
Microsoft® Windows'·
Version 3.1

Device Driver Adaptation
Guide

For the Microsoft Windows Operating System

Microsoft Corporation

Page 1 of 239

trk
ABB 1010

lnfonnation in this document is subject to change without notice and does not represent a commit­
men[on the part of Microsoft Corporation. The software, which includes infonnation contained in any
databases, described in this document is fumished under a license agreement or nondisclosure agrec­
men! and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
pM of this manual may be reproduced in any form or by any means, eleclronic or mechanical , includ­
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation .

© 1987- 1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright © 1991 Linotype AG and/or its subsidiaries . All rights reserved. Helvetica, Palatino, N"ew
Century Schoolbook, Times, and Times Roman typefonl data is the property of Linotype or its
licensors.

Arial, Courier New, and Times New Roman fonts . Copyright © 1991 Monotype Corporation PLC.
All rights reserved.

Microsoft, MS, MS-DOS, and CodeView are registered trademarks, and Windows and Windows/386
are trademarks of Microsoft Corporation .

U.S. Patenl No. 49741.59

Adobe and PostScript are registered trademarks of Adobe Systems, Lnc .
The Symbol fonts provided with Windows version 3. I are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
Apple and TrueType are registered trademarks of Apple Computer, fnc.
AT&T is a registered trademark of American Telephone and Telegraph Company.
Compaq is a registered trademark of Compaq Corporation.
Epson is a registered trademark of Seiko Epson Corporation, Inc.
Hercules is a registered trademark of Hercules ComputerTechoology.
Hewlett-Packard, HP, LaserJet, and pel are registered trademarks of Hewlett-Packard Company.
IBM and OS/2 are registered trademarks of International Business Machines Corporation.
Helvetica, New Century Schoolbook, PaJatino, Times, and Times Roman are registered trademarks of

Linotype AG and/or it>; subsidiaries.
Arial, Courier New, and Times New Roman are registered trademarks of the Monotype

Corporation PLC.
Nokia is a registered trademark of Nokia Corporation. (Finland)
Olivetti is a registered trademark of lng. C. Olivetti.
Paintbrush is a trademark of ZSoft Corporation.
VINES is a registered trademark of Banyan Systems, Inc .

Document No. PC29 I 32-0392

Page 2 of 239

Contents

Introduction ix

How to Use This ManuaL......... ix
Document Conventions _.... x

Part 1 Windows Device Drivers

Chapter 1 Overview 01 Windows Drivers ... 3
1.1 What Is a Device Driver? 5
1.2 Creating a Device Driver.. 7
1.3 Guidelines for Designing and Writing a Driver.. 8
1.4 Windows Calling Conventions 8
1.5 Header Files 9

Chapter 2 Display Drivers ... 11
2.1 About the Display Driver 15

2.1.1 Display-Driver Initialization 15
2.1.2 GDI Information Structure 16
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.1 1
2.1.12
2.1.1.3
2.1.14
2.1.15
2.1.16
2.1.17
2.1.18
2. 1.19

Enabling and Disabling the Physical Device 16
Hardware Initialization 18
Physical Objects... 19
Physical Colors 21
Screen Metrics 21
Lines, Curves, and Polygons 23
Text 26
Fonts 30
Clipping 34
Bitmaps 35
Device-Independent Bitmaps 37
DeviceBitmaps 39
Color Palettes 40
DlBs with Color-Palette Management 43
Stub Functions 44
Cursors 44
Display-Driver Escapes 45

Page 3 of 239

iv MicrosoH Windows Device Driver Adaptation Guide

Chapler 3

Chapler 4

2.1.20 Mouse Trails 45
2.1.21 Multiple-Resolution Drivers 46
2.1.22 Microsoft Windows for Pen-Computing Extensions 48

2.2 About Display-Driver Resources 49
2.2.1 Stock-Fonts Resource ... 50
2.2.2 Configuration Resource 51
2.2.3 Color-Table Resource 51
2.2.4 Icon, Cursor, and Bitmap Resources 51
2.2.5 Large Icons and Cursors 54
2.2.6 Optimizing Performance......... 54

2.3 Function Reference 55
2.4 Windows for Pen Computing Function Reference 62
2.5 File-Fonnat Reference.......... 64

D i sp lay G ra b b ers ",,,,,,,,,,,, .••.......... ,,,,.,,,,.,,.,, •....•....•..•...........•. " .•. " ••. ".""."""."" 69
3.1 About the Standard-Mode Display Grabber .. 71

3.1.1 Standard and Extended Functions 72
3.1.2 Standard-Function Dispatch Table 73
3.1.3 Extended·Function Dispatch Table 73
3.1.4 Coordinate System 74
3.1.5 Buffer·Size Calculations.. 75
3.1.6 Binary-Image File 75

3.2 About the 386 Enhanced-Mode Grabber 75
3.2. 1 Initialization 75
3.2.2 Window Painting and Updating 76
3.2.3 Virtual-Display Device Services 76
3.2.4 On-Screen Selection 77
3.2.5 Screen Captures 78

3.3 Standard-Mode Function Reference........... .. 78
3.4 Standard-Mode Structure Reference 85
3.5 386 Enhanced-Mode Function Reference 92
3.6 386 Enhanced-Mode Structure Reference ... 105

P ri nle r D rive rs """""""""""""""""""" """""""" """"""""""" """"" """ """ 1 0 7
4.1 About the Printer Driver............... 109

4.1 .1 Printer-Driver Initialization ,....... 109
4.1.2 GDI Information Structure 110
4. 1.3 Enabling and Disabling Physical Devices 110
4.1.4 Device-Context Management....... III
4.1.5 Dimensions and Mapping Modes 112

Page 4 of 239

4.1.6
4.1.7
4.1.8
4.1.9
4.1.J 0
4.1.1l
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.19
4.1.20
4. 1.21
4.1.22
4.1.23
4.1.24
4.1.25
4.1.26
4.1.27
4.1.28

Contents v

Printer-Dri ver E nvironment... 113
Device-Mode Dialog Boxes ... 114
Printer-Device Modes... 115
Per-Page Printer Settings I 17
Printer-Model Names I 18
Standard Print Dialogs.. 118
Printer Entries in the WIN.lNI File .. 119
Physical Objects.. 119
Device Pens and Brushes.. 120
Device Fonts 120
Color 121
Output 121
Text 122
Fonts 122
Device-Independent Bitmaps ... 124
Print Jobs.. ... 125
Banding Drivers .. L27
Other Escapes 129
Print Manager Support.. 130
The Bmte Functions 130
GOT Priority Queues 133
Stub Functions L34
Install ing Over Previous Versions...... 134

4.2 Function Reference...... 134
4.3 Printer Environment Function Reference 142
4.4 Priority-Queue Function Reference 145
4.5 Print Manager Function Reference 148
4.6 TmeType StmclUre Reference ... 155
4.7 File-Format Reference. 157

Chapter 5 Network Drivers .. 159
5.1 About the Network Dri ver 16L

5.l.! InitiaLizing the Driver 161
5.1.2 Enabling and Disabling the Driver 16.1
5.L.3 Network Capabilities 162
5.L.4 Connection Functions 162
5.1.5 Printing Functions 163
5.1.6 Dialog Functions... 164
5.1.7 Administrative Functions 165
5.1.8 Long-Filename Functions 165

Page 5 of 239

vi Microso" Windows Device Driver Adaptation Guide

5.1.9 Error-Handli ng Functions 166
5.1.10 User Functions 166

5.2 About the Network-Driver Support Software 167
5.2.1 Network Support for 386 Enhanced-Mode Windows.............. 167
5.2.2 Networks in Standard-Mode Windows 17l
5.2.3 Exported Functions 172
5.2.4 Reserved Ordinals 173
5.2.5 String Handling 173
5.2.6 Passing Buffers 173
5.2.7 Data Structures 173

5.3 Function Reference 174
5.4 Long-Filename Function Reference................................ 208
5.5 Structure Reference 220
5.6 Return Values 226

Chapler 6 Keyboard Drivers .. 229
6.1 About the Keyboard Driver 231

6.1.1 Initializing the Driver. ... 231
6.1.2 Enabling and Disabling the Driver ... 232
6.1.3 Keyboard-Interrupt Handler 233
6.1.4 Keyboard-Event Callback Function 234
6.1.5 Initialization File Entries for Keyboard 235
6.1 .6 Translations 235
6.1.7 Virtual-Key Codes 236
6.1.8 ANSI Characters 243
6.1.9 OEM Characters 243
6.1 .10 Scan Codes 244
6.1.11 Key-Translation Tables......... 244
6.1 .12 Language-Specific Libraries........................... 245
6.1.13 Miscellaneous Keyboard Services 246

6.2 Function Reference.. 246
6.3 Structure Reference 264
6.4 Keyboard-Initialization Setting Reference 266

Chapler 7 Communication Drivers ... 269
7.1 About the Communications Driver 271

7.1.1 Base Address and IRQ Selection .. 271
7.1.2 16550a UART FIFO Buffer 271
7.1.3 CommWriteString and EnableNotification Functions 272

Page 6 of 239

Contents vii

7.1.4 Communication Escapes 272
7 .l.5 Baud-Rate Indexes 272

7.2 Function Reference 273
7.3 Structure Reference 288

Chapter 8 Mouse Drivers .. 295
8.1 About the Mouse Driver 297

8.1.1 Mouse Initialization and the Interrupt Handler 297
8.1.2 Serial Port Usage .. 298
8.1.3 Customizing the Mouse Dialog Box in Control Panel.. 298
8.1.4 Windows for Pen Computing Compatibility.. 303
8.1.5 Mouse Support for Non-Windows Applications 304

8.2 Function Reference.... 306
8.3 Structure Reference 31 J

Chapter 9 Miscellaneous Drivers ... 313
9.1 About the Audio Drivers 315
9.2 About the Language Libraries 315
9.3 About the Installable-Driver Interface 315

Part 2 General Reference

Chapter 10 Graphics Function Directory .. 319

Chapter 11 Graphics-Driver Escapes ... 395
11.1 About the Graphics-Driver Escapes............................... 397
J 1.2 Obsolete Escapes 397
11.3 Escape Reference. 398

Chapter 12 Graphics-Driver Types and Structures ... 453
12.1 Types 455
12.2 Structures .. 456

Chapter 13 Font Files ... 515
13.1 Font Files .. 517
13.2 RasterGlyphs 518
13.3 Vector Glyphs ... 519

Page 7 of 239

viii Microsoft Windows Device Driver Adaptation Guide

Chapter 14 Setup Information Files ... 521
14.1 About the Infonnation Files 523

14.1.1 Infonnation-File Syntax 524
14.1.2 Information Files for Display Dri vers 525
14. 1.3 Information Files for Printer Drivers 525
14. I A Information Files for Network Installation..................................... 526

14.2 Information-File Section Reference 526

Part 3 Appendixes

Appendix A Binary and Ternary Raster-Operation Codes ... 551
A. I Binary Raster Operations 551
A.2 Ternary Raster Operations............................ 554

Appendix B Character Sets .. 563
B.I ANSI Character Set 564
B.2 Symbol Character Set 565
B.3 OEM Character Set 566

Appendix C Windows Interrupt2Fh Services and Notifications ... 567
C I About the Services and Notifications 567

C. I.I Service Functions 568
C 1.2 Noti ficati on Functions 569
C I.3 Critical Section Handling.. 569
C IA Releasing the Time Slice 570
C I.5 Virtual -Display Device Services and Notifications 570

C2 Service and Notification Function Reference 571
C3 Virtual-Display Device Function Reference 586
C.4 Structure Reference 592

Page 8 of 239

Overview of Windows Drivers

Chapter 1

l.l Whal Is a Device Driver? 5
1.2 Creating a Device Driver 7
1.3 Guidelines for Designing and Writing a Driver 8
1.4 Windows Calling Conventions 8
1.5 Header Files 9

Page 9 of 239

-

Chapter 1 Overview of Windows Drivers 5

This chapter describes the purpose and function of Microsoft Windows 3.1 device
drivers. You should create a Windows device driver for your device if it is not 100
percent compatible with the devices suppot1ed by the Windows 3.1 retail device
drivers, or if you want to offer Windows users access to unique features of your
device.

1.1 What Is a Device Driver?
A Windows device driver is a dynamic-link library (DLL) that Windows uses to
interact with a hardware device such as a display or a keyboard. Rather than
access devices directly, Windows loads device drivers and calls functions in the
drivers to carry out actions on the device. Each device driver exports a set of func­
tions; Windows calls these functions to complete an action, such as drawing a
circle or translating a keyboard scan code. The driver functions also contain the
device-specific code needed to carry out actions on the device.

Windows requires device drivers for the di splay, keyboard, and communication
ports. Mouse, network, and printer drivers are required if the user adds these op­
tional devices to the system. The following is a brief description of each type of
driver.

Driver

Communications

Display

Description

Supports serial and parallel device communications. Windows
loads and enables this driver, checking the COMM.DRV setting
in the SYSTEM.INI file to determine the filename of the driver
to load. The conununications driver must provide function s to
enable and disable the communication device, to get and set the
device status, and read and write data through the device. The
USER module provides a general interface for Windows applica­
tions to call, and translates these calls into appropriate cails to the
driver. The module name for the conununications driver is
COMM.

Supports the system display and cursor for pointing devices.
Windows loads and enables the display driver, checking the
DlSPLAYDRY setting in the SYSTEM.lNI file to detennine the
filename of the driver to load . The display driver must provide
functions to enable and disable the device, get infonnation about
the capabilities of the device, carry out graphics operations such
as drawing lines and transferring bitmaps, and to show and hide a
cursor. Windows and Windows-based applications call functions
in the GDI module to carry out graphics operations on the display,
and GDI translates these calls into corresponding calls to the
driver. Depending on the capabilities of the display device, GDI
may generate many calls [Q the driver from a single call from an
application. The module name for the display driver is DISPLAY.

Page 10 of 239

6 Microsoft Windows Device Driver Adaptation Guide

Driver

Grabber

Keyboard

Mouse

Network

Description

Supports the management of non-Windows applications. Al­
though not technically a driver, a display grabber plays a s imilar
role as a device driver in helping the WINOLDAP module man­
age non-Windows applications. A display grabber provides the
support Windows needs to share the display device with 0011-

Windows applications. WINOLDAP loads the display grabbers
and calls grabber functions to carry out tasks such as capturing the
contents of the screen, or managing output from a non-Windows
application. Windows requires unique display grabbers for stan­
dard and 386 enhanced modes.

Supports keyboard input. Windows loads and enables the key­
board driver, checIGng the KEYBOARD. DRY setting in the
SYSTEM.IN! file to determine the filename of the driver to load.
The keyboard driver must provide functions to enable and disable
the keyboard , and to translate keyboard scan codes into character
values and virtual-key codes. A keyboard driver also re places the
MS-DOS keyboard-interrupt handler with its own. When the
driver is enabled, the USER module provides the address of a call­
back function thallhe driver calls whenever an event occurs, such
a keystroke. The module name for the keyboard driver is
KEYBOARD.

Supports mouse or other pointing device input. Because a mouse
is optional, Windows checks the MOUSEDRY serting in the
SYSTEM.INl fi le to detennjne whether to load a driver. A mouse
driver must provide function s to enable and disable the mouse, rc­
uieve information about the mouse, and allow users to mooify the
operation of the mouse through Control Panel . When the driver is
enabled, the USER module provides the address of a callback
function that the driver calls whenever an event occurs, such as a
mouse movement. The module name for the mouse driver is
MOUSE.

Supports networks. Because a network is optional. Windows
checks tile NETWORKDRY setting in the SYSTEM.IN1 file to
determjne whether to 10ad a driver. A network driver must provide
funct ions to retrieve information about the network, redirect local
drives, and add jobs to a network print queue. The network driver
may usc MS-DOS functions , NetBJOS routines, and network soft­
ware to complete these network requests. Windows does not re­
quire a specific module name for the network driver.

Page 11 of 239

-

Driver

Primer

Chapter 1 Overview of Windows Drivers 7

Description

Supports printer output. Windows applications indirectly load
printer drivers by csUing the CreateDC function in the GDI mod­
ule. A printer driver must provide functions to enable and disable
the printer, to get information about the capabilities of the printer,
to carry out graphics operations such as drawing lines and trans­
ferring bitmaps, and to display dialog boxes to let lhe user change
printer settings. Windows and Windows-balicd applications caU
functions in the GD! module to carry out graphics operations on
the printer, and GO! translates these calls into corresponding ca ll s
to t.he driver. Windows does not require a specific module name
for a printer driver.

Since the network and printer dri vers are optional, their module names are not re­
served. However, you should name your driver to represent your device appro­
priately. For example, you could use PSCRIPT for a PostScript® printer driver or
MSNET for an MS®-Network driver.

1.2 Creating a Device Driver
You create a device driver either by adapting a sample driver, or writing a driver
from scratch . You can write Windows device drivers in assembly language or in a
high-level language such as the C language. Assembly language programmers can
use the CMACROS assembly-language macro package.

To create a device driver, you need to:

1. Read the chapter in this manual that describes the driver for your type of device.

2. Write the required driver function s.

3. Create and compile the required resources.

Every device driver must have at least a VERSIONINFO resource that
contains the version stamp for the driver. Setup and Control Panel both
look for this resource when installing drivers . For more information about
VERSIONINFO and other resources, see the Microsoft Windows
Programmer 's Reference.

4. Create a module-definition file that identifies the appropriate module name for
your driver, and exports the required functions.

5. Assemble and link your driver.

6. Test your driver using the debugging version of Windows.

7. Create an installation file (OEMSETUP.INF) for your driver and related files.

8. Create your final di stribution disk or disks .

Page 12 of 239

8 Microsoft Windows Device Driver Adaptation Guide

1.3 Guidelines for Designing and Writing a Driver
When designing and writing your device driver, follow these guidelines:

• Make every effort to make your device driver as small as possible; reserve
system memory for applications.

• Use multiple, discardable code segments to help reduce the amount of driver
code needed in memory at any given ti me.

• Use an automatic data segment only if necessary.

• Make resources discardable, and lock them in memory only when needed.

• Use the stack sparingly. Because device drivers use the stack of the application
that initiated the call to the driver, there is no way for the driver to determine
how much available space is on the stack.

• Check for NULL pointers to avoid a general protection fau lts from using an in­
valid selector.

• Check the segment limits when reading from or writing to allocated segments
to avoid a general protection fault from attempting to access data beyond the
end of a segment.

• Use the __ ahincr constant when creating selectors for huge memory (allocated
memory greater than 64 kilobytes). Other methods of selector arithmetic can
create invalid selectors and cause general protection faults.

• Create code-segment aliases for any code to be executed from data segments.
Attempting to call or jump to a data segment address generates a general protec­
tion fault.

1.4 Windows Calling Conventions
This manual presents the syntax of most functions in C-Ianguage notation. All
such functions are assumed to be declared as FAR PASCAL functions , and
Windows will call these functions as such. In general, exported functions in a
device driver must execUte the standard Windows prolog on eutry and epilog
on exit. For more information about the prolog and epilog, see the Microsoft
Windows Programmer's Reference.

The following list highlights the calling conventions:

• Set the DS register to the selector of the driver's automatic data segment.

• Save and restore the fOllowing registers if used : SS, SP, BP, SI, DI, and DS.

• Clear the direction flag if it has been set or modified.

Page 13 of 239

Chapter 1 Overview ot Windows Orivers 9

• Place 16-bit return values in the AX register; 32-bit values in the DX:AX
register pair.

• Execute aFAR return.

Windows pushes all parameters on the stack in a left to right order (the last pa­
rameter shown in the function syntax is closest to the stack pointer). Windows also
passes pointers parameters as 32-bit quantities, pushing the selector first then the
offset. This allows exported functions to use the Ids or les instructions to retrieve
pointers from the stack.

1.5 Header Files
When writing assembly-language drivers, you may need to use the following
header files.

File

CMACROS.lNC

GDIDEFS.lNC

WlNDEFS.lNC

Description

Contains a set of assernbly~ language macros that provide a
simplified interface to Lhe function and segment conventions of
high-level languages, such as C and Pascal.
Contains definitions for symbolic constants and structures. To
shorten the assembly time and cross·reference li sts, you can selec­
ti vely include parts of GDiDEFS.lNC by defining equates that
tell the assembler which parts to include,

Equate

incLogicai equ I

inc Device equ 1

incFom equ I

incDrawMode equ I

incOutput equ I

incControl equ 1

Description

Includes logical pen, brush, and font
definitions.
Includes the symbolic names for
GDIlNFO definitions.
Includes the FONTINFO and
TEXTXFORM definitions.

Includes the DRAWMODE data
structure definitions.
IncJudes the output style constants.
Includes the escape number definitions.

Contains definitions for symbolic constants and structures used
with Windows functions.

Page 14 of 239

-

Display Drivers

Chapter 2

2.1 About the Display Dri ver. IS
2.1.1 Display-Driver Initialization.............. 15
2.1.2 GDI Information Structure 16

2.1.3 Enabling and Disabling the Physical Device 16
2.1.4 Hardware Initialization 18

2..1.4.1 Enabling and Disabling the Display Hardware 18
2.1.4.2 Screen Switching 18

2. 1.5 Physical Objects............. 19
2.1 .5.1 Physical Pens.... 20
2.1.5.2 Physical Brushes 20

2.1 .6 Physical Colors 21
2.1.7 Screen Metrics 21

2.1.7.1 Logical Pixels Per r nch 21
2.1.7.2 Screen Resol ution and Size 22

2.1.7.3 Aspect Ratios 22
2.1.7.4 Styled-Line Length..... 22

2.1.7.5 Standard Mapping Modes 22
2. 1.8 Lines, Curves. and Polygons 23

2.1 .8.1 Curves 24

2.1.8.2 Polylines 24
2.1.8.3 Polygons 25
2.1 .8 .4
2.1.8.5

Hardware Capabilities...... 25
Partial Support for Capabilities. 26

Page 15 of 239

12 Microsoft Windows Device Driver Adaptation Guide

2.1.9 Text 26
2.1.9.1
2.1.9.2
2.1.9.3
2.1.9.4
2.1.9.5
2.1.9.6

2.1.9.7

Output Precision 27
Clipping 28
Rotation 28
Scaling and Scaling Freedom......... 28
Cosmetics 29
Raster and Vector Fonts 29

Orientation and Escapement 29
2.1.10 Fonts 30

2.1.11

2.1.12

2.1.10.1 Raster Fonts 31
2.1.10.2 Vector Fonts 31
2.1.10.3 Big Fonts 31
2.1.10.4 TrueType Fonts 32

2.1.10.5 Overlapping Glyphs 32
2.1.10.6 Font Caching for TrueType Fonts 34
Clipping.. 34
Bitmaps 35
2.1.12.1 Bitmap Forma!... 35
2.1.12.2 Pixel Outpu!... 35
2.1.12.3

2.1.12.4
2.1.12.5
2.1.12.6
2.1.12.7

Bit-Block Transfers 36

Transparent-Block Transfers...... 36
Fast Borders.................. 37
Saved Bitmaps 37
Flood Fill... 37

2.1.13 Device-IndependentBitmaps 37
2.1.1 3.1 Logical-Color Tables................... 38
2.1.13.2 DIB to Device 39

2.1.14 Device Bitmaps 39
2.1.15 Color Palettes 40

2.1.15 .1 Hardware-PaletteInitialization 41
2.1.15.2 Palette-Translation Table .. 42
2.1.15.3 UpdateColorsFunction ... 43
2.1.15.4 Black-and-White Palette Entries 43

2.1.16 DIBswithColor-PaletteManagement 43
2.1 .17 Stub Functions 44
2.1 .18 Cursors 44

2.1.19 Display-Driver Escapes 45

Page 16 of 239

-

Chapter 2 Display Drivers 13

2.1.20 Mouse Trails 45
2.1 .21 Multiple-Resolution Drivers 46

2.1.21.1 Resources and Resource Mapping 47
2.1.21 .2 Installation Information........... 47

2.1.22 Microsoft Windows for Pen-Computing Extensions 48
2.1.22.1 Inking Functions.... 48
2.1.22.2 Inking Resources 49

2.2 About Display-Driver Resources.... 49
2.2.1 Stock-Fonts Resource 50
2.2.2 Configuration Resource 51

2.2.3 Color-Table Resource 5 I
2.2.4 Icon. Cursor, and Bitmap Resources 51

2.2.4.1 Cursors 52
2.2.4.2 Icons 52
2.2.4.3 Bitmaps. 52

2.2.5 Large Icons and Cursors 54

2.2.6 Optimizing Performance 54
2.2.6.1 Tips for Writing Transparent Text... 54
2.2.6.2 Tips for Using the Interrupt Flag 55

2.3 Function Reference 55
2.4 Windows for Pen Computing Function Reference. 62
2.5 File-Format Reference 64

Page 17 of 239

Chapter 2 Display Drivers 15

The Microsoft Windows display driver manages all screen output for Windows
applications. A display driver provides a set offunctions that Windows uses to
enable the display hardware, retrieve information about the display, and draw text
and graphics.

2.1 About the Display Driver
The display driver is a dynamic-link library that consist of a set of graphics func­
tions for a particular di splay device. These functions translate device-independent
graphics commands from the graphic-device interface (GDI) into the commands
and actions the display device needs to draw graphics on the screen. The functions
also give information LO Windows and Windows applications about color resolu­
tion, screen size and resolution, graphics capabilities, and other advanced fearures
that may be available on the hardware. Applications use this information LO create
the desired screen output.

Although Windows reguires only a few functions to start, each Windows applica­
tion the user starts can potentially use any GO! functions. This means a display
driver should provide as complete support for GDI as possible.

2.1.1 Display-Driver Initialization
Display-driver initiali zation occurs when Windows creates the original-device
context for the Windows desktop. To create the device context, Windows loads
the display driver and calls the driver's initialization routine.

Although the initialization routine can carry out any task, many drivers do the fol­
lowing:

• Determine whether 386 enhanced-mode Windows screen switching is required

• Initialize display hardware

• Determine whed1er mouse trails support is required

• Install any modal functions

Modal functions have implementations based on CPU type, hardware configura­
tion, or Windows mode of operation. For example, the ExtTextOut function for a
80386 CPU may use 32-bit registers but the same function for a 80826 uses 16-bit
registers. In another example, a driver may install cursor functions for a hardware
cursor in one hardware configuration and install functions for a software cursor in
another.

Although a display driver may carry out some hardware initialization in its initiali­
zation routine, it should wait until GO! calls the driver's Enable function for a sec­
ond time before fully initializing the video hardware.

Page 18 of 239

l

16 Microsoft Windows Device Driver Adaptation Guide

The initialization routine returns to Windows if the initialization was successful.
Otherwise, it returns zero and Windows immediately tenninates.

2.1.2 GDllnformation Structure
Every display driver has a GDIINFO structure that specifies the display's capabili­
ties and characteristics. GDi uses this information to detennine what the display
driver can do and what GO! must simulate. The GO! information can be classified
as follows:

• Driver management

• Driver capabilities

• Device dimensions

The driver-management information specifies the version of Windows for which
the driver was written, and the type of technology the display uses to generate out­
put. Additionally, the driver-management information also specifies the size in
byres of the PDEVICE structure, and number of device contexts the driver can
manage at the same time. The version number specifies a Windows version (not
the display driver version). For example, a display driver written for Windows 3.1
should set the dpVersion member to Ox30A.

The driver-capabilities information specifies the capabilities of the display device,
such as whether the display hardware can draw polygons and ellipses, scale text,
or clip output. Driver capabilities also specify the number of brushes, pens, fonts,
and colors available on the display and whether the display can handle bitmaps
and color palettes.

The device-dimension information specifies the maximum width and height of the
screen in both millimeters and device units, the number of color bits or planes, the
aspect ratio, the minimum length of a dot in a styled line, and the number of
device units (or pixels per inch).

The subsequent sections of this chapter describe the GDIINFO structure more
fully. Each section describes the capabilities associated with given members and
explains how to determine what capabilities a display driver can support.

2.1.3 Enabling and Disabling the Physical Device
GDi enables the display driver by calling the Enable function and directing the
driver to initialize a physical device for subsequent graphics output. A physical
device is a PDEVICE structure that represents the display and its current operat­
ing state. A display driver uses the physical device information to detennine how
to carry out specific tasks, such as which display mode to use. The display driver
initializes the physical device by copying information to the PDEVICE structure.

Page 19 of 239

Chapter 2 Display Drivers 17

In 386 enhanced-mode Windows, GOI calls the Enable function only when the
display driver is first loaded. In standard-mode Windows, GDI calls the Enable
function when first loaded and whenever the user switches back to Windows from
a non-Windows application.

GOI calls Enable twice: Once to retrieve a copy of the driver's GDIINFO struc­
ture, and a second time to initialize the PDEVICE structure. After the first call,
GOT uses the dpDEVICEsize member in the GDIINFO structure to determine
the size of the driver' s PDEVICE structure. GOT then allocates memory for the
structure and calls Enable for the second time, passing a pointer to structure. At
this point, the driver initializes the display hardware and the structure.

When Windows switches back from a non-Windows application, GDI calls
Enable once. The driver reinitializes the display hardware and the PDEVICE
structure, reinitializing any screen data that may have been discarded when
Windows switched to the non-Windows application.

Although only the display driver initializes and uses the PDEVICE structure, it
is GOI that allocates memory for the structure, determines when to pass it to the
driver' s output functions , and deletes the structure when it is no longer needed.
Except for the first two bytes (16 bits) of the PDEVICE structure, the content and
format of the structure depends entirely on the display driver. Typically, the driver
includes all the information that the output functions need to generate appropriate
graphics commands. The first two bytes, on the other hand, must be set to a non­
zero value. GOI reserves zero to indicate a PBITMAP structure. GOI creates and
uses PBITMAP structures in place of PDEVICE structures when an application
creates a memory-device context.

GDI disables the display driver by calling the Disable function when Windows
quits. GO! expects the driver to free any resources associated with the physical
device and to restore the display hardware to the state before Windows started.
After the driver returns from the Disable function, GOI frees the memory it al­
located for the PDEVICE structure and frees the driver, removing any driver code
and data from memory.

In standard-mode Windows, GO! also calls Disable when the user switches to a
non-Windows application. In this case, GDl temporarily disables the physical
device, expecting the driver to select a text mode for the display hardware so that
the non-Windows application has a nongraphics mode in which to start. Althougb
Windows saves the display driver's data segment when it switches, it discards all
other segments. Therefore, the display driver should save any data that may be dis­
carded so that the data can be restored when Windows switches back from the non­
Windows application.

Page 20 of 239

18 Microsoft Windows Device Driver Adaptation Guide

2.1.4 Hardware Initialization
A display driver sets the display mode and registers for the display hardware
whenever GO! calls the Enable and Disable functions. When running under 386
enbanced-mode Windows (or other operating systems featuring pre-emptive multi­
tasking), tlle driver is also responsible for saving and restoring the display mode
and registers whenever Windows is switching between Windows applications and
non-Windows applications.

2.1.4.1 Enabling and Disabling the Display Hardware
A display driver prepares the display hardware for Windows whenever GO! calls
the Enable function. To prepare the hardware, the display driver saves the cun-ent
display mode, then sets the display hardware to graphics mode, initializing hard­
ware registers as needed . Although GO! calls the BitBlt function to clear the
screen as Windows starts, many display drivers eliminate the possibility of the
user seeing any random data by also clearing the screen as they initial ize the dis­
play hardware.

A display driver restores the display hardware to its original state whenever GOl
calls the Disable function. To restore the display hardware, the driver sets the
display hardware to a text mode, and restores the original number of lines. If
possible, the driver should use the same text mode as before Windows started.

2.1.4.2 Screen Switching
In a pre-emptive multitasking environment, such as 386 enhanced-mode
Windows, the display driver should save and restore the display hardware
whenever the environment switches Windows to or from the foreground. 386
enhanced-mode Windows switches Windows to and from the foreground when­
ever the user switches to or from non-Windows applications. Saving and restor­
ing the display hardware ensures that the display driver is not affected by changes
non-Windows applications make to the display hardware.

To detect screen switches, the display driver hooks Inten-upt 2Fh and checks for
the Notify Background Switch and Notify Foreground Switch functions (Intenupt
2Fh Functions 400lh and 4002h). When the driver detects one of these functions,
it either saves or restores the display mode and registers accordingly. When the
driver detects a switch to the foreground, the driver also calls the RepaintScreen
function (USER.275) to direct Windows to restore the entire contents of the screen
by repainting it

The display driver should hook Inten-upl 2Fh whenever GO! calls the Enable func­
tion. The driver hooks the intenupt by using the MS-DOS functions Get Intenupt
Vector (Inten-upt 21h Function 35h) and Set Inten-upt Vector (Inten-upt 21h Fnnc­
tion 25h).

Page 21 of 239

Chapter 2 Display Drivers 19

A display driver can temporarily disable screen switching by calling the Enter
Critical Section function (Interrupt 2Fh Function 4003h). This function prevents
386 enhanced-mode Windows from proceeding with a switch until the display
driver calls Exit Critical Section (Interrupt 2Fh Function 4004h).

If a display driver uses portions of video memory that are not used by the current
display mode (for example, the driver uses extra video RAM for savi ng screen bit­
maps), the driver should call the Enable VM-Assisted SavelRestore function (Inter­
rupt 2Fh Function 40ooh) to pass 386 enhanced-mode Windows the address of
save and restore flags . Windows sets or clears these flags depending on whether it
used the extra video memory while a non-Windows application was in the fore­
ground.ln such cases, the driver must call the Disable VM-Assisted SavelRestore
function (Interrupt 2Fh Function 4007h) to disable this feature whenever GDI calls
the Disable function.

Although the display driver is responsible for repainting the screen when
Windows is switched to the foreground, occasionally the driver must postpone
repainting because Windows is in a critical section and is not ready to process the
repainting. In such cases, Windows calls the UserRepaintDisable functi on in the
display driver directing the driver to postpone repainting. Windows will call User­
RepaintDisablc a second time when it completes the critical section.

2.1.5 Physical Objects
Physical objects define the atfributes (such as color, width, and style) of lines,
patterns, and characters drawn by a display driver. Physical objects correspond to
the logical pens, brushes. and fonts that Windows applications create but contain
device-dependent information that the display driver needs to generate output. A
display driver creates physical objects when GD I calls the RealizeObject func­
tion . The driver uses physical objects when GO! calls output functions such as
Output, BitBlt, and ExtTextOut.

The dpNumPens, dpNumBrushes, and dpNumFonts members in the GDIINFO
structure specify the number of pens, brushes, and fonts a display driver supports.
A display driver must supply information about tilese Objects whenever GOT re­
quests it. GOT calls the EnumObj function to request infoanation about pens and
brushes ; it calls the EnumDFonts function to request information about device
fonts. For each pen, brush, or font, the display driver calls the callback function.
GDI pass a LPEN, LBRUSH, or LFONT structure to the caJlback function.
These structures specify the attributes of the object.

Although a display driver can use display hardware to support objects, the driver
must be able to generate the same output both on the screen and in memory bit­
maps.

Page 22 of 239

Chapter 2 Display Drivers 19

A display driver can temporarily disable screen switching by calling the Enter

Critical Section function (Interrupt 2Fh Function 400311). This function prevents

386 enhanced-mode Windows from proceeding with a switch until the display
driver calls Exit Critical Section (Interrupt 2Fh Function 4004h).

If a display driver uses portions of video memory that are not used by the current
display mode (for example. the driver uses extra video RAM for saving screen bitA
maps). the driver should call the Enable VM-Assisted Save/Restore function (Inter-
rupt 2Fh Function 4000b) to pass 386 enhanced-mode Windows the address of

save and restore flags. Windows sets or clears these flags depending on whether it

used the extra video memory while a non-Windows application was in the fore-
ground. In such cases, the driver must call the Disable VM-Assisted Save/Restore

function (Interrupt 2Fh Function 4007h) to disable this feature whenever GDI calls
the Disable function.

Although the display driver is responsible for repainting the screen when

Windows is switched to the foreground, occasionally the driver must postpone

repainting because Windows is in a critical section and is not ready to process the
repainting. In such cases. Windows calls the UserRepa'mtDisable function in the-

display driver directing the driver to postpone repainting. Windows will call User-

RepaintDisable a second time when it completes the critical section.

2.1.5 Physical Objects

Physical objects define the attributes (such as color, width. and style) of lines,

patterns, and characters drawn by a display driver. Physical objects correspond to
the logical pens, brushes. and fonts that Windows applications create but contain

device—dependent information that the display driver needs to generate output. A

display driver creates physical objects when GDI calls the RealizeObject func-

tion. The driver uses physical objects when GDI calls output functions such as
Output. BitBlt. and ExtTextOut.

The deumPens, deumBrushes, and deumFonts members in the GDIINFO

structure specify the number of pens, brushes. and fonts a display driver supports.

A display driver must supply information about these objects whenever GD] re-
quests it. GDI calls the EnumObj function to request information about pens and

brushes; it calls the EnumDFonts function to request information about device
fonts. For each pen, brush, or font, the display driver calls the callback function.
GDI pass a LPEN, LBRUSH. or LPONT structure to the callback function.

These structures specify the attributes of the object.

Although a display driver can use display hardware to support objects. the driver

must be able to generate the same output both on the screen and in memory bit-
maps.

Page 22 of 239

-

20 Microsoft Windows Device Driver Adaptation Guide

2.1.5.1 Physical Pens
A physical pen specifies the color, style, and width of polylines and borders drawn
by a display driver. A display driver realizes a physical pen by filling a PPEN
structure witb information about the pen. The content and format of the PPEN
structure depends entirely on the display driver. In general, the driver copies all
the information the Output function need to draw lines.

A display driver should support the standard GO! pen styles: Solid, dashed, dotted,
dot-dashed, dash-dot-dotted, and empty. A display driver must support the empty
style although it is not required to supply information about it when GOI calls
EnumObj. When drawing with a empty pen, the pen itself does not contribute to
the output, but the driver may still draw a line if, for example, the raster operation
combines the destination with itself using the XOR operator (OOx) or inverts the
destination (On).

A display driver that supports wide and styled lines must use the same drawing al­
gorithms for lines drawn on the screen and in memory bitmaps. Because GOI effi­
ciently synthesizes both wide and styled lines, some display drivers do not support
them.

Under certain conditions, GO! may pass the display driver a request to realize a
wide or styled line even though tbe display driver has specified that it does not sup­
port them. In such cases, the driver should realize a solid, one-pixel wide (or nomi­
nal) pen. GO! will use this pen to simulate styled and wide lines.

2.1.5.2 Physical Brushes
A physical brush specifies the color and style of patterns used to flIl figures drawn
by the Output function and to combine with bitmaps drawn by the BitBlt func­
tion. A display driver realizes a physical brush by ftlling a PBRUSH structure
with information about the brush. The content and format of the PBRUSH struc­
ture depends entirely on the display driver.

A display driver should support the standard GDI brush styles: solid, hatched,
patterned, and hollow. A display driver must support hollow brushes although it
is not required to provide information about it when GO! calls the EnumObj timc­
tion. When drawing with a hollow brush, the brush itself does not contribute to the
output, but other factors, such as a raster operation that combines the destination
with itself or inverts the destination, can cause the driver to generate output.

The display driver can dither solid brushes if the specified color does not exactly
match a physical color. Otherwise, it should choose the closes! available color for
the brush.

Page 23 of 239

Chapler 2 Display Drivers 21

The display driver should support the standard hatched brush styles: horizontal,
vertical, forward diagonal, backward diagonal , cross, and diagonal crosshatch. On
raster displays, a driver typically implements these styles as predefined, 8-by-8 bit
patterns.

On color displays, the display driver should support both monochrome and color
bitmaps for patterned brushes. When drawing monochrome bitmaps, the driver
sets I bit to the cUlTent text color and 0 bits to the current background color. The
text and background colors are specified in the DRA WMODE structure passed to
these functions . A display driver is not required to provide information about pat­
terned brushes when GO! calls the EnumObj function.

2.1.6 Physical Colors
A display driver is responsible for translating logical colors (RGB values) into
physical colors that are appropriate to the display hardware. Similarly, it must
translate physical colors to logical colors. GOl calls the ColorInfo function when­
ever it needs a translated color.

If the display device provides a color palette, the driver converts colors to palette
indexes. To indicate a palette index, the driver always sets the high byte of the
index to OxFF.

To indicate an RGB color value, the display driver sets the high byte to zero.

2.1.7 Screen Metrics
The screen metrics, specified by the GDIINFO structure, define such items as
width and height in millimeters, screen resolution, aspect ratio, and mapping
modes. GO! uses screen metrics to generate coordinate data that is appropriate
for the display hardware.

2.1 .7.1 logical Pixels Per Inch
A display driver sets the dpLogPixelsX and dpLogPixelsY members to specify
the number of pixels per logical inch along horizontal and vertical lines on the
screen . A display driver uses logical inches (about 40 percent larger than physical
inches) for readability reasons.

The GOI font mapper uses these values to determine which screen fonts to use
with the display. The display driver should make sure the dpLogPixelsX and
dpLogPixelsY members match an existing fonl. If these members do not match
one of the default Screen fonts, an appropriate font must be provided with the dis­
play driver.

Page 24 of 239

22 Microsoft Windows Device Driver Adaptation Guide

2.1.7.2 Screen Resolution and Size
A display driver sets the dpHorzRes and dpYertRes members to specify the
width and height of the screen in pixels, and sets the dpHorzSize and dpYertSize
members to specify the width and height of the screen in millimeters, These values
must bave the following relationships:

dpHorzSize (dpHorzRes/dpLogP;xelsX) * 25.4

dpVertSize (dpVertRes/dpLogPixelsYl * 25.4

In these equations, 25.4 represents the number of millimeters per inch.

2.1.7.3 Aspect Ratios
The aspect ratio defines the relative dimensions of the display's pixels. The ratio
consists of three values: an X-, y., and an xy·aspect. These represent the relative
width, height, and diagonal length (or hypotenuse) of a pixel. GO! uses the aspect
ratio to determine how to draw squares and circles as well as drawing lines at an
angle.

The aspect values have the following relationship:

dpAspectXY ** 2 == (dpAspectX ** 2) + (dpAspectY ** 2)

Since the dimensions are given as relative values, they may be scaled as needed
to get accurate integer values. They should be kept under 1000 for numerical
stability in GO! calculations . For example, a device with a I: I aspect ratio (such as
a VGA) can use 100 for dpAspectX and dpAspectY and 141 (100 * 1.41421. ..)
for dpAspectXY.

2.1 .7.4 Styled-line length
The styled·line length (dpStyleLen) specifies the length of the smallest line seg­
ment the display driver uses to build the dots and dashes of a styled line. GDI uses
this number when it draws into bitmaps and on displays . To ensure consistency
between displays and printers, the styled line segment leogth is always two times
the value of the dpAspectXY member.

2.1.7.5 Standard Mapping Modes
Some Windows application programs rely on standard mapping modes to produce
printer output with spacing that is proportional to the screen. By using the standard
mapping modes, an application can show a border or graphic picture that is propor·
tionately the same size on the printer as it is on the screen .

Page 25 of 239

F

22 Microsoft Windows Device Driver Adaptation Guide

2.1.7.2 Screen Resolution and Size

A display driver sets the deorzRes and deertRes members to specify the
width and height of the screen in pixels, and sets the deorzSize and deertSize
members to specify the width and height of the screen in millimeters. These values

must have the following relationships:

denrzSize = (anorzRes/dpLogPixeisX} * 25.4

deertSize = (deertRes/dpLogPixeisY) * 25.4

In these equations, 25.4 represents the number of millimeters per inch.

2.1.7.3 Aspect Ratios

The aspect ratio defines the relative dimensions of the display’s pixels. The ratio

consists of three values: an x-, y-, and an xy—aspect. These represent the relative
width, height. and diagonal length (or hypotenuse) of a pixel. GDI uses the aspect
ratio to determine how to draw squares and circles as well as drawing lines at an

angle.

The aspect values have the following relationship:

dpAspectXY ** 2 == (dpAspectx ** 2) + (dpAspectY ** 2)

Since the dimensions are given as relative values, they may be scaled as needed

to get accurate integer values. They should be kept under 1000 for numerical
stability in GDI calculations. For example, a device with a 1:1 aspect ratio (such as
a VGA) can use 100 for dpAspectX and dpAspectY and 141 ([00 * 1.41421...)
for dpAspectXY.

2.1.7.4 Styled-Line Length

The styled—line length (dpStyleLen) specifies the length of the smallest line seg-
ment the display driver uses to build the dots and dashes of a styled line. GDI uses

this number when it draws into bitmaps and on displays. To ensure consistency
between displays and printers, the styled line segment length is always two times
the value of the dpAspectXY member.

2.1.7.5 Standard Mapping Modes

Some Windows application programs rely on standard mapping modes to produce
printer output with spacing that is proportional to the screen. By using the standard

mapping modes, an application can show a border or graphic picture that is propor-

tionately the same size on the printer as it is on the screen.

Page 25 of 239

-

Chapter 2 Display Drivers 23

All standard mapping-mode ratios must be the same because it might be preferable
for an application to use the metTic system rather than the inches/feet (English) sys­
tem for its calculations. For example, Windows Write allows the user to choose
whether to express the border widths in millimeters or inches. Therefore, it is up to
the di splay driver to provide the correct numbers.

Standard mapping modes are expressed as two coordinate pairs: the width and
height (in logical units) of a "window" and the width and height (in physical units,
that is, pixels) of a "viewport" that maps onto that window. The driver for a VGA
adapter, for example, might set the coordinates pairs for the low-resolution metric
mapping mode (tenths-of-millimeters) to (254,254) and (96,96). These coordinates
map an I-inch by I-inch window (25.4 millimeters equals I inch) to a 96-pixel by
96-pixel viewport. These coordinate pairs define a set of equations that specify
how coordinates in logical space are transformed to coordinates in device space.

The standard mapping-made members in the GOIINFO structure can be set as
follows:

dpM LoWin.x dpH orzS iz e*10; dpMLoW in .y := dpVertSize *10 ;
dpMLoVpt.x dpHorzRes; dpMLoVpt.y = - dpVertRes;

dp MHiW in .x dpHorzSize*100; dpMH i Wi n. y dpVertSize *100;
dpMHi Vpt. x dpHorzResj dpMH iV pt.y -dpVertRes ;

dpELoWin.x dpHorzSize*1000; dpELoWin.y dpVertSize *1000;
dpELoVpt.x dpHorzRes * 254 ; dpELoVpt.y -dpVertRes * 254;

dpEHiWin .x dpHorzSize*10000; dpEHiWin .y '" dpVertSize *10000;
dpEHi Vpt. x dpHorzRes • 25 4; dpEHiVpt.y - dpVertRes * 254 :

dpTwpWin. x dpHorzSize*14400; dpTwpWin.y dpVertSize *14400;
dpTwpVpt.x dpHorzRes * 254; dpTwpVpLy -dp VerlRes * 254;

A twip is 1I20th of a printer's point (1172 of an inch).

Windows performs l6-bit, signed calculations on these values, so the numbers
must not be greater than 32,768. However, if the screen is larger than just a
few inches wide, the values will exceed this limit when calculating the English
mapping modes and may even e xceed it on the metric mapping modes. For­
tunately, the values can be scaled down by dividing by some fix ed amount.

2.1.8 lines, Curves, and Polygons
GDI requires all display drivers to provide an Output function tbat supports a
minimum set of line, curve, and polygon drawing capabilities. In particular, a dis­
play driver must be able to draw scan lines and polylines. A scan line is a solid or

Page 26 of 239

I

\",;

24 Microso" Windows Device Driver Adaptation Guide

styled, horizontal line that is exactly one pixel wide. A polyline is a sequence of
solid lines, each one pixel wide and each connected at an endpoint to the next line
in the sequence.

GDI may call the Output function whenever an application calls a function that
draws lines, curves, or polygons . If the display driver supports all capabilities,
GDI calls the Output function for each request. Otherwise, GDI simulates output
that the driver does not support by combining scan lines and polylines.

Since GDI can use scan lines and polylines to simulate all other line, curve, and
polygon output, many display drivers do not support additional capabilities unless
the display hardware can produce faster and higher-quality results than GO!. The
only drawback to using display hardware is that the display driver must be able to
produce tbe same results in memory bitmaps as on the screen.

GD! checks the dpCurve, dpLines, and dpPolygonals members of the
GDIINFO structure to determine what line, curve, and polygon capability the
display driver has.

2.1.8.1 Curves
GD! checks the dpCurve member to determine whether the display driver sup­
ports circles, eUipses, pie wedges, and chord arcs. This member also specifies
whether the display driver can draw wide or styled borders for curves and fill the
interiors of curves.

If a display driver does not support circles, GO! can use an ellipse to draw a circle.
If the display hardware can fill ellipses, the display driver should set the interiors
bit. GDl can use an alternate-fill polygon to draw wide borders (both solid and
styled) just as efficiently as if the driver supported them correctly.

2.1.8.2 Polylines
GDI checks the dpLines member to determine whether the display driver support
polylines. This member also specifies whether the display driver can draw wide or
styled lines and fill the interiors of wide lines. A display driver must support poly­
lines.

If a display driver supports styled Lines, the line segments drawn by the display
hardware must be as specified by the dpStyleLen member. Although wide, styled
lines are used infrequently, the display driver should support them if the display
hardware can draw them and the effort to support memory bitmaps is not too
great. If necessary, GDI can simulate wide, styled lines.

Page 27 of 239

-

Chapter 2 Disptay Drivers 25

2.1.8.3 Polygons
GDI checks the dpPolygonals member to determine whether the display driver
supports rectangles, scan lines, altemate·fill polygons, and winding·number-fill
polygons. This member also specifies whether the display driver can draw wide or
style borders for polygons, and fill the interiors of polygons. The display driver
must support scan lines.

If the display driver does not draw its own wide borders, GO! simulates wide
borders using alternate-fill polygons. Some display drivers intentionally take
advantage of this by supporting alternate·fill polygons, but not wide borders.

If the display hardware provides support for styled borders, the driver should use
the hardware to draw the borders. Although GO! can simulate styled borders, such
simulations are always slower than using hardware.

2.1.8.4 Hardware Capabilities
The hardware for some displays supports many of the line, curve, and polygon
capabilities that Windows itself supports or expects the display driver to suppon.
A display driver should take advantage of display hardware whenever possible
because it often dramatically improves performance.

The only disadvantage to using display hardware is if the hardware cannot pro­
duce its output both on the screen and in memory bitmaps. Windows requires that
for any figure drawn on the screen, the display driver must also be able to draw it
in a memory bitmap. If the hardware cannot access memory bitmaps, the display
driver must include code that emulates the algorithms used by the display hard·
ware. Depending on the complexity of the hardware code, this may be a difficult
and costly task.

One alternative to emulating the display hardware is to use video memory as a
temporary bitmap. The driver copies the memory bitmap from system memory
to unused video memory, uses the display hardware to carry out the requested
graphic operations, and then copies the results back to system memory. The effi­
'ciency of this method depends on the relati ve speed of the graphics hardware, and
the size of the bitmap. This method is not appropriate under 386 enhanced· mode
Windows if the display driver does not have full access to the hardware capabili·
ties or to offscreen video memory while running in the background, that is, while
the user is running a non-Windows application in text mode. This method is not
appropriate if the display driver cannot support monochrome bitmaps. (All display
drivers must support output to monochrome bitmaps regardless of whether the dis·
play adapter is color or monochrome.) Finally, this method is not appropriate for
device·independent bitmaps (DIEs).

Page 28 of 239

26 Microso" Windows Device Driver Adaptation Guide

2.1 .9 Text

2.1.8.5 Partial Support for Capabilities
A display driver does not have to provide complete support for a given capability .
Instead, a driver's OUPU! function can provide support for a few specific cases
and return all others to GDI for simulation. In such cases, the display driver sets
bits in the GDIINFO structure as if it provided complete support, but the driver's
Output function returns -1 to GDI for all cases that need simulation.

For example, if display hardware can draw polygons with 256 vertices but not
with 257, the Output function can use the display hardware to draw the smaller
polygons and return -I to let GO! simulate the rest.

GO! does not simulate styled lines. If the display driver specifies support for
styled lines, it must provide complete support.

GO! requires all display drivers to provide an ExtTextOut function that provides
a minimum set of text-drawing capabilities. At the very least, a driver must be able
to draw a string of characters at a specified location on the screen and clip any por­
tion of a character that extends beyond the bounding box for the string.

GDI calls the ExtTextOut function whenever an application calls a function that
draws text or computes text widths. The ExtTextOut function receives a string of
character values, a count of characters in the string, a starting position, a physical
font. and a DRA WMODE structure. The function uses these values to create the
individual glyph images on the screen.

GD! checks the RC_GD!20_0UTPUT value in the dpRaster member of the
GDIINFO structure to determine whether the driver supports this function. In
earlier versions of Windows, the StrBIt function supported text drawing, but
SlrBlt is now obsolete. For compatibility with early versions of Windows appli­
cations, however, the display driver must provide the StrBlt function. In most
drivers, StrBlt does nothing more than call or fall through to ExtTextOut.

GDI checks the dpText member of the GDIINFO structure to determine which
text capabi lities the display driver supports. Although Windows requires few text
capabilities for a display driver, all display drivers should support as many capa­
bilities as possible so that Windows applications have the greatest flexibility when
drawing text. The following are the text capabilities.

Capability

Clipping

Cosmetics

Description

Specifies whether the display dri ver can clip whole or partial char­
acters.

Specifies whether the display driver can generate bold, italic, un­
derlined. Or strikethrough characters from existing characters.

Page 29 of 239

26 Microsoft Windows Device Driver Adaptation Guide

2.1.9 Text

2.1.8.5 Partial Support for Capabilities

A display driver does not have to provide complete support for a given capability.
Instead, a driver’s Ouput function can provide support for a few specific cases
and return all others to GDI for simulation. In such cases, the display driver sets

bits in the GDIINFO structure as if it provided complete support, but the driver’s
Output function returns —1 to GDI for all cases that need simulation.

For example, if display hardware can draw polygons with 256 vertices but not

with 257, the Output function can use the display hardware to draw the smaller
polygons and return —1 to let GDI simulate the rest.

GDI does not simulate styled lines. If the display driver specifies support for

styled lines, it must provide complete support.

GDI requires all display drivers to provide an ExtTextOut function that provides

a minimum set of text-drawing capabilities. At the very least, a driver must be able
to draw a string of characters at a specified location on the screen and clip any por-
tion of a character that extends beyond the bounding box for the string.

GDI calls the ExtTextOut function whenever an application calls a function that

draws text or computes text widths. The ExtTextOut function receives a string of

character values. a count of characters in the string, a starting position, a physical
font, and a DRAWMODE structure. The function uses these values to create the

individual glyph images on the screen.

GDI checks the RC_GDIZ(LOUTPUT value in the dpRaster member of the

GDIINFO structure to determine whether the driver supports this function. In
earlier versions of Windows, the StrBlt function supported text drawing, but

StrBlt is now obsolete. For compatibility with early versions of Windows appli—

cations, however, the display driver must provide the StrBlt function. In most

drivers, StrBlt does nothing more than call or fall through to ExtTextOut.

GDI checks the deext member of the GDIINFO structure to determine which

text capabilities the display driver supports. Although Windows requires few text

capabilities for a display driver, all display drivers should support as many capa—
bilities as possible so that Windows applications have the greatest flexibility when
drawing text. The following are the text capabilities.

 Capabflity Description

Clipping Specifies whether the display driver can clip whole or partial char-
acters.

Cosmetics Specifies whether the display driver can generate bold, italic, un-
derlined. or strikethrough characters from existing characters.

Page 29 of 239

Capability

Fonts

Output precision

Rotation

Scaling

Scaling freedom

Chapter 2 Display Drivers 27

Description

Specifics whether the display driver supports raster and vector
fonts.

Specifies which font attributes the display driver uses when draw ~

ing text.

Specifies whether the display driver can rotate characters.
Specifies whether the display driver can generate new sizes by
scaling an existing size.

Specifies whether the display driver can scale independently
along the x- and y-axes .

2.1.9.1 Output Precision
GDI checks the TC_OP _CHARACTER and TC_OP _STROKE values in the
dpText member to detennine the output precision of the driver. Output precision
specifics which font attributes the ExtTextOut function must use when it draws
text. Font attributes include width, height, intercharacter spacing, interword spac­
ing, escapement, orientation, and other attributes specified in the TEXTXFORM
and DRA WMODE structures. These structures are passed to the ExtTextOut
function.

A display driver sets the TC_OP _STROKE value if it can draw characters as a set
of line segments. When drawing with stroke precision, the driver must adhere to
all font attributes, and use the current transformations to compute the starting point
of the string.

A display driver sets the TC_OP_CHARACTER value if itcan draw characters at
any given escapement. Character precision ensures the placement of individual
characters without guaranteeing the exact size requested. With character precision,
the driver must:

• Use the width and height to detennine a "best-fit" character size. If no font
matches exactly, the driver should use either the largest font that does not
exceed the requested size or the smallest available font.

• Use the current transformations to compute the starting point of the string.

• Use the current intercharacter and interword spacing to position the individual
characters in the string.

• Use the current escapement.

The driver can ignore all other attributes. If possible, the display driver should use
the display's characte(generation hardware to draw individual characters.

Page 30 of 239

?

Chapter 2 Display Drivers 27
________________——___

 Capability Description

Fonts Specifies whether the display driver supports raster and vector
fonts.

Output precision Specifies which font attributes the display driver uses when draw—
ing text.

Rotation Specifies whether the display driver can rotate characters.

Scaling Specifies whether the display driver can generate new sizes by
sealing an existing Size.

Scaling freedom Specifies whether the display driver can scale independently
along the x7 and varies.

2.1.9.1 Output Precision

GDI checks the TC_OP#CHARACTER and TC_OP_STROKE values in the

deext member to determine the output precision of the driver. Output precision

specifics which font attributes the ExtTextOut function must use when it draws
text. Font attributes include width, height, intercharacter spacing, interword spac-

ing, escapement, orientation, and other attributes specified in the TEXTXFORM
and DRAWMODE structures. These structures are passed to the ExtTeXtOut
function.

A display driver sets the TC_OP_STROKE value if it can draw characters as a set
of line segments. When drawing with stroke precision, the driver must adhere to
all font attributes. and use the current transformations to compute the starting point

of the string.

A display driver sets the TC_OP,CHARACTER value if it can draw characters at

any given escapement. Character precision ensures the placement of individual
characters without guaranteeing the exact size requested. With character precision.
the driver must:

I Use the width and height to determine a “best-fit” character size. If no font

matches exactly, the driver should use either the largest font that does not
exceed the requested size or the smallest available font.

I Use the current transformations to compute the starting point of the string.

I Use the current intercharacter and interword spacing to position the individual

characters in the string.

I Use the current escapement.

The driver can ignore all other attributes. If possible, the display driver should use

the display’s character generation hardware to draw individual characters.

Page 30 of 239

28 MicrosoH Windows Device Driver Adaptation Guide

If a display driver does not set the TC_OP _STROKE and TC_OP _CHARACTER
values. GDI requires the driver to support string precision. String precision is iden­
tical to character precision except that the current escapement can be ignored.

Output precision does not affect the bold. italic. underline. or strikethrough capa­
bilities. If a driver registers these abilities. it must perform them when requested.

2.1.9.2 Clipping
GDI checks the TC_CP _STROKE va lue in the dpText member to determine the
clip precision of the driver. A display driver sets the TC_CP _STROKE value if it
can clip any portion of a character that is outside the clip region and draw the rest
of the character. If the driver does not set this value, GD! requires that the driver
clips the entire character if any portion of the character is outside the clip region.

A display driver must support stroke clip precision.

2.1.9.3 Rotation
GDI checks the TC_CR_90 and TC_CR_ANY values in the dpText member to
determine whether the display driver can rotate characters. A display driver sets
the TC_CR_ANY value if it can rotate characters to any angle. The driver sets the
TC_CRYO value it can rotate characters at 90 degree increments only. If a display
driver does not set either bit. GD! assumes that the driver cannot rotate characters.

2.1 .9.4 Scaling and Scaling Freedom
GD! checks the TC_SA_DOUBLE, TC_SA_INTEGER, and TCSA_CONTIN
values to detemline whether the display driver can scale characters. GD! also
checks the TC_SF _X_ YINDEP value to determine whether the driver can scale
characters independently on thex- and y-axes.

A display driver sets the TC_SA_CONTIN value if it can scale existing characters
to any size, sets the TC_SA_ INTEGER value if it can scale cbaracters by any in­
teger multiple, or sets the TC_SA_DOUBLE value if it can double the size of ex­
isting cbaracters. If a display driver sets none of these values, GD! assumes that
the driver can not scale characters.

A display driver sets the TC_SF _X_ YINDEP value if the driver can scale charac­
ters independently in each direction. If this bit is not set but the driver specifies
that it can scale characters. GDI assumes that the driver always scales characters
the same amount in the each direction.

Whenever a display driver cannot match a requested size exactly, GDI requires the
driver to use the largest size available that will not exceed the requested size in
either direction.

Page 31 of 239

23 Microsoft Windows Device Driver Adaptation Guide

If a display driver does not set the TC_OP_S’I"ROKE and TC_OP_C HARAC'I'ER

values, GDI requires the driver to support string precision. String precision is iden—

tical to character precision except that the current escapement can be ignored.

Output precision does not affect the bold, italic, underline, or strikethrough capa~

bilities. If a driver registers these abilities, it must perform them when requested.

2.1.9.2 Clipping

GDl checks the TC_CP_STROKE value in the deext member to determine the

clip precision of the driver. A display driver sets the TC_CP_STROKE value if it
can clip any portion of a character that is outside the clip region and draw the rest

of the character. If the driver does not set this value, GDI requires that the driver

clips the entire character if any portion of the character is outside the clip region.

A display driver must support stroke clip precision.

2.1.9.3 Rotation

GDI checks the TC_CR_9O and TC_CRHANY values in the deext member to

determine whether the display driver can rotate characters. A display driver sets
the TCiClLANY value if it can rotate characters to any angle. The driver sets the

TC_CR_90 value it can rotate characters at 90 degree increments only. If a display
driver does not set either bit, GD] assumes that the driver cannot rotate chau'acters.

2.1.9.4 Scaling and Scaling Freedom

GDI checks the TC_SA_DOUB LE. TC_SA‘INTEGER. and TCfS ALCONTIN

values to determine whether the display driver can scale characters. GD] also
checks the TC_SF_X_YINDEP value to determine whether the driver can scale

characters independently on the x- and y-aXes.

A display driver sets the TC_SA_CONTIN value if it can scale existing characters
to any size. sets the TC,SA_INTEGER value if it can scale characters by any in—
teger multiple, or sets the TCuSA__DOUBLE value if it can double the size of ex-

isting characters. Ila display driver sets none of these values, GD] assumes that
the driver can not scale characters.

A display driver sets the TCASFJLYINDEP value if the driver can scale characl

ters independently in each direction. If this bit is not set but the driver specifies
that it can scale characters, GDl assumes that the driver always scales characters
the same amount in the each direction.

Whenever a display driver cannot match a requeSLed Size exactly. GD] requires the

driver to use the largest size available that will not exceed the requested size in
either direction.

Page 31 of 239

Chapter 2 Display Drivers 29

2.1.9.5 Cosmetics
GD! checks the TC_EA_DOUBLE, TC_IA_ABLE, TC_UA_ABLE, and
TC_SO_ABLE values to determine whether the display driver can generate bold,
italic, underlined, or strikethrough characters from existing characters.

A display driver sets TC_EA_DOUBLE if it can generate a bold character by
doubling the existing character's weight. A typical method is to overstrike tbe
existing character after moving one device unit to the right.

A display driver sets the TC_IA_ABLE value if it can generate italic characters. A
typical method is to skew the gylpb information, drawing the the character as if it
were contained by a parallelogram rather than a rectangle.

A display driver sets the TC_UA_ABLE value if it can generate underlined charac­
ters, and sets the TC_SO_ABLE value if it can generate strikethrough characters.

2.1 .9.6 Raster and Vector Fonts
GD! checks the TC_RA_ABLE and TC_ V A_ABLE values in the dpText member
to determine whether the display driver supports raster and vector fonts, respec­
lively. A display driver must set at least one of these bits.

2.1.9.7 Orientation and Escapement
Whenever either the character orientation or tbe difference between the character
orientation and the escapement angle is a multiple of 90 degrees, the intercharacter
and interword spacing will be the standard intercharacter spacing used for bound­
ing boxes plus the spacing specified by the CharacterExtra and BreakExtra
members in the DRA WMODE structure.

The standard intercharacter spaci ng at a gi ven escapement angle and character
orientation is defined as the minimum spacing along the escapement vector, such
that the character origins are on the escapement vector, and the character bounding
box.es touch . Variable pitch fonts are achieved by using variable width bounding
boxes. This model applies to all attribute values. When the sides of the bounding
boxes touch , extra space is added in x and, when the tops touch, it is added in y.

In all other escapement and orientation cases, the standard intercharacter spacing
is device dependent. The preferred implementation is for the 90-degree cases . In
all cases, it is required that all character origins lie on the escapement vector.

It is assumed that arbitrary escapement angles can be achieved, if by no other
means than, by placing each character as a separate entity. Many devices are able
to do arbitrary cbaracter rotation only if the character orientation matches the

Page 32 of 239

f
30 MicrosoU Windows Device Driver Adaptation Guide

2.1.10 Fonts

escapement angle. For such devices, it is assumed that the dri ver will place each
character individually at the proper orientation and escapement, when escapement
and character orientation do not match.

A font is a collection of glyphs that define the size and appearance of individual
characters in a character set. A display driver uses physical fonts when it draws
text. A physical font is a structure that contains all the information the driver needs
to draw the glyphs on the screen . GDI supplies these pbysical fonts whenever it
calls the ExtTex(Ou(function .

GDI supports a variety of font types but lets each display driver detennine which
fOOlS it supports. A display driver can choose to support any combination of the
fonts.

Type

Device

Raster

TrueType

Vector

Descri ption

A font supplied by the display device. The display driver must provide
complete support for device fOOlS, includjng realizing the fOOlS and using
display hardware to draw the fonts .

A font containing glyph bitmaps that is intended to be used by raster
device. GDI supplies a variety of raster fonts, but Windows applications
and even display drivers can supply additional fonts. GOt realizes raster
fonts as needed, but display drivers that support the fonls must be able to
draw the fonLS using the data in the physical font format.

A font containing sophisticated glyph definjLions that is intended to be
used in conjunction with a rasterizer lO produce a corresponding raster
font. OD! supplies a variety of TrueType fonts as well as the TrucType
rasterizer.

A font containing glyph definitions that is intended to be used by a vec­
tor device. GOI supplies a variety of vector fonts, bUl Windows applica­
tions and even display drivers can supply additional fonts. GOI reaHzes
vector fonts as needed, but display drivers that support the fonts must be
able to draw the fon ts using the data in the physical font.

Nole Display drivers that support raster fonlS can also use TrueType fonts.

Although display drivers generally do not use device fonts, a display driver can
realize device fonts if the display hardware support them. Most display drivers
return zero when GDI calls the RealizeObjec(function requesting a realized font.
Returning zero directs GDI to realize the font using existing raster or vector fonts.

Fonts, like other graphics objects, must be realized before the display driver can
use them. The format of the realized font depends on the font type. For more infor­
mation about raster- and vector-font format, see Chapter 13, "Font Fi les."

Page 33 of 239

Chapter 2 Display Drivers 31

For more infonnation about characters within a specific character set, see Appen­
dix B, "Character Tables."

2.1.10.1 Raster Fonts
GOT checks the TC_RA_ABLE value in the dpText member to detennine
whether a display driver supports raster fonts. A raster font is a set of glyph bit­
maps, each defining the size and appearance of a character in the font. A display
driver that supports raster fonts uses the glyph bilmap to generate the character
image on the screen.

Windows provides the following raster fonts.

Font

Courier®

Fixedsys

MS Sans Serif

MS Serif

Symbol
System

Small

Tcrrrinal

Description

A fixed-width font with serifs in the ANSI character set,

The Windows 2.x fixed-width system font in the ANSI character set.

A proportional-width font without (sans) serifs in the ANSI charac­
ter Set.

A proportional-width font with serifs in tbe ANS] character set

A representation of math symbols in the Symbol character set.

A proportional-width font without serifs in the ANSI character set.

A set of raster fonts used for displaying characters of 8 points or
below with greater readability.

A fixed-w idth font with serifs in the OEM character sel.

2.1 .10.2 Vector Fonts
GOI checks the TC_ V A_ABLE value in the dpText member to determine
whether a display driver supports vector fonts. A vector font is a set of glyph
definitions, each containing a sequence of points respresenting the start and end­
points of the line segments that define the appearance of a character in the font.
A display driver that supports vector fonts uses the glyph definitions to generate
the character image on the screen.

2.1.10.3 Big Fonts
GOI checks the RC_BIGFONT value in the dpRaster member to determine
whether the display driver supports big fonts (also called Windows 3.x fonts).
A big font is any font in which the font and glyph information can exceed 64K
bytes. Big fonts are primarily designed for use on systems with more than average
memory and a microprocessor (such as an 80386) that has instructions that use
32-bit address offsets.

Page 34 of 239

32 Microsoft Windows Device Driver Adaptation Guide

When GDI realizes a font for a driver supporting big fonts, GOT includes addi­
tional members (dlFlags through dfReservedl) in the the physical font's FONT·
INFO stmcture. Furthermore, since font and glyph information may exceed 64K.
the display driver must use 32-bit offsets to access this information. This means
the driver should make use of the extended registers of the 80386, such as ESI
andEDI.

All display drivers must support standard fonts whether or not they support big
fonts.

For big fonts, GO! sets the dIVersion member in the font structure to Ox0300.
Standard fonts are set to Ox0200. Also, GDI never mixes fonts for a device. If the
display driver registers RC_BIGFONT capability, GDI will always give the driver
big fonts-not a mixture of standard and big fonts.

2.1.10.4 TrueType Fonts
Display drivers that handle raster fonts can also handle TrueType fonts without
modification. GDI supports TrueType in display drivers by building FONTINFO
structures that contain rasterized glyph bitmaps. GDl passes a pointer to this struc­
ture to the driver's ExtTextOutor StrBlt function along with the string to be dis·
played.

An important difference between TrueType and standard fonts is that TrueType
fonts are "sparse" in their glyph definitions, that is, the FONTINFO structure may
only contain those characters in the string to be displayed. For this reason, display
drivers cannot cache the font in private memory and later reference glyphs not pre­
viously displayed. The display driver. however, can build up a cache of glyphs as
they are displayed. Such a "glyph cache" can boost performance on some display
adapters that have hardware text and blit support.

2.1.10.5 Overlapping Glyphs
Display drivers can handle text in TrueType fonts almost identically to text in regu­
lar raster fonts. One important difference. however, is that TrueType glyphs are de­
signed to be more readable by minimizing the gaps between glyphs-in fact, some
glyphs overlap. To take full advantage of the design and maintain performance.
display drivers may need some modification to allow for overlapping glyphs.

TrueType fonts may affect the performance of display drivers since many True·
Type glyphs are designed to overlap neighboring glypbs. Overlapping makes text
more readable, but complicates the process used by a display driver to draw the
text. A display driver can improve its performance by handling overlapping glyphs
using the technique described in this section .

Page 35 of 239

32 Microsoft Windows Device Driver Adaptation Guide

When GDI realizes a font for a driver supporting big fonts, GDI includes addi-
tional members (dfFlags through deeservedl) in the the physical font‘s FONT-

INFO structure. Furthermore, since font and glyph information may exceed 64K,
the display driver must use 32-bit offsets to access this information. This means

the driver should make use of the extended registers of the 80386, such as E81
and EDI.

All display drivers must support standard fonts whether or not they support big
fonts.

For big fonts, GDI sets the deersion member in the font structure to 0x0300.
Standard fonts are set to DXOZOO. Also, GDI never mixes fonts for a device. If the

display driver registers RC_BIGFONT capability, GDI will always give the driver
big fonts—not a mixture of standard and big fonts.

2.1.10.4 TrueType Fonts

Display drivers that handle raster fonts can also handle TrueType fonts without

modification. GDI supports TrueType in display drivers by building FONTINFO

structures that contain rasterized glyph bitmaps. GDI passes a pointer to this struc-
ture to the driver’s EXtTextOut or StrBlt function along with the string to be dis-

played.

An important difference between TrueType and standard fonts is that TrueType
fonts are “sparse” in their glyph definitions, that is, the FONTINFO structure may
only contain those characters in the string to be displayed. For this reason, display

drivers cannot cache the font in private memory and later reference glyphs not pre-
viously displayed. The display driver, however, can build up a cache of glyphs as

they are displayed. Such a “glyph cache" can boost performance on some display
adapters that have hardware text and blit support.

2.1.10.5 Overlapping Glyphs

Display drivers can handle text in TrueType fonts almost identically to text in regu-
lar raster fonts. One important difference, however, is that TrueType glyphs are de—

signed to be more readable by minimizing the gaps between glyphs—in fact, some

glyphs overlap. To take full advantage of the design and maintain performance,

display drivers may need some modification to allow for overlapping glyphs.

TrueType fonts may affect the performance of display drivers since many True—
Type glyphs are designed to overlap neighboring glyphs. Overlapping makes text

more readable, but complicates the process used by a display driver to draw the
text. A display driver can improve its performance by handling overlapping glyphs

using the technique described in this section.

Page 35 of 239

Chapter 2 Display Drivers 33

The most important perfonnance improvement is to revise a driver's code to
handle background opaquing (in the case of opaque text) and overlapping glyphs
in a single pass. If a display driver sets the RC_OP _OX_OUTPUT value in the
dpRaster member of the GDIINFO structure, GO! assumes that the ExtTextOut
function can do background opaquing at the same time the glyphs are drawn . If
this value is not set, GD! will split the text output operation into two steps, with
the first step being an opaque rectangle that fill s the text bounding box. The sec­
ond operation will then draw the text transparently on top of the previously filled
rectangle.

GOl passes the text string and a width atTay to either the ExtTex!Ou! or StrBI!
function in the driver. The width array contains n-I entries for a string of n char­
acters. Each entry contains a pixel offset from the origin of one character to the
origin of the next character. For example, if the third width element is 20, the
fourth character should be drawn 20 pixels to the right of the third character.

Handling kerning (glyph overlap) efficiently can be a problem on display adapters
with relatively slow video memory access times (such as the EGA and VGA). The
algorithm described below is appropriate for such displays. A different approach
may be necessary for other display architectures.

The idea behind this algorithm is to never access a video memory location more
than once, and, where possible, do word-aligned, 16-bit memory accesses. Ideally,
this algorithm should be small, simple, and efficient for text strings with or with­
out kerning.

Note The following discussion assumes some familiari ty with the implementation
of the ExtTextOut function in the sample EGAlVGA driver provided with the
DOK. For complete details, please see the EGAlVGA source code.

Por each character that is partially or completely within the string's clipping rect­
angle, the stack builder pushes a phase, width, and glyph pointer onto the stack. If
kerning occurs in the text string, the stack builder will recognize this and push a
"backup" sentinel along with a word that contains the number of pixels to backup
before rendering subsequent stack entries. When the entire string has been pro­
cessed, the stack builder pushes a sentinel word on the stack to mark the end of the
entries.

The format of a stack entry is a word containing the phase of the bit pattern (high
byte) and the width of the bit pattern (low byte). Following this word, a pointer to
a glyph pattern is stored on the stack. For fonts that are less than 64K bytes in size,
this is a word value representing an offset from the base of the font segment to the
bit patterns for a given glyph. For fonts greater than 64K bytes, this glyph pointer
is 2 words which forms a 32-bit offset from the current font segment base.

Page 36 of 239

Chapter 2 Display Drivers 33

The most important performance improvement is to revise a driver’s code to

handle background opaquing (in the case of opaque text) and overlapping glyphs
in a single pass. If a display driver sets the RC_OP_DX_OUTPUT value in the

dpRaster member of the GDIINFO structure. GDI assumes mat the ExtTextOut

function can do background opaquing at the same time the glyphs are drawn. If

this value is not set, GDI will split the text output operation into two steps, with
the first step being an opaque rectangle that fills the text bounding box. The sec-
ond operation will then draw the text transparently on top of the previously filled
rectangle.

GDI passes the text string and a width array to either the ExtTextOut or StrBlt

function in the driver. The width array contains n—l entries for a string of n char—
acters. Each entry contains a pixel offset from the origin of one character to the
origin of the next character. For example, if the third width element is 20, the
founh character should be drawn 20 pixels to the right of the third character.

Handling kerning (glyph overlap) efficiently can be a problem on display adapters
with relatively slow video memory access times (such as the EGA and VGA). The

algorithm described below is appropriate for such displays. A different approach
may be necessary for other display architectures.

The idea behind this algorithm is to never access a video memory location more

than once, and. where possible. do wordealigned, 16-bit memory accesses. Ideally,

this algorithm should be small, simple, and efficient for text strings with or With—
out kerning.

Note The following discussion assumes some familiarity with the implementation
of the ExtTextOut function in the sample EGAJVGA driver provided with the
DDK. For complete details. please see the EGAfVGA source code.

For each character that is partially or completely within the string’s clipping rect-
angle, the stack builder pushes a phase, width. and glyph pointer onto the stack. lf

kerning occurs in the text string. the stack builder will recognize this and push a
"backup" sentinel along with a word that contains the number of pixels to backup

before rendering subsequent stack entries. When the entire string has been pro-

cessed. the stack builder pushes a sentinel word on the stack to mark the end of the
entries.

The format of a stack entry is a word containing the phase of the bit pattern (high
byte) and the width of the bit pattern (low byte). Following this word, a pointer to
a glyph pattern is stored on the stack. For fonts that are less than 64K bytes in size,

this is a word value representing an offset from the base of the font segment to the
bit patterns for a given glyph. For fonts greater than 64K bytes, this glyph pointer
is 2 words which forms a 32-bit offset from the current font segment base.

Page 36 of 239

34 Microso" Windows Device Driver Adaptation Guide

2.1.11 Clipping

As an example:

Stack Entries

0308, Glyph_ptr
0308, Glyph_ptr
8000, FFFE
0108, Glyph_ptr
FFFF

Meaning

8-bit wide column, starting 3 bits into a byte.
Next column, 8 bits wide, phase is again 3.
Backup by 2 pixels.
Next column (overlaps previous column), phase is 1.
End of stack entries.

After the stack has been built, control is passed to a routine which unstacks each
entry and composes an image of the string into a memory buffer. This string image
is called a "SuperGlyph" because the format of the memory buffer is identical to
the glyph format in the raster font (that is, column major ordering). Each stack
entry is processed by fetching up to 4 bytes worth of glyph bit pattern from the
font structure, phase aligning with respect to the linal destination, and ORing into
the compose buffer. This process continues until all stack entries have been
processed.

Once complete, the SuperGlyph is then passed to a destination specific output
routine which copies the SuperGlyph to the final destination (either video
memory, a color bitmap or a monochrome bitmap) . Each output routine is
optimized for word-aligned, 16-bit accesses to the final destination .

In some cases, the size of the compose buffer may not be big enough to hold a
complete image of the string . The VGAlEGA code handles this case with restart
logic that composes as much of the SuperGlyph as possible, and then outputs it to
the destination. The compose buffer is then cleared and the process repeats until
the entire string has been rendered.

2.1.10.6 Font Caching for TrueType Fonts
Display drivers that do their own font caching may encounter conflicts with the
new TrueType font technology provided with Windows 3.1. Display drivers thal
use glyph caching rather than caching the entire character set should work without
problems.

A display driver or display hardware can clip if it can discard output that would
be outside of a specified rectangle or region if drawn on the screen. GD! checks
the dpClip member in the GDIINFO structure to determine whether the display
driver can clip output generated by the Output function . If a display driver can
clip, it should set the bits in thi s member to specify clipping for rectangles or re­
gions. If the display driver does not support clipping, GDI will simulate cl ipping.

Page 37 of 239

2.1.12 Bitmaps

Chapter 2 Display Drivers 35

Allhough dpClip on ly applies to output generated by the driver's Output func­
tion, other members in the GDIINFO structure specify clipping for other graphics
output. For example, the dpText member specifies whether the display driver
clips text.

001 requires a display driver to support bit-block transfers by providing the
BitBlt and related bitmap functions. At the very least, a display driver should pro­
vide a BitBlt function that can carry out bitmap operations on the screen and in
monochrome bitmaps. The brute functions provided by 001 and used by many
printer drivers require monochrome bitmap support.

001 checks the dpRaster member in the GDIINFO structure to determine
whether the display dri ver supports bitmaps . If the driver does, 001 checks the
dpBitsPixel and dpPlanes members to determine the format of tile screen bitmap.

2.1,12,1 Bitmap Format
Most display devices are either planar or packed-pixel devices. A planar device
stores screen bits in separate bitmap planes, each representing a distinct color. A
packed-pixel device stores screen bits in a single plane, but each pixel on the
screen has a set of two or more corresponding bits that define the pixel color.

A display driver specifies the type of display device by setting the dpBitsPixel
and dpPlanes members to appropriate values. For a planar device, dpBitsPixel
is I and dpPlanes specifies the number of planes. For a packed-pixel device,
dpPlanes is 1 and dpBitsPixel specifies the number of bits per pixel.

These values also help determine the number of nondithered colors available for
the screen. A device with 4 planes is capable of 16 colors. A device with 8 bits per
pixel is capable of 256 colors. However, the exact color specified by a combina­
tion of bits depends on whether the device supports a color palette.

2.1.12.2 Pixel Output
A display driver must support setting and getting individual pixels by providing
the Pixel function . ODT uses Pixel to support a variety of simulations. It also
calls the function whenever an application calls SetPixel (GOL31) and GetPixel
(001.83).

Page 38 of 239

36 Microsoft Windows Device Driver Adaptation Guide

2.1.12.3 Bit-Block Transfers
A display driver can support bit-block transfers by providing a BitBltfunction.
GOT uses BitBl! to copy a rectangular block of bits from bitmap to bitmap,
possibly applying a raster operation to the source and destination bits as it copies.
GDl checks the RC_BITBLT value in the dpRaster member to determine
whether the display driver supports the function. If it does, GD! calls BitBl!
whenever an application calls GD! functions such as BitBlt (GD!.34) and PatBlt
(GDl.29).

A display driver can provide additional bit-block transfers by providing a
StretchBlt function. GDI uses StretchBlt to stretch or compress a block of bits
to fit a given rectangle in a bitmap. Stretching and compressing requires either
adding or removing bits as defined by a stretching mode. GDI checks the
RC_STRETCHBLT value in dpRaster to determine whether the driver pro­
vides the StretchBlt function. GDl calls the function whenever an application
calls StretchBl! (GD1.35).

If a display driver can carry out bit-block transfers on bitmaps that are larger
than 64K, it should set the RC_BlTMAP64 value in the dpRaster member. GDI
checks this bit to determine whether large bitmaps are permitted.

2.1.12.4 Transparent-Block Transfers
In Windows 3.1, display drivers can indicate that they support transparent-block
transfers by setting the CLTRANSPARENT value in the dpCaps] member of
the GOnNFO structure. In a transparent-block transfer, a driver excludes source
and brush pixelS from a BitBlt or StretchBIt operation if those pixels have the
same color as the current background color for the destination device.

If a display driver supports transparent block transfers, the BitBlt function must
check the bkMode member of the ORA WMOOE structure as well as the Rap3
parameter of the BitBlt function to determine how to carry out the transfer. If the
bkMode member specifies the background mode TRANSPARENT I ,BitBlt must
not transfer source and brush bits that have the same color as the destination's
background color <as specified by the bkColor member of the DRA WMOOE
structure pointed to by the IpDrawMade parameter). In other words, the corre­
sponding destination bits must be left unchanged. Other background modes do not
affect the transfer.

Although a display driver may support transparent-block transfers, GD! does not
currently provide access to this support for Windows applications.

Page 39 of 239

Chapter 2 Display Drivers 37

2.1.12.5 Fast Borders
A display driver can support fast-border drawing by providing a FastBorder func­
tion, Windows uses the function to quickly draw borders for windows and dialog
boxes, GDJ checks the RC_GDJ20_0UTPUT value in the dpRaster member to
detennine whether a display driver provides the FastBorder function, If it does,
GOI calls the function to draw the borders , Otherwise, it returns an error value to
direct Windows to use some other means to draw the borders,

A display driver also uses the RC_GDJ20_0UTPUT value to specify whether it
supports the ExtTextOut function, In some cases, a display driver may support
ExtTextOut but not FastBorder, To account for this, the display driver must pro­
vide a FastBorder function, but the function can immediately return an error
value to direct Windows to use some other means to draw borders,

2.1 .12.6 Saved Bitmaps
A display driver can permit Windows to temporarily save bitmaps in off-screen
video memory by providing the SaveScreenBitmap function, This function al­
lows the driver to take advantage of unused video memory and to speed up draw­
ing operations that require restating a portion of the screen that was previously
overwritten.

GDI checks the RC_SA VEBITMAP value in the dpRaster member to determine
whether the driver supports SaveScreenBitmap,

2.1.12.7 Flood Fill
A display driver can support flood-fill operations by providing a FloodFill func­
tion, GOI uses the function to quickly fill a region on the screen or in a bitmap
with a specified color, GOI calls the function whenever an application calls
FloodFill (GDl.25),

GDJ checks the RC_FLOODFILL value in dpRaster to determine whether the
driver provides the function,

2.1.13 Device-Independent Bitmaps
A device-independent bitmap (OIB) is a color bitmap in a format that eliminates
the problems that occur when transferring device-dependent bitmaps to devices
having difference bitmap formats, DIBs provide color and bitmap information that
any display or printer driver can translate into the proper format for its correspond­
ing device,

Page 40 of 239

38 Microsoft Windows Device Driver Adaptation Guide

A display driver can support DIEs by providing the following device-independent
bitmap functions ,

Function

DeviceBitmapBits

SetDIBitsToDevice

StretchDIBits

Description

Copies a DIB to a device~dependent bitmap or a
device-dependent bitmap to a DIB.

Copies any portion of a DID to the screen. This function
copies the bits directly without applying a raster operation.

Moves a source rectangle into a destination rectangle, stretch­
ing or compressing the bitmap if necessary to fit the dimen­
sions of the destination rectangle.

These functions receive and operate on BITMAPINFO, BITMAPINFO·
HEADER, and RGBQUAD structures ,

A display dri ver that supports OIBs must provide the CreateDffiitmap function
as well, The function should do nothing more than return zero indicating that the
creation of a OIB is not supported at the driver level.

If a display driver supports OIBs, it must set one or more of the RC_OCBITMAP,
RC_DIBTOOEV, and RC_STRETCHOIB values in the dpRaster member of the
GDIINFO structure, If a driver does not set the RC_DI_BITMAP value, ODI sim­
ulates DIB conversions using monochrome bitmaps,

2.1.13.1 logical-Color Tables
A display driver creates a logical-color table when translating a device-specific
bitmap into a OIB, The table resides in the OIB header block, The device driver,
if it is not a palette device, can fill up the table with whatever color it supports
and then, use the corresponding indexes in the bitmap, The driver must also set
the number of colors it is using in the biCirUsed member of the header block,

Consider an example in which the display device is a 4-plane EOA device, and
in which the OIB has 8 bits-per-pixel. The logical color table for the Dill has pro­
visions for 256 colors, but the 4-plane driver can deal with only 16 colors, The
driver would prepare a color table for the Dill that looked like the following:

RGBOUAD ColorTablel] = [
[0, 0 , 0, 0),
[128, 0, 0, 0J,
[0, 128, 0, 0J,
[128, 128 , 0, 0J,
[0, 0 , 128, 0),
[128, 0, 128, 01,
[0 , 128, 128, 0J,
[128, 128, 128 , 0) ,

Page 41 of 239

Chapter 2 Display Drivers 39

I/i fdef VGA
(196, 196, 196, 0),

I/el se /* EGA ./
(64, 64 , 64, 0) ,

I/endif
(255, 0, 0 , 0) .
(0. 255, 0, 0),
(255, 255 , 0 , 0),
(0 , 0, 255 . 0),
(255. 0, 255 . 0),
(0, 255 , 255 . 0) ,
(255, 255, 255, 0});

The device driver may fill in just 16 colors and set biClrUsed to 16. or it may fill
up entries 16 through 255 wi th zeros and set biClrUsed to O.

The color-mapping tables for each of the DrB formats can be predefined for a par­
ticular driver and should be copied into the DIE header during the format-specific
initialization.

2.1.13.2 DlBtoDevice
A display driver can copy a DrB directly to the screen using the SetDIBitsTo­
Device function. This functi on saves the trouble of first converting the DrB into
the device-dependent format and then, transferring it onto the screen. However,
only a direct copy of the DlB is provided. For other raster operations that BitBlt
supports, the driver must first convert the DIE into the internal format. Moreover,
only one direction of copy (DIB to screen) is provided.

The process of copying the bits is similar to the one adopted in the Set Device­
BitmapBits function except that for some devices, such as the EGAIVGA, the
nature of the hardware might make it advantageous to copy one pixel at a time.
The concept of having a color-translation table and format-specific initiali zation
remai ns the same.

2.1 .14 Device Bitmaps
A device bitmap is any bitmap whose biunap bits are stored in device memory
(such as RAM on a display adapter) instead of main memory. Device bitmaps can
significantly increase the performance of a graphics dri ver as well as free main
memory for other uses. To reauze these benefits. the corresponding graphics
device must have ample video memory in addition to the video memory used to
generate the current display. The device should al so have efficient routines for
copying bits to video memory.

Page 42 of 239

I

W

40 Microsoft Windows Device Driver Adaplalion Guide

Graphics drivers that set the RC_DEYBITS value in the dpRaster member of
the GDIINFO structure support device bitmaps. GDI checks this bit to deter­
mine how to carry out requests to create and select bitmaps. If a driver sets the
RC_DEYBITS value, it must export the following functions :

• BitmapBits

• RealizeObject

• SelectBitmap

BitmapBits copies bitmap data to and from device bitmaps. GO! caUs this func­
tion when initializing the bitmap bits after creating the bitmap. It also calls the
function when an application caUs the functions such as GetBitmapBits (GDI.74)
and SetBitmapBits (GDLl06).

RealizeObject creates or deletes a device bilmap. GO] calls this funclion when
creating the bitmap, specifying the OBI_BITMAP style. RealizeObject is
responsible for allocating memory to the device as weU as filling a physical
PBITMAP structure that GDI wi ll use to identify the device bitmap. If the bitmap
is to be deleted, RealizeObject must free the device memory.

SelectBitmap associates a device bitmap with the given PDEVICE structure.
GDl passes the physical PBITMAP slrUctures of both the currently selected bit­
map and the new bitmap so that SelectBitmap can carry out any special pro­
cessing to enable or disable access to the device bitmaps.

Device bitmaps cannot be monochrome bitmaps. GDl intercepts all requests to cre­
ate monochrome bitmaps and creates main memory bitmaps instead. This means a
graphics driver that supports device bitmaps must also be able to support main
memory bitmaps.

Note If the display driver supports device bitmaps, it must not fail any calls to
the SelectBitmap, BitmapBits, or ReatizeObject functions. If the driver cannot
allocate more video memory for a requested bitmap, it must use GlobalAlioc to
allocate system memory instead.

2.1.15 Color Palettes
Display devices that are capable of displaying 256 or more simultaneous colors
using a palette need to provide support for color palettes. A display driver speci­
fies that it has palette support by setting the RC_PALETIE value in the dpRaster
member in the GDIINFO structure. The display driver also must set the dpPal­
Colors, dpPalReserved, and dpPalResotution members.

The number of reserved colors on the palette is always 20, with 16 correspond­
ing to the VGA colors and 4 special colors. Half of the reserved palette colors are
placed at the beginning and half at lhe end of the palette.

Page 43 of 239

Chapter 2 Display Drivers 41

If a display driver supports color palettes, it must export the SetPalette, Get.
Palette, SetPalTrans, and GetPalTrans functions.

2.1.15.1 Hardware-Palette Initialization
A display driver should initialize the hardware palette when the driver initializes
the rest of the display hardware. The driver initializes the palette for static and non·
static colors.

Static colors are system colors that remain in the palette at all times and are used
for old·style RGB support. The number of static colors to be used is specified in
the dpPalReserved member in the GDIINFO structure. This number must always
be even. The colors are placed in the hardware palette so that the first half is in tJle
lowest entries, and the second half is in the highest entries.

For Windows 3.x, 20 static colors should be set as follows :

; lowest ten palette ent ri es

db 0. 0. 0, 0
db 080h.0. 0, 0
db 0. 080h,0, 0
db 080h.080h.0, 0
db 0, 0, 080h,0
db 080h . 0, 080h,0
db 0, 08Sh,S8Sh,S
db 0C0h.SC0h,0C0h ,8
db 192 , 220, 192, 0
db 166, 202, 240, 0

; Highest ten palette entries

db
db
db
db
db
db
db
db
db
db

255, 251, 248, 8
160, 168, 164, 8
880h,088h,080h,0
0FFh,0, 0, 0
0, 0FFh,8, 8
8FFh.8FFh,S, 8
8. 8, 0FFh,0
0FFh,0, 0FFh,0
0, 0FFh,0FFh,0
0FFh.0FFh.0FFh,S

0
I
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

These colors consist of the 16 standard VGA colors and four other special colors
used by Windows.

The nonstatic colors included in the hardware palette need not be initialized. GDl
manages these and initializes them when needed .

Page 44 of 239

42 Microsoft Windows Device Driver Adaptation Guide

The RGBs for an 8bpp system palette should exactly match those reported to
GDT by the 8514/a driver. Using these RGBs ensures that colors will be preserved
when an image created with solid colors is viewed on a 4bpp display.

An 8bpp display driver should not necessarily program the OAC with the exact
RGBs as in the GOT system palette. Instead, OAC values should be used that re­
sult in on-screen system colors reasonably close to those shown by the Windows
8514/a display driver. This accounts for differences in color representation by
OACs on different display adapters.

2,1.15.2 Palette-Translation Table
The driver has to maintain a palette-translation table to translate the logical color
indexes, passed to it by GOI, into the actual physical color indexes. The translation
has to occur before any raster operation (ROP) is perfomled. ROPs are always ap­
plied to physical colors.

Whenever a display driver function receives a ORA WMOOE, LPEN, PBRUSH,
or PBITMAP structure, the driver may need to translate the logical colors in these
structures to physical colors before using the colors.

An application has to perform color translation only when the physical device is
in volved. In other words, if a line is drawn into a memory bitmap or a bitmap is
block transferred into another memory device, no color translation is required . On
the other hand, if a bitmap is transfered to or from the screen into a memory bit­
map or a line is drawn directly onto the screen, color translation is required. In the
case of a block transfer from the screen to the screen (where the physical device is
both the source and destination of the block transfer), color translation is not
needed since all the color indexes are already translated into physical indexes.

Color specifications are passed to display drivers as either color indexes or RGB
values . A color index is a 32-bit value in which the high 16-bits is set to Ox.FFOO
and the low 16-bits is the actual index. An RGB value is a 32-bit value as
specified by the RBGQUAD structure. When an RGB value is specified, it
should match this color as closely as possible among the 20 reserved colors. In
the case of a brush, the color may be ditbered with the 16 VGA colors.

A palette-translation table is an array of J 6-bit indexes, each mapping a logical
color index to a physical color index . A display driver uses the translation table to
translate color indexes in physical pens and brushes and in the ORA WMOOE
structure to the actual color indexes used by tbe hardware palette.

GOl calls the GetPalTrans and SetPalTrans functions to get and set tbe transla­
tion table. The translation table has the number of elements specified by the dpPal­
Colors member. In constructing the inverse table, the driver may come across
ambiguities because different logical colors can map to the same physical color. It
is up to the driver to decide how to resolve these cases since the result will look

Page 45 of 239

Chapler 2 Display Drivers 43

the same no matter how such ambiguities have been resolved. The driver can also
set accelerator bits to bypass the various translations. For BitBlt, bypassing color
translation results in substantial performance improvements.

2.1.15.3 UpdateColors Function
If a display driver supports color palenes, it must include the UpdateColors fun c­
tion. ODI calls this function to direct the driver to redraw a region on screen using
the translation table passed to the function. For each pixel in the region, the func­
tion retrieves the pixel's color index, translates the index, and writes the translated
index back to the given pixel.

2.1.15.4 Black-and-White Palette Entries
Display drivers that support color palettes must make sure that the index for the
palette entry that corresponds to black must be the one's complement of the index
for the palette entry for white. Black and white must be static palette entries, mean­
ing the driver sets the indexes for these colors during initialization and does not
change the indexes.

2.1.16 DIBs with Color-Palette Management
The color table for a device-independent bitmap (DIB) consists of 16-bit indexes
used as the colors for the bitmap. For the SetDmitsToDevice function, they are
physical indexes; for the DeviceBitmapBits function, they are logical indexes.

In the DeviceBitmapBits and SetDmitsToDevice functions, the final parameter,
IpTranslare, provides information that is useful only for palette-capable devices.
However. all devices need to include tlus parameter.

When DeviceBitmapBits is retrieving bits on a 256-color device, IpTrans/are is a
pointer to a translation table with the following results.

Bitcount

4

8
24

Result

A palette-sized array of bytes, each one either OxOOH or OxFFH. The
array is used to determine if the index in the bitmap corresponds LO a
zero or a 1 in the DIB.
A palette-sized array of bytes, each one containing a value between
OxOOH and Ox.FFH . Each index in the bitmap will map to the corre­
sponding 4-bit va lues in the Dm.
/pTranslate will equal an identity table that can be ignored.

A palette-sized array of 32-bit values, each one containing the RGB
value (and unused high byte) corresponding to the index in the bitmap.

Page 46 of 239

44 Microsoft Windows Device Driver Adaptation Guide

On a palette-capable device when the source bitmap is a monochrome bitmap,
DeviceBitmapBits passes in a translation table that has only two en tries, instead
of 256. Entry 0 has the color-table index for black and entry I has the color table
index for white.

When DeviceBitmapBits sets bitmap bits, GOI passes a pointer only if the bit­
count is 24. The parameter points to data maintained by GOI. For every RGB
value in the OIB, the display driver calls the DeviceColorMatch function
(GDI.449) to match an RGB value with an index. This function returns an index
to represent that color in the device-dependent bitmap.

2.1.17 Stub Functions

2.1.18 Cursors

Although the SetAttrihute and DeviceBitmap functions are not currently sup­
ported in GO!, a display driver must provide these functions. In all drivers, these
functions are implemented as stub functions that do nothing more than always
return a -1 .

The USER module requires all display drivers to provide cursor support. A display
driver must provide the following functions.

Function

CheckCursor
InquireCursor
MoveCursor

SetCursor

Description

Draws the cursor if drawing is not disabled.

Reuieves information about the cursor.

Moves the cursor to a specified position on the display.

Sets the cursor shape.

When Windows first starts, USER calls the InquireCursor function to retrieve
information about the cursor. It then sets a system timer to call the CbeckCursor
function on each timer interrupt and enables the mouse driver, allowing the
Windows mouse-event routine to call MoveCursor at each mouse interrupt
occurrence. USER and Windows applications subsequently set the shape of the
cursor using SetCursor.

Because USER calls MoveCursor on each mouse interrupt, MoveCursor should
set a semaphore to prevent the function from being called before it can complete
the current call. The function should set the semaphore using a noninterruptable in­
struction such as the xchg instruction. Once the semaphore is set, MoveCursor
should retrieve the x and y coordinates of the current call, set a flag to indicate that
the cursor is being redrawn, and clear the semaphore. Whenever MoveCursor is
called, it should check this flag before continuing the request.

Page 47 of 239

44 Microsoft Windows Device Driver Adaptation Guide

On a palette-capable device when the source bitmap is a monochrome bitmap,

DeviceBitmapBits passes in a translation table that has only two entries, instead
of 256. Entry 0 has the color—table index for black and entry 1 has the color table
index for white.

When DeviceBitmapBits sets bitmap bits, GDl passes a pointer only if the hit—

count is 24. The parameter points to data maintained by GDI. For every RGB

value in the DIB, the display driver calls the DeviceColorMatch function

(GDI.449) to match an RGB value with an index. This function returns an index
to represent that color in the device-dependent bitmap.

2.1.17 Stub Functions

2.1.18 Cursors

Although the SetAttribute and DeviceBitmap functions are not currently sup-

ported in GDI, a display driver must provide these functions. In all drivers, these
functions are implemented as stub functions that do nothing more than always
return a —1.

The USER module requires all display drivers to provide cursor support. A display

driver must provide the following functions.

Function Description

CheckCursor Draws the cursor if drawing is not disabled.

InquireCursor Retrieves information about the cursor.

MoveCursor Moves the cursor to a specified position on the display.

SetCursor Sets the cursor shape.

When Windows first starts, USER calls the InquireCursor function to retrieve

information about the cursor. It then sets a system timer to call the CheckCursor

function on each timer interrupt and enables the mouse driver, allowing the
Windows mouse-event routine to call MoveCursor at each mouse interrupt

occurrence. USER and Windows applications subsequently set the shape of the

cursor using SetCursor.

Because USER calls MoveCursor on each mouse interrupt, MoveCursor should

set a semaphore to prevent the function from being called before it can complete

the current call. The function should set the semaphore using a noninterruptable in-

struction such as the xchg instruction. Once the semaphore is set, MoveCursor
should retrieve the x and y coordinates of the current call, set a flag to indicate that

the cursor is being redrawn, and clear the semaphore. Whenever MoveCursor is

called, it should check this flag before continuing the request.

Page 47 of 239

Chapter 2 Display Drivers 45

The CheckCursor function is called on each timer interrupt. The function should
determine whether the cursor needs redrawing and whether drawing is enabled. If
so, the function should redraw the cursor.

For displays that do not have hardware cursor, the display driver should exclude
the cursor from the screen before carrying out drawing operations in functions
such as BitBlt, Output, and ExtTextOut. The driver should check the current x
and y coordinates and exclude the cursor if any part of the cursor lies within the
drawing region as specified in the following.

Operation

Bit-block transfer
Ellipse
Other line drawing
Polygon

Polyline

Scan line
Text

2.1.19 Display-Driver Escapes

Region

Destination rectangle
Bounding rectangle

Bounding rectangle

Clip rectangle

Clip rectangle
Whole scan line
Bounding rectangle and/or opaquing rectangle

A display driver provides the Control function to give applications direct access
the display driver. Most display drivers only provide support for the following
escapes:

• GETCOLORTABLE

• MOUSETRAlLS

• QUERYESCSUPPORT

Applications call the QUERYESCSUPPORT escape to detennine whether the
display driver supports a given escape.

2.1.20 Mouse Trails
In Windows 3.1, display drivers can improve mouse cursor visibility (especially
on liquid crystal displays (LCD» by supporting mouse trails. A mouse trail is a
sequence of two or more cursor images that mark current and previous mouse cur­
sor positions. A display driver creates a mouse trail by drawing a cursor at each
new mouse position and leaving additional cursors at previous positions. The
driver delays erasing the previous cursors until a specified number of cursors are
visible.

Page 48 of 239

46 Microsoft Windows Device Driver Adaptation Guide

A display driver provides support for mouse trails by processing tile MOUSE­
TRA1LS escape in its Control function. The MOUSETRAILS escape enables
or disables mouse trails . It also sets the maximum number of cursors to be dis­
played in the trail. The display driver must also process the QUERYESC­
SUPPORT escape, returning the status of the mouse trails if the requested
escape is MOUSETRAILS.

The di splay driver draws the mouse trail when it processes the MoveCursor func­
tion. Any trailing cursors must have the same shape as the current cursor. The dis­
play driver should provide mouse trails for system cursors, such as the pointer and
hourglass, and for application-specific cursors as well. Currently, support is not
provided for mouse trails for XOR-only cursors, such as the I-beam and tbe cross­
hair cursor used by PaintBrush.

The display driver is responsible for recording the mouse trail status by maintain­
ing the MouseTrails setting in the [Windows] section of the WIN.INJ file. The
driver switches this setting to a positive value to indicate that mouse trails capa­
bility is enabled. The value also specifies the number of cursors to display. The
driver switches this setting to a zero or a negative value when mouse trails capabil­
ity is disabled. The absolute value specifies the number of cursors to display prior
to being disabled .

Users can tum mouse trails on or off by using Windows 3.1 Control Panel. The
mouse settings dialog box displays a Mouse Trails option .

Applications should not enable or disable mouse trails. However, third-party
mouse configuration programs should.

2.1.21 Multiple-Resolution Drivers
A multiple-resolution display driver provides the code and resources needed to
support all resolutions of a given display device. In previous versions of Windows,
separate display drivers were required for each resolution. In Windows 3.1, a
single display driver can handle all resolutions .

A multiple-resolution driver must provide the following:

• GetDriverResourceID function

• Icons and cursors for each supported resolution

• Installation information

Page 49 of 239

46 Microsoft Windows Device Driver Adaptation Guide

A display driver provides support for mouse trails by processing the MOUSE-

TRAILS escape in its Control function. The MOUSETRAILS escape enables
or disables mouse trails. It also sets the maximum number of cursors to be dis-

played in the trail. The display driver must also process the QUERYESC-
SUPPORT escape, returning the status of the mouse trails if the requested
escape is MOUSETRAILS.

The display driver draws the mouse trail when it processes the MoveCursor func-
tion. Any trailing cursors must have the same shape as the current cursor. The dis-
play driver should provide mouse trails for system cursors. such as the pointer and

hourglass, and for application-specific cursors as well. Currently, support is not
provided for mouse trails for XOR-only cursors, such as the I-beam and the cross-
hair cursor used by PaintBrush.

The display driver is responsible for recording the mouse trail status by maintain-
ing the MouseTrails setting in the [Windows] section of the WINJNT file. The

driver switches this setting to a positive value to indicate that mouse trails capa-

bility is enabled. The value also specifies the number of cursors to display. The
driver switches this setting to a zero or a negative value when mouse trails capabil—

ity is disabled. The absolute value specifies the number of cursors to display prior
to being disabled.

Users can turn mouse trails on or off by using Windows 3.] Control Panel. The

mouse settings dialog box displays a Mouse Trails option.

Applications should not enable or disable mouse trails. However, third-party
mouse configuration programs should.

2.1.21 Multiple-Resolution Drivers

A multiple-resolution display driver provides the code and resources needed to
support all resolutions of a given display device. In previous versions of Windows,
separate display drivers were required for each resolution. In Windows 3.1, a

single display driVer can handle all resolutions.

A multiple-resolution driver must provide the following:

I GetDriverResourceID function

I Icons and cursors for each supported resolution

I Installation information

Page 49 of 239

is

Chapter 2 Display Drivers 47

2.1.21.1 Resources and Resource Mapping
In many cases, the only difference for the driver between the device resolutions is
the size of the resources and the horizontal and vertical dimensions. A driver can
support multiple resolutions as long as it can determine which resolution Windows
expects it to use.

To support multiple resolutions in a single display driver, Windows checks for
the GetDriverResourceID function in the driver and calls it before loading the
driver's resources and dimensions, This gives the driver a chance to check the
SYSTEM.INI file using the GetPrivateProlileInt (KERNEL.I27) or GetPrivate­
ProlileString (KERNEL.128) functions for infoffilation specifying the desired
resolution, The GetDriverResourceID function can then map the request resource
identifier to the identifier of the corresponding resource for the desired resolution,
In this way, the driver makes sure Windows loads the appropriate resources for the
resolution to be used.

When Windows calls the GetDriverResourceID function, the driver should
alleast check for the aspect entry in the [Boot.description] section of the
SYSTEM. IN] file. This entry specifies the resolution (in dots-per-inch) of the
display. Drivers use this value to determine which fonts to use as well as to de­
termine other resource that depend on the number of dots-per-inch the display
generates.

Display drivers that support multiple resolutions must export the GetDriver­
ResourceID function and provide a set of appropriate resources for each resolu­
tion .

2_1.21.2 Installation Information
Users select the desired resolution for the display using the Setup program. To dis­
play each screen resolution, Setup checks the [Display] section in the SETUP.INF
or OEMSETUP.lNF ftle. There must be one line for each resolution. For example,
if a video adapter named "ZGA" has three resolutions (640x480, 800x600, and
1024x768), the [Display] section should look something like this:

[display]
zgal=1,zga .d rv,"ZGAI640x480)","100,96,96",3,zgaco lo r.2gr, . .. ,zgalo
zga2=1,zga.drv,"ZGAI800x600)","100,96,96",3,zgaco lo r.2gr, . .. ,zgamed
zga3=1,zga.drv," ZGAI10 24x768)","100,120,120",3,zgacolor.2gr, .. . ,zgahi

Setup installs the same driver (ZGA.DRV), grabbers, virtual-display device, and
other related components. However, the last field in the line specifies an additional
section in the SETUP.1NF or OEMSETUP.INF file that contains resolution­
specific information.

Page 50 of 239

Chapter 2 Display Drivers 47__________—_.—

2.1.21.1 Resources and Resource Mapping

In many cases, the only difference for the driver between the device resolutions is
the size of the resources and the horizontal and vertical dimensions. A driver can

support multiple resolutions as long as it can determine which resolution Windows
expects it to use.

To support multiple resolutions in a single display driver, Windows checks for

the GetDriverResourceID function in the driver and calls it before loading the
driver’s resources and dimensions. This gives the driver a chance to check the

SYSTEM.[NI file using the GetPrivateProfileInt (KERNELJZ?) or GetPrivate-

ProfileString(KERNEL.128) functions for information specifying the desired
resolution. The GetDriverResourceID function can then map the request resource

identifier to the identifier of the corresponding resource for the desired resolution.
In this way. the driver makes sure Windows loads the appropriate resources for the
resolution to be used.

When Windows calls the GetDriverResourceID function, the driver should

at least check for the aspect entry in the [Bootdescription] section of the

SYSTEMJNI file. This entry specifies the resolution (in dots—per-inch) of the

display. Drivers use this value to determine which fonts to use as well as to de~

termine other resource that depend on the number of dots-per-inch the display
generates.

Display drivers that support multiple resolutions must export the GetDriver-

Resourcefl) function and provide a set of appropriate resources for each resolu-
tion.

2.1.21.2 Installation Information

Users select the desired resolution for the display using the Setup program. To dis-
play each screen resolution. Setup checks the [Display] section in the SETUPJNF

or OEMSETUP.[NF file. There must be one line for each resolution. For example,
if a video adapter named “ZGA” has three resolutions (640x480. 800x600, and
1024x768), the [Display] section should look something like this:

[display]
zga1=ltzga.drv."ZGA(64Bx4BQJ"."100,96.96",3:zgacolor.2gr.... .zgalo
zga2=1:zga.drv,"ZGA(SB@x6@B)"."lBG,96,96",3:zgacolor.2gr,... .zgamed
zga3=1=zga.drv,"ZGA(1@24x758)","IBB,120,126".3:zgacotor.29r,... ,zgahi

Setup installs the same driver (ZGADRV), grabbers, virtual‘display device, and

other related components. However, the last field in the line specifies an additional
section in the SETUPJN'F or OEMSETUPINF file that contains resolution-

specific information.

Page 50 of 239

48 Microsoft Windows Device Driver Adaptation Guide

The resolution-specific infonnation allows Windows Setup to copy files and write
profile data for later use by the display driver. Setup can write the infonnation to
the SYSTEM.INI file in the section and fonnat the driver understands. When a dis­
play driver is initialized, it can use the Windows functions GetPrivateProfilelnt
or GetPrivateProfileString to read the user-specified screen resolution from the
appropriate section of SYSTEM.IN!. This will let the driver decide what resource
ID to return to Windows by the GetDriverResourceID function.

The following examples show how resolution-specific information sections ntight
look in the SETUP.lNF or OEMSETUP.INF file:

[zgalo]
4:zgalo.dll , 0:system""

[zgamed]
"system.ini .zga . drv, ,"ZGAres=800x600"

[zgahi]
4:zgahi .dll ,0:system,system . ini ,zga,drv,"ZGAres=800x600","ZGAMode=Hi"

For more infonnation about the resolution-specific information sections, see the
[Display] section.

2.1.22 Microsoft Windows for Pen-Computing Extensions
Display drivers that support Pen Extensions provide a set of functions and re­
sources that permit the display drivers to carry out inking. Pen Windows is a
version of Windows in which character-recognition software (Recognition
Context (RC) Manager) allows a pen device to be used in place of a keyboard.
Inking is drawing done by a display driver in response to input from the RC
Manager.

2.1.22.1 Inking Functions
Display drivers that support inking must be prepared to process inking requests
whenever pen input generates an interrupt. The drivers must export the GetLP­
Device and InkReady functions .

If the RC Manager requires inking, it calls the GetLPDevice function to retrieve
a pointer to the display driver's PDEVICE structure. The RC Manager uses this
pointer in subsequent calls to the display driver's Output function to complete the
inking. The color and width of the ink is set by the RC Manager.

Before calling Output, the RC Manager calls the InkReady function to notify the
display driver that it is ready to ink. The display driver must deterntine whether
any other drawing operation is under way. If so, the display driver must wait until

Page 51 of 239

r?

43 Microsoft Windows Device Driver Adaptation Guide

The resolution-specific information allows Windows Setup to copy files and write

profile data for later use by the display driver. Setup can write the information to
the SYSTEMJNI file in the section and format the driver understands. When a dis-

play driver is initialized, it can use the Windows functions GetPrivateProfileInt
or GetPrivateProfileString to read the user-specified screen resolution from the

appropriate section of SYSTEMINI. This will let the driver decide what resource
ID to return to Windows by the GetDriverResourceID function.

The following examples show how resolution-specific information sections might
look in the SETUPJNF or OEMSETUP.INF file:

fzgaio]
4:zgaio.dll,@:sy5tem,,,,

[zgamed]
,,system.ini,zga.drv,,"ZGAres=882x690“

[zgahi]
4:zgahi.dii.B:system,system.ini,zga.drv,"ZGAres=8@Bx688","ZGAMode=Hi"

For more information about the resolution-specific information sections, see the
[Display] section.

2.1.22 Microsoft Windows for Pen-Computing Extensions

Display drivers that support Pen Extensions provide a set of functions and re—

sources that permit the display drivers to carry out inking. Pen Windows is a

version of Windows in which character-recognition software (Recognition
Context (RC) Manager) allows a pen device to be used in place of a keyboard.

taking is drawing done by a display driver in response to input from the RC
Manager.

2.1.22.1 inking Functions

Display drivers that support inking must be prepared to process inking requests

whenever pen input generates an interrupt. The drivers must export the GetLP-
Device and InkReady functions.

If the RC Manager requires inking, it calls the GetLPDevice function to retrieve

a pointer to the display driver’s PDEVICE structure. The RC Manager uses this
pointer in subsequent calls to the display driver’s Output function to complete the

inking. The color and width of the ink is set by the RC Manager.

Before calling Output, the RC Manager calls the InkReady function to notify the

display driver that it is ready to ink. The display driver must determine whether
any other drawing operation is under way. If so, the display driver must wait until

Page 51 of 239

Chapter 2 Display Drivers 49

the current operation is complete before completing the inking. In any case, the
display driver calls a callback function supplied with the call to InkReady to com­
plete the inking.

2.1.22.2 Inking Resources
Display drivers that support inking must provide the following cursor resources.

Value

IDC_NEPEN (32630)

IDCNWPEN (32631)

IDCSEPEN (32632)

IDC]EN (32633)

IDC_SWPEN (32633)

Meaning

Pen points to northeast.

Pcn points to northwest.

Pen points to southeast.

Default pen is same as IDC_SWPEN.
Pen points to southwest.

The pen cursors must be added to the dri ver in the same way as the standard
Windows cursors.

2.2 About Display-Driver Resources
Display drivers contain most ofthe cursors, icons, and bitmaps that use Windows.
They are supplied by the display driver to account for the aspect ratio and resolu­
tion of the display adapter. Also, the definitions of certain system parameters (for
example, default colors and border widths) are supplied by the display driver. All
of this information is supplied as resources that are added to the driver by the re­
source compiler (RC.EXE).

A display driver requires the following resources.

Resource

Stock fonts

Configuration

Color table

Icons, cursors, bitmaps

Description

The stock-font resource defines the characteristics of the
stock-font objects used by Windows.

The configuration resource contains information about de­
fault system colors, line widths, cursor sizes, icon sizes, and
so on .

The color table resource contains the color table for Control
Panel's Color dialog box.
The icon, cursor, and biunap resources define the shape and
appearance of various elements of the Windows desktop.

Page 52 of 239

50 Microsoft Windows Device Driver Adaptation Guide

2.2.1 Stock-Fonts Resource
The stock-font resource (defined by the FONTS.BIN file) defines the character­
istics of the stock-font objects used by Windows. Windows requires three stock
fonts:

• OEM font (the Terminal font)

• ANSI fixed-pitch font

• ANSI variable-pitch font

Windows supplies a wide variety of stock-font files at various aspect ratios, so
most display drivers do not have to provide the actual font files to support these
stock fonts. Windows provides the following screen and system fonts.

Font name Aspect ratio Logical pixels Logical pixels
per inch X per inch Y

COURB EGA, 1.33 to 1 96 72
EGASYS EGA, 1.33 to 1 96 72

SERIFB EGA, 1.33 to I 96 72

SMALLB EGA, 1.33 to I 96 72
SSERIFB EGA, 1.33 to 1 96 72
COURE VGA,I to 1 96 96
SERIFE VGA,I to 1 96 96
SMALLE VGA,I to 1 96 96
SSERIFE VGA,I to 1 96 96
VGAFIX VGA,I to 1 96 96
VGASYS VGA,I [01 96 96
8514FIX 8S14/A, I to I 120 120
8514SYS 8514/A, I to 1 120 120
COURF 8S14/A, I to I 120 120
SERlFP 8514/A, I to I 120 120
SMALLF 8514/A,1 tol 120 120
SSERIFP 8514/A, j to 1 120 120

All the filenames have the same .FON extension .

Page 53 of 239

Chapter 2 Display Drivers 51

2.2.2 Configuration Resource
The configuration resource (defined by the CONFIG.BIN ftle) contains informa­
tion about default system values, such as, desktop colors, horizontal and vertical
line widths, scroll bar "thumb" sizes, and cursor and icon compression ratios.

2.2.3 Color-Table Resource
The color-table resource (defined by the COLORTAB.BIN file which contains the
COLORTABLE structure) contains a list of the colors that are to appear in the
Control Panel's Color dialog box. This table should contain all the solid colors that
are representable as RGB values as well any patterned colors that are reasonably
close to the colors of the 85 14/a display under Windows 3.1. The table may con­
tain up to 48 RGB values. It is not necessary for RGBs to be exact across all
drivers, but it is important for color representations to be similar. This accounts
for variations in dithering algorithms of different display drivers.

For Windows 3.1, the recommended default system color values for 16- and 256-
color displays are new. In particular, several system colors that were patterned
(dithered) in Windows 3.0 have been changed to solids to improve performance
and visibility on interlaced displays. For color drivers intended for use on general
purpose color displays, the default desktop colors should always be solid colors.
For 4bpp drivers, the default colors should be the same as used by the Windows
3.1 VGA driver. For 8bpp drivers, the default colors should be the same as used
by the Windows 3.1 8514/a driver. See CONFIG.BIN for a list of these default
colors.

In Windows 3. 1, the CONFIG.BIN resource has been expanded to include the
c1rInactiveCaptionTextmember. This member specifies the color of the text in
the title bar of an inactive window.

For a complete descript ion of the default system colors and the elrInactive­
CaptionText member, see the CONFIG.BIN resource.

2.2.4 Icon, Cursor, and Bitmap Resources
The icon, cursor, and bitmap resources define the appearance of elements of the
Windows desktop, such as the minimize and maximum buttons, scroll boxes,
menu icons, and others. The USER module extracts these resources from the dis­
play dri ver when Wi ndows starts, then uses BitBlt to copy the resources to the
SCreen when drawing windows. Windows provides a wide variety of icon, cursor,
aod bitmap resources at various resolutions and aspect ratios.

Page 54 of 239

52 Microsoft Windows Device Driver Adaptation Guide

2.2.4.1 Cursors
The following table provides a list of required cursor resources. The last four cur·
sors in the list are no longer used by Windows, but must be provided for compati·
bility with existing Windows applications .

Resource

CROSS.CUR

IBEAM.CUR

ICON. CUR

NORMAL.CUR

SIZECUR

SIZENESWCUR

SIZENS.CUR

SIZEWE.CUR

SIZENWSECUR

UP.CUR

WAIT.CUR

Appearance

An upright cross used as a selection marker.*

An I-beam shaped cursor used in edit control windows.

An empty box formerly used when the mouse was in the icon
arca.*

An upward diagonal arrow used as the default mouse cursor.

A box shape formerly used when sizing liled windows,*

A two-headed arrow used when sizing windows. Arrows point
northeast and southwest.

A two-headed arrow used when sizing windows. Arrows point
north and south.

A two-headed arrow used when sizing windows. Arrows point
west and east.

A two-headed arrow used when sizing windows. Arrows point
northwest and southeast.

An upward arrow. *
An hourglass that is used while carrying Ollt lengthy operations.

• These resources are only for compatibility for versions of Windows prior to 3.0.

2.2.4.2 Icons
The following table provides a list of required icons resources.

Resource

BANG.ICO

HAND.lCO

NOTE.lCO

QUES .ICO

SAMPLE.lCO

Appearance

An exclamation mark used to emphasize the consequences of an
operation.

A stop sign used to indicate an error condition that halls operation.

An asteri sk used to indicate noncritical si tuations.

A question mark used when querying for a reply.

The defauJt icon used when no other icon to an operation can be
found.

2.2.4.3 Bitmaps
The following table provides a list of required bitmap resources. The first seven
bitmaps have two forms (up and down) used to create a 3·0 effect when pushing

Page 55 of 239

Chapter 2 Displav Drivers 53

in a button, The last eleven bitmaps are no longer used by Windows, but must be
supplied for compatibility with applications that expect them to be available,

Resource

COMBO.BMP

DOWN,BMP

DOWND,BMP

LEFf,BMP

LEFfD,BMP

MAX.BMP

MAXD.BMP

M1N.BMP

MIND.BMP

MNARROWBMP

OBTNCORN,BMP

OBTSIZE,BMP

OBUTTON .BMP

OCHECK.BMP

OCLOSE-BMP

ODOWN.BMP

OLEFf.BMP

ORED.BMP

OREST.BMP

ORIGHT.BMP

OSIZE.BMP

OUP.BMP

OZOOM.BMP

RESTORE,BMP

RESTORED.BMP

RIGHT.BMP

RIGHTD.BMP

SYSMENU,BMP

UP.BMP

UPD.BMP

Appearance

An arrow used in combo boxes.

Up down-pointing arrow for scroll bars.

Down down-pointing arrow for scroll bars.

Up left-pointing arrow for scrolJ bars.

Down left-pointing arrow for scroll bars.

Up maximlze button on the title bar.

Down maximize button on the title bar.

Up minimize button on the title bar.

Down minimize button on the title bar.

An arrow used in multilevel menus.

A circle formerly used to draw round-cornered buttons.

A size box used at the intersection of vertical and horizontal
scroll bars.*

A box used for check boxes in dialog boxes.

A check mark used to check menu items.

The system-menu bitmaps used for Windows 2..x. *
A down-arrow bitmap used for Windows 2.x.*

A left-arrow bitmap used for Windows 2.x .*

This resource minimizes the bitmap used for Windows 2.x.*

Restores the bitmap used for Windows 2..x. *
A right-arrow bitmap used for Windows 2.x.*

A size box formerly used on tiled windows, *
An up-arrow bitmap used for Windows 2.x. *
Maximizes the bitmap used [or Windows 2.x.*
Up restore button on the title bar.

Down restore button on the title bar.

Up right-pointing arrow for scroll bars.

Down right-pointing arrow for scroll bars ,

A double-wide image that contains system menu shapes for
both main windows and multiple document interFace (MDl)
windows.

Up up-pointing arrow for scroll bars.

Down up-pointing arrow for scroll bars.

* These resources are only for compatibility for versions of Windows prior to 3.0.

Page 56 of 239

54 Microsoft Windows Device Driver Adaplation Guide

2.2.5 Large Icons and Cursors
In Windows 3.1, display drivers can use icons larger than 64-by-64 bits and cur­
sors larger than 32-by-32 bits. Large icons and cursors can improve screen read­
ability for high-resolution graphics adapters.

Display drivers specify icon and cursor size in the CONFIG_ BIN structure in
the IconXRatio, IconYRatio, CurXRatio, and CurYRatio members of the
CONFIG.BIN resource (that is, the resource having identifier I and type
OEMBIN). In Windows 3.1, these members specify either a width and height
in pixels or a compression ratio. In Windows 3.0, these members only specify
compression ratios. For a complete description of the members, see the
CONFIG .BIN resource.

In all cases, each icon or cursor must have the same width and height in pixels.

Display drivers which specify actual widths and heights in the OEMBIN resource
can not be used with Windows 3.0. Drivers which specify compression factors
work with both Windows 3.0 and 3.1. However, drivers cannot simultaneously
specify compression factors and icons or cursors larger than 32-by-32.

2.2.6 Optimizing Performance
Whenever possible, display drivers should use the features of the CPU to optimize
their performance. This is particularly important for drivers when used in multi­
media versions of Windows.

A display driver can determine what CPU is prcscnt and what mode Windows is
operating in by examining the _ _ WinFlags variable or by calling the GetWin­
Flags function. If the CPU is at least a 386, the display driver should take advan­
tage of the CPU's 32-bit registers to manipulate data and to index huge arrays.

2.2.6.1 Tips for Writing Transparent Text
Drivers generating VGA text output can make two significant speedups for trans­
parent text: don't draw empty bytes or words and use write mode 3.

While drawing the character to video memory, avoid copying the "empty" part
of a glyph's bitmap. For example, there is no need to copy the space character to
video memory or the ascender on letters like the lowercase 'p'. Since accessing
video memory is nearly 5 times s.lower than accessing system memory, it is

Page 57 of 239

54 Microsoft Windows Device Driver Adaptation Guide

2.2.5 Large Icons and Cursors

In Windows 3.1. display drivers can use icons larger than 64‘by-64 bits and cur-
sors larger than 32—by-32 bits. Large icons and cursors can improve screen read-

ability for high-resolution graphics adapters.

Display drivers specify icon and cursor size in the CONFIGVBIN structure in
the IconXRatio, IconYRatio, CurXRatio, and CurYRatio members of the

CONFIGBIN resource (that is, the resource having identifier l and type
OEMBLN). In Windows 3.1, these members specify either a width and height

in pixels or a compression ratio. In Windows 3.0, these members only specify
compression ratios. For a complete description of the members, see the
CONFIGBIN resource.

In all cases, each icon or cursor must have the same width and height in pixels.

Display drivers which specify actual widths and heights in the OEMBIN resource

can not be used with Windows 3.0. Drivers which specify compression factors
work with both Windows 3.0 and 3.1. However, drivers cannot simultaneously

specify compression Factors and icons or cursors larger than 32-by-32.

2.2.6 Optimizing Performance

Whenever possible, display drivers should use the features of the CPU to optimize-
their performance. This is particularly important for drivers when used in multi-
media versions of Windows.

A display driver can determine what CPU is present and what mode Windows is
operating in by examining the __ WinFlags variable or by calling the GetWin—

Flags function. If the CPU is at least a 386, the display driver should take advan-

tage of the CPU‘s 32-bit registers to manipulate data and to index huge arrays.

2.2.6.1 Tips for Writing Transparent Text

Drivers generating VGA text output can make two significant speedups for trans-
parent text: don’t draw empty bytes or words and use write mode 3.

While drawing the character to video memory, avoid copying the "empty” part
of a glyph’s bitmap. For example, there is no need to copy the space character to

video memory or the ascender on letters like the lowercase ‘p’. Since accessing

video memory is nearly 5 times slower than accessing system memory, it is

Page 57 of 239

Chapter 2 Display Drivers 55

cheaper to check for and ignore empty bytes or words in a glyph bilmap, than
it is to store nothing to video memory. In the following example, the code gives
a significant performance increase for many video adapters:

mav aX , glyphbfts
or aX,ax
jz around it
xchg es:[di],ax

around_it:

Use write mode 3 on VGA hardware. This mode simplifies the output of trans­
parent text by eliminating the extra step of setting the bitmask register for each
store to video memory. For example, the VGA portion of the following
EGANGA code uses write mode 3 for the VGA adapter and is considerably
faster than the equivalent EGA code.

mov aX,glyphbits
if . EGA

push dx
mov dX,3cfh
out dx, a 1
xchg es: [d i],al ;write ax to screen .
mov a 1 • ah
out dX,al
xchg es:[di+l],ah ;write ax to screen.
pop dx

else
xchg es:[dij,al ;wr i te ax to screen .
xchg es : [di+l],ah :write ax to screen.

end; f

2.2.6 .2 Tips for Using the Interrupt Flag
Display drivers should avoid needless clearing and setting of the interrupt flag
using the eli and sti instructions. Since 386 enhanced-mode Windows traps these
instructions as part of its management of the CPU's virtual mode, these instruc­
tions each take about 600 CPU clocks to execute.

2.3 Function Reference
The following is an alphabetical li sting of graphics functions that are specific to
di splay drivers. For a complete description of the graphics functions that are com­
mon to other graphics drivers, see Chapter I D, "Graphics-Driver Functions ,"

Page 58 of 239

Chapter 2 Display Drivers 55

cheaper to check for and ignore empty bytes or words in a glyph bitmap. than

it is to store nothing to video memory. In the following example. the code gives
a significant performance increase for many video adapters:

mov ax,glyphbits
or ax.ax

jz around_it
xchg es:[di],ax

aroundiit:

Use write mode 3 on VGA hardware. This mode simplifies the output of trans—
parent text by eliminating the extra step of setting the bitmask register for each

store to video memory. For example, the VGA portion of the following

EGANGA code uses write mode 3 for the VGA adapter and is considerably
faster than the equivalent EGA code.

now ax,giyphbits
if ,EGA

push dx
mov dx,3cfh
out dx,al
xchg es:[di].al :write ax to screen.
mov ai,ah
out dx.ai
xchg es:[di+1].ah :write ax to screen.
pop dx

else

xchg es:[di].al :write ax to screen.
xchg Eszidi+1],ah :write ax to screen.

endif

2.2.5.2 Tipster Using the Interrupt Flag

Display drivers should avoid needless clearing and setting of the interrupt flag
using the CH and sti instructions. Since 386 enhanced—mode Windows traps these

instructions as part of its management of the CPU’S virtual mode. these instruc-
tions each take about 600 CPU clocks to execute.

2.3 Function Reference

The following is an alphabetical listing of graphics functions that are specific to

display drivers. For a complete description of the graphics functions that are com-
mon to other graphics drivers, see Chapter 10. “Graphics-Driver Functions."

Page 58 of 239

56 CheckCu!s"!

CheckCursor
void CheckCursor(voia')

Parameters

Return Value

Comments

FastBorder

The CheckCursor function is called on every timer interrupt. [t allows the cursor
to be displayed if it is no longer excluded.

This function has no parameters.

This function has no return value.

The export ordinal for this function is 104.

WORD FastBorder(lpRect, wHorizBorderThick, wVertBorderThick, dwRasterOp, {pDestDev,
{pPBrush, {pDrawMode, {pClipRect)

LPRECT IpRect;
WORD wHorizBorderThick;
WORD wVertBorderThick;
DWORD dwRasterOp;
LPDEVICE IpDestDev;
LPBRUSH IpPBrush;
LPDRAWMODE {pDrawMode;
LPRECT IpClipRect;

Parameters

The FastBorder function draws a rectangle with a border on the screen. However,
the size is subject to the limits imposed by the specified clipping rectangle. The
border is drawn within the boundaries of the specified rectangle.

IpRect
Points to a RECT structure specifying the rectangle to be framed.

wHorizBorderThick
Specifies the width in pixels of the left and right borders.

wVertBorderThick
Specifies the width in pixels of the top and bottom borders.

dwRasterOp
Specifies the raster operation to be used.

IpDestDev
Points to a PDEVICE structure that identifies the device to receive the output.

Page 59 of 239

Return Value

Comments

Inquire

Inquire 57

lpPBrush
Points to a PBR USH structure.

lpDrawMode
Points to a DRA WMODE structure that includes the cunent text color, back­
ground mode, background color, text justification, and character spacing. See
the DRA WMODE data snucture description in Chapter 12, "Graphics-Driver
Types and Structures," for a description of text justification and character
spacing.

lpClipRect
Points to a RECT structure specifying the clipping rectangle.

The return value is AX = I if successful. Otherwise, AX = O.

The export ordinal for this function is 17.

The specified rectangle should be given as (UpperLeftComer, LowerRight­
Comer). If it is specified inconectly, the sample function will draw the borders
outside of the specified rectangle, instead of correctly drawing them inside.

The function is optional for display drivers. It is required at the GDI level but not
at the display level.

The raster operation to be used will never have a source operand within it.

The ipOrawMode parameter is simply a long pointer to the DRA WMODE data
structure. It is included only for compatibility witb earlier versions and is not cru­
cial. The only field that you may use from there is BackgroundColor.

WORD Inquire(lpCursorlnfo)
LPCURSORINFO lpCursorlnfo;

Parameters

Return Value

The Inquire function returns the mouse's mickey-to-pixel ratio for your screen.

lpCursorlnfo
Poims to a CURSORINFO structure containing a device infonnation that is
filled in by the device driver. The first word is the X mickey-to-pixel ratio, and
the second word is the Y mickey-to-pixel ratio.

The return value is the number of bytes (4) in the AX register actually written into
the data structure.

Page 60 of 239

Inquire 57

Return Value

Comments

Inquire

lpPBrush
Points to a PBRUSH structure.

i’pDrawMode
Points to a DRAWMODE structure that includes the current text color, back—

ground mode, background color, text justification, and character spacing. See

the DRAWMODE data structure description in Chapter 12, “Graphics-Driver
Types and Structures,” for a description of textjustification and character

spacing.

lpClr'pRect

Points to a RECT structure specifying the clipping rectangle.

The return value is AX = 1 if successful. Otherwise, AX = 0.

The export ordinal for this function is 17.

The specified rectangle should be given as (UpperLeftComer, LOWCTRight-
Corner). If it is specified incorrectly, the sample function will draw the borders

outside of the specified rectangle, instead of correctly drawing them inside.

The function is optional for display drivers. It is required at the GDI level but not
at the display level.

The raster operation to be used will never have a source operand within it.

The lpDrawMode parameter is simply a long pointer to the DRAWMODE data
structure. It is included only for compatibility with earlier versions and is not cru—

cial. The only field that you may use from there is BackgroundColor.

WORD InquireUpCm‘sorInfo)
LPCURSORINFO prm‘sorlnfo;

Parameters

Return Value

The Inquire function returns the mouse’s mickey-to-pixel ratio for your screen.

lpCursor—[rifb

Points to a CURSORINFO structure containing a device information that is

filled in by the device driver. The first word is the X mickey-to-pixel ratio, and

the second word is the Y mickey-to-pixel ratio.

The return value is the number of bytes (4) in the AX register actually written into
the data structure.

Page 60 of 239

58 MOUSETRAILS

Comments The export ordinal for this function is lOl.

This function is called once per initialization before the Enable function.

MOUSETRAILS
#defme MOUSETRAILS 39

WORD Control(lpDestDevice, MOUSETRAILS, IpTrailSize, NULL)
LPPDEVICE IpDestDevice;
LPINT /pTrailSize;

Parameters

The MOUSETRAILS escape enables or disables mouse trails for the display
driver.

/pDestDevice
Points to a PDEVICE structure specifying the destination device.

/pTraiiSize
Points to a 16-bit variable containing a value specifying the action to take, and
the number of mouse cursor images to di splay (trail size). The variable can be
one of the fallowing values.

Value Meaning

1 through 7 Enables mouse traiJs and sets the trail size to the specified number.
A value of 1 requests a single mouse cursor; 2 requests that one
extra mouse cursor be drawn behind the current mouse cursor, and
so on, up to a maximum of 7 total cursor images . The function sets
the MouseTrails setting in the WIN.INI file to the given value. The
function then returns the new trail size.

D Disables mouse trails. The function sets the MouseThails setting to
the negative value of the current trail size (if positive). The function
then returns the negative value.

- 1 Enables mouse trails. The display driver reads the MouseTrails set­
ting from the [Windows] section of the WIN.IN1 tile. If the setting
value is positive, the function sets the trail size to the gi ven value. If
the setting value is negative, the function sets trail size to the set­
ting's absolute vaJue and writes the positive value back to WIN.lNI.
If the MouseTrails setting is not found, the function sets the trail
size to 7 and wriles a new MouseTraiis setting to the WINJNI file,
setting its value to 7. The function then returns the new trail size.

Page 61 of 239

V1
58 MDUSETHAILS

Comments The export ordinal for this function is 101.

This function is called once per initialization before the Enable function.

MOUSETRAILS

#define MOUSETRAILS 39

WORD ControlUpDeerevice, MOUSETRAILS, tmeilSize, NULL)
LPPDEVICE lpDestDevice:
LPINT tmeilSize;

The MOUSETRAILS escape enables or disables mouse trails for the display
driver.

Parameters IpDestDevice

Points to a PDEVICE structure specifying the destination device.

tmet'lStze

Points to a 16-bit variable containing a value specifying the action to take. and

the number of mouse cursor images to display (trail size). The variable can be
one ofthe following values.

Value

1 through 7

0

Meaning

Enables mouse trails and sets the trail size to the specified number.
A value of 1 requests a single mouse cursor; 2 requests that one
extra mouse cursor be drawn behind the current mouse cursor, and

so on, up to a maximum of 7 total cursor images. The function sets
the Mouse-Trails setting in the WINJNI file to the given value. The
function then returns the new trail size.

Disables mouse trails. The function sets the Mouse'lt'ails setting to
the negative value of the current trail size (if positive). The function
then returns the negative value.

Enables mouse trails. The display driver reads the MouseTrails set—
ting from the [Windows] section of the W'lNJNl file. If the setting
value is positive, the function sets the trail size to the given value. If
the setting value is negative, the function sets trail size to the set—
King’s absolute value and writes the positive value back to WINJNI.
If the Mouse'n'ails setting is not found, the function sets the trail
size to 7 and writes a new MouseTrails setting to the WINJNI file,
setting its value to 7. The function then returns the new trail size.

Page 61 of 239

Return Value

comments

MoveCursor

Value

- 2

- 3

MoveCursor 59

Meaning

Disables mouse trails but does not cause the driver to update the
WIN.IN! file.
Enables mouse trails but does not cause the driver to update the
WIN.lNI file.

The return value specifies the size of the escape if successful. Otherwise, it is zcro
if the escape is not supported.

An application can retrieve the current trail size by calling the
QUERYESCSUPPORT escape as shown in the following example:

EscapethDC, QUERYESCSUPPORT, sizeoftint), MOUSETRAILS, NULL);

The QUERYESCSUPPORT escape returns the current trail size without changing
to the current setting. If the escape returns zero, mouse trails are not supported by
the display driver. If the escape returns a positive value, mouse trails are enabled
and the value specifies the current trail size. If the escape returns a negative value,
mouse trails are currently disabled and the value is the same as the negative
MouseTrails value specified in the WIN.INI file.

void MoveCursor(wAbsX, wAbs Y)
WORD wAbsX;
WORDwAbsY;

Parameters

Return Value

The MoveCursor function moves the cursor to the given screen coordinates. If the
cursor is a composite of screen and cursor bitmaps (that is, not a hardware cursor),
this function must ensure that screen bits under the current cursor position are re­
stored and the bits under the new position are saved. The function must move the
cursor, even if the cursor is not currently displayed.

wAbsX
Specifies the absolute x-coordinate of the new cursor position.

wAbsY
Specifies the absolute y-coordinate of the new cursor position.

This function has no return value.

Page 62 of 239

60 SaveScreenBitmap

Comments The export ordinal for this function is 103.

Microsoft Windows may specify a position at which the cursor shape would lie
partially outside of the display bitmap. The OEM function is responsible for
clipping the cursor shape to the display boundary.

The MoveCursor function is called at mouse-interrupt time, outside of the main
thread of Windows processing. Since MoveCursor may even interrupt its own
processing, the device driver should disable interrupts while reading the wAbsX
and wAbsY coordinates by using the EnterCrit and LeaveCrit macros in the
WINDEFS.INC file. Do not use sli and eli instructions in the driver.

SaveScreenBitmap
WORD SaveScreenBitmap(lpRect, wCommand)
LPRECT /pRect;
WORD wCommand;

Parameters

Return Value

The SaveScreenBitmap function saves a single bitmap from the display or re­
stores a single (previously stored) bitmap to the display. It is used, for example,
when a menu is pulled down, to store the part of the screen that is "behind" the
menu until the menu is closed.

[pRect
Points to a RECT structure containing the rectangle to use.

wCommand
Specifies the action to take. It can be one of the following values:

Value

o
1

2

Meaning

Saves the rectangle.

Restores the rectangle.

Discards previous save, i£ there was one.

The return value is AX=l if successful. Otherwise, AX=O for any of the following
error conditions:

• "Shadow memory" does not exist (save, restore, ignore).

• "Shadow memory" is already in use (save).

Page 63 of 239

Comments

SetCursor

SetCursor 61

• "Shadow memory" is not in use (restore) .

• "Shadow memory" has been stolen or trashed (restore).

The export ordinal for this function is 92.

Because SaveScreenBitmap can save only one bitmap at a time, the device driver
must maintain a record of whether or not the save area is currently in use.

The bitmap is stored in "shadow memory" (that is. memory for which the device
has control of allocation). Therefore. the device can save the bitmap in whatever
form is most convenient for it, without the rest of Windows worrying about where
it goes.

void SetCursor(lpCursorShape)
LPCURSORSHAPE IpCursorShape;

Parameters

Return Value

Comments

The SelCursor function sets the cursor bitmap that defines the cursor shape. Each
call replaces the previous bitmap with that pointed to by IpCursorShape . If IpCur­
sorShape is NULL, the cursor has no shape and its image is removed from the dis­
play screen.

ipCursorShape
Points to a CURSORSHAPE structure that specifies the appearance of the cur­
sor for the specified device.

This function has no return value.

The export ordinal for this function is 102.

The cursor bitmap is actually two bitmaps. The first bitmap is ANDed with the
contents of the screen, and the second is XORed with the result. This helps to pre­
serve the appearance of Ihe screen as the cursor is replaced and ensures that at
least some of the cursor is visible on all the potential backgrounds.

Page 64 of 239

F’—

SetCursur 61
______________.—————

Comments

I “Shadow memory" is not in use (restore).

I “Shadow memory" has been stolen or trashed (restore).

The export ordinal for this function is 92.

Because SaveScreenBitmap can save only one bitmap at a time. the device driver
must maintain a record of whether or not the save area is currently in use.

The bitmap is stored in “shadow memory” (that is, memory for which the device
has control of allocation). Therefore, the device can save the bitmap in whatever
form is most convenient for it, without the rest of Windows worrying about where

it goes.

SetCursor

void SetCursorUpCursorS/mpe)
LPCURSORSHAPE lpCursorShape;

Parameters

Return Value

Comments

The SetCursor function sets the cursor bitmap that defines the cursor shape. Each

call replaces the previous bitmap with that pointed to by prursorShape. If lpCmu
sci-Shape is NULL, the cursor has no shape and its image is removed from the dis-

play screen.

ipCm‘sorShape

Points to a CURSORSHAPE structure that specifies the appearance of the cur-

sor for the specified device.

This function has no return value.

The export ordinal for this function is 102.

The cursor bitmap is actually two bitmaps. The first bitmap is ANDed with the
contents of the screen, and the second is XORed with the result. This helps to pre-

serve the appearance of the screen as the cursor is replaced and ensures that at
least some of the cursor is visible on all the potential backgrounds.

Page 64 of 239

62 GetLPDevice

2.4 Windows for Pen Computing Function Reference

GetlPDevice

The following is an alphabetical listing of the Pen computing functions for display
drivers.

LPPDEVICE GetLPDevice(VOID);

Parameters

Return Value

Comments

See Also

The GetLPDevice function retrieves a pointer to the display driver's physical
device structure (PDEVICE). The Recognition Context Manager (RC) for Pen
computing calls this fUllction when preparing to ink .

Display drivers that support Pen computing must export the GetLPDevice func­
tion.

This function has no parameters.

The return value is a 32-bit pointer to the physical-device structure (PDEVICE).

The export ordinal for this function is 601.

The RC Manager uses the pointer in subsequent calls to the display driver's Out­
put function . When the RC Manager has pen strokes to draw, it calls Output
using the OS]OL YLINE parameter.

(nkReady, Output

Page 65 of 239

InkReady 63

InkReady
BOOL InkReady(lpftz)
LPFN IpJn; /* pointer to callback function */

Parameter

Return Value

Comments

See Also

The InkReady function notifies the display driver that the Recognition Context
Manager (RC) is ready to ink a path drawn by the pen. The RC Manager for Pen
computing calls this function when the user stroked a path using the pen . The dis­
play driver completes the inking by calling the callback function pointed to by the
Ipin parameter. Depending on whether any other drawing operation is under way,
the driver may call the callback function immediately or wait for the current draw­
ing operation to complete.

Display drivers that support Pen computing must export the InkReady function.

[pJn
Points to the caJiback function that completes the inking.

The return value is TRUE if it completed the inking (called the callback function)
immediately. Otherwise, it is FALSE to indicate that the display driver will
complete the inking as soon as the current drawing operation is complete.

The export ordinal for this function is 600.

The InkReady function deterntines whether any other drawing operation is under
way. If not, the function should call the caJiback function immediately, and then
return TRUE. If a drawing operation is under way, InkReady must save the call­
back function address and return FALSE. The di splay driver is then responsible
for calling the caJiback function as soon as the current drawing operation is
complete.

The callback function pointed to by [pJn takes no parameters and returns no value.

GetLPDevice

Page 66 of 239

64 CONFIG.BIN

2.5 File-Format Reference

CONFIG.BIN

The following is an alphabetical listing of the file formats that are specific to dis­
play drivers.

typedef struct tagCONFIG_BIN {

1* ma ch in e-dependen t parameters */

short VertThumHeight ; 1* vertical thumb height (in pixels)
s hort HorizThumWidth ; 1* horizontal thumb width (i n

short IconXRatio ; 1* i con width (in pi xels)
short IconYRatio; 1* icon height (; n pixels)
short CurXRat;o ; 1* cursor width (in pixels)
short CurYRati 0 ; 1* cursor heig ht (in pixels)
short Reserved; 1* reserved
short XB order ; 1* vertical-line wid th
sho rt YBorder; 1* horizontal-line width

1* default-system colo r values *1

RGBOUAD clrSc rollbar ;
RGBOUAD cl rOesktop;
RGBOUAO clrActiveCaption ;
RGBQUAD clrInactiveCaption ;
RGBOUAO clrMen u;
RGBOUAO clrWindow;
RGBQUAD clrWindowFrame;
RGBOUAO clrMenuText ;
RGBOUAO clrWindowText ;
RGBOUAO clrCaptionText ;
RGB QUAO clrActiveBo rde r;
RGBQUAO clrInactiveBorder:
RGBOUAD clrAppWorkspace;
RGBOUAD cl rH iliteBk;
RGBOUAO cl rHiliteText;
RGBOUAO clrBtnFace ;
RGBOUAO clrBtnShadow ;
RGBOUAO c l rGrayText ;
RGBOUAO cl rBtnText;
RGBQUAO clrlnactiveCaptionText;

CO NFI G_BIN ;

pixels)
*1
*1
*1
*1
*1
*1
*1
*1
*1

The CONFlG.BIN resource defines the default values for system colors, line
widths (both hori zontal and vertical), scroll bar "thumb" sizes, and cursor and
icon widths or compression ratios .

Page 67 of 239

Members

CONFIG.8IN 65

The CONFIG.BlN resource is required for display drivers.

VertThumHeight
Specifies the height in pixels of the vertical scroll-bar thumb.

HorizThum Width
Specifies the width in pixels of the horizontal scroll-bar thumb.

lconXRatio
Specifies either the icon width (in pixels) or the compression ratio. If a width is
specified, it must be greater than 10. The icon resources in the driver must have
the specified width. If a compression ratio is specified, it must be either 1 or 2,
and all icon resources in the display driver must be 64-by-64-bits.

IconYRatio
Specifies either the icon height (in pixels) or the compression ratio. If a width is
specified, i.t must be greater than 10. The icon resources in the driver must have
the specified width. If a compression ratio is specified, it must be either 1 or 2,
and all icon resources in the display driver must be 64-by-64-bits.

CurXRatio
Specifies either the cursor width (in pixels) or the compression ratio. If a width
is specified, it must be greater than 10. The cursor resources in the driver must
have the specified width. If a compression ratio is specified, it must be either I
or 2, and all cursor resources in the display driver must be 32-by-32-bits.

CurYRatio
Specifies either the cursor height (in pixels) or the compression ratio. If a height
is specified, it must be greater than 10. The cursor resources in the driver must
have the specified height. If a compression ratio is specified, it must be either 1
or 2, and all cursor resources in the display driver must be 32Cby-32-bits.

Reserved
Reserved; must be zero.

XBorder
Specifies the thickness in pixels of vertical lines.

YBorder
Specifies the thickness in pixels of horizontal lines.

clrScrollbar
Specifies the color of the scroll bar.

clrDesktop
Specifies the color of the Windows background.

clrActiveCaption
Specifies the color of the caption in the active window.

clrlnactiveCaption
Specifies the color of the caplion in an inactive window.

Page 68 of 239

66 CONFIG.8IN

Comments

clrMenu
Specifies the color of the menu background.

clrWindow
Specifies the color of a window' s background.

clrWindowFrame
Specifies the color of the window frame.

clrMenuText
Specifies the color of the text in a menu.

clrWindowText
Specifies the color of the text in a window.

clrCaptionText
Specifies the color of the text in an acti ve caption.

clrActiveBorder
Specifies the default color of the text in an active border.

clrlnactiveBorder
Specifies the color of the text in an inactive border.

c1rAppWorkspace
Specifies the color of the application workspace (MOl background).

clrHiliteBk
Specifies the highlight color used in menus, edit controls, list boxes, and so on.

c1rHiliteText
Specifies the text color for highlighted text.

c1rBtnFace
Specifies the color of the 3-D button face shading.

clrBtnShadow
Specifies the color of the 3-D button edge shadow.

c1rGrayText
Specifies the color of solid gray to be used for drawing disabled items. This
member must be set to RGB(O,Q,Q) if no solid gray is available.

clrBtnText
Specifies the color of button text.

c1rlnactiveCaptionText
Specifies the color of the text in an inactive caplion.

The resource identifier for this structure is I ; the resource type is OEMBIN.

Page 69 of 239

DISPLAY

Parameters

-

DISPLAY 67

The recommended default system colors depend On the type of display. There are
the following recommended values.

Member 16-Color 256-Color

clrActiveBorder 192,192,192 192,192,192

clrActiveCaption 000,000,128 164,2C1O,240

clrAppWorkspace 255,255,255 255,251,240

clrBtnF.ce 192,192,192 192,192,192

clrBtnSh.dow 128,128,128 128,128,128

clrBtnText CIOO, CIOO, CIOO CIOO,CIOO.CIOO

clrCaplionText 255,255,255 CIOO,CIOO,CIOO

clrDesklop 128,128,000 160,160,164

c1rGr.yText 192,192,192 192,192,192

clrHiliteBk 000,CIOO,128 164,200,240

clrHiliteText 255,255,255 ooo,CIOO,ooo

cI r loacti veBorder 192,192,192 192,192,192

clrlnactiveCaption 255,255,255 255 ,255,255

clrlnactiveCaptionText CIOO, CIOO, CIOO OOO,CIOO,CIOO

c1rMcnu 255,255,255 255,255,255

c1rMenuText CIOO,ooo,ooo 000,000,000

clrScrollb.r 192,192,192 192,192,192

clrWindow 255,255,255 255,255,255

clrWindowFrame 000,000,000 000,000,000

clrWindowText CIOO,ooo,CIOO OOO,CIOO,OOO

DESCRlPTlON 'DISPLAY: AspectXY, LogPixelsX, LogPixels Y: Description'

The DESCRIPTION statement in a display driver's module-definition file iden­
tifies the driver DLL as a a display driver, specifies the aspect-ratio values asso­
ciated with the display device, and provides a description for the driver.

AspectXY
Specifies the aspect ratio for the display. This parameter must be set to the
same value as the driver's dpAspectXY member in the GDIINFO structure.

Page 70 of 239

DISPLAY 6?

DISPLAY

Parameters

The recommended default system colors depend on the type of display. There are

the following recommended values.

Member

cerctiveBorder

cerctichapfion

cerppWorkspace
certnFace

certnShadow

certnText

ceraptionText

ctrDesktop

cerrayText
clrl-IiliteBk

ceriliteText

elrlnaetiveBorder

clrlnactiveCaption

clrlnactiveCaptionTexl
clrMenu

clrMenuText

clrScrollbar

erindow

elrWindowFrame

clrWindowText

 16-Color 256-Color

192,192,192 192,192,192

000,000,128 164,200,240

255,255,255 255,251,240

192192.192 192,192,192

128,128,128 128,128,128

000,000,000 000,000,000

255,255,255 000,000,000

128,128,000 160,160,164

192,192,192 192,192,192

000,000,128 164,200,240

255,255,255 000,000,000

192,192,192 192,192,192

255,255,255 255,255,255

000,000,000 000,000,000

255,255,255 255,255,255

000,000,000 000,000,000

192.192,192 192,192,192

255,255,255 255,255,255

000,000,000 000.000,000

000,000,000 000,000,000

DESCRIPTION ’DIS PLAY : Aspech Y, LogPixest, LogPixele : Description’

The DESCRIPTION statement in a display driver’s module-definition file iden-

tities the driver DLL as a a display driver, specifies the aspect-ratio values asso-
ciated with the display device, and provides a description for the driver.

AspectX Y

Specifies the aspect ratio for the display. This parameter must be set to the
same value as the driver‘s dpAspectXY member in the GDIINFO structure.

Page 70 of 239

68 DISPLAY

Comments

Example

wgPixelsX
Specifies the horizontal pixels-per-inch for the display. This parameter must be
set to the same value as the driver's dpLogPixelsX member in the GDIINFO
structure.

wgPixelsY
Specifies the vertical pixels-per-inch for the display. This parameter must be
set to the same value as the driver's dpLogPixelsX member in the GDIINFO
structure.

Description
Specifies the name the display models supported by this driver. Although more
than one name can be given, the names must not be separated commas (,).

The DISPLA Y keyword must be capitalized.

The following example shows the DESCRIPTION statement for the VGA dis­
play driver:

DESCRIPTIDN 'DISPLAY: L00,96,96 : VGA Color Display'

Page 71 of 239

r

68 DISPLAY

Comments

Example

Logl’ixelsX

Specifies the horizontal pixelsiper-inch for the display. This parameter must be
set to the same value as the driver’s dpLogPixelsX member in the GDIINFO
structure.

Long'xele
Specifies the vertical pixels—per-inch for the display. This parameter must be

set to the same value as the driver’s dpLogPixelsX member in the GDIINFO
structure.

Description

Specifies the name the display models supported by this driver. Although more

than one name can be given, the names must not be separated commas (,).

The DISPLAY keyword must be capitalized.

The following example shows the DESCRIPTION statement for the VGA dis-

play driver:

DESCRIPTION 'DISPLAY : l.@@,96,96 : VGA Color Display'

Page 71 of 239

Page 72 of 239

Chapter 4 Printer Drivers 109

The Microsoft Windows printer drivers manage all printer output for Windows

applications. Each driver provides a set of functions that Windows uses to initial—
ize the printer, retrieve information about the printer, print text and graphics, and

allow users to modify the operation of the printer.

4.1 About the Printer Driver

A printer driver is a dynamic-link library (DLL) that consists of a set of graph—

ics functions for a particular printer device. These graphics functions translate
device-independent graphics commands into a stream of device—dependent

commands and data. A printer driver receives the graphics commands from the

graphics—device interface (GDI) portion of Windows and sends device commands

either directly or indirectly to the printer.

Each printer driver supports a specific printer technology. Printer technologies

include raster devices (for example, dot-matrix printers) and vector devices (for

example, plotters), and devices with higher-level languages, such as PostScript
page—description language (PDL). However, a printer driver can support any

number of models and manufacturers as long as the printers share the same basic
technology.

Unlike most Windows device drivers, a printer driver is generally not responsible
for hardware communication with the printer. Instead, the driver uses existing

Windows functions to open and write to a printing queue, to a file on disk, or
directly to the printer through a communications port.

4.1.1 Printer-Driver Initialization

Printer-driver initialization occurs whenever Windows or a Windows application

loads the printer driver using the LoadLibrary function (KERNEL.95). Windows

loads a printer driver whenever an application uses the CreateDC function

(GDI.53) to create a device context for the printer. Windows applications load
the driver to prepare for subsequent calls to the printer driver’s DeviceMode, Ext-

DeviceMode, or DeviceCapabilities function.

As with other dynamic—link libraries, Windows calls the printer driver’s initializa-
tion routine (if any) when it loads the driver. The routines of most drivers do little

more than initialize the heap and load resources, such as the name of the driver’s

Help file. Although a driver may require additional initialization, it typically waits

until GDI provides the additional information needed for this initialization when it
calls the driver’s Enable function.

Page 72 of 239

Page 73 of 239

110 Microsoft Windows Device Driver Adaptation Guide

If a printer driver allocates global resources or alters the state of the system, the
driver is responsible for freeing these resources and restoring the previous state
before the driver terminates. Because every driver includes a WEP function that
Windows calls as the driver is quitting, the printer driver can use this function to
free resources and restore the system.

4.1.2 GDI Information Structure

Every printer driver must have a GDIINFO structure that specifies the printer’s
capabilities and characteristics. GDI uses this information to determine what
the printer can do and how much GDI must do to support graphics output to the
printer. The GDI information can be classified as follows:

I Driver management

I Driver capabilities

I Device dimensions

The driver—management information specifies the version of Windows for which
the driver was written, the type of technology the printer uses to generate output,

the size in bytes of the printer’s PDEVICE structure, and number of device con-
texts the driver can manage at the same time.

The driver-capabilities information specifies the capabilities of the device, such
as whether the printer can draw polygons and ellipses, scale text, and clip output.
Driver capabilities also specify the number of device brushes, pens, fonts, and
colors available on the printer and whether the printer can handle bitmaps and
color palettes.

The device—dimension information specifies the maximum width and height of the
printable area in both millimeters and device units, the number of color bits or
planes, the aspect ratio, the minimum length of a dot in a styled line, and the num—
ber of device units or pixels per inch.

4.1.3 Enabling and Disabling Physical Devices

GDI enables operation of the printer driver by calling the driver’s Enable function
and directing the driver to initialize a physical device for subsequent graphics out—
put. A physical device is a PDEVICE structure that represents a printer and its
current operating state. A printer driver uses the physical—device information to de—
termine how to carry out specific tasks, such as which device-dependent graphics
commands to use, and which output port to send the commands. The printer driver

initializes the physical device by copying information to the PDEVICE structure.

Page 73 of 239

Page 74 of 239

Chapter 4 Printer Drivers 111F—-—_—_—-_————__—

GDI calls the Enable function whenever an application calls the CreateDC
function (GDI.53) to create a device context (DC) for the printer. GDI calls the
function twice: once to retrieve a copy of the driver’s GDIINFO structure, and a
second time to initialize the PDEVICE structure. After the first call, GDI uses the
dpDEVICEsize member in the GDIINFO structure to determine the size of the

driver’s PDEVICE structure. GDI then allocates memory for the structure and
calls Enable for the second time, passing a pointer to the structure. With this call,
the driver initializes the structure.

To initialize the PDEVICE structure, the driver typically examines the names of
the printer model and output device or file passed to Enable by GDI. It may also
examine any printer environment passed to Enable. The driver then fills the
PDEVICE structure with all the information that the output functions need to
generate appropriate graphics commands for the given printer model and to send
the commands to the given device or file.

Although only the printer driver initializes and uses the PDEVICE structure, GDI

allocates memory for the structure, determines when to pass it to the driver’s out-
put functions, and deletes the structure when it is no longer needed. Except for the
first 16 bits of the PDEVICE structure, the content and format of the structure de—

pends entirely on the printer driver. The first 16 bits, on the other hand, must be
set to a nonzero value. GDI reserves zero to indicate a BITMAP structure. GDI

creates and uses a BITMAP structure in place of a PDEVICE structure when an
application creates a memory—device context.

A printer driver can allocate additional structures and store their addresses in the

PDEVICE structure. Because GDI may direct a printer driver to create a large
number of physical devices, the printer driver should not allocate additional struc-

tures in the limited space of the driver’s automatic data segment, especially if the
driver allows multiple device contexts.

GDI disables the physical device and possibly frees the printer driver whenever an
application calls the DeleteDC function (GDI.68). GDI disables the physical
device by calling the driver’s Disable function. It expects the driver to complete
any outstanding printing job and free any resources associated with the physical
device. After the driver returns from the Disable function, GDI frees the memory
it allocated for the PDEVICE structure. If there are no other device contexts for

this printer driver, Windows frees the driver, removing any driver code and data
from memory.

4.1.4 Device-Context Management

Since Windows is a multitasking environment, more than one application may cre-
ate a device context for a printer at the same time. This means GDI may direct the
printer driver to initialize more than one physical device. The printer driver sets

Page 74 of 239

Page 75 of 239

112 Microsoft Windows Device Driver Adaptation Guide

the dpDCManage member in its GDIINFO structure to specify how it will man-
age these requests. The driver can specify one of the following methods:
I Driver allows multiple device contexts. It creates a new PDEVICE for each

device context that specifies a new device and filename pair, but uses the same
PDEVICE for any subsequent device contexts that specify the same device and
filename pair.

I Driver allows multiple device contexts, but it creates a new PDEVICE for each
device context regardless of whether the device and filename pairs are the same.

I Driver allows multiple device contexts but only if all device contexts have
unique device and filename pairs. The driver creates a PDEVICE for each
device context. The driver returns an error on any attempt to create a second
device context with an existing dev1ce and filename pair.

I Driver allows multiple device contexts, but only creates one PDEVICE. All
device contexts share the same PDEVICE regardless of the device and
filename pairs.

I Driver allows only one device context. The driver returns an error on any at-
tempt to create a second device context.

Printer drivers normally allow multiple device contexts but create new PDEVICE
structures for each device context. With separate PDEVICE structures, the driver
can maintain information about multiple print jobs Without one job affecting the
other.

4.1.5 Dimensions and Mapping Modes
A printer driver provides values in its GDIINFO structure specifying the aspect
ratio, logical pixels-per-inch, and mapping modes for the printer. The following
sections detail these modes.

4.1.5.1 Aspect Ratio

The aspect ratio defines the relative dimensions of the printer’s pixels. The ratio
consists of three values: an x-, y-, and xy-aspect. These represent the relative
width, height, and diagonal length (or hypotenuse) of a pixel. GDI uses the aspect
ratio to determine how to draw squares and circles as well as drawing lines at an
angle.

The aspect values have the following relationship:

(dpAspectXY * dpAspectXY) == (dpAspectX * dpAspectX) +
(dpAspectY * dpAspectY)

Page 75 of 239

Page 76 of 239

Chapter 4 Printer Drivers 113..———————-—————-———————_—____—

Because the dimensions are given as relative values, they may be scaled as needed
to obtain accurate integer values. Keep the values under 1000 for numerical stabil-
ity in GDI calculations. For example, a device with a 1:1 aspect ratio (such as a
300 dpi laser printer) can use 100 for the dpAspectX member and the dpAspectY
member and 141 (100 * 1.41421...) fordpAspectXY.

4.1.5.2 Logical Pixels-Per-lnch

Printer drivers should always use real inches. A 300 dpi laser printer puts 300 in
both members.

4.1.5.3 Mapping Modes

The printer driver provides viewport and window extents for the standard mapping
modes: MM_LOENGLISH, MM_HIENGLISH, MM_LOMETRIC,
MMgHIMETRIC, and MM_TWIPS.

Place the device resolution in pixels—per—inch in the viewport extents and the num-
ber of logical units-per-inch in the window extent. The y-coordinate of the view-
port is negated to reflect the fact that the x-axis is along the top of the paper in the
default mapping mode (MM_ TEXT, which specifies device coordinates) with
y increasing while going down the page; whereas in the other mapping modes, the
x—axis is along the bottom edge of the page.

For example, on a 300 dpi laser printer, the MM_ TWIPS mapping mode will
require that the deprin member be set to (1440,1440) and the deprpt
member be set to (300, —300).

4.1.6 Printer-Driver Environment

The printer-driver environment consists of information about the printer, such as
font cartridges, paper trays and sizes, printer orientation, graphics capabilities,
color, and other advanced features. Windows applications use this information to
create printed output that takes full advantage of the printer environment.

Printers normally have a large number of options from which the user can select.
This information can come from any of four sources:

I The driver’s default setup.

I The driver’s WIN.INI section of user options. The WIN.INI should maintain at
least one such section so that modified printer setups can be retained from ses-
sion to session. This information is edited by the driver’s Setup dialog box.

Page 76 of 239

Page 77 of 239

114 Microsoft Windows Device Driver Adaptation Guide

I The driver may call GDI to retain the driver’s environment from device context
to device context on a port—by-port basis. This allows faster initialization of the
driver and avoids the time—consuming process of reading options from the
WIN.INI file.

I The application can pass the environment to the driver in a buffer pointed to by
the lpInitData parameter of the Enable function.

Upon device initialization (that is, during the pair of Enable functions), this infor—
mation is used to set up information in the GDIINFO and PDEVICE structures.
For example, the paper size selection will affect the height and width fields. Also,
a printer that allows multiple graphics densities will modify the various resolution
fields.

4.1.7 Device-Mode Dialog Boxes
The DEVMODE structure is used for the environment and the initialization data
(which are the same). By convention, all drivers place the device name in the first
32 bytes of DEVMODE as a null-terminated string. All the other data is device
dependent.

For Windows 3.x, a new convention has been adopted that defines an additional
number of members. These members enable the application to perform
device—independent manipulations of the device environment.

When Enable is called, the device driver should first check the lpInitData parame—
ter to see if the application has supplied valid initialization data. If it is valid, then
the driver should use that environment to initialize the GDIINFO and PDEVICE
structures and not use or modify the default environment information.
If the environment cannot be found or if the data obtained 1s invalid or intended
for another device, the device driver should extract user settings from the WIN.INI
file, by using the profile string functions, such as GetProfileInt.
However, the driver should contain useful defaults for all strings, so that it can cre-
ate a valid environment even if the WIN.INI file is empty.

The driver should use the device name string at the beginning of the DEV-
MODE structure to determine whether or not the environment obtained from
GetEnvironment is correct.

A driver may also maintain additional information in its DEVMODE structure
to determine validity if the device name matches one the driver supports.

The printer driver can set or delete the environment by using the Set-
Environment function (GDI.132). It can retrieve the current environment
using the GetEnvironment function (GDI.133).

Page 77 of 239

Page 78 of 239

Chapter 4 Printer Drivers 115

The driver should always set up the default environment if it is not present,
except when the driver is initialized with a non-default environment (that is, the

lpIm'tData parameter to Enable points to application-supplied data).

4.1.7.1 New Members in the DEVMODE Structure

The deResolution and meTOption members in the DEVMODE structure

are new for Windows 3.1. The DEVMODE structure returned by the ExtDevice—
Mode function contains one or both of these members if the deield member in—

cludes the following values:

DM_YRESOLUTION 0X0002000L
DM_TTOPTION 0X0004000L

The deResolution member specifies the vertical resolution of the printer in
dots per inch. In this case, the derintQuality member specifies the horizontal
resolution in dots per inch. If the DM_YRESOLUTION bit is not set in deields,

deResolution is not used and derintQuality retains the original meaning.

The meTOption member specifies how TrueType fonts should be printed. The
member can be set to one of the following values.

 Value Meaning

DMTT_BITMAP(1) Prints TrueType fonts as graphics.

DMTT_DOWNLOAD (2) Downloads TrueType fonts as soft fonts.

DMTT_SUBDEV (3) Substitutes device fonts for TrueType.

Note Before calling the the CreateDC or CreateIC functions, an application
should call the DeviceCapabilities function with the DC_TRUETYPE index to

retrieve the driver’s TrueType capabilities. The application can use the value re—
turned by the driver to set the meTOption member to the appropriate value.

The default action is to download TrueType as soft fonts for Hewlett—Packard
printers that use PCL; substitute device fonts for TrueType for PostScript printers;
and to print TrueType fonts as graphics for dot-matrix printers.

4.1.8 Printer-Device Modes

All printer drivers are required to export the DeviceMode function, which displays
a dialog box to edit the default environment. This function sets the profile strings
in the WIN.INI file for the options chosen by the user. It should also set the en-
vironment using the SetEnvironment function. The DeviceMode function uses

USER functions, such as DialogBox (USER.240), to display dialog boxes.

Page 78 of 239

Page 79 of 239

116 Microsoft Windows Device Driver Adaptation Guide

The most common way to call DeviceMode is with Control Panel. However,
other applications that make heavy use of printer output, such as Microsoft Write
or Microsoft Excel, may also provide a means for calling the printer driver’s
DeviceMode function.

Windows 3.x drivers also export two environment-related functions, ExtDevice-
Mode and DeviceCapabilities. These functions are designed to allow greater
application control over the printer environment. All printer drivers should imple-
ment these functions.

ExtDeviceMode enables the application to call the driver to obtain device initiali—
zation data either from the user or from the application’s modifications to the
default environment. GDI then calls the Enable function with a pointer to this in-
formation, allowing the driver to preset its GDIINFO and PDEVICE structures
according to the application’s options, rather than the defaults. That way, the appli-
cation can store different printer settings for itself and its documents or even re-
quest specific setup properties, such as orientation.

DeviceCapabilities enables the application to get information about such things as
what DeviceMode fields the driver uses and what limits, ranges, or selections are
valid.

4.1.8.1 Indexes torthe DeviceCapabilities Function

Printer drivers must process requests from applications for new Device-
Capabilities indexes. A driver’s DeviceCapabilities function must check for
and process the following values.

 Value Meaning

DC_ENUMRESOLUTIONS (13) Retrieves a list of resolutions supported by the
model.

DC_FILEDEPENDENCIES (l4) Retrieves a list of filenames which also need to
be installed when the driver is installed.

DC_TRUETYPE (15) Retrieves the driver’s capabilities with regard to
printing TrueType fonts.

DC_PAPERNAMES (16) Enumerates the actual string describing the
paper names.

DC_ORIENTATION (17) Retrieves the relationship between Portrait and
Landscape orientations in terms of the number
of degrees that portrait orientation is to be ro—
tated counterclock-wise to get landscape orienta-
tion.

DC_COPIES (18) Retrieves the maximum number of copies the
device can print.

Page 79 of 239

Page 80 of 239

Chapter 4 Printer Drivers 117

The implementation of one or all of the indices is optional. If a driver does not
implement a given index, the DeviceCapabilities function should return —1. For
more information about the new indices, see the DeviceCapabilities function.

4.1.8.2 New Paper Sizes

There are 21 new predefined paper sizes. The include file, PRINT.H, contains a
complete list of all supported paper sizes. Applications typically call the Device-
Capabilities function to retrieve names and sizes of the supported paper sizes, so
printer drivers must be ready to process the following DeviceCapabilities index

values:

Value Meaning

DC_PAPER Retrieves the identifiers of the listed paper sizes.

DC_PAPERNAMES Retrieves the names of the listed paper sizes.

DC_PAPERSIZES Retrieves the width and height of the listed paper sizes.

4.1.9 Per-Page Printer Settings

Applications can now modify printer settings (that is, DEVMODE values) while
printing a document. The ResetDC function lets applications update the printer
device context at each new page. This means applications can print documents
containing a mixture of page orientations, paper sources, and other printing
options without having to divide the document into smaller documents.

To support ResetDC, a printer driver must provide code for the RESETDEVICE
escape. This escape, processed by the driver’s Control function, copies printer out-
put state information from one physical device context (PDEVICE) to another.
GDI uses the escape to replace existing device contexts with new ones.

When an application calls ResetDC, GDI first creates a new PDEVICE by calling
the driver’s Enable function. This new PDEVICE receives the new printer
settings as specified by the application. GDI next uses the RESETDEVICE escape
to copy output state information from the existing PDEVICE to the new one. The

output state includes information such as job number and list of downloaded fonts.

The escape must copy the state information without changing the printer settings
in the new PDEVICE. Finally, GDI substitutes the new PDEVICE for the old

one in the application’s device context, discarding the old PDEVICE by calling
the Disable function.

When the printer driver receives the RESETDEVICE request, it must expect a
subsequent call to Disable with no intervening call to the ENDDOC escape. The
printer driver must also ensure that the new printer settings take affect starting on
the next printed page. If a printer driver allocated bitmap or working buffers when

Page 80 of 239

Page 81 of 239

118 Microsott Windows Device Driver Adaptation Guide

it received the STARTDOC escape, the driver should free the buffers for the old
PDEVICE and allocate new buffers for the new PDEVICE (an option is to reallo—
cate the buffers).

The ResetDC function cannot be used to change the driver name, device name, or
the output port. When the user physically changes port connection or the device
name, the application must delete the original device context and recreate a device
context with the new device name and output port. Also the application must can-
cel the selection of all objects in its device context before calling ResetDC.

4.1.10 Printer-Model Names

To make printer driver installation easier and more intuitive, printer-model names
have been removed from the DeviceMode dialog box. Users have found it confus—
ing to select a printer model when installing the driver only to have to reselect the
printer model again within the printer’s DeviceMode dialog box. For Windows
3.1, the DeviceMode dialog box displays the name of the printer model (selected
during installation by the user) in the title bar of the dialog box.

To support this change, printer drivers must now have corresponding SETUP.INF
or OEMSETUP.INF entries that list all the printer-model names. Control
Panel uses the entries to determine which printer models are available. If the
entries aren’t available, Control Panel obtains the printer—model name from the
DESCRIPTION statement in the driver’s executable file header.

4.1.11 Standard Print Dialogs
Windows 3.1 includes a set of standard print dialogs for use by Windows appli—
cations. These dialogs provide a standard interface for users to select and change
printer settings, such as page range, number of copies, and print quality.

To support the standard print dialogs, a printer driver must export the ExtDevice-
Mode and DeviceCapabilities functions. The dialogs call these functions to get
the necessary settings for the standard dialog boxes. If a printer driver does not ex—
port these functions, no printer settings can be set from within an application using
the standard dialog. In such cases, the dialog boxes are displayed, but the printer
settings fields are disabled (greyed out) and the driver is forced to use the system
defaults that were previously set in Control Panel.

A printer driver can extend the capabilities of the standard print dialogs by ex—
porting the AdvancedSetUpDialog function. If this function is available, the stan-
dard print dialogs display a More button. If the user chooses the button, the dialog
box calls the AdvancedSetUpDialog function allowing the driver to display its
own dialog box containing fields for advanced printer settings, such as color, du—
plex printing, and screen parameters.

Page 81 of 239

Page 82 of 239

Chapter 4 Printer Drivers 119

4.1.12 Printer Entries in the WINJNI File
Printer drivers that support more than one model should now record current printer

settings for each model even if the models use the same port. A driver records the

printer settings for a given model by adding to the WIN.INI file a section having
the following form:

[ModelName, Port]

The ModelName specifies the name of the model and Port specifies the output
port current associated with the printer as shown in the following example:

[HP LaserJet 1110, LPT2]

This section must include all printer settings except printer fonts. To record font

information, the driver must add a section having the following form:

[DeviceName, Port]

The DeviceName specifies the name of the device and the port specifies the name
of the output port associated with the device as shown in the following example:

[HPPCL5A, LPTl]

This section only lists fonts, including those in external cartridges. Also this sec-

tion ensures backward compatibility with third-party font packages that use this
section to add fonts.

4.1.13 Physical Objects

Physical objects are device-dependent representations of the logical pens, brushes,
and fonts that Windows applications use to perform output. GDI directs a printer

driver to create physical objects whenever an application selects a logical object

for subsequent drawing. The process of converting a logical object into a physical

object is called realizing the object, and every printer driver provides a Realize-
Object function to carry out this task.

GDI calls the RealizeObject function when an application calls the SelectObject
function (GDI.45) to select a logical object for a device context. GDI calls the

function twice: once to retrieve the size of the physical object, and a second time
to realize the object. Although the printer driver realizes an object, GDI manages

it, allocating memory for the object, passing the object to the driver to perform out-
put, and deleting the object when it is no longer needed.

GDI realizes a physical object when it is selected to avoid the overhead of realiz-

ing the object each time it is used for drawing. The contents and organization of

the structure defining a physical object are specific to the driver. Usually, the struc—
ture includes the logical object plus any other information that the driver needs.

Page 82 of 239

Page 83 of 239

120 Microsoft Windows Device Driver Adaptation Guide

4.1.14 Device Pens and Brushes

Most printer drivers maintain and manipulate device objects. Device objects are
structures that represent pens and brushes that the device supports.

To determine what device objects are available, GDI calls the EnumObj function
and expects the driver to enumerate all the pens and brushes that a device sup-
ports. The function translates physical descriptions of the objects into logical
descriptions and returns these descriptions to GDI. All logical objects created this
way must be unique, that is, when translated into physical objects and used for
drawing, they should produce different output.

The driver enumerates all the styles and colors of pens and brushes. Since pens are
defined to be only pure colors, only logical colors that translate to pure physical
colors will be enumerated. For devices that support many colors, only a subset of
all the colors will be enumerated.

4.1.15 Device Fonts

The most common type of device object is a device font. Most printers are capable
of printing some set of built-in fonts. The concept of device fonts enables drivers
and applications to take advantage of a device’s ability to render fonts. Device
fonts are also expected to print faster and look better than GDI fonts.

To determine what device fonts are available, GDI calls the EnumDFonts func—
tion and expects the printer driver to enumerate the fonts. Typically, GDI first
calls EnumDFonts passing an empty string for the font name. This indicates that
the driver should enumerate each font name that it supports. On subsequent calls,
GDI passes one of enumerated font names and expects the driver to enumerate all
the sizes of that font.

Printer drivers may also wish to support GDI raster and vector fonts. For banding
devices, it is usually not difficult to support GDI raster fonts because GDI contains
support functions to render raster fonts into monochrome-band bitmaps. GDI
raster fonts are most useful for devices (such as lower-resolution dot-matrix print-
ers) with resolutions near those of the display.

For nonbanding devices, supporting GDI raster fonts is not as easy. In fact, the
PostScript driver (a nonbanding device) does not support GDI raster fonts.

Supporting vector fonts is also optional. If a driver does not support vector fonts,
GDI will simulate them by drawing line segments.

Page 83 of 239

Page 84 of 239

Chapter 4 Printer Drivers 121

4.1.16 Color

A printer driver must provide support for translating logical colors (RGB values)

to physical colors. For printers with color palettes, the printer driver must provide
additional information in its GDIINFO structure.

4.1.16.1 Color Objects

GDI calls the ColorInfo function to translate physical and logical color repre—
sentations. This function translates in both directions, that is, from physical to logi—
cal and from logical to physical. When given a logical color, the function returns
the nearest physical color. When given a physical color, the function returns the
logical color that best describes that color.

This function supports the GDI function GetNearestColor.

4.1.16.2 Color Paletles

GDI ignores the color palette members if the RC_PALETTE value is not set in

the dpRaster member. However, they must be present (and accounted for in the
length returned by Enable) if the driver is version 3.x.

4.1.17 Output

A printer driver provides a variety of graphics output from lines to text. The driver

supports each type of output with a specific output function. When an application
calls GDI to carry out a graphics operation, GDI calls the corresponding output
function in the driver. The following lists output functions and associated graphics

output.

Type of Output Functions

Bitmaps BitBlt, StretchBlt

Device—independent bitmaps SetDIBitsToDevice, StretchDIBits
Floodfills ScanLR

Lines and figures Output
Pixels Pixel

Text ExtTextOut, StrBlt

Some output functions are optional. If a printer driver does not include an optional
function, GDI simulates the output using other output functions.

When GDI calls the output functions, it passes parameters that specify the output
as well as the physical device and physical objects to be used to generate the
output.

Page 84 of 239

Page 85 of 239

122 Microsoft Windows Device Driver Adaptation Guide

4.1.18 Text

4.1.19 Fonts

A printer driver provides supporting functions and values for text output, such as
maximum text width and height, character widths, and character clipping.

4.1.18.1 Maximum Text Width and Height

The maximum width and length of text that can be printed on a page is determined
by choosing either the Portrait or Landscape orientation. In Portrait orientation, the
page is taller than wide, when viewing the text upright. In Landscape orientation,
the page is wider than tall, when viewing the text upright.

4.1.18.2 Character Widths

Use the GetCharWidth function to determine character widths for variable-width

fonts. It is important that the values returned by this function match and that the
actual widths of the characters displayed. Any differences will produce misalign-
ments, and any text formatting or justification will not work as intended.

4.1.18.3 Clipping Character Strings

Character strings should be clipped pixel—by—pixel like all other graphics, when—
ever possible. Some types of printers, however, do not allow pixel—precision clip—
ping of device-based fonts. When this is the case, the driver should clip character
strings on a per-character basis.

A driver should clip a character if any part of the character is outside the left or
right edge of the clipping rectangle. If any part of the character is outside the top
or bottom edge of the clipping rectangle, the driver should print the character.

A printer driver provides support for the various fonts provided or supported by
GDI.

4.1.19.1 Big Fonts

Some printer drivers use a new format for fonts when running in protected mode
(with Windows running in either standard or 386 enhanced mode) on an 80386 or
80486-based computer. This format allows for fonts that can exceed 64K bytes of
data, as well as some other options. In this situation, GDI will convert all the 2.x
format fonts to the new format so that only one font file format is used in memory.

Page 85 of 239

Page 86 of 239

Chapter 4 Printer Drivers 123

If a printer driver prints GDI bitmap fonts directly, it should be modified to handle

big fonts. In many cases, a driver will not need to be updated if it is a banding
monochrome driver that uses only the brute functions. The brute functions are
already aware of the new format. For more information about brute functions,

see Section 4.1.25 “The Brute Functions,” later in this chapter.

If a printer driver uses the color library, the library supports the big font format, as
well as the old 2.x format.

4.1.19.2 TrueType

GDI provides TrueType support for any driver that supports GDI raster fonts (that

is, it supports drivers that set the DT_RASPRINTER value in the deechnology
member of the GDIINFO structure). To support TrueType on these printers, GDI

generates a raster font from the TrueType outlines and passes the font to the driver

just as with any other raster font. This means many Windows 3.0 printer drivers,

especially drivers for dot—matrix printers, currently support TrueType—mo code
changes in the driver are required.

Printer drivers that do not support raster fonts must be modified to support True—

Type. Typically, the modification consists of adding code to convert TrueType

fonts into a downloadable font format that the printer accepts. To simplify the task

of adding TrueType support to nonraster printer drivers, GDI provides several
TrueType service functions.

4.1.19.3 TrueType Service Functions

Printer drivers can use TrueType service functions to retrieve information about

TrueType fonts, to retrieve bitmaps of individual glyphs in the fonts, and to realize

a complete font, retrieving both information and bitmaps. Following are the ser-
vice functions and brief descriptions.

 Function Description

EngineDeleteFont Deletes a realized TrueType font.

EngineEnumerateFont Enumerates TrueType fonts.

EngineGetCharWidth Retrieves character widths for TrueType fonts.

EngineGetGlypthp Retrieves the bitmap for a rasterized glyph.

EngineRealizeFont Realizes a TrueType font.

EngineSetFontContext Sets the context for rasterizing glyphs.

GetRasterizerCaps Specifies whether TrueType is available.

A printer driver can determine whether TrueType is currently available by calling

the GetRasterizerCaps function. Since users can turn TrueType off, it is impor-
tant that a driver check for TrueType before generating output.

Page 86 of 239

Page 87 of 239

124 Microsoft Windows Device Driver Adaptation Guide

If TrueType is on, the driver can call the EngineEnumFonts function whenever
GDI calls the driver’s EnumDFonts function. This gives the font engine the
chance to enumerate the TrueType fonts having the specified font. The driver can
call the EngineRealizeFont function whenever GDI calls the driver’s Realize-
Object function. This gives the TrueType font engine an opportunity to generate
a physical font that matches the specified logical font. When the engine realizes a
font, it fills a FONTINFO structure with information about the font as well as the
bitmap data for the individual glyphs. A driver can use this information to create a
downloadable font in the format recognized by the printer.

In general, a printer driver should call the EngineRealizeFont and Engine-
EnumerateFont functions before processing its own device fonts (if any). If
GDI requests that the driver delete a realized TrueType font (by calling Realize-
Object), the driver must call the EngineDeleteFont function to delete the font.‘

A printer driver can retrieve character width information for a realized TrueType
font by using the EngineGetCharWidth function. It can retrieve bitmaps for in-
dividual glyphs in the font by using the EngineSetFontContext and Engine-
GetGlypthp functions. The driver must call EngineSetFontContext first to
set the font before calling EngineGetGlypthp. Drivers for printers that accept
individual glyph definitions (as opposed to full font definitions) can use the char-
acter width information and bitmap data to download individual glyphs.

4.1.19.4 Specilying the Spot Size

The spot size is a set of values that help the TrueType rasterizer create the best
glyph bitmaps for a given printer. All printer drivers can benefit by setting the spot
size in their GDIINFO structure regardless of whether the driver uses TrueType
service functions. The spot size should be specified in the dpSpotSizeX and
dpSpotSizeY members of the driver’s GDIINFO structure. If these members are
not zero, GDI passes the values to the TrueType engine to help it rasterize glyphs.

4.1.20 Device-Independent Bitmaps

Device-independent bitmaps (DIBs) are bitmaps in a new format that was de—
signed to provide a device-independent way for applications to transfer bitmap
images to a variety of output devices. Besides the bitmap bits, these bitmaps con-
tain color—table information and additional dimension information.

A printer driver should include support for DIBs, especially in color devices. If
a driver does not support DIBs, GDI can convert DIBs into the standard mono—
chrome bitmap format, but the quality of DIB output will rarely be satisfactory in
such situations.

Page 87 of 239

Page 88 of 239

Chapter 4 Printer Drivers 125————-————-——_—_—__—____—

If a printer driver can do more with the bitmap, it should attempt to support DIBs
handling, especially if it can perform its own half-toning or coloring of bitmaps.
To enable such functionality, the driver should support the SetDIBitsToDevice
and StretchDIBits functions, and possibly support the SetDIBits and GetDIBits
functions if the driver deals with GDI bitmaps.

4.1.21 Print Jobs

A printer driver provides print job support by handling printer—specific escapes.
GDI passes escapes to a printer driver’s Control function whenever an application
calls the Escape function (GDI.38).

4.1.21.1 The QUERYESCSUPPORT Escape

A11 drivers are required to implement the QUERYESCSUPPORT escape. For this
escape, the lpInData parameter points to a 16-bit value that contains the index of
another escape.

The driver returns a positive number if the driver implements that escape, or zero
if the escape is unimplemented. The driver always returns nonzero if the escape
queried is QUERYESCSUPPORT.

4.1.21.2 The SETABORTPROC Escape

SETABORTPROC is the first escape an application calls when printing. An appli-
cation passes a pointer to a callback function in the lpInData parameter when it
calls the SETABORTPROC escape. This callback function is used to check for
user actions such as cancelling the print job. The printer driver, however, is not re-
sponsible for the callback function; GDI modifies the SETABORTPROC escape
so that lpInData points to the application’s device context handle.

The hDC parameter given to the driver by this escape should be used with the
OpenJob function to enable the output functions in GDI to call the application’s
callback function. Printer drivers generally save this handle in the PDEVICE
structure. If the application does not use SETABORTPROC, NULL should be
passed to the OpenJob function.

4.1.21.3 The STARTDOC Escape

Usually, STARTDOC is the escape an application calls. STARTDOC indicates to
GDI and the device driver that the application is printing.

This escape also supplies a Print Manager job title in a NULL-terminated string
pointed to by lpInData. The lpOutData parameter is unused. This supplies the title
used by the OpenJob function.

Page 88 of 239

Page 89 of 239

126 Microsoft Windows Device Driver Adaptation Guide

Together, with the port name supplied as a parameter to Enable and the hDC sup-
plied by the SETABORTPROC escape, the driver now has all the data necessary
to call the OpenJob function.

4.1.21.4 RESETDEVICE and STARTDOC Escapes

To support the ResetDC and StartDoc functions, which are new to Windows 3.1,
printer drivers must process the RESETDEVICE and STARTDOC escapes in
their Control functions.

Although the STARTDOC escape was available in Windows 3.0, the lpInData
and lpOutData parameters have changed. Specifically, lpInData points to a null-
terminated string specifying the name of the document, and lpOutData points to a
DOCINFO structure specifying the output port or file as well as the document
name. The structure has the following form:

typedef struct {
short chize;
LPSTR lpszDocName;
LPSTR lpszOutput; // output port name

} DOCINFO, FAR * LPDOCINFO;

The lpszOutput is the name of the output file to use. If either lpOutData or
lpszOutput is NULL, the output port given to CreateDC should be used.

The RESETDEVICE escape, corresponding to the new ResetDC function, allows
the driver to move a printer’s output state from an old physical device structure to
a new one. This allows applications to change the printer setup, such as orienta-
tion, with creating a new print job. For more information about this escape, see
Section 4.1.23, “Other Escapes.”

4.1.21.5 The NEWFRAME Escape

An application calls the NEWFRAME escape when a new page is to be printed.
The printer driver completes output for the given page and advances to the next
page. NEWFRAME does not use the lpInData or lpOutData parameters.

4.1.21.6 The ENDDOC and ABORTDOC Escapes

When an application has completed printing all output, it calls the ENDDOC
escape. ENDDOC does not use either the lpInData or lpOutData parameters. At
this point, the driver may call the CloseJob function.

Another common escape is ABORTDOC, which is also called ABORTPIC in
older documentation or applications, and has the same number assigned. This
escape allows GDI or the application to cancel a print job. Generally, if the job is
valid, the driver will clean up and call the DeleteJob function.

Page 89 of 239

Page 90 of 239

Chapter 4 Printer Drivers 127/___—_—_________________

4.1.22 Banding Drivers

How the output functions are implemented depends on whether or not the device

uses banding. Banding devices have their output stored in a metafile. This metafile

is replayed for every band that is rendered (either by GDI or applications that wish
to implement banding). Therefore, output coordinates must be mapped into the cur-
rent band, and output outside of the band must be clipped.

Nonbanding devices perform output to the device in one pass. Therefore, the
device must have access to the entire display surface. Drivers must be able to per-

form all the output functions to both the display surface and to memory bitmaps.
This restriction would make it very difficult for devices that supported complex

drawing primitives if it were not for the help that GDI and the display driver
supply.

In the GDIINFO structure, banding color drivers should use the same bits-per-
pixel and planes values used for band bitmaps.

Devices choose numbers that match how they output color. Color printers that

use the color dot-matrix libraries specify the same values as the bitmap format.

The color library in this DDK uses one bit—per—pixel in three planes. The driver
developer must modify the library to use another format.

4.1.22.1 Raster vs. Vector Devices

Many printers (such as dot-matrix and most laser printers) are raster printers, that

is, they print out text and graphics as bitmaps or raster lines. Other devices (such
as plotters and PostScript-based printers) are vector devices, which draw text and

graphics as a sequence of vectors or lines. (Although PostScript printers are based
on raster engines, the language itself is vector oriented except where bitmaps are
concerned.)

Raster devices usually have constraints that cause problems for implementing the

full GDI device model. Raster devices, for example, do not implement any vector
graphics operations. Therefore, all vector graphics must be drawn as a bitmap

before printing. Some devices, such as dot-matrix printers, do not allow the driver

to print anywhere on the page. They require that text and graphics be output in the

order of the print direction position on the page.

These bitmaps can be enormous for a device such as a 300 dpi laser printer. In
such cases, the driver breaks up the page into smaller rectangles that are printed

individually. For each of the rectangles, GDI or the application will draw all the

graphics that fit in each rectangle into a bitmap and then print each individual
bitmap.

Page 90 of 239

Page 91 of 239

128 Microsoft Windows Device Driver Adaptation Guide_________________________.__——————

These rectangles are called bands, and the printing process that uses these bands'is
called banding. It is usually necessary to band raster printers; however, banding 15
not necessary for vector devices.

For vector devices (that is, nonbanding devices), the application calls GDI

graphics functions, which are translated into device-driver graphics primitives.
After each page is printed, the application uses the NEWFRAME escape to
eject the page.

An application can either treat the driver as if it were a nonbanding device by
calling the GDI functions and ending each page with the NEWFRAME escape,
in which case GDI performs the banding, or it can handle the banding itself.

4.1.22.2 The NEXTBAND Escape

Before any graphics are drawn, the driver is called upon to perform the

NEXTBAND escape. When the Control function is called for the NEXTBAND
escape, lpInData points to a POINT structure, and lpOutData points to a RECT
structure.

The driver should initialize its band bitmap and set the RECT structure to the size,
in device coordinates, of the rectangle that the band represents on the page.

GDI adds the POINT structure to determine the scaling factor for graphics output.

Some devices support the use of graphics at a lower resolution than text to allow

for faster output. The x—coordinate of the POINT corresponds to horizontal scal—
ing and the y-coordinate to vertical scaling.

The value in the structure corresponds to a shift count. A point of (0,0) specifies

graphics at the same density as text, whereas a point of (1,1) specifies half-density
graphics in both directions, for example, a 300 dpi laser printer printing bitmaps at
150 dpi.

GDI then calls the driver’s Output function to draw text or graphics in the band

bitmap. When all drawing for the band is finished, GDI calls the driver with
another NEXTBAND escape. The driver draws the band in the band bitmap,

reinitializes the bitmap, sets a new rectangle, and continues with the next band
as it did with the first.

When all the bands on the page are exhausted, and the driver receives a NEXT—

BAND escape, it should output the last graphics band and then set the rectangle
pointed to by the lpOutData parameter to an empty rectangle to indicate that there

are no more bands on the page. It should also perform all the processing necessary

to eject the completed page. The next NEXTBAND escape will correspond to the
first band of the next page.

Page 91 of 239

Page 92 of 239

Chapter 4 Printer Drivers 129

If the application performs banding, it will call the Escape function to get the
band rectangles. If GDI is handling banding for an application, then GDI collects
all the graphics functions on a page into a metafile, that is, a temporary file con-
taining a list of the graphics functions and their parameters. When the application
calls Escape to carry out the NEWFRAME escape, GDI turns this escape into a
sequence of NEXTBAND calls to the Control function. GDI sets the clip region
for the actual printer device context to the band rectangle and then plays back the
metafile, which recreates all of the application’s output in the band bitmap. GDI
does this for each band until the band rectangle returned by the driver is empty.

Some devices, such as raster laser printers, allow text to be placed anywhere on
the page at any time. Furthermore, these printers do not place text into the band
bitmap, since all the device fonts exist in printer or cartridge memory. To optimize
text output, their drivers use a single, full—page band for all the text output and a
sequence of smaller bands for bitmapped graphics.

As an optimization, some of these drivers maintain a flag to detect whether or not
any output, other than text, is attempted during the first, full-page band. If not, the
driver skips the graphics bands.

4.1.22.3 The BANDINFO Escape

Some devices, such as laser printers, can print text and graphics anywhere on the
page but still require banding support for vector graphics operations. Since these
devices usually use their own internal device fonts, they can greatly improve their
text printing performance by using a single, full-page band for text only as the first
band. The driver ignores graphics calls during this band and handles only the Ext-
TextOut or StrBlt functions. Graphics are printed on subsequent, smaller bands.

An application that is aware of this process can speed up its printing operation by
determining whether text or graphics will be printed on the current band. It may
do so using the BANDINFO escape. The application can also use BANDINFO to
optimize the banding process.

4.1.23 Other Escapes

Few applications use the QUERYESCSUPPORT escape to look for the
SETABORTPROC, STARTDOC, NEWFRAME, ENDDOC, or ABORTDOC

escapes. Therefore, a printer driver should handle all of these escapes.

In addition, there are a few applications that perform banding without verifying
that banding is required either by using QUERYESCSUPPORT or the GetDevice-

Caps function (which examines the GDIINFO structure). A nonbanding driver
can easily support such an application by returning the full page as the band rect-
angle on the first NEXTBAND escape and returning an empty rectangle for the
next NEXTBAND escape and ejecting the page.

Page 92 of 239

Page 93 of 239

130 Microsoft Windows Device Driver Adaptation Guide

There are a large number of other escapes that may or may not be appropriate to a
specific driver. They are all listed alphabetically and described in detail in Chapter
1 l, “Graphics-Driver Escapes.”

4.1.24 Print Manager Support

In most cases, printer drivers are not responsible for sending bytes directly to the
output port. Instead, printer drivers call special GDI functions to carry out the out-
put. Depending on the options selected by the user, those functions will route the
output to a specific port, to a disk file, across a network connection, or to a tem—
porary file for later output by Print Manager.

GDI contains functions a device driver can call to perform output. The driver does

not need to know if output is being queued or written directly to the port. The fol—
lowing lists these functions, and provides a brief description of each.

 Function Description

CloseJob Closes a print job, and enables it for printing.

DeleteJob Deletes a open job, removing it from the print queue.

EndSpoolPage Marks the end of a spooled page.

OpenJob Opens a print job, returning a handle that the driver can use to
write output to the job.

StartSpoolPage Marks the start of a spooled page. Print Manager manages print
jobs by printing one spooled page at a time.

WriteDialog Displays a dialog box directing the user to carry out some action
to permit printing to continue.

WriteSpool Writes data to an open print job.

4.1.25 The Brute Functions

The brute functions is a set of graphics—support functions that a printer driver can
use to carry out certain graphics operations. The brute functions permit a printer
driver to use the resources of GDI rather than provide its own support to complete

some graphics operations.

Brute functions primarily provide support for memory bitmaps. On each call to a
printer-driver function, the driver checks the PDEVICE structure and determines
if it represents a memory bitmap. If such cases, the driver calls a corresponding
brute function, passing on all the parameters, to carry out the graphics operation.

For banding drivers, the driver calls the brute functions for the main output device
as well as for the memory bitmaps.

Page 93 of 239

Page 94 of 239

Chapter 4 Printer Drivers 131’_——I——-—_———-————_————————————_———

4.1.25.1 Brute-Information Functions

The following brute functions take the same parameters and return values as the

corresponding driver functions and actually call the display driver to manipulate
monochrome memory bitmaps:

I dmRealizeObject

I denumDFonts

I denumObject

I dmColorInfo

For graphics, most raster drivers call the dmColorInfo function to map colors.

Display drivers then add together the three color components (R, G, and B). If the
weighted, average color value of these components is equal to or greater than 128,
then the color maps to white. Otherwise, it maps to black.

The IBM Color Printer driver does the same thing in monochrome mode. How—
ever, in color mode, each color is compared individually to the 128 value. Hewlett-

Packard printers that use the PCL driver are only adjustable for text.

Notice that the following colors all map to white on EGA, VGA, and 8514/a
displays:

I Light grey

I Green

I Yellow

I Magenta

I Cyan

4.1.25.2 Brute-Output Functions

Nonbanding drivers (such as PostScript or a plotter driver) use the brute functions
to support memory bitmaps. Whenever a pointer to the driver’s PDEVICE struc-

ture is passed to the driver, GDI may substitute a pointer to a BITMAP structure.
The driver can differentiate between the two cases because the first member

(meype) of a BITMAP structure must be zero, whereas the first member (often

called epType) of a PDEVICE structure must be nonzero. If this first member is

zero, the driver simply passes the same arguments through to the corresponding
brute function and returns its return value.

Banding drivers operate by using a memory bitmap to simulate the display
surface. Therefore, a banding driver calls the brute function with a pointer to a

BITMAP structure that defines the band bitmap. The driver also has to translate
some coordinate parameters from device coordinates to bitmap coordinates since,
in general, there will be many bands in different positions on a page of output.

Page 94 of 239

Page 95 of 239

132 Microsoft Windows Device Driver Adaptation Guide

The brute functions, however, always use coordinates relative to the bitmap, that
is, (0,0) to (bmWidth, bmHeight).

Therefore, many output functions may take the following form:

Function(LPPDEVICE ipDevice, ...)
f

if (tipDevice-> epType)
{

/* output to memory bitmap */
return deunction<lpDevice, ...);

}

/* if this is a nonbanding driver, perform
* device-specific output. Otherwise, for a
* banding driver,
*/

/* transform coordinates according to band position
*/

somerandomxcoordinate —= lpDevice—> xBandPosition;
somerandomycoordinate -= ipDevice-> yBandPosition;

/* assume that a BITMAP structure is stored somewhere in
* the PDEVICE for the band bitmap
*/

ipDevice = (LPPDEVICE)&1pDevice—> epBandBmpHdr;

return deunction(1pDevice, ...);
l

The brute functions operate by calling the corresponding display driver function
to manipulate a memory bitmap. Therefore, they have exactly the same parameters
as the corresponding driver functions, with the exception that the lpDevice parame-
ters are always assumed to point to BITMAP structures.

Since driver capabilities and bitmap formats vary from display to display, the
printer driver should use the brute functions only for monochrome (not color)
bitmaps. Also, since the scan line and polyline support is required for all display
drivers, the printer driver can assume that this support is in the brute functions.

The following brute functions are available for output:

I deitBlt

I dmOutput

I deier

I detrBlt

I decanLR

Page 95 of 239

Page 96 of 239

Chapter 4 Printer Drivers 133
/__________—_____—__.—

There is currently no dextTextOut function; the driver calls the ExtTextOut
function.

4.1.25.3 Color-Library Functions

Although the dot-matrix (brute) library functions in GDI (such as deitBlt and
dmOutput) only support monochrome printers, a color printer driver can call
corresponding functions in the the color library which do implement color. The
color library supports all the dot-matrix (dm) functions except meranspose.
The meranspose function does not depend on color format. The arguments and
return values of these functions are the same as those for the GDI monochrome
versions of these functions.

The library implements color using a 3-plane RGB (Red, Green, Blue) banding
bitmap, which is converted to CMYK (Cyan, Magenta, Yellow, Black) when the
bitmap is sent to the printer. If a printer requires a different format, the color
library must be modified.

Both deitBlt and dmOutput compile short, efficient functions into the stack
segment and then call them to perform the actual operation. In protected mode,

this requires creating a code segment alias for the stack segment. A selector must
be allocated for these two functions to operate. It is stored in the global variable
ScratchSelector, which is external to the library and which must be supplied by

the driver. In the sample IBM Color Printer driver, the selector is allocated and
freed in Enable and Disable, respectively.

4.1.26 GDI Priority Queues

The GDI library provides the priority-queue data type that is used with device-

specific fonts to sort output strings into the correct order on the page. Priority
queues are accessed through a two-byte value, known as the key. Each key can
also have two bytes of associates information, called a tag.

The following lists the priority—queue functions, and provides a brief description

of each.

Function Description

CreatePQ Creates a priority queue.

DeletePQ Deletes a priority queue.

InsertPQ Inserts a key in a priority queue.

MinPQ Returns the tag having the smallest key in the queue.

SizePQ Sets the size of the priority queue.

ExtractPQ Extracts a key from a priority queue.

Page 96 of 239

Page 97 of 239

134 AdvancedSelUpDialog

4.1.27 Stub Functions

Because printer drivers are dynamic-link libraries that GDI loads using the Load-
Library function, they must also export the WEP function. This function indi—
cates that Windows is shutting down or the printer driver is being unloaded from
the system.

Printer drivers must include the SetAttribute and DeviceBitmap functions.

4.1.28 Installing Over Previous Versions
The Windows 3.1 Setup program will automatically update any installed printer
drivers with new drivers provided with Windows 3.1. As part of this process,
Setup will replace:

generic printer name=driver, port

in the [Devices] and [PrinterPorts] sections with:

specific model name=new driver, port

Setup will not update the [DriverName, Port] section. This will be done by the
individual driver when Setup calls the DevInstall function.

4.2 Function Reference

The following is an alphabetical listing of graphics functions that are specific to
printer drivers. For a complete description of the graphics functions that are com-
mon to other graphics drivers, see Chapter 10, “Graphics—Driver Functions.”

_____________________’__—————-——-—

AdvancedSetUpDialog

WORD AdvancedSetUpDialog(hWnd, hDriver, lpDevModeIn, lpDevModeOut)
HWND hWnd;
HANDLE hDriver;

LPDEVMODE lpDevModeIn;
LPDEVMODE lpDevModeOut;

The AdvancedSetUpDialog function displays a dialog box with which the
user sets advanced print-job options. Applications call this function indirectly

Page 97 of 239

Page 98 of 239

AdvancedSetUpDialog 135
Kw“—

whenever the user chooses the Options button in the Print Setup dialog box.
AdvancedSetUpDialog lets the user specify print—job options that the driver
supports, such as color, duplex printing, and text quality, but that are not available
through the Print Setup dialog boxes.

Printer drivers that do not export AdvancedSetUpDialog must export the Ext-
DeviceMode function.

Parameters hWnd

Identifies the parent window. AdvancedSetUpDialog uses this handle as the
parent window handle when it creates the dialog box.

hDriver

Identifies the module instance of the device driver. AdvancedSetUpDialog

uses this handle as the module instance handle when it creates the dialog box.

lpDevModeIn

Points to a DEVMODE structure specifying the initial values for the advanced

printer options in the dialog box. If the lpDevModeIn parameter is NULL or the
depecVersion member in this DEVMODE structure is less than 0x0300,

AdvancedSetUpDialog must return —1 without displaying the dialog box.

lpDevModeOut
Points to a DEVMODE structure that receives the final values for the advanced

printer options. The final values include any input from the user. If the user can-

cels the dialog box, AdvancedSetUpDialog must at least copy the initial values

(supplied in the lpDevModeIn parameter) to the lpDevModeOut parameter. The

lpDevModeOut parameter must specify all print settings, not just those changed
by the user.

Return Value The return value is IDOK if the user chose the OK button to exit the dialog box,
or IDCANCEL if the user chose the Cancel button. In either case, the structure

pointed to by lpDevModeOut contains final values for the advanced pint-job
options. If an error occurs, the function returns —1.

Comments The export ordinal for this function is 93.

AdvancedSetUpDialog creates an application-modal dialog box using the Dialog-
Box function (USER.240). The dialog box must provide options for the user to set
the various advanced operating modes of the device. If DialogBox returns IDOK,
AdvancedSetUpDialog copies the complete print—job information including all
the user’s input to lpDevModeOut. Otherwise, it must copy the complete contents
of lpDevModeIn to lpDevModeOut.

Page 98 of 239

Page 99 of 239

136 DeviceCapabilities

See Also

Although AdvancedSetUpDialog and ExtDeviceMode may display similar
dialog boxes, these functions are not identical. In particular, AdvancedSetUp—
Dialog must not update or modify the current environment or WIN.INI
settings.

ExtDeviceMode

_____/

DeviceCapabilities

#include <drivinit.h>

DWORD DeviceCapabilities(lpDeviceName, lpPort, nIndex, lpOutput, lpDevMode)
LPSTR lpDeviceName; /* pointer to device—name string */
LPSTR lpPart; /* pointer to port—name string */
WORD nIndex; /* device capability to query */
LPSTR lpOutput; /* pointer to the output */
LPDEVMODE lpDevMode; /"< pointer to structure with device data */

Parameters

The DeviceCapabilities function retrieves the capabilities of the printer device
driver and is recommended for all printer drivers.

lpDeviceName
Points to a null-terminated string that contains the name of the printer device,
such as Hewlett-Packard LaserJet that uses PCL.

lpPort
Points to a null—terminated string that contains the name of the port to which the
device is connected, such as LPTl.

nIndex

Specifies the capabilities to query. It can be any one of the following values.
Value Meaning

DC‘BINNAMES Copies an array containing a list of the
names of the paper bins. This array is in
the form char PaperNames[cBinMax]

[cchBinName] where cchBinName is 24.
If the lpszOutput parameter is NULL, the
return value is the number of bin entries

required. Otherwise, the return value is
the number of bins copied. To work

properly with the common dialog box
library (COMMDLG), a printer driver
for Windows 3.1 must support the

DC_BINNAMES index.

Page 99 of 239

Page 100 of 239

DeviceCapahilities 137
”_—————-————_—-————'——_———__-

Value Meaning

DC_BINS Retrieves a list of available bins. The func-
tion copies the list to lpOutput as a WORD
array. If lpOutput is NULL, the function re-
turns the number of supported bins to

allow the application the opportunity to
allocate a buffer with the correct size. See

the description of the deefaultSource
member of the DEVMODE structure for

information on these values. An applica-
tion can determine the name of

device-specific bins by using the
ENUMPAPERBINS escape.

DC_COPIES Returns the maximum number of copies
the device can produce.

DC_DRIVER Returns the printer-driver version number.

DC_DUPLEX Returns the level of duplex support. The
function returns 1 if the printer is capable

of duplex printing. Otherwise, the return
value is zero.

DC_ENUMRESOLUTIONNAMES Retrieves a list of resolution names sup-
ported by the model. The application
should allocate a buffer to hold one or

more arrays each containing
CCHPAPERNAME (64) bytes. If lpOutput
is NULL, the function returns the number
of resolutions supported by the model.

If lpOutput is not NULL, the buffer is
filled in.

DC_ENUMRESOLUTIONS Returns a list of available resolutions. If
lpOutput is NULL, the function returns the
number of available resolution configura—

tions. Resolutions are represented by pairs
of LONG integers representing the hori-
zontal and vertical resolutions.

DC_EXTRA Returns the number of bytes required for
the device-specific portion of the DEV-
MODE structure for the printer driver.

DC_FIELDS Returns the deields member of the
printer driver’s DEVMODE data structure.
The deields member indicates which

member in the device-independent portion
of the structure are supported by the printer
driver.

Page 100 of 239

Page 101 of 239

138 DeviceCapabilities

Value Meaning
/

DC_FILEDEPENDENCIES

DC_MAXEXTENT

DC_MINEXTENT

DC_ORIENTATION

DC_PAPERNAMES

Returns a list of files which also need to
be loaded when a driver is installed. If

lpOutput is NULL, the function returns the
number of files. If lpOutput is not NULL,

it is a pointer to an array of filenames.
Each element in the array is exactly 64
characters long.

Returns a POINT structure containing

the maximum paper size that the
deaperLength and deaperWidth
members of the printer driver’s DEV-
MODE structure can specify.

Returns a POINT structure containing

the minimum paper size that the
deaperLength and deaperWidth
members of the printer driver’s DEV-
MODE structure can specify.

Retrieves the relationship between portrait
and landscape orientations in terms of the
number of degrees that portrait orientation
is to be rotated counterclock-wise to get

landscape orientation. It can be one of the
following values.

Value Meaning

0 No landscape orientation.

90 Portrait is rotated 90 degrees

to produce landscapes. (For
example, PCL.)

270 Portrait is rotated 270 degrees

to produce landscape. (For
example, dot—matrix printers.)

Retrieves a list of the nonstandard paper

names supported by the model. The appli-
cation should allocate a buffer to hold one

or more arrays each containing
CCHPAPERNAME (64) bytes. If lpOutput
is NULL, the function returns the number
of non-standard paper sizes supported by
the model. If lpOutput is not NULL, the
buffer is filled in.

Page 101 of 239

Page 102 of 239

DC_PAPERS

DC_PAPERSIZE

DC_SIZE

DC_TRUETYPE

DC_VERSION

DeviceCapahilities 139

Retrieves a list of supported paper sizes.
The function copies the list to lpOutput as
a WORD array and returns the number of
entries in the array. If lpOutput is NULL,
the function returns the number of sup-
ported paper sizes to allow the application
the opportunity to allocate a buffer with the
correct size. See the description of the
deaperSize member of the DEVMODE
data structure for information on these
values.

Copies the dimensions of supported paper
sizes in tenths of a millimeter to an array of
POINT structures pointed to by lpOutput.
This allows an application to obtain infor—
mation about nonstandard paper sizes.

Returns the deize member of the printer
driver’s DEVMODE data structure.

Retrieves the driver’s capabilities with re-
gard to printing TrueType fonts. The return
value can be one or more of the following
capability flags.

Value Meaning

DCTT_BITMAP (OXOOOOOOIL)
Device is

capable of print-
ing TrueType
fonts as

graphics.

DCTT_DOWNLOAD (0x0000002L)
Device is

capable of
downloading
TrueType fonts.

DCTT_SUBDEV (0x0000004L)
Device is

capable of sub-
stituting device
fonts for True-

Type.

In this case, the lpOutput parameter is not
used, and should be NULL.

Returns the specification version to which
the printer driver conforms.

Page 102 of 239

Page 103 of 239

140 DeviceCapabilities

Return Value

Comments

See Also

lpOutputPoints to an array of bytes. The actual format of the array depends on the set—
ting of the nlndex parameter. If set to zero, DeviceCapabilities returns the
number of bytes required for the output data.

lpDevMode .Points to a DEVMODE structure. If the lpDevMode parameter is NULL, this
function retrieves the current default initialization values for the specified
printer driver. Otherwise, the function retrieves the values contained in the
structure to which lpDevMode points.

The DEVMODE structure has the following form:

typedef struct ,devicemode { /* dm */
char deeviceName[CCHDEVICENAME];
WORD depecVersion;
WORD deriverVersion;
WORD deize;
WORD deriverExtra;
DWORD deields;
short dmOrientation;
short deaperSize;
short deaperLength;
short deaperWidth;
short decale;
short dmCopies;
short deefaultSource;
short derintQuality;
short dmColor;
short deuplex;
short deResolution;
short meTOption;

} DEVMODE;

The return value depends on the setting of the nIndex parameter if successful.
Otherwise, the return value is —1 if the function fails.

The export ordinal for this function is 91.

ENUMPAPERBINS , ExtDeviceMode

Page 103 of 239

Page 104 of 239

Devlnstall 141

Devlnstall

WORD Devlnstall(hWnd, lpModelName, OldPort, NewPorl)
HWND hWnd;

LPSTR lpModelName;
LPSTR OldPort;
LPSTR NewPort;

The Devlnstall function changes port connections, and installs and removes

printers. Control Panel calls this function whenever the user switches the port for
a printer model.

Parameters hWnd

Identifies the parent window to use for any dialog boxes the function creates.

lpModelName

Points to a null—terminated string specifying the name of the current printer
model.

OldPort

Points to a null-terminated string specifying the name of the port being
changed. If the OldPort parameter is NULL, the function installs the new
printer model.

NewPort

Points to a null-terminated string specifying the name of the port to be changed
to. If the NewPorz parameter is NULL, the function removes printer model.

Return Value The return value is one of the following values.

Value Meaning

1 Succeeded

0 Doesn’t support this function
—1 Failed for unknown reason

Comments When the function changes a port, it must change the port in the [ModelName,
Port] section of the WIN.INI file. Also, the function should check for a font sec—

tion with valid entries for the old port. If there are fonts, the function should warn
the user with a message informing them that there are printer fonts installed for the

old port. The user can install them using the Fonts button from the Printer Setup
dialog box.

When installing a new printer, the function must scan the WIN.INI file for a
[DriverName, NewPort] section. If one is found and ModelName matches the

printer index listed there, the function creates a new section [ModelName,

Page 104 of 239

Page 105 of 239

142 GetEnvironment

NewPort] and moves all nonfont—related information from the [DriverName,
Newport] section to this new [ModelName, NewPort] section. After this opera-
tion, the [DriverName, NewPort] section contains only the printer fonts listing. If
the function doesn’t find a [DeviceName, NewPort] section, no action is required.

When removing a printer, the function must remove the [ModelName, OldPort]
section including all settings there, but it must not remove the [DriverName,
OldPort] section. Other models may be using fonts installed on this port.

4.3 Printer Environment Function Reference
The following is an alphabetical listing of printer-environment functions.

/_/-—-——-

GetEnvironment

int GetEnvironmentUpszPort, lvanviron, chaxCopy)
LPCSTR lpszPort; /* address of port name */
void FAR* lvanviron; /* address of buffer for environment */
UINT chaxCOpy; /* maximum number of bytes to copy *I

The GetEnvironment function retrieves the current environment that is associated
with the device attached to the specified system port and copies it into the speci-
fied DEVMODE structure. The environment, maintained by graphics device inter—
face (GDI), contains binary data that GDI uses whenever a device context is
created for the device on the given port.

Parameters lpszPort
Points to the null—terminated string that specifies the name of the desired port.

lvanviron
Points to the DEVMODE structure that will receive the environment. The
DEVMODE structure has the following form:

typedef struct -devicemode { /* dm */
Char deeviceName[CCHDEVICENAME];
WORD depecVersion;
WORD deriverVersion;
WORD deize;
WORD deriverExtra;
DWORD deields;
short dmOrientation;
short deaperSize;
short deaperLength;

Page 105 of 239

Page 106 of 239

SetEnvironment 143-————————————-*—_—_____—______—

short deaperWidth;
short decale;
short dmCopies;
short deefaultSource;
short derintQuality;
short dmColor;
short deuplex;
short deResolution;
short meTOption;

} DEVMODE;

chaxCopy

Specifies the maximum number of bytes to be copied to the structure.

Return Value The return value specifies the number of bytes copied to the DEVMODE
structure pointed to by the lvanviron parameter, if the function is successful.

If lvanviron is NULL, the return value is the number of bytes required to hold
the environment. It is zero if the environment cannot be found.

Comments The GetEnvironment function is used by drivers only.

The GetEnvironment function fails if there is no environment for the given port.

An application can call this function with the lvanviron parameter set to NULL
to determine the size of the structure required to hold the environment. It can then
allocate the required number of bytes and call the GetEnvironment function a sec-

ond time to retrieve the environment. The first member in the block pointed to by
the lpEnvz'ron parameter should be an atom that the printer driver has added to the
global atom table.

See Also SetEnvironment

SetEnvironment

int SetEnvironment(lpszP0rt, lvanviron, chaxCopy)
LPCSTR lpszPort; /* address of port name */
const void FAR* lvanviron; /* address of buffer for new environment */

UINT chaxCOp)’; /* maximum number of bytes to copy */

The SetEnvironment function copies the contents of the specified buffer into the
environment associated with the device attached to the specified system port. The
environment, maintained by GDI, contains binary data used by GDI whenever a
device context is created for the device on the given port.

Page 106 of 239

Page 107 of 239

144 SetEnvironment

Parameters

Return Value

Comments

See Also

lpszPort
Points to a null—terminated string that specifies the name of the port.

lvanviron
Points to the buffer that contains the new environment. This buffer is in the
form of a DEVMODE structure. The DEVMODE structure has the following
form:

typedef struct ,devicemode { /* dm */
char deeviceNameECCHDEVICENAME];
WORD depecVerston;
WORD deriverVersion;
WORD deize;
WORD deriverExtra;
DNORD deie1ds;
short dmOrientation;
short deaperSize;
short deaperLength;
short deaperwidth;
short decale;

short dmCopies;
short deefau1tSource;
short derintQuality;
short dmColor;
short deuplex;
short deResotution;
short meTOption;

} DEVMODE;

chaxCopy
Specifies the maximum number of bytes to copy to the buffer.

The return value is the number of bytes copied to the environment, if the function
is successful. It is zero if there is an error or 1 if the environment is deleted.

The SetEnvironment function is used by device drivers.

The SetEnvironment function deletes any existing environment. If there is no
environment for the given port, SetEnvironment creates one. If the chaxCopy
parameter is zero, the existing environment is deleted and not replaced.

The first member of the DEVMODE structure pointed to by the lvanviron
parameter must be the same as that passed in the lpDestDevape parameter of
the Enable function. If lpszPort specifies a null port, the deeviceName member
is used to locate the environment. The first member in the block pointed to by the
lpEnviron parameter should be an atom that the printer driver has added to the
global atom table.

GetEnvironment

Page 107 of 239

Page 108 of 239

DeletePO 145

/___________________———

4.4 Priority-Queue Function Reference
The following is an alphabetical listing of the priority—queue functions.

________________________—__.____—_————-——

CreatePO

HPQ CreatePQ(size)
int size;

The CreatePQ function creates a priority queue.

Parameters size

Specifies the maximum number of items to be inserted into this priority queue.

Return Value The return value is a handle to the priority queue if the function is successful.
Otherwise, it is zero.

See Also DeletePQ

________________________—_————————————

DeletePO

int DeletePQ(hPQ)
HPQ hPQ;

The DeletePQ function deletes a priority queue.

Parameter hPQ

Identifies a priority queue.

Return Value The return value is TRUE if the queue is deleted. Otherwise, it is —1.

Page 108 of 239

Page 109 of 239

146 ExtractPO

ExtractPO

int ExtractPQ(hPQ)

HPQ hPQ;

The ExtractPQ function returns the tag associated with the key having the small—
est value in the priority queue and removes the key from the queue.

Parameter hPQ
Identifies a priority queue.

Return Value The return value is a tag associated with the key in the priority queue.

_________________/-

InsertPO

BOOL InsertPQ(hPQ, tag, key)
HPQ hPQ;
int tag;
int key;

The InsertPQ function inserts the key and its associated tag into the priority
queue.

Parameters hPQ
Identifies a priority queue.

tag

Specifies a tag associated with the key.

key

Specifies a key.

Return Value The return value is TRUE if the insertion is successful. Otherwise, it is —1.

Page 109 of 239

Page 110 of 239

Size PO 147
W—

IWmPO

int MinPQ(hPQ)
HPQ hPQ;

The MinPQ function returns the tag associated with the key having the smallest

value in the priority queue, without removing this element from the queue.

Parameter hPQ

Identifies a priority queue.

Return Value The return value is the tag associated with the key in the priority queue.

See Also ExtractPQ

SkePO

int SizePQ(hPQ, sizechange)
HPQ hPQ;
int sizechange;

The SizePQ function increases or decreases the size of the priority queue.

Parameters hPQ

Identifies a priority queue.

sizechange

Specifies the number of entries to be added or removed.

Return Value The return value is the number of entries that can be accommodated by the resized

priority queue. The return value is —1 if the resulting size is smaller than the actual

number of elements in the priority queue.

Page 110 of 239

Page 111 of 239

148 CloseJob

4.5 Print Manager Function Reference
The following is an alphabetical listing of Print Manager functions.

f/

CloseJoh

int FAR PASCAL CloseJ0b(hJob)
HANDLE Mob;

The CloseJob function closes the print job identified by the given handle.

Parameters hJob
Identifies the print job to close. The handle must have been previously opened
using the OpenJob function.

Return Value The return value is positive if the function is successful. Otherwise, it is one of the
following error values.

Value Meaning

SP_ERROR (—1) A general error condition or general error in banding
occurred.

SP_APPABORT (—2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (—3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (—5) A lack of memory caused the job to stop.

See Also OpenJob

Page 111 of 239

Page 112 of 239

EndSpoolPage 149

DeleteJob

int FAR PASCAL DeleteJob(hJ0b, wDummy)

HANDLE hlob;

WORD wDummy;

The DeleteJob function deletes the given print job from the printing queue. A
driver should call this function if it detects an error condition, or is asked to quit a
job by the application.

Parameters hJob

Identifies the print job to delete. The handle must have been previously opened
using the OpenJob function.

wDummy
Reserved; must be set to zero.

Return Value The return value is positive if the function is successful. Otherwise, it is one of the
following error values.

Value Meaning

SP_ERROR (—1) A general error condition or general error in banding
occurred.

SP_APPABORT (—2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (—3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (—5) A lack of memory caused the job to stop.

See Also OpenJob

EndSpoolPage

int FAR PASCAL EndSpoolPage(hJob)
HANDLE hlob;

The EndSpoolPage function marks the end of a spooled page. A driver uses this
function, in conjunction with the StartSpoolPage function, to divide printer out—
put into pages. Each page is stored in a temporary file on the machine’s hard disk

Page 112 of 239

Page 113 of 239

150 EndSpoolPage

Parameters

Return Value

Comments

See Also

when Print Manager is running. Dividing a print job into pages allows Print
Manager to begin printing one page while the driver is still generating output on
subsequent pages. A Print Manager page does not need to correspond to a physical
page of printed output; the division is the driver’s decision.

hJob

Identifies the print job. The handle must have been previously opened using the
OpenJob function.

The return value is positive if the function is successful. Otherwise, it is one of the
following error values.

Value Meaning

SP_ERROR (—1) A general error condition or general error in banding
occurred.

SP_APPABORT (—2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (—3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (-5) A lack of memory caused the job to stop.

When Print Manager is not running, page division is not very important because
temporary files are not involved. However, starting and ending at least one Print
Manager page is still required.

Calls to StartSpoolPage and EndSpoolPage can occur at any point during the out-
put. Some drivers use one spool page per physical page. Others use one page for
the whole job. The printing of a particular page by the Print Manager application
does not begin until it receives the corresponding EndSpoolPage function.

A driver can perform output at any point between these two calls. When End-
SpoolPage is called and Print Manager is loaded, the page’s temporary file is
submitted to Windows Print Manager.

OpenJob, StartSpoolPage

Page 113 of 239

Page 114 of 239

OpenJob 151
/_______—_________—__._—_____—___

OpenJob

HANDLE FAR PASCAL OpenJobUpOutput, lpTitle, hdc)
LPSTR lp0utput;
LPSTR lpTitle;
HDC hdc;

The OpenJob function creates a print job and returns a handle identifying the job.
A driver uses the handle in subsequent functions to write output to the print job as
well as control the job.

Parameters lpOutput

Points to a null-terminated string specifying the port or file to receive the out-
put. A driver typically supplies the same filename as pointed to by the lpOutput—
File parameter when GDI calls the driver’s Enable function.

lpTitle

Points to a null-terminated string specifying the title of the document to

print. This parameter must be supplied by the application when it calls the
STARTDOC escape. This title appears in the Print Manager display.

hdc

Identifies the application’s device context. This parameter must be supplied by
the application when it calls the STARTDOC escape.

Return Value The return value is a handle identifying the print job if the function is successful.
Otherwise, it is one of the following error values.

Value Meaning

SP_ERROR (—1) A general error condition or general error in banding
occurred.

SP_APPABORT (—2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (—3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (~5) A lack of memory caused the job to stop.

See Also CloseJob, Enable, STARTDOC

Page 114 of 239

Page 115 of 239

152 StarISpooIPage

StartSpoolPage

int FAR PASCAL StartSpoolPage(hJob)
HANDLE hJob;

Parameters

Return Value

Comments

The StartSpoolPage function marks the start of a spooled page. A driver uses this
function, in conjunction with the EndSpoolPage function, to divide printer output
into pages. Each page is stored in a temporary file on the machine’s hard disk
when Print Manager is running. Dividing a print job into pages allows Print
Manager to begin printing one page while the driver is still generating output
on subsequent pages. A Print Manager page does not need to correspond to a
physical page of printed output; the division is the driver’s decision.

hJob

Identifies the print job. The handle must have been previously opened using the
OpenJob function.

The return value is positive if the function is successful. Otherwise, it is one of the
following error values.

Value Meaning

SP_ERROR (—l) A general error condition or general error in banding
occurred.

SP_APPAB ORT (—2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (—3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (—5) A lack of memory caused the job to stop.

When Print Manager is not running, page division is not very important because
temporary files are not involved. However, starting and ending at least one Print
Manager page is still required.

Calls to StartSpoolPage and EndSpoolPage can occur at any point during the out-
put. Some drivers use one spool page per physical page. Others use one page for
the whole job. The printing of a particular page by the Print Manager application
does not begin until it receives the corresponding EndSpoolPage function.

Page 115 of 239

Page 116 of 239

WriteDialog 153

A driver can perform output at any point between these two calls. When End—

SpoolPage is called and Print Manager is loaded, the page’s temporary file is
submitted to Windows Print Manager.

See Also EndSpoolPage, OpenJob

WriteDialog

int FAR PASCAL WriteDialog(hJ0b, lpMsg, cch)
HANDLE hJob;

LPSTR lpMsg;
WORD cch;

The WriteDialog function displays a message box containing the specified mes—
sage. A driver uses this function to inform the user of a possible printing problem.

For example, a driver for a printer using manual-paper loading can call Write-
Dialog to ask the user to place a new sheet in the printer. The print job will not
continue printing until the user chooses the OK button in the message box. The

user may also choose a Cancel button to cancel the print job.

Parameters hJob

Identifies the print job. The handle must have been previously opened using the
OpenJob function.

lpMsg

Points to a null-terminated string containing the message to be displayed.
cch

Specifies the number of bytes in the message pointed to by the lpMsg parameter.

Return Value The return value is IDOK if the function is successful. Otherwise, it is
IDCANCEL.

See Also OpenJob

Page 116 of 239

Page 117 of 239

154 WriteSpool

WriteSpool

int FAR PASCAL WriteSpool(hJob, lpData, cch)
HANDLE hlob;

LPSTR lpData;
WORD cch;

Parameters

Return Value

See Also

The WriteSpool function writes printer output to the port or file associated with
the print job. A driver must call this function after calling StartSpoolPage and
before calling EndSpoolJob.

hJob

Identifies the print job. The handle must have been previously opened using the
OpenJob function.

lpData
Points to the device—dependent data to write.

Specifies the number of bytes to write.

The return value is positive if the function is successful. Otherwise, it is one of the
following error values.

Value Meaning

SP_ERROR (—1) A general error condition or general error in banding
occurred.

SPflAPPABORT (—2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (—3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (—5) A lack of memory caused the job to stop.

EndSpoolPage, OpenJob, StartSpoolPage

Page 117 of 239

Page 118 of 239

BITMAPMETRICS 155

4.6 TrueType Structure Reference

The following is an alphabetical listing of the structures that are specific to
TrueType support for printer drivers.

BITMAPMETRICS

typedef struct _BITMAPMETRICS {
SIZEL sizlExtent;
POINTFX pfxOrigin;
POINTFX pfxCharInc;

} BITMAPETRICS;

The BITMAPMETRICS structure defines the character cell that corresponds to a
given glyph bitmap. The structure gives the width and height of the cell, the posi—
tion of the bitmap relative to the origin of the cell, and the horizontal and vertical
increments.

Members sizlExtent

Specifies the width and height of the bitmap. Since scan lines are aligned on
32-bit boundaries, the byte width of a scan line is the number of pixels rounded
to the next multiple of 32 and divided by 8.

pfxOrigin

Specifies the position of the upper—left corner of the bitmap relative to the char-
acter origin.

pfxCharInc

Specifies the increment to the next character. In this case, PFXCHARINCX is
the increment along the baseline.

Comments The increment and origin of a character may be such that consecutive characters
overlap. That is, the origin may be negative or the increment may be smaller that
the actual width. The device driver is responsible for drawing overlapping glyphs
without overwriting characters.

When calculating string widths, a device driver uses the increment as the width.

Page 118 of 239

Page 119 of 239

156 FIXED

FIXED

typedef DNORD FIXED;

The FIXED type specifies a 32—bit, fixed point number. The type consists of
16—bit fields, representing an integer and a fraction as follows:

Bits Meaning

0-15 Specifies the fractional part of the fixed point number. The fraction is always
a positive value representing the numerator n of the expression n/65536.

16—31 Specifies the integer part of the fixed point number. The integer is a signed
value in the range —32768 to 32767.

___________________.__———————-———

POINTFX

Members

typedef struc _POINTFX {
FIXED X;
FIXED y;

} POINTFX;

The POINTFX structure specifies the x— and y-coordinates of a point. The
coordinates are expressed as 32-bit fixed point numbers.

x

Specifies a width or x—coordinate.

y

Specifies a height or y-coordinate.
______________________—_——————————

SIZEL

typedef struct _SIZEL {
DWORD x;
DNORD y;

} SIZEL;

The SIZEL structure contains information about the size or location of a object

specified as two 32-bit values.

Page 119 of 239

Page 120 of 239

TTINFO 157

Members x

Specifies a width or x-coordinate.

y

Specifies a height or y—coordinate.

TI'INFO

typedef struct tagTTINFO {
WORD cbInfo;
WORD fFlags;

} TTINFO;

The TTINFO structure contains information specifying whether TrueType is

operating and whether TrueType fonts have been installed.

Members cbInfo

Specifies the number of bytes in the structure.

fFlags

Specifies the state of TrueType and TrueType fonts. This field can be a
combination of the following values:

Value Meaning

0x0001 At least one TrueType has been installed.

0x0002 TrueTyperaaefizerisoperadng.

4.7 File-Format Reterence

The following is an alphabetical listing of the file formats that are specific to

printer drivers. For a complete description of the file formats that are common to
other graphics drivers, see Chapter 13, “Font Files.”

Page 120 of 239

Page 121 of 239

158 DDRV

DDRV

Parameters

Comments

Examples

DESCRIPTION ’DDRV Description:AspectXYLogPixelsX,L0gPixelsY’

The DDRV statement in the printer driver’s module-definition file names the
printer models supported by the printer driver, and specifies the aspect ratio and
logical pixels-per—inch values of the printer.

Every printer driver must provide a DDRV statement. Control Panel uses the state-
ment to display the name of the printer to the user and to choose matching screen
fonts for the printer.

Description
Specifies the name or names of the printer models supported by this driver.
Although more than one name can be given, the names must not be separated
by commas (,).

Specifies the aspect ratio for the printer. This parameter must be set to the same
value as the driver’s dpAspectXY member in the GDIINFO structure.

LogPixelsX
Specifies the horizontal pixels-per—inch for the printer. This parameter must be
set to the same value as the driver’s dpLogPixelsX member in the GDIINFO
structure.

LogPixele
Specifies the vertical pixels-per-inch for the printer. This parameter must be set
to the same value as the driver’s dpLogPixelsX member in the GDIINFO
structure.

The DDRV keyword must be capitalized. At least one character (typically a space:
must follow the DDRV keyword; Control Panel always ignores this first character

Control Panel uses the Description (all characters up to the colon) parameter to
create new settings for the [Devices] and [PrinterPorts] sections in the WIN.INI
file. The settings have the following form:

Descripti0n=Port[,Data]

The following example shows a DDRV description for a printer driver supporting
a single model:

DESCRIPTION 'DDRV PCL / HP Laser‘Jet:100,300,300'

The following example shows support for multiple printer models:

DESCRIPTION 'DDRV Printer 1/Printer2:100,300,300'

Page 121 of 239

Graphics-Driver Escapes

Chapter 11

1 j.1 About the Graphics-Driver Escapes 397
11 .2 Obsolete Escapes......................... 397
1 1.3 Escape Reference. 398

Page 122 of 239

Graphics-Driver Escapes

Chapter 1 1

1 I . l About the Graphics-Driver Escapes .. 397

1 l .2 Obsolete Escapes .. 397

1 l .3 Escape Reference ... 398

Page 122 of 239

Chapter 11 Graphics-Driver Escapes 397

The Microsoft Windows graphics escapes provide graphics support that is other­
wise not available through graphics-device interface (GDJ). Applications use
graphics escapes to perfonn device-dependent operations that are not supported
by GD!. Applications call the Escape function (GDJ.38) to initiate an escape and
GD! calls the device driver' s Control function to complete the escape.

11.1 About the Graphics-Driver Escapes
Graphics drivers should support all escapes that are reasonable for a given device.
In particular, printer drivers should be prepared applications that assume that the
printer-setting escapes, such as STARTDOC and END DOC, are always available
on high-end devices. All drivers should support the QUERYESCSUPPORT
escape which identifies which graphics escapes the driver supports.

Display drivers should support the following escapes :

• QUERYESCSUPPORT

• GETCOLORTABLE

• SETCOLORTABLE

Printer drivers should support at least the following escapes:

• QUERYESCSUPPORT

• SETABORTPROC

• STARTDOC

• NEWFRAME

• END DOC

• ABORTDOC

• NEXTBAND

11.2 Obsolete Escapes
The EXTTEXTOUT and SELECTPAPERSOURCE escapes are now obso­
lete. EXTTEXTOUT has been replaced by the ExtTextOut function, and
SELECTPAPERSOURCE has been superseded by the GETSETPAPERBINS
escape.

Page 123 of 239

398 ABORTDOC

11.3 Escape Reference
The following is an alphabetical listing of the graphics-driver escapes.

ABORTDOC
#define ABORTDOC 2

short Control(lpOevice, ABORTDOC, NULL, NULL)
LPPDEVICE /pOevice;

Parameters

Return Value

Comments

See Also

BANDINFO

The ABORTDOC escape cancels and deletes the job using the DeleteJob function.

The ABORTDOC escape should be used for printing operations that do not
specify a stopping function with the SETABORTPROC escape, and to stop
printing operations that have not yet reacbed their first NEWFRAME or
NEXTBAND call.

/pOe vice
Points to a PDEVICE structure specifying the destination device.

The return value is positive if the escape is successful. Otherwise, it is negative.

GO! caUs this escape when a banding error occurs. It is also called by an applica­
tion when an errOr occurs or when the application wants to cancel the print job.

DeteteJob, ENDDOC. NEWFRAME, NEXTBAND. SETABORTPROC

#define BANDINFO 24

short Controt(lpDevice, BAND INFO, /pInData, /pOutData)
LPPDEVICE /pDevice;
LPBANDlNFOSTRUCT /pInOara;
LPBANDINFOSTRUCT /pOutData;

The BANDINFO escape copies information about a device with banding capa­
bilities to a structure pointed at by the /pInDara parameter.

Page 124 of 239

Parameters

Return Value

Comments

8ANDINFO 399

Banding is a property of an output device that allows a page of output to be stored
in a metafile and divided into bands, each of which is sent to the device to create a
complete page. Use banding with devices that cannot scroll backwards.

The information copied to the structure pointed at by /pfllData includes a flag indi­
cating whether or not there are graphics in the next band, a nag indicating whether
or not there is text on the page, and a rectangle structure that contains a bounding
rectangle for all graphics on the page.

/pDevice
Points to a PDEVICE structure specifying the destination device.

/plnData
Points to a BANDINFOSTRUCT structure containing infonnation about the
grapnics band. The BANDINFOSTRUCT structure has the following form:

typedef struet _BANOINFOSTRUCT
BOOL fGraphics;
BOOL fText;
RECT rcGraphics;

BANOINFOSTRUCT;

/pOutData
Points to a BANDINFOSTRUCT structure containing information about the
graphics band.

The return value is I if the escape is successful. Otherwise, it is O.

This escape should only be implemented for devices that use banding. It should be
called immediately after each ca ll to the NEXTBAND escape. If the IpOutData
parameter is not NULL and graphics will be printed in the current band, the driver
will set the [Graphics member in the output structure. If text will be printed, the
fText member wi ll be nonzero. The rcGraphics member is not used for output.

Therefore, on the ftrst band, the driver would set the rectangle returned by
NEXTBAND to the whole page. If it receives a BANDINFO escape, it will set
tne fText member and clear fGraphics.

On subsequent bands, it will band the page in small rectangles and handle only
graphics cal ls. Additionally, if the application calls BANDINFO, clears the fText
member and sets [Graphics.

The application can also optimize the banding process somewhat by describing
the page witb the structure passed by /plnData. The application sets the [Graphics
member, if there are any graphics on the page, and the fText member if there is
any text. If there are no graphics, the driver may be able to skip the graphics
bands. The application should also set rcGraphics to the rectangle bounding all

Page 125 of 239

BANDlNFfl 399

Parameters

Return Value

Comments

Banding is a property of an output device that allows a page of output to be stored
in a metafile and divided into bands, each of which is sent to the device to create a

complete page. Use banding with devices that cannot scroll backwards.

The information copied to the structure pointed at by Ipl’nDam includes a flag indi-

cating whether or not there are graphics in the next band, a flag indicating whether
or not there is text on the page. and a rectangle structure that contains a bounding
rectangle for all graphics on the page.

[pDevi'ce

Points to a PDEVICE structure specifying the destination device.

IplnDatu
Points to a BANDINFOSTRUCT structure containing information about the

graphics band. The BANDINFOSTRUCT structure has the following form:

typedef struct _BANDINFOSIRUCT l
BDOL fGraphics:
BOUL fText;
RECT rcGraphics;

l BANDINFDSTRUCT;

lpOuIData
Points to a BANDINFOSTRUCT structure containing information about the

graphics band.

The return value is 1 if the escape is successful. Otherwise. it is 0.

This escape should only be implemented for devices that use banding. It should be
called immediately after each call to the NEXTBAND escape. If the IpOuIDam

parameter is not NULL and graphics will be printed in the current band, the driver

will set the (Graphics member in the output structure. If text will be printed. the
[Text member will be nonzero. The rcGraphics member is not used for output.

Therefore, on the first band, the driver would set the rectangle returned by

NEXTBAND to the whole page. If it receives a BANDINFO escape. it will set
the [Text member and clear ['Graphics.

On subsequent bands, it will hand the page in small rectangles and handle only
graphics calls. Additionally. if the application calls BANDINFO, clears the ffext
member and sets fGraphics.

The application can also Optimize the banding process somewhat by describing
the page with the structure passed by lplnData. The application sets the fGraphics

member. if there are any graphics on the page. and the FText member if there is
any text. If there are no graphics, the driver may be able to skip the graphics
bands. The application should also set rcGraphics to the rectangle bounding all

Page 125 of 239

....

See Also

nontext graphics on the page. The driver has the option of banding only the
specified graphics rectangle rather than the whole page.

Vector fonts complicate the process somewhat. Since vector devices using band­
ing generally cannot print vector fonts, these fonts are simulated using polylines Or
scan lines. Therefore, they appear to the driver to be graphics in the text band.
Since vector fonts can appear anywhere on the page and require graphics banding
support, the driver must band graphics on the whole page even if the BANOINFO_
STRUCT passed by the application specifies otherwise.

If the application never calls BANDINFO, the driver can decide whether or not to
band grapbics by maintaining a flag that is set if any graphics calls are seen during
the text band.

NEXTBAND

BEGIN_PATH
#define BEGIN_ PATH 4096

short Control(lpDevice, BEGIN_PATH, NULL, NULL)
LPPOEVICE IpDevice;

Parameters

The BEGIN_PATH escape opens a path. A path is a connected sequence ofprimi­
tives drawn in succession to form a single polyline or polygon. Paths enable appli­
cations to draw complex borders, filled shapes, and clipping areas by supplying a
collection of other primitives that define the desired shape.

Printer escapes that support paths enable applications to render images on sophisti­
cated devices such· as PostScript printers without generating huge polygons to
simulate them.

To draw a path, an application nrst issues the BEGIN_PATH escape. It then draws
the primitives defining the border of the desired shape, and issues an END_PATH
and EXT_DEVICE_CAPS escape. The END~PATH escape includes a parameter
specifying how the path is to be rendered.

IpDevice
Points to a POE VICE strucrure specifying the destination device .

Page 126 of 239

400 BEGIN_ PATH
____—_——.—_———________~

nontext graphics on the page. The driver has the option of banding only the

specified graphics rectangle rather than the whole page.

Vector fonts complicate the process somewhat. Since vector devices using band—
ing generally cannot print vector fonts, these fonts are simulated using polylines or
scan lines. Therefore, they appear to the driver to be graphics in the text band.

Since vector fonts can appear anywhere on the page and require graphics banding
support, the driver must band graphics on the whole page even if the BANDINFO.

STRUCT passed by the application specifies otherwise.

If the application never calls BANDINFO, the driver can decide whether or not to

band graphics by maintaining a flag that is set if any graphics calls are seen during
the text band.

See Also NEXTBAND

BEGIN_ PATH

#define BEGIN_ PATH 4096

short ControlUpDevice, BEGIN_PATH, NULL, NULL)
LPPDEVICE ipDevice;

The BEGINAPATH escape opens a path. A path is a connected sequence of primi-

tives drawn in succession to form a single polyline or polygon. Paths enable appli-
cations to draw complex borders, filled shapes, and clipping areas by supplying a

collection of other primitives that define the desired shape.

Printer escapes that support paths enable applications to render images on sophisti—
cated devices such as PostScript printers without generating huge polygons to
simulate them.

To draw a path, an application first issues the BEGIN_PATH escape. It then draws

the primitives defining the border of the desired shape, and issues an ENDLPATH

and EXT,DEVICE_CAPS escape. The END_PATH escape includes a parameter
specifying how the path is to be rendered.

Parameters [pDevice

Points to a PDEVICE structure specifying the destination device.

Page 126 of 239

Return Value

Comments

See Also

The return value is a short integer value specifying the current path nesting
level. If the escape is successful, the number of BEGIN_PATH calls without
a corresponding END_PATH call is the result. Otherwise, the result is zero.

You may open a path within another path. A path drawn within another path is
treated exactly like a polygon (if the subpath is closed) or a polyline (if the sub­
path is open).

You may use the CLIP _TO_PATH escape to define a clipping area corresponding
to the interior or exterior of the currently open path.

Device drivers that implement this escape must also implement the END_PATH
and EXT_DEVICE_CAPS escapes and should also implement the
SET_ARC_DfRECTION escape.

#define CLIP _ TO_ PATH 4097

short Control(lpDevice, CLIP _ TO_ PATH,/pClipMode, NULL)
LPPDEVICE /pDevice;
LPINT IpClipMode;

Parameters

The CLIP _TO_PATH escape defines a clipping area bounded by the currently
open path. It enables the application to save and restore the current cUpping area
and to set up an inclusive or exclusive clipping area bounded by the currently
open path.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpClipMode
Points to a 32-bit variable specifying the cUpping mode. It may be one of the
following values.

Value

CLIP _SAVE(O)

CLIP _RESTORE(1)

CLIP _INCLUSIVE(2)

Meaning

Saves the current clipping area.

Restores the previous clipping area.

Sets a clipping area in such a way that portions of primi­
tives falling outside the interior bounded by the current
path are clipped.

Page 127 of 239

CLIP,TD_ PATH 401______————_——

Heturn Value

Comments

See Also

The return value is a short integer value specifying the current path nesting
level. If the escape is successful, the number of BEGIN_PATH calls without
a corresponding END_PATH call is the result. Otherwise, the result is zero.

You may open a path within another path. A path drawn within another path is
treated exactly like a polygon (if the subpath is closed) or a polyline (if the sub-
path is open).

You may use the CLIPYTOWPATH escape to define a clipping area corresponding
to the interior or exterior of the currently open path.

Device drivers that implement this escape must also implement the END_PATH

and EXTiDEVICE7CAPS escapes and should also implement the
SET_ARC_DIRECTION escape.

CLIP_TO_PATH, END_PATH, EXT_DEVICE_CAPS, SETfiARC_DlRECTION

CL|P_ T0__ PATH

#define CLl'Pn TO; PATH 4097

short ControlUpDevit'e, CLIP_ TO_PATH, lpC‘lt'pMode, NULL)
LPPDEVICE lpDevice;

LPINT lpClipMode;

Parameters

The CLLP_TO_PATH escape defines a clipping area bounded by the currently
open path. It enables the application to save and restore the current clipping area
and to set up an inclusive or exclusive clipping area bounded by the currently

Open path.

lpDeviCe

Points to a PDEVICE structure specifying the destination device.

lpClipMode

Points to a 32~bit variable specifying the clipping mode. It may be one of the
following values.

Value Meaning

CLIP_SAVE(O) Saves the current clipping area.

CLIELRESTORH l) Restores the previous clipping area.

CL[P_INCLUSIVE(2) Sets a clipping area in such a way that portions of primi—
tives falling outside the interior bounded by the current
path are clipped.

Page 127 of 239

402 ORAFTMOOE

Return Value

Comments

See Also

Value

CLIP _EXCLUSIVE(3)

Meaning

Sets a clipping area in such a way that portions of primi­
tives falling inside the interior bounded by the current
path should be clipped.

The high-order 16 bits specifies the interior mode. It may be either
ALTERNATIVE or WINDING.

The return value is a nonzero value if the escape is successful. Otherwise, the
return value is zero.

Device drivers implementing the CLIP_TO _PATH escape must also implement
the BEGIN] A TH, END] A TH, and EXT_DEVICE_CAPS escapes. Device
drivers should also implement the SET_ARC_DIRECTION escape if they support
elliptical arcs.

BEGIN]ATH, END]ATH, EXT_DEVICE_CAPS, SET_ARCDIRECTION

DRAFTMODE
#define DRAFfMODE 7

short Control(lpDevice, DRAFfMODE, IpDraftMode, NULL)
LPPDEVICE IpDevice;
LPINT IpDraftMode;

Parameters

Return Value

Comments

The DRAFTMODE escape turns draft mode off or on. Turning draft mode on
instructs the device driver to print faster and with lower quality (if necessary).
The draft mode can only be changed at page boundaries, for example, after a
NEWFRAME escape.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpDraftMode
Points to a 16-bit variable containing a value specifying the draft mode. If it is
I, the escape turns on draft mode; if 0, the escape turns off draft mode.

The return value is positive if the escape is successful. Otherwise, it is negative.

The default draft mode is off.

Page 128 of 239

‘1
402 DHAFTMDDE

Value Meaning

CLIPfiEXCLUSIVEB) Sets a clipping area in such a way that portions of pn'm'p
tives falling inside the interior bounded by the current
path should be clipped.

The high-order 16 bits specifies the interior mode. It may be either
ALTERNATIVE or WINDING.

Return Value The return value is a nonzero value if the escape is successful. Otherwise, the
return value is zero.

Comments Device drivers implementing the CL1P_T0_PATl-l escape must also implement
the BEG]N_PATH, END_PATH, and EXT_DEVICE_CAPS escapes. Device

drivers should also implement the SET_ARC_DIRECTION escape if they support
elliptical arcs.

See Also BEGIN_PATH. END_PATH, EXT_DEVICE_CAPS. SET_ARCfiDIRECTION

DRAFTMODE

#define DRAFTMODE 7

short ControlflpDevice, DRAFTMODE, lpoftMode, NULL)
LPPDEVICE lpDevr'ce;
LPINT lpoerode;

The DRAFTMODE escape turns draft mode off or on. Turning draft mode on
instructs the device driver to print faster and with lower quality (if necessary).

The draft mode can only be changed at page boundaries, for example, after a
NEWFRAME escape.

Parameters lpDevr‘ce

Points to a PDEVICE structure specifying the destination device.

lpoerode
Points to a 16—bit variable containing a value specifying the draft mode. If it is
1, the escape turns on draft mode; if 0, the escape turns off draft mode.

Return Value The return value is positive if the escape is successful. Otherwise. it is negative.

Cnmmenls The default draft mode is off.

Page 128 of 239

DRAWPATIERNRECT 403

See Also NEWFRAME

DRAWPATIERNRECT
#define DRAWPATTERNRECT 25

short Control(lpDevice, DRAWPATTERNRECT, lplnDma, NULL)
LPPDEVICE lpDevice;
LPPOINT /plnData;

Parameters

Return Value

Comments

The ORA WPA TTERNRECT escape creates a pattern, gray scale, or solid black
rectangle using the pattern or rule capabilities ofPCL printers. With the Hewlett­
Packard LaserJet UP, this escape can also create a solid white rectangle. A gray
scale is a gray pattern that contains a specific mixture of black and white pixels.
A PCL printer is an HP LaserJet or LaserJet-compatible printer.

IpDevice
Points to a PDEVICE structure specifying the destination device.

lplnData
Points to a PATTERNRECT structure containing information aboUl the rect­
angle to create. The structure has the following form:

typedef struct tagPATTERNRECT
POINT prPosit ion ;
POINT prS ;ze;
WORD prStyl e;
WORD prPattern;

PATTER NRECT;

The return value is nonzero if the escape is successful. Otherwise, it is zero.

An application should use the QUERYESCSUPPORT escape to determine
whether a device is capable of drawing patterns and rules before implementing
this escape. If a printer is capable of outputting a white rule, the return value for
QUERYESCSUPPORT is 2.

The effect of a white rule is to erase any text or other pattern rules already written
in the specified area.

The driver sends all text and rules in the first band before any GDI bitmap
graphics are sent. Therefore, it is not possible to erase bitmap graphics with
white rules.

Page 129 of 239

DHAWPATTERNREL‘T 403

see Also NEWFRAME

DRAWPATTERNRECT

#definc DRAWPATTERNRECT 25

short ControltlpDevice, DRAWPATTERNRECT, lplnDnta, NULL)
LPPDEVICE lpDew’ce;
LPPOINT iplnDam;

The DRAWPATTERNRECT escape creates a pattern, gray scale, or solid black

rectangle using the pattern or rule capabilities of PCL printers. With the Hewlett-
Packard LaserJet HP, this escape can also create a solid white rectangle. A gray

scale is a gray pattern that contains a specific mixture of black and white pixels.
A PCL printer is an HP Laserlet or LaserJet-compatible printer.

Parameters lpDevice

Points to a PDEVICE structure specifying the destination device.

lplnData

Points to a PATTERNRECT structure containing information about the reel-

angle to create. The structure has the following form:

typedef struct tagPATTERNRECT l
POINT prPositinn;
POINT prSize;
WORD prStyle;
wean prPattern;

} PATTERNRECT;

Return Value The return value is nonzero if the escape is successful. Otherwise, it is zero.

Comments An application should use the QUERYESCSUPPORT escape to determine

whether a device is capable of drawing patterns and rules before implementing

this escape. If a printer is capable of outputting a white rule, the return value for
QUERYESCSUPPORT is 2.

The effect of a white rule is to erase any text or other pattern rules already written
in the specified area.

The driver sends all text and rules in the first band before any GDI bitmap
graphics are sent. Therefore. it is not possible to erase bitmap graphics with
white rules.

Page 129 of 239

404 ENABlEDUPlEX

See Also

If an application uses the BANDINFO escape, the drive should send all patterns
and rectangles specified by the ORA WPATTERNRECT escape in the first band.

Patterns and rules crealed with this escape may not be erased by placing opaque
objects over them unless you have white rule capability. An application should use
the function calls provided in GOT to obtain this effect.

BANDINFO, QUERYESCSUPPORT

ENABLEDUPLEX
#deline ENABLEDUPLEX 28

short Control(lpOevice, ENABLEDUPLEX, IpinOata, NULL)
LPPDEVICE IpOevice;
LPWORD /pinOata;

Parameters

Return Value

Comments

The ENABLEOUPLEX escape enables the duplex. printing capability of a printer.
A device that has duplex printing capability is able to print on both sides of the out­
put medium.

/pOevice
Points to a PDEVICE structure specifying the destination device.

/plnData
Points to a 16-bit variable that contains one of the following values.

Value

o
I

2

Meaning

Simplex

Duplex with vertical binding
Duplex with horizontal binding

The return value is I if the escape is successful. Otherwise, it is O.

An application should use the QUERYESCSUPPORT escape to determine
whether or not an output device is capable of creating duplex output. If
QUERYESCSUPPORT returns a nonzero value, the application should
send the ENABLEOUPLEX escape even if simplex printing is desired. This

guarantees the overriding of any values set in the driver-specific dialog. If
duplex printing is enabled and an uneven number of NEWFRAME escapes
is sent to the driver prior to the ENDDOC escape, the driver will add one
page eject before ending the print job.

Page 130 of 239

ENABLEPAIRKERNING 405

See Also ENDDOC,NE~E,QUERYESCSUPPORT

ENABLEPAIRKERNING
#define ENABLEPAIRKERNING 769

short Control(lpDevice, ENABLEPAIRKERNING,lplnData, IpOutData)
LPPDEVICE /pDevice;
LPINT IplnData;
LPINT /pOutData;

Parameters

Return Value

Comments

The ENABLEP AlRKERNlNG escape enables or disables the driver 's ability to
automatically kern character pairs. When it is enabled, the driver automatically
kerns those pairs of characters that are listed in the font 's character-pair kerning
table. The driver reflects this kerning both in the printer and in calls to the
GetTextExtent (GDI.91) function.

/pDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a 16-bit variable that specifies whether to enable or disable automatic
pair kerning. If it is I, kerning is enabled; if 0, kerning is disabled.

IpOutData
Points to a 16-bit variable variable that receives the previous automatic pair­
kerning member.

The return value is I if the escape is successful. Otherwise, the return value is 0 if
not successful, or if the escape is not implemented.

The default state of this capability is zero; that is, automatic character-pair kerning
is disabled.

Page 131 of 239

ENABLEPAIRKERNING 405 ENDDOC, NEWFRAME, QUERYESCSUPPORT

ENABLEPAIRKERNING

#define ENABLEPAIRKERNING 769

short ControlUpDevice, ENABLEPAIRKERNING, lpIriData, lpOurDara)
LPPDEVICE tpDevice;
LPINT lpInData;
LPINT tpOatData;

Parameters

Return Value

Comments

The ENABLEPAJRKERNING escape enables or disables the driver’s ability to

automatically keru character pairs. When it is enabled, the driver automatically
kems those pairs of characters that are listed in the font’s character-pair kerning

table. The driver reflects this keming both in the printer and in calls to the
GetTextExtent (GDI.91) function.

lpDevr'ce

Points to a PDEVICE structure specifying the destination device.

lpInData

Points to a 16-bit variable that specifies whether to enable or disable automatic

pair kerning. If it is l, kerning is enabled; if 0, kerning is disabled.

lpOutData

Points to a 16-bit variable variable that receives the previous automatic pair-

kerning member.

The return value is 1 if the escape is successful. Otherwise, the return value is 0 if
not successful. or if the escape is not implemented.

The default state of this capability is zero; that is, automatic character-pair kerning
is disabled.

Page 131 of 239

406 ENA8LERELATIVEWIDTHS

See Also

A driver does not have to support this escape just because it supplies the character_
pair kerning table to the application through the GETPAIRKERNTABLE
escape. When the GETPAIRKERNTABLE escape is supported but the
ENABLEPAIRKERNING escape is not, it is the application's responsibility
to properly space the kerned characters on the output device.

GETPAIRKERNTABLE

ENABlERELATIVEWIDTHS
#define ENABLERELATIVEWIDTHS 768

short Control(lpDevice, ENABLERELATIVEWIDTHS, IplnData, IpOutData)
LPPDEVICE /pDevice;
LPINT IplnData;
LPINT IpOutData;

Parameters

Return Value

The ENABLERELA TIVEWIDTHS escape enables or disables relative character
widths. When it is disabled (the default setting), each character's width can be
expressed as an integer number of device units. This expression guarantees that
the ex;ent of a string will equal the sum of the extents of the characters that make
uptlJe string. Such behavior enables applications to build an extent table manually
using one-character calls to the GetTextExtent (G01.91) function. When it is
enabled, the width of a string mayor may not equal the sum of the widths of the
characters in the string. Applications that enable this feature are expected to
retrieve the font's extent table and compute relatively-scaled string widths them­
selves.

/pDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a 16-bit variable that specifies whether to enable or disable relative
widths. If it is I , relative widths are enabled; if 0, relative widths are disabled.

IpOutData
Points to a 16-bit variable that receives the previous relative character-width
member.

The return value is I if the escape is successful. Otherwise, the return value is 0 if
the escape is not successful, or if the escape is not implemented.

Page 132 of 239

b

-
comments The default state of this capability is zero; that is, relati ve character widths are dis­

abled.

Enabling this feature creates values that are specified as "font units" and accepted
and returned by the escapes described in this chapter to be returned in the relative
units of the font.

It is assumed that only linear scaling devices will be dealt with in a relative mode.
Nonlinear scaling devices should not implement tbis escape.

#define END_PATH 4098

short Controt(lpDevice, END_ PATH, Iplnfo, NULL)
LPPDEVICE lpDevice;
LPPATlLINFO lpInfo;

Parameters

The END_PATH escape ends a path. A path is a connected sequence of primitives
drawn in succession to form a single polyline or polygon. Paths enable applica­
tions to draw complex borders, filled shapes, and clipping areas by supplying a
collection of other primitives defining the desired shape.

Printer escapes that support paths enable applications to render images on
sophisticated devices such as PostScript printers without generating huge poly­
gons to simulate them.

To draw a path, an application first issues the BEGIN_PATH escape. It then draws
the primitives defining the border of the desired shape, and issues an END_PATH
escape.

The END_PATH escape takes a pointer to a structure as a parameter, specifying
the manner in which the path is to be rendered. The structure specifies whether or
not the path is to be drawn and whether or not it is open or closed. Open paths
define polylines, and closed paths define polygons that can be filled.

lpDevice
Points to a PDEVICE structure specifying the destination device.

Page 133 of 239

Parameters

ENILPATH 407
fl—fi—__———I—_—_

The default state of this capability is zero; that is. relative character widths are dis-
abled.

Enabling this feature creates values that are Specified as “font units" and accepted

and returned by the escapes described in this chapter to be returned in the relative
units of the font.

It is assumed that only linear scaling devices will be dealt with in a relative mode.

Nonlinear scaling devices should not implement this escape.

_____——————_'—‘———__-—-—_———

EN D_ PATH

#define END- PATH 4098

short ControltlpDevice, END._PATH, Ipi’nfo, NULL)
LPPDEVICE lpDevice;
LPPATH. INF0 lpIn/b;

The END_PATH escape ends a path. A path is a connected sequence of primitives
drawn in succession to form a single polyline or polygon. Paths enable applica-

tions to draw complex borders, filled shapes, and clipping areas by supplying a

collection of other primitives defining the desired shape.

Printer escapes that support paths enable applications to render images on
sophisticated devices such as PostScript printers without generating huge poly—
gons to simulate them.

To draw a path, an application first issues the BEGIN_PATH escape. It then (trims.

the primitives defining the border of the desired shape, and issues an END_PATH
escape.

The END_PATH escape takes a pointer to a structure as a parameter, specifying
the manner in which the path is to be rendered. The structure Specifies whether or

not the path is to be drawn and whether or not it is open or closed. Open paths
define polylines, and closed paths define polygons that can be filled.

tpDevice

Points to a PDEVICE structure specifying the destination device.

Page 133 of 239

408 ENOODe

Return Value

Comments

See Also

ENDDOC

lplnfo
Points to a PATILINFO structure. The PATILINFO structure has the
following form:

typedef struct tagPATH_INFO
short RenderMode;
BYTE FillMode ;
BYTE BkMode;
LPEN Pen;
LBRUSH Brush;
OWORD BkColor;

PATH_ IN FO;

This escape returns a short integer value specifying the current path nesting
level. If the escape is successful, the number of BEGIN_PATH calls without a
corresponding END_PATH call is the result. Otherwise, - I is the result.

You may draw a path within another path. A path drawn within another path is
treated exactly like a polygon (if the subpath is closed) or a polyline (if the sub­
path is open).

You may use the CLIP _TO_PATH escape to define a clipping area corresponding
to the interior or exterior of the currently open path .

Device drivers that implement this escape must also implement the
BEGfN]ATH and EXT_DEVICE_CAPS escapes and should also implement
the SET_ARC_DIRECTION escape.

BEGIN]ATH. CLIP 50_PATH. EXT_DEVICE_CAPS,
SET_ARCDlRECTJON

#define ENDDOC II

short Control(lpDevice, ENDDOC, NULL, NULL)
LPPDEVICE IpDevice;

The ENDDOC escape ends a print job that is started by a STARTDOC escape and
that is to be ended in a standard way, instead of stopping the job in the middle of
the process.

Page 134 of 239

parameters

Return Value

Comments

See Also

ENUMPAPERBINS 409

lpDevice
Points to a PDEVICE structure specifying the destination device.

The return value is positive if the escape is successful. Otherwise, it is negative.

When a printing error occurs, the ENDDOC escape should not be used to tenni­
nate the printing operation.

STARTDOC

ENUMPAPERBINS
#define ENUMPAPERBINS 31

short Control(lpDevice, ENUMPAPERBINS, lplnData, lpOutData)
LPPDEVICE lpDevice;
LPINT lplnData;
LPINT lpOutData;

Parameters

Return Value

See Also

The ENUMPAPERBINS escape retrieves attribute information about a specified
number of paper bins. The GETSETPAPERBINS escape retrieves the number of
bins available on a printer.

lpDevice
Points to a PDEVICE structure specifying the destination device.

lplnData
Points to a 16-bit variable that specifies the number of bins for which informa­
tion is to be retrieved.

lpOutData
Points to a BINNAMES structure to which information about the paper bins is
copied. The size of the structure depends on the number of bins for which infor­
mation was requested. The BINNAMES structure has the following form:

typedef struet tagBINNAMES (
short BinList[CBINMAX];
char PaperNames[CBINMAX][CCHBINNAME]

) BINNAMES;

It is 1 if the escape is successful. Otherwise, it is 0 if the escape is not successful
or not implemented.

GETSETP APERBINS

Page 135 of 239

-
410 ENUMPAPERMETRICS

ENUMPAPERMETRICS
#deline ENUMPAPERMETRICS 34

short Control(lpDevice, ENUMPAPERMETRICS, lplnData, lpOLl/Data)
LPPDEVICE lpDevice;
LPINT lplnData;
LPRECT fpOU/Data;

Parameters

Return Value

Comments

The ENUMPAPERMETRJCS escape either retrieves the number of paper types
supported by the driver, or fills an array ofRECTstructures witll the dimensions
of each paper type.

The ExtDeviceMode function achieves the same results.

lpDevice
Points to a PDEVICE structure speci fying the destination device.

lplnData
Points to an 16-bit variable that specifies what action to take. If the variable is
zero, the escape returns the numher of paper types. If zero, the escape fi Us an
array of RECT structures with paper dimensions.

lpOutData
Points to an array of RECT structures that receive the coordinates of the image­
able area of the page. The top-left corner of the rectangle specifies the page mar­
gins, and the bottom-right corner specifies the sum of the page margins and the
width and height of the imageable area. The units are device coordinates. The
orientation returned is always portrait.

The return value is positi ve, if successful. Otherwise, it is zero if the escape is not
implemented, and negative if an error occurs.

The following example illustrates the required actions:

'define ENUMPAPERMETRICS 34
Iidefine INFORM 0
Rdefine PERFORM I

int cPaperTypes CPAPERTYPES ;
RECl arectPage[CPAPERTYPESI = (. . . I ;

short Control(lpDev;ce . wFunction. lpInOata, lpOutData)
LPPDEVICE l pDevice ;
WORD wFunction;
LP VO ID lplnData;
LPVDID lpDutData ;

Page 136 of 239

(

lPRECT arect;

switch (wFunct;on) {

case ENU MPAPERMETRICS:
switch t*ttLPINT)lpInOata))
case INFORM:

return cPaperTypes;

case PERFORM:
arect = tLPRECT)lpOutOa ta;
for (;=0; i<cPaperTy pes; arect++ , i++)

CopyRectCarect, arectPage[i]);
return cPaperTypes;

default:
return 0;

See Also ExtDeviceMode

EPSPRINTING
#define EPSPRINTING 33

short Control(lpDevice, EPSPRINTING, Ip8ool, NULL)
LPPDEVICE IpDevice;
LPBOOL Ip8ool;

EPSPRINTING 411

The EPSPRlNTING escape only controls the downloading of the control portions
of the PostScript prolog. It sets up the portrait versus landscape orientation and
leaves the printer in the default 72 dpi user space.

Parameters IpDevice
Points to a PDEVICE structure specifying the destination device.

-
1

Page 137 of 239

-,
, ,

412 EXT DEVICE CAPS '-
IpBool

Points to a 16-bit variable specifying whether to enable or disable encapsulated
PostScript (EPS) printing. If it is '!RUE, EPS printing is enabled. If FALSE,
EPS printing is disabled.

Return Value

Comments

The return value is positive, if successful. Otherwise, it is zero if the escape is not
implemented, and negative if an error occurs.

This escape is used to suppress the output of the Windows PostScript header con­
trol section, which is about 10K. If it is used, no OD! calls are allowed.

EXT _ DEVICE_ CAPS
#def'me EXLDEVICE-CAPS 4099

short Control(lpDevice, EXT_DEVICE_ CAPS, /plndex, lpCaps)
LPPDEVICE IpDevice;
LPINT lplndex;
LPLONG /pCaps;

Parameters

The EXT_DEVICE_CAPS escape retrieves information about device-specific
capabilities. It serves as a supplement to the GetDeviceCaps (001.80) function.

IpDevice
Points to a PDEVICE structure specifying the destination device.

lplndex
Points to a 16-bit variable specifying the index of the capability to be retrieved.
It can be one of the following values.

Value Meaning

Specifies which of the 16-bit binary-raster
operations the device driver supports. A unique
bit is set for each supported raster operation.
For example, the following code fragment sets
the bit for support of the R2_XORPEN raster
operation:
Caps = Caps I (1«R2_XORPENl;

For more information about the binary-raster
operations, see the DRAWMODE structure.

.. - - ------- - - -----

Page 138 of 239

412 EXT_ DEVICL CAPS

Return Value

Comments

lpBool

Points to a 16-bit variable specifying whether to enable or disable encapsulated

PostScript (BPS) printing. If it is TRUE, EPS printing is enabled. If FALSE,
EPS printing is disabled.

The return value is positive, if successful. Otherwise, it is zero if the escape is not

implemented, and negative if an error occurs.

This escape is used to suppress the output of the \thdows PostScript header con—
trol section, which is about 10K. Ifit is used, no GDI calls are allowed.

EXT_DEVICE__ CAPS

#define EXT_DEVICE_ CAPS 4099

short ControlUpDevice, EXT_DEVICE. CAPS, lpIndex, IpCaps)
LPPDEVICE lpDevice;

LPINT lplndex;

LPLONG lpCaps;

Parameters

The EXT_DEVICE_CAPS escape retrieves information about device—specific

capabilities. It serves as a supplement to the GetDeviceCaps (GDI.80) function.

lpDevice

Points to a PDEVICE structure specifying the destination device.

lplndex

Points to a 16~bit variable specifying the index of the capability to be retrieved.
It can be one of the following values.

Value Meaning

R2_CAPS (1) Specifies which of the 16-bit binary-raster

Operations the device driver supports. A unique

bit is set for each supported raster operation.

For example, the following code fragment sets

the bit for support of the R2_XORPEN raster

operation:

Caps = Caps] (1<<R2_XDRPENJ;

For more information about the binary-raster

operations, see the DRAWMODE structure.

Page 138 of 239

Value

EXT_DEVICLCAPS 413

Meaning

Specifies the maximwn dimensions of a pattern
brush bitmap. The low-order 16 bits of the capa­
bility value contains the maximum width of a
pattern brush bitmap; the high-order 16 bits con-
tains the maximum height. '

Specifies whether the device is capable of creat­
ing paths using alternate and winding interiors.
and whether the device can do exclusive or in­
c1usi ye clipping to path interiors. The path capa­
bilities is a combination of two of the
following:

PATICALTERNATE (1)
PATIC WINDING (2)
PATICINCLUSIVE (3)
PATICEXCLUSIVE (4)

Specifies the maximum number of polygon
points supported by the device. The capability
value is an unsigned value specifying the maxi­
mum number of points.

Specifies whether the device can convert mono­
chrome pattern bitmaps to color. The capability
value is one if the device can do pattern bitmap
color conversions and zero if it cannot.

Specifies whether the device is capable of per­
forming binary raster operations on text. The
low-order 16 bits of the capability value speci­
fies which raster operations are supported on
text. A bit is set for each supported raster opera­
tion. as in the R2_ CAPS escape. The high-order
16 bits specifies to which type of text the raster
capabilities apply. It can be a combination of
the the following values:

RASTER_TEXT (I)
DEVICE_TEXT (2)
VECTOR_TEXT (3)
Specifies the polygon modes supported by the
device driver. The capability value is obtained
by setting a bit in the corresponding position
for each polygon mode supported. For example.
if a device supports the PM_POLYSCANLINE
and PM_BEZIER polygon modes. the capabil­
ity value would be set as follows:

Caps = Caps I (1 « PM_POLYSCANLINE) I (l«PM_BEZIER);

Page 139 of 239

 Value

PATTERNfiCAPS (2)

PATH_CAPS (3)

POLYGON_CAPS(4)

PATFERN_COLOR_CAPS (5)

R2_TEXT_CAPS (6)

POLYMODILCAPS (7)

EXT_ DEVICL CAPS 413

Meaning

Specifies the maximum dimensions of a pattern

brush bitmap. The low-order 16 bits of the capa-

bility value contains the maximum width of a

pattern brush bitmap; the high-order 16 bits con-

tains the maximum height.

Specifies whether the device is capable of creat-

ing paths using alternate and winding interiors,
and whether the device can do exclusive or in-

clusive clipping to path interiors. The path capa-
bilities is a combination of two of the

following:

PATI-LALTERNATE (1)

PATH_WINDING (2)

PATI-LINCLUSIVE (3}

Pfifl'l-LEXCLUSI'VE (4)

Specifies the maximum number of polngn

points supported by the device. The capability
value is an unsigned value Specifying the maxi—

mum number ofpoints.

Specifies whether the device can convert mono-

chrome pattern bitmaps to color. The capability

value is one if the device can do pattern bitmap
color conversions and zero if it cannot.

Specifies whether the device is capable of per-

forming binary raster operations on text. The

low-order 16 bits of the capability value speci—

fies which raster operations are supported on

text. A bit is set for each supported raster opera-

tion, as in the R2_CAPS escape. The high-order

16 bits specifies to which type of text the raster

capabilities apply. It can be a combinatiOn of

the the following values:

RASTER_TEXT (l)

DEVICE_TEXI' (2)

VECTOR_TEXT (3)

Specifies the polygon modes supported by the

device driver. The capability value is obtained

by setting a bit in the corresponding position

for each polygon mode supported. For example,

if a device supports the PM_POLYS CANLINE
and PM_BEZfl-3R polygon modes, the capabil-

ity value would be set as follows:

Caps 2: Caps I (l<<PM_POLYSCANLINE) I (1<<PM_B£ZIERJ:

Page 139 of 239

414 FLUSH OUTPUT

Return Value

Comments

See Also

lpCaps
Points to a 32-bit variable that receives the specified capability.

The return value is a nonzero value if the specified extended capability is sup­
ported. Otherwise, it is zero if the capability is not supported.

A device driver implementing this escape must not modify the value of the 32-bit
integer described by the IpCaps parameter unless it returns a valid value for the
capability .

FLUSHOUTPUT
#defwe FLUSHOUTPUT 6

short ControI(lpDevice, FLVSHOVTPUT, NULL, NULL)
LPPDEVICE IpDevice;

Parameters

Return Value

Comments

The FLUSHOUTPUT escape flushes output in the device's buffer.

IpDevice
Points to a PDEVICE structure specifying the destination device.

The return value is positive if the escape is successful. Otherwise, it is negative.

This escape is intended for banding printer drivers. When called, they should
reinitialize the banding bitmap (that is, eliminate anything in the bitmap that is
only partially drawn).

Page 140 of 239

414 FLUSHOUTPUT

lpCaps

Points to a 32-bit variable that receives the specified capability.

Relurn Value The return value is a nonzero value if the specified extended capability is sup-
ported. Otherwise, it is zero if the capability is not supported.

Comments A device driver implementing this escape must not modify the value of the 32—bit
integer described by the lpCaps parameter unless it returns a valid value for the
capability.

See Also SET_POLY_MODE

FLUSHOUTPUT

#define FLUSHOUTPUT 6

short ControlUpDevice, FLUSHOUTPUT, NULL, NULL)

LPPDEVICE lpDevice;

The FLUSHOUTPUT escape flushes output in the device‘s buffer.

Parameters lpDevice

Points to a PDEVICE structure specifying the destination device.

Return Value The return value is positive if the escape is successful. Otherwise. it is negative.

Comments This escape is intended for handing printer drivers. When called, they should
reinitialize the banding bitmap (that is, eliminate anything in the bitmap that is
only partially drawn).

Page 140 of 239

GETEXTENDEDTEXTMETRICS 415

GETCOlORTABlE
#define GETCOLORTABLE 5

short Control(lpDevice, GETCOLORTABLE, lplndex, lpColor)
LPPDEVICE IpDevice;
LPINT lplndex;
LPLONG [pC%r;

Parameters -

Return Value

See Also

The GETCOLORT ABLE escape retrieves an RGB color-table entry and copies it
to the location specified by the lpC olor parameter.

lpDevice
Points to a PDEVICE structure specifying the destination device.

lplndex
Points to a 16-bit a variable specifying the index of a color-table entry. Color­
table indexes start at zero for the first table entry.

lpColor
Points to 32-bit variable that receives the RGB color value for the given entry.

The return value is positive if the escape is successful. Otherwise, it is negative.

SETCOLORTABLE

GETEXTENDEDTEXTMETRICS
#define GETEXTENDEDTEXTMETRICS 256

short Control(lpDevice, GETEXTENDEDTEXTMETRICS, lplnData, lpOutData)
LPPDEVICE lpDevice;
LPEXTTEXTDATA IplnData;
LPEXTTEXTMETRIC lpOutData;

Parameters

The GETEXTENDEDTEXTME1RICS escape fills the buffer pointed to by tbe
IpOutData parameter with the extended text metrics for the currently selected font.

lpDevice
A long pointer to a PDEVICE structure, which is the destination device bitmap.

Page 141 of 239

416 GETEXTENDEDTEXTMETRICS

Return Value

IplnData
Points to a EXTTEXTDATA structure containing information The
EXTTEXTDATA structure has the following form:

typedef struct tagEXTTEXTDATA (
short nSi ze ;
LPAPPEXTTEXTDATA l pl nData;
LPFONTI NFO lpFont;
LPTEXTXFORM lpXForm;
LPDRAWMODE lpDrawMode;

EXTTEXTDATA ;

IpOutData
Points to a EXTTEXTMETRIC structure. The EXTTEXTMETRIC
structure has the following form :

typedef st ru ct tagEXTTEXTMETRIC
short etmS;ze ;
short etmPointS;ze ;
short etmDrientation ;
short etmMasterHeight;
short etmMinScale;
short etmMaxScale;
short etmMasterUnits;
short etmCapHeight;
short etmX Height;
short etmLowerCaseAscent;
short etmUpperCaseDescent ;
short etmSlant;
short etmSuper5cript ;
short etmSubScript ;
short etmSuperScriptSize ;
short etmSubScriptSize;
short etmUnderlineOffset;
short etmUnderlineWidth;
short etmOoubleUppe rUnderlineOffset;
short etmDoublelowerUnderlineOffset;
short etmDoubleUppe rUnderlineWidth;
short etmDoubleLowerUnderlineWidth ;
s hor t etmStrikeOutOffset;
short etmStrikeOutWidth;
WORD etmKernPairs;
WORD etmKernTracks;

) EXTTEXTMETRIC ;

The return value is the number of bytes copied to the buffer pointed to by the
IpOutData parameter. This value will never exceed the size specified by the
etmSize member in the EXTTEXTMETRIC structure. Otherwise, the return
value is zero if the escape fails or is not implemented.

Page 142 of 239

comments

See Atso

GETEXTENTTABlE 417

The values returned in many of the fields of the EXTTEXTMETRIC structure
are affected by whether relative character widths are enabled or disabled.

ENABLERELATrvE~THS

GETEXTENTTABLE
#define GETEXTENTTABLE 257

short Control(lpDevice, GETEXTENTTABLE, IplnData, IpOutData)
LPPDEVICE IpDevice;
LPBYTE IplnData;
LPINT IpOutData;

Parameters

Return Value

Comments

See Also

The GETEXTENTT ABLE escape returns the width (extent) of individual char­
acters from a group of consecutive characters in the selected font's character set.
The first and last character (from the group of consecutive characters) are function
arguments.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a CHARRANGE structure containing the character codes for the first
and last characters in the range. The CHARRANGE structure has the follow­
ing form:

typedef struet tagCHARRANGE
BYTE chFirsti
BYTE ehLast ;

} CHARRANGE;

IpOutData
Points to an array of integer values. The size of the array must be at least one
more than the difference between the cbLast and chFirst members of the struc­
ture pointed to by the IplnData parameter.

The return value is 1 if the escape is successful. Otherwise, the return value is 0 if
it is not successful, or if the escape is not implemented.

The values returned are affected by whether relative character widths are enabled
or disabled.

EN ABLERELATIVEWIDTHS

Page 143 of 239

GETEXTEN'ITABLE 417

Comments The values returned in many of the fields of the EXTTEXTMETRIC structure
are affected by whether relative character widths are enabled or disabled.

see Also ENABLERELATIVEWIDTHS

GETEXTENTTABLE

#define GETEXTENTTABLE 257

short ControlUpDevice, GETEXTENTTABLE, lpInData, lpOutData)
LPPDEVICE lpDew'ce;
LPBYTE IplnData;
LPINT lpOutDaIa;

The GETEXTENTTABLE escape returns the width (extent) of individual char-

acters from a group of consecutive characters in the selected font’s character set.
The first and last character (from the group of consecutive characters) are function
arguments.

Parameters IpDe vice

Points to a PDEVICE structure specifying the destination device.

lplnDam

Points to a CHARRANGE structure containing the character codes for the first

and last characters in the range. The CHARRANGE structure has the follow-
ing form:

typedef struct tagCHARRANGE l
BYTE chFirst:
BYTE chLast:

] CHARRANGE;

lpOurDam

Points to an array of integer values. The size of the array must be at least one
more than the difference between the chLast and chFirst members of the struc—

ture pointed to by the thnData parameter.

Return Value The return value is 1 if the escape is successful. Otherwise, the return value is 0 if
it is not successful, or if the escape is not implemented.

Cumments The values returned are affected by whether relative character widths are enabled
or disabled.

See Also ENABLERELATIVEWIDTHS

Page 143 of 239

-

418 GETFACENAME

GETFACENAME
#define GETFACENAME 513

short Control(lpDevice, GETFACENAME, NULL, /pFaceName)
LPPDEVICE fpDevice;
LPSTR /pFaceName;

Parameters

Return Value

The GETFACENAME escape gets the name of the current physical Iont.

/pDevice
Points to a PDEVICE structure specifying the destination device.

fpFaceName
Points to the buffer that receives the name .

The return value is positive if successful. It is zero if the escape is not imple­
mented, and negati ve if an elTor occurs.

GETPAIRKERNTABLE
#define GETPAIRKERNTABLE 258

short Control(lpDevice, GETPAIRKERNTABLE, NULL, fpOutData)
LPPDEVICE IpDevice;
LPKERNPAIR /pOutData;

Parameters

The GETPAIRKERNT ABLE escape fiLls the buffer pointed to by the IpOutData
parameter with the character pair-kerning table for the currently selected font.

fpDevice
Points to a PDEVICE structure specifying the destination device.

fpOu/Data
Points to an array of KERNPAIR structures. This array must be large
enough to accommodate the font's entire character pair-kerning table. The
number of character-kerning pairs in the font can be obtained from the
EXTTEXTMETRIC structure which is returned by the GETEXTENDED­
TEXTMETRICS escape. The KERNPAIR structure has the following form:

Page 144 of 239

Return Value

Comments

See Also

typedef struet tagKERNPAIR
union {

BYTE eaeh [2]:
WORD both:

} kpPair:
short kpKernAmount;

KERNPAIR;

GETPHYSPAGESIZE 419

The return value is the number of KERN PAIR structures copied to the buffer.
Otherwise, the return value is zero if the font does not have kerning pairs defined,
the escape fails, or the escape is not implemented.

The values returned in the KERN PAIR structures are affected by whether relative
character widths are enabled or disabled.

ENABLERELA TIVEWTDTHS

GETPHYSPAGESIZE
#define GETPHYSPAGESIZE 12

short Control(lpDevice, GETPHYSPAGESIZE, NULL, /pDimellsiolls)
LPPDEVICE /pDevice;
LPPOINT /pDimellsions;

Parameters

Return Value

The GETPHYSPAGESIZE escape retrieves the physical page size in device units
(that is. how many pixels wide by how many scan lines high) and copies it to the
location pointed to by the ipDimensions parameter.

/pDevice
Points to a PDEVICE structure specifying the destination device.

IpDimel1siol15
Points to a POINT structure that receives the physical page dimensions. The
POINT structure has the fo llowing form :

typedef struet tagPOINT [
short x;
short y;

} POINT:

The return value is positive if the escape is successful. Otherwise. it is negative.

Page 145 of 239

GETPHYSPAGESIZE 41.9

 typedef struct tagKERNPAIR l
union {

BYTE each [2];
WORD both;

} kaair;
short kaernAmount;

l KERNPAIR;

Return Value The return value is the number of KERNPAIR structures copied to the buffer.
Otherwise. the return value is zero if the font does not have kerning pairs defined,

the escape fails, or the escape is not implemented.

Comments The values returned in the KERNPAIR structures are affected by whether relative
character widths are enabled or disabled.

See Also ENABLERELATIVEWIDTHS

GETPHYSPAGESIZE

#define GETPHYSPAGESIZE 12

short CDHthl(l}JDt’1-’l€€, GETPHYSPAGESIZE, NULL, lpDimensions)
LPPDEVICE lpDei-'i'r'e;
LPPOINT ipDi‘mensions;

The GETPHYSPAGESIZE escape retrieves the physical page size in device units
(that is. how many pixels wide by how many scan lines high) and copies it to the
location pointed to by the lpDimensr’ons parameter.

Parameters IpDevice

Points to a PDEVICE structure specifying the destination device.

IpDimensions

Points to a POINT structure that receives the physical page dimensions. The
POINT structure has the following form:

typedef struct tagPOINT 1
short x:
short y;

J POINT;

Return Value The return value is positive if the escape is successful. Otherwise. it is negative.

Page 145 of 239

420 GETPRINTINGOFFSET

GETPRINTINGOFFSET
#defme GETPRINTINGOFFSET 13

short Control(lpDevice , GETPRINTINGOFFSET, NULL, IpOJJset)
LPPDEVICE IpDevice;
LPPOINT IpOJJset;

Parameters

Return Value

The GETPRlNTINGOFFSET escape retrieves the offset from location 0, 0 (the
upper-left comer of the physical page), which is the point at which the actual print­
ing or drawing begins.

This escape function is not generally useful for devices that allow the user to set
the origin by hand.

IpDevice
Points to a PDEVICE slmcture specifying the destination device.

IpOJJset
Points to a POINT structure that receives the horizontal and vertical coordi­
nates (in device units) of the printing offset. The POINT structure has the
following fonn:

typedef struet tag POINT {
short X'
short y;

} POINT;

The return value is positive if the escape is successful. Otherwise, it is negative.

GETSCALlNGFACTOR
#define GETSCALINGFACTOR 14

short Control(lpDevice, GETSCALINGFACTOR, NULL, IpFactors)
LPPDEVICE IpDevice;
LPPOINT IpFactors;

The GETSCALINGFACTOR escape retrieves the scaling factors for the x and y
axes of a printing device. For each scaling factor, the escape copies an exponent of
two to the location pointed to by the IpFactors parameter. For example, the value
three is copied to IpFactors for a scaling factor of eight.

Page 146 of 239

Parameters

Return Value

GETSETPAPERBINS 421

Scaling factors are used by printing devices that cannot provide the same
resolution as the device resolution. This escape communicates to ODI the
factor by which it needs to stretch bitmaps when sending them to the printer.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpFactors
Points to a POINT structure that receives the horizontal and vertical scaling
factors in the x and y members, respectively. The POINT structure has the fol­
lowing form:

typedef struet tagPOINT {
short x'
short y;

} POINT;

The return value is positive if the escape is successful. Otherwise, it is negative.

GETSETPAPERBINS
#define GETSETPAPERBINS 29

short Control(lpDevice, GETSETPAPERBINS, IplnData, IpOutData)
LPPDEVICE IpDevice;
LPBININFO IplnDa/a;
LPBININFO IpOutData;

Parameters

The OETSETPAPERBINS escape retrieves the number of paper bins available on
a printer and sets the current paper bin.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a BININFO structure that specifies the new paper bin. This parameter
may be set to NULL. The BININFO structure has the following form:

typedef strue! tagBININFO (
short BinNumber;
short NbrofBins;
short Reserved[4];

BININFO;

Page 147 of 239

422 GETSETPAPERMETRICS

Return Value

Comments

/pOwData
Points to a BININFO structure that receives infonnation about the current Or
previous paper bin and the number of bins available. Tbis parameter may be set
to NULL.

The return value is TRUE, if successful. Otherwise, it is FALSE.

If the Ip /nDatQ parameter is NULL and the /pOutData parameter points to a
BININFO structure, the escape retrieves the number of bins and the number of
the current bin.

If both IplnData and IpOutData point to BININFO structures, the escape sets
the current bin to the number specified in the BinNumber member of the struc­
ture pointed to by /plnDala and retrieves the number of the previous bin.

If IplnData points to a BININFO structure but IpOulDara is NULL, the escape
sets the current bin to the number specified in the BinNumber member of the
structure pointed to by /pIIlData.

When setring the paper bin with GETSETPAPERBINS, the bin selected is set for
the current job by setting the bit 15 of the bin index. If this bit is not set, the
selected paper bin becomes the default for later print jobs, and the current job's
selection is unchanged. Setting bit 15 enables an application to change bins in
the middle of a printing job.

GETSETPAPERMETRICS
#define GETSETPAPERMETRICS 35

short Control(/pDevice, GETSETPAPERMETRICS, /pNewPaper, /pOrigPaper)
LPPDEVICE IpDevice;
LPRECT /pNewPaper;
LPRECT /pOrigPaper;

The GETSETPAPERMETRICS escape sets the paper type according to the given
paper-metrics information . It also gelS the current printer 's paper-metrics informa­
tion. However, this escape is needed now only for backward compatibility with
earlier applications. The ExtDeviceMode function achieves the same results.

Page 148 of 239

Parameters

Return Value

See Also

GETSETPRINTORIENT 423

This escape expects a R ECT structure, representing the imageable area of the
physical page, and assumes the origin is in the upper-left comer.

/pDevice
Points to a PDEVICE structure specifying the destination device.

/pNewPaper
Points to a RECT structure that contains the new imageable area. The RECT
structure has the following form:

typedef struct t,gREeT
short left;
short top;
short right;
s hort bottom;

RECT;

The coordinates are measured in device units. The orientation is set to match
thi s parameter.

/pOrigPaper
Points to a RECT structure that receives the original value.

The coordinates are measured in device units.

The return value is positive if successful. Otherwise, the return value is zero if the
escape is not implemented, and negative if an error occurs.

ExtDeviceMode

GETSETPRINTORIENT
#deline GETSETPRINTORIENT 30

short Control(!pDevice, GETSETPRINTORIENT, /plnData, NULL)
LPPDEVICE /pDevice ;
LPORIENT /plnData;

Parameters

The GETSETPRINTORIENT escape returns or sets the current paper orientation.
However, this escape is needed now only for backward compatibility with earlier
applications. The ExtDeviceMode function achieves the same results.

/pDevice
Points to a PDEVICE structure specifying the destination device.

Page 149 of 239

424 GETSETSCREENPARAMS

Return Value

Comments

See Also

IplnData
Points to an ORIENT structure that specifies the new paper orientation. If
this parameter is NULL, the GETSETPRINTORIENT escape returns the
current paper orientation. The ORIENT structure has the following form:

typedef struct tagORIENT
short Orientation;
short Reserved[4];

J ORIENT;

The return value specifies the current orientation, if the lplnData parameter is
NULL. Otherwise, it is the previous orientation, or -1 if the escape fa iled.

The new orientation will take effect for the next device context created for the
device on this port.

ExtDeviceMode

GETSETSCREENPARAMS
short Escape(hdc, GETSETSCREENPARAMS, sizeof(SCREENPARAMS), lplnDa/a, lpOl/tOa/a)

The GETSETSCREENPARAMS printer escape retrieves or sets the current
screen information for rendering halftones.

Parameters hdc

Return Value

HDC Identifies the device context.

lplnDa/a
SCREENPARAMS FAR * Points to a SCREENPARAMS structure that
contains the new screen information. For more information about this structure,
see the following Corrunents section. This parameter may be NULL.

/pOutData
SCREENP ARAMS FAR * Points to a SCREENPARAMS structure that
retrieves the previous screen information. For more information about this
structure, see the following Comments section. This parameter may be NULL.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is negative.

Page 150 of 239

Comments

GETTECHNOlOGY 425

This escape affects how device-independent bitmaps (DIBs) arc rendered and how
color objects are filled.

The SCREENPARAMS structure has the following form:

typedef struct tagSCREENPARAMS
int angle ;
int frequency;

} SCREENPARAMS;

Following are the members of the SCREENPARAMS structure:

angle
Specifies, in degrees, the angle of the halftone screen.

frequency
Specifies, in dots per inch, the screen frequency.

GmECHNOlOGY
#define GETTECHNOLOGY 20

short Control(lpDevice, GETTECHNOLOGY, NULL, IpTechllology)
LPPDEVICE IpDevice;
LPSTR IpTechnology;

Parameters

Return Value

The GETTECHNOLOGY escape retrieves the general technology type for a
printer. This allows an application to perform technology-specific actions.

IpDevice
Points to a PDEVICE structure specifying the desti nation device.

lp Technology
Points to a buffer to which tbe driver copies a null-terminated string containing
the printer technology type, such as "PostScript."

The return vaJue is I if the escape is successful. Otherwise, it is 0 if the escape is
not successful or not implemented.

Page 151 of 239

426 GETTRACKKERNTABLE

GETTRACKKERNTABLE
#define GETTRACKKERNTABLE 259

short Control(lpDevice, GETTRACKKERNTABLE, NULL, IpOulDala)
LPPDEVICE IpD evice;
LPKERNTRACK IpOutData;

Paramelers

Relurn Value

Comments

See Also

The GETTRACKKERNT ABLE escape fills the buffer pointed to by the
IpOU/Data parameter with the track-kerning table for the currently selected
font.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpOutDara
Points to an array of KERNTRACK structures. This array must be large
enough to accommodate all the font 's kerning tracks. The number of tracks
in the font can be obtained from the EXTTEXTMETRIC structure returned
by the GETEXTENDEDTEXTMETRICS escape. If ipOutData is NULL,
GETTRACKKERNTABLE returns the number of table entries . The KERN·
TRACK structure has the following form:

typedef struet tagKERNTRACK
short ktOegree;
short ktMinSize;
short ktMinAmount;
short ktMax S;ze:
short ktMaxAmount:

KERNTRACK;

The return value is the number of KERNTRACK structures copied to the buffer.
The return value is zero if the font does not have kerning tracks defined, if the
function fails, or if the escape is not implemented.

The values returned in the KERNTRACK structures are affected by whether
relative character widths are enabled or disabled.

EN ABLERELA TlVEWIDTHS , GETEXTENDEDTEXTMETRICS

Page 152 of 239

GETVECTORBRUSHSIZE 427

GETVECTORBRUSHSIZE
#define GETVECTORBRUSHSIZE 27

short Control(lpDevice, GETVECTORBRUSHSIZE, IplnDa/a, IpOutData)
LPPDEVICE IpDevice;
LPLBRUSH Ipl nData;
LPPOINT IpOutData;

Parameters

Return Value

The GETVECTORBRUSHSIZE escape retrieves the size in device units of a
plotter pen used to fiJl closed figures. GDJ uses this information to prevent the
filling of closed figures (for example, rectangles and ellipses) from overwriting
the borders of the figure.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a LBRUSH structure that specifies the brush for which data is to be
returned. The LBRUSH structure has the foll owing form:

typedef struet tagLBRUSH (
short lbStyle;
long lbCo l or:
short lbHatch;
long lbBkCol or;

LBRUSH;

/pOutData
Points to a POINT structure that receives the width of the pen in device units.
The escape copies the width to the y member. The POINT structure has the
following form:

typedef struc t tag POINT {
short X'

short y:
} POINT ;

The return value is I if the escape is successful. Otherwise, it is 0 if the escape is
not successful or not implemented.

Page 153 of 239

GETVECTORBRUSHSIZE 427

GETVECTORBRUSHSIZE

#define GETVECTORBRUSHSIZE 27

short ControlllpDet-'ir:e, GETVECTORBRUSHSIZE, lplnDam. lpOutData}
LPPDEVICE prel-’ft3€;
LPLBRUSH lplnData;
LPPOINT IpOutData;

Parameters

Return Value

The GETVECTORBRUSHSIZE escape retrieves the size in device units of a
plotter pen used to fill closed figures. GDI uses this information to prevent the
filling of closed figures (for example, rectangles and ellipses) from overwriting
the borders of the figure.

ipDevr‘ce

Points to u PDEVICE structure specifying the destination device.

iplnData

Points to a LBRUSH structure that specifies the brush for which data is to be
returned. The LBRUSH structure has the following form:

typedef struct tagLBRUSH l
short letyle;
long leolor;
short leatch;
long lekCOIOr;

l LBRUSH;

lpOLit‘Dam

Points to a POINT structure that receives the width of the pen in device units.

The escape copies the width to the y member. The POINT structure has the
following form:

typedef struct tagPOINT l
short x:
short y;

l POINT:

The return value is 1 if the escape is successful. Otherwise, it is 0 if the escape is

not successful or not implemented.

Page 153 of 239

-

428 GETVECTOAPENSIZE

GETVECTORPENSIZE
#define GETVECTORPENSIZE 26

short Control(lpDevice, GETVECTORPENSIZE, IplnData, IpOutData)
LPPDEVICE IpDevice;
LPPEN IplnData;
LPPOINT IpOutData;

Parameters

Return Value

The GETVECTORPENSIZE escape retrieves the size in device units of a plotter
pen. GDT uses this information to prevent hatched brush patterns from overwriting
the border of a closed figure.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a LPEN structure that specifies the pen for which the width is to be
retrieved. The LPEN structure has the following form:

typedef struet tagLPEN
long lopnStyle;
POINT lopnWidth;
long lopnColor;

LPEN;

IpOutData
Points to a POINT structure that receives the pen width in device units. The
escape copies the pen width to the y member. The POINT structure has the
following form:

typedef struet tagPOINT [
short x'
short y;

) POINT ;

The return value is I if the escape is successful. Otherwise, it is 0 if the escape is
not successful or not implemented.

Page 154 of 239

NEXTBAND 429

NEWFRAME
#define NEWFRAME 1

short Control(lpDevice, NEWFRAME, NULL, NULL)
LPPDEVICE {pDevice;

Parameters

Return Value

NEXTBAND

The NEWFRAME escape informs the device that the application has finished
writing to a page. This escape is used typically with a printer to direct the device
driver to advance to a new page by performing a page-break algorithm or form
feed .

{pDevice
Points to a PDEVlCE structure specifying the destination device.

The return value is positive if the escape is successful. Otherwise, it is one of the
following values.

Value

SP_APPABORT (-2)

SP _USERABORT (-3)

SP _OUTOFDlSK (-4)

SP _OUTOFMEMORY (-5)

Meaning

A general error condi tion or general error in banding
occurred.

The job was stopped because the application's callback
function returned FALSE (0).

The user stopped the print job by cboosing the Delete
button from Print Manager.
A Jack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.
A lack of memory caused the job to stop.

#define NEXTBAND 3

short Control(lpDevice, NEXTBAND, /plnData, /pBandRect)
LPPDEVICE [pDevice;
LPPOINT IplnData;
LPRECT IpBandRect;

The NEXTBAND escape informs the device driver that the application has
finished writing to a band. The device driver then sends the band to the printer
and returns the coordinates of the next band.

Page 155 of 239

NEXTBAND 429

NEWFRAME

#define NEWFRAME 1

short ControlUpDevice, NEWFRAME, NULL, NULL)
LPPDEVICE lpDew'ce;

The NEWFRAME escape informs the device that the application has finished
writing to a page. This escape is used typically with a printer to direct the device

driver to advance to a new page by performing a page-break algorithm or form
feed.

Parameters lpDevice

Points to a PDEVICE structure specifying the destination device.

Return Value The return value is positive if the escape is successful. Otherwise, it is one of the
following values.

Value Meaning

SP_ERROR (*1) A general error condition or general error in banding
occurred.

SPfiAPPABORT (—2) The job was stopped because the application‘s callback
function returned FALSE (0).

SPfiUSERABORT (—3) The user stopped me print job by choosing the Delete
button from Print Manager.

SP_OUTOFD[SK (A4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SPfOUTOFMEMORY (—5) A lack of memory caused the job to stop.

NEXTBAND

#define NEXTBAND 3

short ControlUpDevice, NEXTBAND, lplnDara, lpBandRect)
LPPDEVICE lpDevr'ce;
LPPOINT lpMData;
LPRECT lpBandRccr;

The NEXTBAND escape informs the device driver that the application has
finished writing to a band. The device driver then sends the band to the printer
and returns the coordinates of the next band.

Page 155 of 239

430 NEXTBAND

Parameters

Return Value

/pDevice
Points to a PDEVICE structure specifying the destination device.

/plnData
Points to a POINT structure that receives the horizontal and vertical scaling fac­
tors in the x and y members respectively. The POINT structure has the follow­
ing form:

typedef struet tagPOINT (
short x;
short y;

POINT;

The shift count in the POINT structure pointed to by the /plnDa/a parameter is
used for devices such as laser printers that support graphics at a lower resolu­
tion than text.

/pBandRect
Points to a RECT structure that receives tbe next band coordinates. 11,e device
driver copies the device coordinates of the next band into this structure.

The return value is positive if the escape is successful. Otherwise, it is one of the
following values.

Value

SP_APPABORT (- 2)

SP_ USERABORT (- 3)

SP_OUTOPDISK (-4)

SP _OUTOPMEMORY (- 5)

Meaning

A general error condition or general error in banding
occurred,

The job was stopped because the application~s callback
function returned FALSE (0).
The user stopped the print job by choosing the Delete
button from Print Manager.

A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.
A lack of memory caused the job to stop.

Page 156 of 239

43D NEXTBAND

Parameters

Return Value

[pDevice

Points to a PDEVICE structure specifying the destination device.

[pInData
Points to a POINT structure that receives the horizontal and vertical scaling fac—
tors in the x and y members respectively. The POINT structure has the follow-
ing form:

typedef struct tagPOINT [
short x;
short y;

l POINT:

The shift count in the POINT Structure pointed to by the [plnDara parameter is
used for devices such as laser printers that support graphics at a lower resolu-
tion than text.

t’pBandRect
Points to a RECT structure that receives the next band coordinates. The device

driver copies the device coordinates of the next band into this structure.

The return value is positive if the escape is successful. Otherwise, it is one of the
following values.

Value Meaning

SP_ER_ROR (“I) A general error condition or general error in banding
occuned.

SP_APPABORT (—2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (—3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP70UTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (—5) A lack of memory caused the job to stop.

Page 156 of 239

PASSTHROUGH 431

PASSTHROUGH
#define PASSTHROUGH 19

short Control(lpDevice, PASSTHROUGH, IplnData, NULL)
LPPDEVICE /pDevice;
LPWORD /plnDa/a;

Parameters

Return Value

Comments

The PASSTHROUGH escape enables the application to send data directly to the
printer, bypassing the standard printer-driver code.

/pDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a buffer in which the first 16 bits specifies the number of remaining
bytes in the buffer. The escape sends the remaining bytes in the buffer to the
printer.

The return value is the number of bytes transferred to the primer if the escape is
successful. Otherwise, the return value is zero if the escape is not successful , or if
the escape is not implemented. If the return value is nonzero but less than the size
of the data, an error prohibited transmission of the entire data block.

There may be restrictions on the kinds of device data an application may send to
the device without interfering with the operation of the driver should not send com­
mands that reset the printer or print the current page. Additionally, applications are
strongly discouraged from performing functions that consume printer memory,
such as downloading a font or a macro.

The dri ver should invalidate its internal state variables such as "culTent position"
and "current line style" ' when carrying out this escape. The application must be
able to issue multiple, sequential PASSTHROUGH escapes without intervening
"saves" and "restores" being inserted by the driver.

This escape is also known as DEVICEDATA.

Page 157 of 239

PASSTHHDUGH 431

PASSTHHOUGH

#define PASSTHROUGH 19

short ControlUpDevice, PASSTHROUGH, [pIi-tDam, NULL}

LPPDEVICE IpDevice;
LPWORD lplnDuIa;

The PASSTHROUGH escape enables the application to send data directly to the
printer. bypassing the standard printer-driver code.

Parameters IpDevice

Points to a PDEVICE structure specifying the destination device.

IpInData

Points to a buffer in which the first l6 bits specifies the number of remaining

bytes in the buffer. The escape Sends the remaining bytes in the buffer to the
printer.

Return Value The return value is the number of bytes transferred to the printer if the escape is
SUCCBSSleL Otherwise, the return value is zero if the escape is not successful. or if

the escape is not implemented. If the return value is nonzero but less than the size

of the data, an error prohibited transmission of the entire data block.

Comments There may be restrictions on the kinds of device data an application may send to
the device without interfering with the operation of the driver should not send com-

mands that reset the printer or print the current page. Additionally, applications are

strongly discouraged from performing functions that consume printer memory,
such as downloading a font or a macro.

The driver should invalidate its internal state variables such as “current position”

and “current line style" when carrying out this escape. The application must be

able to issue multiple, sequential PASSTHROUGH escapes without intervening

“saves" and “restores” being inserted by the driver.

This escape is also known as DEVICEDATA.

Page 157 of 239

1

432 QUERYESCSUPPORT

QUERYESCSUPPORT
#define QUERYESCSUPPORT 8

short Control(lpDevice, QUERYESCSUPPORT, IpEscNum, NULL)
LPPDEVICE IpDevice;
LPINT IpEscNum;

Parameters

Return Value

The QUERYESCSUPPORT escape determines if a particular escape is imple­
mented by the device driver.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpEscNum
Points to a 16-bit variable specifying the escape function to be checked.

The return value is nonzero for implemented escapes. Otherwise, it is zero for
unimplemented escapes. All device drivers must return success if queried about
whether they support the QUERYESCSUPPORTescape.

RESETDEVICE
#define RESETDEVICE 128

short Control(lpDevice, RESETDEVICE, IpDeviceOld, NULL)
LPPDEVICE IpDevice;
LPPDEVICE IpDeviceOld;

Parameters

The RESETDEVICE escape resets the device context by copying information that
is specific to the current print job from the original physical device structure to the
new one. GDI calls this escape whenever an application calls the ResetDC func­
tion (GDI.376).

Printer drivers that can reset print-job options (such as orientation and paper
source) during a single print job must support the RESETDEVICE escape.

IpDevice
Points to a PDEVICE structure specifying the new physical device.

lp DeviceO ld
Points to a PDEVICE structure containing the device-specific settings to be
copied to the new physical device structure.

Page 158 of 239

Return Value

comments

See Also

RESTORE elM 433

The return value is TRUE if the function is successful. Otherwise, it is FALSE.

The RESETDEVICE escape must copy all information required to continue the
current print job to the new physical device structure. This includes information
such as the print-job number and record of downloaded resources, but does not in­
clude information about the environment (such as orientation and paper source) .
GOl cal ls the Enable function to set the environment for the new physical device
structure before calling thi s escape.

After the RESETDEVICE escape returns, GDI immediately cal ls the Disable
function with the old physical device structure. RESETDEVICE mllst ensure that
resources copied to the new physical device structure are not deleted on the sub­
sequent call to Disable. For example, if the Disable function frees any working
buffers allocated by the driver at the start of a print job, RESETDEVICE must
either allocate new buffers for the new physical device structure or remove all
pointers to these buffers from the old physical device structure.

Disable, Enable

RESlORE_ elM
#define RESTORE_ CTM 4100

short Control(lpDevice, RESTORE_ CTM, NULL, NULL)
LPPDEVICE IpDevice;

Parameters

Return Value

Comments

The RESTORE_CTM escape restores the current, previously saved transformation
matrix (CTM). The CTM controls the manner in which coordinates are translated,
rotated, and scaled by the device. By using matrixes, you can combine these opera­
tions in any order to produce the desired mapping for a particular picture.

IpDevice
Points to a PDEVICE structure specifying the destination device.

The return value is the number of SA V~CTM escapes without a corresponding
RESTORE_CTM escape. The return value is - 1 if the escape is unsuccessful.

Applications should not make any assumptions about the initial contents of the
CTM.

Page 159 of 239

HESTDRL BTM 433

Return Value

Comments

See Also

The return value is TRUE if the function is successful. Otherwise, it is FALSE.

The RESETDEVICE escape must copy all information required to continue the
current print job to the new physical device structure. This includes information

such as the print-job number and record of downloaded resources, but does not in—
clude information about the environment (such as orientation and paper source).

GDI calls the Enable function to set the environment for the new physical device

stmcture before calling this escape.

After the RESETDEVICE escape returns, GD] immediately calls the Disable

function with the old physical device structure. RESETDEVICE must ensure that

resources copied to the new physical device structure are not deleted on the sub—

sequent call to Disable. For example, if the Disable function frees any working
buffers allocated by the driver at the start of a print job, RESETDEVICE must
either allocate new buffers for the new physical device structure or remove all
pointers to these buffers from the old physical device structure.

Disable, Enable

HESTOHL CTM

#define RESTORE. CTM 4100

Short ControlUpDevit‘e, RESTORILCTM, NULL, NULL)
LPPDEVICE lpDevt'ce;

Parameters

Return Value

Comments

The RESTORE_CTM escape restores the current, previously saved transformation
matrix (CTM). The CTM controls the manner in which coordinates are translated.

rotated, and scaled by the device. By using manixes. you can combine these opera—

tions in any order to produce the desired mapping for a particular picture.

lpDevice

Points to a PDEVICE structure specifying the destination device.

The return value is the number of SAVE_CTM escapes without a corresponding

RESTORE_CTM escape. The return value is —] if the escape is unsuccessful.

Applications should not make any assumptions about the initial contents of the
CTM.

Page 159 of 239

See Also

When a driver transforms a primitive using a transformation matrix modified by
the application, it should ignore the clipping rectangle specified by aD!. Applica­
tions should specify the desired clipping rectangle using the SET_CLIP _BOX
escape.

Drivers supporting this escape must also implement the SET_CLIP _BOX,
SA VE_CTM, and TRANSFORM_CTM escapes.

#define SAVE_ CTM 4101

short Control(lpDevice, SAVE_ CTM, NULL, NULL)
LPPDEVICE IpDevice;

Parameters

Relurn Value

Comments

The SA VE_CTM escape saves the current transformation matrix (CTM). The
CTM controls the mauner in which coordinates are trauslated, rotated, and scaled
by the device. By using matrixes, you can combine these operations in any order
to produce the desired mapping for a particular image.

You can restore the matrix by using the RESTORE_CTM escape.

An application typically saves the CTM before chauging it. This enables the appli­
cation to restore the previous state upon completion of a particular operation.

IpDevice
Points to a PDEVICE structure specifying the destination device.

Tbe return value is tbe number of SA VE_CTM escapes witbout a corresponding
RESTORE_CTM escape. The return value is zero if the escape is unsuccessful.

Applications should not make any assumptions about the initial contents of the
CTM and are expected to restore the contents of tbe CTM.

When a driver transforms a primitive using a transformation matrix modified by
the application, it should ignore the clipping rectangle specified by aD!. Applica­
tions should specify the desired clipping rectangle using the SET _CLIP_BOX
escape.

Page 160 of 2397—:__

fl
434 SAUL CTM

When a driver transforms a primitive using a transformation matrix modified by
the application, it should ignore the clipping rectangle specified by CD]. Applica.
tions should specify the desired clipping rectangle using the SET_CLIP‘BOX
escape.

Drivers supporting this escape must also implement the SET_CL1P_BOX.

SAVE_CTM, and TRANSFORM_CTM escapes.

SEE Also SAVE_CTM, SET_CLIP_BOX. TRANSFORMJITM

SAVE__ CTM

#define SAVE. CTM 4101

short ControlUpDevice, SAVE_CTM, NULL, NULL)
LPPDEVICE lpDeVic'e;

The SAVE_CTM escape saves the current transformation matrix (CTM'). The
CTM controls the manner in which coordinates are translated. rotated. and scaled

by the device. By using matrixes, you can combine these operations in any order

to produce the desired mapping for a particular image.

You can restore the matrix by using the RESTORE;CTM escape.

An application typically saves the CTM before changing it. This enables the appli-

cation to restore the previous state upon completion of a particular operation.

Parameters IpDevice

Points to a PDEVICE structure specifying the destination device.

Return Value The return value is the number of SAVE_CTM escapes without a corresponding
RESTORE_CTM escape. The return value is zero if the escape is unsuccessful.

Comments Applications should not make any assumptions about the initial contents of the
CTM and are expected to restore the contents of the CTM.

When a driver transforms a primitive using a transformation matrix modified by

the application, it should ignore the clipping rectangle specified by GDI. Applica-

tions should specify the desired clipping rectangle using the SET_CLIP_BOX
escape.

Page 160 of 239

See Also

Drivers supporting this escape must also implement the SET_CLIP _BOX,
RESTORE_CTM, and TRANSFORM_CTM escapes.

SET ARC DIRECTION - -
#define SELARC_ DlRECTION 4102

short Control(lpDevice, SET_ ARC_DIRECTlON, IpDirection, NULL)
LPPDEVICE IpDevice;
LPINT IpDirection;

Parameters

Return Value

Comments

See Also

The SET_ARC_DIRECTION escape specifies the direction in which elliptical
arcs are drawn using the Arc (GDI.23) function.

By convention, elliptical arcs are drawn counterclockwise by GD!. This escape
enables an application to draw paths containing arcs drawn clockwise.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpDirection
Points to a l6-bit variable specifying the arc direction.lt may be either
COUNTERCLOCKWISE(O) orCLOCKWISE(I).

The return value is the previous arc direction.

The default arc direction is COUNTERCLOCKWISE.

Device drivers that implement the BEGIN_PATH and END_PATH escapes
should also implement this escape.

This escape maps to the PostScript page-description language elements and is
intended for PostScript line devices.

BEGIN]ATH, END_PATH

Page 161 of 239

SET_ ABEL DIRECTION 435_________—__—___

Drivers supporting this escape must also implement the SET_CLIP_BOX.
RESTORE_CTM, and TRANSFORM_CTM escapes.

see Also RESTORE_CTM. SET_CLTP_BOX, TRANSFORM_CTM

SET_AHC*_D|RECTION

#define SETJXRC,DIRECTION 4102

short ControlUpDevice, SET_ARC_DIRECTION, lpDirecIion, NULL)
LPPDEVICE lpDevice;
LPINT I'th'rection;

The SET;ARC_DIRECTION escape specifies the direction in which elliptical

arcs are drawn using the Arc (GDI.23) function.

By convention, elliptical arcs are drawn counterclockwise by GDI. This escape

enables an application to draw paths containing arcs drawn Clockwise.

Parameters lpDevic-e

Points to a PDEVICE structure specifying the destination device.

lth'rectt'on

Points to a l6-bit variable specifying the arc direction. it may be either
CO UNTERCLOCKWlSE(O) or CLOCKWlSEll).

Return Value The return value is the previous arc direction.

Comments The default are direction is COUNTERCLOCKWTSE.

Device drivers that implement the BEGIN_PATH and ENDJ’ATH escapes
should also implement this escape.

This escape maps to the PostScript page-description language elements and is

intended for PostScript line devices.

See Also BEG]N_PATH= END_PATH

Page 161 of 239

.1

#define SELBACKGROUND_ COLOR 4103

short Control(lpDevice, SET_BACKGROUND_COLOR, IpNeweolor, /pO/deolor)
LPPDEVICE IpDevice;
LPLONG IpNeweolor;
LPLONG IpOldeolor;

Parameters

Return Value

Comments

See Also

The SET_BACKGROUND_COLOR escape enables an application to set and
retrieve the current background color for the device. The background color is the
color of the display surface before an application draws anything on the device.
This escape is particularly useful for color printers and film recorders.

This escape should be sent before the application draws anything on the current
page.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpNeweolor
Points to a 32-bit variable specify ing the desired background color. This
parameter can be NULL if the application merely wants to retrieve the cur­
rent background color.

IpO/deolor
Points to a 32-bit variable that receives the previous background color. This
parameter can be NULL if the application wants to ignore the previous back­
ground color.

The return value is TRUE if the escape is successful. Otherwise, it is FALSE.

The default background color is white.

The background color is reset to the default color when the device driver receives
an ENDDOC or ABORTDOC escape.

ABORTDOC, ENDDOC

Page 162 of 239

436 SET_ BACKG HOUNEL COLOR

SET_ BACKGROUND_ COLOR

#define SET, BACKGROUNIL COLOR 41 03

short ControlUpDevice, SET_ BACKGROUND_ COLOR, IpNewColor, lpOl'dCol'or)
LPPDEVICE lpDevice;
LPLONG leewColor;
LPLONG lpOldColor;

Parameters

Return Value

Comments

See Also

The SET_BACKGROUNDtCOLOR escape enables an application to set and
retrieve the current background color for the device. The background color is the
color of the display surface before an application draws anything on the device.

This escape is particularly useful for color printers and film recorders.

This escape should be sent before the application draws anything on the current
page.

lpDevice

Points to a PDEVICE structure specifying the destination device.

leewCat'or

Points to a 32-bit variable specifying the desired background color. This
parameter can be NULL if the application merely wants to retrieve the cur-
rent background color.

[pOIanlor

Points to a 32-bit variable that receives the previous background color. This

parameter can be NULL if the application wants to ignore the previous back—
ground color.

The return value is TRUE if the escape is successful. Otherwise. it is FALSE.

The default background color is white.

The background color is reset to the default color when the device driver receives
an ENDDOC or ABORTDOC escape.

ABORTDOC. EN DDOC

Page 162 of 239

SET_BOUNDS
#define SELBOUNDS 4109

short Control(lpDevice, SET_ BOUNDS, IpBounds, NULL}
LPPDEVICE /pDevice;
LPRECT IpBounds;

Parameters

Return Value

Comments

See Also

The SET_BOUNDS escape sets the bounding rectangle for the image being output
by the device driver when creating images in a file format such as Encapsulated
PostScript (EPS) and Hewlett-Packard Graphics Language (HPGL).

/pDevice
Points to a PDEVICE structure specifying the destination device.

IpBounds
Points to a RECT structure that specifies the bounds, in device coordinates, of
the image to output.

The return value is TRUE if successful. Otherwise, it is FALSE.

The application should issue thi s escape before each page. For single-page jobs,
this escape should be issued immediately after the STARTDOC escape.

When using coordinate transformation escapes, device dri vers may not perform
bounding-box calculations correctly. Using this escape saves the driver from the
task of calculating the bounding box.

STARTDOC

short Control(lpDevice, SET_ CLIP_ BOX, IpC/ip8ox, NULL)
LPPDEVICE IpDevice;
LPRECT lpC/ipBox;

The SET_CLIP_BOX escape sets the clipping rectangle or restores the previous
clipping rectangle. The SET_CLIP_BOX escape is required of any device driver
that implements the coordinate transformation escapes.

Page 163 of 239

SET_CLIP_ BOX 437

SET_ BOUNDS

#define SET_BOUNDS 4109

short ControlUpDevice, SET_ BOUNDS, lpBounds, NULL)
LPPDEVICE IpDevice;
LPRECT lpBounds;

The SET_BOUNDS escape sets the bounding rectangle for the image being output
by the device driver when creating images in a file format such as Encapsulated

PostScript (BPS) and Hewlett—Packard Graphics Language (HPGL).

Parameters lpDevice

Points to a PDEVICE structure specifying the destination device.

lpBounds

Points to a RECT structure that specifies the bounds, in device coordinates, of
the image to output.

Return Value The return value is TRUE if successful. Otherwise, it is FALSE.

Comments The application should issue this escape before each page. For single-page jobs.

this escape should be issued immediately after the STARTDOC escape.

When using coordinate transformation escapes, device drivers may not perform
bounding—box calculations correctly. Using this escape saves the driver from the

task of calculating the bounding box.

See Also STAR'IDOC

SET_CL|P_ BOX

#define SET_ CLlP_BOX 4108

short ControlUpDevia-e, SET_ CLIP_ BOX, lpCt’ipBox, NULL)
LPPDEVICE lpDevice;
LPRECT lpCiipBox;

The SETuCLlPFBOX escape sets the clipping rectangle or restores the previous

clipping rectangle. The SET_CLIP_BOX escape is required of any device driver
that implements the coordinate transformation escapes.

Page 163 of 239

Parameters

Return Value

Comments

See Also

lpDevice
Points to a PDEVICE structure specifying the destination device.

lpClipBox
Points to a RECT structure that contains the bounding rectangle of the desired
clipping area. If the lpClipBox parameter is not NULL, the previous clipping
rectangle is saved, and the current clipping rectangle is set to the specified
bounds. If lpClipBox is NULL, the previous clipping rectangle is restored.

The return value is a Boolean value specifying whether or not the clipping rect­
angle was properly set.

Drivers that implement the TRANSFORM_CTM, SA VE_CTM, and
RESTORE_CTM escapes must also implement this escape.

When an applications calls a GDI output function, GOl calculates a clipping rect­
angle that bounds the primitive, and then passes both the primitive and the clip­
ping rectangle to the driver. The driver is expected to clip the primitive to the
specifted bounding rectangle. However, when an application uses the coordinate
transformation escapes, the clipping rectangle that was calculated by GDl is gener­
ally invalid.

The application can use the SET_CLIP _BOX escape to specify the correct clip­
ping rectangle when coordinate transformations are used.

#define SELPOLY_ MODE 4104

short Control(lpDevice, SET_ POLY_ MODE, lpMode, NULL)
LPPDEVICE lpDevice;
LPlNT lpMode;

The SET_POLY_MODE escape enables a device driver to draw sbapes (such as
Bezier curves) that are not supported directly by GO!. This permits applications
that draw complex curves to send the curve description directly to a device
without having to simulate the curve as a polygon with a large number of points.

The SET_POLY_MOOE escape sets the poly mode for the device driver. The
poly mode is a state variable indicating how to interpret calls to the Polygon
(GO!.63) and Polyline (G0I.37) functions.

Page 164 of 239

438 SET_ PDLY_MUDEM

Parameters IpDe vice

Points to a PDEVICE structure specifying the destination device.

lpClipBax

Points to a RECT structure that contains the bounding rectangle of the desired

clipping area. If the [pClipBox parameter is not NULL, the previous clipping
rectangle is saved, and the current clipping rectangle is set to the specified
bounds. If lpClr'pBox is NULL, the previous clipping rectangle is restored.

Return Value The return value is a Boolean value specifying whether or not the clipping rect-

angle was properly set.

Comments Drivers that implement the TRANSFORM_CTM, SAVE_CTM, and

RESTOREiC‘TM escapes must also implement this escape.

When an applications calls a GDI output function, GDl calculates a clipping rect-
angle that bounds the primitive, and then passes both the primitive and the clip“

ping rectangle to the driver. The driver is expected to clip the primitive to the

specified bounding rectangle. However, when an application uses the coordinate
transformation escapes, the clipping rectangle that was calculated by GDI is gener-

ally invalid.

The application can use the SET_CLIP,BOX escape to specify the correct clip-
ping rectangle when coordinate transformations are used.

See Also RESTOREJCTM, SAVEMCTM, TRANSFORM_CTM

SET_ POLY_ MODE

#define SET_ POLYi MODE 4104

Short ControlUpDevice, SET_ POLY_ MODE, IpMode, NULL)
LPPDEVICE lpDevice;
LPINT lpMode;

The SET_POLY_MODE escape enables a device driver to draw shapes (such as

Bezier curves) that are not supported directly by GDI. This permits applications
that draw complex curves to send the curve description directly to a device

without having to simulate the curve as a polygon with a large number of points.

The SET_POI.Y_MODE escape sets the poly mode for the device driver. The

poly mode is a state variable indicating how to interpret calls to the Polygon
(GDI.63) and Polyline (GDI.37) functions.

‘ l Page 164 of 239

1

Parameters

Return Value

Comments

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpMode
Points to a 16-bit variable that spec ifies the desired poly mode. The parameter
can be one of the following values.

Value

PM]OLYLINESEGMENT (3)

Meaning

The points define a conventionru polygon or
polyline.
The points define a sequence of 4-point Bezier
spline curves. The first curve passes through
the first four points, with the first and fourth
points as end points. and the second and third
points as control points. Each subsequent curve
in the sequence has the end point of the pre­
vious curve as its sLart point, the next two
points as control points. and the third as its end
point.

The last curve in the sequence is permitted to
have fewer than four poims. If the curve has
only one point, it is considered a point. If it has
two points, it is a line segment. If it has three
points, it is a parabola defined by drawing a
Bezier curve with the end points equal to the
first and third (X)inLS and the two control points
equal LO the second point.

The points specify a list of coordinate pairs.
Line segments are drawn connecting each suc­
cessive pair of points.

The device driver need not support all the possible modes. It is expected to re­
turn zero if it does not support the specified mode.

The return value is the previous poly mode if the escape is successful. Otherwise.
the return value is zero.

An application should issue the SET_POLY _MODE escape before it draws a com­
plex curve. It should then call Polyline or Polygon with the desired control points
defining the curve. After drawing the curve, the application should reset the driver
to its previous state by reissuing the SET_POLY _MODE escape.

Calls to the Polyline function are drawn using the currently selected pen.

Calls to the Polygon function are drawn using the currently selected pen and
brush. If the start and end points are not equal, a line is drawn from the start point
to the end point before filling the polygon (or curve).

Page 165 of 239

 Parameters

Return Value

Comments

SET_ PUL‘L MODE 439f.—-————__—_'—‘——

lpDevice

Points to a PDEVICE structure specifying the destination device.

lpMode

Points to a 16-bit variable that specifies the desired poly mode. The parameter
can be one of the following values.

Value Meaning

PM_POLYLINE (l) The points define a conventional polygon or
polyline.

PM_BEZIER (2) The points define a sequence of 4~point Bczier
spline curves. The first curve passes through
me first four points. with the first and fourth
points as end points, and the second and third
points as control points. Each subsequent curve
in the sequence has the end point of the pre—
vious curve as its start point, the next two
points as control points. and the third as its end
point.

The last curve in the sequence is permitted to
have fewer than four points. If the curve has
only one point. it is considered a point. Ifit has
two points, it is a line segment. [in has three
points, it is a parabola defined by drawing a
Bezier curve with the end points equal to the
first and third points and the two control points
equal to the second point.

PM_POLYLD\1ESEGMENT (3) The points specify a list of coordinate pairs.
Line segments are drawn connecting each suc-
ccSSive pair of points.

The device driver need not support all the possible modes. It is expected to re-

turn zero if it does not support the specified mode.

The return value is the previous poly mode if the escape is successful. Otherwise.
the return value is zero.

An application should issue the SET_POLY_MODE escape before it draws a com—

plex curve. It should then call Polyline or Polygon with the desired control points
defining the curve. After drawing the curve, the application should reset the driver

to its previous state by reissuing the SET_POLY_MODE escape.

Calls to the Polyline function are drawn using the currently selected pen.

Calls to the Polygon function are drawn using the currently selected pen and

brush. If the start and end points are not equal, a line is drawn from the start point
to the end point before filling the polygon (or curve).

Page 165 of 239

See Also

Calls to the Polygon function using PM_POL YUNESEGMENT mode are treated
exactly the same as calls to Polyline.

A Bezier curve is defined by four points . The curve is generated by connecting
the first and second, second and third, and third and fourth points. The midpoints
of these consecutive line segments are then connected. Then the midpoints of the
lines connecting the midpoints are connected.

The line segments drawn in this way converge to a curve defined by the following
parametric equations, expressed as a function of an independent variable t.

X(t) (l-t)**3xl + 3(I-t) **2tx2 + 3(I-t)t**2 x3 + t**3x4

I(t) (l-t)**3yl + 3(I-t)**2ty2 + 3(I-t)t**2y3 + t**3y4

The points (x I ,y I), (x2,y2), (x3,y3), and (x4,y4) are the control points defining the
curve. The independent variable I varies from 0 to I .

A second-degree Bezier curve may be expressed as a third-degree Bezier using the
following parameterization:

Cxl 1/3XI + 2/3X2
Cx2 - 2/3X2 + 1/3X3

Cyl 1/311 + 2/312
Cy2 2/312 + 1/313

(Cx1 , Cy 1) and (Cx2, Cy2) are third-degree control points of the second-degree
Bezier specified by the points (x l , yl), (x2, y2), and (x3, y3).

Applications are expected to check the return value from this escape to detennine
whether or not the driver supports the specified poly mode.

Polygon, Polyline

#define SELSCREEN_ANGLE 4105

short Control(lpDevice, SET_SCREEN_ANGLE, [pAngle, NULL)
LPPDEVICE IpDevice;
LPINT lpAngle;

The SET_SCREEN_ANGLE escape sets the current screen angle to the desired
angle and enables an application to simulate the tilting of a photographic mask in
producing a separation for a particular primary color.

Page 166 of 239

1

Calls to the Polygon function using PM_POLYLIN'ESEGMENT mode are treated
exactly the same as calls to Polyline.

440 SET_SCREEN_AHGLE

A Bezier curve is defined by four points. The curve is generated by connecting
the first and second. second and third. and third and fourth points. The midpoims
of these consecutive line segments are then connected. Then the midpoints of the

lines connecting the midpoints are connected.

The line segments drama in this way converge to a curve defined by the following
parametric equations, expressed as a function of an independent variable i.

xtt) = t1-t)**3x1 + 3(1-t)**2tx2 + 3(1-t)t**2x3 + t**3x4

Ytt) = t1—t)**3y1 + 3(1-t)**2ty2 + 3(1-t)t**2y3 + t**3y4

The points (xl,y l). (x2.y2). (x3,y3), and (x4,y4) are the control points defining the
curve. The independent variable it varies from 0 to I.

A second—degree Bezier curve may be expressed as a third-degree Bezier using the

following parameterization:

Cxl
Cx2

1/3K1 + 2/3x2 Cyl
2/3x2 + 1/3x3 CyE

1/3Y1 + 2/3Y2
2/3Y2 + 1/3Y3

[Cit] , Cy 1) and (CXZ, CyZ) are third-degree control points of the second-degree
Bezier specified by the points (x1, yl), (x2, 3/2), and (x3. 313).

Applications are expected to check the return value from this escape to determine

whether or not the driver supports the specified poly mode.

See Also Polygon, Polyline

SET_SCREEN_ANGLE

#define SET_ SCREEN- AN GLE 4105

short ControlUpDevice, SET_ SCREENb ANGLE, IpAJigle, NULL)
LPPDEVICE IpDew’ce;
LPINT lpAngle;

The SET_SCREEN_ANGLE escape sets the current screen angle to the desired

angle and enables an application to simulate the tilting of a photographic mask in

producing a separation for a particular primary color.

Page 166 of 239

Parameters

Return Value

Comments

Four-color process separation is the process of separating the colors comprising
an image into four component primaries: cyan, magenta, yellow, and black. The
image is then reproduced by overprinting each primary. In traditional four-color
process printing, half-tone images for each of the four primaries are photographed
against a mask tilted to a particular angle. Tilting the mask in this manner min­
imizes unwanted moire patterns caused by overprinting two or more colors.

/pDevice
Points to a PDEVICE structure specifying the destination device.

{pAngle
Points to a 16-bit variable specifying the desired screen angle in tenths of a
degree. The angle is measured counterclockwise.

This escape returns the previous screen angle.

The default screen angle is defined by the device driver.

SET_SPREAD
#define SELSPREAD 4106

short Control(lpDevice, SET_ SPREAD, /pSpread, NULL)
LPPDEVICE /pDevice;
LPINT /pSpread;

The SET_SPREAD escape sets the spread for spot-color separation. The spread is
the amount by which all the nonwhite primitives are expanded to provide a slight
overlap between primitives to compensate for imperfections in the reproduction
process.

Spot-color separation is the process of separating an image into each distinct color
used in the image. You then reproduce the image by overprinting each successive
color in the image. When reproducing a spOl-separated image, the printing equip­
ment must be calibrated to align each page exactly on each pass. However, differ­
ences between passes in such factors as temperature and humidity often cause
images to align imperfectly on subsequent passes. For this reason, lines in spot
separations are often widened (spread) slightly to make up for problems in register­
ing subsequent passes through the printer. This process is called trapping.

Page 167 of 239

SET_ SPREAD 441__,__-——_——_———-'__—*——

Parameters

Return Value

Comments

Four—color process separation is the process of separating the colors comprising
an image into four component primaries: cyan, magenta, yellow. and black. The
image is then reproduced by overprinting each primary. In traditional four-color

process printing, half-tone images for each of the four primaries are photographed
against a mask tilted to a particular angle. Tilting the mask in this manner min-
imizes unwanted moire patterns caused by overprinting two or more colors.

lpDevic'e

Points to a PDEVICE structure specifying the destination device.

lpAngle

Points to a 16—bit variable specifying the desired screen angle in tenths of a

degree. The angle is measured counterclockwise.

This escape returns the previous screen angle.

The default screen angle is defined by the device driver.

SET_ SPREAD

#define SET- SPREAD 4106

short ControlUpDevice, SET_SPREAD, IpSpread, NULL)
LPPDEVICE lpDevice;
LPINT lpSpr'ead;

The SET_SPREAD escape sets the Spread for spot-color separation. The spread is
the amount by which all the nonwhite primitives are expanded to provide a slight

overlap between primitives to compensate for imperfections in the reproduction
process.

Spot-color separation is the process of separating an image into each distinct color
used in the image. You then reproduce the image by overprinting each successive

color in the image. When reproducing a spot-separated image. the printing equip-

ment must be calibrated to align each page exactly on each pass. However, differ-
ences between passes in such factors as temperature and humidity often cause

images to align imperfectly on subsequent passes. For this reason, lines in spot

separations are often widened (spread) slightly to make up for problems in register-
ing subsequent passes through the printer. This process is called trapping.

Page 167 of 239

l

442 SETABOATPAOC

Parameters

Return Value

Comments

lpDevice
Points to a PDEVICE structure specifying the destination device.

lpSpread
Points to a J 6-bit variable specifying the amount, in device units, by which all
the nonwhite primitives are to be expanded.

The return value is the previous spread.

The default spread is zero.

The current spread applies to all the bordered primitives (whether or not the border
is visible) and text.

SETABORTPROC
#define SETABORTPROC 9

short Control(lpDevice, SETABORTPROC, lphDC, NULL)
LPPDEVICE lpDevice;
LPHANDLE /phDC;

Parameters

Return Value

Comments

See Also

The SETABORTPROC escape sets the cancel function for the print job.

It' an application wants to allow the print job to be cancelled during spooling, it
must set the cancel function before the print job is started with the STARTDOC
escape. Print Manager calls the cancel function during spooling to allow the appli­
cation to cancel the print job or to handle out-of-disk-space conditions. If no can­
cel function is sel. the print job will fail if there is not enough disk space for
spooling.

/pDevice
Points to a PDEVICE structure specifying the destination device.

lphDC
Points to a handle to the application's device context for the print job.

The return value is positive if the escape is successful. Otherwise, it is negative.

The driver should pass the application's device context handle to the OpenJob
(GDI.240) function to allow GDl to call the application ' s callback function.

STARTDOC

Page 168 of 239

SETAllJUSTVAlUES 443

SETALLJUSTVALUES
#define SETALLJUSTVALUES 771

short Control(lpDevice, SETALLJUSTVALUES, /p/nData, NULL)
LPPDEVICE /pDevice;
LPINT Ip/nDa/a;

Parameters

Return Value

Comments

See Also

The SET ALLJUSTV ALUES escape sets all the text justification values that are
used for text output. Text justification is the process of inserting extra pixels
among break characters in a line of text. The space character is normally used as
a break character.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IplllDara
Points to a JUST_ VALUE_ STRUCT structure that contains the justification
values. The JUST_ VALUE_ STRUCT structure has the following form:

typede f struct tagJUST_ VALUE_STRUCT
shor t nCharExtra;
WORD nCharCount;
short nBreakExtra;
WORD nBreakCount;

JUST_ VALUE_STRUCT;

The return value is I if the escape is successful. Otherwise, it is O.

The units used for thc nCharEx!ra and nBreakExtra members in the
JUST _ V ALUE_ STRUCT structure specify font units, and are dependent
on whether or not relative character widths were enabled with the
ENABLERELATIVEWlDTHS escape.

The values set with this escape will apply to subsequent calls to the ExtTextOut
function. The driver will stop distributing the nCharExtra amount when it has
output of nCharCount characters. It will also stop distributing the space specified
by nBreakExtra when it has output of nBreakCount characters. A call on the
same string to the GetTextExtent (GDI.9 1) function, made immediately after the
ExtTextOul function , is processed in the same manner.

To reenable justification with the SelTextJustificalion (GDI.IO) and SelText­
CharaclerExtra (GDI.8) functions, an application should call SETALLJUST­
V ALVES and set the members nCharExtra and nBreakExtra to zero.

EN ABLERELA TIVEWTDTHS, EXTTEXTMETRlC

Page 169 of 239

444 SETCOLORTABLE

SETCOLORTABLE
#define SETCOLORTABLE 4

short Control(lpDevice, SETCOLORTABLE, IpColorEntry, IpColor)
LPPDEVICE IpDevice;
LPWORD IpCalorEntry;
LPLONG IpCalor;

Parameters

Return Value

Comments

The SETCOLORTABLE escape sets an RGB color-table entry. If the device
cannot supply the exact color, the function sets the entry to the closest possible
approximation of the color.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpColorEntry
Points to a COLORTABLE_STRUCTstructure. The
COLORTABLE_ STRUCTstructure has the following form:

typedef struet tagCDLDRTABLE_STRUCT [
WORD Index;
LONG rgb;

} COLORTABLE_STRUCT ;

IpColor
Points to a 32-bit variable that receives the RGB color value selected by the
device driver to represent the requested color value.

The return value is positive if the escape is successful. Otherwise, it is negative.

A device's color table is a shared resource; changing the system display color for
one window changes it for aJi the windows.

The SETCOLORTABLE escape has no effect on devices with fixed-color tables.

This escape is intended for use by both printer and display drivers. However, the
EGA and VGA color drivers do not support it. It should not be used with palette­
capable display devices.

It is used by applications that want to change the palette used by the display driver.
However, since the driver's color-mapping algorithms will probably no longer
work with a different palette, an extension has been added to this escape.

Page 170 of 239

See Also

SETCOPYCOUNT 445

If the color index pointed to by the IpColorEntry parameter is OxFFFPH, the
driver is to leave all color-mapping functionality to the calling application . The
application will necessarily know the proper color-mapping algorithm and take
responsibility for passing the correctly mapped physical color to the driver
(instead of the logical ROB color) in functions such as RealizeObject and
ColorInfo.

For example, if the device supports 256 colors with palene indexes of 0 through
255, the application would determine which index contains the color that it wants
to use in a certain brush. It would then pass this index in the low byte of the logi­
cal color passed to RealizeObject. The driver would then use this color exactly as
passed instead of perfonning its usual color-mapping algorithm. If the application
wants to reactivate the driver's color-mapping algorithm (that is, if it restores the
original palene when switching from its window context), then the color index
pointed to by IpColorEntry should be OxFFFEH.

ColorInfo, GETCOLORTABLE, RealizeObject

SETCOPYCOUNT
#define SETCOPYCOUNT 17

short Control{lpDevice, SETCOPYCOUNT, /plnData, /pOutData)
LPPDEVICE IpDevice;
LPINT IplnData;
LPINT IpOutData;

Parameters

Return Value

The SETCOPYCOUNT escape specifies the number of uncollated copies of each
page that the printer is to print.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a 16-bit variable containing the number ofuncoUated copies to print.

IpOutData
Points to a 16-bit variable that receives the number of copies to print. This may
be less than the number requested if the requested number is greater than the
device's maximum copy count.

The return value is I if the escape is successful. Otherwise it is 0 if it is not, or if
the escape is not implemented.

Page 171 of 239

446 SETKEANTAACK

SETKERNTRACK
#define SETKERNTRACK 770

short Control(lpDevice, SETKERNTRACK, IplnData, IpOutData)
LPPDEVICE IpDevice;
LPINT IplnJ)ata;
LPINT IpOurData;

Parameters

Return Value

Comments

See Also

The SETKERNTRACK escape specifies which kerning track a driver that sup­
ports automatic-track kerning shou ld use. A kerning track of zero disables automat­
ic-track kerning. When this escape is enabled, the driver automatically kerns all
characters according to the specified track. The dri ver reflects this kerning both
on the printer and in calls to the GetTextExtent (GDI.91) function .

IpDevice
Points to a PDEVICE structure specifying the destination device.

IplnDara
Points to a 16-bit variable that specifies the kerning track to use. A value of
zero disables this feature. The etmKernTracks member in the EXTTEXT­
METRIC structure for the driver specifies the maximum permitted value. Each
permitted value corresponds to a position in the track-kerning table (using one
as the first item in the table).

IpOurData
Points to a 16-bit variable that receives the previous kerning track.

The return value is I if the escape is successful. Otherwise, it is 0 i.f it is not, or if
the escape is not implemented .

The default state is zero, which means that automatic-track kerning is disabled.

A driver does not have to support this escape just because it supplies the track­
kerning table to the application using the GETTRACKKERNTABLE escape. In
the case where GETTRACKKERNT ABLE is supported but SETKERNTRACK is
not, it is the application' s responsibility to properly space the characters on the out­
put device.

GETEXTENDEDTEXTMETRICS, GETTRACKKERNT ABLE

Page 172 of 239

_4ia 446 SETKEHNTHABH

SETKEBNTRACK

#define SETKERNTRACK 770

short ControlUpDevice, SETKERNTRACK, lpIrtDaIa. ipOmDaral
LPPDEVICE lpDevr'ce;
LPINT lpIeram;
LPINT lpOulea;

Parameters

Return Value

Comments

See Also

The SETKERNTRACK escape specifies which kerning track a driver that sup»
ports automatic-track keming should use. A kerning track of zero disables automat—
ic-track kerning. When this escape is enabled, the driver automatically kerns all

characters according to the specified track. The driver reflects this kerning both

on the printer and in calls to the GetTextExtent (GDI.91) function.

[[103 vice

Points to a PDEVICE structure specifying the destination device.

IpInData

Points to a 16—bit variable that specifies the keming track to use. A value of
zero disables this feature. The ethernTracks member in the EXTTEXT-

METRIC structure for the driver specifies the maximum permitted value. Each
permitted value corresponds to a position in the track-keming table (using one
as the first item in the table).

t'pOurData

Points to a 16—bit variable that receives the previous keming track.

The return value is 1 if the escape is successful, Otherwise. it is 0 if it is not, or if

the escape is not implemented.

The default state is zero, which means that automatic-track keruing is disabled.

A driver does not have to support this escape just because it supplies the track-
lzerning table to the application using the GETTRACKKERNTABLE escape. In

the case where GETI‘RACKKERNTABLE is supported but SETKERNTRACK is

not, it is the application's responsibility to properly space the characters on the out»
put device.

GETEXTENDEDTEXTMETRICS.GETTRACKKERNTABLE

Page 172 of 239

SETLINECAP 447

SETLINECAP
#derme SETLINECAP 21

short Control(lpDevice, SETLINECAP, IplnDala, fpOU/Data)
LPPDEVICE IpDevice;
LPINT fplllDara;
LPINT fpOulData;

Parameters

Return Value

Comments

See Also

The SETLINECAP escape sets the line end cap. An end cap is that portion of a
line segment that appears on either end of the segment. The cap may be square or
circular; it can extend past, or remai n flush with, the specified end points.

IpDevice
Points to a PDEVICE structure specifying the destination device.

fplllData
Points to a 16-bit variable that specifies the end-cap type. The variable can
contain one of the following values.

Value

- I

o

Meaning

Line segments are drawn by using the default GDI end cap.

Line segments are drawn with a squared end point that does not project
past the specified segment length .

Line segments are drawn wi th a rounded cnd point; the diameter of this
semicircular arc is equal to the line width.

2 Line segments are drawn with a squared end point that projects past the
specified segment length. The projection is equal to half the line width.

IpOutData
Points to a 16-bit variable that receives the previous end-cap setting.

The return value is positive if the escape is successful. Otherwise, it is negative.

The interpretation of this escape varies with page-description languages (POLs).
Consult your POL documentation for its exact meaning.

This escape is also known as SETENOCAP.

SETLINEJOIN

Page 173 of 239

448 SETLlNEJOIN
~--~==~---

SETLlNEJOIN
#define SETLlNEJOIN 22

short Control(lpDevice, SETLINEJOIN, /plnData, /pOutData)
LPPDEVICE lpDevice;
LPWORD lplnData;
LPWORD {pOLl/Data;

Parameters

Return Value

Comments

See Also

The SETLINEJOLN escape specifies how to join two lines that meet at an angle.

lpDevice
Points to a PDEVICE structure specifying the destination device.

lplnData
Points to a 16-bit variable that specifies the newline join type. lf this parameter
is NULL, the escape does not change the line join. The variable can contain one
of the following values.

Value

o

2

lpOutData

Meaning

Miter join . The outer edges of the strokes for the two segments arc ex­
tended until they meet at an angle, as in a picture frame. If the segments
meet at too sharp of an angle, a bevel join is used instead; this is conlfol­
led by the miter limit established by the SETM1TERLlMlT escape.
Roundjoin. A circular arc with a diameter equal to the line width is
drawn around the point where the segments meet, and is filled in, pro­
ducing a rounded corner. The stroke actually draws a full circle at this
point. If path segments shorter than one-half the line width meet at sharp
angles, an unintentional "wrong side" of this circle may appear.

Bevel join. The meeting path segments are finished with butt-end caps
(same as set by the SETLINECAP escape); then, the resulting notch bey­
ond the ends of the segmems is filled with a triangle.

Points to a 16-bit variable that receives the previous line-join type. If this pa­
rameter is NULL, the escape does not return the previous line-join type.

The return value is TRUE if the escape is successful. Otherwise, it is FALSE.

Join styles are significant only at points at which consecutive segments of a path
connect at an angle. Curved lines are actually rendered as sequences of straight
line segments, and the current line join is applied to the "corners" between those
segments. However, for typical values of the flatness parameter, the corners are so
shallow that the difference between join styles is not visible.

SETLlNECAP, SETMITERLIMIT

Page 174 of 239

448 SETLINEJOIN

SETLINEJOIN

#define SETLINEJOIN 22

short ControlUpDevice. SETLINEJOIN, lplnData, tpOurData)
LPPDEVICE IpDevice;
LPWORD lplnDrtta;
LPWORD lpOnIDam;

Parameters

Return Value

Comments

See Also

The SETLINEJOIN escape specifies how to join two lines that meet at an angle.

lpDevice

Points to a PDEVICE structure specifying the destination device.

[pInDaIa

Points to a 16-bit variable that specifies the newline join type. If this parameter
is NULL, the escape does not change the line join. The variable can contain one
of the following values.

Value Meaning

0

[\J

tpOutData

Miter join. The outer edges of the strokes for the two segments are ex-
tended until they meet at an angle. as in a picture frame. Ifthe segments
meet at too sharp of an angle. a bevel join is used instead; this is control-
led by the miter limit established by the SETMITERLIMIT escape.

Round join. A circular arc with a diameter equal to the line width is
drawn around the point where the segments meet. and is filled in, pro—
ducing a rounded corner. The stroke actually draws a full circle at this
point. If path segments shorter than one-half the line width meet at sharp
angles, an unintentional “wrong side” of this circle may appear.

Bevel join. The meeting path segments are finished with butt—end caps
(same as set by the SETLINECAP escape); then. the resulting notch bey-
ond the ends of the segments is tilled with a triangle.

Points to a 16-bit variable that receives the previous line-join type. If this pa-
rameter is NULL. the escape does not return the previous line—join type.

The return value is TRUE if the escape is successful. Otherwise, it is FALSE.

Join styles are significant only at points at which consecutive segments of a path

connect at an angle. Curved lines are actually rendered as sequenws of straight
line segments, and the current line join is applied to the “corners" between those

segments. However, For typical values of the flatness parameter, the comers are so
shallow that the difference between join styles is not visible.

SETLINECAP. SETMITERLIMJT

Page 174 of 239

SETMITERLIMIT 449 -
SETMITERLIMIT
#derIDe SETMITERLIMIT 23

shOrt Control(lpDevice, SETMITERLIMIT, IplnData, IpOutData)
LPPDEVICE IpDevice;
LPWORD IplnData;
LPWORD IpOutData;

Parameters

Return Value

Comments

The SETMITERLIMIT escape tells the driver how an application wants to clip
off miter-type line joins when they become too long. It sets the current miter-limit
parameter in the graphics state to a number greater than or equal to one.

IpDevice
Points to a PDEVICE structure specifying the destination device.

IplnData
Points to a 16-bit variable that specifies the miter-limit value. If this parameter
is NULL, the escape does not change the miter-limit value.

IpOutData
Points to a 16-bit variable that receives the previous or current miter-limit
value (if the IplnData parameter is NULL). [fthis parameter is NULL, the
escape does not return to the previous limit.

The return value is TRUE if the escape is successful. Otherwise, it is FALSE.

The miter limit controls the stroke operator's treatment of comers when miter
joins have been specified. For more information about miter joins, see the
SETLINEJOTN escape.

When path segments connect at a sharp angle, a miter join results in a spike that
extends well beyond the connection point. The purpose of the miter limit is to cut
off such spikes when they become too long.

At any given comer, the miter length is the distance from the point at which the
inner edges of the strokes intersect to the point at which the outside edges of the
strokes intersect (that is, the diagonal length of the miter). This distance increases
as the angle between the segments decreases. If the ratio of the miter length to the
line width exceeds the miter-limit parameter, the comer is treated with a bevel join
instead of a miter join.

The ratio of miter length to line width is directly related to the angle alpha
between the segments by the formu lao

miter- le ngth I line -wi dth; 1 I sin{alpha/2)

Page 175 of 239

SETMITEHLIMIT 449
Ff_———_——'—

sETMlTERLlMIT

#define SETMITERLIMIT 23

short ContrinpDevice, SETMITERLIMIT, lpInDara, lpOm‘Data)
LPPDEVICE lpDevice;
LPWORD lpInDara;
LPWORD lpOutData;

The SETMITERLIMIT escape tells the driver how an application wants to clip
off miter—type line joins when they become too long. It sets the current miter-limit

parameter in the graphics state to a number greater than or equal to one.

Parameters IpDevice

Points to a PDEVICE structure specifying the destination device.

lpInData

Points to a 16-bit variable that specifies the miter-limit value. If this parameter
is NULL, the escape does not change the miter-limit value.

lpOutDaIa

Points to a 16-bit variable that receives the previous or current miter-limit
value (if the lpInDaIa parameter is NULL). If this parameter is NULL, the
escape does not return to the previous limit.

Return Value The return value is TRUE if the escape is successful. Otherwise, it is FALSE.

Comments The miter limit controls the stroke operator’s treatment of corners when miter

joins have been specified. For more information about miter joins. see the
SETLINEJOIN escape.

When path segments connect at a sharp angle1 a miter join results in a spike that
extends well beyond the connection point. The purpose of the miter limit is to cut
off such spikes when they become too long.

At any given corner, the miter length is the distance from the point at which the

inner edges of the strokes intersect to the point at which the outside edges of the

strokes intersect (that is, the diagonal length of the miter). This distance increases
as the angle between the segments decreases. If the ratio of the miter length to the

line width exceeds the miter-limit parameter, the corner is treated with a bevel join
instead of a miter join.

The ratio of miter length to line width is directly related to the angle alpha
between the segments by the formula:

miter-length / line-width = 1 / stntalpha/ZJ

Page 175 of 239

450 SETPAINTEADC

See Also

The following are examples of miter-limit values:

• 1.415 cuts off miters at angles less than 90 degrees. and converts them to bevels.

• 2.0 cuts off miters at angles less than 60 degrees.

• 10.0 cuts off miters at angles less than II degrees.

The default value of the miter limit is 10. Setting the miter limit to 1 cuts off
miters at all angles so that bevels are always produced even when miters are
specified.

SETLINEJOIN

SETPRINTERDC
#define SETPRINTERDC 9

short Control(lpDevice, SETPRINTERDC, {phdc, NULL)
LPPDEVICE /pDevice;
LPHANDLE /plutc;

Parameters

Return Value

Comments

See Also

The SETPRINTERDC escape saves the given device context for use in a sub­
sequent call to the OpenJob function (GDI.240). GDl calls this escape whenever
an application calls the StartDoc function (GDJ.377) or the STARTDOC escape
using the Escape function (GDl .38).

Printer drivers that call the OpenJob function to start a print job must support the
SETPRJNTERDC escape.

/pDevice
Points to a PDEVICE structure specifying the device.

/phdc
Points to a device context handle for the application starting the print job.

The return value is TRUE if the escape is successful. Otherwise. it is FALSE.

The SETPRINTERDC escape should save the device context handle in the
PDEVICE structure and use it when calling the OpenJoh function as part of
processing the STARTDOC escape.

STARTDOC

Page 176 of 239

lRANSFORM_ elM 451

STARTDoe
#define STARTDOC 10

short Control(lpDevice, STARTDOC, IpDocName, NULL)
LPPDEVrCE IpDevice;
LpSTR /pDocName;

Parameters

Return Value

See Also

The STARTDOC escape informs the device driver that a new print job is starting
and that all subsequent NEWFRAME escapes should be spooled under the same
job, until an ENDDOC escape occurs.

Thi s ensures that documents longer than one page will not be interspersed with
other jobs.

/pDevice
Points to a PDEVICE structure specifyi ng the destination device.

IpDocName
Points to a null-terminated string specifying the name of the document. The
document name is displayed in Print Manager.

The return value is positive if successful. Otherwise, it is - 1 if an error occurs,
such as insufficient memory or an invalid port specification.

ABORTDOC, ENDDOC, NEWFRAME

TRANSFORM_ eTM
#define TRANSFO~ CTM 4107

short Controt(lpDevice, TRANSFORM_CTM, IpMatrix, NULL)
LPPDEVICE IpDevice;
LPLONG IpMatrix;

The TRANSFORM_CTM escape modifies the current transformation matrix
(CTM). The CTM controls the manner in which coordinates are translated,
rotated, and scaled by the device. By using matrixes, you can combine these
operations in any order to produce the desired mapping for a particular image.

The new current transformation matrix will contain the product of the matrix refer­
enced by the IpMalrix parameter and the previous CTM (CTM = M • CTM).

Page 177 of 239

mansruanr cm 451.-'_—_—_'——_—-_-——__"

STAHTDOC

#det'ine STARTDOC 10

short ControlUpDevice. STARTDOC, t'pDocName, NULL)
LPPDEVICE ipDeviCe;
LPSTR (pDocName;

The STARTDOC escape informs the device driver that a new printjob is starting
and that all subsequent NEWFRAME escapes should be spooled under the same

job. until an ENDDOC escape occurs.

This ensures that documents longer than one page will not be interspersed with
other jobs.

Parameters 11106146.?

Points to a PDEVICE structure specifying the destination device.

EpDocName
Points to a null-terminated string specifying the name of the document. The

document name is displayed in Print Manager.

Return Value The return value is positive if successful. Otherwise, it is —I if an error occurs.
such as insufficient memory or an invalid port specification,

See Also ABORTDOC, ENDDOC, NEWFRAME

TRANSFORM_ CTM

#define TRANSFORM, CTM 4107

short ControlUpDevice, TRANSFORML CTM, lpMarrix, NULL)
LPPDEVICE lpDevice;
LPLONG t'pMarrix;

The TRANSFORM_CTM escape modifies the current transformation matrix
{'CTM). The CTM controls the manner in which coordinates are translated,

rotated. and scaled by the device. By using matrixes, you can combine these

operations in any order to produce the desired mapping for a particular image.

The new current transformation matrix will contain the product of the matrix refer-

enced by the [pMarrix parameter and the previous CTM (CTM = M * CTM).

Page 177 of 239

452 lRANSFORM_ elM

Parameters

Return Value

Comments

See Also

IpDevice
Points to a PDEVICE structure specifying the destination device.

IpMatrix
Points to a three-by-three array of32-bit fixed values specifying the new trans_
fannation matrix.

The return value is TRUE if the escape is successful. Otherwise, it is FALSE.

Applications should not make any assumptions about the initial value of the CTM.

When a driver transforms a primitive using a transformation matrix modified by
the application, it shou ld ignore the clipping rectangle specified by GO!. Applica­
tions should specify the desired clipping rectangle using the SET_CLIP _BOX
escape.

Drivers supporting this escape must also implement the SET_CLIP _BOX,
SA VE_CTM, and RESTORE_CTM escapes.

Page 178 of 239
F‘

452 TRANSFOHIiL CTM
‘1

Parameters

Return Value

Comments

See Also

IpDevice

Points to a PDEVICE structure specifying the destination device.

prarrix

Points to a three-by-three array of 32-bit fixed values specifying the new trans-
formation matrix.

The return value is TRUE if the escape is successful. Odierwise, it is FALSE.

Applications should not make any assumptions about the initial value of the CTM‘

When a driver transforms a primitive using a transformation matrix modified by
the application, it should ignore the clipping rectangle specified by GD]. Applica_
[ions should specify the desired clipping rectangle using the SET_CLIP_BOX
escape.

Drivers supporting [his escape must also implement the SETHCLIP+BOX.
SAVEiCTM. and RESTORE_CTM escapes.

RESTORE_CTM, SET_CL1P_BOX, SAVE_CTM

Page 178 of 239

Graphics-Driver Types and
Structures

Chapter 12

12.1 Types 455
12.2 Structures.. 456

Page 179 of 239

f——

Graphics-Driver Types and
Structures

Chapter 12

12.1 Types .. 455
12.2 Stmctures.. 456

Page 179 of 239

12.1 Types

Chapler 12 Graphics-Driver Types and Siruciures 455

This chapter describes the types and structures used by Microsoft Windows
graphics-driver functions and escapes.

[" addition to the standard C-Ianguage data types (such as char, iot, long, and
void), the graphics functions and escapes use the following data types.

Type

BOOL

BYTE
CHAR

COLORREF

DWORD

FARPROC

FIXED

HANDLE

HWND

lNT
LONG

LPPDEVICE

LPSTR

LPVOID

PBRUSH

PCOLOR

Description

Specifics a 16-bit Boolean vaJue. its value can be eirher TRUE or
FALSE.

Specifics an unsigned, 8-bit integer.

Specifies an signed, 8-bil integer.

Specifics a 32-bit RGB color value or a logical color index. For
RGB color values, the high-order byte is zero, and bytes 0, I, and 2
represent tbe intensity levels of blue, green, and red, respectively.
For logical color indexes, the high-order byte is OxFF, and the low­
order, 16 bits represents the index.

Specifies a unsigned, 32-bit integer.

Specifics a far pointer to a fUllction that uses the Pascal calling con­
vention.

Specifies a fixed, real number in 32 bits. The high-order 16 bits
specifies the integer portion, and the low-order 16 bits specifies the
fraction expressed as an integer value. To calculate the actual frac­
tion value, di vide the low-order J 6 bits by 65536.

Specifies a 16 ~bit handle representing objects such as pens, brushes,
bitmaps, and global memory.

Specifies a 16-bit window handle.

Specifies a signed, 16-bit integer.

Specities a signed, 32-bil integer.

Specifies a far pointer to a PDEVICE structure.

Specifies a far pointer to an array of bytes.

Specifies a far pointer to an undetermined type. Function parameters
having this type must be cast to a specific far pointer type before
being used.

Specifies a integer, an array, or a structure containing device­
specific infonnation about a physical brush that a driver can use
to till figures and draw scan lines. The exact size and content of a
PBRUSH type depends entirely on the driver.

Specifies a 32-bit integer representing physical~color values. A
physical color specifies a given color on the device. The range and
meaning of physical color values depends entirely on the driver.

Page 180 of 239

Chapter 12 Graphics-Driver Types and Structures 455

--"""'.

This chapter describes the types and structures used by Microsoft Windows

graphicsedn'ver functions and escapes.

in addition to the standard C-language data types (Such as char. int. long, and
void). the graphics functions and escapes use the following data types.

Type

BOOL

BYTE

CHAR

COLORREF

DWORD

FARPROC

FIXED

HANDLE

HWND

INT

LONG

LPPDEVICE

LPSTR

LPVOID

PBRUSH

PCOLOR

Description

Specifies a 16bit Boolean value. Its value can be either TRUE or
FALSE.

Specifies an unsigned, 8-bit integer.

Specifies an signed. 8—bit integer.

Specifies a 32-bit RGB color value or a logical color index. For
RGB color values, the high—order byte is zero, and bytes 0, l. and 2
represent the intensity levels of blue. green, and red, respectively.
For logical color indexes, the high-order byte is OxFF, and the low-
order. 16 bits represents the index.

Specifies a unsigned, 32-bit integer.

Specifies a far pointer to a function that uses the Pascal calling con-
venlion.

Specifies a fixed, real number in 32 bits. The highuorder l6 bits
specifies the integer portion, and the low-order 16 bits specifies the
fraction expressed as an integer value. To calculate the actual frac-
tion value. divide the low—order 16 bits by 65536.

Specifies a 16-bit handle representing objects such as pens. brushes,
bitmaps. and global memory.

Specifies a 16-bit window handle.

Specifies a signed, 16-bit integer.

Specifies a signed, 32-bit integer.

Specifies a far pointer to a PDEVICE structure.

Specifies a far pointer to an array of bytes.

Specifies a far pointer to an undetermined type. Function parameters
having this type must be cast to a specific far pointer type before
being used.

Specifies a integer. an array, or a structure containing device-
specific information about a physical brush that a driver can use
to fill figures and draw scan lines. The exact size and content of a
PBRUSl-l type depends entirely on the driver.

Specifies a 32-bit integer representing physical-color values. A
physical color specifies a given color on the device. The range and
meaning of physical color values depends entirely on the driver.

Page 180 of 239

456 BANDINFOSTRUCT

Type

PPEN

SHORT

VOID

WORD

Description

Specifies an integer, array, or structure containing device-specific
infonnation that a driver can use to draw lines and borders. The
exact size and content of a physical pen depend entirely on the
driver.

Specifies a signed, 16-bit integer.

Specifies an empty type. This type is typically used with functions
that return no value.

Specifies an unsigned, 16-bit integer.

When LP prefix is applied to a data type, the resulting type specifies a far pointer
to a variable having the specified data type.

12,2 Structu res
The following is an alphabetical listing of the structures used by the graphics
drivers and functions. All structures must be packed. This means that you cannot
align structure members on 16-bit boundaries by default.

BANDINFOSTRUCT

Members

typedef struet _BANDINFOSTRUCT
BOOl fGraphics;
BOOl fText;
RECT rcGraphics;

BANDINFOSTRUCT ;

The BANDINFOSTRUCT structure, used by banding drivers, specifies whether
graphics and text are on the page.

fGraphics
Specifies whether graphics are on the page. It is nonzero if graphics are on the
page; zero if not.

IText
Specifies whether text is on the page. It is nonzero if text is on the page; zero if
not.

rcGraphics
Specifies a RECT structure that contains the coordinales for the rectangle
bounding all nontext graphics on the page.

Page 181 of 239

hi i
456 BAN DINFDSTRUCT

Ty pe Description

PPEN Specifies an integer, array, or structure containing device-specific
information that a driver can use to draw lines and borders. The

exact size and content ofa physical pen depend entirely on the
dflven

' SHORT Specifies a signed. 16»bit integer.

VOID Specifies an empty type. This type is typically used with functions
that return no value.

WORD Specifies an unsigned, 16-bit integer.

When LP prefix is applied to a data type, the resulting type specifies a far pointer

to a variable having the specified data type.

12.2 Structures

The following is an alphabetical listing of the structures used by the graphics

drivers and functions. All structures must be packed. This means that you cannot
align structure members on 16-bit boundaries by default.

BANDINFOSTRUCT

typedef struct _BANDINFDSTRUCT {
BOOL fGraphics:
BOOL fText;
RECT rcGraphics;

} BANDINFOSiRUCT;

The BANDINFOSTRUCT structure, used by handing drivers. specifies whether
graphics and text are on the page.

Members fGraphics

Specifies whether graphics are on the page. It is nonzero if graphics are on the
page; zero if not.

fText

Specifies whether text is on the page. It is nonzero if text is on the page; zero if
not.

rcGraphics

Specifies a RECT structure that contains the coordinates for the rectangle
bounding all nontext graphics on the page.

i i Page 181 of 239

comments

See Also

BININFO

Members

See Also

BINNAMES

BINNAMES 457

A driver receives BANDINFOSTRUCT structures from applications that call the
BANDINFO escape. Information in the structure helps the driver optimize the
banding process. For example, if there are no graphics, the driver may be able to
skip the graphics bands. If the bounding rectangle for graphics is smaller than the
page, the driver has the option of banding only the specified graphics rectangle
rather than the whole page.

BANDINFO, NEXTBAND

typedef struct tagBININFO
sho rt BinNumber;
short NbrofBins;
sho rt Reserved[4];

BININFO;

The BININFO structure contains information about a printer's paper bins.

BinNumber
Identifies the current or previous paper bin.

NbrofBins
Specifies the number of paper bins avai lable.

Reserved
Reserved; do not use.

GETSETPAPERBINS

typedef struct tagBINNAMES (
short BinList[CBINMAX] ;
char PaperNames[CBINMAX][CCHB1NNAME]

) BINNAMES;

The BINNAMES structure conlains paper-bin identifiers and names. The struc­
ture consists of two arrays: an array of 16-bit values specifying the paper-bin iden­
tifiers, and an array of paper-bin names.

Page 182 of 239

BINNAMES 457

_flfl_______—h——-————————————————————————_____—____—————————————————————————_____________________

comments A driver receives BANDINFOSTRUCT structures from applications that call the
BANDINFO escape. Information in the structure helps the driver optimize the
banding process. For example, if there are no graphics, the driver may be able to

skip the graphics bands. If the bounding rectangle for graphics is smaller than the

page, the driver has the option of banding only the specified graphics rectangle
rather than the whole page.

See AISD BANDINFO, NEXTBAND

BININFO

typedef struct tagBININFO l
short BinNumber;
short NbrofBins;
short Reservedi4]:

l BINlNFO:

The BININFO structure contains information about a primer" 5 paper bins.

Members BinNumber

Identifies the current or previous paper bin.

NbrofBins

Specifies the number of paper bins available.

Reserved

Reserved; do not use.

See Also GETSETPAPERBINS

BINNAMES

typedef struct tagBlNNAMES f
short BinListECBINMAX]:

char PaperNamesICBlNMAX][CCHBINNAME]
l BINNAMES;

The BINNAMES structure contains paper-bin identifiers and names. The struc-

ture consists of two arrays: an array of 16-bit values specifying the paper-bin iden-

tifiers. and an array of paper-bin names.

Page 182 of 239

458 BITMAPINFO
~--~~---

Members

See Also

BITMAPINFO

Members

Comments

BinList
Specifies an array of 16-bit values specifying the paper-bin identifiers.
The number of elements in the array (CBINMAX) must be specified by
the IplnData parameter of the ENUMPAPERBINS escape.

PaperNames
Specifies an array of null-tenninated paper-bin names . The number of elements
in the array (CBINMAX) must be specified by the IplnData parameler of the
ENUMPAPERBINS escape. The maximum number of characters in each name
(CCHBINNAME) is 24.

ENUMPAPERBINS

typedef struet tagBITMAPINFO (
BITMAPINFOHEAOER bmiHeader;
RGBQUAD bmiColors[l];

) BITMAPINFO;

The BITMAPINFO structure fully defines the dimensions and color information
for a Windows 3.xdevice-independem bitmap.

bmiHeader
Specifies a BITMAPINFOHEADER structure that contains information about
the dimensions and color format of a device-independent bitmap.

bmiColors
Specifies an array of RGBQUAD structures that define the colors in the bitmap.

A Windows 3.x device-independent bitmap consists of two distinct parts: a BIT­
MAPINFO data structure that describes the dimensions and colors of the bitmap,
and an array of bytes that define the pixels of the bitmap. The bits in the array are
packed together, but each scan line must be padded with zeros to end on a 32-bit
boundary. Segment boundaries can appear anywhere in the bitmap, however. The
origin of the bitmap is the lower-left comer.

The blBitCount member of the BITMAPINFOHEADER structure detennines
the number of bils which define each pixel and the maximum number of colors in
the bitmap. This member may be set to any of the following values.

Page 183 of 239

..

See Also

Value

BITMAPINFOHEAOER 459

Meaning

The biunap is monochrome, and the bmiColors member mUSI contain two
entries. Each bit in the bitmap aITay represents a pixel. [f the bit is clear, the
pixel is displayed with the color of the first entry in the bmiColol"s rnem·
her; if the bit is set, the pixel has the color of the second entry in the table.

4 The bitmap has a maximum of 16 colors, and the bmiColors member con­
tains up to 16 entries. Each pixel in the bilmap is represented by a 4-bit
index into the color table.

For example, if the ftrst byte in the bitmap is OxlF, then the byte represents
two pixels. The first pixel contains the color in the second table entry, and
the second pixel contains the color in the sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the bmiColors member
contains up to 256 entries. In this case, each byte in the array represents a
single pixeL

24 The biunap has a maximum of 2**24 colors. The bmiColors member is
NULL, and each three bytes in the bitmap array represen ts the relative in·
tensities of blue, green, and red, respectively, of a pixel.

Alternatively, for functions that use device-independent bitmaps, the bmiColors
member can be an array of 16-bit unsigned integers that specify an index into the
currently realized, logical palette instead of explicit ROB values. Tn this case, an
application using the bitmap must caU device-independent bitmap functions with
the wColorUse parameter set to DlB]AL_COLORS.

DeviceBitmapBits, SetDlliitsToDevice, StretchDlliits

BITMAPINFOHEADER
typedef struet tagBITMAPINFOHEADER

DWDRD biSize;
DWORD biWidth;
DWORD biHeight;
WORD biPlanes;
WORD bi Bi tCount;
DWORD biCompression;
DWORO biSizeImage;
DWORD biXPelsPerMeter ;
DWORO biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrlmportant;

BITMAPINFDHEADER;

/* bmih *1

The BITMAPINFOHEADER structure contains information about the dimen­
sions and color fonn at of a Windows 3.x device-independent bitmap .

Page 184 of 239

Value

BITMAPINFDHEADEH 459
f"——————————-————'—

Meaning

24

The bitmap is monochrome. and the bmiCnlors member must contain two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the bmiColors mem-
ber; ifthe bit is set, the pixel has the color of the second entry in the table.

The bitmap has a maximum of 16 colors. and the bmiColors member (20114
tains up to 16 entries. Each pixel in the bitmap is represented by a 4-bit
index into the color table.

For example. if the first byte in the bitmap is OxlE then the byte represents
two pixels. The first pixel contains the color in the second table entry, and
the second pixel contains the color in the sixteenth table entry.

The bitmap has a maximum of 256 colors, and the bmiColors member
contains up to 256 entries. in this case. each byte in the array represents a
single pixel.

The bitmap has a maximum of 2**24 colors. The bmiCnlors member is
NULL. and each three bytes in the bitmap array represents the relative in-
tensities of blue, green, and red. respectively. of a pixel.

Alternatively. for functions that use device-independent bitmaps. the bmiColors
member can be an array of 16-bit unsigned integers that specify an index into the

currently realized, logical palette instead of explicit RGB values. In this case, an

application using the bitmap must call device-independent bitmap functions with
the wColorUse parameter set to DIB_PAL_COLORS.

See Also DeviceBitmapBits, SetDIBitsToDevice, StretcthIBits

BITMAPINFOHEADER

typedef struct tagBITMAPINFGHEADER { /* bmih */
DHORD
DNORD
DHORD
HORD
WORD
DHORD
DNORD
DNORD
DNORD
DNORfl
DNORD

biSize;
btwidth;
DiHeight;
biPlanes:
biBitCount;

biCempression;
biSizeImage;
biXPelsPerMeter;
biYPelsPerMeter:
biClrUsed;

biClrlmportant;
l BITMAPINFDHEADER;

The BITNIAPINFOHEADER structure contains information about the dimen-

sions and color format of a Windows 3.x device-independent bitmap.

Page 184 of 239

460 BITMAPINFOHEADER

Members biSize
Specifies the number of bytes required by the BITMAPINFOHEADER
structure.

biWidth
Specifies the width of the bitmap in pixels.

biHeight
Specifies the height of the bitmap in pixels.

biPlanes
Specifies the number of planes for the target device and must be set to 1.

biBitCount
Specifies the llumber of bits per pixel. This value must be 1, 4,8. or 24.

biCompression
Specifies the type of compression for a compressed bitmap. It can be one of the
following values.

Value

BCRLE4

biSizelmage

Meaning

Specifies that the bitmap is not compressed.

Specifies a run-length encoded (RLE) fannat for bitmaps with 8 bits
per pixel. The compression fonnat is a 2-byte format consisting of a
count byte followed by a byte containing a color index .

Specifies a run-length encoded fonnat for bitmaps with 4 bilS per
pixel. The compression format is a two-byte format consisting of a
count byte followed by two word-length color indexes.

Specifies the size in bytes of the image. It is valid to set this member to zero if
the bitmap is in the BeRGB format. The size must then be calculated explicitly.

biXPelsPerMeter
Specifies the horizontal resolution in pixels-per-meter of the target device for
the bitmap. An application can use this value to select a bitmap from a resource
group that best matches the characteristics of the current device.

biYPelsPerMeter
Specifies tile vertical resolution in pixels-per-meter of the target device for the
bitmap.

biCIrUsed
Specifies the number of color indexes in the color table actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

hiClrImportant
Specifies the number of color indexes that are considered important for display­
ing the bitmap. If this value is zero, then all colors are important.

Page 185 of 239

460 BITMAPINFDHEADER

Members biSize

Specifies the number of bytes required by the BITMAPINFOHEADER
structure.

biWidth

Specifies the width of the bitmap in pixels.

biHeight

Specifies the height of the bitmap in pixels.

biPlanes

Specifies the number of planes for the target device and must be set to 1.

biBitCount

Specifies the number of bits per pixel. This value must be 1, 4, 8, or 24.

biCompression

Specifies the type of compression for a compressed bitmap. It can be one of the
following values.

Value Meaning

BLRGB Specifies that the bitmap is not compressed.

BI_RLE8 Specifies a run-length encoded (RLE) format for bitmaps With 8 bits
per pixel. The compression format is a 2—byte format consisting of a
count byte followed by a byte containing a color index.

Bl_RLE4 Specifies a run—length encoded format for bitmaps with 4 bits per
pixel. The compression format is a two-byte format consisting of a
count byte followed by two word-length color indexes.

biSizeImage

Specifies the size in bytes of the image. It is valid to set this member to zero if

the bitmap is in the BLRGB format. The size must then be calculated explicitly.
biXPelsPerMeter

Specifies the horizontal resolution in pixels-per-meter of the target device for
the bitmap. An application can use this value to select a bitmap from a resource
group that best matches the characteristics of the current device.

biYPelsPerMeter

Specifies the vertical resolution in pixels—per—meter of the target device for the
bitmap.

biClrUsed

Specifies the number of color indexes in the color table actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

biClrImportant

Specifies the number of color indexes that are considered important for display
ing the bitmap. If this value is zero, then all colors are important.

Page 185 of 239

comments

BITMAPINFOHEAOEA 461

The BITMAPINFO structure combines the BITMAPINFOHEADER structure
and a color table to provide a complete deflnition of the dimensions and colors of
a Windows 3.x device-independent bitmap.

Bitmap-Compression Formats
Windows supports fonnats for compressing bitmaps that derme their colors with
8 bits per pixel and with 4 bits per pixel. Compression reduces the disk and mem­
ory storage required for the bitmap.

When the biCompression member is set to BCRLE8, the bitmap is compressed
using a run-length encoding format for an 8-bit bitmap. This format may be com­
pressed in either of two modes:

• Encoded

• Absolute

Both modes can occur anywhere throughout a single bitmap.

Encoded mode consists of two bytes : the fIrst byte specifies the number of con­
secutive pixels to be drawn using the color index contained in the second byte.
In addition, the first byte of the pair can be set to zero to indicate an escape that
denotes an end of line, end of bitmap, or a delta. The interpretation of the escape
depends on the value of the second byte of the pair. The following list shows the
meaning of the second byte.

Value

o
I

2

Meaning

End of line.

End of bitmap.

Delta. The two bytes following the escape contain unsigned values indicat­
ing the horizontal and vertical offsct of the next pixel from the current
position.

Absolute mode is signaled by the first byte set to zero and the second byte set to
a value between 03H and OFFH. In absolute mode, the second byte represents the
number of bytes which follow, each of which contains the color index of a single
pixel. When the second byte is set to 2 or less, the escape has the same meaning
as in encoded mode. In absolute mode, each run must be aligned on a 16-bit
boundary.

The following example shows the hexadecimal values of an 8-bit compressed
bitmap:

03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01
02 78 00 00 09 IE 00 01

Page 186 of 239

BITMAPINFUHEADEH 461
f—--—-——_-——-—--_—_

comments The BITMAPINFO structure combines the BITMAPINFOHEADER structure

and a color table to provide a complete definition of the dimensions and colors of
a Windows 3.x device-independent bitmap.

Bitmap-Compression Formats

Windows supports formats for compressing bitmaps that define their colors with
8 bits per pixel and with 4 bits per pixel. Compression reduces the disk and mem-

ory storage required for the bitmap.

When the biCompression member is set to BLRLES, the bitmap is compressed

using a run-length encoding format for an 8-bit bitmap. This format may be com-
pressed in either of two modes:

I Encoded

I Absolute

Both modes can occur anywhere throughout a single bitmap.

Encoded mode consists of two bytes: the first byte specifies the number of con-
secutive pixels to be drawn using the color index contained in the second byte.
In addition, the first byte of the pair can be set to zero to indicate an escape that

denotes an end of line. end of bitmap, or a delta. The interpretation of the escape
depends on the value of the second byte of the pair. The following list shows the

meaning of the second byte.

Value Meaning

0 End of line.

1 End of bitmap.

2 Delta. The two bytes following the escape contain unsigned values indicat-
ing the horizontal and vertical offset of the next pixel from the current
position.

Absolute mode is signaled by the first byte set to zero and the second byte set to
a value between 03H and OFFH. ln absolute mode, the second byte represents the

number of bytes which follow, each of which contains the color index of a single

pixel. When the second byte is set to 2 or less, the escape has the same meaning
as in encoded mode. In absolute mode, each run must be aligned on a 16-bit

boundary.

The following example shows the hexadecimal values of an 8-bit compressed

bitmap:

03 84 85 96 0E) 93 45 56 67 00 92 78 68 62 05 @1
@2 7B 96 06 @91E GB 61

Page 186 of 239

462 BITMAPINFOHEAOER

This bitmap would expand as follows (two-digit values represent a color index for
a single pixel):

04 04 04
06 06 06 06 06
45 56 67
78 78
move cu rrent position 5 right and 1 down
78 78
end of line
IE IE IE I E IE IE IE IE IE
end of RLE bitmap

When the biCompression member is set to BLRLE4, the bitmap is compressed
using a run-length encoding format for a 4-bit bitmap, which also uses encoded
and absolute modes . In encoded mode, the first byte of the pair contains the nUm­
ber of pixels to be drawn using the color indexes in the second byte. The second
byte contains two color indexes, one in its high-order nibble (that is, its low-order
four bits) and one in its low-order nibble. The first of the pixels is drawn using the
color specified by the high-order nibble, the second is drawn using the color in the
low-order nibble, the third is drawn with the color in the high-order nibble, and so
on, until all the pixels specified by the first byte have been drawn.

In absolute mode, the first byte contains zero, the second byte contains the number
of color indexes that follow, and subsequent bytes contain color indexes in their
high- and low-order nibbles, one color index for each pixel. In absolute mode,
each run must be aligned on a word boundary. The end-of-line, end-of-bitmap,
and delta escapes also apply to BLRLE4.

The following example shows the hexadecimal values of a 4-bit compressed
bitmap:

03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01
04 78 00 00 09 IE 00 01

This bitmap would expand as follows (single-digit values represent a color index
for a single pixel):

040
o 6 0 6 0
4 5 5 6 6 7
787 8
move current position 5 ri ght and 1 down
787 8
end of line
I E I E I E I E I
end of RLE bi tmap

Page 187 of 239

462 BITMAPINFUHEADER
______________________———_______‘_“

This bitmap would expand as follows (two-digit values represent a color index f0r
a single pixel):

B4 04 BA
06 06 65 BE 66
45 56 67
78 78

move current position 5 right and 1 down
78 78
end of line
1E 1E 1E 1E 1E 1E 1E 1E 1E

end of RLE bitmap

When the biCompression member is set to BI_RLE4, the bitmap is compressed
using a run—length encoding formal for a 4-bitbit1nap, which also uses encoded

and absolute modes. In encoded mode, the first byte of the pair contains the num—
ber of pixels to be drawn using the color indexes in the second byte. The second

byte contains two color indexes, one in its high-order nibble (that is, its low»order

four bits) and one in its low-order nibble. The first of the pixels is drawn using the
color specified by the high-order nibble, the second is drawn using the color in the

low-order nibble, the third is drawn with the color in the high-order nibble, and so

on, until all the pixels specified by the first byte have been drawn.

1n absolute mode, the first byte contains zero, the second byte contains the number

of color indexes that follow, and subsequent bytes contain color indexes in their

high- and low-order nibbles. one color index for each pixel. in absolute mode,
each run must be aligned on a word boundary. The end-of—line, end-of-bitrnap,
and delta escapes also apply to BI_RLE4.

The following example shows the hexadecimal values of a 4-bit compressed

bitmap:

63 B4 35 95 36 96 45 56 67 08 B4 78 BB 02 BS 31
G4 78 BB 96 39 1E 38 $1

This bitmap would expand as follows (single-digit values represent a color index

for a single pixel):

o e c rrent position 5 right and 1 down
7 8 ?
end of line
1 E 1 E 1 E l E 1

end of RLE bitmap

6
6
8
u

8

Page 187 of 239

COlORTABlCSTRUCT 463

CHAR RANGE

Members

See Also

typedef struet tagCHARRANGE
BYTE ehFirst;
BYTE ehLast;

} CHARRANGE;

The CHARRANGE structure contains character codes for the first and last charac­
ters in a range of characters.

chFirst
Specifies the character code of the first character.

chLast
Specifies the character code of the last character.

GETEXTENTTABLE

COLORTABLE_STRUCT

Members

See Also

typedef ,truet tagCOLORTABLE_STRUCT
WORO Index;
LONG rgb;

} COLORTABLE_STRUCT;

The COLORTABLE_ STRUCT structure contains color infonnation for an entry
in the color table.

Index
Specifies the color-table index . Color table entries start at zero for the first entry.

rgb
Specifies an RGB color value.

SETCOLORTABLE,GETCOLORTABLE

Page 188 of 239

CDLDBTABLL STRUCT 463

CHARRANGE

typedef struct tagCHARRANGE {
BYTE chFirst;
BYTE chLast;

] CHARRANGE;

The CHARRANGE structure contains character codes for the first and last charac-

ters in a range of characters.

Members chFirst.

Specifies the character code of the first character.

chLast

Specifies the character code of the last character.

See Also GETEXTENTTABLE

CULDRTABLL STRUCT

typedef struct tagCOLGRTABLE_STRUCT {
WORD Index:
LONG rgb;

J COLORTABLE_STRUCT:

The COLORTABLE. STRUCT structure contains color infon'nation for an entry
in the color table.

Members Index

Specifies the color-table index. Color table entries start at zero for the first entry.

rgb

Specifies an RGB color value.

See Also SETCOLORTABLE, GETCOLORTABLE

Page 188 of 239

464 OEVMOOE

DEVMODE

Members

typedef struct _devicemode { 1* dm */
char dmDeviceName(CCHDEVICENAME);
WORD dmSpecVersion;
WORD dmDriverVersion;
WORD dmSize;
WORD dmDriverExtra;
DWORD dmFields;
short dmOrientation;
short dmPaperSize;
short dmPaperLength;
short dmPaperWidth;
short dmScale;
short dmCopies;
short dmDefaultSource;
short dmPrintOuality;
short dmColor;
short dmDuplex;
short dmYResolution:
short dmTTOption;

) DEVMDDE;

The DEVMODE structure contains information about a printer driver's initial­
ization and environment. An application passes this structure to the Device­
Capabilities and ExtDeviceMode functions,

dmDeviceName
Specifies the name of the device the driver supports- for example, "HP
LaserJet ill" in the case of the Hewlett-Packard LaserJet IlL

dmSpcc Version
Specifies the version number of the DEVMODE structure, For Windows
version 3.1, this value should be Ox30A.

dmDriverVersion
Specifies the assigned printer driver version number.

dmSize
Specifies the size, in bytes, of the DEVMODE structure. (This value does
not include the optional dmDriverData member for device-specific data,
which can follow the structure.) If an application manipulates only the driver­
independent portion of the data, it can use this member to find out the length
of the structure without having to account for different versions.

dmDriverExtra
Specifies the size, in bytes, of the optional dmDriverData member for device­
specific data, which can follow the structure. If an application does not use
device-specific information, it should set this member to zero.

Page 189 of 239

464 DEVMDDE

DEVMDDE

Members

typedef struct ,devicemode { /* dm */
char deeviceName[CCHDEVICENAME];
WORD depeeVersion;
WORD deriverVersion;
NORD deize;
WORD deriverExtra;
DNORD deields:
short dmOrientatioh;
short deaperSize;
short deaperLength;
short deaperWidth;
short decale;
short dmCopies;
short deefauitSource;
short derintOuality;
short dmColor;

short deuplex;
short deResolution;
short meTOption:

} DEVMDDE;

The DEVMODE structure contains information about a printer driver’s initial-

ization and environment. An application passes this structure to the Device-

Capabilities and ExtDeviceMode functions.

deeviceName

Specifies the name of the device the driver supportswrfor example, “HP
LaserJet ill” in the case of the Hewlett-Packard LaserJet HI.

depecVersion
Specifies the version number of the DEVMODE structure. For Windows
version 3.1, this value should be 0X30A.

deriverVersion

Specifies the assigned printer driver version number.

deize

Specifies the size, in bytes, of the DEVMODE structure. (This value does
not include the optional deriverData member for device—specific data,

which can follow the structure.) If an application manipulates only the driver-

independent portion of the data, it can use this member to find out the length
of the structure withOut having to account for different versions.

deriverExtra

Specifies the size, in bytes, of the optional deriverData member for device-

specific data, which can follow the structure. If an application does not use
device-specific information, it should set this member to zero.

Page 189 of 239

DEVMODE 465

dmFields
Specifies a value that indicates which of the remaining members in the
DEVMODE structure have been initialized. It can be any combination
(or it can be none) of the following values.

Constant Value

DM_ ORIENTATION OxOOOOOOIL

DM]APERSIZE OxOOOOOO2L

DM]APERLENGTH OxOOOOO04L

DM]APERWIDTH OxOOOOO08L

DM_SCALE OxOOOOOlOL

DM_COPIES OxOOOO100L

DM_DEFAULTSOURCE OxOOOO200L

DM]RINTQUALITY OxOOOO400L

DM_COLOR OxOOOO800L

DM_DUPLEX OxOO01000L

DM_YRESOLUTION OxOO02000L

DM_ TTOPTION OxOO04000L

A printer driver supports only those members that are appropriate for the
printertechnology.

dmOrientation
Specifies the orientation of the paper. It can be either
DMORIENLPORTRAIT or DMORIENT_LANDSCAPE.

dmPaperSize
Specifies the size of the paper to print on. This member may be set to zero if
the length and width of the paper are specified by the dmPaperLength and
dmPaperWidth members, respectively. Otherwise, the dmPaperSize member
can be set to one of the following predefined values.

Value

DMPAPER_ lOxI4

DMPAPER_ l1xI7

DMPAPER_A3

DMPAPER_A4

DMPAPER_A4_EXTRA

DMPAPER_A4_TRANSVERSE

DMPAPER_A4SMALL

DMPAPER_A5

DMPAPER_B4

DMPAPER_B5

Meaning

10 x 14 inches
II x 17 inches

A3 297 x 420 millimeters
A4 210 x 297 millimelers
A4 Extra 9.27 x 12.69 inches
Transverse 297 x 210 millimeters

A4 Small 210 x 297 millimeters
AS 148 x 210 millimelers
B4 250 x 354 millimelers
B5 182 x 257 millimelers

Page 190 of 239

466 DEVMDDE

Value

DMPAPER_CSHEET

DMPAPER_DSHEET

DMPAPER_ENV _10

DMPAPER_ENV _ II

DMPAPER_ENV _ 12

DMPAPER_ENY _14

DMPAPER_ENV 3
DMPAPER_ENV _C5

DMPAPER_ENV _DL

DMPAPER_ENV _MONARCH

DMPAPER_ESHEET

DMPAPER_EXECUTfYE

DMPAPER_FIRST

DMPAPER]OLIO

DMPAPER_ LAST

DMPAPER_LEDGER

DMPAPER_LEGAL

DMPAPER_LEGAL_EXTRA

DMPAPER_LETTER

DMPAPER_LETTER_EXTRA

Meaning

C size sheet

D size sheet

Envelope #10 4.125 x 9.5 inches

Envelope #11 4.5 x 10.375 inches

Envelope #12 4.75 x II inches

Envelope #14 5 x 11.5 inches

Envelope #93.875 x 8.875 inches

Envelope C5 162 x 229 millimeters

Envelope DL 110 x 220 miUimeters

Envelope Monarch 3.875 x 7.5 inches

E size sheet

Executive 7.25 x 10.5 inches

Letter 8.5 x 11 inches

Folio 8.5 x 13 inches

Letter Extra Transverse 12 x 9.5 inches

Ledger 11 x 17 inches

Legal 8.5 x 14 inches

Legal Extra 9.5 x 15 inches

Letter 8.5 x II inches

Letter Extra 9.5 x 12 inches

DMPAPER_ LETTER_EXTRA_TRANSVERSE

DMPAPER_LETTER_ TRANSVERSE

DMPAPER_LETTERSMALL

DMPAPER_NOTE

DMPAPER_QUARTO

DMPAPER_STATEMENT

DMPAPER_TABLOID

DMPAPER_TABLOID_EXTRA

DMPAPER_USER

dmPaperLength

Letter Extra Transverse 12 x 9.5 inches
Letter Transverse] 1 x 8.5 inches

Letter Small 8.5 x II inches

Note 8.5 x 11 inches

Quarto 215 x 275 millimeters

Statement 5.5 x 8.5 inches

Tabloid 11 x 17 inches

Tabloid Extra 11.69 x 18 inches

User defined

Specifies a paper length, in tenths of a millimeter. This member overrides the
paper length specified by the dmPaperSize member, either for custom paper
sizes or for such devices as dot-matrix printers that can print on a variety of
page sizes.

dmPaperWidth
Specifies a paper width, in tenths of a millimeter. This member overrides the
paper width specified by the dmPaperSize member.

-

Page 191 of 239
l:

456 DEVMDDE
—__—————-———.———______

Value Meaning_.—————___.—___—fi___‘

DMPAPER7CSHEET

DMPA PER_ DSH EET

DMPAPERJEN Vfi 1 0

DMPAPER_ENV_11

DMPA PER_ENV_] 2

DMPAPERgENV71 4

D MPAPERWENV _9

D MFA PERMENviCS

DMPAPER_ENV_DL

DMPAPERiENV'MONARCH

DMPAPER_ES HEET

DMPAPERiEXECUTIVE

DMPAPER_FIR S T

DMPAPER_FOLIO

DMPAPER_LAST

DMPAPER_LEDG ER

DMPAPERiLEGAL

D MPAPER_LEGAL_EXTRA

DMPAPERiLETTER

DMPA PER_LETTERiEXTRA

C size sheet

D size sheet

Envelope #10 4.125 x 9.5 inches

Envelope #11 4.5 x 10.375 inches

Envelope #12 4.75 x 11 inches

Envelope #14 5 x 11.5 inches

Envelope #9 3.875 x 8.875 inches

Envelope C5 162 x 229 millimeters

Envelope DL 110 x 220 millimeters

Envelope Monarch 3.875 x 7.5 inches
E size sheet

Executive 7.25 x 10.5 inches

Letter 8.5 x 11 inches

Folio 85 X 13 inches

Letter Extra Transverse 12 X 9.5 inches

Ledger 11 X 17 inches

Legal 8.5 x 14 inches

Legal Extra 9.5 x 15 inches
Letter 8.5 x l 1 inches

Letter Extra 9.5 x 12 inches

DMPAPER_LETTER_EXTRA _TRANS VERSE

DMPAPER_LETTER_TRANSVERSE

DMPAPERiLETTERSMALL

DMPA PER_NOTE

DMPAPER_QUARTO

DMPA PER_STATEMENT

DMPAPER_TABLOLD

DMPAPERwTABLO ID_EXTRA

DMPAPERAUSER

deaperLength

Letter Extra Transverse 12 x 9.5 inches

Letter Transverse 11 x 8.5 inches

Letter Small 8.5 x 11 inches

Note 8.5 x 11 inches

Quarto 215 X 275 millimeters
Statement 5.5 x 8.5 inches

Tabloid 11 x 17 inches

Tabloid Extra 11.69 x 18 inches

User defined

Specifies a paper length, in tenths of a millimeter. This member overrides the

paper length specified by the deaperSize member, either for custom paper

sizes or for such devices as dot-matrix printers that can print on a variety of
page sizes.

deaperWidth
Specifies a paper width, in tenths of a millimeter. This member overrides the

paper width specified by the deaperSize member.

Page 191 of 239

DEVMDDE 467

dmScale
Specifies the factor by which the printed output is to be scaled. The apparent
page size is scaled from the physical page size by a factor of dmScalell 00. For
example. a letter-size paper with a dmScale value of 50 would contain as much
data as a page of size 17x22 inches because the output text and graphics would
be half their original height and width .

dmCopies
Specifies the number of copies printed if the device supports multiple-page
copies.

dmDefaultSource
Specifies the default bin from which the paper is fed. The application can over­
ride this value by using the GETSETPAPERBINS escape. This member can be
one of the foUowing values.

DMBIN_AUTO
DMBIN_CASSEITE
DMBIN_ENVELOPE
DMBIN_ENYMANUAL
DMBIN_FIRST
DMBIN_LARGECAPACITY
DMBIN_LARGEFMT
DMBIN_LAST
DMBIN_LOWER
DMBIN_MANUAL
DMBIN_MlDDLE
DMBIN_ONL YONE
DMBIN_SMALLFMT
DMBIN_TRACTOR
DMBIN_UPPER

A range of values is reserved for device-specific bins. To be consistent with
initialization information, the GETSETPAPERBINS and ENUMPAPERBINS
escapes use these values.

dmPrintQuality
Specifies the printer resolution. Following are the four predefined
device-independent values:

DMRES_HIGH (-4)
DMRES_MEDIUM (-3)
DMRES_LOW (-2)
DMRES_DRAFT (-I)

If a positive value is given, it specifies the number of dots per inch (DPI) and is
therefore device dependent.

If the printer initializes the dmYResolution member. the dmPrintQuality
member specifies the x-resolution of the printer, in dots per inch.

Page 192 of 239

DEVMDDE 457_______—._—_—_—_——______

decale

Specifies the factor by which the printed output is to be sealed. The apparent

page size is scaled from the physical page size by a factor of decale/ 100. For
example, a letter—size paper with a decale value of 50 would contain as much
data as a page of size 17x22 inches because the, output text and graphics would
be half their original height and width.

dmCopies

Specifies the number of copies printed if the device supports multiple-page
copies.

deefaultSource

Specifies the default bin from which the paper is fed. The application can over—
ride this value by using the GETSETPAPERBLNS escape. This member can be

one of the following values.

DMBDLAUTO
DMBIN_CASSETTE

DMBIN_ENVELOPE
DMB [N_ENVMANUAL

DMBvaFIRST
DMB[N_LARGECAPACITY
DMBLN_LARGEFMT

DMBIN_LAST
DMB IN_LOWER
DMB TN~MANUAL

DMBIN_MIDDLE
DMBINAONLYONE

DMBIN,SMALLFMT
DMB iN_TRACTOR
DMBINJUPPER

A range of values is reserved for device-specific bins. To be consistent with
initialization information. the GETSETPAPERBINS and ENUMPAPERBLNS

escapes use these values.

derintQuality

Specifies the printer resolution. Following are the four predefined
device—independent values:

DMRESJiIGH (—4)
DMRES_MEDIUM (—3)

DMRES_LOW (—2)

DMRES_DRAFT (-1)

If a positive value is given, it specifies the number of dots per inch (DPI) and is

therefore device dependent.

If the printer initializes the deResolution member, the derintQuality

member specifies the x—resolution of the printer, in dots per inch.

Page 192 of 239

468 DEVMOOE

Comments

See Also

dmColor
Specifies whether a color printer is to render color or monochrome output.
Possible values are:

DMCOLOR_COLOR (1)
DMCOLOR_MONOCHROME (2)

dmDuplex
Specifies duplex (double-sided) printing for printers capable of duplex printing.
This member cao be one of the following values:

DMDUP _SIMPLEX (I)
DMDUP _HORIZONTAL (2)
DMDUP _VERTICAL (3)

dm YResolution
Specifies the y-resolution of the printer, in dots per inch. If the printer initializes
this member, the dmPrintQuality member specifies the x-resolution of the
printer, in dots per inch .

dmTTOption
Specifies how TrueType fonts should be printed. It can be one of the following
values.

Value

DMTCBITMAP

DMIT_DOWNLOAD

Meaning

Prints TrueType fonts as graphics. This is the default ac­
tion for dot-matrix printers.

Downloads TrueType fonts as son fonts. This is the de­
fault action for Hewlett-Packard printers that use Printer
Control Language (PCL).

Substitutes device fonts for TrueType fonts. This is the
default action for PostScript printers.

An application can retrieve the paper sizes and names supported by a printer by
calling the DeviceCapabilities function with the DC_PAPERS, DC]APERSIZE,
and DC_PAPERNAMES values.

Before setting the value of the dmTTOption member, applications should find
out how a printer driver can use TrueType fonts by calling the DeviceCapabilities
function with tbe DC_TRUETYPE value.

Drivers can add device-specific data immediately following the DEVMODE
structure.

DeviceCapabilities, ExtDeviceMode

Page 193 of 239

458 DEVMDDE

Comments

See Also

dm Color

Specifies whether a color printer is to render color or monochrome output.
Possible values are:

DMCOLOILCOLOR (1)
DMCOLOR_MONOCHROME (2)

deuplex

Specifies duplex (double-sided) printing for pri nters capable of duplex printing,
This member can be one of the following values:

DMDUP_SH\/IPLEX (1)

DMDUPiHORIZONTAL (2)

DMDUP_VERTICAL (3)

deResolution

Specifies the y-resolution of the printer, in dots per inch. If the printer initializes

this member, the derintQuality member specifies the x—resolution of the

printer. in dots per inch.

meTOption

Specifies how TrueType fonts should be printed. It can be one of the following
values.

Value Meaning

DMTT_BITMAP Prints TrueType fonts as graphics. This is the default ac—
tion for dot-matrix printers.

DMTT_DOWNLOAD Downloads TrueType fonts as soft fonts. This is the de-
fault action for Hewlett-Packard printers that use Printer
Control Language (PCL).

DMT“T_SUBDEV Substitutes device fonts for TrueType fonts. This is the
default action for PostScript printers.

An application can retrieve the paper sizes and names supported by a printer by

calling the DeviceCapabilities function with the DC_PAPERS, DCiPAPERSIZE,
and DC_PAPERNAMES values.

Before setting the value of the meTOption member, applications should find

out how a printer driver can use TrueType fonts by calling the DeviceCapabiljties
function with the DC_TRUETYPE value.

Drivers can add device-specific data immediately following the DEVMODE
structure.

DeviceCapabllities, ExtDeviceMode

Page 193 of 239

DRAWMODE

Members

DRAWMDDE 469

typedef struet tagDRAWMODE (
short Rop2; I*binary-raster operations*/
short bkMode; I*background mode*!
peDLOR bkColor; I*physical background color*/
peDLOR TextColor; I*physical text (foreground) color*!
short TBreakExtra;l*number of extra pixels to add to line*/
short BreakExtra; I*pixels per break: TBreakExtra/BreakCount*1
short BreakErr; I*running error term*/
short BreakRem; I*remaining pixels: TBreakExtra%8reakCount*/
short BreakCount; I*number of breaks in the line*/
short CharExtra; I*extra pixels for each character*/
COLORREF lbkColori l*logical background color*/
COLORREF lTextColor; I*logical text (foreground) color*!
DRAWMODE;

The DRA WMODE structure contains infomlation used during output, such as
drawing lines, filling interiors, and writing text.

Rop2
Specifies a binary-raster operation value. The value, in the range I to 16, deter­
mines how to combine source and destination colors. This member can be one
of the foUowing values.

Value

R2_B LACK (I)

R2_NOTMERGEPEN (2)

R2_MASKNOTPEN (3)

R2_NOTCOPYPEN (4)

R2_MASKPENNOT (5)

R2_NOT (6)

R2_XORPEN (7)

R2_NOTMASKPEN (8)

R2_NOTXORPEN (10)

Meaning

Black: O.
lnverse of the bitwise OR of the source and destina­
tion colors: NOT (Source OR Dest).

Bitwise AND of the destination and the inverse of
the source: Dest AND (NOT Source).

Inverse of the source color: NOT Source.

Bitwise AND of the source and the inverse of the
destination: Source AND (NOT Dest).

Inverse of the destination color: NOT Dest.

Bitwise exclusive OR of the destination and source:
Dest XOR Source.

Inverse of the bitwise AND of the destination and
source colors: NOT (Dest AND Source).

Bitwise AND of the destination and source colors:
Dest AND Source.

Inverse of the bitwise exclusive OR of the destina­
tion and source colors: NOT (Dest XOR Source),

Destination color: Dest.

Page 194 of 239

DHAWMUDE 459

DRAWMODE

typenef struct tagDRAwM
short Rop2:
short bkMode;
PCOLOR bkColor;
PCDLDR TextColor;
short TBreakExtra;
short BreakExtra:
short BreakErr:
short BreaRRem;
short BreakCount;
short CharExtra:
COLORREF LbkColor;
COLDRREF LTextColor;

} DRAWMUDE;

ODE l

/*binary-ra5ter operations*/
[*background mode*/
{*physical background color*/
{*physical text (foreground) color*/
/*number of extra pixels to add to line*/
/*pixels per break: TBreakExtra/BreakCount*l
l*running error term*/
/*remain1ng pixels: TBreakExtra%BreakCount*/
[*number of breaks in the line*/

/*extra pixels for each character*/
[*logical background color*/
/*logical text (foreground) color*/

The DRAWMODE structure contains information used during output, suoh as

drawing lines, filling interiors, and writing text.

Members Rop2

Specifies a binary-raster operation value. The value, in the range 1 to l6, deter-
mines how to combine source and destination colors. This member can be one

of the following values.

Value

R2_BLACK (l)

R2_N OTIWERGEPEN (2)

R2_MASKNOTPEN (3)

RZ‘NOTCOF‘YPEN (4)

R2_MASKPENNOT (5)

R2_NOT (6)

R2_XORPEN (7)

R2_NOTMASKPEN (8)

R2_MASKPEN 9

RZfiNOTXORPEN (10)

RZvNOP 1 1

Meaning

Black: 0.

Inverse oi' the bitwise OR of the source and destina-

tion colors: NOT (Source OR Dest).

Bitwise AND of the destination and the inverse of

the source: Dest AND (NOT Source).
Inverse of the source color: NOT Source.

Bitwise AND of the source and the inverse of the

destination: Source AND (NOT Dest).

Inverse of the destination color: NOT Dest.

Bitwise exclusive OR of the destination and source
Dest XOR Source.

Inverse of the bitwise AND of the destination and

source colors: NOT (Dest AND Source).

Bitwise AND of the destination and source colors:
Dest AND Source.

Inverse of the bitwise exclusive OR of the destina-

tion and source colors: NOT (Dest XOR Source).

Destination color: Dest.

Page 194 of 239

470 DRAWMDDE

Value Meaning

Rl_MERGENOTPEN (12) Bitwise OR of the destination and the inverse of the
source: Dest AND (NOT Source).

R2_COPYPEN (13)

Rl_MERGEPENNOT (14)

R2_MERGEPEN (15)

bkMode

Source color: Source.
Bitwise OR of the source and the inverse of the
destination: Source OR (NOT Dest).

Bitwise OR of the source and the destination:
Source OR Desl.

White: I.

Specifies whether the background for styled lines, hatched brushes, brushes
used for interiors and scan lines, bitmaps, and text is given the current back­
ground color or left unchanged. This member can be one of the following
values.

Value

TRANSPARENT (I)

OPAQUE (2)

TRANSPARENT! (4)

bkColor

Meaning

Leaves destination background unchanged.

Replaces destination background with the color specified
by the BackgroundColor member.

Leaves destination background unchanged, but before
copying the source to destination, removes pixels fTom
the source that have the current background col Of.

Contains a pbysical color value specifying the background color.

TextColor
Contains a physical color value specifying the text (foreground) color.

TBreakExtra
Specifies the total amount of space (in pixels) to add to the break characters in a
line of text. TBreakExtra is set to zero if no justification is required.

BreakExtra
Specifies the amount of space (in pixels) to add to each break character in a line
of text. This value is equal to TBreakExtra divided by BreakCount.

BreakErr
Specifies the running error term: the amount of space (in pixels) not yet add­
ed to break characters in a line of text. This member is used in conjunction
with the BreakRem member to determine which break characters recei ve
the additional pixels specified by BreakRem. Initially, BreakErr is set to
(BreakCount)/2+ 1.

Page 195 of 239

Ft;
470 DRAWMEIDE_.——_.——____—____.________

Value Meaning

R2_MERGENOTPEN (12) Bitwise OR of the destination and the inverse of the
source: Desi AND (NOT SourCe).

R2_COPYPEN ('13) Source color: Source.

RziMERGEPENNOT (I4) Bitwise OR of the source and the inverse of the

destination: Source OR (NOT Dest).

R2_MERGEPEN (15) Bitwise OR of the source and the destination:
Source OR Dest.

R2_WHITE (16) White: 1.

bkMode

Specifies whether the background for styled lines, hatched brushes. brushes

used for interiors and scan lines, bitmaps. and text is given the current back-
ground color or left unchanged. This member can be one of the following
values.

Value Meaning

TRANSPARENT (1) Leaves destinatiOn background unchanged.

OPAQUE (2) Replaces destination background with the color specified
by the BackgroundColor member.

TRANSPARENTI (4) Leaves destination background unchanged. but before
copying the source to destination, removes pixels from
the source that have the current background color.

bk Color

Contains a physical color value specifying the background color,
TextColor

Contains a physical color value specifying the text (foreground) color.
TBreakExtra

Specifies the total amount of space (in pixels) to add to the break characters in a
line of text. TBreakExtra is set to zero if no justification is required.

BreakExtra

Specifies the amount of space (in pixels) to add to each break character in a line
of text. This value is equal to TBreakExtra divided by BreakCounl.

BreakErr

Specifies the running error term: the amount of space (in pixels) not yet add-
ed to break characters in a line of text. This member is used in conjunction
with the BreakRem member to determine which break characters receive

the additional pixels specified by BreakRem. Initially, BreakErr is set to
('BreakCount)/2+1.

Page 195 of 239

See Also

EXTTEXTDATA 471

BreakRem
Specifies the amount of space (in pixel s) to add to one or more break characters
in a line of text. This space is in addition to any extra space specified by the
BreakExtra member and is intended to be distributed evenly across the line.
The BreakRem value is equal to the remainder after dividing TBreakExtra
by BreakCount.

BreakCounl
Specifies the number of break characters in a line of text. If the TBreakExtra
member is not zero, each break character must be drawn wider than its normal
width. The BreakExtra member specifies the extra width (in pixels). The
BreakRem member may also specify additional pixels for one or more break
characters.

CharExtra
Specifies amount of space (in pixels) to add between characters in a line of text.

LbkColor
Contains an COLOR REF value specifying the logical background color.

LTextColor
Contains an COLORREF value specifying the logical text (foreground) color.

BitBlt, DeviceBitmapBits, ExtTextOut, Output, Pixel, SetDrnitsToDevice,
SlrBIt, StretehBI!, SlretehDrnits

EXTTEXTDATA

Members

typedef struet t ag EXTTEXTDATA [
short nSi ze;
LPAPPEXTTEXTDATA lplnData;
LPFONTlNFO lpFont;
LPTEXTXFORM lpXForm;
LPDRA WMOD E lpDrawMode;

EXTTEXTDATA ;

The EXTTEXTDATA structure contains a complete set of infonnation describ­
ing the text to be drawn.

nSize
Specifies the size in bytes of the structure.

IpInData
Points to a l6-bit variable that contains the number of bytes pointed to by the
/pOutData parameter in an GETEXTENDEDTEXTMETRICS escape.

Page 196 of 239

EX'ITEXTDATA 471
__—-——_——-_—-—__——"———

BreakRem

Specifies the amount of space (in pixels) to add to one or more break characters

in a line of text. This space is in addition to any extra space specified by the
BreakExtra member and is intended to be distributed evenly across the. line.

The BreakRem value is equal to the remainder after dividing TBreakExtra
by BreakCount.

BreakCount

Specifies the number of break characters in a line of text. If the TBreakExtra
member is not zero, each break character must be drawn wider than its normal

width. The BreakExtra member specifies the extra width (in pixels). The

BreakRem member may also specify additional pixels for one or more break
characters.

CharExtra

Specifies amount of space (in pixels) to add between characters in a line of text.

LbkColor

Contains an COLORREF value specifying the logical background color.

LTextColor

Contains an COLORREF value specifying the logical text (foreground) color.

See Also BitBlt. DeviceBitmapBits. ExtTextOut, Output. Pixel. SetDIBitsToDevice,
StrBlt. StretchBlt. StretcthBits

EXTTEXTDATA

typedef struct tagEXTTEXTDATA 1
short nSize;

LPAPPEXTTEKTDATA lplnData;
LPFONTINFO lpFDnt;
LPTEXTXFURM)pXFcrm:
LPDRAWMODE ipDrawMode;

l EXTTEXTDATA:

The EXTTEXTDATA structure contains a complete set of information describ—

ing the text to be drawn.

Members nSize

Specifies the size in bytes of the structure.

lpInI)ata
Points to a 16-bit variable that contains the number of bytes pomted to by the

lpOmData parameter in an GETEXTENDEDTEXTMETRICS escape.

Page 196 of 239

472 EXTTEXTDATA

IpFont
Points to a FONTINFO structure specifying a physical font. The FONTINFO
structure has the following [ann:

typedef struct tagFONTINFO
short dfType;
short dfPoints;
short dfVertRes ;
short dfHorizRes;
short dfAscent:
short dfInterna l Leading ;
short dfExterna l Le ad in g;
char dfltalic;
char dfUnderline :
char dfStrikeOut;
short dfWeight;
char dfCharSet ;
short dfPixWidth ;
short dfPixHeight;
char dfPitchAndFamily;
short dfAvgWidth;
short dfMaxWidth ;
char dfFirstChar;
ch ar dflastChar;
ch ar dfDefaultChar;
char dfBreakChar;
short dfWidthBytes ;
long dfDev;ce;
long dfFace;
long dfBitsPointer;
long dfBitsOffset;
char dfReserved:
1* The following fields present only for Windows 3.x fonts *1
long dfFl ags ;
short dfAspace;
sho r t dfBspace;
short dfCspace;
long dfColorPointer;
long dfReservedI[4];

FONTINFO;

IpXForm
Points to a TEXTXFORM structure specifying additional attributes of the text.
The TEXTXFORM structure has the following form:

typedef struct tag TEXTXFORM {
short txfHeight;
short txfWidth;
short txfEscapement;
short txfOrientation;
short txfWeight;
char txfltalic;

Page 197 of 239

rm.

£72 EXTTEXTDATA

IpFont
Points to a FONTINFO structure specifying a physical font. The FONTINFO
structure has the following form:

typedef struct tagFONTlNFO [
short
short
short
short
short
short
short
Char
char
char
short
char
short
short
char
short
short
char
char
char
char
short

long
long
long
long
char

dnype;
dfPoints:
deertRes;
deorizRes:
descent;
denternalLeading;
dexternalLeading;
detalic;
denderline:
detrikeUut;
dfweight;
dfCharSet;
dfPixNidth;
dfPixHeight;
dfPitchAndFamily;
thngidth;
dfMaxNidth;
thirstChar;
deastChar;
deefaultChar;
dereakChar;
deidthBytes;
deevice;
dfFace;
deitsPointer;
deitsOfiset;
deeserved:

/* The following fields present
long
short
short
short

long
long

dfFlags;
desoace;
despace;
dszpace;
dfColorPointer;
deeserved1[4];

1 FONTINFD;

leForm
Points to a TEXTXFORM structure specifying additional attributes of the text.

only for Windows 3.x fonts *I

The TEXTXFORM structure has the following form:

typedef struct tagTEXTXFORM {
short
short
short
short
short
char

tfoeight;
txfWidth;
tXfEscapement;
tforientation;
txfWeight;
txfItalic;

Page 197 of 239

See Also

char txfUnderline
char txfStrikeOut
char txfOutPrecis on:
char txfClipPrecis;on;
short txfAccelerator;
short txfOverhang;

TEXTXFORM;

IpDrawMode

EXTTEXTMETRIC 473

Points to a DRA WMODE structure specifying infonnation used to draw the
text. The DRA WMODE structure has the following form:

typedef struct tagDRAWMODE {
short Rop2; I*binary-raster operations*1
short bkMode; I*background mode*1
peDLOR bkColor; I*phys;cal background color*/
peDLOR TextColor; I*physical text (foreground) color*/
short TBreakExtra;l*number of extra pixels to add to line*!
short BreakExtra; I*pixels per break: TBreakExtra/BreakCount*/
short BreakErr; I*running error term*1
short BreakRem; I*remain;ng pixels: TBreakExtra%BreakCount*/
short BreakCount; I*number of breaks in the line*1
short CharExtra; I*extra pixels for each character*1
COLORREF lbkColor; I*log;cal background color*1
COLORREF lTextColor; I*logical text (foreground) color*1
DRAWMODE;

DRA WMODE, FONTINFO, GETEXTENDEDTEXTMETRICS, TEXTXFORM

EmEXTMETRIC
typedef struct tagEXTTEXTMETRIC {

short etmSize;
short etmPointSize;
short etmOrientation;
short etmMasterHeight;
short etmMinScale;
short etmMaxScale;
short etmMas terUni ts;
short etmCapHeight;
short etmXHeight;
short etmLowerCaseAscent:
short etmUpperCaseDescent;
short etmSlant;
short etmSuperScript;
short etmSubScript;
short etmSuperScriptSize;

Page 198 of 239

474 EXTTEXTMETRIC

Members

short etmSub5criptSize;
short etmUnderlineOffset:
short etmUnderlineWidth:
short etmDoubleUpperUnderlineOffset;
short etmDoubleLowerUnderlineOffset;
short etmDoubleUpperUnderlineWidth;
short etmDoubleLowerUnderlineWidth;
short etmStrikeOutOffset;
short etmStrikeOutWidth;
WORD etmKernPairs ;
WORD etmKernTracks;

EXTTEXTMETRIC;

The EXTTEXTMETRIC contains extended infonnation about a font.

elmSize
Specifies the size (in bytes) of the structure.

etmPointSize
Speci fies the point size of the font.

etmOrienlation
Specifies t.he orientation.

etmMasterHeighl
Specifies the master height.

etmMinSca le
Specifies the smallest reasonable scaling factor for the font.

etmMaxScale
Specifies the largest reasonable scaling fac tor for the font.

etmMasterUni!s
Specifies the master units.

e!mCapHeight
Specifies the height of capital letters.

etmXHeigh!
Specifies a representative height for the font.

etmLowerCaseAscent
Specifies the ascent height for lowercase letters.

e!mUpperCaseDescenl
Specifies the ascent height for uppercase leners.

elmS Ian!
Specifies the slant of characters in the font.

etmSuperScript
Specifies whether the font supports superscripts.

etmSubScript
Specifies whether the font supports subscripts.

Page 199 of 239

See Also

FONTINFO

fONTINfO 475

etmSuperScriptSize
Specifies the size of the superscript characters.

etmSubScriptSize
Specifies the size of the subscript characters.

etm UnderlineOffset
Specifies the offset from the baseline to the underline.

etmUnderlineWidth
Specifies the width of an underline.

etmDoubleUpperUnderlineOffset
Specifies the offset from the baseline to the upper portion of a double underline.

etmDoubleLowerUnderlineOffset
Specifies the offset from the baseline to the lower portion of a double underline.

etmDoubleUpperUnderlineWidth
Specifies the width of the upper portion of a double underline.

etmDoubleLowerUnderlineWidth
Specifies the width of the lower portion of a double underline.

etmStrikeOutOffset
Specifies the offset from the baseline of the strikeout line.

etmStrikeOutWidth
Specifies the width of the strikeout line.

etmKernPairs
Specifies the number of kerning pairs.

etmKernTracks
Specifies the number of kerning tracks.

GETEXTENDEDTEXTMETRlCS

typedef st ruet tagFONTINFO
s hort dfTyp e ;
short dfPoints;
short dfV ertRes;
short dfHorizRes;
short dfAscent;
short dfInternalLeading;
short dfExternalLeading;
char dfItalic:
char dfUnderline;

Page 200 of 239

476 FONTINFO

Members

char dfStrikeOut;
sho rt dfWeight;
char dfCharSet;
sho rt dfPixWidth;
short dfPixHeight;
char dfPitchAndFamily;
short dfAvgWidth;
short dfMaxWidth ;
cha r dfFirstChar;
char dflastChar;
char dfDefaultChar ;
char dfBreakChar;
short dfWidthBytes;
long dfDev1ce;
long dfFace;
long dfBitsPointer ;
long dfBitsOffset;
char dfReserved;
1* The following fields present only for Windows 3.x fonts *1
long dfFlags;
short dfAspace ;
short dfBspace;
short dfCspace ;
long dfColorPointer :
long dfReservedl[41;

} FONT! NFO;

The FONTINFO structure contains information about a physical font. Depending
on whether the font is realized by GDI or by a device driver, the FONTINFO
structure may be immediately followed by a character width table and by font
bitmap or vector information.

The FONTINFO structure contains optional members (dfFlags through
dlReservedl) that are present only if the font has been designed for Windows 3.x.
[fGD! realizes a font for a driver, the font's corresponding FONTINFO structure
will not include these optional members unless the RC_BIGFONT bit is set in the
dpRaster member of the driver's GDIINFO structure.

dfI'ype
Specifies font type. The low-order byte, reserved for exclusive GO! use, is a
combination of the followi ng values.

Value

PF _RASTER_TYPE (OxOOOO)

PF _VECTOR_TYPE (OxOool)

PF _ BITS_IS_ADDRESS (Oxoo04)

Meaning

Font is a raster font.
Font is a vector font.

Indicates that the dfBitsOffset member
specifies the absolute memory address of
the font bitmap or vector information.

Page 201 of 239

T‘.
476 FONTlNFO—__—_—_—.————————————____

Members

char detrikeGut:
short dfheight;
char dfCharSet;
short dfPixwidth;
short dfPixHeight;
char dfPitchAndFamily:
short devgwidth;
short dfMaxwidth:
char dfFirstChar:
char deastChar;
char deefaultChar;

char dereakChar;
short dfwidthBytes:
long deevice;
long dfFace;
long deitsPointer;
long deitsOffset;
Char deeserved;
/* The following fields present only for Windows 3.x fonts *I
long dfFlags:
short despace:
short despace:
short dszpace;
long dfColorPointer:
long deeserveol[4J;

} FDNTINFO:

The FONTINF0 structure contains information about a physical font. Depending
on whether the font is realized by GDI or by a device driver, the FONTINFO

structure may be immediately followed by a character width table and by font
bitmap or vector information.

The FONTINFO structure contains optional members (dfFlags through
deeservedl) that are present only if the font has been designed for Windows 3..1.

It GDI realizes a font for a driver the font s corresponding FONTINFO structure
will not include these optional members unless the RC_BIGFONT bit13 set in the

dpRaster member of the driver’s GDIINFO structure.

dtType

Specifies font type. The 10w~order byte. reserved for exclusive GDI use, is a
combination of the following values.

Vmue Mmmhm

PF_RASTER_TYPE (OXOOOO) Font is a raster font.

PF_VECTOR_TYPE (OXOOOIJ Font is a vector font.

PF_BITS_[S_ADDRESS (0x0004) Indicates that the deitsOffset member

specifies the absolute memory address of
the font bitmap or vector information.

Page 201 of 239

..

FONTINFO 477

Value Meaning

Font has been realized by the device driver.

All other values in the low-order byte are reserved. In particular, the value
Ox0008 in the dIType member is reserved for use with Asian fonts.

The high-order byte is reserved for device use. GO! never inspects the high
byte. If GDI realizes the font, it sets this byte to zero. If the device driver real­
izes the font, it can set this byte to any value.

dll'oints
Specifies the point size at which this character set looks best.

dfVertRes
Specifies the vertical resolution (dots-per-inch) at which this character set was
digiti zed.

dtHorizRes
Specifies the horizontal resolution (dots-per-inch) at which thi s character set
was digi tized.

dfAscent
Specifies the distance from the top of a character definition cell to the baseline
of the typographical font. It is useful for aligning the baseline of fonts of differ­
ent heights.

dUnternalLeading
Specifies the amount of leading inside the bounds set by the dll'ixHeight
member. Accent marks may occur in this area.

dlExternalLeading .
Specifies the amount of exira leading that the designer requests the application
add between rows . Since this area is outside of the font proper, it contains no
marks and will not be altered by text output calls in either the OPAQUE or
TRANSPARENT mode.

dfltalic
Specifies whether the character-definition data represents an italic font. The
low-order bit is I if the flag is set. All other bits are zero.

dlUnderline
Specifies whether the character-definition data represents an underlined font.
The low-order bit is 1 if the flag is set. All other bits are zero.

dfStrikeOut
Specifies whether the character definition data represents a struck-out font. The
low-order bit is 1 if the flag is set. All other bits are zero.

dtweight
Specifies the weight of the characters in the character definition data, on a
scale from 1-1000. A value of 400 specifies regular weight type; 700 is bold;
and so on .

Page 202 of 239

FDNTINFD 477__——-—————I—————-—-—————-——-

Value Meaning

PF_DEVICE_REALIZED (OXOOBD) Font has been realized by the device driver.

All other values in the low-order byte are reserved. In particular, the value
OXOOOS in the de‘ype member is reserved for use with Asian fonts.

The high-order byte is reserved for device use. GDI never inspects the high
byte. lf GD] realizes the font, it sets this byte to zero. If the device driver real-
izes the font. it can set this byte to any value.

dl'Poinls

Specifies the point size at which this character set looks best.

deertRes

Specifies the vertical resolution (dots-per—inch) at which this character set was

digitized.

dfl-lorizRes

Specifies the horizontal resolution (dots—per—inch) at which this character set
was digitized.

descent

Specifies the distance from the top of a character definition cell to the baseline
of the typographical font. It is useful for aligning the baseline of fonts of differ—

ent heights.

dflnternalLeading

Specifies the amount of leading inside the bounds set by the dfPixHeight
member. Accent marks may occur in this area.

dexternalLeading ‘

Specifies the amount of extra leading that the designer requests the application
add between rows. Since this area is outside of the font proper, it contains no

marks and will not be altered by text output calls in either the OPAQU'E or
TRANSPARENT mode.

detalic

Specifies whether the character—definition data represents an italic font. The

low-order bit is] if the flag is set. All other bits are zero.

denderline

Specifies whether the character-definition data represents an underlined font.

The low-order bit is I if the flag is set. All other bits are Zero.

dI'StrikeOut

Specifies whether the character definition data represents a struck-out font. The

low-order bit is 1 if the flag is set. All other bits are zero.

deeight

Specifies the weight of the characters in the character definition data, on a
scale from I—IOOO. A value of 400 specifies regular Weight type; 700 is bold;
and so on.

Page 202 of 239

478 FONTINFO

J

dfCharSet
Specifies the character set defined by thi s font. 1l can be one of the fOllowing
values.

Value Meaning

o
2

255

ANSI character set

Symbol character set
OEM hardware font

dfpixWidth
Specifies the width of all characters in the font.

For vector fonts, tbe dfpix Widtb member is the width of the grid on which the
font was digitized.

For raster fonts, dfpixWidth is the width (in pixels) of each character bitmap.
If that member is zero, the font has variable-width characters and tbese widths
are specified in the character-width table immediately following this structure.

dfPixHeight
Specifies the height of all characters in the font.

For vector fOnis, the dfpixHeight member is the height of the grid on which the
font was digitized.

For raster fonts, dtPixHcight is the height (in scan lines) of each character
bitmap.

dfPitchAndFamily
Specifies the pitch and font family. The pitch specifies whether the characters
in the font have the same width or variable widths. The font family indicates, in
a general way, the look of a font.

The dfpitchAndFamily member can be a combination of the fOllowing values.

Value

OxOI

FF _ROMAN (OxIO)

FF _SWISS (Ox20)

FF .-MODERN (Ox30)

FF _SCRIPT (Ox40)

FF _DECORATIVE (Ox50)

Meaning

Variable-pitch font. If this value is not given, the
font. is fixed pilch.
Proportionally spaced fonts with serifs.

Proportionally spaced foms without serifs.

Fixed-pi lch fonts .

Cursive or script fonts.

Novelty fonts.

If the high-order 4 bits is set to FF _DONTCARE (OxOO), the fOn! belongs to no
specific family .

Page 203 of 239

473 FDNTINFD

dfCharSet

Specifies the character set defined by this font. It can be one of the following
values.

Value Meaning

t) ANSI character set

2 Symbol character set
255 OEM hardware font

dfPixWidth

Specifies the width of all characters in the font.

For vector fonts. the dfPixWidth member is the width of the grid on which the

font was digitized.

For raster fonts, dfPixWidth is the width (in pixels) of each character bitmap.
If that member is zero. the font has variable-width characters and these widths

are specified in the character-width table immediately following this structure.

dfPixHeight

Specifies the height of all characters in the font.

For vector fonts. the dfPixHeight member is the height of the grid on which the

font was digitized.

For raster fonts, dfPixHeight is the height (in scan lines) of each Character

bitmap.

dfPitchAndFamily

Specifies the pitch and font family. The pitch specifies whether the characters
in the font have the same width or variable widths. The font family indicates. in

a general way. the look of a font.

The dfPitchAndFamily member can be a combination of the following values.

Value Meaning

0x01 Variable—pitch font. If this value is not given, the
font is fixed pitch.

F'F_ROMAN (0x10) Proportionally spaced fonts with serifs.

FF_SW]SS (0x20) Preportionally spaced fonts without serifs.

FF_MODERN (0x30) Fixed~pilch fonts.

FF_SCR.IPT (0x40) Cursive or script fonts.

FFiDECORATIVE (0x50) Novelty fonts.

If the high-order 4 bits is set to FF_DONTCARE (0x00). the font belongs to no

specific family.

Page 203 of 239

FONTINFO 479

dfAvgWidth
Specifies the width of characters in the font. For fixed-pitch fonts, this is the
same as dIPixWidth. For variable-pitched fonts, this is tbe width of the charac­
ter "X."

dlMaxWidtb
Specifies the maximum pixel width of any character in the fOOl. For fixed-pitch
fonts, this is simply dIPixWidth.

dfFirstChar
Specifies the first character code defined by this font. Character definitions are
stored only for the characters actually present in a font, so thi s field should be
used when calculating indexes into the character-width table following this
structure.

dfLastChar
Specifies the last character code defined by this font. Notice that all ule charac­
ters with codes between the dfFirstChar and dfLastChar member must be pre­
sent in the character-width table.

dIDefaultChar
Specifies the default character. A device driver uses this character as a substi­
tute for any character in a string that is out of the range of the dfFirstChar
through dfLastChar members. The character is given relative to dfFirstChar
so that the actual value of the default character is the Sum of dIDefaultChar
and dfFirslChar. Ideally, the dIDefaultChar member should be a visible char­
acter in the current font, for example, a period (.).

dffireakChar
Specifies the word-break character. Applications use this character the separate
words when wrapping or justifying lines of text. The character is given relative
to dfFirstChar so that the actual value of the word-break character is the sum
of the dffireakChar and dfFirstChar members. In many fonts, dffireakChar
is zero and dfFirstChar is 32. Thi s means that the word-break character value
is 32, an ASCn space.

dfWidthBytes
Specifies the number of bytes in each row of the font bitmap (rasler fonts) . This
field is not used for vector fonts. The dfWidthBytes member is always an even
quantity so that rows of the bitmap start on 16-bit boundaries.

dIDevice
Specifies the offset from the beginning of the segment containing the FONT­
INFO structure to the null-terminated ASCII string specifying the device name.
For a generic font, this value will be NULL.

dfFace
Specifies the offset from the beginning of the segment containing the FONT­
INFO structure to the null-temlinated ASCn string specifying the name of the
font face.

Page 204 of 239

480 FONTINFO

dfBitsPointer
Specifies the absolute machine address of the bitmap. This is set by GO!. The
dfBitsPointer member is guaranteed to be even.

dfBitsOffset
Specifies the offset from the beginning of the segment containing the FONT­
INFO structure to the beginning of the bitmap information.

If the PF _BITS_IS_ADDRESS bit is set in dfType, dfBitsOffset is an absolute
address of the bitmap or vector information. For example, this bit is set if the
font bitmap or vector information is in ROM.

For raster fonts, dfBitsOffset points to a sequence of bytes that make up the bit­
maps for each character in the font.

For vector fonts , dfBitsOffset points to a string of bytes or words (depending
on the size of the grid on which the font was digitized) that specifies the strokes
for each character of the font. The dfBitsOffset member must be even.

dfReserved
Reserved ; do not use. This member is present only for raster fonts . In Windows
2.x fonts, this member ensures that the character-width table (which immedi­
ately follows this member) starts on a 16-bit boundary.

dfFJags
Specifies the format of the font bitmap information. It can be one of the follow­
ing values.

Value Meaning

FSF _FIXED (OxooOI)

FSF]ROPORTlONAL (OxOO02)

FSF _ABCFTXED (Oxoo04)

FSF _ABCPROPORTlONAL (Oxoo08)
FSF _ ICOLOR (OxOOIO)

FSF_ 16COLOR (Ox0020)

FSF _256COLOR (Ox0040)

FSF _RGBCOLOR (Ox0080)

FOn[is fixed pitch .

Font is proportional pitch
Pont is an ABC fixed font. The advance
width for each characler in the font is
the sum of the dfAspace, dffispace, and
dfCspace members.
Font is an ABC proportional font.
Font is one color.

Font is 16 color.

Font is 256 color.
Font is ROB color.

This member is present only for Windows 3 .x fonts.

dfAspace
Specifies the global A space, if any . The dfAspace member is the distance from
the current position to the left edge of the bitmap. This member is present only
for Windows 3.x fonts.

Page 205 of 239

480 FDNTINFD_____———___—..___________

deitsPointer

Specifies the absolute machine address of the bitmap. This is set by CD]. The
deitsPointer member is guaranteed to be even.

deitsOffset

Specifies the offset from the beginning of the segment containing the FONT-

INFO structure to the beginning of the bitmap information.

If the PF_BITS_IS_ADDRESS bit is set in leype, deitsOfi'set is an absolute
address of the bitmap or vector information. For example, this bit is set if the
font bitmap or vector information is in ROM.

For raster fonts, deitsOffset points to a sequence of bytes that make up the bit-
maps for each character in the font.

For vector fonts, deitsOffset points to a string of bytes or words (depending
on the size of the grid on which the font was digitized) that specifies the strokes
for each Character of the font. The deitsOffset member must be even.

deeserved

Reserved: do not use. This member is present only for raster fonts. In Windows
2.x fonts, this member ensures that the character—width table (which immedi-

ately follows this member) starts on a 16-bit boundary.

dfFlags

Specifies the format of the font bitmap information. It can be one of the follow—
ing values.

Value Meaning

FSF_F1XED (UXUDOI) Font is fixed pitch.

FSF_PROPORTIONAL (OXOOOZ) Font is proportional pitch

FSFVABC‘FIXED (0x0004) Font is an ABC fixed font. The advance
width for each character in the font is

the sum of the despaee, despace, and
dszpace members.

FSF_ABCPROPORTIONAL (0x0008) Font is an ABC proportional font.
FSF_ l COLOR (0x00 [0) Font is one color.

FSF_16COLOR (0x0020) Font is '16 color.

FSP_256COLOR (0110040) Font is 256 color.

FSFiRGBCOLOR (OXOOSO) Font is RGB color.

This member is present only for Windows 3.x fouts.

despace

Specifies the global A Space, if any. The despace member is the distance from

the current position to the left edge of the bitmap. This member is present only
for Windows 3.x fonts.

Page 205 of 239

Comments

FONTINFO 481

dfBspace
Specifies the global B space, if any. The dt'Bspace member is the width of the
character. This member is present only for Windows 3.x fonts.

dfCspace
Specifies the global C space, if any. The dfCspace member is the distance from
the right edge of the bitmap to the new current position. This member is present
only for Windows 3.x fonts.

dfColorPointer
Specifies the offset to the color table (if any) for color fonts. This member is
present only for Windows 3.x fonts, however, it is not presently used and
should always be set to NULL.

dfReservedl
This member is not used. Tllis member is present only for Windows 3.x fonts.

The FONTINFO structure may be immediately followed by one or more of the
foll owing items.

Item

Character-width table

Bitmaps

Vectors

Font name

Device name

Description

Specifies the widths of each character as well as specifies the
offset to the corresponding bitmap or vector infonnation.

Specifies the bits defining the shape of the characters in a
raster font. The size of this item is whatever length the total
bitmaps occupy. Each row of a faster bitmap must start on a
16-bit boundary. This implies that the end of each row must
be padded to an even length .
Specifies the set of coordinates that define the shape of the
characters in a vector font.

Specifies a null-tenninated ASCll character sLTing specifying
the name of the font. The size of this field is the length of the
string plus a null character.

Specifies a null~te rrninated ASCII character string specifying
the name of the device if this font file is for a spec ific device.
The size of this field is the length of the string plus a nu ll
character.

All device drivers must support Windows 2.x fonts_ If a device driver supports
Windows 3.x fonts, it must set the RC_BIGFONT bit in the dpRaster member
of its GDIINFO structure. Printer drivers can call the GetDeviceCaps function
(GDI.80), and check for the RC_BIGFONT bit in the raster capabilities to deter­
nline whether the display driver uses Windows 3.x fOnls.

When a device driver reali zes a font using tbe RealizeObject function, the dfFace
and dlDevice members must point to valid character strings containing the font
and device names.

Page 206 of 239

482 FONTINFO

Windows 2.x Fonts For Windows 2.x fonts the character· width table is either
an array of integer values or an array of glyph-entry structures. The number of ele­
ments in the array is equal to:

dfLastChar - dfFirstChar + 2

That is, there is always one more element than the number of characters in the
font. The extra entry is available for storing the size in bytes of the last character
in a vector font. Although this extra entry applies only to vector fonts, it is present
for all fonts.

For fixed-pitch vector fonts, the character-width table is an arrayal' integer values.
In this case, each element of the array is an offset (relative to the start of the seg­
ment containing the FONTINFO structure) to the first byte or 16 bits of vector in­
formation for the given character. The number of bytes or words for a particular
character is calculated by subtracting its character-width table entry from the entry
for the next character.

For variable-pitch vector fonts. the character width table is an array of VECTOR­
GL YPHENTRY structures. The VECTORGL YPHENTRY structure has the
following form:

typedef struet tagVECTORGLYPHENTRY (
short vgeOffset; 1* offset to vectors relative to segment start *1
short vgeWidth; 1* width of character in pixels ./

J VECTORGLYPHENTRY;

The vgeOffset member specifies the offset (relative to the start of the segment
containing the FONTINFO structure) to the first byte or 16 bits of vector infor­
mation for the given character. The vgeWidth member specifies the width for
the character.

For raster fonts, the character-width table is an array of RASTERGLYPH­
ENTRY structures .

The rgeWidth member specifies the width (in pixels) of the bitmap for the given
character. The member also specifies the advance width for the given character.
The rgeOffset member specifies the offset (relative to the start of the segment con­
taining the FONTINFO structure) to the first byte of bitmap information for the
character.

Windows 2.x fonts cannot exceed 64K bytes.

Windows 3.x Fonts Windows 3.x fonts are primarily designed for use on sys­
tems with more than average memory and a microprocessor (such as an 80386)
that has instructions that use 32-bit address offsets.

Page 207 of 239

482 FONTINFO

Windows 2.x Fonts For Windows 2.x fonts the character-width table is either

an array of integer values or an array of glyph-entry structures. The number of ele-

ments in the array is equal to:

deastChar , dfFirstChar + 2

That is. there is always one more element than the number of characters in the

font. The extra entry is available for storing the size in bytes of the last character

in a vector font. Although this extra entry applies only to vector fonts, it is present
for all fonts.

For fixed-pitch vector fonts. the character-width table is an array of integer values.
In this case, each element of the array is an offset (relative to the start of the seg-

ment containing the FONTINFO structure) to the first byte or 16 bits of vector in»

formation for the given character. The number of bytes or words for a particular

character is calculated by subtracting its character—width table entry from the entry
for the next character.

For variable—pitch vector fonts. the character width table is an array of VECTOR»
GLYPHENTRY structures. The VECTORGLYPHENTRY structure has the

following form:

typedef Struct tagVECTDRGLYPHENTRY [
short vgeOffset: /* offset to vectors relative to segment start *1
short vgewidth: It width of character in pixels *1

l VECTORGLYPHENTRY;

The vgeOt‘fset member specifies the offset (relative to the start of the segment
containing the FONTINFO structure) to the first byte or 16 bits of vector infor-

mation for the given character. The vgeWidth member specifies the width for
the character.

For raster fonts, the character-width table is an array of RASTERGLYPH—
ENTRY structures.

The rgeWidth member specifies the width (in pixels) of the bitmap for the given
character. The member also specifies the advance width for the given character.

The rgeOffset member specifies the offset (relative to the start of the segment con-

taining the FONTINFO structure) to the first byte of bitmap information for the
character.

Windows 2.x fonts cannot exceed 64K bytes.

Windows 3.x Fonts Windows 3.x fonts are primarily designed for use on sys-
tems with more than average memory and a micmprocessor (such as an 80386)
that has instructions that use 32-bit address offsets.

Page 207 of 239

FONTINFO 483

For Windows 3.x fonts, the format of the character-width table is dependent on the
value of the dfFlags member.

Value

DFF]lXED

DFF]ROPORTIONAL

DFF _ABCPROPORTIONAL

Meaning

Specifies an array of RASTERGLYPHENTRY
structures.

Specifies an array of RASTER GLYPH ENTRY
Structures.

Specifies an array of ABCGLYPHENTRY
structures.

Specifies an array of ABCGLYPHENTRY
structures.

Specifies an array of COLORGLYPHENTRY
structures .

Specifies an array of COLORGL YPHENTRY
structures.

Specifies an array of COLORGLYPHENTRY
structures.

Specifies an array of COLORGLYPHENTRY
structures.

Windows presently supports only the OFF_FIXED and OFF]ROPORTIONAL
values.

The rgeWidth member specifies the width (in pixels) of the bitmap for the given
character. The member also specifies the width for the character. The rgeOffset
member specifies the offset (relative to the start of the segment containing the
FONTINFO structure) to the first byte of bitmap information for the character.

The ABCGLYPHENTRY structure has the following form:

typedef st ru ct tagABCGLYPHENTRY (
short ageWidth ; 1* wid t h of ch aracter bitmap in pixels *1
long ageOffset ; 1* pointer to th e bits * 1
FIXED ageAspace; 1* A space in fractional pixels (16 .16) *1
FIXED ageBspace; 1* B space in fractional pixels (16.16) *1
FIXED ageCspace; 1* C space in fractional pixels (16.16) *1

ABCGLYPHENTRY;

The age Width member specifies the width (in pixels) of the bilmap for the given
character. The ageOffset member specifies the offset (relative to the start of the
segment containing the FONTINFO structure) to the first byte of bitmap informa­
tion for the character. The sum of the ageAspace, ageBspace, and ageCspace
members specify the width of the character.

Page 208 of 239

FONTINFD 483

For Windows 3.): fonts. the formal of the characterwidth table is dependent on the
value of the (HFlags member.

Value Meaning

DFF_FIXED Specifies an array of RASTERGLYPHENTRY
structures.

DFFiPROPORTIONAL Specifies an away of RASTERGLYPHENTRY
structures.

DFFkABCFIXED Specifies an array of ABCGLYPHENTRY
structures.

DH‘LABCPROPORTIONAL Specifies an array of ABCGLYPHENTRY
structures.

DFEJCOLOR SmdfimanmnwofCOLORGLYPHENTRY
structures.

DFFJGCOLOR fimdfiflanmnwofCOLORGLYPHENTRY
structures.

DHflZfiCOLOR fimdfiflanmflwofCOLORGLYPHENTRY
stnictures.

DFFLRGBCOLOR Specifies an array of COLORGLYPHENTRY
structures.

Windows presently supports only the DFFAHXED and DFF_PROPORTIONAL
values.

The rgeWidth member specifies the width (in pixels) of the bitmap for the given

character. The member also specifies the width for the character. The rgeOffset
member specifies the offset (relative to the start of the segment containing the
FONTINFO structure) to the first byte of bitmap information for the character.

The ABCGLYPHENTRY structure has the following form:

typedef struct tagABCGLYPHENTRY l
short agewidth; /* width of character bitmap in pixels */
lung ageOffset; /* pointer to the bits */

FIXED ageAspace; It A space in fractionai pixels (16.16) */
FIXED ageBspace; /* 6 space in fractional pixels (16.16) */
FIXED ageCspace; /* C space in fractional pixels (16.16) */

l ABCGLYPHENTRY;

The ageWidth member specifies the width (in pixels) of the bitmap for the given
character. The ageOffset member specifies the offset (relative to the start of the
segment containing the FONTINFO structure) to the first byte of bitmap informa—

tion for the character. The sum of the ageAspace, ageBspace, and ageCspace

members specify the width of the character.

Page 208 of 239

484 GDIINFD

See Also

GDIINFO

The COLORGLYPHENTRY structure has the following form:

typedef struet tagCOLORGLYPHENTRY r
short cgeWidth; 1* width of character bitmap in pixels *1
long cgeOffset; 1* pointer to the bits * /
short cgeHeight ; 1* height of character bitmap in pixels *1
FIXED cgeAspace; 1* A space in fractional pixels (16.16) *1
FIXED cge8space; 1* B space in fractional pixels (16.16) *1
FIXED cgeCspace; 1* C space in fractional pixels (16.16) *1

} COLORGLYPHENTRY;

The cgeWidth member specifies the width (in pixels) of the bitmap for the given
character. The cgeOffsct member specifies the offset (relative to the start of the
segment containing the FONTINFO structure) to the first byte of bitmap informa­
tion for the character. The cgeHcight member speci fies the height (in scan lines)
of the bitmap. The sum of the cgeAspace, cgeBspace, and cgeCspace members
specify the width of the character.

The number of bits for each pixel in a character bitmap depends on the value of
the dfFlags member.

Value

DFF_l COLOR

DFF_16COLOR

DFF _256COLOR

DFF_RGBCOLOR

Bits per pixel

Bitmap has 1 bit per pixel.
Bitmap has 4 bits per pixel.

Bitmap has 8 bits per pixel.
Bitmap has 32 bits per pixel (an RGBQUAD structure for
each pixel).

All other font formats use 1 bit per pixel.

Windows 3.x fonts can exceed 64K bytes.

ExtTextOut, RealizeObject, StrBlt

typedef struet tagGOIINFO {
short int
short int
short int
short int
short int
short int
short int

dpVers;on;
dpTechnology;
dpHorzSize:
dpVertSize;
dpHorzRes;
dpVertRes;
dpBitsPixel ;

Page 209 of 239

VF______‘"
|

i 434 GDHNFD

TheCOLORGLYPHENTRYsmmumflmsmeflflbwmgkmm

typedef struct tagEDLORGLYPHENTRY {
short cgewidth; /* width of character bitmap in pixels */
long cgeOffset; /* pointer to the bits */
short cgeHeight: /* height of character bitmap in pixels */
FIXED cgeAspace; /* A space in fractional pixels (15.16} *1
FIXED cgeBspace; l* 8 space in fractional pixels (16.16) */
FIXED cgeCspace; /* C space in fractional pixels (16.16) *I

} COLORGLYPHENTRY;

The cgeWidth member specifies the width (in pixels) of the bitmap for the given

character. The cgeOffset member specifies the offset (relative to the start of the
Segment containing the FONTINFO structure) to the first byte of bitmap informa-

tion for the character. The cgeHeight member specifies the height (in scan lines)
of the bitmap. The sum of the cgeAspace cgeBspace, and cgeCspace members

specify the width of the character.

The number of bits for each pixel in a character bitmap depends on the value of
the dfFlags member.

Value Bits per pixel

DFF_]COLOR Bitmap has 1 bit per pixel.

DFFJfiCOLOR Bitmap has 4 bits per pixel.

DFF_256COLOR Bitmap has 8 bits per pixel.

DFRRGBCOUNR Bmmmhm32MmpflpudmnRGBQUADflmMMemr
each pixell

All other font formats use 1 bit per pixel.

Windows 3.): fonts can exceed 64K bytes.

See Also ExtTextOul, RealizeObject, StrBlt

GDHNFO

typedef struct tagGDIINFG {
short
short
short
short
short
short
short

int
int
int
int
int
int
int

deersion;
deechnology:
deorzSize:
deertSize:
deorzRes:
deertREs:
deitsPixel;

Page 209 of 239

Members

GDIINFD 485

short int dpPlanes ;
short int dpNumBrushe.s;
short in t dpNumPens;
short int futureuse:
short int dpNumFonts;
short int dpNumColors;
un s igned short int dpOEVICEsize;
uns i gned short int dpCurves ;
unsigned short int dplines;
unsigned short int dpPolygon als
unsigned short int dpText;
unsigned short int dpClip;
un signed short int dpRaster ;
short i nt dpAspectX;
short int dpAspectY;
short i nt dpAspectXY;
short int dpStyleLen;
POINT dpMLoWin;
POINT dpMLoVpt;
POINT dpMHiWin;
POINT dpMHiVpt ;
POINT dpELoWin;
POINT dpELoVpt;
POINT dpEHiWin;
POINT dpEHiVpt;
POI NT dpTwpWin;
POINT dpTwpVpt;
short int dpLogPixel s X;
short i nt dpLogPixelsY;
short int dpOCManage;
short int dpCapsl;
long ; nt dpSpotSizeX;
long ; nt dpSpotSizeY;
short ; nt dpPalColors;
short i nt dpPalReserved:
short ; nt dpPalResolution:

GOIIN FO ;

The GDIINFO structure contains infonuation about graphics devices supported
by the device driver. GOI retrieves this structure when it loads the driver and uses
the infonnnation in the structure to initialize the driver.

dpVersion
Specifies the version number. The high-order byte specifies the major version,
the low-order byte the minor version. For example, in a device driver developed
for Windows 3.1. , this member should contain Ox030A.

dpTechnology
Specifies the device technology. It can be one of the following values.

Page 210 of 239

486 GDIINFO

Value

DT _PLOTTER (0)

DT _RASDISPLAY (I)

DT _RASPRINTER (2)

DT_RASCAMERA (3)

DLCHARSTREAM(4)

DLMETAFILE (5)

DT _DISPFILE (6)

dpHorzSize

Meaning

Vector plotter

Raster display

Raster printer

Raster camera
Character SLream , PLP
Metafile, VDM

Display file

Specifies the width of the physical display surface in millimeters.

dpVertSize
Specifies the height of the physical display surface in millimeters.

dpHorzRes
Specifies the width of the display surface in pixels. For nonraster devices, tbis
width is equivalent to the number of vertical grid lines used by the device to
plot points on the display surface. In such cases, a pixel is defined to be the
smallest mark the device can draw.

dpVertRes
Specifies the height of the display in raster lines. For nonraster devices, this
height is equivalent to the number of horizontal grid lines used by the device to
plot points on the display surface. In such cases, a raster line is equivalent to a
gridline.

dpBitsPixel
Specifies the number of adjacent bits on each plane required to define a single
pixel.

dpPlanes
Specifies the number of planes required to define the pixels. For a typical raster
device with red, green, and blue bit planes (such as a 3-plane EGA), this mem­
ber is 3.

dpNumBrusbes
Specifies the number of device-specific brushes supported by this device.

dpNumPens
Specifies the number of device-specific pens supported by this device.

futureuse
Reserved; do not use.

dpNumFonts
Specifies the number of device-specific fonts supported by this device.

Page 211 of 239

FT—_—_

486 GDIINFD._.—.___—-———-————————-______

 Value Meaning

DT_PLOTTER (0) Vector plotter

DT_RASDISPLAY (1) Raster display

DT_RASPRINTER (2) Raster printer

DThRASCAMERA (3) Raster camera

DT_CHARSTREAM (4) Character stream. PLP

DT_M_ETAFI_LE (5) Metafile. VDM

DT_DISPFILE (6; Display file

deorzSize

Specifies the width of the physical display surface in millimeters.

deertSize

Specifies the height of the physical display surface in millimeters.

deorzRes

Specifies the width of the display surface in pixels. For nonraster devices, this
width is equivalent to the number of vertical grid lines used by the device to

plot points on the display surface. In such cases, a pixel is defined to be the
smallest mark the device can draw.

deertRes
Specifies the height of the display in raster lines. For nonraster devices. this
height is equivalent to the number of horizontal grid lines used by the device to
plot points on the display surface. In such cases, a raster line is equivalent to a

gridline.

deitsPixel

Specifies the number of adjacent bits on each plane required to define a single
pixel.

dpPIanes

Specifies the number of planes required to define the pixels. For a typical raster
device with red, green, and blue bit planes (such as a 3-plane EGA), this mem—
ber is 3.

deumBrushes

Specifies the number of device-specific brushes supported by this device.

deumPens

Specifies the number of device-specific pens supported by this device.

futurense

Reserved: do not use.

deumFonts

Specifies the number of device—specific fonts supported by this device.

Page 211 of 239

GDIINFO 487

dpNumColors
Specifies the number of entries in the color table for this device or the number
of reserved colors for palette-capable devices.

dpDEVICEsize
Specifies the size (in bytes) of the PDEVICE structure for this device. It must
be at least two bytes.

dpCurves
Specifies whether the device driver can perform circles, pie wedges, chord arcs,
and ellipses. The dpCurves member also specifies whether the interior of those
figures that can be handled can be brushed in, and whether the borders of those
figures that can be handled can be drawn with wide lines, styled lines, or lines
that are both wide and styled. The dpCurves member can be a combination of
the following values.

Value

CC_NONE (OxOOOO)

CC_CIRCLES (OxOOOI)

CCPIE (Ox0002)

CCCHORD (OxOO04)

CC_ELLlPSES (Ox0008)

CC_ WIDE (OxOO 1 0)

CC_STYLED (Ox0020)

CC WIDESTYLED (Ox0040)

CCINTERIORS (Ox0080)

CC_ROUNDRECT (OxO 100)

All other values are reserved.

dpLines

Meaning

Curves not supported.

Can perform circles.
Can perform pie wedges.
Can perform chord arcs.
Can pcrfonn ellipses.
Can perform wide lines.

Can perfonn styled Jines.

Can perform lines that are wide and styled .
Can perform interiors.

Can perform round rectangles.

Specifies whether the device driver can perform poly lines and lines. The
dpLines member also specifies whether the interior of those figures that can be
handled can be brushed in, and whether the borders of those figures that can be
handled can be drawn with wide lines, styled lines, or lines that are both wide
and styled. The dpLines member can be a combination of the following values.

Value

LC_NONE (OxOOOO)

LC]OLYUNE (Ox0002)

LC WIDE (OxOO 1 0)

LCSTYLED (Ox0020)

LC_ WIDESTYLED (Ox0040)

LC_INTERIORS (Ox0080)

Meaning

Lines not supported .

Can perform poly/illes.

Can perform wide lines.
Can perform styled lines.

Can perform wide styled lines.
Can perform interiors.

All other values are reserved. The high byte must be zero.

Page 212 of 239

488 GDIINFO

dpPolygonals
Specifies whether the device driver can perform polygons, rectangles, and scan
lines. The dpPolygonals member also specifies whether the intetior of those
figures that can be handled can be brushed in, and whether the borders of those
figures that can be handled can be drawn with wide lines, styled lines, or lines
that are both wide and styled. The dpPolygonals member can be a combination
of the following values .

Value

PC_NONE (OxOOOO)

PCALTPOLYGON (OxOOOI)
PC_RECTANGLE (Ox0002)

PC WINDPOLYGON (Oxoo04)

PCSCANLlNE (Ox0008)

PC_WIDE (OxOO 10)

PCSTYLED (Ox0020)

PCWIDESTYLED (Ox0040)

PC_INTERIORS (Ox0080)

Meaning

Polygons not supported.

Can perfonn alternate-fill polygons.

Can perform rectangles.

Can perform winding-number-fill polygons .

Can perform scan lines.

Can perform wide borders.

Can perform sty led borders.

Can perfonn borders that are wide and styled.

Can perfonn interiors.

All other values are reserved. The high byte must be zero.

dpText
Specifies the level of text support the device driver provides. The dpText mem­
ber can be a combination of the following values.

Value

TCOP _STROKE (Ox0002)

TCCP _STROKE (Oxoo04)

TCCR...90 (Ox0008)

Meaning

Can generate character-precision text. lfthis
value is not given (or implied by the
TC_OP _STROKE value), the driver can
generate string-precision text onLy.

Can generate stroke-precision text. The value
implies the TC_OP _CHARACTER value.

Can draw partially clipped characters. If this
value is not given, the character must be en­
tirely within the clipping region 10 be drawn.

Can rotate characters in 9O-degree incre­
ments. Lf this value is nO{ given (or implied
by the TC_CR_ANY value), the driver can
not rotale texl.

Can rotate characters to any angle. This value
implies the TC_CR_90 value.

Can scale characters independently along the
x- and y-axes. [f this value is not given, the
driver may be able to scale characters but not
independently along the axes.

Page 213 of 239
i It

488 GDlINFD

dpPongonals

Specifies whether the device driver can perform polygons. rectangles, and scan
lines. The dpPolygonals member also specifies whether the interior of those
figures that can be handled can be brushed in, and whether the borders of those

figures that can be handled can be drawn with wide lines, styled lines, or lines

that are both wide and styled. The dpPolygonals member can be a combination
of the following values.

Value Meaning

PC_NONE {OXDOOO}

PCJALTPOLYGON (OxOOOl)

PC_RECTANGLE (OXOOOZ)

PC‘WLNDPOLYGON (0x0004)

PC_SCANLINE (OXUOOS)

PC_WIDE (OXOOIO)

PC_STYLED (0x0020)

PC_W1DESTYLED (0x0040)

PCJNTERJORS (OXOOSO)

Polygons not supported.

Can perform alternate—fill polygons.

Can perform rectangles.

Can perform winding-number—fill polygons.

Can perform scan lines.

Can perform wide borders.

Can perform styled borders.

Can perform borders that are wide and styled.

Can perform interiors.

All other values are reserved. The high byte must be zero.

deext

Specifies the level of text support the device driver provides. The deext mem~
bet can be a combination of the following values.

Value

TC_OP_CHARACTER (0:10001)

TC_OP_STROKE (OXOOOZ)

TCVCP?STROKE (0x0004)

TC_CR_90 (OXOUOS)

TC_CR_ANY (OXOOlO)

TC_SF_X_YINDEP (OXDOZO)

Meaning

Can generate character—precision text. If this
value is not given (or implied by the
TC70PfiSTROKE value), the driver can

generate string-precision text only.

Can generate woke-precision text. The value
implies the TC_0P_CHARACTER value.

Can draw partially clipped characters. If this
value is not given1 the Character must be ett~
tirely within the clipping region to be drawn.

Can rotate characters in 90—degree incre-
ments. If this value is not given (or implied
by the TC_CR_AN‘1’ value), the driver can
not rotate text.

Can rotate characters to any angle. This value
implies the TC_CR_90 value.

Can scale characters independently along the
x- and y—axes. If this value is not given, the
driver may be able to scale characters but not
independently along the axes.

Page 213 of 239

GDiINFO 489

Value Meaning

TCSA.J)OUBLE (Ox0040) Can scale characters by doubling. If this value
is not given (or implied by the
TCSA_INTEGER or TCSA_CONTlN
values). the driver cannol scale text.

TCJA_ABLE (Ox0400)

TC_VA_ABLE (Ox0800)

TC_SO_ABLE (Ox 1000)

TCRA_ABLE (Ox2000)

TC_ VA_ABLE (Ox4000)

TC_RESERVED (Ox8000)

Can scale characters by integral multiples.
This value implies the TC_SA_DOUBLE
value.

Can scale characters by any multiple. This
value implies the TC_SA_DOUBLE and
TC_SAJNTEGER values.
Can generate bold characters by doubling !.he
weight. [fthis value is not given, the driver
cannot modify character weights.

Can generate italic characters by skewing.

Can generate underlined characters.

Can generate struck-out characters.

Can use raster fonts to generate text.

Can use vector fonts to generate text.

Reserved ~ must be zero.

if a device claims to have an ability, it must have it for all fonts, whether
realized by the device or provided by GDI.

dpCJip
Specifies whether the device can clip output. Thi s member can be one of the
foUowi ng values.

Value

CP_NONE (0)

CP_RECTANGLE(I)

CP _REGION (2)

dpRaster

Meaning

Device cannot clip.

Device can output using a single rectangle.

Device can output using a region (which may be several
rectaugles).

Specifies raster abilities. This member can be a combination of the following
values.

Value

RCNONE (OxoooO)

RC_BITBLT (OxOOOI)

RC_BANDING (Ox0002)

RC_SCAUNG (Ox0004)

Meaning

Device has no raster capabilities.

Can transfer bitmaps. The driver exports the
BitBlt function.

Requires banding suppon.

Requires scaling support.

Page 214 of 239

GDIINFB 489___————_—'—'———'—_———"—'———-—'_—

Value

TC_SA_DOUBLE (MOO-40)

TCASAJNTEGER (0x0080)

TC_SA_CONT[N (0x0100l

TC_EA_DOUBLE (0x0200)

TC_IA_ABLE (Ode-OO)

TC_UA_ABLE (OXOSOO)

TC_SO_ABLE (0x [000)

TCgRAkABLE (OXZOOO)

TC_VA_ABLE (Ox-4000)

TCHRESERVED (0748000)

Meaning

Can scale characters by doubling. If this value
is not given (or implied by the
TC_SA_INTEGER or TC_SA_CONT[N
values). the driver cannot scale text.

Can scale characters by integral multiples.
This value implies the TC_SA_DOUBLE
value.

Can scale characters by any multiple. This
value implies the TC_SA_DOUBLE and
TC_SA_INTEGER values.

Can generate bold characters by doubling the
weight. If this value is not given, the driver
cannot modify character weights.

Can generate italic characters by skewing.

Can generate underlined characters.

Can generate struck-out characters.

Can use raster fonts to generate text.

Can use vector fonts to generate text.

Reserved; must be zero.

If a device claims to have an ability. it must have it for all fonts, whether

realized by the device or provided by GDI.

delip

Specifies whether the device can clip output. This member can be one of the
following values.

Value Meaning

CP_NONE (ll) Device cannot clip.

CP_RECTANGLE (1) Device can output using a single rectangle.

CP_REGION (2) Device can output using a region (which may be several
rectangles).

dpRaster
Specifies raster abilities. This member can be a combination of the following
values.

Value Meaning

RC_NDNE (OXOOOO)

RELBITBLT (OXOOOl)

RCgBANDlNG (OxOOOZ)

RC_SCALING {0x0004)

Device has no raster capabilities.

Can transfer bitmaps. The driver exports the
BitBll function.

Requires banding support.

Requires scaling support.

Page 214 of 239

490 GOIINFO

Value

RC_BITMAP64 (Ox0008)

RC_GDl20_STATE (Ox0020)

RCSAVEBITMAP (Ox0040)

RC Dl_BITMAP (Ox0080)

RC]ALETIE (OxOIOO)

RC_DlBTODEV (Ox02oo)

RC_BIGFONT (Ox0400)

RC_STRETCHBLT (Ox0800)

RC_FLOODFILL (Ox I 000)

RC_STRETCHDIB (Ox2000)

RC_DEVBITS (Ox8oo0)

dpAspectX

Meaning

Supports bitmaps that are larger than 64K
bytes.
Supports the Windows 2_f functions. The
driver exports the ExtTextOut, GetChar­
Width, and fastBorder functions.

Supports stale blocks in device contexts.

Saves biunaps locally in "shadow" memory.
Driver exports the SaveScreenBitmap
function.

Can get and set device-independent bitmaps
(DIBs). The Driver exports the Device­
BitmapBits function.

Can do color-palette management.

Can transfer device-independent bitmaps
directly to device. The driver exports the
SetDIBitsToDevice function .

Supports Windows 3.x fonts. If this value is
not given, GDI ensures thal the driver re­
ceives Windows 2.x fonts only.

Can stretch and compress bitmaps while trans­
ferring the bitmap. The driver exports the
StrelchBit function.
Can perform flood filling. The driver exports
the FloodFili function.
Can stretch and compre.·is device· independent
bitmaps while transferring the bitmap. The
driver exports the StretchOffiits function.

Can fill opaque rectangle and set character
widths on calls to the ExtTextOut function.

Supports device bitmaps. Driver exports the
BitmapBits and SelectBitmap function.

Specifies the relative width of a device pixel. This value, in the range I to 1000,
helps specify Ihe device 's aspect ratio.

dpAspectY
Specifies the relative height of a device pixel. This value, in the range 1 to
1000, helps specify the device 's aspect ratio.

dpAspectXY
Specifies the relative diagonal width of a device pixel. This value, in ule range
1 to 1000, helps specify the device's aspect ratio. It must be equal to the square
root of the sum of the squares of the dpAspectX and dpAspectY members.

Page 215 of 239‘ , l

490 EDIINFU—_—_._—__-——-———.——.____.

Value

RciBITMAPfitl (OXOODS)

RC_GD120_OUTPUT (0x001 O)

RC_GDI20_STATE (OXOOQO)
RCASAVEBITMAP (0x0040)

RC_DI_BITMAP {0x0080)

RC_PALETTE (OKOHJO)

RC7D1BTODEV (OXOZOO)

RC_BIGFONT (0x0400)

RC_STRETCHBLT (UxOSUUl

RC_FLOODFILL (0x [000]

RC_STRETCHDIB (OXZOOU)

RC_OP_DX_OUTPUT (0x4000l

RC “DEVBITS (OXSUUO)

dpAspectX

Meaning

Supports bitmaps that are larger than 64K
bytes.

Supports the Windows 2..\' functions. The

driver exports the ExtTextOut. GetChar-
Width. and FastBorder funuions.

Supports state blocks in device contexts.

Saves bitmaps locally in “shadow" memory.
Driver exports the SaveScreenBitmap
function.

Can get and set device-independent bitmaps
(DJ-BS). The Driver exports the Devicc~
BitmapBits function.

Can do color-palette management.

Can transfer device-independent bitmaps
directly to device. The driver exports the
SetDIBitsToDevice function.

Supports Windows 3.): fonts. If this value is
not given, GDI ensures that the driver re-
ceives Windows 2.x fonts only.

Can stretch and compress bitmaps while trans,
lerring the bitmap. The driver exports the
StretchBIt function.

Can perform flood filling. The driver exports
the FloodFill function.

Can stretch and compress device—independent
bitmaps while transferring the bitmap. The
driver exports the StretchDIBits function.

Can fill opaque rectangle and set character
widths on calls to the ExtTextOnt function.

Supports device bitmaps. Driver exports the
BitmapBits and SelectBitmap function.

Specifies the relative width of a device pixel. This value. in the range I to 1000,
helps specify the device's aspect ratio.

dpAspectY
Specifies the relative height of a device pixel. This value. in the range I to

1000. helps specify the device's aspect ratio.

dpAspectXY

Specifies the relative diagonal width of a device pixel. This value. in the range

1 to 1000, helps specify the device’s aspect ratio. It must be equal to the square
root of the sum of the squares of the dpAspectX and dpAspectY members.

Page 215 of 239

GOIINFO 491

dpStyleLen
Specifies the minimum length of a dot generated by a styled pen. The length is
relative to the width of a device pixel and should be given in the same units as
the dpAspectX member. Par example, if dpAspectX is 5 and the minimum
length required is 3 pixels, the dpStyleLen member should be 15.

dpMLoWin
Specifies the width and height of the metric (low resolution) window. Width is
dpHorzSize* I 0; height is dp VertSize* lO.

dpMLoVpt
Specifies the horizontal and vertical resolutions of the metric (low resolution)
viewport. Horizontal is dpHorzRes; vertical is -dpVertRes.

dpMHiWin
Specifies the width and heigbt of the metric (high resolution) window. Width is
dpHorzSize*lOO; height is dpVertSize* 100.

dpMHiVpt
Specifies the horizontal and vertical resolutions of the metric (high resolution)
viewport. Horizontal is dpHorzRes; vertical is -dpVertRes.

dpELoWin
Specifies the width and height of the English (low resolution) window. Width is
dpHorzSize* 1000; height is d p VertSize*I000.

dpELoVpt
Specifies the horizonlal and vertical resolutions ofthe English (low resolution)
viewport. Horizontal is dpHorzRes*254; vertical is - dpVertRes*254.

dpEHiWin
Specifies the width and height of the English (high resolution) window. Width
is dpHorzSize*lO,OOO; height is dpVertSize* I 0,000.

dpEHiVpt
Specifies the horizontal and vertical resolutions of the English (high resolution)
viewport. Horizontal is dpHorzRes*254; vertical is - dpVertRes*254.

dpTwpWin
Specifies the width and height of the twip window. There are 20 twips per I
printer's point and 72 printer's points per inch. Width is dpHorzSize* I 4400;
height is dpVertSize* 14400.

dpTwpVpt
Specifies the horizontal and ve.rtical resolutions of the twip viewport. Horizon­
tal is dpHorzRes*254; vertical is -dp VertRes*254.

dpLogPixelsX
Specifies the number of pixels per logical inch along a horizontal line on the
di splay surface. This is used to match fonts.

dpLogPixelsY
Specifies the number of pixels per logical inch along a venicalline on the di s­
play surface. This is used to match fonts.

Page 216 of 239

492 GOIINFO

....

dpDCManage
Specifies whether the device driver can manage multiple device conlexls (DC).
This member can be one of the following values .

Value

OxOOOO

DCSPDEVICE (OxOOOI)

DC_IPDEVICE (Ox0002)

DC_IGNOREDFNP (Ox0004)

Ox0006

Meaning

Driver allows multiple Des. It creates a new
PDEVICE for each DC that specifies a new
device and filename pair, but uses the same
PDEVICE for any subsequent DCs that specify
the same device and filename pair.

Driver allows multiple Des but it creates a new
PDEVI CE for each DC regardless of whether
the device and filename pairs are the same.

Driver allows multiple DCs but only if all DCs
have unique device and fLlename pairs. The
driver creates a PDEVICE for each DC. The
driver returns an error on any attempt to create a
second DC with an existing device and filename
pair.

Driver allows multiple Des but only creates one
PDEVICE. All DCs share the same PDEVICE
regardless of the device and liIename pairs.

Driver allows only onc DC. The driver returns an
error on any attempt (0 create a second DC.

The values OxOO03 , Ox0005, and OxOO07 are nol valid and must not be used .

dpCapsl
Specifies additional raster abilities. The member can be one of the following
values.

Value

Cl_TRANSPARENT (OxOOOI)

All other values are reserved.

dpSpotSizeX

Meaning

Performs BitBlt and StretchBlt functions with
a transparent background.

Informs GDllhatthe driver is capable of pro­
ducing TrueType as raster fonts . The driver
must call1he dmExtTextOut function to draw
the raster font into the bitmap. The val ue is sim­
ilar to TC_RA_ABLE.

Specifies the horizontal spot size for TrueType fonts on thi s device.

dpSpotSize Y
Specifies the vel1ical spot size for TrueType fonts on this device .

Page 217 of 239

692 GDIINFO
1

dpDCManage

Specifies whether the device driver can manage multiple device contexts (DC).
This member can be one of the following values.

Value Meaning

0:: 0000

DC_SPDEVICE (0x000!)

DC_ IPDEV'ICE. (0x0002)

DC_IGNOREDFNP (0x0004)

0;: 0006

Driver allows multiple DCs. It creates a new
PDEVICE for each DC that specifies a new
device and filename pair, but uses the same
PDEVICE for any subsequent DCS that specify
the same device and filename pair.

Driver allows multiple DCs but it creates a new
PDEVICE for each DC regardless of whether
the device and filenarne pairs are the same.

Driver allows multiple DCs but only if all DCs
have unique device and filename pairs. The
driver creates a PDEVICE for each DC. The

driver retums an error on any attempt to create a
second DC with an existing device and filename
pair.

Driver allows multiple DCs but only creates one
PDEVICE. All DCs share the same PDEVICE

regardless of the device and illename pairs.

Driver allows only one DC. The driver returns an
error on any attempt to create a second DC.

The values 0x0003. 010005, and 0x000? are not valid and must not be used.

deapsl
Specifies additional raster abilities. The member can be one of the following
values.

Value

CI‘TRANSPARENT ((Jx0001 }

TC_TT_ABLE (0x0002)

All other values are reserved.

dpSpotSizeX

Meaning

Performs Bi!!!“ and StretchBlt functions with

a transparent background.

Informs GDI that the driver is capable of pro—
ducing TrueType as raster fonts. The driver
must call the dextTextOut function to draw

the raster font into the bitmap. The value is sim-
ilar to TC_RA_ABLE.

Specifies the horizontal spot size for TrueType fonts on this device.

dpSpotSizeY

Specifies the vertical spot size for TrueType fonts on this device.

Page 217 of 239

Comments

GDIINFO 493

dpPalColors
Specifies the total number of simultaneous colors available in Windows 3.x for
palette-capable devices. Nonpalette-capable devices ignore this val ue.

dpPalReserved
Specifies the even number of reserved system colors available in Windows 3.x
for palette-capable devices. Nonpalette-capable devices ignore this value.

dpPalResolution
Specifies the palette resolution , which equals the number of bits going into
video DACS. Nonpalette-capable devices ignore this value .

The dpText member requires that for each precision level that the precision levels
below it are also set. For example, the TC_SA_INTEGER value requires that the
the TC_SA_DOUBLE value be set, and the TC_SA_CONTIN value requires that
all three be set. Since it is required that the lowest precision level of each ability be
supported, no value is provided in dpText for the lowest level of each ability.

The dpAspectX, dpAspectY, and dpAspectXY members specify the relative
width, height, and diagonal width of a device pixel and correspond directly to the
device's aspect ratio. For devices whose pixels do not have integral diagonal
widths, the member values can be multiplied by a convenient factor to preserve
information . For example, pixels on a device with a 1 to 1 aspect ratio have a
diagonal width of 1.4 I 4. For good results, the aspect members should be set to
100,100, and 141, respectively. For numerical stability, the member values
should be kept under 1000.

The window/viewport pair members are the numerator and denominator of the
scale fraction used to correct for the device aspect ratio, and to set to a ftxed unit
of measurement, either metric or English. These numbers should be integers in the
range of - 32768 to 32767. When calculating these constants, out-of-range values
can be di vided by some number to bring them back into range as long as the corre­
sponding window or viewport constant is divided by the same number.

The dpRaster member is also used to indicate a scaling device. If the
RC_SCALING value is set, the device does graphics scaling . Certain devices
perform graphics at one resolution and text at another. Some applications require
that character cells be an integral number of pixels. If a device reported that its
graphics resolution was 75 dpi but its text resolution was 300 dpi, then its charac­
ter cells would not be an integral number of pixels (since they were digitized at
300 dpi). To get around this problem, GDI uses scaling devices. The device driver
registers itself as a 300 dpi device and all the graphics at 300 dpi are scaled to 75
dpi. Any device that scales must have the RC_SCALING value set. Scaling
always reduces the resolution; it never increases it. GDI calls the Control func­
tion with GETSCALINGFACTOR escape before output to a device. The scaling
factor is a shift count that is a power of two. Therefore, a scaling factor of 2 means
reduce by 4, and a scaling factor of 1 means reduce by 2.

Page 218 of 239

GDIINFD 493

Comments

dpPalColors
Specifies the total number of simultaneous colors available in Windows 3x for

palette-capable devices. Nonpalette-capable devices ignore this value.

dpPalReserved

Specifies the even number of reserved system colors available in Windows 3;;
for palette-capable devices. Nonpalette—capable devices ignore this value.

dpPalResolution

Specifies the palette resolution, which equals the number of bits going into
video DACS. Nonpaletteacapable devices ignore this value.

The deext member requires that for each precision level that the precision levels

below it are also set. For example, the TC_SA_INTEGER value requires that the

the TC_S A_DOUBLE value he set, and the TC_SA_CONTIN value requires that
all three be set. Since it is required that the lowest precision level of each ability be
supported, no value is previded in deext for the lowest level of each ability.

The dpAspectX, dpAspectY, and dpAspectXY members specify the relative
width, height, and diagonal width of a device pixel and correspond directly to the
device’s aspect ratio. For devices whose pixels do not have integral diagonal

widths, the member values can be multiplied by a convenient factor to preserve
information. For example, pixels on a device with a 1 to 1 aspect ratio have a
diagonal width of 1.414. For good results, the aspect members should be set to
100, 100, and 141, respectively. For numerical stability, the member values

should be kept under 1000.

The window/viewport pair members are the numerator and denominator of the
scale fraction used to correct for the device aspect ratio. and to set to a fixed unit

of measurement, either metric or English. These numbers should be integers in the

range of —32768 to 32767. When calculating these constants, out-of-range values

can be divided by some number to bring them back into range as long as the corre—
sponding window or viewport constant is divided by the same number.

The dpRaster member is also used to indicate a scaling device. If the

RC_SCALING value is set, the device does graphics scaling. Certain devices
perform graphics at one resolution and text at another. Some applications require
that character cells be an integral number of pixels. If a device reported that its

graphics resolution was 75 dpi but its text resolution was 300 dpi, then its charac—
ter cells would not be an integral number of pixels (since they were digitized at

300 dpi). To get around this problem, GDI uses scaling devices. The device driver
registers itself as a 300 dpi device and all the graphics at 300 dpi are scaled to 75

dpi. Any device that scales must have the RCLSCALING value set. Scaling
always reduces the resolution; it never increases it. GDI calls the Control func-

tion with GETSCALINGFACTOR escape before output to a device. The scaling
factor is a shift count that is a power of two. Therefore, a scaling factor of 2 means
reduce by 4, and a scaling factor of 1 means reduce by 2.

Page 218 of 239

494 JUST VALUE STRUCT

See Also

Members

See Also

The number of reserved colors on the palette is always 20, with 16 corresponding
to the VGA colors and 4 special colors. Half of the reserved palette colors are
placed at the beginning and half at the end of the palette.

Enable, Control, GETSCALINGFACTOR, PDEVICE

typedef struct tagJUST~VALUE~ STRUCT
short nCharExtra;
WORD nCharCount;
short nBreakExtra;
WORD nBreakCount;

) JUST~ VALUE~STRUCT ;

The JUST_ VALUE_STRUCT structures contains the values to use when justify­
ing text.

nCharExtra
Specifies in font units the total extra space that must be distributed over
nCharCoun! characters .

nCharCount
Specifies the number of characters over which the nCharExtra member is
distributed.

nBreakExtra
Specifies in font units the total extra space that is distlibuted over
nBreakCount break characters.

nBreakCount
Specifies the number of break characters over which nBreakExtra units
are distributed.

SETALLJUSTV ALUES

Page 219 of 239

494 JUST? VALUE_ STRUCT

The number of reserved colors on the palette is always 20, with 16 corresponding
to the VGA colors and 4 special colors. Half of the reserved palette colors are

placed at the beginning and half at the end of the palette.

See Also Enable, Control, GETSCALINGFACTOR, PDEVICE

JUST_ VALUE_ STRUCT

typedef struct tagJUST_VALUE_STRUCT {
short nCharExtra;
WORD nCharCount;
short nBreakExtra:
WORD nBreakCount:

} JUST,VALUE,STRUCT;

The JUST_VALUE_ STRUCT structures contains the values to use when justify:
ing text.

Members nCharExtra

Specifies in font units the total extra space that must be distributed over
nCharCount characters.

nCharCount

Specifies the number of characters over which the nCharExtra member is
distributed.

nBreakExtra

Specifies in font units the total extra space that is distributed over
nBreakCount break characters.

nBreakCount

Specifies the number of break characters over which nBreakExtra units
are distributed.

See Also SETALLJUSTVALUES

i Page 219 of 239

KERNPAIR

Members

See Also

KERNTRACK

Members

typedef struet tagKERNPAIR
union {

BYTE each [2];
WORO both;

) kpPair;
short kpKernAmount;

) KERNPAI R;

KERNTRACK 495

The KERNPAIR structure contains the amount of kerning to apply to a given pair
of characters.

kpPair
Specifies the character pair. This 2-byte member contains the character codes in
the order in which the pair is to be printed.

kpKernAmount
Specifies the amount of kerning to apply to the character pair.

GETPAIRKERNTABLE

typedef struet tagKERNTRACK
short ktOegree ;
short ktMinSize;
short ktMinAmount;
short ktMaxSi ze;
short ktMaxAmount;

KERNTRACK;

The KERNTRACK structure contains information used to adapt kerning values
for scaled fonts.

ktDegree
SpecifLes the degree.

ktMinSize
Specifies the minimum size.

ktMinAmount
Specifies the minimum amount.

Page 220 of 239

496 lBRUSH

See Also

LBRUSH

Members

ktMaxSize
Specifies the maximum size.

ktMaxAmount
Specifies the maximum amount.

GETTRACKKERNTABLE

t ypedef s t ru ct tagLBRUSH {
short lbStyle;
l ong l bColor;
short 1 bHatch;
l ong l bBkColor;

LBRUSH;

The LBRUSH structure contains style and color infonnation for a brush.

IbStyle
Specifies brush style. GDI requires that drivers suppon at least the following
brush styles.

Value

BS_SOLID (0)

BS_HOLLOW (I)

BS_HATCHED (2)

BS]ATTERN (3)

Ibeolor

Meaning

Brush is a single solid or dithered color.
Brush has no color or pattern.
Brush has a predefined pattern.

Brush has the pattern as specified by a given bitmap.

Specifies a foreground color for brushes having BS_SOLID and
BS_HATCHED values. For BS_HOLLOW and BS]ATTERN values,
this member is zero. Brush colors are specified as physical colors. For
palette-capable devices, this member specifies a physical-color index if
the high-order byte is OxFF.

IbHatch
Specifies a brush pattern for brushes having BS_HA TCHED style or a
global memory handle for a bitmap for brushes having BS_PA TTERN
style. For BS_SOLID and BS_HOLLOW values, this member is zero.

Page 221 of 239

496 LHHUSH—__—.._——.__—____—______-

See Also

ktMaxSize

Specifies the maximum size.

ktMaxAmount

Specifies the maximum amount.

GETTR ACKKERNTABLE

LBRUSH

Members

Lypedef struct tagLBRUSH {
short letyle;
long leolor;
short lDHatch:
long lekColor;

} LBRUSH;

The LBRUSH structure contains style and color information for a brush.

IbStyle

Specifies brush style. GDI requires that drivers support at least the following
brush styles.

Value Meaning

BSASOLID {0) Brush is a single solid or dithered color.

BS_HOLLOW (1) Brush has no color or pattern.

BSiHATCl-IED (2) Brush has a predefined pattem.

BS__PATTERN (3) Brush has the pattern as specified by a given bitmap.

leolor

Specifies a foreground color for brushes having BS_SOLID and
BS_HATCHED values. For BS_HOLLOW and BS_PATTERN values,

this member is zero. Brush colors are specified as physical colors. For
palette-capable devices, this member specifies a physical-color index if
the high—order byte is OXFF.

leatch

Specifies a brush pattern for brushes having BSFHATCHED style or a
global memory handle for a bitmap for brushes having BS_PATTERN

style. For BSWSOLID and BS_HOLLOW values, this member is zero.

Page 221 of 239

See Also

LFONT

lFONT 497

For BS_HATCHED brushes, this member specifies a brush pattern and can
be one of the following values.

Value

HS_HORIZONTAL

HS_ VERTICAL

HS_FDlAGONAL

HS_BDlAGONAL

HS_CROSS

HS_DlAGCROSS

Description

Horizontal halch

Vertical hatch

45-degree upward hatch (left to right)

45-degree downward hatch (left to right)

Horizontal and vertical cross halch

45-degree cross halch

For BS_PATTERN style, this member is the global memory handle to a
PBITMAP structure specifying the pattern.

IbBkColor
Specifies the background color for brushes having BS_HA TCHED style. Brush
colors are specified as physical colors. For palette-capable devices, this member
specifies a physical color index if the high-order byte is OxFF.

RealizeObject

typedef struct t
short lfHeight;
short lfWi dt h;
short lfEscapement;
short lfOrientation;
short lfWei ght;
BYTE lfIt,li e ;
BYTE IfUnderl ine;
BYTE If StrikeOut;
BYTE IfCh,rSet;
BY TE lfOutPrec;s;onj
BYTE lfClipPrec;sionj
BYTE lfau,lity;
BYTE IfPitehAndF,mily;
BYT E IfF,eeN'me [32 J ;

lFoNT;

The LFONT structure contains the logical attributes for a font.

Page 222 of 239

LFDNT 497

For BS_HATCl—IED brushes. this member specifies a brush pattern and can
be one of the following values.

Value Description

HS_HORIZONT’AL Horizontal hatch

HS_VERT1CAL Vertical hatch

HS_FD1AGONAL 45adegree upward hatch (left to right)

HsiBDlAGONAL 45-degree downward hatch (left to right)

HS_CROSS Horizontal and vertical cross hatch

HSJMAGCROSS 45-degree cross hatch

For BS_PATTERN style, this member is the global memory handle to a

PBITMAP structure specifying the pattern.

lekColor

Specifies the background color for brushes having BS_HATCHED style. Brush
colors are specified as physical colors. For palette-capable devices. this member
specifies a physical color index if the high-order byte is OXFF.

See Also RealizeObject

LFONT

typedef struct {
short lfHeight;
short waidth;
short lescapement;
short TfOrientation:

short waeight:
BYTE lfltallc:
BYTE lfUnderline;
BYTE TfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision:
BYTE lfCllpPrecision;
BYTE lfOuality:
BYTE lfPitchAndFamily:
BYTE TfFaceName [32]:

l LFONT;

The LFONT structure contains the logical attributes for a font,

Page 222 of 239

498 LFONT

Members IfHeight
Specifies the height of the font in device units. If this member is greater than
zero, the driver should choose a font whose cell height matches the given
height. If this member is zero, the driver should choose a font having a rea­
sonable default size. If this member is less than zero, the driver should choose
a font whose character height (that is, cell height less internal leading) matches
the absolute value of tills member. In all cases, the driver shou ld choose the
largest font that does not exceed the requested height and, if there is no such
font, choose the next smallest font available.

IfWidth
Specifies the average width of characters in the font in device units. If this
member is zero, the driver should choose an available font whose digitization
aspect ratio (the dfV eetRes member of the FONTINFO structure) most
closely matches the aspect ratio of the device (the dpAspectY member in
the GDIINFO structure). When comparing fonts , the driver should compare
the absolute values of the differences between the digitization aspect ratio and
the device aspect ratio.

lfEscapernent
Specifies the angle, counterclockwise from the x-axis in tenths of a degree, of
the vector passing through the origin of all the characters in the string.

lfOrientation
Specifies the angle, counterclockwise from the x-axis in tenths of a degree, of
the baseline of the character.

IfWeight
Specifies the weight of the font ranging from 1 to 1000, with 400 being the
value for the standard font. If this member is zero, the driver should choose a
reasonable weight.

lfitalic
Specifies whether the font is to be italic. If the low bit is set, the font is to be
italic. All other bits must be zero.

IfUndeeline
Specifies whether the font is to be underlined. If the low bit is set, the font is to
be underlined. All other bits must be zero.

lfStrikeOut
Specifies whether the font is to be struck out. If the low bit is set, the font is to
be struck out. All other bits must be zero.

(fCharSet
Specifies the character set to be used. It can be one of the following values.

Page 223 of 239

Value

ANSCCHARSET (OxOO)

SYMBOL_CHARSET (Ox02)

OEM_CHARSET (OxFF)

IfOutPrecision

Meaning

rndicates the ANSI character sel.

Indicates the Symbol character sel.

lFONT 499

Indicates an OEM-specific character set. The
characters and cOlresponding character codes
depend on the computer.

Specifies the required output precision for text. This member can have one of
the following values.

Value

OUT_DEFAULT]RECIS (OxOO)

OUT_STRlNG]RECIS (OxOl)

OUT_CHARACTER]RECIS (Ox02)

OULSTROKE_PRECIS (Ox03)

IfClipPrecision

Meaning

Chooses a reasonable font.

Chooses the font whose size (height and
width) most closely matches the re­
quested size. The driver may disregard
the requested orientation and escape­
ment, but other attributes must match.

Chooses the font whose size (height
and width) most closely matches the
requested size. The driver may d.i sregard
the requested orientation, but other
attribu tes must match.

Chooses a font whose attributes exaclly
match the requested attributes.

Specifies the required clipping precision for text. This member can be one of
the following values.

Value

CLIP _DEFA ULT]REClS (OxOO)

CLIP _CHARACTER]RECIS (OxOl)

CLIP _STROKE]RECIS (Ox02)

Meaning

Chooses a reasonable fonL

Chooses a font that allows clipping of in­
dividual characters. The driver must be
able to clip a character if any portion of
it lies outside the clipping rectangle.

Chooses a font that allows clipping of
portions of a character. The driver must
be able to clip any portion of a character
that lies outside the clipping rectangle.

Page 224 of 239

LFDNT 499______.————-————-—-—-——

Value Meaning

AN8LCPLARSET (0x00) Indicates the ANSI character set.

SYMBOL_CHARSET (0x02) Indicates the Symbol character set.

OEM_CHARSET (DxFF) Indicates an DEM-specific character set. The
characters and corresponding character codes
depend on the computer.

lfOutPrecision

Specifies the required output precision for text. This member can have one of

the following values.

Value Meaning

OUT_DEFAULT‘PR_ECIS (0x00) Chooses a reasonable font.

0UT_STR1NG_PRECIS (0x01) Chooses the font whose size (height and
width) most closely matches the re—
quested size. The driver may disregard
the requested orientation and escape:
meat, but other attributes must match.

OUTACHARACTER_PRECIS (0x02) Chooses the font whose size (height
and width) most closely matches the
requested size. The driver may disregard
the requested orientation. but other
attributes must match.

OU'LSTROKILPRECIS (OXOS) Chooses a font whose attributes exactly
match the requested attributes.

lfClipPrecision

Specifies the required clipping precision for text. This member can be one of
the following values.

Value Meaning

CLIP_DEFAULT_PRECIS (0x00) Chooses a reasonable font.

CLIP_CHARACTER_PRECIS (0x01) Chooses a font that allows clipping of in-
dividual characters. The driver must be

able to clip a character if any portion of
it lies outside the Clipping rectangle.

CLIP_STROKE7PRECIS (0x02) Chooses a font that allows Clipping of
portions of a character. The driver must
be able to clip any portion of a character
that lies outside the clipping rectangle.

Page 224 of 239

500 lFONT

IfQuality
Specifies the required quality for text. This member can have one of the follow­
ing values.

Value

DEFAULT_QUALITY (OxOO)

DRAFT_QUALITY (OxOI)

PROOF_QUALITY (Ox02)

IfPitchAndFamily

Meaning

Chooses a reasonable font.
Chooses a [0111 that generates the most efficient,
speediest output. The driver can sacrifice appear­
ance if a speedier font has lower quality. GDI
synthesizes bold, italic, underline, and
strikethrough characters if needed.
Chooses a font that generates the highest-quality
output. The driver should sacrifice speedy output
if a slower font has higher quality. The driver
should sacrifice output precision if a font that
does not exactly match the requested anributes
(such as size) is a higher quality. GDI synthe­
sizes bold, it.alic, underline, and strikethrough
characters if needed.

Specifies the font pitch and font family. This member is a combination of one
pitch and one family value. The pitch value can be anyone of the following
values.

Value

DEFAULT]ITCH (Oxoo)

FIXED]ITCH (OxOI)
VARJABLE]ITCH (Ox02)

Meaning

Chooses a reasonable font.
Chooses a fixed·pitch font.

Chooses a variable·pitch font.

The font family, which describes in a general way the look of a font, can be any
one of the following values.

Value

FF _DONTCARE (Oxoo)

FF_ROMAN (OxlO)

FF _SWISS (Ox20)

FF _MODERN (Ox30)

FF _SCRlPT (Ox40)

FF _DECORATIVE (Ox 50)

Meaning

Chooses a reasonable font.
Chooses a variable-pitch font with serifs.

Chooses a variable-pitch fonts without serifs.
Chooses a fixed-pitch fom.

Chooses a cursive or script font.
Chooses a novelty font.

Page 225 of 239

LFDNT

lfQuality

Specifies the required quality for text. This member can have one of the follow-
ing values.

Value

DEFAULT_QUALITY (0x00)

DRAFT4QUALITY (0x01)

PROOF_QUALJTY (0x02)

lfPitchAndFamily

Meaning

Chooses a reasonable font.

Chooses a font that generates the most efficient.
speedicst output. The driver can sacrifice appear-
ance if a speedier font has lower quality. GDI
synthesizes bold. italic, underline, and
strikethrough characters if needed.

Chooses a font that generates the hi ghesl—qualiry
output. The driver should sacrifice speedy output
if a slower font has higher quality. The driver
should sacrifice output precision if a font that
does not exactly match the requested attributes
(such as size) is a higher quality. GD! synthe-
sizes bold. italic, underline, and strikethrough
characters if needed.

Specifies the font pitch and font family. This member is a combination of one

pitch and one family value. The pitch value can be any one of the following
values.

Value

DEFAULTil-‘ITCH (0x00)

FIXED_PITCH (0x01)

VARIABLEJ’ITCH (0x02)

Meaning

Chooses a reasonable font.

Chooses a fixed-pitch font.

Chooses a variable-pitch font.

The font family. which describes in a general way the look of a font. can be any
one of the following values.

Value

FF_DONTCARE (0x00)

FF‘ROMAN (0x10)

FF_SWISS (0x20)

FF_MODERN (0330)

FFtSCRIPT (0x40)

FF_DECORATIVE (0x50)

Meaning

Chooses a reasonable font.

Chooses a variable-pitch font with serifs.

Chooses a variable-pitch fonts without serifs.

Chooses a fixed-pitch font.

Chooses a cursive or script font.

Chooses a novelty font.

Page 225 of 239

See Also

LPEN

Members

lPEN 501

IfFaceName
Specifies a null-terminated string specifying the name of the font. The driver
should choose a font having the given name. If the stri ng is empty (the flfst byte
is zero), the driver should choose a reasonable fom. The string, including the
oull terminator, does not exceed 32 bytes.

EogioeRealizeFoot, RealizeObject

typedef struct tagLPEN
long lopnStyle;
POINT lopnWidth ;
long lopnColor;

1 lPEN;

The LPEN structure specifies a logical pen. Pens are used to draw lines and
borders.

lopoStyle
Specifies the pen style. GD! requires that drivers support at least the following
pen styles.

Value

LS_SOLID (0)

LS_DASHED (1)

LS_DOTTED (2)

LS_DOTDASHED (3)

LS_DASHDOTDOT (4)

LS_NOLINE (5)

LS_INSIDEFRAME (6)

Meaning

Draws solid lines.

Draws dashed lines.

Draws dotted lines.

Draws lines with alternating dots and dashes.

Draws lines with a repealing panem of a dash fol­
lowed by two dots.
Nothing is drawn.

Creales a pen in which a line is drawn inside the frame
of ellipses and rectangles. lithe width of the pen is
greater than 1 and the pen style is
PS_INSIDEFRAME, the line is drawn inside the
frame of all primitives except polygons and polylines;
the pen is drawn with a logical (dithered) color if the
pen color does nO(match an available RGB value. The
PS_INSIDEFRAME style is identical to PS_SOLID if
the pen width is less than or equal to I .

Page 226 of 239

502 ORIENT

See Also

ORIENT

Members

See Also

PATH_INFO

lopnWidth
Specifies a POINT structure whose x member contains the pen width in device
units. A zero·width pen is drawn with the system 's smallest width. Negative­
width pens have no width and are NULL pens. The y member is ignored.

lopnColor
Specifies the color for the pen. Pen colors are specified as physical colors. For
palette-capable devices, the value is a color index if the high byte is OxOFFH.

RealizeObject

typedef struet t,gORIENT
short Orie ntat io n;
short Reserved[4];

) ORIENT;

The ORIENT structure contains information about the paper orientation, such as
whether it is portrait or landscape.

Orientation
Specifies the paper orientation. If it is 1, the orientation is portrait. If it is 2, the
orientation is landscape.

Reserved
Not used; must be zero.

GETSETPRINTORlENT

typedef st ruet t,gPATH.INFO
short RenderMode:
BYTE Fill Mode;
BYTE BkMode;
LPEN Pen;
LB RUSH Brush;
DWORD Bkeolor;

PATH. INFO;

Page 227 of 239

I
502 OHIENT

loanidth
Specifies a POINT structure whose x member contains the pen width in device

units. A zero-width pen is drawn with the system’s smallest width. Negative
width pens have no width and are NULL pens. The y member is ignored.

lopnColor
Specifies the color for the pen. Pen colors are specified as physical colors. For

palette-capable devices, the value is a color index if the high byte is OxOFFH.

See Also RealizeObject

ORIENT

typedef struct tagORIENT l
short Orientation;
short Reserved[41;

) ORIENT;

The ORIENT structure contains information about the paper orientation, such as

whether it is portrait or landscape.

Members Orientation

Specifies the paper orientation. If it is 1, the orientation is portrait. If it is 2. the

orientation is landscape.

Reserved

Not used; must be zero.

See Also GETSETPRINTORIENT

PATH_INFO

typedef struct tagPATH,INFD {
short RenderMode;
BYTE FillMode;
BYTE BkMode;
LPEN Pen;
LBRUSH Brush:
DNORD BkColor;

i PATH_INFO:

‘ ‘ 1 Page 227 of 239

Members

See Also

+

PATH INFO 503

The PA TIL INFO structure contains information about a path.

RenderMode
Specifies bow to draw the path. This member can have one of the following
values.

Value

NO_DISPLAY (0)

OPEN (I)

CLOSED (2)

FillMode

Meaning

Path not drawn.

Drawn as an open polygon.

Drawn as a closed polygon.

Specifies how to fill the path . This member can have one of the following
values.

Value

ALTERNATE (I)

WINDING (2)

BkMode

Meaning

Filled using the alternate-fill method.

Filled using the winding-fill method.

Specifies how to use existing colors when rtlling the path. This member is
equivalent to the BkMode member of the ORA WMOOE structure. Drivers
that encounter a BkMode of zero should assume TRANSPARENT value and
ignore BkColor.

Pen
Specifies which pen to use to draw the path. If RenderMode is set to the
NO_DISPLAY value, the pen is ignored .

Brush
Specifies which brush to use to draw the path. If RenderMode is set to the
NO_DlSPLA Y or OPEN values, the pen is ignored.

BkColor
Specifies which background color to use when filling the path. This member is
equivalent to the BkColor member of the ORA WMOOE structure.

ENDYATH

Page 228 of 239

504 PAmRNRECT

PATTERNRECT

Members

See Also

PBITMAP

typedef struct tagPATTERNRECT
POINT prPosit;on;
POINT prSize;
WORD prStyle;
WORD prPattern;

PATTERNRECT;

The PA TTERNRECT structure contains information about a pattern, gray scale,
or black rectangle to be created by a Hewlett-Packard PCL driver.

prPosition
Specifies a POINT structure identifying the upper-left corner of the rectangle.

prSize
Specifies a POINT structure identifying the lower-right corner of the rectangle.

prStyle
Specifies the type of pattern. It can be one of the following values.

Value Meaning

0 Black rule
I White rule

2 Gray scale

3 Device defined

pl'Pattern
Specifies the percent of gray for a gray scale pattern or specifies one of six
patterns for device-defined patterns. This member is ignored if the value is
zero (black rule).

DRAWPATTERNRECT

typedef struct tagPB ITMAP
short bmType;
short bmWidth;
short bmHeight;
short bmWidthBytes;
BYTE bmPl anes;
BYTE bmBitsPixel;
long bmBits;

Page 229 of 239

504 PATTERNHECT

PATTERNRECT

Members

See Also

PBITMAP

typedef struct tagPATTERNRECT l
POINT prPosition;
POINT prSize;
WORD prStyle;
WORD prPattern;

l PATTERNRECT;

The PATTERNRECT structure contains information about a pattern, gray scale,

or black rectangle to be created by a Hewlett-Packard PCL driver.

prPosition

Specifies a POINT structure identifying the upper-left corner of the rectangle.

prSize
Specifies a POINT structure identifying the lower-right corner of the rectangle.

prStyle

Specifies the type of pattern. It can be one of the following values.

Value Meaning

0 Black rule

1 White rule

2 Gray scale

3 Device defined

prPattern

Specifies the percent of gray for a gray scale pattern or specifies one of six
patterns for device-defined patterns. This member is ignored if the value is
zero (black rule).

DRAWPATTERNRECT

typedef struct tagPBITMAP {
short bmlype:
short bmwidth;
short bmHeight:
short bmwidthBytes;
BYTE melanes:
BYTE meitsPixel:
long melts:

Page 229 of 239

Members

long bmWidthPlanes ;
long bmlpPDevice;
short bmSegmentlndex;
shor t bmScanSegment;
short bmFillBytes ;
short reservedl;
sho rt reserved2;

PBlTMAP;

PBITMAP 505

A PBITMAP structure specifies the dimensions, attributes, and bits of a physical
bitmap.

bmType
Specifies a physical bitmap. The member must be set to zero.

bmWidth
Specifies the width of the bitmap in pixels.

bmHeight
Specifies the height of the bitmap in raster lines.

bmWidthBytes
Specifies the number of bytes in each raster line of this bitmap. The number of
bytes must be even; all raster lines must be aligned on 16-bit boundaries.

bmPlanes
Specifies the number of color planes.

bmBitsPixel
Specifies the number of color bits for each pixel.

bmBits
Points to an array of bits specifying the pixels of the bitmap. The array must be
aligned on a 16-bit boundary.

bm WidthPlanes
Specifies the size in bytes of each color plane. It is equal to the product of
bmWidthBytes*bmHeight.

bmlpPDevice
Points to the PDEVICE structure specifying the device for which this bitmap is
compatible.

bmSegmentlndex
Specifies the segment or selector offset for segments in the bitmap array. If the
bitmap is less than 64K bytes, this member is zero.

bmScanSegment
Specifies the number of raster lines contained in each segment of the bitmap
array. If tbe bitmap is less than 64K bytes, this member is zero.

bmFillBytes
Specifies the number of extra bytes in each segment. Graphics-device interface
(GDI) allocates storage for the bitmap array in 16-byte multiples.

Page 230 of 239

506 PBITMAP

Comments

reserved!
Reserved; do not use.

reserved2
Reserved; do not use.

If the bitmap bits exceed 64K bytes, GOI allocates a two or more segments to
store the bitmap. In such cases, the bmScanSegment member specifies the
number of raster lines stored in each segment, with bmFillBytes specifying any
additional bytes needed to round the segment size out to a multiple of 16; no
segment contains more than 64K bytes. The total number of segments is equal to
the quotient of bmHeight divided by bmScanSegment rounded up by one if the
remainder is not zero. The selector (or segment address) for each segment is a
multiple of bmSegmentIndex.

GOI stores the bits in the bitmap array as raster lines, with the raster line repre­
senting the top of the bitmap stored first. If the bitmap has more than one plane,
GOI stores the first raster lines for all planes at the beginning of the array, stores
the second raster lines next, and so on. The following shows the layout for a
4-plane bitmap:

Plane 0, first raster l i ne
Plane 1, f; rst raster line
Plane 2, fi rst raster line
Plane 3, fi rst raster li ne
Plane 0, second raster line

Pl ane 0. 1 ast raster 1 i ne
Plane 1. last raster line
Plane 2, la st raster line
Plane 3, last raster line

If the bitmap array exceeds 64K bytes, GOI splits the raster lines across several
segments but retains the storage order, giving tlle first raster lines in the first seg­
ment and the last raster lines in the last segment. When GOI splits the raster lines,
it ensures that matohing raster lines from the various planes are always in the
same segment. If necessary, GOI leaves a number of empty bytes (as specified
by bmFillBytes) at the end of the segment to round out the segment size to a mul­
tiple of 16.

Page 231 of 239

POEVICE

Members

Commenls

See Also

POINT

Members

See Also

typedef struct tagPDEVIC E
short pdType;

} PDEVICE;

POINT 507

The POEVICE structure contains infonnation that a graphics driver uses to iden­
tify a device and the current state of the device. The size and content of the struc­
ture depends entirely on the driver. For example, the structure may include the
current pen, the current position, the communication port of a particular device,
and other state information. However, the first member in every POE VICE struc·
ture must be pdType.

pdType
Specifies the device type. If thi s member is nonzero, the structure identifi es a
device and all remaining members are driver specific. If this member is zero,
the structure identifies a memory bitmap and all remaining members must be
identical to a PBITMAP structure.

ODI allocates space for the POEVICE structure when it calls the Enable func­
tion to initialize a device driver. The size of this structure must be specified in the
dpOEVICEsize member of the GOIINFO structure.

Enable

typedef st ru ct tagPOINT I
short x ;
sho rt Yi

} POINT;

The POINT structure contains the x- and y·coordinates of a point.

x
Specifies the x-coordinate of a point.

y
Specifies the y-coordinate of a point.

OETPHYSPAOESIZE,OETPRINTINGOFFSET

Page 232 of 239

508 REel

REel

Members

See Also

RGBQUAD

Members

typedef struct tagRECT
short left;
short top:
short right:
short bottom;

} RECT;

The RECT structure contains the coordinates of the top-left and bottom-right
corners of a rectangle.

left
Specifies the x-coordinate of the lop-left comer of the rec tangle.

top
Specifies the y-coordinate of the top-left corner of the rectangle.

right
Specifies the x-coordinate of the bottom-right comer of the rectangle.

bottom
Specifies the y-coordinate of the bottom-right comer of the rectangle.

Output(OS_ RECTANGLE)

typedef struet tagRGBQUAO [
BYTE rgbBl ue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

RGBQUAO;

The RGBQUAD structure specifies a logical color aT a 16-bitcolor index. A
logical color specifies the color desired by an application. A color index indirectly
specifies a logical color by identifying a color in an array (or table) of colors.

rgbBlue
Specifies the intensity of blue. It mu st be a value in the range 0 (no blue) to 255
(brightest blue).

Page 233 of 239

Comments

TEXTMETRIC

TEXTMETRIC 509

rgbGreen
Specifies the intensity of green. It must be a value in the range 0 (no green) to
255 (brightest green).

rgbRed
Specifies the intensity of red. It must be a value in the range 0 (no red) to 255
(brightest red).

rgbReserved
Specifies whether the RGBQUAD slructure specifies an RGB color or a 16-bit
color index. If this member is zero, this is an RGB color. If this member is
OxFF, then the low 16 bits (rgbBlue and rgbGreen members) is a color index,
not an RGB color.

When the colors are at minimum intensity (0,0,0), the result is black; when at
maximum intensity (255,255,255), the result is white; and when at half intensity
(127,127,127), the result is gray.

Primary colors can be combined to form new colors. For example, solid red
(0,0,255) and blue (255,0,0) can form purple (255,0,255). If a device cannot di s­
play all the possible RGB color combinations, the device driver must map given
RGB color values to colors the device can display . For example, in a black-and­
white display with only one bit per pixel , the driver uses a cutoff intensity at which
all the RGB values above the intensity are white and all below are black. One
method used to compute the cutoff intensity is to add the individual color intensi­
ties according to the following formula:

((5*rgbG reen+3*rgbRed+rgbBlue)+4»>3

If the result is greater than 128, then all the RGB values above that intensity will
be white, and those below it will be black.

typedef st ru ct tagTEXTMETRIC
short tmHeight;
short tmAscent;
short tmDescent;
short tmlnternal Leading;
short tmExternalLeading;
short tmAveCharW idth;
short tmMaxCharWidth;
short tmWei ght;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;

Page 234 of 239

51D TEXTMETRIC

Members

BYTE tmFirs t Ch ar ;
BY TE tmLas t Cha r ;
BYT E tmDef aul tC har;
BY TE tmBr eak Char;
BYTE t mPitchAndFa mily ;
BY TE t mCharSet ;
s hor t tmOver hang;
sho rt tmD i git i zedAspectX ;
shor t tmDigi t izedAspectY;

) TEXTMETRIC ;

The TEXTMETRlC structure contains a list of the basic metrics of a physical
font.

tmHeight
Specifies the height of the character cell. This member is equal 10 lhe sum of
lhe tmAseent and tmDeseent members.

tmAseent
Specifies the ascenl of the character cell , thai is, height of the cell measured
from the baseline.

tOlDeseent
Specifies the descent of the character cell , thaI is, the height of the cell
measured from lhe baseline to the bottom of the cell.

tmIntemalLeading
Specifies the amount of internal leadi ng. It is equal to the difference between
lhe cell height <as expressed by lhe tOlHeight member) and the maximum
height of any characler in the font (excluding the height of accent marks).

tmExternalLeading
Specifies lhe recommended amount of leading for the font.

tOlAveCharWidth
Specifies the average width of characters in the font (loosely defined as the
width of the letler "X").

tmMaxCbarWidth
Specifies the maximum width of any character in the font.

tmWeight
Specifi es the weight of the font.

tmltalie
If nonzero, specifies an italic font.

tOlUnderlined
If nonzero, specifies an underlined font.

tmStruckOut
If nonzero, specifies a font that has been struck through.

Page 235 of 239

TEXTMETRIC 511

tmFirstChar
Specifies the value of the first character defined in the font.

tmLastChar
Specifies the value of the last character defined in the font.

tmDefaultChar
Specifies the value of the character that is to be substituted for characters that
are not in the font.

tmBreakChar
Specifies the value of the character tbat is to be used to define word breaks for
text justification.

tmPitchAndFamily
Specifies the font pitch and font family. This member is a combination of one
pitch and one family value. The pitch value can be anyone of the following
values.

Value

DEFAULT]ITCH (OxOO)

FIXED]ITCH (OxOl)

VARJABLE]JTCH (Ox02)

Meaning

Chooses a reasonable font.

Chooses a fixed~pitch font.

Chooses a variable-pitch font.

The font family, which describes in a general way the look of a font, can be any
one of the following values.

Value

FF _DONTCARE (OxOO)

FF _ROMAN (Ox!O)

FF_SWISS (Ox20)

FF _MODERN (Ox30)

FF _SCRIPT (Ox40)

FF _DECORATIVE (Ox50)

tmCharSet

Meaning

Chooses a reasonable font.

Chooses a variable-pitch font with serifs.

Chooses a variable-pitch fonts without serifs.

Chooses a fixed-pitch font .
Chooses a cursive or script font.

Chooses a novelty font.

Specifies the character set of lhe font. It can be one of the following values.

Value

ANSI_CHARSET (OxOO)

SYMBOL_CHARSET (Ox02)

OEM_CHARSET (OxFF)

Meaning

Lndicates the ANSI character seL

lndicates the Symbol character sel.

fndi cates an OEM-specific character set. The
characters and corresponding character codes
depend on the computer.

Page 236 of 239

512 TEXTXFORM

Comments

See Also

TEXTXFORM

Members

tmOverhang
Specifies the amount of additional, synthesized width of a character or charac­
ter string. This member may be is nonzero if the driver synthesizes character
attributes, such as bold or italic, by modifying an existing font.

tmDigitizedAspectX
Specifies the horizontal aspect ratio for which this font was designed. This
member is equal to the dffiorizRes member of the FONTINFO structure.

tmDigitizedAspectY
Specifies the vertical aspect ratio for which this font was designed. This mem­
ber is equal to the dlVertRes member of the FONTINFO structure.

GD! makes a string bold by expanding the intracharacter spacing and overstriking
with an offset; the overhang is the distance by which the overstrike is offset. GD!
italicizes a font by skewing the string, and the overhang is the amount the top of
the font is skewed past the bottom of the font.

EnumDFonts

typedef struet tagTEXTXFORM
short txfHeight;
shor t txfWidth;
short txfEscapement;
short txfOrientation;
short txfWeigh t;
char txfltalic;
char txfUnderline:
char txfStrikeOut;
char txfOutPrecision;
char t xfC lipPrecision;
s hor t txfAcce l erator;
short txfOverhang;

TEXTXFORM;

The TEXTXFORM structure contains information desCribing the actual appear­
ance of text as displayed by the device. The StrBIt and ExtTextOut functions
check the the TEXTXFORM structure to determine what additional actions are
required to generate the desired text from the specified physical font.

txfHeight
Specifies the height of characters (ascent + descent) in device units.

Page 237 of 239

TEXTXFORM 513

txfWidth
Specifies the width in device units of the bounding box of the letter "X."

(x !Escapement
Specifies the angle in tenths of a degree counterclockwise from the x-axis of the
vector passing through the origin of all the characters in the string.

txfOrientation
Specifies the angle in tenths of a degree counterclockwise from the x-axis of the
baseline of the character.

txfWeight
Specifies the weight of the font ranging from I to 1000, with 400 being the
value for the standard font.

txtItalic
Specifies whether the font is to be italic. If the low bit is set, the font is to be
italic. All the other bits must be zero.

txrunderline
Specifies whether the font is to be underlined. ff the low bit is set, the font is to
be underlined. AU the other bits must be zero.

txfStrikeOut
Specifies whether to strike out the font. If the low bit is set, the fan I is to be
struck out. All the other bits musl be zero.

txfOutPrecision
Specifies the required output precision for text. This member can have one of
the following values.

Value

OUT_DEFAULT]RECIS (OxOO)

OUT_STRING]RECIS (OxOI)

OUT_CHARACTE1Z..PRECIS (Ox02)

OUT_STROKE]RECIS (Ox03)

txfClipPrecision

Meanjng

Chooses a reasonable font.

Chooses the font whose size (height
and width) most closely malches the
requested s ize. The driver may disregard
Lhe requested orientation and escape­
ment. but other attributes must match.

Chooses the font whosc size (height
and width) most closely matches the
requested size. The driver may disregard
the requested orientation, but other
attributes must match.

Chooses a fom whose attributes exactly
match the requested attributes.

Specifies the required clipping preCision for text. This member can have one of
the following values.

Page 238 of 239

514 TEXTXFORM

Comments

See Also

Value

CLIP ~DEFAULT]RECIS (OxOO)

CLIP ~CHARACTER_PRECIS (OxOl)

txfAccelerator

Meaning

Chooses a reasonable font.

Chooses a font that allows clipping of
individual characters. The driver must be
able to clip a character if any portion of
it lies outside the clipping rectangle.

Chooses a font that allows clipping of
portions of a character. The driver must
be able to clip any portion of a character
that lies outside the clipping rectangle.

Specifies the requested text modifications using the same format as the the
dpText member in the GDIINFO structure. Each bit in this member is set
if the corresponding ability is required to modify the physical font into the
requested font.

txfOverhang
Specifies same information as the tmOverhang member in the TEXT­
METRIC structure. This member is set by the device for device-realized fonts
and is in device units. ODI uses additional overhang if it makes the font bold.

Although most of the members in the TEXTXFORM structure correspond to the
members in the LFONT structure, these members may not always exactly match.
For example, if the logical font specified a 19-unit font at string precision and
the closest available was a 9-unit font on a device capable of doubling, then the
txfHeight member in the structure is 18.

A driver should check the dpText member in its GDIINFO structure to determine
whether the driver can carry out the requested text modifications. Ln particular, the
driver should check the bitwise difference between the txfAcce\erator member
and the dpText member to determine what abilities it should simu.late. If the
driver can not carry out the modifications, OD! is responsible for simulating the
required modifications.

EngineRealizeFont, ExtTextOut, StrBlt

Page 239 of 239

514 TEKTXFOHM

Comments

See Also

Value Meaning

CL1P_DEFAULTVPRECIS (0x00) Chooses a reasonable font.

CLTP_CHARACTER_PRECIS (0x01) Chooses a font that allowa clipping of
individual characters. The driver must be

able to clip a character if any portion of
it lies outside the clipping rectangle.

CLIP_STROKE7PR_EC15 (0x02) Chooses a font that allows clipping of
portions of a character. The driver must
be able to clip any portion of a character
that lies outside the clipping rectangle.

tfoccelerator

Specifies the requested text modifications using the same format as the the

deext member in the GDILNFO structure. Each bit in this member is set
if the corresponding ability is required to modify the physical font into the

requested font.

txvaerhang

Specifies same information as the tmOverhang member in the TEXT-

METRIC structure. This member is set by the device for device-realized fonts
and is in device units. GDI uses additional overhang if it makes the font bold.

Although most of the members in the TEXTXFORM structure correspond to the
members in the LFONT structure, these members may not always exactly match.
For example, if the logical font specified a l9-unit font at string precision and

the closest available was a 9-unit font on a device capable of doubling, then the
txfI-leight member in the structure is 18.

A driver should check the deext member in its GDIINFO structure to determine

whether the driver can carry out the requested text modifications. In particular, the
driver should check the bitwise difference between the tfoccelerator member

and the deext member to determine what abilities it should simulate. If the

driver can not carry out the modifications, GDI is responsible for simulating the

required modifications.

EngineRealizeFont, ExtTextOut, StrBlt

Page 239 of 239

