it makes programming fun, and that is refreshing in this day and age of “'seri-
ous”’ professional programmers. [got into computers because hacking out
some BASIC code was exhilarating. I hope I can bring some of that back
through this book.

OLE 2 is the first step in the evolution of Windows from the function
call-based operating system we have today to an object-oriented operating
system in the future. The object model you will learn in this book will be a
part of Windows programming for a long time, and I hope it will help you
develop a definite edge in your programming career. Because OLE 2 is a first
step, it is going to seem utterly alien much of the time. But you need to learn
how to fish sometime if you are ever going to feed yourself. While you are
learning the skills of a master angler, this book will help you catch enough
fish to keep you from starving.

Who Can Use This Book

I mentioned earlier that OLE 2 is not a technology for writing an entire appli-
cation. To use OLE 2, you must be familiar with how to write an application
for Windows. I will not describe how to use any of the existing Windows API
functions, nor will I attempt to describe any intricate details about Windows
itself, OQur focus in this book is strictly on OLE 2.

Therefore, 1 assume that you are already familiar with programming in
the Windows environment and that you have at least a working knowledge of
the Windows APL In addition, because we are talking about object-oriented
programming here, a knowledge of C++ is helpful, but not required. In fact,
Ct++ knowledge can at times be a hindrance to understanding the object
model in OLE 2. Although the samples in this book are written in G++, I've
kept them very much like standard C Windows programs. Chapter 2 contains a
short discussion of the C++ 1 use in all the book’s samples, from a C program-
mer’s perspective (which was my own perspective when I started writing this
book).

This book is not only for programmers, however. Each chapter is struc-
tured so that a person who designs application architectures can read the first
few sections and understand how the mechanisms in OLE 2 work without hav-
ing to work through the details of code. The first 5 to 20 pages of each chapter
discuss architecture, leaving exact details about writing code to the latter
parts of the chapter. So, if you want an in-depth look at how OLE 2 works, read
the first section or two of each chapter.

Xxvii

Page 16 of 221

INSIDE OLE 2

Some Assembly Required

No, we won't use any assembly language, but this book does assume that
you have an appropriate software development environment installed that
includes the following:

® A Ct+t+ Compiler such as Microsoft C version 7 or Microsoft Visual
C++ version 1. The make files for the samples in this book are spe-
cific to Microsoft compilers, so some adjustment will be necessary
for other environments.

® The Windows 3.1 Software Development Kit.

B And most important: the OLE 2 Software Development Kit. Be sure
that the OLE 2 directory is added to your PATH, INCLUDE, and
LIB environment variables before attempting to build any samples
in this book. You can obtain the OLE 2 SDK from Microsoft for a
$50 charge by calling 1-800-227-4679.

Chapter 2 includes more information on creating the right build envi-
ronment for the book samples specifically.

On Coding Style

Xviii

As soon as you start reading some of the code in this book, you'll begin to
wonder where I developed my coding style.

My coding style, which is unlike any other widely published standard, is
what I've personally developed over a number of years to improve (in my
mind) code readability as well as to prevent myself from making certain
mistakes. For example, when I want to compare a variable to a constant, [al-
ways put the constant first—that is, I'll write if (OL==m_clRef) instead of
if (m_cRef==0L}. Like all C and C++ programmers, I've had my share of bugs
because I typed =instead of ==. Putting the constant on the lefi causes a com-
piler error when you forget the second equal sign. With the variable on the
left, you get a legal assignment statement but a very nasty run-time error.

All other stylistic elements have their justifications as well and are used
counsistently. I've often heard that people prefer consistency over specific
styles, so there you have it. Let me also mention that in many of the source
listings in this book, I have eliminated lengthy header comments on files and
functions that you will see in the actual disk files. This is done simply to save
space. Any code within a function, however, will match exactly what you will
find on disk.

Page 17 of 221

Preface

Acknowledgments

People who have read drafts of this book have repeatedly asked me where 1
found my inspiration for writing the way 1 have. Influence has come from
many corners, so let me list those sources as well as offer my thanks to the fol-
lowing groups or individuals who have helped create this tome of OLE:

To all the programmers in the trenches who are usually told to do too
much with too little information. Without you, I'd have little incentive to
write a book like this.

To all those developers inside Microsoft who took the time to formally
review this work: Charlie Kindel, Nigel Thompson, Scott Skorupa, Sara
Williams, Vinoo Cherian, Craig Wittenberg, Douglas Hodges, Alex Tilles,
Mark Bader, Dean McCrory, and especially Nat ““Zoinks” Brown-—thanks for
all your useful and real-world insights.

To the OLE 2 team at Microsoft for all their answers and input, espe-
cially to architects Tony Williams and Bob Atkinson.

To all the developers who devoured my draft copies as soon as I could
write them and who sent words of encouragement, including Dominic Kyrie,
Marc Singer, Marcellus Bucheit, Lars Nyman, Howard Chalkley, and Jim
Adam, a total Python Head who reminded me that it was Patsy who actually
said Camelot was only a model.

To Burt Harris and Thomas Holaday for setting me straight on the finer
points of C++ programming.

T'o Monty Python, Yoda, the Harvard Lampoon, and MAD Magazine, as well
as authors Donald Norman, Robert Fulghum, Tom DeMarco, Timothy Lister,
Douglas Adams, Piers Anthony, Marvin Harris, and Jim Stacey for whatever it
1s that made me include the crazy things [wrote in this book.

To photographer Dewitt Jones, Lynette Sheppard, and the entire group
from our week at HollyHock, who showed me how to enjoy and appreciate
doing the crazy things T have in this book. May you always fly with frozen eagles.

To Dean Holmes, Ron Lamb, Seth McEvoy, and all the other people at
Microsoft Press, not only for doing the work of publishing this book but also for
letting me get away with the crazy things I've done here,

To Bob Taniguchi for helping me get into the position at Microsoft to
write this book, and to Viktor Grabner for teaching me what the purpose of
making my job obsolete really means and how to be alittle crazy in the process.

To Microsoft’s Developer Relations Group for allowing me to lock myself
in my office undisturbed for months on end while I was doing crazy things.

And, of course, to my wife, Kristi, who was there through what has been
the busiest year we've yet experienced.

Page 18 of 1

INSIDE OLE 2

Road Map

XX

Before we get started, let me give you a word of warning. OLE 2 is big. Very
big. If you count the number of new functions in OLE 2, you have more than
in Windows 3.0 itself. If you count the number of pages in this book, you’ll
find it longer than the Windows 3.1 edition of Charles Petzold’s Programming
Windows (no offense, Charles), and | don’t list most of the sample code. What
does this mean for you? If there ever was a time to heed the warning “Don’t
bite off more than you can chew,”” now is the time. Allow me to illustrate.

Pat and Casey each decided to build a cabin at the top of @ mountain. Each cabin
would have the latest siding, a hardwood floor, and a pressure-treated deck with a
great view of the valley.

Pat was so excited about actually having this cabin that she quickly threw some
wood and tools into a helicopter and went straight to the summit. “Time is money,”
Pat philosophized, as she started hammering away. Soon she needed another tool and
more materials, so she rushed back down the mountain, grabbed what she needed, and
hurried back up. This process repeated itself again and again and again. Pat never
had the right things on hand to complete the job efficiently, although on every flight
back up the mouniain she thought she did. But the progress was impressive.

Meanwhile, Casey did not start so quickly. She carefully planned an approach to
the construction, organized all the materials she would need, and arranged for them to
be delivered just before they were necessary. She intended to have everything on hand to
complete each stage in the project.

When Casey eventually arrived at the summit, she had only enough to build the
Jfoundation, but it went perfectly. Pat would often peer over and laugh, touting how
much more she had accomplished and how much faster. “Time is money!” she would
shout. Casey would quietly think, “If time is money, why are you spending as much
time going up and down this mountain as you ave building?”

1t seemed that Pat would complete the project long before Casey. Pat had an insa-
tzable wrge to keep building something, and so she was finishing the floor and building
parts of the deck with only half the walls and roof complete. Casey had only a founda-
tion, the frame, and the roof completed on her cabin.

Unexpectedly, powerful monsoons fell upon the two builders. Pat waiched in hor-
ror as the incomplete walls and roof were torn away in the sirong winds. She could only
stand there helplessly and get drenched, watching her beautiful wood floors split under
the intense pounding. Casey, keeping perfectly dry with a solid voof overhead, con-
tinued working through the rains, adding wallboard so that her cabin would withstand
the wind and completing a magnificent interior, all the time staying warm and dry.

When the monsoons subsided and the sun returned, Pat cleaned up the wreckage
and salvaged what she could. Months later, she completed her cabin—it was finished,

Page 19 of 221

Preface

but it wasn’t what she had imagined. She was just glad that it was finally done.

After the storms, Casey had only to spend a few move weeks on the deck before she
Sinished her cabin. While Pat was painfully recovering what she could, Casey was
enjoying a wonderful spring in the mountains.

Catastrophes often occur in software development. A competitor
releases a product that has more features than you knew about, sooner than
you expected. If your work doesn’t stand up to that competition, it has to be
scrapped or completely reworked.

"The approach taken in this book will help you incorporate technologies
of OLE 2 into your application in such a way that you can stop completely at a
number of points but will still have a lot to show for your efforts.

Section One, “Windows Objects,” discusses the basic architecture of the
OLE 2 object model. This in itself does not contain much that will be very
visible to your customers, but it is the foundation.

Section Two, “Object-Oriented System Features: Files and Data,” de-
scribes a new way to read and write disk files that is powerful enough in itself
that it might be the only technology you exploit in OLE 2. This new method
simplifies features such as incremental saves and transactioning. In addition,
Section Two deals with the concepts of Uniform Data Transfer, through
which you can gain significant performance benefits, especially within suites
of applications. That alone might be enough to satisfy immediate demands of
your customers. You might also want to exploit OLE 2’s drag-and-drop pro-
tocol, on which many features in future versions of Windows will be based.

From there, you can work into Section Three, “Compound Documents:
OLE,” which explores the concepts and necessary code to support Linked
and Embedded objects according to the OLE 2 Design Specification for Com-
pound Documents. Linking-and-embedding support by itself is quite valu-
able, but you can take embedded objects one step further by implementing a
powerful user-interface model called in-place activation, otherwise known as
Visual Editing, covered in Section Four.

I encourage you to start by reading Chapter 1 to become familiar with all
the OLE 2 technologies and how they fit together. Chapter 1 also details the
information thatis in all the later chapters. From there, set your goal and map
out an approach that helps you first build a foundation on which you build
basic structures like walls and roofing. After that, you can add all the finish-
ing touches on the inside, all the time keeping dry when the monsoons come.

Kraig Brockschmidt
Redmond, Washington
September, 1993

Page 20 of 331

INSIDE OLE 2

e e e e R e e e a e e
Using the Companion Disks

Bound into the back of this book are two 3.5-inch, 1.44-megabyte
companion disks containing the source code files for all the sample
programs described in the book. The files on the floppy disks are
compressed and must be expanded and copied to vour hard disk
before you can use them,.

To copy these programs to your hard disk, place yowr disk in
the A drive of your computer and enter the following at the MS-DOS

prompt:
A:TNSTALL

The decompression program on the disk will begin, and vou will be
told what to do at each step of the unpacking process until all files
are copied to the hard disk.

You will need at least 6 MB of space on your hard disk for the
sample code that accompanies this book.

Of course, you'll need more than 6 MB of free disk space. The
MAKEALIL.BAT file in the installation directory will automatically
build all the samples for all chapters. The defauit debug build will
consume approximately 80 MB of hard disk space. A “retail” build
(type SET RETAIL=I at the MS-DOS prompt before running
MAKEALIL.BAT) will consume considerably less disk space but still
requires approximately 50 MB or so. Your compiler is likely to need a
megabyte or two extra for temporary files it creates along the way, so
be sure you have enough room.

X Page 21 of 221

.-,g-.|-\ -\\-11“"~v o1t kel)
NN SCORNEA \\\\\ \k Ny 11\;;;, 3
] tf i

ln' }' I' IrEf

WINDOWS OBJECTS

-
-~
!

 EMBEDDING

Page 22 of 221

AN OVERVIEW OF OLE 2

All evolution in thought and conduct must at first appear

as heresy and misconduct.,
—George Bernard Shaw (1856-1950)

Many years from now, a Charles Darwin of computerdom might look back
and wonder how the Microsoft Windows APIs (Application Programming
Interfaces) evolved into Windows Objects, an objectoriented operating sys-
tem. OLE version 2 is the genesis of this transformation—it will change how
you program—and eventually how you use—Windows. In the beginning,
yowll probably regard it as utterly strange and difficult, no matter whar your
background. But don’t feel too threatened. I won't ask you to throw away any
knowledge you've accumulated. Instead, we’ll ease into the features of OLE
and see how those features, combined with everything you already know, can
help you reach new heights in your applications.

Today, Windows’ features are exposed to applications through a large —
and growing—collection of randomly named API functions. (Remember
when you first learned that DeleteObject is the opposite of CreateBrush?) Every
APT function is created equal, so to speak, and is accessible from virtually
any piece of code, regardless of how useful such access really is. Over the
years, many new API functions have emerged, each in its own way describ-
ing some new capability of the system, each in its own way providing vet
another different set of functions by which an application implements
various features, and each with its own naming cenvention (or lack
thereof).

Such an environment is a ripe opportunity for object-oriented tools
to flourish. Languages such as C++ and class libraries such as Microsoft's
Foundation Classes or Borland’s Object Windows Library provide some
order in the chaos of the API waters. For example, instead of dealing with a
window by means of a handle and numerous API functions spread thinly
through the reference manuals, these products shelter a window handle

Page 23 of 231

INSIDE OCLE 2

in a C++ object class and directly provide member functions to manipulate
the window by means of the object instead of the handle.

In addition, because a member function is always called by means of
an object variable, for convenience the names of those functions are located
together in the reference manuals, categorized by the object name itself.

In the same manner—and independent of the programming
language you choose—OLE 2 exposes system features through what are
called “Windows Objects’” instead of through API functions. Basically, a
Windows Object is a piece of code that exposes its functions through one
or more distinct groups of functions. Each group is called an interface.
This arrangement provides much-needed order at the system level: Instead
of working with disparate handle-based functions, you work with tightly
organized system objects. The object model that describes Windows Ob-
jects not only describes how the system exposes its functionality to applica-
tions but also how applications expose their functionality to the system
and to other applications. Realize, too, that the way in which you expose an
object does not restrict the way in which you can implement an object. As we'll
see, C++ is the most convenient language in which to express a Windows Ob-
ject, but you can use other languages just as effectively.

Windows Objects are built on a foundation that also allows an object’s
code to live anywhere: within a particular application, in a DLL loaded into
an application’s task, in another application, or even on another machine (in
the future, when OLE is network enabled). The object model that OLE 2
introduces lays the evolutionary groundwork for distributed object comput-

ing in the years ahead.

OLE 2 exposes a number of key system features, such as the clipboard
and the file system, through specific objects. These objects are implemented
on top of the existing Windows API functions such as SeiClipboardData and
OpenFile. Using these objects today will, of course, cause a decrease in overali
performance because you add another layer of function calls to accomplish
the same task. For the programmer, however, the overall surface area of API
functions is markedly reduced; many of those API functions are moved into
member functions of a particular object that you see only when you are ma-
nipulating that object. The only globally accessible AP functions that remain
are a few that initially obtain a pointer to one of the system objects.

. Although you will suifer from a performance penalty today, the object

| implementations of system features will, I believe, gradually become the na-

| tive expression of those features. The API functions will still be available, but
they will be implemented on top of the objects, transferring the performance
penalty to those applications that still use the old API functions.

Page 24 of 221

O NE: AnOQverview of OLE 2

Eventually, the API functions will be provided as some sort of com-
patibility layer that exists only for the ability to run old applications. All new
system features will be provided exclusively by means of objects. Only those
applications that have made the transition to using these system objects will
be able to benefit from the newest and most powerful features.

This chapter will introduce each specific feature (or technology) of
OLE 2, describing briefly how your application might take advantage of it
{thatis, profit from it) today. By using these features today, you begin to trans-
form your application to more readily take advantage of Windows® future
evolution (thatis, profit from it tomorrow). The stick that goes along with this
proverbial carrot is that you must read this book.

Our latter-day Charles Darwin will then have plenty to say about the
origin of a new species of incredibly sophisticated and powerful applications
for Windows.

Windows Objects: The Component Object Model

Windows version 1 had about 350 API functions. OLE 2 has over 100. So by
measures of new functionality, OLE 2 is roughly one-third of an operating sys-
tem. By the measure of its impact on your applications, it has appeal as an en-
tire system in itself. It presents as system objects a number of key operating
system features such as memory allocation, file management, and data trans-
fer. The huge number of additional features and functions in OLE 2 can be
overwhelming. The first step in adopting these new and powerful technolo-
gies is to realize that one doesn’t learn and exploit a new operating system
overnight—there are a few fundamental concepts to learn first. In addition,
many higher-leve] features of any system build on the lower-level features, and
OLE 2 is no different. In fact, OLE 2 makes great use of the idea, as shown in
Figure 1-1 on the following page.

The first feature is the Component Object Model, which is partly a
specification (hence "Model”) and partly an implementation (contained in
CGOMPOB].DLL provided with the OLE 2 SDK). The specification part
results from defining a binary standard for object implementation that is in-
dependent of the programming language you decide to use. Objects adher-
ing to this standard earn the right to be called Windows Objects. This binary
standard enables two applications to communicate through object-oriented
interfaces without requiring either to know anything about the other’s imple-
mentation. For example, you might implement a Windows Object in C++ that
supports an interface through which some other code (the user of that ob-
ject) can learn the names of functions that can be invoked on that object. The

5
Page 25 of 221

INSIDE CLE 2

In-place Activation/
*Visual Editing”

Linking

Embedding Compound

Documents

Automaticn 1

Y Y

Monikers

Figure 1-1.
Each feature in OLFE 2 builds on lower-level featuves.

user of this object might be a programming environment such as Visual Basic,
or it might be another application written in C, Pascal, Smalltalk, or another
language.

The implementation in the component object library (COMPOBJ.DLL)
provides a small number of fundamental API functions that allow you to in-
| stantiate what is called a Component Object, a special type of Windows Object
that is identified with a unique class identifier. In return, you are given a
pointer to a table of functions (called an interface) that the object imple-
ments and through which you can call those functions. This mechanism
creates a standard object-creation technique within the system that is inde-
pendent of the programming language. In addition, this mechanism isolates

Page 26 of 221

ONE: AnOverviewof QOLE 2

you from where the actual object is implemented, which could be in a DLL or
another EXE. However, you are oblivious to the location because the compo-
nent object library handles the communication between modules. In the fu-
ture, the object might live and execute on another machine on your network,
an arrangement that would open the way for distributed object architectures
under Windows. Although OLE 2 itself does not contain this feature, it has all
the necessary mechanisms into which distributed computing will easily fit.

A Windows Object does not always need to be structured as a Compo-
nent Object in such a way that the API functions in COMPOB].DLL can
instantiate it. Use of such API functions is merely one way through which you
can obtain your first interface pointer to an object.

There are, of course, other API functions and routes in OLE 2 through
which you can obtain that first pointer as well—many of the chapters in this
book describe how you generally obtain and use a pointer to specific kinds of
objects. When implementing an object, how you allow others to get at your
object affects your overall code structure. To make objects addressable via the
COMPOB].DLL API functions, you must “house’” them inside either a DLL
(dynamic link library) or an EXE (executable) with specific code—that is,
specific functions you call and export from your module. The object itself,
however, can be independent of the housing, a capability we will explore in
Chapter 4.

The other key piece of implementation in COMPOB].DLL handles a
process called marshaling, or passing function calls and parameters across
process boundaries. Because an object’s code can execute in another process
space and eventually on another machine, COMPOB].DLL handles transla-
tion of calling conventions and 16-bit to 32-bit parameter translation when
the object and that object’s user are running in different process spaces. For
example, an object might be executing in a 32-bit process space, so it treats
types such as UINT as 32-bit values. The user of that object might be running
in a 16-bit process space and might call a function in the object passing a 16-
bit UINT. In the middle sits COMPOB].DLL to marshal that UINT from a 16-
bit world into a 32-bit world. Other types, such as pointers, memory handles,
and so on, are handled in a similar manner: COMPOB].DLL makes sure that
each side, object and user, sees the other in terms of its own process space. In
the future, when the object can execute on another machine, COM-
POBJ.DLL will also account for considerations such as byte ordering.

The need for marshaling is not new: OLE 1 also had to move parameters
and memory across process boundaries using Dynamic Data Exchange
(DDE). A major problem of OLE 1 that resulted from the asynchronous DDE

7
Page 27 of 221

INSIDE OLE 2

protocol was that a function call made on an object was inherently asynchro-
nous, forcing the caller to sit and wait in a message loop until that function
was complete, with all the associated problems of time-outs, error recovery,
and blocking other requests on the same object. The marshaling mechanism
in OLE 2, Lightweight! Remote Procedure Call (LRPC), is inherently syn-
chronous—that is, calls made on objects don’t return until completed —sim-
plifying the programming model. Some calls, such as those dealing with
event notification, remain asynchronous due to the general uses of those
calls.

Objects and Interfaces

A technique that describes a binary standard for objects, such as the Compo-
nent Object Model, does require some change in typical understanding of
what the term object really means. Object is probably the most overused and
ambiguous term in the computer industry. Object is used everywhere and
often with wildly different meanings; as used in this book the term has a
specific meaning. Chapter 3 describes a Windows Object in detail, showing
exactly how to implement one in both C and C++. Later chapters illustrate a
number of routes by which you can obtain a pointer to a specific type of Win-
dows Object. [warn G++ programmers now that a Windows Object is a little
different from a C++ object, although you can effectively use G++ objects to
implement Windows Objects.

Another term that requires some explanation here is inferface, another
hackneyed and ambiguous term. The notion of interface that applies
throughout this book is defined as “‘a set of semantically related functions
implemented on an object.” The word interface by itself means the definition
(or prototype or signatures) of those functions: The OLE 2 include files contain
these definitions. An instantiation of what [call an interface implementation (be-
cause the defined interfaces themselves cannot be instantiated without im-
plementation) is simply an array of pointers to functions. Any code that has
access 1o that array— that is, a pointer through which you can get to the top of
the array—can call the functions in that interface, as shown in Figure 1-2.
Note that in reality, a pointer to an interface is actually a pointer to a pointer
to the function table, but that is a detail we can leave until Chapter 3. Concep-
tually, however, an interface pointer can be viewed simply as a pointer to a
function table in which you can call those functions by dereferencing them by
means of the interface pointer.

1. “Lightweight” means “no network’; all calls are made on one machine.

Page 28 of 221

ONE: AnOverviewof OLE 2

The interface definition allows that code to call functions by name and
provides type checking on parameters instead of calling functions by an in-
dex into the array. Because it’s generally inconvenient to draw function tables
in expanded form for every interface, this book and other OLE 2 documenta-
tion show each function table as a circle (ora jack) connected to the object, as
you can see in Figure 1-2,

A Windows Object implements one or more interfaces— that is, it pro-
vides pointers to instantiated function tables for each supported interface. A
simple object, such as a data object we'll implement in Chapter 6, supports
only one specific interface describing data operations such as GetData and Set-
Data. More complex objects, such as the compound document objects we’ll

Pointer to interface A Object data cannot be
can only access member directly accessed through
)) functions of interface A. interface pointer.
Object user /

-~) E
. Obiect \
v S k. 3

pinterfaceA I e
_Po
Implementation Object's

Pointer to fn2 of interface internal

e e Pointer to fn3 -l—" &‘?&}Sﬁ; data
Pointer to fn4 -l'—’

Pointer to fnb =

Interface I

J - Object

Acircle (or jack) is used to
represent the entire function
table for an interface.

Figure 1-2.
An instantiation of an interface is simply an array of function pointers. A circle
(or jack) is a more convenient represeniation of an interface function table.

9
Page 29 of 221

INSIDE OLE 2

10

implement and use in Chapter 9 and beyond, support at least three interfaces,
perhaps more, depending on the features that object implements. Overall, an
object 1s completely described by the collection of interfaces it supports be-
cause each separate interface provides the essential manipulation API func-
tion to a user of that object.

Whenever the user of some object first obtains a pointer to that object, it
has a pointer to only one interface; the user never obtains a pointer to the
entire object. This pointer allows the user to call only the functions in that
one interface’s function table, as illustrated in Figure 1-3. Through this
pointer, the user has no access to any data members of the object nor does it
have any direct access to other interface. In other words, data must be
manipulated exclusively through the interface functions, and the interface
must have a function through which the caller can obtain a pointer to the
object’s other interfaces within the object.

Although OLE 2 does not define standard interface functions to access
data members of the object, it does define a standard function through which
the user of one interface on that object can obtain a peinter to another inter-
face on that object. This function is called Querylnterface, as shown in Figure
1-4. We’ll éxamine this function in detail in Chapter 3. When the user queries

Pointer to interface A can
only access member
functions of interface A.

==l re— = T,
5 _!1 v Object ™
Object user —

Y Implementation N
pinterfaceA > A of interface Object’s
J A members internai

data

Implementation

o m B . of interface
4 i ; B members

Object supports
interfaces A and B.

Object user never has a
pointer to the object itself.

Figure 1-3.
Object users with a pointer lo interface A can access only member functions of
interface A.

Page 30 of 221

ONE: AnOverviewof QLE 2

for another interface, it either receives an error (and a NULL pointer), mean-
ing the object does not support the functionality described by the interface,
or a valid pointer through which the user might then manipulate the object
through that new interface. Because Querylnierfaceis so fundamental, itis part
of an intertface called /Unknown (the I stands for Futerface), which describes
the group of fundamental functions that all Windows Objects support, no
matter how unknown they are in other respects. All other interfaces in OLE 2
are derived from [Urknoum, so all interfaces contain the QueryInterface func-
tion, By implementing one interface on a Windows Object, you automatically
implement [Unknoun because the first few functions in each function table
will be those of IUnknown, as shown in Figure 1-5 on the following page. (The
other two members of [Unknown are AddRefand Release.)

Through QueryInterface the user of an object can discover the capabili-
ties of that object at run-time by asking for pointers to specific interfaces.
By returning a pointer to that interface, the object is contractually obliged to
support the behavior specified for that interface. This enables every object
to implement as many interfaces as it wants, so that when it meets a user that

User calls AQueryinterface
asking for a pointer to interface B.

; = 7y
Object user i = ' 1 '

y Implementation _
plnterfaceA = A - of interface Object's
J A members internal
data

Implementation
pinterfaceB > B } = of interface
= =19 \ :) B members

N\

Al Querylnterface
returns a pointer to
interface B on the same object.
B::Queryinterface
can return a pointer
to interface A as well.

Figure 1-4.
An object user asks the QueryInterface member of any interface to retrieve
pointers to other inlerfaces on the same object.

Page 31 ofibl

o=

INSIDE QOLE 2

Function table Function table for
for [Unknown another interface
" Queryinterface Queryinterface

A pointer to this interface
AddRef AddRef can also be used as a
pointer to IUnknown.

Release Relsase

Pointer to fn1

Pointer to fn2

Pointer to fn3

Pointer to fnd.

Figure 1-5.
The first few members of any interface are always IlUnknown members.
Any interface is therefore polymordial with I1Unknown.

knows how to use many of those interfaces, the two can communicate on a
high level. When the object meets a user that knows fewer interfaces, the two
can still communicate through the common set of interfaces they both under-
stand—that is, if an object implements interfaces A, B, and C, but the user
only knows how to make use of interface B, the object and user can still com-
municate, but only through interface B. Because ail Windows Objects imple-
ment at least [Unknown, there is always some rudimentary form of possible
dialog.

Although OLE 2 defines a large number of standard interfaces, you are
free to define and publish your own custom interfaces without requiring any
changes whatsoever to the OLE 2 DLLs or any other part of the Windows
operating system. The only complication is that you must also provide a DLL
for marshaling support because OLE 2’5 marshaling knows only its own inter-
taces. But that is a small price to pay for the ability essentially to publish your
own new APl without having to wait for a system revision from Microsoft.

Structured Storage and Compound Files

12

The OLE 2 specification defines a number of storage-related interfaces, col-
lectively called Structured Storage. By definition of the term interface, these
mterfaces carry no implementation. They describe a way to create a ““file sys-
tem within a file,” and they provide some extremely powerful features for
applications. Instead of requiring that a large contiguous sequence of bytes

Page 32 of 221

*‘

ONE: AnOverviewof OLE 2

on the disk be manipulated through a single file handle with a single seek
pointer, Structured Storage describes how to treat a single file-systern entity
as a structured collection of two types of objects—storages and streams—
that act like directories and files, respectively.

A stream object is the conceptual equivalent of a single disk file as we
understand disk files today. Streams are the basic file-system component in
which data lives, and each stream in itself has access rights and a single seek
pointer. Streams are named by using a text string (up to 31 characters in OLE
2) and can contain any internal structure you desire.

A storage object is the conceptual equivalent of a directory. Each stor-
age, like a directory, can contain any number of storages (subdirectories) and
any number of streams (files), as shown in Figure 1-6. In turn, each substorage
can contain any number of storages and streams, until your disk is full.

A storage object does not contain any user-defined data—just as a file-
systemn directory cannot—because it maintains only information related to
the storage structure—information about the other streams and substorages
that live below it. Each storage has its own access rights—as do streams, a fea-
ture that is lacking in MS-DOS directories, Given a storage, you can ask it to

Root storage object

. B
 Substorage
L _

| Substorage

 Substorage

Storages can exist with no
streams or substorages.

Figure 1-6.
Conceptual structure of storage and stream objects in a compound file.

Page 33 of 221

INSIDE OLE 2

14

enumerate, copy, move, rename, delete, or change dates and times of ele-
ments within it, providing more than simply the equivalents of MS-DOS
commands.

Because Structured Storage is only a specification, OLE 2 provides a
complete implementation called Compound Files? which you can use to
replace a traditional file handle—based API functions such as _ fread and
_lwrite. Do not think that the word compound as used here means that com-
pound files are useful only to compound document implementations: The
compound files technology is completely independent in the OLE 2 package.
In fact, it lives independently in STORAGE.DLL and requires only COMP-
OBJ.DLL to operate. A similar and 100 percent compatible implementation
of compound files will also become the native file system in future versions
of Windows, and so, as basic technology, it cannot be restricted to high-level
integration features such as the Compound Document standard.

Compound files isolate your application from the exact placement of
bytes within your file, just as M§-DOS isolates applications from the exact sec-
tors on the hard disk that your file occupies. MS-DOS presents disparate sec-
tors as a contiguous byte array when you access that file by means of a file
handle. In the same manner, compound files present information in a stream
as one contiguous entity although the exact information in that stream might
be fragmented within the actual file itself.

This means that by adopting compound files for your storage, the physi-
cal layout of your files on the disk will no longer be under your direct control.
However, although you lose control of the physical layout, you still retain con-
trol of which data structures are written into which streams within the file.
If you don’t want to hassle with reorganizing your structures, you can create a
compound file with a single stream, where the stream contains the same
structure as your existing file format.

Microsoft recognized that changing your on-disk file format might not
be an option, so the use of compound files is optional. The only kind of
application that is required to use some aspect of this storage model is a
compound document container, which must provide a storage object to any
contained compound document object. However, you can create a storage ob-
jectin memory and later write the contents of that memory into your own file
format, as detailed in Chapters 5 and 9. Storage objecis created on different
storage devices, such as memory and disk files, are indistinguishable from
one another to the user of those objects.

Aside from future considerations, compound files provide a number of
key features that you can use today to make a more powerful application. For

2. Formerly called DOCFILES.

Page 34 of 221

ONE: AnGCverviewol OLE 2

example, you could add additional features yourself that would otherwise be
too difficult or time-consuming, such as transactioning and incremental
saves. Chapter b discusses all the features of compound files and demon-
strates both simple and complex uses of this technology. All the features can
greatly improve an application’s design and treatment of storage.

Structured Storage, as well as compound files, is important for a number
of reasons, not the least of which is to standardize the layout of pieces of infor-
mation within a file. Such standardization enables any piece of code, be it the
system shell or another application, to examine the structure of the entire
compound file. The exact data formats of each individual stream is still pri-
vate to whatever wrote that data, but anyone can look into a compound file
and enumerate the storages and streams it contains. The OLE 2 Software De-
velopment Kit (SDK) even contains a tool called DFVIEW.EXE that displays
the structure of any compound file and allows you to dump the hex data of
any streanm.

Further standardization of the names and contents of a few specific
streams (but by no means all streams) enables the system shell and other
applications to allow end users to search for occurrences of data within files
that match attributes such as creation date, author, keywords, and so on.
Microsoft is determined to work with other independent software vendors
{ISVs) to define standard names and structures for streams that contain in-
formation useful in such queries. The long-range goal is to have all informa-
tion on the file system structured in such a way that end users can browse the
contents of many streams using the system shell. This capability is far more
powerful, yet easier to use, than requiring the end user to firstfind a file, then
find the application that can load that file, and then use the application to
open and browse files to eventually find the data. Structured Storage enables
shell-level document searching, an important manifestation of Microsoft’s
Information At Your Fingertips philosophy.

Uniform Data Transfer and Notification

Built on top of both the Component Object Model and the Compound Files
technology is a technology in OLE 2 called Uniform Data Transfer, which
provides the functionality to represent all data transfers—clipboard, drag-
and-drop, DDE, and OLE—through a single piece of code called a data object.
Such data objects are not restricted to transferring data through global mem-
ory either—they can use other mediums such as compound files. In general,
a data source can choose the best method for data exchange—that is, the most
efficient format and medium of transport. End users benefit from better

15
Page 35 of 221

| ==

INSIDE OLE 2

16

performance. Add that to direct, streamlined capabilities such as drag-and-
drop and you have a more usable environment overall.

Up to now, all data transfer between an application and anything exter-
nal (for example, clipboard, drag-and-drop, DDE, or OLE 1) has used global
memory. The specific data format contained in that global memory was
described by using a clipboard format such as CF_TEXT or CF_BITMAP.
Windows (not to mention the programmer) has suffered immensely from in-
herent limitations of global memory transfers as well as from having radically
different protocols and unrelated API functions for exchanging data via clip-
board, drag-and-drop, DDE, and OLE 1.

OLE 2 makes two major improvements. First, it allows you to describe
data using not only a clipboard format, but also a specification about how
much detail the data contains, what type of device (primarily printers) it was
rendered for, and what sort of medium is used to transfer the data. This new
method of describing and exchanging data, which we’ll examine in Chapter
6, 1s much more powerful than anything previously available. Instead of sim-
ply saying “I have a DIB,” I can say “‘I have a thumbnail sketch of a DIB ren-
dered for a 300 dots per inch (dpi) PostScript printer, and it lives in a storage
object.” For a source of data, you can choose the best possible medium in
which to transfer data, and you can make it the preferred format, providing
other mediums as backups (such as global memory, the lowest common
denominator). So if you happen to generate 30-MB 24-bit DIBs, you can keep
those in disk files or storage objects, even during a data exchange. You don’t
have to load that entire DIB into memory simply for such a transfer.

Data transfer in OLE 2, therefore, can use a compound file, disk file,
global memory, or whatever medium is most preferable for data. Understand-
ing that data transfer works on top of compound files, you can see how this
OLE 2 feature builds on a lower feature, much in the way that today’s clip-
board takes advantage of Windows’ kernel memory allocation primitives.

Secondly, OLE 2 separates the means of setting up a data exchange—
the protocol—from the actual operation of exchanging data. The problem
today is that the four transfer protocols (clipboard, File Manager drag-and-
drop, DDE, and OLE 1) use widely different functions and widely different
data structures, and each has its own limitations. Under OLE 2, applications
use new API functions to transfer a pointer to a data object from the data
source to the consumer of that data. These API functions form the protocol,
as discussed in Chapters 6 through 8. After this pointer has been exchanged,
the protocol disappears, and all exchange of data happens through the data
object. In other words, the protocol worries about exchanging a data object;
the data object standardizes how to exchange data rendered in some medium

Page 36 of 221

ONE: AnQverviewof OLE 2

independent from the protocol. Because the data object does not know
anything about protocols, you can write one piece of code to perform an
operation such as Paste regardless of how you obtained the data object, hence
the “Uniform” in Uniform Data Transfer.

Notification

Consumers of data from an external source are generally interested in when
that data changes. OLE 2 handles notifications of this kind through an object
called an advise sink—that is, a body that absorbs asynchronous notifications
from a source. The advise sink not only handles notifications for data
changes, but it also is generally used to detect changes in another compound
document object, such as when it's saved, closed, or renamed. We'll first see
advise sinks in Chapter 6, and we’ll see them again in Chapter 9 and beyond.

Data Objects and the Clipboard

Applications can first make use of data objects for Cut and Copy clipboard
operations. As Chapter 7 shows, a data object is programmatically similar to
common clipboard-handling code. When your data object renders data, you
use the same functions you used to generate a handle to pass to SetClipboard-
Data. When your data object is asked to enumerate the formats it supports, it
does 50 in the same order your clipboard code always has. In fact, a data object
used for Copy and Cut operations can be implemented on top of whatever
clipboard-handling code you currently have, with some minor modifications,
primarily to handle delayed rendering if you have not already.

Pasting data from the clipboard is a matter of retrieving a data object
that describes what data is currently on the clipboard. Instead of asking about
availability with IsClipboard FormatAvailable, you ask such a data object whether
it can render a specific format for whatever device, content, and transfer
media you want. If the data object can provide the data, you can, at any time,
ask for a rendering through the object instead of through GetClipboardData.

Data Objects and Drag-and-Drop

Converting an application so that it uses data objects for clipboard transfers is
not much of 2 benefitin and of itself. However, after you have the data object
implemented for the clipboard, you can use that same implementation for
drag-and-drop. OLE 2 does not deal with the simplistic drag-and-drop of files
from File Manager: OLE 2 provides for full drag-and-drop of any data thatyou
could transfer through the clipboard. Instead of being limited to files or
maybe simply to compound document objects, you can write your application
to drag and drop any data that you can describe in a data object.

17
Page 37 of 221

INSIDE OLE 2

Think of drag-and-drop asa streamlining your existing clipboard opera-
tions by eliminating menus, allowing direct manipulation, and providing
dynamic feedback to the user about what data is being dragged and what
might happen if the data is dropped. In this model, the source of the drag
provides the data object, determines what starts and stops the operation, and
controls the mouse-cursor-related user interface, The target of a drag receives
the data object, checks for usable formats, and determines what will happen
with the data if it's dropped inside the target window.

Drag-and-drop is a tremendous user benefit, and if you implement a
data object for the clipboard first, your drag-and-drop implementation is
close to trivial, as we’ll see in Chapter 8: An implementation will not take
more than a few days, depending on how fancy you want to get. For the
simplest implementation of a drop source you can copy code straight from
this book and probably have it working in under an hour. Targets are a little
more complicated, but simple targets could be written in an afternoon. You
won’t find another feature this powerful and this easy to implement.

Data Objects and Compound Documents

18

Drag-and-drop is not the end; implementing linking and embedding (what
we call Compound Document technology) involves augmenting the data ob-
Ject to handle OLE 2 formats to describe both linked and embedded objects.
You will modify your data object code to enumerate and render a tew new for-
mats; most of the rendering can be delegated to functions already imple-
mented in the OLE 2 SDK’s sample code. We’ll examine how the Compound
Document technology affects data transfers in various ways in Chapter 9 and
beyond.

After you have augmented the data object for OLE 2 formats, you in-
stantly enable transfers of Compound Document objects via clipboard and
drag-and-drop because neither mechanism cares what the data object actually
contains, In addition, by providing OLE 2 clipboard formats in a data object,
OLE automatically generates OLE 1 formats for backward compatibility. With
an OLE 2 application, you get such backward compatibility for free by simple
virtue of using a data object.

If you are familiar with OLE 1, you need to be aware that exchange of an
object’s native data is now handled through a storage object that represents
the part of the container’s compound file that is set aside for the object. In
OLE], the object was asked to allocate global memory and copy its native data
into it. In OLE 2, the object instead is given the storage object pointer
through which it writes its native data as if it were writing to a file, resulting in
much better performance.

Page 38 of 221

O NE: AnOverview of OLE 2

Data Objects and DDE

OLE 2 itself doesn’t attempt to address data transfers with DDE by use of data
objects, for reasons outlined in Chapter 6. It is possible to design a protocol
that you could use to isolate your application from DDE and treat it, again,
with a data object just as you would treat any other data transfer. Although
such a design is outside the scope of this book, it would allow us to come full
circle, supporting the four data exchange mechanisms in Windows by means
of data objects, and keeping different protocols to retrieve a data object, but
treating that data object uniformly from that point onward.

Compound Documents: Object Embedding

The Component Object Model, Compound File, Uniform Data Transfer, and
Drag-and-Drop technologies constitute the bulk of OLE 2 that is not con-
cerned with creating applications to support compound documents. The rest
of OLE 2 supports what is known as linking and embedding. The Compound
Document technology is now only a subset of the OLE 2 functionality® which
builds on the lower-level technologies, as illustrated previously in Figure 1-1
on page 6. The Compound Document technology is first and foremost a stan-
dard for integration between applications that follows the standards provided
in the lower layers: the Component Object Model standardizes how an object
and object user communicate; compound files standardize file structure;
Uniform Data Transfer standardizes data exchange functions.

A compound document is essentially a collection site for data from a
variety of other sources (that is, other applications). A word processor docu-
ment, for example, might contain a chart, a table, a metafile drawing, and a
bitmap, all of which were created in different applications. Before Object
Linking and Embedding, you created such documents by creating the data in
another application, copying it to the clipboard, and then pasting it into the
document as what we can generically (and rather loathingly) call an object.
The clipboard works very well for creating objects, but it does not work so wel]
for later making modifications to those objects because the pasted data no
longer retains any information about the application that created it, and it
does not retain any of the native data structures that the application used to
create it. So when end users want to modify an object, they first have to re-
member which application was used to create the object, manually locate
and launch that application, and then attempt to copy and paste the object
back into that application for editing. Because almost all of the native data

3. Ahistorical note: OLE 1 was concerned only with compound documents and provided no other
technologies.

Page 39 of 221

INSIDE OLE 2

20

structures used to create that object were lost, what is pasted is not what was
originally created or even what was originally in the compound document.
In most cases, end users were lucky if they could make this work.

The solution to this before OLE was that the application creating an ob-
Ject—what we call a server—and the application that maintained the com-
pound document—what we call a container—shared some sort of private
protocol between them, allowing a higher-fidelity transfer. The problem was
that 1o one wanted to maintain private protocols for every other application
on the market, and so there had to be a standard. OLE’s Compound Docu-
ment technology is that standard. The server packages its objects so that they
are usable in any container written to understand those packages. Because
both applications write to a standard instead of to each other, they can
achieve high-fidelity integration without any specific knowledge of the other.
They communicate through standard OLE interfaces, which provide for edit-
ing (or otherwise manipulating) an object, exchanging an object’s data, and
storing the object’s native data structures somewhere in the compound docu-
ment itself. Custom interfaces allow two applications to achieve even tighter
integration than what OLE itself provides, but the existence of such interfaces
does not interfere with the standard interfaces because of the QueryInterface
mechanism mentioned earlier, in the “Objects and Interfaces” section. For
most purposes, OLE’s Compound Document technology eliminates most of
the need for custom interfaces.

Chapter 9 explores container applications that provide site objects that
describe places in which an embedded compound document object can live.
These site objects implement at least two interfaces, one of which describes
containment functions and another that provides functions through which
the container is notified of events in the object. Much of the implementation
of a container is user-interface oriented, providing dialog boxes such as Paste
Special, Insert Object, and Convert Type (new in OLE 2), Fortunately, various
groups at Microsoft have contributed to writing a source code library of these
dialog boxes as well as other user interface helper functions that should save
you tremendous amounts of time implementing a container.

Chapters 10 and 11 explore compound document objects and how to im-
plement them in either DLL or EXE servers. These chapters deal only with
embedded objects, which store their private data structures in a storage object
provided by the container. This storage object, which is usually some piece of
a larger compound file, is for the object’s exclusive use. The object can create
any kind of structure within that storage object—that s, as many streams and
substorages as you want. When asked to save itself, the object writes into this
storage, which is essentially writing directly into the container’s file. This

Page 40 of 221

ONE: AnOverviewof OLE 2

means that the object is the only agent that needs to access that storage, and it
has the ability to access only as much as necessary. This is a stark contrast to
OLE 1's Compound Document technology, in which the container always had
to load the entire object’s data from a file and pass it to the object via global
memory. Under OLE 2, containers only need to pass a pointer to the storage
object, resulting in much better performance than OLE 1 could achieve.,

You will notice that by Chapter 9 the flavor of this book changes from
discussions about specific interfaces and what you ¢an do with them into step-
by-step guides to compound document interfaces and what you must do with
them. This reflects the shift from the lower-level and more generic interfaces
to those that specifically deal with the Compound Document standard. Stan-
dards require predictability, so the step-by-step guides in these later chapters
describe how exactly to implement that standard. This is very important be-
cause when we talk about compound documents, we're talking about the
interaction between two applications that don’t know about each other, and
that means a certain degree of conformity must be met to prevent a radical
increase in entropy.

Compound Documents: Object Linking and Monikers

Enabling container and server applications for linking is a matter of dealing
with an additional OLE 2 data format (describing a link source) and adding a
few more interfaces to the objects that each application implements. The ad-
dition of linking capabilities requires very few changes to other compound
document code that you implement to handle embedding. Chapters 12 and
1% deal with the necessary changes to support linking in a container and in an
object server, respectively,

Linking in OLE 2 affects containers more than it did in OLE 1. Con-
tainers are more than just consumers of linked objects—they can become link
sources in and of themselves. OLE 2 provides the mechanisms by which a con-
tainer can provide link source information for objects embedded within their
documents. Within the same container, therefore, you can create an embed-
ded object to which another object is linked. Chapter 13 deals specifically
with this.

Linked objects have been a significant difficulty for programmers since
the beginning of OLE. Because the linked object’s data lives in a separate file
in the file system, links are easily broken when the end user manually changes
the location of that file. OLE 1 depended on absolute pathnames to linked
files, so any change in that file’s location broke the link, even when the rela-
tive paths between the container and the linked file remained the same. In

Page 41 of 21

INSIDE OLE 2

22

addition, OLE 1 could not describe more than one layer of nested objects. To
solve most of the link breakage problems, as well as to provide for arbitrarily
deep object nestings, OLE 2 introduces a type of object called a moniker.

Asimple moniker contains a reference to linked data and code thatknows
how to “bind” that link. Binding means different things for different types of
monikers. For instance, binding can mean launching applications, loading
files, and requesting pointers to interfaces. The most common use of monikers
is to identify the source data for a linked objectin a compound document. This
generally requires a reference to a file (such as a filename) and an identifica-
tion of the part of that file that is the actual source of the link. To accommodate
this, OLE 2 provides a simple file moniker to manage a filename and an item
montker to manage some identification for a portion of a file.

A file moniker contains some sort of pathname, which can be as simple
as an eight-character filename (with or without a three-character extension)
or as complex as a full pathname, drive letter included. A linked object ac-
tually maintains two file monikers {and can have other monikers, as well):
one with a full pathname to the linked file (such as CASTATUS\UNE
REPORTDOC) and another with a relative pathname (such as .\JUNEM
REPORT.DOC). When a linked object is asked to bind to its source, it first asks
the absolute file moniker to bind, which means launching the application
that knows how to load the file (based on the extension), It then asks the ap-
plication for an interface that knows how to load files, and then it asks that
interface to load the actual file. If loading fails, the linked object tries
to bind the relative moniker, which executes the same process. Although the
absolute pathname is the fastest and most reliable way to get to a file, the rela-
tive moniker addresses the cases in which an entire directory tree was moved,
breaking absolute links but not relative links. The only case that is not
handled is when the user moves a source file to a completely new location.
That cannot be solved until the operating system is aware of every such
change. When that happens, the system will automatically update the link
paths without the application knowing or caring.

An item moniker is simply some sort of name that makes sense only to
the application that originally created it and provided it as part of a linked
object. Binding to an item moniker means asking the application (presum-
ably loaded through a file moniker already) for an interface that knows how to
resolve the name into some sort of pointer to an interface on the actual object.

A linked object generally stores complex references in a composite
moniker thatis a collection or sequence of other simple monikers. Most links
are expressed in a composite of one file moniker and one itemn moniker.
Longer sequences of monikers express more complex notions, such as nested

Page 42 of 221

ONE: AnOverviewof OLE 2

objects in which the composite contains many item monikers. An illustration
of a composite moniker that contains a file and an item moniker is shown in
Figure 1-7.

Composite moniker

Fite moniker ltern moniker
|| Pathname: CAREPORTS\MARCH.SBD {tem name:ThingAMaBob
Binding code runs an application Binding code asks the application

handling .SBD fileg and asks it to return an object pointer for
to load the file in the pathname. whatever the item name references.

Binding code iterates through each moniker in the sequence
from right 1o left, asking those monikers to bind and managing
the information that each moniker needs in order to bind.

Figure 1-7.
Conceptual file, item, and composite monikers.

Compound Documents: In-Place Activation
(Visual Editing™)

The Compound Document technology provides a way to embed an object in
or link an object to a container document. The container provides the appro-
priate functionality to activate the object, which can invoke any number of
actions on the object. When the action implies editing, both linked and
embedded objects are opened in another window, which provides the editing
context, the same model OLE 1 supported.

To stress a document-centric view of computing, OLE 2 provides the
ability to activate an object in place—inside the container application’s win-
dow. Editing the object is a subset of the more generic action of activating.
Instead of the object opening another window to execute an action, it might
choose to provide editing tools or other controls in the context of the con-
tainer. End users benefit from never having to leave the document context in
which they are working—no distractions of other windows and other environ-
ments. Instead of seeing two copies of the data, one in the container and one
in a separate editing window, end users see only the one in the container, in
the full context of its containing document.

23
Page 43 of 221

INSIDE OLE 2

Servers, containers, and compound document objects require a number
of additional changes and interfaces to support in-place activation, but these
build on top of and use much of the compound document implementations
that you'll already have done by this time. We’ll discuss the mechanisms of in-
place activation and the interactions between objects and containers at the
beginning of Chapter 15, leading into the implementation of an in-place
capable container application. We’ll then discuss the implementation of in-
place objects in Chapter 16, and we’ll end that chapter with an exercise in
extrapolation to see where the in-place activation technology might take us in
the future.

By implementing in-place activation interfaces, you do not restrict your
container or object to being useful only to other in-place applications. The
presence of the in-place activation interfaces does not interfere in any way
with the more basic compound document interfaces. So if you implement an
in-place object, it will be useful to an in-place container, which can activate it
in place, as well as to a simpler container, which will always activate the object
in a separate window.,

Automation

24

One other key technology that is part of the OLE 2 system but that is com-
pletely separate from the rest is OLE Automation. This technology allows an
object—any object regardless of other features—to expose a set of com-
mands and functions that some other piece of code can invoke. Each
command can take any number of parameters, and automation provides the
methods through which an object describes the names and types of those pa-
rameters. A full description of this technology, while very rich and exciting, is
beyond the scope of this book. In fact, automation is a large enough topic to
justify an entire book by itself. These few paragraphs constitute all that I men-
tion in this book about the technology.

‘The intent of Automation is to enable the creation of system macro pro-
gramming tools. Such tools will ask automation-enabled objects for lists of
their function names and lists of parameters (names and types) that those
functions accept. At one point, Microsoft was considering a single system
macro programiming tool, but this approach would have meant one language
and one tool for all end users. Through Automation, OLE 2 allows objects to
describe their capabilities to any tool where the tool defines the program-
ming environment. Ultimately this gives the end user the choice of language,
vendor, functionality, and so on.

Page 44 of 221

A

ONE: AnQverviewof CLE 2

Automation objects generally describe user-level functions on the order
of File Open or Format Character; Automation tools display those functions
to the user, allowing the user to write macro scripts that span applications.

The major motivation for this mechanism is to pave the way for pro-
gramming tools that can affect any Automation-enabled object, regardless of
whether the system or an application implements that object. When the user
chooses an object, such a tool asks the object for its list of function names and
exposes to the user the operations that are possible on the object. When the
user selects a function to use, the programming tool can further ask the ob-
jectfor the names and types of that function’s parameters, and it can provide
the environment in which the end user can indicate what to pass in each
parameter.

With a system full of such objects from many applications, the end user
can use any programuning tool that understands Automation to write macros
that could span applications. A more immediate benefit to your specific appli-
cation is that such a tool can also write macros that operate only in your appli-
cation, eliminating the need for you to create your own specific macro
language. The end user is then free to choose his or her preferred program-
ming tool, any of which use your Automation interfaces in the same way. The
user gains the benefit of having one tool that works with all Automation appli-
cations; you benelit from exposing Automation once and letting someone
else provide the programming environment.

But it doesn’t stop there. Although Automation exposes commands
through which external agents invoke your functions, there is no reason what-
soever that you could not invoke those same commands yourself. You might
implement Automation on top of your application’s message procedure, or
you might choose to implement your message procedure on top of Automa-
tion. Looking ahead, centralizing such code in the Automation interface
mightlead (o the eventual elimination of message procedures, using instead a
more general-purpose and powerful command processing object.

25
Page 45 of 221

S I
S

Na D oEEERE L
SRR ..k\\\ \\\\\ N

CONVENTIONS, C++
AND SAMPLE CODE

Throughout this book, we'll watch two applications evolve as we learn how
applications can take advantage of the various OLE 2 technologies and what
pieces of code are necessary to achieve the apex of in-place activation, which
will doubtless be the goal of many readers.

One application will be written from scratch—that is, it will not imple-
ment certain features such as file I/O until we can use compound files. This
application is suitable to become a container application, but before that time,
itwill serve to illustrate how to incorporate non-compound-document features.

The other sample is a full-featured application that without doing any-
thing else terribly important uses the traditional Windows API functions from
the start, implementing a number of features common to all applications,
such as clipboard exchanges and file 1/0. As we follow this application
through each chapter, we’ll replace the use of Windows API functions with the
use of OLE 2 technologies, such as converting existing file 1/0 into com-
pound files. Beginning in Chapter 4, we’ll break a piece of this application
into a component object DLL and separately develop it into an embedded
object capable of in-place activation.

Along the way, we'll also create a number of useful components (either
code fragments or DLLs) that you might find helpful in your own implemen-
tations.

To C or Not to C (with Apologies to Shakespeare)

The sample code provided in this book is mostly in C++, primarily because
the concepts and features of OLE 2 are best expressed in that language,
Authoring a book of this sort presents a few philosophical difficulties, such as

Page 46 of %1

INSIDE OLE 2

28

what language to use, how everything will fit on the companion disks, and
how not to alienate a large portion of your audience.

C++ code is smaller and simplifies code reuse, reducing the amount of
code I have to write and the amount of code you have to read. C programmers
will no doubt be a little put off by this, so in this section I've provided critical
explanations of basic C++ concepts and notations that should help the G pro-
grammer understand the sample code. While writing the code, I tried to re-
member that it has to be understandable to a typical C programmer, so I've
purposely kept myself from going hog wild about everything G++ can do, such
as deep multiple inheritance or long chains of virtual functions. This will no
doubt put off a number of C++ programmers, but believe me, itis notas bad as
forcing everyone to labor through verbose C.

Another possible source of irritation is that [wrote these samples in C++
using my own class library (called CLASSLIB) instead of a real library such as
the Microsoft Foundation Classes, which you might be using and for which
you might harbor a religious zeal. The reason is that libraries such as
Microsoft Foundation Classes, although very convenient, tend to hide much
of what we need to discuss and have a strong tendency to render an applica-
tion utterly foreign to C programmers, who develop glazed expressions and
start asking questions such as “Where is WinMain?” and “Where's the win-
dow procedure?” All the samples in this book have a WinMain (or a LibMain)
from which you can follow the thread of execution. The class libraries I wrote
for this book serve mostly to keep a lot of the basic code for a Windows pro-
gram out of the way, and they were something I could include on the sample
disks.

With the exception of the code to manage the application’s data struc-
tures, the sample code was originally written in straight C. In fact, these appli-
cations were ported from original C versions mostly by changing structures
into classes, which represents nearly the extent of my C++ talents. A C pro-
grammer briefed on the fundamental rules of C++ should be capable of tak-
ing the classes back to structures mostly by means of global search and replace
instead of a line-by-line rewrite.

The remainder of this section is intended to be a C++ briefing for C pro-
grammers, explaining this newer language from a C perspective so that you
can work through the rest of the code in this book. This section does not de-
scribe any details about OLE 2 itself but covers the aspects of the C++ lan-
guage that I used in this book’s samples to implement OLE 2 features. (Note
that when I use the word object in this section [mean a C++ object, not a
Windows Object, as I will mean in the rest of the book.) G++ is a matter of
convenience and results in much more compact code. I do not claim to be a
C++ expert, so please refer to any of the plethora of C++ books available

Page 47 of 221

TW O: Conventions, C++, and Sample Code

to make more sense out of this language. If you are already comfortable with
your G+t knowledge, feel free to skip to the “Sample Code” section of this
chapter, which starts on page 41.

User-Defined Types: C++ Classes
Many a C application is built on top of a number of data structures, one of
which might be a typical user-defined structure of application variables such
as the following:

typedef struct tagAPPVARS

{

HINSTANCE hinst; //MinMain parameters
HINSTANCE hinstPrey;

LPSTR pszCmdline;

int ncmdShow:;

HWND h¥nd; f/Main window handle
} APPVARS;

typedef APPVARS FAR #LPAPPVARS;

To manage this structure, an application will implement a function to al-
locate one of these structures, a function to initialize it, and a function to free it.

LPAPPYARS AppVarsPA]1ocate(H1NSTANCE. HINSTANCE, LPSTR, int);
BOOL App¥arsFInit{LPAPPVARS)
LPAPPYARS AppVarsPFree(LPAPPVARS):

When another piece of code wants to obtain one of these structures, it calls
AppVarsPAllocate to retrieve a pointer. Through that pointer, it can initialize
the structure with AppVarsFinit (which in this case might attempt to create a
window and store it in AWnd) or access each field in the structure.

By creating this structure and providing functions that know how to ma-
nipulate that structure, you have defined a type. C++ formalizes this com-
monly used technique into a class defined by the class keyword:

class __far CAppVars

{
public:
HINSTANCE m_hInst: //WinMain parameters
HINSTANCE m_hInstPrev;
LPSTR m_pszCmdLine;
int m_nCmdShow;
HWND m_hWnd: //Main window handle
pubiic:

CAppVars{HINSTANCE, HINSTANCE, LPSTR, int);

(continued)

Page 48 of 591

INSIDE OLE 2

30

~CAppVars(void):
BOOL Finit{void};
i

typedef CAppVars FAR =LPCAppVars;

The name after class can be whatever name you want. Although we
could have used APPVARS, paralleling the C structure, the name CAppVars
conforms to a C++ convention of using mixed-case names for classes prefixed
with a C for class. Another convention in C++ classes, at least around
Microsoft, is to name data fields with an m . prefix to clearly identify the vari-
able as a member of a class,

When another piece of code wants to use this class, it must instantiate a
CH++ object of this class. In C terms, CAppVars is a structure. To use the struc-
ture, you still have to allocate one. In C++, we do not need separate functions
to allocate the structure, nor do we use typical memory allocation functions.
Instead we use C++'s new operator, which allocates an object of this class and
returns a pointer to it, as follows:

LPCAppVars pAV;
pAV=new CAppVars{hInst, hInstPrev. pszCmdline, ncmdShow) ;

Because CAppVars was declared as __ far, new allocates far memory and
returns a far pointer. If the allocation fails, new returns NULL. But this is not
the whole story. After the allocation is complete, and before returning, new
calls the class constructor function, which is the funny-looking entry in the
following class declaration:

public:
CAppVars(HINSTANCE, HINSTANCE, LPSTR, int);

To implement a constructor, you supply a piece of code in which the
function name is <class>:<cluss> (<parameter list>) where ;> means “‘member
function of,”” as in the following:

CAppVars::CAppVars (HINSTANCE hlnst, HINSTANCE hInstPrev
, LPSTR pszCmdLine, int nCmdShow)

{

//Initialize members of the object
m_hinst=hInst;
m_hinstPrev=hInstPrev;
m_pszCmdLine=pszCmdLine;
m_nCmdShow=nCmdShow;

1

The :: notation allows different classes to have member functions with identi-
cal names because the actual name of the function known internally to the

Page 49 of 221

TW O: Conventions, C++, and Sample Code

compiler is a combination of the class name and the member function name.
This allows programmers to remove the extra characters from function names
that are used in C to identify the structure on which those functions operate.

The constructor, which always has the same name as the class, can take
any list of parameters, but unlike a C function, it has no return value because
the new operator will return whether or not the allocation succeeded. Because
the constructor cannot return a value, G+ programmers typically avoid plac-
ing code in the constructor that might fail, opting instead for a second func-
tion to initialize the object after it has been positively instantiated.

Inside the constructor, as well as inside any other member function of
the class, you can directly access the data members in this object instantiation.
The m_ prefix on data members is the common convention used to distin-
guish their names from other variables, especially since the names of data
members often conflict with parameter names.

Implicitly all the members (both data and functions) are dereferenced
off a pointer named this, which provides the member function with a pointer
to the object that's being affected. Accessing a member such as m_ hlnst
directly is equivalent to writing this->m_ hinst; the latter is more verbose, and
80 it is not used often.

The code that called newwill have a pointer through which it can access
members in the object just as it would access any field in a data structure:

UpdateWindow(pAV->m_hWnd);

What is special about C++ object pointers is that you can also call the member
functions defined in the class through that same pointer. In the preceding
class declaration, you’ll notice that the functions we had defined separately
from a structure are pulled into the class itself. Instead of having to call a
function and pass a structure pointer, as follows;

//C tall te a function that operates on a structure pointer
if (LAppFInit{pAV}))

{

[Other code here]

}

the caller can dereference a member function through the following pointer:

//C++ call to an abject's member function
if (IpAV->FInit(})

{

[Other code here]

}

The Flnit function is implemented with the same : notation that the
constructor uses:

Page 50 of 31

il

INSIDE OLE 2

32

CAppVars::Flnitiveid)

{
//Code to register the window class might go here.

m_hWnd=CreateWindow(...); //Create the main app window

if (NULL!=m_hwnd}
{
ShowWindow{m_hWnd, m_nCmdShow);
UpdateWindow(m_h¥nd);
}

raturn (NULL!=m_h¥nd);
1

Again, because a constructor cannot indicate failure through a return value,
C++ programmers typically supply a second initialization function, such as
Finit, that performs operations that might be prone to failure.

You could, of course, still provide a separate function outside the class
that took a pointer to an object and manipulated it in some way. However, a
great advantage of using member functions is that you can only call member
functions in a class through a pointer to an object of that class. This prevents
all sorts of problems when you accidentally pass the wrong pointer to the
wrong function, an act that usually brings about some very wrong events.

Finally, when you are finished with this object, you’ll want to perform
cleanup on the object and free the memory it occupies. Instead of calling a
specific function for this purpose, you use C++'s delete operator:

delete pAV:

delete frees the memory allocated by new, but before doing so it calls the
object’s destructor, which is that even-funnier-looking function in the class
declaration (with the tilde, -} but which comes with an implementation like
any other member function:

//In the class
public:
~CAppVars{void);

//Destructor implementation
CAppVars::~CAppVars{void)
{
//Perform any cleanup on the object.
if (IsWindow(m_hWnd))
DestroyWindow(m_hWnd);

return;
}

Page 51 of 221

TWO: Conventions, C++, and Sample Code

The destructor has no parameters and no return value because after
this function returns, the object is simply gone. Therefore, there is no point in
telling anyone that something in here worked or failed because there is no
longer an object to which such information would apply. The destructor is a
great place—in fact, your only chance—to perform final cleanup of any allo-
cations made in the course of this object’s lifetime.

Of course, there are many other ways to define classes and to use con-
structors, destructors, and metmber functions than I've shown here. However,
this reflects how I've implemented all the sample code in this book.

Access Rights

You probably noticed those public labels in the class definition or should, by
now, be wondering what they're for. In addition to public, two variations of
public can appear anywhere in the class definition: protected and private.

When a data member or member function is declared under a public
label, any other piece of code that has a pointer to an object of this class can
directly access those members by means of dereferencing, as follows:

LPCAppVars pAV;
HINSTANCE hinstz;

pAV=new CAppVars{hInst, hPrevInst, pszCmdLine, nCmdShow):
ninst2=pAV->m_hInst; //Public data member access

if (I1pAV->FInit()) //Public member function access
{
[Other code here]
}

When data members are marked as public, another piece of code is
allowed to change that data without the object knowing, as in the tollowing:

pAV->m_hInst=NULL: //Generally NOT a good idea

This is a nasty thing to do to some poor object that assumes that m_ hlnst
never changes. To prevent such arbitrary access to an object’s data members,
you would mark such data members as private in the class, as follows:

class __far CAppVars

{
private:
HINSTANCE m_hInst; //WinMain parameters
HINSTANCE m_hInstPrev;
LPSTR m_pszCmdLine;
int m_nCmdShow;

{continued)

Page 52 of %%1

INSIDE OLE 2

HWND m_hWnd: //Main window handle

public:
CAppVars (HINSTANCE, HINSTANCE, LPSTR, int);
~CAppVars(void);
BOCL FInit(void);

¥

Now code such as pAV->hInst=NULL will fail with a compiler error be-
cause the user of the object does not have access to private members of the
object. If you want to allow read-only access to a data member, provide a
public member function to return that data. If you want to allow write access
but would like to validate the data before storing it in the object, provide a
public member funciion to change a data member.

Both data members and member functions can be private. Private mem-
ber functions can be called only from within the implementation of any other
member function. In the absence of any label, private is used by default.

If a class wants to provide full access to its private members, it can
declare another class or a specific function as a friend. Any friend code has as
much right to access the object as the object’s implementation has. For ex-
ample, a window procedure for a window created inside an object’s initializer
is a good case for a friend:

class __far CAppVars

{
friend LRESULT FAR PASCAL AppWndProc([WndProc parameters]);

private:
[Private members accessible in AppWndProc]

3
Any member declared after a protected label is the same as privateas far as
the object implementation or the object’s user is concerned. The difference
between private and protected manifests itself in derived classes, which brings
us to the subject of inheritance.

Single Inheritance

A key feature of the G++ language is code reusability through a mechanism
called inheritance—that is, one class can inherit the members and implemen-
tation of those members from another class. The inheriting class is called a
derived class; the class from which the derived class inherits is called a base class.

| 34
. Page 53 of 221

TWO: Conventions, C++, and Sample Code

Inheritance is a technique to concentrate code common to a number of
other classes in one base class—that is, placing the code in a place where
other classes can reuse it. Applications for Windows written in G++ typically

have some sort of base class to manage a window, as in the following CWindow
class:

c¢lass __far CWindow

{
protected:
HINSTANCE m_hInst:
HWND m_hWnd ;
public:
CWindow(HINSTANCE) ;
~CWindow(void):
HWND Window(void);
1

The CWindow member function Window simply returns m_ AWad, allow-
ing read-only access to that member.

If you now want to make a more specific type of window, such as a frame
window, you can inherit the members and the implementation from CWindow
by specifying CWindow in the class definition, using a colon to separate the
derived class from the base class, as follows:

class . far CFrame : public CWindow

{
//CFrame gets all CWindows varfables.

protected:
//We can now add more members specific to our class.
HMENU m_hMenu:

public:
CFrame (HINSTANCE);
~CFrame(void):

//We also get CWindow's Window function.
I

The implementation of CFrame can access any member marked protected

in its base class CWindow. However, CFrame has no access to private members
of CWindow.

You will also see a strange notation in constructor functions:

CFrame::CFrame(HINSTANCE hInst) : CWindow{hInst)

Page 54 of%21

INSIDE OLE 2

36

This notation means that the Afnst parameter to the CFrame constructor is
passed to the constructor of the CWindow base class first, before we start exe-
cuting the CFrame constructor.

Code that has a pointer to a CFrame object can call CWindow::Window
through that pointer. The code that executes will be the implementation of
CWindow. The implementation of CFrame can, if it wants, redeclare Window in
its class and provide a separate implementation that might perform other
operations, as follows:

class __far CFrame : public CWindow
{

HWND Window(void);
1%

Crrame::Window(void)

{i
[O0ther code here]

return m_kWnd; //Member inherited from CWindow
}

If a function in a derived class wants to call the implementation in the
base class, it explicitly uses the base class’s name in the function call. For ex-
ample, we could write an equivalent CFrame::Window as follows:

CFrame::Window{void)
{
return CWindow::Window();

}

In programming, one often finds it convenient to typecast pointers of
various types to a single type that contains the common elements. In C++, you
can legally typecast a CFrame pointer to a CWindow pointer, because CFrame
looks like a CWindow. However, calling a member function through that
pointer might not do what you expect, as in the following:

CWindow * pWindow;
HWND hWnd;

pWindow={CWindow =)new CFrame(J; //Legal conversion
hWwnd=pWindow->Window();

Whose Window is called? Because it is calling through a pointer of type
CWindow #, this code calls CWindow:: Window, not CFrame:: Windouw.

Programmers would like to be able to write a piece of code that knows
only about the CWindow class but that is also capable of calling the Window

Page 55 of 221

TWO: Conventions, C++, and Sample Code

member functions of derived class. For example, a call to pWindow->Window
would call CFrame::Window if, in fact, pWindow is physically a pointer to a
CFrame. To accomplish this requires what is known as a virtual Sfunction.

Virtual Functions and Abstract Base Classes

To solve the typecasting problem described in the previous section, we have
to redefine the CWindow class to make Window a virtual function using the
keyword virtual, as follows:

class __far CWindow

{

virtual HWND Window(void):
Ji4
The wvirtual keyword does not appear in the implementation of
CWindow:: Window.
If CFrame wants to override CWendow:;Window, it then declares the same
function in its own class and provides an implementation of Window, like this:

class __far CFrame : public CWindow
{

virtual HWND Window(void):
}i

CFrame: :Window{void)
{
[Code that overrides the default hehavior of CWindow]
1

Such an override might be useful in a class that hides the fact that it ac-
tually contains two windows: the implementation of Window would then per-
haps return one or the other window handle, depending on some condition,

With CWindow::Window declared as virtual, the piece of code we saw
earlier has a different behavior, as in this:

p¥indow=(CWindow *)new CFrame(): //Legal conversion
hiWnd=pWindow->Window()

The compiler, knowing that CWindow::Window is virtual, is now respon-
sible for figuring out what type pWindow really points to, although the pro-
gram itself thinks it’s a pointer to a CWindow. In this code, PWindow->Window
calls CFrame::Window. If pWindow really points to a CWindow, the same code
would call CWindow: - Window instead.

Page 56 of*321

INSIDE OLE 2

G++ compilers implement this mechanism by means of a virtual function
table (sometimes referred to asa Vibl) thatlives with each object. The function
table of a CWindow will contain one pointer to CWindow:: Window. 1If CFrame
overrides the virtual functions in CWindouw, its table will contain a pointer to
CFrame.-Window. 1f, however, CFrame does nol override the Window function,
its table contains a pointer to CWindow::Window.

A pointer to any object in certain implementations of C++! is really a
pointer to a pointer to the object’s function table. Whenever the compiler
needs to call a member function through an object pointer, it looks in the
table to find the appropriate address, as shown in Figure 2-1. So if the virtual

piindow=new CWindow();
hnd=pWindow->Windew(};

\

CWindow lable
Pointer to Window >

*
HWND CWindow:: Window(

CWindow refurn m_hwnd,
}

Object data

aWindow=(CWindow*)new CFrame():
hWnd=pWindow->Window();

2

CFrame table
Pointer to Window T— TR

" HWND CFrame Window(void)

{
CFrame ~ [Other code here]
Obiject data i }return m_hWnd,

B F

NOTE: An object’s function table is actually separate from
the data, but they are shown together here for simplicity.

Figure 2-1.
C++ comprlers call virtual functions of an object by means of a function table.

1. Atleast Visual C++ 1,0 and Borland G+ 3.1,

38
Page 57 of 221

T W O: Conventions, C++, and Sample Code

Window of the CWindow class and of all derived classes always occupies the
first position in the table, calls such as pWindow->Window are actually calls to
whatever address is in that position.

Virtual functions can also be declared as pure virtual by appending =0to
the function in the class declaration, as follows:

class __far CWindow
{

virtual HWND Window(void)=0;
):

Pure virtual means ‘“‘no implementation defined,” which renders CWin-
dow into an abstract base class—that is, you cannot instantiate a CWindow by
itself. In other words, pure virtual functions do not create entries in an ob-
Jject's function table, so C++ cannot create an object through which someone
might try to make that call. As long as a class has at least one pure virtual
member function, itis an abstract base class and cannot be instantiated, a fact
compilers will kindly mention.

An abstract base class tells derived classes “You must override my pure
virtual functions!” A normal base class with normal virtual functions tells
derived classes “‘You can override these, if you really care.”

You might have noticed by now that an OLE 2 interface is exactly like a
C++ function table, and this is intentional. OLE 2’s interfaces are defined as
abstract base classes, so an object thar inherits from an interface must over-
ride every interface member function—that is, when implementing an object
in G+, you must create a function table for each interface, and because inter-
faces themselves cannot create a table, you must provide the implementations
that will. OLE 2, however, does not require that you use C++ to generate the
function table; although C++ compilers naturally create function tables, you
can just as easily write explicit C code to do the same.

Multiple Inheritance

The preceding section described single inheritance—that is, inheritance
from a single base class. C++ allows a derived class to inherit from multiple
base classes and thus to inherit implementations and members from multiple
sources. The samples in this book do not use multiple inheritance, although
there are no technical reasons preventing them from doing so. They use only
single inheritance to remain comprehensible to C programmers who are Just
beginning to understand the concept. In any case, multiple inheritance is evi-
dent in the following class declaration:

39
Page 58 of 221

INSIDE OLE 2

class __far CBase

{

public:
virtual FunctionA(void):
virtual FunctionB{veid);
virtual FunctionC{void}:

}s

class _ _far CAbstractBase

{

public:
virtual FunctionD{void}=@;
virtual FunctionE(void)=a;
virtual FunctionF(void)=0:

}:

//Note the comma delineating multiple base classes.
class _ far CDerived : public CBase. public CAbstractBase

{

public:
virtual FunctionA(veid);
virtual FunctionB{void};
virtual FuncticnC(void);
virtual FunctionD(void);
virtual FunctionE(void):
virtual FunctionF(void);

I

An object of a class using multiple inheritance actually lives with mul-
tiple function tables, as shown in Figure 2-2. A pointer to an object of the
derived class points to a table that contains all the member functions of all the
base classes. If this pointer is typecast to a pointer to one of the derived
classes, the pointer actuaily used will refer to a table for that specific base
class. In all cases, the compiler dutifully calls the function in whatever table
the pointer referenced.

Of course, there are limitations to using multiple inheritance, primarily
when the base classes have member functions with the same names. In such
cases, the object can have only one implementation of a given member that is
shared between all function tables, just as each function in Figure 2-2 is
shared between the base class table and the derived class table.

40
Page 59 of 221

“1

TWO: Conventions, C++, and Sample Code

pherived=new
CDerived(); — .. : s
- CDerived table

Printer to FunctionA

Painter to FunctionB

Pointer to FunctionC

Poirter to FunctionD

Pointer to FunctionE

Pointer to FunctionfF

pBase=(CBase =} -
plerived; =g~

CBase 1able

Pointer to FunctionA
Pointer to FunctionB
Pointer to FunctionC

? CDerived FunctionA | <

,_r*‘ CDerived FunctionB ..

—I—>[CDerived FunctionC ’ -

- -
:i CDerived Functionl .I e,

__r>| CDerived FunctionE] R

_L-h CDerived FuncticnF l S —

pAbstractBase=
(CAbstractBase =) |
plerived; —»-

%AbstractBase table
Painter to FunctionD
Peinter to FunctionE
Pointer to FunctionF

Figure 2-2.

Objects of classes using multiple inheritance contain multiple tables.

Sample Code

In case you have not noticed already, this book contains quite a lot of sample
code, enough to require two companion disks. After installing the sample
code on your own machine, you will have a number of directories with the

contents shown in Table 2-1.

This book follows the development of two applications that you'll find in
many CHAPxx directories in the sample code: Cosmo and Patron. Both of
these applications will compile into single-document or multiple-document
versions, depending on the build environment you want. They both make use
of a common code base in CLASSLIB, and they use the BTTNCUR,
GIZMOBAR, and STASTRIP DLLs to provide user interface components,
Most of the sample code depends on the contents of the INC and LIB directo-
ries as well, including Cosmo and Patron. To make the purpose of all the code
clear, the following sections deal with each directory in detail.

Page 60 0f4i21

INSIDE OLE 2

Directory Contents

INC Include (.H) files used by more than cne sample.

LIB Libraries (.LIB files) used by more than one sample.

BUILD A repository for built DLLs and EXEs so that you can include
this one directory in your PATH command. Before you build
any of the other samples, this directory will contain a build of
the OLE2UT library that is shipped with the OLE 2 SDK, cus-
tomized for the samples in this book {in the file
BOOKULDLL).

BTTNCUR Version 1.1 update of the Buttons & Cursors DLL. Compiles
into BTTNCUR.DLL.

GIZMOBAR An implementation of a toolbar, called the GizmoBar, which
compiles into GIZMOBARDLL.

STASTRIP An implementation of a status-line control, StatStrip, which
compiles into STASTRIP.DLL and includes a small test
program in the DEMO directory.

CLASSLIB A specific G++ class library as used by the more feature-Jaden
sarples.

INTERFAC Template implementations for all the OLE 2 interfaces
discussed in this hook.

CHAPxx Sample code for Chapter xx.

Table 2-1.

Directories created after the companion disks are installed.

Include Files: The INC Directory

The INC directory is a repository for any .H file that is used from more than
one application. The files stored in the directory and their use are listed in

42

Table 2-2:

File Purpose

BOOKI1652.H Macros that isolate the application from Winl6 and Win32
differences.

BOOKGUID.H Definitions of Globally Unique Identifiers (CLSIDs and I1Ds)
used in all samples in this book, as well as anything else
generally useful to all samples, such as OLE 2-related macros.

Table 2-2. (continied)

Contents of the INC directory in the sample code.

Page 61 of 221

T W Q: Conventions, C++, and Sample Code

Table 2-2. continued

File Purpose

BTTNCUR.H Definitions for BITNCUR.DLL. Identical to
BTTNCURBTTNCUR. H.

CLASSLIB.H Include file for the class library. Identical to
CLASSLIB\CLASSLIB.H.

CLASSRES.H Resource constants for applications using the class library.
Identical to CLASSLIB\CLASSRES. H.

DEBUG.H Macros to facilitate simple debug output.

IENUMO.H Afile shared by both samples in Chapter 3.

IPOLYx.H Definitions for a POLYLINE.DLL from Chapters 4, 5, and 6,

where x represents the applicable chapter. See the later section
titled *‘Cosmo: A Graphical Editor.”

GIZMOBAR.H Definitions for GIZMOBAR.DLL. Identical to
GIZMOBARNGIZMOBAR.H,
STASTRIP.H Detfinitions for STASTRIP.DLL. Identical to

STASTRIP\STASTRIP H.

Note in Table 2-2 that a number of the files in this directory are dupli-
cates of those found in other directories. This is simply to provide vou with an
environment in which you can immediately compile any of the chapter-
specific samples. To build the sample for any chapter, you must add this direc-
tory to those listed in your INCLUDE environment variable.

Libraries: The LIB Directory

Like the INC directory, the LIB directory is a repository for any .L1B that is
useful to more than one sample. For the most part, the files found here are
builds of their respective components, as listed in Table 2-3.

You can, of course, build each of these LIBs from the respective sources
at your disposal, but you must first build BTTNCUR to build GIZMOBAR,
you must build both of those and STASTRIP to build CLASSLIB; and you
must build CLASSLIB to build most of the chapter samples. The builds pro-
vided on the companion disks are simply intended to save you the trouble of
such interdependencies.

The BUILD Directory

As was mentioned earlier, the BUILD directory is the respository for builds of
DLL and EXE samples. After installing the companion disks, this directory
will contain the files shown in Table 2-4.

Page 62 of 321

INSIDE OLE 2

File Purpose

BOQKUILIB Import library for BOOKUILDLL.

CLASSMDLLIB A Multiple Document Interface (MDI) build of the class
libraries in CLASSLIB.

CLASSSDLIIB A Single Document Interface {SDI) build of the class

libraries in CLASSLIB.

Table 2-3.
Contents of the LIB directory in the sample code.

File Purpose

BOOKULDLL A build of the OLE2UI library provided with the OLE 2 SDK
specifically named for this book.

DATATRAN.DLL A build of the Data Transfer object from the source code in
\CHAPOT\DATATRAN.

INKASSIS.DLL A build of the Link Assistant object from the source code in
NCHAPI2ALNKASSIS,

Table 2-4.
Contents of the BUILD directory in the sample code.

You should ensure that the BUILD directory is in your PATH command,
because many samples depend on these files at run-time. Note that the ver-
sions of BITNCUR.DLL and GIZMOBAR DLL provided with the OLE 2 SDK
are the same as the ones provided here, so you do not need to worry about the
location of the BUILD directory in your path relative to the OLE 2 directory.

NOTE: Before you build any other projects described in this book, be sure
to run the MAKEALLBAT files in the \BTTNCUR, \GIZMOBAR, and
\STASTRIP directories so that you have BTTNCUR.DLL, GIZMOBAR.DLL,
and STASTRIP.DLL in the \BUILD directory and BTTNCUR.LIB,
GIZMOBAR LIB, and STASTRIP.LIB in the \LIB directory. These files must
be built in this order because GizmoBar needs the Buttons & Cursors library.
The MAKEALL.BAT file in the installation directory builds these files in the
correct order for you.

Three Amigos: BttnCur, GizmoBar, and StatStrip

44

To fully demonstrate all the user interface affected by in-place activation and
to add some spice to the samples, we need a few slick controls, such as a
toolbar and a status line. The GizmoBar, whose source code is in the
GIZMOBAR directory, is an implementation of a typical toolbar control that

Page 63 of 221

T W O: Conventions, C++, and Sample Code

builds on code provided in BunCur, a DLL that draws up to six states (for ex-
ample, up, down, disabled, and so on) of toolbar buttons from a single bitmap
image. The GizmoBar uses BtinCur to draw its buttons, but it is also capable of
containing any other standard Windows control. The GizmoBar is not able to
hold arbitrary custom controls, however.

NOTE: The code for BttnCur is a version 1.1 refinement of BttnCur 1.0 that
was included with The Windows Interface: An Application Design Guide from
Microsoft Press. Version 1.1 has two major feature enhancements—support
for different display resolutions and full color control, which allows the stan-
dard black/white/gray buttons to change with the system colors,

The StatStrip control provides a rudimentary message bar that generally
1s placed at the bottom of frame windows. The StatStrip is capable of manag-
ing a number of strings and displaying one of those strings on request. It also
provides an almost painless way of tracking menu selections and displaying
the appropriate message for each item. If you are interested in this mecha-
nism, please study the sources in the STASTRIP directory.

NOTE: Sourcesfor both BttnCur and GizmoBar are included with the OLE
2 SDK. The source code provided with this book is slightly and innocuously
altered from the code in the OLE 2 SDK, but both sources build identical DLLs.

Allthree of these DLLs are implemented in straight C, mostly because they
were projects that T wrote prior to writing this book. As I mentioned earlier,
GizmoBar makes use of BttnCur, so you must build the latter to build the former.

Class Libraries: The CLASSLIB Directory

Imentioned earlier that I did not use a real C++ class library or an “‘applica-
tion frameworks” to implement these samples. However, I'still wanted to keep
much of the mundane Windows code out of the way as we work through OLE
2, so I concentrated as much code as was reasonable into my own class library,
which you'll find in the CLASSLIB directory. This code will compile into
either an MDI version (CLASSMDILLIB) or an SDI version (CLASSSDI.LIB),
builds of which are provided in the LIB directory. The primary include file
for these librariesis CLASSLIB.H, with resource definitions in CLASSRES.H.

Both Cosmo and Patron, as well as a few other samples in this book,
make use of CLASSLIB. CLASSLIB essentially provides the framework for a
simple application so that when we need to add a feature or a customization,

45
Page 64 of 221

INSIDE OLE 2

we

CL.ASSLIB classes with a more speci
CLASSLIB provides on its own, you on

only need to override the applicable virtual functions in the default
fic implementation. To sce how much
ly need to create a “frame window”

object, initialize it, and tell it to start spinning 1n a message loop.

#include <windows . ho
J#include <classlib.h>

IES
#*

%

skeletal application based

WinMain
Purpose:
Main entry point of application. Should register the app class
if a previous instance has not done so and do any other one-time
initializations.
PASCAL WinMain (HINSTANCE hinst, HINSTANCE hPrev
. LPSTR pszCmdiLine, int nCmdlist
{
LPCFrame pFR;
FRAMEINTT fi;
WPARAM wRet;

//Attempt to aliocate and initialize the application
pFR=new cerame(hInst, hPrav, pszCmdline, nCindShow) ;

fi.idsMin=IDS_STANDARDFRAMEMIN;
fi.1dsMax:IDS_STANDARDFRAMEMAX;
f1,idsStatMin=IDS_STANDARDSTATMESSAGEMIN:
fi.1dsStatMax=IDSFSTANDARDSTATMESSAGEMAX;
fi.idStatMenuMin=ID_MENUFILE;
fi.1dStatMenuMax=ID_MENUHELP;
fi.1PoswindowMenu=WINDON_MENU;
£9.cMenus=CMENUS:

//1f we can initialize pFR, start chugging messages
if (pFR->FInit(&fi))
wRet=pFR—>MessageLoop();

delete pFR:
return wRat;

1

You can find code identical to this in CHAPO2\SKEL, which builds a
on CLASSLIB, complete with toolbar and status

line, using (of course) GIZMOBAR.DLL and STASTRIP.DLL.

h 46

Page 65 of 221

TWO: Conventions, C++, and Sample Code

With this class library, the code to implement both Cosmo and Patron
deals almost exclusively with the special features of each application. In this
way, we keep the typical windowing code out of our way to show only the appli-
cation features and how OLE 2 affects them. Throughout this book,
CLASSLIB will remain unaltered —all modifications to accommodate OLE 2
will be made only in the respective application’s source code.

All of the C++ classes defined in CLASSLIB are shown in Table 2-5.
Note, however, that this class library is not intended to be a basis for your own
application (but, of course, there’s nothing stopping you). I do not intend to
revise this library, and I certainly will not be able to provide the level of prod-
uct support for this code that you would get with a real class library from a
reputable tools vendor. [do encourage you to use a professional development
environment in your own endeavors to produce applications.

Class Purpose

CStringTuble Loads a range of strings from the application’s resources into
memory and provides an overloaded [] (array lookup) operator to
access those strings.

CWindow Base class for other window-related classes.

CGrzmoBar A C++ wrapper class for the control implemented in
GIZMOBAR.DLL.

CStaiStrip A Gt wrapper class for the control implemented in
STASTRIP.DI.IL.

CHrame Creates and manages a frame window that owns a menu, toolbar,

and a client window. Compiles differently for MDI and SDI cases.

CClient Creates and manages a client window identical to an MDI client
window for MDI cases. Under 8DI, provides a client window that
responds to the MDI messages, isolating the rest of the application
from many MDI/SDI differences.

CDocument Creates and manages a document window inside the client window.
The window is either an MDI child or a simple child window,
depending on the build.

Table 2-5,
C+ classes in CLASSLIB and their uses,

CLASSLIB also contains resource files necessary for building a skeletal
application. These resource files are the ones used by CHAPO2\SKEL. These
are not compiled into the library itself, but reside here as templates for appli-
cations using this library.

47
Page 66 of 221

INSIDE OLE 2

Note the use of one macro in CLASSLIB.H that might appear odd:
PSZi) where i is an integer string identifier, always with an IDS_ prefix. The
PSZ macro simplifies the lookup of the string of that index in a CStringTable
object that manages stringtable resources. When reading the code in this
book, read PSZ as meaning ‘‘this string from the stringtable.” A quick look
in the RC file for the relevant sample will show you exactly which string is
being referenced.

Interface Templates: The INTERFAC Directory

C++ programmers: Don’t get your hopes up. The INTERFAC directory con-
tains a large number of .CPP and .H files—one for each interface—that we’ll
explore throughout this book. These are not official “C++ templates,” rather
they are interface templates that are simply source files containing a stubbed
or default implementation for each interface. In some cases, a file will contain
a complete implementation of a specific type of Windows Object, imple-
mented using a C++ object class. In most other cases, the files simply contain
stubbed functions that are meant to serve as a respository for source code
from which you can copy and paste into your own applications, an approach
that requires much less work than typing all the function headers themselves.
You can easily customize this code with a few quick search-and-replace passes
in vour favorite editor.

Chapter Sources: The CHAPxx Directories

48

The specific source code related to a specific chapter is found in the CHAPxx
directories, where xx ranges from 2 through 16. I will not show the code for
any complete sample in any chapters because the code is too long for such a
listing. At times I will show the entire contents of a specific file relevant to the
discussion, but I will not show much in the way of make files, DEF files, icons
or bitmaps, resource scripts, and even some include files.

Most of the code in the CHAPxx directories are different revisions of
Cosmo and Patron as they evolve throughout the book. The initial versions of
both of these applications are provided in the CHAPO2\COSMO and
CHAPO2\PATRON directories, with each application discussed in more
detail later. As these applications evolve throughout this book, we'll modify
many small parts of different source files (adding source files as well). These
modifications are consistently marked with two comments: //CHAPTER-
xxMOD and //End CHAPTERxxMOD, where xx is the relevant chapter num-
ber. These comment delimiters will help you see which changes I had to make

Page 67 of 221

T W Q: Conventions, C++, and Sample Code

to both header (.H) and source (.CPP} files in our pursuit of OLE 2 nirvana.
What I primarily show in each chapter is the code around the blocks, set off
with these comments. So, for example, if you want to see which variables I
added to a class to support a specific feature, look in the .II file, and you'll see
the new ones between these comments,

In addition, most CHAPxx directories contain a CHAPxxREG file.
These are plain text files containing chapter-relevant entries for the system
Registration Database. Some files contain duplicate entries from previcus
chapters because some samples depend on samples and builds from previous
chapters. This redundancy ensures that the proper entries exist if you skip a
chapter.

So before attempting to run any sample in a chapter, you must merge
the contents of the appropriate .REG file with the existing Registration Data-
base by using the Windows 3.1 REGEDIT program. In some cases, the REG
file from a later chapter will replace some of the entries made with an earlier
REG file, which is why there is not just one master file for the entire book.

Keep in mind as you examine the code that I designed it in such a way
that code changes or additions made to accommodate OLE 2 occur in one
place. This is the same idea as centralizing drawing code in a window in its
WM _PAINT message handling: Any other code that wants to draw something
merely changes the state of the data and causes a repaint. This design, as well
as other designs in the sample code, are my personal choices and are not
meant to represent Truth. “If it’s Truth you're interested in,” as Dr. Indiana
Jones would remind us, “*Dr. Tyree’s philosophy class is right down the hall.”

Cosmo: A Graphical Editor (with Apologies to No One in Particular)

Cosmo is an application with a silly name that does nothing important.
Despite its limited value, Cosmo 1s a typical application that creates some
kind of graphical data—in this case, an image called a polyline. The polyline
is sirnply any number of points between 0 and 20 connected by lines, as shown
in Figure 2-3, which is managed by a C++ class in Cosmo called CPolyline.

The useris able to add up to 20 lines by clicking in the Polyline region—
the Polyline adds the points to an array of 20 POINT structures and incre-
ments a point count. The user can reverse added points by using Undo, which
simply decrements the number of points drawn and repaints. The user can
also change both the line and background colors, as well as change the line
style, but these operations are not reversible. All commands are available
from either menus or the toolbar. Cosmo also sports a simple status line at the
bottom of its window.

Page 68 of M1

INSIDE OLE 2

50

Cotmu 2.9

GizmoBar

SHIP.COS |

Documents «

StatStrip — ey PIrIES T I S R i e R]

Figure 2-3.
Mudtiple-document version of Cosmo, with several open Polylines.

1 provide two versions of Cosmo for use in illustrating object conversion
and emulation between OLE 1 and OLE 2 servers, as discussed in Chapter 14.
CHAPO2NCOSMO contains the source code for the C++ version build on
CLASSLIB with a version 2 number. CHAPO2\COSMOI0 contains the source
code for an earlier version written in straight C as an OLE 1 server. Anytime I
refer to Cosmo in this book, I'm referring to version 2 unless I specifically
state otherwise.

Cosmo performs traditional Windows file I/0, uses the Windows API to
support the clipboard, and handles conversion to and from its version 1 file
format. Both file formats use the .COS extension. A few sample Cosmo files
can be found in CHAPO2\COSFILES. In any case, Cosmo certainly lacks a few
features (such as printing capability, Help, and maybe some real Undo func-
tionality) thatwill keep it from being something I could sell. It does, however,
maintain those elements that you would typically find in most applications of
a higher caliber.

Cosmo will follow a course of evolution that will take it from a standard
application for Windows to an OLE 2 application. Starting with Chapter 4,
we’'ll also begin to separately develop a version of Cosmo’s CPolyline object as
an OLE 2 component object in a DLL. We'll also create a separate modified
copy of Cosmo called Component Cosmo, or CoCosmo, that will use this
component Polyline object so as to appear indistinguishable from the self-
contained Cosmo. Using Polyline, we’ll explore how various OLE 2 features
can affect such a DLL, while at the same time illustrating those features in the

Page 69 of 221

T W O: Conventions, C++, and Sample Code

self-contained Cosmo .EXE. Both cases are important to illustrate, and both
follow paths detailed in Table 2-6.

Chapter Features
DLL Object Path
4 Polyline is split from Cosmo into a component object DLL. A version

of Cosmo called CoCosmo is created to demonstrate how to
instantiate and use such an object.

5 Paolyline begins to nse compound files. CoCosmeo is modified to follow
the changes to Polyline.

6 Polyline implements a data object interface to provide uniform data
transter. CoCosmo is modified in Chapters 7 and 8 to use this data
object interface to implement clipboard and drag-and-drop support.

11 Polyline is upgraded to a full compound document object that
supports embedding. Polyline essentially becomes an embedded
object server.

16 Paolyline becomes capable of in-place activation,

Application Gbject Path

5 Cosmo is converted to use compound files,
i Cosmo implements a data object and converts clipboard transfers to
using data objects.
8 Cosmo adds drag-and-drop functionality.
10 Cosmo is modified to support compound documents as an embedded
object server,
11 An object handler DLL is created for Cosmo’s embedded objects.
13 Cosmeo is capable of providing compound document linked objects.
14 Cosmo becomes capable of converting and emulating OLE 1 objects
from Cosmo version 1.
16 Cosmo becomes capable of in-place activation.
Table 2-6.

Fuolution of the Cosmo application by chapler.

Polyline will compile into POLYxx.DLL, where xx is the appropriate
chapter number of the build. Likewise, Cosmo will compile into COSMOxx-
EXE. This naming scheme is intended to avoid naming conflicts when all the
files are copied to the BUILD directory.

Patron: A Page Container (with Apologies to Merriam-Webster)

When I created the first version of this application for OLE 1, we called con-
tainers “clients,” so a brief encounter with a thesaurus generated the name

51
Page 70 of 221

INSIDE OLE 2

52

Patron. In this case, patron is defined as either “‘one who uses the services of
another establishment” or “‘the proprietor of an establishment {such as an
inn).’2 After all, as a container, Patron will use the implementations of com-
pound document objects and provide a place (a document) in which they
stay. Patron seems a better choice than another butchered version of “con-
tainer,” which doesn’t fit an 8-character filename anyway. Essentially, Patron
is a place to store various objects, such as bitmaps, metafiles, sounds, or
spreadsheets—all of which Patron refers to as “tenants.”

Patron’s documents are pages that match the size and orientation of
whatever printer setup you choose. You can add or delete pages and navigate
through them, as well as scroll the view of the current page around in the
document window. These commands are available from the menu or from a
toolbar, as shown in Figure 2-4. Like Cosmo, Patron also sports a status line
because we'll eventually make use of it in demonstrating in-place activation.

Aside from features for changing the number of pages or navigating
through them, the only meaningful commands that the initial version of
Patron (in CHAPOZ\PATRON) supports are Printer Setup and Print. Printer
Setup lets you change size and orientation as you can with any real applica-
tion, Print will actually pump out a printed page for every page you've cre-
ated, complete with page number. Patron also draws a rectangle on the page
so that you can see the printable boundaries. How exciting can it get?

Help

I)

GizmeBar

[Uniitted)

/]

d

Vd

\ H N
v :

[Untitled)

Page documents

StatStrip —| Faady

Figure 2-4.
Multiple-document version of Patron with several open documents.

9, Websier’s Ninth New Collegiate Distionary, Merriam-Webster, 1987,

Page 71 of 221

]

TWO: Conventions, C++, and Sample Code

Well, features stop there, as you might surmise from the code in
CHAPO2\PATRON, Patron’s only purpose in life is to become an OLE 2 con-
tainer application. Patron will be used to demonstrate how to write a relatively
new application to take advantage of OLE 2 technologies. I did not bother to
implement any file 1/O for Patron because it will use compound files begin-
ning in Chapter 5. I also didn’t bother to make Patron capable of pasting
metafiles and bitmaps from the clipboard because that would require a hor-
rendous amount of code to draw those formats and to somehow serialize
them to a file; you might call it laziness, but I call it planning.

Because we programmers instinctively try to avoid as much work as pos-
sible, we'll use functionality that OLE 2 already provides to add metafile and
bitmap capabilities. As we’ll see in the chapters ahead, OLE 2 already knows
how to display and serialize these formats, so we need not consider writing
such code ourselves. How convenient! We then add a little more code to
enable Patron to contain compound document objects and work from there
to in-place activation. As we progress through the chapters, we'lt add various
features to Patron, as shown in Table 2-7,

Chapter Features
5 Patron adds file I/O using compound files.
7 Patron implements clipboard functions using a data object. It pastes

metafiles and bitmaps using OLE 2 for drawing and serialization to a
compound file.

8 Patron adds drag-and-drop functionality.
9 Patron is made into a simple compound document container for
embedded objects only.
12 Patron becomes capable of containing linked objects,
13 Patron handles linking to embedded object stored in its own
documents.
14 Patron handles object conversion and emulation.
15 Patron becomes capable of in-place activation.
Table 2-7.

Evolution of the Patron application by chapter.

Like Cosmo, Patron will compitle into PATRONxx EXE, where xxis the
appropriate chapter number of the build. This naming scheme is intended to
avoid naming conflicts when all the files are copied to the BUILD directory.

Page 72 of 1

INSIDE OLE 2

Building and Testing Environment

54

AsTPve mentioned before, the sample code in most of the directories depends on
various files in the INC and LIB directories. Running the samples require some
of the DLLs that are found in the LIB directory, as well. For these reasons, you
need to make the following changes to your environment variables:

1. Add the INC directory to your INCLUDE path so that the compiler
can locate the book’s include files referenced with #include <file>.

2. Add the LIB directory to your LIB path so that the linker can find
the libraries referenced in various make files.

3. Add the BUILD directory to your PATH so that when you run sam-
ples from the chapters they will be able to load the necessary DLLs,

In addition, note that the .REG f{iles included with each chapter do not
provide full pathnames to DLLs and EXEs referenced in those Registration
Database entries, which is why you should add the BUILD directory to your
PATH. Otherwise, you can modify the Registration Database to include full
pathnames to each compiled DLI. and EXE as needed. For debugging pur-
poses, I recommend the latter approach. If you merely want to compile and
run the samples quickly, I recommend the former approach.

There are two environment variables that affect compilations, as shown
in Table 2-8. When the SDI variable is set to 1, builds that are sensitive to that
variable {(Gosmo and Patron always are) will build into an SDI directory
under the relevant source code directory {for example, CHAPO2\COS-
MO\SDI). When the SDI variable is clear, builds will end up in the MDI
directory under the relevant source tree. In addition, if you set the
RETAIL variable to 1, you will build a nondebugging version in the appro-
priate SDI or MDI directory for whatever SDI or MDI option is set, wiping
out the previous build in that same directory.

Variable Purpose
SET $DI=1 Sets the SDI flag to build SDI versions.
SET SDI= Clears the 5SDI flag to build MDI versions.

SET RETAIL=1 Builds nondebug versions using optimizations and
climinating debugging symbols.

SET RETAIL= Builds debug versions with symbols and no optimization.

Table 2-8.
Build options controlled through environment variables.

Page 73 of 221

T W O: Conventions, C++, and Sampie Code

In the sample code on your disk, vou will find a number of files called
MAKEALL.BAT. In any given directory, the file will completely rebuild all
the samples visible in that directory. For example, the MAKEALL.BAT file in
BT TNCUR will build BTTNCUR.DLL and a small demonstration program,
BCDEMO.EXE. The MAKEALLBAT in CHAPO2M\COSMO will build both
MDI and SDI versions of Cosmo into CHAPO2\COSMOMDI and CHAP-
O2NCOSMO'SDL The MAKEALL.BAT in any CHAPxx directory will build all
the samples—both SDI and MDI versions—for that chapter. For example,
the one in CHAP02 will build MDI and SDI versions of Skel, Cosmo, and
Patron, as well as the single SDI version of Cosmo version 1.

For your convenience, the MAKEALL files will redirect all error output
from any compilation into a file called ERR in the same directory as the build
DLL or EXE and will also concatenate all error output from all builds into
BUILIAERR. This provides a convenient record of any compilation problems.
In addition, MAKEALL will copy the builds of all the DLLs to the BUILD
directory along with MDI versions of all EXEs. SDI versions of EXEs are
copied into BUILD\SDI.

Finally, the MAKEALL.BAT in the directory where you installed the
sample code will rebuild every sample for the book, including all the DLLs
and libraries in both MDI and SDI versions, for whatever debugging or retail
version you have indicated through the RETAIL environment variable. It will
also install builds to the INC, LIB, and BUILD directories as appropriate,

It's not a bad idea to install the samples at the end of your work day or
before lunch and run MAKEALL before you leave vour office. It will take
some time to compile everything. Plenty of time to have a great lunch

55
Page 74 of 221

C HAPTEHR T HR E E

OBJECTS AND INTERFACES

object n 1 syn THING, article; rel doodad; gadget 2 syn THING,
being, entity, individual, material, matter, stuff, substance.l

“Objects solve everything,” or so you might have heard. If an object is a thing,
how does one thing solve other things? The answer is it doesn’t. Things don’t
solve, people solve. The belief that “object virtues” solve all your program-
ming problems is what some friends of mine classify as “‘objects on the
brain.” They suggest that you attend meetings of your local OOPaholics
Anonymous.

Using object-oriented languages to write applications and operating sys-
tems is only a matter of convenience if the ideas vou want to express in that
code are best done in such a language. But C++ programmers will tell you
great stories about how C++ solved many problems they encountered in C but
also introduced a whole new class of unique problems. For one thing, your
language of choice has never simplified design—it has only made the imple-
mentation of many designs faster and more robust. I wrote the code in this
book in C++ for such conveniences.

So just what is an object? No doubt everyone reading this book has a dif-
ferent idea about the term object. Objects are becoming so commonplace in
just about every facet of computing that it has become difficult to understand
what the word object means in a variety of contexts. Object models appear in
placesregardless of their relationships to any sort of object-oriented program-
ming model. This chapter will attempt to clarify exactly what we mean by a
Windows Object (note the capitalization to make the distinction) and what
we mean by the interfaces that such an object supports. The standardized
specifications of both are part of OLE 2’s Component Object Model.

Windows Objects are slightly different from what C++ programmers
might be used to. For instance, Windows objects do not allow direct access to
data. Windows Objects can also be used and implemented in C or any other

L Websier's Collegiate Thesauvus, Merriam-Webster, Inc., 1976.

Page 75 of 2%71

INSIDE OLE 2

language —that is, an object-oriented language is not necessary, only more
convenient, to express object-oriented ideas.

We also have to distinguish between the object implementation and the
object user, which this book will refer to as the “user’” in programming con-
texts. The term user here should not be confused with the end user, a person
who will see only the features you are implementing in your applications and
will generally not be aware of your programming constructs.

This chapter will look at objects and interfaces in both C and G++
without delving deeply into OLE 2 itself. The first sets of code we'll see don't
even use #include in any of the OLE 2 include files, but they still implement
what we mean by a Windows Object—that s, something with interfaces. With
2 solid understanding of these fundamentals, we can move forward into
seeing what is required for more complex Windows Objects with more useful
capabilities. Note that much of the background, beginning with the section
“ [Unknown, the Root of All Evil,” leads directly into Chapter 4,

I want to stress that an object as presented here isnot a compound docu-
ment (linked or embedded) object. We're not et talking about specific appli-
cations such as containers. Much of the information from this point through
Chapter 8 deals with topics completely outside the realm of Compound Docu-
ment technology. So, as Yoda might suggest, “clear your mind of questions”
and be prepared to learn what we mean by ohject in the cosmos of OLE 2.

Do objects solve everything? No. Do OLE 2 and its cbject model solve
everything? No. OLE 2 intends to simplify the expression of object-oriented
ideas under Windows. It does not intend to somehow make applicaiion or sys-
tem design fall freely, like manna, from heaven. If it could, we would not have
to worry about the national debt.

The Ultimate Question to Life, the Universe,
and Objects (with Apologies to Douglas Adams)

| know a Windows Object exists that is capable of specific functions. How
do ! obtain a pointer to that object? This question is a central theme in this
book: This chapter and those that follow are concerned with specific types of
objects, how you get a pointer (o one, and what you can do with that object
once you have the pointer. Each chapter generally deals with different object
types (and how you identify those objects), the interfaces they support, tech-
niques to obtain their pointers (for whatever code uses the object), and
! the specific functions you can call through those pointers. So the answer to
our question {which is not 49" as it was in Douglas Adams’s books) varies

58 Page 76 of 221

THREE: Objects and Interfaces

with each subtechnology in OLE 2. Realize as well that a compound docu-
ment object is only one type of Windows Object and that server applications
are not the only object implementors. The fact is that almost all OLE 2 appli-
cations, regardless of what technologies they use, are both object users and
object implementors.

To fully understand obtaining and using a Windows Object, we must
first go back to a few even more fundamental questions. What is an object? To
answer that question we must ask: What is an object class? To some, an object
class may seem some mighty spiritual force divinely manifested in your in-
clude files. In reality, a class (and objects) can be described in terms that
anthropologist Marvin Harris would call *“‘practical and mundane,”? for in
one way or another, a programmer or compiler has to reduce the notion of a
class into code.

A class, in mundane terms, is the definition of a data structure {mem-
bersj and the functions that manipulate that structure {(member functions).
The concept can be expressed in any programming language; G++, Smalltalk,
and other such languages have merely formalized the notion. For example,
C++ classes generally live in include files, such as this one, shown in Chapter 2:

class __far CAppVars

{

public:
HINSTANCE m_hInst;
HINSTANCE m_hlnstPrev;
LPSTR m_pszCmdLine;
int m_nCmdShow;
HWND m_hwnd;

public:
CAppVars(HINSTANCE, HINSTANCE, LPSTR, int);
~CAppVars(void);
BOOL FInit(void):

i

A class is only a definition and carries no implementation, although classes in
some languages may define default implementations that are not realized un-
til there is some instantiation of the data structure that contains a function
table and the variables of the class. We call that instantiated structure an
object. In C++, objects are manifested in memory, as shown in Figure 3-1 on the
next page.

The object has two components in memory: a function table, containing
pointers to each mernber function (sometimes known as a method) defined in

9. In Cows, Pigs, Wars, and Witches, by Marvin Harris, Vintage Books, 1974.

Page 77 of 2‘55 1

r-w i

INSIDE OLE 2

Pointer‘ to the
e —— — -
function table. msgigtr?ft ;g;e Pointer to function 1 | =~
Pointer to function 2
Increasing Object data Pointer to function 3 | |- _llfgglgtlon
memor members
addresg (variables) Pointer to function 4
\ ~ Pointer to function 5 | —
& J_ﬂ [/l X
Figure 3-1.

A CH+ object in memory is a data structure containing a pointer to the
object’s function table followed by the object’s data. The function tableis
separale from the object stricture itself, so a pointer to the object first
points to a pointer to the funclion table.

the object’s class, and a data block, containing the current values for each
variable {or data member, sometimes known as a property). The user of the ob-

Jectgenerally has some reference? to this chunk of memory, which for the pur-

poses of this book is always a pointer. The user obtains this reference by using
some type of function call (direct or implied) in which that function allocates
the block in memory, initializes the function table, and returns the reference
to that memory to the user.

When the user has the reference to the block of memory, the user can
call any of the functions in the object’s function table and possibly access the
object’s variables, depending on the language being used. The single most im-
portant benefit is this: To call any of the functions defined in an object class,
you must first have a reference to an instantiated object so that the functions
have some data on which to operate. Without a reference to the object, you
have no way to call one of the object’s functions. Even with a pointer, the ob-

Jject can restrict your access to its variables or functions by means of language

mechanisms such as public and private members in C++. In contrast, a non-
object-oriented language such as C allows you to call any function with any
garbage you want. Given a pointer to a data structure, there is nothing to keep
you from partying all over those variables.

The OLE 2 notion of class is even more strict than the preceding general
definition because the only accessible members of a class are specific groups
of functions called interfaces. As mentioned in Chapter 1 and as shown in

3. Reference here does not necessarily mean a C+4 reference.

Page 78 of 221

THRE E: Objects and Interfaces

Figure 3-2, an interface is a group of semantically related functions that are
publicly accessible to the user of a Windows Object. An object’s interface can
really be viewed as only the function table part of an object in memory.

By themselves, interface definitions in OLE 2 are only virtual base
classes, and thus they cannot be instantiated. In other words, they provide a
convenient structure to lay over the top of a function table to provide more
readable and maintainable names for each function.

Pointer to an
interface
cannot see -
object's data = > o =
members, only Pointer to - Pointer {0 funciion 1
the function functioniable | = :
table Painter to function 2
| g 5 Object’s
inau_:cessubie Pointer to function 3 ~int é rtach
object data ; .
members Pointer to function 4
{variables) - Pointer to function 5
Figure 3-2.

A pointer to an interfuce can aceess only member functions in the object’s
function table.

An interface implementation, in pedestrian terms, 15 a block of memory
containing an array of function pointers—that is, a function table. The inter-
face definition itself simply provides names for each pointer in that table.
When a user of a Windows Object obtains a pointer to an interface that an
object supports, we say it has a pointer to an interface on that object. Again,
that pointer does not provide access to the entire object; instead, it allows ac-
cess to one interface on that object—that is, to one set of functions. Through
an indirection on that pointer, the user calls a function of the object, as shown
in Figure 3-3 on the next page.

As mentioned in Chapter 1, the user of a Windows Object has access to
only one interface through one pointer, even when the object itself actually
supports more than one interface—that is, implements more than one set of
related functions and provides multiple function tables. Note that when we
graphically represent an object with interfaces, we use a circle to represent
each interface, as introduced in Chapter 1 and as shown in Figure 3-4 on the
next page.

To use functions in a different interface on the same object, the user
must obtain a second pointer to that other interface through the QueryInter-
face function, which is present in all interfaces. The section “IUnknown, the

Page 79 of 1

.

INSIDE OLE 2

62

Object’s interface

Function? _
— Object's
pFunction2 implementation

plnterface ——p

pFunction3 Functioni
) Function4 Function2
plnterface->pFunctiont £
is the address of . pfunction5 Function3
Object::Function1 — -
Function4
Functions

plnterface-=pFunctioni()
therefore calls
Object::Function?

Figure 3-3.

Calling an interface member function. Note that the indirection through the
pointer io the Sfunction table is not shown because C++ hides this extra step.
The indivection is apparent, however, in C.

Root of All Evil” later in this chapter explores Queryinterface in detail. fUn-
known is a fundamental interface that all Windows Objects must support.
(This is why in diagrams it's always placed above the object, as it is in Figure
3-4, instead of to the side, as other interfaces are.)

The function table itself is designed to have a layout that is identical to
the one generated by many C++ compilers. Such a layout lets you use a single
indirection {<») on the pointer to call an interface function. However, this
does not force you to use C++ to program OLE 2; as said in Chapter 2, C++ is

Conventional placement of
IUnknown function table

Interface ?
(function table} O"””'E :

Interface
(function table)

Object

Figure 3-4.

Instead of always showing expanded function tables, interfaces are represenied
with a circle, or jack. By convention, IUnknown is on fop of the object, and
all vther interfaces are to the left or right.

Page 80 of 221

THRE E: Objects and Interfaces

simply more convenient. Any object implementation is only required to pro-
vide separate function tables for each supported interface. How you choose to
create each table will of course be different, depending on your language of
choice, as the later section ‘A Simple Object in C and C++: RECTEnumerator”
illustrates.

Because neither use nor implementation of a Windows Object is depen-
dent on the programming language used, you can view OLE 2’s object model,
the Component Object Model, as a binary standard. This approach has a major
advantage over other proposed object models. You can choose to implement
in Visual Basic an object that is still usable from a C or C++ application as long
as you can provide a pointer to your interface function tables. Microsoft has
done us a wonderful service by not limiting our choice of programming tools
or languages.

So back to the Ultimate Question: [know there’s a Windows Object, but
how do I obtain the first pointer to an interface on that object? The answer
greatly depends on how you identify the Windows Object, but it can be re-
duced to four basic methods in OLE 2 for getting that pointer:

® Call an API function that creates an object of only one type—
that is, the function will only ever return a pointer to one specific
interface or object type.

B Call an API function that can create an object based on some class
identifier and that returns any interface pointer you request.

8 (Call a member function of some interface that returns a specific
interface pointer on another separate object.

B Implement interface functions on your own objects to which other
object users pass their own interface pointers.

All these mechanisms are used by both OLE 2 applications and the OLE
2 libraries themselves. OLE 2 implements most of the API functions you'll use
to obtain a pointer using the first two methods, but yvou might implement
your own private API functions to accomplish similar ends. You will use the
third method when you are the user of some object and have occasion to ask
that object to create another object. You will use the fourth method for an
object implementor whose user needs to provide the implementor with a
pointer to the user’s own objects. This last method is how two applications,
such as a compound document container and a server, initiate a two-way
dialog: Both applications implement specific (and different) objects and pass
interface pointers to each other.

Page 81 ofﬁal

INSIDE OLE 2

Windows Objects vs. C++ Objects

You might wonder why Windows Objects differ in many respects from C++
objects even though C++ is the most widely used object-oriented language for
programming Windows. The overriding reason is that in C++ you might use
only C++ objects that live and execute within your own application {(EXE),
possibly within DLLs {but at a price). On the other hand, you can use Win-
dows Objects regardless of where they live and execute, be it in your own EXE,
in a DLL (including the operating system itsell), or in another EXE. In the
future, Microsoft will enable Windows Objects to live and execute on another
machine, a capability far out of reach of C-++ objects.

Let's Go Traveling

64

Suppose I'm a C++ application that lives in Rugby, North Dakota (the
geographic center of North America}, and my application is bounded by the
border of the continental United States, as illustrated in Figure 3-5, I can visit
freely any of 48 states, no questions asked, by driving along an interstate.
Access is fast and easy, although I am subject to the laws of each state I drive
through. I can also drive into Canada or Mexico to buy their goods and use
their services, but I do have to stop at the border and answer a few questions;
travel is a little slower but still quite easy. In programming terms, I can freely
use any object class within the boundaries of my application as long as I obey
the access rights of those individual objects. I can also use objects imple-
mented in DLLs, but there'is more work involved in getting across the DLL
boundary, even to my own DLL, such as Alaska.

I might live happily for a long time restricting my travels to a single con-
tinent. But there are six other continents and many other countries on the
planet that I might want to visit. Getting there is not easy—I have to transfer
flights, go through customs, and show my passport. If I want to travel to a dis-
tant destination, such as Antananarivo, Madagascar, I would have to fly to
Chicago and then to London, switch carriers to get to Nairobi, Kenya, and
then catch a final tlight to Antananarivo. On each segment of my journey, [
will probably fly on a different airline in a different airplane (or I might be
forced to travel only by boat or train) and walk through customs offices in
three different countries. If [step out of line anywhere, I might find myself in
a prison on the other side of the globe.

As a C++ application, I would experience the same difficulty in using
C++ objects implemented in other applications (countries) or code that is
otherwise separated by a process boundary (oceans), as illustrated in Figure
3-6 on page 66. The best I can hope for is to become intimately familiar with

Page 82 of 221

THREE: Objects and Interfaces

A little tougher to
gettoa DLL

Rugby, N.D.

DLL boundary; ~
border stop required

USA.EXE

Figure 3-5.
Travel within North America is fairly painiess.

the protocols and customs of each application along my way, knowledge that
can apply only to those specific applications: When I want to use the services
of a different application, I must learn another new interface. If time isnota
luxury, I'll probably decide to visit only a few other countries.

OLE 2 offers you membership in the Windows Objects Club, which
makes travel abroad much easier. The Windows Objects Club standardizes the
protocol for visiting any other country, so you have to learn only one set of
rules. The Windows Objects Club offers nonstop flights to many countries
(Windows Objects in DLLs) and at worst one-stop flights to any other destina-
tion on the planet {Windows Objects in EXE applications). When you are a

65
Page 83 of 221

INSIDE OLE 2

66

Customs, Customs,
Change planes change planes change planes
in Chicago in London in Nairobi

Customs in
Antananarivo

Figure 3-6.
Travel abroad involves much more time, effort, and knowledge.

member of the Windows Objects Club, travel is as easy as showing your mem-
bership card and hopping on a plane bound for whatever destination you
choose. No matter where you are, the Windows Objects Club has a flight
departing to any destination, as depicted in Figure 3-7.

In programming terms, you join the Windows Objects Club by using the
various OLE 2 API functions to access specific objects without concern for
where that object actually lives. Those API functions form the protocol you
learn once; later, in Chapters 9 and beyond, we’ll learn more about com-
pound documents, which provide you with the benetit of a personal inter-
preter in any country you visit or with whom you do business. When we talk
about in-place activation, we’ll see how the Windows Objects Club can bring
the country to you.

The Windows Objects Club today offers easy travel between all countries
and continents on our little blue planet. In the future, this club will provide
the same benefits to interplanetary and interstellar travel without even re-
quiring you to reapply. More to the point, Windows Objects will become net-
work aware and will allow you to use objects running on other machines,
either on your local area network or even on a wide area network. Perhaps

Page 84 of 221

THRE E: Objects and Inferfaces

Route planned,
1894

Nonstops from
Rugby to Alaska,
Canada, and Mexico

Fly through Chicago to get anywhere else in the world.
At every destination you treat customs identically;
the Windows Objects Club provides interpreters.

Figure 3-7.
The Windows Objects Club simplifies travel, and someday it will open
more routes.

someday we'll have the PLAN (planetary network), letting you use objects
thatlive on the moon, either figuratively or physically.

The purpose of this little exercise was to show that C++ objects are some-
what limited in scope because access to objects, being defined by the lan-
guage, restricts you to objects that live in your own process space. Windows
Objects, being defined by the system, open access to any object anywhere on
your machine, and eventually on other machines as well.

Other Differences Between Windows Objects and C++ Objects

Because the location of an object’s implementation varies so widely between
C++ objects and Windows Objects, there are a number of other key implemen-
tation differences that affect programming:

B (lass definition

® Object instantiation

Page 85 of 1

IJNSIDE OLE 2

68

B Object references

& Object destruction

Class Definition

Ct++ defines a class by using the class keyword, which generates a user-defined
type. Members and member functions can be private, protected, or public.
Furthermore, a C++ class can inherit from another class, thereby taking on all
the characteristics {(data and member functions) of that base class with the
ability to override or expand select pieces of that base class.

A Windows Object is defined in terms of the interfaces it supports. All
objects support at least one interface named [Unknown, which is discussed in
the later section “*IUnknown, The Root of All Evil”’; support of this one inter-
face qualifies the object as a Windows Object. The object user learns about
other interfaces the object supports through member functions of J/Unknown.

Windows Objects are all, therefore, atleast of type IUnknown and can be
treated as another type by means of a different interface. Because of this
mechanism, there is no user-defined type associated with a Windows Object
class as there is with a C++ class. In fact, there is no single way to identify a
specific object. As we saw earlier, there are four general ways by which you can
obtain a pointer to a Windows Object. Each technique has its own way of iden-
tifying the object. One of the techniques—identifying a Windows Object
using a class identifier—is the closest analogy to a C++ method, but it is only
one of the many ways to identify such objects.

Object Instantiation

C++ objects are instantiated by various means, such as declaring a variable of
the object’s type on the stack, declaring a global variable, or using the new
operator on that type. Regardless of the actual technique used, G++ eventually
calls the object’s constructor.

Again, just as there are many ways to identify a Windows Object, there
are many ways to instantiate an object. In some cases, you call a function to
instantiate the object. In other cases, you don’t directly instantiate an object,
but you are given a pointer to one that something else already created. One of
the most common techniques, described in Chapter 4, is to use a thing called
a class factory object to instantiate a Windows Object, much as the new operator
works for C++ objects. A class factory object represents a specific class iden-
tifier, is obtained by a specific OLE 2 function, and supports an interface
named IClassFactory. The IClussFactory interface contains a member function
named Createlnstance, to which you pass an identifier of the interface you want
on that object. [Classfactory::Createlnstance is the logical equivalent of new.

Page 86 of 221

THRE E: Objects and Interfaces

Object Heferences

C++ objects can be referenced through an object variable, an object reference
{a spectial type in C++), or a pointer to the object. Because objects are always
local (in your EXEs or DLLs), their instantiations can live anywhere in your
process space. Through any variable, the user has access to any public mem-
bers of the object or to private and protected members if the user and the
object are friends.

As I hope [have beaten into your head by now, a Windows Object is al-
ways referenced through a pointer, not to the object itself but to an interface.
This means that through a given interface pointer the user can access mem-
ber functions only in that interface. The user can never have a pointer to the
whole object (because there is no definition of whole object), so there is no ac-
cess to data members and no concept of friend.

Through the IUnknown interface, a user can get at other interfaces that
the object also supports, but that means obtaining a different pointer that
refers to the same object. Each pointer to an interface points to a function
table in the object, and each table contains only member functions for a
specific interface, as shown in Figure 3-8 on the next page. Because every
interface defined in OLE 2 is derived from [Unknown, it is not necessary to
have an fUnknown pointer to query for other interfaces; you can use any other
interface pointer as if it were an fUnknown.

When you have a pointer to an object’s interface, you can call the inter-
face’s member functions just as you can call a member function of a Ct++
object through a pointer:

pObject->MemberFunction([parameters]);

Because a pointer to a Windows Object always points to a function table, such
a pointer can also be used from C or from assembly code, not only from C++,
as described in “‘A Simple Object in C and C++: RECTEnumerator.”’

Object Destruction
In C++, you destroy an object created with new by calling the delete operator on
an object pointer. Objects declared as stack variables are automatically freed
by virtue of restoring the stack before returning from a function. In either
case, the memory that the object occupied is freed, and the object’s destruc-
tor function is called.

The function that frees a Windows Object and essentially calls its
destructor is a member function called Release. This function is a member of
the IUnknown interface, and so it is present in every interface you will ever

Page 87 of 1

INSIDE OLE 2

Object user Object Object
: . implemsntation
A
-l {Unknown {Unknown
* Pointers to same cbjsct | function table member functions
% but different interfaces. i
E- e! 24}
plUnknown ISomelnterface ISomelnterface
N P function table | member functions
IAnotherinterface | fAnotherinterface
function table “| member functions
Object data

User canrot obtain a pointer ihaccessiblabyl
to the object, only pointers to pEst: , ¥
interface function tables. : S e

DLL or process boundary

Figure 3-8.
Multiple interface pointers to an object reference unique function tables
in the object but never reference the entire object itself.

obtain on any Windows Object. Release, however, is not as brutal as the delete
operator, for as we’ll see in the “‘Reference Counting’ section later, the object
might not actually be destroyed when Release is called. Internally, the object
maintains a count of how many references exist to any of its interfaces. Creat-
ing an interface pointer increments the reference count, whereas Release
decrements it. When the count is reduced to zero, the object frees itself, call-
ing its own destructor.

A Simple Object in C and C++: RECTEnumerator

Windows Objects really can be written in any language; the most common are
G and C++ As with any programming task, you need to choose a language
that is well suited to the problems at hand, and C++ is the best suited for

| .

Page 88 of 221

THREE: Objects and Interfaces

expressing the ideas in OLE 2, Therefore, C++ is more natural and definitely
more convenient for use in programming with Windows Objects. With a little
more overhead, however, you can program just as effectively using C. The dif-
ferences lie in how you create the function table for the object’s interfaces
and how you call the functions in those function tables. To illustrate the dif-
ferences between the two languages, let’s implement a type of object called an
enumerator.

Enumerators are specific objects defined in OLE 2 that are used to com-
municate lists of information between another object and the user of that ob-
ject, even when they are in different processes. For example, let’s say you're
using an object that represents a source of data—call it a data object—and
you ask that object what data formats it supports (as we'll see in Chapter 6).
The data object would create another independent enumerator that allows
the user to iterate through the list of formats supported by the data object.
The user of the data object also becomes a user of the enumerator, albeit
through a different interface pointer.

An enumerator supports one of a set of interfaces prefixed with IEnum,
Because the elements of the enumerator’s list vary by context, OLE 2 defines
a number of IEnum<type> interfaces where <type> is the name of the specific
data structure used for each element in the list. OLE 2 also provides marshal-
ing support for each standard /Enum interface. Fach [Enum interface sup-
ports all member functions of [Unknown (of course) as well as four additional
members to facilitate iteration over the list of elements:

Member Result

Next Returns the next n clements of the list starting at the
current index.

Skip Skips past n elements in the list.

Reset Sets the current index to zero,

Clone Returns a new enumerator object with the same state.

For this exercise, let’s define a custom interface named [ErumRECT
with all the functions in the preceding tale except Clone. Let’s also define an
object named RECT Enumerator, which implements that interface. The inter-
face is defined in TENUMO.H, as shown in Listing 3-1 on page 73, which you’ll
find in the INC directory in the sample code. This file compiles differently
for C and C++, depending on the __ cplusplus symbol, which is defined only

71
Page 89 of 221

INSIDE OLE 2

when you are compiling for C++.% The C++ implementation of the RECT-
Enwumerator object, in a program called ENUMCAP, is shown in Listing 3-2 on
page 74, and the C implementation, in ENUMC, is shown in Listing 3-3 on
page 83. Both samples are in the CHAPO03 directory. Do not confuse the
name RECTEnumerator for this object with the name of anything you might
use to implement the object: It’s merely a label.

Do ENUMC and ENUMCPP Do Anything?

When you run either ENUMC or ENUMCPP, you'll see na visible
output no matter which menu commands you choose. You are not
going crazy. Both programs are so intentionally boring on the out-
side that vou should really want to run them in a debugger, which is
where you can step through the code to see what is actually happen-
ing. These samples are intended for use in a debugger to illustrate
interfaces in C and Ct4.

RECTEnumerator and the IEnumRECT Interface

The RECTEnumerator object supports one interface, named /EnumRECT, as
shown in Listing 3-1, with the following member functions:

Member

Functicn Result

AddRef Increments the reference count on the enumerator object.

Release Decrements the reference count and frees the enumerator object
when the reference count is zero.

Nexi Returns the next n RECT structures starting at the current index.

Skip Skips past # RECTs in the list.

Reset Sets the current index to zero.

Because we have not vet examined [Unknown and because we want to
keep this example as simple as possible, [EnumBECT borrows the two
{Urknown members AddRef and Release but does not include QueryInterface.
For the same reasons, we also eliminate the Clone member, which is part of
standard 7Enwm interfaces.

4. The major C++ compilers, at least, define the __ ¢plusplus symbol.

e Page 90 of 221

THREE: Objects and Interfaces

IENUMO.H
/ ¥
¢ Definition of an IEnumRECT interface as an example of the
+ interface notion intreduced in OLE 2 with the Component Object
+ Model as well as the idea of enumerators. This include file
« defines the interface differently for C or C++.

+ Copyright (c)1993 Microsoft Corporation, Al1 Rights Reserved
k f

#ifrndef _TENUMB_H_
#define _TENUMB_H_

//C++ Befinition of an interface.
#ifdef __cplusplus

//This is the interface, a struct of pure virtual functions.
struct __far IEnumRECT

{

virtual DWORD AddRef(void)=0;

virtuat DWORD Release(void)=08;

virtual BOGL Next(DWORD, LPRECYT, LPDWORD}=@;
virtual BOGL Skip(DWORD)=8;
virtual void Reset{void)=9;

}s
typedef IEnumRECT FAR =LPENUMRECT;
freise //1__cplusplus

i
* A C interface is explicitly a structure containing a
» long pointer to a virtual function table that we have to
initialize explicitly.
/

typedef struct
{
struct IEnumRECTYLh1 FAR *1p¥tbi:
} IEnumRECT:;

typedef IEnumRECT FAR *LPENUMRECT:

Listing 3-1. (continued)
The IENUMO.H include file found in the shared INC directory.

Page 91 of 7'2321

INSIDE OLE 2

Listing 3-1. continued

//This is simply a convenient naming
typedef struct IEnumRECTVERT TEnumRECTVtD];

struct IEnumRECTVthI
{
DWORD (+ AddRef)}{LPENUMRECT):
DWORD (# Release)(LPENUMRECT);
BOOL (= Next)(LPENUMRECT, OGWORD, LPRECT. LFDWORD);
BOOL {=* Skip)(LPENUMRECT, DWORD);
void (% Reset}(LPENUMRECT};
g

fendift /7 __cplusplus

fendif //_TENUMO_H.

NOTE: The following files (ENUMCPP.H, ENUMCPP.CPP, IENUM.CPP)
are for the G++ implementation of the Enum program.

ENUMCPP.H
Vs

* Enumerator in C++ Chapter 3

* Definitions, classes, and prototypes for enumerator interface
« example implemented in Ce+,

= Copyright (c)1993 Microsoft Corporation., A1l Rights Reserved
*/

JHifndef _ENUMCPP_H_
ftdefine _ENUMCPP_H_

fincluce <ienumd.h> //Found in shared include directory.
#include <booklb32.h>

//Menu resource ID and commands

ffidefine IDR_MENU 1
#define IDM_ENUMCREATE 160
#define ITDM_ENUMRELEASE 191
f#define TDM_ENUMRUNTHROUGH 192
Listing 3-2. {continued)

The ENUM program implemented in C++.

& Page 92 of 221

THRE E: Objects and Interfaces

Listing 3-2. continued

#tdefine IDM_ENUMEVERYTHIRD 163
fidefine IDM_ENUMRESET 164
#define IOM_ENUMEXIT 185

//ENUMCPP CPP
LRESULT FAR PASCAL EXPORT EnumindProcCHWND, UINT, WPARAM, LPARAM):
class __far CAppVars
{
friend LRESULT FAR PASCAL FXPORT EnumWndProc CHWND, UINT
. WPARAM, LPARAM);

protected:
HINSTANCE m_hlnse; //WinMain parameters
HINSTANCE m_hInstPrev;
UINT m_nCmdShow;
HWND m_hWnd ; //Mair window handle
LPENUMRECT m_pIEnumRect; //Enumerator interface
public:
CAppVars(HINSTANCE, HINSTANCE, UINT):
~CAppVars(void);

BOOL FInit{void);
8

typedef CAppVars FAR =LPAPPVARS;

ffdefine CBWNDEXTRA sizeof (LONG)
fdefine ENUMWL_STRUCTURE]

//IENUM, Cpp

//Number of rectangfes that objects with IEnumRECT suppert {(demo)
f#define CRECTS 15

VL]
A class definition, not pravided by OLE, thenr inherits from
* whatever interfaces it supports. Multiple inheritance works
in this scenario as does the single inheritance shown here.
*/
ciass __far CImpEERumRECT : public IERUMRECT
{
private:

{continued)

Page 93 of’221

INSIDE OLE 2

Listing 3-2. continued

CWORD m_cRef; //Reference count

GWORD m_iCur; //Current Enum position

RECT m_rgrc[CRECTS]: //RECTs we enumerate
public:

CImpIlEnumRECT (void);

~CImplEnumRECT(void):

virtual DWORD AddRef{void):
virtual CWORD Release{void):
virtual BOOL Next(DWORD, LPRECT, LPDWORD):;
virtual BOGL Skip(GWORD);
yvirtual void Reset{void);
i

typedef CImplEnumRECT FAR =|.PIMPIENUMRECT;

//Function that creates one of these objects
BOOL CreateRECTEnumerator{LPENUMRECT FAR #);

fendif //_ENUMCPP_H_

ENUMCPP.CPP
Vi

+ Enumerator interface in C++ Chapter 3
*

Copyright (c}1993 Microsoft Corporation, Al1 Rights Reserved
#/

#include <windows.h>
#include “enumcpp.h™

int PASCAL WinMain{HINSTANCE hInst, HINSTANCE hInstPrev
, LPSTR psz€mdLine, int nCmdShow)
{
MSG msg:
LPAPPVARS pAV;

//fCreate and initiaiize the application.
pAV=new CAppVars{hlnst, hinstPrev, nCmdShow);

76
Page 94 of 221

THREE: Objects and Interfaces

Listing 3-2. continued

if (NULL==pAY)
return -1;

if (pAV->FInit())

{

while (GetMessage(&msg, NULL, 8,8))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
1

}

delete pAv;
return msg.wParam;

1

LRESULT FAR PASCAL EXPORT EnumWndProc(HWND hWnd, UINT iMsg

. WPARAM wParam, LPARAM 1Param)
(

LPAPPVARS pAV;

RECT e

DWORD cRect;

COMMANDPARAMS (wID, wCode, hWndMsg);
pAV=(LPAPPYARS)GetWindowLong (hWnd, ENUMWL_STRUCTURE):

switch (iMsg)

{
case WM_NCCREATE:
pAV=(LPAPPVARS) (LLONG) ((LPCREATESTRUCT)1Param)

->1pCreateParams);

SetWindowLong(hWnd, ENUMWL_STRUCTURE, C(LONGIpAV);
return (GefWindowProc(hWnd, iMsg, wParam, 1Param));

case WM_DESTROY:
PostQuitMessage(d);
break:

case WM_COMMARND:
switch {wID)
{

{contined)

77
Page 95 of 221

INSIDE OLE 2

Listing 3-2. continued

case IDM_ENUMCREATE:
if {NULL}=pAV->m_pIEnumRect)
pAV->m_pl&numRect->Release(};

CreateRECTEnumerator (&pAV->m_plEnumRect):
preak;

case IDBM_ENUMRELEASE:
if (NULL==pAV->m_pIEnumRect)
break:

if (@==pAV->m_pIEnumRect->Release())
pAV->m_pIEnumRect=NULL;

break;

case IDM_ENUMRUNTHROUGH:
1f (NULL==pAV->m_pIEnumRect)
break;

while (pAV->m_plEnumRect->Next(1l, &rc, &cRect))

break:

case IDM_ENUMEVERYTHIRD:
if (NULL==pAV->m_pIlEnumRect)
break;

while (pAV->m_plEnumRect->Next(1l, &rc, &cRect))
{
1f (1pAV->m_pIEnumRect->Skip{2))
break;
]

break;
case IDM_ENUMRESET:
if {NULL==pAV->m_pIEnumRect}

break;

pAV->m_plEnumRect->Reset();
break;

{ronlined)

78
Page 96 of 221

THREE: Oblectsand Interfaces

Listing 3-2. continued

case IDM_ENUMEXIT:
FostMessage(hWnd, WM_CLOSE, @, 8L}:

break;
1
break;
default:
return (DefWindowProc(hWnd, iMsg, wParam, 1Param)};
1
return 0L;

}

CAppVars::CAppV¥ars(HINSTANCE hInst, HINSTANCE hlnstPrev
» UWINT nCmdShow)

{

//Initfalize WinMain parameter holders.
m_hlns% = hinst;

m_hInstPrev = hlnsiPrev;

m_nCmdShow = nCmdShow;

m_hWrd=NULL;
m_pIEnumRect=NULL;

return;
i

ChppVars::~CAppVarsi{void)
{

/ifree the enumerator object if we have one.
if (NULL!=m_pIEnumRect)
m_plEnumRect->Release();

return;
}

BOGL CAppVars::FInit(void)
{

WHDCLASS We;

if (Im_hinstPrev)
{

{continued)

79
Page 97 of 221

INSIDE OLE 2

80

Listing 3-2. consinued

wc.style = CS_HREDRAW i CS_VREDRAW;
wc.1pfnHndProc = Enum¥ndProc:

wc.chCl1sExtra = 0;

wc.chWndExtra = CBWNDBEXTRA;

wc.nlnstance = m_hInst;

wc.hlcon = topadicon(m_hInst, "Icon"):
we. hCurser = loadCursor(NULL, IDC_ARROW);
wc.hbrBackaoround = (HBRUSH)I(CCLOR_WINDOW + 1):
we. TpszMenuName = MAKETNTRESQURCE(IDR_MENU}

wc.lpszClassName = "ENUMCFP™:

if (lRegisterClass(&wc))
return FALSE;

}

m_hWnd=CreateWindow("ENUMCFP", "Enumerator in C++"
, WS_MINIMIZEBOX | WS_OVERLAPPEDWINDOW
. 35, 35, 35@, 258, NULL, NULL, m_hInst, this}:

if (NULL==m_hlnd)
return FALSE;

ShowWindow(m_hWnd, m_nCmdShow):
UpdateWindow(m_hWnd);

return TRUE;
1

IENUM.CPP
[
* Enumerator in C++ Chapter 3

+ Copyright (¢)1993 Microseft Corporation, A1l Rights Reserved
*/

#include <windows.h>
f#include "ENUMCPP.H™

f*
CreateRECTEnumerateor

(continued)

Page 98 of 221

THRE E: Objects and Interfaces

Listing 3-2. continued

« Purpose:

Bh N

E

Given an array of rectangles, creates an enumerator interface
on top of that array.

Parameters:
ppEnum LPENUMRECT FAR = in which to return the
interface pointer on the created object.

- Return value:

&/

BOOL TRUE if successful, FALSE otherwise.

BOOL CreateRECTEnumerator(LPENUMRECT FAR =ppEnum)

{
if (NULL==ppEnum}
return FALSE;

//Create the cobject stering a pointer to the interface
*ppEnum=(LPENUMRECT }pew CImpiEnumRECT();

if (NULL===ppEnum)
return FALSE;

f/If creation worked, AddRef the interface
1f (NULL!=+*ppEnum}
(*ppEnum)->AddRef{);

return (NULL!==ppEnum);

]

CImpIENumRECT: :CImpIEnumRECT{veid)
{
UINT g

//Initialize the array of rectangles
for (i=@; i < CRECTS; i++)
SetRect{&m_rgrciil, i, %2, 1*3, i%4);

//Ref counts always start as zero
m_cRef=0;

//Current pointer is the first element.
m_iCur=8;

(continued)

Page 99 of 2%11

INSIDE OLE 2

Listing 3-2. continued

return;
1

CImpIENUMRECT : :~CImpIEnumRECT (void)

{
return;

1

DWORD CImpIEnumRELT::AddRef(void)

{
return ++m_cRef;

}

DWORD CimplEnumRECT::Release{void)
éWGRD CRefT;
CRefT=--m_cRef;

if (@==m_cRef)
delete this;

return cRefT;

1

BOOL CImpIEnumRECT::Next(DWORD cRect, LPRECT prc, LPDWORD pdwRects)
{
DWORD cRectReturn=8L;

if (NULL==pdwRects)
return FALSE;

*pdwRects=@L ;

1f (KULL==prc !} {m_iCur >= CRECTS))
return FALSE:

while (m_iCur < CRECTS && cRect > @)
i
spret=m_rgre[m_iCur++];
cRectReturn++;
cRect--;
i

{continued)

- Page 100 of 221

THRE E: Objects and Interfaces

Listing 3-2. continued

spdwRects={cRectReturn-cRect);
return TRUE;
}

BOOL CImpIEnumRECT::Skip(DWORD ¢Skip)

{
if {(m_iCur+cSkip) >= CRECTS)
return FALSE:

m_iCur+=cSkip;
return TRUE;
1

void CImpIlEnumRECT::Reset(void}
{
m_iCur=6;
return;
}

NOTE:ThebmmmgﬁkMENUMGHJNUMQCﬁmHENUMLDmtbr
the C implementation of the Enum program.

ENUMC.H

/ .

gnumerator in C, Lhapter 3

%

* Definitions, structures, and prototypes.
%

+ Copyright (c)1993 Microsoft Corporation, A1l Rights Reserved
LV

#ifndef _ENUMC_H_
#define _ENUMC_H_

Finclude <enumd.h> //Found in shared include directory
f#inciude <book 1632.h>

//Meny resource ID and commands
jidefine IDR_MENU 1

Listing 3-3. {continuied)
The ENUM program implemented in C.

83
Page 101 of 221

INSIDE OLE 2

84

Listing 3-3. continued

#define IDM_ENUMCREATE 168
jtdefine IDM_ENUMRELEASE 181
ftdefine IDM_ENUMRUNTHRCUGH 182
ftdefine IDM_ENUMEVERYTHIRD 183
f#define IDM_ENUMRESET lo4
fdefine IDM _ENUMEXIT 185
/FENUMC. C

LRESULT FAR PASCAL EXPCRT EnumWndProc(HWND, UINT, WPARAM, LPARAM);

typedef struct tagAPPVARS

{

HINSTANCE m_hInst; //WinMain parameters
HINSTANCE m_hlnstPrev;

UINT m_nimdShow;

HWND m_hWnd: //Main window handle
LPENUMRECT m_plEnumRect ; //Enumerator interface

1 APPVARS, FAR #LPAPPVARS;

LPAPPVARS AppV¥arsConstructor(HINSTANCE, HINSTANCE, UINT):

void AppVarsDestructor(LPAPPVARS);
BOOL AppVarsFInit{LPAPPVARS};
f#define CBWNDEXTRA sizeof (LONG)

fdefine ENUMWL_STRUCTURE @

//Number of rectangles that IEnumRECT objects support (for demo)
ffdefine CRECTS 15

4]
= In { we make a class by reusing the elements of IEnumRECT,
4 thereby inheriting from it, albeit manually.

i/
typedef struct tagIMPIENUMRECT
{
TEnumRECTVEB]1 FAR = 1p¥tbl;
DWORD m_cRef: //Reference count
DWORD m.icur; //Current position
RECT m_rgrc[CRECTS]: //RECTs we enumerate

} IMPIENUMRECT, FAR +LPIMPIENUMRECT;

1L

(continued)

Page 102 of 221

THREE: Objects and Interfaces

Listing 3-3. continued

#+ In €, you must separately declare member functions

+ with globally unigue names, so prefixing with the class name
= should remove any conflicts.

#/

LPIMPIENUMRECT IMPIEnumRect_Constructor{void);

void TMPIEnumRect_Destructor (LPIMPIENUMRECT);

DWORD IMPIEnumRect_AddRef (LPENUMRECT) :

DWORD IMPIEnumRect_Release(LPENUMRECT);

BOOL IMPTEnumRect Next{LPENUMRECY, DWORD, LPRECT
. LPDWORD);

BOOL IMPIERumRect_Skip(LPENUMRECT, DWGRD);

void IMPTEnumRect_Reset (LPENUMRECT) ;

//Function that creates one of these objects
BO0L CreateRECTEnumerator(LFENUMRECT FAR +3);

frendif //_ENUMC_H_

ENUMC.C
I
= Enumerator in C Chapter 3

¢ Copyright (c)1993 Microsoft Corporation, All Rights Resarved
*/

finclude <windows.h>
#include <malioc.h>
#inctude “enumc.h™

int PASCAL WinMain(HINSTANCE hinst, HINSTANCE hinstPrev
, LPSTR pszCmdLine, int nCmdShow)
{
MSG msg;
LPAPPVARS pAV:

pAV=AppVarsConstructor{hinst, hinstPrev, nCmdShow):

if (NULL==pAV)
return -1;

{continued)

Page 103 of 221

INSIDE OLE 2

Listing 3-3. continued

if (AppVarsFInit(pAv))

{

while (GetMessage(&msg, NULL, 8.8 })
{
TranslateMessage(&msg);
DPispatchMessage{&msqg):
}

1

AppYarsDestructor{pAV);
return msg.wParam;
1

LRESULT FAR PASCAL EXPORT EnumlndProc(HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM 1Param)
{
LPAPPVARS pAV:
RECT rc;
JWORD cRect;

COMMANDPARAMS (WID, wCode, hWndMsg):
pAV=(LPAPPVARS)GetWindowLong(hWnd, ERUMWL_STRUCTURE) :

switch {iMsg)
{
case WM_NCCREAYEL:
pAV=CLPAPPYARS) ((LONG}{ (LPCREATESTRUCT)1Param)
->IpCreateParams):

SetWindowlong(hWnd, ENUMWL_STRUCTURE, (LONG)pAV);

returrn (DefWindowProc(hWnd, 1Msg, wParam, 1Param)):

case WM_DESTROY:
PostQuitMessage(d):
break:

case WM_COMMAND:
switch (wID)
{
case IDM_ENUMCREATE:
if (NULLi=pAV->m_pIEnumRect)
{

{continied)

= Page 104 of 221

THREE: Objects and Interfaces

Listing 3-3. continued
pAV->m_pIlEnumRect->ipVthl->Reiease(pAVM

->m_plEnumRect);
}

CreateRECTEnumerator (&pAV->m_pIEnumRect);
break;

case IDM_ENUMRELEASE:
if (NULL==pAV->m_pIlEnumRect)
break;

i (@==pAV->m_plEnumRect->1pVtht->Release(pAV
->w_plEnumRect))
pAY->m_plEnumRect=NULL;

break:

case IDM_EMUMRUNTHROUGH:
if (NULL==pAV->m_plEnumRect)
break;

while {pAY->m_plEnumRect->1pVtbl->Next(pAv
->m_plEnumRect, 1, &rc. &cRect))

break;

case IDM_ENUMEVERYTHIRD:
if (NULL==pAV->m_plEtnumRect}
break;

while (pAV-)m_pIEnumRect->1thb]—>Next(pAV
->m_plEnumRect, 1, &rc, &cRect))

i
if (1pAV->m_pIEnumRect->1pVtb1->5kip{pAY

->m_plEnumRect, 23)
break;

}
break;

case [DM_ENUMRESET:
1T (NULL==pAV->m_plEnumRect)
break;

pAV->m_pIlEnrumRect->1pVibl->Reset (pAV
->m_plEnumRect};
break;

(continued)

Page 105 of 285 1

INSIDE OLE 2

Listing 3-3. continued

case IDM_ENUMEXIT:
PostMessage{hWnd, WM_CLOSE, @, 9L);
break;

}

break;

default:
returr (DefWindowProc{hknd, iMsg, wParam, 1Param}};

I}

return 8L;
}

.PAPPVARS AppVarsConstructor{HINSTANCE hInst, HINSTANCE hInstPrev
, UINT anCmdShow)

{
LPAPPVARS pAvY;

pAV=(LPAPPYVARS) _fmalloc(sizaof{APPVARS));

if (NULL==pAY)
return NULL;

pAV->m_hInst =hInst;
pAV->m_hInstPrev =hInstPrev;
pAV->m_nlmdShow =nCmdShow;

pAV->m_hWnd=NULL;
pAV->m_plEnumRect=NULL;

return pAV;
}

void AppVarsDestructor(LPAPPVARS pAV)

{

//Free any object we still held on to

if (NULL!=pAV->m_pIlEnumRect)
pAV->m_plEnumRect->1pVtbl->Release(pAV->m_plEnumRect);

if (IsWindow(pAY->m_hiknd})
DestroyWindow(pAV->m_hWnd) ;

_ffreel{(LPVOID)PAV);

{continted}

oe Page 106 of 221

THRE E: Objects and Interfaces

Listing 3-3. continued

return;
}

BOOL AppVarsFInit{LPAPPVARS

{
WNDCLASS We:

if (!pAV->m_hInstPrev}
{

wc.style

wc. lpfnkndProc
we.chClsExtra
we.chWndExtra
wc.hinstance

wc, hlcon
wc.hCursor

we . hbrBackground
we,1pszMenuName
wc. 1pszClassName

pAY)

CS_HREDRAW | CS_VREDRAW;
{WNDPROC)EnumiWndProc;

g

CBWNDEXTRA;

pAV->m_hlnst;
LoadIcon{pAV->m_hIrst, "Icon");
LogdCursor{RULL, IDC_ARROW;:
{HBRUSH) (COLOR_WINDOW + 133
MAKEINTRESQURCE(IDR _MENU) ;
“ENUMC";

if {lRegisterClass(&wc)}

return FALSE;
3

pAY->m_hWnd=CreateWindew("ENUMC", “Enumerator in C"

, WS_MINIMIZEBOX

! WS_OVERLAPPEDWINDOW

, 35, 35, 358, 250, NULL, NULL, pAV->m_hlnst, pAV);

if (NULL==pAV->m_hWnd)
return FALSE;

Showwindow(pAY->m_hWnd, pAV->m_nCmdShow);
UpdateWindow(pAV->m_hWnd);

return TRUE;
}

IENUM.C
e

+ Enumerator in C, Chapter 3
+ Implements the IMPIENUMRECT structure and functions {ar object).

% f

(continued)

89
Page 107 of 221

INSIDE OLE 2

Listing 3-3. continued

#inciude <windaws.h>
#inctiude <maliloc.h>
#include “enumc.h”

//We have to explicitly define function table for IEnumRECT in C
static IEnumRECTVib1 vtEnumRect;
static BOOL f¥tbiInitialized=FALSE;

£

CreateRECTEnumerator

*

= Purpecse:

* fBiven an array of rectangles, creates an enumerator interface
= gn top of that array.

¥ Parametars:
#* ppEnum LPENUMRECT FAR = in which to return the interface
" pointer on the created object.

+ Return value:
+ BOOL TRUE if successful, FALSE otherwise.
* f

BOOL CreateRECTEnumerator(LPENUMRECT FAR +ppEnum)
{
if (NULL==ppEnum)
return FALSE:

//Create the object storing a pointer io the interface
=ppEnum=(LPENUMRECT) IMPIEnumRect Constructor();

1f (NULL==*ppEnum)
return FALSE;

[/1T creation worked, AddRef the interface
if (NULL!==ppEnum)
{+ppEnum}->1pV¥thl ->AddRef (*ppEnum};

return (NULL!=*ppEnum};

}
LPIMPIENUMRECT IMPIEnumReci_Constructor{veid)
{
LPIMPIENUMRECT nER:
UINT L

{continued)

90
Page 108 of 221

THREE: Objects and Interfaces

Listing 3-3. continued

= First time throughinitialize function table. Such a table

+ could be defined as a constant instead of deing explicit

¢« initiatization here. However, this method shows exactiy
 which pointers are going where and does not depend on knowing
« the ordering of the functions in the table, just the names.

if (IfVtblInitialized)
{
vtEnumRect . AddRef =IMPIEnumRect_AddRef:
vtEnumRect.Release=IMPIEnumRect_Release;
vitEnumRect .Next =IMPIEnumRect_Kext;
ytEnumRect.5kip =IMPIEnumRect_Skip;
vtEnumRect.Reset =IMPIEnumRect_Reset;

fytblinitialized=TRUE;
1

PER=(LPIMPIENUMRECT)_fmalloc(sizecf(IMPIENUMRECT));

if (NULL==pER)
return NULL:

//Initialize function table pointer
pER->1pVtbi=dvtEnumRect;

//Initialize the array of rectangles
for (i=0; i < CRECTS; it++)
SetRect(&pER->m_rgre[i], 1, 12, 13, i#4);

//Ref counts always start at zero
pER->m._cRef=0;

//Current pointer is the first element.
pER->m_iCur=0;

return pER;
¥

void IMPIEnumRect_Destrictor(LPIMPIENUMRECT pER)
{

if (KULL==pER)
return;

{continued)

91
Page 109 of 221

INSIDE OLE 2

Listing 3-3. continued

ffree{ (LPVOID)pER);

return;

1

DWORD IMPIEnumRect_AddRef (LPENUMRECT pEnum)

4
LPIMPIENUMRECT pER={(LPIMPIENUMRECT)pEnum;

if (NULL==pER}
return @L;

return ++pER->m_cRef;
}

DWORD IMPIEnumRect_Release(LPENUMRECT pEnum}

{
LPIMPIENUMRECT PER=(LPIMPIENUMRELT ypEnum;
DWORD cRefT:

if (NULL==pER)
return 9L;

cRefT=--pER->n_cRef;

if (@==pER->m_cRef)
IMPIEnumRect_Destructor(pER);

return cRefT;
1

BOOL IMPTEnumRect_Next(LPENUMRECT pEnum, DWORD cRect

, LPRECT prc, LPDWORD pdwRects)

{
LPIMPIENUMRECT pER=(LPIMPIENUMRECT)pEnum:

DWORD cRectReturn=aL;

if (NULL==pdwRects)
return FALSE;

*pdwRects=@L;

if (NULL==prc i1 (pER->m_iCur >= CRECTS))
return FALSE:

{comntinued)

% Page 110 of 221

THRE E: Objects and Interfaces

Listing 3-3. continued

while (pER->m_iCur < CRECTS && cRect > @)
{
spre++=pER->m_rgrcipER->m_iCur++];
cRectReturn++;
cRect--;
;

#pdwRects=(cRectReturn-cRect};
return TRUE;

}

BOOL IMPIEnumRect_Skip(LPENUMRECT pEnum, DWORD cSkip)
{
LPIMPIENUMRECT pER=(LPIMPIENUMRECT)pEnum;

if (NULL==pER)
return FALSE;

if ((pER->m_iCur+cSkip) »= CRECTS)
return FALSE;

pER->m_jCur+=cSkip;
return TRUE;
i

void IMPIfnumRect_Reset (LPENUMRECT pEnum)

{
LPIMPIENUMRECT pER=(LPEMPIENUMRECT)pEnum;

if (NULL==pER)
return;

pER->m_iCur=6;
return;
}

When IENUMO.H is compiled for C++, it generates a C++ abstract base
class—that is, a base class that defines a set of pure virtual functions (by using
virtual and =0). In addition, [ENUMO.H defines a far pointer type for this
interface in the conventional form LP<INTERFACE>, where <INTERFACE>
is the interface name in all caps excluding the [prefix. The C++ implementa-
tion of the RECTEnumerator object, CImpIEnumRECT in ENUMCPP.H, in-
herits these function signatures from this interface and provides each
implementation. Instantiating this C++ class will generate an IEnumRECT
function table for you.

Page 111 of 221

INSIDE OLE 2

Defining an interface in C is more work, primarily because you have to
construct the function table manually. In ENUMC, the structure JEnumRECT-
Vibi5 is a structure of function pointers that is exactly what many C++ com-
pilers create internally for C++ classes. The actual interface, IEnumRECT, is
defined as a structure that contains a pointer to this function table. So when a
C application has a pointer to an interface, it really has a pointer to a pointer to
afunction table. The Cimplementation of the RECTEnumerator object, a struc-
ture named IMPIENUMRECT in ENUMC.H, duplicates the [pVihi member of
[EnumRECT in its own structure, thereby making a pointer to IMPIENUM-
RECT polymorphic with a pointer to JEnumRECT. This duplicates what hap-
pens automatically with C++ classes and is common in C-based OLE 2 code.

Creating the RECTEnumerator Object

94

When yvou choose the Create command from the Enum menu of either
ENUMC or ENUMCPP, you generate a call (see IDM_ENUMCREATE ini the
WM_COMMAND switch) to CreateRECTEnumerator. This creation function
creates the object and returns the [EnumRECT interface pointer in an out-
parameter— that is, the caller passes the address in which CreateRECTEnumera-
tor stores the interface pointer. This technique is used everywhere in OLE 2 to
allow standardization of almost all return values into a type named HRESULT,
described in the later section “HRESULT and SCODE.”" To avoid further com-
plicating your life now with HRESULT, we’ll stick with a BOOL return type.

Note that specific functions to create specific types of object are rare in
OLE 2. Most often you use a class factory object (and [ClassFactory::Create-
Instance), which eliminates the need for most, but not all, API functions such
as CreateRECT Enumerator. As we’ll see in Chapter 4, implementations of /Class-
Factory::CreateInstance look very much like CreateRECTEnumerator, In either
language.

In this example, the ENUMC and ENUMCPP programs are both user
and implementor of the same object. Both programs use an internal function,
CreateRECT Enumerator, to obtain an IEnumRECT pointer to the RECT-
Enumerator object. This demonstrates the typical fashion through which a user
obtains an interface pointer by calling an API function. Internally, the Create-
RECTEnumerator creates the function table for the JEnumRECT interface and
then allocates and initializes the object itself.

In G+, the newoperator applied to the Clmpl EnumRECT class automati-
cally allocates memory for the object and creates the function table. All you
have to do is initialize the object. Because the ClmplEnumRECT class

5. The jargon name Vibl means virtual function table which is always referred to in this book
as simply a function table.

Page 112 of 221

THREE: Objects and Interfaces

inherits from IEnumRECT, vou can typecast the pointer from new to an
LPENUMRECT, which turns itinto a pointer to only the interface. So in C++,
it’s highly convenient to implement objects as C++ objects, although the
pointers you return are always interface pointers.

In C, you must manually fill the function table, manually allocate the
object’s memory, and then initialize it exactly as in C++, The function IMF-
IEnumRECT _ Constructorhandles all this for you and lets you use it in place of
the new operator in Gi++. This constructor function first creates the function
table by storing function pointers in a global array of type IEnumRECTVibL.
{This needs to happen only once for all instances of the object.) Only the im-
plementation of this ohject knows that the function table actually exisis in a
global variable such as this. The object’s user sces only the table but has no
knowledge about where that table lives. In any case, IMPIEnumRECT-
— Construcior then allocates the object’s structure and stores a pointer to the
function table in the [pVibl member of the object. Finally, it performs the
same initialization as in C++

Using an IEnumRECT Pointer

You will also notice that CreateRECTEnumerator calls the object’s AddReffunc-
tion before returning the pointer. This rule of reference counting, one of sev-
eral, is explained in “‘Reference Counting.” THowever, this one call, along
with calls to the other fErumRECT functions in ENUMC and ENUMCPP,
demonstrates the calling differences between C and C++. Given an interface
pointer, a C++ user calls member functions through the pointer as with any
other C++ object pointer:

//C++ call to interface member function
pIEnumRect->AddRef();

This will land in CImpIEnumRECT::AddRef just as any other C++ call would.
The this pointer inside the member function is identical to plEnumRECT,
through which the function was called.

In C, we have a more complicated story. First, any member function call
made through an interface pointer must be indirect through the ipVib/ mem-
ber before it gets at the function (an indirection done automatically in C++):

//C call to interface member function
plEnumRect->1pVtbl->AddRef{plEnumRect;:

To ensure that the implementation of /EnumRECT::AddRef invoked here
knows which object is being accessed, C users must pass the same interface
pointer as the first parameter to the function. This mimics the behavior of

Page 113 of 221

INSIDE OLE 2

the this pointer that is automatic in C++, Because this extra parameter is nec-
essary, the function prototypes in IENUMO.H for the C interface had to
include the pointer type as the first parameter.

The two lines of preceding code illustrate why C++ is more convenient,
but no more functional, than C in using Windows Objects. The C user will al-
ways need the extra indirection and the extra parameter, which can quickly
addup toalot of extra code. By no means, however, does that small fact render
itimpossible to write C code for OLE 2. An objectimplementor in C needs only
to provide for creating the function table manually. But aside from these few
differences, programming in OLE 2 is identical in either language.

Reference Counting

96

The implementation of the RECTEnumerator object is illustrative, but not use-
ful. To build the bridge between illustrative objects and useful objects, we
need more information that applies to all the remaining chapters of this
book. One of the most important subjects is reference counting, which is a set
of rules that control an object’s lifetime.

If you are an object, your reference counting requires that you live a
unique life in which you are not allowed to rest eternally unless all your ac-
quaintances have also passed on. (I say “‘unique life”” because if everyone
lived this way, we’d all be immortal. But an object user does not have a refer-
ence count and therefore does not live such a life.) At birth, you form an ac-
quaintance with your mother, and as you live your life, you meet new people
and form new acquaintances. Whenever you form a new relationship, you in-
crement vour reference count. Whenever an acquaintance dies, you are
released of that relationship, and you decrement your reference count. Only
when all such relationships end are you allowed your personal journey to the
afterlife. That means that for vou, the object, your reference countis zero, and
you are allowed to free your memory.

You might have noticed a potential problem with this. If you are an ob-
jectas well as an object user, and the object you are using just so happens to be
the user that is using your object, you have a seeming paradox of mutual im-
mortality on your hands. Neither party can die because each has an acquain-
tance with the other, or what is known as a circular reference count. In such
cases...free the other object, as well. In other words, the Almighty End User
strikes one object down with a lighming bolt from the sky, thereby breaking
the circular reference. In such cases, you have to remember the Almighty End
User, who does things such as close an application. This act overrides the

Page 114 of 221

THREE: Objects and Interfaces

relationship rule; the object in the application that’s closing brutally termi-
nates all connections to it in such a way that its reference count is reduced to
zero, which might free the other object as well.

The rules governing reference counting can be distilled into two funda-
mental principles:

m Creation of a new interface pointer to an object must be accom-
panied by an AddRef call to the object through that new pointer.

B Destruction of an interface pointer (that is, when the pointer goes
out of scope} must be accompanied by a Release call through that
pointer before it can be destroyed.

This means that whenever you assign one pointer to another in some piece of
code, you should use AddRef for the new copy (the left operand) of the
pointer. Before that pointer is overwritten, it must have Release called for it.
All AddRef and Release calls made through interfaces affect the reference
count of the entire ohject, which is shared among all interfaces on that object.
Consider the following code:

|.PSOMEINTERFACE plSomel;

LPSOMEINTERFACE plScme?2
LPSOMEINTERFACE pCopy:

//A function that creates the pointer uses AddRef on it.
CreateISomeObject(&pISomel); //Somel ref count=l
CreatelSomeObject(&plSomel); //SomeZ ref count=1

pCopy=plSomel; //Somel count=1
pCopy->AddRef(); //AddRef new copy, Somel=2

[Do things]

pCopy->Release(); //Release before overwrite, Somel=1
pCopy=plSomeZ; //Some2=1
pCopy->AddRef(); //Some2=2

[What kinds of things do you dol

pCopy->Release(); //Release before overwrite, Some2=1
pCopy=NULL;

[Things that make us go]

pISome2->Release(); //Release when done, Some?=@8, Some2 freed.
plSomel->Release(); //Release when done, Somel=@, Somel freed.

Page 115 of3721

J

INSIDE OLE 2

An object’s lifetime is controlled by all AddRefand Release calls on all its
interfaces combined. Reference counting for a specific interface is useful in
debugging to verify that your user is counting properly, but it is the object ref-
erence count that matters. According to the first fundamental principle of
reference counting, any function that returns a pointer to an interface must
call AddRef through that pointer. Functions that create an actual object and
return the first pointer to an interface on that object are such functions, like
Createl SomeObject in the preceding example. Now anytime you create a new
copy of a pointer, you must also call AddRef through that new copy because
you have two different references, two different pointer variables, to the same
object that are independent. Then according to the second principle of refer-
ence counting, all AddRef calls must be matched with a Release call. So before
your pointer variables are destroyed (by an explicit overwrite or by going out
of scope), you must call Release through that pointer, This includes calling
Release through any pointer copy (through which you called AddRef) as well as
through the pointer you obtained from the function that created the object.
Functions that create objects and return interface pointers are the functions
that actually create the pointers. Such functions fill the out-parameters from
which the caller receives the pointer. Therefore, it is the creator, not the
caller, that is responsible for the first AddRef on the object by means of the
interface pointer it initially returns.

My Kingdom for Some Optimizations!

28

The stated rules and their effect on the code shown earlier probably seem
rather fascist. Well, they are, but that doesn’t mean there’s no underground
movement.

When you know the lifetimes of all interface pointers to the same object,
vou can bypass the majority of AddRef and Release calls. There are two
manifestations of such knowledge: nested lifetimes and overlapping lifetimes.

In the preceding code, every instance of pCopy is nested within the
lifetimes of piSomel and pISome2—that is, the copy lives and dies within the
lifetime of the original. After CreatelSomeQObject is called, both objects have a
reference count of one. The lifetimes of their pointers is bounded by these
create calls and the final Release calls made through those pointers. Because
we know these lifetimes, we can eliminate any other AddRefand Release calls to
copies of those pointers:

LPSOMEINTERFACE plSomel;
LPSOMEINTERFACE plSome2;
LPSOMEINTERFACE pCony:

Page 116 of 221

3

THREE: Objects and Interfaces

CreatelSomeQbject(&piSomel); //Somel ref count=1
CreatelSomeObject(&plScme2); //Some2 ref count=1

pCopy=pIlSomel; //5omel=1, pCepy nested in Somel's life
[Do things]

pCopy=plSome2; //SomeZ=1, pCopy nested in SomeZ2's 1ife
[Do other things]

pICopy=NULL; //No Release necessary

[Do anything, then clean upl

plSome2->Release(); //Release when done, ScmeZ=@, SomeZ freed,
plSomel->Release(); /{Release when done, Somel=8, Somel freed.

Overlapping lifetimes are those in which the original pointer dies after
the copy is born but before the copy itself dies. If the copy is alive at the origi-
nal’s funeral, it can inherit ownership of the reference count on behalf of the
original:

LPSOMEINTERFACE plSomel;
LPSOMEINTERFACE plopy;

CreatelSomeObject{&pISomel); f/5cemel ref count=1

pCopy=plSomel: //Somel=1, pCopy nested in Somel’s 1ife
plSomel=NULL; /fPointar destroyed, pCopy inherits count, Somel=l

pCopy->Release(); //Release inherited ref count, Somel=0, Scmel freed.

With these optimizations, reference counting can be reduced to four
specific rules, in which an AddRef for a new copy of a pointer is necessary
(and thus must have a Release call made through it when destroyed):

B Functions that return a new interface pointer in an owi-parameter
or as a return value must call AddRef for the object through that
pointer before returning.

B Functions that accept an in-owl parameter must call Release for the
in-parameter before overwriting it and must call AddRef for the out-
parameter. Callers of these functions must call AddRef for the passed
pointer to maintain a separate copy if the function is known to call
Release for that pointer.

B If two pointers to the same object have unrelated lifetimes, AddRef
must be called for each.

B Call AddRef for each local copy of a global pointer.

Page 117 01221

INSIDE OLE 2

In all cases, some piece of code must call Releasefor every AddRef on a pointer.
In the first of the preceding cases, the caller of a function that returns a new
pointer (such as Createl SomeObject) becomes responsible for that new object.
When the caller has finished with the object, it must call Release. If the object’s
reference count is decreased to zero because of this, the object may be
destroyed at the discretion of the implementor, but from the user’s point of
view, the object is gone. If you fail to use Release for a reference count, you gen-
erally doom the object to the boredom of useless immortality—memory
might not be freed, or the DLL or EXE supplying that object might not
unload. Be humane to your objects: Be sure to release them.

Call-Use-Release

100

The first optimized reference counting rule exposes 2 common pattern in
OLE 2 programming. To use an object, you will call some function that
returns a pointer to an interface. That function will call AddRef on behalf of
this new pointer. You then use that pointer for as long as you want. When you
have finished with it, you call Refease through that pointer to let the object
know you no longer need it.

The same object might, in fact, be in use through other pointers, even in
another process. As far as you're concerned, vou call Release to tree the refer-
ence count for which you are responsible, and you know that after that time
you cannot access that object again because it might have freed itself. If there
are other outstanding pointers to that object elsewhere, however, the objectis
still in memory, but you are oblivious to that fact.

This pattern, which I refer to as Call-Use-Release, is common in OlLE 2
programming. There are many functions you call to obtain pointers with a
reference count, and there are many different things to do with those point-
ers (which is why this book is so thick). But regardless of how you got the
pointer or what you did with it, you must call Release through it when you are
finished.

The final Release can do more than simply free the object—"free the
object”” can imply many other actions. For example, Compound File objects
discussed in Chapter 5 might close a file; a memory manager object we'll see
in Chapter 4 will free any allocations it has made; a compound document ob-
ject we’ll implement in Chapter 10 might close down an application. Because
the Release member function can be overloaded in this manner, you will
notice an absence of “close’ API functions in OLE 2. There is a function to
open a Compound File, but there is no function to close it—the API provides
the initial AddRef, and closure is handled in the final Release.

Page 118 of 221

THREE: Objects and Interfaces

JUnknown, the Root of All Evil

From the preceding discussion, you can isolate two fundamental interface
and object operations: reference counting and pointer creation. The inter-
face named [Unknown, which all Windows Objects support, encapsulates
these two ideas in three member functions:

Function Result

QueryInterface Returns a pointer to the requested interface on the same
object. QueryInterface is considered a function that creates
a pointer, so it calls AddRef through any pointer it returns.

AddRef Increments the object’s reference count, returning the
current count.

Release Decrements the object’s reference count, returning the new
count, and can free the ohbject when the reference count
reaches zero.

Because AddRef and Release behave exactly as described in the previous
section, we won’t examine them further here. Instead, we’ll look more closely
at Querylnterface.

QueryInterface is more than simply the fundamental creator of interface
peinters, although it does always return a pointer to a different interface on
the same object. Queryinterface allows you to access each separate function
table supported by an individual object. How you obtain the first interface
pointer on the object is one thing— Queryinterface allows you to get to all
other interface pointers on the same object after creation.

Queryinterface allows an object user to discover an object’s capabilities at
runtime, instead of having to incorporate specific knowledge about objects at
compile-time. You learn capabilities by asking for additional interfaces that
the object supports, a process called interface negotiation. When you create an
arbitrary object, you’ll always get back an interface pointer that looks like an
IUnknown pointer because all other interfaces incorporate [Unknown. So if
you are able to get an object, you can always call Queryinterface.

With an [Unknown pointer, you can now determine whether the object
supports a particular feature by calling QueryInierface. For example, to deter-
mine whether the object supports data transfer, call QueryInferface asking for
an IDataObjectinterface (see Chapter 6). To determine whether the objectis a
Compound Document object, meaning that it can be treated in a standard
way for editing capabilities, call Querylnterface tor IOleObject (see Chapters 9

101
Page 119 of 221

INSIDE OLE 2

102

and 10}. 7OleObject describes only an embedded object, so if you want to deter-
mine whether it supports linking, call QueryInterfacefor IQlelink (see Chapter
12). To go even further, you can ask the object whether it supports in-place
activation by calling Querylnterface tor I0leInPlaceObject. (See Chapters 15
and 16.)

When you call Querylnterface for a new pointer, you not only learn
whether the object is capable of the set of functions implied by that interface,
but you receive back the interface pointer through which you access those
functions. This means that you cannot possibly attempt to use certain fea-
tures of an object if it does not support those features because you can never
get the appropriate interface pointer from the object. In other words, if you
speak a different language than I do, we cannot communicate; only when we
establish a common language can we express ourideas (functions) to one an-
other. Furthermore, it is impossible for me to offend you verbally unless I
speak in your language; or in Windows Objects terms, I am not able to pass
the wrong object to a function that does not understand that object because I
must use the language of the object to perform any function on it.

Applications benefit from being able to make decisions dynamically
about how to treat an object based on that object’s capabilities, instead of
rigidly compiling such behavior. Let’s say I work at the United Nations in New
York City and I speak English and German. I walk into a room with 10 interna-
tional delegates with whom I need to discuss a few issues. I go up to one of the
delegates and ask ‘Do you speak English?”” This query is met with an affirma-
tive, “Yes.” Great, now we can talk. Partway through our conversation, I find
that I simply cannot express one of my ideas in English, but I know I could
express it in German—some languages have words without equivalents in
other languages. So [ask, “‘Sprechen Sie Deutsch?” to which the other person
responds ‘‘Ja.” Because my partmer also speaks German, I can now express
my idea in that language, If German were not in my partner’s repertoire, we
would be limited to speaking English only.

My ability to communicate with anyone is limited not by the number of
languages I speak, but by the languages the other person and I have in com-
mon. This means that my level of communication varies from person to per-
son. With some people, I can converse in two languages; with others, [might
converse in only one, or I might not be able to converse at all. The key points
are that I learn this when I meet the person and that my knowing many lan-
guages allows me to speak with many more people, not just with people who
speak exactly the same set of languages.

Page 120 of 221

THREE: Objects and Interfaces

How does this apply to objects? The Querylnterface mechanism allows an
object, or a user of objects, to implement or to be able to use as many inter-
faces as desired without any fear of restricting your ability to use objects or be
used by some object user. For example, a compound document object can im-
plement full in-place activation capabilities without restricting itself to being
useful only to in-place container applications. A non-in-place container can
still use that object as a non-in-place object, and in such a case, the in-place
activation interfaces are ignored entirely.

I've often been asked why there is not a function that returns a list of all
the interfaces an object supports. The answer is that such a function would be,
for the most part, useless. What would you do programmatically with such in-
formation? Although it might be useful in some very esoteric circumstances,
you never really need to know whether an object supports an interface unless
you intend to perform some function through that interface. So you ask for it
via Querylnterface. Furthermore, the list of interfaces that an object of a
specific class supports is constant only within a specific object’s lifetime and
might vary between different instantiations of objects of the same class.
Therefore, you cannot assume that if Object 1 of class X supports these inter-
faces, Object 2 of class X does as well. You must also not assume that
if objects of class X once supported interface Y, they always will, because the
object might change in the meantime. Because having some list of interfaces
doesn’t get you far and because the capability to obtain such a list is outright
dangerous, QueryInterfaceis the only way to learn about an object’s capabilities.

Querylinterface vs. Inheritance

Use of Querylnterfaceis superior to use of C++ base classes and C++ inheritance
for two reasons. First, given an arbitrary C++ object pointer to some base class
object, you really have no way to determine whether that pointer is actually
referring to some derived class object instead—you have no way to examine
the virtual function table to see exactly what kind of object you have. There-
fore, you are always and forever restricted to dealing with that object on the
base class’s terms. Using Querylnterface, on the other hand, allows you to getat
any function table you want from the base /Unknown interface. Given any
1Unknown, you can find out how rich the object actually is. You can get from
the base to more specific interfaces.

The second major advantage of QueryInterface is that unless an object
supports an interface, you cannot call member functions that the object does
not support. This is not true of C++ objects. Take, for example, the base object
class CObject in Microsoft’s Foundation Classes. A CObject might be capable of

103
Page 121 of 221

i

INSIDE OLE 2

serializing itself to a storage device (such as a file); to ask the question “Can
you serialize yourself?”, you call the member function IsSerializable. 11 the
answer is positive, you can then call another function, Serialize, to actually
perform the task.

That's nice, but a user of a CObject is in no way barred from calling Serzal-
izeatany time. In other words, serialization capability is not tightly coupled to
the question of whether the object can actually serialize. It is therefore pos-
sible to call Serialize on an object that does not support it, with unpredictable
results. The QueryInterface mechanism, on the other hand, does tightly couple
the question and the capability. You must ask the object via Queryinterface
whether it supports a particular functionality, and only il it does are you pro-
vided the interface through which to call such functions. Given an arbitrary
IUnknown object, you cannot possibly ask it to serialize itself without first ask-
ing for an interface that knows about serialization. If the object does not sup-
port the capability, you cannot get the interface. Therefore, you cannot call
unsupported functions, and you eliminate the possibility of unpredictable
behavior.

Queryinterface Properties and Interface Lifetimes

104

There are a number of rules in the OLE 2 Design Specifications concerning
the behavior of Queryinterface. The first and most important rule is that any
call to Queryinierface asking for IUnknown through any interface on the object
must always return the exact same pointer value. The specific reasoning for this
is that given two arbitrary interface pointers, you can determine whether they
belong to the same object by asking each for an [Unknown pointer and compar-
ing the actual pointer values. If they match, application of this rule allows
both interface pointers refer to the same object.

The second rule is that after an object is instantiated, the interfaces it
supports are static. This means that if QueryInterface succeeded for a particu-
lar interface at one point in the object’s lifetime, an identical call to Queryin-
terface at alater time will also work. This does not mean that the exact pointer
values returned from both calls will be identical —it means only that the inter-
face is always available. Note that the static set of available interfaces applies to
a specific object instantiation, not an object class—that is, two objects of the
same type might not both support the same interfaces, but during the
lifetime of each, the interfaces they each support will remain static.

The third rule is that the Querylnterface operation must be reflexive,
symmetric, and transitive, as described in the following table (in which Iinter-
facel, Interface2, and Interface3 are hypothetical):

Page 122 of 221

THREE: Objectsand Interfaces

Querylnterface Property Meaning
Reflexive pinterfacel->QueryInierface(Interfacel) must succeed.
Symmetric If pinterface2 was returned tfrom plnterfacel->

Queryinterface{lInterface2), then pinterfaceZ->
QueryInterface(Iinterfacel) must also succeed.

Transitive If pInterface2 was obtained from plnterfacel->
Queryinterface(linterface2) and pInterface3 was
obtained from plnterfaceZ->
QueryInterface{IMterface2), then pinterface3->
QueryInterface(Interfacel) must succeed.

In all these cases, “‘must succeed’ is not so strong as to imply that these
cannot fail under the most catastrophic situations. In addition, these proper-
ties do not mean that the same pointer valueis always returned for the inter-
face, with the exception of IUnknown.

The final rule has to do with the lifetime of a particular interface pointey,
as opposed to the lifetime of the entire object. The rule is that as long as the
object is alive, all interface pointers obtained on that object must remain
valid, even if the Release function has been called through those pointers.
Consider the following code:

LPSOMEINTERFACE pSome;
LPOTHERINTERFACE pOther;

CreateSomeCbject(&pSome); //0bject ref count is 1
pSome->QueryInterface(I0therInterface, &pOther); //ref count is 2
pOther->Release(); //ref count is 1
/*

% Since the chject is still alive, pOther 15 still a valid
+ interface pointer although Release has been called through it.
#f

pSome->Release(}; /fref count is @, object destroyed.

//pSome and pOther are now invalid.

When we first obtain the pSome pointer, the object will have a reference
count of one. The object will therefore remain alive as long as the reference
count remains above zero. When we query for pOther, the objeci will have a
reference count of two. When we call pOther->Release the object will still have a
positive reference, meaning that pOther will still be valid, even though we
called Release through it. That is, we can still call member functions through
#Other. This is because the interface is alive as long as the object is alive. Only

Page 123 otj 331

INSIDE OLE 2

when we call pSome->Releaseand reduce the object’s reference count to zero will
the object be destroyed, thus invalidating all interface pointers on that object.

In later chapters, we’ll see a few circumstances in which this rule
becomes important. For now, this illustrates why interface-level reference
counting is useful only for debugging purposes. A zero reference count on an
mterface means neither that the interface is invalid nor that the object is in-
valid. The only important reference count is the one on the entire object,
which all implementations of AddRef and Release on all interfaces of that
object must return.

Some Data Types and Calling Conventions

It you look in OLE 2’s include file, COMPOBJ.H, you will find IUnknown
declared as follows:

DECLARE_INTERFACE{IUnknown)

i

STOMETHOD{QueryInterface) (THIS_ REFIID riid

, LPVOID FAR+* ppvObj) PURF;

STDMETHOD_(ULONG,AddRef) (THIS) PURE;

STDMETHOD_(ULONG,Release) (THIS) PURE;

1
Ofthand, this might look very odd, but there are a number of macros shown
here that are used in many other aspects of OLE 2.

DECLARE_INTERFACE, STDMETHOD, STDMETHOD_, THIS,
THIS_, and PURE are all macros that hide the differences between C and C++
interface definitions as well as those among Winl16, Win32, and Macintosh im-
plementations. When this interface declaration is compiled in C++, the result
is similar to the definition of JEnumRECT in IENUMO.H; the same goes for a
C compilation. For complete details about how these macros expand, see the
comments in the COMPOBJ].H file in your OLE 2 SDK.

Note also that interfaces shown in the ENUMC program are not exactly
what is generated through these macros because real OLE 2 interfaces differ
in calling convention and return type. The following sections look at these, as
well as the REFIID type, in more detail.

STDMETHOD and Associates

106

The STDMETHOD macro expands into HRESULT STDMETHODCALL-
TYPE. HRESULT is a special return value type discussed in the next section,
“HRESULT and SCODE.” STDMETHODCALLTYPE is defined under
Microsoft Windows 3.1 as __export far __ cdecl and under Windows NT as

Page 124 of 221

THREE: Objectsand Interfaces

—export __cdecl. The cdecl type was necessary to support generation of the
proper stack frame for member function calls, portability of C code from 16-
bit to 32-bit, and interoperability between C and C++ implementations. The
OLE 2 architects would have preferred to have used a more efficient calling
convention (such as PASCAL) but were unable due to these constraints.

The STDMETHOD_ (<type>) macro allows a variation on the return
type from HRESULT into any other type. AddRef and Release, for example,
return the new reference count instead of an HRESULT. In this sense, they
are fairly unique: Most other interface members in all of OLE 2 return
HRESULTs, including Querylnterface.

Under C++, both STDMETHOD macros include the wvirtual keyword.
The PURE macro also compiles under Ct++ as =0 to generate pure virtual
members in the interface declarations. Of course, C compilations include
neither (pure compiles to nothing).

Because the two possible STDMETHOD macros generate the wvirtual
and =0signatures, they are not used when implementing interface functions,
only when declaring one. Instead, you use STDMETHODIMP or STD-
METHODIMP_ (<type>), which does nothing more than eliminate the wvir-
tual keyword in C++ compilations but still genérate either an HRESULT or a
<type> return value along with STDMETHODCALLTYPE.

HRESULT and SCODE

OLE 2 introduces a new return type used by QueryInterface and almost every
other interface member function: HRESULT, or handle to a result. Concep-
tually, an HRESULT is a status code, or SCODE, that describes what occurred
and a handle that can be used to obtain additional information about an er-
ror or how to recover from it. The intention is that over time, interfaces will
return very detailed information that can describe a suggested course of ac-
tion when failure occurs.

The HRESULT and SCODE types are both 32-bit values containing a
severity tlag, a facility code, and an information code, as shown in Figure 3-9
on the next page. The Context field is what distinguishes an HRESULT from
an SCODE because the Context is always zero in an SCODE but it could con-
tain a handle to additional information in an HRESULT.® An SCODE is cre-
ated or dissected with various macros in the OLE 2 include file SCODE.H.
such as MAKE_SCODE. Some of the more commonly used SCODE values
are shown in Table 3-1 on the next page. The Facility field of an SCODE

6. In OLE 2, the Context field in an HRESULT is always zero, but this will change in the future.

Page 125 of0221

Al

INSIDE OLE 2

108

Success

Context Facility Code
S) B BN R L B PSS DD L LD L e

Success 1 bit: 0 Success, 1 Error

Context 11 bits: 0in SCODE

Facility 4 bits: Indicates which group of status codes this belongs to.
Code 16 kits; Describes the error.

Figure 3-9.
Struciure of an HRESULT and an SCODE.

describes the source of the error, which might be in the marshaling of the
function call, in the interface function itself, or elsewhere. Any SCODE pre-
tixed with S_ carries information and means success, whereas an SCODE pre-
fixed with £_ means failure and carries a code describing the failure. Many
other SCODE symbols defined in the OLE 2 header files are prefixed with
other labels, such as OLE_, to identify the specific subtechnology generating
the error. OLE_, for example, means Compound Documents.

Value Meaning

S_OK Function succeeded. Also used for functions that
semantically return boolean information that succeeds
with a TRUE result.

S_FALSE Function that semantically returns boolean informarion

that succeeds with a FALSE result.
E_NOINTERFACE QueryInterface could not return a pointer to the requested

mterface.
E_NOTIMPL Member function contains no implementation.
E_FAIL Unspecified failure,
E_OUTOFMEMORY Function failed to allocate necessary memory.
Table 3-1.
Common SCODE values.

Because the HRESULT and SCODE types are not straight equivalents,
OLE 2 provides a few functions (implemented in version 2 as macros) that
provide conversions between an HRESULT and an SCODE, both of which
you'll use often in your own implementations. To create an HRESULT from
an SCODE, use the function ResultFromScode!SCODE). To dig an SCODE out
of an HRESULT, use the function GetScode(HRESULT), which is also a macro.

Page 126 of 221

THREE: ObjectsandInterfaces

Although this seems like a pain, especially on the receiving end of an
HRESULT, the most common case allows you to bypass these functions
altogether. If a function works completely, it can return the predefined
HRESULT called NOERROR, the equivalent of an HRESULT containing
S_OK. The code receiving the HRESULT can use one of two macros to deter-
mine the success or failure of the function {krstands for an HRESULT):

Macro Result

SUCCEEDED (i) Tests the high bit of the HRESULT and returns TRUE
if that bit is clear. This will return TRUE for any 5_ SCODE
and FALSE for any E_ SCODE.

FAILED (A7) Tests the high bit of the HRESULT and returns TRUE
if that bit is set. This will retarn TRUE for any E_ SCODE
and FALSE for any S_ SCODE.

Using SUCCEEDED and FAILED is preferred to comparing an
HRESULT to NOERROR directly because some codes, such as S_FALSFE or
STG_S_CONVERTED (see Chapter 5) mean that the function actually suc-
ceeded and is returning more information than that simple fact. A test such
as (NOERROR!=hr) will be TRUE when an HRESULT contains S_FALSE,
whereas the FAILED(hr} macro will be FALSE. When a function returns
either the S_OK code or S_FALSE code, you should compare the HRESULT
to NOERROR because a macro such as SUCCEEDED will return TRUE for
both codes. The GetScode function is necessary only when you want to find the
exact reason for failure instead of simply the fact that the function did fail.

Globally Unique Identifiers: GUIDs, 1IDs, CLSIDs

Every interface is defined by an interface identifier, or IID {(as in IID-
_TUnknown), which is a special case of a universally unique identifier, or
UUID. The universally unique identifier is also known as the globally unique
identifier, or GUID (pronounced goo-idy. GUIDs are 128-bit values created
with a DEFINE_GUID macro (see INITGUID.H in the OLE 2 SDK). Every
interface and object class uses a GUID for identification. As described in the
OLE 2 SDE, Microsoft will allocate one or more sets of 256 GUIDs for your
exclusive use when you request them, or if you have a network card in your
machine, you can run a tool named UUIDGEN.EXE that will provide you
with a set of 256 GUIDs based on the time of day, the date, and a unique num-
ber contained in your network card. The chance of this tool generating dupli-
cate GUIDs is about the same as two random atoms in the universe colliding
to form a small avocado. In other words, don’t worry about it.

109
Page 127 of 221

INSIDE OLE 2

All the code shown in this book uses GUIDs prefixed with 000211,

which are allocated to the author. Do not use these GUIDs for your
own products,

OLE 2 defines IIDs for every standard interface along with class iden-
tifiers (CLSID) for every standard object class. When we call any function
that asks for an 11D or a CLSID, we pass a reference to an instance of the GUID
structure that exists in our process space using the types REFIID or REF-
CLSID. When passing an 11D or a CLSID in C, you must use a pointer—that
is, pass &IID_"or & CLSID_*, where REFIID and REFCLSID are typed as
const pointers to 1D or CLSID. In C++, because a reference is a natural part of
the language, you drop the &. We will see more specifics about the definition
and use of GUIDs in Chapter 4 and beyond.

Finally, to compare two GUID, 11D, or CLSID values for equality, use the
IsEqualGUID, IsEqualllD, and IsEqualCLSID functions defined in COMP-
OBJ.H. There the latter two are simply more readable aliases for IsEqualGUID.
Ifyou are programming in C++, take a look at COMPOBJ.H, which defines an
overloaded “=" operator for the GUID type that, of course, applies equally
well to the 11D and CLSID types. In this book, I'll use the appropriate fs-
Equal. .. function to keep the code more usable for C programmers.

OLE 2 Interfaces and API Functions

110

OLE 2 defines no fewer than 62 interfaces, many of which it implements and
uses internally. Those of importance to applications are shown in Figure 3-10,
grouped by the technology area to which they apply. Remember that higher
technologies build on the lower technologies, as discussed in Chapter L.

This picture might look a little intimidating at first. Many interfaces are
shown, but applications have to implement only a handful. For the basic com-
pound document container applications we’ll see in Chapter 9, you need to
implement only IOleClientSite and TAdviseSink. Although you implement only
a few, you use many more, thereby contributing to the magnitude of Figure
3-10. In addition, some of the interfaces shown are useful only as base inter-
faces for others. Rarely, if ever, will you use or implement a simple base class
by itself.

Page 128 of 221

THREE: Objects and Interfaces

10lelnPlacel
10leinPlace&

* = Base interface

T = Apps use OLE
implementation

1 = Apps might provide
their own; otherwise,
use OLE
implementation

Automation

MOﬁik_ers_“

Figure 3-10.
Interesting interfaces in OLE 2 technologies.

111
Page 129 of 221

INSIDE OLE 2

Custom Interfaces

Although OLE 2 defines many standard interfaces, objects can define and
implement their own interfaces as long as their potential users are imple-
mented to be aware of those interfaces. To reiterate a point, the interfaces
that make up compound documents aim to eliminate the need for custom
interfaces in particular scenarios. By eliminating custom interfaces from an
object, you greatly reduce the amount of specialized code needed in a poten-
tial user of that object. The Polyline object we start developing in Chapter 4
begins its life with a custom interface, but throughout this book we’ll convert
many pieces of it to use standard Compound Document interfaces, leaving
truly custom functions in a custom interface.

The big restriction on custom interfaces is that unless you provide for
custom marshaling as well, you can use such interfaces only on objects imple-
mented in DLLs that do not require marshaling. Providing custom marshal-
ing is not a simple task, and I recommend that you wait until Microsoft
provides generic marshaling code so thatall youneed to do is provide it with a
description of your function parameters, their types, and the way in which
they are marshaled. If you absolutely must use the capability now, study the
information in the OLE 2 SDK, primarily that concerning the /Marshalinter-
face and related functions. Custom marshaling is not covered in this book.

Interfaces vs. APl Functions

112

In developing with OLE 2, you’ll soon notice that you use relatively few API
functions to achieve your goals. Instead, you call many interface functions.
Almost everything an OLE 2 application needs to do can be accomplished by
obtaining a pointer to an interface and calling its member functions. Inter-
faces, in fact, make up more of the so-called “Application Programming
Interface” for a user of an object and define the implementation for an object
itself instead of using more archaic mechanisms such as explicitly named ex-
ports, callback functions, and messages, There are only a few truly fundamen-
tal API functions in OLE 2, and most are concerned with creating objects or
manipulating things such as class IDs.

The majority of the hundred or so OLE 2 API functions are actually
“wrappers”’ for sequences of commonly used interface calls. Some are the
equivalent of calling Querynterface for a specific interface, calling a member
function with default parameters, and releasing that interface (Call-Use-
Release again). Such wrappers are provided to simplify application develop-
ment in most cases; their use is seldom required, but you can benefit from the

Page 130 of 221

THRE E: Objects and Interfaces

convenience. Even then, typical compound document containers or objects,
even with full in-place activation and drag-and-drop implementation, will
generally use about 20 of these API functions. Some you might use for very
specific reasons; others, although they exist, you probably will never use.

If you are familiar with the OLE 1 API, you'll find that many operations
that were API functions in OLE 1, such as OleSetHostNames, are replaced by an
interface call in OLE 2, such as I0leObject::SetHostNames. Many more should
become apparent as we implement features using OLE 2.

A major advantage of defining new functions as interfaces is that people
outside Microsoft can publish a new interface by providing an include file
that defines the interface and possibly by providing a marshaling DLL if they

| want that interface to be implementable in an EXE. This means no update of
the operating system is required to accommodate your functions, and you
and others can immediately start using those interfaces without waiting for
Microsoft to revise the system.

What Is a Windows Object? (Reprise)

A Windows Object is any object, in whatever form it manifests itself, that sup-
ports at least one interface, [Unknown. A Windows Object must be able to pro-
vide a separate function table for each interface it supports. The implementa-
tion of IUnknown members in each supported interface must be aware of the
entire object because it must be able to access all other interfaces in the object
and it must be able to affect the object’s reference count.

C++ multiple inheritance is a convenient way to provide multiple func-
tion tables for each interface as the compiler generates them automatically.
Because each implementation of a member function is already part of your
object class, each automatically has access to everything in the object.

However, because this book is intended to help both C and C++ pro-
grammers, I will take a different approach. The object class itself will simply
inherit from [Unknown and implement these functions to control the object
as a whole. Each interface supported by this object is implemented in a sepa-
rate C++ class that singly inherits from the interface it is implementing. These
“interface implementations” are instantiated with the objectand live as long
as the ohject lives.

The IUnknown members of these interface implementations always dele-
gate to some other IUnknown implementation, which in most cases is the
overall object’s IUnknown. Each interface implementation also holds a “back

113
Page 131 of 221

INSIDE OLE 2

pointer” to the object in which the implementations are contained so that
they are able to access information centrally stored in the object. In C++, this
generally requires that each interface implementation class be a friend of the
object class. It is also highly useful to maintain an interface-level reference
count for debugging.

You might still have one question: What about inheritance for Windows
Objects? Can one Windows Object inherit from another? The truth is that
there is no inheritance mechanism because inheritance is a way to achieve
code that you can reuse. The Windows Object mechanism for reuse is called
aggregation. But, alas, we are beginning to discuss the finer details of imple-
mentation. 5o with that, we can close this chapter.

Summary

114

An object in object-oriented terms is a self-contained unit of data and func-
tions to manipulate that data. A Windows Object is a special manifestation of
this definition that presents its functions as separate groups called interfaces.
Windows Objects differ from G++ objects in construction and use, but they
are more powerful than C++ objects because they can live anywhere on the
system and still be as usable to an application as if they were incorporated into
that application. The most fundamental question that forms a theme for this
book is how to obtain the first interface pointer for a variety of objects and
what you can do with that pointer after you obtain it.

The most basic functions of all interface pointers are concerned with
reference counting and with obtaining other interface pointers to the same
object. These functions are collected in an OLE 2 interface named [Unknown.
Later chapters in this book deal with more specific types of objects, their spe-
cial interfaces, how you obtain those interface pointers, and what you can do
with them.,

Implementations and users of objects written in C and C++ differ only
slightly. Calling a member function by means of a G pointer requires an extra
dereference through a pointer to an interface function table and passage of
an extra parameter to simulate G++’s this pointer. C objects must manually
construct the function tables for their interfaces. Although C++ is more con-
venient, it is not the required language of OLE 2.

A type of object called an enumerator provides functions through
IEnum interfaces to iterate over a list of elements. Because Windows Ohbjects
are portable across process boundaries, an enumerator object is used to pass
lists of information across those same boundaries as well as to pass the func-
tions to iterate over that list.

Page 132 of 221

-

THREE: Objects and Interfaces

OLE 2 interface members use a specific cdecl calling convention, and the
OLE 2 header files define a number of macros to isolate machine specifics
from the definitions of interfaces. Most interface members also return a type
called an HRESULT, which contains detailed error information.

OLE 2 defines a number of standard interfaces but allows those objects
to be implemented in DLLs to define and implement custom interfaces. It
you provide custom marshaling, a topic not covered in this bock, you can also
provide custom interfaces from objects implemented in EXEs as well.
Although OLE 2 defines many interfaces, applications need only worry about
a handful, depending on the features those applications want to implement.

Page 133 of1 125

1

C HAPTER F O UR

COMPONENT OBJECTS
(THE COMPONENT
OBJECT MODEL)

Arthur: Camelot!
Galahad: Camelot...
Launcelot: Camelot. ..
Patsy: It's only a model. ...
Arthur: Sh!
From Monty Python and the Holy Grail

Almost everyone who has tried to present all the material in OLE 2 to an
audience in a comprehensible way has tried to portray “The Component
Object Model” as a “‘feature.” I'm certainly guilty of trying this once, but
when I did, I had never seen so many glazed looks in my life. Those who didn’t
have glazed expressions scemed to be saying ““So what? What can you do with
a model?” To clear the air and to redeem myself somewhat, this chapter is
about using and implementing very general Windows Objects that involve the
fundamental API functions and interfaces specified in the Component Object
Model and implemented in COMPOBJ.DLL, referred to in this book as the
Component Object library.

The Component Object Model—the specification—is mostly about
interfaces, reference counting, and Querylnterface (thai is, the basic standard-
ization of a Windows Object). The Component Object library—the imple-
mentation—is a number of fundamental API functions, also specified in the
model, that provide for object creation and management, as well as code that
handles marshaling of interface function calls across process houndaries.
This implementation provides one answer to the ultimate question posed in

Page 135 of &1271

ll'

INSIDE CLE 2

118

Chapter 3 in the form of a “component object.”” A component object is a Win-
dows Object identified by a unique class identifier (CLSID) that associates an
object with a particular DLL or EXE in your file system. To obtain a pointer
to a component object, you pass a CLSID to one of two Component Object
library APT functions. The library in turn locates and loads the code imple-
menting that object, instantiates the object, and asks the object for an inter-
face pointer to return to you. Note that compound document objects are
merely special cases of the more general component object, so the discussion
here is relevant if you are interested in implementing a compound document
object server.

Before diving into the subject of using and implementing component
objects, we must first discuss a few requirements of all applications (EXEs)
that either use or implement objects. Applications (which define a task) must
initialize the Component Object library before using any other OLE 2 API
functions (from any OLE 2 DLL), and part of this initialization has to do with
memory management within the application’s task. Because both operations
are crucial and are used in all remaining sample applications in this book,
initialization and memory management will be the first two topics of this
chapter.

The code using a component object, which we can refer to as a component
user, calls the library only to obtain that first pointer to an object identified by
a CLSID. The overall impact on such a component user is minimal, as this
chapter will demonstrate. The component user need not be concerned about
where the code for the object is actually located or how the object is imple-
mented. The greater impact is on the implementation of a component object
that allows the library to locate, load, and instantiate it, based on a CLSID. To
accommodate such a capability, you must implement a standard structure
around the object—one structure for EXEs, another structure for DLLs. In
addition, you must store information in the registration database under your
object’s CLSID, which identifies the name of your object and where it lives.
The Component Object library uses this information to find your object and
connect it to its component user.

This chapter will demonstrate a simple object implemented in both a
DLL and an EXE, as well as a user of those objects. We will also implement
Cosmo’s Polyline object as a component object in a DLL that we’ll carry for-
ward through subsequent chapters as we add more OLE 2 features.

Page 136 of 221

F O UR: ComponentObjects

This chapter closes with a discussion about Windows Object reusability
through a mechanism called aggregation. One object, called the aggregate, in-
ternally creates instances of other objects, possibly exposing the interfaces of
those objects as an interface on the aggregate. Aggregation accomplishes
code reuse as C++ inheritance does but without the problems of inheritance.
Although the topic is appropriate to discuss here, we won’t actually put it to
use until later chapters. You might, however, find it a useful mechanism
around which to design reuse of code in your own applications.

So, to explain what the Component Object Model is, we really need to
analyze the model’s impact on applications in general, on the user of a com-
ponent object, and on the implementation of a component object. The speci-
fications of the Component Object Model provide the foundation for how

2 Windows will evolve from an API-based system to an object-oriented system, a
romantic walk through the lush gardens of Camelot. But that could be an-
other whole topic in itself, so we’ll stick to implementation details; it is, after
all, only a model.

Where the Wild Things Are
(with Apologies to Maurice Sendak)

There are component users and component objects, both of which can reside
in any piece of code, EXE and DLL alike. The system features provided in
OLE 2 are themselves both objects and users, all of which live in DLLs. The
implementation portion of the Component Object library is considered part
of the OLE 2 system features.

Whether an object user lives in an EXE or a DLL is of little impor-
tance—EXEs have a little more work, as described in the next section, be-
cause they define a task. In any case, regardless of where an object user lives,
we can illustrate the relationship between object and user, as shown in Figure
4-1 on the next page. Note that the word “server” in this figure applies to the
module that services an object, either an EXE or a DLL.

Because an EXE object requires marshaling support, performance is
typically slower than with a DLL object. But there is one major benefit to hav-
ing this marshaling support: A 16-bit DLL (and any objects it implements)
cannot be loaded into a 32-bit process space of the object user, nor cana 32-bit
DLL be loaded into a 16-bit process space. The marshaling code in COMP-
OBJ.DLL, however, knows how to pass parameters between 16-bit and 32-bit
processes, thereby allowing an object user in one space to communicate with
an object in another space.

119
Page 137 of 221

t

|r

INSIDE OLE 2

Marshaling
across boundary
e 2
Object in
Object
- LRPC LRPC p— sarver

DLL
boundary Process
A4 boundary
Object in
server DLL
Figure 4-1.

120

Component users (in DL Ls or EXEs) see other component objects either in
DL Ls or in other EXEs. The Component Object library lives between the wuser
and an EXE object to provide marshaling. Theve is no mediator between the
user and a DLL object.

The Component Object library is the agent responsible for getting at the
first object interface pointer in any series of communications between object
and user. It worries about making sure the right piece of object code is in
memory whenever something else wants to use that object. However, once the
initial object has been created and is handed to the user, the object and the
user can create other objects themselves and pass them to their partners. The
Component Object library is only there for marshaling and memory manage-
ment (if even necessary) and is otherwise out of the picture. The objects we
implement in this chapter require a certain structure and registration such
that any user can instantiate an object through the Component Object library
APL Because this API is used underneath much of the Compound Document
API (those functions prefixed with Ole, as in OleCreate), all compound docu-
ment ohjects are also objects that fit this model—they simply have a more
precisely defined behavior. However, the Component Object library is highly
useful for creating component software, and Windows itself is headed in this
direction: not to be a Compound Document system, but to be a Component
Object system.

Page 138 of 221

F O UR: Component Cbjects

Compound Document Terminology

A number of the terms generally used in discussions of compound
documents are used in this chapter to discuss much more generic
concepts. The following list provides the crucial compound docu-
ment terms and describes how they apply to the information in this
chapter:

Container A user of compound document objects. A container ex-
poses site objects to the compound document objects they contain,
but those site objects are not separately addressable components and
are passed to the contained object only at run-time. However, site
objects are Windows Objects.

Server (sometimes just object) An implementor of an object, ei-
ther a DLL or an EXE. A server may implement a component object
or a compound document object and expose both through identical
structures usable by the Component Object library.

In-Process Server or DLL Server A server of objects specifically im-
plemented in a DLL.

Server Application or EXE Server A server of objects specifically
implemented in an EXE. Sometimes called an object application.

Object Handler A lightweight DLL server containing a partial im-
plementation of an object that is fully implemented elsewhere in an
EXE. Handlers are not expected to implement complete objects (es-
pecially not editing capabiliries) and are intended for redistribution.
Structurally they are identical to DLL servers.

The New Application for Windows Objects

Any and all applications that plan to use or implement Windows Objects {not
just component objects) must ensure that the Component Object library is
properly initialized before attempting to use other OLE 2 API functions. In
addition, applications running under Windows 3.1 that intend to use objects
implemented in other applications must make special considerations for
Lightweight Remote Procedure Call (LRPC) use of PostMessage. An object or

121
Page 139 of 221

INSIDE OLE 2

an object user in a DLL need not be concerned with any of these require-
ments that apply only to the application that defines a task. For applications
(EXEs), here are the steps for initialization:

1. Call the Windows API SetMessageQuene(96} to set your application’s
message queue size to 96, if possible. This is the recommended size
for LRPC handling. This function is not necessary in Win32 because
Win32 message queues size dynamically.

2. Verify the library build version by calling CoBuildVersion or
OleBuildVersion.

3. Call Colnitialize or OleInitialize on startup.

4. Call CoUninitialze or OleUninitialize when shutting down to allow the
DLL objects to be freed if and only if step 3 worked.

NOTE: CoBuildVersion, Colnitialize, and CoUninitialize have counterparts
with Ole prefixes: OleBuildVersion, OleInitialize, and OlelUnintialize. The Co. ..
functions control your access to Component Object library functions. If you
use any clipboard, drag-and-drop, Compound Document, or Automation re-
lated API functions, you must use the Ole... functions instead of their Co. ..
counterparts. The Ole... versions simply perform a few more specific opera-
tions and call the Co... versions. Compound Document applications, con-
tainers included, always use the Ole. .. versions.

Absolutely all of the sample applications in this book that compile EXEs
include these four steps. Most of the samples in this chapter, as well as those in
Chapters 5 and 6, use the Co. .. variants. All samples in Chapter 7 and beyond
will use the Ole. .. functions because those samples will in turn depend on the
“extras” provided by the Ole... functions. The first sample in the later sec-
tion “Memory Management and Allocator Objects” will demonstrate each of
these steps. In the meantime, let’s look at each step in detail and examine why
each is necessary.

Enlarge the Message Queue

122

OLE 2's LRPC implementation works on top of the Windows API function
PostMessage. In a nutshell, when the user of an object in another application
calls one of the object’s member functions, the function generates an LRPC
call, which in actuality is a PostMessage from the one application process space
into the other. To handle all the possible PostMessage traffic, Microsoft

Page 140 of 221

.

FOUR: ComponentObjects

recommends that all OLE 2 applications with even the slightest chance of
engaging in LRPG calls call SetMessageQueue set to 96 on startup, if possible.
Something like the following should, in fact, be your very first step inside Win-
Main to ensure that no messages yet exist in your queue because SetMessage-
Quene will destroy anything already there:

int PASCAL WinMain(HINSTANCE hlnst, HINSTANCE hinstPrev
. LPSTR pszimdLine, int nCmdShow)

{
[variables, but NO codel
int cMsg=96;

f#ifndef WIN3Z
//Enlarge the queue as large as we can starting from 96
while {!SetMessageQueue(cMsg) && {(cMsg-=8));

fendif

[Initialization code, message lcop, ete.]
1

If you don’t enlarge your message queue sufficiently, the Component Object
library could reject some LRPC calls when your queue is full. Enlarging your
message queue provides sufficient space for LRPC traffic.

Verify the Library Build Version

Before using any other Component Object API (Co.. .) function, an applica-
tion should call CoBuildVersion{void) to get major and minor build numbers in
areturned DWORD. If you are planning to go on to use OLE 2's data transfer,
Compound Document, or Automation technologies, you must instead call
OleBuildVersion(void), which returns a similar DWORD. The high-order word
of the return value is a major version number, and the low-order word is the
minor version number.

An application can run against only one major version of the libraries,
but it can run against any minor version. The version numbers you can run
against are compiled into your application as the symbols rmm (major) and
rup (minor) defined in OLE2VER.H. (There is also a rmj symbol, which
might look like the “major”” number but is unfortunately not used this way.)
Note that these numbers are not product release numbers— that is, in OLE 2
these are not 2and 0. Do not depend on any interpretation of these numbers.
With these numbers, you must compare your rmm to the major version of the
libraries, and if they do not match, you must fail loading your application as
shown on the next page.

123
Page 141 of 221

-

INSIDE OLE 2

#include <compobj.h> //For 0le... functions, use OLEZ.H
#include <cleZver.h>

DWORD dwVer;
dwVer=CoBuildversien(); //0r 0leBuildVersion

if {rmm==HIWORD(dwVer})
{

//Major versions match.

if (rup <= LOWORD{dwVer)}

{
//Library is newer than or as old as theapp; use rormally.

}

elise

IE]
App was written for newer libraries. Disable features
* that depend on API or bug fixes in newer Tibraries
+ gr simply fafl altogether.
®/
}
1

else
//Major version mismatch; fail loading application.

Minor version numbers are useful to applications that want to know whether
the libraries they've loaded contain a particular function or have a specific
bug fix. Let's say minor version 12 of OLE 2 added a function that improves
performance over minor version 11. If T load the minor version 11 libraries, [
cannot attempt to call that version 12 function. If, however, I find that I am
running against minor version 12, I can take advantage of what’s available.

Call Coinitialize or Olelnitialize

On startup, an application must call Colnitialize or Olelnitialize before calling
any other function in either of their respective libraries. You must use
Olelnitialize for any feature other than component objects and compound
files, including all data transfer, drag-and-drop, compound documents, and
even Automation. Component Object library and Compound File APT func-
tions can be used after only Colnitialize:

124 Page 142 of 221

F O U R: ComponentObjects

if (FAILED(CclInitialize(NULL)}) //0r Qlelnitialize
[Fail Toading the application].

m_fInitialized=TRUE;

Both functions identically take a pointer to an allocator object that supports the
IMalloc interface. Through this object, all other parts of this application and
the DLLs that live in this application’s task can allocate task local memory (as
opposed to shared memory). If NULL is passed, as shown in the preceding
example, OLE uses a default allocator in COMPOBJ.DLL. Any code in this
application or in a DLL loaded into this task can call the CoGetMalloc API
function to retrieve an IMalloc pointer to this same allocator. We'll see this in
more detail in the section “Memory Management and Allocator Objects.”

Any code within the same task can call Colnitialize multiple times; in
such circumstances, the IMalloc passed to the first Colnitialize wins. This
allows any code (usually that in a DLL) to call Colnitialize to ensure that it can
use the Component Object library even if the application that loaded the
DLL did not make the call.!

When Colnitializeis called more than once in the same task, itwill return
an HRESULT with S_FALSE—a code that does not mean failure but that
means nothing happened. As we have seen, the FAILED () macro will return
FALSE for S_FALSE just as it will for S_OK, so the preceding code fragment
is valid for all uses of Colnitialize.

An application must remember whether Colnitialize or OleInitialize
worked (in a variable such as m_fInitialized) so that it knows whether to call
CoUninitialize or OleUninitialize when it shuts down. In other words, every
.. Uninitialize call must be matched one-to-one with an ... [nitialize call.

Call CoUninitialize or OleUninitialize

After an application has finished with the libraries, it must call CoUninitialize
i it previously called Cofnitialize, or it must call OleUninitialize if it previously
called Olelnitialize. Neither function takes any parameters. You should re-
member whether the ... Initialize call succeeded and call ... Uninitialize only if
it did—that is, balance the calls as you would balance GlobalAlloc and
GlobalFree.

1. Microsoft recommends that DLLs always pass NULL to Colnitialize. Note also that because your
DILL’s LibMain is called before the application’s WinMain, Colnitialize will never have been
called by that time. It's best to defer any dependencies on the task atlocator until after LibMain,
if possible.

Page 143 of 12231

INSIDE OLE 2

Internally, OleUninitialize cleans up the specifics from OQlefnitialize and
calls ColUninitialize. This latter function will call another CoFreeAliLibraries,
which forcibly and unconditionally unloads all object DLLs that were loaded
on behalf of the application. That's why you must be careful when you call
CoUninitialize. You might have use for CoFreeAllLibraries yourself if your appli-
cation’s debugging version has the ability to suddenly terminate and unload
{say, on an assert failure), which might not normally call CoUninitialize.

Memory Management and Allocator Objects

126

Up to now, the only system-supported memory management functions have
been the various Local... and Global... Windows API functions (LocalAlloc,
LocalFree, GlobalAlloe, GlobalFree, and so on). OLE 2 introduces a new object-
oriented technique to deal with memory management through the use of
allocator objects. Within any given task—that is, within a process space in which
a single EXE is running—there is a single task allocator object and a single
shared allocator object. The application can implement the task allocator, or
it can use the default task allocator implemented in the Component Object
library. The shared allocator is not replaceable —the implementation in the
Component Object library is always used to ensure that memory is truly
shareable.

You specity the task allocator through the only parameter to Colnitialize
or Olefnitialize. This parameter is an IMalloc pointer to whatever allocator ob-
ject defined memory management in the task. A NULL pointer means ‘‘use
the default task allocator,” whereas a non-NULL pointer means “use this
application-implemented task allocator.”

An allocator object implements the /Mallocinterface, defined in COMP-
OBJ.H. The IMatlocinterface describes most of the same functions that Win-
dows provides for local and global memory, such as LocalAlloc, LocalFree, and
LocalCompact. For specific details on each member function, see the OLE 2
Programmer’s Reference, but it’s fairly easy to guess at how to use each function
in this interface based on their signatures alone. (/Unknown members have
been removed from the following listing for brevity; you will see them ex-
plicitly in the include file.)

DECLARE_INTERFACE_(IMalloc, IUnknown)
{
STDMETHOD_(void FAR*, Alloc) (THIS_ ULONG cb) PURE:
STDMETHCD_(void FAR=#, Realloc) (THIS_ void FAR =* pv, ULONG ch} PURE;

Page 144 of 221

F O UR: ComponentiObjects

STOMETHOD_(void, Free) (THIS_ void FAR = pv) PURE;
STOMETHOD_(ULONG, GetiSize) (THIS_ void FAR + pv) PURE:
STOMETHOD_(int, DidAlloc) (THIS_ void FAR = pv) PURE:
STOMETHOD_{void, HeapMinimize) (THIS) PURE;

I

typedef IMalioc FAR * LPMALLOC;

At any time, any piece of code in the application or any DLL loaded into this
task {including the OLE 2 libraries) can and will call CoGetMallocto obtain an
IMalloc pointer to the task allocator object. In other words, a task allocatorisa
Windows Object, and you use the API function CoGetMalloc to obtain the first
interface pointer. In this case, your application might be the object imple-
mentor and OLE 2 might be the object user. It works both ways.

All the OLE 2 libraries always use the task allocator for all non-shared
memory needs. Some OLE 2 functions will allocate memory using the task
allocator then pass a pointer to that memory to your application where you
become responsible to free it. In such cases you must free the memory when
you no longer need it by calling CoGetMalloc to obtain the task allocator’s /M-
alloc pointer, pass the memory pointer to IMalloc::Free, and finish up by call-
ing IMalloc::Release.

The first parameter to CoGetMalloc is either MEMCTX_TASK or
MEMCT X_SHARED, depending on which allocator object you want. The
second parameter is a pointer to an LPMALLOC variable that receives the
IMalloc pointer.

The default task allocator is based on multiple local heap management
(or far local heaps). This allocator allows you to allocate more than 64 KB be-
cause there are multiple heaps, but each allocation is as efficient as a local
allocation because you use only one selector per heap instead of one per allo-
cation (as GlobalAlloc does). The only limitation is that any single allocation
must be smaller than 64 KB. The shared allocator provides memory that dif-
ferent processes can independently access and is built on the same type of
multiple local heap management as the default task allocator. Likewise, all
shared allocations must be 64 KB or smaller.

The Malloc program (CHAPO4AMALLOC), shown in Listing 4-1, ex-
ercises the functions in both the standard task allocator (it does not imple-
ment its own allocator) and the shared allocator. It is an application that is
most interesting in a debugger, and it does indicate success or failure of its
operations in message boxes. (Yes, a most advanced user interface.)

Page 145 of 221

INSIDE OLE 2

MALLOCH
[
. TMalloc Demonstration Chapter 4

» Copyright (c)1993 Microsoft Corporafion, All Rights Reserved
Ly

Jifndef _MALLOC_H_
fidefine _MALLOGC_H.

#include <BOOK1632.H>

//Menu Resocurce 1D and Commands

f#dafine IDR_MENU 1

fidefine IDM_IMALLOCCOGETMALLOCTASK 106
ffdefine 1DM_IMALLOCCOGETMALLOCSHARED 181
ftdefine IOM_IMALLOCRELEASE 192
#define IDM_IMALLOCALLOC 103
#define IDM_IMALLOCFREE ig4
#define IDM_IMALLOCREALLOC 185
fidefine TDM_IMALIQCGETSIZE 106
fidefine IDM_TMALLOCOIDALLOC 167
fdefine TDM_IMALLOCHEAPMINIMIZE 128
#dafine TOM_IMALLOCEXIT 169

//MALLOC.CPP
LRESULT FAR PASCAL EXPORT MallockndProc(HWND, UINT, WPARAM
. LPARAM};

s#define CALLOCS 1@

/%
App1ication-defined classes and types.
Ly

class _ _far CAppVars
{
friend LRESULT FAR PASCAL CXPORT MallocWndPrec (HWND, UINT
, WPARAM, LPARAM):

protected:
HINSTANCE m_hInst; //WinMain parameters
HINSTANGCE m_hInstPrev;
UINT m_nCmdShow;

Listing 4-1. {continued)
The IMalloc program, which exercises task and shared allocator vbjects.

128 Page 146 of 221

FOUR: ComponentCbjects

Listing 4-1. continued

HWND m_hwnd; //Main window handle

LPMALLOC m_pIMalloc; //iMalloc interface

BOOL m_fInitialized; //Did Colnitialize work?

ULONG m_rgcbfCALLOCS]; //Sizes te allocate

LPYCID m_rgpv[CALLOCS]: //Allocated pointers
public:

CAppVars(HINSTANCE, HINSTANCE, UINT);

~CAppVars(void);

BOOL FInit(void);

void FreeAllocations{BOCL);:
i

typedef CAppVars FAR =LPAPPYARS;

fidefine CBWNDEXTRA sizeof{LONG)
f#define MALLOCWL_STRUCTURE 4]

flendif //_MALLOC_H_

MALLOC.CPP

/ #

= IMatloc Demonstration Chapter 4
+ Copyright (c)1993 Microsoft Corporation, A1l Rights Reserved
#f

#include <windows.h>
#include <ole?.h>
#include <injtguid.h>
#include <olaZver.h>
#include "malloc.h"

int PASCAL WinMain{HINSTANCE hinst, HINSTAMCE hlnstfrev
, LPSF¥R pszCmdLine, int nCmdShow)

i

MSG msg;
LPAPPVARS pAV;

int cMsg=96;

feontined)

Page 147 of 221

™

INSIDE OLE 2

Listing 4-1. continued

#ifndef WIN3Z
whije (!SetMessageQueue(cMsg) &k {(cMsg-=8));
ffendif

pA¥=new CApp¥ars(hlnst, hInstPrev, nCmdShow);

if (NULL==pAV)
return -1;

if (pAV->FInit(})

{

while {(GetMessage(&msg, NULL, 6.2))
{
TranslateMessage{&msqg):
CispatchMessage{&msgj:
}

}

delete pAV;
return msg.wParam;
1

LRESULT FAR PASCAL EXPORT MallockndProc{HWND hWnd.

, WPARAM wParam, LPARAM 1Param)

{

|.PAPPVARS DAV

LeVOID nv:

ULONG chs

UTNT is

BOOL fResult=TRUE;
HRESULT hr;

UINT 1iMsg

pAV=(LPAPPYARS)GelWindowLong(hWnd, MALLOCWL_STRUCTURE);

switch (iMsg)
{
case WM_NCCREATE:

pAV=(LPAPPYARS) ((LONG) ((LPCREATESTRUCT)TParam}

-»1pCreateParams);

SetWindowLong(hWnd, MALLOCWL_STRUCTURE, (LONGIpAV}:
return (DefWindowProc(hWnd, iMsg, wParam, TParam));

case WM_DESTROY:
PestQuitMessage(d):
break;

130

(eontinued)

Page 148 of 221

F O UR: Component Objects

Listing 4-1. continued

case WM_COMMAND:
switch (LOWORD(wParam))
i
case IDM_IMALLOCCOGETMALLOCTASK:
pAYV->FreeAllocations({TRUE);

hr=CoGetMalloc(MEMCTY_TASK, &pAV->m_pIMalloc):
fResult=SUCCEEDED(hr);

MessagaBox(hWnd, ({fResult)
? "CoGetMalloc({task) succeeded.”
"CoGetMalloc{task) failed.™)
, "Malloc"™, MBLOK);

break;

case IDM_IMALLOCCOGETMALLOCSHARED:
pAV-=>FreeAlTocations (TRUE) ;
hr=CoGetMalloc(MEMCTX_SHARED, &pAV->m_pIMalloc);
fResutt=SUCCEEDED{hr) ;

MessageBox{hWnd, ({fResult)
? "CoGetMalloc(shared) succeeded.”
: "CoBetMalioc(shared) failed.")
. "Mailoc™, MB_OK}:

hreak;

case [0OM_IMALLOCRELEASE:
pAV->FreeAllocations (TRUE);
break:

case IDM_IMALLQCALLOC:
if (NULL==pAV->m_pIMalloc)
break:

pAV->FreeAllocations{FALSE);

far (i=@; 7 < CALLOCS: i++}

{
LPBYTE pb
ULONG iByte;

ch=pAV->m_racb[i];
pAV->m_rgpv[il=pAV->m_piMalloc->Alloe(ch);

(comtinued)

Page 149 of 221

INSIDE OLE 2

Listing 4-1. continued

//Fill the memory with letters.
pb=(LPBYTE)pAV->m_rgpv[il;

if (NULL!=ph)
1
for (iByte=0; iByte < cb; iBytett)
xphHt=("a’+i);
1

fResult &= (NULLl=pAV->m_rgpv[il);
1

MessageBox(hWnd, ((fResult?}
? "iMalloc::Alloc succeeded.”
: "IMalloc::Alloc failed.™}
, "Mallee™, MB_OK);

break;

case IDM_IMALLOCFREE:
pAY->FreeAllocations(FALSE):

MessageBox(hWnd, "IMalloc::Free finisned.™
, "Malloe™, MB_OK);
break;

case I[DM_TMALLOCREALLOC:
if (NULL==pAV->m_pIMalioc)
break;

for {(i=8; i < CALLOCS; i++}

{
LPBYTE pb;
ULONG iByte;

pAV->m_rgcb[i1+=128;

//01d memery is not freed if Realloc fails.

pv=pAv->m_pIMalloc->Realloc(pAV->m_rapv[i]
. pAV->m_rgcb[i]1):

if (NULL!=pv)
{

{continued)

L Page 150 of 221

F O UR: CecmponentObjects

Listing 4-1. continued

pAV->m_rgpv[il=pv:

//Fi1l the new memory

//with something we can see.
pb=(LPBYTE}pAV->m_ragpv(il:
ch=pAV-rm_rgcbfil;

1f (HULL!=ph)
{
for (iByte=cb-128; iByte
< ¢b; iBytet+)
{
“pb+={"a’+i);
}

1
glse
fResult=FALSE;
}

MessageBox (hWnd, C((fResult)
? "IMalloc::Realloc succeeded."
: "TMallec::Realloc failed.™)
. "Malloc", MB_OK):

break;

case IDM_IMALLOCGETSIZE:
if {NULL==pAV->m_pIMailac}
break:

for (i=8; 1 < CALLOCS; i++)

{
ch=pAVY->m_pIMalloc->GetSize(pAV->m_rgpv[ill);

e

= We test that the size 15 *=af least=
= what we wanted.

/>‘<

fResult &= (pAV->m_rgcblil <= ch);

1

MessageBox(hWnd, ((fResult)
? "IMalloc::GetSize matched.”

{continued}

133
Page 151 of 221

INSIDE OLE 2

Listing 4-1. continued

« "IMalloc::GetSize mismatch.”), "Malltoc™
, MB_OK):

break;

case IDM_IMALLOCDIDALLOC:
if (NULL==pAY->m_pIMalloc)
break;

X
+ DidAlloc may return -1 if it does not know if
it actuaily allocated something. In that
¢« case, we just biindly & in a -1 with no effect.
w/
for (i=8; i < CALLOCS; i++)
{
fResult &= pAV-»m_pIMalloc->DidAlloc(pAV
=> m_rgpv[il);
}

MessageBox{hWnd, ((fResult}
? "IMalloc::DidAlloc is TRUE.™
;: "IMalloc::DidAlloc is FALSE.™)
, "Mallec™, MB_OK);

break;

case IDM_IMALLOCHEAPMINIMIZE:
if (NULL!=pAV->m_pIMalloc)
pAY->m_pIMalioc->HeapMinimize();

MessageBox{hWnd
, "IMalloc::HeapMinimize finished.”
, "Malloc™, MB_OK):

break;

case IDM_IMALLOCEXIT:
PostMessage(hWnd, WM_CLOSE, 9, 6L):
break:
}
break:

default:
return (DefWindowProc{hWnd, iMsg, wParam, 1Param));

(continued)

194 Page 152 of 221

FOUR: ComponentObjects

Listing 4-1. cantinued

return @L;

1

CAppVars::CAppVars(HINSTANCE hInst, HINSTANCE hlnstPrev
» UINT nCmdShow)

{

UINT il 3

ULONG ch;

m_hInst =hinst;
m_hlnstPreyv =hinstPrev;
m_nCmdShow =n{mdShow;
m_hind =NULL;
m_piMalloc =NULL;

m_fInitialized=FALSE;

/7168 is arbitrary. IMalloc can handle Targer.
ch=100;

far (i=@; 1t < CALLOCS: 1++)
({
m_rgcb[il=ch;
m_rgpv[iJI=NULL;
ch#=2:
1

return;

}

CAppVars::~CAppVarsi{void)
{
FreeAllocations(TRUE};

if (m_flnitialized)
Colninitialize{);

return;
}

30CL CAppVars::FInit(void)

{
WNDCLASS WC;
DWORD dwVer;

//Make sure COMPOBJ.DLL is the right version
dwVer=CoBuiidVersion{):

{continued)
135
Page 153 of 221

INSIDE OLE 2

Listing 4-1.

continued

if (rmm!=HIWCRD{dwVer))
return FALSE:

//Call Colnitialize se that we can call other Co...

functions

if (FAILED(Colnitialize(NULL))}
return FALSE;

m_finitialized=TRUE:

if (im_

{

WC,
W
WC .
.chWndExtra

we

WC.
wC.
WeC.
WC.
wce.
We.

if

1

hinstPrev)

style
IpfnUndProc
chbClsExtra

hlnstance
hicon

hCursor
hbrBackground
1pszMenulName
1pszClassName

CS_HREDRAW | CS_VREDRAW:
MailocWndProc:

8;

CBWNDEXTRA;

m_hlnst;

LoadIcen(m_hinst, "Icon"};
loadCursor{NULL, IDC_ARROW):

(HBRUSH) (COLOR_WINDOW + 13;
MAKEINTRESOURCE (TDR_MENU) ;
"MALLOC™;

(IRegisterClass(&wc))

return FALSE:

m_hWnd=CreateWindow{"MALLOC", "IMalloc Object Demo”
, WS_OVERLAPPEDWINDOW, 35, 35, 358, 258, NULL, NULL

, m_hInst, this);

if (NULL==m_hWnd)
return FALSE;

ShowWindow{m_hWrd, m_nCmdShow):

UpdateWindow(m_hWnd);

return TRUE;

b

void CAppVars::FreeAllocations{BOGL fRelease)

{
UINT

1% (NULL==m_pIMalloc)

i;

return;

136

{continuerd)

Page 154 of 221

F O UR: ComponentObjects

Listing 4-1. continued

for (1=0; i < CALLOCS; i++)
{
if (NULL!=m_rgpvEil)
m_pIMalloc->Free(m_rapv[il);

m_rgpv[iJ=NULL;
}

if {fRelease)
{
m_plMalloc->Release();
m_plMalloc=NULL;
}

return;

¥

Using the Heapwalker application in the Windows SDK, we can see
where OLE 2 allocates each type of memory—task and shared—using its
own allocator objects. As shown in Figure 4-2, task memory is allocated from
multiple heaps belonging to the MALLOC application task.

=] MALLOC Heap iLocal Walk]
{ Heap Sor Add!

Eile

Fazed
Fized
Fized
Fized

400 Fized

800 Fized

1600 Fizmed
3200 Fized
(400 Fimed
12800 Fized
25600 Fized
3012 Free

ALITWESS iadiieLt
00068EA0 DOSE
00056200 0DAB
CODEDZR 0107
0003ECE0 010F
BOGS7EFED 0176
00020360 O1B7
DOD20ESD O1BRE
O004EFCO OL4E
80609020 1276
0006F0ED 126E
0DOD3FA20 12D6
00091600 1246 ; s Frivate
BOEE000 1236 Frivate

T =)

Walk Sort Object Alloc Add!
S{7E

00055440 1556 3

00056040 155E 672

O00RSAED 0B2E 192

0D01BA40 128F 512

00DLAFOD 1657 1152 :

B0574A280 163E 2176 EECREEELEEELEEEE]

0001Bagn 1817 32 P1 £l &1 hl aasszoamsaaazasa

,T'I:" == r——y #——lcl 61 61 hl aas8RAAAAESAX333
e - 61 61 61 61 amasasaaa’zaassas

6L E1 B1l 61 acaasaEAa3RE53838
61 61 61 6l adaaszaadsasdaAs
62 62 &2 62 &aaaan bbbbbbbhb
£2 62 62 62 bbbbbbbbbbbbbbbb |
62 62 62 62 bbg@pggggggpbbhb |+

R Woum

Figure 4-2.
Using Local Walk on the heap shows allocated blocks. The blocks are filled
with letters to show their location in a hexadecimal dump.

137
Page 155 of 221

—

INSIDE OLE 2

When this memory is freed, the heaps are not necessarily freed, but the
space inside those heaps are freed, as shown in Figure 4-3,

Shared memory is allocated on behalf of COMPOB].DLL, as shown in
Figure 4-4, again using the same heap management technique that the stan-
dard task allocator uses. Freeing memory generates the same results for the
task allocator, as shown in Figure 4-3,

MALLOC Heap (Local Walk]

=] HeapWalker- [Main H}
File Walk Sont Object Alloc Add! E
ADERESS HAATLE =E- LOC) FLG HE 44 Fixed
| 0QUEBELD 9 16 Fired
0001EDZ0 54148 Free
O00U1ECED
g9:11D20
A0557FEQ
Qopzn3ea
0D020EB90
8073CB40
80609020
00gs3e0n
OD0ED4AD
80ska0
000326

HANDLE ~ SiZE Flk

8073CFED
80711480
807114ED
0001BA40
0001AFQ0
80544280
0001B380 1617 32 Pi ICC CC CC CC
;II Saa szne It - = oF &8 6 o

Figure 4;3.
Using Local Walk on the heap, after freeing the memory, shows free space in
the heaps. Freed blocks are filled with OxCC.

Component Objects from Class Identifiers:
A Component User

138

Let's suppose I'm an application and I know there exists a Windows Object
named Koala (which 1s, in fact, the name of an object we'll implement in the
later section “‘Implementing a Component Object and Server”). I can iden-
tify the Koala object using the CLSID *00021162-0000-0000-C000-
000000000046, (Whoa! That’s a long name there! Remember that CLSIDs
are 128 bits: This string is the hexadecimal representation of those bits.)
Koalas are nice; they come with an include file that defines a CLSID _Koala
constant. Let's say I also know that the Koala object supports the interface

Page 156 of 221

Component Objects

COMPOR) Henp Locsl Walk]

poos78ul
00064460
N0064CA0
00028700
DOD2ECAD
000%20C0
8078B140
0G0R3DAD |
80595200
00C1EC4D
80787300
50712140
30794040

1

807113E0
0001D8ED
BB713040 D
00021500 F F
000259C0 F
806E9040 D

AENESEN. piha

0 00 00 bL] ; +

61 bl 61 61 61 p , aamaacazaaas ||
£1 61 B1 61 61 =zazaaaalalsaasad =
— e 61 61 61 bl &1 =zzmasaaAAA2EER23 !
61 Bl 51 61 61 accasasassaasssd |
61 61 61 61 b1 aAacaasaazaanxssa
Bl 61 61 Bl 61 a=a@massa3A3A33EER
03 62 62 62 £2 asaazaasad . .bhbb
£2 62 62 62 £2 bbbbbbbobbbbbbbb
62 £2 62 62 &2 bbbhbbbbbbbbbbbbb {4
62 67 62 62 62 bbbbbbbbbbbbbbbb |+

D) R

Figure 4-4.
Using Local Walk on the heap shows allocated blocks exacily as the task
allocator does, but owned by COMPOBJ.DLL instead of by the application.

IPersist, which is a very simple interface capable only of returning the CLSID
of its object. Given this knowledge, how do I create a Koala object with this
CLSID and obtain a pointer to its [Persist interface?

This question should ring a harmonic with the ultimate question posed
in Chapter 3, so let’s look at the answer. For the benefit of those readers who
will be writing compound object container applications, I want to mention
that the API functions and interface functions that we use to instantiate a
component object are used within more complex API functions that we’ll use
in Chapter 9 to instantiate a compound document object. Again, compound
document objects are more refined-and specialized component objects; what
we discuss here is simply the logical equivalent of calling the G++ new opera-
tor. If you are in a hurry to implement a compound document container, you
can skip to the next chapter after you finish reading this section.

The OBJUSER program, in Listing 4-2, implements a component user
of the Koala component objects that we'll implement in the next section.
| Koala implements the IPersist interface only, but by virtue of implementing
one interface, it also implements [Unknown: TPersist includes all fUnknoun
member functions plus one other named GetClassID, which returns (what
else?) the CLSID of the object. IPersist is a base interface in OLE 2 for a

139
Page 157 of 221

-

INSIDE OLE 2

B

number of other interfaces, and rarely is it used by itself. I chose [Persist for
this demonstration because it has standard marshaling support already in
COMPOB].DLL. This built-in support means we can implement marshaling
in both DLLs and EXEs without any extra work. I also did not use another
OLE 2 interface because most other interfaces have more member functions
we would have to implement and would have raised more questions than
we're prepared to-deal with now.

OBJUSER.H

/%

x* Kpala Object User Chapter 4

e

+ Definitions and structures.

+ Copyright (¢)1993 Microsoft Corperation, A1l Righis Reserved

*/

i fndef
#define

_OBJUSER_H_
_0BJUSER_H_

#include <bookguid.h>

//Menu Resource ID and Commands

jidefine

fidefine
ftdefine
Jfdefine
fdefine
#define
fdefine
ffdefine

IDR_MENU

IDM_OBJECTUSEDLL
IDM_OBJECTUSEEXE
IDOM_OBJECTCREATECOGCO
IGM_OBJECTCREATECOCT
IDM_OBJECTRELEASE
IBM_OBJECTGETCLASSID
[DM_OBJECTEXIT

//0BJUSER.CPP
LRESULT FAR PASCAL EXPORT ObjectUserWndProc(HWND, UINT, WPARAM

. LPARAM};

class

{

far CAppVars

1

180
1g1
182
103
lo4
195
186

friend LRESULT FAR PASCAL EXPORT ObjectUserWndProc (HWND

Listing 4-2.

, UINT, WPARAM, LPARAM};

The OBJUSER program, which uses Koala objects.

140

(continued)

Page 158 of 221

S

F O UR: CompanentObjects

Listing 4-2. continued

protected:
HINSTANCE m_hinst; //WinMain parameters
HINSTANCE m_hInstPrev:
UINT m_nimdShow;
HWND m_hWnd; //Main window handle
BOGL m_fEXE; //Menu selection
LPPERSIST m_plIPersist; //1Persist interface
BOGL m_finitialized; //Did Colnitialize work?
public:
CAppVars(HINSTANCE, HINSTANCE, UINT);
~CAppVars{void);:

BOBL FiInit(void);
};

typedef CAppVars FAR *=LPAPPVARS;

{fdefine CBWNBEXTRA sizeof({LONG)
f#define OBJUSERWL._STRUCTURE 7}

flendif //_OBJUSER_H_

OBJUSER.CPP

Ix
+ Koala Object User Chapter 4
« Copyright {c)1993 Microsoft Corporation, All Rights Reserved
wf

#define INITGUIDS
#include <windows.h>
#include <ole2.h>
f#finclude <olelver.h>
#include "ohjuser.h™

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hinstPrev
LPSTR pszCmdLine, int nCmdShow)

{
MSG msg;
LPAPPVARS pAV;

(comtinued)

141
Page 159 of 221

INSIDE OLE 2

Listing 4-2. continued

int cMsg=96;
#ifndef WIN3Z
//Enlarge the gqueue as large as we can starting from 96

while (lSetMessagelueue(cMsg) B& (cMsg-=8));
fendif

pAV=new CAppVars(hInst, hlnstPrev, nCmdShow);

if (NULL==pAV)
return -1;

if (pAV->FInit())

{
while (GetMessage(&msg, NULL, 8,8 })
{
TranslateMessaga(&msg):
DispatchMessage{&msg);
}
]
delete pAV:
raturn msg.wParam;

}

LRESULT FAR PASCAL EXPORT ObjectiserWndProc(HWND hWnd, UINT iMsg
, WPARAM wParam, LPARAM TPzram)

{

HRESULT hr;

LPAPPVARS pAV;

CLSID clsib;
LPCLASSFACTORY plIClassfactory;
DWORD dwCisCtx;

pAV=(LPAPPVARS)GatWindowLong{hWnd, OBJUSERWL_STRUCTURE):

switch (iMsg)
{
case WM_NCCREATE:
pAV=(LPAPPVARS) ((LONG) (CLPCREATESTRUCT)1Param)
->1pCreateParams);

SetWindowLong(hWnd, OBJUSERWL_STRUCTURE, (LONG)pAV):
return (PefWindowProc{nknd, iMsg, wParam, 1Param));

{econtinued)

142
Page 160 of 221

F O U R: Component Objects

Listing 4-2. continued

case WM_DESTROY:
PostQuitMessage(8);
break;

case WM_COMMAND:
switch (LOWORD(wParam))
{
case IDM_OBJECTUSEDLL:
pAV->m_fEXE=FALSE;
CheckMenultem{GetMenu{hwnd}, IDM_CBJECTUSEDLL
, MF_CHECKED):
CheckMenultem{GetMenu(hWnd), IDM_OBJECTUSEEXE
, MF_UNCHECKED);
break;

case IDM_OBJECTUSEEXE:
pAV->m_fEXE=TRUE;
CheckMenultem{GetMenu(hWnd), i0M_OBJECTUSEDLL
, MF_UNCHECKED);
CheckMenultem(GetMenu(hWnd}, IDM_OBJECTUSEEXE
, MF_CHECKED);
break;

case IDM_OBJECTCREATECOGCO:
if (NULL!=pAV->m_plPersist)
{
pAV->m_plPersist->Release();
pAV->m_plPersist=NULL;
{ofreelUnusedLibraries(};

!

dwC1sCtx=(pAV->m_fEXE) ? CLSCTX _LOCAL_SERVER
: CLSCTX_INPROC_SERVER;

hr=CoGetClassO0bject (CLSID _Koala, dwClsCtx, NULL
, IID_IClassFactory
(LPLPVOID)&pICTassFactory);

if (SUCCEEDED(hr))

{
//Create the Koala by asking for IID_IPersist

plClassFactory->Createlnstance(NULL
. IID _IPersist
, (LPLPVOID)&pAYV->m_plPersist);

{continued)

143
Page 161 of 221

INSIDE OLE 2

Listing 4-2. continued

//Release the class factory when done.
plClassFactory->Release(};
1

oreak;

case I0M _OBJECTCREATECOCI:
if (NULL!I=pAV->m_plPersist)
{
pAV->m_plPersist->Releasa();
pAV->m_pIPersist=NULL;
CoFrgelnusedLibraries();
]

/f5impTler creation: Use CoCreatelnstance

dwCTsCtx=(pAV->m_fEXE) ? CLSCTX_LOCAL_SERVER

: CLSCTX_INPROC_SERVER;

CoCreateinstance{CLSID Koala, NULL, dwClsCtx

, IID_IPersist
, (LPLPVOID)&pAV->m_pIPersist};

break;

case IDM_DBJECTRELEASE:
if (NULL==pAV->m_pIPersist)
break;

pAV->m_plPersist->Release();
pAY->m_plIPersist=NULL;

CoFreeUnusediibraries(y:
break;

case IDM_CGBJECTGETCLASSID:
if (NULL==pA¥->m_pIPersist)
break:

hr=pAV->m_plIPersist->GetClassID(acIsID);

if (SUCCEEDED(nr))
{
LESTR psz;
LPMALLOC pIMalloc;

144
Page 162 of 221

{continued)

F O UR: Component Objects

Listing 4-2. continued

//String from CLSID uses task Malloc

StringFromCLSID(c1sID, &psz):

MessageBox(hWnd, psz, "Object Class ID
, MB_OK):

CoGetMalloc{MEMCTX_TASK, &pIMalloc);
pIMalloc->Free(psz);
pIMalloc->Retease();

1
else
{
MessageBox(hWnd
. "IPersist::GetClassID call failed”
, "Koala Demo™, MB_OK);
}
break;.

case IDM_OBJECTEXIT:
PostMessage(hWnd, WM_CLOSE, @, 6L);

hreak;
1
break:
default:
return (DefWindowProc(hWnd, iMsg, wParam, tParam));
}
return @L;

}

CAppVars::CAppVars(HINSTANCE RInst, HINSTANCE hinstPrev
. UINT nCmdShow)

{

m_hInst =hinst;

m hInstPrav =hinstPrev:
m_nCmdShow =nCmdShow;
m_hWnd =NULL;
m_fEXE =FALSE;

m_plPersist =NULL;
m_flnitialized=FALSE;
return;

]

(continued)

Page 163 ofj 531

INSIDE OLE 2

Listing 4-2. continued

CAppVars::~CAppVars{void)
{
if (NULL!=m_pIPersist}
m_plPersist->Release();

if (IsWindow(m_hWnd)}
DestroyWindow(m_hWnd);

if (m_fInitialized)
ColUninitialize();

return;
1
BOOL CAppVars::Finit(veid)
{
WNDCLASS WC;
OWORD dwVer:

dwVer=CoBuiidVersion{):

if (rmm!=HIWORD(dw¥er})
return FALSE;

if (FAILED{(CoInitialize(NULL)}}
return FALSE;

m_fInitiaiized=TRUE;

if (Im_hinstPrev)

f{

wc.style = CS_HREDRAW CS_VREDRAW;
we. 1pfnWndProc = ObjectUserWndProc;
we.chClsExtra = 0;

wC, cbWndExtra = CBWNDEXTRA;

wc.hinstance = m_hlnst;

we.hIcon = Loadicon{m_hInst, "Icon™);
we. hCursor = LoadCursor{NULL, IDC_ARROW);
wc . hbrBackground = {HBRUSH){COLOR_WINDCW + 1}:
wc.lpszMenuName = MAKEINTRESOURCE{IDR_MENU);
wc.TpszClassName = "QOBJUSER":

if (lRegisterClass(8wc))
return FALSE;
1

m_hind=CreateWindow("0BJUSER"™, "Koala Component Object Demo"
. WS_OVERLAPPEDWINDOW, 35, 35, 358, 258, NULL, NULL

. m_hinst, this);

(continued)

Page 164 of 221

F O U R: Component Qbjects

Listing 4-2. continued

if (NULL==m_hWnd}
return FALSE;

ShowWindow{m_hWnd, m_nCmdShow);
UpdateWindow(m_hWnd):

CheckMenultem(GetMenu(m_ hWnd), TOM_OBJECTUSEDRLL, MF_CHECKED):
CheckMenultem(GetMenu(m_hWnd), IDM_OBJECTUSEEXE, MF_UNCHECKED):

return TRUE;
}

OBJUSER’s only interesting output is a message box that shows the
CLSID retrieved from the object when you make a call to IPersist::GetClassID.
Otherwise, you should step through this program in a debugger to really un-
derstand what is happening. In any case, the first two items on the Koala Ob-
ject menu control whether you use the object implemented in an application
or in a DLL. Either way, the rest of the functions remain the same. You can
instantiate objects in cne of two ways: You can use either CoCreatelnstance ot
CoGetClassObject and IClassPactory.:Createlnstance; you can also call the object’s
Release function and generate a call to IPersist::GetClassID, which displays the
object’s CLSID as a string in a message box. What a hot user interface!

Note that to run OBJUSER, you must have both compiled versions of the
Koala objectt DKOALA.DLL (CHAPOADKOALA) and EKOALA EXE
(CHAPOSEKOALA). After you run MAKEALL.BAT for this chapter, both
files will be in the BUILD directory on your disk. You must then let the Com-
ponent Object library know where they are located by merging the CHAPO4
CHAPO4.REG file2 with your current Registration Database using the
Windows 5.1 RegEdit program. This will create entries for CLSID _Koala indi-
cating where DKOALA.DLL and EKOALA.EXE are located. This is one of
the powerful features of such registration: The object user is isolated from the
need to locate the module that implements the object. The Registration Data-
base essentially maps the CLSID to the path of the appropriate DLL or EXE.

For OBJUSER and any other component user, the following three steps
instantiate and manage a component object. (Note that OBJUSER also
performs the four steps outlined in the earlier section “The New Application
for Windows Objects” because it's an EXE and defines a task.)

9. Note that this registration file does not contain full pathnames. Normally, all path entries in the
Registration Database shonld contain full pathnames to modules. However, because there are so
many modules to deal with in this book and because you might have installed them anywhere on
your machine, the REG files given here do not include pathnames. That is why I recommended
in Chapter 2 that you add the BUILD directory in the sampie code to your PATTL.

147
Page 165 of 221

!

INSIDE OLE 2

1. Use #include <initguid.k> in one source file of the compilation after
including COMPOB].H to create a code segment containing
CLSIDs and I1Ds.

2. Create an object based on a CLSID using one ol two routes:

O If you need only one object, call CoCreatelnsiance with the CLSID
and the IID of the interface you want on the object.

O If you need more than one object, call CoGetClassObject to obtain a
class factory {(an IClassFactory pointer) for the CLSID, and call
IClassFactory::Createlnstance as often as you want with the IID of
the interface you want on the object. Call [ClassFactory::Release
when you have finished.

3. Use the object through the interface pointer, call Release through
that pointer when finished, and call CoFreeUnusedLibraries.

The first step affects only your build environment and compilation, but
it does not really matter in programming. The second step is the real meat of
our discussion; it shows exactly how to instantiate a component object. The
third step deals with how you manage and free the object through your inter-
face pointer.

#include <initguid.h> and Precompiled Headers

148

Anything that ever references any GUID, be it a CLSID or an 11D, must in-
clude the file INITGUID.H once, and only once, in the entire compilation of
your module. This includes all component users and all objects {component
objects or not) and means that you should use #include <inilguid.hi> in one,
and only one, file of your application after including COMPOB].H. Including
INITGUID.H ensures that all your GUIDs are defined and that they end up
in a discardable code segment instead of in your data segment, which is
preferred because defined GUIDs are always constant. INITGUID.H also
allows you to use the DEFINE_GUID or DEFINE_OLEGUID macro for de-
fining your own IDs as shown in the BOOKGUID H file in the INC directory.

If you typically use a central include file for all files in your project, wrap
an #ifdef statement around the #nclude. The samples in this book have such a
statement in the shared BOOKGUID.H file in the INC directory:

#ifdef INITGUIDS
#include <initguid.h>
fendif

Page 166 of 221

0

e

F O UR: ComponentObjects

Only one file in each sample project uses #lefine INITGUIDs. Note that there
is a similar symbol, INITGUID, used in COMPOBJ.H for similar purposes.
However, you cannot use this symbol itself because COMPOBJ.H will not later
pull in another necessary include file (COGUID.H) —that is, you will not be
able to compile.

Including INITGUID.H only once is a trick when you are using precom-
piled headers, but you will appreciate it when we start including the lengthy
OLE 2 header files. Create the precompiled header in a file that does notin-
| clude INITGUID.H-—the samples using precompilation all use the file PRE-
COMP.CPP, which contains only one #nclude statement. You can then use
the precompiled header from this step to compile with all files excepi the one
| in which you want to include INITGUID.H. You should compile that single
file without using the precompiled header to pull in the extra file.

Instantiate a Component Object
The Component Object library provides two fundamental object creation
functions: CoCreatelnstance and CoGetClassObject combined with [ClassFac-
tory.::Createlnstance. Which functions you use depends on how many objects
you need at a given time.

NOTE: Compound Document container applications do not directly use
the CoCreatelnstance or CoGetClassObject function to create compound docu-
ment objects. Instead, they use functions such as OleCreate that internally use
CoCreatelnstance, as discussed in Chapter 9. If you plan to implement con-
I tainers, you still should understand how compound document objects are
‘ created through these mechanisms.
|

|

To create a single object given a CLSID, use CoCreatelnstance, which
internally uses CoGetClassObject, as described a little later. The following
code demonstrates this call and is adapted from OBJUSER, modifying the
symbols and their locations for ease of explanation:

HRESULT hr;

DWORD dwClsCtx;
LPPERSIST plPersist;
LPUNKNOWN pUnkOuter=NULL;

//TEXE controls where the object lives based on & menu selection.
dwClsCtx=(fEXE) 7 CLSCTX_LOCAL_SERVER : CLSCTX_INPROC_SERVER;

CoCreateInstance(CLSID_Koala, pUnkOuter, dwClsCtx
. IID_TPersist, (LPLPVQOID)&pIPersist);

149
Page 167 of 221

J

INSIDE OLE 2

B

150

First note the naming of pointers to interfaces, as shown with LPPERSIST
and LPUNKNOWN. OLFE 2 follows a convention in which a far pointer to
an interface of type IInierface FAR * is typed as LPINTERFACE —that is, the
interface name sans 7is appended in all caps to an LP. Thus LPUNKNOWN
is an {Unknown FAR * and LPPERSIST is an Persist FAR * In addition, note
that LPLPVOID is defined in BOOKGUID.H as LPVOID FAR * LPLPVOID s
simply a more convenient shorthand that I use in the code in this book.

CoCreatelnstance takes five parameters, the names of which vary with the
object class and interfaces you are using in your own implementation. Those
shown here are similar to those in the OBJUSER program:

Parameter Meaning

CLSID_ Koala REFIID: A reference (a real C++ reference) to the class identifier
of the object you want to create. In this example, we are creating
a Koala object implemented in the later section “‘Implementing a
Component Object and Server.” Note that in C, because there is
no concept of a reference, you must precede this value with the
& operator, thus: &CLSID_ Koala.

pUnkOuter LPUNKNOWN: A pointer to the controlling unknown if
the object is being created as part of an aggregate. See the
section “Object Reusability”” later in this chapter for more
information.

dwCisCrx DWORD: Flags indicating the context in which the object
is allowed to run, which can be any combination of CLSCTX-
_LOCAL_SERVER (object in EXE), CLSCTX_INPROC-
_SERVER (objectin DLL}, or CLSCTX _INPROC_HANDLER
{object handler DLL). OBJUSER chooses to run either a DLI.-
based or an EXE-based object depending on a menu option
stored in the fExevariable.

11D _1Persist REFIID: A reference to the interface identifier you want to
obtain for this object. If the object does not support this inter-
face, CoCreatelnstance will fail. Note that, as with the class identi-
fier, C programs must again prepend the & operator to an fID.

&PplPersist LPVOID FAR # (or LPLPVOID): A pointer to the location
in which CoCreateInstance is to store the interface pointer on
return. If CoCreatelnstance fails, the contents of this variable will
be set to NULL. Otherwise, CoCreatelnstance will also call AddRef
through the pointer before returning.

Note that when more than one CLSCTX ... flag is specified, the librar-
ies will attempt to load them in the order CLSCTX_INPROC_SERVER,
CLSCTX_INPROC_HANDLER, and then CLSCTX_LOCAL_SERVER;

Page 168 of 221

FO UR: ComponentObjects

that is, the libraries always look for a DLL first (for better performance), try-
ing another EXE only as a last resort.

CoCreatelnstance internally executes a three-step process to create the
new object, which can be written in pseudocode as follows:

BEGIN
l Obtain a class factory (lClassFactory) for the desired c¢lass.

Call IClassFactory::Createlnstance to create the object.
Call IClassFactory::Release.
END

The first step, obtaining a class factory (also called a class object), is the exact
purpose of the other relevant API function, CoGetClassObject. A class factory
is an object that implements the [Classtactory interface, as defined in

COMPOBJ H:

DECLARE_INTERFACE_(IClassFactory, IUnknown}

{
[IUnknown methods included]

//1ClassFactory methods
STOMETHOD(Createlnstance) (THIS_ IUnknown FAR# pUnkOuter, REFIID riid
LPYOLD FAR = ppvObject) PURE:
STDMETHOD{ LockServer) (THIS_ BOOL fiock) PURE:
b
For cases in which you want to create only one object of this class, Co-

Createlnsiance suffices. However, if you want to create more than one object at
a time, call CoGetClassObject to retrieve a class factory for the class, call
IClassFactory::CreateInstance as many tines as necessary, and call IClassFac-
tory::Release when you have finished. The following code shows an implemen-
tation equivalent to the previous code but uses CoGetClassObject instead:

HRESULT hr;

DWORD dwClsCtx;
LPPERSIST pIPersist;
LPUNKNOWN pUnkOuter=NULL;

LPCLASSFACTORY plClassFactery;

dwC1sCtx=(fEXE) 7 CLSCTX_LOCAL_SERVER
: CLSCTX_INPROC_SERVER;

hr=CoGetClassObject{CLSID _Keala, dwClsCtx, NULL
II0_IClassFactory, (LPLPVOID)&pIClassFactory);

if (SUCCEEDEDChr))

{continued)

151
Page 169 of 221

INSIDE OLE 2

{
//Create the Koala by asking for IID_IPersist
pIClassFactory->Createlnstance(pUnkQuter

. IID_TPersist, (LPLPVOID)&pIPersist):

//MWe've finished with the class factory, so release it.
pIClassFactory->Releasel():
}

This code is almost the exact implementation of CoCreatelnstance inside the
component object library: The parameters you pass to CoCreatelnstance are
simply passed to CoGetClassObject and IClassFaciory::CreateInstance. The extra
parameters to CoGeiClassObject are a NULL {a reserved LPVOID that should
always be NULL}), the interface ID you want on the class object (always
IID_IClassFactoryin OLE 2 but perhaps with more options in the future), and
a location in which to store the pointer to the class object.

Remember that because CoGetClassObject is a function that creates a new
interface pointer (reference counting rule #1 in the section ‘‘Reference
Counting™ in Chapter 3}, you are responsible for calling Release through that
pointer when you have finished, as shown in the preceding code.

NOTE: Ifyou want to hold the class factory object for a longer time, you
must call IClassFactory::LockServer(TRUL). A reference count on a class fac-
tory does not guarantee that the server will stay in memory and that you
could use the class factory later. For these reasons, read the later section
“Provide an Unloading Mechanism’ under “'Implementing a Component
Object and Server.” In short, if a class factory reference count could be
used to keep a server in memory, the server could shut down only when its
reference count reached zero. In the case of an EXE server, that reference
can reach zero enly if the server is being shut down. Catch-22. You must
therefore use LockServer(TRUE) when you hold onto a class factory and
LockServer(FALSE) after vou release it. Besides, if the server is locked, retriey-
ing another class factory is cheap.

Manage the Object and Call CoFreeUnusedLibraries

152

What you do with an object after you have obtained an interface pointer is
entirely dependent on the object itself and is really what most of the chapters
in the book are about. You must, in any case, be absolutely sure to call Release
through that interface pointer when you have finished with the object, Other-
wise, you doom the object to live in memory for all eternity—or until the
universe collapses (power off or the jolly three-finger reset).

Page 170 of 221

F O U R: Component Cbjects

Releasing the object is not the only consideration, however. When you
initially instantiate an object implemented in a DLL, COMPOB].DLL. loads
that DLL into memory using the function ColoadLibrary. When the DLL is
no longer needed, COMPOBJ.DLL calls CoFreeLibrary. Both functions map
to LoadLibrary and FreeLibrary under Windows but are named differently for
portability to other platforms, such as the Apple Macintosh.

However, the Component Object library does not know when an object
in a DLL is destroyed because once it has facilitated loading and instantiating
that object, communication between the component object and the compo-
nent user is direct, completely bypassing everything in the library. Therefore,
a DLL might remain loaded in memory even when it has no objects to service,
Over time, many DLLs might be loaded and chew up valuable memory. The
Component Object library needs a cue to free those DLLs that are no longer
needed. This is very much like discardable global memory, in which memory
allocated and freed will stay in memory unti! discarded, even if no one is
using that memory.

For this reason, all object users should periodically call CoFreelUnusedlLi-
braries, primarily immediately after you use Release on an object for good. In
this function, COMPOBJ.DLL can ask each DLL loaded in your task whether
it can be unloaded. If the DLL answers “‘yes,” Coffreelibrary is called to free
the memory the DLL occupies. CoFreeUnusedLibraries does not, however,
affect other EXEs because EXEs unload themselves when they are no longer
servicing any objects. Using CoFreeUnusedLibraries is something like calling
GlobalCompaci(-1), which will purge memory of all unreferenced discardable
memory segments.

NOTE: The OLE 2 implementation of CoFreeUnusedLibraries does nothing.
However, your user code should still call the function after destroying an ob-
ject so that when the function is implemented, your code will work correctly.

Implementing a Component Object and a Server

Let’s now implement a simple Koala Component Object with the [Persist
interface, where just the object tself is shown in the source code in Listing 4-3.
Koala implements the IPersist interface because that interface has standard
OLE 2-provided marshaling support, meaning that we can freely place this
object in a DLL or an EXE, as we’ll actually demonstrate. In real-world use,
IPersist is never implemented alone because it always serves asa base class for
a few other interfaces.

153
Page 171 of 221

.

INSIDE OLE 2

KOALA.H

/: Koala Object DLL/EXE Chapter 4

T Classes that implement the Koala object independent of whether
* we live in a DLL or &n EXE

: Copyright (c)1993 Microsoft Corporation, All Rights Reserved
®/

#ifndef _KOALA_H_
fidefine _KOALA_H_

#include <windows.h>
f#inciude <olez.h> //0ie2.h has IPersist, compobj.h doesn't

f#include <bookguid.h>

//Type for an object-destroyed callback
typedef void (FAR PASCAL *LPFNDESTROYED)(void):

//Forward class references
class __far CImplPersist;
typedef class CImpIPersist FAR =LPIMPIPERSIST:

[

* The Koala object is implemented in its own class with its own
IUnknown to support agdregation. It contains one ClmplPersist
object that we use to implement the externally exposed interfaces.

*f

class __far CKeala : public ITUnknown
{
//Make any contained interfaces friends
friend class ClmpIPersist;

protected:
ULONG m_cRef; //0bject reference count
LPUNKNOWN m_pUnkQuter; //Contrclling unknown

LPFNDESTROYED m_pfnDestroy: /fFunction closure call
LPIMPIPERSIST m_plPersist; //Contained interface

Listing 4-3. (continued)
Implemeniation of the Koala object structured to live in cither a DLL or an EXE.

104 Page 172 of 221

F O UR: ComponentObjects

Listing 4-3. continued

pubiic:
CKoala(LPUNKNOWN, LPFNDESTROYED):
~CKogla(void);

BOOL FInit(void):

‘ //Non-delegating abject IUnknown

STOMETHODIMP QueryInterface(REFIID, LPLPVOID);
STOMETHODIMP_(ULONG) AddRef(void):
\ STOMETHODIMP_(ULONG) Release(void);

| 13
typedef CKoala FAR +LPCKoala:
%
+ Interface implementations for the Ckoala gbject.

wf

class __far CImpIPersist : public IPersist

{

private:
ULOKG m_.cRef;
LPCKoala m_pGhji; //Back pointer to the object
LPUNKNOWN m_punk(uter; /fControlling unknown

' public:

CImplPersist (LPCKOALA, EPUNKNOWN) ;
~CImpIParsistivoid):

//iUnknown members that delegate to m_pUnkOuter.
STOMETHODIMP QueryInterface(REFIID, LPLPVOLD);
STOMETHODIMP_ (ULDNG) AddRef{void):
STOMETHODIMP_(ULONG) Release{void):

//1Persist members
STOMETHOD [MP GetClassID(LPCLSID);
1
ffendif //_KOALA_H_

{continued)

155
Page 173 of 221

INSIDE QOLE 2

Listing 4-3. continued

KOALA.CPP
I
+ Koala Object DLL/EXE Chapter 4
"
+ Implementation of the CKoala and CImplPersist sbjects that works
in either an EXE or a DLL

» Copyright (c)1993 Microsoft Corporation, All Rights Reserved
#/
#include "koala.h"

Ckoala::CKoala(LPUNKNOWN pUnkQuter, LPFNDESTROYED pfnDestroy)
{
m_cRef=9;
m_plUnkOuter=pUnkduter;
m_pfnlestroy=pfnlestroy;

//NULL any contained interfaces initially.
m_pIPersist=NULL:

return;
}

CKpala::~CKeala(veid)
{
//Free contained interfaces.
if (NULL!=m_pIPersist)

delete m_plPersist; //Interface does not free itself,
return;
}
BOOL CKoala::Flnit{void)
tPUNKNUWN pIUnknown={ LPUNKNQWN)this;

if (NULL!=m_pUnkQuter)
pllinknown=m_plnkOuter;

/fAllocate contained interfaces.
m_plPersist=new CImpIPersist(this, plUnknown};

{continued)

196 Page 174 of 221

F O UR: Component Objects

Listing 4-3. comtinued

return (NYLL!=m_pIPersist};
1

STOMETHOOIMP CKoala::QueryInterface(REFIID riid, LPLPVQIOppvV)

{
ppv=NULL;

f*
. The only calls for IUnknown are either in a nonaggregated
v case or when created in an aggregation, s¢ in either case,
v always return our IUnknown for IID._TUnknown.
#/
if (IsfqualllD(riid, IID_IUnknown))
+ppy=(LPV0ID}this;

I
* For IPersisi, we return our contained interface. For EXEs, we
+ have to return our interface for IPersistStorage as well
. since OLE 2 doesn't support IPersist implementations by
% themselves (assumed only to be a base class). If a user
* asked for an IPersistStorage and used it, they would crash--
= but this is a demo, not a real object.
*/
if (IsEqualllD{riid, IID_IPersist)
'1 IsEqualilD{riid, 11D _IPersistStorage))
*ppv={ LP¥OID)m_pIPersist;

//AddRef any interface we'll return.
if {NULL!=#ppv)
{
{(LPUNKNOWN)*ppv) - >AddRef();
return NOERROR;
}

return ResultFromScode(E_MOTINTERFACE);
}

STDMETHODIMP_(ULONG) CKoala::AddRef(void)

{
return ++m_cRef;

}

STOMETHODIMP_(ULONG) CKoala::Releaselvoid}
{

(continuied}

157
Page 175 of 221

INSIDE OLE 2

Listing 4-3. continued

ULONG cRefT;
cRefT=--m_cRef;

if (@==m_cRef)

{
f

« Tell the housing that an object is going away so that it
* can shut down if appropriate.

#f
if (NULL!=m_pfnDestroy)

{(+m_pfnDestray;();

delete this:
}

return cRefT;
]

CImplPersist::CImpIPersist(LPCKoala pObj., LPUNKNOWN pUnkOuter)
{
m_cRef=0;
m_p0bj=plbji:
m_pUnkOuter=pUnkOuter;
return;

}

CImpIPersist::~CImpIPersist(void)
{
return;
]

STDMETHODIMP CIlmplPersist::QueryInterface(REFIID riid
. LPVOID FAR #ppv)
{
return m.pUnkQuter->QueryInterfacelriid, ppv);

¥

STOMETHODIMP_(ULONG) CImpIPersist::AddRef(vord)
{

++m_cRaf;
return m_pUnkQuter->AddRef();
}

{eontinued)

158 Page 176 of 221

FOUR: ComponentObjects

Listing 4-3. continuad

STOMETHCDIMP_{ULONG) CImpIPersist::Release(void)
{
--m_cRef;
return m_pUnkGuter->Release(};
1

STDMETHODIMP CImpIPersist::Get{lassID(LPLLSID pClslD)
{
#nC1s1D=CL.SID _Koala:
return NOERROR;
1

The Koala object is implemented to support aggregation and to be iden-
tically usable in either a DLL or an EXE server, but not without some impact.
In addition, remember that we can call CoGetMailoc at any time to obtain ac-
cess to shared or task memory, although the implementation of Koala shown
here does not have occasion to use this feature.

To support aggregation, as we'll see in the later section “‘Object
Reusability,” the object must be aware of a controlling unknown, if there 1s one,
that is cognizant of all interfaces supported by the aggregate object. The
object itself, implemented by using the CKoala Ct+ class,? implements
TUnknown but contains the interface implementation of IPersist in another C++
object named CImpIPersist. In aggregation, the interface implementations
must always delegate all their [Unknown calls to the object that controls that
interface’s lifetime. When the object is not aggregated and when the pUnkQOu-
twpmmdm(K@MHC&MMENULLCKmhpmwﬁmownﬂmhwmﬂmm@
mentation to CImpIPersist instead. When the Koala object is aggregated,
CKoala will receive a non-NULL pUnkOuter, which it passes to ClmplPersist.
In either case, the [Persist interface implementation will always delegate
IUnknown calls to a full object, performing only trivial reference counting on
the interface for debugging purposes. If this seems confusing, be patient;
we’ll see this in more detail later.

The only interesting function of ClmplPersistis GetClassID, which simply
returns the CLSID defined by the Koala object. However, the implementa-
tion of CKoala, the entire object, has a few more interesting features. First,
note that although we hold onto a copy of the pUnkOuter pointer, we do not
call AddRef through it. We do this to avoid a problem with circular reference
counts: If we did call AddRef on pUnkOuter, the outer object could not free

3. Remember that a G class is a convenient way to create interface function tables. CKoala is
never exposed to anything outside its DLL or EXE, period. It exposes only its [{Unknewn and
TPersistinterface function tables,

159
Page 177 of 221

INSIDE OLE 2

160

itself unless our object is freed first. But the outer object will not free our ob-
jectunless it’s freeing itself. The solution to this conundrum is to realize that
our object’s lifetime is entirely contained within the lifetime of the outer
object, so we don’t have to make the extra AddRef call, and at the same time
avoid the circular reference count.

Second, we supply a two-phase instantiation process for use by the classfac-
tory we provide later. The CKoala constructor initializes only variables, whereas
FInit performs any operations that are prone to failure, so the caller can deter-
mine whether a failure did occur. Because instantiating the ClmplPersist inter-
face implementation might fail, we defer that action until Fi/nifis called.

Next, the Quervinterface implementation in CKoala, which knows all the
interfaces implemented in this object, makes a special case for the interfacecalled
IPersistStorage. When a user such as OBJUSER asks the DLL implementation for
aninterface identified with /7D [Persist, that ITD comes directly into Querylnter-
Jface. However, when OBJUSER asks for 1/D_ [Persist and the object lives in an
EXE, that request goes through the marshaling layer in COMPOB].DLL. The
OLE 2 implementation of this marshaling does not single out IPersistand will al-
ways ask the objectfor [PersistStorageeven if the user asked only for IPersist. So we
also check for [PersistStorage here. Of course, you must avoid this in real applica-
tions because the user might actually have asked for IPersisiStorage but received
only an IPersist. But as [pointed out earlier, /Persistis never useful when imple-
mented alone—it’s used here only for demonstration.

The final feature of the Koala object allows it to notify its server —either
a DLL or an EXE—when the object is destroyed in Release by calling an “ob-
ject destroyed” function in the server. This is a special technique I created to
isolate the object from any specifics about its DLL or EXE server—it’s not
part of the OLE 2 specifications. When the ohject is created, the class factory
passes the address of the “object destroyed” function to the object. In the
case of both DKOALA and EKOALA, the function is named (what else?)
ObjectDestroyed, and a pointer to that function is of type LFFNDESTROYED.
(See KOALA.H.) When the object frees itself in its Release function, it calls
ObjectDestroyed, in which the server decrements the count of objects it’s cur-
rently servicing. If the object lives in a DLL, that DLL might be able to then
mark itself as unloadable: if the object lives in an EXE and it was the last ob-
ject, the EXE might shut down on this notification. This technique effectively
lets the server worry about unloading and shutting down, keeping the object
isolated. Of course, this is my technique—Tfeel free to create your own.

With the object isolated from any concern about where it lives, we can
now concentrate on seeing how you expose that object from a DLL or an EXE,
which share these four steps to manage an object although their exact imple-
mentations of each step differ:

Page 178 of 221

F O UR: ComponentObjects

1. Register the CLSIDs and server pathnames for every class imple-
mented in the server in the Registration Database.

2, Implement the class factory for each object class supported by the
server. A single DLL or EXE server can handle any number of classes.

3. Expose the class factory to the Component Object library.

4. Provide a shuidown or an unloading mechanism when there are no
more objects or lock counts on the server.

The DLL housing of Koala, DKOALA.DLL, 1s shown in Listing 4-4, and
the EXE housing, EKOALA.EXE, is shown in Listing 4-5. Note that the Koala
object implementation itself, shown in Listing 4-3, is identical in both the
CHAPO4\DKOALA and CHAPOA\EKOALA directories in the sample code.
When you run the OBJUSER program using each of these servers, you will
notice a difference in the response time of calling the object’s GetClassID.
When you are using a DLL server, the response is quick because the call goes
directly to the objectimplementation. When you are using an EXE server, the
response is slower because the GetClassiD call must be worked through the
marshaling process.

DKOALAH

IE
+ Koala Object DLL Chapter 4

E3
+ Definitions, classes, and prototypes for a DLL that
+ provides Keala objects to any other ohject user.

% Copyright (€)1993 Microsoft Corporation, A1l Rights Reserved
*f

#ifndef _DKOALA_H_
ffdefine _DKOALA_H_

//Get the object definitions
#inciude "koala.h"

void FAR PASCAL ObjectDestroyed{void):

//DKOALA.CPP
YOID FAR PASCAL WEP(int};

//This class factory object creates Koala objects.

Listing 4-4. {continued)
The DKOALA.DLL implementation to house the Koala object.

161
Page 179 of 221

INSIDE OLE 2

162

Listing 4-4. continued

class __far CKoalaClassfactory public ICTassFactory
{
protected:
ULONG m_cRef;

public:
CKoalallassFactory(void):
~CKoalaClassFactory(void):

/7 TUnknown members
STDMETHODIMP QueryInterface(REFIID, LPLPYGID):
STOMETHOGIMP_(ULONG) AddRefivoid);
STOMETHGDIMP_{ULONG) Release{void):

//1ClassFactory members

STOMETHODRIMP Createlnstance (LPUNKNCWN, REFIID
, LPLPVOID);
STDMETHODIMP LockServer{BOOL);

i
typedef CKoalaClassFactory FAR #LPCKoalaClassFactory:

flendif //_DKOALA_H_

DKOALA.CPP
/o
* Koala Object DLL Chapter 4
*
* Example object implemented in a DLL. This object supports

IUnknown and IParsist interfaces: it doesn't know anything more

* than how to return its class ID, but it demonstrates how an
" obhject is presented inside a DLL.

*

* Copyright (c)1993 Microsoft Corporation, All Rights Reserved
*/

//Do this once in the entire build
ffdefine INITGUIDS

#inctude "dkoala.n™

//Count number of objacts and number of locks.
ULONG g_cObj=0;
ULONG g_clock=0;

{continued)

Page 180 of 221

F OUR: Compenent Objects

Listing 4-4. continued

[LibMain and WEP omitted from 1isting]

HRESULT EXPORT FAR PASCAL D11GetClassObject(REFCLSID rclsid
., REFIID riid, LPYOID FAR =ppv)
{

if (IIsEqualCLSID{rcisid, CLSID_Koala)?
return ResultFromScode(E_FAIL);

//Check that we can provide the interface

if ([IsEqualI1D(riid, LIG_IUnknown)
A& 1IsEqualtliD(riid, FID_IClassFactory))
return ResultFromScode(E_NOINTERFACE);

//Return our IClassFactory for Kcala objects
«ppv=(LPVQID)Inew CKoalaClassFactory():

if (NULL==*ppv)
raturn ResultFromScodae{E_OUTOFMEMORY };

J/AhddRef the ohject through any interface we return
((LPUNKNOWN} =ppv)->AddRef(};

return HOERRCR;

I;

STDAPI Di1CanUnloadNow(void)
{
SCGOE sC:

//0ur answer is whether there are any object or locks
sc=(@l==qg_cObj && @==g_clock) 7 S.OK : S_FALSE;
return ResultFromScode(sc);

}

x ObjectDestroyed
+ Purpose:
« Function for the Koala abject to call when it is destroyed.

« Because we're in a DLL, we only track the number of ebjects here,
+ letting D11CanUnloadNow take care of the rest.

(rontinued)

Page 181 of P21

INSIDE OLE 2

Listing 4-4. continued
%/

void FAR PASCAL ObjectDestroyed{void)
{
g_cObj--:
raturn;

}

CKoalaClassFactory::CKoalaClassfactory(void)
{
m_cRef=@L;
return;

}

CKpalaClassFactory::-CKoalaClassFactory(void)
{
return;

1

STDMETHODIMP CKoala{lassFactory::QueryInterface(REFIID riid
, LPLRFVOID ppv)

{
=ppv=NULL;

//Any interface on this object is the object pointer.
if {IsEquallIlb{riid, II0_IUnknown)
1! IsEquailID(riid, TTD_IClassFactory))
=ppv=(LPVQID) this;

/=
If we actually assign an interface to ppv we need to AddRef
» it because we're returning a new pointer.
*f
if (NULL!=#ppv)
{
{ (LPUNKNOWN)*ppy}->AddRef ()
return NOERROR:
}

return ResultFromScode(E_NDINTERFACE);
1

STDMETHODIMP_{ULONG) CKoalaClassFactory::AddRef(void)

{
return ++m_cRef;

(continued)

164 Page 182 of 221

F O UR: Component Objects

Listing 4-4. continusd

}

STDOMETHODIMP_(ULONG) CKoalaClassFactory::Release({void)
{
ULONG cRefT;

cRefT=--m_cRef;

if (@L==m_cRef)
delete this;

return cRefT;
]

STOMETHODIMP CKoa1301assFactory::Createlnstance(LPUNKNOHN pUnkGOuter
. REFIID riid, LPVOID FAR *ppvlbj?

{
LPCXoala pGbd:
HRESULT hrs

*ppvOhj=NULL;
hr=ResultFromScode(E_QUTOFMEMORY

/iVerify that & controlling unknown asks for IUnknown
if (NULL!=pUnkQuter && tIsEqualllD(riid, 11D_Iunknown))
return ResultFromScode(E_NOINTERFACE};

//Create the object. passing funciion to notify on destruction
pObj=new CKoalalpUnkOuter. Objecthestroyed);

if (NULL==pObj)
return hr;

if (pObj->FInit())
hr=plbj->OueryInterface(riid, ppv0Obj)i

//Ki11 the object if initial creation or Finit failed.
if (FAILED(hr})
delete pObj:

else
g_cObj++:

return hr;

1

STDMETHODIMP CKOa1aC1assFactory::LockServer(BODL flock)

{continued)

165
Page 183 of 221

INSIDE OLE 2

Listing 4-4. continued

{

if (flLock)
g_clock++;

else
g_cLock--3

return NOERROR;
}

EKOALA.H

VES

« Koala Object Chapter 4

=

+ Definitions, classes, and prototypes for an application that
+ provides Koala objects to any other object user.

+ Copyright (c)1993 Microscft Corporation, A1l Rights Reserved
+f

JFifndef _EKDALA_H_
fidefine _EXKOALA_H_

//Get the cbject definiticns
#include "koala.h”

//EKOALA.CPP
LRESULT FAR PASCAL EXPORT KoalaWndProc(HWND, UINT, WPARAM, LPARAM):

class ___far CAppYars
{
friend LRESULT FAR PASCAL EXPORT KoalaWndProc(HWND, UINT
, WPARAM, LPARAM):

protected:
HINSTANCE m.hInst; //WinMain parameters
HINSTANCE m_hInsiPrev:
LPSTR m_pszCmdLine;
UINT m_nCmdShow;
HWND m_h¥nd; //Main window handle
Listing 4-5. (continued)

The EKOALA.EXE implementation to house the Koala object.

i Page 184 of 221

F O U R: Component Objects

Listing 4-5. continued

BOOL m.finitialized; /40id Colnmitiatize work?

LPCLASSFACTORY m_plClassFactory; //0ur class factory

DWORE m_dwRegC0; //Registration key
public:

CAppVars(BINSTANCE, HINSTANCE, LPSTR, UINT);

~CAppVarsivoid);

BOOL FInit{void};
i

typedef CAppVars FAR LPAPPVARS:

fidefine CBUNDEXTRA sizeof{LONG)
f#fdefine KOALAWL_STRUCTURE a

void FAR PASCAL ObjectDestroyed(void);
//This class factory object creates Koala objects.

class __far CKoalaClassFactory : public IClassFactory
{
protected:
LLONG m_cRef;

publie:
CKoalaClassFactory(void);
~CKoalaClassFactory(void);

/fTUnknown members

STOMETHODIMP QueryInterface(REFIID, LPLPVOID);
STOMETHODIMP_(ULONG) AddRef(void};

STOMETHODIMP _(ULONG) Release{void);

//IClassFactory members

STOMETHODIM? Createlnstance(LPUNKNOWN, REFIID
. LPLPVOID):
STOMETHODIMP LockServer(BOOL);

b
typedef {KoalaClassFactory FAR rLPCKoalaClassFactory:

fendif //_EKOALA_H_

(contined)

167
Page 185 of 221

INSIDE OLE 2

168

Listing 4-5. continued

EKOALA.CPP
rEs

« Koala Object EXE Chapter 4

¥

Object implemented in an application. This object supports

Tinknown and IPersist interfaces; it dcesn't know anything more
* than how to return its class ID, but it demonstrates how an

¢ object is presented inside an EXE.

+ Copyright (c)1993 Microsoft Corporation, ATl Rights Reserved

:‘,;/

//Do this once in the entire build
#define INITGUIDS

fHinclude <oleZver.h>
#include "ekcala.h”

//Count number of objects and number of iocks.
ULONG g_cObji=8;
ULONG g_clock=@;

//Make window handle global so that other code can cause a shutdown
HWND g_hWnd=NULL;

int PASCAL WinMain({HINSTANCE hinst, RINSTANCE hlnstPrev
. LPSTR pszlmdline, int nCmdShow)

{

MSG msqg;

LPAPPVARS pAY;

int cMsg=96;

#ifndef WIN3Z
//Entarge the queue as large as we can starting from 96
while (!SetMessageQueue(cMsg) &k {cMsg-=8)); b
fFendif

pAV=new CAppVars(hInst, hinstPrev, pszCmdline, nCmdShow):

if (NULL==pAY)
return -1;

if (pAV->FInit())

(continued)

Page 186 of 221

F O UR: Component Objects

Listing 4-5. continued

{
while (GetMessage(&msg, NULL, @, @)
{
TransiateMessage(&msg);
DispatchMessage(&msg);
3
1
delete pAV;
return msg.wParam;

}

{RESULT FAR PASCAL EXPORT KoalaWndProc(HWND hWnd, UINT iMsg
. WPARAM wParam, LPARAM iParam)

{
LPAPPYVARS pAV;

pAV=(LPAPPVARS)GetWindowiong{hWnd, KOALAWL_STRUCTURE):

switch (iMsg)
{
case WM_NCCREATE:
pAV=(LPAPPVARS)({LONG)((LPCREATESTRUCT)]Param)

->1plreateParams):

SetWindowLong(hWnd, KOALAWL_STRUCTURE, (LONG)pAV);
return (DefWindowProc(hWnd, iMsg, wParam, IParam));

case WM._DESTROY:
PostQuitMessage(@);
break;

default:
return (DefWindowProc(hWnd, iMsg. wParam, 1Param});

);
return @L;

}

« ObjectDestroyed

Purpose:
« Function for the Koala object to call when it gets destroyed.
+ We destroy the main window if the proper conditicns are met for

+ shutdown.

{eontinued)

169
Page 187 of 221

INSIDE OLE 2

Listing 4-5. continued
s/

void FAR PASCAL ObjectDestroyed(void)

{
g_clObj--:

//Nc more objects and no locks, shut the app down.
if (@==g_c0bj && @==g_clLock && IsHindow{g_hWnd)}
PostMessage{g_hWnd, WM_CLOSE, 6, @L);

return;
1

CAppYars::CAppVars(HINSTANCE hInst, HINSTANCE hlInstPrev
, LPSTR pszCmdbLine, UINT nCmdShow)

{
f/Initialize WinMain parameter holders,
nm_hinst =hinst;

m_hinstPrev =hInstPrev;
m_pszCmdline=pszCmdLine;
m_nCmdShow =nCmdShow;

m_hWnd=NULL;
m_dwRegCl=0:
m.piCiassFactory=NULL;
m_finitialized=FALSE;
return;

]

CappVars::~CAppVars(void)

{
//Opposite of CoRegisterClassObject; class factory ref is now 1

if {@Ll=m_dwRegC0D)
CoRevokeClassObject (m. dwRegC0);

f/Th1s should be the Tast Release, which frees the class factory.
if (NULLi=m_pIClassfactary)
m_plIClassFactory->Release();

if (m_finitialized)
CoUninitialize();

return;
}

(continued)

L Page 188 of 221

F O U R: Component Objects

Listing 4-5. continued

BOOL CAppVars::FInit(void)

{

WNDCLASS WC;
HRESULT hr;
DWORD dwVer;

//Fail if we've run outside CoGetClassObject

if (lstrcmpi(m.pszCmdline, "-Embedding™))
return FALSE;

dwVer=CoBuildVersion(};

if (raml=HIWORD{dwVer)}
return FALSE;

if (FAILED{CoInitialize(NULL)})
return FALSE;

m_flnitialized=TRUE;

if (Im_hInstPrev}

{

wc.style = (S_HREDRAW | CS_VREDRAW:
wc. lpfnWndProc = KoalaWndPrac:
we.chbCisExtra = 8;

we.chWndExtira = CBWNDEXTRA;

wc.hInstance = m_hInst;

wc.hicon = NULL;

we, hCursaor = NULL;

we.hbrBackground = {HBRUSH)(COLOR_WINDOW + 1}
we. tpszMenuName = NULL:

we.lpszClassName = "Koaia";

if (!RegisterClass(&wc))
return FALSE;
}

m_hWnd=CreateWindow{"Knala™, "Koala®, WS_OVERLAPPEDWINDOW
, 35, 35, 358, 250, NULL, NULL, m_hInst, this);

if (NULL==m_hWnd)
return FALSE;

g_hWnd=m_hWnd:

{continued)

171
Page 189 of 221

T =

INSIDE OLE 2

Listing 4-5. continued

e
#* Create our class factory and register it for this appiication
+ using CoRegisterClassObject. We are able to service more than
#« one object at a time sc we use REGCLS_MULTIPLEUSE.
i f

m_plClassFactory=new CKoalaClassFactory();

if (NULL==m_pIClassFactery)
return FALSE;

/fBecause we hold on tc this, we should AddRef it.
m_plI{lassfactory->AddRef();

hr=CoRegisterClassObject{CLSID Koala
{LPUNKNOWN)m_pIClassFactory, CLSCTX_LOCAL_SERVER
, REGCLS_MULTIPLEUSE, &m.dwRegl0);

if (FAILEDChr})
return FALSE:

return TRUE;
}

CKoalaClassFactory::CKoataClassfactory(void)
{
m_cRef=0L;
return;
}

CKoataClassFactory::~CKoalaClassFactory{void)
{
return;

)

STDMETHCDIMP CKeoalaClassFactory::QueryInterface(REFIID riid
, LPYOID FAR xppv)
{
#ppv=NULL:

//Any interface on this object is the object pointer.
if (IsEqualIib(riid, IID_IUnknown)
i1 IsEqualllID{riid, ITD_IClassFactory))
+ppv={LPVOID)this;

if (NULL!=%ppv)

{
((LPUNKNOWN)=ppv)->AddRef{);

{continued)

172 Page 190 of 221

I

FO UR: Component Objects

Listing 4-5. sontinued

return NGERROR;
}

raturn ResultFromScode(E_NOEINTERFACE);
1

STDMETHODIMP_(ULONG) CKoalaClassFactery::AddRef(void)
{
return ++m_cRef:

}

STDMETHODIMP _(GLONG) CKoalaClassFactory::Release(void)

{
ULONG cRefT;

cRefT=--m_cRef;

if (@L==m_cRef)
delete this;

return cRefT;
1

STDMETHODIMP CKoa]aC1assFactory::CreateInstance(LPUNKNOWN pUnkQuter
. REFIID riid, LPVOID FAR =ppvObj)

{
LPCKoala p0bj;
HRESULT hr;

+ppv0Ohj=NULL;
hr=ResultFromScode(£_OUTOFMEMORY) :

//Verify that a contrelling unknown asks for I[Unknown
1f (NULL!=pUnkOuter && !IsEqualllD{riid, 110_Iunknown))
return ResultFromScode(E_NOINTERFACE):

//Create the object, telling it to rotify us when it's gone.
pObj=new CKoala(ptnkOuter, Ghjectbestroyed};

if (NULi==pObj)
{
//Starts shutdown if ne other objects
g.cObj++;
ObjectbDestroyed{);
return hr;

1

(continued)

173
Page 191 of 221

INSIDE OLE 2

Listing 4-5. continued

if (pObi->FInit(})
hr=p0bi->QueryInterfacel(riid, ppvlbj};

g_cObj++;

[#®
* Kill the object if initial creation or FInit failed. If
* the object failed, we handle the g_cObj increment above
+ in gbjectDestroyed.
®/
if (FAILEDChr)?
{

delete pObj:
ObjectDestroyed(); //Handle shutdown cases.
}
return hr:
}
STOMETHODIMP CKoailaCiassFactory::LockServer(BOOL fLock)
{
if (flock)
g_cLock++;
alse
{
g_cLock--;

//Ho more objects and na locks, shut the app down.

if (@==g_c0bj && @==g_clock && IsWindow(g_hWnd))
PostMessage(g_hWnd, WM_CLOSE, @, @L);

}

return NOERROR;
1

Register CLSIDs

174

Every component object class (but not all types of Windows Objects) must
have a unique CLSID associated with it in the Registration Database. The
registration entries for a simple object, such as we’re implementing here, are
few; as you create objects with more features that supportlinking and embed-
ding, there will be much more information to add, as described in Chapter 10.
For purposes of the sample code, the necessary entries are contained in the
file CHAPOACHAPO04.REG, which you can add to your Registration Database
by using the REGEDIT program in Windows. Creating a REG file is the

Page 192 of 221

FOUR: Companent Objects

preferred method of registering objects and applications because it can be
done atinstall time instead of programmatically at run-time, which is tedious,
to say the least. The online help in the OLE 9 SDK contains more information
about storing information in the Registration Database.

The required entries fall under the CLSID key, where OLE 2 stores in-
formation about all classes under your spelled-out CLSID, as you can see in
the REGEDIT program and as shown in Figure 4-5 on the next page. OLE 2
also stores information about its standard interfaces and the code that
handles parameter marshaling under the Interface key. The following steps
! describe the necessary registration for DLL-based and EXF-based objects:

1. From HKEY CLASSES ROOT (the root key of the entire Registra-
tion Database), create the entry CLSIDN elass 1D =<name>, where
(¢lass ID} is the value of your CLSID spelled out and <name>1s a
human-readable string for your object. The Koala object has the
class ID string 100021102-0000-0000-C000-000000000046} which is
not something many, except for a few odd individuals, consider
readable. The <name> of the Koala object is “Koala Object
Chapter 4.”

2, Create an entry under the CLSID entry in step 1 to point to the
object code:

O For DLL objects, register InprocServer=<path to DLL>.
O For EXE objects, register LocalServer=<path to EXE>.
O For DLL object handlers, register InprocHandler=<path to DLL>.

Note that these entries should always contains full pathnames
so that you do not depend on your DLLs or EXEs being on the MS-
DOS path. Your application’s install program should update the
paths when it knows where the installation occurred.*

3. (Optional) If you want to allow a user to look up your CLSID based
on a text string, make an entry under HKEY_CLASSES_ROOT of
<ProglD>=<name>, where <ProglD> is a short name without spaces or
punctuation, and <name> is the human-readable name, identical to
that in step 1, of your object. Under this key, create another entry,
CLSID={class ID}, in which {class IDj is also the same as in step 1. In

4. The sample code with this book does, however, break this rule because the installation program
on the companion disks is not capable of modifying all the REG files in each CHAPxx directory
to contain a full pathname. Instead, each DLL and EXE is registered without a full pathname
and therefore depends on them being in the path.

175
Page 193 of 221

s

this example, <ProgiD> is Koala and <name> is **Koala Object Chap-
ter 4.7 Note that you can also create a symmetric key under the
object’s CLSID in the form of ProglD = <PRoglD >.

INSIDE QOLE 2

Entries of the type created in step 3 will be required for Compound
Document objects that should appear in the Insert Object dialog box inside a
container application. But that is a subject for a later chapter. Without those
entries from steps | and 2, however, the CoGetClassObject API function (which
CoCreatelnstance uses, remember) will not be able to locate your object imple-
mentation. Note also that the same DLL or EXE can serve mulftiple CLSIDs,
and in such cases you must make a similar entry under each CLSID you sup-
port with the InprocServer and LocalServer keys, although they can all contain
the same path to the same server.

_Ei di Search Help

Full Path: \CLSIDA{00021102-0000-0000-C000-00006000C045}

Value [Keala Dbject Chapter 4 B

\ T +

Polgline4 = Polpline Object Chapter 4
L CLSID -~ {000211063-0000-0000-CO00-C00000000046)
= Koala = Koala Dbject Chapter 4
L CLSID = {00021102-0000 0000 CO00-0000D0D00046}
+ CLSID
{00021103-0000-0000-CO00-000000030046} = Polyline Dbject Chapter 4
L InprocServer = i: \oleZbookichapO4\polyline\polyline. dii |
(U021 102 15I00m00 CO00- BODODNNNO0AK) « Koals (hjset Chapier 4
= InprocServer = F;\ole2book\chap0d\dkoatasdkoala dil
= LocalServer = E\oleZhook\chap04\ekoalavekoala exe
|- (00000316-0000-0000-C0C0.000000000046} = Device Independent Bitmap
L InpiocServer = ole2,dll
- {00000315-0000-0000-C000-008000000046} = Hetafile
= InpracServer = ole2.dll
i {00000314-0000 DOOD-CODO DODDODDDND4E} = PSStare
L InprocServer = oleZptox.dit
{00000:313-0000-0000-CO00-000000000046} = PSE numesators

Figure 4-5.
The populated CLSID section of the Registration Database, showing the entries for Koala.

Implement the Class Factory

Telling the Component Object library where your object code lives is one
thing; you still need to provide for creating objects once that code has been
loaded, so the next step is to create a class factory that implements the
IClassFactory interface. After we implement this class factory, we can provide
the code to expose it outside the server. This is somewhat like implementing a
window procedure in order to call RegisterClass because you have to store a
pointer to your window procedure in the WNDCLASS before you call
RegisterCall. Both sample implementations, DLL and EXT, use a C++ class of
CKoalaClassFactory for this purpose, and the two are almost identical. The

176
Page 194 of 221

F O UR: CompenentObjects

only differences between the DLL and EXE implementations of
CKoalaClassFactory have to do with the unloading mechanisms, which we'll
discuss later. For now, let’s concentrate on those identical parts that instanti-
ate a CKoala object.

All implementations of IClassFactory::Createlnstance are identical, and
each implementation contains three major points of interest. First, the first pa-
rameter to Crealelnstance is pUnkOuler, which is the controliing unknown for
the object we’ve been asked to create, if our new object is becoming part of an
aggregate. When we instantiate the object using new CKoala, we pass this
pUnkQuter down to the object so thatit can delegate properly. (Again, see “Ob-
ject Reusability” for more details.) When an object is aggregated, the outer
object must ask for an [Unknown interface on the new object. To enforce this
rule, we check that /1D _IUnknown is asked for when plUnkOuter is not NULL.

Next, in addition to passing pUnkOuter to new CKoala, we also pass a
pointer to an independent function named ObjectDestroyed. When the final
call to Release for the Koala object is about to free the object, it will call this
function. This allows the object to isolate itself from the nature of its server
housing (DLL or EXE) and allow that housing to act appropriately on the
event. You can see again in the CKoala::Release function in Listing 4-3 how
and when this function is called. We'll examine what ObjectDestroyed does in
both servers in the later section “Provide an Unloading Mechanism.”

Finally, if the object is successfully instantiated, we still need to initialize
it through an internal F/nit implemented in the CKoala object. Flnit is not a
standard feature of OLE 2 objects and is used here 1o support a convenient
two-phase creation model common in C++ coding. FInit performs all opera-
tions that might fail and is thus able to communicate success or failure back to
the class factory during instantiation. If this second initialization step suc-
ceeds, CreateInstance asks the object’s Querylnterface to return the appropriate
interface pointer, which has the convenient effect of calling that pointer’s
AddRef as required. Remember that Createlnstance, as a function returning a
new pointer, must return the pointer with a reference count on the caller’s
behalf, Furthermore, Createlnstance increments a global object count, which
the server can use to determine unloading conditions. If the initialization
fails, Createlnstance deletes the object and returns an out-of-memory error to
the caller.

IClassFuctory also has a member named LockServer, which either incre-
ments or decrements a lock count on the DLL or EXE in which the class fac-
tory lives. LockServer provides a method through which a user can keep a DLL
or an EXE in memory even if that server is not servicing any objects and has
no outstanding reference counts on its class factory. This allows a user to

177
Page 195 of 221

... 3

INSIDE OLE 2

optimize loading and reloading of servers, keeping the code in memory even
when it's not immediately necessary. Such optimizations can greatly increase
performance when a user deals with a very large server EXE or DLL.

The implementation of LockServerin the DLL and EXE versions differs
slightly, again to handle the differences in unloading mechanisms (although
we could isolate these differences as well). Their commeonality is to either in.
crement or decrement a global lock counter, which is used in different ways by
the server’s unloading mechanism.

Expose the Class Factory

The major difference between DLL and EXE servers is in how they expose
their class factories, primarily because an EXE defines a task, whereas a DLL
doesn’t. Your class factory is an object, and the Component Object library
needs to obtain its IClassFactory pointer. It does so either by calling a function
that you export from an object DLL (that is, an APl function that you imple-
ment) or by requiring you to call a Component Object library API function
from your own code in an EXE. In either case, an API function is used to get
the class factory pointer from your code to OLE 2’s code.

DLL Server

The DLL exposure mechanism is the simplest, so let’s start there. Every DLL
server must export a function named DUGetClassObject with the following
form:

HRESULT __export FAR PASCAL D11GetClassObject{REFCLSID r¢lsid,
REFIID riid, LPYOID FAR =*ppv};

The __exportis a matter of convenience—if your compiler does not sup-
port __export, you can still list the function in the EXPORTS section of your
DEF file. In addition, the macro STDAPI defined in COMPOBJ.H expands to
HRESULT __export FAR PASCA Lif you want to use it. In the sample code, you
will see EXPORT instead of __export. EXPORT is a macro in BOOKI1632.H (in
the INC directory) that compiles to __export for Windows 3.1 and to nothing
for Windows NT.

When a user calls CoCreatelnstance or CoGetClassObject and passes
CLSCTX_INPROC_SERVER, the Component Object library will look in the
Registration Database for the InprocServer for the given CLSID, call Col.oad-
Library to get that server into memory, and then call GetProcAddress looking
tor DllGetClassObject. The Component Object library then calls DIGetClass-
Object with the CLSID and 1ID requested by the component user. Your export

178 Page 196 of 221

F O UR: ComponentCbjects

‘___..-—-""_"__

then creates the appropriate class factory for the CLSID and returns the ap-
propriate interface pointer for IID, which is usually IClassFactory. By calling
this function in your DLL, the Component Object library obtains a pointer to
your class factory object, essentially, DliGeiClassObject is an API function you
implement for OLE 2. This is exactly like exporting the WEP function from a
DLL so that Windows can locate and call it.

NOTE: Because DilGetClassObject is passed a CLSID, a single DLL can pro-
vide different class factories for any number of different classes—that is, a
single module can be the server for any number of object types. OLE2.DLL s
an example of such a server; it provides most of the internally used object
classes of OLE 2 from one DLL.

All implementations of DUlGetClassObject should validaie that it can sup-
port the requested CLSID as well as the requested interface for the class fac-
tory, which can be either TUnknown or IClassFactory. 1f both checks succeed, it
then instantiates the class factory object (in this case, using CKoalaClass-
Factory). Remember that, as a function that creates a new interface pointer to
an object, DlGetClassObject must use AddRef on the new object before return-

ing, as shown in the following code:

if (11sEquaicLSID{rcisid, CLSTD_Koalal)
return Resu1tFromScode(CO_E_CLASSNOTREG):

//Check that we can provide the interface

if (lIsEquallID(riid, IID_Tunknown)
4% !1sEquailIb(riid, 1ID_IClassFactory)}
return Resu]tFromScode(EfNOINTERFACE);

//Return our IClassfactoery for Koala objects
xppv=(LPVQID}new CKoajaClassFactory(l);

//Don*t forget to AddRef the object through any interface we return
((LPUNKNONN)*ppv)-)AddRef();

Notice that this code, like all the sample code described in this book,
creates all objects with an initial reference count of zero, thereby requiring a
call to AddRef before returning an interface pointer to that object. This is
simply the design approach taken in this book to reinforce the idea thatanew
interface pointer that you return to an external object user must have AddRef
called through it so that the user can simply call Release when finished with
the object to free it. You could, of course, set the reference count in your own
objects to 1 in their constructors and avoid the explicit AddRef call shown
here.

179
Page 197 of 221

3

INSIDE OLE 2

EXE Server

Exposing a class factory from an EXE is somewhat different because an EXF,
has a WinMain, a message loop, and a window that define its lifetime. The real
difference between an EXE and a DLL in interacting with 2 Component Ob-
Jectlibrary is that, with a EXE, instead of having the library call an exported
function such as DIllGetClassObject, you pass your class factory object (that is,
an IClassFuctory pointer) to the CoRegisterClassObject API function, but only
under the appropriate circumstances.

The Component Object library informs an EXE that it is being used to
service objects through the command-line flag -Embedding (which is left over
from OLE 1. This flag is simply appended to the path entry for this local
server in the Registration Database, so if you register your EXE with flags
yourself, look for this at the end of the command line. Checking this flag is
the first priority in EKOALA s initialization. If this flag is not present, the end
user has attempted to run the application as a stand-alone from the shell. Be-
cause this application doesn’t live for any purpose other than to service ob-
Jects, it fails to load if -Embedding is not present.

The next few steps in CAppVars::Fnit are the same as those required of
any OLE 2 application: They use CoBuildVersion and Colnitialize because we
are using Component Object library API functions. After such initialization,
we create a window for this task, but the window remains hidden; in all cases
in which -Embedding is on the command line, the server window should re-
main hidden until explicitly asked to show itself. For this demonstration, the
EKOALA program has no need to ever show its window because it has no user
interface.

If we get past the initialization stage, we must then create the class
factory object and pass it to CoRegisterClassObject in the same way we are
accustomed to calling the Windows API function RegisterClass. With Register-
Class, you create a WNDCLASS structure, fill in the {pfnWndProc field with a
pointer to your window’s message procedure, and pass a pointer to that
WNDCLASS to RegisterClass. Your window procedure is not actually called
until someone (you or a user) creates a window of your registered class. With
CoRegisterClassObject, you create a class factory object with an IClassFactory
interface and pass a pointer to that interface to CoRegisterClassObject, but the
interface functions such as Createlnstance are not called until someone creates
a component ohject of your class.?

5. Inreality, calling CoRegister ClassObject immediately generates a number of calls to your IGlass-
Factory. AddRefbecause the Component Object library is holding onto your IGlassFactary
pointer. Thus your object is called before it ever creates an object, unlike your window
procedure.

180 Page 198 of 221

FOUR: ComponentObjects

Creating the class factory is simply a matter of allocating the object’s
data structure and function table, which is conveniently handled in C++ with
the new operator, as follows:

//Return our IClassFactory for Koala objects
m_pIClassFactory=new CKoataClassFactory();

if {NULL==m_pIClassFactory)
return FALSE;

//Because we hold on to this, we should AddRef it
m_plClassFactory->AddRef();

The additional AddRef ensures that the application controls the lifetime of
the class factory because the CKoalaClassFactory constructor initializes its ref-
erence count to zero. Because the application makes the first AddRef, it will
have to make the last Release, which allows the class factory to destroy itself.

After we have created the class factory, we must inform the Component
Object library about it by using CoRegisterClassObject because we have yet to
yield from this task in our message loop. The Component Object library does
not have a chance to call us, as happensin a DLL.

hr=CoRegisterflassObject(CLSID _Koala, (LPUNKNOWN)m_pIClassFactory
 CLSCTX_LOCAL_SERVER, REGCLS.MULTIPLEUSE, fm_dwRegCOJ);

if {FAILEDChr))
return FALSE; //Registration failed.

[Class factory successfully registered]

CoRegisterClassObject takes the CLSID of the class factory we’re providing, a
pointer to the class factory, the context in which we're running (CLSCTX-
_LOCAL_SERVER), aflag indicating how this class factory can be used, and
a pointer to a DWORD in which CoRegisterClassOQbject returns a registration
key that the object will need later, during shutdown.

NOTE: If your EXE is the server for multiple classes, you must call Co-
RegisterClassObject for each supported CLSID, just as you would call Register-
Class for each window class you support. The Gomponent Object library will
Jaunch your object when any user requests any CLSID you support, but it can-
not tell you through WinMain which CLSID that was. So you must register a
class factory for each CLSID you placed in the Registration Database.

The fourth parameter to CoRegisterClassObject specifies how many ob-
jects can be created using this class factory: REGCLS_SINGLEUSE or

181
Page 199 of 221

INSIDE OLE 2

REGCLS_MULTIPLEUSE. If you specify single use, OLE will launch another
instance of your application each time a user calls CoGetClassObject. If you
specily multiple use, one instance of the application can service any number
of objects. When you register a class with REGCLS_MULTIPLEUSE and
CLSCTX_LOCAL_SERVER, the Component Object library also registers
the class as CLSCTX_INPROC_SERVER, If you need to separately contro]
whether the class factory is registered for local servers and in-process servers,
use the flag REGCLS_MULTI_SEPARATE, which is available in OLFE. ver-
sion 2.01 and later but not in the first release of OLE 2, version 2.00.

To demonstrate single-use vs. multi-use servers, run two instances of the
OBJUSER program, choose Use EXE Object from the Koala Object menu of
each instance, and use one of the Create commands from the menu. Now
watch the modules that load and unload by using tools such as Heapwalker
(in the Windows SDK) or WPS (in the OLE 2 SDK). Because EKOALA regis-
ters itself as muitiple use, only one instance will be loaded to service both ob-
Jects. Now change EKOALA so that it registers as single use and run two
OBJUSERs again, using the same commands, This time two instances of
EKOALA will run, each servicing only one object.

Also note that CoRegisterClassObject is not a function that can be called
only from within an EXE. For all OLE cares, a DLL can call this function if it
wants to expose a class factory outside of its implementation of DlGet-
ClassObject or in lieu of DUGetClassObject altogether. The use flags should al-
ways be REGCLS _ MULTIPLEUSE in such situations.

Provide an Unloading Mechanism

182

Because the mechanisms we use to expose a class factory from the two kinds
of servers differ, the mechanisms for indicating when the server is no longer
needed also differ. An unloading mechanism is not a consideration for nor-
mal Windows applications because they are almost always controlled by the
user. OLE 2 allows DLLs and FXFs that serve objects to be.controlled by an-
other piece of component user code. Because the end user doesn’t close appli-
cations, you must use a programmatic technique to accomplish the same end.

The bottom line is that a server is no longer needed when there are no
lock counts from IClassFactory::LockServer and there are no objects currently
being serviced. However, because the EXE server has a window, it must
destroy its main window, cause a call to PostQuitMessage, exit the message loop,
and quit the application. DLLs have no idea of how to “quit” (that is, there is
no message loop to exit), so they mark themselves as “unloadable.”

Page 200 of 221

B

F O UR: ComponentObjects

DLL Server

Again, let’s start with the DLL because in this case the unload mechanism is
trivial. As we have seen, the DLL server increments and decrements a global®
lock count in IClassFactory::LockServer and increments the object count in
JClassFactory::Createlnstance. When any Koala object is destroyed, we want to
decrement the object count, a process that is handled in the ObjectDestroyed
function we provided to the Koala object:

void FAR PASCAL ObjectDestroyed(void)
{
g_cObj--:
return;

}

The DLL never tells anyone to unload it; instead, the Component Object
Model will periodically ask it ““Can you unload now?” by calling an export
DlCanUnloadNow using the following form:

STDAPI D11CanUnloadNow{veid)
{
SCODE scq

//0ur answer is whether there are any object or locks
se=(@L==g_c0bj && @==g_clock) ? S_OK : S_FALSE;
return ResultFromScede{sc);

}

The implementation shown here will answer “yes" when both object and lock
counts are zero and “no”’ otherwise. If this function answers “‘yes,” the librar-
ies will internally call CoFrecLibrary to reverse the call the function made to
CoLoudlibrary from within CoGetClassObject.

NOTE: The function that should call DiiCanUnloadNow is CoFreeUnusedLi-
braries, which, as we've seen, is called periodically by an object user. However,
the OLE 2 implementation of CoFreeUnusedLibraries does nothing, so you will
never see a call to DilCanUnloadNow. However, CoFreelnusedLibraries will be
implemented in the near future, so implement DUCanUnloadNow as if it were
always called anyway.

6. I confess! [used global variables! I normally try bard to avoid any use of global variables, as you
probably do. In this case, however, having a few globals simplified both DLL and EXE imple-
mentation. You might also see me declare a global instance handle when appropriate because
instance handles are really application-wide and might be needed deep in a long chain of func-
tion calls. Tn any case, global variables in this and other sample applications are prefixed with
g for clear identification. Please forgive my transgressions!

183
Page 201 of 221

INSIDE OLE 2

184

|

Also note that there has been no mention of class factory reference
counts in any of this discussion because such reference counts are not used to
keep the DLL in memory. Object user code wanting to hold a class factory
must also call LockServer (as described earlier, in “Implementing a Compo-
nent Object and Server””). Although a reference count could casily prevent a
DLL from unloading, it’s impossible to use this technique in an EXE, as the
following section illustrates.

Congratulations! You're a proud parent! After implementing DilCan-
UnloadNow, you now have a complete DLL object server into which you can
put more and more complex objects and interfaces, continuing to use the
same mechanisms. The framework for DLL-based objects developed here will
be used for more complex DLL objects later in this book. I certainly hope you
will be able to use it for incredible objects of your own.

EXE Server

Instead of being asked when your object can be unloaded, as in the DLL case,
an EXE server must initiate shutdown itself when it detects the following con-
ditions: No objects are being serviced, and there is a zero lock count. This
detection complicates use of EXE servers when we deal with compound docu-
ments because we throw in another condition regarding end-user control,
(See the section titled “Call Initialization Functions at Startup and Shut-
down” in Chapter 10.) When these two conditions are met, we need to start
shutdown by posting a WM _CLOSE message to the main window. The two
places where we must add a check are in IClassFactory::LockServer and in the
ObjectDestroyed function, which the Koala object will call after it’s freed:?

STOMETHODIMP CKoalaClassFactory::LockServer(BOOL flock)
{
if (flock)
g_clLock++;
else
1
g_clock--;

//No more objects and no Tocks, shut the app down.

if (@z:g_cobj &% B==¢_clock && IsWindow(g_hWnd))
PostMessage(g_hWnd, WM_CLOSE, @, aLy;

1

{continued)

7. Another way to implement LockServer(FALSE) is to artiticially increment the object count
(g—cObj++) and call ObjectDestroyed, which decrements that artificial count and starts shutdown
as appropriate. This approach centralizes the closure conditions in ObjectDestrayed and is used
in samples jn later chapters.

Page 202 of 221

F O UR: ComponentObjects

return NOERROR:
1

void FAR PASCAL ObjectDestroyed{vecid)
{
g cObj--;

//No more objects and no locks, shut the app down.
if (8==g_cOb] && B==g_clock && IsWindow(g_hWnd))
PostMessage(g_hwnd, WM_CLOSE, 8. 8L);

return;
}

To facilitate message posting, I sinned again in EKOALA by storing its win-
dow handle as a global variable. This slight bit of what you might consider
“‘cheating’’ works cleanly and easily without your having to pass the window
handle around. Such a global variable guarantees that any code in this appli-
cation could start a shutdown with the same mechanism. We might also use
PostAppMessage, but that requires some changes to the application’s message
loop, which wouldn’t be any cleaner.

By posting WM_CLOSE, we start shutdown of EKOALA exactly as if
an end user had closed it from the system menu. In the process of shutting
down, EKOALA destroys the main window (Def WindowProc's handling of
WM _CLOSE), exits WinMain (by calling PostQuitMessagein WM_DESTROY),
and ends up in CAppVars::~CAppVars. This destructor first calls CoRevokeClass-
Object, which unregisters the class factory you passed to CoRegistey ClassObject
identified by the DWORD key that CoRegisterClassObject returned. If you
registered multiple class factories for different CLSIDs, you must revoke each
one here. CoRevokeClassObject will call Release for any reference count that the
Component Object library was holding on the class factory. Furthermore, be-
cause we called AddRef ourselves betore CoRegisterCiassObject (remember that,
long ago?), we must now match it with a Release. This will reduce the class fac-
tory’s reference count to zero, causing it to free itself, Finally, because we called
Colnitialize, we need to remember to call ColUninitialize.

CoRevokeClassObject is the reason why a Component User cannot use a
class factory’s reference count to keep a server—either a DLL or an EXE—in
mﬂmnyHﬁpmkﬁem&nmmcmm“mﬂdk&pﬂmChwﬁmmmdnmmmxy
we could not shut the application down until the reference count reached
zero and the class factory was destroyed. The reference count will never reach
zero unless we call CoRevokeClassObject, but we call CoRevokeClassObject only
when we shut down after our window is gone, we've exited the message loop,

185
Page 203 of 221

INSIDE OLE 2

and we're on the nonstop express to oblivion. So we can’t revoke until we're
shutting down and we can’t shut down until we revoke. Aaaugh! Fourth down
and 100 yards to go...so we punt: Officially, a positive reference count on a
class factory cannot be used to keep a server in memory, so a Component User
must rely on LockServer, not the class factory reference count, to prevent shut-
down. Our salvation is that this is one of the various special cases of reference
counting in all of OLE 2.

m

Object Handlers

An object handler is a lightweight DLL server used to provide a par-
tial implementation of a full EXE object, thereby reducing the need
to launch the EXE to service that object. Because DLL objects gener-
ally load faster and need no parameter marshaling, use of handlers
generally increases overall performance. Object handlers used in
conjunction with a compound document object provide for data
transfer and object rendering (directly to screen or printer) but not
for editing, making handlers ideal in cases of licensing for
redistribution with a document. in much the same way TrueType
fonts in Windows 3.1 can be saved with a document, given the proper |
license. Chapter 11 will examine Object Handlers for specific use
with compound documents.

If an object user calls CoGetClassObject with CLSCTX-
_INPROC_HANDLER | CLSCTX_LOCAL_SERVER, the handler
18 loaded first and all calls to the object’s interfaces are sent to the
DLL. If a full DLL object exists as well, OLE will use that DLL first if
the CLSCTX_INPROC_SERVER flag is specified.

When a handler discovers that it cannot provide the requested
function to the caller, it can delegate that call to a full implementa-
tion of the object in an EXE server. However, the handler cannot
simply call CoCreatelnstance with CLSCTX_LOCAL_SERVER to
launch the EXE and obtain a pointer to an object in that EXE. In-
stead the handler must instantiate what is called the default handler
(OLEZ.DLL) for the same object CLSID through the mechanism
known as aggregation, as we'll see shortly. The handler then delegates
the function call to the object in the default handler, which launches
the EXE as appropriate. When the object in the handler wants to
free itself, it also frees the default handler object, which, in turn,
closes the EXE as necessary.

186 Page 204 of 221

F O UR: ComponentObjects

ﬂ

Of course, this is not without restrictions: The EXE object can
support only standard interfaces with builtin marshaling support,
and there is limited communication between the handler and the
application. Furthermore, the handler must ensure that data is syn-
chronized between itself and the application. Most often, however, a
handler exists to provide specdy rendering of specific data formats
and delegates requests for more esoteric formats to the application.

Finally, the only differences between DLL object handlers and
DLL object servers are their intended use and expected perfor-
mance. Technically and structurally, the handler is identical to a
DLL server. All discussion in this chapter dealing with DLL servers
applies equally to DLL handlers. The most significant differences |
are in how the two are used and how they should be designed, which
is a topic for Chapter 11.

Cosmo’s Polyline as a DLL Object

The Koala object that supports the IPersistinterface is pretty boring and, well,
useless. To demonstrate an object much more useful and exciting, the
CHAPOANPOLYLINE directory in the sample code contains an implementa-
tion of Cosmo’s CPolylineclass as a Windows Object in a DLL. The source code
for POLYLINE.DLL (which compiles into POLY(04.DLL) is a little too long to
show here, however. This implementation shows that a much more compli-
cated object, such as Polyline, can fit into exactly the same housing (DLL or
EXE) as a simple object, such as Koala.

The member functions of the original CPolyline from Chapter 2 are
converted into a custom interface, IPolyline4, defined in INCNPOLY4.H and
shown in Listing 4-6. (The 4in these names stands for Chapter 4 because we'll
be making modifications to the interface in later chapters.) Note that be-
cause all interface functions should return HRESULT whenever possible,
some return values in the original CPolyline are converted into out-parameters
in the interface. IPOLY4H also defines the interface IPolylineAdviseSink4,
through which a Cosmo document receives notifications from Polyline. This
replaces the CPolylineAdviseSink class that Cosmo used before.

If you look in Polyline’s sources, you'll notice that the core implemen-
tation of Polyline has not changed significantly from what was in Cosmo.
In addition, the DLLPOLY.CPP file is only a slight modification of the
DEKOALA.CPP file: a few name changes, a class registered in LibMain, and a

187
Page 205 of 221

f

INSIDE OLE 2

IPOLY4.H
£
4+ Polyline Object Chapter 4

Definition of an IPolyline interface for a Polyline cbject used
+* in the Cosmo implementation. This interface is custom and is

+ only supported from DLL-based objects.

Copyright (c)1993 Microsoft Corporation, All Rights Reserved
*/

#Hifndef _IPOLY4_H_
#define _IPOLY4_H_

//V¥ersioning.

fidefine YERSIONMAJCR 2
#define VERSIONMINGR)
ftdefine VERSIONCURRENT ex0eI2Ee00
f#idefine CPOLYLINEPOINTS 20

//Version 2 Poiyline structure
typedef struct __far tagPOLYLINEDATA

{

WORD wVerMaj; //Maior version number
WORD wVerMin: //Minor version number
WORD cPoints; //Number of points

BOOL fReserved: //Previpusly fDrawEntire
RECT res //Rectanglie of figure
POINT rgpt[CPOLYLINEPOINTS]: //Points on a 0-32767 grid

f/Version 2 additions

COLORREF rgbBackground; //Background color
COLDRREF rghline; //Line color
int ilineStyie; //ine style

} POLYLINEDATA, +PPOLYLINEDATA, FAR =LPPOLYLINEDATA;
f#define CBPOLYLINEDATA sizeof(POLYLINEDATA)
//We use the OLE 2 macro to define a new irterface

#undef INTERFACE
ffdefine INTERFACE IPolylineAdviseSink4

Listing 4-6. {continued)
[Polyline4 and [PoiylineAdviseSink4 custom interfaces.

1o Page 206 of 221

F O UR: ComponentObjects

H Listing 4-6. continued

/=

When someone initializes a polyline and is interested in receiving
% notifications of events, they provide one of these objects.

wf

DECLARE_INTERFACE_(IPolylineAdviseSink4, IUnknown)
{
//TUnknown members
STOMETHOD(QueryInterface) (THIS_ REFIID, LPLPVCID} PURE;
STOMETHOD_(ULONG, AddRefy (THIS) PURE:
STOMETHOD_(ULONG, Release) (THIS) PURE;

//Advise members.

STOMETHOD _(void, OnPointChange) {THIS) PURE;
STDMETHOD_{void, OnSizeChange} (THIS) PURE:
STOMETHOD_{vecid, OnDataChange) (THIS) PURE:
STOMETHOD_(void, OnfolorChange} (THIS) PURE;
STOMETHOD_ (void, OnlLineStyleChange) (THIS) PURE;
I8

typedef IPolylineAdviseSinkd FAR *PPOLYLINEADVISESINK;

flundef INTERFACE
fidefine INTERFACE IPolyiined

DECLARE _INTERFACE (IPolylined, IUnknown}
{
//IUnknown members:
STOMETHOD (QueryInterface) (THIS. REFIID, LPLPVDID) PURE:
STOMETHOD_(ULGNG, AddRef) (THIS) PURE;
STOMETHOD_(ULONG, Release) (THIS) PURE;

//IPolyline members

/{File-related members:
STOMETHOO(ReadFromFile) (THIS_ LPSTR) PURE :
STOMETHOD(WriteToFiled (THIS_ LPSTR) PURE:

//Data transfer members:

STOMETHOD{DataSet) (THIS_ LPPOLYLINEDATA, BOODL, BOOL) PURE:
STDMETHOD (DataGet) (THIS_ LPPOLYLINEDATA) PURE;
STOMETHOD(DataSetMem) (THIS_ HGLOBAL, BOOL, BOOL, BOGL) PURE;
STOMETHOD(DataGetMem) (THIS_ HGLOBAL FAR =)} PURE;

STCMETHOD(RenderBitmap) (THIS_ HBITMAP FAR) PURE;

STOMETHOD¢ RenderMetafile) (THIS_ HMETAFILE FAR *) PURE;
STOMETHOD(RenderMetafilePict) (THIS_ HGLOBAL FAR =) PURE ;

{eoniinued)

189
Page 207 of 221

INSIDE OLE 2

190

Listing 4-6. continued

//Marnipulation members:

STOMETHOC(Init) (THIS_ HWND, LPRECT, DWORD, UINT) PURE;
STDMETHOD (New) (THIS) PURE:

STOMETHOD (Undo) (THIS) PURE;

STDMETHOD (Window) (THIS_ HWND FAR +) PURE;

STOMETHOD(SetAdvise) (THIS_ LPPOLYLINEADVISESINK) PURE;
STOMETHOD(GetAdvise) (THIS_ LPPOLYLINEADVISESINK FAR #) PURE:

STOMETHOD(RectGet) (THIS_ LPRECT) PURE;
STOMETHOD(S1zeGet) (THIS_ LPRECT) PURE;
STDMETHOD{RectSet) (THIS_ LPRECT, BOOL) PURE;
STDMETHOD(SizeSet) (THIS_ LPRECT, BOOL) PURE;

STOMETHOG(ColarSet) {(THIS_ UINT, COLORREF
. COLORREF FAR =) PURE;
STDMETHOD(ColorGet) (THIS_ UINT, CGLORREF FAR =) PURE:

STDMETHOD{LineStyleSet) {(THIS_ UINT, UINT FAR =*) PURE:
STDMETHOD(LineStyleGet) (THIS_ UINT FAR =) PURE:
g

typedef IPolyline4 FAR +|PPOLYLINE;
//Error values for data transfer functions

ffdefine POLYLINE_E_INVALTDPOINTER
MAKE_SCODECSEVERITY_ERROR, FACILITY_ITF, 1)

#define POLYLINE_E_READFAILURE \
MAKE_SCODE(SEVERITY_ERROR, FACILITY_ITF, 2)
ffdefine POLYLINE_E WRITEFAILURE \

MAKE_SCODE(SEVERITY_ERROR, FACILITY_ITF, 33
//Color indices for ¢olor member functions
fidefine POLYLINECOLOR_BACKGROUND %}
fdefine POLYLINECOLOR_LINE 1

flendif //_TPOLY4_H_

DLL instance handle passed to the CPolyline constructor. Oh yes, CPolyline
still exists, but it is now more like the CKoala object in the previous examples.
The member functions of the CPolyline of Chapter 2 have been moved to the
interface implementation ClmplPolyline.

Page 208 of 221

F O UR: ComponentObjects

As we move forward in this book, we'll incrementally replace specific
members of [Polyline4with those of another interface. In the next chapter, for
example, we'll remove the two file-related functions from IPolyline5, replac-
ing them with an IPersisiStorage interface on the object. In Chapter 6, we’ll
replace the data transfer and graphics rendering functions in IPolyline6 with
the IDataObject interface. Beyond that, we'll add compound document fea-
tures, including in-place activation, to Polyline. However, all these additions
come in the form of other interfaces, which will not interfere with Polyline’s
operation as a component object.

The version of Cosmo that uses the component Polyline object, Compo-
nent Cosmo, is provided in CHAPOACOCOSMO and requires only a few
modifications. When you run Component Cosmo, however, you will notice
absolutely no changes in the user interface or in any behavior. Component
Cosmo merely changed from being the user of a local C++ object, CPolyline, to
being a Component User of the Polyline Windows object through the
IPolylined interface.

Object Reusability

So what about inheritance?

Windows Objects themselves and the classes they identify through
CLSIDs have no notion of implementation inheritance whatsoever. One Win-
dows Object does not inherit the implementation of another Windows Object.
But Windows Objects are still reusable through two mechanisms, containment
and aggregation. These mechanisms have several significant benefits over in-
heritance, which is why the Component Object Model has significant benefits
over models that rely heavily on inheritance.

In the Component Object Model, inheritance is simply considered a tool
that is useful for implementing classes in C++, as well as for defining inter-
faces. In your implementation of an object, either you can use multiple inheri-
tance from all the interfaces you support, or you can contain implemen-
tations of each interface the object supports, in which each interface imple-
mentation inherits a single interface. That’s really what an interface is for: to
help the implementor of an object but not the object wser. Inheritance greatly
enhances programmer productivity, but does the user really care how the ob-
ject was implemented? The answer is definitely “NO” —obiject users are sup-
posed to be entirely ignorant of the object’s implementation, especially when
the implementation exists in other pieces of code that you did not implement
or for which you don’t have the source, such as Windows itself.

Page 209 of 721

7

INSIDE OLE 2

The single most significant problem of inheritance is that two unrelated
pieces of code work on the instance of an object. If Fhave a base class B and a
derived class D, which inherits from B, an instantiation of class D is only one
data structure in memory. [f B contains virtual functions that D does not over-
ride or if the implementation of D explicitly calls a member function in B
(that is, using B::<member function>), we again have two pieces of code working
on the same memory. But class B does not know the expected behavior of class
D, so how on earth can D force the correct behavior of its objects? The answer
is that D must know what B is going to do on that object so that it knows when
to override a virtual function in B and when exactly to explicitly call B’s func-
tions. This is exactly the same problem as trying to figure out when to call
DefWindowProc for any given message: We’ve merely replaced the word message
with virtual function. In any case, because B cannot know about the implemen-
tation of D, D must know about the implementation of B, which causes D to
violate its status as a user of B.

Systems built on inheritance have the key problem that they must ship
all their source code in order to be usable. Take a look at application frame-
works such as the Microsoft Foundation Classes: Source code is shipped with
the product, so you know how to inherit from any given class and can dupli-
cate behavior as appropriate. Sure, inheritance works well in building large,
complex systerns because it’s a much better way to manage source code than
creating a large stockpile of sample source files. It certainly works well when
you control and have access to all the source code for all classes. It certainly
helped me to develop the sample applications in this book. But it does not
work for reusing objects implemented in the operating system itself, for
which either source code is not available or you did not originally implement
the object yourself.

The Component Object Model avoids all these problems but retains
reusability through its mechanisms of containment and aggregation, which we
are finally in a position to explore in detail. Both mechanisms achieve reus-
ability literally by using, instead of inheriting, the implementation of another
object. The object we're using remains entirely self-contained and operates on
its own instance of data. Our own object, which is called the aggregate, works on
its own instance of data and calls the other object as necessary to perform
specific functions in which we can pass it the data on which to operate.

Let’s say | have an object named Animal that knows only of itself and
exists as an atomic entity (like the Koala object). I can illustrate this object as
a block with circular jacks for each interface: [Unknown and IAnimal (with
members such as Eat, Sleep, and Procreate). Again, by convention, {Unkrown is
always shown on top, with all other interfaces shown to the side, as follows:

192 Page 210 of 221

F O UR: Cocmponent Objects

IUnknown

It
animat Q= Animal
1

A user of this object with a pointer to either interface can use Querylnter
face to get a pointer to the other. The implementation of JAnimal knows about
the object’s [Unknown and vice versa. Now [want to create a more complicated
Koala object that will expose interfaces [Unknown, [Animal, and IMarsupial
(maybe with members such as CarryYounginPouch and LwelnAustralia) with a
more complicated picture:8

1Unknown

IMarsupial O—F
P N Koala

lAnimal 1

When I implement Koala, I know that Animal exists and I want to reuse
Animal’s implementation. I can use Animal and its implementation of IAni-
mal in the following two ways, neither of which changes how the external
world sees Koala:

B Containment: Koala completely contains an Animal object and im-
plements its own version of fAnimal to expose externally. This makes
Koala a simple user of Animal, and Animal need not care. Koala
never calls IAnimal:: QueryInterface.

m Aggregation: Koala exposes Animal’s IAnimal interface directly as
Koala's JAnimal. This requires that Animal know that its interface is
exposed for something other than itself, such that Querylnterface,
AddRef, and Release behave as a user expects.

8. Instinct tells you that IMarsupial should inherit from IAnimal because a marsupial is just an-
other kind of animal. The Windows Object notion of interfaces, however, means that through
a pointer to TMarsupial, you deal with the objectas a marsupial but not generally as anything
else, If you want to treat it the same as any other animal, call FMarsupial:: QueryInterface-
(11D _IAnimai) for the appropriate interface. As a real life example, consider Compound
Docurmnent ohjects that are all treated through f0leObject, regardless of whether they are linked
or embedded. A linked object can be viewed as a further refinement of an embedded object, so
you might expect that an interface such as JOleLink for linked objects would inherit from
JOleObject. But it doesn’t. You use Query/nterface through [OleGbject for JOleLink. (uery-
Interfuce is the mechanism for getring at more functions on the same obiect.

193
Page 211 of 221

INSIDE OLE 2

Case 1: Object Containment

194

Complete containment of Animal is necessary when I need to change some
aspect of my implementation of /Animal. Because all external calls to that
interface will enter Koala first, Koala can override specific functions or sim-
ply pass that call to Animal’s implementation. The internal structure of Koala
will appear something like this:

{Unimown

{Marsupial O— Koala Unknowa

{Animal B

1nimai O~ Animal

In this case, Animal always operates on its own data unless Koala ex-
plicitly passes other data to it {which is also true in aggregation). In other
words, by default the two objects work on different data, and only by conscious
design of an interface would the two be able to communicate. This is much
different from inheritance, in which working on the same data is the default
and it takes conscious effort to create separate data instances.

To build this sort of structure, Koala calls CoCreatelnstance on
CLSID_Animal when Koala itself is created, passing a NULL for pUnkQuter
and asking tor /1D_IAnimal. Koala maintains this JAnimal pointer until the
Koala object is destroyed, at which time Koala calls IAnimal::Release to free the
Animal object. Whenever Koala’s [Animal implementation wants to reuse
Animal’s [Animal implementation, Koala simply calls the appropriate mem-
ber function on Animal.

Reusing an object through containment is much like using a Windows
list box to manage 2 list of information. For example, the Patron program in
Chapter 2 maintains a list box in such a way that each item is a pointer to a
page in the document. The list box provides all the memory management to
maintain the list, removing that burden from the application. But Patron
never makes the list hox visible, so nothing cutside of Patron knows that it’s
using a list box in this manner. Containment is the same, in that the aggre-
gate object uses specific services of the contained object without ever showing
the outside world that it is using the contained object in this capacity.

This technique is the simplest way to reuse another’s implementation of
an interface. However, you do not always care to override any functions in
such an interface, wanting only to pass every call through to the object you're

Page 212 of 221

F O UR: Component Objects

using. You could, of course, implement stubs for every TAnimal function that
only calls the contained object, but you would rather simply expose thatinter-
face directly and eliminate any need for such stubs. That technique is
aggregation.

Case 2: Object Aggregation
Aggregation on Animal is useful when Koala does not want to change any
aspect of how it appears through the IAnimal interface—that is, Koala has no
need simply to implement a bunch of Animal stubs that only delegate to a
contained Animal object. Therefore, Koala wants to expose the IAnimalinter-
face of the Animal object directly, turning it into Koala’s JAnimal. This yields
an internal structure like the following:

{Unknown
e
_ O—F Koala {Unkriowa
iMarsupial U1 How does /Animal Q
I know about Koala? i
tanimal O Y Animal

&

Here’s the problem. Because Animal's JAnimalis exposed directly, users
of Koala will expect that IAnimal:: Querylnterface(11D_IMarsupial) will return a
pointer to Koala’s IMarsupial. But Animal was not written to know anything
about IMarsupial, et alone know anything about the Koala object. How can it
know the identity of the outer object and its interfacesr

The answer is that when Koala creates Animal, Koala passes its IUnknoun
pointer to the Animal class factory Createlnstanceas the pUnkOuter parameter.
(Note that Animal holds onto this pointer but does not—repeat, not—ocall
AddRef through it.) In this fashion, Koala identifies itself as the controlling un-
knouwn of the aggregate. Furthermore, Koala must always ask for Animal’s
[Unknown when creating Animal as part of an aggregate. Note that an object
might not support aggregation, in which case it fails Createlnstance when a
non-NULL pUnkOuter is specified.

This sets up a contract between the aggregate object (Koala) and the
aggregatee (Animal) in such a way that Animal must implement an instance
of IUnknown that is separate from all other interfaces. This [Unknown can
return interface pointers to all other interfaces on Animal, and so Koala
can ask Animal’s IUnknown for any of Animal’s interfaces and expose those
interfaces as if they belonged to Koala. Now the Querylnterface, AddRef, and

Page 213 of 231

-

INSIDE OLE 2

Release functions in any of Animal’s interfaces—besides Animal’s separate
IUnknown—don’t do anything to Animal. Instead these functions call the
same functions in Koala’s controlling unknown because these functions
affect the object as a whole as seen from the outside. From the outside, Animal’s
interfaces appear as if they were interfaces on Koala, and so they must act like
interfaces on Koala. This means that AddRefand Release affect Koala's refer-
ence count and that QueryInterface can return pointers to any interface ex-
posed from Koala.

{Unknown members in interfaces
delegate to Koala's /{Unknown.

{Unknown

iMarsupial (U

Koala’s {Unknown uses
Animal's if Koala doesn’t
know the requested interface.

tAnimal (J

The pUnkQuter parameter passed to Animal's [ClassFactory::Create-
Instance must be available to all interfaces in Animal except for Animal’s
I[Unknown itself. Typically this means that Animal stores pUnkOuter in its ob-
ject structure:

STDMETHODIMP CAnimalClassFactory(LPUNKNCOWN pUnkOuter, ...)
EPUNKNOWN pObj;
ébﬁj:new CAnimal(pUnkOuter, ...); //Create the object
bbsj->FIn1t(); /fInitialize object
i.'

CAnimal::CAnimal {LPUNKNOWN pUnkOuter, ...)
{
&iéUnkOuter=pUnk0uter; //Save the contrelling unknown
i..

26 Page 214 of 221

F O UR: CompenentObjects

Note that when CAnimal saves pUnkQufer in this example, it does not
call AddRef through that pointer. This is because Animal’s lifetime is entirely
defined by Koala’s lifetime, so the AddRef is unnecessary and dangerous: If
Animal held a reference to Koala, Koala could not free itself until Animal
released that reference. But Animal will not release that reference until it
frees itself, and that will not happen until Koala releases its reference on Ani-
mal, which only happens if Koala is freeing itself. If we had to choose between
death and spinning around in this endless reference loop, we’d keep circling
until death became the favorable alternative. To avoid such problems, the ag-
gregatee (Animal, in this case) is specifically required to not call AddRef
through pUnkOuter.

Now Animal’s [Unknrown must not delegate to the controlling unknown;
instead it must return only those interfaces known to Animal, and it must only
affect Animal’s reference count. This [Unknown implementation essentially
controls Animal’s lifetime:

STOMETHODIMP CAnimal::QueryInterface(REFIID riid, LFLPVOID ppv)

{
*npv=NULL;

if (IsEqualllD(riid, TID_IUnknown))
*ppy={LPVOID} (LPUNKNOWN)this;

if (IsEqualllD{riid, TID_IAnimal))
#ppy=(LPV0OIDIMm — plAnimal;

if (NULL!=%ppv)
{
((LPUNKNOWN)*ppv)->AddRef(};
return NOERROR;
h

return ResultFromScode(E_NOINTERFACE);
}

In this code, m_ pIAnimalis a pointer to Animal’s implementation of the
TAnimalinterface, which it creates in CAnimal::FInit:

BOOL CAnimal::FInit(void)
{
LPUNKNOWN plUnknown={(LPUNKNOWN)this;

it (NULL!=m_pUnkQuter)
pIUnknown=m_pUnkOuter;
(continued}

197
Page 215 of 221

INSIDE OLE 2

198

//A1Tocate contained interfaces.
m_plAnimal=new CImpIAnimal{this, plUnknown);

return (NULL!=m_pIAnimal);
1

Animal here plays a nasty trick on its interface implementation, which, as you
may recall, must delegate to the controlling unknown if Animal is being ag-
gregated but must affect Animal outside of aggregation. To handle this, Anj-
mal always passes some [Unknown to the interface implementation. Under
aggregation, it's the controlling unknown. Without aggregation, Animal
passes its own [Unknown as the controlling unknown to the interface. The
interface, in turn, blindly delegates all IUnknown calls to whatever controlling
unknown it was given, as follows:

CImpTAnimal::CImpIAnimal(LPYOID pObj, LPUNKNOWN pUnkOuter)
{

m_punkOuter=pUnkQuter;

}

STDMETHODIMP CImpIAnimal::QueryInterface(REFIID riid, LFLPVOID ppv)

{
return m_pUnkOuter->Queryinterface(riid, ppv);

1

STDMETHODIMP_{ULONG) CImpIAnimal::AddRef{void}

{
return m_pUnkQuter->AddRef(};

}

STDMETHODIMP_(ULONG) CImpIAnimal::Release(void)

{
return m_pUnkOuter->Release();

1

So let’s say there is no aggregation; the m_pUnkOuter to which ClmplAnimal
delegates is the [Unknown implemented in CAnimal This Unknown implemen-
tation will return pointers for IUnknown and IAnimal, as shown before.

If there is an aggregate object, m_pUnkOuter points to the controlling
unknown, so the calls to this /Unknown from the IAnimal interface bypass Ani-
mal’s [Unknown and end up in Koala's IUnknown. In this controlling un-
known, Koala handles AddRef and Release calls as if they were made through
one of its own interfaces. As for QueryInterface, the controlling unknown can
handle it in one of three ways:

Page 216 of 221

F O UR: Compenent Objects

B [f the requested interface is implemented by the aggregate object,
return a pointer to that interface directly.

B If the requested interface is implemented in the contained object
and exposed as one of the aggregate’s interfaces, delegate the
QueryInierface to the contain object's IUnknown.

® If the aggregate object does not recognize the reqeusted interface it
may either blindly delegate the request to the contained object or
fail, depending on the goals of the aggregate object.

The Querylnterface of an aggregate’s controlling unknown, such as the
one Koala would implement, would therefore appear follows:

STOMETHODIMP CKoala::QueryInterface(REFIID riid, LPLPVOICppv)
{
#ppv=NULL;

if {IsEqualliD{riid, IID_TUnknown))
*ppy=(LPVOID)this;

if (IsEquallID(riid, IID_IMarsupial)}
#ppv={LPVOID}m_pIMarsupial;

if (IsEquallID(riid, IID_TAnimal))
return m_piUnknownAnimal->QueryInterface(riid, ppv);

if (NULL!=#ppv}
{
((LPUNKNOWN)Y=ppv)->AddRef(};
return NOERRDR;
}

return ResultFromScode(F_NOINTERFACE);
1

Here, m_plUnknownAnimal is the [Unknown pointer we requested when
creating the Animal object. The IUnknoun implementation on an object such
as CAnimalin this example is always the last stop for a Querylnterface, an AddRef
or a Releasecall. Animal’s [Unknown never worries about aggregation in and of
itself because it has to be the controlling unknown for its own object. Only if
the Animal object itself contained more primitive objects would it do any fur-
ther delegation, but in no way will it pass any request to a higher unknown.

199
Page 217 of 221

INSIDE OLE 2

200

If the requested interface was not [Unknown, IMarsupial, or TAnimal,
what should Koala do? Koala has two choices, depending on how it’s using the
Animal object. First, Koala might be using Animal as what I call a “helper”
object. A helper object is used to provide very specific services to higher ag-
gregate objects where the aggregate ohjects expose only very specific inter-
faces from the helper objectiself. The preceding code uses the Animal object
in this fashion. This is similar to using a hidden list box control in an applica-
tion to perform list management. You never show the list box, but you are
using it as a helper for your implementation.

The second way in which Koala might use Animal is where Koala’s
TUnknoun would itself delegate Queryinterface calls for any unrecognized inter-
face to Animal’s [Unknown. This approach would replace the refuin
ResultFromScode(...) call in the preceding code with m_plUnknownAnimal-
>QueryInterface(...)). By doing so, Koala is not aware of all the interfaces that
it might expose as its own. For example, if Animal implemented an additional
interface called IPrimate, Koala would look like both a marsupial and a pri-
mate at the same rime. This type of aggregation is useful only when Koala is
essentially subclassing the Animal object by adding an interface of its own.
This is exactly like subclassing a Windows edit control in such a way that your
subclass procedure changes the behavior of the edit control for a few specific
messages but blindly passes all other messages to the original message pro-
cedure of the control. The aggregate object in this case is only a thin shell
around the contained object.

To wrap up our discussion about aggregation, I want to mention one
more point. In its role as the aggregate object, Koala might want to cache
specific interface pointers it obtains by calling Animal’s /Unknown.:Query-
Interface. If it does so, it must do something strange: It must immediately call
Release through the pointer as follows, where m_plUnknownAnimal is the Ani-
mal’s IUnknown and m_plAnimalis a variable in the Koala object:

HRESULT hr;
[Code that created m_plUnknownAnimalj

//Cache a pointer to Animal's IAnimal
m_pIAnimai=NULL;

hr=m_pIUnknownAnimal->QueryInterface(II0_TAnimal
, (LPLPVOID)&m_plAnimal};

if (SUCCEEDEQ(hr))
m_pTAnimal->Release(};

Page 218 of 221

FOUR: ComponentObjects

After executing this code, m_plAnimal will be either NULL (in which
case, we could not cache the pointer) or non-NULL. But we called Release
already, right? Doesn’t that invalidate the pointer? Actually, it doesn’t because
we are still holding onto m_ pIlUnknownAnimal, and so the object itself is still
valid, which means that all its interface pointers, including the one we just
called Release through, also remain valid. Although this seems strange, think
about the consequences. Animal’s [Unknown::QueryInterface will call IAnimal-
-:AddRef before returning the pointer to Koala. But /Animal has Koala’s
IUnknown as the controlling unknown, so the AddRef call will increment
Koala’s reference count, which will not be decremented until Koala calls
m_ pIAnimal->Release. If Koala did not make the call here, it would be able to
make the call only when it was freeing itself, but it could never get there be-
cause of this extra reference count. So, once again, to avoid the problems of
circular references, the aggregate object must call Release through any point-
ers obtained from the contained object’s [Unknown.

Summary

A first requirement of all OLE 2 applications is that they use a message queue
of size 96 (under Windows 3.1) and that they provide for initializing the OLE
92 libraries if, in fact, the application can run with the version of those libraries
that currently exists on the machine. Checking versions is accomplished
through the CoBuildVersion and OleBuildVersion functions, whereas initializa-
tion occurs through Colnitialize and Olelnitialize. On shutdown, an application
must also call CoUninitialize or OleUninitialize to reverse the corresponding
... Initialize call. These requirements are presented in this chapter because all
later samples must comply with them.

Part of library initialization involves defining a task allocator object, one
that implements the IMalloc interface, which is used for all task memory allo-
cations. An OLE 2 application can either implement its own or use an OLE
9-provided allocator that works on the technique of multiple local heaps.
OLE 2 always implements a similar shared allocator that can provide memory
shareable between applications. Although applications can change the task
allocator, they cannot change the shared allocator. While the application is
running, any other piece of code (such as the OLE 2 libraries} can call CoGet-
Madloc to obtain a pointer to either the task or shared allocator objects.

The Ultimate Question presented in Chapter 3 asked how you obtain a
pointer, given knowledge and the identification of a specific Windows Object.
This chapter deals with the specific case in which you identify a Windows Ob-
ject, given a CLSID, and use the function CoCreatelnstance to instantiate an

201
Page 219 of 221

INSIDE OLE 2

202

object of that class. Such an object is called a component object, and the applica-
tion using it is called a component user. CoCreatelnstance internally uses
CoGetClassObject, which obtains a class factory object (IClassfactory) for the
CLSID and calls IClassFactory::Createlnstance to perform the actual instantia-
tion. What you do with the object once you have an interface pointer to it is
your own business, although there are a few considerations when you release
the object, such as calling CoFreeUnusedLibraries to purge unused DLLs from
Memory.

Implementations of component objects that can be loaded and called by
functions such as CoCreatelnstance and CoGetClassObject have different struc-
tural requirements, depending on whether the object lives in a DLL or an
EXE. A DLL exports a function named DUGetClassObject, which provides the
API function through which CoGetClassObject obtains a pointer to the DLL's
class factory for a given CLSID. EXEs, on the other hand, must pass a pointer
to their class factory to the CoRegisterClassObject function for each supported
CLSID. The two module types also differ in their shutdown conditions.
Whereas the Component Object library asks a DLL whether that DLL can be
unloaded, an EXE must initiate its own shutdown when the proper conditions
are met— that is, it must destroy its main window and exit its message loop. As
examples, this chapter implements an object named Koala that supports the
IPersist interface in both a DLL and an EXE and then separates the Polyline
object of the sample Cosmo application into a component object and shows a
modification of Cosmo, called Component Cosmo, which uses the compo-
nent Polyline object.

Object reusability in OLE 2 is achieved through mechanisms called con-
tainment and aggregation, not through inheritance. The inheritance mecha-
nism works well for source code management but generally requires that you
have the source code available for any classes from which you inherit. Because
of source code availability and a host of other problems, OLE 2 works on
mechanisms other than inheritance that provide the same reusability of code,
but it avoids the problems with traditional techniques. There is, however,
some impact on the implementation of an object that wants to allow itself to
be reusable via containment and aggregation.

Page 220 of 221

111111111111

~~~~~~~~~~ &

.} 1 . ii |||'1‘

s EC T I ON 11

OBJECT-ORIENTED
SYSTEM FEATURES:
FILES AND DAIA
TRANSFER

Page 221 of 221



