ABB Inc.

EXHIBIT 1010



trk
ABB 1010


Page 2 of 239



Page 3 of 239



Page 4 of 239



Page 5 of 239



Page 6 of 239



Page 7 of 239



Page 8 of 239



Page 9 of 239



Page 10 of 239



Page 11 of 239



Page 12 of 239



Page 13 of 239



Page 14 of 239



Page 15 of 239



Page 16 of 239



Page 17 of 239



Page 18 of 239



Page 19 of 239



Page 20 of 239



Page 21 of 239



Page 22 of 239



Page 23 of 239



Page 24 of 239



Page 25 of 239



Page 26 of 239



Page 27 of 239



Page 28 of 239



Page 29 of 239



Page 30 of 239



Page 31 of 239



Page 32 of 239



Page 33 of 239



Page 34 of 239



Page 35 of 239



Page 36 of 239



Page 37 of 239



Page 38 of 239



Page 39 of 239



Page 40 of 239



Page 41 of 239



Page 42 of 239



Page 43 of 239



Page 44 of 239



Page 45 of 239



Page 46 of 239



Page 47 of 239



Page 48 of 239



Page 49 of 239



Page 50 of 239



Page 51 of 239



Page 52 of 239



Page 53 of 239



Page 54 of 239



Page 55 of 239



Page 56 of 239



Page 57 of 239



Page 58 of 239



Page 59 of 239



Page 60 of 239



Page 61 of 239



Page 62 of 239



Page 63 of 239



Page 64 of 239



Page 65 of 239



Page 66 of 239



Page 67 of 239



Page 68 of 239



Page 69 of 239



Page 70 of 239



Page 71 of 239



Chapter 4 Printer Drivers 109

The Microsoft Windows printer drivers manage all printer output for Windows
applications. Each driver provides a set of functions that Windows uses to initial-
ize the printer, retrieve information about the printer, print text and graphics, and
allow users to modify the operation of the printer.

4.1 About the Printer Driver

A printer driver is a dynamic-link library (DLL) that consists of a set of graph-
ics functions for a particular printer device. These graphics functions translate
device-independent graphics commands into a stream of device-dependent
commands and data. A printer driver receives the graphics commands from the
graphics-device interface (GDI) portion of Windows and sends device commands
either directly or indirectly to the printer.

Each printer driver supports a specific printer technology. Printer technologies
include raster devices (for example, dot-matrix printers) and vector devices (for
example, plotters), and devices with higher-level languages, such as PostScript
page-description language (PDL). However, a printer driver can support any
number of models and manufacturers as long as the printers share the same basic
technology.

Unlike most Windows device drivers, a printer driver is generally not responsible
for hardware communication with the printer. Instead, the driver uses existing
Windows functions to open and write to a printing queue, to a file on disk, or
directly to the printer through a communications port.

4.1.1 Printer-Driver Initialization

Printer-driver initialization occurs whenever Windows or a Windows application
loads the printer driver using the LoadLibrary function (KERNEL.95). Windows
loads a printer driver whenever an application uses the CreateDC function
(GDI.53) to create a device context for the printer. Windows applications load

the driver to prepare for subsequent calls to the printer driver’s DeviceMode, Ext-
DeviceMode, or DeviceCapabilities function.

As with other dynamic-link libraries, Windows calls the printer driver’s initializa-
tion routine (if any) when it loads the driver. The routines of most drivers do little
more than initialize the heap and load resources, such as the name of the driver’s
Help file. Although a driver may require additional initialization, it typically waits
until GDI provides the additional information needed for this initialization when it
calls the driver’s Enable function.

Page 72 of 239



110 Microsoft Windows Device Driver Adaptation Guide

If a printer driver allocates global resources or alters the state of the system, the
driver is responsible for freeing these resources and restoring the previous state
before the driver terminates. Because every driver includes a WEP function that
Windows calls as the driver is quitting, the printer driver can use this function to
free resources and restore the system.

4.1.2 GDI Information Structure

Every printer driver must have a GDIINFO structure that specifies the printer’s
capabilities and characteristics. GDI uses this information to determine what
the printer can do and how much GDI must do to support graphics output to the
printer. The GDI information can be classified as follows:

® Driver management
® Driver capabilities

= Device dimensions

The driver-management information specifies the version of Windows for which
the driver was written, the type of technology the printer uses to generate output,
the size in bytes of the printer’s PDEVICE structure, and number of device con-
texts the driver can manage at the same time.

The driver-capabilities information specifies the capabilities of the device, such
as whether the printer can draw polygons and ellipses, scale text, and clip output.
Driver capabilities also specify the number of device brushes, pens, fonts, and
colors available on the printer and whether the printer can handle bitmaps and
color palettes.

The device-dimension information specifies the maximum width and height of the
printable area in both millimeters and device units, the number of color bits or
planes, the aspect ratio, the minimum length of a dotin a styled line, and the num-
ber of device units or pixels per inch.

4.1.3 Enabling and Disabling Physical Devices

GDI enables operation of the printer driver by calling the driver’s Enable function
and directing the driver to initialize a physical device for subsequent graphics out-
put. A physical device is a PDEVICE structure that represents a printer and its
current operating state. A printer driver uses the physical-device information to de-
termine how to carry out specific tasks, such as which device-dependent graphics
commands to use, and which output port to send the commands. The printer driver
initializes the physical device by copying information to the PDEVICE structure.

Page 73 of 239



Chapter 4 Printer Drivers m

GDI calls the Enable function whenever an application calls the CreateDC
function (GDI.53) to create a device context (DC) for the printer. GDI calls the
function twice: once to retrieve a copy of the driver’s GDIINFO structure, and a
second time to initialize the PDEVICE structure. After the first call, GDI uses the
dpDEVICEsize member in the GDIINFO structure to determine the size of the
driver’s PDEVICE structure. GDI then allocates memory for the structure and
calls Enable for the second time, passing a pointer to the structure. With this call,
the driver initializes the structure.

To initialize the PDEVICE structure, the driver typically examines the names of
the printer model and output device or file passed to Enable by GDI. It may also
examine any printer environment passed to Enable. The driver then fills the
PDEVICE structure with all the information that the output functions need to
generate appropriate graphics commands for the given printer model and to send
the commands to the given device or file.

Although only the printer driver initializes and uses the PDEVICE structure, GDI
allocates memory for the structure, determines when to pass it to the driver’s out-
put functions, and deletes the structure when it is no longer needed. Except for the
first 16 bits of the PDEVICE structure, the content and format of the structure de-
pends entirely on the printer driver. The first 16 bits, on the other hand, must be
set to a nonzero value. GDI reserves zero to indicate a BITMAP structure. GDI
creates and uses a BITMAP structure in place of a PDEVICE structure when an
application creates a memory-device context.

A printer driver can allocate additional structures and store their addresses in the
PDEVICE structure. Because GDI may direct a printer driver to create a large
number of physical devices, the printer driver should not allocate additional struc-
tures in the limited space of the driver’s automatic data segment, especially if the
driver allows multiple device contexts.

GDI disables the physical device and possibly frees the printer driver whenever an
application calls the DeleteDC function (GD1.68). GDI disables the physical
device by calling the driver’s Disable function. It expects the driver to complete
any outstanding printing job and free any resources associated with the physical
device. After the driver returns from the Disable function, GDI frees the memory
it allocated for the PDEVICE structure. If there are no other device contexts for
this printer driver, Windows frees the driver, removing any driver code and data
from memory.

4.1.4 Device-Context Management

Since Windows is a multitasking environment, more than one application may cre-
ate a device context for a printer at the same time. This means GDI may direct the
printer driver to initialize more than one physical device. The printer driver sets

Page 74 of 239



112 Microsoft Windows Device Driver Adaptation Guide

the dpDCManage member in its GDIINFO structure to specify how it will man-
age these requests. The driver can specify one of the following methods:

= Driver allows multiple device contexts. It creates a new PDEVICE for each
device context that specifies a new device and filename pair, but uses the same
PDEVICE for any subsequent device contexts that specify the same device and
filename pair.

= Driver allows multiple device contexts, but it creates a new PDEVICE for each
device context regardless of whether the device and filename pairs are the same.

= Driver allows multiple device contexts but only if all device contexts have
unique device and filename pairs. The driver creates a PDEVICE for each
device context. The driver returns an error on any attempt to create a second

device context with an existing device and filename pair.

» Driver allows multiple device contexts, but only creates one PDEVICE. All
device contexts share the same PDEVICE regardless of the device and
filename pairs.

» Driver allows only one device context. The driver returns an error on any at-
tempt to create a second device context.

Printer drivers normally allow multiple device contexts but create new PDEVICE
structures for each device context. With separate PDEVICE structures, the driver
can maintain information about multiple print jobs without one job affecting the
other.

4.1.5 Dimensions and Mapping Modes

A printer driver provides values in its GDIINFO structure specifying the aspect
ratio, logical pixels-per-inch, and mapping modes for the printer. The following
sections detail these modes.

4.1.5.1 Aspect Ratio

The aspect ratio defines the relative dimensions of the printer’s pixels. The ratio
consists of three values: an x-, y-, and xy-aspect. These represent the relative
width, height, and diagonal length (or hypotenuse) of a pixel. GDI uses the aspect
ratio to determine how to draw squares and circles as well as drawing lines at an
angle.

The aspect values have the following relationship:

(dpAspectXY = dpAspectXY) == (dpAspectX * dpAspectX) +
(dpAspectY * dpAspectY)

Page 75 of 239



Chapter 4 Printer Drivers 113

Because the dimensions are given as relative values, they may be scaled as needed
to obtain accurate integer values. Keep the values under 1000 for numerical stabil-
ity in GDI calculations. For example, a device with a 1:1 aspect ratio (such as a
300 dpi laser printer) can use 100 for the dpAspectX member and the dpAspectY
member and 141 (100 * 1.41421...) for dpAspectXY.

4.1.5.2 Logical Pixels-Per-Inch

Printer drivers should always use real inches. A 300 dpi laser printer puts 300 in
both members.

4.1.5.3 Mapping Modes

The printer driver provides viewport and window extents for the standard mapping
modes: MM_LOENGLISH, MM_HIENGLISH, MM_LOMETRIC,
MM_HIMETRIC, and MM_TWIPS.

Place the device resolution in pixels-per-inch in the viewport extents and the num-
ber of logical units-per-inch in the window extent. The y-coordinate of the view-
port is negated to reflect the fact that the x-axis is along the top of the paper in the
default mapping mode (MM_ TEXT, which specifies device coordinates) with

y increasing while going down the page; whereas in the other mapping modes, the
x-axis is along the bottom edge of the page.

For example, on a 300 dpi laser printer, the MM_TWIPS mapping mode will
require that the dpTwpWin member be set to (1440,1440) and the dpTwpVpt
member be set to (300, —300).

4.1.6 Printer-Driver Environment

The printer-driver environment consists of information about the printer, such as
font cartridges, paper trays and sizes, printer orientation, graphics capabilities,
color, and other advanced features. Windows applications use this information to
create printed output that takes full advantage of the printer environment.

Printers normally have a large number of options from which the user can select.
This information can come from any of four sources:

= The driver’s default setup.

= The driver’s WIN.INI section of user options. The WIN.INI should maintain at
least one such section so that modified printer setups can be retained from ses-
sion to session. This information is edited by the driver’s Setup dialog box.

Page 76 of 239



114 Microsoft Windows Device Driver Adaptation Guide

» The driver may call GDIto retain the driver’s environment from device context
to device context on a port-by-port basis. This allows faster initialization of the
driver and avoids the time-consuming process of reading options from the
WINLINI file.

s The application can pass the environment to the driver in a buffer pointed to by
the IpInitData parameter of the Enable function.

Upon device initialization (that is, during the pair of Enable functions), this infor-
mation is used to set up information in the GDIINFO and PDEVICE structures.

For example, the paper size selection will affect the height and width fields. Also,
a printer that allows multiple graphics densities will modify the various resolution

fields.

4.1.7 Device-Mode Dialog Boxes

The DEVMODE structure is used for the environment and the initialization data
(which are the same). By convention, all drivers place the device name in the first
32 bytes of DEVMODE as a null-terminated string. All the other data is device
dependent.

For Windows 3.x, anew convention has been adopted that defines an additional
number of members. These members enable the application to perform
device-independent manipulations of the device environment.

When Enable is called, the device driver should first check the IpInitData parame-
ter to see if the application has supplied valid initialization data. If itis valid, then
the driver should use that environment to initialize the GDIINFO and PDEVICE
structures and not use or modify the default environment information.

If the environment cannot be found or if the data obtained is invalid or intended
for another device, the device driver should extract user settings from the WIN.INI
file, by using the profile string functions, such as GetProfilelnt.

However, the driver should contain useful defaults for all strings, sO that it can cre-
ate a valid environment even if the WIN.INI file is empty.

The driver should use the device name string at the beginning of the DEV-
MODE structure to determine whether or not the environment obtained from

GetEnvironment is correct.

A driver may also maintain additional information in its DEVMODE structure
to determine validity if the device name matches one the driver supports.

The printer driver can set or delete the environment by using the Set-

Environment function (GDI.132). It can retrieve the current environment
using the GetEnvironment function (GDI.133).

Page 77 of 239



Chapter 4 Printer Drivers 115

The driver should always set up the default environment if it is not present,
except when the driver is initialized with a non-default environment (that is, the
IpInitData parameter to Enable points to application-supplied data).

4.1.7.1 New Members in the DEVMODE Structure

The dmYResolution and dmTTOption members in the DEVMODE structure
are new for Windows 3.1. The DEVMODE structure returned by the ExtDevice-
Mode function contains one or both of these members if the dmField member in-
cludes the following values:

DM_YRESOLUTION @x0002000L
DM_TTOPTION 0x0004000L

The dmYResolution member specifies the vertical resolution of the printer in
dots per inch. In this case, the dmPrintQuality member specifies the horizontal
resolution in dots per inch. If the DM_YRESOLUTION bit is not set in dmFields,
dmYResolution is not used and dmPrintQuality retains the original meaning.

The dmTTOption member specifies how TrueType fonts should be printed. The
member can be set to one of the following values.

Value Meaning

DMTT_BITMAP (1) Prints TrueType fonts as graphics.
DMTT_DOWNLOAD (2) Downloads TrueType fonts as soft fonts.
DMTT_SUBDEYV (3) Substitutes device fonts for TrueType.

Note Before calling the the CreateDC or CreateIC functions, an application
should call the DeviceCapabilities function with the DC_TRUETYPE index to
retrieve the driver’s TrueType capabilities. The application can use the value re-
turned by the driver to set the dmTTOption member to the appropriate value.

The default action is to download TrueType as soft fonts for Hewlett-Packard
printers that use PCL; substitute device fonts for TrueType for PostScript printers;
and to print TrueType fonts as graphics for dot-matrix printers.

4.1.8 Printer-Device Modes

All printer drivers are required to export the DeviceMode function, which displays
a dialog box to edit the default environment. This function sets the profile strings
in the WIN.INI file for the options chosen by the user. It should also set the en-
vironment using the SetEnvironment function. The DeviceMode function uses
USER functions, such as DialogBox (USER.240), to display dialog boxes.

Page 78 of 239



116

Microsoft Windows Device Driver Adaptation Guide

The most common way to call DeviceMode is with Control Panel. However,
other applications that make heavy use of printer output, such as Microsoft Write
or Microsoft Excel, may also provide a means for calling the printer driver’s

DeviceMode function.

Windows 3.x drivers also export two environment-related functions, ExtDevice-
Mode and DeviceCapabilities. These functions are designed to allow greater
application control over the printer environment. All printer drivers should imple-

ment these functions.

ExtDeviceMode enables the application to call the driver to obtain device initiali-
zation data either from the user or from the application’s modifications to the
default environment. GDI then calls the Enable function with a pointer to this in-
formation, allowing the driver to preset its GDIINFO and PDEVICE structures
according to the application’s options, rather than the defaults. That way, the appli-
cation can store different printer settings for itself and its documents or even re-
quest specific setup properties, such as orientation.

DeviceCapabilities enables the application to get information about such things as
what DeviceMode fields the driver uses and what limits, ranges, or selections are

valid.

4.1.8.1 Indexes for the DeviceCapabilities Function

Printer drivers must process requests from applications for new Device-
Capabilities indexes. A driver’s DeviceCapabilities function must check for

and process the following values.

Value

Meaning

DC_ENUMRESOLUTIONS (13)
DC_FILEDEPENDENCIES (14)
DC_TRUETYPE (15)
DC_PAPERNAMES (16)

DC_ORIENTATION (17)

DC_COPIES (18)

Retrieves a list of resolutions supported by the
model.

Retrieves a list of filenames which also need to
be installed when the driver is installed.
Retrieves the driver’s capabilities with regard to
printing TrueType fonts.

Enumerates the actual string describing the
paper names.

Retrieves the relationship between Portrait and
Landscape orientations in terms of the number
of degrees that portrait orientation is to be ro-
tated counterclock-wise to get landscape orienta-
tion.

Retrieves the maximum number of copies the
device can print.

Page 79 of 239



Chapter 4 Printer Drivers 117

The implementation of one or all of the indices is optional. If a driver does not
implement a given index, the DeviceCapabilities function should return —1. For
more information about the new indices, see the DeviceCapabilities function.

4.1.8.2 New Paper Sizes

There are 21 new predefined paper sizes. The include file, PRINT.H, contains a
complete list of all supported paper sizes. Applications typically call the Device-
Capabilities function to retrieve names and sizes of the supported paper sizes, so
printer drivers must be ready to process the following DeviceCapabilities index

values:

Value Meaning

DC_PAPER Retrieves the identifiers of the listed paper sizes.
DC_PAPERNAMES Retrieves the names of the listed paper sizes.
DC_PAPERSIZES Retrieves the width and height of the listed paper sizes.

4.1.9 Per-Page Printer Settings

Applications can now modify printer settings (that is, DEVMODE values) while
printing a document. The ResetDC function lets applications update the printer
device context at each new page. This means applications can print documents
containing a mixture of page orientations, paper sources, and other printing
options without having to divide the document into smaller documents.

To support ResetDC, a printer driver must provide code for the RESETDEVICE
escape. This escape, processed by the driver’s Control function, copies printer out-
put state information from one physical device context (PDEVICE) to another.
GDI uses the escape to replace existing device contexts with new ones.

When an application calls ResetDC, GDI first creates a new PDEVICE by calling
the driver’s Enable function. This new PDEVICE receives the new printer
settings as specified by the application. GDI next uses the RESETDEVICE escape
to copy output state information from the existing PDEVICE to the new one. The
output state includes information such as job number and list of downloaded fonts.
The escape must copy the state information without changing the printer settings
in the new PDEVICE. Finally, GDI substitutes the new PDEVICE for the old
one in the application’s device context, discarding the old PDEVICE by calling
the Disable function.

When the printer driver receives the RESETDEVICE request, it must expect a
subsequent call to Disable with no intervening call to the ENDDOC escape. The
printer driver must also ensure that the new printer settings take affect starting on
the next printed page. If a printer driver allocated bitmap or working buffers when

Page 80 of 239



118 Microsoft Windows Device Driver Adaptation Guide

it received the STARTDOC escape, the driver should free the buffers for the old
PDEVICE and allocate new buffers for the new PDEVICE (an option is to reallo-
cate the buffers).

The ResetDC function cannot be used to change the driver name, device name, or
the output port. When the user physically changes port connection or the device
name, the application must delete the original device context and recreate a device
context with the new device name and output port. Also the application must can-
cel the selection of all objects in its device context before calling ResetDC.

4.1.10 Printer-Model Names

To make printer driver installation casier and more intuitive, printer-model names
have been removed from the DeviceMode dialog box. Users have found it confus-
ing to select a printer model when installing the driver only to have to reselect the
printer model again within the printer’s DeviceMode dialog box. For Windows
3.1, the DeviceMode dialog box displays the name of the printer model (selected
during installation by the user) in the title bar of the dialog box.

To support this change, printer drivers must now have corresponding SETUP.INF
or OEMSETUP.INF entries that list all the printer-model names. Control

Panel uses the entries to determine which printer models are available. If the
entries aren’t available, Control Panel obtains the printer-model name from the
DESCRIPTION statement in the driver’s executable file header.

4.1.11 Standard Print Dialogs

Windows 3.1 includes a set of standard print dialogs for use by Windows appli-
cations. These dialogs provide a standard interface for users to select and change
printer settings, such as page range, number of copies, and print quality.

To support the standard print dialogs, a printer driver must export the ExtDevice-
Mode and DeviceCapabilities functions. The dialogs call these functions to get
the necessary settings for the standard dialog boxes. If a printer driver does not ex-
port these functions, no printer settings can be set from within an application using
the standard dialog. In such cases, the dialog boxes are displayed, but the printer
settings fields are disabled (greyed out) and the driver is forced to use the system
defaults that were previously set in Control Panel.

A printer driver can extend the capabilities of the standard print dialogs by ex-
porting the AdvancedSetUpDialog function. If this function is available, the stan-
dard print dialogs display a More button. If the user chooses the button, the dialog
box calls the AdvancedSetUpDialog function allowing the driver to display its
own dialog box containing fields for advanced printer settings, such as color, du-
plex printing, and screen parameters.

Page 81 of 239



Chapter 4 Printer Drivers 119

4.1.12 Printer Entries in the_ WIN.INI File

Printer drivers that support more than one model should now record current printer
settings for each model even if the models use the same port. A driver records the
printer settings for a given model by adding to the WIN.INI file a section having
the following form:

[ModelName, Port]

The ModelName specifies the name of the model and Port specifies the output
port current associated with the printer as shown in the following example:

[HP LaserJet IIID, LPT2]

This section must include all printer settings except printer fonts. To record font
information, the driver must add a section having the following form:

[DeviceName, Port]

The DeviceName specifies the name of the device and the port specifies the name
of the output port associated with the device as shown in the following example:

[HPPCL5A, LPT1]

This section only lists fonts, including those in external cartridges. Also ¢his sec-
tion ensures backward compatibility with third-party font packages that use this
section to add fonts.

4.1.13 Physical Objects

Physical objects are device-dependent representations of the logical pens, brushes,
and fonts that Windows applications use to perform output. GDI directs a printer
driver to create physical objects whenever an application selects a logical object
for subsequent drawing. The process of converting a logical object into a physical
object is called realizing the object, and every printer driver provides a Realize-
Object function to carry out this task.

GDI calls the RealizeObject function when an application calls the SelectObject
function (GDL45) to select a logical object for a device context. GDI calls the
function twice: once to retrieve the size of the physical object, and a second time
to realize the object. Although the printer driver realizes an object, GDI manages
it, allocating memory for the object, passing the object to the driver to perform out-
put, and deleting the object when it is no longer needed.

GDlI realizes a physical object when it is selected to avoid the overhead of realiz-
ing the object each time it is used for drawing. The contents and organization of
the structure defining a physical object are specific to the driver. Usually, the struc-
ture includes the logical object plus any other information that the driver needs.

Page 82 of 239



120 Microsoft Windows Device Driver Adaptation Guide

4.1.14 Device Pens and Brushes

Most printer drivers maintain and manipulate device objects. Device objects are
structures that represent pens and brushes that the device supports.

To determine what device objects are available, GDI calls the EnumObj function
and expects the driver to enumerate all the pens and brushes that a device sup-
ports. The function translates physical descriptions of the objects into logical
descriptions and returns these descriptions to GDL All logical objects created this
way must be unique, that is, when translated into physical objects and used for
drawing, they should produce different output.

The driver enumerates all the styles and colors of pens and brushes. Since pens are
defined to be only pure colors, only logical colors that translate to pure physical
colors will be enumerated. For devices that support many colors, only a subset of
all the colors will be enumerated.

4.1.15 Device Fonts

The most common type of device object is a device font. Most printers are capable
of printing some set of built-in fonts. The concept of device fonts enables drivers
and applications to take advantage of a device’s ability to render fonts. Device
fonts are also expected to print faster and look better than GDI fonts.

To determine what device fonts are available, GDI calls the EnumDFonts func-
tion and expects the printer driver to enumerate the fonts. Typically, GDI first
calls EnumDFonts passing an empty string for the font name. This indicates that
the driver should enumerate each font name that it supports. On subsequent calls,
GDI passes one of enumerated font names and expects the driver to enumerate all
the sizes of that font.

Printer drivers may also wish to support GDI raster and vector fonts. For banding
devices, it is usually not difficult to support GDI raster fonts because GDI contains
support functions to render raster fonts into monochrome-band bitmaps. GDI
raster fonts are most useful for devices (such as Jower-resolution dot-matrix print-
ers) with resolutions near those of the display.

For nonbanding devices, supporting GDI raster fonts is not as easy. In fact, the
PostScript driver (a nonbanding device) does not support GDI raster fonts.

Supporting vector fonts is also optional. If a driver does not support vector fonts,
GDI will simulate them by drawing line segments.

Page 83 of 239



Chapter 4 Printer Drivers 121

4.1.16 Color

A printer driver must provide support for translating logical colors (RGB values)
to physical colors. For printers with color palettes, the printer driver must provide
additional information in its GDIINFO structure.

4.1.16.1 Color Objects

GDI calls the ColorInfo function to translate physical and logical color repre-
sentations. This function translates in both directions, that is, from physical to logi-
cal and from logical to physical. When given a logical color, the function returns
the nearest physical color. When given a physical color, the function returns the
logical color that best describes that color.

This function supports the GDI function GetNearestColor.

4.1.16.2 Color Palettes

GDI ignores the color palette members if the RC_PALETTE value is not set in
the dpRaster member. However, they must be present (and accounted for in the
length returned by Enable) if the driver is version 3.x.

4.1.17 Output

A printer driver provides a variety of graphics output from lines to text. The driver
supports each type of output with a specific output function. When an application
calls GDI to carry out a graphics operation, GDI calls the corresponding output
function in the driver. The following lists output functions and associated graphics

output.

Type of Output Functions

Bitmaps BitBIt, StretchBIlt
Device-independent bitmaps SetDIBitsToDevice, StretchDIBits
Floodfills ScanLR

Lines and figures QOutput

Pixels Pixel

Text ExtTextOut, StrBlt

Some output functions are optional. If a printer driver does not include an optional
function, GDI simulates the output using other output functions.

When GDI calls the output functions, it passes parameters that specify the output
as well as the physical device and physical objects to be used to generate the
output.

Page 84 of 239



122 Microsoft Windows Device Driver Adaptation Guide

4.1.18 Text

4.1.19 Fonts

A printer driver provides supporting functions and values for text output, such as
maximum text width and height, character widths, and character clipping.

4.1.18.1 Maximum Text Width and Height

The maximum width and length of text that can be printed on a page is determined
by choosing either the Portrait or Landscape orientation. In Portrait orientation, the
page is taller than wide, when viewing the text upright. In Landscape orientation,
the page is wider than tall, when viewing the text upright.

4.1.18.2 Character Widths

Use the GetCharWidth function to determine character widths for variable-width
fonts. It is important that the values returned by this function match and that the
actual widths of the characters displayed. Any differences will produce misalign-
ments, and any text formatting or justification will not work as intended.

4.1.18.3 Clipping Character Strings

Character strings should be clipped pixel-by-pixel like all other graphics, when-
ever possible. Some types of printers, however, do not allow pixel-precision clip-
ping of device-based fonts. When this is the case, the driver should clip character
strings on a per-character basis.

A driver should clip a character if any part of the character is outside the left or
right edge of the clipping rectangle. If any part of the character is outside the top
or bottom edge of the clipping rectangle, the driver should print the character.

A printer driver provides support for the various fonts provided or supported by
GDI.

4.1.19.1 Big Fonts

Some printer drivers use a new format for fonts when running in protected mode
(with Windows running in either standard or 386 enhanced mode) on an 80386 or
80486-based computer. This format allows for fonts that can exceed 64K bytes of
data, as well as some other options. In this situation, GDI will convert all the 2.x
format fonts to the new format so that only one font file format is used in memory.

Page 85 of 239



Chapter 4 Printer Drivers 123

If a printer driver prints GDI bitmap fonts directly, it should be modified to handle
big fonts. In many cases, a driver will not need to be updated if it is a banding
monochrome driver that uses only the brute functions. The brute functions are
already aware of the new format. For more information about brute functions,

see Section 4.1.25 “The Brute Functions,” later in this chapter.

If a printer driver uses the color library, the library supports the big font format, as
well as the old 2.x format.

4.1.19.2 TrueType

GDI provides TrueType support for any driver that supports GDI raster fonts (that
is, it supports drivers that set the DT_RASPRINTER value in the dpTechnology
member of the GDIINFO structure). To support TrueType on these printers, GDI
generates a raster font from the TrueType outlines and passes the font to the driver
Jjust as with any other raster font. This means many Windows 3.0 printer drivers,
especially drivers for dot-matrix printers, currently support TrueType—no code
changes in the driver are required.

Printer drivers that do not support raster fonts must be modified to support True-
Type. Typically, the modification consists of adding code to convert TrueType
fonts into a downloadable font format that the printer accepts. To simplify the task
of adding TrueType support to nonraster printer drivers, GDI provides several
TrueType service functions. .

4.1.19.3 TrueType Service Functions

Printer drivers can use TrueType service functions to retrieve information about
TrueType fonts, to retrieve bitmaps of individual glyphs in the fonts, and to realize
a complete font, retrieving both information and bitmaps. Following are the ser-
vice functions and brief descriptions.

Function Description

EngineDeleteFont Deletes a realized TrueType font.
EngineEnumerateFont Enumerates TrueType fonts.
EngineGetCharWidth Retrieves character widths for TrueType fonts.
EngineGetGlyphBmp Retrieves the bitmap for a rasterized glyph.

EngineRealizeFont Realizes a TrueType font.
EngineSetFontContext Sets the context for rasterizing glyphs.
GetRasterizerCaps Specifies whether TrueType is available.

A printer driver can determine whether TrueType is currently available by calling
the GetRasterizerCaps function. Since users can turn TrueType off, it is impor-
tant that a driver check for TrueType before generating output.

Page 86 of 239



124

Microsoft Windows Device Driver Adaptation Guide

If TrueType is on, the driver can call the EngineEnumFonts function whenever
GDI calls the driver’s EnumDFonts function. This gives the font engine the
chance to enumerate the TrueType fonts having the specified font. The driver can
call the EngineRealizeFont function whenever GDI calls the driver’s Realize-
Object function. This gives the TrueType font engine an opportunity to generate
a physical font that matches the specified logical font. When the engine realizes a
font, it fills a FONTINFO structure with information about the font as well as the
bitmap data for the individual glyphs. A driver can use this information to create a

downloadable font in the format recognized by the printer.

In general, a printer driver should call the EngineRealizeFont and Engine-
EnumerateFont functions before processing its Own device fonts (if any). If
GDI requests that the driver delete a realized TrueType font (by calling Realize-
Object), the driver must call the EngineDeleteFont function to delete the font..

A printer driver can retrieve character width information for a realized TrueType
font by using the EngineGetCharWidth function. It can retrieve bitmaps for in-
dividual glyphs in the font by using the EngineSetFontContext and Engine-
GetGlyphBmp functions. The driver must call EngineSetFontContext first to
set the font before calling EngineGetGlyphBmp. Drivers for printers that accept
individual glyph definitions (as opposed to full font definitions) can use the char-
acter width information and bitmap data to download individual glyphs.

4.1.19.4 Specifying the Spot Size

The spot size is a set of values that help the TrueType rasterizer create the best
glyph bitmaps for a given printer. All printer drivers can benefit by setting the spot
size in their GDIINFO structure regardless of whether the driver uses TrueType
service functions. The spot size should be specified in the dpSpotSizeX and
dpSpotSizeY members of the driver’s GDIINFO structure. If these members are
not zero, GDI passes the values to the TrueType engine to help it rasterize glyphs.

4.1.20 Device-Independent Bitmaps

Device-independent bitmaps (DIBs) are bitmaps in a new format that was de-
signed to provide a device-independent way for applications to transfer bitmap
images to a variety of output devices. Besides the bitmap bits, these bitmaps con-
tain color-table information and additional dimension information.

A printer driver should include support for DIBs, especially in color devices. If

a driver does not support DIBs, GDI can convert DIBs into the standard mono-
chrome bitmap format, but the quality of DIB output will rarely be satisfactory in
such situations.

Page 87 of 239



Chapter 4 Printer Drivers 125

If a printer driver can do more with the bitmap, it should attempt to support DIBs
handling, especially if it can perform its own half-toning or coloring of bitmaps.
To enable such functionality, the driver should support the SetDIBitsToDevice
and StretchDIBits functions, and possibly support the SetDIBits and GetDIBits
functions if the driver deals with GDI bitmaps.

4.1.21 Print Jobs

A printer driver provides print job support by handling printer-specific escapes.
GDI passes escapes to a printer driver’s Control function whenever an application
calls the Escape function (GDI.38).

4.1.21.1 The QUERYESCSUPPORT Escape

All drivers are required to implement the QUERYESCSUPPORT escape. For this
escape, the [pInData parameter points to a 16-bit value that contains the index of
another escape.

The driver returns a positive number if the driver implements that escape, or zero
if the escape is unimplemented. The driver always returns nonzero if the escape
queried is QUERYESCSUPPORT.

4.1.21.2 The SETABORTPROC Escape

SETABORTPROC is the first escape an application calls when printing. An appli-
cation passes a pointer to a callback function in the [pInData parameter when it
calls the SETABORTPROC escape. This callback function is used to check for
user actions such as cancelling the print job. The printer driver, however, is not re-
sponsible for the callback function; GDI modifies the SETABORTPROC escape
so that IpInData points to the application’s device context handle.

The ADC parameter given to the driver by this escape should be used with the
OpenJob function to enable the output functions in GDI to call the application’s
callback function. Printer drivers generally save this handle in the PDEVICE
structure. If the application does not use SETABORTPROC, NULL should be

passed to the OpenJob function.

4.1.21.3 The STARTDOC Escape

Usually, STARTDOC is the escape an application calls. STARTDOC indicates to
GDI and the device driver that the application is printing.

This escape also supplies a Print Manager job title in a NULL-terminated string
pointed to by [p/nData. The lpOutData parameter is unused. This supplies the title
used by the OpenJob function.

Page 88 of 239



126

Microsoft Windows Device Driver Adaptation Guide

Together, with the port name supplied as a parameter to Enable and the 2DC sup-
plied by the SETABORTPROC escape, the driver now has all the data necessary
to call the OpenJob function.

4.1.21.4 RESETDEVICE and STARTDOC Escapes

To support the ResetDC and StartDoc functions, which are new to Windows 3.1,
printer drivers must process the RESETDEVICE and STARTDOC escapes in

their Control functions.

Although the STARTDOC escape was available in Windows 3.0, the IpInData
and IpOutData parameters have changed. Specifically, [pInData points to a null-
terminated string specifying the name of the document, and IpOutData points to a
DOCINFO structure specifying the output port or file as well as the document
name. The structure has the following form:

typedef struct {

short  cbSize;

LPSTR 1pszDocName;

LPSTR  1pszOutput; // output port name
} DOCINFO, FAR % LPDOCINFO;

The lpszOutput is the name of the output file to use. If either [pOutData or
IpszOutput is NULL, the output port given to CreateDC should be used.

The RESETDEVICE escape, corresponding to the new ResetDC function, allows
the driver to move a printer’s output state from an old physical device structure to
a new one. This allows applications to change the printer setup, such as orienta-
tion, with creating a new print job. For more information about this escape, see
Section 4.1.23, “Other Escapes.”

4.1.21.5 The NEWFRAME Escape

An application calls the NEWFRAME escape when a new page is to be printed.
The printer driver completes output for the given page and advances to the next
page. NEWFRAME does not use the [pInData ot IpOutData parameters.

4.1.21.6 The ENDDOC and ABORTDOC Escapes

When an application has completed printing all output, it calls the ENDDOC
escape. ENDDOC does not use either the [pInData or IpOutData parameters. At
this point, the driver may call the CloseJob function.

Another common escape is ABORTDOC, which is also called ABORTPIC in
older documentation or applications, and has the same number assigned. This
escape allows GDI or the application to cancel a print job. Generally, if the job is
valid, the driver will clean up and call the DeleteJob function.

Page 89 of 239



Chapter 4 Printer Drivers 127

mm——

4.1.22 Banding Drivers

How the output functions are implemented depends on whether or not the device
uses banding. Banding devices have their output stored in a metafile. This metafile
is replayed for every band that is rendered (either by GDI or applications that wish
to implement banding). Therefore, output coordinates must be mapped into the cur-
rent band, and output outside of the band must be clipped.

Nonbanding devices perform output to the device in one pass. Therefore, the
device must have access to the entire display surface. Drivers must be able to per-
form all the output functions to both the display surface and to memory bitmaps.
This restriction would make it very difficult for devices that supported complex
drawing primitives if it were not for the help that GDI and the display driver

supply.

In the GDIINFO structure, banding color drivers should use the same bits-per-
pixel and planes values used for band bitmaps.

Devices choose numbers that match how they output color. Color printers that
use the color dot-matrix libraries specify the same values as the bitmap format.
The color library in this DDK uses one bit-per-pixel in three planes. The driver
developer must modify the library to use another format.

4.1.22.1 Raster vs. Vector Devices

Many printers (such as dot-matrix and most laser printers) are raster printers, that
is, they print out text and graphics as bitmaps or raster lines. Other devices (such
as plotters and PostScript-based printers) are vector devices, which draw text and
graphics as a sequence of vectors or lines. (Although PostScript printers are based
on raster engines, the language itself is vector oriented except where bitmaps are
concerned.)

Raster devices usually have constraints that cause problems for implementing the
full GDI device model. Raster devices, for example, do not implement any vector
graphics operations. Therefore, all vector graphics must be drawn as a bitmap
before printing. Some devices, such as dot-matrix printers, do not allow the driver
to print anywhere on the page. They require that text and graphics be output in the
order of the print direction position on the page.

These bitmaps can be enormous for a device such as a 300 dpi laser printer. In
such cases, the driver breaks up the page into smaller rectangles that are printed
individually. For each of the rectangles, GDI or the application will draw all the
graphics that fit in each rectangle into a bitmap and then print each individual
bitmap.

Page 90 of 239



128

Microsoft Windows Device Driver Adaptation Guide

These rectangles are called bands, and the printing process that uses these ba.nds'is
called banding. It is usually necessary to band raster printers; however, banding is
not necessary for vector devices.

For vector devices (that is, nonbanding devices), the application calls GDI
graphics functions, which are translated into device-driver graphics primitives.
After each page is printed, the application uses the NEWFRAME escape to
eject the page.

An application can either treat the driver as if it were a nonbanding device by
calling the GDI functions and ending each page with the NEWFRAME escape,
in which case GDI performs the banding, or it can handle the banding itself.

4.1.22.2 The NEXTBAND Escape

Before any graphics are drawn, the driver is called upon to perform the
NEXTBAND escape. When the Control function is called for the NEXTBAND
escape, IpInData points to a POINT structure, and [pOutData points to a RECT
structure.

The driver should initialize its band bitmap and set the RECT structure to the size,
in device coordinates, of the rectangle that the band represents on the page.

GDI adds the POINT structure to determine the scaling factor for graphics output.
Some devices support the use of graphics at a lower resolution than text to allow
for faster output. The x-coordinate of the POINT corresponds to horizontal scal-
ing and the y-coordinate to vertical scaling.

The value in the structure corresponds to a shift count. A point of (0,0) specifies
graphics at the same density as text, whereas a point of (1,1) specifies half-density
graphics in both directions, for example, a 300 dpi laser printer printing bitmaps at
150 dpi.

GDI then calls the driver’s Qutput function to draw text or graphics in the band
bitmap. When all drawing for the band is finished, GDI calls the driver with
another NEXTBAND escape. The driver draws the band in the band bitmap,
reinitializes the bitmap, sets a new rectangle, and continues with the next band
as it did with the first.

When all the bands on the page are exhausted, and the driver receives a NEXT-
BAND escape, it should output the last graphics band and then set the rectangle
pointed to by the [pOutData parameter to an empty rectangle to indicate that there
are no more bands on the page. It should also perform all the processing necessary
to eject the completed page. The next NEXTBAND escape will correspond to the
first band of the next page.

Page 91 of 239



Chapter 4 Printer Drivers 129

If the application performs banding, it will call the Escape function to get the
band rectangles. If GDI is handling banding for an application, then GDI collects
all the graphics functions on a page into a metafile, that is, a temporary file con-
taining a list of the graphics functions and their parameters. When the application
calls Escape to carry out the NEWFRAME escape, GDI turns this escape into a
sequence of NEXTBAND calls to the Control function. GDI sets the clip region
for the actual printer device context to the band rectangle and then plays back the
metafile, which recreates all of the application’s output in the band bitmap. GDI
does this for each band until the band rectangle returned by the driver is empty.

Some devices, such as raster laser printers, allow text to be placed anywhere on
the page at any time. Furthermore, these printers do not place text into the band
bitmap, since all the device fonts exist in printer or cartridge memory. To optimize
text output, their drivers use a single, full-page band for all the text output and a
sequence of smaller bands for bitmapped graphics.

As an optimization, some of these drivers maintain a flag to detect whether or not
any output, other than text, is attempted during the first, full-page band. If not, the
driver skips the graphics bands.

4.1.22.3 The BANDINFO Escape

Some devices, such as laser printers, can print text and graphics anywhere on the
page but still require banding support for vector graphics operations. Since these
devices usually use their own internal device fonts, they can greatly improve their
text printing performance by using a single, full-page band for text only as the first
band. The driver ignores graphics calls during this band and handles only the Ext-
TextOut or StrBIt functions. Graphics are printed on subsequent, smaller bands.

An application that is aware of this process can speed up its printing operation by
determining whether text or graphics will be printed on the current band. It may
do so using the BANDINFO escape. The application can also use BANDINFO to
optimize the banding process.

4.1.23 Other Escapes

Few applications use the QUERYESCSUPPORT escape to look for the
SETABORTPROC, STARTDOC, NEWFRAME, ENDDOC, or ABORTDOC
escapes. Therefore, a printer driver should handle all of these escapes.

In addition, there are a few applications that perform banding without verifying
that banding is required either by using QUERYESCSUPPORT or the GetDevice-
Caps function (which examines the GDIINFO structure). A nonbanding driver
can easily support such an application by returning the full page as the band rect-
angle on the first NEXTBAND escape and returning an empty rectangle for the
next NEXTBAND escape and ejecting the page.

Page 92 of 239



130 Microsoft Windows Device Driver Adaptation Guide

There are a large number of other escapes that may or may not be appropriate to a
specific driver. They are all listed alphabetically and described in detail in Chapter
11, “Graphics-Driver Escapes.”

4.1.24 Print Manager Support

In most cases, printer drivers are not responsible for sending bytes directly to the
output port. Instead, printer drivers call special GDI functions to carry out the out-
put. Depending on the options selected by the user, those functions will route the
output to a specific port, to a disk file, across a network connection, or to a tem-
porary file for later output by Print Manager.

GDI contains functions a device driver can call to perform output. The driver does
not need to know if output is being queuned or written directly to the port. The fol-
lowing lists these functions, and provides a brief description of each.

Function Description

CloseJob Closes a print job, and enables it for printing.

DeleteJob Deletes a open job, removing it from the print queue.
EndSpoolPage Marks the end of a spooled page.

OpenJob Opens a print job, returning a handle that the driver can use to

write output to the job.

StartSpoolPage Marks the start of a spooled page. Print Manager manages print
jobs by printing one spooled page at a time.

WriteDialog Displays a dialog box directing the user to carry out some action
to permit printing to continue.
WriteSpool Writes data to an open print job.

4.1.25 The Brute Functions

The brute functions is a set of graphics-support functions that a printer driver can
use to carry out certain graphics operations. The brute functions permit a printer
driver to use the resources of GDI rather than provide its own support to complete
some graphics operations.

Brute functions primarily provide support for memory bitmaps. On eachcalltoa
printer-driver function, the driver checks the PDEVICE structure and determines
if it represents a memory bitmap. If such cases, the driver calls a corresponding
brute function, passing on all the parameters, to carry out the graphics operation.

For banding drivers, the driver calls the brute functions for the main output device
as well as for the memory bitmaps.

Page 93 of 239



Chapter 4 Printer Drivers 131

4.1.25.1 Brute-Information Functions

The following brute functions take the same parameters and return values as the
corresponding driver functions and actually call the display driver to manipulate
monochrome memory bitmaps:

= dmRealizeObject
= dmEnumDFonts
®# dmEnumObject
dmColorInfo

For graphics, most raster drivers call the dmColorInfo function to map colors.
Display drivers then add together the three color components (R, G, and B). If the
weighted, average color value of these components is equal to or greater than 128,
then the color maps to white. Otherwise, it maps to black.

The IBM Color Printer driver does the same thing in monochrome mode. How-
ever, in color mode, each color is compared individually to the 128 value. Hewlett-
Packard printers that use the PCL driver are only adjustable for text.

Notice that the following colors all map to white on EGA, VGA, and 8514/a
displays:

w Light grey
= Green

= Yellow
= Magenta
m Cyan

4.1.25.2 Brute-Output Functions

Nonbanding drivers (such as PostScript or a plotter driver) use the brute functions
to support memory bitmaps. Whenever a pointer to the driver’s PDEVICE struc-
ture is passed to the driver, GDI may substitute a pointer to a BITMAP structure.
The driver can differentiate between the two cases because the first member
(bmType) of a BITMAP structure must be zero, whereas the first member (often
called epType) of a PDEVICE structure must be nonzero. If this first member is
zero, the driver simply passes the same arguments through to the corresponding
brute function and returns its return value.

Banding drivers operate by using a memory bitmap to simulate the display
surface. Therefore, a banding driver calls the brute function with a pointer to a
BITMAP structure that defines the band bitmap. The driver also has to translate
some coordinate parameters from device coordinates to bitmap coordinates since,
in general, there will be many bands in different positions on a page of output.

Page 94 of 239



132

Microsoft Windows Device Driver Adaptation Guide

The brute functions, however, always use coordinates relative to the bitmap, that
is, (0,0) to (bomWidth, bmHeight).

Therefore, many output functions may take the following form:

Function(LPPDEVICE lpDevice, ... )
{
if (!1pDevice-> epType)
{
/* output to memory bitmap */
return dmFunction(ipDevice, ... };
}

/% if this is a nonbanding driver, perform
* device-specific output. Otherwise, for a
* banding driver,

*/

/* transform coordinates according to band position
*/

somerandomxcoordinate -= 1pDevice-> xBandPosition;
somerandomycoordinate -= TpDevice-> yBandPosition;

/* assume that a BITMAP structure is stored somewhere in
* the PDEVICE for the band bitmap

*/

TpDevice = (LPPDEVICE)&1pDevice-> epBandBmpHdr;

return dmFunction(1pDevice, ... J);
1

The brute functions operate by calling the corresponding display driver function

to manipulate a memory bitmap. Therefore, they have exactly the same parameters
as the corresponding driver functions, with the exception that the [pDevice parame-
ters are always assumed to point to BITMAP structures.

Since driver capabilities and bitmap formats vary from display to display, the
printer driver should use the brute functions only for monochrome (not color)
bitmaps. Also, since the scan line and polyline support is required for all display
drivers, the printer driver can assume that this support is in the brute functions.

The following brute functions are available for output:

= dmBitBIt
= dmQutput
= dmPixel

= dmStrBlt
= dmScanLR

Page 95 of 239



Chapter 4 Printer Drivers 133

There is currently no dmExtTextOut function; the driver calls the ExtTextOut
function.

4.1.25.3 Color-Library Functions

Although the dot-matrix (brute) library functions in GDI (such as dmBitBIt and
dmOutput) only support monochrome printers, a color printer driver can call
corresponding functions in the the color library which do implement color. The
color library supports all the dot-matrix (dm) functions except dmTranspose.
The dmTranspose function does not depend on color format. The arguments and
return values of these functions are the same as those for the GDI monochrome
versions of these functions.

The library implements color using a 3-plane RGB (Red, Green, Blue) banding
bitmap, which is converted to CMYK (Cyan, Magenta, Yellow, Black) when the
bitmap is sent to the printer. If a printer requires a different format, the color
library must be modified.

Both dmBitBIt and dmQOutput compile short, efficient functions into the stack
segment and then call them to perform the actual operation. In protected mode,
this requires creating a code segment alias for the stack segment. A selector must
be allocated for these two functions to operate. It is stored in the global variable
ScratchSelector, which is external to the library and which must be supplied by
the driver. In the sample IBM Color Printer driver, the selector is allocated and
freed in Enable and Disable, respectively.

4.1.26 GDI Priority Queues

The GDI library provides the priority-queue data type that is used with device-
specific fonts to sort output strings into the correct order on the page. Priority
queues are accessed through a two-byte value, known as the key. Each key can
also have two bytes of associates information, called a tag.

The following lists the priority-queue functions, and provides a brief description

of each.

Function Description

CreatePQ Creates a priority queue.

DeletePQ Deletes a priority queue.

InsertPQ Inserts a key in a priority queue.

MinPQ Returns the tag having the smallest key in the queue.
SizePQ Sets the size of the priority queue.

ExtractPQ Extracts a key from a priority queue.

Page 96 of 239



134 AdvancedSetUpDialog

4.1.27 Stub Functions

Because printer drivers are dynamic-link libraries that GDI loads using the Load-
Library function, they must also export the WEP function. This function indi-
cates that Windows is shutting down or the printer driver is being unloaded from

the system.

Printer drivers must include the SetAttribute and DeviceBitmap functions.

4.1.28 Installing Over Previous Versions

The Windows 3.1 Setup program will automatically update any installed printer
drivers with new drivers provided with Windows 3.1. As part of this process,

Setup will replace:
generic printer name=driver, port

in the [Devices] and [PrinterPorts] sections with:

specific model name=new driver, port

Setup will not update the [DriverName, Port] section. This will be done by the
individual driver when Setup calls the DevInstall function.

4.2 Function Reference

The following is an alphabetical listing of graphics functions that are specific to
printer drivers. For a complete description of the graphics functions that are com-
mon to other graphics drivers, see Chapter 10, “Graphics-Driver Functions.”

AdvancedSetUpDialog

WORD AdvancedSetUpDialog(hWnd, hDriver, IpDevModeln, IpDevModeOut)
HWND hWnd;

HANDLE hDriver;

LPDEVMODE IpDevModeln;

LPDEVMODE IpDevModeOQut;

The AdvancedSetUpDialog function displays a dialog box with which the
user sets advanced print-job options. Applications call this function indirectly

Page 97 of 239



AdvancedSetUpDialog 135

whenever the user chooses the Options button in the Print Setup dialog box.
AdvancedSetUpDialog lets the user specify print-job options that the driver
supports, such as color, duplex printing, and text quality, but that are not available
through the Print Setup dialog boxes.

Printer drivers that do not export AdvancedSetUpDialog must export the Ext-
DeviceMode function.

parameters hWnd
Identifies the parent window. AdvancedSetUpDialog uses this handle as the
parent window handle when it creates the dialog box.

hDriver
Identifies the module instance of the device driver. AdvancedSetUpDialog
uses this handle as the module instance handle when it creates the dialog box.

IlpDevModeln
Points to a DEVMODE structure specifying the initial values for the advanced
printer options in the dialog box. If the [pDevModeln parameter is NULL or the
dmSpecVersion member in this DEVMODE structure is less than 0x0300,
AdvancedSetUpDialog must return —1 without displaying the dialog box.

IpDevModeQOut
Points to a DEVMODE structure that receives the final values for the advanced
printer options. The final values include any input from the user. If the user can-
cels the dialog box, AdvancedSetUpDialog must at least copy the initial values
(supplied in the [pDevModeln parameter) to the IpDevModeOut parameter. The
IpDevModeOut parameter must specify all print settings, not just those changed
by the user.

Return Value The return value is IDOK if the user chose the OK button to exit the dialog box,
or IDCANCEL if the user chose the Cancel button. In either case, the structure
pointed to by [pDevModeQut contains final values for the advanced pint-job
options. If an error occurs, the function returns —1.

Comments The export ordinal for this function is 93.

AdvancedSetUpDialog creates an application-modal dialog box using the Dialog-
Box function (USER.240). The dialog box must provide options for the user to set
the various advanced operating modes of the device. If DialogBox returns IDOK,
AdvancedSetUpDialog copies the complete print-job information including all
the user’s input to JpDevModeOut. Otherwise, it must copy the complete contents
of [pDevModeln to I[pDevModeOut.

Page 98 of 239



136 DeviceCapabilities

Although AdvancedSetUpDialog and ExtDeviceMode may display similar
dialog boxes, these functions are not identical. In particular, AdvancedSetUp-
Dialog must not update or modify the current environment or WIN.INI

settings.

See Also ExtDeviceMode

DeviceCapabilities

#include <drivinit.h>

DWORD DeviceCapabilities(lpDeviceName, lpPort, nlndex, lpOutput, IpDevMode)
*/

LPSTR IpDeviceName; /* pointer to device-name string

LPSTR /pPort; /* pointer to port-name string */
WORD nindex; J* device capability to query */
LPSTR lpOutput; /* pointer to the output */
LPDEVMODE IpDevMode; /* pointer to structure with device data */

The DeviceCapabilities function retrieves the capabilities of the printer device
driver and is recommended for all printer drivers.

Parameters IpDeviceName
Points to a null-terminated string that contains the name of the printer device,

such as Hewlett-Packard LaserJet that uses PCL.

IpPort ,
Points to a null-terminated string that contains the name of the port to which the
device is connected, such as LPT1.

nindex
Specifies the capabilities to query. It can be any one of the following values.
Value Meaning
DC_BINNAMES Copies an array containing a list of the

names of the paper bins. This array is in
the form char PaperNames[cBinMax]
[cchBinName) where cchBinName is 24.
If the IpszOutput parameter is NULL, the
return value is the number of bin entries
required. Otherwise, the return value is
the number of bins copied. To work
properly with the common dialog box
library (COMMDLG), a printer driver
for Windows 3.1 must support the
DC_BINNAMES index.

Page 99 of 239



DeviceCapabilities 137

Value Meaning

DC_BINS Retrieves a list of available bins. The func-
tion copies the list to ipOutput as a WORD
array. If IpOutput is NULL, the function re-
turns the number of supported bins to
allow the application the opportunity to
allocate a buffer with the correct size. See
the description of the dmDefaultSource
member of the DEVMODE structure for
information on these values. An applica-
tion can determine the name of
device-specific bins by using the

ENUMPAPERBINS escape.
DC_COPIES Returns the maximum number of copies
the device can produce.
DC_DRIVER Returns the printer-driver version number.
DC_DUPLEX Returns the level of duplex support. The

function returns 1 if the printer is capable
of duplex printing. Otherwise, the return
value is zero.

DC_ENUMRESOLUTIONNAMES Retrieves a list of resolution names sup-
ported by the model. The application
should allocate a buffer to hold one or
more arrays each containing
CCHPAPERNAME (64) bytes. If ipOutput
is NULL, the function returns the number
of resolutions supported by the model.

If IpOutput is not NULL, the buffer is
filled in.

DC_ENUMRESOLUTIONS Returns a list of available resolutions. If
IpOutput is NULL, the function returns the
number of available resolution configura-
tions. Resolutions are represented by pairs
of LONG integers representing the hori-
zontal and vertical resolutions.

DC_EXTRA Returns the number of bytes required for
the device-specific portion of the DEV-
MODE structure for the printer driver.

DC_FIELDS Returns the dmFields member of the
printer driver’s DEVMODE data structure.
The dmFields member indicates which
member in the device-independent portion
of the structure are supported by the printer
driver.

Page 100 of 239



DeviceCapabilities

Value

Meaning

DC_FILEDEPENDENCIES

DC_MAXEXTENT

DC_MINEXTENT

DC_ORIENTATION

DC_PAPERNAMES

Returns a list of files which also need to
be loaded when a driver is installed. If
IpOutput is NULL, the function returns the
number of files. If JpOutput is not NULL,
it is a pointer to an array of filenames.
Each element in the array is exactly 64
characters long.

Returns a POINT structure containing
the maximum paper size that the
dmPaperLength and dmPaperWidth
members of the printer driver’s DEV-
MODE structure can specify.

Returns a POINT structure containing
the minimum paper size that the
dmPaperLength and dmPaperWidth
members of the printer driver’s DEV-
MODE structure can specify.

Retrieves the relationship between portrait
and landscape orientations in terms of the
sumber of degrees that portrait orientation
is to be rotated counterclock-wise to get
landscape orientation. It can be one of the
following values.

Value Meaning
0 No landscape orientation.
90 Portrait is rotated 90 degrees

to produce landscapes. (For
example, PCL.)

270 Portrait is rotated 270 degrees
to produce landscape. (For
example, dot-matrix printers.)

Retrieves a list of the nonstandard paper
names supported by the model. The appli-
cation should allocate a buffer to hold one
or more arrays each containing
CCHPAPERNAME (64) bytes. If ipOutput
is NULL, the function returns the number
of non-standard paper sizes supported by
the model. If IpOutput is not NULL, the
buffer is filled in.

Page 101 of 239



DeviceCapabilities

139

DC_PAPERS

DC_PAPERSIZE

DC_SIZE

DC_TRUETYPE

DC_VERSION

Retrieves a list of supported paper sizes.
The function copies the list to IpOutput as
a WORD array and returns the number of
entries in the array. If [pOutput is NULL,
the function returns the number of sup-
ported paper sizes to allow the application
the opportunity to allocate a buffer with the
correct size. See the description of the
dmPaperSize member of the DEVMODE
data structure for information on these
values.

Copies the dimensions of supported paper
sizes in tenths of a millimeter to an array of
POINT structures pointed to by IlpOutput.
This allows an application to obtain infor-
mation about nonstandard paper sizes.
Returns the dmSize member of the printer
driver’s DEVMODE data structure.
Retrieves the driver’s capabilities with re-
gard to printing TrueType fonts. The return
value can be one or more of the following
capability flags.

Value Meaning

DCTT_BITMAP (0x0000001L)
Device is
capable of print-
ing TrueType
fonts as
graphics.

DCTT_DOWNLOAD (0x0000002L)

Device is

capable of

downloading

TrueType fonts.

(0x0000004L)

Device is

capable of sub-

stituting device
fonts for True-

Type.

DCTT_SUBDEV

In this case, the IpOutput parameter is not
used, and should be NULL.

Returns the specification version to which
the printer driver conforms.

Pag

e 102 of 239



140 DeviceCapabilities

Return Value

Comments

See Also

IpOutput

Points to an array of bytes. The actual format of the array depends on the set-

ting of the nindex parameter. If set to zero, DeviceCapabilities returns the
number of bytes required for the output data.

IpDevMode .

Points to a DEVMODE structure. Tf the [pDevMode parameter is NULL, this

function retrieves the current default initialization values for the specified
printer driver. Otherwise, the function retrieves the values contained in the
structure to which [pDevMode points.

The DEVMODE structure has the following form:

typedef struct _devicemode { /% dm */
char deeviceName[CCHDEVICENAME];
WORD dmSpecVersion;
WORD dmbDriverVersion;
WORD dmSize;
WORD dmDriverExtra;
DWORD dmFields;
short dmOrientation;
short dmPaperSize;
short dmPaperLength;
short dmPaperWidth;
short dmScale;
short dmCopies;
short dmDefaultSource;
short dmPrintQuality;
short dmColor;
short dmDuplex;
short dmYResolution;
short dmTTOption;
} DEVMODE;

The return value depends on the setting of the nindex parameter if successful.
Otherwise, the return value is —1 if the function fails.

The export ordinal for this function is 91.

ENUMPAPERBINS, ExtDeviceMode

Page 103 of 239



Devinstali 1M

Devinstall

WORD Devlnstall{(#Wnd, [pModelName, OldPort, NewPort)
HWND hWnd;

LPSTR IpModelName;

LPSTR OldPort;

LPSTR NewPort;

The DevInstall function changes port connections, and installs and removes
printers. Control Panel calls this function whenever the user switches the port for
a printer model.

Parameters hWnd
Identifies the parent window to use for any dialog boxes the function creates.

IpModelName
Points to a null-terminated string specifying the name of the current printer
model.

OldPort
Points to a null-terminated string specifying the name of the port being
changed. If the OldPort parameter is NULL, the function installs the new
printer model.

NewPort
Points to a null-terminated string specifying the name of the port to be changed
to. If the NewPort parameter is NULL, the function removes printer model.

Return Value The return value is one of the following values.

Value Meaning

1 Succeeded
0 Doesn’t support this function
-1 Failed for unknown reason

Comments When the function changes a port, it must change the port in the [ModelName,
Port] section of the WIN.INI file. Also, the function should check for a font sec-
tion with valid entries for the old port. If there are fonts, the function should wam
the user with a message informing them that there are printer fonts installed for the
old port. The user can install them using the Fonts button from the Printer Setup
dialog box.

When installing a new printer, the function must scan the WIN.INI file for a
[DriverName, NewPort] section. If one is found and ModelName matches the
printer index listed there, the function creates a new section [ModelName,

Page 104 of 239



142 GetEnvironment

NewPort] and moves all nonfont-related information from the [DriverName,
Newport] section to this new [ModelName, NewPort] section. After this opera-
tion, the [DriverName, NewPort] section contains only the printer fonts listing. If
the function doesn’t find a [DeviceName, NewPort] section, no action is required.

When removing a printer, the function must remove the [ModelName, OldPort)
section including all settings there, but it must not remove the [DriverName,
OldPort] section. Other models may be using fonts installed on this port.

4.3 Printer Environment Function Reference

The following is an alphabetical listing of printer-environment functions.

GetEnvironment

int GetEnvironment(lpszPort, lpvEnviron, cbMaxCopy)

LPCSTR ipszPort; /* address of port name */
void FAR* IpvEnviron; /* address of buffer for environment */
UINT cbMaxCopy; /* maximum number of bytes to copy */

The GetEnvironment function retrieves the current environment that is associated
with the device attached to the specified system port and copies it into the speci-
fied DEVMODE structure. The environment, maintained by graphics device inter-
face (GDI), contains binary data that GDI uses whenever a device context is

created for the device on the given port.

Parameters IpszPort
Points to the null-terminated string that specifies the name of the desired port.

IpvEnviron
Points to the DEVMODE structure that will receive the environment. The

DEVMODE structure has the following form:

typedef struct _devicemode { /* dm */
char deeviceName[CCHDEVICENAME];
WORD dmSpecVersion;
WORD dmDriverVersion;
WORD dmSize;
WORD dmDriverExtra;
DWORD dmFields;
short dmOrientation;
short dmPaperSize;
short dmPaperlLength;

Page 105 of 239



SetEnvironment 143

short dmPaperWidth;
short dmScale;
short dmCopies;
short dmDefaultSource;
short dmPrintQuality;
short dmColor;
short dmDuplex;
short dmYResolution;
short dmTTOption;

} DEVMODE;

cbMaxCopy
Specifies the maximum number of bytes to be copied to the structure.

Return Value The return value specifies the number of bytes copied to the DEVMODE
structure pointed to by the IpvEnviron parameter, if the function is successful.
If [pvEnviron is NULL, the return value is the number of bytes required to hold
the environment. It is zero if the environment cannot be found.

Comments The GetEnvironment function is used by drivers only.
The GetEnvironment function fails if there is no environment for the given port.

An application can call this function with the lpvEnviron parameter set to NULL

to determine the size of the structure required to hold the environment. It can then
allocate the required number of bytes and call the GetEnvironment function a sec-
ond time to retrieve the environment. The first member in the block pointed to by
the IpEnviron parameter should be an atom that the printer driver has added to the
global atom table.

See Also SetEnvironment

SetEnvironment

int SetEnvironment(IpszPort, IpvEnviron, cboMaxCopy)

LPCSTR IpszPort; /* address of port name */
const void FAR* IpvEnviron; /* address of buffer for new environment */
UINT cbMaxCopy; /* maximum number of bytes to copy */

The SetEnvironment function copies the contents of the specified buffer into the
environment associated with the device attached to the specified system port. The
environment, maintained by GDI, contains binary data used by GDI whenever a
device context is created for the device on the given port.

Page 106 of 239



144 SetEnvironment

Parameters

Return Value

Comments

See Also

IpszPort
Points to a null-terminated string that specifies the name of the port.

IpvEnviron
Points to the buffer that contains the new environment. This buffer is in the
form of a DEVMODE structure. The DEVMODE structure has the following

form:

typedef struct _devicemode { /% dm */
char deeviceName[CCHDEVICENAME];
WORD dmSpecVersion;
WORD dmDriverVersion;
WORD dmSize;
WORD dmDriverExtra;
DWORD dmFields;
short dmOrientation;
short dmPaperSize;
short dmPaperLength;
short dmPaperWidth;
short dmScale;
short dmCopies;
short dmDefaultSource;
short dmPrintQuality;
short dmColor;
short dmDuplex;
short dmYResolution;
short dmTTOption;
} DEVMODE;

cbMaxCopy
Specifies the maximum number of bytes to copy to the buffer.

The return value is the number of bytes copied to the environment, if the function
is successful. It is zero if there is an error or 1 if the environment is deleted.

The SetEnvironment function is used by device drivers.

The SetEnvironment function deletes any existing environment. If there is no
environment for the given port, SetEnvironment creates one. If the cbMaxCopy
parameter is zero, the existing environment is deleted and not replaced.

The first member of the DEVMODE structure pointed to by the [pvEnviron
parameter must be the same as that passed in the IpDestDevType parameter of

the Enable function. If IpszPort specifies a null port, the dmDeviceName member
is used to locate the environment. The first member in the block pointed to by the
IpEnviron parameter should be an atom that the printer driver has added to the
global atom table.

GetEnvironment

Page 107 of 239



DeletePQ 145

e ———

4.4 Priority-Queue Function Reference

The following is an alphabetical listing of the priority-queue functions.

am———

CreatePQ

HPQ CreatePQ(size)
int size;

The CreatePQ function creates a priority queue.

Parameters size
Specifies the maximum number of items to be inserted into this priority queue.

Return Value The return value is a handle to the priority queue if the function is successful.
Otherwise, it is zero.

See Also DeletePQ

DeletePQ

int DeletePQ(2PQ)
HPQ hPQ;
The DeletePQ function deletes a priority queue.
Parameter hPQ
Identifies a priority queue.
Return Value The return value is TRUE if the queue is deleted. Otherwise, itis —1.

Page 108 of 239




146 ExtractPQ

ExtractPQ

int ExtractPQ(kPQ)

HPQ hPQ;

Parameter

Return Value

The ExtractPQ function returns the tag associated with the key having the small-
est value in the priority queue and removes the key from the queue.

hPQ
Identifies a priority queue.

The return value is a tag associated with the key in the priority queue.

InsertPQ

BOOL InsertPQ(hPQ, tag, key)

HPQ hPQ;
int 1ag;
int key;

Parameters

Return Value

The InsertPQ function inserts the key and its associated tag into the priority
queue.

hPQ

Identifies a priority queue.

tag
Specifies a tag associated with the key.

key
Specifies a key.

The return value is TRUE if the insertion is successful. Otherwise, it is —1.

Page 109 of 239



SizePQ 147

~ MinPQ
int MinPQ(#PQ)
HPQ 1PQ;
The MinPQ function returns the tag associated with the key having the smallest
value in the priority queue, without removing this element from the queue.
parameter hPQ
Identifies a priority queue.
Return Value The return value is the tag associated with the key in the priority queue.
See Also ExtractPQ

SizePQ

int SizePQ(#PQ, sizechange)

HPQ hPQ;
int sizechange;
The SizePQ function increases or decreases the size of the priority queue.
Parameters hPQ
Identifies a priority queue.
sizechange
Specifies the number of entries to be added or removed.
Return Value The return value is the number of entries that can be accommodated by the resized

priority queue. The return value is —1 if the resulting size is smaller than the actual
number of elements in the priority queue.

Page 110 of 239



148 CloseJob

4.5 Print Manager Function Reference

The following is an alphabetical listing of Print Manager functions.

CloseJob

int FAR PASCAL CloseJob(/Job)
HANDLE hJob;

The CloseJob function closes the print job identified by the given handle.

Parameters hJob

Identifies the print job to close. The handle must have been previously opened
using the OpenJob function.

Return Value The return value is positive if the function is successful. Otherwise, it is one of the

following error values.

Value

Meaning

SP_ERROR (-1)
SP_APPABORT (-2)
SP_USERABORT (-3)

SP_OUTOFDISK (-4)

SP_OUTOFMEMORY (-5)

See Also OpenJob

A general error condition or general error in banding
occurred.

The job was stopped because the application’s callback
function returned FALSE (0).

The user stopped the print job by choosing the Delete
button from Print Manager.

A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

A lack of memory caused the job to stop.

Page 111 of 239



EndSpoolPage 149

DeleteJob

int FAR PASCAL DeleteJob(hJob, wDummy)

HANDLE hJob;
WORD wDummy;
The DeleteJob function deletes the given print job from the printing queue. A
driver should call this function if it detects an error condition, or is asked to quit a
job by the application.
Parameters hJob
Identifies the print job to delete. The handle must have been previously opened
using the OpenJob function.
wDummy
Reserved; must be set to zero.
Return Value The return value is positive if the function is successful. Otherwise, it is one of the
following error values.
Value Meaning
SP_ERROR (-1) A general error condition or general error in banding
occurred.
SP_APPABORT (-2) The job was stopped because the application’s callback
function returned FALSE (0).
SP_USERABORT (-3) The user stopped the print job by choosing the Delete
button from Print Manager.
SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.
SP_OUTOFMEMORY (-5) A lack of memory caused the job to stop.
See Also OpenJob

EndSpoolPage

int FAR PASCAL EndSpoolPage(hJob)
HANDLE hJob;

The EndSpoolPage function marks the end of a spooled page. A driver uses this
function, in conjunction with the StartSpoolPage function, to divide printer out-
put into pages. Each page is stored in a temporary file on the machine’s hard disk

Page 112 of 239



150 EndSpooiPage

Parameters

Return Value

Comments

See Also

when Print Manager is running. Dividing a print job into pages allows Print
Manager to begin printing one page while the driver is still generating output on
subsequent pages. A Print Manager page does not need to correspond to a physical
page of printed output; the division is the driver’s decision.

hJob
Identifies the print job. The handle must have been previously opened using the
OpenJob function.

The return value is positive if the function is successful. Otherwise, it is one of the
following error values.

Value Meaning

SP_ERROR (-1) A general error condition or general error in banding
occurred.

SP_APPABORT (-2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (-3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (-5) A lack of memory caused the job to stop.

When Print Manager is not running, page division is not very important because
temporary files are not involved. However, starting and ending at least one Print
Manager page is still required.

Calls to StartSpoolPage and EndSpoolPage can occur at any point during the out-
put. Some drivers use one spool page per physical page. Others use one page for
the whole job. The printing of a particular page by the Print Manager application
does not begin until it receives the corresponding EndSpoolPage function.

A driver can perform output at any point between these two calls. When End-

SpoolPage is called and Print Manager is loaded, the page’s temporary file is
submitted to Windows Print Manager.

OpenJob, StartSpoolPage

Page 113 of 239



OpenJob 151

Opendob

HANDLE FAR PASCAL OpenJob(lpOutput, ipTitle, hdc)
LPSTR ipOutput;

LPSTR ipTitie;

HDC hdc;

The OpenJob function creates a print job and returns a handle identifying the job.
A driver uses the handle in subsequent functions to write output to the print job as
well as control the job.

Parameters IpOutput
Points to a null-terminated string specifying the port or file to receive the out-
put. A driver typically supplies the same filename as pointed to by the IpOutput-
File parameter when GDI calls the driver’s Enable function.

IpTitle
Points to a null-terminated string specifying the title of the document to

print. This parameter must be supplied by the application when it calls the
STARTDOC escape. This title appears in the Print Manager display.

hdc
Identifies the application’s device context. This parameter must be supplied by
the application when it calls the STARTDOC escape.

Return Value The return value is a handle identifying the print job if the function is successful.
Otherwise, it is one of the following error values.

Value Meaning

SP_ERROR (-1) A general error condition or general error in banding
occurred.

SP_APPABORT (-2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (-3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print

Manager temporary file.
SP_OUTOFMEMORY (-5) A lack of memory caused the job to stop.

See Also CloseJob, Enable, STARTDOC

Page 114 of 239



152 StartSpoolPage

StartSpoolPage

int FAR PASCAL StartSpoolPage(hJob)

HANDLE hJob;

Parameters

Return Value

Comments

The StartSpoolPage function marks the start of a spooled page. A driver uses this
function, in conjunction with the EndSpoolPage function, to divide printer output
into pages. Each page is stored in a temporary file on the machine’s hard disk
when Print Manager is running. Dividing a print job into pages allows Print
Manager to begin printing one page while the driver is still generating output

on subsequent pages. A Print Manager page does not need to correspond to a
physical page of printed output; the division is the driver’s decision.

hJob
Identifies the print job. The handle must have been previously opened using the
OpenJob function.

The return value is positive if the function is successful. Otherwise, it is one of the
following error values.

Value Meaning

SP_ERROR (-1) A general error condition or general error in banding
occurred.

SP_APPABORT (-2) The job was stopped because the application’s callback
function returned FALSE (0).

SP_USERABORT (-3) The user stopped the print job by choosing the Delete
button from Print Manager.

SP_OUTOFDISK (—4) A lack of disk space caused the job to stop. There is
not enough disk space to create or extend the Print
Manager temporary file.

SP_OUTOFMEMORY (-5) A lack of memory caused the job to stop.

When Print Manager is not running, page division is not very important because
temporary files are not involved. However, starting and ending at least one Print
Manager page is still required.

Calls to StartSpoolPage and EndSpoolPage can occur at any point during the out-
put. Some drivers use one spool page per physical page. Others use one page for
the whole job. The printing of a particular page by the Print Manager application
does not begin until it receives the corresponding EndSpoolPage function.

Page 115 of 239



WriteDialog 153

A driver can perform output at any point between these two calls. When End-
SpoolPage is called and Print Manager is loaded, the page’s temporary file is
submitted to Windows Print Manager.

See Also EndSpoolPage, OpenJob

WriteDialog

int FAR PASCAL WriteDialog(hJob, ipMsg, cch)
HANDLE hJob;

LPSTR pMsg;

WORD cch;

The WriteDialog function displays a message box containing the specified mes-
sage. A driver uses this function to inform the user of a possible printing problem.
For example, a driver for a printer using manual-paper loading can call Write-
Dialog to ask the user to place a new sheet in the printer. The print job will not
continue printing until the user chooses the OK button in the message box. The
user may also choose a Cancel button to cancel the print job.

Parameters hJob
Identifies the print job. The handle must have been previously opened using the
OpenJob function.

IpMsg
Points to a null-terminated string containing the message to be displayed.

cch
Specifies the number of bytes in the message pointed to by the [pMsg parameter.

Return Value The return value is IDOK if the function is successful. Otherwise, it is
IDCANCEL.

See Also OpenJob

Page 116 of 239



154 WriteSpool

WriteSpool

int FAR PASCAL WriteSpool(hJob, IpData, cch)

HANDLE hJob;
LPSTR IpData;
WORD cch;
The WriteSpool function writes printer output to the port or file associated with
the print job. A driver must call this function after calling StartSpoolPage and
before calling EndSpoolJob.
Parameters hJob
Identifies the print job. The handle must have been previously opened using the
OpenJob function.
IpData
Points to the device-dependent data to write.
cch
Specifies the number of bytes to write.
Return Value The return value is positive if the function is successful. Otherwise, it is one of the
following error values.
Value Meaning
SP_ERROR (-1) A general error condition or general error in banding
occurred.
SP_APPABORT (-2) The job was stopped because the application’s callback
function returned FALSE (0).
SP_USERABORT (-3) The user stopped the print job by choosing the Delete
button from Print Manager.
SP_OUTOFDISK (-4) A lack of disk space caused the job to stop. There is
not enough disk space to create of extend the Print
Manager temporary file.
SP_OUTOFMEMORY (-5) A lack of memory caused the job to stop.
See Also EndSpoolPage, OpenJob, StartSpoolPage

Page 117 of 239



BITMAPMETRICS 155

4.6 TrueType Structure Reference

The following is an alphabetical listing of the structures that are specific to
TrueType support for printer drivers.

BITMAPMETRICS

typedef struct _BITMAPMETRICS {
SIZEL sizlExtent;
POINTFX pfxOrigin;
POINTFX pfxCharlnc;

} BITMAPETRICS;

The BITMAPMETRICS structure defines the character cell that corresponds to a
given glyph bitmap. The structure gives the width and height of the cell, the posi-
tion of the bitmap relative to the origin of the cell, and the horizontal and vertical
increments.

Members sizlExtent

Specifies the width and height of the bitmap. Since scan lines are aligned on
32-bit boundaries, the byte width of a scan line is the number of pixels rounded
to the next multiple of 32 and divided by 8.

pfxOrigin
Specifies the position of the upper-left corner of the bitmap relative to the char-
acter origin.

pfxCharlnc
Specifies the increment to the next character. In this case, PEXCHARINC.X is
the increment along the baseline.

Comments The increment and origin of a character may be such that consecutive characters
overlap. That is, the origin may be negative or the increment may be smaller that
the actual width. The device driver is responsible for drawing overlapping glyphs
without overwriting characters.

When calculating string widths, a device driver uses the increment as the width.

Page 118 of 239



156 FIXED

FIXED

typedef DWORD FIXED;

The FIXED type specifies a 32-bit, fixed point number. The type consists of
16-bit fields, representing an integer and a fraction as follows:

Bits Meaning

0-15 Specifies the fractional part of the fixed point number. The fraction is always
a positive value representing the numerator n of the expression n/65536.

16-31 Specifies the integer part of the fixed point number. The integer is a signed
value in the range —32768 to 32767.

POINTFX

Members

typedef struc _POINTFX {
FIXED x;
FIXED y;

} POINTFX;

The POINTFX structure specifies the x- and y-coordinates of a point. The
coordinates are expressed as 32-bit fixed point numbers.

X
Specifies a width or x-coordinate.

Specifies a height or y-coordinate.

SIZEL

typedef struct _SIZEL {
DWORD x;
DWORD y;

} SIZEL;

The SIZEL structure contains information about the size or location of a object
specified as two 32-bit values.

Page 119 of 239



TTINFO 157

Members X
Specifies a width or x-coordinate.

Specifies a height or y-coordinate.

TTINFO

typedef struct tagTTINFO {
WORD cbInfo;
WORD fFlags;

} TTINFO;

The TTINFO structure contains information specifying whether TrueType is
operating and whether TrueType fonts have been installed.

Members cbInfo
Specifies the number of bytes in the structure.

fFlags
Specifies the state of TrueType and TrueType fonts. This field can be a

combination of the following values:

Value Meaning

0x0001 At least one TrueType has been installed.
0x0002 TrueType rasterizer is operating.

4.7 File-Format Reference

The following is an alphabetical listing of the file formats that are specific to
printer drivers. For a complete description of the file formats that are common to
other graphics drivers, see Chapter 13, “Font Files.”

Page 120 of 239



158 DDRV

DDRV

Parameters

Comments

Examples

DESCRIPTION 'DDRV Description:AspectX Y,LogPixelsX,LogPixele’

The DDRYV statement in the printer driver’s module-definition file names the
printer models supported by the printer driver, and specifies the aspect ratio and

logical pixels-per-inch values of the printer.

Every printer driver must provide a DDRV statement. Control Panel uses the state-
ment to display the name of the printer to the user and to choose matching screen’

fonts for the printer.

Description
Specifies the name or names of the printer models supported by this driver.
Although more than one name can be given, the names must not be separated
by commas (,)-

AspectXY
Specifies the aspect ratio for the printer. This parameter must be set to the same
value as the driver’s dpAspectXY member in the GDIINFO structure.

LogPixelsX
Specifies the horizontal pixels-per-inch for the printer. This parameter must be

set to the same value as the driver’s dpLogPixelsX member in the GDIINFO
structure.

LogPixelsY
Specifies the vertical pixels-per-inch for the printer. This parameter must be set

to the same value as the driver’s dpLogPixelsX member in the GDIINFO
structure.

The DDRYV keyword must be capitalized. At least one character (typically a space.
must follow the DDRYV keyword; Control Panel always ignores this first character

Control Panel uses the Description (all characters up to the colon) parameter to
create new settings for the [Devices] and [PrinterPorts) sections in the WIN.INI
file. The settings have the following form:

Description:Port[,Data]

The following example shows a DDRYV description for a printer driver supporting
a single model:

DESCRIPTION 'DDRV PCL / HP LaserJet:10@,300,300'

The following example shows support for multiple printer models:

DESCRIPTION 'DDRV Printer 1/Printer2:100,300,300"

Page 121 of 239



Page 122 of 239



Page 123 of 239



Page 124 of 239



Page 125 of 239



Page 126 of 239



Page 127 of 239



Page 128 of 239



Page 129 of 239



Page 130 of 239



Page 131 of 239



Page 132 of 239



Page 133 of 239



Page 134 of 239



Page 135 of 239



Page 136 of 239



Page 137 of 239



Page 138 of 239



Page 139 of 239



Page 140 of 239



Page 141 of 239



Page 142 of 239



Page 143 of 239



Page 144 of 239



Page 145 of 239



Page 146 of 239



Page 147 of 239



Page 148 of 239



Page 149 of 239



Page 150 of 239



Page 151 of 239



Page 152 of 239



Page 153 of 239



Page 154 of 239



Page 155 of 239



Page 156 of 239



Page 157 of 239



Page 158 of 239



Page 159 of 239



Page 160 of 239



Page 161 of 239



Page 162 of 239



Page 163 of 239



Page 164 of 239



Page 165 of 239



Page 166 of 239



Page 167 of 239



Page 168 of 239



Page 169 of 239



Page 170 of 239



Page 171 of 239



Page 172 of 239



Page 173 of 239



Page 174 of 239



Page 175 of 239



Page 176 of 239



Page 177 of 239



Page 178 of 239



Page 179 of 239



Page 180 of 239



Page 181 of 239



Page 182 of 239



Page 183 of 239



Page 184 of 239



Page 185 of 239



Page 186 of 239



Page 187 of 239



Page 188 of 239



Page 189 of 239



Page 190 of 239



Page 191 of 239



Page 192 of 239



Page 193 of 239



Page 194 of 239



Page 195 of 239



Page 196 of 239



Page 197 of 239



Page 198 of 239



Page 199 of 239



Page 200 of 239



Page 201 of 239



Page 202 of 239



Page 203 of 239



Page 204 of 239



Page 205 of 239



Page 206 of 239



Page 207 of 239



Page 208 of 239



Page 209 of 239



Page 210 of 239



Page 211 of 239



Page 212 of 239



Page 213 of 239



Page 214 of 239



Page 215 of 239



Page 216 of 239



Page 217 of 239



Page 218 of 239



Page 219 of 239



Page 220 of 239



Page 221 of 239



Page 222 of 239



Page 223 of 239



Page 224 of 239



Page 225 of 239



Page 226 of 239



Page 227 of 239



Page 228 of 239



Page 229 of 239



Page 230 of 239



Page 231 of 239



Page 232 of 239



Page 233 of 239



Page 234 of 239



Page 235 of 239



Page 236 of 239



Page 237 of 239



Page 238 of 239



Page 239 of 239



