
Page 1 of 221

ABB Inc.

EXHIBIT 1011
Page 1 of 221

Page 2 of 221

The Fast Track

to Building

Powerful

Object-Oriented

Applications

KRAIG BROCKSCHMIDT ”
Page 2 of

G:

Page 3 of 221

PUBLISHED BY
Microsoft Press

A Division of Micr0soft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1994 by Kraig Brockschmidt

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Brockschmidt, Kraig, 1968—

Inside OLE 2 / Kraig Brockschmidt.
p. cm.

Includes index.
ISBN 1-55615-618-9

l. Object-oriented programming (Computer science) 2. Microsoft
Windows {Computer file) I. Title.
QA76.64.B76 1993
005.4‘3--dc20 9334953

CIP

Printed and bound in the United States of America.

123456789AGAG987654

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada
Publishing Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd, Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books NZ. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in—Publication Data available.

Microsoft and MS-DOS are registered trademarks and Visual C++, Windows, and

Windows NT are trademarks of Microsoft Corporation. Apple is a registered trademark
and Macintosh is a registered trademark of Apple Computer, Inc. Borland is a registered
trademark of Borland International. Smalltalk is a registered trademark of Xerox
Corporation.

Acquisitions Editor: Dean Holmes

Project Editor: Ron Lamb

Technical Editor: Seth McEvoy

Page 3 of 221

Page 4 of 221

CONTENTS

Prefizce .. XV

Using the Companion Disks .. xxii

SECTION I

WINDOWS OBJECTS

CHAPTER 1

AN OVERVIEW OF OLE 2 3

Windows Objects: The Component Object Model 5
Objects and Interfaces ... 8

Structured Storage and Compound Files 12
Uniform Data Transfer and Notification 15

Notification ... 17

Data Objects and the Clipboard 17

Data Objects and Drag-and-Drop 17

Data Objects and Compound Documents 18

Data Objects and DDE ... 19

Compound Documents: Object Embedding 19

Compound Documents: Object Linking and Monikers 21

Compound Documents: In—Place Activation (Visual Editing) 23
Automation 24

CHAPTER 2

CONVENTIONS, C++, AND SAMPLE CODE 27

To C or Not to C (with Apologies to Shakespeare) 27
User-Defined Types: C++ Classes 29

Access Rights 33

Single Inheritance ... 34
Virtual Functions and Abstract Base Classes . . , _ 37

Multiple Inheritance .. 39

Sample Code .. 41

Include Files: The INC Directory 42

Libraries: The LIB Directory 43

The BUILD Directory .. 43

Three Amigos: BttnCur, CizmoBar, and StatStrip 44

Class Libraries: The CLASSLIB Directory i . . , 45

Page 4 of 221

Page 5 of 221

INSIDE OLE2
—-—-——————_———_

vi

Interface Templates: The INTERFAC Directory 48
Chapter Sources: The CHAPxx Directories 48

Cosmo: A Graphical Editor (with Apologies to No One in Particular) . . 49

Patron: A Page Container (with Apologies to Merriam-Webster) 51
Building and Testing Environment 54

CHAPTER 3

OBJECTS AND INTERFACES . l l 57

The Ultimate Question to Life, the Universe, and Objects
(with Apologies to Douglas Adams) , t 58

Windows Objects vs. C++ Objects 64

Let’s Go Traveling ... 64

Other Differences Between Windows Objects and C++ Objects 67
A Simple Object in C and C++: RECTEnumemtor ‘ 70

RECTEnummwr and the IEnumRECT Interface _ 72

Creating the RECTEnumcmtor Object . _ _ , 94

Using an IEnumRECT Pointer 95

Reference Counting .. 96

My Kingdom for Some Optimizationsl 98
Call-Use-Release .. 100

anknoum,theRootofAllEVil 101

Querylnterfacevs. Inheritance .. 103

Querylnteaj‘acg Properties and Interface Lifetimes 104

Some Data Types and Calling Conventions 106
STDMETHOD and Associates 106

HRESULT and SCODE .. 107

Globally Unique Identifiers: GUIDs, IIDs, CLSIDS 109

OLE 2 Interfaces and API Functions 1 10

Custom Interfaces 112

Interfaces vs. API Functions 112

What Is a Windows Object? (Reprise) , 1 13
Summary..._._. 114

CHAPTER 4

COMPONENT OBJECTS

(THE COMPONENT OBJECT MODEL) 117

Where the Wild Things Are (with Apologies to Maurice Sendak) 1 19

The New Application for Windows Objects ________ 121
Enlarge the Message Queue 122

Verify the Library Build Version 123
Call CoImtz'alz'ze or Oldmtz'alize t . , . 124

Call CoUm‘nitialize or OleUninitiaiize 125

Page 5 of 221

Page 6 of 221

 Contents

Memory Management and Allocator Objects 126

Component Objects from Class Identifiers: A Component User . . . , . . . 138

#inciude glad]; and Precompiled Headers 148

Instantiate a Component Object 149

Manage the Object and Call CoFreeUnusesz'bmries 152

Implementing a Component Object and a Server 153

RegisterCLSIDs174

Implement the Glass Factory 176

Expose the Class Factory 178

Provide an Unloading Mechanism , . t . _ . _ _ 182

Cosmo’s Polyline as a DLL Object 187

Object Reusability . _ _ 191

Case 1: Object Containment 194

Case 2: Object Aggregation . _ . . _ 195

Summary.........,........--. . .._....___.201

S E C T I O N I I

OBJECT-ORIENTED SYSTEM FEATURES:

FILES AND DATA TRANSFER

C H A P T E R 5

STRUCTURED STORAGE AND COMPOUND FILES 205

Motivation .. 208

Patron Files with the jitters 209
The Decaffeinated Alternative 211

Energy Boosts Without the jitters: Compound Files 213

Features of Compound Files _ . 215

Stream, Storage, and LockBytas Objects 215

Element Naming t _ _ . . _ _ . . 217
AccessModes. 217

Transacted Storages 219
Incremental Access _ 220

Shareable Elements , . t 222

Compound File Objects and Interfaces 223

Storage Objects and the [Storage Interface 223
Stream Objects and the IStream Interface 227

LockBytas Objects and the ILockBytas Interface 229

Compound Files in Practice _ . . 233

Simple Storage: Cosmo .. 234

Pulling Rabbits from a Hat with STGM_CONVERT 240
Streams vs. Files 241

vii

Page 6 of 221

Page 7 of 221

fl

INSIDE OLE2
—————————-____.___—_—______

Complex Compound Files: Patron 244

The Root Storage and Temporary Files 263
Managing Substorages 264

Multilevel Commits ... 265

File Save As Operations 288

Low-Memory Save As Operations 269

Streams as Memory Structures 271

Other OLE 2 Technologies and Structured Storage 272
The IPerszlrtStomge, [PersistStream and [PersistFile Interfaces 273

A Heavy Dose of Protocol with IPersistStamge 275
Of Component Users and [PersistStomg-e: Component Cosmo 278
Of Component Objects and IPersistStomge: Polyline 281

Compound File Defragmentation _ 288

Summary 297

CHAPTER 6

UNIFORM DATA TRANSFER USING DATA OBJECTS 299
What Is a Data Object? .. 301

New and Improved Ultra-Structures! 302

Data Objects and the IDamObject Interface 308

FORMATETC Enumerators and Format Ordering 312
Component Data Objects 318

Some CDataObject Features , 329

Implementing IDataObject 330

A (Component) Data Object User , 331

Advising and Notification with Data Objects 345
Establishing an Advisory Connection . . . , 351

Sending Notifications as a Data Object 355
Special Considerations for Remoted Notifications 359

Inside the Advise Sink .. 360

IDataObject as a Standard for Object Data Transfer 363

View Objects and the IViewObject Interface 365

IViewObjectxme .. 367

Rendering for a Specific Device 369

Drawing into a Metafile 370

Aborting Long Repaints 370

Other IViewObject Member Functions 371

IViewObject and Notification 372

Freeloading from OLE2.DLL 373
IDaraObject and DDE 383

Summary _ , 385

Vi“ Page 7 of 221

Page 8 of 221

 Contents

0 H A P T E R 7

CLIPBOARD TRANSFERS USING DATA OBJECTS . . . ______ 387

The OLE 2 Clipboard Protocol 389

But All I Want to Do Is Copy Some Simple Data! 391

A Data Transfer Component Object 393

If You Already Have a Data Object...Component Cosmo 405
If You Already Have Extensive Clipboard-Handling Code 407
Simple Data Source and Consumer: Cosmo 408

Startup/Shutdown .. 408

Copy/Cut .. 409

Enabling Edit/Paste ... 41 1

Paste .. 412

Paste Special and a Functional Patron 414

The Paste Special Dialog Box and the OLE2UI Library . _ _ . . . _ . _ . 416
Tenant Creation, Paste .. 420

Saving and Loading Tenants 424

CopyandCut...............:.....,......._...._....__,425

Summary 426

C H A P T E R 8

DRAG—AND—DROP OPERATIONS USING DATA OBJECTS .. . 429

Sources and Targets: The Drag-and—Drop Transfer Mode] 430
A Step-by-Step Drag-and-Drop Implementation: Cosmo _ _ 439

Design and Implement Drop Target User Feedback 454

Implement a Drop Target Object and the IDmmeget Interface 456
IDropTargetrflngnter _ 456

IqubTargetangOver , _ . _ 459

IDmpTargetxDmgLeave , 460

IDropTarget ::Dr0p .. 46 1

Register and Revoke the Drop Target Object 462

Design and Implement Drop Source User Feedback , 464
Determine the Pick Event 464

Implement a Drop Source Object and the IDropSource Interface 465
Call DoDngrop 466

Intermission ... 468

Advanced Drag-and—Drop: Feedback and Scrolling in Patron 469

Tenant Pick Regions and Drop Sourcing _ . _ 470
More Advanced Drop Target Hit-Testing 472
A Feedback Rectangle ... 474

Scrolling the Page 477

Summary 482

Page 8 of 221

Page 9 of 221

INSIDE OLE2

SECTION Ill

COMPOUND DOCUMENTS: OLE

CHAPTER 9

COMPOUND DOCUMENTS

AND EMBEDDED CONTAINERS

Compound Document Mechanisms
The Passive State

The Loaded State

Case 1:1nProuServer......,. _ _

Case 2: InProcHandler _
Case 3: The Default Handler

Loading the Object: All Cases _ .

Drawing the Object

The Running State

Mommy, Daddy, Where Do New Objects Come From? _
The Structure of a Container Application

Embedding Containers Step by Step

Call Initialization Functions at Startup and Shutdown .
Define Sites and Manage Site Storage
Implement Site Interfaces and Add Site Variables . . .

Implement IAdviseSink ,

Implement [OleClientSite

Implement Site Shading

Invoke the Insert Object Dialog Box _
Call OleUHmertObject

Call OleCreate or OleCreatemeFz'le

Initialize the Object

Draw and Print Objects

Activate Objects and Add the Object Verb Menu
Mouse Double—Clicks _

Object Verb Menu

The Right Mouse Button Pop-Up Menu

Create Objects from the Clipboard and Drag-and—Drop Transfers . . . 549
Copy and Source Embedded Objects
Close and Delete Objects

Save and Load the Document with Embedded Objects
Handle Iconic Presentations (Cache Control)

Summary

Page 9 of 221

Page 10 of 221

Contents

c H A P T E B 10

COMPOUND DOCUMENTS AND

EMBEDDED OBJECT SERVERS (EXES) — 565

The Structure of a Server Application 566

Linking Support and Mini-Servers vs. Full-Servers 568
Version Numbers . . . _ 569

Installation ... 569

Embedding Servers Step by Step 570

Call Initialization Functions at Startup and Shutdown 571

Create Registration Database Entries _ . . _ _ 572

Implement and Register a Class Factory 577

Implement an Initial Object With IUnknown 586

Implement the IPersistStamge Interface _ . _ . 594

Implement the IDataObject Interface 601

Implement the IOleObject Interface ______________ 610

Modify the Server’s User Interface 629
Send Notifications .. 633

(Full-Servers) Add OLE 2 Clipboard Formats 637

(Optional) MDI Servers, User Interface, and Shutdown 638

Summary .. 639

G H A P T E R 11

IN-PROCESS OBJECT HANDLERS AND SERVERS _. . 641

The Structure of In—Process Modules 641

Why Use a Handler? .. 644

Why Use an In-Process Server? 646

Why Not Use an In-Process Server? 647

Delegating to the Default Handler 648

IOleObject ... 649

IDamObject ... 651

IPersistStomge (on the Cache) 652

IViewObject ... 652

Implementing an Object Handler 653
Obtain a Default Handler [Unknoam 656

Expose Default Handler Interfaces in Querylmmface 659

Implement [PersistStomge 662

Implement IOleObject::GetExtem t 666

Implement IViewObject , 668

Synchronized Swimming with Your Local Server 674
Year-End Bonuses ... 678

Notes on Implementing an In-Process Server , 679

Summary 692

Page 10 ofzft

Page 11 of 221

INSIDE OLE2
—-————-—————__.______________

CHAPTER 12

MONIKERS AND LINKING CONTAINERS 695
Will Someone Please Explainjust What a Moniker Is? 698

Moniker Classes .. 699
Where Do I Get Monikers? 703

Step-by—Step Linking Container 704
Enable Links from Insert Object 705

Enable Linking from Clipboard and Drag-and—Drop Operations 709
Paste Link and Paste Special Commands 711
Drag-and—Drop Linking Feedback 713
Test Your Linking _ 715
Implement the Show Objects Command 717
Manage a File Moniker, Call IOZeObjecthezMoniker,

and Implement IOkCliemSite:GetMoniker 722
The Links Dialog Box and the IOleUILkaonmmer Interface 727

Invoke the Links Dialog Box 744
Update Links on Loading a D0cument 747

Summary .. 751

CHAPTER 13

MONIKER BINDING AND LINK SOURCES 753
Moniker Binding Mechanisms 755

A Simple Linked Object: Single File Moniker , 756
A Linked Object with a Composite Filei'Item Moniker 758
Binding a Composite FileflteMIItemfflemHEem... Moniker _ . . i . 762
Bind Contents .. 764
The Running Object Table 765

A Simple Link Source: Cosmo . . i 766
Create, Register, and Revoke a File Moniker 767
Provide Link Source Formats in Data Transfer 770
Implement the IPerszlstFile Interface 774
Implement [OleOIy'ecthetMomker and IOEeObjecthetMoniker 777

Complex Linking and Linking to Embeddings 779
Why Linking to Embedding? _ 780
Create and Manage the Composite Moniker 782
Source the Composite Moniker 787
Implement a Glass Factory for Document Objects with IPersisth'le ‘ . . 789
Implement IOleItemContainer for Each Item Moniker , 792

Summary , 806

x” Page 11 of 221

Page 12 of 221

_

 Contents

0 H A P 'I' E H 14

CONVERSION, EMULATION,

AND COMPATIBILITY WITH OLE 1 809

The Convert Dialog Box for Containers 810

Support a Convert Menu Item and Invoke the Convert Dialog Box . 813
Handle the Convert To Case 816

Handle the Activate As Case 818

Handle Display As Icon Changes 820
Conversion Between Servers .. 822

Registration Database Entries for Conversion . . , 823

[PersistStomge Modifications 828

OLE 1 Embedded Object Conversion and Emulation 828

Notes on OLE 1 Compatibility for Containers 883

OLE 1 Server Quirks 833
File Conversion ... 834

Summary_ 839

S E c T I O N I V

COMPOUND DOCUMENTS:

IN-PLACE ACTIVATION

C H A P T E R 15

VISUAL EDITING:

IN—PLACE ACTIVATION AND IN—PLACE CONTAINERS 843

Motivations and the Guts of an In—Place Session I . . 845

Where Does It All Start? 846

An Innocent Little Dal/er!) 848

Activating In-Place 849

Manipulations of an Active Object 857
Pulling the Plug: Deactivation _ _ . . _ . . _ 880

Active vs. UI Active and Inside-Out Objects 861
Yes, This Actually Does Work 881

In-Place Container Step By Step 862
Prepare the Container ... 883

Implement Skeletal In-Place Container Interfaces 865

Activate and Deactivate the Object 875
Mix-a—Menu: Shaken, Not Stirred 877

NegotiateToolSpace.........,...__.. 882

Page 12 of 2211

Page 13 of 221

INSIDE OLE2

Provide In-Place Accelerators and Focus 892

Round the Corners: Other Miscellany 895

Summary _ 905

c H A P 'r E n 16

lN—PLACE ACTIVATION FOR

COMPOUND DOCUMENT OBJECTS 907

In-Place Objects Step by Step , 908
Drivers, Prepare Your Objects 909
Implement Skeletal Iii-Place Object Interfaces

and Object Helper Functions 912
Implement Simple Activation and Deactivation 915
Assemble and Disassemble the Menu 927

Create and Destroy Iii-Place Tools 934
Manage and Process Accelerators 938
Rounding Third...and Heading for Home , 940

Where ln-Place Activation Can Take Us _ . . 950

Summary..... 955

Index _ 957

xiv

Page 13 0f221

Page 14 of 221

 . a

q:l'Il

: :3,1 '1 -» --|

€<\\k‘fi\‘

5.

‘1?.1

"II-1

llWA.”\\\K\\\\\\\~\LL1$\
El ' . - il

5- '{1‘ -.

\L.\i~“LL.
1

 l ill. i

PREFACE

Give me afish andyoufeed mefor a day.

Teach me tofish and youfeed mefor a lifetime.

A proverb

This is a book about fish. But because without knowing how to catch them,
you’d eventually starve, it’s also about fishing. The fish are all those pieces of

information that you need as a developer in order to exploit OLE 2 features in

your application. Teaching you to fish involves describing why the specific

pieces you are using were designed and what path they lay toward the future.

Of course, you always need a reason to keep fishing even if you’re currently

well fed, so at the beginning of each chapter I will attempt to motivate you

enough to read it.

It has been said that authors write books not so that they will be un-

derstood, but so that they themselves understand. Certainly this work has

been such an experience for me. When I started working with OLE 2 in the

middle of 1992 as part of my job in Microsoft’s Developer Relations Group, I

saw the technology as merely a way to create applications that support what is

called “Compound Documents,” as OLE version 1 was. This attitude was well

accepted at Microsoft because OLE 2 was a refinement of OLE 1; in fact, the

OLE 2 design specifications are organized around 3 Compound Document

core with a number of other technologies hanging off the sides to solve the

most critical problems exposed in OLE 1.

For a number of months, I plodded through prerelease information

about OLE 2 to create some sample applications to demonstrate compound

documents. With the help of various members of the OLE 2 development

team, with whom I’ve worked closely for all this time, I gave a number of

classes inside and outside of Microsoft to help others use OLE 2 to create

Compound Document applications. In the back of my mind something was

telling me that there was much more to OLE 2 than I had originally per-

ceived, but it was very hard to break away from equating OLE 2 and Com-

pound Documents because every available piece of documentation made the

two terms synonymous.

XV

Page 14 of 221

Page 15 of 221

INSIDE OLE2

xvi

In the first few Weeks ofJanuary, 1993, I started to see that, in the process

of solving the most important problems in OLE l, the OLE 2 architects had

actually created a much larger system for object-oriented programming

under Windows. I began to see that OLE 2 has technologies that are separate

from the true Compound Document technologies. In fact, I started to see ex-

actly how one might use those other technologies without ever coming into

contact with Compound Documents. I was not the first person to realize this.

In fact, OLE 2 was actually designed this way, but this aspect of the design

unfortunately was lost somewhere between the minds of the OLE 2 architects

and the actual OLE 2 Design Specification. But I was slowly beginning to

rediscover the elegant underlying architecture of the entire group of tech-

nologies. My position within Microsoft allowed me to explore OLE 2 in depth

and even to browse the OLE 2 sources, letting me truly get “Inside OLE 2.”

One Sunday afternoon in mid-January, 1993, while doing something

totally unrelated to OLE 2, I achieved what Eric Maffei (editor of Microsoft Sys-

tems journal) describes as “OLE Nirvana.” All the little subtechnologies in

OLE 2 fell into place and I saw clearly, after six months of mental fog, what

OLE 2 was all about. I realized that you could exploit very small pieces of OLE

2 in incremental steps and that the best way to communicate the entire vision

was to write a book. I quickly fired up my notebook computer and spent the

next three hours pounding out the outline. The book you now hold follows

that original outline closely.

My goal in writing this book was to provide an organization for OLE 2 in

such a way that each chapter depends solely on information in previous chap-

ters, with no dependencies on later chapters. Because OLE 2 is not a tech—

nology for writing whole applications (because we still use many Windows

API functions), I had the luxury of concentrating on OLE 2’s features and the

way you use those features in your applications. I have presented the material

a little at a time, in order to help you solidify your understanding of that

building block before moving on. I hope the book takes you on an evolution-

ary path, on which the work you do early in the book will be reusable in work

you do in the later stages.

This same idea is present even within any given chapter, where I have

provided finely detailed step-by-step instructions for implementing specific

features and where each step depends on the prior steps but not on any later

step. This sort of process enables you to add a little code, compile your appli-

cation, and actually see something working! Personally, I find the incre-

mental feedback of this sort of process extraordinarily motivating. In fact,

Page 15 0f221

Page 16 of 221

P reface

it makes programming fun, and that is refreshing in this day and age of “seri-

ous” professional programmers. I got into computers because hacking out

some BASIC code was exhilarating. I hope I can bring some of that back

through this book.

OLE 2 is the first step in the evolution of Windows from the function

call—based operating system we have today to an object-oriented operating

system in the future. The object model you will learn in this book will be a

part of Windows programming for a long time, and I hope it will help you

develop a definite edge in your programming career. Because OLE 2 is a first

step, it is going to seem utterly alien much of the time. But you need to learn

how to fish sometime if you are ever going to feed yourself. While you are

learning the skills of a master angler, this book will help you catch enough

fish to keep you from starving.

Who Can Use This Book

I mentioned earlier that OLE 2 is not a technology for writing an entire appli-

cation. To use OLE 2, you must be familiar with how to write an application

for Windows. I will not describe how to use any of the existing Windows API

functions, nor will I attempt to describe any intricate details about Windows

itself. Our focus in this book is strictly on OLE 2.

Therefore, I assume that you are already familiar with programming in

the Windows environment and that you have at least a working knowledge of

the Windows API. In addition, because we are talking about object-oriented

programming here, a knowledge of C++ is helpful, but not required. In fact,

C++ knowledge can at times be a hindrance to understanding the object

model in OLE 2. Although the samples in this book are written in C++, I‘ve

kept them very much like standard C Windows programs. Chapter 2 contains a

short discussion of the C++ 1 use in all the book’s samples, from a C program-

mer’s perspective (which was my own perspective when I started writing this

book).

This book is not only for programmers, however. Each chapter is struc-

tured so that a person who designs application architectures can read the first
few sections and understand how the mechanisms in OLE 2 work without hav-

ing to work through the details of code. The first 5 to 20 pages of each chapter

discuss architecture, leaving exact details about writing code to the latter

parts of the chapter. So, ifyou want an in—depth look at how OLE 2 works, read

the first section or two of each chapter.

xvii

Page 16 0f221

Page 17 of 221

INSIDE OLE2

Some Assembly Required

No, we won’t use any assembly language, but this book does assume that

you have an appropriate software development environment installed that

includes the following:

I A C++ Compiler such as Microsoft C version 7 or Microsoft Visual

C++ version 1. The make files for the samples in this book are spe-

cific to Microsoft compilers, so some adjustment will be necessary
for other environments.

I The Windows 3.1 Software Development Kit.

I And most important: the OLE 2 Software Development Kit. Be sure

that the OLE 2 directory is added to your PATH, INCLUDE, and

LIB environment variables before attempting to build any samples
in this book. You can obtain the OLE 2 SDK from Microsoft for a

$50 charge by calling 1-800-227—4679.

Chapter 2 includes more information on creating the right build envi-

ronment for the book samples specifically.

0n Coding Style

As soon as you start reading some of the code in this book, you'll begin to

wonder where I developed my coding style.

My coding style, which is unlike any other widely published standard, is

what I’ve personally developed over a number of years to improve (in my

mind) code readability as well as to prevent myself from making certain

mistakes. For example, when I want to compare a variable to a constant, I al-

ways put the constant first—that is, I’ll write if (OL==m_ cRef) instead of

if (m, cRef==0L). Like all C and C++ programmers, I’ve had my share of bugs

because I typed zinstead of ==. Putting the constant on the left causes a com—

piler error when you forget the second equal sign. With the variable on the

left, you get a legal assignment statement but a very nasty run-time error.

All other stylistic elements have their justifications as well and are used

consistently. I’ve often heard that people prefer consistency over specific

styles, so there you have it. Let me also mention that in many of the source

listings in this book, I have eliminated lengthy header comments on files and

functions that you will see in the actual disk files. This is done simply to save

space. Any code within a function, hOWever, will match exactly what you will
find on disk.

xviii

Page 17 0f221

Page 18 of 221

Preface

Acknowledgments

People who have read drafts of this book have repeatedly asked me where I

found my inspiration for writing the way I have. Influence has come from

many corners, so let me list those sources as well as offer my thanks to the fol-

lowing groups or individuals who have helped create this tome of OLE:

To all the programmers in the trenches who are usually told to do too

much with too little information. Without you, I’d have little incentive to
write a book like this.

To all those developers inside Microsoft who took the time to formally

review this work: Charlie Kindel, Nigel Thompson, Scott Skorupa, Sara
Williams, Vinoo Cherian, Craig Wittenberg, Douglas Hodges, Alex Tilles,

Mark Bader, Dean McCrory, and especially Nat “Zoinks” Brown-—thanks for

all your useful and real-world insights.

To the OLE 2 team at Microsoft for all their answers and input, espe—
cially to architects Tony Williams and Bob Atkinson.

To all the developers who devoured my draft copies as soon as I could

write them and who sent words of encouragement, including Dominic Kyrie,

Marc Singer, Marcellus Bucheit, Lars Nyman, Howard Chalkley, and jim

Adam, a total Python Head who reminded me that it was Patsy who actually
said Camelot was only a model.

To Burt Harris and Thomas Holaday for setting me straight on the finer

points of C++ programming.

To Monty Python, Yoda, the Harvard Lampoon, and MAD Magazine, as well

as authors Donald Norman, Robert Fulghum, Tom DeMarco, Timothy Lister,

Douglas Adams, Piers Anthony, Marvin Harris, andjim Stacey for whatever it

is that made me include the crazy things I wrote in this book.

To photographer DewittJones, Lynette Sheppard, and the entire group
from our week at HollyHock, who showed me how to enjoy and appreciate

doing the crazy things I have in this book. May you always fly with frozen eagles.
To Dean Holmes, Ron Lamb, Seth McEvoy, and all the other people at

Microsoft Press, not only for doing the work ofpublishing this book but also for

letting me get away with the crazy things I’ve done here.

To Bob Taniguchi for helping me get into the position at Microsoft to

write this book, and to Viktor Grabner for teaching me what the purpose of

making myjob obsolete really means and how to be a little crazyin the process.

To Microsoft’s Developer Relations Group for allowing me to lock myself

in my office undisturbed for months on end while I was doing crazy things.
And, of course, to my wife, Kristi, who was there through what has been

the busiest year we ’ve yet experienced.

Page 18 orfiéi

Page 19 of 221

INSIDE OLE2

Road Map

Before we get started, let me give you a word of warning. OLE 2 is big. Veryr

big. If you count the number of new functions in OLE 2, you have more than
in Windows 3.0 itself. If you count the number of pages in this book, you’ll

find it longer than the Windows 3.1 edition of Charles Petzold’s Programming

Windows (no offense, Charles), and I don’t list most of the sample code. What

does this mean for you? If there ever was a time to heed the warning “Don’t

bite off more than you can chew,” now is the time. Allow me to illustrate.

Pat and Casey each decided to build a cabin at the top ofa mountain. Each cabin

would have the latest siding, a hardwood floor, and a pressure—treated deck with a

great view of the valley.

Pat was so excited about actually having this cabin that she quickly threw some

wood and tools into a helicopter and went straight to the summit. “Time is money, ”

Pat philosophized, as she started hammering away. Soon she needed another tool and
more materials, so she rushed back down the mountain, grabbed what she needed, and

hurried back up. This process repeated itself again and again and again. Pat never

had the right things on hand to complete the job efiiciently, although on every flight

back up the mountain she thought she did. But the progress was impressive.

Meanwhile, Casey did not start so quickly. She carefully planned an approach to

the construction, organized all the materials she would need, and arrangedfor them to

be deliveredjust before they were necessary. She intended to have everything on hand to

complete each stage in the project.

When Casey eventually arrived at the summit, she had only enough to build the

foundation, but it went perfectly. Pat would often peer over and laugh, touting how

much more she had accomplished and how much faster. “Time is money.”’she would

shout. Casey would quietly think, “If time is money, why are you spending as much

time going up and down this mountain as you are building?”

It seemed that Pat would complete the project long before Casey. Pat had an insa~

tiable urge to keep building something, and so she wasfinishing thefloor and building

parts of the deck with only half the walls and roof complete. Casey had only afounda-

tion, the frame, and the roof completed on her cabin.

Unexpectedly, powerful monsoonsfell upon the two builders. Pat watched in hor—

ror as the incomplete walls and roof were torn away in the strong winds. She could only

stand there helplessly and get drenched, watching her beautiful woodfloors split under

the intense pounding. Casey, keeping perfectly dry with a solid roof overhead, con-

tinued working through the rains, adding wallboard so that her cabin would withstand

the wind and completing a magnificent interior, all the time staying warm and dry.

When the monsoons subsided and the sun returned, Pat cleaned up the wreckage

and salvaged what she could. Months later, she completed her cabin—it wasfinished,

XX

Page 19 0f221

I__——.—_——_———

Page 20 of 221
[f

Preface

but it wasn’t what she had imagined. She wasjust glad that ii wasfinally done.

After the storms, Casey had only to spend. afew more weeks on the deck before she

finished her cabin. While Pat was painfully recovering what she could, Casey was
enjoying a wondeifnl spring in the mountains.

Catastrophes often occur in software development. A competitor
releases a product that has more features than you knew about, sooner than

you expected. If your work doesn’t stand up to that competition, it has to be

scrapped or completely reworked.

The approach taken in this book will help you incorporate technologies

of OLE 2 into your application in such a way that you can stop completely at a
number of points but will still have a lot to show for your efforts.

Section One, “Windows Objects,” discusses the basic architecture of the

OLE 2 object model. This in itself does not contain much that will be very
Visible to your customers, but it is the foundation.

Section Two, “Object—Oriented System Features: Files and Data,” de-

scribes a new way to read and write disk files that is powerful enough in itself
that it might be the only technology you exploit in OLE 2. This new method

simplifies features such as incremental saves and transactioning. In addition,

Section Two deals with the concepts of Uniform Data Transfer, through
which you can gain significant performance benefits, especially within suites
ofapplications. That alone might be enough to satisfy immediate demands of

your customers. You might also want to exploit OLE 2’s drag-and-drop pro-
tocol, on which many features in future versions of Windows will be based.

From there, you can work into Section Three, “Compound Documents:

OLE,” which explores the concepts and necessary code to support Linked
and Embedded objects according to the OLE 2 Design Specification for Com-

pound Documents. Linking-and-embedding support by itself is quite valu-

able, but you can take embedded objects one step further by implementing a
powerful user-interface model called in~p1ace activation, otherwise known as

Visual Editing, covered in Section Four.

l encourage you to start by reading Chapter 1 to become familiar with all

the OLE 2 technologies and how they fit together. Chapter 1 also details the

information that is in all the later chapters. From there, set your goal and map
out an approach that helps you first build a foundation on which you build
basic strucmres like walls and roofing. After that, you can add all the finish-

ing touches on the inside, all the time keeping dry 'when the monsoons come.

Kraig Brockschmidt

Redmond, Washington

September, 1993

Page 20 of fiil

Page 21 of 221

INSIDE OLE2

xxii

Using the Companion Disks

Bound into the back of this book are two 3.5—inch, 1.44-megabyte

companion disks containing the source code files for all the sample

programs described in the book. The files on the floppy disks are

compressed and must be expanded and copied to your hard disk

before you can use them.

To copy these programs to your hard disk, place your disk in

the A drive of your computer and enter the following at the MS-DOS

prompt:

A:INSTALL

The decompression program on the disk will begin, and you will be

told What to do at each Step of the unpacking process until all files

are copied to the hard disk.

You will need at least 5 MB of space on your hard disk for the

sample code that accompanies this book.

Of course, you’ll need more than 6 MB of free disk space. The

MAKEALLBAT file in the installation directory will automatically

build all the samples for all chapters. The default debug build will

consume approximately 80 MB of hard disk space. A “retail” build

(type SET RETAIL=1 at the MS-DOS prompt before running

MAKEALLBAT) will consume considerably less disk space but still

requires approximately 50 MB or so. Your compiler is likely to need a

megabyte or two extra for temporary files it creates along the way, so

be sure you have enough room.

Page 21 0f221

Page 22 of 221

wl'l 1113‘w
5"»?93‘\\\\

rt;1.]

Page 22 of 221

Page 23 of 221

0'};Wqlw

\\\\\‘\\
'1 1.

2 271:: , \\LoKkLL .

AN OVERVIEW OF OLE 2

All evolution in thought and conduct must atfirst appear

as heresy and misconduct.

—George Bernard Shaw (1856—1950)

Many years from now, a Charles Darwin of computerdom might look back
and wonder how the Microsoft Windows APIs (Application Programming
Interfaces) evolved into Windows Objects, an object-oriented operating sys-
tem. OLE version 2 is the genesis of this transformation—it will change how

you program—and eventually how you use—Windows. In the beginning,
you’ll probably regard it as utterly strange and difficult, no matter what your
background. But don’t feel too threatened. I won’t ask you to throw away any
knowledge you’ve accumulated. Instead, we’ll ease into the features of OLE 2

and see how those features, combined with everything you already know, can
help you reach new heights in your applications.

Today, Windows‘ features are exposed to applications through a large—
and growing—collection of randomly named ARI functions. (Remember

when you first learned that DeleteObjectis the opposite of CreateBrush?) Every
API function is created equal, so to speak, and is accessible from virtually
any piece of code, regardless of how useful such access really is. Over the

years, many new API functions have emerged, each in its own way describ-

ing some new capability of the system, each in its own way providing yet
another different set of functions by which an application implements
various features, and each with its own naming convention (or lack
thereof).

Such an environment is a ripe opportunity for object-oriented tools
to flourish. Languages such as C++ and class libraries such as Microsoft’s

Foundation Classes or Borland’s Object Windows Library provide some

order in the chaos of the API waters. For example, instead of dealing with a

window by means of a handle and numerous API functions spread thinly
through the reference manuals, these products shelter a window handle

Page 23 of 231

Page 24 of 221

' INSIDE OLE2_____—__—.._.—_..——————————

in a C++ object class and directly provide member functions to manipulate

the window by means of the object instead of the handle.
In addition, because a member function is always called by means of

an object variable, for convenience the names of those functions are located

together in the reference manuals, categorized by the object name itself.
In the same manner—and independent of the programming

language you choose—OLE 2 exposes system features through what are
called “Windows Objects” instead of through API functions. Basically, a

Windows Object is a piece of code that exposes its functions through one
or more distinct groups of functions. Each group is called an interface.

This arrangement provides much-needed order at the system level: Instead
of working with disparate handle-based functions, you work with tightly
organized system objects. The object model that describes Windows Ob-
jects not only describes how the system exposes its functionality to applica-
tions but also how applications expose their functionality to the system

and to other applications. Realize, too, that the way in which you expose an

object does not restrict the way in which you can implement an object. As we’ll
see, C++ is the most convenient language in which to express a Windows Ob-

ject, but you can use other languages just as effectively.
Windows Objects are built on a foundation that also allows an object’s

code to live anywhere: within a particular application, in a DLL loaded into

an application’s task, in another application, or even on another machine (in
the future, when OLE is network enabled). The object model that OLE 2

introduces lays the evolutionary groundwork for distributed object comput-

ing in the years ahead.

OLE 2 exposes a number of key system features, such as the clipboard

and the file system, through specific objects. These objects are implemented

on top of the existing Windows API functions such as SetClipbaardData and

OpenFile. Using these objects today will, of course, cause a decrease in overall

performance because you add another layer of function calls to accomplish
the same task. For the programmer, however, the overall surface area of API

functions is markedly reduced; many of those API functions are moved into

member functions of a particular object that you see only when you are ma-

1. nipulating that object. The only globally accessible APl functions that remain
are a few that initially obtain a pointer to one of the system objects.

I Although you will suffer from a performance penalty today, the object
i implementations of system features will, I believe, gradually become the na-

tive expression of those features. The API functions will still be available, but

| they will be implemented on top of the objects, transferring the performance
penalty to those applications that still use the old API functions.

' Page 24 of 221

———

Page 25 of 221
I"

O N E : An Overview of OLE 2—————__—_—_____.._—_—__

Eventually, the API functions will be provided as some sort of com-

patibility layer that exists only for the ability to run old applications. All new

system features will be provided exclusively by means of objects. Only those

applications that have made the transition to using these system objects will
be able to benefit from the newest and most powerful features.

This chapter will introduce each specific feature (or technology) of
OLE 2, describing briefly how your application might take advantage of it
(that is, profit from it) today. By using these features today, you begin to trans-
form your application to more readily take advantage of Windows’ future

evolution (that is, profit from it tomorrow). The stick that goes along with this
proverbial carrot is that you must read this book.

Our latter-day Charles Darwin will then have plenty to say about the

origin of a new species of incredibly sophisticated and powerful applications
for Windows.

Windows Objects: The Component Object Model

Windows version 1 had about 350 API functions. OLE 2 has over 100. So by
measures of new functionality, OLE 2 is roughly one-third of an operating sys—
tem. By the measure of its impact on your applications, it has appeal as an en-

tire system in itself. It presents as system objects a number of key operating
system features such as memory allocation, file management, and data trans—
fer. The huge number of additional features and functions in OLE 2 can be

overwhelming. The first step in adopting these new and powerful technolo-

gies is to realize that one doesn’t learn and exploit a new operating system
overnight—there are a few fundamental concepts to learn first. In addition,
many higher-level features of any system build on the lower-level features, and

OLE 2 is no different. In fact, OLE 2 makes great use of the idea, as shown in

Figure 1-1 on the following page.

The first feature is the Component Object Model, which is partly a
specification (hence “Model”) and partly an implementation (contained in

COMPOBJDLL provided with the OLE 2 SDK). The specification part
results from defining a binary standard for object implementation that is in-

dependent of the programming language you decide to use. Objects adher-

ing to this standard earn the right to be called Windows Objects. This binary
standard enables two applications to communicate through object-oriented

interfaces without requiring either to know anything about the other’s imple-
mentation. For example, you might implement a Windows Object in C++ that
supports an interface through which some other code (the user of that ob-

ject) can learn the names of functions that can be invoked on that object. The

5

Page 25 of 221

Page 26 of 221

INSIDE OLE2

In-piace Activation]
“Visual Editing”

Linking

Embeddlng Commund
Doéuments

Figure 1-1.

Eachfeature in OLE 2 builds on loweralevelfeatures.

user of this object might be a programming environment such as Visual Basic,

or it might be another application written in C, Pascal, Smalltalk, or another

language.

The implementation in the component object library (COMPOBJDLL)

provides a small number of fundamental API functions that allow you to in-

stantiate what is called a Component Object, 21 special type of Windows Object

that is identified with a unique Class identifier. In return, you are given a

pointer to a table of functions (called an interface) that the object imple-

ments and through which you can call those functions. This mechanism

creates a standard object-creation technique within the system that is inde-

pendent of the programming language. In addition, this mechanism isolates

Page 26 of 221

Page 27 of 221
ll

0 N E: An Overview of OLE 2

you from where the actual object is implemented, which could be in a DLL or

another EXE. However, you are oblivious to the loeation became the compo-
nent object library handles the communication between modules. In the fu-

ture, the object might live and execute on another machine on your network,

an arrangement that would open the way for distributed object architectures

under Windows. Although OLE 2 itself does not contain this feature, it has all

the necessary mechanisms into which distributed computing will easily fit.

A Windows ObjeCt does not always need to be structured as a Compo-

nent Object in such a way that the API functions in COMPOBJDLL can

instantiate it. Use of such API functions is merely one way through which you

can obtain your first interface pointer to an object.

There are, of course, other API functions and routes in OLE 2 through

which you can obtain that first pointer as well—many of the chapters in this

book describe how you generally obtain and use a pointer to specific kinds of

objects. When implementing an object, how you allow others to get at your

object affects your overall code structure. To make objects addressable via the

COMPOBJDLL API functions, you must “house” them inside either a DLL

(dynamic link library) or an EXE (executable) with specific code—that is,

specific functions you call and export from your module. The object itself,

however, can be independent of the housing, a capability we will explore in

Chapter 4.

The other key piece of implementation in COMPOBIDLL handles a

process called mm'shaling, or paSSing function calls and parameters across

process boundaries. Because an object’s code can execute in another process

space and eventually on another machine, COMPOBJDLL handles transla-

tion of calling conventions and 16-bit to 32-bit parameter translation when

the object and that object’s user are running in different process spaces. For

example, an object might be executing in a 32bit process space, so it treats

types such as UINT as 32~bit values. The user of that object might be running

in a 16-bit process space and might call a function in the object passing a 16-

bit UINT. In the middle sits COMPOBJDLL to marshal that UINT from a 16-

bit world into a 32-bit world. Other types, such as pointers, memory handles,

and so on, are handled in a similar manner: COMPOBJDLL makes sure that

each side, object and user, sees the other in terms of its own process space. In

the future, when the object can execute on another machine, COM-

POBJDLL will also account for considerations such as byte ordering.

The need for marshaling is not new: OLE 1 also had to move parameters

and memory across prOCeSS boundaries using Dynamic Data Exchange

(DDE). A major problem of OLE 1 that resulted from the asynchronous DDE

7'

Page 27 of 221

Page 28 of 221

INSIDE OLE2
_________________———————

protocol was that a function call made on an object was inherently asynchro-
nous, forcing the caller to sit and wait in a message loop until that function
was complete, with all the associated problems of time-outs, error recovery,
and blocking other requests on the same object. The marshaling mechanism
in OLE 2, LightweightI Remote Procedure Call (LRPC), is inherently syn-
chronous—that is, calls made on objects don’t return until completed—sim-

plifying the programming model. Some calls, such as those dealing with
event notification, remain asynchronous due to the general uses of those
calls.

Objects and Interfaces
A technique that describes a binary standard for objects, such as the Compo-
nent Object Model, does require some change in typical understanding of
what the term object really means. Object is probably the most overused and
ambiguous term in the computer industry. Object is used everywhere and
often with wildly different meanings; as used in this book the term has a
specific meaning. Chapter 3 describes a Windows Object in detail, showing
exactly how to implement one in both C and C++. Later chapters illustrate a
number of routes by which you can obtain a pointer to a specific type of Win-
dows Object. Iwarn C++ programmers now that a Windows Object is a little
different from a C++ object, although you can effectively use C++ objects to

implement Windows Objects.
Another term that requires some explanation here is interface, another

hackneyed and ambiguous term. The notion of interface that applies
throughout this book is defined as “a set of semantically related functions
implemented on an object.” The word interface by itself means the definition
(or prototype or signatures) of those functions: The OLE 2 include files contain
these definitions. An instantiation of what I call an inteiface implementation (be-

cause the defined interfaces themselves cannot be instantiated without im-

plementation) is simply an array of pointers to functions. Any code that has
access to that array—that is, a pointer through which you can get to the top of
the array—can call the functions in that interface, as shown in Figure 1-2.
Note that in reality, a pointer to an interface is actually a pointer to a pointer
to the function table, but that is a detail we can leave until Chapter 3. Concep-

tually, however, an interface pointer can be viewed simply as a pointer to a
function table in which you can call those functions by dereferencing them by
means of the interface pointer.

1. “Lightweight” means “no network”; all calls are made on one machine.

Page 28 of 221

Page 29 of 221

0 N E : An Overview of OLE 2————___.—________

The interface definition allows that code to call functions by name and
provides type checking on parameters instead of calling functions by an in-
dex into the array. Because it’s generally inconvenient to draw function tables

in expanded form for every interface, this book and other OLE 2 documenta—

tion show each function table as a circle (or ajack) connected to the objecr, as
you can see in Figure 1-2.

A Windows Object implements one or more interfaces—that is, it pro-
vides pointers to instantiated function tables for each supported interface. A

simple object, such as a data object we’ll implement in Chapter 6, supports
only one specific interface describing data operations such as GetDnm and Set—

Dam. More complex objects, such as the compound document objects we’ll

Pointer to interface A Object data cannot be
can only access member directly accessed through
functions of interface A. interface pointer.

Objects
internal

data

of interface
member
functions

Interface

A circle (or jack) is used to
represent the entire functicm

table for an interface.

Figure 1-2.

An instantiation ofcm infeafoce is simply an array offunction pointers. A circle
(orjnck) is a more convenient representation ofrm inierfacefimctien table.

9

Page 29 of 221

Page 30 of 221

lNSIDE OLE2

implement and use in Chapter 9 and beyond, support at least three interfaces,

perhaps more, depending on the features that object implements. Overall, an

object is completely described by the collection of interfaces it supports be-

cause each separate interface provides the essential manipulation API func-

tion to a user of that object.

Whenever the user of some object first obtains a pointer to that object, it

has a pointer to only one interface; the user never obtains a pointer to the

entire object. This pointer allows the user to call only the functions in that

one interface’s function table, as illustrated in Figure 1-3. Through this

pointer, the user has no access to any data members of the object nor does it

have any direct access to other interface. In other words, data must be

manipulated exclusively through the interface functions, and the interface

must have a function through which the caller can obtain a pointer to the

object’s other interfaces Within the object.

Although OLE 2 does not define standard interface functions to access

data members of the object, it does define a standard function through which

the user of one interface on that object can obtain a pointer to another inter-

face on that object. This function is called Querylnieiface, as shown in Figure

1-4. We’ll examine this function in detail in Chapter 3. When the user queries

Pointer to interface A can

only access member
functions of interface A.

Implementation
of interface Object’s
A members internal

data

implementation
of interface
B members

Object supports

interfaces A and B.

Object user never has a
pointer to the object itself.

Figure 1-3.

Object users with a pointer to interface A can access only memberfunctions of

' ' interface A.

10

Page 30 of221

Page 31 of 221

O N E : An Overview of OLE 2

for another interface, it either receives an error (and a NULL pointer), mean-

ing the object does not support the functionality described by the interface,

or a valid pointer through which the user might then manipulate the object

through that new interface. Because Queryfnterfaceis so fundamental, it is part

of an interface called [Unknown (the I stands for Interface), which describes

the group of fundamental functions that all Windows Objects support, no

matter how unknown they are in other respects. All other interfaces in OLE 2

are derived from IUnknnwn, so all interfaces contain the Queryfnteiface func-

tion. By implementing one interface on a Windows Object, you automatically

implement IUnknown because the first few functions in each function table

will be those of [Unknown as shown in Figure 1—5 on the following page. (The

other two members of IUnknnwn are AddRefand Release.)

Through QueryInteiface the user of an object can discover the capabili-

ties of that object at run—time by asking for pointers to specific interfaces.

By retnrning a pointer to that interface, the object is contractually obliged to

support the behavior specified for that interface. This enables every objecr

to implement as many interfaces as it wants, so that when it meets a user that

User calls A.':Ouerylnterface
asking for a pointer to interface B.. ‘1

Object user
Implementation

of interface Object's
A members internal

data

 Implementation
of interface
B members

A::Querylnterface
returns a pointer to

interface B on the same object.
8::Querylnterface

can return a pointer
to interface A as well.

Figure 1-4.

An object user asks the QueryInterface member afany interface to retrieve

pointers to other interfaces on the same object.

Page 31 oriii

Page 32 of 221

i:

INSIDE OLE2

Function table Function table for
for [Unknown another interface

I 'Ouerylnren‘aoe 'i Querylnren‘ace

 A pointer to this interface

can also be used as a
pointer to IUnknown.

Pointer to fn1

Pointer to fn2

Pointer to In?

 _ Pointer to fn4\

Figure 1-5.

Thefz'rstfew members ofrmy interface are always IUn known members.
Any interface is therefiire polymordial with IUnknown.

knows how to use many of those interfaces, the two can communicate on a

high level. When the object meets a user that knows fewer interfaces, the two
can still communicate through the common set of interfaces they both under-
stand—that is, if an object implements interfaces A, B, and C, but the user

only knows how to make use of interface B, the object and user can still com-

municate, but only through interface B. Because all Windows Objects imple-
ment at least IUnknown, there is always some rudimentary form of possible
dialog.

Although OLE 2 defines a large number of standard interfaces, you are
free to define and publish your own custom interfaces withOut requiring any
changes whatsoever to the OLE 2 DLLs or any other part of the Windows
operating system. The only complication is that you must also provide a DLL
for marshaling support because OLE 2’s marshaling knows only its own inter-
faces. But that is a small price to pay for the ability essentially to publish your
own new API without having to wait for a system revision from Microsoft.

Structured Storage and Compound Files

12

The OLE 2 specification defines a number of storage-related interfaces, col-
lectively called Structured Storage. By definition of the term inteiface, these
interfaces carry no implementation. They describe a way to create a “file sys—
tem within a file,” and they provide some extremely powerful features for
applications. Instead of requiring that a large contiguous sequence of bytes

Page 32 of 221

Page 33 of 221

fl

0 N E : An Overview of OLE 2

on the disk be manipulated through a single file handle with a single seek

pointer, Structured Storage describes how to treat a single file-system entity

as a structured collection of two types of objects—storages and streams—

that act like directories and files, respectively.

A stream object is the conceptual equivalent of a single disk file as we

understand disk files today. Streams are the basic file-system component in

which data lives, and each stream in itself has access rights and a single seek

pointer. Streams are named by using a text string (up to 31 characters in OLE

2) and can contain any internal structure you desire.

A storage object is the conceptual equivalent of a directory. Each stor—-

age, like a directory, can contain any number of storages (subdirectories) and

any number of streams (files), as shown in Figure 1-6. In turn, each substorage

can contain any number of storages and streamsj until your disk is full.

A storage object does not contain any user—defined data=just as a file-

system directory cannot—because it maintains only information related to

the storage structure—information about the other streams and substorages

that live below it. Each storage has its own access rightShas do streams, a fea-

ture that is lacking in MSEDOS directories. Given a storage, you can ask it to

 Root storage object

Storages can exist with no
streams or substorages.

Figure 1-6.

Conceptual structure ofstge and stream objects in a compoundfz'le.

Page 33 of ZQI

Page 34 of 221

INSIDE OLE2

enumerate, copy, move, rename, delete, or change dates and times of ele-

ments within it, providing more than simply the equivalents of MS-DOS
commands.

Because Structured Storage is only a specification, OLE 2 provides a

complete implementation called Compound Files? which you can use to

replace a traditional file handle—based API functions such as _lread and

_lwrite. Do not think that the word compound as used here means that com-

pound files are useful only to compound document implementations: The

compound files technology is completely independent in the OLE 2 package.

In fact, it lives independently in STORAGEDLL and requires only COMP-

OBJDLL to operate. A similar and 100 percent compatible implementation

of compound files will also become the native file system in future versions

of Windows, and so, as basic technology, it cannot be restricted to high-level

integration features such as the Compound Document standard.

Compound files isolate your application from the exact placement of

bytes within your file, just as MS-DOS isolates applications from the exact sec~

tors on the hard disk that your file occupies. MS-DOS presents disparate sec-

tors as a contiguous byte array when you access that file by means of a file

handle. In the same manner, compound files present information in a stream

as one contiguous entity although the exact information in that stream might

be fragmented within the actual file itself.

This means that by adopting compound files for your storage, the physi-

cal layout of your files on the disk will no longer be under your direct control.

‘ However, although you lose control of the physical layout, you still retain con—

i! trol of which data structures are written into which streams within the file.
1 If you don’t want to hassle with reorganizing your structures, you can create a

' compound file with a single stream, where the stream contains the same
1 structure as your existing file format.

I Microsoft recognized that changing your on—disk file format might not

be an option, so the use of compound files is optional. The only kind of

application that is required to use some aspect of this storage model is a

' compound document container, which must provide a storage object to any

contained compound document object. However, you can create a storage ob-

ject in memory and later write the contents of that memory into your own file

format, as detailed in Chapters 5 and 9. Storage objects created on different

storage devices, such as memory and disk files, are indistinguishable from

one another to the user of those objects.

Aside from future considerations, compound files provide a number of

key features that you can use today to make a more powerful application. For

2. Formerly called DOCFILES.

14

Page 34 0f221
.. l'
————_

Page 35 of 221

O N E : An Overview of OLE 2

example, you could add additional features yourself that would otherwise be

too difficult or time-consuming, such as transactioning and incremental

saves. Chapter 5 discusses all the features of compound files and demon-

strates both simple and complex uses of this technology. All the features can

greatly improve an application’s design and treatment of storage.

Structured Storage, as well as compound files, is important for a number

of reasons, not the least of which is to standardize the layout of pieces of infor-

mation Within a file. Such standardization enables any piece of code, be it the

system shell or another application, to examine the structure of the entire

compound file. The exact data formats of each individual stream is still pri-

vate to whatever wrote that data, but anyone can look into a compound file

and enumerate the storages and streams it contains. The OLE 2 Software De-

velopment Kit (SDK) even contains a tool called DFVIEWEXE that displays

the structure of any compound file and allows you to dump the hex data of
any stream.

Further standardization of the names and contents of a few specific

streams (but by no means all streams) enables the system shell and other

applications to allow end users to search for occurrences of data within files

that match attributes such as creation date, author, keywords, and so on.

Microsoft is determined to work with other independent software vendors

(ISVs) to define standard names and structures for streams that contain in-

formation useful in such queries. The long-range goal is to have all informa—

tion on the file system structured in such a way that end users can browse the

contents of many streams using the system shell. This capability is far more

powerful, yet easier to use, than requiring the end user to first find a file, then

find the application that can load that file, and then use the application to

open and browse files to eventually find the data. Structured Storage enables

shell-level document searching, an important manifestation of Microsoft’s

Information At Youer’ngertips philosophy.

Uniform Data Transfer and Notification

Built on top of both the Component Object Model and the Compound Files

technology is a technology in OLE 2 called Uniform Data Transfer, which

provides the functionality to represent all data transfers—clipboard, drag-

ancl—drop, DDE, and OLE—through a single piece of code called a data object.

Such data objects are not restricted to transferring data through global mem-

ory either—they can use other mediums such as compound files. In general,

a data source can choose the best method for data exchangew-that is, the most

efficient format and medium of transport. End users benefit from better

15

Page 35 0f221

Page 36 of 221
1t:—

INSIDE OLE2
-———-—-—_-_—_-———_____—____,

16

performance. Add that to direct, streamlined capabilities such as drag—and-
drop and you have a more usable environment overall.

Up to now, all data transfer between an application and anything exter-

nal (for example, clipboard, drag-and—drop, DDE, or OLE 1) has used global

memory. The specific data format contained in that global memory was
described by using a clipboard format such as CF_TEXT or CF_BITMAP.

Windows (not to mention the programmer) has suffered immensely from in-

herent limitations of global memory transfers as well as from having radically

different protocols and unrelated API functions for exchanging data via clip-
board, drag-and-drop, DDE, and OLE 1.

OLE 2 makes two major improvements. First, it allows you to describe

data using not only a clipboard format, but also a specification about how

much detail the data contains, what type of device (primarily printers) it was
rendered for, and what sort of medium is used to transfer the data. This new

method of describing and exchanging data, which we’ll examine in Chapter

6, is much more powerful than anything previously available. Instead of sim—

ply saying “I have a DIB,” I can say “I have a thumbnail sketch of a DIB ren-

dered for a 300 dots per inch (dpi) PostScript printer, and it lives in a storage
object.” For a source of data, you can choose the best possible medium in

which to transfer data, and you can make it the preferred format, providing
other mediums as backups (such as global memory, the lowest common

denominator). So if you happen to generate 80-MB 24-bit DIBs, you can keep
those in disk files or storage objects, even during a data exchange. You don’t
have to load that entire DIB into memory simply for such a transfer.

Data transfer in OLE 2, therefore, can use a compound file, disk file,

global memory, or whatever medium is most preferable for data. Understand-

ing that data transfer works on top of compound files, you can see how this

OLE 2 feature builds on a lower feature, much in the way that today’s clip-
board takes advantage of Windows’ kernel memory allocation primitives.

Secondly, OLE 2 separates the means of setting up a data exchange—

the protocol—from the actual operation of exchanging data. The problem

today is that the four transfer protocols (clipboard, File Manager drag-and-
drop, DDE, and OLE 1) use wideiy different functions and widely different

data structures, and each has its own limitations. Under OLE 2, applications
use new API functions to transfer a pointer to a data object from the data

source to the consumer of that data. These API functions form the protocol,

as discussed in Chapters 6 through 8. After this pointer has been exchanged,

the protocol disappears, and all exchange of data happens through the data

object. In other words, the protocol worries about exchanging a data object;
the data object standardizes how to exchange data rendered in some medium

Page 36 of 221

Page 37 of 221

O N E: An Overview of OLE 2

independent from the protocol. Because the data object does not know

anything about protocols, you can write one piece of code to perform an

operation such as Paste regardless of how you obtained the data object, hence
the “Uniform” in Uniform Data Transfer.

Notification

Consumers of data from an external source are generally interested in when

that data changes. OLE 2 handles notifications of this kind through an object

called an advise sink—that is, a body that absorbs asynchronous notifications

from a source. The advise sink not only handles notifications for data

changes, but it also is generally used to detect changes in another compound

document object, such as when it’s saved, closed, or renamed. We’ll first see

advise sinks in Chapter 6, and we’ll see them again in Chapter 9 and beyond.

Data Objects and the Clipboard

Applications can first make use of data objects for Cut and Copy clipboard

operations. As Chapter 7 shows, a data object is programmaticaily similar to

common clipboard-handling code. When your data object renders data, you

use the same functions you used to generate a handle to pass to SetClipboard-

Data. When your data object is asked to enumerate the formats it supports, it

does so in the same order your clipboard code always has. In fact, a data object

used for Copy and Cut operations can be implemented on top of whatever

clipboard-handling code you currently have, with some minor modifications,

primarily to handle delayed rendering if you have not already.

Pasting data from the clipboard is a matter of retrieving a data object

that describes what data is currently on the clipboard. Instead of asking about

availability with IsClipboardFormaiAvailable, you ask such a data object Whether

it can render a specific format for whatever device, content, and transfer

media you want. If the data object can provide the data, you can, at any time,

ask for a rendering through the object instead of through GetClipboardDam.

Data Objects and Drag-and-Drop

Converting an application so that it uses data objects for clipboard transfers is

not much of a benefit in and of itself. However, after you have the data object

implemented for the clipboard, you can use that same implementation for

drag-and—drop. OLE 2 does not deal with the simplistic drag-and—drop of files

from File Manager: OLE 2 provides for full drag—and-drop of any data that you

could transfer through the clipboard. Instead of being limited to files or

maybe simply to compound document objects, you can write your application

to drag and drop any data that you can describe in a data object.

17

Page 37 0f221

Page 38 of 221

INSIDE OLE2

—————————___.____________

Think of drag—and—drop as a streamlining your existing clipboard opera—
tions by eliminating menus, allowing direct manipulation, and providing
dynamic feedback to the user about what data is being dragged and what
might happen if the data is dropped. In this model, the source of the drag
provides the data object, determines what starts and stops the operation, and
controls the mouse-cursor—related user interface. The target of a drag receives
the data object, checks for usable formats, and determines what will happen
with the data if it’s dropped inside the target window.

Drag-and—drop is a tremendous user benefit, and if you implement a
data object for the clipboard first, your drag-and—drop implementation is
close to trivial, as we’ll see in Chapter 8: An implementation will not take
more than a few days, depending on how fancy you want to get. For the
simplest implementation of a drop source you can copy code straight from
this book and probably have it working in under an hour. Targets are a little
more complicated, but simple targets could be written in an afternoon. You

Won’t find another feature this powerful and this easy to implement.

Data Objects and Compound Documents

13

Drag-and—drop is not the end; implementing linking and embedding (what
we call Compound Document technology) involves augmenting the data ob—
ject to handle OLE 2 formats to describe both linked and embedded objects.
You will modify your data object code to enumerate and render a few new for-

mats; most of the rendering can be delegated to functions already imple-
mented in the OLE 2 SDK’s sample code. We’ll examine how the Compound
Document technology affects data transfers in various ways in Chapter 9 and
beyond.

After you have augmented the data object for OLE 2 formats, you in—
stantly enable transfers of Compound Document objects via clipboard and
drag~and-drop because neither mechanism cares what the data object actually
contains. In addition, by providing OLE 2 clipboard formats in a data object,
OLE automatically generates OLE 1 formats for backward compatibility. With
an OLE 2 application, you get such backward compatibility for free by simple
virtue of using a data object.

Ifyou are familiar with OLE 1, you need to be aware that exchange of an
object’s native data is now handled through a storage object that represents
the part of the container’s compound file that is set aside for the object. In
OLE 1, the object was asked to allocate global memory and copy its native data
into it. In OLE 2, the object instead is given the storage object pointer
through which it writes its native data as if it Were writing to a file, resulting in
much better performance.

Page 38 0f221

Page 39 of 221

0 N E : An Overview of OLE 2——-——-——-_-—_—__—_—_—_.

Data Objects and DDE

OLE 2 itself doesn’t attempt to address data transfers with DDE by use of data
objects, for reasons outlined in Chapter 6. It is possible to design a protocol
that you could use to isolate your application from DDE and treat it, again,
with a data object just as you would treat any other data transfer. Although
such a design is outside the scope of this book, it would allow us to come full

circle, supporting the four data exchange mechanisms in Windows by means
of data objects, and keeping different protocols to retrieve a data object, but
treating that data object uniformly from that point onward.

Compound Documents: Object Embedding
The Component Object Model, Compound File, Uniform Data Transfer, and
Drag—and—Drop technologies constitute the bulk of OLE 2 that is not con-

cerned with creating applications to support compound documents. The rest

of OLE 2 supports what is known as linking and embedding. The Compound
Document technology is now only a subset of the OLE 2 functionality3 which
builds on the lower-level technologies, as illustrated previously in Figure 1-1
on page 6. The Compound Document technology is first and foremost a stan-

dard for integration between applications that follows the standards provided
in the IOWer layers: the Component Object Model standardizes how an object
and object user communicate; compound files standardize file structure;

Uniform Data Transfer standardizes data exchange functions.
A compound document is essentially a collection site for data from a

variety of other sources (that is, other applications). A word processor docu-
ment, for example, might contain a chart, a table, a metafile drawing, and a
bitmap, all of which were created in different applications. Before Object
Linking and Embedding, you created such documents by creating the data in
another application, copying it to the clipboard, and then pasting it into the
document as what we can generically (and rather loathingly) call an object.
The clipboard works very well for creating objects, but it does not work so well

for later making modifications to those objects because the pasted data no
longer retains any information about the application that created it, and it
does not retain any of the native data structures that the application used to
create it. So when end users want to modify an object, they first have to re—

member which application was used to create the object, manually locate
and launch that application, and then attempt to copy and paste the object
back into that application for editing. Because almost all of the native data

3. A historical note: OLE l was concerned only with compound documents and provided no other
technologies.

Page 39 ofm21

Page 40 of 221

INSIDE OLE2
—-——-———-———_.__.__________

20

structures used to create that object were lost, what is pasted is not what was
originally created or even what was originally in the compound document.
In most cases, end users were lucky if they could make this work.

The solution to this before OLE was that the application creating an ob-
ject—what we call a server—and the application that maintained the com-

pound document—what we call a coritainermshared some sort of private
protocol between them, allowing a higher-fidelity transfer. The problem was
that no one wanted to maintain private protocols for every other application
on the market, and so there had to be a standard. OLE’s Compound Docu-
ment technology is that standard. The server packages its objects so that they
are usable in any container written to understand those packages. Because
both applications write to a standard instead of to each other, they can
achieve high-fidelity integration without any specific knowledge of the other.
They communicate through standard OLE interfaces, which provide for edit-
ing (or otherwise manipulating) an object, exchanging an object’s data, and
storing the object’s native data structures somewhere in the compound docu-
ment itself. Custom interfaces allow two applications to achieve even tighter
integration than what OLE itselfprovides, but the existence of such interfaces

does not interfere with the standard interfaces because of the Queryfmerface
mechanism mentioned earlier, in the “Objects and Interfaces” section. For

most purposes, OLE’s Compound Document technology eliminates most of
the need for custom interfaces.

Chapter 9 explores container applications that provide site objects that
describe places in which an embedded compound document object can live.
These site objects implement at least two interfaces, one of which describes

containment functions and another that provides functions through which
the container is notified of events in the object. Much of the implementation
of a container is user—interface oriented, providing dialog boxes such as Paste
Special, Insert Object, and Convert Type (new in OLE 2). Fortunately, various
groups at Microsoft have contributed to writing a source code library of these
dialog boxes as well as other user interface helper functions that should save
you tremendous amounts of time implementing a container.

Chapters 10 and 11 explore compound document objects and how to im-
plement them in either DLL or EXE servers. These chapters deal only with
embedded objects, which store their private data structures in a storage object
provided by the container. This storage object, which is usually some piece of
a larger compound file, is for the object’s exclusive use. The object can create
any kind of structure within that storage object—that is, as many streams and
substorages as you want. When asked to save itself, the object writes into this
storage, which is essentially writing directly into the container’s file. This

Page 40 of 221

Page 41 of 221

I .

0 N E: An Overview of OLE 2

means that the object is the only agent that needs to access that storage, and it

has the ability to access only as much as necessary. This is a stark contrast to

OLE 1‘s Compound Document technology, in which the container always had

to load the entire object‘s data from a file and pass it to the object via global

memory. Under OLE 2, containers only need to pass a pointer to the storage

object, resulting in much better performance than OLE 1 could achieve.

You will notice that by Chapter 9 the flavor of this book changes from

discussions about specific interfaces and what you can do with them into step-

by-step guides to compound document interfaces and what you must do with

them. This reflects the shift from the lower-level and more generic interfaces

to those that specifically deal with the Compound Document standard. Stan-

dards require predictability, so the step-by-step guides in these later chapters

describe how exactly to implement that standard. This is very important be-

cause when we talk about compound documents, we’re talking about the

interaction between two applications that don’t know about each other, and

that means a certain degree of conformity must be met to prevent a radical

increase in entropy.

Compound Documents: Object Linking and Monikers

Enabling container and server applications for linking is a matter of dealing

with an additional OLE 2 data format (describing a link source) and adding a

few more interfaces to the objects that each application implements. The ad-

dition of linking capabilities requires very few changes to other compound

document code that you implement to handle embedding. Chapters 12 and

13 deal with the necessary changes to support linking in a container and in an

object server, respectively.

Linking in OLE 2 affects containers more than it did in OLE 1. Con—

tainers are more thanjust consumers oflinked objects—they can become link

sources in and of themselves. OLE 2 provides the mechanisms by which a con-

tainer can provide link source information for objects embedded within their

documents. Within the same container, therefore, you can create an embed—

ded object to which another object is linked. Chapter 13 deals specifically
with this.

Linked objects have been a significant difficulty for programmers since

the beginning of OLE. Because the linked object’s data lives in a separate file

in the file system, links are easily broken when the end user manually changes

the location of that file. OLE 1 depended on absolute pathnames to linked

files, so any change in that file’s location broke the link, even when the rela—

tive paths between the container and the linked file remained the same. In

Page 41 offii

Page 42 of 221

INSIDE OLE2

22

addition, OLE 1 could not describe more than one layer of nested objects. To

solve most of the link breakage problems, as well as to provide for arbitrarily

deep object nestings, OLE 2 introduces a type of object called a moniker.

A simple moniker contains a reference to linked data and code that knows

how to “bind” that link. Binding means different things for different types of

monikers. For instance, binding can mean launching applications, loading

files, and requesting pointers to interfaces. The most common use of monikers

is to identify the source data for a linked object in a compound document. This

generally requires a reference to a file (such as a filename) and an identifica-

tion of the part of that file that is the actual source of the link. To accommodate

this, OLE 2 provides a simple file moniker to manage a filename and an item

moniker to manage some identification for a portion of a file.

A file moniker contains some sort of pathname, which can be as simple

as an eight-character filename (with or without a three-character extension)

or as complex as a full pathname, drive letter included. A linked object ac—

tually maintains two file monikers (and can have other monikers, as well):

one with a full pathname to the linked file (such as C:\STATUS\JUNE\-

REPORTDOC) and another with a relative pathname (such as ..\]UNE\-

REPORTDOC). When a linked object is asked to bind to its source, it first asks

the absolute file moniker to bind, which means launching the application

that knows how to load the file (based on the extension). It then asks the ap-

plication for an interface that knows how to load files, and then it asks that

interface to load the actual file. If loading fails, the linked object tries

to bind the relative moniker, which executes the same process. Although the

absolute pathname is the fastest and most reliable way to get to a file, the rela—

tive moniker addresses the cases in which an entire directory tree was moved,

breaking absolute links but not relative links. The only case that is not

handled is when the user moves a source file to a completely new location.

That cannot be solved until the operating system is aware of every such

change. When that happens, the system will automatically update the link

paths without the application knowing or caring.

An item moniker is simply some sort of name that makes sense only to

the application that originally created it and provided it as part of a linked

object. Binding to an item moniker means asking the application (presum-

ably loaded through a file moniker already) for an interface that knows how to

resolve the name into some sort ofpointer to an interface on the actual object.

A linked object generally stores complex references in a composite

moniker that is a collection or sequence of other simple monikers. Most links

are expressed in a composite of one file moniker and one item moniker,

Longer sequences of monikers express more complex notions, such as nested

Page 42 of 221

Page 43 of 221

0 N E : An Overview of OLE 2

objects in which the composite contains many item monikers. An illustration
of a composite moniker that contains a file and an item moniker is shown in

Figure 1-7.

Composite moniker

Fife moniker Item moniker

. Pathname: C:\REPORTS\MARCH.SBD item name:ThingAMaBob

Binding code asks the application
to return an object pointer for

whatever the item name references.

Binding code runs an application
handiing .839 files and asks it

to load the file in the pathname.

Binding code iterates through each moniker in the sequence

from right to left, asking those monikers to bind and managing
the information that each moniker needs in order to bind.

Figure 1-7.

Conceptualfile, item, and composite monikers.

Compound Documents: ln-Place Activation
(Visual Editing“)

The Compound Document technology provides a way to embed an object in
or link an object to a container document. The container provides the appro-

priate functionality to activate the object, which can invoke any number of
actions on the object. When the action implies editing, both linked and

embedded objects are opened in another window, which provides the editing

context, the same model OLE 1 supported.

To stress a document-centric view of computing, OLE 2 provides the

ability to activate an object in place—inside the container application’s win—
dow. Editing the object is a subset of the more generic action of activating.

Instead of the object opening another window to execute an action, it might

choose to provide editing tools or other controls in the context of the con-
tainer. End users benefit from never having to leave the document context in

which they are working—no distractions of other windows and other environ-

ments. Instead of seeing two copies of the data, one in the container and one

in a separate editing window, end users see only the one in the container, in
the full context of its containing document.

23

Page 43 of 221

Page 44 of 221

INSIDE OLE2

Servers, containers, and compound document objects require a number

of additional changes and interfaces to support in—place activation, but these

build on top of and use much of the compound document implementations
that you’ll already have done by this time. We’ll discuss the mechanisms of in-

place activation and the interactions between objects and containers at the

beginning of Chapter 15, leading into the implementation of an in-place

capable container application. We’ll then discuss the implementation of in—

place objects in Chapter 16, and we’ll end that chapter with an exercise in

extrapolation to see where the in-place activation technology might take us in
the future.

By implementing in-place activation interfaces, you do not restrict your

container or object to being useful only to other in-place applications. The

presence of the in-place activation interfaces does not interfere in any way

with the more basic compound document interfaces. So if you implement an
in—place object, it will be useful to an in-place container, which can activate it

in place, as well as to a simpler container, which will always activate the object
in a separate window.

Automation

24

One other key technology that is part of the OLE 2 system but that is com—

pletely separate from the rest is OLE Automation. This technology allows an

object—any object regardless of other features—to expose a set of com-

mands and functions that some other piece of code can invoke. Each

command can take any number of parameters, and automation provides the

methods through which an object describes the names and types of those pa-

rameters. A full description of this technology, while very rich and exciting, is

beyond the scope of this book. In fact, automation is a large enough topic to
justify an entire book by itself. These few paragraphs constitute all that I men-

tion in this book about the technology.

The intent ofAutomation is to enable the creation of system macro pro-

gramming tools. Such tools will ask automation-enabled objects for lists of

their function names and lists of parameters (names and types) that those

functions accept. At one point, Microsoft was considering a single system

macro programming tool, but this approach would have meant one language

and one tool for all end users. Through Automation, OLE 2 allows objects to

describe their capabilities to any tool where the tool defines the program-

ming environment. Ultimately this gives the end user the choice of language,
vendor, functionality, and so on.

Page 44 of 221

Page 45 of 221

O N E : An Overview of OLE 2

Automation objects generally describe user-level functions on the order

of File Open or Format Character; Automation tools display those functions

to the user, allowing the user to write macro scripts that span applications.

The major motivation for this mechanism is to pave the way for pro—

gramming tools that can affect any Automation-enabled object, regardless of

whether the system or an application implements that object. When the user

chooses an object, such a tool asks the object for its list of function names and

exposes t0 the user the operations that are possible on the object. When the

user selects a function to use, the programming tool can further ask the ob—

ject for the names and types of that function’s parameters, and it can provide

the environment in which the end user can indicate what to pass in each

parameter.

With a system full of such objects from many applications, the end user

can use any programming tool that understands Automation to write macros

that could span applications. A more immediate benefit to your specific appli-

cation is that such a tool can also write macrOs that operate only in your appli-

cation, eliminating the need for you to create your own specific macro

language. The end user is then free to choose his or her preferred program-

ming tool, any of which use your Automation interfaces in the same way. The

user gains the benefit of having one tool that works with all Automation appli-

cations; you benefit from exposing Automation once and letting someone

else provide the programming environment.

But it doesn’t stop there. Although Automation exposes commands

through which external agents invoke your functions, there is no reason what-

soever that you could not invoke those same commands yourself. You might

implement Automation on top of your application’s message procedure, or

you might choose to implement your message procedure on top of Automa-

tion. Looking ahead, centralizing such code in the Automation interface

might lead to the eventual elimination of message procedures, using instead a

more general-purpose and powerful command processing object.

25

Page 45 of 221

Page 46 of 221

I: 3' _-.| 11-:
-.\ . '

r 1 1 1 l“ '1‘.‘ 1 a 1.-., ,.Libs\K\k\\\i\\\\\\.

CONVENTIONS, C++,

AND SAMPLE CODE

Throughout this book, we’ll watch two applications evolve as we learn how
applications can take advantage of the various OLE ‘2 technologies and what
pieces of code are necessary to achieve the apex of in-place activation, which

will doubtless be the goal of many readers.

One application will be written from scratch—that is, it will not imple-
ment certain features such as file I/O until we can use compound files. This

application is suitable to become a container application, but before that time,

it will serve to illustrate how to incorporate non—compound-document features.

The other sample is a full—featured application that without doing any-
thing else terribly important uses the traditional Windows API functions from

the start, implementing a number of features common to all applications,

such as clipboard exchanges and file I/O. As we follow this application
through each chapter, we‘ll replace the use of Windows API functions with the

use of OLE 2 technologies, such as converting existing file I/O into com-

pound files. Beginning in Chapter 4, we’ll break a piece of this application
into a component object DLL and separately develop it into an embedded
object capable of in-place activation.

Along the way, we’ll also create a number of useful components (either

code fragments or DLLs) that you might find helpful in your own implemen-
tations.

To C or Not to C (with Apologies to Shakespeare)

The sample code provided in this book is mostly in C++, primarily because

the concepts and features of OLE 2 are best expressed in that language.
Authoring a book of this sort presents a few philosophical difficulties, such as

Page 46 013721

Page 47 of 221

INSIDE OLE2

what language to use, how everything will fit on the companion disks, and
how not to alienate a large portion of your audience,

C++ code is smaller and simplifies code reuse, reducing the amount of

code I have to write and the amount ofcode you have to read. C programmers

will no doubt be a little put off by this, so in this section I‘ve provided critical

explanations of basic C++ concepts and notations that should help the C pro-

grammer understand the sample code. While writing the code, I tried to re-
member that it has to be understandable to a typical C programmer, so I’ve

purposely kept myself from going hog wild about everything C++ can do, such
as deep multiple inheritance or long chains of virtual functions. This will no
doubt put off a number of C++ programmers, but believe me, it is not as bad as
forcing everyone to labor through verbose C.

Another possible source of irritation is that I wrote these samples in C++

using my own class library (called CLASSLIB) instead of a real library such as
the Microsoft Foundation Classes, which you might be using and for which

you might harbor a religious zeal. The reason is that libraries such as
Microsoft Foundation Classes, although very convenient, tend to hide much

of what we need to discuss and have a strong tendency to render an applica—

tion utterly foreign to C programmers, who develop glazed expressions and

start asking questions such as “Where is WinMam?” and “Where’s the win—

dow procedure?” All the samples in this book have a WinMaz'n (or a LibMam)
from which you can follow the thread of execution. The class libraries I wrote

for this book serve mostly to keep a lot of the basic code for a Windows pro—

gram out of the way, and they were something I could include on the sample
disks.

With the exception of the code to manage the application‘s data struc-

tures, the sample code was originally written in straight C. In fact, these appli-

cations were ported from original C versions mostly by changing structures

into classes, which represents nearly the extent of my C++ talents. A C pro-

grammer briefed on the fundamental rules of C++ should be capable of tak-
ing the classes back to structures mostly by means of global search and replace

instead of a 1ine~by—line rewrite.

The remainder of this section is intended to be a C++ briefing for C pro-

grammers, explaining this newer language from a C perspective so that you

can work through the rest of the code in this book. This section does not de-

scribe any details about OLE 2 itself but covers the aspects of the C++ lan-

guage that I used in this book’s samples to implement OLE 2 features. (Note
that when I use the word object in this section I mean a C++ object, not a

Windows Object, as I will mean in the rest of the book.) C++ is a matter of
convenience and results in much more compact code. I do not claim to be a

C++ expert, so please refer to any of the plethora of C++ books available

28

Page 47 of 221

L—‘

Page 48 of 221

T W O : Conventions, C++, and Sample Code

to make more sense out of this language. If you are already comfortable with
your C++ knowledge, feel free to skip to the “Sample Code” section of this

chapter, which starts on page 41.

User-Defined Types: C++ Classes

Many a C application is built on top of a number of data structures, one of

which might be a typical user—defined structure of application variables such
as the following:

typedef struct tagAPPVARS
{

HINSTANCE hInst; {/WinMain parameters
HINSTANCE hInstPrev:

LPSTR psszdLine;
int nCmdShow:

HNND hWnd: //Main window handle
} APPVARS:

typedef APPVARS FAR *LPAPPVARS:

To manage this structure, an application will implement a function to al-
locate one of these structures, a function to initialize it, and a function to free it.

LPAPPVARS AppVarsPAliocate(HlNSTANCE. HINSTANCE, LPSTR. int);
BOOL AppVarsFInit(LPAPPVARS)
LPAPPVARS AppVarsPFree(LPAPPVARS):

When another piece of code wants to obtain one of these structures, it calls

AppVarsPAllocate to retrieve a pointer. Through that pointer, it can initialize

the structure with AppVarsFIm’t (which in this case might attempt to create a
window and store it in hWnd) or access each field in the structure.

By creating this structure and providing functions that know how to map

nipulate that structure, you have defined a type. C++ formalizes this com-

monly used technique into a class defined by the class keyword:

class __far CAppVars
{

public:

HINSTANCE m_h1nst; //WinMain parameters
HINSTANCE m‘hInstPrev;

LPSTR m_psszdLine:
int m_nCmdSh0w:

HWND m_hWnd; //Main window handle

public:

CAppVars{HINSTANCE, HINSTANCE. LPSTR. int);
(continued)

Page 48 of 331

Page 49 of 221

IN 8 ID E O L E 2
.__________________.___.._______________

~CAppVars(void):
BOOL Flnit(void):

J;

typedef CAppVars FAR *LPCAppVars;

The name after class can be whatever name you want. Although we

could have used APPVARS, paralleling the C structure, the name CAppVars

conforms to a C++ convention of using mixed-case names for classes prefixed
with a C for class. Another convention in C++ classes, at least around

Microsoft, is to name data fields with an mh prefix to clearly identify the vari-
able as a member of a class.

When another piece of code wants to use this class, it must instantiate a

C++ object of this class. In C terms, CAppWrs is a structure. To use the struc-
ture, you still have to allocate one. In C++, we do not need separate functions
to allocate the structure, nor do we use typical memory allocation functions.

Instead we use C++‘s new operator, which allocates an object of this class and

returns a pointer to it, as follows:

LPCAppVars pAV:

pAV=new CAppVars(hInst, hInstPrev. psszdLine, nCmdShow);

Because CAppl/ars was declared as _far, new allocates far memory and

returns a far pointer. If the allocation fails, new returns NULL. But this is not
the whole story. After the allocation is complete, and before returning, new
calls the class constructor function, which is the funny—looking entry in the

following class declaration:

public:

CAppVars(HINSTANCE. HINSTANCE. LPSTR. int):

To implement a constructor, you supply a piece of code in which the
function name is <class>::<clnss> (<pammeter limb) where r: means “member

function of,” as in the following:

CAppVars::CAppVars(HINSTANCE hInst. HENSTANCE hInstPrev
LPSTR psszdLine, int nCmdShow)

{

//In1t1alize members of the object
m_hInst=hInst:
m_hinstPrev=hInstPrev:

m_psszdLine=psszdLine;
m_nCmdShow=nCmdSh0w;
}

The notation allows different classes to have member functions with identi-

cal names hecause the actual name of the function known internally to the

30
Page 49 of 221

Page 50 of 221

T W 0 : Conventions, C++, and Sample Code

compiler is a combination of the class name and the member function name.

This allows programmers to remove the extra characters from function names

that are used in C to identify the structure on which those functions operate.
The constructor, which always has the same name as the class, can take

any list of parameters, but unlike a C function, it has no return value because

the new operator will return whether or not the allocation succeeded. Because

the constructor cannot return a value, C++ programmers typically avoid plac-
ing code in the constructor that might fail, opting instead for a second func~

tion to initialize the object after it has been positively instantiated.

Inside the constructor. as well as inside any other member function of

the class, you can directly access the data members in this object instantiation.
The m_ prefix on data members is the common convention used to distin-

guish their names from other variables, especially since the names of data

members often conflict with parameter names.

Implicitly all the members (both data and functions) are dereferenced

Off a pointer named this, which provides the member function with a pointer
to the object that’s being affected. Accessing a member such as m_ him;

directly is equivalent to writing this—>m_h1nst; the latter is more verbose, and
so it is not used often.

The code that called new will have a pointer through which it can access
members in the object just as it would access any field in a data structure:

Updatewindow(pAV=>m_hwnd);

What is special about (3+? object pointers is that you can also call the member

functions defined in the class through that same pointer. In the preceding
class declaration, you’ll notice that the functions we had defined separately
from a structure are pulled into the class itself. Instead of having to call a
function and pass a structure pointer, as follows;

//C call to a function that operates on a structure pointer
if (lAppFInitipAV))

{

[Other code here]
}

the caller can dereference a member furLCtion through the following pointer:

l/C++ call to an object's member function
if (lpAV*>FInit(l)

{

[Other code here]
}

The Find function is implemented with the same notation that the
constructor uses:

Page 50 orihi

Page 51 of 221

7"
IN 8 ID E C)L E 2_______———__—————-——

32

CAppVars::FInit(void)
{

//Code to register the window class might go here.

m,hWnd=CreateWindow(...): //Create the main app window

if (NULL!:m_hWnd)
{
Showwindow(m_hWnd, m_nCmdShow);

UpdateWindow(m_thd);
]

return (NULL!:m_thd);
}

Again, because a constructor cannot indicate failure through a return value,
C++ programmers typically supply a second initialization function, such as

Iflhitthatperfimansoperanonsthatnughtbetnonetofaflure
You could, of course, still provide a separate function outside the class

that took a pointer to an object and manipulated it in some way. However, a

great advantage of using member functions is that you can only call member
functions in a class through a pointer to an object of that class. This prevents

all sorts of problems when you accidentally pass the wrong pointer to the

wrong function, an act that usually brings about some very wrong events.
Finally, when you are finished with this object, you’ll want to perform

cleanup on the object and free the memory it occupies. Instead of calling a

specific function for this purpose, you use C++’s delete operator:

delete pAV:

delete frees the memory allocated by new, but before doing so it calls the

object’s destructor, which is that even-funnier—looking function in the class

declaration (with the tilde, ~) but which comes with an implementation like

any other member function:

l/In the class

public:
~CAppVarstvoid);

//Destructor implementation

CAppVars::~CAppVars(void)
[

//Perform any cleanup on the object.
if (Iswindow(m_hWnd))

DestroyWindow(mrhwnd):

return:

}

Page 51 of221

Page 52 of 221

T W O : Conventions, C++, and Sample Code

The destructor has no parameters and no return value because after

this function returns, the object is simply gone. Therefore, there is no point in
telling anyone that something in here worked or failed because there is no

longer an object to which such information would apply. The destructor is a

great place—in fact, your only chance—to perform final cleanup of any allo—
cations made in the course of this object’s lifetime.

Of course, there are many other ways to define classes and to use con-

structors, destructors, and member functions than I’ve shown here. However,

this reflects how I’ve implemented all the sample code in this book.

Access Rights

You probably noticed those public labels in the class definition or should, by
now, be wondering what they’re for. In addition to public, two variations of

public can appear anywhere in the class definition: protected and private.

When a data member or member function is declared under a public
label, any other piece of code that has a pointer to an object of this class can

directly access those members by means of dereferencing, as follows:

LPCAppVars pAV:
HINSTANCE hlnstZ:

pAV=new CAppVars(hInst, hPrevInst. psszdLine, nCmdShow);

hInst2=pAV->m_h1nst: //Public data member access

if (lpAVOFInitU) //Pubiic member function access
{

[Other code here]
}

When data members are marked as public, another piece of code is

allowed to change that data without the object knowing, as in the following;

pAV->m_hInst=NULL; HGenerally NOT a good idea

This is a nasty thing to do to some poor object that assumes that m_h1nst

never changes. To prevent such arbitrary access to an object’s data members,

you would mark such data members as private in the class, as follows:

class _far CAppVars
{

private:

HINSTANCE mchInst; //winMain parameters
HINSTANCE m_hInstPrev:

LPSTR m_psszdLine;
int mHnCmdShow;

(continued)

Page 52 of 3321
L_—————

Page 53 of 221

IN 8 ID E C)L E 2______.____——-——-—-——-—

HwND mchwnd: //Main window handle

public:

CAppVars(HINSTANCE. HINSTANCE. LPSTR, int}:
~CAppVars(void);
BODL FInit(void);

};

Now code such as pAV—>hImt=NULL will fail with a compiler error be-
cause the user of the object does not have access to private members of the

object. If you want to allow read-only access to a data member, provide a
public member function to return that data. If you want to allow write access
but would like to validate the data before storing it in the object, provide a

public member function to change a data member.
Both data members and member functions can be private. Private mem—

ber functions can be called only from within the implementation of any other

member function. In the absence of any label, private is used by default.

If a class wants to provide full access to its private members, it can

declare another class or a specific function as a friend. Any friend code has as

much right to access the object as the object‘s implementation has. For ex-
ample, a window procedure for a window created inside an object‘s initializer
is a good case for a friend:

ciass _i°ar CAppVars
{

friend LRESULT FAR PASCAL AppHndProc([WndProc parametersjl:

private:
[Private members accessible in AppwndProc]

} ;

Any member declared after a protected label is the same as private as far as

the object implementation or the object’s user is concerned. The difference
between private and protected manifests itself in derived classes, which brings
us to the subject of inheritance.

Single Inheritance

A key feature of the C++ language is code reusability through a mechanism
called inheritance—that is, one class can inherit the members and implemen-

tation of those members from another class. The inheriting class is called a

derived class; the class from which the derived class inherits is called a base class.

34

Page 53 of 221

h_______________—

Page 54 of 221

T W O : Conventions, C++, and Sample Code___

Inheritance is a technique to concentrate code common to a number of

other classes in one base class—that is, placing the code in a place where
other classes can reuse it. Applications for Windows written in C++ typically
have some sort of base class to manage a window, as in the following CWindow
class:

class __far CNindow
{

protected:

HINSTANCE m_hInst;
HNND mkhwnd;

public:

CNindow(HINSTANCE):
~Cw1ndow(void);

HNND Window(void);
i:

The CWindow member function Window simply returns ma hWnd, allow-
ing read-only access to that member.

Ifyou now want to make a more specific type ofwindow, such as a frame
window, you can inherit the members and the implementation from CW’indaw
by specifying CWindow in the class definition, using a colon to separate the
derived class from the base class, as follows:

class u,far CFrame : public CWindow
{

//CFrame gets all CNindows variables.
protected:

//He can now add more members specific to our class.
HMENU m-hMenu:

public:

CFrame(HINSTANCE);
~CFrametvoid):

//We also get CHindow's Window function.
l:

The implementation of Cmee can access any member marked protected
in its base class CWindow. However, Cmee has no access to private members
0f(3Wfind0w.

You will also see a strange notation in constructor functions:

CFrame::CFrame(HINSTANCE hInst) : CNindow(hInst)

Page 54 013221

Page 55 of 221IF‘

IN SI D E O L E 2
___—______________———-—-———-—

This notation means that the Mm: parameter to the Cmee constructor is

passed to the constructor of the CWindow base class first, before we start exe-
cuting the Cmee constructor.

Code that has a pointer to a Cmee object can call CWindowsz'ndow
through that pointer. The code that executes will be the implementation of
CWmdow. The implementation of CFrame can, if it wants, redeclare Window in
its class and provide a separate implementation that might perform other
operations, as follows:

class __far CFrame : public CWindow
{

HNND Window(void);
];

CFrame::Window(void)
[

[Other code here]

return m_hwnd; //Member inherited from CWindow
}

If a function in a derived class wants to call the implementation in the

base class, it explicitly uses the base class’s name in the function call. For ex-
ample, we could write an equivalent Cmemedow as follows:
CFrame::window(void)

i

return CNindow::Window():

}

In programming, one often finds it convenient to typecast pointers of
various types to a single type that contains the common elements. In C++, you
can legally typecast a Cmee pointer to a CWz‘ndow pointer, because CFrame
looks like a CWindow. However, calling a member function through that

pointer might not do what you expect, as in the following:

CWindow * pHindow;
HNND hWnd:

pwindow:(cwindow *Jnew CFrame(); [/Legal conversion
hWnd=pWindow->Nind0w();

Whose Window is called? Because it is calling through a pointer of type

CWindow it, this code calls CWindow::l/Vind0w, not Cmee::Wz'nd0w.

Programmers would like to be able to write a piece of code that knows
only about the CWi'ndow class but that is also capable of calling the Window

35 Page 55 of 221

Page 56 of 221

T W 0 : Conventions, C++, and Sample Code

member functions of derived class. For example, a call to andow—>Pl/indow
would call Cmee::Window if, in fact, pWindow is physically a pointer to a
Cmee. To accomplish this requires what is known as a virtualfunction.

Virtual Functions and Abstract Base Classes

To solve the typecasting problem described in the previous section, we have
to redefine the CWindow class to make Window a virtual function using the
keyword virtual, as follows:

class d_far CHindow
{

virtual HWND Window(voidl:
l;

The virtual keyword does not appear in the implementation of
CWindom::Windom

If Cmee wants to override CWmdow;.-l/Vindow, it then declares the same

function in its own class and provides an implementation of Window, like this:

class __far CFrame : public CWindow
{

virtual HWND Window(void);
}:

CFrame::Wind0w(void}
{

[Code that overrides the default behavior of CNindow]}

Such an override might be useful in a class that hides the fact that it ac—

tually contains two windows; the implementation of Window would then per-
haps return one or the other window handle, depending on some condition.

With CWindow::Window declared as virtual, the piece of code we saw
earlier has a different behavior, as in this:

pWindow=(CWindow *)new CFramei); //Legal conversion
hNnd=pWindow->Window():

The compiler, knowing that CWindowsszdow is virtual, is now respon-
sible for figuring out what type pWindow really points to, although the pro-
gram itself thinks it’s a pointer to a CWindow. In this code, pWindow->Window
calls Cmeexl/Vindow. If pWindow really points to a CWindow, the same code
would call CWindow::Window instead.

Page 56 013521

Page 57 of 221

INSIDE OLE2

C++ compilers implement this mechanism by means of a virtualfunction
table (sometimes referred to as a Vrbl) that lives with each object. The function
table of a CWi’ndow will contain one pointer to CWindew.-.'Window. If Cmee
overrides the virtual functions in CWz‘ndew, its table will contain a pointer to
Cmee:.'Wmd0w. If, however, Gmee does not override the Window function,
its table contains a pointer to CWindow::Wind0w.

A pointer to any object in certain implementations of C++1 is really a
pointer to a pointer to the object’s function table. Whenever the compiler
needs to call a member function through an object pointer, it looks in the
table to find the appropriate address, as shown in Figure 2-1. So if the virtual

pwindow=new Ciiindowi):
hwnd:pw1nd0w->window(J ;

i

CWindowiahie
Pointer to Window

all: ‘_.'

!;Hv{v1vo CWindow::Wr'ndow(‘ “
return min Wnd,
}

___———-—III—

CWindow

Object data

pWindow:(CHindow*)new CFrame();
hWnd=pwindowv>Ni ndow():

i,
CFrame table

Pointer to Window

if, ' ‘L

iHWND CFrame WndowWoidj
'e

t
[Other code here]
return m_hWnd,
}

NOTE: An object’s function table is actually separate from
the data, but they are shown together here for simplicity.

Figure 2-1.

C++ compilers call virtualfimctiom-ofan object by means ofafunction table.

l. Atleast Visual C++ 1.0 and Borland CH 3.1,

38
Page 57 of 221

__.:=|

Page 58 of 221

T W 0 : Conventions, C++, and Sample Code_______________________________.__

Window of the CWindow class and of all derived classes always occupies the
first position in the table, calls such as pWindow—> Window are actually calls to
whatever address is in that position.

Virtual functions can also be declared as pure virtual by appending =0 to
the function in the class declaration, as follows:

class _far CNi‘ndow

{

virtual HHND Nind0w(void)=0;
]:

Pure virtual means “no implementation defined,” which renders CWin—

data into an abstract base class—that is, you cannot instantiate a CWindow by
itself. In other words, pure virtual functions do not create entries in an ob-

ject’s function table, so C++ cannot create an object through which someone
might try to make that call. As long as a class has at least one pure virtual
member function, it is an abstract base class and cannot be instantiated, a fact
compilers will kindly mention.

An abstract base class tells derived classes “You must override my pure
virtual functions!” A normal base class with normal virtual functions tells

derived classes “You can override these, :ifyou really care.”

You might have noticed by now that an OLE 2 interface is exactly like a
C++ function table, and this is intentional. OLE 2’s interfaces are defined as

abstract base classes, so an object that inherits from an interface must over-

ride every interface member function —that is, when implementing an object
in C++, you must create a function table for each interface, and because inter-

faces themselves cannot create a table, you must provide the implementations
that will. OLE 2, however, does not require that you use C++ to generate the
function table; although C++ compilers naturally create function tables, you
can just as easily write explicit C code to do the same.

Multiple Inheritance

The preceding section described single inheritance—that is, inheritance

from a single base class. C++ allows a derived class to inherit from multiple
base classes and thus to inherit implementations and members from multiple
sources. The samples in this book do not use multiple inheritance, although
there are no technical reasons preventing them from doing so. They use only
single inheritance to remain comprehensible to C programmers who are just
beginning to understand the concept. In any case, multiple inheritance is evi-
dent in the following class declaration:

39

Page 58 of 221

Page 59 of 221

IN SI D E C)L E 2

40

class __far CBase

{

public:
virtual FunctionA(void):

virtual FunctionB(void);

virtual FunctionC(voidl:

}:

class _4far CAbstractBase
{

public:
virtual FunctionDlvoid)=@;

virtual FunctionE(void)=@;

virtual FunctionF(void)=@:

}:

l/Note the comma delineating multiple base classes.

class g_far CDerived : public CBase. public CAbstractBase
{

public:
virtual FunctionA(v01d);
virtual FunctionB(void):

virtual FunctionC(void):

virtual FunctionD(void);

virtual FunctionEtvoid):
virtual FunctionF£voidlz

l:

An object of a class using multiple inheritance actually lives with mul-
tiple function tables, as shown in Figure 2-2. A pointer to an object of the
derived class points to a table that contains all the member functions of all the
base classes. If this pointer is typecast to a pointer to one of the derived
classes, the pointer actually used will refer to a table for that specific base
class. In all cases, the compiler dutifully calls the function in whatever table

the pointer referenced.
Ofcourse, there are limitations to using multiple inheritance, primarily

when the base classes have member functions with the same names. In such

cases, the object can have only one implementation of a given member that is
shared between all function tables, just as each function in Figure 2-2 is
shared between the base class table and the derived class table.

Page 59 of 221

Page 60 of 221

T w 0 : Conventions, C++, and Sample Code

pDeri ved:new

CDerived(): +,._. _ :-_
F '- CDerived table‘

Pointer to FunctionA
Pointer to FunctionB
Pointer to FunctionC
Pointer to FunctionD
Pointer to FunctionE
Pointer to FunetionF

pBase=lCBase *) .3,
pDeri‘ved; +3..

CBase table 3:! CDerlved FunctionA '-

Pointer to FunctionA
Pointer to FunctionB
Pointer to Functionc

E'CDerived Functions ‘3

li'CDerived FunctionC J

E-CDerive-d Functionliijlla

lCDerived FunctionE 3"
it CDerived FunctionF I

 PAbstractBase:
(CAbstractBase *)

pDe ri ved ; H» _
EfibstractBase fable

Pointer to FunctionD
Pointer to FunctionE
Pointer to FunctionF

Figure 2-2.

Objects ofclasses using multiple inheritance contain multiple tables.

Sample Code

In case you have not noticed already, this book contains quite a lot of sample
code, enough to require two companion disks. After installing the sample
code on your own machine, you will have a number of directories with the
contents shown in Table 2-1.

This book follows the development of two applications that you’ll find in
many CHAPxx directories in the sample code: Cosmo and Patron. Both of

these applications will compile into single-document or multiple-document
versions, depending on the build environment you want. They both make use
of a common code base in CLASSLIB, and they use the BTTNCUR,
GIZMOBAR, and STASTRIP DLLs to provide user interface components,
Most of the sample code depends on the contents of the INC and LIB directo-

ries as well, including Cosmo and Patron. To make the purpose of all the code
clear, the following sections deal with each directory in detail.

Page 60 05321

Page 61 of 221

INSIDE OLE2
____—_______.—__——-————-—————-

Include (.H) files used by more than one sample.

Libraries (.LIB files) used by more than one sample.

A repository for built DLLs and EXEs so that you can include
this one directory in your PATH command. Before you build
any of the other samples, this directory will contain a build of
the OLEQUI library that is shipped with the OLE 2 SDK, cus-
tomized for the samples in this book {in the file

Version 1.1 update of the Buttons 8c Cursors DLL. Compiles

An implementation of a toolbar, called the GizmoBar, which
compiles into GIZMOBARDLL.

An implementation of a status-line control, StatStrip, which
compiles into STASTRIPDLL and includes a small test
program in the DEMO directory.

A specific C++ class library as used by the more featurerladen

Template implementations for all the OLE 2 interfaces

Sample code for Chapter xx.

Directory Contents

INC

LIB

BUILD

BOOKUIDLL).

BTTNCUR
into BTTNCURDLL.

GI ZMOBAR

STASTRIP

CLASSLIB

samples.

INTERFAC
discussed in this book.

CHAPxx

Table 2-1.

Directories created after the companion disks are installed.

Include Files: The INC Directory

The INC directory is a repository for any .H file that is used from more than
one application. The files stored in the directory and their use are listed in

42

Table 2-2:

File Purpose

BOOKlEiBQl—I Macros that isolate the application from Win16 and Win32
differences.

BOOKGUID.H Definitions of Globally Unique Identifiers (CLSIDs and IIDs}

used in all samples in this book, as well as anything else

generally useful to all samples, such as OLE 2-relatecl macros.

Table 2-2. (continued)

Contents of the [NC directory in the sample code.

Page 61 0f221

Page 62 of 221

T W O : Conventions, C++, and Sample Code-——————————___——

Table 2-2. continued

File Purpose

BTTNCUR.H Definitions for BTTNCURDLL. Identical to
BTTNCUR\BTTNCUR.H.

CLASSLIBI-I Include file for the class library. Identical to
CLASSLIB\CLASSLIB.H.

CLASSRES.H Resource constants for applications using the class library.
Identical to CLASSLIB\CLASSRES.H.

DEBUGH Macros to facilitate simple debug output.

IENUMOH A file shared by both samples in Chapter 3.

IPOLYx.H Definitions for a POLYLINEDLL from Chapters 4, 5, and 6,
where x represents the applicable. chapter. See the later section
titled “Cosmo: A Graphical Editor.”

GIZMOBAR.H Definitions for GIZMOBARDLL. Identical to
G1 ZMOBAR\GI ZMOBARH.

STASTRI RH Definitions for STASTRIPDLL. Identical to
STASTRIPSTASTRI P.H.

Note in Table 2-2 that a number of the files in this directory are dupli-
cates of those found in other directories. This is simply to provide you with an
environment in which you can immediately compile any of the chapter-
specific samples. To build the sample for any chapter, you must add this direc-
tory to those listed in your INCLUDE environment variable.

Libraries: The LIB Directory

Like the INC directory, the LIB directory is a repository for any .LIB that is
useful to more than one sample. For the most part, the files found here are
builds of their respective components, as listed in Table 2-3.

You can, of course, build each of these LIBS from the respective sources
at your disposal, but you must first build BTTNCUR to build GIZMOBAR;

you must build both of those and STASTRIP to build CLASSLIB; and you
must build CLASSLIB to build most of the chapter samples. The builds pro-
vided on the companion disks are simply intended to save you the trouble of
such interdependencies.

The BUILD Directory

As was mentioned earlier, the BUILD directory is the respository for builds of
DLL and EXE samples. After installing the companion disks, this directory
will contain the files shown in Table 2-4..

Page 62 M4321

Page 63 of 221

P————

INSIDE OLE2
______________—_._—-————-——-—

 File Purpose

BOOKUILIB Import library for BOOKUIDLL.

CLASSMDILIB A Multiple Document Interface (MDI) build of the class
libraries in CLASSLIB.

CLASSSDIJJB A Single Document Interface (SDI) build of the class
libraries in CLASSLIB.

Table 2-3.

Contents of the LIB directory in the sample code.

File Purpose

BOOKUIDLL A build of the OLEQUI library provided with the OLE 2 SDK

specifically named for this book.

DATATRANDLL A build of the Data Transfer object from the source code in
\CHAPO7\DATATRAN.

LNKASSISDLL A build of the Link Assistant object from the source code in
\CHAP12\INKASSIS.

Table 2—4.

Contents ofthe BUILD directory in the sample code.

You should ensure that the BUILD directory is in your PATH command,

because many samples depend on these files at run-time. Note that the ver-
sions ofBTTNCURDLL and GI ZMOBARDLL provided with the OLE 2 SDK

are the same as the ones provided here, so you do not need to worry about the
location of the BUILD directory in your path relative to the OLE 2 directory.

N O T E: Before you build any other projects described in this book, be sure
to run the MAKEALLBAT files in the \BTTNCUR, \GIZMOBAR, and

\STASTRIP directories so that you have BTTNCURDLL, GIZMOBARDLL,
and STASTRIPDLL in the \BUILD directory and BTTNCURLIB,

GIZMOBARLIB, and STASTRIPLIB in the \LIB directory. These files must
be built in this order because GizmoBar needs the Buttons 8: Cursors library.
The MAKEALLBAT file in the installation directory builds these files in the

correct order for you.

Three Amigos: BttnCur, GizmoBar, and StatStrip

To fully demonstrate all the user interface affected by in-place activation and
to add some spice to the samples, we need a few slick controls, such as a
toolbar and a status line. The GizmoBar, whose source code is in the

GIZMOBAR directory, is an implementation of a typical toolbar control that

44
Page 63 of 221

Page 64 of 221

T W O : Conventions, C++, and Sample Code

Class

builds on code provided in BttnCur, a DLL that draws up to six states (for ex-

ample, up, down, disabled, and so on) of toolbar buttons from a single bitmap

image. The GizmoBar uses BttnCur to draw its buttons, but it is aISo capable of
containing any other standard Windows control. The GizmoBar is not able to

hold arbitrary custom controls, however.

N O T E: The code for BttnCur is a version 1.1 refinement of BttnCur 1.0 that

was included with The Windows Inteiface: An Application Design Guide from

Microsoft Press. Version 1.1 has two major feature enhancements—support
for different display resolutions and full color control, which allows the stan-

dard black/white/gray buttons to change with the system colors.

The StatStrip control provides a rudimentary message bar that generally

is placed at the bottom of frame windows. The StatStrip is capable of manag-
ing a number of strings and displaying one of those strings on request. It also

provides an almost painless way of tracking menu selections and displaying
the appropriate message for each item. If you are interested in this mecha-

nism, please study the sources in the STASTRIP directory.

N O T E: Sources for both BttnCur and GizmoBar are included with the OLE

2 SDK The source code provided with this book is slightly and innocuously
altered from the code in the OLE 2 SDK, but both sources build identical DLLs.

All three of these DLLs are implemented in straight C, mostly because they
were projects that I wrote prior to writing this book. As I mentioned earlier,

GizmoBar makes use of BttnCur, so you must build the latter to build the former.

Libraries: The CLASSLIB Directory

I mentioned earlier that I did not use a real C++ class library or an “applica-

tion frameworks" to implement these samples. However, I still wanted to keep

much of the mundane Windows code out of the way as we work through OLE

2, so I concentrated as much code as was reasonable into my own class library,

which you’ll find in the CLASSLIB directory. This code will compile into
either an MDI version (CLASSMDILIB) or an SDI version (CLASSSDILIB) ,

builds of which are provided in the LIB directory. The primary include file
for these libraries is CLASSLIBH, with resource definitions in CLASSRESH.

Both Cosmo and Patron, as well as a few other samples in this book,

make use of CLASSLIB. CLASSLIB essentially provides the framework for a

simple application so that when we need to add a feature or a customization,

45

Page 64 of 221

Page 65 of 221

IN S 10 E (DL.E 2

we only need to override the applicable virtual functions in the default
CLASSLIB classes with a more specific implementation. To see how much
CLASSLIB provides on its own, you only need to create a “frame window”
object, initialize it, and tell it to start spinning in a message loop.
#include <windows.h>

#include <classlib.h>

* NinMain

* Purpose:
e Main entry point of application. Should register the app class
* if a previous instance has not done so and do any other oneetime
* initializations.
*/

int PASCAL NinMain (HINSTANCE hInst, HINSTANCE hPrev
, LPSTR psszdLine, int nCmdList
{

LPCFrame pFR;
FRAMEINIT fi:

NPARAM wRet;

l/Attempt to allocate and initialize the application
pFRznew CFrame(hInst, hPrev, psszdLine, nCmdShow);

fi.idsMin=IDS_STANDARDFRAMEMIN;
ti.idsMax=IDS_STANDARDFRAMEMAX;
fi.idsStatMin=IDS_STANDARDSTATMESSAGEMIN:
ti.idSStatMax=IDSVSTANDARDSTATMESSAGEMAXI
fl.idStatMenuMin=lDuMENUFILE;
f1.1dStatMenuMaX=lD_MENUHELP:
f1.iPoswindowMenu=NINDON_MENU;
fi.cMenus=CMENUS:

l/If we can initialize pFR, start chugging messages
if (pFR->F1nit(&fi))

wRet=pFR->MessageLoop():

delete pFR:
return wRet;

}

You can find code identical to this in CHAP02\SKEL, which builds a
skeletal application based on CLASSLIB, complete with toolbar and status
line, using (of course) GIZMOBARDLL and STASTRIPDLL. '

L 46 Page 65 of 221

Page 66 of 221

T W O : Conventions, C++, and Sample Code

With this class library, the code to implement both Cosmo and Patron

deals almost exclusively with the special features of each application. In this

way, we keep the typical windowing code out ofour way to show only the appli—

cation features and how OLE 2 affects them. Throughout this book,
CLASSLIB will remain unaltered—all modifications to accommodate OLE 2

will be made only in the respective application’s source code.
All of the C++ classes defined in CLASSLIB are shown in Table 2—5.

Note, however, that this class library is not intended to be a basis for your own

application (but, of course, there’s nothing stopping you). I do not intend to

revise this library, and I certainly will not be able to provide the level of prod—
uct support for this code that you would get with a real class library from a

reputable tools vendor. I do encourage you to use a professional development

environment in your own endeavors to produce applications.

Class Purpose

CStrinngble Loads a range of strings from the application’s resources into

memory and provides an overloaded [] (array lookup) operator to
access those strings.

CWz'miaw Base class for other window—related classes.

CGz'zmoBar A C++ wrapper class for the control implemented in
GIZMOEARDLL.

CStelStrip A C++ wrapper class for the control implemented in
STASTRI PDLL.

(Frame Creates and manages a frame window that owns a menu, toolbar,
and a client window. Compiles differently for MDI and SDI cases.

CClimt Creates and manages a client window identical to an MDI client
window for MDI cases. Under SDI, provides a client window that

responds to the MDI messages, isolating the rest of the application
from many MDI/SDI differences.

(Document Creates and manages a document window inside the client window.
The window is either an MDI child or a simple child window,
depending on the build.

Table 2-5.

C++ 61413523 in CLASSLIB and their uses.

CLASSLIB also contains resource files necessary for building a skeletal

application. These resource files are the ones used by CHAP02\SKEL. These

are not compiled into the library itself, but reside here as templates for appli—

cations using this library.

47

Page 66 of 221

Page 67 of 221

Int
INSIDE OLE2

Note the use of one macro in CLASSLIBH that might appear odd:

1382(2) where i is an integer string identifier, always with an IDS_ prefix. The

PSZ macro simplifies the lookup of the string of that index in a CStrz'ngTable

object that manages stringtable resources. When reading the code in this
book, read PSZ as meaning “this string from the stringtable.” A quick look

in the .RC file for the relevant sample will show you exactly which string is

being referenced.

Interface Templates: The INTERFAC Directory

C++ programmers: Don’t get your hopes up. The INTERFAC directory con-

tains a large number of .CPP and .H files—one for each interface—that we’ll

explore throughout this book. These are not official “C++ templates,” rather
they are interface templates that are simply source files containing a stubbed
or default implementation for each interface. In some cases, a file will contain

a complete implementation of a specific type of Windows Object, imple-

mented using a C++ object class. In most other cases, the files simply contain
stubbed functions that are meant to serve as a respository for source code

from which you can copy and paste into your own applications, an approach

that requires much less work than typing all the function headers themselves.

You can easily customize this code with a few quick search-and—replace passes

in your favorite editor.

Chapter Sources: The CHAPxx Directories

The specific source code related to a specific chapter is found in the CHAPxx
directories, where xx ranges from 2 through 16. [will not show the code for

any complete sample in any chapters because the code is too long for such a

listing. At times I will show the entire contents of a specific file relevant to the
discussion, but I will not show much in the way of make files, .DEF files, icons

or bitmaps, resource scripts, and even some include files.
Most of the code in the GHAPxx directories are different revisions of

Cosmo and Patron as they evolve throughout the book. The initial versions of

both of these applications are provided in the CHAP02\COSMO and

CHAPOEWATRON directories, with each application discussed in more

detail later. As these applications evolve throughout this book, we‘ll modify

many small parts of different source files (adding source files as well). These
modifications are consistently marked with two comments: //CHAPTER—

xxMOD and //End CHAPTERxxMOD, where xx is the relevant chapter num-

ber. These comment delimiters will heip you see which changes I had to make

Page 67 of 221

Page 68 of 221

T W 0 : Conventions, C++, and Sample Code

to both header (.H) and source (.CPP) files in our pursuit of OLE 2 nirvana.

What I primarily show in each chapter is the code around the blocks, set off

with these comments. So, for example, if you want to see which variables I

added to a class to support a. Specific feature, look in the .H file, and you’ll see
the new ones between these comments.

In addition, most CHAPxx directories contain a CHAPxxREG file.

These are plain text files containing chapter-relevant entries for the system

Registration Database. Some files contain duplicate entries from previous

chapters because some samples depend on samples and builds from previous

chapters. This redundancy ensures that the proper entries exist if you skip a

chapter.

So before attempting to run any sample in a chapter, you must merge

the contents of the appropriate .REG file with the existing Registration Data-

base by using the Windows 3.1 REGEDIT program. In some cases, the .REG

file from a later chapter will replace some of the entries made with an earlier

.REG file, which is why there is notjust one master file for the entire book.

Keep in mind as you examine the code that I designed it in such a way

that code changes or additions made to accommodate OLE 2 occur in one

place. This is the same idea as centralizing drawing code in a window in its

WM_PAINT message handling: Any other code that wants to draw something

merely changes the state of the data and causes a repaint. This design, as well

as other designs in the sample code, are my personal choices and are not

meant to represent Truth. “If it’s Truth you’re interested in,” as Dr. Indiana

jones would remind us, “Dr. Tyree’s philosophy class is right down the hall.”

Cosmo: A Graphical Editor (with Apologies to No One in Particular)

Cosmo is an application with a silly name that does nothing important.

Despite its limited value, Cosmo is a typical application that creates some

kind of graphical data—in this case, an image called a polyline. The polyline

is simply any number of points between 0 and 20 connected by lines, as shown

in Figure 2-3, which is managed by a C++ class in Cosmo called CPolyline.

The user is able to add up to 20 lines by clicking in the Polyline region—

the Polyline adds the points to an array of 20 POINT structures and incre-

ments a point count. The user can reverse added points by using Undo, which

simply decrements the number of points drawn and repaints. The user can

also change both the line and background colors, as well as change the line

style, but these operations are not reversible. All commands are available

from either menus or the toolbar. Cosmo also sports a simple status line at the
bottom of its window.

Page 68 orfii
L———_

Page 69 of 221

INSIDE OLE2

50

01mm: 3.!)

file Edit golnr Line

if": i”:- F. I'_F :7}: r-GizmoBar

Documents
StatStrip

Figure 2-3.

Multiple-document version of Cosmo, with several open Polylmes.

I provide two versions of Cosmo for use in illustrating object conversion
and emulation between OLE 1 and OLE 2 servers, as discussed in Chapter 14.

CHAP02\COSMO contains the source code for the C++ version build on

CLASSLIB with a version 2 number. CHAP02\COSM010 contains the source

code for an earlier version written in straight C as an OLE 1 server. Anytime I

refer to Cosmo in this book, I’m referring to version 2 unless I specifically
state otherwise.

Cosmo performs traditional Windows file I/O, uses the Windows API to

support the clipboard, and handles conversion to and from its version 1 file
format. Both file formats use the .C08 extension. A few sample Cosmo files

can be found in CHAP02\COSFILES. In any case, Cosmo certainly lacks a few

features (such as printing capability, Help, and maybe some real Undo func-

tionality) that will keep it from being something I could sell. It does, however,
maintain those elements that you would typically find in most applications of

a higher caliber.
Cosmo will follow a course of evolution that will take it from a standard

application for Windows to an OLE 2 application. Starting with Chapter 4,
we’ll also begin to separately develop a version ofCosmo’s CPolyline object as

an OLE 2 component object in a DLL. We’ll also create a separate modified

copy of Cosmo called Component Cosmo, or CoCosrno, that will use this

component Polyline object so as to appear indistinguishable from the self-

contained Cosmo. Using Polyline, we’ll explore how various OLE 2 features

can affect such a DLL, while at the same time illustrating those features in the

Page 69 of 221

Page 70 of 221

I T W 0 : Conventions, C++, and Sample Code

self—contained Cosmo .EXE. Both cases are important to illustrate, and both

follow paths detailed in Table 2-6.

Chapter Features

DLL Object Path

4 Polyline is split from Cosmo into a component object DLL. A version
of Cosmo called CoCosmo is created to demonstrate how to

instantiate and use such an object.

5 Polyline begins to use compound files. CoCosmo is modified to follow
the changes to Polyline.

6 Polyline implements a data object interface to provide uniform data

transfer. CoCosmo is modified in Chapters 7 and 8 to use this data
object interface to implement clipboard and drag-and-drop support.

11 Polyline is upgraded to a full compound document object that

supports embedding. Polyline essentially becomes an embedded
object server.

16 Polyline becomes capable of in-place activation.

Application Object Path

5 Cosmo is converted to use compound files.

7 Cosmo implements a data object and converts clipboard transfers to
using data objects.

8 Cosmo adds drag-and-drop functionality.

10 Cosmo is modified to support compound documents as an embedded
object server.

11 An object handler DLL is created for Cosmo’s embedded objects.

13 Cosmo is capable of providing compound document linked objects.

14 Cosmo becomes capable of converting and emulating OLE 1 objects
from Cosmo version 1.

16 Cosmo becomes capable of in-place activation.

Table 2-6.

Evolution ofthe Cosmo application by chapter:

Polyline will compile into POLYxxDLL, where xx is the appropriate

chapter number of the build. Likewise, Cosmo will compile into COSMOxx—

.EXE. This naming scheme is intended to avoid naming conflicts when all the

files are copied to the BUILD directory.

Patron: A Page Container (with Apologies to Merriam-Webster)

When I created the first version of this application for OLE l, we called con-

tainers “clients,” so a brief encounter with a thesaurus generated the name

51

Page 70 of 221

LhI—.

Page 71 of 221

INSIDE OLE2
—_______.___._—.———-————-

52

Patron. In this case, patron is defined as either “one who uses the services of
another establishment” or “the proprietor of an establishment (such as an

inn).”2 After all, as a container, Patron will use the implementations of com—

pound document objects and provide a place (a document) in which they
stay. Patron seems a better choice than another butchered version of “con-
tainer,” which doesn’t fit an 8-character filename anyway. Essentially, Patron

is a place to store various objects, such as bitmaps, metafiles, sounds, or
spreadsheets—all of which Patron refers to as “tenants.”

Patron’s documents are pages that match the size and orientation of

whatever printer setup you choose. You can add or delete pages and navigate
through them, as well as scroll the view of the current page around in the
document window. These commands are available from the menu or from a

toolbar, as shown in Figure 2-4. Like Cosmo, Patron also sports a status line
because we’ll eventually make use of it in demonstrating in—place activation.

Aside from features for changing the number of pages or navigating

through them, the only meaningful commands that the initial version of
Patron (in CHAP02\PATRON) Supports are Printer Setup and Print. Printer

Setup lets you change size and orientation as you can with any real applica-
tion. Print will actually pump out a printed page for every page you’ve cre-

ated, complete with page number. Patron also draws a rectangle on the page
so that you can see the printable boundaries. How exciting can it get?

GizmoBar

Page documents

[Untitled]

StatStrip ready

Figure 2-4.

Multipledocummt version ofPatron with several open documents.

2. Webster’s Ninth New Cailegiate Dictionary, Merriam-Webster, 1987.

Page 71 of221

__.;

Page 72 of 221

T W 0 : Conventions, C++, and Sample Code

Well, features stop there, as you might surmise from the code in

CHAPO2\PATRON. Patronls only purpose in life is to become an OLE 2 con—

tainer application. Patron will be used to demonstrate how to write a relatively
new application to take advantage of OLE 2 technOIOgies. I did not bother to

implement any file 1/0 for Patron because it will use compound files begin-
ning in Chapter 5. I also didn’t bother to make Patron capable of pasting
metafiles and bitmaps from the clipboard because that would require a hor-
rendous amount of code to draw those formats and to somehow serialize

them to a file; you might call it laziness, but I call it planning.

Because we programmers inStinctively try to avoid as much work as pos-
sible, we’ll use functionality that OLE 2 already provides to add metafile and

bitmap capabilities. As we’ll see in the chapters ahead, OLE 2 already knows
how to display and serialize these formats, so we need not consider writing
such code ourselves. [-Iow convenient! We then add a little more code to

enable Patron to contain compound document objects and work from there

to in—place activation. As we progress through the chapters, we‘ll add various
features to Patron, as shown in Table 2-7.

 Chapter Features

5 Patron adds file [/0 using compound files.

7 Patron implements clipboard functions using a data object. It pastes
metafiles and bitmaps using OLE 2 for drawing and serialization to a
compound file.

8 Patron adds drag—and—drop functionality.

9 Patron is made into a simple compound document container for
embedded objects only.

12 Patron becomes capable of containing linked objects.

13 Patron handles linking to embedded object stored in its own
documents.

14 Patron handles object conversion and emulation.

15 Patron becomes capable of in-plac'e activation.

Table 2-7.

Evolution of the Patron application by chapter.

Like COSmo, Patron will compile into PATRONxxEXE, where xx is the

appropriate chapter number of the build. This naming scheme is intended to

avoid naming conflicts when all the files are copied to the BUILD directory.

Page 72 of 221

Page 73 of 221

INSIDE OLE2

Building and Testing Environment

54

As I’ve mentioned before, the sample code in most of the directories depends on

various files in the INC and LIB directories. Running the samples require some

of the DLLs that are found in the LIB directory, as well. For these reasons, you
need to make the following changes to your environment variables:

1. Add the INC directory to your INCLUDE path so that the compiler

can locate the book’s include files referenced with #include <file>.

2. Add the LIB directory to your LIB path so that the linker can find
the libraries referenced in various make files.

3. Add the BUILD directory to your PATH so that when you run sam-

ples from the chapters they will be able to load the necessary DLLs.

In addition, note that the .REG files included with each chapter do not

provide full pathnames to DLLs and EXEs referenced in those Registration

Database entries, which is why you should add the BUILD directory to your

PATH. Otherwise, you can modify the Registration Database to include full

pathnames to each compiled DLL and EXE as needed. For debugging pur-

poses, I recommend the latter approach. If you merely want to compile and

run the samples quickly, I recommend the former approach.

There are two environment variables that affect compilations, as shown
in Table 2—8. When the SDI variable is set to 1, builds that are sensitive to that

variable (Cosmo and Patron always are) will build into an SDI directory

under the relevant source code directory (for example, CHAP02\COS-

MO\SDI). When the SDI variable is clear, builds will end up in the MDI

directory under the relevant source tree. In addition, if you set the

RETAIL variable to 1, you will build a nondebugging version in the appro-

priate SDI or MDI directory for whatever SDI or MDI option is set, wiping
out the previous build in that same directory.

 Variable Purpose

SET SDI:1 Sets the SDI flag to build SDI versions.

SET SDI: Clears the SDI flag to build MDI versions.

SET RETAILzl Builds nondebug versions using optimizations and
eliminating debugging symbols.

SET RETAIL: Builds debug versions with symbols and no optimization.

Table 2-8.

Build options controlled through environment variables.

Page 73 of 221

Page 74 of 221

T W 0 : Conventions, C++, and Sample Code

In the sample code on your disk, you will find a number of files called

MAKEALLBAT. In any given directory, the file will completely rebuild all

the samples visible in that directory. For example, the MAKEALLBAT file in

BTTNCUR will build BTTNCURDLL and a small demonstration program,
BCDEMOEXE. The MAKEALLBAT in CHAP02\COSMO will build both

MDI and SDI versions of Cosmo into CHAP02\COSMO\MDI and CHAP-

02\COSMO\SDI. The MAKEALLBAT in any CHAPxx directory will build all

the samples—both SDI and MDI versions—for that chapter. For example,
the one in CHAP02 will build MDl and SDI versions of Skel, Cosmo, and

Patron, as well as the single SDI version of Cosmo version 1.

For your convenience, the MAKEALL files will redirect all error output

from any compilation into a file called ERR in the same directory as the build

DLL or EXE and will also concatenate all error output from all builds into

BUILD\ERR. This provides a convenient record of any compilation problems.

In addition, MAKEALL will copy the builds of all the DLLS to the BUlLD

directory along with MDI versions of all EXEs. SDI versions of EXEs are

copied into BUILD\SDI.

Finally, the MAKEALLBAT in the directory where you installed the

sample code will rebuild every sample for the book, including all the DLLs

and libraries in both MDI and SDI versions, for whatever debugging or retail

version you have indicated through the RETAIL environment variable. It will

also install builds to the INC, LIB, and BUILD directories as appropriate.

It’s not a bad idea to install the samples at the end of your Work day or

before lunch and run MAKEALL before you leave your office. It will take

some time to compile everything. Plenty of time to have a great lunch

55

Page 74 of 221

Page 75 of 221

OBJECTS AND INTERFACES

object n 1 syn THING, article; reldoodad; gadget 2 syn THING,

being, entity, individual, material, matter, stuff, substance.1

“Objects solve everything,” or so you might have heard. If an object is a thing,
how does one thing solve other things? The answer is it doesn’t. Things don’t

solve, people solve. The belief that “object virtues” solve all your program-

ming problems is what some friends of mine classify as “objects on the

brain.” They suggest that you attend meetings of your local OOPaholics

Anonymous.

Using object-oriented languages to write applications and operating sys—

terns is only a matter of convenience if the ideas you want to express in that

code are best done in such a language. But C++ programmers will tell you

great stories about how C++ solved many problems they encountered in C but

also introduced a whole new class of unique problems. For one thing, your

language of choice has never simplified design—it has only made the imple-

mentation of many designs faster and more robust. I wrote the code in this
book in C++ for such conveniences.

Sojust what is an object? No doubt everyone reading this book has a dif-

ferent idea about the term object. Objects are becoming so commonplace in

just about every facet of computing that it has become difficult to understand

what the word object means in a variety of contexts. Object models appear in

places regardless of their relationships to any sort of object-oriented program;

ming model. This chapter will attempt to clarify exactly what we mean by a

Windows Object (note the capitalization to make the distinction) and what

we mean by the interfaces that such an object supports. The standardized

specifications of both are part of OLE 2’s Component Object Model.

Windows Objects are slightly different from what C++ programmers

might be used to. For instance, Windows objects do not allow direct access to

data. Windows Objects can also be used and implemented in C or any other

l. Webster’s Collegiate Thesaurus, MerriamiVVebster, Inc., 1976.

Page 75 of 2371

Page 76 of 221

’—

INSlDE OLE2

language—that is, an object-oriented language is not necessary, only more
convenient, to express object-oriented ideas.

We also have to distinguish between the object implementation and the

object user, which this book will refer to as the “user” in programming con-
texts. The term user here should not be confused with the end user, a person
who will see only the features you are implementing in your applications and
will generally not be aware of your programming constructs.

This chapter will look at objects and interfaces in both C and C++
without delving deeply into OLE 2 itself. The first sets of code we’ll see don‘t
even use #include in any of the OLE 2 include files, but they still implement
what we mean by a Windows Object— that is, something with interfaces. With
a solid understanding of these fundamentals, we can move forward into
seeing what is required for more complex Windows Objects with more useful
capabilities. Note that much of the background, beginning with the section
“IUnknown, the Root of All Evil," leads directly into Chapter 4.

I want to stress that an object as presented here is not a compound docu—
ment (linked or embedded) object. We’re not yet talking about specific appli—
cations such as containers. Much of the information from this point through
Chapter 8 deals with topics completely outside the realm of Compound Docu-
ment technology. So, as Yoda might suggest, “clear your mind of questions"
and be prepared to learn what we mean by object in the cosmos of OLE 2.

Do objects solve everything? No. Do OLE 2 and its object model solve
everything? No. OLE 2 intends to simplify the expression of object-oriented
ideas under Windows. It does not intend to somehow make application or sys-

tem design fall freely, like manna, from heaven. If it could, we would not have
to worry about the national debt.

The Ultimate Question to Life, the Universe,

and Objects (with Apologies to Douglas Adams)
I know a Windows Object exists that is capable of specific functions. How
do I obtain a pointer to that object? This question is a central theme in this
book: This chapter and those that follow are concerned with specific types of
objects, how you get a pointer to one, and what you can do with that object
once you have the pointer. Each chapter generally deals with different object
types (and how you identify those objects), the interfaces they support, tech—
niques to obtain their pointers (for whatever code uses the object), and
the specific functions you can call through those pointers. So the answer to

j our question (which is not “42,” as it was in Douglas Adams's books) varies

”l 58 Page 76 of 221

Page 77 of 221

T H R E E : Objects and Interfaces

______________.—_._—__—.__—

With each subtechnology in OLE 2. Realize as well that a Compound docu-

ment object is only one type of Windows Object and that server applications

are not the only object implementors. The fact is that almost all OLE 2 appli-

cations, regardless of what technologies they use, are both object users and

objectiniplenientors

To fully understand obtaining and using a Windows Object, we must

first go back to a few even more fundamental questions. What is an object? To

answer that question we must ask: What is an object class? To some, an object

class may seem some mighty spiritual force divinely manifested in your in-

clude files. In reality, a class (and objects) can be described in terms that

anthropologist Marvin Harris would call “practical and mundane,”2 for in

one way or another, a programmer or compiler has to reduce the notion of a
class into code.

A class, in mundane terms, is the definition of a data structure (mem—

bersj and the functions that manipulate that structure (member functions).

'Theconceptcanin:expremedjrianyprogrannflinglanguage;C++,Snuflhaflg

and other such languages have merely formalized the notion. For example,

C++ classes generally live in include files, such as this one, shown in Chapter 2:

class _far CAppVars
[

public:
HINSTANCE m_h1n5t:

HINSTANCE m‘hlnstPrev;

LPSTR m_psszdLine;
int m_nCmdShow;
HWND m_hWnd:

public:

CAppVars(HINSTANCE, HINSTANCE, LPSTR. int):
~CAppVars<void):
BOOL FInit(void):

}:

A class is only a definition and carries no implementation, although classes in

some languages may define default implementations that are not realized un—
til there is some instantiation of the data structure that contains a function

table and the variables of the class. We call that instantiated structure an

object. In C++, objects are manifested in memory, as shown in Figure 3-1 on the

next page.

The object has two components in memory: a function table, containing

pointers to each member function (sometimes known as a method) defined in

2. In Cows, Pigs, Wars, and Watches, by Marvin Harris, Vintage Books, 1974.

Page 77 of 2531
I"—

Page 78 of 221

INSIDE OLE2

60

Pointer to the

object points to
a pointer to the
function table.

Pointer to
function tabie

“'"'i~"oirater to function 1 :

Pointer to function 2

Increasing Object data Pointer to function 3 ggglgnon
memory members _ .
address (variables) Pornter to function 4

[_ Pointer to function 5,

Figure 3-1.

A C++ object in memory 2's (3 data structure containing a pointer to the

object ’5function tablefollowed by the object’s data. Thefunction tabte is

separatefrom the object structure itself: so a pointer to the objectfirst
points to at pointer to thefunction tabie.

the object’s class, and a data block, containing the current values for each

variable (or data member, sometimes known as a property). The user of the ob—

ject generally has some reference3 to this chunk of memory, which for the pur-

poses of this book is always a pointer. The user obtains this reference by using
some type of function call (direct or implied) in which that function allocates

the block in memory, initializes the function table, and returns the reference

to that memory to the user.

When the user has the reference to the block of memory, the user can

call any of the functions in the object’s function table and possibly access the

object’s variables, depending on the language being used. The single most im-

portant benefit is this: To call any of the functions defined in an object class,

you must first have a reference to an instantiated object so that the functions

have some data on which to operate. Without a reference to the object, you

have no way to call one of the object‘s functions. Even with a pointer, the ob-

ject can restrict your access to its variables or functions by means of language

mechanisms such as public and private members in C++. In contrast, a non-

object—oriented language such as C allows you to call any function with any

garbage you want. Given a pointer to a data structure, there is nothing to keep
you from partying all over those variables.

The OLE 2 notion of class is even more strict than the preceding general

definition because the only accessible members ofa class are specific groups

of functions called interfaces. As mentioned in Chapter 1 and as shown in

3. Reference here does not necessarily mean a C++ reference.

Page 78 of 221

Page 79 of 221

T H R E E: Objects and Interfaces___________—_____—.___.—

Figure 3-2, an interface is a group of semantically related functions that are

publicly accessible to the user of a Windows Object. An object’s interface can

really be viewed as only the function table part of an object in memory.

By themselves, interface definitions in OLE 2 are only virtual base

classes, and thus they cannot be instantiated. In other Words, they provide a

convenient structure to lay over the top of a function table to provide more
readable and maintainable names for each function.

Pointer to an
interface

cannot see

object’s data
members, only

the function

i'"

in Pointer to function 17'

36'

Pointer to

function table . . .
Painterto function 2

table _

inaccessibie Pointer to function 3 gféfi‘gci
Object data _ .
members _ Painterto function 4-

(variables) ?: Foimerto function 5.,

Figure 3-2.

A pointer to an interface can access only memberfunctions in the object '3

function table.

An interface implementation, in pedestrian terms, is a block of memory

containing an array of function pointers—that is, a function table. The inter-

face definition itself simply provides names for each pointer in that table.

When a user of a Windows Object obtains a pointer to an interface that an

object supports, we say it has a pointer to an interface on that object. Again,

that pointer does not provide access to the entire object; instead, it allows ac-

cess to one interface on that object=that is, to one set of functions. Through

an indirection on that pointer, the user calls a function of the object, as shown

in Figure 38 on the next page.

As mentioned in Chapter 1, the user of a Windows Object has access to

only one interface through one pointer, even when the object itself actually

supports more than one interfaCC—that is, implements more than one set of

related functions and provides multiple function tables. Note that when we

graphically represent an object with interfaces, we use a circle to represent

each interface, as introduced in Chapter 1 and as shown in Figure 3-4 on the

next page.

To use functions in a different interface on the same object, the user

must obtain a second pointer to that other interface through the Queryfnter—

face function, which is present in all interfaces. The section “IUnknown, the

Page 79 offii

Page 80 of 221

INSIDE OLE2

Object’s interface
pinterface '_"""’r‘.-

-r.-_- v

Functiont ‘ 3 .
p ' Obiect’s

pFuncIfan implementation
5-]; ‘ __ 21::

pFunction3 Functioni

pFunctton4 Function2
pinterface—>pFunction1

is the address of s: _‘ pFunction5_ _ :-
Object::Function1

 Function3

Function4

Function5_

pinterface>pFunction10
therefore calls

Object::Function 1

Figure 3-3.

Calling an interface memberfunction. Note that the indirection through the
pointer to thefunction table is not shown because C++ hides this extra, step.
The indirection is apparent, however, in C.

Root of All Evil” later in this chapter explores QueryInterfoce in detail. IUn-
known is a fundamental interface that all Windows Objects must support.

(This is why in diagrams it‘s always placed above the object, as it is in Figure
3-4, instead of to the side, as other interfaces are.)

The function table itself is designed to have a layout that is identical to

the one generated by many C++ compilers. Such a layout lets you use a single
indirection (->) on the pointer to call an interface function. However, this
does not force you to use C++ to program OLE 2; as I said in Chapter 2, C++ is

Conventional placement of
[Unknown function table

Interface

(function tabie)

Interface

(function table)

Figure 3-4.

Instead ofalways showing expandedfunction tables, interfaces are represented
with a circle, orjack. By convention, IUnknown is on top of the object, and
all other interfaces are to the left or right.

62 Page 80 of 221
ii“

Page 81 of 221

T H R E E : Objects and Interfaces

simply more convenient. Any object implementation is only required to pro-

vide separate function tables for each supported interface. How you choose to

Create each table will of course be different, depending on your language of

choice, as the later section “A Simple Object in C and C++: RECTEnumeraior”
illustrates.

Because neither use nor implementation of a Windows Object is depen-

dent on the programming language used, you can View OLE 2’s object model,

the Component Object Model, as a binary standard. This approach has a major

advantage over other proposed object models. You can choose to implement

in Visual Basic an object that is still usable from a C or C++ application as long

as you can provide a pointer to your interface function tables. Microsoft has

done us a wonderful service by not limiting our choice of programming tools

or languages.

80 back to the Ultimate Question: I know there’s a Windows Object, but

how do I obtain the first pointer to an interface on that object? The answer

greatly depends on how you identify the Windows Object, but it can be re-

duced to four basic methods in OLE 2 for getting that pointer:

I Call an API function that creates an object of only one type—

that is, the function will only ever return a pointer to one specific

interface or object type.

I Call an API function that can create an object based on some class

identifier and that returns any interface pointer you request.

I Call a member function of some interface that returns a specific

interface pointer on another separate object.

I Implement interface functions on your own objects to which other

Object users pass their own interface pointers.

All these mechanisms are used by both OLE 2 applications and the OLE

2 libraries themselves. OLE 2 implements most of the API functions you’ll use

to obtain a pointer using the first two methods, but you might implement

your own private API functions to accomplish similar ends. You will use the

third method when you are the user of some object and have occasion to ask

that Object to create another object. You will use the fourth method for an

object implementor whose user needs to provide the implementor with a

pointer to the user’s own objects. This last method is how two applications,

such as a compound document container and a server, initiate a two-way

dialog: Both applications implement specific (and different) objects and pass

interface pointers to each other.

Page 81 orgii

Page 82 of 221

INSIDE OLE2

Windows Objects vs. C++ Objects

You might wonder why Windows Objects differ in many respects from C++

objects even though C++ is the most widely used object-oriented language for

programming Windows. The overriding reason is that in C++ you might use

only C++ objects that live and execute within your own application (EXE),

possibly within DLLs (but at a price). On the other hand, you can use Win-

dows Objects regardless ofwhere they live and execute, be it in your own EXE,

in a DLL (including the operating system itself), or in another EXE. In the

future, Microsoft will enable Windows Objects to live and execute on another

machine, a capability far out of reach of C++ objects.

Let’s Go Traveling

64

Suppose I’m a C++ application that lives in Rugby, North Dakota (the

geographic center of North America), and my application is bounded by the

border of the continental United States, as illustrated in Figure 3-5. I can visit

freely any of 48 states, no questions asked, by driving along an interstate.

Access is fast and easy, although I am subject to the laws of each state I drive

through. I can also drive into Canada or Mexico to buy their goods and use

their services, but I do have to stop at the border and answer a few questions;

travel is a little slower but still quite easy. In programming terms, I can freely

use any Object class within the boundaries of my application as long as I obey

the access rights of those individual objects. I can also use objects imple—

mented in DLLs, but there'is more work involved in getting across the DLL

boundary, even to my own DLL, such as Alaska.

I might live happily for a long time restricting my travels to a single con-

tinent. But there are six other continents and many other countries on the

planet that I might want to visit. Getting there is not easy—I have to transfer

flights, go through customs, and show my passport. Ifl want to travel to a dis-

tant destination, such as Antananarivo, Madagascar, I would have to fly to

Chicago and then to London, switch carriers to get to Nairobi, Kenya, and

then catch a final flight to Antananarivo. On each segment of my journey, I

will probably fly on a different airline in a different airplane (or I might be

forced to travel only by boat or train) and walk through customs offices in

three different countries. If I step out of line anywhere, I might find myself in

a prison on the other side of the globe.

As a C++ application, Iwould experience the same difficulty in using

C++ objects implemented in other applications (countries) or code that is

otherwise separated by a process boundary (oceans), as illustrated in Figure

3-6 on page 66. The best I can hope for is to become intimately familiar with

Page 82 of 221

Page 83 of 221

T H R E E : Objects and Interfaces

ALASKADLL

I- . .,(. .' -

A little tougher to
get to a DLL

Rugby, N5:

DLL boundary; /
border stop required

 USAEXE

Figure 3-5.

Travel within North America isfairly painless.

' the prOtocols and customs of each application along my way, knowledge that

can apply only to those specific applications: When I want to use the services

of a different application, I must learn another new interface. If time is not a

luxury, I’ll probably decide to visit only a few other countries.

OLE 2 offers you membership in the Windows Objects Club, which

makes travel abroad much easier. The Windows Objects Club Standardizes the

protocol for visiting any other country, so you have to learn only one set of

rules. The Windows Objects Club offers nonstop flights to many countries

(Windows Objects in DLLs) and at worst one-stop flights to any other destina-

tion on the planet (Windows Objects in EYE applications). When you are a

65

Page 83 of 221

Page 84 of 221

INSIDE OLE2

66

Customs, Customs,

Change planes change planes change planes
in Chicago in London in Nairobi

Customs in

Antananarivo

Figure 3-6.

Travel abroad involves much more time, effort, and knowledge.

member of the Windows Objects Club, travel is as easy as showing your mem-

bership card and hopping on a plane bound for whatever destination you
choose. No matter where you are, the Windows Objects Club has a flight

departing to any destination, as depicted in Figure 3-7.
In programming terms, youjoin the Windows Objects Club by using the

various OLE 2 API functions to access specific objects without concern for

where that object actually lives. Those API functions form the protocol you
learn once; later, in Chapters 9 and beyond, we’ll learn more about com-

pound documents, which provide you with the benefit of a personal inter—
preter in any country you visit or with whom you do business. When we talk
about in—place activation, we’ll see how the Windows Objects Club can bring
the country to you.

The Windows Objects Club today offers easy travel between all countries

and continents on our little blue planet. In the future, this club will provide

the same benefits to interplanetary and interstellar travel without even re-

quiring you to reapply. More to the point, Windows Objects will become net-
work aware and will allow you to use objects running on other machines,

either on your local area network or even on a wide area network. Perhaps

Page 84 of 221

Page 85 of 221

T H R E E: Objects and Interfaces

Route planned,
1994

Nonstops from
Rugby to Alaska,

Canada, and Mexico

Fly through Chicago to get anywhere else in the world.

At every destination you treat customs identically;
the Windows Objects Club provides interpreters.

Figure 3-7.

The Windows Objects Club simply‘ies travel, and someday it will open
more routes.

someday we’ll have the PLAN (planetary network), letting you use objects

that live on the moon, either figuratively or physically.

The purpose of this little exercise was to show that C++ objects are some—

what limited in scope because access to objects, being defined by the lan-

guage, restricts you to objects that live in your own process space. Windows

Objects, being defined by the system, open access to any object anywhere on

your machine, and eventually on other machines as well.

Other Differences Between Windows Objects and C++ Objects

Because the location of an object’s implementation varies so widely between

C++ objects and Windows Objects, there are a number ofother key implemen-

tation differences that affect programming:

I Class definition

I Object instantiation

Page 85 of§721

Page 86 of 221
'I l

INSIDE OLE2

I Object references

I Object destruction

Class Definition

C++ defines a class by using the class keyword, which generates a user-defined

type. Members and member functions can be private, protected, or public.

Furthermore, a C++ class can inherit from another class, thereby taking on all

the characteristics (data and member functions) of that base class with the

ability to override or expand select pieces of that base class.

A Windows Object is defined in terms of the interfaces it supports. All

objects support at least one interface named IUnknown, which is discussed in

the later section “IUnknown, The Root of All Evil”; support of this one inter-

face qualifies the object as a Windows Object. The object user learns about

other interfaces the object supports through member functions of [Unknown

Windows Objects are all, therefore, at least of type [Unknown and can be

treated as another type by means of a different interface. Because of this

mechanism, there is no user—defined type associated with a Windows Object

class as there is with a C++ class. In fact, there is no single way to identify a

specific object. As we saw earlier, there are four general ways by which you can

obtain a pointer to a Windows Object. Each technique has its own way ofiden-

tifying the object. One of the techniques—identifying a Windows Object

using a class identifier—is the closest analogy to a C++ method, but it is only
one of the many ways to identify such objects.

Object Instantiation

C++ objects are instantiated by various means, such as declaring a variable of

the object’s type on the stack, declaring a global variable, or using the new

operator on that type. Regardless of the actual technique used, C++ eventually

calls the object’s constructor.

Again, just as there are many ways to identify a Windows Object, there

are many ways to instantiate an object. In some cases, you call a function to

instantiate the object. In other cases, you don’t directly instantiate an object,

but you are given a pointer to one that something else already created. One of

the most common techniques, described in Chapter 4, is to use a thing called

a classfnctory object to instantiate a Windows Object, much as the new operator

works for C++ objects. A class factory object represents a specific class iden-

tifier, is obtained by a specific OLE 2 function, and supports an interface

named [Classfinctory The [ClassFactary interface contains a member function

named Createlnstance, to which you pass an identifier of the interface you want

on that object. IClassFactorj':Createfnsmnceis the logical equivalent of new.

i 58 Page 86 of 221

Page 87 of 221

T H Ft E E : Obiects and Interfaces__________—___———

Object References

C++ objects can be referenced through an object variable, an object reference

(a special type in C++), or a pointer to the object. Because objects are always

local (in your EXEs or DLLs), their instantiations can live anywhere in your

process space. Through any variable, the user has access to any public mem-

bers of the object or to private and protected members if the user and the

Object are friends.

As I hope I have beaten into your head by now, a Windows Object is of

ways referenced through a pointer, not to the object itself but to an interface.

This means that through a given interface pointer the user can access mem-

ber functions only in that interface. The user can never have a pointer to the

whole object (because there is no definition of whole object), so there is no ac-

cess to data members and no concept Offrz'end.

Through the IUnknown interface, a user can get at other interfaces that

the object also supports, but that means obtaining a different pointer that

refers to the same object. Each pointer to an interface points to a function

table in the object, and each table contains only member functions for a

specific interface, as shown in Figure 3-8 on the next page. Because every

interface defined in OLE 2 is derived from [Unknown, it is not necessary to

have an [Unknown pointer to query for other interfaces; you can use any other

interface pointer as if it were an IUnknown.

When you have a pointer to an object’s interface, you can call the inter—

face’s member functions just as you can call a member function of a C++

object through a pointer:

p0bjecte>MemberFuncti on([parameters]):

Because a pointer to a Windows Object always points to a function table, such

a pointer can also be used from C or from assembly code, not only from C++,

as described in ”A Simple Object in C and C++: RECTEnnmemtor.”

Object Destruction

In C++, you destroy an object created with new by calling the delete operator on

an object pointer. Objects declared as Stack variables are automatically freed

by virtue of restoring the stack before returning from a function. In either

case, the memory that the object occupied is freed, and the object’s destruc-
tor function is called.

The function that frees a Windows Object and essentially calls its
destructor is a member function called Release. This function is a member of

the IUnknown interface, and so it is present in every interface you will ever

Page 87 ($331

Page 88 of 221

INSIDE OLE2

Object user Object Object
- - - implementation

. n

{Unknown l lUnknown
function table ii; member functions

‘ ointersto same obj? ;
, but different interfaces.

lSomelnterface
member functions

lSomelnterface
function table ’

lAnofherlnferface
function table

Object data

-:j
I
'
-1.

fAnofherlnterface
member functions

User cannotobtain a pointer

to the object, only pointers to
interface function tables.

DLL or process boundary

Figure 3-3.

Multiple interface pointers to an object reference uniquefumtt’on tables
in the object but never reference the entire object itself.

obtain on any Windows Object. Release, however, is not as brutal as the delete
operator, for as we’ll see in the “Reference Counting” section later, the object
might not actually be destroyed when Release is called. Internally, the object
maintains a count of how many references exist to any of its interfaces. Creat-

ing an interface pointer increments the reference count, whereas Release
decrements it. When the count is reduced to zero, the object frees itself, call-

ing its own destructor.

A Simple Object in C and C++: RECTEnumerator
Windows Objects really can be written in any language; the most common are
C and C++. As with any programming task, you need to choose a language
that is well suited to the problems at hand, and C++ is the best suited for

70 Page 88 of 221

Page 89 of 221

T H R E E : Objects and Interfaces

expressing the ideas in OLE 2. Therefore, C++ is more natural and definitely

more convenient for use in programming with Windows Objects. With a little

more overhead, however, you can programjust as effectively using C. The dif-

ferences lie in how you create the function table for the object’s interfaces

and how you call the functions in those function tables. To illustrate the dif-

ferences between the two languages, let’s implement a type of object called an
enumerator.

Enumerators are specific objects defined in OLE 2 that are used to com-

municate lists of information between another object and the user of that ob-

ject, even when they are in different processes. For example, let’s say you’re

using an object that represents a source of data—call it a data object—and

you ask that object what data formats it supports (as we’ll see in Chapter 6).

The data object would create another independent enumerator that allows

the user to iterate through the list of formats supported by the data object.

The user of the data object also becomes a user of the enumerator, albeit

through a different interface pointer.

An enumerator supports one of a set of interfaces prefixed with IEnum.

Because the elements of the enumerator’s list vary by context, OLE 2 defines

a number of IEnum<type> interfaces where <type> is the name of the specific

data structure used for each element in the list. OLE 2 also provides marshal-

ing support for each standard IEnum interface. Each IEnum interface sup-
ports all member functions of [Unknown (of course) as well as four additional
members to facilitate iteration over the list of elements:

Member Result

Next Returns the next 12 elements of the list starting at the
current index.

Skip Skips past n elements in the list.
Reset Sets the current index to zero.

Clone Returns a new enumerator object with the same state.

For this exercise, let’s define a custom interface named IEnumRECT

with all the functions in the preceding tale except Clone. Let’s also define an

object named RECTEnumemtor, which implements that interface. The inter-

face is defined in IENUMOH, as shown in Listing 3-1 on page 73, which you’ll

find in the INC directory in the sample code. This file compiles differently

for C and C++, depending on the _cplusplus symbol, which is defined only

71

Page 89 of 221

Page 90 of 221

INSIDE OLE2

when you are compiling for C++.4 The C++ implementation of the RECT-

Enumemtor object, in a program called ENUMCAP, is shown in Listing 3—2 on

page 74, and the C implementation, in ENUMC, is shown in Listing 3-3 on
page 83. Both samples are in the CHAPOS directory. Do not confuse the

name RECTEnumemtor for this object with the name of anything you might
use to implement the object: It’s merely a label.

Do ENUMC and ENUMCPP Do Anything?

When you run either ENUMC or ENUMCPP, you’ll see no Visible

output no matter which menu commands you choose. You are not

going crazv. Both programs are so intentionally boring on the out-

side that you should really want to run them in a debugger, which is

where you can step through the code to see what is actually happen-

ing. These samples are intended for use in a debugger to illustrate
interfaces in C and C++.

RECTEnumerator and the IEnumFi'ECT Interface

72

The RECTEnumemtor object supports one interface, named IEnumRECT, as

shown in Listing 3-1, with the following member functions:

Member

Function Result

AddRef Increments the reference count on the enumerator object.

Release- Decrements the reference count and frees the enumerator object
when the reference count is zero.

Next Returns the next 72 RECT structures starting at the current index.

Skip Skips past n RECTs in the list.
Reset Sets the current index to zero.

Because we have not yet examined [Unknown and because we want to

keep this example as simple as possible, IEnanECT borrows the two

[Unknown members AddRef and Release but does not include Querylnterface.

For the same reasons, we also eliminate the Clone member, which is part of
standard [Enum interfaces.

4. The major C++ compilers, at least, define the m cplusplns symbol.

Page 90 of 221

Page 91 of 221

T H R E E: Objects and Interfaces
___._-———'—_—___"———_'_'————

IENUMO.H
/ u

r Definition of an IEnumRECT interface as an example of the
* interface notion introduced in OLE 2 with the Component Object

* Model as well as the idea of enumerators. This includefile
- defines the interface differently for C or C++.

* Copyright (c)1993 Microsoft Corporation. All Rights Reserved
4/

#ifndef _IENUMB_H_
#define eIENUMamHu

//C++ Definition of an interface.

#ifdef eecplusplus

f/This is the interface, a Struct of pure virtual functionS-
struct Mufar IEnumRECT

{
virtue? DHORD AddRef(void):3;
virtual DWORD Release£void)=@;

virtual BDGL Next(DNORD, LPRECT, LPDWORD}=@;

virtual BOOL Skip(DNORD)=0;
virtual void Reset(void)=@:

}:

typedef IEnumRECT FAR a:LPENUIiiRECT:

#eise litmwcplusplus

f1:

* A C interface is explicitly a structure containing a

* long pointer to a virtoal function table that we have to
i initialize explicitly.
'/

typedef struct
{

struct IEnumRECTthl FAR *lthbi:
} iEnumRECT;

typedef IEnumRECT FAR *LPENUMRECT:

Listing 3-". (continued)

The IENUMO.H includefifefound in the shared INC directory.

Page 91 of72321

Page 92 of 221

| N SI D E ClL E 2
___a_________________________.

Listing 3-1. continued

l/This is simo1y a convenient naming
typedef struct IEnumRECYthi IEnumRECTth1;

struct IEnumRECTthi

{

DWORB (* AddRef)(LPENUMRECT):

DNORD (* Re]ease)(LPENUMRECTJ;

BOOL (* Next)(LPENUMRECT, BNORD, LPRECT. LPDWORD):

BDOL {* Skip)(LPENUMRECT, DWORD):
void (* Reset)(LPENUMRECT};
1;

#endif //!m_cp1uspius

#endif llwIENUMBWHh

NOTE flmflflmmgfibs@NUMCHHLENUMGTEHKENUMCHfi

are for the C++ implementation of the Enum program.

ENUMCPPH
far

* Enumerator in C++ Chapter 3

* Definitions. ciasses. and prototypes for enumerator interface
. exampie impiemented in C++.u

* Copyright (c)1993 Microsoft Corporation. A11 Rights Reserved
*/

#ifndef mENUMCPP_H_
#define _ENUMCPP_H_

#inciuoe <ienum@.h> f/Found in shared inciode directory.
#inciude <book1632.h>

flMenu resource ID and commands

#define IDR_MENU 1

#define EBMfiENUMCREATE 190
#define IDM_ENUMRELEASE 191
#define IDM_ENUMRUNTHROUGH 282

Listing 3-2. (confinued)

The ENUMprogram implemented in C++.

74 Page 92 of 221

Page 93 of 221

T H R E E : Objects and Interfaces

Listing 32. continued

#define IDM‘ENUMEVERYTHIRD 163

#define IDM_ENUMRESET 194
#define IDM_ENUMEXIT 195

f/ENUMCPP.CPP

LRESULT FAR PASCAL EXPORT EnumHndProC(HNND. UINT, WPARAM, LPARAMJ:

ciass __Far CAppVars
{

friend LRESULT FAR PASCAL EXPORT EnumWndPructHNND. UINT
, WPARAM, LPARAM):

protected:

HINSTANCE m_hInst; //winMain parameters
HINSTANCE m_hInstPrev:

UINT m_nCmdShow;

HHND m_hwnd; //Main window handie

LPENUMRECT mfipIEnumRect: //Enumerator interface

puoiic:

CAppVars(HINSTANCE. HINSTANCE, UINT);
~CAppVarsivoid):

BOOL FInitivoid):
}:

typedef CAppVars FAR *LPAPPVARS;

#define CBHNDEXTRA sizeof£LONG)
#define ENUMNLfiSTRUCTURE B

f/IENUM.CPP

//Number of rectangies that objects with IEnumRECT support (demo)
#define CRECTS 15

/*

r A ciass definition, not provided by OLE, then inherits from

* whatever interfaces it supports. Moitipie inheritance works
i in this scenario as does the single inheritance shown here.*/

ciass __far CImpEEnumRECT : pobiic IEnumRECT
{

private:

(continued)

Page 93 ot7221

Page 94 of 221

INSIDE OILE2

Listing 3-2. commmd

DNORD m_cRef: //Reference count

DNDRD m_iCur: l/Current Enum position
RECT m_rgrc[CRECTS]; //RECTs we enumerate

public:
CImpIEnumRECT(v01d):
~CImpIEnumRECTtvoid):

virtuai DNDRD AédRef(void):

virtual DWORD Release(void):
virtual BOGL Next(DwORD, LPRECT. LPQWDRD):

virtua] BOBL Skip(Bw0RD):
virtuai void Reset<void);

};

typedef CImpIEnumRECT FAR *LPIMPIENUMRECT;

l/Function that creates one of these objects
BGOL CreateRECTEnumerator(L9ENUMRECT FAR w);

#endif //_ENUMCPP_H_

ENUMCPP.CPP
[-41

* Enumerator interface in C++ Chapter 3=t

* Copyright (0)1993 Microsoft Corporation. A11 Rights Reserved
*/

#inciude <wind0ws.h>

#include "enumcpp.h"

int PASCAL WinMain(HINSTANCE hInst. HINSTANCE hInstPrev
, LPSTR psszdLine, int nCmdShow]
{
MSG msg:

LPAPPVARS pAV:

//Create and initiaiize the application.
pAVznew CAppVars€hInst, hinstPrev, nCmdShow);

(continued)

76

Page 94 of 221

Page 95 of 221

 T H R E E : Objects and Interfaces.—-——-—————‘———————'——

Listing 3-2. continued

1f (NULL==DAV)
return ‘1;

if (nAV—>FInit())
{

while (GetMessage(&msg, NULL, @,6))
{

Trans1atefiessage(&msg):

DispatchMessage(&msg}:
]

}

de1ete pAV;
return msg.wParam:
}

LRESULT FAR PASCAL EXPORT EnumHndProc(HWND hwnd, UINT 1Msg
. WPARAM wParam. LPARAM EParam)
[

LPAPPVARS pAV:
RECT rc;

DNORD cRect;

COMMANDPARAMS(wID. wCode, hwndMsg):

pAVx(LPAPPVARS)Getw1ndowLong(hWnd, ENUMNL_STRUCTURE);

switch (iMsg)
{
case WM_NCCREATE:

pAV=(LPAPPVARS}((LONG)((LPCREATESTRUCT)1Param)
->1pCreateParams):

SetNindowLong(hWnd. ENUMNL,STRUCTURE. (LONG}pAV):
return (DefwindowProc(thd, 1Msg, wParam. 1ParamJ):

case WM,DESTROY:

PostOuitMessage(B):
break;

case NM_CDMMAND:
switch {wIDJ

E

(continued)

77'

Page 95 of 221

Page 96 of 221

IN 5 ID E O L E 2

Listing 3-2. continued

case IDM_ENUMCREATE:

if {NULLi=pAV*>m_pIEnumRect)

pAV->m_p1£numRect->Re1ease()z

CreateRECTEnumerator(&pAV—>mflpIEnumRect):
break;

case IDMVENuMRELEASE:

if (NULL==pAV*>m_pIEnumRect)
break;

if (6==pAV~>m_pIEnumRectA>Re1ease())

pAV~>m_pIEnumRect=NULL;

break;

case EQMWENUMRUNTHROUGH:

if (NULL:2pAV->m_pIEnumRect)
break;

wh11e (pAV->m_pIEnumRect->Next(1, &rc, &cRect))

break:

case IDM_ENUMEVERYTHIRD:

if (NULL::pAV->m_pIEnumRect)
break;

whife {pAV->m_pIEnumRect->Next(1. &rc, &cRect))
{

1f (!pAV->m_pIEnumRect->Sk1p(2))
break;

]

break;

case IDMHENUMRESET:

if {NULchpAV->m_p1EnumRect)
break;

pAVu>m_pIEnumRect->Reset();
break:

(continued)

1‘ 78
J;—

Page 96 of 221

Page 97 of 221

T H Fl E E: Obfects and Interfaces

Listing 3-2. continued

case IDM_ENUMEXIT:

PostMessage(hwnd. WM_CLOSE, 6. BL}:
break;

}
break;

default:

return (DeinndowProc(hWnd, 1Msg, wParam, 1Param));
}

return 9L;
1

CAppVars::CAppVars(HINSTANCE hInst, HINSTANCE hInstPrev
. HINT nCmdShow)
[

l/Initialfize NinMain parameter ho1ders.
mvhlnsi = hlnst;

m_hInstPrev = hInst?rev:

m_nCmdShow = nCmdShow;

m_hNnd=NULL:

m_pIEnumRect=NULL:

return;
}

CAppVars::~CAppVars(v01dJ
{

//Free the enumerator object if we have one.

if (NULL!=m_pIEnumRect)
m_pI£numRect->Re1ease{):

return:
}

BOGL CAppVars::FIn€t(v01d)
{

WNDCLASS wc:

if (!m_h1nstPrev)
{

(continued)

79

Page 97 of 221

Page 98 of 221

IN 8 ID E O L E 2

80

Listing 3-2. continued

wc.sty1e = CS_HREDRAN 1 CS_VREDRAN:

wc.1panndProc = EnumwndProc:
wn.ch1sExtra : B:
wc.canGExtra = CBWNDEXTRA;
wc.hInstance = m_hInst;

wc.h1con = Loadicon(m_h1nst, “Icon"):
wc.hCursor : LoadCursor(NULL, IDCWARROW):II
wc.hbr8ackground {HBRUSH)(COLOR_WENDDN + 1);

wc.1pszMenuName MAKEINTRESGURCE(ZQR_MENU):
wc.1pszCTassName r "ENUMCPP";

1f (lRegisterClass(&wc))
return FALSE;

}

m_hNnd=Createwéndow(“£NUMCPP", "Enumerator in C++“
, NS_MINIMIZEBDX : WSWDVERLAPPEDHINDOW

. 35, 35. 350, 258. NULL. NULL, m_hInst. this}:

if (NULL==m_hWnd)
return FALSE;

ShowWindow(m_hNnd, m_nCmdShow):

UpdateWindow(m_hWnd);

return TRUE;

}

IENUM.CPP
[x

'k
Enumerator in C++ Chapter 3

. Copyright (c)1993 Microsoft Corporation, A11 Rights Reserved
*/

#1nc1ude <w1ndows.h>
#1nc1ude "ENUMCPP.H"

[ah
treateRECTEnumeratGr

Page 98 of 221

(continwd)

Page 99 of 221

T H R E E: Obiecis and Interfaces
___________F___e____e____e_______________________________.____________._

Listing 3-2. cantinued

: Purpose:
Given an array of rectangies. creates an enumerator interface

‘1‘

{Vfl‘f

on top of that array.

Parameters:

ppEnum LPENUMRECT FAR , in which to return the
interface pointer on the created object.

1 Return vaiue:

BOOL TRUE if successfui. FALSE otherwise.
1«/

800 L CreateRECTEnumerator(LPENUMRECT FAR *ppEnum)
{

if (NHLL=xppEnum}
return FALSE;

//Create the object storing a pointer to the interface

*ppEnum=(LPENUMRECT}new CImpiEnumRECT():

if (NULL:=*pyEnumJ
return FALSE;

l/If creation worked, AddRef the interface

if (NULL!=*ppEnum}

(*ppinum) >AddRef();

return (NULLE=*ppEnum);
]

CImpIEnumRECT::CImpIEnumRECT{void)
{
UINT i:

//Initia1ize the array of rectangies
for (1:9: i < CRECTS: i++}

SetRect(&m_rgrc[i], i, i*2, ir3, ir4):

//Ref counts aiways start as zero
m_cRef=@:

[/Current pointer is the first eiement.
m_iCur=@;

(continued)

Page 99 of 2311

Page 100 of 221

IN SI D E ()L E 2 ____________________________fl___‘_

Listing 3-2. continued

return;

}

CImpIEnumRECT::~CImpIEnumRECT(void)
{

return;
}

BWORD CimpIEnumRECT::AddRef(v01d)
{

return ++m_cRef:

}

DHORD CImpIEnumRECT::Release(void)

$W3RD cflefT:

cReFTa--m_cRef;

if (6==m_cRef)
de1ete this;

return cRefT;
}

BOOL CImpIEnumRECT::Next(DHORD cRect. LPRECT prc. LPDNGRD pdwRects)
{

DNORD cRectReturnaeL;

if (NULL==pdwRects)
return FALSE;

*pdwRects=@L:

1f (NULL==prc :} {m_iCur >= CRECTS))
return FALSE;

whiie (m_iCur < CRECTS && cRect > 6)
{

*prc++2m_rgrc[m_i€ur++];
cRectReturn++;
cRect--:
}

(continued)

82 Page 100 of 221

Page 101 of 221

T H R E E: Obiects and Interfaces
___#

Listing 3-2. continued

tpdwRects=(cRectReturn—cRect)z
return TRUE:

}

BO§L CImpIEnumRECT::Skip(DHORD CSkip)
{

if ((m_iCur+cSkip) >= CRECTS)
return FALSE;

m_iCur+=cSkip;
return TRUE;

]

void CImpIEnumR£CT::Resettvoid)
{
m_iCur=8:
return;

}

NOTE:ThebmmmgfikMENUMGHJNUMCCfimHENUMLDmfbr

the C implementation of the Enum program.

ENUMCJ—i
/.

* Enumerator in C, Chapter 3w

* Definitions. structures, and prototypes.
a}.

* Copyright (c)1993 Microsoft Corporation, A11 Rights Reserved
*/

#ifndef gENUMC=H;
#define _ENUMCHH#

#inciude <iehum@.h> l/Found in shared include directory
#inciude (book 1632.h>

l/Menu resource ID and commands

#define EDR_MENU 1

Listing 3-3. (continued)

The ENUMprogram implemented in C.

83

Page 101 0f221

Page 102 of 221

IBIS ID E CDL E 2———_——-——————-——_

84

Listing 3-3. continued

#define IDM_ENUMCREATE 186

#dEfine IDM_ENUMRELEASE 181
#dEfine IDMVENUMRUNTHRDUGH 102
#define IDM_ENUMEVERYTHIRD 163

#define IDM_ENUMRESET 104

#dEfifie IDMgENUMEXIT 105

//ENUMC C

LRESULT FAR PASCAL EXPORT EnumWndProctHWND. UINT. HPARAM, LPARAM):

typedef struct tagAPPVARS
{
HINSTANCE m_hInst; llwinMain parameters
HIfiSTANCE mmhInstPrev;

UINT m_nCmdShow;

HNND m_hwnd: llMain window handle

L?ENUMRECT m_pIEnumRect: //Enumerator interface
} APPVARS. FAR *LPAPPVARS;

LPAPPVARS AppVarsConstructor(HINSTANCE. HINSTANCE. UINT):
void AppVarsDestructor(LPAPPVARS);
BOOL AppVarsFInit{LPAPPVARS):

#define CBNNDEXTRA sizeof€LONG)
#define £NUMWL_STRUCTURE @

//Number of rectang1es that IEnumRECT objects support (for demo)
#define CRECTS 15

[7!-

e In C we make a cTass by reusing the elements of IEnumRECT,

A thereby inheriting from it, albeit manuaiiy.
‘l/

typedef struct tagIMPIENUMRECT
{

IEnumRECTth] FAR * 1thb1;
DWGRD m_cRef; //Reference count

DHORD mmiCur; l/Current position
RECT m_rgrc[CRECTS]; l/RECTs we enumerate
} IMPFENUMRECT. FAR *LPIMPIENUMRECT;

(continwd)

Page 102 of 221

Page 103 of 221

T H R E E : Objects and Interfaces

Listing 3-3. continued

* In C, you must separateiy deciare member functions
* with giobaiiy unique names. so prefixing with the ciass name
* shouid remove any confiicts.
*/

LPIMPIENUMRECT IMPIEnumRect_Constructor(void):
void IMPIEnumRect_Destructor(LPIMPIENUMRECT);

DNORD IMPIEnumRect_AddRef(LPENUMRECT);
DWORD IMPIEnumRect_Reiease(LPENUMRECT):

BODL IMPIEnumRectwfiext{LPENUMRECT. DWORD, LPRECT
. LPDWURD):

BOOL iMPIEnumRect_Skip(LPENUMRECT, DHORD);
void IMPIEnumRect_Reset(LPENUMRECT):

l/Function that creates one of these objects
BODL CreateRECTEnumerator(LPENUMRECT FAR w);

#endif //_ENUHC_H_

ENUMC.C
I:

* Enumerator in C Chapter 3

r Copyright (c)1993 Microsoft Corporation. A11 Rights Reserved
*/

#inciude <windows.h>
#inciude <maiioc.h>
#inciude "enumc.h"

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hinstPrev

iPSTR psszdLine, int nCmdShow)
{
MSG msg;

LPA?PVARS DAV:

pAV=AppVarsCohstructor(hlnst. hInstPrev, nCmdShow):

if (NULL==pAV)
return -1:

{continued}

Page 103 0532521

Page 104 of 221

IN SI D E CDL E 2
__‘__H____________________________

Listing 3-3. continued

if (AppVarsFInit(pAV))
{

whiEe (GetMessage(&msg. NULL, 0.8 })
{

TranslateMessage(&msg);
DispatchMessage(&msg):
}

}

AppVarsDestructor£pAV):
return msg.wParam;
}

LRESULT FAR PASCAL £XPORT EnumNndProc(HNND hWnd, UINT ifisg,
NPARAM wParam. LPARAM 1Param)
{

LPAPPVARS pAV:
RECT rc;

SWORD cRect;

CGMMANDPARAMSthD. wCode, hwndMsg);

pAV=(LPAPPVARS)GetW1ndowLong(hWnd, ERUMNL_STRUCTURE);

switch (iMsg)
{
case WM_NCCREA?E:

pAV:(LPAPPVARS)((LDNG)((LPCREATESTRUCT)1Param)
->?pCreateParams):

SetWindowLong(hWnd. ENUMWL_STRUCTURE. (LONG)pAV):
return (Defw1nduwProc(hwnd, 1Msg. wParam, 1Param)J;

case WM_DESTROY:

PostOuitMessage(aJ;
break;

case WM_COMMAND:

switch (WID)

{
case IDM_ENUM€REATE:

if (NULL!rpAV->mupiEnumRect)
{

(continued)

86 Page 104 of 221

Page 105 of 221

r———-

I T H R E E: Objects and Interfaces__*___________

Listing 3-3. [:rmtinuea!

pAV->m_pIEnumRéCt4>Ithb1->Reiease(pAVM
->m_pIEnumRect);

}

CreateRECTEnumerator(&pAV~>mfipIEnumRect);
break:

case IDH_ENUMRELEASE:

1F (NULL=mpAV->m_pIEnumReCt)
break:

if (@==pAV->m,pIEhumRect—>1thb}->Re1ease(pAV
->m_pIEnumReCt))

DAV->mmpIEnumRect=NULL:

break:

case {DMflENUMRUNTHROUGH:

1f (NULL==pAV->m_pIEnumRect)
break;

wh11e {pAV->m_pIEnumRect->1thb1—>Next(pAV
—>m_pIEnumRect, 1, &rc, &cRect))

break:

case IDMMENUMEVERYTHIRD:

if (NULL=ipAV7>m_pIEnumRect)
break:

wh11e (pAV—)m_pIEnumReCt->lthb1—>Next(pAV
—>m;pIEnumRect, 1, &rc. &cRect))
{

if (EpAV->m~pIEnumRectfi>1thb1->Sk€p(pAV
~>m_pIEnumRect. 2))
break;

}
break:

case IDM;ERUMRESET:

1f (NULL==pAV~>meIEfiumReCt)
break:

pAV->mrpIEnumRect->1thb1“>Reset(pAV
->m_pIEnumRect);

break:

(continued)

Page 105 of28271

Page 106 of 221

IN 8 ID E C)L E 2

88

Listing 3-3. continued

case IDM_ENUMEXIT:

PostMessage{hWnd, NM_CLOSE, 8. 0L);
break;

}
break;

defau1t:

return (DefWindowPr0c(hWnd, 1Msg. wParam. 1ParamJ);
}

return BL;

}

LPAPPVARS AppVarsConstructor{HINSTANCE hInst. HINSTANCE hInstPrev
. UINT nCmdShow)
[

LPAPPVARS pAV:

pAVfi(LPAPPVARS)_fma11oc(sizeof{APPVARS)):

if (NULL==pAV)
return NULL;

pAV->m_h1n5t :hInst;
pAV—>m_hInstPrev =hInstPrev;
pAV->m_nCmdShow =nCmdShow:

pAV->m_hWnd=NULL;
pAV->mmpIEnumRect=NULL;

return pAV;
]

void AppVarsDestructor(LPAPPVARS pAV)
{

f/Free any object we sti11 ho1d on to
if (NULL!=pAV*>m_pIEnumRect)

pAV‘>mmpIEnumRect->1thb}->Re1ease(pAV->m_pIEnumRect);

if (IsWindow(pAVA>m_hwnd})

Destroywindow(pAV->m_hwnd);

_ffree{(LPVOID)pAV}:

(continued)

Page 106 of 221

Page 107 of 221

 T H Fl E E : Objects and Interfaces
__—___—————————__———___—————

Listing 3-3. continued

return;

}

BGOL AppVarsFIn1t(LPAPPVARS pAV)
{
NNDCLASS wc:

1f (lpAV->m_h1nstPrev)
(

wc.5ty1e : CSMHREDRAW : CS_VREDRAN;

wc.1pfnwndProc = (HNDPROC)EnumWndProc;
wc.ch1sExtra = 6;

wc.cbwndExtra : CBNNDEXTRA;
wc.hEn5tance

wc.h1con
wc.hCursor

wc.herackground

wc.1pszMenuName
wc.1pszC1assName

pAV->m_h1nst:
LoadIc0n(pAV->m_h1nst, "Icon“):
LoadCursor(NULL. IDC_ARROw};

(HBRUSH)(COLORWWINDUW + 1):
MAKEIN?RESOURCE(IDRAMENU);
“ENUMC”:

\L

it

if {lRegisterClass{&wc)}
return FALSE:

}

pAV->m_thd$Createw1ndow("ENUMC", "Enumerator in C“
, HS_MINIMEZEBOX 5 HS_OVERLAPPEDWINDON
. 35, 35. 356, 258, NULL, NULL, pAVw>m_hInst, pAV);

1f (NULLx=pAV->m_hWnd)
return FALSE;

ShowHindow(pAV—>m_hwnd. pAV->m_nCmdSh0w);

Updatewindow(pAV->mfihwnd);

return TRUE;

}

IENUM.C
1*

* Enumerator in C, Chapter 3

* Implements the IMPIENUMRECT structure and functions (an object).
*1

(continued)

89

Page 107 of 221

Page 108 of 221
ll'

IN SI D E C)L E 2

90

Listing 3-3. continued

#inciude <windows.h>
#inciude <maiiec.h>

#inciude "enumc.h"

//We have to expiicitiy define function tabie for IEnumRECT in C
sta
sta

{is

tic IEnumRECTthi
tic BODL

vtEnumRect:

{thilnitiaiizeszAtSE;

e CreateRECTEnumerator
.1:
g;

r

J

:L

94

Purpose:
Given an array of rectangles, creates an enumerator interface

on top of that array.

Parameters:

ppEnum LPENUMRECT FAR * in which to return the interface
pointer on the created object.

Return vaiue:
BODL TRUE if successfui, FALSE otherwise.

BOOL CreateRECTEnumerator(LPENUMRECT FAR *ppEnum)
{

if (NULL==ppEnum)
return FALSE:

l/Create the obéect storing a pointer to the interface

*ppEnum=(LPENUMRECT)IMPIEnumRecthonstruct0r();

if (NULL==*ppEnum)
return FALSE;

//If creation worked, AddRef the interface

if (NULL!=*ppEnum)

(rppEnum)->1thbi->Addaef(*ppEnum);

return (NULL1=*ppEnum):
}

LPIMPIENUMRECT IMPIEnumRect_Constructor(void)

[
LPIMPIENUMRECT
UINT

pER:
é:

(continued)

Page 108 0f221

Page 109 of 221

T H Fl E E : Objects and Interfaces

Listing 3-3. continued

* First time throughinitiaiize Function tabie. Such a table
1 couid be defined as a constant instead of doing expiicit
r initialization here. However. this method shows exactiy

which pointers are going where and does not depend on knowing
* the ordering of the functions in the tabie, just the names.

if (lthbiInitiaiized)

{
vtEnumReCt.AddRef =IMPIEnumRect_AddRef;
vtEnumRect.Re1ease=IM9IEnumRect_Re1ease:
vtEnumRect.Next =IMPIEnumRectiNext:

vtEnumRect‘Skip =IMPIEnumRectHSkip;
vtEnumRect.Reset =IMPIEnumRect_Reset;

thbiinitiaiized=TRUE:
}

pER=£LPTMPIENUMRECT)=fmaiioc(size0f(IMPIENUMRECT)):

if (NULL==pER)
return NULL;

//Initiaiize function table pointer

pER->1thb1=&vtEnumRect;

//Initiaiize the array of rectangies
for (i=8; i < CRECTS: i++3

SetRect(&pER->m_rgrc[i], i. i*2. i*3, i*4);

f/Ref counts always start at zero

pER->mchef=0:

//Current pointer is the first eiement.
pER—>mmiCur:@:

return pER:
J

void IMPIEnumRect_Destrhctor(LPIMPIENUMRECT pER)
{

if (RULLsszR)
return:

(continued)

91

Page 109 of 221

Page 110 of 221

IN SI D E O L E 2

92

Listing 3-3. continued

Mffree((LPV0ID)pER):

return:

1

DNURD IMPIEnumRect_AddRef(LPENUMRECT pEnum)
{

LPIMPIENUMREC? pER=(LPIMPIENUMRECT)pEnum:

if (NULL::pER}
return BL:

return ++pER->m_cRef;
}

DNDRD EMPIEnumRect_Re1eaSE(LPENUMRECT pEnum}
{

LPIMPEENUMRECT pER=(LPIMPIENUMRECT}pEnum;
DWGRD cRefT:

if (NUL ==pER)
return 8L;

cRef?:--pER->mmcRef;

1f (B==pERr>m_cRef)
IMPIEnumRect_Destructor(pER);

return CRefT;
3

BUOL IMPIEnumRect_Next(LPENUMRECT pEnum, DNORD cRect

, LPRECT prc. LPDWDRD pdwRects)
[

LPIMPIENUMRECT pER=(LPIMPIENUMRECT)pEnum:
DNGRD cRectReturnweL;

1f (NUL ==pdwRects)
return FALSE;

*pdwRects2BL;

1f (NUL ==prc :: {pER->m_1Cur >= CRECTSJ)
return FALSE;

(continued)

Page 110 0f221

Page 111 of 221

T H R E E : Objects and Interfaces
________—_.—___——————-

Listing 3-3. continued

while (pER->m_iCur i CRECTS && cRect 3 6)
{

*prc++:pER- >msrgrc£pER->m_i{3ur++];
cRectReturn++;
cRect--;

l

*pdwRects=(cRectReturnecRect):
return TRUE;

}

BODL IMPIEnumRect_Skip(LPENUMRECT pEnum. DWORD cSkip)
{

LFIMPIENUMRECT pER:(LPIMPIENUMRECTlpEnum:

if (NBLL==pER)
return FALSE:

if ((pER->m_iCur+cSkip) >= CRECTS)
return FALSE:

pER—>m,iCur+EcSkip:
return TRUE;

i

void IMPIEnumRect_Reset(LPENUMRECT pEnum)
L

LPIMPIENUMRECT pER=(LPEMPIENUMRECT)pEnum:

1r {NUL ==pERl
return:

pER->m_iCurfiB;
return;
}

When IENUMOH is compiled for C++, it generates a C++ abstract base

class— that is, a base class that defines a set of pure virtual functions (by using

virtual and =0). In addition, IENUMO.H defines a far pointer type for this
interface in the conventional form LP<INTERFACE>, where <INTERFACE>

is the interface name in all caps excluding the Iprefix. The C++ implementa—

tion of the RECTEnumemtor object, CImpIEnumRECT in ENUMCPP.H, in-

herits these function signatures from this interface and provides each

implementation. Instantiating this C++ class will generate an IEnumRECT
function table for you.

Page 111 ($331

Page 112 of 221

INSIDE OLE2

Defining an interface in C is more work, primarily because you have to
construct the function table manually. In ENUMC, the structure IEnumRECT—

thl5 is a structure of function pointers that is exactly what many C++ com-

pilers create internally for C++ classes. The actual interface, IEnumRECT, is
defined as a structure that contains a pointer to this function table. 80 when a

C application has a pointer to an interface, it really has a pointer to a pointer to
a function table. The C implementation of the RECTEnumemtorobject, a struc-

ture named IMPIENUMRECT in ENUMCH, duplicates the lthbl member of

IEnumRECT in its own structure, thereby making a pointer to IMPIENUM-

RECT polymorphic with a pointer to IEnumRECT This duplicates what hap-

pens automatically with C++ classes and is common in G~based OLE 2 code.

Creating the RECTEnumerator Object

94

When you choose the Create command from the Enum menu of either
ENUMC or ENUMCPP, you generate a call (see IDM_ENUMCREATE in the
WM_COMMAN D switch) to CreateRECTEnumemtor. This creation function

creates the object and returns the IEnumRECT interface pointer in an out-

parameter— that is, the caller passes the address in which CreateRECTEnumem-
tor stores the interface pointer. This technique is used everywhere in OLE 2 to

allow standardization of almost all return values into a type named HRESULT,

described in the later section “HRESULT and SCODE. ” To avoid further com—

plicating your life now with HRESULT, we’ll stick with a BOOL return type.
Note that specific functions to create specific types of object are rare in

OLE 2. Most often you use a class factory object (and IClassFactory.-:Create-

Instance), which eliminates the need for most, but not all, API functions such

as CreateRECTEnumeration As we’ll see in Chapter 4, implementations of [Class

Factory.‘.‘Creat€Instance look very much like CreateRECTEnumemtor, in either

language.

In this example, the ENUMC and ENUMCPP programs are both user

and implementor of the same object. Both programs use an internal function,
CreateRECTEnumemtor, to obtain an IEnumRECT pointer to the RECT—

Enumemtor object. This demonstrates the typical fashion through which a user

obtains an interface pointer by calling an API function. Internally, the Create-
RECTEnumemtor creates the function table for the IEnumRECTinterface and

then allocates and initializes the object itself.

In C++, the new operator applied to the CImpIEnumRECTclass automati-

cally allocates memory for the object and creates the function table. All you
have to do is initialize the object. Because the CImpIEnumRECT class

5. Thejargon name WM means virtuat’functinn table, which is always referred to in this book
as simply a function table.

Page 112 of221

Page 113 of 221

T H Fl E E: Objects and interfaces

_______________—__________—

inherits from IEnumRECT, you can typecast the pointer from new to an

LPENUMRECT, which turns it into a pointer to only the interface. So in C++,

it’s highly convenient to implement objects as C++ objects, although the

pointers you return are always interface pointers.

In C, you must manually fill the function table, manually allocate the

object’s memory, and then initialize it exactly as in C++. The function IMP-

IEnumRECTc Constructor handles all this for you and lets you use it in place of

the new operator in C++. This constructor function first creates the function

table by storing function pointers in a global array of type IEnumRECWtbl.

(This needs to happen only once for all instances of the object.) Only the im—

plementation of this object knows that the function table actually exists in a

global variable such as this. The object‘s user sees only the table but has no

knowledge about where that table lives. In any case, IM’PIEnumRECT—

* Constructor then allocates the object’s structure and stores a pointer to the

function table in the Ithbl member of the object. Finally, it performs the
same initialization as in C++.

Using an IEnumRECT Pointer

You will also notice that CreateRECTEnumemtor calls the object’s AddReffunc—

tion before returning the pointer. This rule of reference counting, one of sev—

eral, is explained in “Reference Counting.” However, this one call, along
with calls to the other IEnumRECT functions in ENUMC and ENUMCPP,

demonstrates the calling differences between C and C++. Given an interface

pointer, 21 C++ user calls member functions through the pointer as with any

other C++ object pointer:

l/C++ call to interface member function

pIEnumRect->AddRef();

This will land in CImpIEnumRECT.-:AddRofijust as any other C++ call would.

The this pointer inside the member function is identical to pIEnumRECT,

through which the function was called.

In C, we have a more complicated story. First, any member function call

made through an interface pointer must be indirect through the lthbt’ mem-

ber before it gets at the function (an indirection done automatically in C++):

[/C call to interface member function

pIEnumRect->lthble>AddRef(plEnumRect):

To ensure that the implementation of [ErmmRECTz-AddRef invoked here

knows which object is being accessed, C users must pass the same interface

pointer as the first parameter to the function. This mimics the behavior of

Page 113 offil

Page 114 of 221

 INSIDE OLE2
_____________———————————~

the this pointer that is automatic in C++. Because this extra parameter is nec-
essary, the function prototypes in IENUMO.H for the C interface had to
include the pointer type as the first parameter.

The two lines of preceding code illustrate why C++ is more convenient,
but no more functional, than C in using Windows Objects. The C user will al-
ways need the extra indirection and the extra parameter, which can quickly
add up to a lot of extra code. By no means, however, does that small fact render
it impossible to write C code for OLE 2. An object implementor in C needs only
to provide for creating the function table manually. But aside from these few
differences, programming in OLE 2 is identical in either language.

Reference Counting

96

The implementation of the RECTEnumev-aztor object is illustrative, but not use-
ful. To build the bridge between illustrative objects and useful objects, we
need more information that applies to all the remaining chapters of this
book. One of the most important subjects is reference counting, which is a set
of rules that control an object’s lifetime.

If you are an object, your reference counting requires that you live a
unique life in which you are not allowed to rest eternally unless all your ac-
quaintances have also passed on. (I say “unique life” because if everyone
lived this way, we’d all be immortal. But an object user does not have a refer-
ence count and therefore does not live such a life.) At birth, you form an ac—

quaintance with your mother, and as you live your life, you meet new people
and form new acquaintances. Whenever you form a new relationship, you in-
crement your reference count. Whenever an acquaintance dies, you are
released of that relationship, and you decrement your reference count. Only
when all such relationships end are you allowed your personal journey to the
afterlife. That means that for you, the object, your reference count is zero, and

you are allowed to free your memory.
You might have noticed a potential problem with this. If you are an ob—

ject as well as an object user, and the object you are usingjust so happens to be
the user that is using your object, you have a seeming paradox of mutual im-
mortality on your hands. Neither party can die because each has an acquain-
tance with the other, or what is known as a circular reference count. In such
cases...free the other object, as well. In other words, the Almighty End User
strikes one object down with a lightning bolt from the sky, thereby breaking
the circular reference. In such cases, you have to remember the Almighty End
User, who does things such as close an application. This act overrides the

Page 114 0f221

Page 115 of 221

T H R E E : Objects and Interfaces

________,___________________________________a____________._________________

relationship rule; the object in the application that’s closing brutally termi—
nates all connections to it in such a way that its reference count is reduced to

zero, which might free the other object as well.

The rules governing reference counting can be distilled into two funda-

mental principles:

I Creation of a new interface pointer to an object must be accom-

panied by an Addqucall to the object through that new pointer.

l Destruction of an interface pointer (that is, when the pointer goes

out of scope) must be accompanied by a Release call through that

pointer before it can be destroyed.

This means that whenever you assign one pointer to another in some piece of

code, you should use AddRef for the new copy (the left operand) of the

pointer. Before that pointer is overwritten, it must have Release called for it.
All AddRef and Release calls made through interfaces affect the refereHCe
count of the entire object, which is shared among all interfaces on that object.

Consider the following code:

LPSOMEINTERFACE pISomel;
LPSOMEINTERFACE plSomeZ

LPSDMEINTERFACE pCopy;

//A function that creates the pointer uses AddRef on it.
CreatelSomeDbjectthpISomel); //Somel ref count=l

CreateISomeUbject(&pISome2); //Some2 ref count=1

DCopyepISomel: //Some1 count=1

DCOpy->AddRef(); //AddRef new copy. Some1=2

[Do things]

pCopy->Release(): l/Release before overwrite. Some1=1
pCopy=pISome2: //Some2=l

DCOpy->AddRef(); l/Some2=2

[What kinds of things do you do]

pCopy->Release(); //Release before overwrite, SomeZ=1
pCOpy=NULL;

[Things that make us go]

pISome2—>Release(): //Release when done. SomeEEB, Somez freed.

pISome1->Release(); //Release when done. Some1=@, Somel freed.

Page 115 of3721

Page 116 of 221
l—

a
IN 8 ID E ()L E 2

An object’s lifetime is controlled by all AddRefand Release calls on all its

interfaces combined. Reference counting for a specific interface is useful in

debugging to verify that your user is counting properly, but it is the object ref-
erence count that matters. According to the first fundamental principle of

reference counting, any function that returns a pointer to an interface must

call AddRef through that pointer. Functions that create an actual object and

return the first pointer to an interface on that object are such functions, like

CreateISomeObjeet in the preceding example. Now anytime you create a new

copy of a pointer, you must also call AddRef through that new copy because

you have two different references, two different pointer variables, to the same

object that are independent. Then according to the second principle of refer-

ence counting, all AdelRefcalls must be matched with a Release call. So before

your pointer variables are destroyed (by an explicit overwrite or by going out
of scope), you must call Release through that pointer. This includes calling

Release through any pointer copy (through which you called AddRef) as well as

through the pointer you obtained from the function that created the object.
Functions that create objects and return interface pointers are the functions

that actually create the pointers. Such functions fill the out-parameters from

which the caller receives the pointer. Therefore, it is the creator, not the

caller, that is responsible for the first AddRef on the object by means of the

interface pointer it initially returns.

My Kingdom for Some Optimizations!

98

The stated rules and their effect on the code shown earlier probably seem

rather fascist. Well, they are, but that doesn’t mean there’s no underground
movement.

When you know the lifetimes of all interface pointers to the same object,

you can bypass the majority of AddRef and Release calls. There are two

manifestations of such knowledge: nested lifetimes and overlapping lifetimes.

In the preceding code, every instance of pCopy is nested within the

lifetimes of pISomel' and pISomeZ—that is, the copy lives and (lies within the

lifetime of the original. After CrealeISomeObject is called, both objects have a

reference count of one. The lifetimes of their pointers is bounded by these

create calls and the final Release calls made through those pointers. Because

we know these lifetimes, we can eliminate any other AddRefand Release calls to

copies of those pointers:

LPSOMEINTERFACE pISOmel;
LPSDMEINTERFACE pISomeZ:

LPSOMEINTERFACE pCopy:

Page 116 of221

Page 117 of 221

T H R E E: Objects and Interfaces-—-——————'—‘—

CreateISomeObject(&plSome1): {/Somel ref count:l
CreateISomeObject(&pISomeZ): //Some2 ref count=1

pCopy=pISomel: //Some1=1, pCopy nested in Somel's life

[Do things]

pCopy=pISome2; f/Some2=l. pCopy nested in SomeZ‘s life

[Do other things}

pICopy=NULLz //No Release necessary

[Do anything, then clean up]

I pISome2->Release(): //Release when dene. Some2=@. SomeZ freed.
pISome17>Release(): //Release when done. Someiie. Somel freed.

Overlapping lifetimes are those in which the original pointer dies after

the copy is born but before the copy itself dies. If the copy is alive at the origi-

nal’s funeral, it can inherit ownership of the reference count on behalf of the

Original:

LPSOMEINTERFACE pISomel:

LPSOMEINTERFACE pCopy;

CreateISomeObject(&pISomei); //Somel ref count=1

pCopyipISomel; l/Some1=l, pCopy nested in Somel's life
plSomel:NULL; l/Pointer destroyed. pCopy inherits count, Somel=l

pCopy->Release(l: l/Release inherited ref count, Some1=0. Somel freed.

With these optimizations, reference counting can be reduced to four

specific rules, in which an AddRef for a new copy of a pointer is necessary

(and thus must have a Reiease call made through it when destroyed):

l Functions that return a new interface pointer in an out—parameter

or as a return value must call AddRef for the object through that

pointer before returning.

l Functions that accept an ire—out parameter must call Release for the

inrpammter before overwriting it and must call AddRef for the out-

pammete'r. Callers of these functions must call AddRef for the passed

pointer to maintain a separate copy if the function is known to call

Release for that pointer.

I If two pointers to the same object have unrelated lifetimes, AddRef
must be called for each.

I Call AddRef for each local copy ofa global pointer.

I Page 117 0%9221

Page 118 of 221

INSIDE OLE2
______________.____———-——————-

In all cases, some piece of code must call Release for every AddRef on a pointer.
In the first of the preceding cases, the caller of a function that returns a new
pointer (such as CrealeISomeObject) becomes responsible for that new object.
When the caller has finished with the object, it must call Release. If the objec t’s
reference count is decreased to zero because of this, the object may be
destroyed at the discretion of the implementor, but from the user’s point of
View, the object is gone. Ifyou fail to use Release for a reference count, you gen-
erally doom the object to the boredom of useless immortality—memory
might not be freed, or the DLL or EXE supplying that object might not
unload. Be humane to your objects: Be sure to release them.

Call-Use-Release

100

The first optimized reference counting rule exposes a common pattern in
OLE 2 programming. To use an object, you will call some function that
returns a pointer to an interface. That function will call AdelRefon behalf of
this new pointer. You then use that pointer for as long as you want. When you
have finished with it, you call Release through that pointer to let the object
know you no longer need it.

The same object might, in fact, be in use through other pointers, even in
another process. As far as you’re concerned, you call Release to free the refer-
ence count for which you are responsible, and you know that after that time
you cannot access that object again because it might have freed itself. If there
are other outstanding pointers to that object elsewhere, however, the object is
still in memory, but you are oblivious to that fact.

This pattern, which I refer to as Call-Use-Release, is common in OLE 2
programming. There are many functions you call to obtain pointers with a
reference count, and there are many different things to do with those point—

ers (which is why this book is so thick). But regardless of how you got the
pointer or what you did with it, you must call Release through it when you are
finished.

The final Release can do more than simply free the object—“free the

object” can imply many other actions. For example, Compound File objects
discussed in Chapter 5 might close a file; a memory manager object we’ll see
in Chapter 4 will free any allocations it has made; a compound document ob—
ject we’ll implement in Chapter 10 might close down an application. Because
the Release member function can be overloaded in this manner, you will
notice an absence of “close” API functions in OLE 2. There is a function to

open a Compound File, but there is no function to close it—the API provides
the initial AddRef, and closure is handled in the final Release.

Page 118 0f221

Page 119 of 221

T H R E E: Objects and Interfaces
lUnknown, the Root of All Evil

From the preceding discussion, you can isolate two fundamental interface

and object operations: reference counting and pointer creation. The inter-

face named IUnknown, which all Windows Objects support, encapsulates
these two ideas in three member functions:

Function Result

Querylnteiface Returns a pointer to the requested interface on the same
object. QneryInterfoca is considered a function that creates
a pointer, so it calls AddRefthrough any pointer it returns.

AddRef Increments the object’s reference count, returning thecurrent count.

Release Decrernents the object’s reference count, returning the new
count, and can free the object when the reference count
reaches zero.

Because AddRefand Release behave exactly as described in the previous

section, we won’t examine them further here. Instead, we’ll look more closely

at Queryfnterfiice.

Queryfnteag‘ace is more than simply the fundamental creator of interface

pointers, although it does always return a pointer to a different interface on

the same object. Quarylnterface allows you to access each separate function

table supported by an individual Object. How you obtain the first interface

pointer on the object is one thing—Queryfnteiface allows you to get to all

other interface pointers on the same object after creation.

Querylnteiface allows an object user to discover an object’s capabilities at

runtime, instead of having to incorporate specific knowledge about objects at

compile-time. You learn capabilities by asking for additional interfaces that

the object supports, a process called intmfitca negotiation. When you create an

arbitrary object, you’ll always get back an interface pointer that looks like an

IUnknown pointer because all other interfaces incorporate IUnknown. So if

you are able to get an object, you can always call Querylnteiface.

With an IUnknown pointer, you can now determine whether the object

supports a particular feature by calling Queryfnzeifaca For example, to deter-

mine whether the object supports data transfer, cal] Queryfnteaface asking for

an IDataObjectinterface (see Chapter 6). To determine whether the object is a

Compound Document object, meaning that it can be treated in a standard

way for editing capabilities, call Querylntefioce for IOleObject (see Chapters 9

101

l Page 119 0f221

Page 120 of 221

INSIDE OLE2

102

and 10). IOIeObject describes only an embedded object, so if you want to deter-

mine whether it supports linking, call Querylnteaface for [OleLmk (see Chapter

12). To go even further, you can ask the object whether it supports in-place

activation by calling Queryfmerface for IOleInPlaceObject. (See Chapters 15
and 16.)

When you call Queryfnterfnce for a new pointer, you not only learn

whether the object is capable of the set of functions implied by that interface,

but you receive back the interface pointer through which you access those
functions. This means that you cannot possibly attempt to use certain fea-

tures of an object if it does not support those features because you can never

get the appropriate interface pointer from the object. In other words, if you

speak a different language than I do, we cannot communicate; only when we
establish a common language can we express our ideas (functions) to one an-

other. Furthermore, it is impossible for me to offend you verbally unless I

speak in your language; or in Windows Objects terms, I am not able to pass

the wrong object to a function that does not understand that object because I

must use the language of the object to perform any function on it.

Applications benefit from being able to make decisions dynamically

about how to treat an object based on that object’s capabilities, instead of

rigidly compiling such behavior. Let’s say I work at the United Nations in New

York City and I speak English and German. I walk into a room with 10 interna-

tional delegates with whomI need to discuss a few issues. I go up to one of the

delegates and ask “Do you speak English?” This query is met with an affirma-
tive, “Yes.” Great, now we can talk. Partway through our conversation, I find

that I simply cannot express one of my ideas in English, but I know I could

express it in German—hsome languages have words without equivalents in
other languages. So I ask, “Sprechen Sie Deutsch?” to which the other person

responds “ja.” Because my partner also speaks German, I can now express

my idea in that language. If German were not in my partner’s repertoire, we

would be limited to speaking English only.

My ability to communicate with anyone is limited not by the number of

languages I speak, but by the languages the other person and I have in com-
mon. This means that my level of communication varies from person to per-

son. With some people, I can converse in two languages; with others, I might

converse in only one, or I might not be able to converse at all. The key points

are that I learn this when I meet the person and that my knowing many lan-

guages allows me to speak with many more people, not just with people who

speak exactly the same set of languages.

Page 120 of 221

Page 121 of 221

 T H R E E : Objects and Interfaces
___________._._————

How does this apply to objects? The Queryfntm‘ace mechanism allows an

object, or a user of objects, to implement or to be able to use as many inter-

faces as desired without any fear of restricting your ability to use objects or be

i used by some Object user. For example, a compound document object can im-

plement full in—place activation capabilities without restricting itself to being
useful only to in—place container applications. A non-in—place container can

I still use that object as a non-in—place object, and in such a case, the in—place
activation interfaces are ignored entirely.

I’ve often been asked why there is not a function that returns a list of all

the interfaces an object supports. The answer is that such a function would be,

for the most part, useless. What would you do programmatically with such in—

formation? Although it might be useful in some very esoteric circumstances,

you never really need to know whether an object supports an interface unless

you intend to perform some function through that interface. So you ask for it

via Queryfmerface. Furthermore, the list of interfaces that an object of a

specific class supports is constant only within a specific object’s lifetime and

might vary between different irlstantiations of Objects of the same class.

Therefore, you cannot assume that if Object l of class X supports these inter-

faces, Object ? of class X does as well. You must also not assume that

if objects of class X once supported interface Y, they always will, because the

object might change in the meantime. Because having some list of interfaces

doesn’t get you far and because the capability to obtain such a list is outright

dangerous, Querylmeiface is the only way to learn about an object’s capabilities.

Querylnterface vs. Inheritance

Use of Querylnterfaceis superior to use of C++ base classes and C++ inheritance

for two reasons. First, given an arbitrary C++ object pointer to some base class

object, you really have no way to determine whether that pointer is actually

referring to some derived class object instead—you have no way to examine

the virtual function table to see exactly what kind of object you have. There-

fore, you are always and forever restricted to dealing with that object on the

base class’s terms. Using Querylmeiface, on the other hand, allows you to get at

any function table you want from the base [Unknown interface. Given any

[Unknown you can find out how rich the object actually is. You can get from

the base to more specific interfaces.

The second major advantage of QueryInterface is that unless an object

supports an interface, you cannot call member functions that the object does

not support. This is not true of C++ objects. Take, for example, the base object

class CObject in Microsoft’s Foundation Classes. A CObject might be capable of

103

Page 121 0f221

Page 122 of 221

a

INSIDE OLE2
___________._____.———-——-————

serializing itself to a storage device (such as a file); to ask the question “Can
you serialize yourselfP”, you call the member function IsSerializable. If the
answer is positive, you can then call another function, Serialize, to actually
perform the task.

That’s nice, but a user of a CObject is in no way barred from calling Serial

ize at any time. In other words, serialization capability is not tightly coupled to
the question of Whether the object can actually serialize. It is therefore pos-
sible to call Serialize on an object that does not support it, with unpredictable
results. The Queryfntmface mechanism, on the other hand, does tightly couple
the question and the capability. You must ask the object via Queryfnterface
whether it supports a particular functionality, and only if it does are you pro-
vided the interface through which to call such functions. Given an arbitrary

IUnknown object, you cannot possibly ask it to serialize itself without first ask-
ing for an interface that knows about serialization. If the object does not sup-
port the capability, you cannot get the interface. Therefore, you cannot call
unsupported functions, and you eliminate the possibility of unpredictable
behavior.

Ouerylnterface Properties and Interface Lifetimes

104

There are a number of rules in the OLE 2 Design Specifications concerning

the behavior of Queryfnterface. The first and most important rule is that any
call to Queryfnterface asking for IUnknown through any interface on the object
must always return the exact same pointer value. The specific reasoning for this
is that given two arbitrary interface pointers, you can determine whether they
belong to the same object by asking each for an IUnknown pointer and compar»
ing the actual pointer values. If they match, application of this rule allows
both interface pointers refer to the same object.

The second rule is that after an object is instantiated, the interfaces it

supports are static. This means that if Querylnterface succeeded for a particu-
lar interface at one point in the object’s lifetime, an identical call to Queryl’n-
terface at a later time will also work. This does not mean that the exact pointer
values returned from both calls will be identical—it means only that the inter-

face is always available. Note that the static set of available interfaces applies to
a specific object instantiation, not an object class—that is, two objects of the
same type might not both support the same interfaces, but during the
lifetime of each, the interfaces they each support will remain static.

The third rule is that the QueryInterface operation must be reflexive,

symmetric, and transitive, as described in the following table (in which Hater—
facel‘, InterfaceZ, and Interface)" are hypothetical):

Page 122 of 221

Page 123 of 221

T H R E E: Objects and Interfaces

_.--—-'___F-—-———————_—‘_-

 Ouerylnterface Property Meaning

Reflexive p1interface] ,> Querylnteifaed[Interfiteel) must succeed.

Symmetric If p1nterface2 was returned from pfnterfacelo
QueryInterfnceUInteag‘oeeZ), then p1nterface2—>
QueryInterfacefllntevfaceI) must also succeed.

Transitive If p1nierface2 was obtained from pInterfaee1—>

QueryfnterfaceUInterfaee2) and pInterfitce)" was
obtained from p1nterfoce2—>

Queryfnterfh62(Hnteiface2), then pInterfare3—>
l Queryfntetfacefllnteifaeel) must succeed.

In all these cases, “must succeed” is not so strong as to imply that these

cannot fail under the most catastrophic situations. In addition, these proper-

ties do not mean that the same pointer value is always returned for the inter-

face, with the exception of [Unknown

The final rule has to do with the lifetime of a particular interfaeepnimer,

as opposed to the lifetime of the entire object. The rule is that as long as the

object is alive, all interface pointers obtained on that object must remain
valid, even if the Release function has been called through those pointers.

Consider the following code:

LPSDMEINTERFACE pSONE:
LPOTHERINTERFACE pother:

CreateSomeObject(&pSome); f/Object rei count is 1

pSome->Guery1nterface(IDtherInterface, &p0ther); //ref count is 2
p0ther->Release(); //ref count is 1
[e-

* Since the object is still alive, pOther is still a valid

* interface pointer although Release has been called through it.
*/

pSome->Release(); l/ref count is 0, object destroyed.

//p80me and bother are now invalid.

When we first obtain the pSome pointer} the object will have a reference

count of one. The object will therefore remain alive as long as the reference

count remains above zero. When we query for pOther, the object will have a

reference count of two. When we call pOther->Release the object will still have a

positive reference, meaning that pOther will still be valid, even though we

called Release through it. That is, we can still call member functions through

pOther. This is because the interface is alive as long as the object is alive. Only

Page 123 of 331

Page 124 of 221

-_,__i fl

IN S ID E O L E 2

when we call pSome->Release and reduce the object’s reference count to zero will

the object be destroyed, thus invalidating all interface pointers on that object.
In later chapters, we’ll see a few circumstances in which this rule

becomes important. For now, this illustrates why interface-level reference

counting is useful only for debugging purposes. A zero reference count on an

interface means neither that the interface is invalid nor that the object is in-
valid. The only important reference count is the one on the entire object,
which all implementations of Adng" and Release on all interfaces of that

object must return.

Some Data Types and Calling Conventions

If you look in OLE 2’s include file, COMPOBJ.H, you will find [Unknown
declared as follows:

DECLARELINTERFACE(IUnknown)
{

STDMETHOD(QueryInterface) (THIS- REFIID Flid

. LPVOID FAR* ppVUbj) PURE;
STDMETHOD_(ULDNG.AddRefl (THIS) PURE:

STDMETHDD_(ULONG,Release) (THIS) PURE;
]:

Offhand, this might look very odd, but there are a number of macros shown

here that are used in many other aspects of OLE 2.

DECLAREJNTERFACE, STDMETHOD, STDMETHOD_, THIS,
THIS_, and PURE are all macros that hide the differences between C and C++

interface definitions as well as those among Win16, Win32, and Macintosh im-

plementations. When this interface declaration is compiled in C++, the result

is similar to the definition of IEnamRECTin IENUMO.H; the same goes for a

C compilation. For complete details about how these macros expand, see the
comments in the COMPOB].H file in your OLE 2 SDK

Note also that interfaces shown in the ENUMC program are not exactly
what is generated through these macros because real OLE 2 interfaces differ

in calling convention and return type. The following sections look at these, as
well as the REFIID type, in more detail.

STDMETHOD and Associates

106

The STDMETHOD macro expands into HRESULT STDMETHODCALL—

TYPE. HRESULT is a special return value type discussed in the next section,
“HRESULT and SCODE." STDMETHODCALLTYPE is defined under

Microsoft Windows 3.1 as _export ifar _cdecl and under Windows NT as

Page 124 of 221

Page 125 of 221

T H R E E : Objects and Interfaces-'-___——-———_-—h-———“—-_—

__export waded. The cdecl type was necessary to support generation of the

proper stack frame for member function calls, portability of C code from 16-

bit to 32-bit, and interoperability between C and C++ implementations. The

OLE 2 architects would have preferred to have used a more efficient calling
convention (such as PASCAL) but were unable due to these constraints.

The STDMETHOD_ (<type>) macro allows a variation on the return

type from HRESULT into any other type. AddRef and Release, for example,
return the new reference count instead of an HRESULT. In this sense, they
are fairly unique: Most other interface members in all of OLE 2 return

HRESULTS, including Queryfnmface.

Under C++, both STDMETHOD macros include the virtual keyword.
The PURE macro also compiles under C++ as =0 to generate pure virtual

members in the interface declarations. Of course, C compilations include

neither (pure compiles to nothing).

Because the two possible STDMETHOD macros generate the virtual

and =0 signatures, they are not used when implementing interface functions,

only when declaring one. Instead, you use STDMETHODIMP or STD-

METHODIMP_ (<type>), which does nothing more than eliminate the m’r—

tual keyword in C++ compilations but still generate either an HRESULT or a

<type> return value along with STDMETHODCALLTYPE.

HRESULT and SCODE

OLE 2 introduces a new return type used by Querylmetface and almost every
other interface member function: HRESULT, or handle to a result. Concep-
tually, an HRESULT is a status code, or SCODE, that describes what occurred

and a handle that can be used to obtain additional information about an er-

ror or how to recover from it. The intention is that over time, interfaces will

return very detailed information that can describe a suggested course of ac-
tion when failure occurs.

The HRESULT and SCODE types are both 32-bit values containing a
severity flag, a facility code, and an information code, as shown in Figure 3-9
on the next page. The Context field is what distinguishes an HRESULT from

an SCODE because the Context is always zero in an SCODE but it could con-
tain a handle to additional information in an HRESULT.6 An SCODE is cre-

ated or dissected with various macros in the OLE 2 include file SCODEH.

such as MAKELSCODE. Some of the more commonly used SCODE values

are shown in Table 8-1 on the next page. The Facility field of an SCODE

6. In OLE 2, the Context field in an HRESULT is always zero, but this will change in the future.

Page 125 01f0221

Page 126 of 221

"l
INSIDE OLEE
——————.——__—_—__________

108

Success

|

Facility {2219 '16

Success 1 bit: 0 Success, 1 Error
Context 11 bits: 0 in SCODE

Facility 4 bits: Indicates which group of status codes this belongs to.
Code 16 bits: Describes the error.

Figure 3-9.

Structure afar; HRESULT and cm SCODE.

describes the source of the error, which might be in the marshaling of the
function call, in the interface function itself, or elsewhere. Any SCODE pre-
fixed with S_ carries information and means success, whereas an SCODE pre-
fixed with E_ means failure and carries a code describing the failure. Many
other SCODE symbols defined in the OLE 2 header files are prefixed with

other labels, such as OLE_, to identify the specific subtechnology generating
the error. 0LE_, for example, means Compound Documents.

 Value Meaning

S_OK Function succeeded. Also used for functions that

semantically return boolean information that succeeds
with a TRUE result.

S_FALSE Function that semantically returns boolean information
that succeeds with a FALSE result.

E_NOINTERFACE Queryfntmface could not return a pointer to the requested

interface.

E_NOTIMPL Member function contains no implementation.

E_FAIL Unspecified failure.

E_OUTOFMEMORY Function failed to allocate necessary memory.

Table 3-1.

Common SCODE values.

Because the HRESULT and SCODE types are not straight equivalents,
OLE 2 provides a few functions (implemented in version 2 as macros) that
provide conversions between an HRESULT and an SCODE, both of which

you’ll use often in your own implementations. To create an HRESULT from

an SCODE, use the function ResultFromScode(SCODE). To dig an SCODE out
of an HRESULT, use the function GetScode(HRESULT), which is also a macro.

Page 126 of 221

Page 127 of 221

T H Fl E E : Oblects and Interfaces

Although this seems like a pain, especially on the receiving end of an
HRESULT, the most common case allows you to bypass these functions

altogether. If a function works completely, it can return the predefined
HRESULT called NOERROR, the equivalent of an HRESULT containing

S_OK The code receiving the HRESULT can use one of two macros to deter—
mine the success or failure of the function {hr stands for an HRESULT):

Macro Result

SUCCEEDEDUIT) Tests the high bit of the HRESULT and returns TRUE
if that bit is clear. This will return TRUE for any S, SCODE

and FALSE for any E, SCODE.

FAILEDUM) Tests the high bit of the HRESULT and returns TRUE
if that bit is set. This will return TRUE for any E, SCODE

and FALSE for any S, SCODE.

Using SUCCEEDED and FAILED is preferred to comparing an
HRESULT to NOERROR directly because some codes, such as S_FALSE or

STG_S_CONVERTED (see Chapter 5) mean that the function actually suc-

ceeded and is returning more information than that simple fact. A test such
as (NOERROR!=hr) will be TRUE when an HRESULT contains S_FALSE,
whereas the fHILEDMr) macro will be FALSE. When a function returns

either the S_OK code or S_FALSE code, you should compare the HRESULT
to NOERROR because a macro such as SUCCEEDED will return TRUE for

both codes. The GetScode function is necessary only when you want to find the

exact reason for failure instead of simply the fact that the function did fail.

Globally Unique Identifiers: GUIDs, lle, CLSIDs

Every interface is defined by an intmface identifier, or IID (as in IID-
,IUnknown), which is a special case of a universally unique identifier, or
UUID. The universally unique identifier is also known as the globally unique
identifier, or GUID (pronounced goo-id). GUle are 128-bit values created
with a DEFINE_GUID macro (see INITGUID.H in the OLE 2 SDK). Every

interface and object class uses a GUID for identification. As described in the
OLE 2 SDK, Microsoft will allocate one or more sets of 256 GUIDs for your

exclusive use when you request them, or if you have a network card in your
machine, you can run a tool named UUIDGENEXE that will provide you
with a set of 256 GUIDs based on the time of day, the date, and a unique num—

ber contained in your network card. The chance of this tool generating dupli-
cate GUle is about the same as two random atoms in the universe colliding

to form a small avocado. In other words, don’t worry about it.

109

Page 127 of 221

Page 128 of 221

INSIDE OLE2
___.__—__—_——._______

All the code shown in this book uses GUIDs prefixed with 000211.

which are allocated to the author. Do not use these GUIDs for your

own products.
OLE 2 defines [IDs for every standard interface along with class iden-

tifiers (CLSID) for every standard object class. When we call any function

that asks for an IID or a CLSID, we pass a reference to an instance of the GUID

structure that exists in our process space using the types REFIID or REF—

CLSID. When passing an IID or a CLSID in C, you must use a pointer—that

is, pass &HD_ * or &CLSID_ *, where REFIID and REFCLSID are typed as

coast pointers to IID or CLSID. In C++, because a reference is a natural part of

the language, you drop the &. We will see more specifics about the definition

and use of GUIDS in Chapter 4 and beyond.

Finally, to compare two GUID, IID, 0r CLSID values for equality, use the

IsEqualGUID, IsEquaUID, and IsEqualCLSID functions defined in COMP-

OBJH. There the latter two are simply more readable aliases for IsEqualGUID.

Ifyou are programming in C++, take a look at COMPOBJH, which defines an

overloaded “:=” operator for the GUID type that, of course, applies equally

well to the IID and CLSID types. In this book, I’ll use the appropriate Is-

Equal. . . function to keep the code more usable for C programmers.

OLE 2 Interfaces and API Functions

110

OLE 2 defines no fewer than 62 interfaces, many of which it implements and

uses internally. Those of importance to applications are shown in Figure 3-10,

grouped by the technology area to which they apply. Remember that higher

technologies build on the lower technologies, as discussed in Chapter 1.

This picture might look a little intimidating at first. Many interfaces are

shown, but applications have to implement only a handful. For the basic com-

pound document container applications we’ll see in Chapter 9, you need to

implement only IOZeCJiemSite and IAeriseSmk. Although you implement only

a few, you use many more, thereby contributing to the magnitude of Figure

3-10. In addition, some of the interfaces shown are useful only as base inter~

faces for others. Rarely, if ever, will you use or implement a simple base class

by itself.

Page 128 of221

Page 129 of 221

T H R E E : Objects and Interfaces

* = Base interface

Jr = Apps use OLE
Drag-and-Drop

«Source I implementation

' '..' 3’99? ;’ :l: = Apps might provide
” - ._ ..; their own; otherwise,

use OLE

Uniform Data Transfer implementation
I a.

- IViewObj: ‘
jqk' fDataAdvisr.

Automation

Compound Files

Component Object Model

Figure 3-10.

Interesting interfaces 2'71 OLE 2 iéchnalogies.

111

Page 129 of 221

Page 130 of 221

INSIDE OLE2

Custom Interfaces

Although OLE 2 defines many standard interfaces, objects can define and
implement their own interfaces as long as their potential users are imple-
mented to be aware of those interfaces. To reiterate a point, the interfaces

that make up compound documents aim to eliminate the need for custom
interfaces in particular scenarios. By eliminating custom interfaces from an

object, you greatly reduce the amount of specialized code needed in a poten-
tial user of that object. The Polyline object we start developing in Chapter 4

begins its life with a custom interface, but throughout this book we’ll convert
many pieces of it to use standard Compound Document interfaces, leaving
truly custom functions in a custom interface.

The big restriction on custom interfaces is that unless you provide for
custom marshaling as well, you can use such interfaces only on objects imple-
mented in DLLs that do not require marshaling. Providing custom marshal-

ing is not a simple task, and I recommend that you wait until Microsoft

provides generic marshaling code so that all you need to dois provide it with a
description of your function parameters, their types, and the way in which
they are marshaled. If you absolutely must use the capability now, study the
information in the OLE 2 SDK, primarily that concerning the [Marshal inter-
face and related functions. Custom marshaling is not covered in this book.

Interfaces vs. API Functions

112

In developing with OLE 2, you’ll soon notice that you use relatively few API
functions to achieve your goals. Instead, you call many interface functions.

Almost everything an OLE 2 application needs to do can be accomplished by

obtaining a pointer to an interface and calling its member functions. Inter-
faces, in fact, make up more of the so-called “Application Programming

Interface” for a user of an object and define the implementation for an object

itself instead of using more archaic mechanisms such as explicitly named ex-

ports, callback functions, and messages. There are only a few truly fundamen-
tal API functions in OLE 2, and most are concerned with creating objects or

manipulating things such as class IDs.
The majority of the hundred or so OLE 2 API functions are actually

“wrappers” for sequences of commonly used interface calls. Some are the
equivalent of calling Querylnteafnce for a specific interface, calling a member
function with default parameters, and releasing that interface (Call-Use-

Release again). Such wrappers are provided to simplify application develop-
ment in most cases; their use is seldom required, but you can benefit from the

Page 130 0f221

Page 131 of 221

 T H R E E : Objects and Interfaces

—-____.———'-————__—_———__——-_—_

convenience. Even then, typical compound document containers or objects,
even with full in-place activation and drag-and—drop implementation, will

generally use about 20 of these API functions. Some you might use for very
specific reasons; others, although they exist, you probably will never use.

If you are familiar with the OLE 1 API, you’ll find that many operations
that were AP] functions in OLE 1, such as OleSetHostNames, are replaced by an

interface call in OLE 2, such as IOIeObject::SerHostNames. Many more should

become apparent as we implement features using OLE 2.
A major advantage of defining new functions as interfaces is that people

outside Microsoft can publish a new interface by providing an include file
that defines the interface and possibly by providing a marshaling DLL if they
want that interface to be implementable in an EXE. This means no update of

the operating system is required to accommodate your functions, and you
and others can immediately start using those interfaces without waiting for

Microsoft to revise the system.

——_———————u
| What Is a Windows Object? (Reprise)

A Windows Object is any object, in whatever form it manifests itself, that sup-

ports at least one interface, 1Unknown. A Windows Object must be able to pro -
vide a separate function table for each interface it supports. The implementa—
tion of [Unknown members in each supported interface must be aware of the

entire object because it must be able to access all other interfaces in the object
and it must be able to affect the object’s reference count.

C++ multiple inheritance is a convenient way to provide multiple func-
tion tables for each interface as the compiler generates them automatically.

Because each implementation of a member function is already part of your

object class, each automatically has access to everything in the object.
However, because this book is intended to help both C and C++ pro-

grammers, Iwill take a different approach. The Object class itself will simply
inherit from IUnknown and implement these functions to control the object

' as a whole. Each interface supported by this object is implemented in a sepa-

rate C++ class that singly inherits from the interface it is implementing. These
“interface implementations” are instantiated with the object and live as long

as the object lives.

The IUnknown members of these interface implementations always dele.

gate to some other IUnknown implementation, which in most cases is the
overall object’s [Unknown Each interface implementation also holds a “back

113

Page 131 0f221

Page 132 of 221

INSIDE OLE2
——————_._—_—_________________

pointer” to the object in which the implementations are contained so that

they are able to access information centrally stored in the object. In C++, this

generally requires that each interface implementation class be a friend of the
object class. It is also highly useful to maintain an interface-level reference

count for debugging.

You might still have one question: What about inheritance for Windows

Objects? Can one Windows Object inherit from another? The truth is that

there is no inheritance mechanism because inheritance is a way to achieve
code that you can reuse. The Windows Object mechanism for reuse is called

aggregation. But, alas, we are beginning to discuss the finer details of imple-
mentation. So with that, we can close this chapter.

Summary

114

An object in object-oriented terms is a self-contained unit of data and func—

tions to manipulate that data. A WindOWs Object is a special manifestation of

this definition that presents its functions as separate groups called interfaces.

Windows Objects differ from C++ objects in construction and use, but they
are more pOWerful than C++ objects because they can live anywhere on the

system and still be as usable to an application as if they were incorporated into
that application. The most fundamental question that forms a theme for this

book is how to obtain the first interface pointer for a variety of objects and
what you can do with that pointer after you obtain it.

The most basic functions of all interface pointers are concerned with

reference counting and with obtaining other interface pointers to the same
object. These functions are collected in an OLE 2 interface named [Unknown

Later chapters in this book deal with more specific types of objects, their spe-
cial interfaces, how you obtain those interface pointers, and what you can do
with them.

Implementations and users of objects written in C and C++ differ only
slightly. Calling a member function by means of a C pointer requires an extra
dereference through a pointer to an interface function table and passage of
an extra parameter to simulate C++’s this pointer. C objects must manually
construct the function tables for their interfaces. Although C++ is more con-
venient, it is not the required language of OLE 2.

A type of object called an enumerator provides functions through
[Enum interfaces to iterate over a list of elements. Because Windows Objects
are portable across process boundaries, an enumerator object is used to pass
lists of information across those same boundaries as well as to pass the func-
tions to iterate over that list.

Page 132 0f221

Page 133 of 221

T H Fl E E : Objects and Interfaces

KI;

OLE 2 interface members use a specific cdecl calling convention, and the
OLE 2 header files define a number of macros to isolate machine specifics
from the definitions of interfaces. Most interface members also return a type
called an HRESULT, which contains detailed error information.

OLE 2 defines a number of standard interfaces but allows those objects

to be implemented in DLLs to define and implement custom interfaces. If
you provide custom marshaling, a topic not covered in this book, you can also
provide custom interfaces from objects implemented in EXEs as well.
Although OLE 2 defines many interfaces, applications need only worry about
a handful, depending on the features those applications want to implement.

H74 BaPage 133 0 l

Page 134 of 221

Page 135 of 221

COMPONENT OBJECTS

(THE COMPONENT

OBJECT MODEL)
Arthur: Camelot!

Galahad: Camelot...

Launcelot: Camelot...

Patsy: It’s only a model... .
Arthur: Sh!

From Monty Python and the Holy Grail

Almost everyone who has tried to present all the material in OLE 2 to an
audience in a comprehensible way has tried to portray “The Component

Object Model” as a “feature.” I’m certainly guilty of trying this once, but
when I did, I had never seen so many glazed looks in my life. Those who didn’t

have glazed expressions seemed to be saying “SO what? What can you do with
a model?" To clear the air and to redeem myself somewhat, this chapter is

about using and implementing very general Windows Objects that involve the
fundamental API functions and interfaces specified in the Component Object

Model and implemented in COMPOBJDLL, referred to in this book as the

Component Object library.

The Component Object Model—-the specification—is mostly about
interfaces, reference counting, and Querylnterface (that is, the basic standard—
ization Of a Windows Object). The Component Object library—the imple-
mentation—is a number of fundamental API functions, also specified in the

model, that provide for object creation and management, as well as code that
handles marshaling of interface function calls across process boundaries.
This implementation provides one answer to the ultimate question posed in

Page 135 of £1271

Page 136 of 221

INSIDE OLE2

118

Chapter 3 in the form of a “component object.” A component object is a Win-

dows Object identified by a unique class identifier (CLSID) that associates an

object with a particular DLL or EXE in your file system. To obtain a pointer

to a component object, you pass a CLSID to one of two Component Object

library API functions. The library in turn locates and loads the code imple-

menting that object, instantiates the object, and asks the object for an inter-

face pointer to return to you. Note that compound document objects are

merely special cases of the more general component object, so the discussion

here is relevant if you are interested in implementing a compound document

object server.

Before diving into the subject of using and implementing component

objects, we must first discuss a few requirements of all applications (EXEs)

that either use or implement objects. Applications (which define a task) must

initialize the Component Object library before using any other OLE 2 API

functions (from any OLE 2 DLL), and part of this initialization has to do with

memory management within the application’s task. Because both operations

are crucial and are used in all remaining sample applications in this book,

initialization and memory management will be the first two topics of this

chapter.

The code using a component object, which we can refer to as a component

user, calls the library only to obtain that first pointer to an object identified by

a CLSID. The overall impact on such a component user is minimal, as this

chapter will demonstrate. The component user need not be concerned about

where the code for the object is actually located or how the object is imple-

mented. The greater impact is on the implementation of a component object

that allows the library to locate. load, and instantiate it, based on a CLSID. To

accommodate such a capability, you must implement a standard structure

around the object—one structure for EXEs, another structure for DLLs. In

addition, you must store information in the registration database under your

object’s CLSID, which identifies the name of your object and where it lives.

The Component Object library uses this information to find your object and

connect it to its component user.

This chapter will demonstrate a simple object implemented in both a

DLL and an EXE, as well as a user of those objects. We will also implement

Cosmo’s Polyline object as a component object in a DLL that we’ll carry for-

ward through subsequent chapters as we add more OLE 2 features.

Page 136 0f221

Page 137 of 221

F O U R : Component Objects

f__________——————

This chapter closes with a discussion about Windows Object reusability
through a mechanism called aggregation. One object, called the aggregate, in-
ternally creates instances of other objects, possibly exposing the interfaces of
those objects as an interface on the aggregate. Aggregation accomplishes
code reuse as C++ inheritance does but without the problems of inheritance.

Although the topic is appropriate to discuss here, we won’t actually put it to
use until later chapters. You might, however, find it a useful mechanism
around which to design reuse of code in your own applications.

So, to explain what the Component Object Model is, we really need to
analyze the model’s impact on applications in general, on the user of a com-
ponent object, and on the implementation of a component object. The speci-
fications of the Component Object Model provide the foundation for how
Windows will evolve from an API—based system to an object—oriented system, a

romantic walk through the lush gardens of Camelot. But that could be an-
other whole topic in itself, so we’ll stick to implementation details; it is, after
all, only a model.

Where the Wild Things Are

(with Apologies to Maurice Sendak)
There are component users and component objects, both of which can reside
in any piece of code, EXE and DLL alike. The system features provided in
OLE 2 are themselves both objects and users, all of which live in DLLs. The

implementation portion of the Component Object library is considered part
of the OLE 2 system features.

Whether an object user lives in an EXE or a DLL is of little impor-
tance—EXES have a little more work, as described in the next section, be-

cause they define a task. In any case, regardless of where an object user lives,
we can illustrate the relationship between object and user, as shown in Figure
4-] on the next page. Note that the word “server” in this figure applies to the
module that services an object, either an EXE or a DLL.

Because an EXE object requires marshaling support, performance is
typically slower than with a DLL object. But there is one major benefit to hav—
ing this marshaling support: A 16-bit DLL (and any objects it implements)
cannot be loaded into a 32—bit process space of the object user, nor can a 32-bit
DLL be loaded into a 16—bit process space. The marshaling code in COMP-
OBJDLL, however, knows how to pass parameters between 16—bit and 32—bit
processes, thereby allowing an object user in one space to communicate with
an object in another space.

119

Page 137 of221

Page 138 of 221
l

“j

Marshaiing
across boundary

/ \
- : Object in

k LRPC iPCJI—9 server-___’ application

INSIDE OLE2

DLL

boundary Process
bOundary

Object in
server DLL

Figure 4-1.

Component users (in DLLs orEXEs) see other component objects either in
DLLs or in otherEXEs. The Component Object library lives between the user

and an EXE object to provide marshaling. There is no mediator between the

user and a DLL object.

The Component Object library is the agent responsible for getting at the

first object interface pointer in any series of communications between object

and user. It worries about making sure the right piece of object code is in

memory whenever something else wants to use that object. However, once the

initial object has been created and is handed to the user, the object and the

user can create other objects themselves and pass them to their partners. The

Component Object library is only there for marshaling and memory manage-

ment (if even necessary) and is otherwise out of the picture. The objects we

implement in this chapter require a certain structure and registration such

that any user can instantiate an object through the Component Object library

API. Because this API is used underneath much of the Compound Document

API (those functions prefixed with Ole, as in OleCreote), all compound docu-

ment objects are also objects that fit this model—they simply have a more

precisely defined behavior. However, the Component Object library is highly

useful for creating component software, and Windows itself is headed in this

direction: not to be a Compound Document system, but to be a Component

Object system.

‘20 Page 138 0f221

Page 139 of 221

F 0 U Fl: Component Objects

Compound Document Terminology

A number of the terms generally used in discussions of compound
documents are used in this chapter to discuss much more generic

concepts. The following list provides the crucial compound docu—
ment terms and describes how they apply to the information in this

chapter:

Container A user of compound document objects. A container ex-

poses site objects to the compound document objects they contain,
but those site objects are not separately addressable components and
are passed to the contained object onlv at run-time. However, site
objects are Windows Objects.

Server (sometimes just object) An implementor of an object, ei—
ther a DLL or an EXE. A server may implement a component object

or a compound document object and expose both through identical
structures usable by the Component Object library.

In—Process Server or DLL Server A server of objects specifically im—

plemented in a DLL.

Server Application or EXE Server A server of objects specifically
implemented in an EXE. Sometimes called an object application.

Object Handler A lightweight DLL server containing a partial im«
plementation of an object that is fully implemented elsewhere in an
EXE. Handlers are not expected to implement complete objects (es— I
peciallyr not editing capabilities) and are intended for redistribution.
Structurally they are identical to DLL servers.

The New Application for Windows Objects
Any and all applications that plan to use or implement Windows Objects (not
just component objects) must ensure that the Component Object library is
properly initialized before attempting to use other OLE 2 API functions. In
addition, applications running under Windows 3.1 that intend to use objects
implemented in other applications must make special considerations for
Lightweight Remote Procedure Call (LRPC) use of PostMessage. An object or

121

Page 139 0f221

Page 140 of 221

fit
INSIDE OLE2

an object user in a DLL need not be concerned with any of these require-

ments that apply only to the application that defines a task. For applications

(EXEs), here are the steps for initialization:

1. Call the Windows API SetMessageQueue(96) to set your application’s

message queue size to 96, if possible. This is the recommended size

for LRPC handling. This function is not necessary in Win32 because

Win32 message queues size dynamically.

2. Verify the library build version by calling CoBuildVersion or
OleBuildVersion.

3. Call Colnitialize or OleIm'tialize on startup.

4. Cali CoUnmitz'alze or OleUninitinlize when shutting down to allow the

DLL objects to be freed if and only if step 3 worked.

N OT E: CoBuz'ldVersion, CoInitialz'ze, and CoUninitialz‘ze have counterparts

with Ole prefixes: OleBm'ldVersian, OleInitialize, and OieUnintialize. The C0...

functions control your access to Component Object library functions. If you

use any clipboard, drag-and-drop, Compound Document, or Automation re—

lated API functions, you must use the Ole. .. functions instead of their C0. ..

counterparts. The Ole. .. versions simply perform a few more specific Opera-
tions and call the Co... versions. Compound Document applications, conu

tainers included, always use the Ole. .. versions.

Absolutely all of the sample applications in this book that compile EXES

include these four steps. Most of the samples in this chapter, as well as those in

Chapters 5 and 6, use the Co. . . variants. All samples in Chapter 7 and beyond
will use the Ole. . . functions because those samples will in turn depend on the

“extras” provided by the Ole. .. functions. The first sample in the later sec-

tion “Memory Management and Allocator Objects” will demonstrate each of

these steps. In the meantime, let’s look at each step in detail and examine why

each is necessary.

Enlarge the Message Queue

122

OLE 2’s LRPC implementation works on top of the Windows API function

PostMessage. In a nutshell, when the user of an object in another application

calls one of the object’s member functions, the function generates an LRPC

call, which in actuality is a PostMesmge from the one application process space

into the other. To handle all the possible PostMessnge traffic, Microsoft

Page 140 of 221

Page 141 of 221

F 0 U H : Component Objects

”’4’”;

recommends that all OLE 2 applications with even the slightest chance of
engaging in LRPC calls call SetMessageQueue set to 96 on startup, if possible.
Something like the following should, in fact, be your very first step inside Win-
Main to ensure that no messages yet exist in your queue because SetMessage-

Queue will destroy anything already there:

int PASCAL WinMain(HINSTANCE hlnst. HINSTANCE hlnstPrev
, LPSTR psszdLine, int nCmdShow)
{

[variables, but NO code]
int cMsg:96:

#ifndef NINBZ

l/Enlarge the queue as large as we can starting from 96
while (ESetMessageOueuethsg) && (cMsg-=8));

#endif

[Initialization code. message loop. etc.]
}

If you don‘t enlarge your message queue sufficiently, the Component Object
library could reject some LRPC calls when your queue is full. Enlarging your
message queue provides sufficient space for LRPC traffic.

Verify the Library Build Version

Before using any other Component Object API (C0. . .) function, an applica-
tion should call CoBuildVersionoid) to get major and minor build numbers in

a returned DWORD. Ifyou are planning to go on to use OLE 2’s data transfer,
Compound Document, or Automation technologies, you must instead call
OleBuildVersion(v0id), which returns a similar DWORD. The high-order word
of the return value is a major version number, and the low-order word is the
minor version number.

An application can run against only one major version of the libraries,
but it can run against any minor version. The version numbers you can run
against are compiled into your application as the symbols rmm (major) and
mp (minor) defined in OLEQVERH. (There is also a rmj symbol, which
might look like the “major” number but is unfortunately not used this way.)
Note that these numbers are not product release numbers—that is, in OLE 2
these are not 2 and 0. Do not depend on any interpretation of these numbers.
With these numbers, you must compare your rmm to the major version of the
libraries, and if they do not match, you must fail loading your application as
shown on the next page.

123

Page 141 0f221

Page 142 of 221

a
IN SI D E CIL E 2_—___‘_________._—-————-———-——

#include <compobj.h> //F0r Ole... functions, use OLE2.H
#include (ole2ver.h>

DNORD deer;

deer=CoBuildVersion(): //0r OleBuildVersion

if {rmm==HIw0RD(deer))
{

l/Major versions match.

if (rup <: LOHORD(deer))
{

//Library is newer than or as oid as theapp: use normally.
}

else

{
[a

* App was written for newer libraries. Disable features
* that depend on APE or bug fixes in newer libraries
a or simply fail altogether.
*/

l

]
else

//Major version mismatch; fail loading application.

Minor version numbers are useful to applications that want to know whether

the libraries they’ve loaded contain a particular function or have a specific

bug fix. Let’s say minor version 12 of OLE 2 added a function that improves
performance over minor version 11. If I load the minor version 11 libraries, I
cannot attempt to call that version 12 function. If, however, I find that I am
running against minor version 12, I can take advantage of what’s available.

Call Colnitialize or Olelnitialize

124

On startup, an application must call Colnitialize or Olelnétialize before calling
any other function in either of their respective libraries. You must use
OleInitialize for any feature other than component objects and compound

files, including all data transfer, drag-and—drop, compound documents, and
even Automation. Component Object library and Compound File API func—
tions can be used after only CoIm'tialize:

Page 142 of 221

Page 143 of 221

F 0 U R : Component Obgects

if {FAILEDtCOIn’Ltialize(NULL)l) HOV OleInitialize

[Fail loading the application].

m_fInitialiZed=TRUE;

Both functions identically take a pointer to an allocator object that supports the
[Ma-HOE interface. Through this object, all other parts of this application and
the DLLs that live in this application’s task can allocate task local memory (as
opposed to shared memory). If NULL is passed, as shown in the preceding
example, OLE uses a default allocator in COMPOBJDLL. Any code in this
application or in a DLL loaded into this task can call the CoGetMalloc API
function to retrieve an IMalloc pointer to this same allocator. We’ll see this in
more detail in the section “Memory Management and Allocator Objects.”

I Any code within the same task can call Colnitialize multiple times; in
such circumstances, the IMalloc passed to the first Cofnitz'alize wins. This

allows any code (usually that in a DLL) to call Cofnitmlize to ensure that it can
use the Component Object library even if the application that loaded the
DLL did not make the call.l

When Colnilializeis called more than once in the same task, itwill return

an HRESULT with S_FALSE—a code that does not mean failure but that

means nothing happened. As we have seen, the FAILEDO macro will return
FALSE for S_FALSE just as it will for S_OK, so the preceding code fragment
is valid for all uses of Colaitialize.

An application must remember whether Colnitialz'ze or OleInitialz'ze
worked (in a variable such as m_flnitialized) so that it knows whether to call
CoUni-m'tialize or OleUninitialize when it shuts down. In other words, every

. . . Uninitialize call must be matched one-tO-one with an . Jm'tialize call.

Call CoUninitialize or OIeUninitiaIize

After an application has finished with the libraries, it must call CoUninitialize
if it previously called Cofnitialize, or it must call OleUninitialt’ze if it previously
called OleInitialize. Neither function takes any parameters. You should re—

member whether the . . . Initialize call succeeded and call . . . Uninitialz’ze only if

it did—that is, balance the calls as you would balance GlobaMlloc and
GlobalFree.

1. Microsoft recommends that DLLs always pass NULL to Colnitialz'ze. Note also that because your
DLL’s LibMain is called before the application's WinMain, CoIm'tialize will never have been
called by that time. It’s best to defer any dependencies on the task allocator until after LibMam,
if possible.

125

Page 143 of 221

Page 144 of 221

IN 8 ID E O L E 2
——————_—_—_—___________

Internally, OleUnmitz'alize cleans up the specifics from Olelm'tialize and

calls CoUm'm'tiah'ze. This latter function will call another CoFreeAllLibmrteS,
which forcibly and unconditionally unloads all object DLLs that were loaded

on behalf of the application. That’s why you must be careful when you call

CoUmmtialize. You might have use for CoFreeAllLibmries yourself if your appli-
cation’s debugging version has the ability to suddenly terminate and unload

(say, on an assert failure), which might not normally call CoUninitialize.

Memory Management and Allocator Objects

126

Up to now, the only system-supported memory management functions have

been the various Local. .. and Global... Windows API functions (Local/lilac,

LocalFree, GlobalAiloc, GlobalFree, and so on). OLE 2 introduces a new object-
oriented technique to deal with memory management through the use of

allocator objects. Within any given task— that is, within a process space in which

a single EXE is running—“there is a single task allocator object and a single
shared allocator object. The application can implement the task allocator, or

it can use the default task allocator implemented in the Component Object
library. The shared allocator is not replaceable—the implementation in the

Component Object library is always used to ensure that memory is truly
shareable.

You specify the task allocator through the only parameter to Colnita'alize

or ()lelnitialize. This parameter is an IMallocpointer to whatever allocator ob—

ject defined memory management in the task. A NULL pointer means “use
the default task allocator,” whereas a non-NULL pointer means “use this
application-implemented task allocator.”

An allocator object implements the IMallocinterface, defined in COMP-

OB].H. The [Malloc interface describes most of the same functions that Win-

dows provides for local and global memory, such as LocalAlloc, LocalFree, and

LocalCnmpact. For specific details on each member function, see the OLE 2

Programmer’s Reference, but it’s fairly easy to guess at how to use each function

in this interface based on their signatures alone. (IUnknown members have

been removed from the following listing for brevity; you will see them ex-
plicitly in the include file.)

DECLARE_INTERFACE_(Mat 1 0c , IUnknown)
[

STDMETHDD_(VOid FAR*, Alloc) (THIS_ ULONG Cb) PURE:

STDMETHOD_(V01d FAR*, ReallOC) (THIS_ void FAR * pv, ULONG Cb) PURE;

Page 144 of 221

Page 145 of 221

F 0 U R : Component Objects

STDMETHOD_(void. Free) (THIS_ void FAR * pv) PURE:
STDMETHOD_(ULONG, GetSize) (THIS_ void FAR * pv) PURE;

STDMETHOD_(int. DidAlloc) (THIS, void FAR * pv) PURE:
STDMETHODJvoid. HeapMinimize) (THIS) PURE:
] :

typedef IMalloc FAR * LPMALLOC:

At any time, any piece of code in the application or any DLL loaded into this
task (including the OLE 2 libraries) can and will call CoGetMalloc to obtain an
{Malice pointer to the task allocator object. In other words, a task allocator is a
Windows Object, and you use the API function CoGetMalloc to obtain the first
interface pointer. In this case, your application might be the object imple-
mentor and OLE 2 might be the object user. It works both ways.

All the OLE 2 libraries always use the task allocator for all non-shared

memory needs. Some OLE 2 functions will allocate memory using the task
allocator then pass a pointer to that memory to your application where you
become responsible to free it. In such cases you must free the memory when
you no longer need it by calling CoGetMalloc to obtain the task allocator’s IM-
alloc pointer, pass the memory pointer to IMallochree, and finish up by call-
ing [Mallocheleasa

The first parameter to CoGetMalloc is either MEMCTX_TASK or
MEMCTX_SHARED, depending on which allocator object you want. The
second parameter is a pointer to an LPMALLOC variable that receives the
[Malina pointer.

The default task allocator is based on multiple local heap management

(or far local heaps). This allocator allows you to allocate more than 64 KB be—
cause there are multiple heaps, but each allocation is as efficient as a local
allocation because you use only one selector per heap instead of one per allo-
cation (as GlobalAlloc does). The only limitation is that any single allocation
must be smaller than 64 KB. The shared allocator provides memory that dif-

ferent processes can independently access and is built on the same type of
multiple local heap management as the default task allocator. Likewise, all
shared allocations must be 64 KB or smaller.

The Malloc program (CHAP04\MALLOC), shown in Listing 4-1, ex-
ercises the functions in both the standard task allocator (it does not imple—

ment its own allocator) and the shared allocator. It is an application that is

most interesting in a debugger, and it does indicate success or failure of its
operations in message boxes. (Yes, a most advanced user interface.)

Page 145 $97221

__J

Page 146 of 221

IN 8 ID E C)L E 2

128

MALLOC.H
/*

IMa1loc Demonstration Chapter 4

* Copyright (c)1993 Microsoft Corporation,
*/

#ifndef _MALL0C1H_
#define #MALLOC_HJ

#inc1ude <BOOK1632.H>

l/Menu Resource ID and Commands
#define IDRAMENU 1

#define IDM_IMALLOCCOGETMALLDCTASK 130
#define IDM_IMALLOCCDGETMALLOCSHARED 101
#define IDM_1MALLOCRELEASE 182
#define IDM_IMALLOCALLOC 193
#define IDM_IMALLOCFREE 164
#define IDM_1MALLOCREALLOC 185
#define IDM_IMALLDCGETSIZE 106
#define IDMrIMALLOCDIBALLOC 18?
#define IDM_IMALLOCHEAPMINIMIZE 188
#define 1QM_IMALLDCEXIT 189

f/MALLDC.CPP

LRESULT FAR PASCAL EXPORT Ma110andPr0ctHWND. UINT. NPARAM
. LPARAM}:

#define CALLOCS 18

la:

* Appiication-defioed c1asses and types.
w

c1ass _fifar CAppVars
{

fr19nd LRESULT FAR PASCAL EXPORT Ma11oCWndProC(HWND. UINT
. WPARAM. LPARAM):

protected:
HINSTANCE m_hInst:
HINSTANCE mfhlnstPrev;
UINT m_nCmdShow:

Listing 4-1.

The 11Wa£locprogram, which exercises tos

f/WinMain parameters

It and shared allocator objects.

Page 146 of 221

A11 Rights Reserved

(continued)

Page 147 of 221

F O U H : Component Objects

____________—___————

Listing 4-1. continued

HWND

LPMALLOC
BOOL

ULONG
LPVOID

pubiic:

mwhwnd;

m_pIMaiioc;
m_f1nitia1ized;

m_rgcb[CALLOCS]:
m_rgpv[CALLOCS]:

[/Main window handie

l/IMaiioc interface
//Did Colnitialize work?

l/Sizes to aliocate

//A110cated pointers

CAppVarS(HINSTANCE. HINSTANCE, UINT);

~CAppVar
BOOL Fln

void ?re

}:

typedef CAppVars

#dEfine CBWNDEXT

5(void):
it(void);

eAiiocationszODl);

FAR *LPAPPVARS:

RA sizeof(LONG)

#define MALLOCNL_STRUCTURE 8

#endif //_MALLOC_H_

MALLOC.CPP
/ t-

* IMaiioc Demon
as stration Chapter 4

* Copyright (c)1993 Microsoft Corporation, A11 Rights Reserved
*/

#inciude (window

#inciude <01e2.h

#inciude (initgu
#inciude <oie2ve

#inciude "malioc

s.h>
>

id.h>
r.h>

.h"

int PASCAL WinMain€HINSTANCE hInst, HINSTANCE hInstPrev

, LPSTR psszdLine, int nCmdShow)
{
MSG
{PAPPVARS
int

msg:

pAV;
cMsg=96;

(continued)

Page 147 0?le

Page 148 of 221

IN SI D E C)L E 2_~_______—___._————-———-————‘

Listing 4-1. continued

#ifndef WIN32
whiie (lSetMessageGueue(cMsg) && (cMsg-=8));

#endif

pAVznew CAppVars(hInst, hlnstPrev. nCmdShow);

1f (NULL==pAV)
return -1:

if (pAV—>F1nit())
{

whiEe {GetMessage(&msg, NULL. 6.0))
{

Trans1ateMessage(&msg):

DispatchMessage{&msg):
}

}

de1ete pAV;
return msg.wParam;
]

LRESGLT FAR PASCAL EXPORT Ma1fiocwndProc(HWND hWHd. UINT 1Msg
, WPARAM wParam. LPARAM 1Param)
{

LPAPPVARS pAV:
LPVUID pv;
ULONG cb;
UINT 1:
BOOL fResu1t=TRU€;
HRESULT hr:

pAV=(LPAPPVARS)GetW1nd0wL0ng(hwnd. MALLOCWL_STRUCTUREJ:

switch (1Msg)
[
case WM_NCCREATE:

pAV:(LPAPPVARS)((LONG)((LPCREATESTRUCT)1Param}
->ipCreateParams);

SetHindowLong(hWnd. MALLDCNL_STRUCTURE. (LONG)pAV):
return (DefwindowProc(hWnd. fiMsg, wParam. 1Param));

case NM_DESTRUY:

PostOuitMessage(@):
break:

(6ammued)

130

Page 148 0f221

Page 149 of 221

F 0 U R : Component Objects—-_—'——'——————————

Listing 4-1. continued

case NMECOMMAND:

switch (LOHORD(wParam))
. {

case IDM_IMALLOCCOGETMALLOCTASK:

pAV->FreeA11ocat10ns(TRUE);

hr=CoGetMa11oc(MEMCTXkTASK, &pAV—>m=pIMa11UC):
fRé§H1t=SUCCEEDED(hrJ:

MessageBDx(hwfid, ((fResuIt)
? "CoGetMa11oc(task) Squéédéd."

"CoGetMa110c(task) fa11ed1")

. "M31106“. MBEOK):

break;

case IDM_IMALLOCCOGETMALLOCSHARED:

DAV->FreeA1TocationstTRUE):

hr=CoGétMa11ochEMCTX_SHARED. &pAV->m_pIMa1Woci;
fResuTtESUCCEEDED(hr);

MessageBox<hWndi ((fResult)

? "CoGetMa11ocCshared) succeeded."
: "CoGefMalIOc(shared) faiTed.")

, "Mai10c". MB,OK}:

break;

caéé [QMVIMALLGCRELEASE:

pAV->FréeA110Cations(TRUE):
break;

case IDM_IMALLOCALLOC:

if (NULL=:pAV=>m_pIMa110CJ
break:

pAV~>FreeA11ocati0nsfFALSF):

for (i=6; i < CALLUCS: i++}
{

LPBYTE pb:
ULONG iBytE:

CbEpAV->m_rgcb[1]:

pAV*>m_rgpv[1JEpAV->meIMa110c->A110é(CbJ:

(continued)

31

Page 149 011221

Page 150 of 221

IN SI D E O L E 2

Listing 4-1. cominwd

//F111 the memory with letters.

pb:(L?BYTE)pAV~>mwrgpv[i1;

if (NULL!=ph)
{

for (iByte=fl; iByte < Cb: iByte++)

*pb++=('a'+i);
}

fResu1t &: (NULL1=pAV~>m_rgpv[1]):
}

MessageBox(hWnd, {(fResu1t)
? "1Ma110c::A110c succeeded.“
: "IMa1T0c::A110c fai1ed."}

. "Ma110c", MB_OK);

break;

case IDMHIMALLOCFREE:

pAV7>FreeA11ocations(FALSE);

MessageBox(hwnd, "IMa11oc::Free finished."
, "Ma11oc", MB_DK);

break:

case IDM_IMALLOCREALLOC:

if (NULL==pAV->m_pIMa1?0c)
break;

for (1:8; 1 < CALLOCS; 1++)
{

LPBYTE pb:
ULONG 1Byte;

pAV->m_rgcb[i]+:128;

//01d memory is not freed if Rea11oc faiIS.

pvrpAV->m_pIMa110c->Rea1105(pAV—>murgpv[i3
, pAV->m_rgcb[1]);

if (NULLl=pv)
{

(continued)

‘32 Page 150 of221

Page 151 of 221

F O U R: Component Objects__

Listing 4-1. continued

pAV->m,rgpv[ij=pv;

l/Fii] the new memory

//with something we can see.

pb=(LPBYTE)pAV->m_rgpv[1j:
cb=pAV‘>m_rgchi];

if (NULL!=pD)
[

for (iByte=cb-128; iByte
< Cb: 18yte++)
{

*pb++=('a'+1):
}

}
else

fResu1tzFALSE:
}

MessageBox(hwnd. ((fResu1t)
? "IMaT1oc::Rea110c succeeded.”
: "IMaT1oc::Rea11oc failed.")

. "Ma110c", MBWOK):

break;

case IDM_IMALLOCGETSIZE:

if (NULLEEpAV->m_pIMa11oc)
break;

for (i=0: 1 < CALLOCS: i++)

[

Cb=pAV->m_p£Ma1Woci>GetSizetpAV->m_rgpv[1]);

{se

¥ We test that the size is *at least*

? what we wanted.
[>2

fReSu1t &= {pAV*>m_rgcb[11 <= cb):
}

MessageBox£hwnd. ((fResu1t)
? “IMa110c::GetSize matched.“

(continued)

133

Page 151 of221

Page 152 of 221

a
| N SI D E C)L E 2

Listing 4-1. continued

: "IMa110c::GetSize mismatch."). "MaIToc"
, MB_GK):

break:

case IDM_IMALLOCDIDALLO€:

if (NULL==pAV*>m_pIMa11oc)
break;

[=9

* D1dA110c may return ‘1 if it does not know if

it actua11y a11ocated something. In that

» case, we just b1ind1y & in a v1 with no effeet.
*/

for (i=8; 1 < CALLOCS: 1++)
{

fResu1t &= pAV~>m_pIMa11oc->DiéA11oc(pAV
=> rrLrngUJ);

}

MessageBox(hWnd. ((fResu1t}
? "IMa110c::DidA11oc is TRUE."
: "IMa11oc::D1dA110c is FALSE.“)

, "Ma110c", MB_OK):

break;

case IDM_1MALLOCHEAPMINIMEZE:

if (NULL!=pAV->mfipIMa1EoC)

pAV—>m_pIMa11oc->HeapMin1mize();

MessageBox€hwnd

. "IMa1loc::HeapM1nimize finished."

. "Ma110c". MB_0K):

break;

Case IDM_IMALLDCEXIT:

PostMessage(hwnd. WM_CLOSE, 8. 8L):
break;

}
break:

defau1t:

return (DefWindowProc(hwnd, 1Msg, wParam. 1Param)):

(continued)

134 Page 152 of221

Page 153 of 221

F 0 U R : Component Objects
_.——-——____-—-—-—

Listing 4-1. cammued

return 9L:

}

CAfipvars::CAppVars(HINSTANGE hIfiSt, HINSTANGE hInstPrev
; UINT nCmdShow)
[

UINT i;
ULONG Cb:

m_hInst fihinst:

mmhInStPrev =hInstPrev;

m_nCmdShoW =nCmfiShow;

m_hWnd fiNULL:

m_pIMa1}oc =NULL:
m=FTn1tia1ized=FAL§F:

//166 is arbitrary. TMa1Ioc can hand1e 1arger.
Cbfilfle;

for (ififiz ? < CALLOCS: 1++)

[

m_rgcb[i]=cb;

m_rgpv[1]ENULL;
cb*:2;
}.

return;
}

CAppVars::~CAppVar5(v01dJ
{

FreeA11ocations(TRUE}:

if (m,f1n€t1a112ed)

CoUninitia1ize{);
return;

7

BOGL CAppVars::FIn1Efv01d)
[

NNDCLASS WC;

DwORD deer:

l/Make sure CUMPOBJ.DLL is the right version
deer=CoEudeVersi0n();

(continued)

135

Page 153 of221

Page 154 of 221

IN SI D E C)L E 2___—_—_—_—-———————_

Listing 4-1. continued

if (rmm!=HIWORD(deer))
return FALSE:

f/Ca11 CoIn1t€a1€ze so that we can cal] other C0... functions
if (FAILED(COIn1t1a1ize(NULL))}

return FALSE:

m_f§n1tia1ized=TRUE;

1f (lm_hInstPrev)

{

wc.sty1e m CS_HREDRAH : CS_VREDRAH;

wc.1pfnwndProc z Ma110cwndProc;
wc.ch1sExtra = 8;

we.candExtra = CBWNDEXTRA;
wc.h1nstance 2 mfihlnst;
wc.h1con = LoadIc0n(mthnst. "Icon");

wc.h£ursor = LoadCursortNULL, IDC,ARROW):

wc.herackground = (HBRUSH)(COLGR_WINDON + 1):

wc.1pszMenuName MAKEINTRESUURC£(IDR_MENU);

wc.1pszC1assName "MALLOC";

1f (lRegisterCiass(&wc))
return FALSE;

}

m_thd=Createw1nd0w("MALLOC", "IMa11oc Object Demo"

. NS_0VERLAPPEDNINDOW, 35. 35. 358. 259. NULL, NULL
. m_h1nst. this);

if (NULL==m_hWnd)
return FALSE:

Showw1ndow{m.hwnd, m_nCmdShow);

UpdateWindow(m_hWnd}:

return TRUE;

}

void CAppVars::FreeA1!ocat10ns{BOGL fRe1ease)
{
UINT 1;

if (NULL==m_pIMa11oc)
return:

(continued)

‘36 Page 154 of221

Page 155 of 221

F O U R : Component Objects

Listing 4-1. continued

for (i=0; 1 < CALLOCS; i++)

[

if (NULL!=mmPQDV{l]}

m_pIMalloc->Free(m_rqpvfl])2

m_rgpv{i]=NULL;
}

1f (fRelease)

{

mfipIMalloc-meleasm):
m_pIMal l 0c=NULL;
}

return;

}

Using the Heapwalker application in the Windows SDK, we can see

where OLE 2 allocates each type of memory—task and shared—using its

own allocator objects. As shown in Figure 4-2, task memory is allocated from

multiple heaps belonging to the MALLOC application task.

% MALLOC Heap gLucaI walk]
'fleap §nr1 Edd!
:orrsn 1mm: 5m; mi; 1.:. UL h F1F=‘

00063EAO
UDUSSZCU UDAB 512
0003ED£0 010? 4575 P1
0003ECEO 010F 64 Pl
00557FED 0176 192
000203E0 0187 2840 P1
00020E80 UlBF 332 P1
0004EFCO 014E 512
80509020 1276 5344
0006F050 126E 0132

_ 0003FA20 1205 32000091500
305F400
00055A40
00056030
000ESA50 0025 192
00019A40 128F 512 P1
0001AF00 1557 1152 P1
0057A200 163E 2176
00043380 1617 32 P1Ir *_.L¢_--_;r‘ .. ‘7”‘L _._. u—

U“HTU'TI'TIUU

El 61 61 El aaaaaaaaaaaoaaaa
El 61 61 61 aaaaaaaaaaaaaaaa
El 61 61 El aaaaaaaaaaaaaaaa
61 61 61 61 aaaaaaaaaaaaaaaa
61 61 El 61 aaaaaaaaaaaaaaaa
61 E1 61 El aaaaaaaaaaaaaaaa
52 62 52 62 aaaam bhbbbbhb

62 62 62 bbbbbbbbhhbhbbhh
hbbhbbbhhbbbbbhh

'rlU'Tl'T-IUUU

Figure 4-2.

Using Local Walk on the heap shows allocated blocks. The blocks arefz'lled
with letters to Show their location in a: hexadecimal dump.

137

L Page 155 0f221

Page 156 of 221

"l a
I N S | D E C) L E 2

When this memory is freed, the heaps are not necessarily freed, but the

space inside those heaps are freed, as shown in Figure 4-3.

Shared memory is allocated on behalf of COMPOBJDLL, as shown in

Figure 4—4, again using the same heap management technique that the stan-
dard task allocator uses. Freeing memory generates the same results for the

task allocator, as shown in Figure 4-3.

MMLflCZ New tl'ncal wait]

000sass0 _
00015n20 54143 FreeDUUlECEU
3051103080557FEU
00020350
unnzusso
surscsto

- 30609020
. 00053300

nnnsnisn
sustuuu
000926t0
II 'I' I: I'F’ID'J
snracrsn
ED711ABD
ED7114EU
00013A40 m _ ‘ n_
UDUIAFDD _
BUSJAZBD
00013330

HHHHHD—h—H—PO- HHHHHHHH-- HHt—n—w—u—n—m—w l—n—H—-HHl—I’D—H—l‘a‘ HHVHHHHHHN’U HHMHHHHD—H—V HHHHWHHHHU>.4 HI—H—M—fl—H—Pl—PHHO
F as,l._.F. n.-.~.r.-.

Figure 43.
Using Local Walk on the heap, afierfreeéng the memory, shows free space in

the heaps-Freed blocks arefz'lled with OXC-C.

Component Objects from Class Identifiers:
A Component User

Let’s suppose I’m an application and I know there exists a Windows Object

named Koala (which is, in fact, the name of an object we’ll implement in the

later section “Implementing a Component Object and Server”). 1 can iden-

tify the Koala object using the CLSID "000211020000-0000-(1000—

000000000046.” (WhoaI That’s a long name there! Remember that CLSIDs

are 128 bits: This string is the hexadecimal representation of those bits.)

Koalas are nice; they come with an include file that defines a CLSID_Koala

constant. Let‘s say I also know that the Koala object supports the interface

138 Page 156 of221

Page 157 of 221

F O U Fl: Component Objects

. ea or! Add!
- __ HeallWalker-[Maln Hearfl ” 5 .. r

' Eile flalk son iject Allan Add! '
. mil-FEE?- :. .- 3125 L1?!

00067000 12FE W92 :
00004100 1400 224
00004CA0 1540 374-1 D
00020100 0450 1140 01 F
00020000 0457 1210 P1 1--
000000c0 0210 304
007013140 1201-: 01104
00003010 1st 59400
00005200 1400 0001
00010010 1250 04
00707300 1240: 15930 3;
00712140 1205 1000
3079AU4D 51325 Y32

I-'-: -1 -...

T SD?113ED 256J UBDlDSEU U3SE 224
BBTIEUAD 1346 4443
UUUFISUU UlEF 12354 P1
UUUZSBCU UlZF 9403 P1DlFE 1216

u , aaoaaaaaaaaa Iaaaaaaaaaaaaaaaa
3.5351355653655555
aaaaaaaaaaaeaaea
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaQ ..hbbb
bbhhhbhhhbbbbbhh
bbhhbbbhhbbbhhhb
bbbbbbbbbhbhbhhb

Figure 4-4.

Using Local Walk on the heap shows allocated blocks exactly as the task
allocator does, but owned by COMPOBJDLL instead ofby the application.

IPersist, which is a very simple interface capable only of returning the CLSID
of its object. Given this knowledge, how do I create a Koala object with this
CLSID and obtain a pointer to its IPersist interface?

This question should ring a harmonic with the ultimate question posed
in Chapter 3, so let’s look at the answer. For the benefit of those readers'who
will be writing compound object container applications, I want to mention
that the API functions and interface functions that we use to instantiate a

component object are used within more complex API functions that we’ll use
in Chapter 9 to instantiate a compound document object. Again, compound
document objects are more refined and specialized component objects; what
we discuss here is simply the logical equivalent of calling the C++ new opera-
tor. If you are in a hurry to implement a compound document container, you
can skip to the next chapter after you finish reading this section.

The OBJUSER program, in Listing 4-2, implements a component user
of the Koala component objects that we’ll implement in the next section.
Koala implements the [Persist interface only, but by virtue of implementing
one interface, it also implements IUnlmown: IPersz'st includes all [Unknown
member functions plus one other named GetClassID, which returns (what
else?) the CLSID of the object. IPem‘st is a base interface in OLE 2 for a

139

Page 157 0f221

Page 158 of 221

IN S] D E (3L.E 2

140

number of other interfaces, and rarely is it used by itself. I chose IPersz'st for

this demonstration because it has standard marshaling support already in

COMPOBJDLL. This built—in support means we can implement marshaling
in both DLLs and EXEs without any extra work. I also did not use another

OLE 2 interface because most other interfaces have more member functions

we would have to implement and would have raised more questions than

we’re prepared todeal with now.

OBJUSER.H
1:3:

* Koala Object User Chapter 4a:

* Definitions and structures.
q

4

*/

#ifndef

#define

HGBJUSER_HW
-08JUSER_H_

#include <bookguid.h>

l/Menu Resource ED and Commands

#define

#define

#define
#define

#define
#define
#define
#define

IDR_MENU

IDMMOBJECiUSEDLL

IDM_OBJECTUSEEXE

IDM_0BJECTCREATECOGCO
IDMWOBJECTCREATECOCI

IDM_GBJECTRELEASE
IDM_GBJECTGETCLASSID
IDMMOBJECTEXIT

flOBJUSER.CPP

LRESULT FAR PASCAL EX?DRT ObjectUseandPr0C(HNND, UINT. WPARAM
, LPARAM):

class __

{
far CAppVars

l

180
161

182

103
104

195

186

friEHd LRESULT FAR PASCAL EXPORT ObjectUSBrWHdPrDC(HWND

Listing 4-2.

. UINT. N?ARAM, LPARAM}:

The OBJUSER program, which uses Koala objects.

Page 158 0f221

Copyright (c)1993 Microsoft Corporation, All Rights Reserved

(continued)

‘54

Page 159 of 221

F O U R : Component Objects
Listing 4-2. continued

protected:
HINSTANCE thInst: I/winMain parameters
HINSTANCE m_hInstPrev;
UINT m;n€md5how;

HWND m_hwnd; l/Main w1ndow hand1e
BDGL m_fEXE; l/Menu se1ect10n

LPPERSIST m_pIPersist; //I?ersist interface
BDGL m_f1n1tialized; l/Did C01n1t1a1ize work?

Dub11C:

CAppVars(HINSTANCE, HIMSTANCE. UINT);
~CAppVars(v0id):
BDGL F1n§t(v01d);

};

typedef CAppVars FAR *LPAPPVARS:

#define CBNNDEXTRA sizeof<LONG)
#define OBJUSERWLMSTRUCTURE G

#efldif f/_OBJUSER_H_

OBJUSERDPP
/ a

* Koa1a Object User Chapter 43k

‘ Copyright {c)}993 Microsoft Corporation. A11 Rights Reserved
*/

#define INITGUIDS

I #1nc1ude <windows.h>
#inc1ude <o1e2.h>

#inc1ude <0192ver.h>

#include "objuser.h"

int PASCAL H1nMa1n(HINSTANCE hInst, HINSTANCE hInstPrev

. LPSTR psszdLine, int nCmdShow)
[

MSG msg;

LPAPPVARS pAV;

(continued)

141

Page 159 0f221

Page 160 of 221

I N SI D E C)L E 2

142

Listing 4-2. continued

int cMsg=96:

#1fndef WINBZ

l/En1arge the queue as Earge as we can starting from 96
while (lSetMessageQueue(cMsg) && (cMsg-=8)l;

#end1f

pAV=new CAppVars(hInst, hlnstPrev. nCmdShow);

1f (NULL==pAV)
return -1;

1f (pAV->F1n1t())
{

whi1e (GetMessage(&msg. NULL, 6,9))
{

Trans1ateMessage(&msg):

UispatchMessage(&msg):
}

1

deIete pAV;
return msg.wParam;
}

LR£SULT FAR 9ASCAL EXPGRT ObjectUserwndProc(HHND hwnd, UINT iMsg
. WPARAM wParam, LPARAM 1Param)
{
HRESULT hr:

LPAPPVARS pAV:
CLSID c1sID;

LPCLASSFACTORY pIC1assFactory:
DHDRD dwCTsCtx;

pAV=(LPA?PVARS]GetW1nd0wL0ng{thd, OBJUSERNL_STRUCTURE):

switch (iMsg)
{
case WM_NCCREATE:

pAV=(LPAPPVARS)((LUNG)((LPCREAIESTRUCT)1Param)
->1pCreateParams):

SetwindowLongthwnd. OBJUSERHL_STRUCTURE. (LDNG)pAV):
return (DeinndowProc(hWnd, 1Msg, wParam, 1Param)):

(continued)

Page 160 of 221

Page 161 of 221

F O U R: Component Objects

Listing 4-2. continued

case WMEDESTRGY:

PostQuitMessage(@):
break;

case NM-COMMAND:
switch (LGNORD(wParam))

{

case IDM_OBJECTUSEDLL:

pAVA>m_fEXE=FALSE:
CheckMenuItem€GetMenu(hwnd). IDMQGBJECTUSEDLL

. MFMCHECKED):
CheckMenuItemCGetMenu(hWnd). IDM_OBJECTUSEEXE

. MF_UNCHECKEB);

break;

case IDM_OBJECTUSEEXE:

pAV->m_f£XE=TRUE:
CheckMenuItem(GetMenu(hund}. iDM_OBJECTUSEDLL

. MF_UNCHECKED):

CheckMenuItem(GetMenu(thd). EDMHOBJECTUSEEXE
. MFWCHECKED):

break;

case IDMHDBJECTCREATECOGCO:

1f (NULL!=pAV->m_pIPersist)
[

pAV->mmpIPer51st->Re1ease{)z
pAV*>m_p1Persist=NULL:
CoFreeUnusedLibraries(}:

}

dwC1sCtx=(pAV->m_fEXE) ? CLSC?X#LOCAL_SERVER
: CLSCTX#INPROC_SERVER:

hr=CoGetC1assObject(CLSID_Koa1a, dwc1sCtx, NULL
. IED+EC1assFactory

(LPLPVOIB)&pIC1aSSFactory);

1f (SUCCEEDED(hr))

{

f/Create the Koala by asking for IIDmIPersist

pIC1assFactory->Create1nstance(NULL
. IID_IPersist

. (LPLPVDID)&pAV->m_plPersist):

(continued)

143

Page 161 0f221

Page 162 of 221

IN SI D E C)L E 2
———___—__.——___——_________

Listing 4-2. cantinmd

//Re1ease the CEass factory when done.
pIC1assFactory->Re1ease(}:
}

break:

case IDMWOBJECTCREATECOCI:

1f (NULL!=pAV—>m_pIPersist)
{

pAV->m_pIPersist->Re1ease():
pAV~>m_pIPersist=NULL:
CoFreeUnusedLibraries():
]

l/Simp1er creation: Use CoCreateInstance

dwC1sCtx=(pAV->m_fEXE) ? CLSCTX_LOCAL*SERVER
: CLSCTX‘INPROC_SERVER:

CoCreateInstance£CLSID_Koa1a. NULL. dwclsCtx
, IID_IPersist

, (LPLPVOID)&pAV->m_pIPersist};

break;

case IDM_BBJECTRELEAS£:

if (NULL==pAV->m_pIPersistJ
break;

pAV->m_pIPersist->Re?ease():
pAV->m_pIPersist=NULL;

CoFreeUnusediibraries(}:
break;

case IDM_GBJECTGETCLASSID:

if (fiULL==pAV—>m,pIPersist)
break:

hr=pAV->m_pIPersist->Getc1assID(&c1SID);

if (SUCCEEDED(hr))
{

LPSTR p32:

LPMALLOC pIMa110C;

(continued)

144

Page 162 of 221

Page 163 of 221

F O U Fl : Component Objects

i____fl,___r__________

Listing 4-2. continued

f/String from CLSID uses task Ma11oc
StréngFromCLSIDtc1sID. &psz):
MessageBox(hWnd, psz, "Object C1ass ID"

. MBHDK);

CoGetMa11oc(MEMCTX_TASK, &pIMa110c);

pIMalloc->Free(psz):
pIMalloc->Reiease():
J

e1se
{

MessageBox(hWnd
. "IPersist::GetC1assID cali fa11ed"
. "Koa1a Demo", MB_DK):

}

break;.

case IDMMOBJECTEXIT:

PostMessage(thd. WM_CLOSE, 6, 8L);
break;

}
break:

default:

return (DefN1ndow?roc(hWnd. iMsg. wParam, 1Param));
}

return 8L;
3

CAppVars::EAppVars(HINSTANCE hlfist, HENSTANCE hInstPrev
, UENT nCmdShow}
{
m_hInst whinst:

m7fi1nstPrev =hInstPrev:

m_nCmdShow =nCmdShow:

mwhWnd =NULL:
m_fEXE =FALSE;

m_pIPersist =NULLL
m_f1nitialized:FALSE;
return;

J

(continued)

Page 163 05331

Page 164 of 221

IN S] D E CDL E 2
____________________fi__

Listing 4-2. continued

CAppVars::~CAppVars(void)
{

if (NULL!=m_pIPersist}
m_pIPersist->Relea5e():

if (Iswindow(m¥hwnd)}

DestroyWindow(m_hWnd);

1f (m_fInit1a1ized)

CoUninitialize():

return;
}

BOOL CAppVars::FInit(v01dJ
{

HNDCLASS we;
SWORD deer;

deer=CoBu13dVersion();

if (rmm!=HIwORD(deer))

reture FALSE;

if (FAILED(COIn1t1a]ize(NULL))}
return FALSE:

m_fInit1aiiZEd=TRUE;

1f (!m_hinstPrev)

{

wc.sty1e = CS_HREDRAH : CSWVREDRAH;
wc.1panndProc = ObjectUSEFWndProc;
wc.cbc1s€xtra : 8;

wc.candExtra = CBNNDEXTRA;
wc.hInstance = m_hInst;

wc.h1con r Loadécon(m_hlnst, "Icon"):

wc.hCurser = LoadCursor{NULL. IDCHARRON);
{HBRUSH)(CULOR_WINDGN + 1}:

MAKEINTRESDURCE{IDR_MENU):
"OBJUSEWE

wc.herackground

wc.1pszHenuName

wc.1pszC1assName

FE

if (lRegisterC1ass(&wc))
return FALSE:

J

m_hWHd=Createw1ndow("GBJUSER". “Koa1a Component Object Demo"
. WS_OVERLAPPEDWINDOW, 35. 35, 358, 258, NULL. NULL
. m_h1nst. this):

(continued)

‘46 Page 164 of 221

Page 165 of 221

F 0 U R: Component Objects

Listing 4-2. continued

1f (NULL==m_hwnd}
return FALSE:

Showwindow(m_hwnd. m_nCmdShow):

Updatewindowtmmhwnd):

CheckMenuItemtGetMenuthhNnd), IDMWOB-JECTUSEDLL. MF_CHECKED):

CheckMenuItethetMenu(m_hw'nd). IDM_OBJECTUSEEXE. MF_UNCHE€KED):

return TRUE:

}

OBJUSER’s only interesting output is a message box that shows the
CLSID retrieved from the object when you make a cail to IPersisthetClmsID.
Otherwise, you should step through this program in a debugger to really un-
derstand what is happening. In any case, the first two items on the Koala Ob-
ject menu control whether you use the object implemented in an application
or in a DLL. Either way, the rest of the functions remain the same. You can
instantiate objects in one of two Ways: You can use either CoCreateInstonce or
CchtClassObject and IClassFactory.:Createlnstance; you can also call the object’s
Release function and generate a call to IPersist::GetClassTD, which displays the
objeCt’s CLSID as a string in a message box. What a hot user interface!

Note that to run OBjUSER, you must have both compiled versions of the

Koala object: DKOALADLL (CHAP04\DKOALA) and EKOALAEXE
(CHAPU4\EKOALA). After you run MAKEALLBAT for this chapter, both
files will be in the BUILD directory on your disk. You must then let the Com-

ponent Object library know where they are located by merging the CHAPO‘R
CHAP04.REG file2 with your current Registration Database using the
Windows 3.1 RegEdit program. This will create entries for CLSID_Koala indi=
eating where DKOALADLL and EKOALAEXE are located. This is one of
the powerful features of such registration: The object user is isolated from the
need to locate the module that implements the object. The Registration Data—
base essentially maps the CLSID to the path of the appropriate DLL or EXE.

For OBJUSER and any Other component user, the following three steps
instantiate and manage a component object. (Note that OBJUSER also
performs the four steps outlined in the earlier section “The New Application
for Windows Objects” because it’s an EXE and defines a task.)

2. Note that this registration file does not contain full pathnames. Normally, all path entries in the

Registration Database should contain full pathnames to modules. However, because there are so
many modules to deal with in this book and because you might have installed them anywhere on
your machine, the REG files given here do not include pathnames. That is why I recommended
in Chapter 2 that you add the BUILD directory in the sample code to your PATH.

147

Page 165 of221

Page 166 of 221
I!

IN 8 ID E ()L E 2

1. Use #include <mz'tgm'd.h> in one source file of the compilation after

including COMPOBJH to create a code segment containing
CLSIDs and IIDs.

2. Create an object based on a CLSID using one of two routes:

El If you need only one object, call CoCreateInstance with the CLSID
and the IID of the interface you want on the object.

D If you need more than one object, call CoGetClassObjeet to obtain a
class factory (an IClassFactary pointer) for the CLSID, and call

IClassthetory::Createlnstanee as often as you want with the IID of

the interface you want on the object. Call ICIassFaetory::Release

when you have finished.

3. Use the object through the interface pointer, call Release through

that pointer when finished, and call CaFreeUnusedLibmries.

The first step affects only your build environment and compilation, but

it does not really matter in programming. The second step is the real meat of
our discussion; it shows exactly how to instantiate a component object. The

third step deals with how you manage and free the object through your inter-

face pointer.

#include <initguid.h> and Precompiled Headers

148

Anything that ever references any GUID, be it a CLSID or an IID, must in-
clude the file INITGUIDH once, and only once, in the entire compilation of

your module. This includes all component users and all objects (component
objects or not) and means that you should use #include <initguid.h> in one,
and only one, file ofyour application after including COMPOBJH. Including
INITGUIDH ensures that all your GUIDs are defined and that they end up

in a discardable code segment instead of in your data segment, which is

preferred because defined GUIDs are always constant. INITGUIDH also
allows you to use the DEFINE_GUID or DEFINE_OLEGUID macro for de-

fining your own IDs as shown in the BOOKGUID.H file in the INC directory.
Ifyou typically use a central include file for all files in your project, wrap

an #zfdefstatement around the #:include. The samples in this book have such a
statement in the shared BOOKGUID.H file in the INC directory:

#1fdef INITGUIDS
#include <initguid.h>
#endif

Page 166 of 221

_¥

Page 167 of 221

F 0 U Fl : Component Objects
-._.——l—-————_—‘——_—_————‘

Only one file in each sample project uses #define INITGUIDS. Note that there

is a similar symbol, INITGUID, used in COMPOB].H for similar purposes.

However, you cannot use this symbol itself because COMPOBJ.H will not later

pull in another necessary include file (COGUIDH) —that is, you will not be
able to compile.

Including INITGUIDH only once is a trick when you are using precorn-

piled headers, but you will appreciate it when we start including the lengthy

OLE 2 header files. Create the precompiled header in a file that does not in-

clude INITGUID.H-—-the samples using precompilation all use the file PRE-

COMPCPP, which contains only one #z'nclude statement. You can then use

the precompiled header from this step to compile with all files except the one

in which you want to include INITGUIDH. You should compile that single

file without using the precompiled header to pull in the extra file.

lnstantiate a Component Object

The Component Object library provides two fundamental object creation

functions: CoCreateImmnce and CoGetClassObject combined with IClasanc-

toryxCreateInstance Which functions you use depends on how many objects

you need at a given time.

N OT E: Compound Document container applications do not directly use

the CoCreateInstance or CoGetClassObject function to create compound docu—

ment objects. Instead, they use functions such as OJeCreate that internally use

CoCreateImtance, as discussed in Chapter 9. If you plan to implement Con—

tainers, you still should understand how compound document objects are

created through these mechanisms.

To create a single object given a CLSID, use CoCreateInstance, which

internally uses CoGetClossObject, as described a little later. The following

code demonstrates this call and is adapted from OBJUSER, modifying the

symbols and their locations for ease of explanation:

HRESULT hr;
DNORD dwClsCtx:

LPPERSIST pIPersist;
LPUNKNOWN pUnkOuter=NULL;

l/fEXE controls where the object lives based on a menu selection.
dwClsCtx:(fEXE) ? CLSCTX_LOCAL_SERVER : CLSCTK,INPROC_SERVER;

CoCreateInstance(CLSID_Koala, pUnkOuter, dwClsCtx

. IID,IPersist. (LPLPVOID)&pIPersist);

149

Page 167 of 221

Page 168 of 221
ii

INSIDE OLE2
——-——-—__—_——_________

First note the naming of pointers to interfaces, as shown with LPPERSIST

and LPUNKNOWN. OLE 2 follows a convention in which a far pointer to
an interface of type Unreiface FAR ‘* is typed as LPINTERFACE—that is, the

interface name sans I is appended in all caps to an LP. Thus LPUNKNOWN

is an IUnknown FAR * and LPPERSIST is an [Persist FAR *. In addition, note

that LPLPVOID is defined in BOOKGUIDH as LPVOIDFAR ‘E LPLPVOID is

simply a more convenient shorthand thatI use in the code in this book.

CoCreateInsmnce takes five parameters, the names of which vary with the

object class and interfaces you are using in your own implementation. Those
shown here are similar to those in the OBjUSER program:

Parameter Meaning

CLSID_ Koala REFIID: A reference (a real CH reference) to the class identifier

of the object you want to create. In this example, we are creating
a Koala object implemented in the later section “Implementing a
Component Object and Server.” Note that in C, because there is

no concept of a reference, you must precede this value with the
{9’ operator, thus: CU’CLSID_ Koala.

pUnkOuter LPUNKNOWN: A pointer to the controlling unknown if
the object is being created as part of an aggregate. See the
section “Object Reusability” later in this chapter for more
information.

dwClsCtx DWORD: Flags indicating the context in which the object
is allowed to run, which can be any combination of CLSCTX—
_LOCAL_SERVER (object in EXE), CLSCTXJNPROC—
_SERVER (object in DLL), or CLSCTXJNPROC_HANDLER

(object handler DLL). OBJUSER chooses to run either a DLL-

based or an EXE—based object depending on a menu option
stored in the fixe variable.

IID- [Persist REFIID: A reference to the interface identifier you want to
obtain for this object. If the object does not support this inter-
face, CoCreateImtance will fail. Note that, as with the class identi-

fier, C programs must again prepend the C9” operator to an IID.

C‘J’plPersist LPVOID FAR * (or LPLPVOID): A pointer to the location
in which CoCreateInstame is to store the interface pointer on
return. If CaCreateInstai/zce fails, the contents of this variable will

be set to NULL. Otherwise, CoCreateImtame will also call AddRef
through the pointer before returning.

Note that when more than one CLSCTX, . .. flag is specified, the librar~
ies will attempt to load them in the order CLSCTX_INPROC_SERVER,

CLSCTX_INPROC_HANDLER, and then CLSCTX_LOCAL_SERVER;

150 Page 168 Of221

Page 169 of 221

F O U R : Component Objects

f_________———~—-

that is, the libraries always look for a DLL first (for better performance), try—

ing another EXE only as a last resort.
CoCreateImtame internally executes a three-step process to create the

new object, which can be written in pseudocode as follows:
BEGIN

Obtain a class factory (IClassFactory) for the desired class.
Call IClassFactory::Createlnstance to create the object.
Call IClassFactory::Re1ease.

END

The first step, obtaining a class factory (also called a class object), is the exact
purpose of the other relevant API function, CoGetClassObject. A class factory
is an object that implements the IGlassFactory interface, as defined in
COMPOBJH:

DECLARE-INTERFACE,(IClassFactory, IUnknown}
{

[IUnknown methods included]

//IClassFactory methods

STDMETHOD(Createlnstance) {THIS_ IUnknown FAR* pUnkOuter, REFIID riid
. LPVOID FAR * pvabject) PURE:

STDMETHOD(LockServer} (THIS_ BOOL fLock) PURE:
};

For cases in which you want to create only one object of this class, C0-
Createfnsmnce suffices. However, if you want to create more than one object at

a time, call CoGetClassObject to retrieve a class factory for the class, call
IClassFactory:Createlnstame as many times as necessary, and call IClassFac-
tory:.‘Rel€ase when you have finished. The following code shows an implemen-
tation equivalent to the previous code but uses CoGetClassObject instead:
HRESULT hr;

DWORD dwClsCtx;

LPPERSIST pIPersist;

LPUNKNOWN pUnkOuter=NULL;
LPCLASSFACTORY p10lassFactory;

dwClsCtx=(fEXE) ? CLSCTXJLOCAL_SERVER
: CLSCTX,INPROC_SERVER:

hr=CoGetClassObject(CLSID_Koala, dwClsCtx, NULL
IID_lClassFactory. (LPLPVOID)&pIClassFactory);

if (SUCCEEDED(hr))
(continued)

151

Page 169 of 221

Page 170 of 221

a
IN SI D E C)L E 2

{

//Create the Koala by asking for IID_IPersist

pIClassFactory->Create1nstance(pUnkOuter
. IID_IPersist, (LPLPVOED)&DIPersist);

IIWe've finished with the class factory. so release it.

pIClassFactory->Reiease():
}

This code is almost the exact implementation of CoCreateInstance inside the

component object library: The parameters you pass to CoCreateImtance are

simply passed to CoGetClassObject and ICEassFactory.-:Creatdnstance. The extra

parameters to CoGetClassObject are a NULL (a reserved LPVOID that should

always be NULL), the interface ID you want on the class object (always

IID_ IClassFactory in OLE 2 but perhaps with more options in the future), and

a location in which to store the pointer to the class object.

Remember that because CoGetClassObject is a function that creates a new

interface pointer (reference counting rule #1 in the section “Reference

Counting” in Chapter 3), you are responsible for calling Release through that

pointer when you have finished, as shown in the preceding code.

N O T E: If you want to hold the class factory object for a longer time, you

must call [ClassFacmry::LockServer(TRUE). A reference count on a class fac-

tory does not guarantee that the server will stay in memory and that you

could use the class factory later. For these reasons, read the later section

“Provide an Unloading Mechanism” under ”Implementing a Component

Object and Server.” In short, if a class factory reference count could be

used to keep a server in memory, the server could shut down only when its
reference count reached zero. In the case of an EXE server, that reference

can reach zero only if the server is being shut down. Catch-22. You must

therefore use LockServer(TRUE) when you hold onto a class factory and

LockSemer(FALSE) after you release it. Besides, if the server is locked, retriev—

ing another class factory is cheap.

Manage the Object and Call CoFreeUnusedLibraries

What you do with an object after you have obtained an interface pointer is

entirely dependent on the object itself and is really what most of the chapters

in the book are about. You must, in any case, be absolutely sure to call Release

through that interface pointer when you have finished with the object. Other-

wise, you doom the object to live in memory for all eternity—or until the

universe collapses (power off or the jolly three-finger reset).

152 Page 170 of 221

Page 171 of 221

F 0 U R : Component Objects

_______________._____———————

Releasing the object is not the only consideration, however. When you
initially instantiate an object implemented in a DLL, COMPOBJDLL loads
that DLL into memory using the function CoLoasz'bmry. When the DLL is
no longer needed, COMPOBJDLL calls CoFreeLz'brary. Both functions map
to LoadLibmry and FreeLz‘bmry under Windows but are named differently for
portability to other platforms, such as the Apple Macintosh.

However, the Component Object library does not know when an object
in a DLL is destroyed because once it has facilitated loading and instantiating
that object, communication between the component object and the compo-
nent user is direct, completely bypassing everything in the library. Therefore,
a DLL might remain loaded in memory even when it has no objects to service.
Over time, many DLLs might be loaded and chew up valuable memory. The
Component Object library needs a cue to free those DLLs that are no longer
needed. This is very much like discardable global memory, in which memory
allocated and freed will stay in memory until discarded, even if no one is

using that memory.
For this reason, all object users should periodically call CoFree‘Unusede

braries, primarily immediately after you use Release on an object for good. In
this function, COMPOBjDLL can ask each DLL loaded in your task whether
it can be unloaded. If the DLL answers “yes,” CoFreeLibmry is called to free

the memory the DLL occupies. CaFreeUnusedLibmries does not, however,
affect other EXEs because EXEs unload themselves when they are no longer
servicing any objects. Using CoFreeUnusedLibmries is something like calling
GlobalCompact(—I), which will purge memory of all unreferenced discardable
memory segments.

N O T E: The OLE 2 implementation of CoFreeUnusedLibmries does nothing.
However, your user code should still call the function after destroying an ob—
ject so that when the function is implemented, your code will work correctly.

Implementing a Component Object and a Server
Let’s now implement a simple Koala Component Object with the IPersist
interface, where just the object itself is shown in the source code in Listing 4-3.
Koala implements the [Persist interface because that interface has standard
OLE 2—pr0vided marshaling support, meaning that we can freely place this
object in a DLL or an EXE, as we’ll actually demonstrate. In real—world use,
IPersist is never implemented alone because it always serves as a base class for
a few other interfaces.

153

Page 171 of221

Page 172 of 221

IN 8 ID E C)L E 2

——-———.——________________

KOALA.H
/

* Koaia Object DiL/EXE Chapter 4*

v Ciasses that impiement the Koaia object independent of whether
* we iive in a BLL or an EXE

t Copyright (c)1993 Microsoft Corporation, A11 Rights Reserved*/

#ifndef _KDALA_H_
#define _KOALA_H_

#inciude <windows.h>

#inciude <01e2.h> //oieZ.h has I?ersist. compobj.h doesn't

#inciude <bookguid.h>

//Type for an object-destroyed caiiback

typedef void (FAR PASCAL *LPFNDESTRGYED)(void):

//Forward class references

oiass __far CImpIPersist:

typedef ciass CImp19ersist FAR *LPIMPIPERSIST:

/*

» The Koala object is impiemented in its own class with its own

v IUnknown to support aggregation. It contains one CImpIPersist
r object that we use to impiement the externaiiy expoaed interfaces.*/

ciass __far CKoaia : pubiic IUnknown
{

//Make any contained interfaces friends
friend ciass CImpIPersist;

protected:

ULONG m_cRef: l/Dbject reference count

LPUNKNOWN mmDUnkOUter: l/Controiiing unknown
LPFNDESTROYED m_panestroy; f/Function closure ca]?

LPIMPIPERSIST m_pIPersist; //Contained interface

Listing 4-3. (continued)
Implementation of the Koala object structured to live in either a: DLL or an EXE.

‘54 Page 172 of 221

Page 173 of 221

I.—

F 0 U R : Componént Objects

Listing 4-3. continued

puh1ic:
CKoa1a(LPUNKNONN. LPFNDESTROYED):
~CKoa1a(vnid);

BUUL FIn1t(void):

l/Non-deIegating object IUnknown

STDMETHDDIMP Querylnterface(REFIID. LPLPVOID);
STDMETHODIMP_(ULONG) AddRef(v01d):

STDMETHODIMP_(ULONG) Re]ease(v01d);

}:

typedef CKana FAR *LPCKana:

/*

‘ Interface imp1ementations for the CKoa1a object.
*/

ciass ==far CImpIPersist : pub11c IPersist
{

private:
ULONG chRef;

LPCKoa1a m_prj: l/Back pointer to the object
LPUNKNOWN m_punkGuter: f/Contro113ng unknown

pub11c:

CImDIPersisttLPCKOALA. LPUNKNOHN):
~CImpIPersist(void):

l/EUnknown members that de1egate to m_pUnkOuter.

STDMETHODIMP Queryinterface(REFIID. LPLPVOID):
STDMETHODIMP*(ULONG) AddRefivoid):
STBMETHGDIMP“(ULONG) ReTease{V0id):

IIIPersist mambers

STDMETHODIMP GetGIassID(LPCLSID);
};

#endif //_KOALA_H*

(continued)

155

Page 173 of 221

Page 174 of 221

| N SI D E ClL E 2

156

Listing 4-3. continued

KOALA.CPP
Irr

~ Koaia ObJect DLL/EXE Chapter 44:

* Impiementation of the CKoaia and CImpIPersist objects that works
. in either an EXE or a DLL»

w Copyright (c)1993 Microsoft Corporation, A11 Rights Reserved

*/

#inciude "koaia.h"

CKoaia::CKoa1a(L?UNKNOwN pUnkGuter, LPFNDESTROYED panestroy)
{

mflcRef=fi:

m_pUnk0uter=pUnk0uter;

m_panestroy=pin9estroy;

//NULL any contained interfaces initiaiiy.
m_pIPersist=NULL:

return;
]

CKoaia::~CKoa1afvoid)

{
l/Free contained interfaces.

if (NULL!=m_pIPersist)
deiete m_pIPersist; ifInterface does not free itseif.

return;
}

BOOL CKoaia::F1nit(void)

{PUNKNUNN pIUnknown=(LPUN‘KuowNnhis;

if (NULL!=m_pUnkGuter)

pIUnknown=m_pUnkOuter;

//A110cate contained interfaces,

m_pIPersist=new CImpIPersist(this. pIUnknown):

(continued)

Page 174 of 221

Page 175 of 221

F O U Fl: Component Objects
____________________________________fl________.____fl__________e___________________________

Listing 4-3. continued

return (NULL!=mmpIPersist);
}

STDMETHBDIMP CKoaia::0ueryInterface(REFIID riid. LPLPVGIDppv)
{

‘ppv=NULL:

/*

- The oniy caiis for IUnknown are either in a nonaggregated
. case or when created in an aggregation, so in either case,

. aiways return our {Unknown for IID#IUnknown.
*/

if (IsEquaiIID(riid, IID_IUnknown))
*pev:(LPVOID)this:

/*

e For IPersist. we return our contained interface. For EXEs. we
4 have to return our interface for IPersistStorage as weii

- since OLE 2 doesn't support {Persist impiementations by
* themseives (assumed oniy to be a base ciass). if a user

* asked for an IPersistStorage and used it. they wouid crash--
e but this is a demo, not a reai object.
*/

if (IsEquaiIID(riid, IiD_[Persist)

:1 IsEquaiiID(riid, IID_IPersistStorage))
*ppv:(LPVOID)m_pIPersist;

f/AddRef any interface we'11 return.
if {NULL!:*ppV)

{

{(LPUNKNOWN)*ppv)—>AddRef(l:
return NOERROR;

}

return ResuitFromScode(ErNOINTERFACE);
}

STDMETHODIMP_(ULONG) CKoaia::AddRef(void)
{
return ++m_oRef;

]

SYDMETHODIMP_(ULDNG) CKoa1a::Reiease(V0id}
{

(continued)

157

Page 175 0f221

Page 176 of 221

IN SI D E O L E 2
——————._—___—__‘_

Listing 4-3. continued

ULONG cRefT;

cRefT=--m_cRef;

if (€:zm_cRef}
{
[3:

w Te?1 the housing that an object is going away so that it
* can shut down if appropriate.
*/

if (NULL!=m_panestroy)

(*m_panestroy}();

deiete this;
}

return CRefT:
]

|

CImpI?ersist::CImpIPersist(LPCKoa1a pODJ, LPUNKNOHN pUnkOuter)

{ \
m_cRef=B;

m_p0bj=prj: ‘
mapUnkOuterernKOuter;
return;
}

CImpIPersist::«CImpIPersist(v01dJ
{
return;

]

STDMETHODIMP CImpIPersist::QuerylnterfacetREFIID riid

. LPVUID FAR *ppv)
{

return mupUnkOuier~>0ueryInterfacetr11d, ppv);
}

STDMETHOQIMP_(ULDNG) CImpIPers1st::AddRef(vo1d)
[
++m_cRef;

return mapUnk0utera>AddRef():
3

(continued)

‘58 Page 176 of 221

Page 177 of 221

F O U Fl: Component Objects

_.____________.______________________________________._______________._______

Listing 4-3. continued

STDMETHQDIMPJ ULUNG) CImpIPersi st: :Rel ease(v01” d)
[
--m_cRef:

return m_pUnkGuter->Release(}:
l

STDMETHODIMP CImpIPer‘Si st::GetClaSSID(LPCLSID pCl SID)
[

*oClsID=CLSID_Kosla:
return NOERROR;

}

The Koala object is implemented to support aggregation and to be iden-
tically usable in either a DLL or an EXE server, but not Without some impact.
In addition, remember that we can call CoGetMolloc at any time to obtain ac-

cess to shared or task memory, although the implementation of Koala shown
here does not have occasion to use this feature.

To support aggregation, as we’ll see in the later section “Object
Reusability,” the object must be aware of a controlling unknown, if there is one,
that is cognizant of all interfaces supported by the aggregate object. The
object itself, implemented by using the CKoolo C++ class} implements
IUnknown but contains the interface implementation of IPersist in another C++
object named CImpIPorsist. In aggregation, the interface implementations
must always delegate all their IUnknown calls to the object that controls that
interface’s lifetime. When the object is not aggregated and when the pUnkOnr

ter passed to CKoolo::CKoalo is NULL, CKoolo passes its own IUnknown imple-
mentation to CImpIPersist instead. When the Koala object is aggregated,
CKoolo will receive a non-NULL pUnkOuter, which it passes to CImpIPersist.
In either case, the [Persist interface implementation will always delegate

IUnknown calls to a full object, performing only trivial reference counting on
the interface for debugging purposes. If this seems confusing, be patient;
we’ll see this in more detail later.

The only interesting function of ClmpIPersist is GetClnssID, which simply
returns the CLSID defined by the Koala object. However, the implementa-
tion of CKoola, the entire object, has a few more interesting features. First,
note that although we hold onto a copy of the pUnkOntor pointer, we do not
call AddRefthrough it. We do this to avoid a problem with circular reference
counts: If we did call AddRef on pUnkOnter, the outer object could not free

3. Remember that a C++ class is a convenient way to create interface function tables. CKooln is
never exposed to anything outside its DLL or EXE, period. It exposes only its IUnlcnown and
IPerststinterface function tables.

159

Page 177 of 221

Page 178 of 221

INSIDE OLE2

160

itself unless our object is freed first. But the outer object will not free our ob—

ject unless it’s freeing itself. The solution to this conundrum is to realize that

our object’s lifetime is entirely contained within the lifetime of the outer

object, so we don’t have to make the extra Addlilefcall, and at the same time
avoid the circular reference count.

Second, we supply a two-phase instantiation process for use by the class fac—

tory we provide later. The CKaala constructor initializes only variables, whereas

Flatt performs any operations that are prone to failure, so the caller can deter-

mine whether a failure did occur. Because instantiating the CIijIPersist inter-

face implementation might fail, we defer that action until anitis called.

Next, the Querylnteiface implementation in CKoala, which knows all the

interfaces implemented in this object, makes a special case for the interface called

IPersistStorage. When a user such as OBJUSER asks the DLL implementation for

an interface identified with HD, [Persist that IID comes directly into Queryfnter—

face. However, when OBJUSER asks for HDWIPersa'st and the object lives in an

EXE, that request goes through the marshaling layer in COMPOBJDLL. The

OLE 2 implementation of this marshaling does not single out IPersistand will al-

ways ask the object for IPersistStomge even ifthe user asked only for [Persist So we

also check for IPersz'stStomge here. Of course, you must avoid this in real applica—

tions because the user might actually have asked for IPersistStomge but received

only an IPersz'st. But as I pointed out earlier, IPersz'st is never useful when imple—

mented alone—it’s used here only for demonstration.

The final feature of the Koala object allows it to notify its server—either

a DLL or an EXE—when the object is destroyed in Release by calling an “ob-

ject destroyed” function in the server. This is a special technique I created to

isolate the object from any specifics about its DLL or EXE server—it’s not

part of the OLE 2 specifications. When the object is created, the class factory

passes the address of the “object destroyed" function to the object. In the

case of both DKOALA and EKOALA, the function is named (what else?)

ObjectDestroyed, and a pointer to that function is of type LPFNDESTROYED.

(See KOALAH.) When the object frees itself in its Release function, it calls

ObjectDestroyed, in which the server decrements the count of objects it’s cur-

rently servicing. If the object lives in a DLL, that DLL might be able to then

mark itself as unloadable: if the object lives in an EXE and it was the last ob-

ject, the EXE might shut down on this notification. This technique effectively

lets the server worry about unloading and shutting down, keeping the object

isolated. Of Course, this is my technique—feel free to create your own.

With the Object isolated from any concern about where it lives, we can

now concentrate on seeing how you expose that object from a DLL or an EXE,

which share these four steps to manage an object although their exact imple-

mentations of each step differ:

Page 178 0f221

Page 179 of 221

F 0 U Fl : Component Obiects

____________________.__—————-—

1. Register the CLSle and server pathnarnes for every class imple-
mented in the server in the Registration Database.

2. Implement the class factory for each object class supported by the
server. Asingle DLL or EXE server can handle any number of classes.

3. Expose the class factory to the Component Object library.

4. Provide a shutdown or an unloading mechanism when there are no

more objects or lock counts on the server.

The DLL housing of Koala, DKOALADLL is shown in Listing 4-4, and
the EXE housing, EKOALALXE, is shown in Listing 4—5. Note that the Koala
object implementation itself, shown in Listing 4-3, is identical in both the
CHAP04\DKOALA and CHAP04\EKOALA directories in the sample code.

When you run the OBJUSER program using each of these servers, you will
notice a difference in the response time of calling the object’s GetClassID.
When you are using a DLL server, the response is quick because the call goes
directly to the object implementation. When you are using an EXE server, the
response is slower because the GetClassID call must be worked through the
marshaling process.

DKOALAH
[s

* Koala Object DLL Chapter 4a:

* Definitions, classes, and prototypes for a DLL that

' provides Koaia objects to any other object user.P.“

* Copyright (o)1993 Microsoft Corporation. All Rights Reserved
*/

#i fndef _DKOALA_H_
#define _DKOALA_H#

//Get the object definitions
#inciude "koaia.h"

void FAR PASCAL ObjectDestroyed(void):

f/DKOALA.CPP

VOTE FAR PASCAL NEPtint);

f/This ciass factory object creates Koaia objects.

Listing 4-4. (continued)
The DKOA LADLL implementation to house the Koala object.

161

Page 179 of 221

Page 180 of 221

IN 81 D E C)L E 2

_____________H_________________a___

Listing 4-4. continued

ciass __far CKoaiaCiassFactory : Dubiic ICiassFactory
{

protected:

UtONG m_cRef:

pubiic:

CKoaiaCiassFactory(void):

~CKoa1aC1aesFactory(void):

//IUnknown members

STDMETHODIMP QueryInterface(REFIID, LPLPVGID):
STDMETHODIMP_(ULONG} AddRefIvo1d);
STDMETHGDIMPfi{ULONG) Reiease(v0id):

//ICiassFactory members

STDMETHODIMP Createlnstance(LPUNKNOWN, REFIID
, LPLPVOID):

STDMETHODEMP ' LockServer€BOOL):
}:

typedef CKoaiaCiassFactory FAR *LPCKoaiaCiassFactory;

#endif //_DKOALA_H_

DKOALA.CPP
/>.«

* Koala Object DLL Chapter 44:

, Example object impiemented in a DLL. This object supports
. IUnknown and IPersist interfaces; it doesn't know anything more
‘ than how to return its class ID, but it demonstrates how an
r object is presented inside a DLL.*

* Copyright (c)1993 Microsoft Corporation. A11 Rights Reserved*/

[/Do this once in the entire buiid
#define INITGUIDS

#inciude "dkoaia.h"

I/Count number of objects and number of iocks.
ULONG g_c0bj=@;
ULONG g_CLock:@:

(continued)

162 Page 180 of221

Page 181 of 221

F 0 U R : Component Objects

_____________e—___________________________e___________________.__________

Listing 4-4. continued

[LibMatn and HEP omitted from tisting]

HRESULT EXPORT FAR PASCAL 0119etC1assObject<REFCLSIo rc1std
. REFIID rtid. LPVOID FAR *ppv)
{

if (lISEquaTCLSID{rc1Sid, CLSIB=K0613))
return ResultFromScode(E_FAIL):

f/Check that we can provide the interface

it (IIsEqualIID(rttd, IID_IUnknown)
&& lIsEquaTIIBfritd, IID_IC1assFactory))
return Resu]tFromScode(E=NOINTERFACE);

JIReturn our IC1assFactery for Koata objects

*ppv:(LPVOID)new CKoalaC1assFaetory():

1f (NULL==*ppv)
return Resu]tFromScode(E;OUTOFMEMORY);

l/AddRef the object through any interface we return

((LPURKNSHN}Appv)->AddRef(};

return NOERRGR:

]

STDAPE DthanUn1oadNow(votd)

{
SCGDE so;

l/Our answer is whether there are any object or tacks

sc=LGL==gecObj && Be=g_ctock) ? SAGK : S_FALSE:
return Resu]tFromScode(sc):

}

Ir

* ObjeetDestroyed
In

' Purpose:
* Function for the Koala object to cat] when it is destroyed.
" Because we're in a DLL. we only track the number of objects here.

‘ tetting D11€anUn1oadNow take care of the rest.

(continued)

Page 181 011331

Page 182 of 221

IN 8 ID E C)L E 2_——___—_————————-—

Listing 4-4. continued

*/

void FAR PASCAL ObjectDestroyedivoid)
{

g_c0bj--;
return;

]

CKoaiaCiassFactory::CKoa1aCiassFactorytvoid)
{
m_cRefm@L:
return;

}

CKoaiaCIassFactory::~CKoa1aC]assFactory(void)
[
return:

}

STDMETHUDIMP CKoaiaCiasstactory::0ueryInterface(REFIlD riid
. LPLPVOID ppv)
{

*ppv=NULL;

{/Any interface on this object is the object pointer.
if (IsEquaiIID(riid, IID_IUnkn0wn)

:} IsEquaiIID(riid, IID_ICiassFact0ry))
*ppv=(LPVQID}thiS:

[at

* If we actuaiiy assign an interface to ppv we need to AddRef
* it because we're returning a new pointer.
*/

if (NULL1=*ppV)
{

((LPUNKNUNN)*ppv}->AddRef(J:
return NOERROR:

}

return Resu]tFromScode(E_NDINTERFACE):

}

STDMETHODIMP_(ULONG) CKoaiaCIassFactory::AddRef(void)
[
return ++m2cRef;

(continued)

154 Page 182 Of 221

Page 183 of 221

F O U R: Component Objects

It’ll]!

Listing 4-4. continued

}

STDMETHODIMP_(ULONG) CKoa1a61assFactory::Reieasetvoid)
{
ULDNG cRefT;

cResz-vmfcRef;

if (@L=:m_cRef)
deiete this;

return cRefT:
]

STDMETHODIMP CKoaiaCiassFactory::Createlnstance({PUNKNOHN pUnkDuter
, REFIIfl riid. LPVGID FAR *ppvooj)
{

LPCKoaia prj;
HRESULT hr;

*pvabj=NULL:
hr=ResuitFromScode(E_OUTOFMEMORY):

//Verify that a controlling unknown asks for IUnknown
if (NULL!=pUnkGuter && EIsEqualllfltriid, IID_IUnknown))

return ResuitFromScode(E_NDINTERFACE);

//Create the object, passing function to notify on destruction
pObjcnew CKoaia<pUnk0uter. ObjectDestroyed):

if (NULL==p0bJ)
return hr;

if (pObj->F1nit(})

hr=p0bj->Ouery1nterface(riid, DDVODJ):

l/Kiii the object if initia1 creation or FInit faiied.
if (FAILEDthr))

delete prj;
eise

g_c0bj++;

return hr;

}

STDMETHODIMP CKoaiaCiassFactory::LockServer(BODL fLock)

(continued)

165

Page 183 0f221

Page 184 of 221

IN SI D E C)L E 2

Listing 441. continued

{
if (fLock)

g_cLock++:
eise

g_cLock--;

return NGERROR:
}

EKOALAH
/ a:

* Koala Object Chapter 4x

* Definitions. ciasses. and prototypes for an appiication that

* provides Koala objects to any other object user.

3 Copyright'(c}1993 Microsoft Corporation, A11 Rights Reserved
*/

#ifndef _EKGALA_Hf

#define _EKOALA_H_

l/Get the object definitions

#inciude "koaia.h"

//EKOALA.CPP

LRESULT FAR ?ASCAL EXPORT Koa1aWndPr0c{HWNfl. UINT. NPARAM, LPARAM);

c1ass __far CAppVars
{

friend LRESULT FAR PASCAL EXPORT K0a1aHndPr0C(HWND. UINT
, WPARAM. LPARAM);

protected:
HINSTANCE mwhlnst; l/WinMain parameters
HINSTANCE m_h1nstPrev:

LPSTR m_psszdLine;
UENT minCmdShow:

HNND m_hwnd; //Main window handie

Listing 4-5. (continued)
The EKOALAEXE implementation to house the Koala object.

‘56 Page 184 of 221

Page 185 of 221

F O U Fl : Component Objects
Listing 4-5. continued

BOOL mflflnitia1ized; //Did Coln1tialize work?

LPCLASSFACTORY m_pIC1assFactory: //0ur class factory
DWORB m_dwRegC0; f/Registration key

pub1ic:

CAppVaFSfHINSTANCE, HINSTANCE, LPSTR. UINT};
~CAppVars(void);
BOOL FIn1t(VOid}:

}:

typedef CAppVars FAR LPAPPVARS:

#UEfine CBWNB£XTRA SiZeUf(LONG)

#define KOALAWL_STRUCTURE 0

void FAR PASCAL 0bjectDestroyed(void):

l/This c1ess factory object creates Koa1a objects.

c1ass __far CKoa1aC1assFactory : pub1ic 161assFactory
{

protected:
ULONG m_cRef;

pub1ic:

CKoa1aC1assFactorytv01d);

~CKOa1aC1assFactory(void);

//IUnknown members

STDMETHODIMP OueryInterface(R£F£ID. LPLPVOID):
STDMETHODIMP_(ULONG) AddRef(void):
STDMETHODIMP_(ULONG) Re)ease(v01d):

//IC1assFactory members
STDMETHODIM? Createlnstance(LPUNKNOHN. REFIID

. LPLPVOED):
STDMETHODIMP LockServer(BOOL);

]:

typedef €Koa1aC1assFactery FAR *LPCKoa1aC1assFaCtory:

#enéi f //_EKOALA_H_
(continued)

167

Page 185 0f221

Page 186 of 221

IN SI D E ()L E 2
_______________________________________v__A_______________________________fi__

168

Listing 4-5. continued

EKOALA.CPP
[4:

~ Koaia Object EXE Chapter 4r

t Object imp1emented in an app1ication. This object supports
* IUnknown and IPersist interfaces; it doesn't know anything more
* than how to return its c1ass ID, but it demonstrates how an

! object is presented inside an EXE.

* Copyright (c)1993 Microsoft Corporation. A11 Rights Reserved
we/

l/Do this once in the entire buiid

#define INETGUIDS

#inciude <oie2ver.h>
#inciude "ekoaia.h"

ffCount number of objects and number of iocks.
ULONG g_c0bj=@;
ULONG g_cLock=B;

[/Make window handie g1oba1 so that other code can cause a shutdown

HWND g_hWnd2NULL;

int ?ASCAL WinMain(HINSTANCE hInst. HINSTANCE hInstPrev

, LPSTR psszdLine. int nCmdShow)
{

MSG msg;

LPAPPVARS pAV:
int cMsgrQS;

#ifndef NIN32

//En1arge the queue as 1arge as we can starting from 96
while (lSetMessageOueue(cMsg) && {cMsg-=8)): >

#endif

pAV=new CAppVarsthInst, hlnstPrev. psszdLine, hCmdShowJ:

if (NULL==pAV)
return ~1;

if (pAVV>FIn€t())

(continued)

Page 186 0f221

Page 187 of 221

F O U H : Component Objects

F________L__.__

Listing 4-5. continued

{

white (GetMessage(&msg. NULL. 8, 9))
L

Trans?ateMessage(&msg):

DispatchMessage(&msg);

I }
I }

delete pAV:
return msg.wParam;
}

LRESULT FAR PASCAL EXPORT Koa1aWndPr0c(HWND hWnd. UINT iMsg

. NPARAM wParam, LPARAM 1Param)
{

LPAPPVARS pAV:

pAV=ELPAP9VARS)GetNindowiong(hWnd, KOALANL_STRUCTURE):

switch (iMsg)
{
case WMWNCCREATE:

pAV=(LPAPPVARS)({LONG}((LPCREATESTRUCT)1Param)
->1pCreateParams);

SetwindowLong(hwnd. KOALANLWSTRUCTURE, (LONG)pAV);
return (DefWindowProc(hWnd. iMsg, wParam, iParam));

case WM_DESTROY:

PostQuitMessagetfi):
break;

defau1t:

return (DefwindowProc(thd. iMsg, wParam. 1Param));
}

return BL;

}

1*

* ObjectDestroyed*

* 9urpose:
m ¥unctton for the Koaia object to ca11 when it gets destroyed.

He destroy the main window if the proper conditions are met for
shutdown.

:3

(cuntmued)

169

Page 187 0f221

Page 188 of 221

IN SI D E C)L E 2
-———————_________

Listing 4-5. continued

*/

void FAR PASCAL 0bjectDestroyed£v01dJ
{

g_c0bj--:

l/No more objects and no 1ocks. shut the app down.
if (B==g_c0bj && @==g-cLock && IsH1ndow{g,hNnd))

PostMessage{g_hWnd, NMWCLGSE, 6. 6L):

return;

J

CAppVars::CAppVars(HINSTANCE hInst. HINSTANCE hInstPrev
, LPSTR psszdLine, UINT nCmdShow)
{

f/InitiaWize HinMain parameter h01ders.
thInst =hInst;

m_h§nstPrev fihInstPrev;

m_psszdLine=psszdL1ne;
m_nCmdShow =nCmdShow;

m_hwnd=NULL;

m_dwRegCG:0;
m_pIC€assFactory=NULL;
m_f1nitialized=FALSE:
return:

1

CAppVars::~CAppVars(vuid)
{

f/Opposite of CoRegisterC1a550bject; c1ass factory ref is now I
if (BL!=m_dwRegCO)

CoRevokeC1assObject(mmdwRegC0);

f/This shou1d be the 1ast Re1ease, which frees the class factory.
1f (NULLi=m_pIC1ass¥actory)

m_pIC1assFactory->Re1ease{);

if (mfifinitia1ized)

CoUnin1t1a1i2e(}:

return;

}

(continued)

17° Page 188 of221

Page 189 of 221

Listing 4-5. continued

BUOL CAppVars::FInit(v0id)
{
NNDCLASS wc;
HRESULT hr;
DWORD deer;

F O U R : Component Objects

l/Fail if we've run outside CoGetC1assObject

if (15trcmp1(mwpsszdL1ne, "-Embedding"))
re

deer=

if (rm
re

if (FA
re

mmflni

turn FALSE:

CoBu11dVersion():

m1rHIHORD(deer))

turn FALSE;

iLED(CoInfit1a11ze(NULL)))
turn FALSE;

tia1ized=TRUE;

1f (lm_hInstPrev)

{
WC
we
we

WC.

WC
WC.
NC

NC
WC.

WC.

if

}

.style = CS_HREDRAN l

.lpfnwndProc = Koa1awndProc:
‘chESExtra = 0:

candExtra = CBNNDEXTRA:
.hInstance : m_hInst;
hlcon = NULL;

.hCursur = NULL:

.herackground =

1pszMenuName = NULL:
1pszC1assName "Koala";

1|

(ERegisterC1ass(&wc))
return FALSE;

CS_VREDRAH;

(HBRUSH)(COLDR_WINDUH + 1);

m_hWnd=€reateN1ndow("K0a1a", "K0a1a", WS_OVERLAPPEDHINDOH
35. 35, 358. 258, NULL, NULL. mLhInst. this);

if (NU LL==m_hWnd)
return FALSE;

g_hwnd:mwhwnd:

(contiflued)

171

Page 189 0f221

Page 190 of 221
Jl

IN S [D E C)L E 2
—-———_—_—.————________

Listing 4-5. continued

/='F

* Create our ciass factory and register it for this application
I using CoRegisterCEassObject. We are ab1e to service more than
r one object at a time so we use REGCLS_MULTIPLEUSE.
*/

m_pIC]assFactory=new CKoa1aClassFaCtory():

if (NULL==m_pICTassFactGry)
return FALSE;

leecause we ho1d on to this, we 5hou1d AddRef 1t.

m_pIC1assFactory->AddRef(J:

hr=CoRegisterC1assObject(CLSID_Koa1a

. {LPUNKNOWN)m_pICIassFactory, CLSCTX_LOCAL_SERVER

1 REGCLS_MULTIPLEUSE, &mudwRegCO):

if (FAILED(hr}J

return FALSE;

return TRUE;

}

CKoa1aC1assFactory::CKoaTaC]assFactory(v01d)
{
m_cRef=BL;
return;

}

CKoaIaC1assFactory::~CKoa1aClassFactory(void)
{
return;

1

STDMETHODIMP CKoaIaC1assFactory::QueryInterface(REFIID riid
. LPVOID FAR *ppv)
{

*ppv=NULL;

l/Any interface on this object is the object pointer.
if (IsEqua1IID(ri1d, IID_IUnknown)

:: IsEqua1IIDiri1d. IID_ICiassFactory))
*ppv={LPVOID)this:

if (NULL!=*ppv)
{

((LPUNKNDWNJ*ppv)A>AddRef():

(continued)

172 Page 190 of 221

Page 191 of 221

F O U R : Component Obiects

HE

Listing 4-5. continued

return NGERROR;

}

return Resu1tFromScode(E_NOENTERFACE):
}

STDMETHODIMP_(ULONG) CKoaIaC1assFactery::AddRef(v01d}
[
return ++m_cRef:

}

STDMETHDDIMPu(GLONG) CKoa1aC1assFactory::Re1ease(void)
{
ULONG cRefT:

cRefT=7~m_cRef;

if (6L=:mficRef)
delete this:

return cRefT;

]

STDMETHODIMP CKoa1aC1assFactory::CreateInstance(LPUNKNOWN pUnkOuter
. REFEID r11d, LPVOID FAR *ppVObj)
{
LPCKoa1a p0bj;
HRESULT hr:

*pvabj=NULL;
hr=Resu1tFromScode(E70UT0FMEMORY):

f/Verify that a contro111ng unknown asks for IUnknown

if (NULL!:pUnk0uter && !IsEqua1IID(r11d, IID_IUnknown))
return Resu]tFromScode(£_NOINTERFACE):

litreate the object, te11ing it to net1fy us when it's gone.

p0bjznew CK0a1a(pUnk0uter. GhjectDestroyed);

if (NUL ==p0bj)
{

l/Starts shutdown if no other objects

gecObj++;

ObJectDestroyed(J;
return hr;

J

(continued)

173

Page 191 0f221

Page 192 of 221

| N SI D E C)L E 2
__

Listing 4-5. continued

if (p0bj->F1nit())
hr=p0bju>DueryInterface(riid. PDVij);

g_c0bj++;

/*

* Kill the object if initial creation or FInit failed. If

* the object failed, we handle the g_cDbj increment above
a in ObjectBestroyed.
*/

if (FAILED(hr))
{

delete pODj:
ObjectDestroyedC); J/Handle shutdown cases.
}

return hr:

}

STDMETHDDIMP CKoaiaCiassFactory::LockServer(BDOL fLock)
{
if (fLock)

g_.cLock++:
else

{

g_cLock--;

l/No more objects and no locks, shut the app down,
if (@==g_c0bj && @==g_cLock && Iswindow(thWnd))

PastMessage€gmhwnd, NM_CLOSE, 9, 0L);
}

return NOERROR:
1

Register CLSIDs

Every component object class (but not all types of Windows Objects) must

have a unique CLSID associated with it in the Registration Database. The

registration entries for a simple object, such as we’re implementing here, are

few; as you create objects with more features that support linking and embed-

ding, there will be much more information to add, as described in Chapter 10.

For purposes of the sample code, the necessary entries are contained in the

file CHAP04\CHAP04.REG, which you can add to your Registration Database

by using the REC-EDIT program in Windows. Creating a REG file is the

174 Page 192 of 221

Page 193 of 221

F 0 U R ': Component Objects

preferred method of registering objects and applications because it can be
done at install time instead ofprogrammatically at run-time, which is tedious,
to say the least. The online help in the OLE 2 SDK contains more information
about storing information in the Registration Database.

The required entries fall under the CLSID key, where OLE 2 stores in-
formation about all classes under your spelled-out CLSID, as you can see in
the REGEDIT program and as shown in Figure 4-5 on the next page. OLE 2
also stores information about its standard interfaces and the code that

handles parameter marshaling under the Interface key. The following steps
describe the necessary registration for DLL—based and EXE—based objects:

1. From HKEY7CLASSE37ROOT (the root key of the entire Registrar

tion Database), create the entry CLSIDVclass ID} =<name>, where
[c1055 ID} is the value of your CLSID spelled out and <name> is a
human-readable string for your object. The Koala object has the
class ID string {00021102-0000»0000-CO00-000000000046} which is

. not something many, except for a few odd individuals, consider
I readable. The <name> of the Koala object is “Koala Object

[Chapter 4.”

2. Create an entry under the CLSID entry in step 1 to point to the
object code:

El For DLL objects, register InprocServer=<path to DLL>.

G For EXE objects, register LocalServer=<path to EXE>.

'3 For DLL object handlers, register InprocHandler=<path i0 DLL>.
Note that these entries should aIWays contains full pathnames

so that you do not depend on your DLLs or EXEs being on the MS-
DOS path. Your application’s install program should update the
paths when it knows where the installation occurred.‘k

3-. (Optional) If you want to allow a User to look up your CLSID based
on a text string, make an entry under HKEY_CLASSES_ROOT of
<ProgID>=<name>, where <Pr0gID> is a short name without spaces or
punctuation, and <name> is the human-readable name, identical to
that in step 1, of your object. Under this key, create another entry,
CLSID= {class ID} , in which { class ID} is also the same as in step 1. In

4. The sample code with this book does, however, break this rule because the installation program
on the companion disks is not capable of modifying all the .REG files in each CHAPxx directory
to contain a full pathname. Instead, each DLL and EXE is registered without a full pathname
and therefore depends on them being in the path.

175

Page 193 of 221

Page 194 of 221

INSIDE OLE2
'——_—-—'—————'———————n—.___

this example, <ProgID> is Koala and <name> is “Koala Object Chap-
ter 4.” Note that you can also create a symmetric key under the

object’s CLSID in the form of Prong = <PRogID>.

Entries of the type created in step 3 will be required for Compound

Document objects that should appear in the Insert Object dialog box inside a

container application. But that is a subject for a later chapter. Without those

entries from steps 1 and 2, however, the CoGetClassObjectAPI function (which

CoCreateInstance uses, remember) will not be able to locate your object imple-

mentation. Note also that the same DLL or EXE can serve multiple CLSIDs,

and in such cases you must make a similar entry under each CLSID you sup-
port with the InprocServer and LocalServer keys, although they can all contain

the same path to the same server.

£08 Edit fiealch flelp
Full Palh: \CLSID\[00021 l02-0000-0000-C0004100000000045}
Value Koala Uhiecl Chaplel 4
\

Polyline-I = Palyline Dbiecl Chaplet 4
'— CLSID : {00021l030000—000U-CODD—OUOBUUODDDIS)

L- Kuala = Koala Dbiecl Chapter I
| L CLSID :‘00021102—0000 0000 CHOU-000000000045}
i— CLSID

I {000211030000-0000c00000000000004sl= Fnlyline 0mm Ehaplel 4
'— lnptucS BlVel= f: \nleZbuok\chapD4\pulyline\polyfine_ dll

' . m000:1.:.usl himLil lllqmfl l‘llapiet 4
- .\oleZhnuk\nhapDMdkoalaWkoaia. dll

'- LucalSelvar= l:\nlE.-2I]unk\chap04\akuala\ekoala axe
[0000031S-UDOD-DOBU—L‘DDU000080000015) = Dev-Ice Independent Bitmap
'- lnpmcSelver = nle2_dll

' (0000031570000700007c0007000000000045! = Helalile
L lnpmcSen-et : o|82.dll
{8000031441000 flflflfl-Eflflfl-Dflflflflflflflflfl45l = P5510"!
L lnpmcSetveu a ole2plox.d]l

. {0000031 3-0000-0000-CUOD-UDDUOUI}00048} = PSEnumemtms

Figure 4-5.

The populated CLSID section of the Registration Database, showing the entriesfar Koala.

Implement the Glass Factory

Telling the Component Object library where your object code lives is one

thing; you still need to provide for creating objects once that code has been

loaded, so the next step is to create a class factory that implements the

ICtassFactory interface. After we implement this class factory, we can provide

the code to expose it outside the server. This is somewhat like implementing a

window procedure in order to call RegisterClass because you have to store a

pointer to your window procedure in the WNDCLASS before you call

RegisterCatt. Both sample implementations, DLL and EXE, use a C++ class of

CKoaiaCtassFactory for this purpose, and the two are almost identical. The

176

Page 194 of 221

Page 195 of 221

F 0 U R ': Component Objects

only differences between the DLL and EXE implementations of
CKaalaClassFactory have to do with the unloading mechanisms, which we’ll
discuss later. For now, let‘s concentrate on those identical parts that instanti-
ate a CKoala object.

All implementations of IClas‘sfihctary.'.'CreateInstance are identical, and
each implementation contains three major points of interest. First, the first pa-
rameter to Createfnstame is pUnkOuter, which is the controlling unknown for
the object we’ve been asked to create, if our new object is becoming part of an
aggregate. When we instantiate the object using new CKaale, we pass this
pUnkOuter down to the object so that it can delegate properly. (Again, see “Ob-
ject Reusability” for more details.) When an object is aggregated, the outer
object must ask for an IUnknown interface on the new object. To enforce this
rule, we check that HDJIUnknown is asked for when pUnkOuter is not NULL.

Next, in addition to passing pUnkOuter to new CKoala, we also pass a

pointer to an independent function named ObjectDestroyed. When the final
call to Release for the Koala object is about to free the object, it will call this
function. This allows the object to isolate itself from the nature of its server

bonsing (DLL or EXE) and allow that housing to act appropriately on the
event. You can see again in the CKoala.-:Release function in Listing 4-?) how
and when this function is called. We’ll examine what ObjectDestroyed does in

both servers in the later section “Provide an Unloading Mechanism.”

Finally, if the object is successfully instantiated, We still need to initialize
it through an internal anit implemented in the CKoala object. FIm't is not a
standard feature of OLE ‘2 objects and is used here to support a convenient
two—phase creation model common in C++ coding. FIm't performs all opera-
tions that might fail and is thus able to communicate success or failure back to
the class factory during instantiation. If this second initialization step suc—
ceeds, Createlnsmnce asks the object’s Querylnterface to return the appropriate
interface pointer, which has the convenient effect of calling that pointer’s
AddRef as required. Remember that Createlnstame, as a function returning a
new pointer, must return the pointer with a reference count on the caller’s
behalf. Furthermore, Createfnstance increments a global object count, which
the server can use to determine unloading conditions. If the initialization

fails, Createlmtance deletes the object and returns an out-of—memory error to
the caller.

[ClassFactory also has a member named LockServer, which either incre-
ments or decrements a lock count on the DLL or EXE in which the class fac—

tory lives. LockServer provides a method through which a user can keep a DLL
or an EXE in memory even if that server is not servicing any objects and has
no outstanding reference counts on its class factory. This allows a user to

l 177Page 195 0f221

Page 196 of 221

IN 8 ID E C)L E 2
__.____fi___

optimize loading and reloading of servers, keeping the code in memory Even

when it’s not immediately necessary. Such optimizations can greatly increase;

performance when a user deals with a very large server EXE or DLL.

The implementation of LockServerin the DLL and EXE versions differs

slightly, again to handle the differences in unloading mechanisms (although
we could isolate these differences as well). Their commonality is to either in-

crement or decrement a global lock counter, which is used in different ways by
the server’s unloading mechanism.

Expose the Class Factory

178

The major difference between DLL and EXE servers is in how they expose
their class factories, primarily because an EXE defines a task, whereas a DLL

doesn’t. Your class factory is an object, and the Component Object library
needs to obtain its IClassFactory pointer. It does so either by calling a function

that you export from an object DLL (that is, an API function that you imple-

ment) or by requiring you to call a Component Object library API function

from your own code in an EXE. In either case, an API function is used to get

the class factory pointer from your code to OLE 2’s code.

DLL Server

The DLL exposure mechanism is the simplest, so let’s start there. Every DLL

server must export a function named DllGetClaSSObject with the following
form:

HRESULT _export FAR PASCAL DllGetClassObJecttREFCLSID rclsid.

REFIID riid. LPVOID FAR *ppv):

The _ export is a matter of convenience-mi)?your compiler does not sup-

port _exj)ort, you can still list the function in the EXPORTS section of your

DEF file. In addition, the macro STDAPI defined in COMPOB].H expands to

HRESULT_ export FAR PASCAL ifyou want to use it. In the sample code, you

will see EXPORTinstead of import. EXPORTis a macro in BOOK1632.H (in

the INC directory) that compiles to _exp0rt for Windows 8.1 and to nothing
for Windows NT.

When a user calls CoCreateInsmnce or CoGetClassObject and passes

CLSCTX_INPROC_SERVER, the Component Object library will look in the

Registration Database for the InpmcServer for the given CLSID, call CoLoad-

Library to get that server into memory, and then call GetProaAddress looking

for DllGetClaSSObject The Component Object library then calls DllGetClass—

Objectwith the CLSID and IID requested by the component user. Your export

Page 196 of 221

Page 197 of 221

F O U Fl: Component Objects

then creates the appropriate class factory for the CLSID and returns the ap-
propriate interface pointer for IID, which is usually IClassFactory. By calling
this function in your DLL, the Component Object library obtains a pointer to
your class factory object; essentially, DllGetClassObject is an API function you
implement for OLE 2. This is exactly like exporting the WEP function from a
DLL so that Windows can locate and call it.

N O T E: Because DllGetClassObject is passed a CLSID, a single DLL can pro—
vide different class factories for any number of different classes-that is, a
single module can be the server for any number of object types. OLE2.DLL is
an example of such a server; it provides most of the internally used object
classes of OLE 2 from one DLL.

All implementations of DllGetClassObject should validate that it can sup-
port the requested CLSID as well as the requested interface for the class fac—
tory, which can be either IUnknown or IClassFactory. If both checks succeed, it
then instantiates the class factory object (in this case, using CKoalaClass-
Factory). Remember that, as a function that creates a new interface pointer to
an object, DllGetClassObject must use AddRefon the new object before return-
ing, as shown in the following code:

if (lIsEqualCLSIDtrclsid, CLSID_Koala))
return ResuitFromScode(CO_E_CLASSNOTREG):

//Check that we can provide the interface
if (lIsEqualIID(riid. IID_IUnknown)

&& !IsEquaiIID(riid. IID_IClassFactory))
return ResultFromScode(EfNOINTERFACE);

l/Return our IClassFactory for Koala objects
*ppv=(LPVGID)new CKoalaClassFactoryt}:

l/Don't forget to AddRef the object through any interface we return
((LPUNKNOWN)*ppv)->AddRef();

Notice that this code, like all the sample code described in this book,
creates all objects with an initial reference count of zero, thereby requiring a
call to AddRef before returning an interface pointer to that object. This is

- simply the design approach taken in this book to reinforce the idea that a new
interface pointer that you return to an external object user must have AddRej”
called through it so that the user can simply call Release when finished with
the object to free it. You could, of course, set the reference count in your own
objects to 1 in their constructors and avoid the explicit AddRef call shown
here.

179

Page 197 of 221

Page 198 of 221

INSIDE OLE2
—-——-~-——-—-—__——_.________

180

EXE Server

Exposing a class factory from an EXE is somewhat different because an EXE

has a WinMam, a message loop, and awindow that define its life time. The real

difference between an EXE and a DLL in interacting with a Component Ob-

ject library is that, with a EXE, instead of having the library call an exported
function such as DllGetClassObject, you pass your class factory object (that is,

an ICJassFactory pointer) to the CoRegisterClassObjeci AP] function, but only
under the appropriate circumstances.

The Component Object library informs an EXE that it is being used to
service objects through the command~line flag —Embeddmg (which is left over

from OLE 1). This flag is simply appended to the path entry for this local

server in the Registration Database, so if you register your EXE with flags
yourself, look for this at the end of the command line. Checking this flag is
the first priority in EKOALA’S initialization. If this flag is not present, the end
user has attempted to run the application as a stand-alone from the shell. Be-

cause this application doesn’t live for any purpose other than to service ob-

jects, it fails to load if «Embeddingis not present.

The next few steps in CAppVars:.FInit are the same as those required of
any OLE 2 application: They use CoBuildVersion and Colnitialize because we

are using Component Object library API functions. After such initialization,

we create a window for this task, but the window remains hidden; in all cases

in which Embedding is on the command line, the server window should re—

main hidden until explicitly asked to show itself. For this demonstration, the

EKOALA program has no need to ever show its window because it has no user
interface.

If we get past the initialization stage, we must then create the class

factory object and pass it to CoRegz'sterClassObject in the same way we are
accustomed to calling the Windows API function RegisterClcm. With Register-
Class, you create a WNDCLASS structure, fill in the fit)anndPr0c: field with a

pointer to your window’s message procedure, and pass a pointer to that

WNDCLASS to RegisterClass, Your window procedure is not actually called

until someone (you or a user) creates a window of your registered class. With

CoRegisterClassObject, you create a class factory object with an IClassFactory
interface and pass a pointer to that interface to CoRegz'sterClassObject, but the
interface functions such as Createfnstance are not called until someone creates

a component object of your class.5

5. In reality, calling CoRPgisterClassObject immediately generates a number ofcalls to your [Class—
Factory. Addftefbecause the Component Object library is holding onto your JClassFactory
pointer. Thus your object is called before it ever creates an object, unlike your window
procedure,

Page 198 0f221

Page 199 of 221

F 0 U R : Component Objects

/____________’_._————»————

Creating the class factory is simply a matter of allocating the object’s
data structure and function table, which is conveniently handled in C++ with
the new operator, as follows:

//Return our IClassFactory for Koala objects

m_pIClassFactory=new CKoalaClassFactory():

if (NULL=:mdeClassFactory)
return FALSE;

l/Because we hold on to this, we should AddRef it

m_pIClassFactory->AddRef();

The additional AddRef ensures that the application controls the lifetime of
the class factory because the CKoalaClasthctory constructor initializes its ref-
erence count to zero. Because the application makes the first AddRef, it will
have to make the last Release, which allows the class factory to destroy itself.

After we have created the class factory, we must inform the Component

Object library about it by using CoRegisterCiassObject because we have yet to
yield from this task in our message loop. The Component Object library does
not have a chance to call us, as happens in a DLL.

hr:CoRegi sterCl assDbjecuCLSIDhKoal a. (LPUNKNONN)m_pICl assFactory
. CLSCTX_LOCAL_SERVER, REGCLSAMULTIPLEUSE, &m_dwRegC0):

if {FAILED(hr))

return FALSE; l/Registration failed.

[Class factory successfully registered]

CoRegz'sterClassObje-ct takes the CLSID of the class factory we’re providing, a
pointer to the class factory, the context in which we’re running (CLSCTX—
_LOCAL_SERVER), a flag indicating how this class factory can be used, and
a pointer to a DWORD in which CoRegisterClassObjecr returns a registration
key that the object will need later, during shutdown.

NOTE: If your EXE is the server for multiple classes, you must call Cr)—
RegisterClassObjgct for each supported CLSID, just as you would call Register-
Class for each window class you support. The Component Object library will
launch your object when any user requests any CLSID you support, but it can-
not tell you through Wind/lam which CLSID that was. So you must register a
class factory for each CLSID you placed in the Registration Database.

The fourth parameter to CoRegisterClassObject specifies how many ob—
jects can be created using this class factory: REGCLSCSINGLEUSE or

181

Page 199 of 221

Page 200 of 221

a
INSIDE OLE2

————-——______________________

REGCLS_MULTIPLEUSE. Ifyou specify single use, OLE will launch another
instance of your application each time a user calls CoGetClassObject. If you
specify multiple use, one instance of the application can service any number
of objects. When you register a class with REGCLS_MULTIPLEUSE and

CLSCTX_LOCAL_SERVER, the Component Object library also registers
the class as CLSCTX_INPROC_SERVER. If you need to separately control
whether the class factory is registered for local servers and in-process servers,
use the flag REGCLS_MULTI_SEPARATE, which is available in OLE ver-
sion 2.01 and later but not in the first release of OLE 2, version 2.00.

To demonstrate single-use vs. multi—use servers, run two instances of the

OBJUSER program, choose Use EXE Object from the Koala Object menu of
each instance, and use one of the Create commands from the menu. Now

watch the modules that load and unload by using tools such as Heapwalker
(in the Windows SDK) or WPS (in the OLE 2 SDK). Because EKOALA regis-
ters itself as multiple use, only one instance will be loaded to service both ob-

jects. Now change EKOALA so that it registers as single use and run two
OBJUSERs again, using the same commands. This time two instances of

EKOALA will run, each servicing only one object.
Also note that CoRegisterClassObject is not a function that can be called

only from within an EXE. For all OLE cares, a DLL can call this function if it

wants to expose a class factory outside of its implementation of DllGet-

ClassObject or in lieu of DZlGetClassObject altogether. The use flags should al-
ways be REGCLS,MULTIPLEUSE in such situations.

Provide an Unloading Mechanism

182

Because the mechanisms we use to expose a class factory from the two kinds
of servers differ, the mechanisms for indicating when the server is no longer
needed also differ. An unloading mechanism is not a consideration for nor-

mal Windows applications because they are almost always controlled by the
user. OLE 2 allows DLLs and EXEs that serve objects to becontrolled by an-
other piece ofcomponent user code. Because the end user doesn’t close appli-
cations, you must use a programmatic technique to accomplish the same end.

The bottom line is that a server is no longer needed when there are no

lock counts from ICIassFactory::LockServer and there are no objects currently
being serviced. However, because the EXE server has a window, it must

destroy its main window, cause a call to PostQuirMessage, exit the message loop,
and quit the application. DLLs have no idea of how to “quit” (that is, there is
no message loop to exit), so they mark themselves as “unloadable.”

Page 200 of 221

Page 201 of 221

F 0 U R : Component Obiects

{I’M—f—

DLL Server

Again, let’s start with the DLL because in this case the unload mechanism is
trivial. As we have seen, the DLL server increments and decrements a global‘5
lock count in ICIassFactornyockServer and increments the object count in
[ClassFactory::Createlnsmnsa When any Koala object is destroyed, we want to
decrement the object count, a process that is handled in the ObjectDestroyed
function we provided to the Koala object:

void FAR PASCAL ObjectDestroyed(void)
[

g_c0bj*-:
return:

}

The DLL never tells anyone to unload it; instead, the Component Object
Model will periodically ask it “Can you unload now?" by calling an export
DllCanUnloadNow using the following form:

STDAPI DllCanUnloadNow(v0id)
I
SCODE sc:

//0ur anSwer is whether there are any object or locks

sc=(BL:=ggeObj && e==g=ctockJ ? S_0K : S_FALSE;
return ResultFromScode(sc);
}

The implementation shown here will answer “yes” when both object and lock
counts are zero and “no” otherwise. If this function anSWers “yes,” the librar-

ies will internally call CoFreeLibmry to reverse the call the function made to
CoLoadLibmry from within CoGetClassObject.

N O T E: The function that should call DllCanUnloadNow is CoFréeUnusedLi-
braries, which, as We’ve seen, is called periodically by an object user. However,
the OLE 2 implementation of CoFreeUausedLibmries does nothing, so you will
never see a call to DllCanUnloadNaw. However, CoFreeUnusedLibmries will be

implemented in the near future, so implement DllCanUnloadNow as if it were
always called anyway.

6. I confess! I used global variablesl I normaliy try hard to avoid any use of global variables, as ”you
probably do In this case, however, having a few gimbals simplified both DLL and EXE imple
mentation. You might also see me declare a global instance handle when appropriate because
instance handles are really applicationrwide and might be needed deep in a long chain of func-
tion calls. In any case, global variables in this and other sample applications are prefixed with
g, for clear identification. Please forgive my transgressions!

183

Page 201 of 221

Page 202 of 221

 l N SI D E O L E 2

—-—————-——______________________

Also note that there has been no mention of class factory referenCe
counts in any of this discussion because such reference counts are not used to

keep the DLL in memory. Object user code wanting to hold a class factory
must also call LockServer (as described earlier, in “Implementing a Compo-
nent Object and Server”). Although a reference count could easily prevent a
DLL from unloading, it’s impossible to use this technique in an EXE, as the
following section illustrates.

Congratulations! You’re a proud parent! After implementing DllCcm-
UnloadNow, you now have a complete DLL object server into which you can
put more and more complex objects and interfaces, continuing to use the
same mechanisms. The framework for DLL-based objects developed here will
be used for more complex DLL objects later in this book. I certainly hope you
will be able to use it for incredible objects of your OWn.

EXE Server

Instead of being asked when your object can be unloaded, as in the DLL case,
an EXE server must initiate shutdown itself when it detects the following con-
ditions: No Objects are being serviced, and there is a zero lock count. This

detection complicates use of EXE servers when we deal with compound docu-
ments because we throw in another condition regarding end-user control.
(See the section titled “Call Initialization Functions at Startup and Shut—
down” in Chapter 10.) When these two conditions are met, we need to start
shutdown by posting a WM_CLOSE message to the main window. The two
places where we must add a check are in [ClassFactornyockServer and in the
ObjectDestmyed function, which the Koala object will call after it’s freed:7

STDMETHODIMP CKoalaClassFactory::LockServertBOOL fLock)
I

if (fLock)

g_cLock++;
else

{

g_cL0ck--:

//No more objects and no locks. shut the app down.
if t9==g_c0bj && 6:=g_cLock && Iswindow(g_hwnd))

PostMessage(g_hWnd. WM_CLOSE. B, at);
}

(continued)

7. Another way to implement LockServer(FA L513) is to artificially increment the object count
(g_cObj++) and call ObjectDestroyed, which decrements that artificial count and starts shutdown
as appropriate. This approach centralizes the closure conditions in ObjectDestrayed and is used
in samples in later chapters.

‘84 Page 202 of 221

Page 203 of 221

F 0 U H : Component Objects

return NOERROR:

}

void FAR PASCAL ObjectDestroyed(void)
{

9430133":

//No more objects and no locks, shut the app down.
if (6::guc0bj && @==g_cLock && Iswindow(g_hWnd))

PostMessage(g_hWnd, wM_CLOSE. 0. 8L);

return;

l

To facilitate message posting, I sinned again in EKOALA by storing its win-
dow handle as a global variable. This slight bit of what you might consider
“cheating” works cleanly and easily without your having to pass the window
handle around. Such a global variable guarantees that any code in this appli-
cation could start a shutdown with the same mechanism. We might also use
PostAppMessage, but that requires some changes to the application’s message
loop, which wouldn’t be any cleaner.

By posting WM_CLOSE, we start shutdown of EKOALA exactly as if
an end user had closed it from the system menu. In the process of shutting
down, EKOALA destroys the main window (DefWindomec’s handling of
WM_CLOSE), exits Wian'n (by calling PostQuilMessage in WM_DESTROY),
and ends up in CAppVars::~CAppl/ars. This destructor first calls CoRevokeClassr
Object, which unregisters the class factory you passed to CoRegisterClassObject
identified by the DWORD key that CoRegisterCiassObject returned. If you
registered multiple class factories for different CLSIDS, you must revoke each
one here. CORevokeClassObject will call Release for any reference count that the
Component Object library was holding on the class factory. Furthermore, be-
cause we called AddRefourselves before CoRegisterClassObject (remember that,
long ago?), we must now match it with a Release. This will reduce the class fac-
tory’s reference count to zero, causing it to free itself. Finally, because we called
Cofm'tialize, we need to remember to call CoUmmtialize.

CoRevokeClassObject is the reason why a Component User cannot use a
class factory’s reference count to keep a server—either a DLL or an EXE—in
memory. If a positive reference count could keep the class factory in memory,
we could not shut the application down until the reference count reached
zero and the class factory was destroyed. The reference count will never reach
zero unless we call CoRevokeClassObject, but we call CoRevokeClassObject only
when we shut down after our window is gone, we’ve exited the message loop,

185

Page 203 of 221

Page 204 of 221
l

a
INSIDE OLE2
~—————_—_—__________

186

and we’re on the nonstop express to oblivion. So we can’t revoke until we’re

shutting down and we can’t shut down until we revoke. Aaaugh! Fourth down
and 100 yards to go. . .so we punt: Officially, a positive reference count on a

class factory cannot be used to keep a server in memory, so a Component User
must rely on LockServen not the class factory reference count, to prevent shut-
down. Our salvation is that this is one of the various special cases of reference
counting in all of OLE 2.

Object Handlers

An object handler is a lightweight DLL server used to provide a par—
tial implementation of a full EXE object, thereby reducing the need
to launch the EXE to service that object. Because DLL objects gener—
ally load faster and need no parameter marshaling, use of handlers
generally increases overall performance. Object handlers used in

conjunction with a compound document object provide for data

transfer and object rendering (directly to screen or printer) but not

for editing, making handlers ideal in cases of licensing for
redistribution with a document, in much the same way TrueType
fonts in Windows 3.1 can be saved with a document, given the proper
license. Chapter 11 will examine Object Handlers for specific use
with compound documents.

if an object user calls CoGetClassObjert with CLSCTX—
-INPROCWHANDLER l CLSCTX_LOCALfiSERVER, the handler

is loaded first and all calls to the object’s interfaces are sent to the
DLL. If a full DLL object exists as well, OLE will use that DLL first if

the CLSCTXJNPROCMSERVER flag is specified.

When a handler discovers that it cannot provide the requested
function to the caller, it can delegate that call to a full implementa-
tion of the object in an EXE server. However, the handler cannot

simply call CoCreateInstanre with CLSCTX_LOCAL_SERVER to

launch the EXE and obtain a pointer to an object in that EXE. In—
stead the handler must instantiate what is called the default handler
(OLEQDLL) for the same object CLSID through the mechanism

known as aggregation, as we’ll see shortly. The handler then delegates
the function call to the object in the default handler, which launches

the EXE as appropriate. When the object in the handler wants to

free itself, it also frees the default handler object, which, in turn,
closes the EXE as necessary.

Page 204 of 221

Page 205 of 221

F O U R: Component Objects

_______________—______————————

Of course, this is not without restrictions: The EXE object can

support only standard interfaces with built—in marshaling support,
and there is limited communication between the handier and the

application. Furthermore, the handler must ensure that data is syn-
chronized between itself and the application. Most often, however. a

handler exists to provide speedy rendering of specific data formats
and delegates requests for more esoteric formats to the application.

Finally, the only differences between DLL object handlers and
DLL object servers are their intended use and expected perfor—
mance. Technically and structurally, the handler is identical to a
DLL server. All discussion in this chapter dealing with DLL servers

applies equally to DLL handlers. The most significant differences
are in how the two are used and how they should be designed, which

is a topic for Chapter 11.

Cosmo’s Polyline as a DLL Object

The Koala object that supports the IPersist interface is pretty boring and, well,
useless. To demonstrate an object much more useful and exciting, the

CHAPO4\POLYLINE directory in the sample code contains an implementa-

tion of Cosmo’s ,CPolyline class as a Windows Object in a DLL. The source code
for POLYLINEDLL (which compiles into POLY04.DLL) is a little too long to

show here, however. This implementation shows that a much more compli-
cated object, such as Polyline, can fit into exactly the same housing (DLL or
EXE) as a simple object, such as Koala.

The member functions of the original (Polyline from Chapter 2 are

converted into a custom interface, IPolylme4, defined in INC\IPOLY4.H and

shown in Listing 4-6. (The 4in these names stands for Chapter 4 because we’ll
be making modifications to the interface in later chapters.) Note that be-
cause all interface functions should return HRESULT whenever possible,

some return values in the original CPolyh'ne are converted into out—parameters
in the interface. IPOLY4.H also defines the interface IPolylmeAdviseSinM,

through which a Cosmo document receives notifications from Polyline. This
replaces the CPolylmeAdviseSmk class that Cosmo used before.

If you look in Polyline’s sources, you’ll notice that the core implemen—
tation of Polyline has not changed significantly from what was in Cosmo.
In addition, the DLLPOLYCPP file is only a slight modification of the

DKOALACPP file: a few name changes, a class registered in LibMain, and a

187

Page 205 of 221

Page 206 of 221
\!

IN 8 ID E O L E 2
IPOLY4.H
[4:

4 Po1yiine Object Ehapter 4

Definition of an IPoiyline interface for a Po1y1ine object used

* in the Cosmo implementation. This interface is custom and is

s only supported from OLL-based objects.

* Copyright (c)1993 Microsoft Corporation. All Rights Reserved
*/

#1fndef _IPOLY4_H_
#define _IPOLY4_H_

//Versioning.
#define VERSIONMAJOR 2

#define VERSIONMINGR 0
#define VERSIONCURRENT OXBBOZBOOO

#define CPOLYLINEPOINTS 28

//Version 2 Poiy1ine structure

typedef struct __far tagPOLYLINEOATA
{

WORD wVerMaj; l/Major version number
WORD wVerMin: //Minor version number

WORD cPoints; //Number of points
BOOL fReserved; //Previous]y fOrawEntire
RECT rc; //Rectang1e of figure

POINT rgptECPOLYLINEPOINTS]: f/Points on a 8-3276? grid

l/Version 2 additions

COLORREF rgbBaCkground: //Background coior
COLORREF rgbLine: l/Line coior

int iLineStyie; l/Line styie
] POLYLINEOATA. *PPOLYLINEOATA, FAR *LPPGLYLINEOATA;

#define CBPOLYLINEOATA sizeof(POLYLINEDATA)

//We use the OLE 2 macro to define a new interface

#undef INTERFACE

#define INTERFACE IPoTylineAdviseSink4

Listing 4-6. (continued)

IPolylinc4 and IPolylineAdVisc-Sink4 custom interfaces.

‘88 Page 206 of 221

Page 207 of 221

F 0 U Fl : Component ObieCts

Listing 4-5. continued

[5:

* When someone initiaiizes a poiyiine and is interested in receiving
e notifications of events, they provide one of these objects.
I;

DECLARE_INTERFACE_(IPOIy)ineAdViseSink4. IUnKnowh)
(
llIUnknown members

STDMETHOD(OueryInterface) (THIS_ REFIID, LPLPVOID) PURE;

| STDMETHUD_(ULONG, AddRef} (THIS) PURE;
' STDMETHOD_(UIGNG, REIease) (THIS) PURE:

l/Advise members.

STDMETHOD#(void, OnPointChange) (THIS) PURE;

STDMETHOD_(VOid, OnSizeChaHQE) (THIS) PURE:
STDMETHGD:(VOid, OnDataChange) (THIS) PURE:
STDMETH09_(void, ORCOIorChange} (THIS) PURE:

' STDMETHDD“(VOid, OntineSterChange) (THIS) 9URE;

l I,
typedef IPDIyTineAdViseSink4 FAR *LPPOLVLINEADVISESINK:

I #undef INTERFACE#define INTERFACE IPOIyIine4

DECLAREJINTERFACE,(IPOIy)ine4, IUnKnown)
{
//IUnknown members:

STDMETHOD(GueryIntEFfaCE) (THIS_ REFIID, LPLPVUED) PURE;
STDMETHUD_(ULONG, AddRef) (THIS) PURE:

STDMETHODA(ULDNG, Release) (THIS) PURE:

l/IPonIine members

l/FiIe—reiated members:

STDMETHOD(ReadFromFiIe) (THIS_ LPSTR) PURE:
STDMETHOD(WriteToFiIe) (THIS_ LPSTR) PURE:

l/Data transfer members:

STDMETHOD(DataSet) (THIS, LPPDLYLINEDATA, BOOL. BOOL) PURE:
STDMETHOD(DataGet) (THIS_ LPPOLYLINEDATA) PURE:

STDMETHGD(DataSetMem) (THIS: HGLOBAL, BOOL, BOOL, BOGL) PURE;
STDMETHOD(DataGetMem) (THIS_ HGLUBAL FAR *) PURE;

STDMETHDD(RenderBitmap) (THIS_ HBITMAP FAR a) PURE:
STDMETHUD(RenderMetafiTe) (THIS_ HMETAFILE FAR -) PURE:

STDMETHOD(RenderMetafiIePict) (THIS_ HGLGBAL FAR *) PURE:

(continued)

189

Page 207 of 221

Page 208 of 221

IN SI D E CIL E 2
—————.——_———_________

Listing 4-6. continued

l/Manipuiation members:

STDMETHDD(In1t) (THIS_ HHND, LPRECT, SWORD, UINT) PURE:
STDMETHGD<New) (THIS) PURE;
STDMETHOD(Undo) (THIS) PURE;

STDMETHOD(WindowJ (THIS_ HwND FAR *) PURE;

STDMETHOD(SetAdvise) (THIS_ LPPOLYLINEADVISESINK) PURE;

STDMETHOD(GetAdvise) (THIS_ LPPOLYLINEADVISESINK FAR a) PURE;

STQMETHGD(ReCtGet) (THIS? LPRECT) PURE:
STDMETHOD(SizeGet) (THIS_ LPRECT) PURE:

STDMETHOD{RectSEt) (THIS_ LPRECT, BOOL) PURE:

STDMETHOD(SizeSet) (THIS, LPRECT. BOOL} PURE:

STDMETHOD(C010rSet) (THIS_ UINT, COLURREF
. CGLORREF FAR *) PURE:

STDMETHGD(C010rGet) (THIS_ UINT. CGLORREF FAR *) PURE:

STDMETHOD{L1neStyieSet) (THISW UINT. UINT FAR *) PURE:
STDMETHOD(L1neSty1eGet) (THIS_ UINT FAR *) PURE;
};

typedef IPOTy11ne4 FAR *LPPOLYLINE;

l/Error vaiues for data transfer functions
#define POLYLINE_E_INVALIDPOIN?ER \

MAKE_SCODE(SEVERITY_ERRGR. FACILITYuITF. 1)
#define PGLYLINE_E_READFAILURE \

MAKE_SCDD£(SEVERITY_ERROR. FACILITleTF, 2)
#define PDLYLINE_EHWRITEFAILURE \

MAKE_SCODE(SEVERITY_ERROR. FACILITY_ITF. 3)

//Coior indices for coior member functions
#define POLYLINECOLOR_8ACKGROUN9 6

#define POLYLINECDLOR_LINE 1

#endif //_IPOLY4UH_

DLL instance handle passed to the CPolylz'ne constructor. Oh yes, CPolyline
still exists, but it is now more like the CKaala: object in the previous examples
The member functions of the CPolylz'ne of Chapter 2 have been moved to the

interface implementation CImpIPalylz'ne.

‘90 Page 208 of 221

Page 209 of 221

F O U R: Component Objects

As we move forward in this book, we’ll incrementally replace specific

members of IPolyline4 with those ofanother interface. In the next chapter, for
example, we’ll remove the two file—related functions from IPolyline5, replac-
ing them with an IPersistStomge interface on the object. In Chapter 6, we’ll
replace the data transfer and graphics rendering functions in IP0lyiine6 with
the IDaiaObjeci interface. Beyond that, we’ll add compound document fea-
tures, including in—place activation, to Polyline. However, all these additions
come in the form of other interfaces, which will not interfere with Polyline’s

operation as a component object.

I The version of Cosmo that uses the component Polyline object, Compo-
nent Cosmo, is provided in CHAP04\COCOSMO and requires only a few
modifications. When you run Component Cosmo, however, you will notice

absolutely no changes in the user interface or in any behavior. Component
Cosmo merely changed from being the user of a local C++ object, CPolyline, to

being a Component User of the Polyline Windows object through the
IPolyline4 interface.

Object Reusability

| So what about inheritance?
| Windows Objects themselves and the classes they identify through

CLSIDs have no notion of implementation inheritance whatsoever. One Win-

| dows Object does not inherit the implementation of another Windows Object.
But Windows Objects are still reusable through two mechanisms, containment
and aggregation. These mechanisms have several significant benefits over in-
heritance, which is why the Component Object Model has significant benefits
over models that rely heavily on inheritance.

In the Component Object Model, inheritance is simply considered a tool
that is useful for implementing classes in C++, as well as for defining inter-
faces. In your implementation of an object, either you can use multiple inheri-
tance from all the interfaces you support, or you can contain implemen-
tations of each interface the object supports, in which each interface imple-

mentation inherits a single interface. That’s really what an interface is for: to
help the implementor of an object but not the object user. Inheritance greatly
enhances programmer productivity, but does the user really care how the ob-
ject was implemented? The answer is definitely “NO”—object users are sup—
posed to be entirely ignorant of the object’s implementation, especially when
the implementation exists in other pieces ofcode that you did not implement
or for which you don’t have the source, such as Windows itself.

Page 209 ofli’ii

Page 210 of 221

INSIDE OLE2

192

The single most significant problem of inheritance is that two unrelated

pieces of code work on the instance of an object. If I have a base class B and a
derived class D, which inherits from B, an instantiation of class D is only one

data structure in memory. If B contains virtual functions that D does not over—

ride or if the implementation of D explicitly calls a member function in B

(that is, using B::< memberfuncti0n>) , we again have two pieces of code working
on the same memory. But class B does not know the expected behavior of class
D, so how on earth can D force the correct behavior of its objects? The answer

is that D must know what B is going to do on that object so that it knows when

to override a virtual function in B and when exactly to explicitly call B’s func—

tions. This is exactly the same problem as trying to figure out when to call

DefWindomec for any given message: We’ve merely replaced the word message
with virtualfunction. In any case, because B cannot know about the implemen-
tation of D, D must know about the implementation of B, which causes D to
violate its status as a user of B.

Systems built on inheritance have the key problem that they must ship
all their source code in order to be usable. Take a look at application frame-

works such as the Microsoft Foundation Classes: Source code is shipped with

the product, so you know how to inherit from any given class and can dupli-
cate behavior as appropriate. Sure, inheritance works well in building large,

complex systems because it’s a much better way to manage source code than
creating a large stockpile of sample source files. It certainly works well when
you control and have access to all the source code for all classes. It certainly
helped me to develop the sample applications in this book. But it does not
work for reusing objects implemented in the operating system itself, for
which either source code is not available or you did not originally implement

the object yourself.

The Component Object Model avoids all these problems but retains
reusability through its mechanisms of containment and aggregation, which we

are finally in a position to explore in detail. Both mechanisms achieve reus-
ability literally by using, instead of inheriting, the implementation of another

object. The object we’re using remains entirely self-contained and operates on
its own instance ofdata. Our own object, which is called the aggregate, works on

its own instance of data and calls the other object as necessary to perform

specific functions in which we can pass it the data on which to operate.
Let’s say I have an object named Animal that knows only of itself and

exists as an atomic entity (like the Koala object). I can illustrate this object as

a block with circular jacks for each interface: IUnknawn and [Animal (with

members such as Eat, Sleep, and Procrmte). Again, by convention, [Unknown is

always shown on top, with all other interfaces shown to the side, as follows:

Page 210 0f221

Page 211 of 221

F O U R: Component Objects

_‘__________________——~—————

[Unknown

9l

lAnfmal 0—;_ Animal

A user of this object with a pointer to either interface can use QueryInter-
face to get a pointer to the other. The implementation of [Animal knows about
the object’s [Unknown and vice versa. Now I want to create a more complicated
Koala object that will expose interfaces [Unknowm [AnimaL and [Marsupial
(maybe with members such as CareroungInPouch and LiveInAustralia) with a
more complicated picture:8

lUnknown

[Marsu ta! 0—? Ip - KoalalAnimaI
When I implement Koala, I know that Animal exists and I Want to reuse

Animal’s implementation. I can use Animal and its implementation of [Ani-
mal in the following tWO ways, neither of which changes how the external
world sees Koala:

l Containment: Koala completely contains an Animal object and im-

plements its own version of [Animal to expose externally. This makes
Koala a simple user ofAnimal, and Animal need not care. Koala
never calls [AnimalxQueryInterfaca

I Aggregation: Koala exposes Animal’s [Animal interface directly as
Koala’s [Animal This requires that Animal know that its interface is
exposed for something other than itself, such that QueryInteiface,
AddRef, and Release behave as a user expects.

8. Instinct tells you that [Marsupial should inherit from [Animal because a marsupia] isjust an-
other kind of animal, The Windows Object notion of interfaces, however, means that through
a pointer to [Marsupial you deal with the object as a marsupial but not generally as anything
else. Ifyou want to treat it the same as any other animal, call [MarsupialsQueryInterface-
([[D-[Animal) for the appropriate interface. As a real life example, consider Compound
Document objects that are all treated through [OleObject, regardless ofwhether they are linked
or embedded. A linked object can be viewed as a further refinement of an embedded object, so
you might expect that an interface such as [OleLz'nk for linked objects would inherit from
IOleObject. But it doesn’t. You use QueryInterfizce through [OleObject for [OleLz‘nk. Query-
Interface is the mechanism for getting at more functions on the same object.

193

Page 2110f221

Page 212 of 221

INSIDE OLE2
—_—_.—_—._——,__________________

Case 1: Object Containment

194

Complete containment of Animal is necessary when I need to change some
aspect of my implementation of [Animal Because all external calls to that

interface will enter Koala first, Koala can override specific functions or sim_

ply pass that call to Animal’s implementation. The internal structure of Koala

will appear something like this:

{Unknown

[Animal
In this case, Animal always operates on its own data unless Koala ex-

plicitly passes other data to it (which is also true in aggregation). In other

words, by default the two objects work on different data, and only by conscious
design of an interface would the two be able to communicate. This is much

different from inheritance, in which working on the same data is the default

and it takes conscious effort to create separate data instances.
To build this sort of structure, Koala calls CoCreateInstame on

CLSID_Animal when Koala itself is created, passing a NULL for pUnkOuter
and asking for HD_IAnimal. Koala maintains this IAnimal pointer until the
Koala object is destroyed, at which time Koala calls IAnimtilssRelease to free the

Animal object. Whenever Koala’s [Animal implementation wants to reuse

Animal’s [Animal implementation, Koala simply calls the appropriate mem-
ber function on Animal.

Reusing an object through containment is much like using a Windows

list box to manage a list of information. For example, the Patron program in

Chapter 2 maintains a list box in such a way that each item is a pointer to a

page in the document. The list box provides all the memory management to
maintain the list, removing that burden from the application. But Patron

never makes the list box visible, so nothing outside of Patron knows that it’s

using a list box in this manner. Containment is the same, in that the aggre—
gate object uses specific services of the contained object without ever showing

the outside world that it is using the contained object in this capacity.

This technique is the simplest way to reuse another’s implementation of

an interface. However, you do not always care to override any functions in

such an interface, wanting only to pass every call through to the object you’re

Page 212 of221

Page 213 of 221

F O U Fl: Component Objects

using. You could, of course, implement stubs for every [Animal function that
only calls the contained object, but you would rather simply expose that inter-
face directly and eliminate any need for such stubs. That technique is

aggregation.

Case 2: Object Aggregation

Aggregation on Animal is useful when Koala does not want to change any
aspect of how it appears through the [Animal interface—-that is, Koala has no
need simply to implement a bunch of Animal stubs that only delegate to a

| contained Animal object. Therefore, Koala wants to expose the [Animolinter—
face of the Animal object directly, turning it into Koala’s [Animal This yields

I an internal structure like the following:

[Unknown

:. __w does [Animal

' ‘ ‘ 'w about Koala?

Here’s the problem. Because Animal’s [Animal is exposed directly, users

of Koala will expect that [AnimolxQueryInteifoce{[ID_ [Mont/twat) will return a

pointer to Koala’s [Morsupiol But Animal was not written to know anything
about [Morsupz'oL let alone know anything about the Koala object. How can it
know the identity of the outer object and its interfaces?

The answer is that when Koala creates Animal, Koala passes its [Unknown

pointer to the Animal class factory CreoteInstonce as the pUnkOnter parameter.
(Note that Animal holds onto this pointer but does not—repeat, not—call

AddRefthrough it.) In this fashion, Koala identifies itself as the controlling un—
known of the aggregate. Furthermore, Koala must always ask for Animal’s
[Unknown when creating Animal as part of an aggregate. Note that an object

might not support aggregation, in which case it fails CreateInsmnce when a
non—NULL pUnkOnter is specified.

This sets up a contract between the aggregate object (Koala) and the

aggregatee (Animal) in such a way that Animal must implement an instance
of [Unknown that is separate from all other interfaces. This [Unknown can
return interface pointers to all other interfaces on Animal, and so Koala
can ask Animal’s [Unknown for any of Animal’s interfaces and expose those

interfaces as if they belonged to Koala. Now the QueryIntevfoce, AddRej,‘ and

Page 213 of‘i‘ii

Page 214 of 221

IN SI D E CJL E 2

Release functions in any of Animal’s interfaces—besides Animal’s separate

Wnknownmdon’t do anything to Animal. Instead these functions call the

same functions in Koala‘s controlling unknown because these functions

affect the object as a whole as seen from the outside. From the outside, Animal’s

interfaces appear as if they were interfaces on Koala, and so they must act like

interfaces on Koala. This means that Adngand Release affect Koala’s refer—

ence count and that Querylnteifece can return pointers to any interface ex-

posed from Koala.

[Unknown members in interfaces

delegate to Koala‘s [Unkn0wn. ’Unkmw”

IMarsupial I

Koala’s lUnknown uses
Animal’s if Koala doesn‘t

know the requested interface.

{Animal O

The pUnkOuter parameter passed to Animal’s IClassFactory::Create-

Instance must be available to all interfaces in Animal except for Animal’s

IUnknown itself. Typically this means that Animal stores pUnkOuter in its ob-

ject structure:

STDMETHODIMP CAnima]ClassFactory(LPUNKNGWN pUnkOuter. ...)

EPUNKNOWN pObj:

ndhj=new CAnima1(pUnk0uter. ...): //Create the object

abhj->F1nit(); //In1tialize object

i.-

CAnimal::CAnimal(LPUNKNOwN pUnkOuter. ...)
{

nLeUnkOUter=pUnk0uter; l/Save the controlling unknown

i'l

‘95 Page 214 of221

Page 215 of 221

F 0 U Fl: Component Objects

________________.—_—____—————

 Note that when CAnimal saves pUnkOuter in this example, it does not

call Addquthrough that pointer. This is because Animal’s lifetime is entirely
defined by Koala’s lifetime, so the AddRef is unnecessary and dangerous: If
Animal held a reference to Koala, Koala could not free itself until Animal

released that reference. But Animal will not release that reference until it

frees itself, and that will not happen until Koala releases its reference on Ani-

mal, which only happens if Koala is freeing itself. If we had to choose between
death and spinning around in this endless reference loop, we’d keep circling
until death became the favorable alternative. To avoid Such problems, the ag-

gregatee (Animal, in this case) is specifically required to not call AddRef
through pUnkOuter.

Now Animal’s IUnknown must not delegate to the controlling unknown;

instead it must return only those interfaces known to Animal, and it must only
affect Animal’s reference count. This [Unknown implementation essentially
controls Animal’s lifetime:

STDMETHODIMP CAnimal::0uery1nterface(REFIID riid. LPLPVOID ppv)
{

*ppv=NULL;

if (IsEqualIIDtriid, IID_IUnknown))

*ppv=(LPVDID)(LPUNKNONN)this:

if (lsEqualIID(riio, IID_IAnimal))
*ppv=(LPV0lD)m — pIAnimal;

if (NULL!:*ppv)
{

((LPUNKNOWN)*ppV)’>AddREf():
return NOERROR:

}

return ResultFromScode(E_NOINTERFACE):

}

In this code, m_pIAnimal is a pointer to Animal’s implementation of the
[Animal interface, which it creates in CAnimal.-:Flmt

BOOL CAnimal::FInit(v0id)

{

LPUNKNOHN plUnknown:(LPUNKNOWN)thiS:

if (NULLI=mfipUnkOuter)

pIUnknown=m_pUnk0uter;
(continued)

197

Page 215 0f221

Page 216 of 221

IN S lD E ()L E 2

+____________.___~____‘

198

//All0cate contained interfaces.

m_pIAnimal=new CImpIAnimal(this, pIUnknown);

return (NULL!=m_pIAn1'malJ;
}

Animal here plays a nasty trick on its interface implementation, which, as you
may recall, must delegate to the controlling unknown ifAnima] is being ag»
gregated but must affect Animal outside of aggregation. To handle this, Ani-

mal always passes some IUnknown to the interface implementation. Under
aggregation, it’s the controlling unknown. Without aggregation, Animal
passes its own IUnknown as the controlling unknown to the interface. The

interface, in turn, blindly delegates all IUnknown calls to whatever controlling
unknown it was given, as follows:

CImpIAnimal::CImpIAnimal(LPVOID pObj, LPUNKNOWN pUnkOuter)
{

m_punk0uter:pUnk0uter:

l

STDMETHODIMP CImpIAnimal::OueryInterface(REFIID riid. LPLPVOID ppv)
{

return mnpUnkOutere>QueryInterface(riid, ppv):
}

STDMETHODIMP;(ULONG) CImpIAnimal::AddRef(void}
{

return m_pUnkDuter->AddRef();
}

STDMETHODIMP_(ULONG) CImpIAnimal::Release(void)
{

return m_pUnkDuter—>Release();
}

So let’s say there is no aggregation; the m_pUnkOnter to which CImpIAm'mal
delegates is the IUnknown implemented in CAnimaL This [Unknown implemen-
tation will return pointers for JUnknoum and IAnz‘mal, as shown before.

If there is an aggregate object, m_pUnk0nter points to the controlling
unknown, so the calls to this IUnknown from the IAnzmal interface bypass Ani—
mal’s IUnknawn and end up in Koala’s [Unknown In this controlling un-
known, Koala handles AddRefand Release calls as if they were made through
one of its own interfaces. As for Queryi’nteiface, the controlling unknown can
handle it in one of three ways:

Page 216 0f221

Page 217 of 221

F O U R: Component Objects

I If the requested interface is implemented by the aggregate object,
return a pointer to that interface directly.

I If the requested interface is implemented in the contained object
and exposed as one of the aggregate’s interfaces, delegate the
Queryfmeifare to the contain object's IUnknown.

I If the aggregate object does not recognize the reqeusted interface it
may either blindly delegate the request to the contained object or
fail, depending on the goals of the aggregate Object.

The Querylmmface of an aggregate’s controlling unknown, such as the
one Koala would implement, would therefore appear follows:

STDMETHODIMP CKoala::QuerylnterfacetREFIID riid. LPLPVOIDppv)
{

*ppv1NULL;

if (IsEqualIiD(riid. IID_IUnknown))
*ppv=(LPVOID)this:

if (IsEqual IID(r1‘id. IID_IMarsupial))

*ppv=(LPVOID)m_pIMarsup1‘a1;

if (IsEqualIIDtriid, IID_IAnimal))

return m_p1UnknownAn1mal->0uerylnterface(riid. ppv);

if (NULL!=*ppv)
[

((LPUNKNONN)*ppV)'>AddRef(l:
return NOERROR:

}

return ResultFromScode(E_NOINTERFACE);
l

Here, m_pIUnknownAnimal is the [Unknown pointer we requested when
creating the Animal object. The IUnknown implementation on an object such
as CAm'malin this example is always the last stop for a Queryfntevface, an Addqu
or a Release call. Animal’s IUnknown never worries about aggregation in and of

itself because it has to be the controlling unknown for its own object. Only if

the Animal object itself contained more primitive objects would it do any fur-
ther delegation, but in no way will it pass any request to a higher unknown.

199

Page 217 0f221

Page 218 of 221

:J;

a
IN 8 ID E C)L E 2

200

If the requested interface was not [Unknowm IMar-xupial, or [Animal
what should Koala do? Koala has two choices, depending on how it’s using the

Animal object. First, Koala might be using Animal as whatl call a “helper"

object. A helper object is used to provide very specific services to higher ag-
gregate objects where the aggregate objects expose only very specific inter—
faces from the helper object iself. The preceding code uses the Animal object
in this fashion. This is similar to using a hidden list box control in an applica—

tion to perform list management. You never show the list box, but you are

using it as a helper for your implementation.

The second way in which Koala might use Animal is where Koala’s

IUnknown would itself delegate Queryinteig’ace calls for any unrecognized inter-

face to Animal’s IUnknown. This approach would replace the return

ResultFromScodd...) call in the preceding code with m_pIUnknownAnimal—

>Queryfnterfacd. . .)). By doing so, Koala is not aware of all the interfaces that

it might expose as its own. For example, ifAnimal implemented an additional
interface called IPrimate, Koala would look like both a marsupial and a pri-

mate at the same time. This type of aggregation is useful only when Koala is

essentially subclassing the Animal object by adding an interface of its own.

This is exactly like subclassing a Windows edit control in such a way that your

subclass procedure changes the behavior of the edit control for a few specific
messages but blindly passes all other messages to the original message pro-
cedure of the control. The aggregate object in this case is only a thin shell

around the contained object.

To wrap up our discussion about aggregation, I want to mention one

more point. In its role as the aggregate object, Koala might want to cache

specific interface pointers it obtains by calling Animal’s IUnknown.-:Query-
Interface. If it does so. it must do something strange: It must immediately call
Release through the pointer as follows, where ijUnknownAnimal is the Ani-

mal’s IUnknown and ijAnimal is a variable in the Koala object:

HRESULT hr;

[Code that created m_pIUnknownAnima1]

l/Cache a pointer to Animal's IAnimal
m,p1Animal=NULL;

hr=m_pIUnknownAnimal->0uery1nterface(IlD_IAnimal
. (LPLPVDID)&m_pIAnimall:

if (SUCCEEDEDlhr))

m_pIAnimal 7>Release():

Page 218 0f221

Page 219 of 221

F O U R: Component Objects

______________—____.__.__——-———

After executing this code, m_pIAntmal will be either NULL (in which
case, we could not cache the pointer) or non—NULL. But we called Release

already, right? Doesn’t that invalidate the pointer? Actually, it doesn’t because
we are still holding onto m_pIUnknownA7/timal, and so the object itself is still
valid, which means that all its interface pointers, including the one we just

called Release through, also remain valid. Although this seems strange, think

about the consequences. Animal’s [UnknownxQueryInteag’nce will call [Animal
::AddRef before returning the pointer to Koala. But [Animal has Koala’s
IUnknown as the controlling unknown, so the AddRef call will increment
Koala’s reference count, which will not be decremented until Koala calls

m_pIAnimali>Relmse If Koala did not make the call here, it would be able to
make the call only when it was freeing itself, but it could never get there be-
cause of this extra reference count. So, once again, to avoid the problems of

circular references, the aggregate object must call Release through any point-

ers obtained from the contained object’s IUnknown.

Summary

A first requirement of all OLE 2 applications is that they use a message queue
of size 96 (under Windows 3.1) and that they provide for initializing the OLE

2 libraries if, in fact, the application can run with the version of those libraries

that currently exists on the machine. Checking versions is accomplished
through the CoBuildVersion and OleBuildl/érsion functions, whereas initializa-
tion occurs through Cofnitialize and OleInilz'alzze. On shutdown, an application
must also call CoUnmitialz'ze or OleUninitialize to reverse the corresponding

...Imtmlize call. These requirements are presented in this chapter because all

I later samples must comply with them.
Part of library initialization involves defining a task allocator object, one

‘ that implements the [Ma-liar: interface, which is used for all task memory allo-
cations. An OLE 2 application can either implement its own or use an OLE

‘ 2-pr0vided allocator that works on the technique of multiple local heaps.
OLE 2 always implements a similar shared allocator that can provide memory
shareable between applications. Although applications can change the task

allocator, they cannot change the shared allocator. While the application is
running, any other piece ofcode (such as the OLE 2 libraries) can call CoGet-
Mallet; to obtain a pointer to either the task or shared allocator objects.

The Ultimate Question presented in Chapter 3 asked how you obtain a

pointer, given knowledge and the identification of a specific Windows Object.
This chapter deals with the specific case in which you identify a Windows Ob-
ject, given a CLSID, and use the function CoCreoteInslance to instantiate an

201

Page 219 0f221

Page 220 of 221

INSIDE OLE2_______—_—__——————-———-—..

202

object of that class. Such an object is called a component object, and the applica-
tion using it is called a component user. CoCreateImtance internally uses
CoGetClassObject, which obtains a class factory object (IClassFactory) for the
CLSID and calls ICIassFactmy::Createfnstance to perform the actual instantia-

tion. What you do with the object once you have an interface pointer to it is

your own business, although there are a few considerations when you release
the object, such as calling CoFreeUnusedLibmries to purge unused DLLs from
memory.

Implementations of component objects that can be loaded and called by
functions such as CoCreoleImtance and CoGetClassObject have different struc-

tural requirements, depending on whether the object lives in a DLL or an
EXE. A DLL exports a function named DllGetClassObject, which provides the
API function through which CoGetClassObjecz obtains a pointer to the DLL’s

class factory for a given CLSID. EXEs, on the other hand, must pass a pointer
to their class factory to the CoRegisterCiassObject function for each supported

CLSID. The two module types also differ in their shutdown conditions.

Whereas the Component Object library asks a DLL whether that DLL can be
unloaded, an EXE must initiate its own shutdown when the proper conditions

are met—~that is, it must destroy its main window and exit its message loop. As

examples, this chapter implements an object named Koala that supports the
IPersz'st interface in both a DLL and an EXE and then separates the Polyline

object of the sample Cosmo application into a component object and shows a
modification of Cosmo, called Component Cosmo, which uses the compo-

nent Polyline object.

Object reusability in OLE 2 is achieved through mechanisms called con-
tainment and aggregation, not through inheritance. The inheritance mecha«
nism works well for source code management but generally requires that you

have the source code available for any classes from which you inherit. Because

of source code availability and a host of other problems, OLE 2 works on

mechanisms other than inheritance that provide the same reusability of code,

but it avoids the problems with traditional techniques. There is, however,

some impact on the implementation of an object that wants to allow itself to
be reusable via containment and aggregation.

Page 220 of 221

Page 221 of 221

‘\flf\31\\‘QLLLV
-|.} | . -.

I
SECTIONII

OBJECT—ORIENTED

SYSTEM FEATURES:

FILES AND DATA

TRANSFER
Page 221 of 221

