Pad

EXHIBIT

Petitioner - Motorola

PX 1006

Motorola PX 1006_1

ldrummon
Rectangular Exhibit Stamp

P++ Refer ence M anual

Motorola PX 1006_2

Reference Guide Page 1 of 84

Pad++ Reference Manual

(Version 0.2.7)

Introduction

This reference manual describes the complete Tel AP to Pad++. It describes how to create and modify a pad widget. and all the commands
associated with a pad widget that allow you to create and modify items. attach event bindings to them. navigate within the pad widget, etc.

This document in organized into the following sections:

Padwish synopsis

Tel synopsis
Widget-Specific Options
Widget Commands
Overview of Item Types
Default Bindings

Global TCL Variables
KPL-Pad++ Interface

Each section contains all the relevant entries in alphabetical order. Related commands and options are also grouped together here to show
which commands are related. Every command and itemconfigure option are listed.

Related
Commands and ||[[tems
Ontions

liem

Introduetion

View : 1 -

‘4 i lags Events Groups
T ransformations P =S
T

|Lawuu1 Rendering File /0 Miseellaneous
Utilities Renderseripts |l)cbuz2inﬂ Extensions

Padwish |Wideet-Specific
Svnopsis Options

Executables I'CL Svnopsis

Widget Overview of

; Grid ltems
Commands Item Tvpes

All Item Tvpes

Differcnees

Relative Restrictions on [[Between Pad— vy
Placement Master Windows [land TK Grid Examples
Commands

HTML liems LML

Handle ltems LAN(_'I 10RS

Ciroup ltems

Image liems

KPL ltems

Line ltems

Pad Items

Polvegon ltems

Portal ltems

Rectangle ltems

Spline ltems

Related Commands and Options

Items

allocimage [8] Allocate data for an image item

create [17] Create new items

TCL ltems Text ltems INDICES MARKS
- ia e (lGlobal TC KPL-Pad++
l'extlile Items Default Bindings Vnrahiss [oterTace

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_3

Reference Guide Page 2 of 84

delete |19] Delete existing items

£ind[27] Search for items by various keys

freeimage [31] Free data from an image item

itemconfigure[47) Configure existing items

lower [49) Push an item lower in the drawing order

pick[53] Find the item under a point

popcoordframesc[54] Pop a relative coordinate frame off of the stack
pushcoordframe [56] Add a new relative coordinate frame to the stack
raise[57] Bring an item higher in the drawing order
resetcoordrame[61] Reset coordinate frame stack to empty
setid[67] Change the id of an item

text[76] Modify text item

type | 78] Get the type of an item

~arrow |78] Some items only: Whether to draw arrow heads with this item
-arrowshape[52] Some items only: The shape of drawn arrow heads

~dither [47] Some items only: Render with dithering

~file[87] Some items only: File an item should be defined by

~height [6)] Height of an item. Normally computed automatically, but can be set
~heml [43] Some items only: The HTML item associated with an htmlanchor
~htmlanchors [38] Some items only: The anchors associated with an HTML page
~image [48] Some items only: Image data associated with item (allocated by allocimage)
-info[7] A place to store application-specific information with an item
-ismap[44] Some items only: True if an htmlanchor is an image map

-lock[#] Locks an item so it can not be modified or deleted

-state[45] Some items only: State of an item (such as visited. unvisited. etc.)
-sticky |14] Specifies if' an item should stay put when the view changes
-title[70] Some items only: Title of an item

~url[41) Some items only: The URL associated with an item

~width[21] Width of an item. Normally computed automatically, but can be set

-zoomaction[241 A script that gets evaluated when an item is scaled larger or smaller than a set size
Item Transformations

bbox |9] Get the bounding box of an item

http://www.cs.umd.edwhcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_4

Reference Guide Page 3 of 84

coords [16] Change the coordinates of an item
getsize |39] Get the size of an item (possibly within portals)
scale(62] Change the size of an item relatively

slide[74] Move an item relatively in (X, y)

-anchor [2] The part of the item that -place refers to

-place[12] Transformation of an item - Translation (x, y). and magnification (z)
-x[22] X componenent of -place transformation

-y[23] Y componenent of -place transformation

~z[285] 7 componenent of -place transformation
View Transformations

center[12] Change the view so as to center an item
centerbbox[13] Change the view so as to center a bounding box
getview[42] Gel the current view (possibly within portals)
moveto[50] Change the view (possibly within portals)

zoom |83] Zoom the view around a specified point

~viewscript |19] A script that gets evaluated whenever the view is changed
-view[71] Some items only: Specifies the view this item sees

-lookon(67] Some items only: Specifies the pad widget this item sees
Tags

addtag [4] Add a tag to an item
deletetag[18] Delete a tag from an item
dtag |19] Synonym for deletetag
gettags[40) Get the tags an item has

hastag[44] Determine if an item has a particular tag

-tags[15] List of tags associated with an item
Events

addmedifier[2] Add anew user-defined modifier for future use

bind[10] Create. modify, access, or delete event bindings

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2 html 1/19/2012
Motorola PX 1006_5

Reference Guide Page 4 of 84

bindtags[11] Specify whether events should go to the most-specific or most-general description
deletemodifier [20] Delete a user-defined modifier

focus[28] Set the focus for keyboard evenis

getmodifier [36] Get the current user-defined modifier

setmodifier[71] Make the specified user-defined modifier the current one

-events |4| True if item receives events, false otherwise
Groups

addgroupmember[1] Add an item to a group
getgroup[33] Get the group an item belongs 10

removegroupmember [591 Remove an item from a group

-divisible [26] True if events go through a group to its members

-members [28] The list of members of a group
Layout

arid[42] Layout pad items in a grid as with the Tk grid command

tree | 77| Layout pad items with a dynamic graphical-fisheye view tree
Rendering

damage [18] Specify that a group of items needs to be redrawn

update [79] Force any requested render requests to occur immediately

-alwaysrender || True if the item must be rendered, even if the system is slow and the item is small
-border[31] Some items only: Specifies border color of item

-borderwidth [32] Some items only: Specifies width of border

-capstyle[53] Some items only: Specifies how to draw line ends

-faderange[5] Range over which an item fades in or out

-£i11 [29] Some items only: Specifies fill color of item

-font |37] Some items only: Specifies font to use for text

-joinstyle[54] Some items only: Specifies how to draw the joints within multi-point lines
-layer[B] The laver an item is on

-noisedata [55] Some items only: Specifies parameters to render item with noise

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_6

Reference Guide Page 5 of 84

-maxsize [10] The maximum size an item is rendered it (absolute or relative to window size)
-minsize [11] The minimum size an item is rendered it (absolute or relative to window size)

-pen [30] Some items only: Specifies pen color of item

-penwidth |57] Some items only: Specifies width of pen

-relief(63] Some items only: Specifies how a border should be rendered

-transparency[18) Transparency of an item. 0 is completely transparent, 1 is completely opaque

~visiblelayers[58] The layers that are visible within this view (just for portals and pad surface, item #1)
File I/O

read[58) Read a .pad file

write[82] Write a .pad file (all the items on a widget)
Miscellaneous

configure(15] Modify the pad widget

info[45] Get type-specific information about an item

islinked [46] Determine if the top-level window that a pad widget is in has been mapped vet
setlanguage[69] Set the language to be used for future calback scripts

settoplevel [72] Set the language to be used by the top-level interpreter

windowshape [81] Modify the shape of the top-level window that a pad widget is in
Utilities

clock[14] Create a clock to measure elapsed milliseconds

getdate [32] Get the current date in unix format

setpads [37] Get a list of all pad widgets currently defined
line2spline[48] Generate points for a spline that approximate a line
noise[51] Generate 'perlin’ noise

padxy [52] Convert a window point (X, y) to pad coordinates
spline2iine[75] Generate points for a line that approximate a spline

urlferch[80] Retrieve a URL over the internet in the background

-donescript[34] Some items only: A script to evaluate when a background action has completed
-errorscript [35] Some items only: A script to evaluate when a background action has an error

~updatescript [40] Some items only: A script to evaluate when a background action has made progress

Renderscripts

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_7

Reference Guide Page 6 of 84

allocborder (6] Allocate a border for future rendering

alloccolor[7] Allocate a color for future rendering

allocimage (8] Allocate a image for future rendering

drawimage [23] Draw an image within a renderscript

drawline[24] Draw a line within a renderscript

drawpolygon [25] Draw a polygon within a renderscript

drawtext [26] Draw text within a renderscript

freeborder [29] Free a border previously allocated

freecolor [30]1 Free a color previously allocated

freeimage[31] Free an image previously allocated

getlevel [34] Get the render level within a renderscript

getmag [35] Get the current magnification within a renderscript

getportals[38] Get the list of portals being rendered within during a renderseript
gettextbbox[41] Get the bounding box of a text string

renderitem(60] Render an item in a render callback

setcapstyle[63] Specify how the end caps of lines should be drawn
setfont[65] Specify the font to be used for renderscript drawing
setfontheight[66] Specify the font height to be used for renderseript drawing
setjoinstyle [68] Specify how the joints within multi-point lines should be drawn

setlinewidth [70] Specify the penwidth of lines when they are drawn

-renderscript[13] A script that gets evaluated every time an item is rendered

-bb [50] A script that gets evaluated to specify the bounding box of an item
Debugging

printtree[55] Print all the items on the pad surface in their internal tree structure
Extensions

addoption [3] Create a new option for an existing type
addtype[5] Create a new item type
Executables

When Pad++ is built and installed correctly. there are two executable files that may be run. padwish runs a version of the Tel interpreter
extended with the pad widget. This is a complete superset of the standard Tk wish program. The pad command is the sole addition which is
deseribed below. In addition, the Pad++ distribution comes with an application written entirely in Tel called PadDraw. This application is a
general-purpose drawing and demo program that shows many capabilities of the pad widget. PadDraw is started by running the pad script

http://www.cs.umd.edu/heil/pad++/documentation/doe-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_8

Reference Guide Page 7 of 84

which automatically runs padwish and starts the Tcl program. When running PadDraw by executing pad, the Tel interpreter is not available.

Padwish Synopsis

padwish [options] [arg arg ...l

Valid options are:
-display display
Display (and screen) on which to display window.

~geometry geometry

Initial geometry to use for window.

-name name

Use name as the title to be displaved in the window, and as the name of the interpreter for send commands.

-sync

Execute all X server commands synchronously. so that errors are reported immediately. This will result in much slower
execution, but it is useful for debugging.

-colormap colormap

Specifies the colormap that padwish should use. If colormap is "new", then a private colormap is allocated for padwish, so
images will look nicer (although on some systems you get a distracting flash when you move the pointer in and out of a
PadDraw window and the global colormap is updated).

-visual visual

Specifies the visual type that padwish should use. The valid visuals depend on the X server you are running on. Some
common useful ones are "truecolor 24" and "truecolor 12", which specify 24 bit and 12 bit mode. respectively,

~language

Specifies what scripting language the top-level interpreter should use. Pad++ always supports Tcl. but can be compiled to
use the Elk version of Scheme also. In addition, Pad++ provides a mechanism 1o support other interpreted scripting
languages as well. Defaults to 'tel'.

-sharedmemery

Specifies if Pad++ should try and use X shared memory. Some machines (notably a particular Solaris 5.4 machine) crashes
and the X server dies when Pad++ is used with shared memory, so it can be disabled if there is trouble. Defaults to 1 (true).

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_9

Reference Guide Page 8 of 84

-help

Print a summary of the command-line options and exit,

Pass all remaining arguments through to the script's argv variable without interpreting them. This provides a mechanism for
passing arguments such as -name to a script instead of having padwish interpret them.

TCL Synopsis

pad [pathMame [ocptions]]

The pad command creates a new window (given by the pathiame argument) and makes it into a Pad++ widget. 1f no pathiame is specified, a
unique top-level window name will be generated. Additional options may be specified on the command line or in the option database to
configure aspects of the Pad++. The pad command returns the name of the created window. At the time this command is invoked, there must
not exist a window named pathliame, but pathName's parent must exist.

Once a Pad++ widget is created. there are five ways of writing Tel code for it. They are:

« Configuring the widget: Each widget has several configuration options that control the widget as a whole. For example. -width and -
height control the geometry of the widget.

Executing widget commands: There are many commands associated with the widget. They are actually sub-commands of the primary
widget command. When a new pad widget is created, a command is also created whose name is the name of the widget. For instance.
evaluating pad .pad creates a widget named . pad. and a command named . pad. For example, to find out what the current view on the
pad widget is, use the getview command with: .pad getview.

Creating items on the widget: Each pad widget can contain many graphical items, such as lines. text, etc. These are all created with the
create sub-command. For example. .pad create line 0 0 10 10 creates a line from the origin to the point (10, 10).

Configuring those items: Once items have been created. they can be modified with the i temcenfigure sub-command. For example,
supposing that the previous line had an id of 2, we could change its pen color and width with: .pad itemconfigure 2 -pen red -
penwidth 5

Accessing global Pad variables: The pad widget declares certain global Tcl variables that can be used by applications. For example, to
see the current version of Pad++, examine the Pad Version variable.

.

This version of Pad++ works only with Tcl7.5/Tk4.1.

Note that in this reference manual. optional parameters are listed in square brackets, [...]. While this is traditional for reference documentation,
the Tcl/Tk documentation uses ?...7 to denote optional parameters in order to aveid confusion with the meaning of [...] in the Tc¢l language. We
decided to risk the confusion with Tcl for the increased clarity of square brackets.

Widget-Specific Options

Name: background
Class: Background
Command-Line Switch: -background

Specifies the normal background color to use when displaying the widget.

Example:

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_10

Reference Guide Page 9 of 84

.pad config -background grayS0

Name: closeEnough
Class: CloseEnough

Command-Line Switch: -closeEnough

Specifies a floating-point value indicating how close the mouse eursor must be to an item before it is considered to be "on" the
item. Defaults to 3.0.

Name: colorCubeSize
Class: colorCubeSize

Command-Line Switch: -colorcubesize

Specifies how many colors to allocate for images. Whenever images are displaved, the system tries to allocate colorCubeSize3
colors. For example, if colorCubeSize is 5. then 5*5*5 or 125 colors will allocated. If unsuccessful. smaller color cubes are tried
successively, Default is 5.

Name; cursor
Class: cursor

Command-Line Switch: ~cursor

Specifies the mouse cursor to be used for the widget. The value may have any of the forms acceptable to Tk_GetCursor.

Name: debugBB
Class: DebugBB

Command-Line Switch: -debugee

Turns on and off display of bounding boxes. Default is 0.

Name: debugEvent
Class: DebugEvent

Command-Line Switch: -debugEvent

Turns on and off debugging of events. Default is 0. When event debugging is turned on, pad outputs a description of event
handlers as they fire. In addition, if a break or event in a handler stops some events from firing, those events not fired are shown.
By default. the event debugging output goes to stdout. however. it can be sent to a Tcl variable with the -debugOut configure
option. Also note that PadDraw comes with a graphical interface that creates a GUI for seeing and examining events as they fire.
This graphical event debugger can be used in other pad applications. See draw/debugevent.icl.

http://www.cs.umd.edw/heil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_11

Reference Guide Page 10 of 84

Name: debugGen
Class: DebugGen

Command-Line Switch: ~debugGen
Turns on and off general debugging. Default is 0.

Name: debugOut
Class: pebugout

Command-Line Switch: -debugout

Controls where debug output goes. By default. debug output is sent to stdout. However, the -debugOut configure option can
specify a Tel variable that all debug output will be appended to. 1t is then possible to set a Tcl trace on that variable to be notified
whenever debug output is available. Currently, only -debugFEvent uses the -debugOut variable.

Example: Evaluating ".pad config -debugOut £oo" will cause all future debug output to be appended to the Tel variable 'foc',

Name: debugRegion
Class: DebugRegion

Command-Line Switch: -debugRegion

Turns on and off visual display of portion of the screen that actually gets re-rendered. Used to debug region management. Default
is 0.

Name; debugstat
Class: DebugStat

Command-Line Switch: -debugstat

Turns on and off status line on the Pad (for debugging). Default is 0. The status line shows the total number of items on the pad
surface, the number of items checked for rendering, and the number of items actually rendered during the most recent render.

Name: defaultRenderLevel
Class: pefaultRenderLevel

Command-Line Switch: ~defaultRenderLevel

Specifies the default render level to use to display the Pad if no specific level is specified. The render level is generally used for
efficiency where render level 0 is the fastest and least pretty way to render the pad (text is uglier. smaller items are not rendered,
some ilems are rendered at a lower resolution). As the render level goes higher, the pad is rendered slower and prettier

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_12

Reference Guide Page 11 of 84

Name: desiredFrameRate
Class: DesiredFrameRate

Command-Line Switch: -desiredFrameRate

Specifies the desired frame rate (in frames per second). This number is used by the Pad++ rendering engine to decide how to
render the scene while animating. If a high frame rate is requested. small objects may not be rendered (see -alwaysrender) flag,
and some objects may be rendered at low resolution. The default is 20 frames/second.

Name: dissolveSpeed
Class: DissolveSpeed

Command-Line Switch: -dissolveSpeed

Specifies how quickly dissolves should occur upon refinement. When the pad widget refines, it uses a dissolve effect instead of a
simple buffer swap. The dissolve is controlled by -dissolveSpeed. This option may vary between 0 and 3 where 0 is a simple buffer
swap, | is a fast dissolve, and 3 is the slowest dissolve. The default is 2.

Name: doubleBuffer
Class: DoubleBuffer

Command-Line Switch: ~doubleBuffer

Specifies if the system should use double buffering for rendering. If doubleBuffer is set to 0 (off)., rendering will be a little faster,
but the screen will flash quite a bit. Mostly useful for debugging. Default is 1,

Name: enableOpaque
Class: EnableOpague

Command-Line Switch: -enabletpague

Normally, objects which are completely behind opaque objects are not rendered. Turn this flag off to turn off this efficiency
method. Default is 1.

Name: £astPan
Class: FastPan

Command-Line Switch: -fastran

Pad++ normally does fast pans, i.e.. copying the portion of the screen that doesn't change. and re-rendering the new portion. This
results in an approximation which can make the view be off by up to a half of a pixel. Fast panning can be disabled by setting this
flag to 0 which results in slower but more accurate pans. Default is 1.

http://www.cs.umd.edu/heil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_13

Reference Guide Page 12 of 84

Name: fontCacheSize
Class: fontCacheSize

Command-Line Switch: -fontCachesize

Pad++ employs a simple caching mechanism when drawing text in Type] fonts. The caching mechanism remembers what size,
font and bitmap it used when it last drew a particular character, and if that character is drawn again at the same size and font,
Pad++ reuses the last bitmap image for that character rather than generating the bitmap for the character from its outline
description. This greatly increases the speed of rendering large quantitics of text.

You can configure the caching mechanism using the -fontCacheSize option. The font cache size is measured in Kilobytes (rounded
to the nearest 100K). Setting -fontCacheSize to 0 turns off font caching, and characters are always drawn from their outline
descriptions. The default value is 100 which produces significantly faster font rendering than using no font cache. Values above
100 have a lesser impact on performance. but may be effective for applications which use a lot of text with different fonts and
sizes.

Name: gamma
Class: Gamma

Command-Line Switch: -gamma

Specifies 'gamma’ used for allocating colors for images. This number controls how light or dark an image appears to be. Larger
numbers will make images appear lighter. Default is 1.0.

Name: height
Class: Height

Command-Line Switch: ~height

Specifies the height of the Pad in pixels. Defaults to 400.

Name: heightmmofscreen
Class: HeightMMOfScreen

Command-Line Switch: ~-heightmmofscreen

Specifies the height of the physical screen in millimeters. Normally, this information is given by the X server, but sometimes it is
incorrect (for example, on some laptops). If it is incorrect. coordinates on the Pad++ surface will be incorrect. If this value is set to
0. the X server information will be used. Defaults to 0.

Name: interruptible
Class: interruptible

Command-Line Switch: ~interruptible

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_14

Reference Guide Page 13 of 84

If this flag is true (1), then animations and slow renders will be interrupted by events (mouse and keyboard). Defaults to true (1).

Name: maxZoom
Class: Maxzoom

Command-Line Switch: ~maxzoom

This controls the maximum zoom (in and out) that any view is allowed. This way. it not possible to crash pad by zooming in or out
too far. It defaults to 100,000,000 which gives 16 orders of magnitude of zooming (8 in and 8 out). Note that the amount one can
zoom in is determined by the produet of the (x. y) position and the zoom. So, while vou can zoom into the pasition (0, 0,
100000000), you can only zoom into (1000, 1000, 100000). Setting -maxzoom to () disables the checking.

Name: refinementDelay
Class: RefinementDelay

Command-Line Switch: -refinementbelay

Specifies the delay in milliseconds after the last X event to start refinement. Default is 1000.

Name: sync
Class: sync

Command-Line Switch: -sync

Specifies if X event synchronization should be turned on. When it is on. the X server executes every command as it is executed
rather than caching them and executing commands in groups. Generally useful just for debugging. Default is 0.

Name: units
Class: units

Command-Line Switch: —units

NIt "o

Specifies unit dimensions for all coordinates used by Pad-++. It can be any of "points”, "mm", "inches". or "pixels". Default is
points.

Name: width
Class: width
Command-Line Switch: ~width
Specifies the width of the Pad in pixels. Defaults to 400.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_15

Reference Guide Page 14 of 84

Name: widthmmefscreen
Class: widthMMofScreen

Command-Line Switch: -widthmmofscreen

Specifies the width of the physical screen in millimeters. Normally, this information is given by the X server, but sometimes it is
incorrect (for example, some laptops). If it is incorrect, coordinates on the Pad++ surface will be incorrect. If this value is set to 0,
the X server information will be used. Defaults to 0.

Widget Commands

The pac command creates a new Tel command whose name is pathiiame. This command may be used to invoke various operations on the
widget. It has the following general form:

pathName option [arg arg ...]

Option and the args determine the exact behavior of the command. The following widget commands are possible for Pad++
widgets:

[1] pathName addgroupmember [-notransform] tagOrId groupTagOrId

Add all items specified by tagOrid to the group specified by groupTagOrld. If groupTagOrld specifies more than one item, the
first one is used. The items are added to the end of the group in the order specified by tagOrld. Groups automatically update their
hounding boxes to enclose all of their members. Thus, they will grow and shrink as their members change.

By default, items are transformed so they don't change their location when added to a group, even if the group has a
transformation. This is implemented by transforming the item's transformation to be the inverse of the group's transformation. I
the -notransform flag is specified. this inverse transformation is not applied. and the item will move by the group's transformation
when added. (Also see the removegroupmember, and getgroup commands). Returns an empty string,

Example :

set id0 [.pad create line 0 0 100 100]

254

set id] [.pad create line -10 20 80 -60]

255

set gid [.pad create group -members "$id0 $id1"]

256

.pad ic $gid -members
254 255

set id3 [.pad create rectangle -20 -20 130 40]

http://www.cs.umd.edu/heil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_16

Reference Guide Page 15 of 84

.pad addgroupmember $id3 $gid
.pad ic $gid -members
254 255 266

.pad removegroupmember $id0 $gid

.pad ic $gid -members

255 266
grown 3f = 200
&
h¥
X

el
_pad getgroup $id2
256

[2] pathliame addmodifier modifier

Define modifier to be a user-defined modifier that can be used in future event bindings. (Also see the deletemedifier.
setmodifier, getmodifier, and bind commands).

[3] pathName addeption [-nowrite] typename optionname optionscript default

Add a new option (named optionname) to all objects of type typename. typename must either be a built-in type, a user-
defined type previously defined by addtype. or the special word "all" which means that this option applies to all types.

http://www.cs.umd.edw/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_17

Reference Guide Page 16 of 84

When optionscript is called. the following arguments will be added on to the end of the seript:
pathName: The name of the pad widget the item is on
item: The id of the item being configured

[value]: Optional value. If value is specified. then the option must be set to this value.

optionseript must return the current (or new) value of the option. default specifies the default value of this option. This is
used to determine if the option should be written out when the write command is executed. Note that the option will only be
written out if the value is different than the default. If -nowrite is specified. then this option won't be written out. See the
section APPLICATION-DEFINED ITEM TYPES AND OPTIONS in the Programmer's Guide for more information. (Also
see the addtype command.)

[4] pathName addtag tagToAdd tagOrld ...

For each item specified by the list of tagOrlds, add tagToAded to the list of tags associated with the item if it isn't already present on
that list. It is possible that no items will be specified by tagOrld. in which case the command has no effect. This command returns
an empty string.

This command is designed to be used in conjunction with the find command. Notice the necessity of using eval in this example:
eval .pad addtag foo [.pad find withtag bar]

[3] pathName addtype typename createscript

Add typename to the list of allowed user defined types. When a new object of type typename is created, the createscript will
be evaluated, and it must return an object id. When createscript is evaluated, the pad widget the object is being created on
will be added on as an extra argument. followed by any parameters before the options. See the section APPLICATION-
DEFINED ITEM TYPES AND OPTIONS in the Programmer’s Guide for more information. (Also see the addoption
command.)

[6] pathName allocborder color

Allocates a border for future use by render callbacks. A border is a fake 3D border created by a slightly lighter and a slightly
darker color than specified. Color may have any of the forms accepted by Tk_GetColor. (Also see the freeborder and
drawborder commands).

[7] pathName allcecolor color

Allocates a color for future use by render callbacks. Color may have any of the forms accepted by Tk_GetColor. (Also see
the freecolor and setcolor commands).

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_18

Reference Guide Page 17 of 84

[8] pathName allocimage file [-norgh]

Allocates an image for future use by image objects and render callbacks. file specifies the name of a file containing an
image. allocimage can always read gif file formats. In addition. if Pad++ is compiled with the appropriate libraries.
allocimage can also read jpeg and tiff image file formats, and will automatically determine the file type. Normally. images
are stored internally with their full rgb colors in addition to a colormap index. This allows images to be rendered with
dithering, but takes 5 bytes per pixel. If the -norgh option is specified, then the original rgb information is not stored with the
image and the image can not be rendered with dithering. but only takes 1 byte per pixel. The image may have transparent
pixels. This returns an image token which can be used by related commands. (Also see the freeimage, drawimage, and
info commands. and the description of image items.).

[9] pathName bbox [-sticky] tagOrld [tagOrld tagOrld ...]

Returns a list with four elements giving the bounding box for all the items named by the tagOrld argument(s). The list has
the form "x1 y1 x2 v2" such that the drawn areas of all the named elements are within the region bounded by x1 on the lefi,
x2 on the right, y1 on the bottom, and ¥2 on the top. If -sticky is specified, then the bounding box of the item in sticky
coordinates. that is, the coordinates of a sticky item that would appear at the same location on the screen is returned. [f no
items match any of the ragOr/d arguments then an empty string is returned,

If the item is sticky then bbox returns the bounding box of the item as it appears for the current view. That is, the bounding
box will be different when the view is different. If -sticky is specified, then the bounding box returned is independent of the
current view (i.e.. it returns the bounding box as if the view was "0 0 1").

[f the item is the Pad++ surface (item #1). then bbox will refer to the bounding box of the portion of the surface that is
currently visible (based on the view and window size),

.pad bbox 27 37

-75-55 68 79

[10] pathName bind tagOrld [sequence [command]]

This command associates command with all the items given by ragOrld such that whenever the event sequence given by
sequence occurs for one of the items the command will be invoked.

http://www.cs.umd.edw/hcil/pad++/documentation/doc-0.2. 7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_19

Reference Guide Page 18 of 84

This widget command is similar to the Tk bind command except that it operates on items on a Pad++ widget rather than
entire widgets. See the Tk bind manual entry for complete details on the syntax of seguence and the substitutions performed
on command before invoking it. The Pad++ widget defines extensions described below, but it is implemented as a complete
superset of the standard bind command. Le.. you can do everything you can with the canvas with exactly the same syntax,
but you can also do more.

If all arguments are specified then a new binding is created. replacing any existing binding for the same sequence and
tagOrld (if the first character of command is "+" then command augments an existing binding rather than replacing it). In
this case the return value is an empty string. If both command and sequence are omitted then the command returns a list of
all the sequences for which bindings have been defined for tagOrld.

The only events for which bindings may be specified are those related to the mouse and kevboard, such as Enter, Leave,
ButtonPress, Motion, ButtonRelease, KeyPress and KeyRelease, In addition, Pad++ supports some extra bindings including:
Create, Modify, Delete, Portallntercept, and Write. The handling of events in Pad++ uses the current item defined in Jtem
1Ds and Tags in the Programmer's Guide. Enter and Leave events trigger for an item when it becomes the current item or
ceases to be the current item; note that these events are different than Enrer and Leave events for windows. Mouse-related
events are directed to the current item, if any. Keyboard-related events are directed to the focus item, if any (see the focus
command below for more on this).

It is possible for multiple bindings to match a particular event. This could occur, for example, if one binding is associated
with the item’s id and another is associated with one of the item's tags. When this occurs, all of the matching bindings are
invoked. The order of firing is controlled by the pad bindtags command. The default is that a binding associated with the
all 1ag is invoked first, followed by one binding for each of the item's tags (in order), followed by a binding associated with
the item's id. If there are multiple matching bindings for a single tag, then only the most specific binding is invoked. A
continue command in a binding script terminates that script. and a break command terminates that script and skips any
remaining scripts for the event, just as for the bind command.

If bindings have been created for a pad window using the Tk bind command., then they are invoked in addition to bindings
created for the pad's items using the bind widget command. The bindings for items will be invoked before any of the
bindings for the window as a whole.

The Pad++ bind command is extended in three ways:

« Extra macro expansions are added
New events are added: <Create>, <Modify>, <Delete>, <Write>, and <Portallntercept>.
User-specified modifiers are added

Extra macro expansions

When a command is invoked. several substitutions are made in the text of the command that describe the specific
event that invoked the command. In addition to the substitutions that the Tk bind command makes, Pad++ makes a
few more. As with the Tk bind command, all substitutions are made on two character sequences that start with "%’
The special Pad++ substitutions are:

%P: The pad widget that received the event. This is normally the same as %W, but could be different if the event goes
through a portal onto a different pad widget.

» %0: The id of the specific item that received the event.

» %I: Information about this event. This has different meanings for different event types. For <Modi£y> events, it
specifies the command that caused the modification. For <Portalintercept> events, it specifies the name of the
event type generating the Portallntercept. Standard Tcl event names, such as ButtonPress or ButtonRelease are used.
This can be used by Portallntercept events to only let certain event types go through the portal. Note that only a single
Portallntercept event is generated for a Button, Motion, ButtonRelease sequence, so these three events can not be
distinguished in this manner.

« %i: The X-coordinate of the event on the Pad++ surface. This is specified in the current units (i.e., pixels or inches) of

the pad widget.

%ij: The Y-coordinate of the event on the Pad++ surface. This is specified in the current units (i.c.. pixels or inches) of

the pad widget.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref _whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_20

Reference Guide Page 19 of 84

« %z: Size of event in pad coordinates. This is dependent on the view. It effectively says how much the event is
magnified. Le.. if the view is zoomed in by a factor of two. then this will have a value of two. It is also affected by
portals that the event travels through.

s %U: The X-coordinate of the event in object coordinates. This means that the point will be transformed so that it is in
the same coordinate system of the object (independent of the object's transformation as well as the current view). This
is specified in the current units (i.e., pixels or inches) of the pad widget.

s %V: The Y-coordinate of the event in ohject coordinates. This means that the point will be transformed so that it is in

the same coordinate system of the object (independent of the object's transformation as well as the current view). This

is specified in the current units (i.e.. pixels or inches) of the pad widget.

%Z.: Size of event in object coordinates. This is dependent on the view and the magnifications of the object.

o %l: The list of portal ids that the event passed through.

s %lL: The list of pad surfaces of the portals the event passed through. This list corresponds to the list of portal ids from
"ol

New Events

Several new events fire at special times, depending on the semantics of the event.

<create>: This event gets fired whenever new pad items are created. Because items that this is attached to don't have
id's yet, it only makes sense to attach this event to a tag. Then this event gets fired immediately after any item of the
relevant tag is created. Example:

.pad bind foo <Create> {puts "A foo was created, id=%0"}
.pad create rectangle 0 0 50 50 -tags "foo"
=> A foo was created, id=5S

<Modify>: This event gets fired whenever an item is modified. Modification occurs whenever an item's configuration
options are changed, and whenever the following commands are executed on an item: coords, itemconfigure,
scale, slide, text. The %l macro specifies the command that caused the modification. Example:

.pad bind foo <Modify> (puts "2 foo was modified, cmd=%I"}
.pad create rectangle 0 0 50 50 -tags "foo"
.pad itemconfigure foo -pen red

=> A foo was modified, cmd=itemconfigure

<pelete>: This event gets whenever an item is deleted. It is typically used to clean up application resources
associated with the item that was deleted.

<write>: This event fires whenever an item is written out with the pad write command. While Pad++ knows how to
generate the Tcl code necessary to recreate itself. items are often part of an application with associated data structures,
etc. When an item is written out. it is frequently necessary to write out these associated structures. Sometimes. the
application may prefer to substitute its code for pad's. This event provides a mechanism to augment or replace
(possibly with an empty string) the Tcl code written out to recreate a pad item.

Whatever string a <urite> event returns is appended on to the string pad uses to write out that object. In addition, the
application may modify the special global T¢l variable. Pad write which controls whether the item will get written
out. This defaults to 1 (true), but may be set to 0 (false) by the event binding. In addition. the <write> event gets fired
on the special tags "prewrite" and "postwrite" at the beginning and end of the file. respectively, to allow an
application to write out code at the ends of the file. Example:

-.pad bind preWrite <Write> {

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ret/ref whole/ref-whole-2 html 1/19/2012

Motorola PX 1006_21

Reference Guide Page 20 of 84

return "Stuff at the beginning of the file"

|

.pad bind postWrite <Write> {

return "Stuff at the end of the file"

H

.pad bind foo <Write> {

return "Stuff after foo objects”

H

.pad bind bar <Write> {

set Pad Write 0

return "Stuff instead of bar objects"

H

This forces all objects with the "cat" tag

to have nothing written out. Notice that an
empty string must be returned. or "0", the
result of the set command, will be written out.
.pad bind cat <Write> {

set Pad_Write 0

return
}

This example also has nothing written out,
but in addition. no other event handlers

will fire (the object could have multiple

tags, each with <Write> event handlers).
.pad bind dog <Write> {

Set Pad_Write 0

break

]

<portalIntercept>: This event gets fired just before an event passes through a portal. If the event handler executes
the break command. then the event stops at the portal and does not pass through. Example:

Events will not go through portals of type "foo"
.pad bind foo <Portallntercept> {

break

http://www.cs.umd.edu/heil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_22

Reference Guide Page 21 of 84

User-specified modifiers
Event handlers are defined by sequences as defined in the Tk bind reference pages. A sequence contains a list of

modifiers which are direct mappings to hardware such as the shifl key, control key, etc. Event handlers fire only for
sequences with modifiers that are active, as defined by the hardware.

Pad-++ allows user-defined modifiers where the user can control which one of the user-defined modifiers is active (if
any). The advantage of modifiers is that many different sets of event bindings may be declared all at once - each with
a different user-defined modifier. Then, the application may choose which set of event bindings is active by setting the
active user-defined modifier. This situation comes up frequently with many graphical programs where there are
modes. and the effect of interacting with the system depends on the current mode.

New modifiers must be declared before they can be used with the pad addmodi fier command (and may be deleted if
they are no longer needed with the pad deletemodifier command.) Then. the modifier can be used in the pad bind
command just like a system defined modifier. There may be at most one active user-defined modifier per pad widget.
The active user-defined modifier is set with the setmodifier command (and may be retrieved with the getmodifier
command). The current modifier may be set to "" (the default) in which case no user-defined modifier is set. Example:

.pad addmodifier Create

.pad addmodifier Run

.pad bind all <Create-ButtonPress-1> |

Do stuff to create new objects

!

.pad bind all <Run-ButtonPress-1> |

Do stuff to interact with existing objects
|

Now the system will be in "Create" mode

.pad setmodifier Create

Now the system will be in "Run" mode

.pad setmodifier Run

[11] pathName bindrags tagOrld [type]

If type is specified. this command changes the ordering of event firings on all objects referred to by tagOr/d. Since more
than one event handler may fire for a given event. this controls what order they fire in. [f type is "general". events fire most
generally first. That is. a binding associated with the all tag is invoked first, followed by one binding for each of the item's
tags (in order). followed by a binding associated with the item's id. (i.e., all, tags, id). If type is "specific", then events fire
most specific first. That is, a binding associated with the item's id is invoked first. followed by one binding for each of the
item's tags (in order), followed by a binding associated with the all tag (i.e.. id. tags, all).

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_23

Reference Guide Page 22 of 84

If tagOrld is pathName, then it does not change the ordering of any objects, but controls the default ordering of objects
created in the future.

The default event firing order for all objects is "general". This command returns the current event firing order for the first
item specified by ragOrld.

[12] pathName center [-twostep] tagOrld [time x y [z [portallD ...]]]]

Change the view so as to center the first of the specified items so the largest dimension of its bounding box fills the specified
amount of screen (). If -twostep is specified, then make the animation in two steps if appropriate (i.e., points not too close).
The two steps are such that it zooms out to the midpoint between the two points far enough so that both start and endpoints
are visible. and then zooms to the final destination. If time is specified, then make a smooth animation to the item in time
milliseconds. The view is changed so that the item's center appears at the position on the screen specified by x and y. both in
the range (0.0 ... 1.0). Here. 0.0 represents the left or bottom side of the window, and 1.0 represents the right or top side of
the window. x and y default to (0.5, 0.5), i.e. the center of the screen. If a list of portallD's is specified, change the view
within the last one specified.

.pad center 23

[13] pathName centerbbox [-twostep] x1 y1 x2 y2 [time [x y [z [portalID ...]]]]

Change the view so as to center the specified bounding box so that its largest dimension fills the specified amount of sereen
(z). If -twostep is specified. then make animation in two steps if appropriate (i.e.. points not too close). The two steps are
such that it zooms out to the midpoint between the two points far enough so that both start and endpoints are visible, and
then zooms to the final destination. If rime is specified, then make a smooth animation to the item in rime milliseconds. The
view is changed so that the item's center appears at the position on the screen specified by x and y. both in the range (0.0 ...
1.0). Here. 0.0 represents the left or bottom side of the window, and 1.0 represents the right or top side of the window. x and
v default to (0.5, 0.5). i.e. the center of the screen. If a list of portallD's is specified, change the view within the last one
specified.

http://www.cs.umd.edu/heil/pad-++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_24

Reference Guide Page 23 of 84

[14] pathName clock [clockName [reset | delete]]

Creates a clock that is set to 0 at the time of creation. Returns the name of the clock. Future calls with clockName return the
number of milliseconds since the clock was created (or reset). Calls with reser specified reset the clock counter to 0, and
return an empty string. Calls with delete specified delete the clock, and return an empty string.

.pad clock

clockl

.pad clock clockl

8125

.pad clock clock1 reset
.pad clock clock1

1825

.pad clock clock] delete

[15] pathName configure [option] [value] [option value ...]

Query or modify the configuration options of the widget. If no option is specified. returns a list describing all of the
available options for pathName (see Tk_ConfigureInfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this list will be identical to the
corresponding sublist of the value returned if no option is specified). If one or more option-value pairs are specified, then the
command modifies the given widget option(s) to have the given value(s); in this case the command returns an empty string.
Option may have any of the values accepted by the pad command. See the section on WIDGET-SPECIFIC OPTIONS for a
description of all the options and their descriptions.

[16] pathName coords [-objectcoords] [-append] [-nooutput] tagOrld [x0 y0 ...]

Query or modify the coordinates that define an item. This command returns a list whose elements are the coordinates of the
item named by tagOrld. 1f coordinates are specified. then they replace the current coordinates for the named item. If tagOrid
refers to multiple items, then the first one in the display list is used. The flags may be specified in any order. Note that the
coords command generates a <Modify> event on the items modified by it (see the bind command for a description of the
<Modify> event). Locked items may not be modified by the coords command (see the -lock itemconfigure option). The
coords command can only be used on line. rectangle. polygon and portal items.

If the flag -objectcoords is specified. then all coordinates are returned in the item's local coordinate system (i.e.. as they were
originally specified). If this flag is not specified, then all coordinates are returned in the global coordinate system (i.e.. they
are transformed by that item's translation and scale parameters).

If the flag -append is specified. then all the specified coordinates are appended on to the existing coordinates rather than
replacing them.

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_25

Reference Guide Page 24 of 84

If the flag -noouiput is specified. then this command returns an empty string. Typically. the -append and -noouiput flags are
specified together when adding points to an item and time is of the essence.

set id [.pad create line -200 200]
for [set i -20} {$i <= 20) (inecr i) |

set x [expr $i * 10]

set y [expr 0.5 * (Si * $i))

.pad coords -append -nooutput $id §x Sy
}

[17] pathName create type [option value ...]

Create a new item in pathName of type type. The exact format of the arguments after type depends on fype. but usually they
consist of the coordinates for one or more points, followed by specifications for zero or more item options. See the
OVERVIEW OF ITEM TYPES subsection below for detail on the syntax of this command. This command returns the id for
the new item.

[18] pathName damage [tagOrld]
Indicates that some of the screen is damaged (needs to be redrawn). Damages the entire screen if tagOrld is not specified, or

Jjust the bounding box of each of the objects specified by tagOrld. The damage will be repaired as soon as the system is idle.
or when the update procedure is called. Returns an empty string.

[19] pathName delete tagOrld [tagOrld ...]

Delete each of the items given by each tagOrld, and return an empty string. Note that the delete command generates a
<pelete> event on the items modified by it (see the delete command for a description of the <Deiete> event). Locked
items may not be modified by the delece command (see the -fock itemconfigure option),

[20] pathName deletemodifier modifier

Delete modifier from the list of valid user-defined modifiers. Any event bindings that are defined with this modifier become
invalid. (Also see the addmodifier, setmodifier, getmodifier, and bind commands).

[21] pathName deletetag tagToDelete tagOrld [tagOrld ...]

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_26

Reference Guide Page 25 of 84

For each item specified by the list of tagOrlds. delete ragToDelete from the list of tags associated with the item if it isn't already
present on that list. It is possible that no items will be specified by tagOrld, in which case the command has no effect. Note that
dtag is an acceplable synonym for deletetag. This command returns an empty string.

This command is designed to be used in conjunction with the find command. Notice the necessity of using eval in this example:
eval .pad deletetag foo [.pad find withtag bar]

[22] pathName drawborder border type width x1 y1 x2 y2

Draws a fake 3D border connecting the specified coordinates. (See allocborder and fresnorder commands). This
command can only be called within a render callback. Border must have been previously allocated by allocborder. Type

must be one of "raised", "flat", "sunken", "groove", "ridge", "barup”, or "bardown". The following example creates an

object that draws a border:

set border [.pad allocborder #B803030]
.pad create rectangle 0 0 100 100 -renderscript |
.pad drawborder Sborder raised 5 0 0 100 100

[23] pathName drawimage imagetoken x y

Draws the image specified by imagetoken at the point (X, y). (Also see allocimage, freeimage, and info commands as
well as the description of image items). This command can only be called within a render callback.

[24] pathName drawline x1 y1 x2 y2 [xnyn...]

Draws a multi-segment line connecting the specified coordinates. (See setcolor, setlinewidth, setcapstyle, and
setjoinstyle commands). This command can only be called within a render callback,

[25] pathName drawpolygon x1 y1 X2 y2 [xnyn..]

Draws a closed polygon connecting the specified coordinates. (See setcolor and setlinewidth). This command can only
be called within a render callback.

[26] pathName drawtext string xloc yloc

Draws the specified text at the specified location. This command can only be called within a render callback. (Also see the
setcolor. setfont, and setfontheight commands.)

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_27

Reference Guide Page 26 of 84

[27] pathName £ind [-groupmembers] searchCommand [arg arg ...]

This command returns a list consisting of all the items that meet the constraints specified by searchCommand and arg's. The
objects are returned in display list order. and if -groupmembers is specified. then group members are returned, otherwise,
they are not. Note that this command does not return the pad surface (id #1). SearchCommand may take any of these forms:

all

Returns all the items on the pad.

below tagOrId

Returns the item just before (below) the one given by tagOrld in the display list. If tagOrld denotes more than one
item, then the first (lowest) of these items in the display list is used.

closest x y [halo] [startTagOrId]

Returns the single item closest to the point given by x and y. If more than one item is at the same closest distance (e.g.
two items overlap the point). then the top-most of these items (the last one in the display list) is used. If halo is
specified, then any item closer than halo to the point is considered 1o overlap it. (Halo must be a non-negative
number.) If hafo is not specified. then only items at the point (x, y) will be found.

The startTagOrld argument may be used to step circularly through all the closest items. I siartTagOrld is specified. it
names an item using a tag or id (if by tag, it selects the first item in the display list with the given tag). Instead of
selecting the topmost closest item., this form will select the topmost closest item that is below start in the display list: if
no such item exists, then the selection behaves as if the start argument had not been specified.

withinfo info

Returns all the items containing the string info in their info itemconfigure option.

withlayer layer

Returns all the items on the layer layer.

withname name

Returns all the items having name.

withtag tagOrId

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_28

Reference Guide Page 27 of 84

Returns all the items given by tagOrld.

withtext text

Returns all the items containing rext.

withtype type

Returns all the items of type hype.

enclosed x1 yl =2 y2

Returns all the items completely enclosed within the rectangular region given by x1, v1, x2, and y2. x1 must be no
greater then x2 and y1 must be no greater than y2.

overlapping x1 yl %2 y2Z

Returns all the items that overlap or are enclosed within the rectangular region given by x1, v1, x2. and y2. x| must be
no greater then x2 and y1 must be no greater than y2.

.pad find withtag selected

527292

[28] pathName focus [tagOrld [portallD ...]]

Set the kevboard focus for the Pad+—+ widget to the item given by tagOrld. If a list of portallD's are specified, then the item
sits on the surface looked onto by the last portal. If tagOrld refers to several items, then the focus is set to the first such item
in the display list. If tagOrld doesn't refer to any items then the focus isn't changed. If tagOrid is an empty string, then the
focus item is reset so that no item has the focus. If 1ag0Orld is not specified then the command returns the id for the item that
currently has the focus, or an empty string if no item has the focus. If the item sits on a different surface than pathName,
then this command also returns the pathName of the item.

Once the focus has been set to an item, all keyboard events will be directed 1o that item. The focus item within a Pad++
widget and the focus window on the screen (set with the Tk focus command) are totally independent: a given item doesn't
actually have the input focus unless (a) its pad is the focus window and (b) the item is the focus item within the pad. In most

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_29

Reference Guide Page 28 of 84

cases it is advisable to follow the focus widget command with the focus command to set the focus window to the pad (if it
wasn't there already). Note that there is no restriction on the type of item that ean receive the Pad++ focus.

[29] pathName freeborder border

Frees the border previously allocated by allocborder. (Also see the allocborder and drawborder commands).

[30] pathName £reecolor color

Frees the color previously allocated by alloceolor. (Also see the alloceolor and setcolor commands).

[31] pathName freeimage imagetoken
Frees the image previously allocated by allocimage. (Also see the allocimage and drawimage commands, as well as the
description of image items).

[32] pathName getdate

Returns the current date and time in the standard unix time format.
% .pad getdate
Wed May 29 20:01:49 1996
[33] pathName getgroup tagOrld
Return the group id that tagOrld is a member of. If tagOrld is not a member of a group, then this command returns an empty

string. If tagOrld specifies more than one object, then this command refers to the first item specified by tagOrid in display-list
order. (Also see the addgroupmember, and removegroupmember commands).

[34] pathName getlevel

Returns the current render level This command can only be called within a render callback. (See the sections on Refinement
and Region Managemeni and Screen Updating in the Programmer’s Guide for more information about render levels).

[35] pathName getmag tagOrld

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_30

Reference Guide Page 29 of 84

Returns the current magnification of tagOrld for this specific render (it could be rendered multiple times if visible through
different portals). Magnification is defined as the multiplication of the current view (including portals) with the object's size
(from the -place itemconfigure option). This command can only be called within a render callback.

[36] pathName getmodifier

Return the current active modifier. (Also see the addmodifier, deletemodifier, setmodifier, and bind commands).

[37] pathName getpads

Returns a list of all the Pad++ widgets currently defined.

[38] pathName getportals

Returns the list of the portals the current object is being rendered within. This command can only be called within a render
callback,

[39] pathName getsize tagOrld ?portallD .7

Returns the largest dimension of the first item specified by tagOrld. If a portal list is specified. then the size of the item
within the last portal is returned.

[40] pathName gettags tagOrld

Return a list whose elements are the tags associated with the item given by tagOrid. 1f tagOrld refers 10 more than one item,
then the tags are returned from the first such item in the display list. If tagOrld doesn't refer to any items. or if the item
contains no tags, then an empty string is returned.

[41] pathName gettextbbox string

Returns a list with four elements giving the bounding box of string if it is drawn with the drawtext command. The list has
the form "x1 ¥1 x2 y2" such that the text is within the region bounded by x1 on the lefi. x2 on the right, y1 on the bottom,
and y2 on the top. The bounding box is affected by the setfont and setfontheight commands,

[42] pathName getview [portallD ...]

http://www.cs.umd.edu/heil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_31

Reference Guide Page 30 of 84

Returns the current view of the main window in "xview yview zoom" form. Here, (xview, yview) specifies the point at the
center of the window, and zoom specifies the magnification. If a list of portallD's is specified, than the view of the last portal
is returned instead of the view of the main window. (See moveto to set the current view).

.pad getview

14 1342

.pad ic 221 -place
81181

Viaw '
TTE MR 138 RE3 1 49414}

.pad moveto -250 -150 0.5
.pad getview

=250 -150 0.5

.pad ic 221 -place

8.1125118.753 1

o id= izl

vigw
(=350 ~350 0.5}

[43] pathName grid option arg [arg ...]

The grid command arranges one or more objects in rows and columns and freats them as a group. It is based on the Tk grid
geometry manager and its behavior and Tel syntax are very similar to it. In pad. all grid commands are sub-commands of the

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_32

Reference Guide Page 31 of 84

pad command. See the section on GRID ITEMS for a complete description of this command. and how to create and use
grids.

[44] pathName hastag tagOrld tag

Determines if the item specified by ragOrld contains the specified tag. This command returns "1" if the item does contains
the specified tag. or "0" otherwise. 1f 1agOrld refers to more than one item, then the comparison is performed on the first
item in the display list. If 1agOrld doesn't refer to any items, then "0" is returned.

[45] pathName info subcommand

A general command for accessing information about pad and items on the pad surface. subcommand may be any of the
following: html or image. Each subcommand may have sub-subcommands and options. All the subcommands and their
options follow:

html getlastchangedate <tagOrId>

Returns the last date this page was modified as specified by the server.
html getlength <tagOrId>

Returns length of this page in bytes.

html getsource <tagOrld>

Returns HTML source of this page.

html gettype <taglrld>

Returns Mime type of this page as specified by the server.

image getdim <imagetoken>
Returns dimensions {x y} of this image in pixels.
image getname <imagetoken>

Returns filename this image was loaded from.

[46] pathName islinked

WARNING: islinked is an obsolete command and will be removed in the next release, Replace all uses of isilinked with
the Tk 'winfo ismapped' command.

Returns a flag specifving if pathName has been mapped to the display vet.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_33

Reference Guide Page 32 of 84

[47] pathName itemconfigure [-nondefaults] tagOrld [option [value] ...]

This command is similar to the configure command except that it modifies item-specific options for the items given by
tagOrid instead of modifying options for the overall pad widget. ic is an allowed synonym for itemconfigure. If no option
is specified, then this command returns a list describing all of the available options for the first item given by tagOrld. If the
-nondefaults flag is specified. then only those options modified by an application will be returned. If option is specified with
no value, then the command returns the value of that option. If one or more option-value pairs are specified, then the
command modifies the given widget option(s) to have the given value(s) in each of the items given by tagOrld: in this case
the command returns an empty string. If value is an empty string, then that option is set back to its default value.

The options and values are the same as those permissible in the create command when the item(s) were created: see the
sections below starting with OVERVIEW OF ITEM TYPES for details on the legal options. Note that the itemconfigure
command generates a <Modify> event on the items modified by it (see the itemconfigure command for a description of the
<Modify> event). Locked items may not be modified by the itemconfigure command (sce the -lock itemconfigure option).

[48] pathName lineZspline errorxl yl ... xnyn

Takes the coordinates for a line. and uses an adaptive curve fitting algorithm to generate the coordinates for a spline that
approximates the line. The spline coordinates are returned. error is a floating point number indicating how closely the spline
curve should follow the line. Using a smaller error will tend to generate a spline made with more bezier segments that follow
the line more accurately. Using a larger error will produce fewer bezier segments but the fit will be less accurate. See the
section on SPLINE ITEMS on how splines are specified in Pad++. (Also see spline2line.)

[49] pathName lower [-one] tagOrld [belowThis]

Move all of the items given by tagOrld to a new position in the display list just before the item given by below This. 1f
tagOrld refers to more than one item then all are moved but the relative order of the moved items will not be changed.
belowThis is a tag or id; if it refers to more than one item then the first (bottommost) of these items in the display list is used
as the destination location for the moved items. If belowThis is not specified. then tagOrld is lowered to the bottom of the
display list. If the -one flag is specified. then tagOrld is lowered down one item in display order which may or may not have
a visible effect. -one and aboveThis may not both be specified. If any items to be lowered are group members, they are
lowered within their group rather than being lowered on the pad surface. Returns an empty siring.

[50] pathName moveto [-twostep] xview yview zoom [time [portallD ...]]

Change the view so that the point "xview yview" is at the center of the screen with a magnification of zoom. If xview, yview,
or zoom is specified as ", then that coordinate is not changed. If -nwoszep is specified, then make animation in two steps if
appropriate (i.e., points not too close). The two steps are such that it zooms out to the midpoint between the two points far
enough so that both start and endpoints are visible. and then zooms to the final destination. If zime is specified. then the
change in view will be animated in enough evenly spaced frames to fill up time milliseconds. If a list of porrallD's are
specified. then the view will be changed within the last specified portallD rather than within the main view. The return value
is the current view. (See getview to get the current view).

[51] pathName noise index

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_34

Reference Guide Page 33 of 84

Returns a repeatable noise value based on the floating-point value of index. This noise function is equal to 0 whenever index
is an integer. Typically. noise is called with slowly incrementing values of index. The closer the consecutive values of index
are. the higher the frequency of the resulting noise will be. This noise function is from Ken Perlin at New York University
(http://'www.mrLnyu.edwperlin).

Example:

set coords ""

set noiseindex x 0.1928

set noiseindex_y 100.93982

set noiseincr 0.052342

for {set i 0} {%i < 100} {inecr i } {
set x [expr 500.0 * [.pad neoise Snoiseindex x]]
set y [expr 500.0 * [.pad noise Snoiseindex_y]]
lappend coords S$x
lappend coords Sy
set noiseindex x [expr $noiseindex x + S$noiseincr]
set noiseindex y [expr $noiseindex y + $noiseincr]

}

eval .pad create line Scoords

[52] pathName padxy [-sticky] [-portals] winx winy [-gridspacing value]

Given a window x-coordinate winx and y-coordinate winy. this command returns the pad x-coordinate and y-coordinate that
is displayed at that location. If -sticky is specified. the coordinate transform is done ignoring the current view (i.c., as for
sticky objects.) If -portals is specified. then the point (winx. winy) is passed through any portals it on. If -gridspacing is
specified, then the pad coordinate is rounded to the nearest multiple of value units.

|53] pathName picx [-divisible] [-indivisible] winx winy

Given a window coordinate (winx. winy), it returns the visible object underneath that point. If the point should pass through
any portals, a <Portalintercept> event will be fired which will determine if the event will pass through that portal. By
default, the pick command uses the divisibility of individual groups to determine if group members should be picked.
However the -divisible or -indivisible flags (only one of which may be specified) override group's divisibility. 1f -divisible is
specified, then group members will be picked from any group the point hits. If -indivisible is specified. then group objects
and not group members will be picked.

% .pad create line 0 0 100 100

22

.pad create rectangle 30 30 80 80
23

.pad addmodifier Pick

.pad bind all <Pick-ButtonPress-1> (
event Press %i %3 %x %y %0

}

proc event Press {i j x y objl |
Get the group object not the group members
underneath the point x y
set container [.pad pick -indivisible $x Sy]
puts "container Scontainer object: Sobj coords: ($i, $j)"

.pad setmodifier Pick

http://www.cs.umd.edwhcil/pad++/documentation/doc-0.2.7/ref/iref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_35

Reference Guide Page 34 of 84

Now, group the line and rectangle:

% .pad create group -members "22 23"
24

-0 100)
/0 50)

Djl

Now, click on the line, the system response with:
container 24 object: 22 coords: (37.5, 36)

T EaI0]

Now, click on the rectangle, system response with:
container 24 object: 23 coords: (66.5, 28)

Now, change the pick command as:
set container [.pad pick -divisible $x $y]:

Then click on the line:
container 22 object: 22 coords: (52.5, 52)

Click on the rectangle:
container 23 object: 23 coords: (£3.5; 30}

[54] pamName popcoordirame

Pops the top frame off the stack of coordinate frames. The resulting frame on the top of the stack becomes active. Also see
pushcoordframe and resetccordframe. Returns the frame popped off the stack.

|55] pathName printtree

Prints the current hierarchical tree of items to stdout (used for debugging). Returns an empty string.

[56] pathName pushcoordframe tagOrld

pathName pushcoordframe x1 yl %2 y2

Pushes a coordinate frame onto the stack of coordinate frames. When any coordinate frames are on the stack. all coordinates
are interpreted relative to the frame instead of as absolute coordinates. A frame is a bounding box. and all coordinates are
specified within the unit square where the unit square is mapped to the frame.

http://www.cs.umd.edu/heil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_36

Reference Guide Page 35 of 84

Note that the -penwidth and -minsize and -maxsize itemconfigure options are also relative to the coordinate frame. In these
cases. a value of 1 refers to the average of the frame dimensions.

Text and images are scaled so that one line of text. or the height of the image is scaled to the height of the coordinate frame
at a scale of 1 (using the -place or -z itemconfigure options).

For example, the following code makes 50 nested rectangles. Note that the width of the rectangles shrinks proportionally.

for {set i 0} ($i < 50} {incr i) |
set id [.pad create rectangle 10 10 80 B0 -penwidth 2]
.pad pushcoordframe $id

}

.pad resetcoordframe

Also see popcoordframe and resetcoordframe. Returns the current coordinate frame.

|57] pathName raise [-one] tagOrld [aboveThis]

Move all of the items given by tagOrld to a new position in the display list just afier the item given by aboveThis. If tagOrid
refers to more than one item then all are moved but the relative order of the moved items will not be changed. aboveThis is a
tag or id: if it refers to more than one item then the last (topmost) of these items in the display list is used as the destination
location for the moved items. If aboveThis is not specified, then tagOrld is raised to the top of the display list. If the -one
flag is specified, then tagOrld is raised up one item in display order which may or may not have a visible effect. -one and
aboveThis may not both be specified. If any items to be raised are group members, they are raised within their group rather
than being raised on the pad surface. Returns an empty string.

.pad raise 24

If we use the —one option:
.pad raise -one 24

The original position turns to be:

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_37

Reference Guide Page 36 of 84

[58] pathName read filename

Executes the tel commands in the filename. If filename is created with the write command. then this command reads the pad
scene back in. Returns an empty string.

[59] pathName removegroupmember [-notransform) tagOrId

Remove all items specified by tagOrld from the group they are a member of. and return them to the pad surface. I any of the
items were members of hierarchical groups, they are removed from all groups. If any of the items are not a member of a group,
then they are not affected. Items removed are added to the pad surface just after the group in terms of display-list order.

By default. items are transformed so they don't change their location when removed from a group - even if the group has a
transformation. This is implemented by transforming the item's transformation to be the inverse of the group’s transformation. If
the -notransform flag is specified. this inverse transformation is not applied. and the item will move by the group's transformation
when removed. (Also see the addgroupmember, and getgroup commands). Returns an empty string.

[60] pathName renderitem [tagOrld]

During a render callback triggered by the -renderscript option, this function actually renders the object. During a -
renderscript callback, if renderitemis not called, then the object will not be rendered. If tagOrld is specified. then all the
items specified by tagOrld are rendered (and the current item is not rendered unless it is in tagOr/d). This function may only
be called during a render callback. Returns an empty string.

[61] pathName resetcoordframe

Pops all the frames off of the coordinate stack. Results in an empty stack, so all coordinates are back to absolute coordinates.
Also see pushcoordframe and popcoordframe. Returns an empty string.

[62] pathName scale tagOrld [scaleAmount [padX padY]]

Scale each of the items given by tagOrld by multiplying the size of the item with scaleAmouni. Scale the items around the
item's center, or around the point (padX, padY), if specified. This command returns the scale of the first item. Note that the
scale command generafes a <Modify> event on the items modified by it (see the scale command for a description of the

<Modify> event). Locked items may not be modified by the scale command (see the -Jock itemeonfigure option).

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_38

Reference Guide Page 37 of 84

[63] pathName setcapstyle capstyle

Sets the capstyle of lines for drawing within render callbacks. Capstyle may be any of: "butt”, "projecting”, or "round". This
command can only be called within a render callback.

[64] pathName setcolor color

Sets the color for future drawing with render callbacks. Color must have previously been allocated by alioccolor. This
command can only be called within a render callback. (Also see the alloccolor and freecolor commands).

[65] pathname set font fontname

Sets the font for future drawing with render callbacks. This affects the result of the get textbbox command. Fonmame must
specify a filename which contains an Adobe Type 1 font, or the string "systen" which causes the Pad++ line-font to be
used. Defaults to "systen”. (Also see the setfontheight command).

[66] pathname setfontheight height

Sets the height of the font for future drawing with render callbacks. Height is specified in the current pad units. This affects
the result of the gettextbbox command. (Also see the setfont command).

|67] pathname setid tagorid id

Sets the id of an existing item to id. If tagord specifies more than one item, then the first item is used. Returns an empty
string. This generates an error if an invalid id is specified (i.e., if it is in use), or if tagorid does not specify an object.

[68] pathName setjoinstyle joinstyle

Sets the joinstyle of lines for drawing within render callbacks. Joinstyle may be any of: "bevel”, "miter”, or "round". This
command can only be called within a render callback.

[69] pathName setlanguage language

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_39

Reference Guide Page 38 of 84

Sets the language to be used for callback scripts that are created in the future. All callback scripts that have already been
created will be evaluated in the language that was active at the time they were created. This command refers to all callback
seripts including event handlers, render scripts. timer seripts. zoom actions, etc. Pad++ always includes at least the Tel
scripting language, but others may be active, depending on how Pad++ was built. This command controls whatever
languages are currently installed. The language defaults to "automatic" where it tries to guess the language based on the
syntax of the script. See the SCRIPTING LANGUAGES section in the Programmer's Guide for more details. (Also see the
settoplevel command.)

[70] pathName setlinewidth width

Sets the linewidth (in current units) to width for future drawing with render callbacks. The actual width of the line will
depend on the size of the object and the magnification of the view. If width is 0, then the line is always drawn 1 pixel wide.
This command can only be called within a render callback.

[71] pathame setmodifier modifier

Make modifier be the current active modifier for this pad widget. modifier must have been previously defined with the setmodifier
command. (Also see the addmodifier, deletemodifier, getmodifier, and bind commands).

[72] pathiiame settoplevel language
Sets the language that the top-level interpreter should use. Pad++ always includes at least the Tel scripting language, but others

may be added. Returns an empty string. See the SCRIPTING LANGUAGES section in the Programmer's Guide for more details.
(Also see the setlanguage command.)

[73] pathName shape [innercoords outercoords]

WARNING: shape has been renamed to windowshape. and will be removed in the next release. Replace all uses of shape
with the windowshape command.

[74] pathName slide tagOrld [dx dy]

Slide each of the items given by tagOrld by adding dr and dy to the x and y coordinates of the item's transformation (i.e.,
their -place itemconfigure option). This command returns a string with the (x. y) position at the item's anchor point. Note
that the s1ide command generates a <Modify> event on the items modified by it (see the s1ide command for a description
of the <iodi £v> event). Locked items may not be modified by the s1ide command (see the -/ock itemconfigure option).

http://www.cs.umd.eduw/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_40

Reference Guide Page 39 of 84

/Dnn:enl
J
ra3 ~“a0¢a0)
& nj/’ s
Lo oo}

4 J-
b=

.set id [.pad create line 0 0 200 200]

.pad slide $id -80 30

20.000000 70.000000

[75] pathName spline2line error X1 yl ... xnyn

Takes the coordinates for a spline and uses an adaptive bezier algorithm to generate the coordinates for a line that
apprxoimates the spline. error is how much error is allowed - a small error produces a greater number of points and more
accuracy. A large error yields fewer points but the line is less accurate. See the section on SPLINE ITEMS for details on
how splines are created. (Also see line2spline.)

[76] pathName text tagOrld option [arg ...]

Controls all interaction with a text item, See TEXT ITEMS for a description of indices and marks. tagOrld specifies the text
item to apply the following command to. Opiion and the args determine the exact behavior of the command. Note that the
text command generales a <Modify> event on the items modified by it (see the text command for a description of the
<Modify> event). Locked items may not be modified by the text command (see the -/ock itemeconfigure option). The
following command options are available:

s compare indexl op index2

Compares the indices given by index/ and index2 according to the relational operator given by op. and returns | if the
relationship is satisfied and 0 if it isn't. Op must be one of the operators <, <===_>=_> or !=. Ifopis =then | is
returned if the two indices refer to the same character. if op is < then 1 is returned if index/ refers to an earlier
character in the text than index2. and so on.

e delete indexl [index2]

Delete a range of characters from the text. If both index/ and index2 are specified. then delete all the characters
starting with the one given by index| and stopping just before index2 (i.e. the character at index2 is not deleted). If
index2 doesn't specify a position later in the text than index/ then no characters are deleted. If index2 isn't specified
then the single character at index! is deleted. The command returns an empty string.

get indexl [indexZ]

Return a range of characters from the text. The return value will be all the characters in the text starting with the one

whose index is index/ and ending just before the one whose index is index2 (the character at index2 will not be

returned). If index2 is omitted then the single character at index] is returned. If there are no characters in the specified

range (e.g. index] is past the end of the file or index2 is less than or equal to index1) then an empty string is returned.
index index [char]

Returns the position corresponding to index in the form line.char where line is the line number and char is the
character number. If char is specified. then the position is returned in the form char which is the character index from
the beginning of the file. Index may have any of the forms described under INDICES.

e insert index chars

Inserts chars into the text just before the character at index and returns an empty string,
e mark option [arg arg ...]

This command is used to manipulate marks. The exact behavior of the command depends on the option argument that
follows the mark argument. The following forms of the command are currently supported:

http://www.cs.umd.edu/heil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_41

Reference Guide Page 40 of 84

mark names

Returns a list whose elements are the names of all the marks that are currently set.

mark set markName index

Sets the mark named markName to a position just before the character at index. If markName already exists, it is moved from its old position; if
it doesn't exist, a new mark is created. This command returns an empty string.

mark unset markName [markName ...]

Remove the mark corresponding to each of the markName arguments. The removed marks will not be usable in indices and will not be returned
by future calls to pathName mark names. This command returns an empty string.

[77] pathName tree subcommand [args ...]

This command creates, maintains, and animates dynamic trees of Pad items. ltems are created by other pad functions, and
are placed into hierarchical tree structures to be managed by this code. These trees support a focus + context viewing
structure, multiple focii, and a focus function which has a controlled level of influence on the tree.

Each node has a layout object associated with it which controls the position and resizing of the pad item at that node during
a layout, Each layout controls a link item - a pad item created by the tree code, which graphically connects the node 1o its
parent, This link item is maintained automatically by the tree code, but may be accessed and manipulated through the tree
subcommand.

Each pad has a treeroot object, which is a list of all pad tree nodes on the surface. Each of these "root nodes” is an invisible
treenode which controls certain subtrees on the pad surface. This organization is necessary to keep trees independent.
Animation done at a node affects that node and its children, so we need to be careful to organize the nodes in such a way that
all nodes we wish to "know" about each other are connected in some manner. Separate hierarchies can be made to "avoid”
each other during animation by connecting them togethe under an invisible root node. When the layout function is called on
the root node, both hierarchied will be laid out according to the layout object which resides at the root node.

A dynamic tree supports an abitrary number of foci. Management of these foci is lefi up to the user. A node's focus is spread
by a function which has several parameters. See the setfocus subcommand for more information.

Manipulation of the tree structure falls into four parts - tree management, lavout, animation control, and parameter control.

Tree Management

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_42

Reference Guide Page 41 of 84

A tree can be added to by creating new nodes and adding them to the existing tree structure, Nodes and subtrees can be
moved within trees. Nodes and subtrees can be deleted, which will also delete the pad item associated with the treenode.
Nodes and subtrees can be removed, which simply removes the treenode associated with the object. but leaves the object
itself alone.

Layout
The default layout provided with the current version of this code creates a hierarchical tree in which a node's children are

laid out to the right of the node. This layout prevents any overlapping of nodes by calculating the bounding box of the
subtree rooted at a node. and laying out nodes so that these bounding boxes do not intersect.

Animation control

A tree always animates its members. It may also animate the view at the same time the members are being animated.

Parameter control.

There are a variety of parameters associated with the layout at a node, and the control of animation of a tree.

Trees are created and manipulated through the tree subcommands:

addnode childtagOrld parenttagOrld

Adds childragOrld to parenttagOrld as a child. If childiagOrld already has a parent. this command also removes
childtagOrld from that parent. When it is added to the tree, the item's current zoom is recorded. and is used in all
future calculations in the dynamic tree layouts. This means that an item's size when it is added to the tree is the size
that it will have when it has a focus of 1.0. (See the tree setscale command to modify the size of an item afier it has
been added to a tree.)

animatelayout tagOrld [-view view]
Used in conjunction with computelayout. this command performs the animated layout of a tree. It may be given a view,
which forces the system to animate the system view while the tree animation is taking place. Use getlayoutibbox t0
calculate a view for the finished animation. See computelayout for specific implementation instructions.

Using animatelayout with the -view option forces an animation of the view as the tree is animating. The view animates
from the current view to the one specified as the tree animation is taking place.

animateview tagOrld [value]

Sets the animate View flag at ragOrfd. Controls whether or not a layout will animate the view when layout is called at
tagOrld.

connect tagOrld

Draws links from tagOrld 1o its parent, and from ragOrld's children to 1agOrid.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/refiref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_43

Reference Guide Page 42 of 84

computelayout tag()rld
Computes the final layout state for a dynamic tree. This places final layout state information in the tree, some of which can
be accessed in order to control the layout. For information on accessing some of this information, see the getlayoutbbox
command.
This code computes the future layout of a tree, then animates its view so that the center of the tagOrld's future position is in

the center of the screen at the end of the animation. Note that any treenode which is a descendant of tagOrid will return valid
information on a call to get 1ayoutbbox. Other nodes are not guaranteed to have valid information.

.pad tree computelayout Snode

set futureBbox [.pad tree getlayoutbbox $node]
set view [bbcenter $futureBbox)

.pad tree animatelayout -view Sview

create tagOrld

Creates a treenode to monitor tagOrld. Creates default layout for treenode. Adds ragOr/ld to the padroot, in preparation for
placement somewhere else in the hierarchy.

creatercot
Creates an invisible root node which is used to organize subtrees of information, and returns the pad id of the dummy object

at that node. Used to connect several nodes together so that they appear to be root nodes at the same level. Because this is an
invisible node, no links will be drawn to it.

delete [-subtree] tagOrld
Delete the tagOrld and its associated pad object, layout, and link, By default, when there is no subtree option, 1agOrld's

children are promoted to be children of tagOrld's parent. If the -subitree option is used, the entire subtree and all of its
associated data and pad objects are deleted.

getchildren tagOrld

Returns a list of the ids of the pad objects which are children of tagOrld

getfocus tagOrld

Returns the focus value at a tagOrld, which is a number on the interval [0.0, 1.0]

getlayoutbbox tagOrld
Returns the approximate bbox ragOrld will have at the end of the current animation. This is only valid when used after
computelayout, and before any manipulation of any member of the tree. Moving or resizing any object affected by
computelayout will cause a few bugs in the animation of those objects when animatelayout is called. The system will not

break, but any moved object will first instantly move to the position it held when computelayout was called, and then will
animte to the position computelayout determined for that object. Relative sizing of objects will be ignored by the system.

getlink tagOrld
Return the id of the item which graphically links tagOrld to its parent.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_44

Reference Guide Page 43 of 84

getparent tagOrld

Return the id of the parent of 1agOrld.

getroot tagOrld

Gets the root node of tagOrld's hierarchy - the node which resides just below the padroot.

isnode tagOrld

Returns a boolean indicating whether or not tagOrld has a treenode attached to it. and is therefore a member of a hierarchy.

layout tagOrld [-view view]

Performs a recursive layout of the subiree rooted at ragOr/d. 1f the -view option is used, the tree will animate 1o the view
provided.

lower tagOrld [belowtagOrld]

Controls the position of tagOrld in the order of its siblings. If belowtagOrld is not provided, ragOrld is moved to the bottom
of the list. If belowtagOrld is provided. tagOrld is moved to a position just above (after) belowtagOrid.

raise tagOrld [abovetagOrld]

Controls the position of tagOr/d in the order of its siblings. If aboveragOrld is not provided. ragOrld is moved to the top of
the list. If abovetagOrld is provided. tagOrid is moved to a position just above (after) abovetagOrld.

removenode [-subtree] tagOrld

Removes the treenode and layout objects associated with tagOrld. If the -subtree is not included. tagOrid's information is
removed. and tagOrid's children are promoted. If the -subtree option is used. the entire treenode hierarchy is removed.

reparent [-subtree] tagOrld parenttagorid
Reparents tagOrld to belong to parenttagorid. The default case, in which the -subtree option is not used, reparents tagOrld.

and promotes any children tagOrid may have to be children of tagOrld's original parent. If the -subiree option is used, the
subtree rooted at tagOrld is moved.

setanimatespeed tagOrld milliseconds
Sets the time for an animation to occur. If this number is 0. the animation will proceed immediately to the end state. During

an animation, if any event is detected. the animation will proceed to the end state. Thus. a double click on a treenode forces
the animation to happen instantaneously.

setfocus tagOrld [value [levels [falloff]]]
Set the focus value at a tagOrld. This must be a number on the range [0.1]. If no value is provided. the focus is set to 1.0.
The levels parameter controls the number of levels this focus is allowed to spread. The falloff parameter is a multiplier which

controls the portion of focus which is passed on to the next level of recursion. For example. if this number is 0.75, then
focus*0.75 of the focus is passed on at the next level of recursion.

http://www.cs.umd.edu/heil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_45

Reference Guide Page 44 of 84

setfocusmag tagOrld value

Recursive set command - works on the entire subtree of the ragOrld is is given. Set the magnification difference between an
object of focus 0 and an ohject of focus 1.

setscale tagOrld value

Set the scale that an object will have when its focus is 0. This is the smallest size that an object will have in a dyvnamic tree.
When a tree tagOrld is created, this value is automatically set to the z value of the object.

setspacing tagOrld xvalue [yvalue]

Set the x and y spacing at a ragOrld. This is the amount of spacing between a ragOrld and its spatial neighbors.

[78] pathName type tagOrld

Returns the type of the item given by tagOrld. such as rectangle or text. If tagOrid refers to more than one item, then the
type of the first item in the display list is returned. If tagOr/d doesn't refer to any items at all then an empty string is
returned.

[79] pathName update [-dissolve speed [withRefinement]]

This forces any outstanding updates to occur immediately. If the -dissolve flag is specified, then speed determines how
quickly the update is done. If speed is (. the update will happen quickly with a swap buffer. If speed is between 1 and 3, the
update will happen with a dissolve effect where 1 is the fastest and 3 is the slowest. If the withRefinement flag is specified,
this forces all refinements to occur immediately as well - which could be a slow process. Returns an empty string.

[80] pathName urlfetch URL Zoption value ...7

pathName urlfetch Token
where wvalid options are:
-file <filename>
-var <variable>
-updatescript <updateScript>
~donescript <doneScript>
-errorscript <errorScript>

Retrieves the specified URL (Universal Resource Locator) from the World Wide Web. This command returns immediately,
and the retrieval is done in the background (within the same process using a file handler.) As portions of the data comes in,
updateScript will be executed, and doneScript will be executed when all of the data has completely arrived. If there are any
errors retrieving the data, then errorSeript will be executed. urlfetch returns a token that can be used to interact with this

retrieval. This token is appended to updateSeript. doneSeript and errorScript when the scripts are executed.

There are three methods to access the data retrieved by urlfetch. The first method is to specify a file (with -file) in which
case the data is written to that file as it is retrieved. The second method is to specify a Tcl variable (with -var) in which case
the data is stored in that global variable as it is retrieved. The variable will be updated with the current data before

http://www.cs.umd.eduw/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_46

Reference Guide Page 45 of 84

updateScript and doneScript are executed. Note that the variable is not cleared by urlfetch and it is the responsibility of the
caller to free it (with unset). The third method is to use the second form of urlfetch by passing it url token during an
updatescript callback in which case it will return the data retrieved by that fetch. Three code segments follow which show
the use of urlfetch.

#
urlfetch example using a file
#
proc done (filename token) {
set file [open $filename "r"
handle file
¥
set file "foo"
.pad urlfetch http://www.cs.unm,edu -file $file \
-donescript "done $file"

#
urlfetch example using a Tecl global variable
#
proc done [token) ([
global foo

handle data in "foo"
unset foo ;# no longer need URL data
}
.pad urlfetch http://www.cs.unm.edu -var foo \
-donescript "done"
#
urlfetch example using a token to incrementally
handle data as it comes in.
#
proc update (token} {
set data [.pad urlfetch $token]
. # handle incremental data
|
.pad urlfetch http://www.cs.unm.edu \
-updatescript “update” =-daonescript “done”

|81] pathName windowshape [innercoords outercoords]

Changes the shape of the top-level window containing the pad widget specified by pathName. The two parameters each
specify lists of coordinates that specify the shape of the window. All coordinates are scaled to fit the existing width of the
window, larger numbers in X go to the right, and larger numbers in Y go up. innercoords represents the area that can be
painted in. and outercoords represents the overall window shape. The difference between these two shapes becomes the
windows border. If innercoords and outercoords are both empty strings, then the window returns to its default rectangular
shape. This command returns the current window shape.

For example. the following command changes the top-level window shape to an inverted triangle.

.pad windeowshape (0 50 50 50 25 0) (0 50 50 50 25 0}

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_47

Reference Guide Page 46 of 84

[82] pathName write filename [tagOrld tagOrld ...]

Writes the Tel commands necessary to recreate the items on the Pad++ surface into filename. I tagOrld’s are specified, then
just those items are written out. The file that is written out should be read back in with the read command. If filename is an
empty string, than this command returns the string instead of writing it to a file. If a valid filename is specified. then this
command returns an empty string.

Only non-default slots of each object are written out.

As the write command writes out objects on the pad, it generates a <write> event for each item it writes. The return string
from the <write> event handler will be appended to whatever string this function writes out for each item. See the bind
command for more information on this.

[83] pathName zoom zoomFactor padXloc padYloc [animateTime [portallD .||

Zoom around specified pad position by multiplicitive factor. If animate Time is specified, then animate the zoom and take
animate Time milliseconds for the animation. If an optional list of portals is specified, then change the view within the last
portal. The entire list is necessary in case the last portal is sitting on a different surface then this function is called with.
Returns an empty string.,

Overview of Item Types

The sections below describe the various types of items supported by Pad++ (grid, group, handle, html, image, kpl, line, polygon. portal,
rectangle, spline, tel, text, and textfile). Each item type is characterized by two things: first. the form of the command used to create instances
of the type: and second, a set of itemconfiguration options for items of that type, which may be used in the create and itemconfigure widget
commands. See the itemconfigure command for the syntax to use these options.

Group Htemss
Handle Itemss
HTML ltems
Image liemss
KPL ltems
Line Items
Pad Items
Polygon Items
Portal ltems
Rectangle ltems
Spline Items

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref _whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_48

Reference Guide Page 47 of 84

o TCL ltems
o Text ltems
o Textfile Items

All Item Types

These are the options that are supported by all item types:

[1] -alwaysrender boolean

(available only for all item types)

The rendering engine may decide to not render an item for reasons of efficiency (although it may get rendered at higher
levels of refinement). When this flag is set (i.e.. equals 1), the item will be rendered no matter how big it is (as long as it is
bigger than its -minsize. Defaults to false (0).

[2] -anchor anchorPos

(available only for all item types)

AnchorPos tells how to position the object relative to the positioning point for the ilem (see ~place); it may have any of the
forms accepted by Tk_GetAnchor. For example, if anchorPos is "center" then the object is centered on the point: if
anchorPos is "n" then the object will be drawn so that its top center point is at the positioning point. This option defaults to
center,

[3] -clipping boolean

(available only for all item types)

By default. built-in items (such as lines, text. etc.) do not get clipped to their bounding box, and procedural items (items with
-renderscripts) do. This flag turns clipping on or off. Be warned, that turning off clipping for a procedural object is
dangerous. If you draw outside the object's bounding box, you can end up with screen garbage. Defaults to true (1) for items
with -renderscripts. and false (0) for all other items.

[4] -events boolean

(available only for all item types)

Controls whether an item receives input events. If set to false (0). it does not respond to events. Defaults to true (1).
|5] -faderange value

(available only for all item types)

http://www.cs.umd.edwhcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_49

Reference Guide Page 48 of 84

Controls over how long a period an item fades out as it approaches its minimum or maximum size. value specifies this
period as a percentage of the object's size (from 0.0 to 1.0). Where 0.0 means that the item doesn't fade out all. it just blinks
off when its extreme is reached, and 1.0 means that it slowly fades out over its entire range of sizes, Defaults to 0.3. (Also
see the -minsize and -maxsize itemconfigure options.)

[6] -height height

(available only for all item types)

By default, the height of every item is automatically computed based on its contents. If the -height option is set, however,
then this overrides the automatically computed value, ltems are centered within the specified height. If the dimensions are
specified as smaller than the default values. the item is clipped to those dimensions. (Also see the -width itemconfigure
option.)

[7] -info info

(available only for all item types)

A generic info field where the user may place any string. (See the find withinfo command).

[8] -layer layer

(available only for all item types)

Specifies the layer the item is on. Every item sits on a laver (which is specified by a string), and each view (top-level
window and portals) specifies which layers are visible within that view. This gives control over objects are visible where and
can be used with portals to implement very simple filters. (See the -visiblelayers itemeonfigure option of portals and the top-
level window which is specified by the surface (item 1), Defaults to "main”,

[9] -lock lock

(available only for all item types)

When an item is locked. it can not be deleted or modified (except for changing the lock status). Note that attempting to
modify or delete a locked item does not generate an error. It fails silently. This is so it is easy to modify all items associated
with a tag and if certain items are locked they will just not get modified. The restricted commands on locked items are:
coords, delete, itemconfigure, scale, slide. and text.

[10] -maxsize size

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_50

Reference Guide Page 49 of 84

(available only for all item types)

Specifies the maximum size (in current units) this item should be rendered at. That is, if the view is such that the largest
dimension of this object is greater than size units, it will not be displayed. When an object is not displayed because it is too
large, it does not receive events. When an object approaches its maximum size it will fade out until it completely disappears
when it reaches its maximum size. If size is -1. then it has no maximum size and will never disappear because it is too large.
See the -faderange itemconfigure option to control how quickly an item fades out.

size may also be specified as a percentage of the view it is visible in (top-level window or portal), To specify size as a
percentage, it should be in the range from 0 to 100 and end with a "%". Example:

.pad ic 5 -minsize 55%

size defaults to 10,000 pixels.

Also note that the rendering engine may decide to not display an item for reasons of efficiency if it is reasonably small. See
the -alwaysrender flag to avoid this.

[11] -minsize size

(available only for all item types)

Specifies the minimum size (in current units) this item should be rendered at. That is, if the view is such that the largest
dimension of this object is less than size units, it will not be displayed. When an object is not displayed because it is too
small, it does not receive events, When an object approaches its minimum size it will fade out until it completely disappears
when it reaches its minium size. See the -faderange itemconfigure option to control how quickly an item fades out,

size may also be specified as a percentage of the view it is visible in (top-level window or portal). To specify size asa
percentage, it should be in the range from 0 to 100 and end with a "%". Example:

.pad ic 5 -minsize 55%

size defaulis 10 0.

Also note that the rendering engine may decide to not display an item for reasons of efficiency if it is reasonably small. See
the -alwaysrender flag to avoid this.

[12] -place: Place sets the anchor position of the object.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2. 7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_51

Reference Guide Page 50 of 84

(available only for all item types)

Every object has a -place which specifies the anchor point of that object (see -anchor). The place specifies the object's position
and size. The size is multiplicitive. Place can be one of:

L]
s "Xy size"

Specifies (x. y, size) where 'x y size' is a single string specifying anchor point and item size. Items that have coordinates
(lines, rectangles, polygons, and portals) have a default -place which depends on the coordinates of the item. For a "center"
anchor (the default), the place will be the center of the coordinates. Other items (that don't have coordinates) have a default
of "0 0 1",

« "center"

Center of screen. The object is positioned and sized so that its biggest dimension fills up 75% of the window, and it is
centered. (This is dependent on the current view. and the current window dimensions.)

.pad ic 22 -place -150 150 1

-fo.50)

—

.pad ic 22 -place "-50 20 0.5"

o g} |
lazes

A synonym for the third (z) component of -place.

[13] -renderseript TelSeript

(available only for all item types)

Specifies a Tel seript that will be evaluated every time the object is rendered. The script gets executed when the object
normally would have been rendered. By default. the object will not get rendered. The script may call the renderitem function
at any point to render the object. An example is:

.pad itemconfigure 22 -renderscript (
puts "Before"
.pad renderitem
puts "After"

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_52

Reference Guide Page 51 of 84

It would be possible to get in an endless render loop with the -renderscripr option. If a

-renderscript callback triggers a render which causes that item 1o be redrawn, the system will be in an endless render
loop. To avoid this problem. items do not implicitly trigger damage within a

-renderscript callback. If you do want to explicitly damage an item within a -renderscript callback, you must use the
damage command. Be very careful to avoid infinite render loops.

[14] -sticky boolean

(available only for all item types)

Specifies if this item should be "sticky". Sticky items are rendered independent of the current view. That is, as the view pans
and zooms, sticky items appear effectively stuck to the screen. All sticky items are rendered after non-sticky items. thus
sticky items always are on top of non-sticky items. (See the getview and moveto commands.) Defaults to 0 (false).

[15] -tags tagList

(available only for all item types)

Specifies a set of tags to apply to the item. TagList consists of a list of tag names, which replace any existing tags for the
item. TagList may be an empty list.

[16] <timerrate rate

(available only for all item types)

Specifies the frequency in milliseconds that the object's timerseript should be evaluated. If it is set to 0, the timer is turned
off. Defaults to off (0). (see -timerscript).

[17] ~timerscript TelSeript

(available only for all item types)

Specifies a Tel seript that will be evaluated regularly. every rate milliseconds as specified by -timerrate (if -timerrate is
greater than zero), This evaluation is independent of rendering and events. Returns the current TelScript for the object. (see -
timerrate).

[18] -transparency value

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_53

Reference Guide Page 52 of 84

(available only for all item types)

Specifies the transparency an item is drawn with. value must be a value between 0.0 and 1.0 where 0.0 is completely
transparent and 1.0 is completely opaque. 1.0 is the default. I a portal or group is partially transparent, all of its member or
visible objects, respectively, will have their transparency multiplied by the portals or groups.

[19] -viewseript TelSeript

(available only for all item types)

Specifies a Tel script that will be evaluated every time the view onto the Pad++ surface is changed. This script gets executed
after the view coordinates have changed, but before the new scene gets rendered. Returns the current viewscript.

[20] -visible boolean

(available only for all item types)

WARNING: -visible is an obsolete option and will be removed in the next release. Replace all uses of the -visible option
with -transparency which is more general.

Specifies whether this item is visible. Note that invisible items receive events and respond 1o commands such as find.
Defaults to true.

[21] -width width

(available anly for all item types)

By default, the width of every item is automatically computed based on its contents. I the -width option is set. however,
then this overrides the automatically computed value. Items are centered within the specified width. If the dimensions are
specified as smaller than the default values. the item is clipped to those dimensions. (Also see the -height itemconfigure
option.)

[22] -x x

(available only for all item types)

A synonym for the first (x) component of -place.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_54

Reference Guide Page 53 of 84

[23]-yy

(available only for all item types)

A synonym for the second (y) component of -place.

[24] ~zoomaction {size growScript shrinkScript}

(available only for all item types)

Specifies a pair of Tcl scripis that gets evaluated when an item grows or shrinks so that its size crosses size. This is a simple
way of making "semantically zoomable" objects - that is, objects that look different when the are rendered at different sizes.
When the item grows larger than size. growSeript is evaluated, and when it shrinks smaller than size, shrinkScript is
evaluated.

Any number of pairs of scripts may be associated with different sizes. Each use of -zoomaction may specify a different size.
or modify scripts for an existing size, If both scripts are empty strings, then that zoomaction is deleted. This returns a list of
zoomaction size, growSeript, shrinkScript triplets.

The seript gets executed when the object normally would have been rendered. By default, the object will not get rendered.
The script may call the renderitem function at any point to render the object. See the description of -renderscripr for an
example. The deletion of items during a zoomaction is delayed until after the current render is finished.

Here is an example that turns a rectangle into an image when it is zoomed in, and back into the rectangle when zoomed out:

proc grow () |
.pad ic rect -visible 0
.pad pushcoordframe rect
set image_token [.pad allocimage images/unm_logo_orig.gif]
.pad create image -image $image_token -anchor sw -tags "image"
.pad popcoordirame
.pad renderitem

}

proc shrink ()} {
.pad ic rect -visible 1
set image id [.pad find withtag image]
if ($image id != ""} {(
set image token [.pad ic image -image]
.pad freeimage Simage_ token
.pad delete image
1
.pad renderitem
}

proc testzoomaction () (
.pad create rectangle 0 0 341 222 -pen black ~£fill yellow3 \
-zoomaction {250 grow shrink) -tags "rect"

http://www.cs.umd.edw/heil/pad++/documentation/doc-0.2.7/ref/ref _whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_55

Reference Guide Page 54 of 84

[25] -z 2

(available only for all item types)

A synonym for the third (z) component of -place
Grid Items

Items of type grid arrange one or more items in rows and columns and treats them as a group. It is based on the Tk grid geometry manager and
its behavior and Tel syntax are very similar to it. In pad, all manipulations of a grid once it is created are affected through the grid sub-
command. Note that rows and columns start from the top left corner of the grid (as in the Tk grid). The complete grid sub-command is
described in this section.

Grids are created with widget commands of the following form:

pathName create grid [slaves...]

Grid creation is slightly different from creation of other pad objects. Instead of the normal command-line option-value pairs a list of slaves and
their grid configuration can be specified (see the section below on sub-commands and slave configuration). Grids are special group objects and
inherit much of the group functionality and support the "-divisible" option which can be set (using itemconfigure) once the grid is created:

[26] -divisible boolean

(available only for grid, group. and HTML item types)

Specifies whether events should go to the grid members. If -divisible is 1 (true), events never go to the grid object, but pass
through it to the members. If the event is within the bounding box of the group, but does not hit any members, then it will be
ignored by the group. If -divisible is 0 (false). then the event will go to the group if it is within the bounding box of the group
whether there is a member at the place the event points to or not. Defaults to 1 (trug).

The syntax of the grid sub-command is:

pathWname grid slave ([slave...] option value [option value...]
pathName grid command arg [arg...]

If the first argument of the grid command is a slave object then the remainder of the command line is processed in the same way as the grid
configure command. The "-in" option can be used to add a slave to a grid. The following grid sub-commands are allowed:

SPAD grid arrange master

Forces arrangement of the given grid. Any pending layout request for the grid is removed. This can be useful when an
application has done several grid configuration and wants them to take effect immidiately. Normally. grid arrangement is
done at "idle" times.

$PAD grid bbox master column row

The bounding box (in pixels) is returned for the space occupied by the grid position indicated by column and row. The return
value consists of 4 integers. The first two are the pixel offset from the master window (x then y) of the top-lefi corner of the
grid cell. and the second two are the width and height of the cell.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_56

Reference Guide Page 55 of 84

$PAD grid columnconfigure master index [-option value...]

Query or set the column properties of the index column of the geometry master, master. The valid options are -minsize and -
weight. The -minsize option sets the minimum column size, in screen units, and the -weight option (a floating point value)
sets the relative weight for apportioning any extra spaces among columms. 1f no value is specified, the current value is
returned.

SPAD grid configure slave [slave ...] [options]

The arguments consist of one or more slaves followed by pairs of arguments that specify how to manage the slaves. The
characters -, x and *, can be specified instead of a window name to alter the default location of a slave, as described in the
“RELATIVE PLACEMENT" section. below. If any of the slaves are already managed by the grid then any unspecified
options for them retain their previous values rather than receiving default values, The following options are supported:

-column n
Insert the slave so that it occupies the nth column in the grid. Column numbers start with 0. If this option is not
supplied, then the slave is arranged just to the right of previous slave specified on this call to grid, or column "0" if it

is the first slave. For each x that immediately precedes the slave, the column position is incremented by one. Thus the
x represents a blank column for this row in the grid,

-columnspan n

Insert the slave so that it occupies n columns in the grid. The default is one column, unless the slave is followed by a -,
in which case the columnspan is incremented once for each immediately following -.

-in other

Insert the slave(s) in the grid object given by other (which must be an existing grid).

-padx amount

The amount specifies how much horizontal external padding to leave on each side of the slave(s). The amount defaults
to 0.

-pady amount

The amount specifies how much vertical external padding to leave on the top and bottom of the slave(s). The amount
defaults to 0.

-row n

Insert the slave so that it occupies the nth row in the grid. Row numbers start with 0. If this option is not supplied, then
the slave is arranged on the same row as the previous slave specified on this call to grid, or the first unoccupied row if
this is the first slave,

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_57

Reference Guide Page 56 of 84

SPAD grid

SPAD grid

SPAD grid

SPAD grid

$PAD grid

SEAD grid

~rowspan n
Insert the slave so that it occupies n rows in the grid. The default is one row. If the next grid command contains *

characters instead of slaves that line up with the columns of this slave, then the rowspan of this slave is extended by
one.

-sticky style

If a slave's parcel is larger than its requested dimensions, this option may be used 1o position (or stretch) the slave
within its cavity. Style is a siring that contains zero or more of the characters n, s, ¢ or w. The string can optionally
contains spaces or commas, but they are ignored. Each letter refers to a side (north, south, east, or west) that the slave
will "stick” to. If both n and s (or e and w) are specified. the slave will be stretched to fill the entire height (or width)
of its cavity. The sticky option subsumes the combination of -anchor and -fill that is used by pack. The default is {},
which causes the slave to be centered in its cavity. at its requested size.

forget slave [slave ...)

Removes each of the slaves from their grid.

info slave

Returns a list whose elements are the current configuration state of the slave given by slave in the same option-value form
that might be specified to grid configure. The first two elements of the list are *"-in master” where master is the slave's
master.

location master x y

Given x and y values in screen units relative to the master object, the column and row number at that x and v location is
returned, For locations that are above or to the left of the grid, -1 is returned.

rowconfigure master index [-option value...]

Query or set the row properties of the index row of the geometry master, master. The valid options are -minsize and -weight.
Minsize sets the minimum row size. in screen units, and weight sets the relative weight for apportioning any extra spaces
among rows. If no value is specified, the current value is returned.

size master

Returns the size of the grid (in columns then rows) for master. The size is determined either by the slave occupying the
largest row or column, or the largest column or row with a minsize or weight.

slaves master [-option wvalue]

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_58

Reference Guide Page 57 of 84

If no options are supplied, a list of all of the slaves in master are returned. Option can be either -row or -column which
causes only the slaves in the row (or column) specified by value to be returned.

Relative Placement

The grid command contains a limited set of capabilities that permit layouts to be created without specifying the row and column information
for each slave. This permits slaves to be rearranged. added. or removed without the need to explicitly specify row and column information.

When no column or row information is specified for a slave, default values are chosen forcolumn, row, columnspan and rowspan at the time
the slave is managed. The values are chosen based upon the current layout of the grid, the position of the slave relative to other slaves in the
same grid command, and the presence of the characters -, . and ” in grid command where slave names are normally expected.

- This increases the columnspan of the slave to the left. Several -'s in a row will successively increase the columnspan. S - may not
follow a™ orax.

x This leaves an empty column between the slave on the left and the slave on the right.

* This extends the rowspan of the slave above the *'s in the grid. The number of *'s in a row must match the number of columns spanned
by the slave above it.

Restrictions on Master Windows

In pad. the master for each slave is the slave's parent (which is a grid object). This means if an object belongs to an existing group then it
cannot be added to a grid.

Differences Between Pad++ and TK Grid Commands

o The -ipadx and -ipady grid item configuration options are not available in pad.

e Master window geometry propagation flag is not available in pad.

» The parent-child and stacking restrictions and rules for master and slave items are not supported in pad (slaves can only be in the master
group).

If the grid is not positioned then it places itself around its first item. Once all grid items have been positioned the grid bounding box will
be computed to enclose them all.

e Added the arrange command for forcing grid arrangement.

« [Items that are removed from grids are not unmapped.

Examples

1) put four objects in a 2x2 grid with 10 pixels horizontal and vertical pading:

set objl [.pad create rectangle 0 0 50 50]
set obj2 [.pad create rectangle 50 50 100 100]
set obj3 [.pad create rectangle 100 100 150 150]
set objd4 [.pad create rectangle 150 150 200 200]
set thegrid [.pad create grid $objl $obj? -padx 10 -pady 10]
.pad grid $obj3 $obj4 -in $thegrid -row 1 -padx 10 -pady 10

2) read objects from pad files in a directory and place them in a Nx2 grid (this can be useful for creating palettes):

proc read files (PAD dir} (
set obis ""

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_59

Reference Guide Page 58 of 84

Go though list of files
foreach file [glob Sdir/*.pad] [
Read file and put all its object in a group (Pad_ObjectList will be
set to list of objects read from file).
$PAD read §file
set group [SPAD create group -members $Pad ObjectList]
lappend cbjs Sgroup
1
return Sobjs
}

proc create palette (PAD objs) |
Create the grid object
set thegrid [$PAD create grid]
set row 0
set col 0

Go through objects and place them two per row
foreach obj Sobjs (
Add okj to the grid
$PAD grid Sobj -in S$thegrid -row Srow —column Scol -padx 10 -pady 5

Set row and column position for next cbject
if {Scol == 0} {
iner col
] else |
set col 0
incr row

Have the grid arrange itself now
SPAD grid arrange $thegrid

return $thegrid

create_palette .pad [read files .pad Senv (PADHOME) /draw/scrapbook]

Alternatively.

proc create palette (PAD objs} |
create the grid object
set thegrid [$PAD create grid]

go through list of objects and place them two per row
set numobjs [llength $objs]
for {set i 0} {5i < Snumobjs) (imecxr i 2} |{
set objl [lindex Sobjs §i]
if ($i < [expr S$numcbjs-1]) {
set obj2 [lindex $objs [expr $i+1]
} else {
set objz ""

)
5PAD grid Sobjl $obj2 -in $thegrid -padx 10 -pady 5
}

$PAD grid arrange S$thegrid
return Sthegrid

create_palette .pad [read files .pad $Senv (PADHOME) /draw/scrapbook]

3) Draw horizontal and vertical grid lines and a bounding rectangle for an existing grid. Make a group for the line objects and the existing grid.
Assume the grid is a normal MxN table (i.e. all rows have N columns and all columns have M rows).

proc create gridlines { PAD thegrid } {
Get bounding box; width and height and location of the grid
set gbhbox [$PAD bbox Sthegrid]
set gwidth [expr [lindex Sgbbox 2] - [lindex S$gbbox 0]1
set gheight [expr [lindex $gbbox 3] - [lindex $§gbbox 1]]
set gx [lindex $gbbox 0]
set gy [lindex $gbbox 1]

Get number of rows and columns
set numrows [lindex [$PAD grid size $thegrid] 1]
set numecols [lindex [$PAD grid size $thegrid] 0]

http://www.cs.umd.edwhcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_60

Reference Guide Page 59 of 84

Create the bounding rectangle
set grect [eval SPAD create rectangle Sgbbox]

set items "Sgrect"
set scale [$PAD scale $thegrid]

Create horizontal lines by looking at the <r, 0> grid elemments.
for {set r 1) {Sr < Snumrows} {incr r} |
Get location of the <r, 0> element (including padding)
set rinfo [SPAD grid bbox Sthegrid 0 Sr]
set %1 [expr [lindex $rinfo 0]*Sscale + 3gx]
Transform the y cecord for pad (grid's is from top left corner)
set yl [expr (Sgheight - [lindex Srinfo 1]*$scale) + $gy]
set x2 [expr $xl + Sgwidth]
set y2 Syl
lappend items [$PAD create line $x1 Syl $x2 $y2 -tags gridrowline Sthegrid]

Draw vertical lines by looking at the <0, c> elements

for (set ¢ 1} (%$c < $numcols} {inecr c} {

set cinfo [$PAD grid bbox $thegrid $c 0]

set x1 [expr [lindex $cinfo 0]*$scale + $gx]

set y1 [expr (Sgheight - [lindex Scinfo 1]1*$scale) + $gy]

set x2 Sxl

set y2 [expr Syl - $gheight]

lappend items [$PAD create line $x1 $yl $x2 $y2 -tags gridcolline $thegrid]

Create a group for all the grid lines
set glines [SPAD create group —-members Sitems -divisible 0 \
-tags gridlines_S$thegrid]

Create a group for the lines and the grid

set newgrp [$PAD create group -members "§$glines Sthegrid" -tags grid $thegrid \
—divisible 1]

return $newgrp

set thegrid [create_palette .pad [read files .pad ./draw/scrapbook]]
create gridlines .pad S$thegrid

Group Items

Items of type group are special items that group other items. Group items do not have any visual appearance, but rather are used just for
creating structure. Groups are implemented very efficiently, and may be hierarchical (i.e.. contain other groups). Modifying the position of a
group implicitly affects all of the members of the group, recursively. Pad++ also supports "tags" which are implicit way of grouping items - but
this only works for events. That is. giving several ilems the same tag allows them all to respond to the same event handlers. Groups explicitly
bring items together. Group members are rendered sequentially in the display list. That is. no other objects can appear inbetween group
members - they are always above or below all the group members. Raising or lowering a group object raises or lowers all the group members.
Raising or lowering a group member raises or lowers the member within the group.

Groups automatically resize themselves to contain all of their members - thus adding, removing, or repositioning a member implicitly changes
the size of the group. See the pad addgroupmenber and removegroupmember commands and the -member itemconfigure option below for
setting group membership. and the getgroup command for testing group membership.

When an event hits a group. it normally passes through the group object to its members. However, it is possible 1o configure a group object so
that it grabs the events and does not pass them through. See the -divisible flag.

Groups are created with widget commands of the following form:

pathName create group [option value cption value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item. These same option-value
pairs may be used in itemconfigure widget commands to change the item's configuration. The following options are supported for groups:

[27] -divisible boolean

(available only for grid, group, and HTML item types)

http://www.cs.umd.eduw/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_61

Reference Guide Page 60 of 84

Specifies whether events should go to group members. If -divisible is 1 (true), events never go to the group object, but pass
through it to the members. If the event is within the bounding box of the group, but does not hit any members, then it will be
ignored by the group. If -divisible is 0 (false), then the event will go the group if it is within the bounding box of the group
whether there is a member at the place the event points to or not. Defaults to 1 (true).

[28] -members members

(available only for group and HTML item types)

members is a list of object ids that specify the list of members of this group. Setting the members of a group first removes all
existing members, and then inserts the new members. The members are rendered in the order they are specified in members.

Handle Items

ltems of type handle are special items that are designed to be used for selection handles around items when manipulating them within an
application. Handles are similar to rectangles, except unlike every other item in Pad++, handles do nof zoom. Handles are always rendered at
the same size. Handles, however, do slide around like other items. They just don't zoom. Handles default to being five by five pixels, but this
can be changed with the -width and -height itemconfigure options.

Handles are created with widget commands of the following form:

pathName create handle [option value coption value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item. These same option-value
pairs may be used in itemconfigure widget commands to change the item's configuration. The following options are supported for handles:

[29] -fill color

(available only for handle, HTML, Polygon. Portal and Rectangle item types)

Fill the background of the item with color, which may be specified in any of the forms accepted by Tk_GetColor. If color is
"none". the background will not be drawn. It defaults to the red.

[30] -pen color

(available only for handle, line, polygon, portal, rectangle, spline, text and textfile item types)

Color specifies a color to use for drawing the item: it may have any of the forms acceptable to Tk_GetColor. It may also be
"none”, in which case the outline will not be drawn. This option defaults to black.

HTML Items

Items of type html are compound items representing the specified html file. (HTML is HyperText Markup Language. Based on SGML, HTML
is most commonly known as the language describing items for the World-Wide Web.) HTML items know about the internet and will
automatically fetch a file from a URL (Universal Resource Locator) as well as in-line images. URL's may also specify local files. When the
htm| data is fetched, it is parsed and the HTML item is created which contains a method for rendering the page. HTML anchors are created as
separate items which may have evenis bound to them. HTML items are an extension of group items, and thus have several of the same options
as groups.

There is a Tel file (draw/html.1cl) which describes default event bindings for htm! items which follow hyperlinks, and lay them out with scale.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_62

Reference Guide Page 61 of 84

See the end of the description of HTML items for a description of html anchors,

HTML items are created with widget commands of the following form:

pathName create html [option walue option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item. These same option-value
pairs may be used in itemconfigure widget commands to change the item's configuration. The following options are supported for html items:
[31] -border color

(available only for HTML and portal item types)

Color specifies a color to use for drawing the border of the portal: it may have any of the forms accepted by Tk GetColor. If
color is "none", the outline will not be drawn. This option defaults to the fill color.

[32] -borderwidth width

(available only for HTML and Portal item types)

Width specifies the width of the border in current units to be drawn around the item. Wide borders will be drawn completely
inside the path specified by the points of this object. Note that this is different than pens. If width is 0. then the border will
always be drawn one pixel wide. independent of the zoom. Width defaults to 1 pixel.

[33] ~divisible boolean

(available only for grid, group, and HTML item types)

If true. then events go through the HTML object to its anchors. If false, events stop at the HTML object, and never go
through to the anchors. Defaults to true.

[34] -donescript script

(available only for HTML item types)

If seript is specified. it gets evaluated when the html item has completed loading - including all in-line images. script is
postpended with the id of the html object. This is necessary because the script is typically specified on the create line where
the id of the htm] object is not yet known.

[35] -errorseript script

(available only for HTML item types)

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_63

Reference Guide Page 62 of 84

If seript is specified, it gets evaluated if there is an error creating the htm! item. An error can occur for many reasons -
especially because creating an html typically starts a network communication process for fetching the URL. script is
postpended with the id of the html object. This is necessary because the seript is typically specified on the create line where
the id of the himl object is not yet known.

[36] -fill color

(available only for handle. HTML, polygon, portal and rectangle item types)

Fill the background of the html item with color. which may be specified in any of the forms accepted by Tk_GetColor. If
color is "none”, the background will not be drawn. It defaults to the background of the Pad++ widget it is created on.

[37] -font fontname

(available only for HTML, portal, text and textfile item types)

Specifies the font to be used for rendering text for this item. fontname must specify a filename which contains an Adobe
Type 1 font, or the string "Sys tem" which causes the Pad++ line-font to be used. Defaults to "systen".

[38] -htmlanchors

(available only for HTML item types)

Returns all the anchors that are part of this HTML item. This is a read-only option, and may not be set.

[39] -members

(available only for group and HTML item types)

Because an HTML item is a group. it may contain other members in addition to its anchors. This allows setting and
retrieving of all members that are part of this HTML item.

[40] -updatescript script

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ret/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_64

Reference Guide Page 63 of 84

(available only for HTML item types)

If seript is specified, it gets evaluated when the html source has loaded, and then once every time an in-line is loaded. script
is postpended with the id of the html object. This is necessary because the script is typically specified on the create line
where the id of the html object is not vet known.

[41] -url urlname

(available only for HTML item types)

Specifies the URL (Universal Resource Locator, or World-Wide Web address) that this him| page should be accessed from.
It must be specified with a valid address. Some examples are: "http://www.unm.edu", "hitp://www.cs.unm.edw/bederson”,

"file:/Mnfs/ud/bederson/public_html/begin.html", "home-page.htm|",

[42] -width width

(available only for all item types)

Specifies the width (in the current units) of the html page. The page will be re-laid out according to the new widih, and the
length of the page may change dependent on the new width.

HTML ANCHORS

The anchors are special Pad++ items of type "htmlanchor". They are automatically grouped with the HTML object. As such, they can not be
deleted independently. and are automatically deleted when the htm] object they are associated with is deleted. Some anchors have multiple
components (i.e.. and image and some text). In this case, they all have the same URL, and changing the pen color of one component

automatically changes the pen color of the other components.

Anchors may be configured with the itemeonfigure command, The following options are supported for html anchors:

[43] -htm]

(available only HTML anchors item tvpes)

Returns the html item this anchor belongs to. This is a read-only option.

[44] -ismap

(available only HTML anchors item types)

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_65

Reference Guide Page 64 of 84

Returns true if this anchor is an imagemap. This is a read-only option.

[45] -state state

[46] -url

(available only HTML anchors item types)

Specifies the state of the anchor (which controls its color). There is no direct control over an anchor's color. Rather, it uses

the default colors unless the HTML page specifies anchor colors. State may be one of "unvisited”, "active", "visited", or
"notloaded". In-line images that haven't been loaded vyet are

"notloaded".

(available only HTML anchors item types)

Returns the URL that this anchor addresses. This is a read-only option.

Image Items

Items of type image appear on the display as color images. Images are created with widget commands of the following form:

pathName create image [option value option wvalue ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item. These same option-value
pairs may be used in itemconfigure widget commands to change the item's configuration. The following options are supported for images:

[47] -dither dithermode

(available only for image item types)

Specifies if and when the image is rendered with dithering. Dithering is a rendering technique that allows closer
approximation to the actual image colors, even when the requested colors are not available. Rendering images with dithering
is much slower than without, so this option allows control as to when (if at all). dithering is used. dithermode may be any of

L]

e nodither: The image is never rendered with dithering.

e dither: The image is always rendered with dithering.

e refinedither: The image is initially rendered without dithering, and then refined with dithering.

Defaults to refinedither (dither only on refinement).

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_66

Reference Guide Page 65 of 84

[48] -image imagetoken

(available only for image item types)

Specifies the image that this item will render. (Also see the allocimage and £reeimage commands.)

KPL Items

Items of type Kpl provide a method for creating an item with a user-described render method. Sometimes the Pad++ items available do not
have exactly whai you want, or you'd like a complex item consisting of several primitives. Rather than create several different Pad++ items and
group them together, a single Kpl item can be created with a kind of display list.

Kpl is a language (designed at New York University by Ken Perlin, et. al.) that is very simple, but extremely fast. It is the best language we
found for writing interpreted code for rendering quickly. In fact, Kpl has a byte-compiler which makes it faster. Some simple experiments have
shown it to be roughly 15 times slower than C for simple math (compared to tel which is typically about 1,000 times slower than C). Because

Kpl is a general-purpose language. it can be used for on-the-fly calculations as well as render calls. Pad++ supplies several render that available
through Kpl that allow a Kpl object to render fairly complex objects.

Kpl is a stack-based post-fix language (much like PostScript). Some basic documentation is available with the Pad++ release in doc/kpl.troff.
See the section in this document on the KPL-PAD++ INTERFACE for a description of how to access Kpl through Pad++, and what Pad++
routines are available from Kpl.

Kpl items are created with widget commands of the following form:

pathName create kpl [option value option wvalue ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item. These same option-value
pairs may be used in itemconfigure widget commands to change the item's configuration. The following special options are supported for kpl
objects:

[49] -renderscript kpl_script

(available only for all item types)

This is like the standard -renderscript option available to all items, but in this case, the string specifies a Kpl script
instead of a Tel seript.

[50] -bb boundingboxScript

(available only for KPL and TCL item types)

A Kpl seript that will be evaluated to compute the bounding box of this item. It should return two-element vectors that
specify (x1, y1). (x2, ¥2) which are the lower left and upper right corners of this items bounding box.

Note that all coordinates in Kpl are specified in pixels. and not in the current Pad++ units. An example follows that creates a Kpl item that
draws a brown triangle. In this case, the Kpl code is stored in the file triangle.kpl.

Tcl code to load Kpl code and to create
Pad++ Kpl item that draws a brown triangle

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/refiref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_67

Reference Guide Page 66 of 84

kpl eval 'triangle.kpl source
set pen [.pad alloccolor brown]
.pad create kpl -bb (~-10:-10 110:110} -renderscript {draw_triangle}

/* Epl code [(in a separate file)
to draw a brown triangle */

'pen tcl_get -> Pen
Pen setcoler
3 setlinewidth

newpath
0:0 moveto
100:0 lineto
50:100 lineto
0:0 lineto
stroke

} -> draw_triangle

Line Items

Items of type line appear on the display as one or more connected line segments. Lines are created with widget commands of the following
form:

pathName create line x1 yl... xn yn [option value option value ...]

The arguments x1 through yn give the coordinates for a series of two or more points that describe a series of connected line segments. After the
coordinates there may be any number of option-value pairs. each of which sets one of the configuration options for the item. These same
option-value pairs may be used in itemconfigure widget commands to change the item's configuration. The following options are supported for
lines:

[51] -arrow where

(available only for line and spline item types)

Indicates whether or not arrowheads are to be drawn at one or both ends of the line. where must have one of the values
"none" (for no arrowheads), "first” (for an arrowhead at the first point of the line), "last" (for an arrowhead at the last point
of the line), or "both" (for arrowheads at both ends). This option defaults to "none".

[52] -arrowshape shape

(available only for line and spline item types)

This option indicates how to draw arrowheads. The shape argument must be a list with three elements. each specifying a
distance. The first element of the list gives the distance along the line from the neck of the arrowhead to its tip. The second
element gives the distance along the line from the trailing points of the arrowhead to the tip, and the third element gives the
distance from the outside edge of the line to the trailing points. If this option isn't specified then Pad++ picks a "reasonable”
shape.

[53] ~capstyle cap

(available only for line and spline item types)

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_68

Reference Guide Page 67 of 84

Specifies how the ends of the line are drawn. cap may be one of:

projecting: The ends are drawn square, past the endpoint.
round: The ends are rounded.

L]
e butt! The ends are drawn square, at the end point.
L]
.
[54] -joinstyle join
(available only for line, polygon, rectangle and spline item types)

Specifies how the joints at vertices are drawn. join may be one of:

-

e bevel: The joints are drawn without protruding. They are cut-off and sharp.
e miter: The joints are drawn protruding to a point.

e round: The joints are rounded.

[55] -noisedata noisedata

(available only for line item types)
Specifies the noise parameters used to make rough-looking lines. noisedata is a four element list of numbers of the form:
"Pos Freq Amp Steps"

Rough lines are generated using the Perlin noise function. The Perlin noise function is like a sin function with a very
irregular amplitude - like sin, noise has a constant period (one). but no two segments of the noise curve are alike, Noisy lines
are generated by adding noise to the tangent direction of a line.

In the current implementation, there are four noise parameters: Pos. Freq, Amp, and Steps. Pos determines what part of the
noise curve is sampled for that object. Freq determines the rate of sampling, Amp indicates the level, and Steps indicates
how many samples to introduce per line segment. The drawing algorithm is straightforward. For each line segment,
coordinates are generated as follows:

DrawRoughLine (x1, y1, %2, y2, Pos, Freg, Amp, Steps)

step = 1.0/Steps:
mag = length(xl,yl,x2,y2);
theta = direction(xl,yl,x2,y2);

xmag = Amp * sin(theta) * mag;
ymag = Amp * cos(theta) * mag;

vertex(xl, yl):

for (a = step; a < steps; a += step) |
n = noise (Pos);
vertex(lerp(a,x1,x2) + n*xamp, lerpla,yl,y2) + n*yamp):
Pos += Freq:

}

vertex (x2, y2);

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_69

Reference Guide Page 68 of 84

Note that we multiply Amp by mag, the length of the line. This is necessary in Pad++ since the zooming functionality means
that lines can be of nearly any size. Making the level of noise proportional to the length of the line keeps the informality
uniform at all sizes. (We should probably also modulate the number of points generated by the thickness of the line, so small
thin lines are cheap).

Values of 0.3 for Freq. 0.1 for Amp. 10 for Steps produces pleasant-looking lines. Pos can be an arbitrary floating point
number - giving different objects unique values for Pos ensures that each object has a different appearance.

[56] -pen color

(available only for handle, line, polygon, portal, rectangle, spline, text and textfile item types)

Color specifies a color to use for drawing the line: it may have any of the forms acceptable to Tk_GetColor. It mav also be
"none". in which case the line will not be drawn. This option defaults to black.

[57] -penwidth width

(available only for line, polygon. rectangle and spline item types)

Width specifies the width of the pen in current units to be drawn around the item. Wide lines will be drawn centered on the

path specified by the points. If width is 0.0, then the pen will always be drawn one pixel wide, independent of the zoom,
Width defaults to 1 pixel.

Pad Items

Each pad widget implicitly defines a special "pad" item which always has the id "1". This is a special item which can get events and has a few
itemconfigure options. It may not be explicitly created or deleted. The valid options are:

|58] -visiblelayers lavers

(available only for pad and portal item types)

Specifies what layers are visible within this portal. lavers can be either a list of layers which will specify which items will be
displayed within this portal, or take the special form of "all -layer] -layer2 -layer3 ..." in which case all layers except the
ones specified will be displayed. Defaults to "all". (See the -layer itemconfigure option that all items have.)

Polygon Items

ltems of type polygon appear as polygonal regions on the display. Each polygon may have an outline (pen color), a fill, or both. Polygon are
created with widget commands of the following form:

pathName create polygon %1 yl... xn yn [option wvalue option value ...]

The arguments x1, yl1. xn, and yn specify the coordinates of the vertices of the polygon. After the coordinates there may be any number of
option-value pairs. each of which sets one of the configuration options for the item. These same option-value pairs may be used in
itemconfigure widget commands to change the item's configuration. The following options are supported for polygons:

[59] -fill color

http://www.cs.umd.edw/hcil/pad-++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_70

Reference Guide Page 69 of 84

(available only for handle, HTML, polvgon. portal and rectangle item types)

Fill the area of the polygon with color, which may be specified in any of the forms accepted by Tk_GetColor. If color is
"none", (the default), then the polygon will not be filled.

[60] -joinstyle join

(available only for line, polygon, rectangle and spline item types)
Specifies how the joints at vertices are drawn. join may be one of:

miter: The joints are drawn protruding to a point.

.
s bevel: The joints are drawn without protruding. They are cut-off and sharp.
-
e round: The joints are rounded.

[61] -pen color

(available only for handle, line, polygon, portal, rectangle, spline, text and textfile item types)

Draw an outline around the edge of the polygon in color. Color may have any of the forms accepted by Tk_GetColor. If
color is "none”, then no outline will be drawn for the rectangle. This option defaults to black.

[62] -penwidth width

(available only for line, polygon, rectangle and spline item types)

Width specifies the width of the pen in current units to be drawn around the item, Wide lines will be drawn centered on the
path specified by the points. If width is 0.0, then the pen will always be drawn one pixel wide, independent of the zoom.
Width defaults to 1 pixel.

Portal Items

Portals are a special type of item in Pad++ that sit on the Pad++ surface with a view onto a different location. Because each portal has its own
view, a surface might be visible at several locations, each at a different magnification, through various portals. In addition, portals can look
onto surfaces of other Pad++ widgets. The surface that the portal is looking onto is called that portal's lookon. Portal items are created with
widget commands of the following form:

pathName create portal x1 yl x2 y2 ... [option value option value ...]

If two points are specified, then the portal will be rectangular where those two points specify the lower left and upper right coordinates of the
portal. If more than two points are specified. then the portal will be polygonal shaped by those points. There may be any number of option-
value pairs, each of which sets one of the configuration options for the item. These same option-value pairs may be used in itemconfigure
widget commands to change the item's configuration. The following options are supported for text items:

[63] -border color

favailable only for HTML and portal item types)

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_71

Reference Guide Page 70 of 84

Color specifies a color to use for drawing the border of the portal: it may have any of the forms accepted by Tk_GetColor. If
color is "none”. the outline will not be drawn. This option defaults to the fill color.

[64] -borderwidth width

(available only for HTML and portal item types)

Width specifies the width of the border in current units to be drawn around the item. Wide borders will be drawn completely
inside the path specified by the points of this object. Note that this is different than pens. If width is 0. then the border will
always be drawn one pixel wide, independent of the zoom. Width defaults to 1 pixel.

[65] -fill color

(available only for handle, HTML, polygon. portal and rectangle item types)

Fill the background of the portal with color. which may be specified in any of the forms accepted by Tk_GetColor. If color
is "none", the background will not be drawn. It defaults to the background of the Pad++ widget it is created on.

[66] -font fontname

(available only for HTML, portal. text and textfile item types)

Specifies the font to be used for rendering text for this item. fontname must specify a filename which contains an Adobe
Type 1 font, or the string "System" which causes the Pad++ line-font to be used. Defaults 10 "systen”.

[67] -lookon surface

(available only for portal item types)

Specifies which Pad++ surface this portals looks onto. surface should be the complete pathName of a Pad++ widget.
Defaults to the surface the portal was created on.

[68] -pen color

(available only for handle, line, polygon, portal, rectangle, spline, text and textfile image types)

color specifies the text color of the title. If color is "none”, then no outline will be drawn for the rectangle. This option
defaults 1o either black or white - whichever contrasts the most with the fill color.

[69] -relief relief

(available only for portal item types)

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_72

Reference Guide Page 71 of 84

Specifies the relief to be used by the border of this item. relief may be any of: raised, sunken, flag, ridge, or groove. Defaults
10 un:dgen
[70] -title title

(available only for portal item types)

If title is specified. then the portal will be rendered with a titlebar consisting of #itle. Otherwise. no title bar is drawn.
Defaults to the empty string.

[71] ~view place

(available only for portal item types)

Specifies the (x. y, zoom) location this portal looks onto. Like a Pad++ widget. place specifies the point rendered at the
center of the portal and the magnification. Defaults to directly under the location the portal was created at.

[72] -visiblelayers layers

(available only for pad and portal item types)

Specifies what lavers are visible within this portal. lavers can be either a list of layers which will specify which items will be
displayed within this portal. or take the special form of "all -layer1 -layer2 -layer3 ..." in which case all layers except the
ones specified will be displayed. Defaults to "all". (See the -/ayer itemconfigure option that all items have.)

Rectangle Items

Items of type rectangle appear as rectangular regions on the display. Each rectangle may have an outline (pen color). a fill, or both. Rectangles
are created with widget commands of the following form:

pathName create rectangle x1 yl x2 y2 [option value option value ...]

The arguments x1, y1, x2, and y2 give the coordinates of two diagonally opposite corners of the rectangle After the
coordinates there may be any number of option-value pairs. each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration. The
following options are supported for rectangles:

[73] -fill color

(available only for handle. HTML. polygon, portal and rectangle item types)

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/refiref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_73

Reference Guide Page 72 of 84

Fill the area of the rectangle with color. which may be specified in any of the forms accepted by Tk_GetColor. If color is
"none" (the default). then the rectangle will not be filled.

[74] -joinstyle join

(available only for line, polygon, rectangle and spline item types)
Specifies how the joints at vertices are drawn. join may be one of:

miter: The joints are drawn protruding to a point,

L]
e bevel: The joints are drawn without protruding. They are cut-off and sharp.
L]
e round: The joints are rounded.

[75] -pen color

(available only for handle, line, polygon, portal, rectangle, spline, text and textfile item types)

Draw an outline around the edge of the rectangle in color. Color may have any of the forms accepted by Tk_GetColor. If
color is "none"”, then no outline will be drawn for the rectangle. This option defaults to black.

[76] -penwidth width

(available only for line. polygon, rectangle and spline item types)

Widih specifies the width of the pen in current units to be drawn around the item. Wide lines will be drawn centered on the
path specified by the points. If widrh is 0.0, then the pen will always be drawn one pixel wide. independent of the zoom.
Width defaults to 1 pixel.

Spline Items

Items of type spline appear on the display as one or more bezier curves joined end to end. so the last point of the one curve is used as the first
point of the next. Splines are displayed as smooth curves at any magnification. They are rendered in more detail when they are larger. It is
possible to create a fixed approximation to a spline with the spline2line command. In addition. it is possible to generate a spline that
approximates a multi-segmented line with the 1ine2spline command. A bezier curve is defined using four points - the start and end point for
the curve, and two control points that indicate the path that the curve follows. For example:

Cortecl
E’;‘[ﬁ-‘l paict2

& \
SurL

sont Ewl
® pent

For a spline made from a single bezier segment. the points are given as follows:

<start-x> <start-y> <cl-x> <cl-y> <c2-x> <c2-y> <end-x> <end-y>

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2. 7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_74

Reference Guide Page 73 of 84

That is. first the start point is given. followed by the first control point, followed by the second control point and finishing with the end point
for the curve. For example, you can create a simple spline using:

.pad create spline 00 10 10 20 10 300
here (0, 0) defines the start of the curve. (10, 10) is the first control point, (20, 10) is the second control point, and the curve ends at (30, 0).
Splines are created with widget commands of the following form:

pathName create spline x1 yl... xn yn [option walue option value ...]

The arguments x1 through yn give the coordinates for a series of one or more splines, Each point is specified by two coordinates. When
specifying a spline made from two or more bezier curves, the end point of the first curve is used as the start point for the second. so the second
curve only requires an additional three points (two control points and an end point). In general a spline of N bezier curves requires 3N+1 points
(6N-+2 coordinates). This represents a start point and then three points for each curve,

For convenience, if the end point of the last curve segment in a spline is omitted, Pad++ assumes that the curve should be 'closed' - it uses the
start point of the first curve as the end point for the last curve, creating a closed shape. For closed shapes, therefore, you should provide 3N
points (6N coordinates).

After the coordinates there may be any number of option-value pairs. each of which sets one of the configuration options for the item. These

same option-value pairs may be used in itemconfigure widget commands to change the item's configuration. The following options are
supported for lines:

[77] -arrowshape shape

(available only for line and spline item types)

This option indicates how to draw arrowheads. The shape argument must be a list with three elements, each specifying a
distance. The first element of the list gives the distance along the spline from the neck of the arrowhead to its tip. The second
element gives the distance along the spline from the trailing points of the arrowhead to the tip. and the third element gives
the distance from the outside edge of the spline to the trailing points. If this option isn't specified then Pad++ picks a
"reasonable" shape.

78] -arrow where

(available only for line and spline item types)

Indicates whether or not arrowheads are to be drawn at one or both ends of the spline. where must have one of the values
"none" (for no arrowheads). "first" (for an arrowhead at the first point of the line), "last” (for an arrowhead at the last point
of the line), or "both" (for arrowheads at both ends). This option defaults to "none".

[79] -capstyle cap

(available only for line and spline item types)

Specifies how the ends of the spline are drawn. cap may be one of:

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_75

Reference Guide Page 74 of 84

putt: The ends are drawn square, at the end point.
projecting: The ends are drawn square, past the endpoint.
round: The ends are rounded.

[80] -joinstyle join

(available only for line, polygon, rectangle and spline item types)

Specifies how the joints at vertices are drawn. join may be one of:

-
e bevel: The joints are drawn without protruding. They are cut-ofT and sharp,
e miter: The joints are drawn protruding to a point.

e round: The joints are rounded.

[81] -pen color

(available only for handle, line, polygon, portal, reciangle, spline, text and textfile item types)

Color specifies a color to use for drawing the spline: it may have any of the forms acceptable to Tk_GetColor. It may also be
"none", in which case the line will not be drawn. This option defaults to black.

[82] -penwidth width

(available only for line, ploygon. rectangle and spline item types)

Width specifies the width of the pen in current units to be drawn around the item. Wide lines will be drawn centered on the
path specified by the points. If width is 0.0, then the pen will always be drawn one pixel wide, independent of the zoom.
Width defaults to 1 pixel.

TCL Items

Items of type tcl are really a simple of way of having user-describable item. A Tel item really consists of two Tel seripts to render an item
procedurally (one to render, and the other to compute the bounding box.) The render script can render by calling the pad widget with the
various drawing routines (see drawline, drawtext. setcolor, setlinewidth.) Tel's are created with widget commands of the following
form:

pathName create tcl [option value option wvalue ...]

There may be any number of option-value pairs. each of which sets one of the configuration options for the item. These same option-value
pairs may be used in itemconfigure widget commands to change the item's configuration. The following options are supported for tcl objects:

[83] -bb boundingboxScript

(available only for KPL and TCL item types)

A Tel script that will be evaluated to compute the bounding box of this item. 1t should return a 4 element list whose
members are "x1 v1 x2 y2" which are the lower left and upper right corners of this items bounding box.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_76

Reference Guide Page 75 of 84

Text Items

A text item displays a string of characters on the sereen in one or more lines. There is a single custom "vector" font. Text items are created at a
default size of one pixel high. Their size can be changed with the scale command or the -place itemconfigure option,

INDICES

Many of the commands for text take one or more indices as arguments. An index is a string used to indicate a particular place within a text,
such as a place to insert characters or one endpoint of a range of characters to delete. Indices have the syntax:

base modifier medifier modifier ...

Where base gives a starting point and the modifiers adjust the index from the starting point (e.g. move forward or backward
one character). Every index must contain a base. but the modifiers are optional.

The base for an index must have one of the following forms:

line.char

Indicates char'th character on line /ine. Lines are numbered from 0. Notice that this is different than the Tk text widget. Within a line,
characters are numbered from 0.

line.end
Indicates the last character on line fine. Lines are numbered from 0.

char

Indicates the char'th character from the beginning of the file (starting at 0),

Gx,y

Indicates the character that covers the pixel whose x and v coordinates within the text's window are x and y.

Indicates the last character in the text.
mark

Indicates the character just after the mark whose name is mark,

http://www.cs.umd.edu/heil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_77

Reference Guide Page 76 of 84

If modifiers follow the base index. each one of them must have one of the forms listed below. Keywords such as chars and
wordend may be abbreviated as long as the abbreviation is unambiguous. Modifiers must have one of the following forms:

+ count chars

Adjust the index forward by count characters, moving to later lines in the text if necessary. If there are fewer than count characters in the text
after the current index, then set the index to the last character in the text. Spaces on either side of count are optional.

- count chars

Adjust the index backward by count characters, moving to earlier lines in the text if necessary. If there are fewer than count characters in the
text before the current index. then set the index to the first character in the text. Spaces on either side of count are optional.

+ count lines

Adjust the index forward by count lines. retaining the same character position within the line. If there are fewer than count lines after the line
containing the current index. then set the index to refer to the same character position on the last line of the text. Then, if the line is not long
enough to contain a character at the indicated character position. adjust the character position to refer to the last character of the line. Spaces on
either side of count are optional.

- count lines

Adjust the index backward by count lines, retaining the same character position within the line. If there are fewer than count lines before the
line containing the current index, then set the index to refer to the same character position on the first line of the text. Then, if the line is not
long enough to contain a character at the indicated character position. adjust the character position to refer to the last character of the line.
Spaces on either side of count are optional.

linestart

Adjust the index to refer to the first character on the line.

lineend

Adjust the index to refer to the last character on the line.

wordstart

Adijust the index to refer to the first character of the word containing the current index. A word consists of any number of adjacent characters
that are letters, digits, or underscores, or a single character that is not one of these.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_78

Reference Guide Page 77 of 84

wordend

Adjust the index to refer to the character just after the last one of the word containing the current index. If the current index refers to the last
character of the text then it is not modified.

If more than one modifier is present then they are applied in left-to-right order. For example. the index "end - 1 chars”
refers to the next-to-last character in the text and "insert wordstart - 1 c" refers to the character just before the first
one in the word containing the insertion cursor.

MARKS

The second form of annotation in text widgets is a mark. Marks are used for remembering particular places in a text. They have names and they
refer to places in the file. but a mark isn't associated with particular characters. Instead, a mark is associated with the gap between two
characters. Only a single position may be associated with a mark at any given time. If the characters around a mark are deleted the mark will
still remain; it will just have new neighbor characters. In contrast, if the characters containing a tag are deleted then the tag will no longer have

an association with characters in the file. Marks may be manipulated with the mark sub-command, and their current locations may be
determined by using the mark name as an index in widget commands,

One mark has special significance. The mark insert is associated with the insertion cursor. The mark point is an synonym for insert. This
special mark may not be unset.

USAGE

Text items are supported by the Pad++ text command. Text items are created with widget commands of the following form:

pathName create text [option walue option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item. These same option-value
pairs may be used in itemconfigure widget commands to change the item's configuration. The following options are supported for text items:

[84] -font fontname

(available only for text item types)

Specifies the font to be used for rendering text for this item. foniname must specify a filename which contains an Adobe
Type 1 font. or the string "system” which causes the Pad++ line-font to be used. Defaults to "system".

[85] -pen color

(available ony for handle, line, polygon, portal, rectangle. spline. text and textfile item types)

Color specifies a color to use for drawing the text characters: it may have any of the forms accepted by Tk_GetColor. It may
also be "none", in which case the text will be not be drawn. This option defaults to black.

[86] -text string

(available only for text and textfile item types)

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_79

Reference Guide Page 78 of 84

String specifies the characters to be displayed in the text item. Newline characters cause line breaks, and tab characters are
supported. This option defaults to an empty string.

The text command is deseribed above with the other Pad++ commands under WIDGET COMMANDS.

Textfile Items

A textfile item displays a string of characters on the screen in one or more lines as with text items, but the text is loaded in from a file. Textfile
items are supported by the Pad++ text command. Textfile items are created with widget commands of the following form:

pathiame create textfile [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item. These same option-value
pairs may be used in itemconfigure widget commands to change the item’s configuration. The following options are supported for text items:

[87] -file fileName

(available only for textfile item types)

fileName specifies the filename to read a text file from.
[88] -font fontname
(available only for HTML, portal, text and textfile item types)
Specifies the font to be used for rendering text for this item. fontname must specify a filename which contains an Adobe
Type 1 font, or the siring "system" which causes the Pad++ line-font to be used. Defaults to "systen'.

[89] -pen color

(available only for handle. line. polygon. portal. rectangle. spline, text and textfile item types)

Color specifies a color to use for drawing the text characters: it may have any of the forms accepted by Tk_GetColor, It may
also be "none", in which case the text will be not be drawn. This option defaults to black.

[90] ~text

(available only for textfile item types)

Returns the text in this textfile item. This is a read-only option and can not be set.

Default Bindings

In the current implementation, new Pad++ widgets are not given any default behavior: all behavior has to be described explicitly. However, the
PadDraw sample application has many event bindings that may be useful.

Global TCL Variables

Pad++ defines several global Tcl variables that are available for use by Tel applications. They are:

« Pad_Error True during Pad++ background errors.

http://www.cs.umd.edu/hcil/pad-++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_80

Reference Guide Page 79 of 84

o Pad_Version Current version of this Pad++ software
o Pad_Write Used in the <Write> event for an application to specify if the system should write out a specific object or not. (See the write
command and the <Write> event in the bind command.)

KPL-Pad++ Interface

As described in the section above on KPL ITEMS, Kpl is a byte-compiled language that comes with Pad++ that is typically used for creating
new objects. It is a general-purpose language. and has the ability to call certain Pad++ rendering routines. Some basic documentation is
available with the Pad++ release in doc/kpl. troff.

There are two ways to interact with Kpl. The first is to make a Pad++ Kpl item with a Kpl renderscript (described above), In this case. every
time the item is rendered. the Kpl script will be executed. The second method is to use the kpl command available directly from Tel. The kp1
command has the following format:

kpl subcommand [args ...]
Where subcommand must be one of the following:
eval string

Byte-compiles and evaluates srring as a Kpl script.

push value

Pushes value onto the top of the Kpl stack.

pop

Pops the top element off of the Kpl stack and returns it.

get name

Returns the current value of the Kpl variable, name.

set name value
Sets the Kpl variable name to value.
There are several Kpl commands available for interacting with the Tel environment. and for rendering directly onto the Pad++ surface (when
within a render callback). They are organized into a few groups as follows:

These commands provide a mechanism for accessing Tcl variables from Kpl.

tclset name value

Sets the global Tel variable name to value,

tclset2 array name element value

Sets the global Tel array array_name(element) to value.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_81

Reference Guide Page 80 of 84

tclget name

Returns the value of the global Tcl variable name.

tclget2 array name element

Returns the value of the global Tcl array array name(element).

tcleval tcl string

Evaluates the Tel string rel_string.

These commands provide basic drawing capability.

drawborder llcorner urcorner width border relief

Draws a 3D border within the rectangle specified by lleorner and urcorner (where each of those are 2D vectors). Width
specifies the zoomable width of the border. Border specifies the border color and must have been previously allocated with
the Pad++ allocborder command. Relief specifies the style of border. and must be one of: "raised", "f1at". "sunken",
"groove", "ridge", "barug", or "bardown".

drawline wvector

Draws a line specified by vecror. As Kpl vectors may be up to 16-dimensional, this vector can specify up to 8 (x. y) points.
This routine will draw a line connecting as many points as are specified within vector.

drawimage imagetoken x y

Draws the image specified by imagetoken at the point (x. y). (Also see allocimage, freeimage, and info commands as
well as the description of image items). This command can only be called within a render callback.

drawpolygen vector

Draws a polygon specified by vector. As Kpl vectors may be up to 16-dimensional. this vector can specify up to 8 (x. y)
points. This routine will draw a closed polygon conneeting as many points as are specified within vector.

drawtext text position
Draws text. Text specifies the text to be drawn. Position specifies the where the text gets drawn. Position is a two-
dimensional vector specifying the (x, y) position. (Also see the KPL setcolor, setfont, and setfontheight commands.)

getlevel

Returns the current refinement level.

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref_whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_82

Reference Guide Page 81 of 84

getsize

Returns the current size of the object, where size is the larger of the width and height.

renderitem tagOrld

During a render callback triggered by the -renderscript option, this function actually renders the object. During a -
renderseript callback, all the items specified by tagOrld are rendered (and the current item is not rendered unless it is in
tagOrld). This function may only be called during a render callback.

setabslinewidth width

Sets the current drawing with to an absolute width. All lines will be drawn with this width, This is an absolute width, so this
specifies the width independent of the current view. Le.. the line width will not change as the view changes.

setcapstyle capstyle

Sets the capstyle of lines for drawing. Capstyle may be any of: "butt", "projecting”, or "round".

setcolor color

Sets the current drawing color to color. Note that color must have been previously allocated by the alloccolor Pad++
command.

setfont font

Specifies the font 1o be used for rendering text for this item. Fonr must specify a filename which containg an Adobe Type |
font, or the string "systen" which causes the Pad++ line-font to be used. Defaults to "system”, (Also see the
setfontheight command.)

setfontheight height

Sets the height of the font for future drawing with render callbacks. Height is specified in pixels. (Also see the setfont
command).

setjoinstyle joinstyle

Sets the joinstyle of lines for drawing. Joinstyle may be any of: "bevel”, "miter”, or "round".

setlinewidth width

Sets the current drawing width to a zoomable width, All lines will be drawn with this width. This is a zoomable width. so
this specifies the width as it will look when the view has a magnification of 1.0.

http://www.cs.umd.edwhcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_83

Reference Guide Page 82 of 84

These commands provide drawing commands in a style much like postscript.

closepath

Specifies the end of a path.

curveto wvector

Draws a bezier curve. Here, vector is a six-dimensional vector. The current point plus these three points specify four points
which control the bezier curve.

fill

Fills the current path.

lineto vector

Specifies a straight line in the current path from the current point to (x. y) specified by vector. Makes (x. y) the current point.

moveto vector

Moves the current point within the current path to (x. v) specified by vecior.

newpath

Specifies the beginning of a new path.

stroke

Draws the current path with an outline only - the path is not filled.

These commands provide control over refinement.

interrupted

Returns true (1) if there has been an event during this render to interrupt it. It is up to objects that take very long to render
themselves to check this flag during the rendering. If it is true (i.e., the render has been interrupted). then the Kpl render
routine should return immediately - without completing the render. Generally. renders at refinement level 0 should always
be quite fast, but further refinement levels can take an arbitrarily long time to render as long as they are interruptible.

refine

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012
Motorola PX 1006_84

Reference Guide

Page 83 of 84

Specifies that this item wants to be refined. Pad++ will schedule a refinement, and at some point in the near future, the item
will be re-rendered at the next higher refinement level. An item can use the current level in conjunction with this command

to render itself simply at first, and then fill in more and more detail when it is refined.

Here is an example that creates a Kpl item with a renderscript that exercises some of the commands described here.

Tcl code to load Kpl code and to create
Pad++ Kpl item.

kpl eval 'triangle.kpl source

set pen [.pad alloccolor brown]

.pad create kpl -bb (-10:-10 110:110)} -renderscript {test_drawing]

/* Epl code (in a separate file)
to test the drawing commands */

/* Draw a looping bezier curve */
3 setlinewidth
'penl tclget setcolor
newpath
0:0 moveto
200:75:-100:75:100:0 curveto
stroke

/* Draw a filled square */
'pen2 tclget setcolor

newpath
0:0 moveto
50:0 lineto
50:50 lineto
0:50 lineto
£ill

/* Draw a square outline */
‘pen3 tclget setcolor

newpath
0:0 moveto
50:0 lineto
50:50 lineto
0:50 lineto
0:0 lineto
stroke

/* Draw a square outline
with an absolute width */
1 setabslinewidth
'‘pend tclget setcolor

newpath
0:0 moveto
50:0 lineto
50:50 lineto
0:50 lineto
0:0 lineto
stroke

/* Cause one level of refinement.
Notice the bezier curve is rendered
at low-resolution at first,
and then improves with refinement. */

getlevel => i

-3 i

refine
}
) => test_drawing

Index
Related I
’ tem
Introduction Commands and [[ltems s e
|(J21n)us
View .
e . |Tags Events Groups
Transformations ||—— e Em——
Lavout Rendering File /O Miscellaneous
- — -
Litilities ll;cmlcrccrigh Debugging Exlensions

http://www.cs.umd.edu/hcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html 1/19/2012

Motorola PX 1006_85

Reference Guide

Executables

Padwish
Svnopsis

\«\r‘i\iECi-Sl!EUii‘lf

TCL Svnopsis e
(Iptions

Widget
Commands

Overview of
ltem Tvpes

All tem Tvpes Grid ltems

Placement

Restrictions on

|IDifferences
Between Pad++

Master Windows ffland TK Grid

Examples

Commands

Crroup ltems

Handle Items

HTML

HIMLUems — [lNCGHORS

Palveon ltems

Image ltems

Portal ltems

KPL ltems

Line Items |Pﬂd ltems
Rectanele [tems |.‘miinc ltems

TCL liems Text ltems INDICES MARKS
stfile lems oo e G lobal TCL KPL-Pad+
lextfile ltems Default Bindings Variables it

Reference Guide - 2 OCT 1996

Copyright Computer Science Department, The University of New Mexico

http://www.cs.umd.edwhcil/pad++/documentation/doc-0.2.7/ref/ref whole/ref-whole-2.html

Page 84 of 84

1/19/2012

Motorola PX 1006_86

Pad++ Bederson - 1

Motorola PX 1006_87

CHI ‘95 MOSAIC OF CREATIVITY = May 7-11 1995

Demonstrations

Pad++: A Zoomable Graphical Interface System

Benjamin B. Bederson and James D. Hollan

Computer Science Department
University of New Mexico
Albuquerque, NM 87131
(505) 277-3112
{bederson,hollan} @cs.unm.edu

ABSTRACT

Large information spaces are often difficult to access effi-
ciently and intuitively. We are exploring Pad++, a graphical
interface system based on zooming, as an alternative to tra-
ditional window and icon-based approaches. Objects can be
placed in the graphical workspace at any size, and zooming
is the fundamental navigational technique. The goal is to
provide simple methods for visually navigating complex
information spaces that ease the burden of locating informa-
tion while maintaining an intuitive sense of location and of
relationship between information objects.

KEYWORDS: Navigation, interactive interfaces, multiscale
interfaces, zooming, authoring, information navigation,
hypertext, information visualization, multimedia, world
wide web.

INTRODUCTION

Over the past several years, a variety of techniques have
been introduced for viewing large information spaces,
including: SDMS [4], fisheye views [5], information visual-
izer [3], graphical fisheye views of graphs [10], Pad [9], and
Pad++ [1][2]]7]. Space-scale diagrams have been used as an
analytical tool for some of them [6].

This paper accompanies a CHI’95 demonstration of Pad++,
an interface system based on zooming. Pad++ workspaces
are large high resolution areas, allowing the viewing of
complex collections of information at multiple scales.
Zooming and panning are the primary methods of naviga-
tion in Pad++. Several efficiency mechanisms [2] are
employed to maintain interactive frame rates for animation,
even when scenes get complicated.

Pad++ is a general-purpose substrate for exploring user
interfaces. It directly supports creation and manipulation of
zoomable graphical objects and navigation within a zoom-
able workspace. Pad++ is built as a new widget for Tk using
Tcl, an interpreted scripting language. Increasingly popular,
Tcl and Tk [8] combine a scripting language and Motif-like
library for creating graphical user interfaces and applica-
tions without the need to write C code. The Tcl interface to
Pad++ is similar to the interface to the Tk Canvas widget, a
surface for drawing structured graphics.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of ACM. To copy otherwise, or to
republish, requires a fee and/or specific permission.

CHI' Companion 95, Denver, Colorado, USA

© 1995 ACM 0-89791-755-3/95/0005...$3.50

Objects in Pad++ can be implemented so that they change
the way they look depending on, among other things, their
size, complexity of the current view, characteristics of
users’ task, lenses positioned over them, or the type of
interface physics [2] currently operational. Such changes in
view we call semantic zooming. It provides, for example, a
simple method for representing abstraction. When you
zoom out, you see a simplified rendering of the object, and
when you zoom in, you see more details. Perlin [9]
described a prototype zooming calendar based on this
notion.

NAVIGATION

Finding information effectively with a Pad++ interface is
important because intuitive navigation through large infor-
mation spaces is a primary motivation. To accomplish this,
Pad++ supports visual searching with zooming in addition
to traditional mechanisms, such as content-based search.

Searching in Pad++ produces smooth animations to the
desired objects. Animations interpolate in pan and zoom to
bring the view to the specified location. If the end point,
however, is more than one screen width away from the
starting point, the animation zooms out to a point midway
between the starting and ending points, far enough out so
that both points are visible. The animation then smoothly
zooms in to the destination. This gives a sense of context to
the viewer and helps maintain object constancy. In addition
it speeds up the animation since most of the panning is per-
formed when zoomed out and thus covers more distance
than panning while zoomed in. We use space-scale dia-
grams [6] to help analyze and construct these trajectories.

SAMPLE APPLICATION - HYPERTEXT

Hypertext systems confront the problem of how to give
users an intuitive sense of location as they navigate through
large information spaces. An example is NCSA’s Mosaic
system. It allows traversal of a vast information space
across the internet via hyperlinks. In Mosaic, as with many
other window-based hypertext systems, following a link
replaces the contents of the window with the linked data, or
sometimes brings up a new window. However, there is no
graphical depiction of the relationship among windows -
even when there is a strong semantic relationship. Thus, it
is quite common to hear users complain of losing a sense of
relationship between where they are and where they’ve
been.

This work was supported in part by ARPA contract #N66001-
94-C-6039 to the University of New Mexico. For more infor-
mation about this project see http://www.cs.unm.edu/pad++.

23

Motorola PX 1006_88

Demonstrations

May 7-11 1995 = CHI‘95 MOSAIC OF CREATIVITY

24

Mosalc Home Page
LT RPN

EEIRe A CRERISAS BoREeT

125 o

il e
feiAatene - Aoge =R Bt i bl i e

Fou aFe” Ssings

"5ias e e v
i

ach bigpiignsen parage. I8,goleT o wnderlioedy te 8
Srna g RSN e BT e

Ihe £glicwing Tescurces ere svaileble to help introduce

= 5080oBEEA MRERRARIRARTIIBE rhrernat Baplorasion
Tou i to pse the followl Toaou: 8 Lo keep
Yguge ol SSvRe, sae foliguing seogunoes B3

= PR AR e I RO MRS, e B -
caa Momatc Tlavors

BSER PIESLT OTTSLRnShERRLSRYSES nIE ARt o0

B B

Coxamat:
EEoT B3 RESVITTS SR-CCETERS” STRSRIRNTELNS2.USTC

AR S RIS AoRR0F e sine oo

166t update: Dect 20th.

Figure 1. A screen dump showing a series of World Wide Web home pages loaded into Pad++.

Pad++ attempts to address this problem by using a very high
resolution zoomable surface to graphically layout the links
representing traversals. When a hyperlink is selected, the
linked data is loaded to the side and made smaller while the
user’s view is animated to center the new information. The
nodes are layed out in such a way that no traversal of links
can cause overlapping. Pad++ can read in hypertext files
written in Hypertext Markup Language (HTML). Figure 1
shows a snapshot with a number of home pages loaded and
several links followed.

CONCLUSION

Pad++ is a tool for exploring interfaces and visualizations
based on zooming. We believe that multiscale interfaces
provide effective alternative mechanisms for addressing
problems associate with navigation of very large informa-
tion collections. Our goal is to provide simple methods for
visually navigating that ease the burden of locating informa-
tion while maintaining an intuitive sense of location and of
relationships between information objects.

We are currently, in collaboration with NYU and Bellcore,
continuing development of the Pad++ substrate as well as
starting work in several application domains.

ACKNOWLEDGMENTS

We acknowledge Ken Perlin and his students and staff,
David Fox, Matthew Fuchs, Jon Meyer and David Bacon, at
NYU for many enjoyable discussions and for initiating our
interest in zooming interfaces. We thank Mike Lesk, George
Furnas, and Al Aho for releasing an early version of Pad++
we developed at Bellcore. We especially appreciate Craig
Wier’s support as part of ARPA’s new HCI Initiative.

REFERENCES

[1] Bederson, B. B., Stead, L., and Hollan, J. D. Pad++:
Advances in Multiscale Interfaces, Proceedings of ACM

Human Factors in Computing Systems Conference
Companion (CHI‘94), 315-316.

{2] Bederson, B. B. and Hollan, J. D. Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface
Physics, Proceedings of ACM User Interface Software
and Technology Conference (UIST’94), 17-26.

[3] Card, S. K., Robertson, G. G., and Mackinlay, J. D. The
Information Visualizer, an Information Workspace,
Proceedings of ACM Human Factors in Computing Sys-
tems Conference (CHI ‘91), 181-188.

[4] Donelson, W. C. Spatial Management of Information,
Proceedings of 1978 ACM SIGGRAPH Conference,
203-209.

[S] Furnas, G. W. Generalized Fisheye Views, Proceedings
of 1986 ACM SIGCHI Conference, 16-23.

[6] Furnas, G. W. and Bederson, B. B. Space-Scale Dia-
grams: Understanding Multiscale Interfaces, Proceed-

ings of ACM Human Factors in Computing Systems
Conference (CHI'95), In Press.

[7] Meyer, J., Perlin, K., Bederson, B. B., and Hollan, J. D.
Two Document Visualization Techniques for Zoomable
Interfaces, Proceedings of ACM Human Factors in
Computing Systems Conference Companion (CHI‘95),
submitted.

[8] Ousterhout, J. K. Tcl and the Tk Toolkit, Addison Wes-
ley, 1994.

[9] Perlin, K. and Fox, D. Pad: An Alternative Approach to
the Computer Interface, Proceedings of 1993 ACM SIG-
GRAPH Conference, 57-64.

[10] Sarkar, M., Snibbe, S. S., Tversky, O. J., and Reiss, S. P.
Stretching the Rubber Sheet: A Technique for Viewing
Large Layouts on Small Screens, Proceedings of ACM
User Interface Software and Technology Conference
(UIST93), 81-91.

Motorola PX 1006_89

Pad++ Bederson - 2

Motorola PX 1006_90

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

1of12

CHI '95 Proceedings Top Indexes

Papers TOC

Space-Scale Diagrams: Understanding Multiscale
Interfaces

George W. Furnas and Benjamin B. Bederson (t)

Bellcore

445 South Street
Morristown, NJ 07960-6438
(201) 829-4289
gwi@bellcore.com
bederson@bellcore.com

(t)
Current address: bederson@cs.unm.edu, Computer Science Department, University of New Mexico,
Albuquerque, NM 87131

© ACM

Abstract

Big information worlds cause big problems for interfaces. There is too much to see. They are hard to navigate.
An armada of techniques has been proposed to present the many scales of information needed. Space-scale
diagrams provide an analytic framework for much of this work. By representing both a spatial world and its
different magnifications explicitly, the diagrams allow the direct visualization and analysis of important scale
related issues for interfaces.

Keywords:

Zoom views, multiscale interfaces, fisheye views, information visualization, GIS; visualization, user interface
components; formal methods, design rationale.

Introduction

For more than a decade there have been efforts to devise satisfactory techniques for viewing very large
information worlds. (See, for example, [6] and [9] for recent reviews and analyses). The list of techniques for
viewing 2D layouts alone is quite long: the Spatial Data Management System [3], Bifocal Display[1], Fisheye
Views [4][12], Perspective Wall [8], the Document Lens [11], Pad [10], and Pad++ [2], the MacroScope [7],
and many others.

1/4/2011 2:37 PM
Motorola PX 1006_91

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

Central to most of these 2D techniques is a notion of what might be called multiscale viewing, An interface is
devised that allows information objects and the structure embedding them to be displayed at many different
magnifications, or scales. Users can manipulate which objects, or which part of the whole structure, will be
shown at what scale. The scale may be constant and manipulated over time as with a zoom metaphor, or
varying over a single view as in the distortion techniques (e.g., fisheye or bifocal metaphor). In either case,
the basic assumption is that by moving through space and changing scale the users can get an integrated
notion of a very large structure and its contents, navigating through it in ways effective for their tasks.

This paper introduces space-scale diagrams as a technique for understanding such multiscale interfaces. These
diagrams make scale an explicit dimension of the representation, so that its place in the interface and
interactions can be visualized, and better analyzed. We are finding the diagrams useful for understanding such
interfaces geometrically, for guiding the design of code, and as interfaces to authoring systems for multiscale
information.

This paper will first present the necessary material for understanding the basic diagram and its properties.
Subsequent sections will then use that material to show several examples of their uses.

THE SPACE-SCALE DIAGRAM

The basic diagram concepts

The basic idea of a space-scale diagram is quite simple. Consider, for example, a square 2D picture (Figure
la).

Figure 1. The basic construction of a Space-Scale diagram from a 2D picture.

The space-scale diagram for this picture would be obtained by creating many copies of the original 2D
picture, one at each possible magnification, and stacking them up to form an inverted pyramid (Figure 1b).
While the horizontal axes represent the original spatial dimensions, the vertical axis represents scale, i.e., the
magnification of the picture at that level. In theory, this representation is continuous and infinite: all
magnifications appear from 0 to infinity, and the "picture" may be a whole 2D plane if needed.

Before we can discuss the various uses of these diagrams, three basic properties must be described. Note first
that a user's viewing window can be represented as a fixed-size horizontal rectangle which, when moved
through the 3D space-scale diagram, yields exactly all the possible pan and zoom views of the original 2D
surface (Figure 2).

Figure 2. The viewing window is shifted rigidly around the 3D diagram to obtain all possible pan/ zoom
views of the original 2D surface, e.g., (b) a zoomed in view of the circle overlap, (c) a zoomed out view
including the entire original picture, and (d) a shifted view of a part of the picture.

This property is useful for studying pan and zoom interactions in continuously zoomable interfaces like Pad

and Pad++ [2][10].

20f 12 1/4/2011 2:37 PM
Motorola PX 1006 92

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

3of12

Secondly, note that a point in the original picture becomes a ray in this space-scale diagram. The ray starts at
the origin and goes through the corresponding point in the continuous set of all possible magnifications of the
picture (Figure 3).

Figure 3. Points like p and q in the original 2D surface become corresponding ""great rays'" p and q in
the space-scale diagram. (The circles in the picture therefore become cones in the diagram, etc.)

We call these the great rays of the diagram. As a result, regions of the 2D picture become generalized cones
in the diagram. For example, circles become circular cones and squares become square cones.

A third property follows from the fact that typically the properties of the original 2D picture (e.g., its
geometry) are considered invariant under moving the origin of the 2D coordinate system. In the space-scale
diagrams, such a change of origin corresponds to a "shear" (Figure 4), i.e., sliding all the horizontal layers
linearly so as to make a different great ray become vertical.

as
37

Figure 4. Shear invariance. Shifting the origin in the 2D picture from p to ¢ corresponds to shearing the
layers of the diagram so the ¢ line becomes vertical. Each layer is unchanged, and great rays remain
straight. Only those conclusions which remain true under all such shears are valid.

Thus, if one only wants to consider properties of the original diagram that are invariant under change of
origin, the only meaningful properties of the space-scale diagram are those invariant under such a shear. For
example, the absolute angles between great rays change with shear, and so should be given no special
meaning.

Now that the basic concepts and properties of space-scale diagrams have been introduced by the detailed
Figures 1-4, we can make a simplification. Those figures have been three dimensional, comprising two
dimensions of space and one of scale ("2+1D"). Substantial understanding may be gained, however, from the
much simpler two-dimensional versions, comprising one dimension of space and one dimension of scale
("1+1D"). It could, for example be a vertical slice from, or an edge on view of, the 2+1D version, or just a
space-scale view of a truly 1D world (e.g., a time line). In the 1+1D diagram, since the spatial world is 1D, a
viewing window is a line segment that can be moved around the diagram to represent different pan and zoom
positions. It is convenient to show the window as a narrow slit, so that looking through it shows the
corresponding 1D view. Figure 5 shows one such diagram illustrating a sequence of three zoomed views.

—_—
===

Figure 5. A "1+1D" space-scale diagram has one spatial dimension, u, and one scale dimension, v. The

six great rays here correspond to six points in a 1D spatial world, put together at all magnifications.
The viewing window, like the space itself, is one dimensional, and is shown as a narrow slit with the

1/4/2011 2:37 PM
Motorola PX 1006_93

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

corresponding 1-D window view being visible through the slit. Thus the sequence of views (a), (b), (¢)
begins with a view of all six points, and then zooms in on the point q. The views, (a), (b), (¢) are redrawn
at bottom to show the image at those points.

The basic math.

It is helpful to characterize these diagrams mathematically. This will allow us to use analytic geometry along
with the diagrams to analyze multiscale interfaces, and also will allow us to map conclusions back into the
computer programs that implement them.

The mathematical characterization is simple. Let the pair (x,z) denote the point x in the original picture
considered magnified by the multiplicative scale factor z. We define any such (x,z) to correspond to the point
(u,v) in the space-scale diagram where u=xz and v=z. This second trivial equation is needed to make the
space-scale coordinates distinct, and because there are other versions of space-scale diagrams, e.g., where
v=log(z). Conversely, of course, a point (u,v) in the space-scale diagram corresponds to (x,z), i.e., a point x in
the original diagram magnified by a factor z, where x=u/v, and z=v. The notation is a bit informal, in that x
and u are single coordinates in the 1+1D version of the diagrams, but a sequence of two coordinates in the
2+1D version.

A few words are in order about the XZ vs. UV characterizations. The (x,z) notation can be considered a
world-based coordinate system. It is important in interface implementation because typically a world being
rendered in a multiscale viewer is stored internally in some fixed canonical coordinate system (denoted with
x's). The magnification parameter, z, is used in the rendering process. Technically one could define a type of
space-scale diagram that plots the set of all (x,z) pairs directly. This "XZ" diagram would stack up many
copies of the original diagram, all of the same size, i.e., without rescaling them. In this representation, while
the picture is always constant size, the viewing window must grow and shrink as it moves up and down in z,
indicating its changing scope as it zooms. Thus while the world representation is simple, the viewer behavior
is complex. In contrast, the "UV" representation of the space-scale diagrams focused on in this paper can be
considered view-based. Conceptually, the world is statically prescaled, and the window is rigidly moved
about. The UV representation is thus very useful in discussing how the views should behave. The coordinate
transform formulas allow problems stated and solved in terms of view behavior, i.e., in the UV domain, to
have their solutions transformed back into XZ for implementation.

EXAMPLE USES OF SPACE-SCALE DIAGRAMS

With these preliminaries, we are prepared to consider various uses of space-scale diagrams. We begin with a
few examples involving navigation in zoomable interfaces, then consider how the diagrams can help visualize
multiscale objects, and finish by showing how other, non-zoom multiscale views can be characterized.

Pan-zoom trajectories

One of the dominant interface modes for looking at a large 2D world is to provide an undistorted window
onto the world and allow the user to pan and zoom. This method is used in [2][3][7][10], as well as essentially
all map viewers in GISs (geographic information systems). Space-scale diagrams are a very useful way for
researchers studying interfaces to visualize such interactions, since moving a viewing window around via pans
and zooms corresponds to taking it on a trajectory through scale-space. If we represent the window by its
midpoint, the trajectories become curves and are easily visualized in the space-scale diagram. In this section,
we first show how easily space-scale diagrams represent pan/zoom sequences. Then we show how they can
be used to solve a very concrete interface problem. Finally we analyze a more sophisticated pan/zoom
problem, with a rather surprising information theoretic twist.

40of12 1/4/2011 2:37 PM
Motorola PX 1006_94

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

Basic trajectories.

Figure 6 shows how the basic pan-zoom trajectories can be visualized.

Figure 6. Basic Pan-Zoom trajectories are shown in the heavy dashed lines:. (a) Is a pure Pan,. (b) is a
pure Zoom (out), (¢) is a "Zoom-around" the point q.

In a simple pan (a), the window' s center traces out a horizontal line as it slides through space at a fixed scale.
A pure zoom around the center of the window follows a great ray (b), as the window's viewing scale changes
but its position is constant. In a "zoom-around" the zoom is centered around some fixed point other than the
center of the window, e.g., q at the right hand edge of the window. Then the trajectory is a straight line
parallel to the great ray of that fixed point. This moves the window so that the fixed point stays put in the
view. In the figure, for example, the point, q, always intersects the windows on trajectory (c) at the far right
edge, meaning that the point, g, is always at that position in the view. If as in this case the fixed point is itself
within the window, we call it a zoom-around-within-window or zaww. Other sorts of pan-zoom trajectories
have their characteristic shapes as well and are hence easily visualized with space-scale diagrams.

The joint pan-zoom problem.

There are times when the system must automatically pan and zoom from one place to another, e.g., moving
the view to show the result of a search. Making a reasonable joint pan and zoom is not entirely trivial. The
problem arises because in typical implementations, pan is linear at any given scale, but zoom is logarithmic,
changing magnification by a constant factor in a constant time. These two effects interact. For example,
suppose the system needs to move the view from some first point (x/ , z/) to a second point (x2, z2). For
example, a GIS might want to shift a view of a map from showing the state of Kansas, to showing a zoomed in
view of the city of Chicago, some thousand miles away. A naive implementation might compute the linear
pans and log-linear zooms separately and execute them in parallel. The problem is that when zooming in, the
world view expands exponentially fast, and the target point x2 runs away faster than the pan can keep up with
it. The net result is that the target is approached non-monotonically: it first moves away as the zoom
dominates and only later comes back to the center of the view. Various seat-of-the pants guesses (taking logs
of things here and there) do not work either.

What is needed is a way to express the desired monotonicity of the view's movement in both space and scale.
This viewbased constraint is quite naturally expressed in the UV spacescale diagram as a bounding
parallelogram (Figure 7).

4
_/"___'- r,
Al

Figure 7. Solution to the simple joint pan-zoom problem. The trajectory s monotonically
approaches point 2 in both pan and zoom.

Three sides of the parallelogram are simple to understand. Since moving up in the diagram corresponds to
increasing magnification, any trajectory which exits the top of the parallelogram would have overshot the
zoom-in. A trajectory exiting the bottom would have zoomed out when it should have been zooming in. One
exiting the right side would have overshot the target in space. The fourth side, on the left, is the most
interesting. Any point to the left of that line corresponds to a view in which the target x2 is further away from

50f12 1/4/2011 2:37 PM
Motorola PX 1006_95

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

the center of the window than where it started, i.e., violating the nonmonotonic approach. Thus any
admissible trajectory must stay within this parallelogram, and in general must never move back closer to this
left side once it has moved right. The simplest such trajectory in UV space is the diagonal of the
parallelogram. Calculating it is simple analytic geometry. The coordinates of points 1 and 2 would typically
come from the implementation in terms of XZ. These would first be transformed to UV. The linear
interpolation is done trivially there, and the resulting equation transformed back to XZ for use in the
implementation. If one composes all these algebraic steps into one formula, the trajectory in XZ for this 1-D
case is:

5

Thus to get a monotonic approach, the scale factor, z, must change hyperbolically with the panning of x. This
mathematical relationship is not easily guessed but falls directly out of the analysis of the space-scale
diagram. We implemented the 2D analog in Pad++ and found the net effect is visually much more pleasing
than our naive attempts, and count this as a success of space-scale diagrams.

Optimal pan-zooms and shortest paths in scale-space

Since panning and zooming are the dominant navigational motion of these undistorted multiscale interfaces,
finding "good" versions of such motions is important.The previous example concerned finding a trajectory
where "good" was defined by monotonicity properties. Here we explore another notion of a "good" trajectory,
where "good" means "short".

Paradoxically, in scale-space the shortest path between two points is usually not a straight line. This is in fact
one of the great advantages of zoomable interfaces for navigation and results from the fact that zoom
provides a kind of exponential accelerator for moving around a very large space. A vast distance may be
traversed by first zooming out to a scale where the old position and new target destination are close together,
then making a small pan from one to the other, and finally zooming back in (see Figure 8).

Figure 8. The shortest path between two points is often not a straight line. Here each arrow represents
one unit of cost. Because zoom is logarithmic, it is often "shorter" to zoom out (a), make a small pan (b),
and zoom back in (c), than to make a large pan directly (d).

Since zoom is naturally logarithmic, the vast separation can be shrunk much faster than it can be directly
traversed, with exponential savings in the limit. Such insights raise the question of what is really the optimal
shortest path in scale-space between two points.

When we began pondering this question, we noted a few important but seemingly unrelated pieces of the
puzzle. First, one naive intuition about how to pan and zoom to cross large distances says to zoom out until
both the old and new location are in the view, then zoom back into the new one. Is this related at all to any
notion of a shortest path? Second, window size matters in this intuitive strategy: if the window is bigger, then
you do not have to zoom out as far to include both the old and new points. A third piece of the puzzle arises
when we note that the "cost" of various pan and zoom operations must be specified formally before we can
try to solve the shortest path question. While it seems intuitive that the cost of a pure pan should be linear in
the distance panned, and the cost of a pure zoom should be logarithmic with change of scale, there would
seem to be a puzzling free parameter relating these two, i.e., telling how much pan is worth how much zoom.

6 of 12 1/4/2011 2:37 PM
Motorola PX 1006_96

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

7 of 12

Surprisingly, there turns out to be a very natural information metric on pan/zoom costs which fits these pieces
together. It not only yields the linear pan and log zoom costs, but also defines the constant relating them and
is sensitive to window size. The metric is motivated by a notion of visual informational complexity: the
number of bits it would take to efficiently transmit a movie of a window following the trajectory.

Consider a digital movie made of a pan/zoom sequence over some 2D world. Successive frames differ from
one another only slightly, so that a much more efficient encoding is possible. For example, if successive
frames are related by a small pan operation, it is necessary only to transmit the bits corresponding to the new
pixels appearing at the leading edge of the panning window. The bits at the trailing edge are thrown away.
The 1D version is shown in Figure 9a.

Figure 9. Information metric on pan and zoom operations on a 1D world. (a) Shifting a window by d
requires db new bits. (b) Zooming in by a factor of (w-d)/w, throws away db bits, which must be
replaced with just that amount of diffuse, higher resolution information when the window is magnified
and brought back to full resolution.

If the bit density is b (i.e., bits per centimeter of window real estate), then the number of bits to transmit a pan
of size d is db.

Similarly, consider when successive frames are related by a small pure zoom-in operation (Figure 9b), say
where a window is going to magnify a portion covering only (w-d)/w of what it used to cover (where w is the
window size). Then too, db bits are involved. These are the bits thrown away at the edges of the window as
the zoom-in narrows its scope. Since this new smaller area is to be shown magnified, i.e., with higher
resolution, it is exactly this number of bits, db, of high resolution information that must be transmitted to
augment the lower resolution information that was already available.

The actual calculation of information cost for zooms requires a little more effort, since the amount of
information required to make a total zoom by a factor » depends on the number and size of the intermediate
steps. For example, two discrete step zooms by a factor of 2 magnification require more bits than a single step
zoom by a factor of 4. (Intuitively, this is because showing the intermediate step requires temporarily having
some new high resolution information at the edges of the window that is then thrown away in the final scope
of the zoomed-in window.) Thus the natural case to consider is the continuous limit, where the step-size goes
to zero. The resulting formula says that transmitting a zoom-in (or out) operation for a total magnification
change of a factor » requires bwlog(r) bits.

Thus the information metric, based on a notion of bits required to encode a movie efficiently, yields exactly
what was promised: linear cost of pans (db), log costs of zooms (bwlog(r)), and a constant (w) relating them
that is exactly the window size. Similar analyses give the costs for other elementary motions. For example, a
zoom around any other point within the window (a zaww) always turns out to have the same cost as a pure
(centered) zoom. Other arbitrary zoom-arounds are somewhat more complicated.

From these components it is possible to compute the costs of arbitrary trajectories, and therefore in principle
to find minimal ones. Unfortunately, the truly optimal ones will have a complicated curved shape, and finding
it is a complicated calculus- of-variations problem. We have limited our work so far to finding the shortest
paths within certain parameterized families of trajectories, all of which are piecewise pure pans, pure zooms
or pure zaww's. We sketch typical members of the families on a space-scale diagram, pick parameterizations
of them and apply simple calculus to get the minimal cases. There is not room here to go through these in

1/4/2011 2:37 PM
Motorola PX 1006_97

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

detail, but we give an overview of the results.

Before doing so, however, it should be mentioned that, despite all this formal work, the real interface issue of
what constitutes a "good" pan/zoom trajectory is an empirical/cognitive one. The goal here is to develop a
candidate theory for suggesting trajectories, and possibly for modelling and understanding future empirical
work. The suitability of the information-based approach followed here hinges on an implicit cognitive theory
that humans watching a pan/zoom sequence have somehow to take in, i.e., encode or understand, the
sequence of views that is going by. They need to do this to interpret the meaning of specific things they are
seeing, understand where they are moving to, how to get back, etc. It is assumed that, other things being
equal, "short" movies are somehow easier, taking fewer cognitive resources (processing, memory, etc.) than
longer ones. It is also assumed that human viewers do not encode successive frames of the movie but that a
small pan or small zoom can be encoded as such, with only the deltas, i.e., the new information, encoded.
Thus to some approximation, movies with shorter encoded lengths will be better. (We are also at this point
ignoring the content of the world, assuming that no special content-based encoding is practical or at least that
information density at all places and scales is sufficiently uniform that its encoding would not change the
relative costs.)

To get some empirical idea of whether this information-theoretic approach to "goodness" of pan-zoom
trajectories matches human judgment, we implemented some simple testing facilities. The testing interface
allows us to animate between two specified points (and zooms) with various trajectories, trajectories that were
analyzed and programmed using space-scale diagrams. We did informal testing among a few people in our lab
to see if there was an obvious preference between trajectories and compared these to the theory.

For large separations, pure pan is very bad. There is strong agreement between theory and subjects'
experience. Theory says the information description of a pure pan movie should be exponentially longer than
one using a substantial amount of zoom. Empirically, users universally disliked these big pans. They found it
difficult to maintain context as the animation flew across a large scene. Further, when the distance to be
travelled was quite large and the animation was fast, it was hard to see what was happening; if the animation
was too slow, it took too long to get there.

At the other extreme, for small separations viewers preferred a short pure pan to strategies that zoomed out
and in. It turns out that this is also predicted by the theory for the family piecewise pan/zoom/zaww
trajectories we considered here. Depending on exactly which types of motions are allowed, the theory
predicts that to traverse separations of less than 1 to 3 window widths, the corresponding movie is
informationally shorter if it is just a pan.

Does the naively proposed navigation strategy ("zoom out until the starting and ending points are close, then
pan in") ever arise in this analysis? At this high level of description, the answer is definitely "yes." The fine
points, however, are more subtle. If only zaww's are allowed, the shortest path indeed involves zooming out
until both are visible, then zooming in (Figure 10).

Figure 10. The shortest zaww path between p (a) and q zooms out till both are within the window (b), then
zooms in (c). The corresponding views are shown below the diagram.

For users this was quite a well-liked trajectory. If pans are allowed, however, the information metric disagrees
slightly with the naive intuition. It says instead to stop the zoom just before both are in view, then make a pan
of 1-3 screen separations (just as described for short pans), then finally zoom in. The information difference

8 of 12 1/4/2011 2:37 PM
Motorola PX 1006_98

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

between this optimal strategy and the naive one is small, and our users similarly found small differences in the
acceptability. It will be interesting to examine these variants more systematically.

Our overall conclusion is that the information metric, based on analyses of space-scale diagrams, is quite a
reasonable way to determine "good" pan/zoom trajectories.

Showing semantic zooming

Another whole class of uses for space-scale diagrams is for the representation of semantic zooming[10]. In
contrast to geometric zooming, where objects change only their size and not their shape when magnified,
semantic zooming allows objects to change their appearance as the amount of real estate available to them
changes. For example, an object could just appear as a point when small. As it grows, it could then in turn
appear as a solid rectangle, then a labeled rectangle, then a page of text, etc.

Figure 11 shows how geometric zooming and semantic zooming appear in a space-scale diagram.

Figure 11. Semantic Zooming. Bottom slices show views at different points.

The object on the left, shown as an infinitely extending triangle, corresponds to a 1D gray line segment, which
just appears larger as one zooms in (upward: 1,2,3). On the right is an object that changes its appearance as
one zooms in. If one zooms out too far (a), it is not visible. At some transition point in scale, it suddenly
appears as a three segment dashed line (b), then as a solid line (c), and then when it would be bigger than the
window (d), it disappears again.

The importance of such a diagram is that it allow one to see several critical aspects of semantic objects that
are not otherwise easily seen. The transition points, i.e., when the object changes representation as a function
of scale, is readily apparent. Also the nature of the changing representations, what it looks like before and
after the change, can be made clear. The diagram also allows one to compare the transition points and
representations of the different objects inhabiting a multiscale world.

We are exploring direct manipulation in space-scale diagrams as an interface for multi-scale authoring of
semantically zoomable objects. For example, by grabbing and manipulating transition boundaries, one can
change when an object will zoom semantically. Similarly, suites of objects can have their transitions
coordinated by operations analogous to the snap, align, and distribute operators familiar to drawing programs,
but applied in the space-scale representation.

As another example of semantic zooming, we have also used space-scale diagrams to implement a "fractal
grid." Since grids are useful for aiding authoring and navigation, we wanted to design one that worked at all
scales -- a kind of virtual graph paper over the world, where an ever finer mesh of squares appears as you
zoom in. We devised the implementation by first designing the 1D version using the space-scale diagram of
Figure 12.

90f 12 1/4/2011 2:37 PM
Motorola PX 1006_99

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

10 of 12

Figure 12. Fractal grid in 1D. As the window moves up by a factor of 2 magnification, new gridpoints
appear to subdivide the world appropriately at that scale. The view of the grid is the same in all five
windows.

This is the analog of a ruler where ever finer subdivisions appear, but by design here they appear only when
you zoom in (move upward in the figure). There are nicely spaced gridpoints in the window at all five zooms
of the figure. Without this fractal property, at some magnification the grid points would disappear from most
views.

Warps and fisheye views

Space-scale diagrams can also be used to produce many kinds of image warpings. We have characterized the
spacescale diagram as a stack of image snapshots at different zooms. So far in this paper, we have always
taken each image as a horizontal slice through scale space. Now, instead imagine taking a cut of arbitrary
shape through scale space and projecting down to the u axis. Figure 13 shows a step-up-step-down cut that
produces a mapping with two levels of magnification and a sharp transition between them.

aaaaa

Figure 13. Warp with two levels of magnification and an abrupt transition between them. (a) shows the
trajectory through scale-space, (b) shows the unwarped view, and (c) shows the warped view (notice
rays 3 and 7 don't appear).

Here, (a) shows the trajectory through scale space, (b) shows the result that would obtain if the cut was purely
flat at the initial level, and (c) shows the warped result following.

Different curves can produce many different kinds of mappings. For example, Figure 14 shows how we can
create a fisheye view.

!
Iz

Figure 14. Fisheye view.

By taking a curved trajectory through scalespace, we get a smooth distortion that is magnified in the center
and compressed in the periphery. Other cuts can create bifocal [1] and perspective wall [8].

For cuts as in Figure 13, which are piece-wise horizontal, the magnification of the mapping comes directly
from the height of the slice. When the cuts are curved and slanted, the geometry is more complicated, but the
magnification can always be determined by looking at the projection as in Figure 14.

1/4/2011 2:37 PM
Motorola PX 1006_100

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

110f12

CONCLUSION

This paper introduces space-scale diagrams as a new technique for understanding multiscale interfaces. Their
defining characteristic and principal virtue is that they represent scale explicitly. We showed how they can
aid the analysis of pans and zooms because they take a temporal structure and turn it into a static one: a
sequence of views becomes a curve in scale-space. This has already helped in the design of good pan/zoom
trajectories for Pad++. We showed how the diagrams can help visualization of semantic zooming by showing
an object in all its scale-dependent versions simultaneously. We expect to use this as an interface for
designing semantically zoomable objects. We also suggested that diagrams may be useful for examining other
non-flat multiscale representation, such as fisheye views.

Space-scale diagrams, therefore, are important for visualizing various problems of scale, for aiding formal
analyses of those problems, and finally, for implementing various solutions to them.

Acknowledgments

This work was supported in part by ARPA grant N66001-94-C-6039. The authors would like to thank Maria
Slowiaczek for her very helpful comments on drafts of this paper.

References

1. Apperley, M.D., Tzavaras, 1. and Spence, R, A bifocal display technique for data presentation, Proceedings
of Eurographics 82, pp. 27-43.

2. Bederson, B. B. and Hollan, J.D., Pad++: A zooming graph- ical interface for exploring alternate interface
physics. In Proceedings of ACM UIST'94, (1994, Marina Del Ray, CA), ACM Press, pp 17-26.

3. Donelson, W., Spatial management of information. In Pro- ceedings of ACM SigGraph'78 (Atlanta, GA),
ACM press, pp. 203-209.

4. Furnas, G.W., Generalized fisheye views. In Proceedings of CHI'86 Human Factors in Computing Systems
(Boston, MA, April 1986), ACM press, pp. 16-23.

5. Furnas, G. W., The FISHEYE view: A new look at struc- tured files. Bell Laboratories Technical
Memorandum, #82- 11221-22, Oct 18, 1982. 22pps.

6. Leung, Y.K. and Apperley, M.D., A unified theory of distor- tion-oriented presentation techniques. In
press, TOCHI.

7. Lieberman, H., Powers of ten thousand: navigating in large information spaces. Short paper in Proceedings
of ACM UIST'94, (1994, Marina Del Ray, CA), ACM Press, pp. 15- 16.

8. Mackinlay, J.D., Robertson, G.G. and Card, S.K., The per- spective wall: detail and context smoothly
integrated. In Proceedings of CHI'91 Human Factors in Computing Sys- tems, ACM press, pp. 173-179.

9. Noik, E.G., A space of presentation emphasis techniques for visualizing graphs. In Proceedings of GI "94:
Graphics Interface 1994, (Banff, Alberta, Canada, May 16-20, 1994), pp. 225-234.

10. Perlin, K. and Fox, D., Pad: An Alternative Approach to the Computer Interface. In Proceedings of ACM
SigGraph 93 (Anaheim, CA) pp. 57-64.

1/4/2011 2:37 PM
Motorola PX 1006_101

Space-Scale Diagrams: Understanding Multiscale Interfaces http://delivery.acm.org/10.1145/230000/223934/p234-furnas.html ?key1=...

11. Robertson, George. G. and Mackinlay, Jock, The Document Lens. In Proceedings of ACM UIST'93
(Atlanta, GA), ACM press, pp. 101-108.

12. Sarkar, M. and Brown, M.H., Graphical fisheye views of graphs. In Proceedings of ACM CHI'92
(Monterey, CA, May, 1992), ACM Press, pp. 83-91.

13. Sarkar, M., Snibbe, S.S., Tversky, O.J., and Reiss, S.P., Stretching the rubber sheet: a metaphor for
visualizing large structures on small screens. In Proceedings of ACM UIST "93 (November 1993), ACM press,

pp- 81-91.

1/4/2011 2:37 PM

12 of 12
Motorola PX 1006_102

Pad++ Bederson - 3

Motorola PX 1006_103

A Zooming Web Browser

Benjamin B. Bederson, James D. Hollan,
Jason Stewart, David Rogers, Allison Druin, David Vick
Computer Science Department
University of New Mexico
Albuquerque, NM 87131
{bederson, hollan, jasons, drogers, allisond, dvick}@cs.unm.edu
http://www.cs.unm.edu/pad++

ABSTRACT

The World Wide Web (WWW) is becoming increasingly important for business, education, and entertainment. Popular web
browsers make access to Internet information resources relatively easy for novice users. Simply by clicking on a link, a new
page of information replaces the current one on the screen. Unfortunately however, after following a number of links, people
can have difficulty remembering where they’ve been and navigating links they have followed. As one’s collection of web pages
grows and as more information of interest populates the web, effective navigation becomes an issue of fundamental importance.

We are developing a prototype zooming browser to explore alternative mechanisms for navigating the WWW. Instead of having
a single page visible at a time, multiple pages and the links between them are depicted on a large zoomable information surface.
Pages are scaled so that the page in focus is clearly readable with connected pages shown at smaller scales to provide context.
As a link is followed the new page becomes the focus and existing pages are dynamically repositioned and scaled. Layout
changes are animated so that the focus page moves smoothly to the center of the display surface while contextual information
provided by linked pages scales down.

While our browser supports multiscale representations of existing HTML pages, we have also extended HTML to support multi-
scale layout within a page. This extension, Multi-Scale Markup Language (MSML), is at an early stage of development. It cur-
rently supports inclusion within a page of variable-sized dynamic objects, graphics, and other interface mechanisms from our
underlying Pad++ substrate. This provides sophisticated client-side interactions, permits annotations to be added to pages, and
allows page constituents to be used as independent graphical objects.

In this paper, we describe our prototype web browser and authoring facilities. We show how simple extensions to HTML can
support sophisticated client-side interactions. Finally, we discuss the results of preliminary user-interface testing and evaluation.

Keywords: world-wide web, browser, information navigation, zooming, information visualization, multiscale information, ani-
mated user interface, Pad++.

1. INTRODUCTION

In 1945 Vannevar Bush [8] envisioned “a future device for individual use, which is a sort of mechanized private file and library.”
He termed this device a memex and proposed a form of associative indexing in which arbitrary pieces of information could be
linked together such that “when one of these items is in view, the other can be instantly recalled by tapping a button.” He further
conjectured that “wholly new forms of encyclopedias will appear, ready made with a mesh of associative trails running through
them, ready to be dropped into the memex and there amplified.” Today, fifty years later, we have the World Wide Web and a
memex in the form of web browsers. See [4] for an overview of the WWW.

The increasing number of users and the ever-growing quantity of information available on the web present challenging interface
and navigation problems. There are a variety of human factors [19] issues that need to be addressed. A larger number of users
means that people with diverse talents, interests, and experiences will be on-line via the web. Many will be novices with little
prior experience with computers. A simple click of the mouse can bring a user from their friend’s home page to unknown desti-
nations across the world. Traditionally, following a cross reference meant shuffling across the library to find another volume.
While time-consuming, this reinforced the transition that was taking place. The difficulties that novice users confront can be

260/ SPIE Vol. 2667 0-8194-2041-7/96/$6.00

Motorola PX 1006_104

instructional to developers. While experts may not have as much difficulty, they experience the same cognitive burdens, and
may just have a higher threshold before they experience similar difficulties.

While the immediacy of traversing information links offers many advantages, it can also make it difficult to maintain an intuitive
sense of where one is, and how one got there - leading to the frequently described sense of being losz. This is a classic problem
of hypertext systems. Part of the problem can be attributed to windows-based interfaces. Current window systems don’t readily
support showing more than a few pages at a time. In addition, each page is usually in a separate window with no depiction of
relationships to other windows. Popular WWW browsers, like other applications built according to current tiled or overlapping
windows philosophies, also have this same problem, although they do offer limited methods to aid navigation by keeping track
of interesting sites - usually in hierarchical sets of hotlists or bookmarks.

Several groups have proposed alternatives and extensions to browsers to address some aspects of this problem. Oostendorp
describes the PAINT system (Personalized Adaptive Internet Navigation Tool) [25]. It provides an interface for accessing hier-
archies of bookmarks in a style similar to the NEXTStep interface. WebMap is a browser extension that shows a graphical rela-
tionship between web pages [11]. Each page is represented by a small circle that can be selected to display the actual page. The
links between pages are colored to indicate information about the links, such as whether it is a link to a different server or
whether the destination page has already been read. These graphs may be saved and used by others.

‘While the web is inherently cyclic, it is easier to visualize hierarchies, and so many web visualizations are based on hierarchies
extracted from the graph of the web. Some interesting work focuses on alternative visualizations [24]. Furnas [14] shows how
multitrees can be used to represent a collection of hierarchies sharing parts of the underlying data. One application of multitrees
is visualization of bookmarks from multiple individuals[34]. Furnas [16] also describes a framework for characterizing how dif-
ferent structures influence effective view traversal, the mechanical process of moving between information items, and view nav-
igation, finding good paths to information items.

Another approach to visualizing large information spaces that can be applied to web browsing and navigation involves tech-
niques to show detail at particular nodes while maintaining context. One general approach, fisheye views [13], has been
extended with graphics [30], three dimensions [9][22], hyperbolic representations[20], animation [10], and zooming [2][3][28].
Other techniques include exploiting a large virtual space [12], using lenses or filters [5][23][31], and visualizing two dimensional
layouts [1][21].

In addition to the difficulty of finding information, it becomes ever more important to tailor information for one’s own needs.
Also rather than searching oneself can be sensible to go by other’s recommendations. This is the basis for commercial services
such as Yahoo [36], and follows the often effective strategy of exploiting recommendations from those one knows and trusts
[35].

Annotations are another important information tailoring facility. Annotations are personal markings that can be used to highlight
and comment on information for oneself and others. One interesting approach to annotation on the web separates the annotations
from the original documents and stores them in a special annotation server [29]. Used with an enhanced browser, displaying a
new page automatically brings in the annotations of others and integrates them into the page.

In the sections that follow, we describe our zooming web browser and the attempt to use animation and multiscale representation
of context to support more effective web navigation. In addition to visualization of standard HTML pages, we introduce exten-
sions to HTML that allow more sophisticated presentations and client-side interactions. We demonstrate the beginnings of direct
manipulation graphical authoring tools and show how annotation can be supported as a form of authoring. Finally, we present
the results of initial user testing and envision a scenario for future web use in the classroom.

2. A ZOOMING WEB BROWSER
Navigating the WWW presents a struggle between focus and context. As one browses or searches the web the need for detailed
views of specific items conflicts with the need to maintain a global view of context and history of traversal. This struggle is
made more difficult by the haphazard organization of the WWW. Information items closely related by links are not necessarily
closely related by content nor in terms of the user’s information needs. At times, one seems more likely to find something of
interest when not looking for it than when specifically searching. This serendipitous contact with information, though at times
frustrating, can also be an advantage. The challenge is how to best support both incidental and intentional access while organiz-

SPIE Vol. 2667 / 261

Motorola PX 1006_105

ing useful information so that it can be effectively retrieved again in the future.

We are exploring dynamic multiscale techniques to support focus and context during navigation of large information spaces. To
accomplish this we are building a zoomable web browser using Pad++, a substrate for building multiscale dynamic user inter-
faces [2][3][27][28]. Pad++ provides an extensive graphical workspace where dynamic objects can be placed at any position
and at any scale. Pad++ supports panning and zooming. Zooming can involve simple geometric scaling or what we term seman-
tic zooming, in which rendering of objects can vary based on factors in addition to scale, such as context of the task or complex-
ity of the information being displayed. Pad++ is built as a widget for Tcl/Tk, a scripting language and user-interface library
[26][33]. :

Pad++ allows WWW pages to remain visible at varying scales while they are not specifically being visited, so the viewer may
examine many pages at once. In addition, Pad++ allows the user to zoom in and out of pages, enabling explicit control of how
much context is viewed at any time. To orient themselves, users can simply zoom back to view a number of web pages. To get
more detailed views of a particular page they can zoom in. We think this variable scale contextual display of web pages can pro-
vide important support for navigation. We are currently exploring a tree layout system that permits users to dynamically add to
and reorganize a tree of web pages. Using our Pad++ web browser, users navigate a space filled with familiar objects, not iconi-
fied representations of those objects.

Our dynamic Pad++ tree browser combines a basic focus-driven layout with automatic zooming and panning to support naviga-
tion. The software allows the user to select a focus page. That selection animates the page to occupy a larger section of the dis-
play. Pages farther from the focus page get increasingly smaller, resulting in a graphical fisheye view [30]. See Figures 1 and 2
for snapshots of the Pad++ web browser during reorganization.

. s

Figure 1: Snapshot of Pad++ Web Browser. Figure 2: Another view of same web pages.

The Pad++ WWW browser combines Pad++’s interactive multiscale display with dynamic objects that can restructure them-
selves in response to user actions. Clicking on a link brings up a new page, adds it to the tree of pages, and causes the tree to
restructure itself. Unlike other web browsers that immediately replace the current page with a new page, the restructuring pro-
cess is animated so that users can understand how the tree is being reorganized. The animation helps maintain object constancy
and the graphical depiction of links highlights relationships between pages. The new page becomes the current focus and is
moved to the center of the screen, at a size suited for viewing. The user may designate any existing page to be the current focus
by clicking on it.

As in earlier fisheye displays, our basic layout function assigns a degree-of-interest value to each node in the tree based on its
distance from the focus page. We define the distance to be the shortest path between two pages[13]. This value is then used to

262/ SPIE Vol. 2667

Motorola PX 1006_106

determine the size of each node. See [11] for a description of other hierarchical layout techniques not based on fisheye views.

The layout described above provides a sense of context while following links. We have also implemented an alternative camera
mode of navigation. It shows the web of links on one side of the screen with a zoomed in view of the focus page on the other
side of the screen. A camera is depicted along with the web of pages. The camera can be dragged around or automatically ani-
mated through the web. The zoomed in view shows the page the camera is currently looking at (Figure 3). This mode also sup-
ports automated tours. For example, one type of camera can take you on a tour of all the parts of your saved web pages that have
changed since you last looked at them.

We are currently experimenting with more flexible mechanisms for dynamic tree layout and interaction. These include exploring
alternative visualizations and better methods for managing and interacting with large dynamic trees. New tree layout methods
will work with any kind of item on the Pad++ surface. Thus, in addition to HTML pages, users will be able to create spaces
using any Pad++ object, including drawings, interactive maps, and text.

Figure 3: Camera view of web pages.

The new layout code is designed to be hierarchical, so that users may designate subtrees to have different layouts. This allows
greater freedom in grouping and display. For example, a certain information tree may contain nodes with subtrees consisting of
hundreds or thousands of nodes each. These nodes could exploit a hyperbolic layout to compress the information and the hyper-
bolic nodes themselves might be layed out radially [20].

Another topic we are exploring involves tradeoffs between maintaining pointers to information on the Web and making copies of
the information locally. For example, a user might want to copy items from a remote page to prevent that information from
being lost. At other times users may wish to maintain only pointers to information since it is being maintained elsewhere. There
are interesting related issues of annotation, that we discuss later, as well as issues of maintaining annotation placement as pages
change.

SPIE Vol. 2667 / 263

Motorola PX 1006_107

3. AUTHORING WEB PAGES

Thus far, we have discussed visualization and navigation of WWW pages written using standard HTML. We are also exploring
extensions to HTML to allow web page authors access to Pad++ multiscale visualization and layout facilities. This extension,
Multi-Scale Markup Language (MSML), enables users to include arbitrary Pad++ objects in web pages. We have implemented
MSML using the HTML <Meta> tag and thus added features are invisible to HTML browsers.

Important motivations for MSML are to make WWW pages and their components first-class Pad++ objects and allow authors
using MSML to exploit all Pad++ facilities. In addition to adding zooming and other dynamic features to web pages, the goal is
permit authors to manipulate and interact with any web page element. Making elements first-class Pad++ objects will result in
authors being able to move, scale, delete, add, or modify them. Our approach is similar in spirit to the SELF project [32]. While
much remains to be accomplished to support the full informational physics [3] we envision, all of the examples detailed below
work in the current Pad++ Web browser.

HTML provides very few basic types. Examples include text, images, bullets items, and horizontal rules. MSML in contrast,
supports not only HTML types but also provides access to all the graphical features of Pad++. This gives users a richer toolkit of
objects to use when creating documents: text (Postscript Type 1 fonts), lines, rectangles, ovals, lenses (providing filtering and
alternative representation), portals (furnishing additional zoomable views of the Pad++ surface), compound objects created from
these basic elements, and access to Pad++’s dynamic zooming and panning facilities.

Zooming and Scale

HTML provides header tags, <H1>, <H2>, etc., to indicate degree of importance of sections in WWW documents. However, this
mechanism only works with text, not with other media such as images. MSML introduces a method to control the size of all
types of objects, including images and graphics. We have used this, for example, to create a multiscale hierarchical outline (see
Figure 4). All MSML extensions are written using special Meta-tag keys. This approach makes it clear that the included code is
an extension and allows it to simply be ignored by standard HTML-based web browsers.

A portion of the MSML required to create the outline depicted in Figure 4 is given below. The pad_scale key takes a single
argument that multiplies the current scale and affects the size of all future objects until a /pad_scale key is seen.

<html>
Introduction

<meta pad_scale=0.25>

Sistine Chapel

Push the interface metaphor
History

<meta pad_scale=0.25>

Ivan Sutherland, SketchPad, 1963

William Donelson, MIT, 1978

George Furnas, Fisheye Views - Bellcore, 1986
Ken Perlin, David Fox, PAD - NYU, 1993

<meta /pad_scale>

<meta /pad_scale>

Another example use of MSML involves inclusion of a multiscale state map on a web home page. As the view is zoomed in,
first counties, then cities, and then street maps of cities are shown. Finally, even the location of one’s home or work could be
indicated on the street map. It would even be possible to continue zooming until a floor plan of home or work location becomes
visible. See Figures 5-7 for a sequence of snapshots as we zoom into New Mexico. We first see county names and ultimately an
Albuquerque street map.

264/ SPIE Vol. 2667

Motorola PX 1006_108

Below is the MSML code that produced the examples in Figure 5-7:

<html>

This is the New Mexico Map page

<hr>

<meta pad_tcl={msml_load_tcl http://www.cs.unm.edu/~bederson/pad/county.tcl county}>
The map data is stored in a separate code file and is loaded using the pad_tc1 tag. It passes a Tcl script that uses the MSML
library function msmi_load_tcl. This function takes two arguments: a URL to a Pad++ Tcl script and a tag name to be associated
with every object the script creates. It is via this tag that objects are associated with the HTML page.

Figure 4: Outline using MSML Scale Tag. Figure 5: New Mexico county data.

Figure 6: NM zoomed into county names. Figure 7: NM zoomed into Albuquerque.

The URL specifying county . tcl contains Tcl code that creates the county data. The msml_load_tcl function inserts it

SPIE Vol. 2667 / 265

Motorola PX 1006_109

into the Web page and properly scales it. One advantage of MSML is that almost any object on the Pad++ surface can be used as
an anchor, not just text and images. So once a user has zoomed into the New Mexico state map and located Albuquerque, the
homes of the members of the Pad++ group as well as the Computer Science department itself could be anchors to other WWW
pages, or to other points on the map, such as those of collaborators from other parts of the world.

Interaction

Traditionally, browsers come with pre-defined functions and all interactions with a web document are constrained to those func-
tional abilities. Limited animation is possible through techniques such as server-push and client-pull. Forms, a simple interface
built into most clients to collect information and send it to the server for processing, provide constrained GUI-like interactions.
However, until recently, nothing supporting more interactive and flexible interfaces has been available.

Currently there are a number of efforts to create more interactive WWW documents. The primary approach is to write code in a
programming language, instead of HTML, that can be downloaded into a browser equipped to interpret the language. Sun’s Hot-
Java project uses the Java language [18], Cygnus Support’s GNU Remote Operations Web (GROW) proposes to use GNU’s
Guile extension language [17], and Microsoft’s Blackbird will use dynamically loadable object files [6]. By providing the ability
to download and run code locally allows complicated animations, for example, to be encoded in a concise and network efficient
manner.

The Pad++ WWW browser contains a full Tcl interpreter. MSML provides mechanisms to include Tcl code within the page,
instruct the browser to download either scripts or saved Pad++ data files over the WWW, and pass the code to the Tcl interpreter.
This, of course, carries with it enormous security risks that we have not yet addressed. In the future we may restrict ourselves to
a safe subset of the language as with Java or GROW. In our case this will initially be SafeTcl [7] but may also include support
for other languages (e.g. Java).

Figure 8: The grasshopper filter applied to the Figure 9: A WWW page containing Pad++ data
New Mexico County data. files with some elements dragged out.
Lenses

Pad++ lenses can change the way objects look on the Pad++ surface [2][5][31]. In MSML, they can be particularly useful. For
example, the data used to create the map of New Mexico consists of about SOK bytes of vertex data just to define the county
boundaries and the city locations. There are many different kinds of data that one could be interested in displaying in relation-
ship to a map of New Mexico (e.g., demographics of the local populations, geographical features of interest, etc.) If one were
interested in not only providing an accurate street map to the Computer Science Department but also, say, an accurate count of
the 1995 grasshopper population across the state, it would be pointless to include the geographical vertices twice. Instead, the

266 / SPIE Vol. 2667

Motorola PX 1006_110

same map can be used, and lenses supplied such that when viewed through the appropriate lens only the information of interest
is visible. Figure 8 demonstrates the use of such a lens.

Annotations and Authoring

Because MSML allows users to interact with all elements of a WWW page, it provides a unique opportunity to explore annotat-
ing and authoring of WWW pages. Based on experiences working with children, we have come to appreciate the need for sim-
ple and intuitive ways to author WWW pages. One very natural authoring mechanism is to directly use and modify existing
components of others peoples’ web pages. Every web page then becomes a potential supplier of components.

We have begun to implement a drag-and-drop interface for authoring WWW documents. Figure 9 shows a page containing sev-
eral Pad++ drawings. Just under that page, a composite figure was created by dragging elements out of the top web page (a kit of
components constructed for young users to author zoomable hypertext stories) and putting them together. Our approach is to
allow creation of web pages using the same direct manipulation techniques. In addition, we expect to provide layout support to
facilitate creation of aesthetically effective web pages.

A direct extension of this authoring technique allows users to maintain local copies of WWW pages with added annotations. A
goal, much in keeping with the kind of personal information environment Vannevar Bush envisioned, is to enable users to create,
save, and share annotated databases of WWW pages. This is similar to graphical hotlists but with the important difference that
with MSML, users can maintain not only the HTML data for a particular page, but also associate arbitrary Pad++-based annota-
tions. Pad++ supports a variety of annotations: not only can text be added, but entire WWW pages can be added to other WWW
pages creating hierarchical meta-pages; graphics can be added, for example, to indicate an interesting section of a particular
page, even when that page is scaled very small. Our goal is to provide rich annotation facilities by combining Pad++’s dynamic
multiscale annotation ability with a control system that supports creation of virtual documents in which documents and annota-
tions are separately controlled and maintained. See [29] for an example of one such control mechanism.

To support effective views of collected web pages it is important to be able to show modifications over time. If one cares about
a particular set of pages enough to include them in a personal collection it is likely that notifications of modifications will also be
of value. We are exploring mechanisms to highlight changes. One technique highlights, by changing color or bounding with a
rectangle, sections changed since some specific date (for example, the last time you viewed the document). Another uses scaling
to show the history of changes. Older versions are shown at increasingly smaller scale. Marking changes is similar in spirit to
efforts conducted by [35] using the WebWatch program. Unlike that effort we conjecture that one might not merely want to
know that a document has been altered but also the details of the changes.

4. USER TESTING RESULTS

In November of 1995, we completed a pilot test of our zooming web browser. There were 14 test participants from the Univer-
sity of New Mexico community, equally split between the College of Education and the Computer Science Department. A
majority used email regularly, but almost no one used the WWW as frequently. Over a third of the participants from the College
of Education had never used the WWW. All of the Computer Science participants had used the WWW. Before the pilot test
began, a 5-minute demonstration of our browser was shown to participants. Participants were then asked to use the browser for
30-60 minutes and subsequently completed a survey about their initial impressions.

‘We found users to be overwhelmingly positive about using the zooming web browser. We received such comments as:
“I think it’s different than any other browser, and a lot more interesting to use.”

“It will take some getting used to, but to have the ability to create a tree of where you were is a great advan-
tage.”

“It’s easier and more friendly than Netscape. It is a little slow and jerky too.”

“I found it a very useful browser, and liked the hierarchical tree structures that are created. There is no need
to click ‘back’ or ‘forward’ like you do for Mosaic or Netscape.”

“Easy access to previously viewed pages-- excellent way to view pages larger than the screen.”

The survey also asked users to select one or more entries from a list of possible short descriptions of their experience. The results

SPIE Vol. 2667 / 267

Motorola PX 1006_111

are given in Table 1:

l SHORT DESCRIPTIQN # OF’PARTICIPANTS
OF ZOOMING | WHO SELECTED IT
WEB BROWSER (outof 14)

Interesting | 1 2
Would try using it again 11
Enjoyable 7
Useful 7
Exceptional 4
Frustrating 3
Confusing 2
Would never use it again 0

Table 1: User Study results

When test participants were asked to describe what they most liked about using the zooming web browser, over 70% of the par-
ticipants said they liked seeing the tree of where they were in the WWW and navigating by zooming. When participants were
asked to describe what they liked the least, they commonly mentioned the speed of interaction. Users would like to have faster
browsing tools, as well as the ability to delete a page from the tree structure. Based on this feedback, we have since modified the
browser. In the newest release, WWW pages are displayed several times faster than during the pilot test and users now have the
option of deleting any viewable page on the tree.

In the pilot test survey, participants were also asked how they thought the zooming web browser compared with other WWW
browsers. Of the 14 test participants, a little over half felt qualified to respond. (A handful of the College of Education partici-
pants had never used another browser and therefore could not make a comparison.) The participants who responded were over-
whelmingly more positive about the zooming web browser than Netscape or Mosaic. They felt that the browser had a better
visual layout and was generally easier to use than other browsers. Surprisingly, only one participant felt that Netscape was easier
and less buggy.

In summary, the results of our pilot test offer positive support for and constructive feedback about the use of zooming in a web
browser. This feedback continues to inform our browser development efforts. We expect to continue testing with a more diverse
population of users to better understand the problems and advantages issues associated with zooming.

5. A USER SCENARIO FOR THE FUTURE

With the technologies we are currently creating, we can foresee a time in the future when the following scenario will come to
pass:

It is morning. David Brooks enters his classroom. In an hour his fifth grade students will join him, but until then, David
sits down at his computer, coffee in hand, to scan his favorite web pages. David begins by wandering the local museums’
home pages. He knows that today he and his students will begin a thematic unit on dinosaurs. Before they arrive, he
quickly drags various dinosaur images and text from different web pages, and creates a new student page. He decides that
his page looks more like a wall of graffiti than a planned document. He wishes he had more time to animate the dino-
saurs, design information lenses, and establish zooming links to other home pages. Suddenly it dawns on him, those
would be great things for his students to do! He breaths a sigh of relief, sips his coffee, and waits for his students to
arrive.

Once all 21 students have been welcomed, David explains that thanks to their insistence, they will now turn their energies
to learning about dinosaurs. The students clap and cheer. Once they settle down, David splits them up into design teams

268/ SPIE Vol. 2667

Motorola PX 1006_112

of 3, and asks them to move to their computers. On each student team’s screen is an image of David’s dinosaur page.
David explains how bad this page is, and asks his students to help him redesign it. He asks them to create animations,
lenses, and links to other pages. The students eagerly work on their projects.

A week later, the student teams present their work to the class. The first group to go presents a page with four simply
drawn dinosaurs. When a student zooms into the web page, the dinosaurs begin to move about. One of the students
points out that they found information on the web that described how these dinosaurs moved, so they designed their
beasts with this in mind. The team zooms in on one dinosaur, a tyrannosaurus rex. As they zoom in, the picture of the
dinosaur disappears and text information appears. The student team explains that by selecting the highlighted word in the
text it will take you back to the original WWW page that the text came from. As they explain, the text zooms out, a new
tree link is formed, and a new page is zoomed in on the screen.

After much applause the next student team presents their work. They zoom in on their WWW page to display one large
dinosaur. They explain that their project gives you lots of information on just one dinosaur. They begin by dragging var-
ious lenses from the side of their page. Each lens is shaped like the information it displays. The large tree-shaped lens
when dragged over the dinosaur shows the types of vegetation the dinosaur eats. The sun-shaped lens shows the kinds of
climates this dinosaur likes to live in. The team explains that by zooming in with any of the lenses it will take you to a
WWW page with more information. They demonstrate this and start to uncover a tree of information.

David is impressed with his class’s work. As each team presents, they offer more creative solutions than he thought pos-
sible. At the end of class he decides to ask the school principal if he can publish his students’ research projects on the
WWW. Not only does she agree, but she explains that the local museum has been looking for WWW pages created by
students. She points out that this would be just the thing for their WWW section entitled: “A Kid’s Tree of Knowledge”
that is being designed to commemorate the fiftieth anniversary of Vannevar Bush’s As We May Think article.

6. CONCLUSION
The World-Wide Web has become an important and widely used resource. Because of this, it is crucially important to address its
usability. We have shown one promising technique based on zooming to better support web navigation. This technique was
used to implement a prototype web browser that was found to be appealing to users. We illustrated extensions to the WWW
authoring language to enable creation of more dynamic and interactive multiscale documents. Finally, we demonstrated how a
direct manipulation authoring environment allows users to construct and modify web pages using items from existing pages.

Pad++ and the zooming Web browser will be made generally available in the near future. To find current information, send mail
to pad-info@cs.unm.edu, or look at <URL: http://www.cs.unm.edw/pad++>.

7. ACKNOWLEDGEMNTS

We acknowledge generous support from ARPA’s Human-Computer Interaction Initiative (Contract #N66001-94-C-6039). The
test subjects from UNM’s College of Education and Computer Science Department gave us valuable feedback. We appreciate
the work of our collaborators at the New York University Media Research Lab, especially that of Jon Meyer, in helping us
develop Pad++.

8. REFERENCES

[1] M.D. Apperley, 1. Tzavaras, and R. Spence. “A Bifocal Display Technique for Data Presentation”, Proceedings of Euro-
pp
graphics ‘82, 27-43.

[2] Benjamin B. Bederson and James D. Hollan. “Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Phys-
ics”, Proceedings of ACM Symposium on User Interface Software and Technology (UIST’94), 17-26.

[3] Benjamin B. Bederson, James D. Hollan, Ken Perlin, Jon Meyer, David Bacon, and George Furnas. “Pad++: A Zoomable
Graphical Sketchpad for Exploring Alternate Interface Physics”, Journal of Visual Languages and Computing (in press).

SPIE Vol. 2667 [269

Motorola PX 1006_113

[4] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and Arthur Secret. “The World-Wide Web”, Com-
munications of the ACM, August 1994, 37 (8), 76-82.

[5] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. “Toolglass and Magic Lenses: The See-
Through Interface”, Proceedings of ACM SIGGRAPH Conference (Sigraph’93), 73-80.

[6] “Blackbird”, <URL: http://www.microsoft.com/developer/intdev/bbdsht.html>.

[7] Nathaniel S. Borenstein. “EMail With A Mind of Its Own: The Safe-Tcl Language for Enabled Mail”, ULPAA ‘94, Barcelona,
1994. <URL.: http://minsky.med.virginia.edu/sdm7g/Projects/Python/safe-tcl/ulpaa-94.txt>

[8] Vannevar Bush. “As We May Think”, The Atlantic Monthly, July 1945, 101-108.

[9] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. “The Information Visualizer, an Information Workspace”, Pro-
ceedings of ACM Human Factors in Computing Systems Conference (CHI'91), 181-188.

[10] Bay-Wei Chang and David Ungar. “Animation: From Cartoons to the User Interface”, Proceedings of ACM Symposium on
User Interface Software and technology (UIST’93), 45-55.

[11] Peter Doemel, “WebMap - A Graphical Hypertext Navigation Tool”, 2nd International Conference on the World-Wide Web,
Chicago, IL, 1994, 785-789.

[12] William C. Donelson. “Spatial Management of Information”, Proceedings of 1978 ACM SIGGRAPH Conference, 203-209.
[13] George W. Furnas. “Generalized Fisheye Views”, Proceedings of 1986 ACM SIGCHI Conference, 16-23.

[14] George W. Furnas and Jeff Zacks. “Multitrees: Enriching and Reusing Hierarchical Structure”, Proceedings of ACM SIG-
CHI’94, 330-336.

[15] George W. Furnas and Benjamin B. Bederson. “Space-Scale Diagrams: Understanding Multiscale Interfaces”, Proceedings
of ACM SIGCHI’95, 234-241.

[16] George W. Furnas. “Effectively View-Navigable Structures”, Presented at HCIC ‘95 Workshop, Snow Mountain Ranch, Col-
orado: Human Computer Interaction Consortium Workshop, February, 1995.

[17] “Grow - The GNU Remote Operations Web”, <URL: http://www.cygnus.com/tiemann/grow>.
[18] “Java: Programming for the Internet”, <URL: http://www javasoft.com/>.

[19] Wendy A. Kellogg and John T. Richards. “The Human Factors of Information on the Internet”, in Advances in Human Com-
puter Interaction, Volume 5, ed. J. Nielsen, Ablex Press, 1-36.

[20] John Lamping, Ramana Rao, and Peter Pirolli. “A Focus+Context Technique Based on Hyperbolic Geometry for Visualizing
Large Hierarchies”, Proceedings of CHI’95 Human Factors in Computing Systems, ACM press, 401-408.

[21] Henry Lieberman. “Powers of Ten Thousand: Navigating in Large Information Spaces”, Proceedings of the ACM User Inter-
face and Software Technology conference (UIST’94), (short paper), 15-16.

[22] Jock D. Mackinlay, George G. Robertson, and Stu K. Card. “The Perspective Wall: Detail and Context Smoothly Integrated”,
Proceedings of CHI’91 Human Factors in Computing Systems, ACM press, 173-179.

[23] Jock D. Mackinlay and George G. Robertson. “The Document Lens”, Proceedings of the ACM User Interface and Software
Technology conference (UIST’93), 101-108.

[24] Sougata Mukherjea, James D. Foley, and Scott Hudson. “Visualizing Complex Hypermedia Networks through Multiple Hier-
archical Views”, Proceedings of CHI’95 Human Factors in Computing Systems, ACM press, 331-337.

[25] K. A. Oostendorp, W.F. Punch, and R.W. Wiggings, “A Tool for Individualizing the Web”, 2nd International Conference on
the World-Wide Web, Chicago, IL, 1994, 49-57.

[26] John K. Ousterhout. Tcl and the Tk Toolkit, Addison-Wesley, 1994.
[27] “Pad++”, <URL: http://www.cs.unm.edu/pad++>.

270/ SPIE Vol. 2667

Motorola PX 1006_114

[28] Ken Perlin and David Fox. “Pad: An Alternative Approach to the Computer Interface”, Proceedings of 1993 ACM SIG-
GRAPH Conference, 57-64.

[29] Martin Roscheisen, Christian Mogensen, and Terry Winograd. “Beyond Browsing: Shared Comments, SOAPS, Trails, and
On-line Communities”, Unpublished paper, Computer Science Department, Stanford University, Stanford, CA, USA.

[30] Monojit Sarkar and Marc H. Brown. “Graphical Fisheye Views”, Communications of the ACM, 37 (12), December, 1994.

[31] Maureen C. Stone, Ken Fishkin, and Eric A. Bier. “The Movable Filter as a User Interface Tool”, Proceedings of ACM SIG-
CHI'94.

[32] David Ungar and Randy B. Smith. “Self: The Power of Simplicity”, Proceedings of OOPSLA ‘87,227-241.
[33] “The Tcl/Tk Project at Sun Microsystems Laboratories”, <URL: http://www.sunlabs.com/research/tcl/>.
[34] “VRML - Virtual Reality Modeling Language”, <URL: http://www.vrml.org/>.

[35] Kent Wittenburg, Duco Das, Will Hill, and Larry Stead. “Group Asynchronous Browsing on the World Wide Web”, Proceed-
ings of the 4th International World Wide Web Conference, Boston, MA, International WWW Conference.

[36] “Yahoo”, <URL: http://www.yahoo.com/>.

SPIE Vol. 2667 /271

Motorola PX 1006_115

Pad++ Bederson - 4

Motorola PX 1006_116

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 28(10), 1101-1135 (AUGUST 1998)

Implementing a Zooming User Interface:
Experience Building Paek-

BEN BEDERSON,*! AND JON MEYER?
1Computer Science Department, University of Maryland, Human-Computer Interaction
Lab, 3171 A.V. Williams Building, College Park, MD 20742, USA
(email: bederson@cs.umd.edu)
2Computer Science Department, New York University, Media Research Lab,
719 Broadway, 12th Floor, New York, NY 10003, USA
(email: meyer@cs.nyu.edu)

SUMMARY

We are investigating a novel user interface paradigm based on zooming, in which users are
presented with a zooming view of a huge planar information surface. We have developed a system
called Pad++to explore this approach.t The implementation of Pad+ is related to real-time 3D
graphics systems and to 2D windowing systems. However, the zooming nature of Padrequires
new approaches to rendering, screen management, and spatial indexing. In this paper, we describe
the design and implementation of the Pad++engine, focusing in particular on rendering and data
structure issues. Our goal is to present useful techniques that can be adopted in other real-time
graphical systems, and also to discuss how 2D zooming systems differ from other graphical
systems.[d 1998 John Wiley & Sons, Ltd.

KEY WORDS: Zooming User Interfaces (ZUIs); real-time computer graphics; animation; 3D graphics; windowing
systems; User Interface Management Systems (UIMS); Pad++

INTRODUCTION

For several years, we have been investigating an alternative user interface paradigm
based on zooming. In our approach, users navigate over a single large information
surface. Documents can be placed on the surface at any position, and also scaled
to any size. Navigations (including pans, zooms and hyperlinks) smoothly animate
the view so the requested document appears at the right position and size.
Zooming User Interfaces (ZUIs) are exciting to us because they present a possible
solution to problems which plague previous approaches to user interfaces. ZUIls
present information graphically and exploit people’s innate spatial abilities. Detail
can be shown without losing context, since the user can always rediscover context
by zooming out. ZUIs use screen real estate effectively, and have great potential

* Ben Bederson carried out much of the work presented in this paper at the University of New Mexico, Albuquerque,
NM 87131, USA.
T Pad++is available for non-commercial (educational, research and in-house) use from http://www.cs.umd.eduttcil/pad

CCC 0038-0644/98/101101-35%$17.50 Received 2 June 1997
[0 1998 John Wiley & Sons, Ltd. Revised and Accepted 16 March 1998

Motorola PX 1006_117

1102 B. BEDERSON AND J. MEYER

even on small screens. One way of thinking about ZUIs is that all the information
you need is there if you look closely enough.

To explore these kinds of interfaces, we built a zooming graphics engine called
Pad++, which brings together a unique combination of features, and supports smoothly
animated zooming of large datasets using off-the-shelf PC-class hardware.

In this paper, we describe the design and implementation of the Padgine,
focusing in particular on rendering and data structure issues. Our goal is to present
techniques that can be adopted in other real-time graphical systems, and also to
show some of Paét’s unique characteristics and describe how 2D zooming systems
differ from other real time graphical systems. We have written elsewhere about
applications we have built using Pad¥#.

Background

Zooming interfaces have a long intellectual history. Over 30 years ago, Ivan
Sutherland showed the first interactive object-oriented 2D graphics s§sims
visionary system, called Sketchpad, demonstrated many components of today’s inter-
faces. It even provided rudimentary zooming: every drawn object could be scaled
and rotated. Fifteen years later, the Spatial Data Management System (SD&48)
zooming as an integral part of the interface. SDMS was the first system to use
zooming through a two dimensional metaphor for finding information. SDMS sup-
ported two semantic levels—an ‘Overview’ and a ‘Zoom into Icon’ level. However,
SDMS was implemented with custom hardware, and consisted of several machines
and displays integrated into a room, with all of the controls organized around a
single large chair.

Eleven years later, a system called Pads developed and presented at an NSF
workshop in 1989. Pad integrated zooming into a single program that ran on
inexpensive hardware. Pad was programmable, and supported interactive text editing,
drawing, documents and portals (views onto different areas of the work surface). It
ran in black and white, and was entirely based on bitmaps, so drawings and text
became pixelated as users zoomed in. Pad ran on Sun 3 computers, which do not
provide enough processing speed to support continuous smooth zooming, so the
interface only allowed users to zoom in and out by powers of two. Subsequently,
we built Pad++, a direct but substantially more sophisticated successor t6° Pad.

Zooming has been a component of other interface research as well, although not
as a primary focus. Several researchers have investigated full 3D interfaces, and
these interfaces have implicitly used zooming, since when a user moves close to an
object, that object appears bigger. A system developed at Xerox PARC called the
Information Visualizet made extensive use of 3D, and showed several applications
which took direct advantage of the difference in scale available in 3D.

We are aware of three other implementations of ZUls. Two are specialized
commercial products for World Wide Web navigation. They both use radial layouts
to represent hierarchies of informatiétt! The third, Tabula Ras®,is a Scheme-
based implementation created by David Fox in his PhD thesis research at NYU.

Other related systems include SEIfARK (Alternate Reality Kit}* and Xerox
Rooms!*® Like virtual window managers such as fvwihthese systems present the
user with a 2D planar data surface which is much larger than a single screen, and

Motorola PX 1006_118

IMPLEMENTING A ZOOMING USER INTERFACE 1103

which the user navigates by panning, or by clicking on an iconic map. However,
they don’t support smooth continuous zooming.

Requirements

Conceptually, ZUIs present the user with a zoomable view of a large information
surface. The surface is populated by graphical objects—some of which are simple
shapes (e.g. lines, images, text items), whereas others may be procedural (e.g. charts,
animated objects, multiscale objects). The ZUI manages rendering and interaction
with objects on the surface. It also handles resource allocation (colors, fonts, etc.).
In this sense, a ZUI is very similar to a graphical window management system like
X Windows, except that:

(&) The size of a ZUI data space is not limited by the size of the screen, but
instead by the precision of the numeric format used to store coordinates.

(b) ZUls must scale up to handle tens of thousands of objects, whereas windowing
systems need only support a few thousand windows (this figure is naturally
constrained by the limited resolution of raster displays).

(c) Objects are typically not rectangular, and they may be semi-transparent.
Windows are expected to be both opaque and rectangular.

(d) Coordinates are floating point, rather than integer based.

(e) There may be many visible views of the surface thropghals (we discuss
portals in more detail later on, but briefly, they are objects on the data surface
which show other areas of the surface, and allow interaction with the remote
area through the portal). Windowing systems typically manage a single view.

(N Rendering is double-buffered by default, since unbuffered pans and zooms
produce a distracting screen flicker. Windowing systems let applications control
screen pixels more directly.

Windowing systems typically provide applications with a blank window to paint on,
and rely on the application itself to draw the contents of each window. This approach
is well suited to a wide range of applications, since it gives applications a great
deal of flexibility—each application can decide how much effort to spend organizing
rendering, performing culling and clipping, handling resources, etc. The downside of
this approach is that, in many cases, the code for culling, clipping, colormap
handling, resource management, window updating and event handling is duplicated
from application to application.

In Pad++, because objects can be non-rectangular and semi-transparent, and also
because of portals, handling rendering, culling and clipping is more complex than it
is under a windowing system. Consequently, by default, Pagetforms these
operations on behalf of the application. If applications have specialized needs, they
can use procedural objects, which let the application handle rendering and clipping
issues explicitly.

To help understand these differences, we started constructing a list of basic
technical requirements that we felt our zooming user interface should meet. This list
has evolved over time, since some of the requirements emerged from experiments
involving Pad++. Even so, many of the items on our requirements list have been
there since the outset of the project. The requirements list represents the technical
problems that Pad+&ims to solve, so we present it here to underpin subsequent
discussion. It is not meant as a formal definition of the requirements of a ZUI.

Motorola PX 1006_119

1104

B. BEDERSON AND J. MEYER

Zooming interface requirements

Maintain and render at least 20,000 objects with smooth interaction: the
number 20,000 is somewhat arbitrary, but we felt that this would give us the
freedom to implement the kinds of interfaces we were imagining. Maintaining
smooth real-time interaction is crucial. The entire metaphor is based on
animation. If the system becomes slow and jerky, the metaphor dies. Frame
rates of anything less than 10 frames per second are unacceptable. (Here, and
in the rest of the paper, we use the teohjectto mean a graphical entity
that is manipulated as a whole by the system. This might be a simple object
such as a poly-line segment, or a compound object such as an HTML page
composed of many characters, line segments and images).

Animate all transitions all screen changes, whether a change of view or an
object movement, should be animated. Since the interface is based on navigat-
ing through a surface, it is important to give as much feedback as possible
to users about where they are within this space.

Use off-the-shelf hardwareve wanted to make this zooming engine widely
available, and to have a wide range of people using+Padherefore, we
were obligated to use readily available hardware. In particular, we haven't
used graphics accelerator cards or alternate input devices. Our reference
platform is a 200 MHz Pentium Pro running Linux.

Support high quality 2D graphics: since Pad+isa graphical user interface
system, it is crucial that the graphics are high quality. The engine must
support good fonts, high quality images, transparency, rotation, and other
graphical effects, matching or exceeding the capabilities already found in
windowing systems.

Provide rapid prototyping facility: ZUIs are new, and much of our work
involves experimenting with variations of interfaces. As such, it is important
for us to be able to quickly modify visualizations and applications. This
requirement led to effort connecting Peadto various scripting languages so

we could create applications through an interpreter.

Support rich dynamicsin addition to zooming, our envisioned ZUIl system
would include the following features. Objects should be able to have different
visual representations at different sizes. That is, zooming into an object should
be able to automatically show more detail. We call tlosntext-sensitive
rendering. it should be easy to animate an object within the space or to
animate the view. It should also be possible to crdatsses—objects which
when dragged over other objects change the visual representation of the object
seen within the lens. Finally, we requiréayers, which provide a mechanism

to easily change the visibility and drawing order of groups of objects.
Support rich navigation metaphors addition to text, images, vector graphics,
and hierarchical groups, ZUIs require a few special object types to support
navigation. In a ZUI, objects sit at a specific place in the flat space, and yet
it is sometimes necessary to be able to view two objects at the same time
that are far apart. We usportals to solve this problem. Portals are objects
on the information surface that look onto another part of the surface. Portals
can be used to implement lenses. Also, when the view changes, objects on
the screen normally move with the view. Sometimes it is useful to have an

Motorola PX 1006_120

IMPLEMENTING A ZOOMING USER INTERFACE 1105

object stay in the same position relative to the screen. We support this through
sticky objects.

e Support standard GUI widgets: to build a complete interface system, a ZUI
must also support user interface widgets to match those found in existing
GUIs. Buttons, sliders, scrollbars, menus, etc. must all be accessible in the
same zooming environment as the other graphical objects.

e Offer a framework for handling eventsvriting applications with zooming,
layers, hierarchical groups, portals and sticky objects can be tricky. The event
model must be rich enough to gracefully deal with all of these object types,
and also simple enough so it is easy to use.

e Run within existing windowing and operating systetime ZUI must offer
ways to work with existing applications as well as with new zooming
applications. It should support established standards, such as X Windows,
UNIX, and Microsoft Windows 95/NT, so that users can continue to use their
current applications as well as zooming applications.

Having sketched the basic requirements of our ZUI, we next look at implementation
issues. We will first look at rendering, then at visible object determination, and
finally, at the overall structure of the Pad-sbftware.

PART I: RENDERING IN ZUls

A large part of the work needed to build a ZUI involves developing a zooming
renderer. Before looking in detail at how the Padrenderer works, we first present
ZGA (Zooming Graphics Accelerator), an imaginary hardware graphics accelerator
designed to support zooming user interfaces. The ZGA feature list was constructed
by looking at existing graphics hardware and eliciting the features we felt were
applicable to ZUIs (based on the requirements list we presented earlier). We describe
ZGA here so as to offer a reference point to compare other graphics platforms
against. After outlining the features of ZGA, we then go on to describe existing 3D
and 2D graphics systems, showing how they overlap with the feature set of ZGA,
and where they differ.
Our imaginary ZGA card features:
1. Text
(a) High quality antialiased text which can be transformed and scaled rapidly.
(b) Support for a wide range of fonts, include Typel and TrueType.
(c) International character set support.
2. Lines
(a) A rich set of line drawing styles, including rounded ends, bevels, mitering,
and dashes.
(b) Scaleable line width and semi-transparent lines.
3. Images and Movies
(a) Hardware-accelerated image scaling, preferably using filtering to produce
smooth results.
(b) Support for MPEG and QuickTime digital movies which can be scaled
to any size and played at 30 frames a second.
(c) Images are maintained and rendered in standard system memory (not
specialized video memory) to support paint applications, and applications
that present many images at once.

Motorola PX 1006_121

1106 B. BEDERSON AND J. MEYER

4. General

(&) Two 24 bit color buffers (for double buffering), a 24 bit depth buffer,
an 8 bit alpha buffer for transparency, and a 32 bit accumulation buffer
for special effects.

(b) Floating point coordinate system with support for affine transforms.

(c) Clipping, including clipping to arbitrary 2D polygons

(d) Fast rasterization of arbitrary 2D polygons.

(e) Level-of-quality control over rendering routines for text and images (so
the ZUIl can trade quality for speed when system resources become
overburdened).

() Double buffering hardware which supports partial redraws and hard-
ware pans.

In hardware terms, the ZGA graphics board is not outlandish. In fact, at first
glance, many of these features are present on 3D graphics boards. A natural step is
to try to capitalize on the graphical power of modern 3D graphics hardware when
building ZUIls.

3D graphics hardware

Over the last 20 years, there has been a significant investment in technology to
support real-time 3D interactive environments for use in virtual reality, visual
simulations, games, information modeling and visualization, and other areas. This
work has lead to the development of a number of software standards, such as
OpenGL and VRML, as well as to cheap off-the-shelf 3D hardware.

These interactive 3D systems offer considerable graphical power. A high-end
system can draw millions of polygons a second, and includes hardware support for
anti-aliasing, double-buffering, texturing, lighting and other effects. A home PC with
a modest 3D graphics card can support scenes containing rich textures, lights,
thousands of polygons, and heart-pumping interactivity (as demonstrated by current
games such as DOOM and its successors).

To what extent can alternative 2D systems such as ZUIs benefit from the 3D
hardware/software now available? At first glance, real-time 3D systems appear to
face many of the same technical challenges as a 2D ZUI such as-PAdth must
maintain high frame rates, perform animated navigation, handle scene management,
clipping, and event propagation, and deal with large numbers of objects. It seems
natural to base a ZUI implementation on a 3D graphics API, such as Inventor or
OpenGL!” An advantage of this approach is that the ZUl can take advantage of
hardware acceleration when it is available.

In practice, while 3D programming interfaces such as OpenGL present a good
starting point, they have a number of design traits that make their use in ZUls
challenging. For basic 2D graphical elements (such as polygons, lines, images and
text), 3D APIs are often either overly rich (and hence wasteful of limited system
resources), or have feature gaps (which require a slower software-based solution).
Both traits require additional coding on the part of the programmer to produce good
2D results. We discuss some of these challenges below. The discussion is based
upon our understanding of the OpenGL rendering APIl. Other 3D programming
interfaces may differ.

Motorola PX 1006_122

IMPLEMENTING A ZOOMING USER INTERFACE 1107

Text, images and lines

Current 3D graphics cards can draw large numbers of polygons and lines a second.
They often support features such as alpha blending (for transparency), clipping and
antialiasing in hardware. However, these systems are optimized for rendering convex
3D polygons (notably triangles and quadrilaterals). Rasterizing arbitrary 2D polygons
(for which there are well-known hardware optimizations) is not generally considered
part of the 3D APIl. For example, rendering 2D non-convex polygons in OpenGL
must be done by tessellating the polygons into triangles and quads, and then
rendering the resulting geometry. This is not as efficient as scan converting the 2D
polygons directly.

3D APIs tend to provide only a limited set of line styles. OpenGL offers some
basic line drawing primitives, including thick lines and line stipples. However, the
thick-line support in OpenGL draws multiple segment lines as a sequence of single
segment lines. There is no support for controlling how lines are joined (such as
mitering or beveling the joints). There is also no guarantee that pixels within a thick
multi-segment line will only be drawn once. On the hardware we've tried, semi-
transparent multi-segment lines look unattractive. The limitations with lines in
OpenGL can be overcome by rendering line segments as polygons, although this
makes line drawing more costly and also complicates the implementation.

For text, consider that a single page of text represents over 100,000 polygons.
This is already near the limit of what a typical desktop computer can render at
interactive rates. Rendering several pages of text at once (for example, in a zoomed
out view) by drawing each polygon would be very slow. It is possible to draw each
typeface into texture memory, and then use texture mapping as a way to generate
scaled text in 302 For systems with hardware accelerated texture mapping, large
guantities of text can be quickly handled using this technique. Unfortunately, texture
memory is usually a scarce resource, so only a fairly small set of fonts can be
supported in texture RAM. Also, this only works well for small point sizes—for
large characters, rendering from polygon outlines produces cleaner results. In practical
terms, implementing a rendering engine that can draw large quantities of readable
text in many typefaces and sizes is not trivial.

Texture mapping can also be used effectively to scale 2D images. Images rendered
from texture RAM can be drawn quickly at any scale and orientation. 3D graphics
cards often provide filtering hardware for scaling textures, which produces good
looking results. However, as we mentioned above, texture memory is currently a
scarce resource in 3D graphics hardware. Handling many images at once (or handling
editable images) requires a good ‘texture residence’ mechanism, which is not trivial
to implement. For ZUIs, it is desirable to be able to zoom images held in normal
process memory. OpenGL does have 2D image drawing capabilities which support
scaling, but on all the platforms we have tried the image scaling is integer based,
and doesn’'t work well for high scale factors.

3D graphics hardware availability

None of the challenges listed above prevent us from implementing ZUIs using
OpenGL. However, the number of current machines that provide hardware acceler-
ation for OpenGL graphics is still small. If ZUIs are to become popular, they must
also run reasonably effectively on hardware that is in people’s homes today. This

Motorola PX 1006_123

1108 B. BEDERSON AND J. MEYER

means that they must run well on VGA-level graphics cards that only support 8-bit
graphics. Eventually, graphics cards with feature sets similar to hypothetical ZGA
card may be built. Until then, we must rely on techniques for supporting ZUIs on
cheap VGA cards.

2D graphics hardware

In the last section we looked at some of the problems of using a 3D graphics
system to implement ZUIs. What about using existing 2D graphics hardware instead?

Of course, existing 2D graphics systems are designed to handle 2D graphical
elements such as lines, text and images. Surely they will be ideal for zooming user
interfaces also?

In reality, 2D graphics APIs make heavy use of caching. They are designed to
draw graphical elements repeatedly at a fixed scale. For example, the data structures
provided in most windowing systems for fonts and images cache device-level
information about how the font or image appears at a given scale. Generating this
information for the same font or image at different scales is too slow to achieve
continuously animated zooming.

Despite these limitations, we built Pa#l using X windows, a 2D graphics system,
to give us a wide base of computers to run on. We utilize a number of techniques
designed to overcome the shortcomings of X Windows, and meet our goal of
smoothly animated pans and zooms. We discuss howt+Pdwandles fonts and
images below, and also discuss our approach to screen management. We are currently
working on writing a Windows 95/NT version of Pad++.

Text in 2D

We have experimented with a number of techniques for drawing text irHad
One approach is to use the font capabilities built into the underlying windowing
system. Unfortunately, most windowing systems utilize bitmap fonts, which are hard
to scale continuously. Worse, each font takes up many kilobytes of memory. The
overhead of generating a bitmap font at any given size is a significant number of
milliseconds, because the windowing system must generate raster images for all the
characters in the font at the given size. Once the font has been rasterized, rendering
characters in the font is quick. However, the memory requirements for a large
number of fonts at all possible scales are prohibitive, especially when you consider
the very large font sizes possible in Padffer example, when a character is scaled
up to fill the whole screen).

Microsoft Windows offers TrueType fonts, which are stored in outline form and
are therefore scaleable, but generating high quality characters (especially for smaller
font sizes) from outline fonts is hard, and outline fonts are also slower to render
than bitmap fonts. Windows applications still rely on generated bitmaps for rendering
large quantities of text, and rendering high quality small text.

In Pad++, to produce fast zooming fonts, we initially used a simple line font. In
this font, each character consists of one or more multi-segment lines, with fewer
than 10 segments per character. Lines are quick to render, so this approach is fast,
but the characters must be hand-designed and have few curves. The characters look
unattractive compared to bitmap based fonts.

Motorola PX 1006_124

IMPLEMENTING A ZOOMING USER INTERFACE 1109

As a next step, we obtained an Adobe Type 1 font decoder and attached it to
the polygon renderer in Pad. This generates only a single non-convex polygon
per character, but is still too slow for large quantities of text, and the characters
suffer from aliasing artifacts (e.g. uneven stems, holes and ‘pimples’) when they are
small, which makes small text hard to read (d&gure 1). There are outline font
renderers that overcome the limitations of our simple polygon renderer, but they
are slower.

To address the speed problem, we implemented a lightweight font cache mech-
anism. A fontcachecontains 96 cells, representing the ASCII character set. Each
cell holds a 100< 100 pixel bitmap. The fontcache mechanism remembers what
character size and typeface appears in each cell bitmap. To render a character, say
the ‘A’ character, from a given typeface, the font cache mechanism looks in cell
65 (the ASCII code for ‘A’) and checks if the character drawn in the cell is the
right typeface and size. If it is, then the bitmap is copied directly to the screen. If
not, then the cell is cleared, the polygon form of the character is obtained and
rendered into the cell, and then the cell is copied directly to the screen.

In Pad++, all the fonts used with the renderer share two global fontcaches. It
would be possible to allocate a separate fontcache for each font, though this is
expensive since each fontcache requires 96 bitmaps that are< @D pixels
(implemented with a single 9600100 bitmap, approximately 100 kilobytes in size).

The fontcache mechanism accelerates rendering of small-sized text, which contains
repeated uses of a character in the same font. Since for English text documents and
program code this is a frequent occurrence (Begure 2), the speedup effects of
the fontcache for many documents are appreciable. On our reference platform, a
sample text document took 367 ms to render (2.7 frames per second—fps) with no
font cache. With the font cache enabled, the same document took 68 ms (nearly 15
fps)—a speedup factor greater than five. On other systems, even greater speedups
have been observed. Also, note that the overhead of changing the font size and
typeface is also low, since only the characters that are actually rendered are placed
in the cache.

An improvement to the fontcache might be to provide more cells in the cache
for frequently used characters, observing that E is more frequent than T, which is
more frequent than A, etc. We haven’'t explored this approach fully.

The fontcache lets Pad+zoom text quickly, but the text is still hard to read at
small sizes. Our solution for certain fonts (in particular Times and Helvetica) at

1 E : " Line font Abc 123

Onutline version O'Lll || ne fClﬂl .‘:\bC 1 23

Bitmap font Abc 123
1 23 Antialiased Abc123

Butmap version

Figure 1. Various font rendering styles. Pad+tses line fonts, bitmap fonts and outline fonts. It does
not currently support antialiased fonts

Motorola PX 1006_125

1110 B. BEDERSON AND J. MEYER

hits missis
Cell | — H N

)
o .

Cell W

Figure 2. Fontcache hit/miss statistics for a piece of+Cprogram text. The left image depicts cache

hits for character cells in the cache. The right image indicates cache misses for the same cells. The

hit/miss count is reflected by brightness. Overall, there are more misses than hits. Most misses are in
the higher numbered cells, representing characters ‘a'—z’

small sizes is to switch to X bitmap fonts during refinement (refinement is discussed
in the section onScreen Management’). As mentioned earlier, loading bitmap fonts
is slow, but during refinement slow rendering is less important. This technique is
only used for a few fonts (to keep memory usage down), and is not used for
rotated text.

Note that if we use a bitmap font (or other windowing system font), we must
discard the default spacing metrics for the font, and instead compute the spacing for
each character explicitly, using floating point coordinates, based on the font metrics
of the outline font. If we don’t do this, text tends to ‘jiggle’ as it is zoomed, and
the outline and bitmap fonts do not line up consistently. This is because bitmap
fonts come only in sizes of one pixel increments, which is too coarse for smooth
zooming, and because the font metrics are bitmap fonts is usually hand-tuned to
produce more readable (but less mathematically accurate) letter spacing.

Eventually, we hope that there will be more hardware support for outline fonts
and font antialiasing. Until then, text will remain a challenge for ZUls, and multi-
solution approaches such as that adopted by Paslii+be necessary to achieve
reasonable text performance.

Images in 2D

In this section we look at how Pa&d zooms images. We do not consider storage
issues, or multiscale image representations, but discuss only how to render a moderate
size image held in RAM.

The image scaling required in Pad+s basically a constrained version of texture
mapping. 3D graphics systems not only scale images, they also have to rotate and
shear the image to account for perspective transforms, and map them onto complex
polyhedra. The Pad+tequirements are much simpler, since images are only transfor-
med using translation and scale.

The easiest image scaling algorithm magnifies images using pixel replication and
shrinks them using pixel decimation. A simple version for this is:

Image zoomimage(Image src, float scale) {
Image dst = new Image(src.width * scale, src.height * scale);

Motorola PX 1006_126

IMPLEMENTING A ZOOMING USER INTERFACE 1111

for (int y = 0; y dst.height; y ++) {
for (int x = 0; x dst.width; x++) {
dst.data[y][x] = src.data[(int)(y / scale)][(int)(x / scale)];
}
}
return dst;

}

However, a literal implementation of this does not produce fast results. Before
becoming discouraged and looking for a more sophisticated technique for handling
real time image scaling, consider how this code can be optimized. Examining this
implementation at the machine code level, every iteration contains approximately
10 instructions:

Loop increment

Loop test

Divides

2D array conversion (source)
2D array conversion (dest)
Memory lookup

Memory storage

= Total ~10 instructions

RPRNNNR R

An optimized version of this algorithm takes advantage of the fact that each row is
mapped in the same way. We can compute a lookup table for mapping the X
coordinates of the first row, and reuse it for all the rows in the image. Further
optimization can be achieved by ‘unrolling’ the inner loop—so that the overhead of
incrementing the loop variable and testing is greatly reduced. +&, @y using
pointers instead of 2D arrays, the algorithm runs faster still. The scaling code now
looks something like:

/I MAKE A PRECOMPUTED TABLE FOR MAPPING ROW X VALUES

int table = new int[dst.width];

for (int x = 0; X < dstwidth; x++) {
table[x] = (int)(x / scale);

}

/I SCALE THE IMAGE

for (int y = 0; y < dstheight; y ++) {
long *srcPtr = src.dataly];
long *dstPtr = dst.data[(int)(y / scale)];
int *tablePtr = table;

/l SCALE THE ROW (UNROLLED)
for (x =0; x < dstwidth & ~7; x +=8) {

dstPtr[0] = srcPtrtablePtr[0]];
dstPtr[1] = srcPtr[tablePtr[1]];
= srcPtr[tablePtr[2]];

dstPtr[2]

Motorola PX 1006_127

1112 B. BEDERSON AND J. MEYER

dstPtr[7] = srcPtrtablePtr[7]];
dstPtr += 8;
tablePtr += 8;

}

/I FINISH THE ROW (-NOT- UNROLLED)
for (; x < dst.width; x++)
*dstPtr++ = srcPtrtable[x]];
}
}

A rough machine instruction count for the inner loop of this version is:

2 Memory lookup
1 Memory storage
= Total ~3 instructions

This is about three times faster than the original version of the code, and produces
fast real time image zooming with reasonable performance. With this algorithm
Pad++can zoom an 808 600 pixel image on a 200 MHz Pentium Pro at 30 frames
per second.

We've ignored all the special cases: stippling images (for semi-transparent images),
color dithering for simulating 24 bit color on 8 bit graphics cards (in Padithering
is done during refinement), images with transparency masks, etc. To keep the image
renderer fast, rather than adding statements to the inner loop code, we duplicate the
scaling algorithm for each of the various combinations, leading to 16 versions of
the same code, each with minor variations. This is unaesthetic but fast.

Decimation/Replication does not produce the best-looking image scaling. One
problem is that the pixels tend to ripple as the image is scaled. MIP-mapping and
bi-linear or tri-linear filtering, such as is performed in hardware by high-end 3D
cards, produces much smoother results. In the future, this style of hardware is likely
to become readily available on home PCs. Hopefully, simple 2D image scaling
operations will also be supported in hardware by these cards.

Rotation

To save the overhead of adding a general-purpose transformation to the renderer,
we add special code to rotate each object type. This code off-loads rotation compu-
tation from the renderer to the time of rotation. Thus, the+ackenderer maintains
a transformation stack of just translation and scale, but does not include rotation.
Polygonal objects are rotated by transforming the points. Images are rotated by
computing a new rotated image from the original. Text, however, is rotated at render
time, and thus rotated text is slightly slower than non-rotated text.

Screen management

Consider a 1288 1024 pixel screen. If the user is inserting a single text character
in a small text object visible on the screen, it is undesirable to redraw the entire
screen-full of information for just this minor change. Rather than redrawing the

Motorola PX 1006_128

IMPLEMENTING A ZOOMING USER INTERFACE 1113

entire display, it is better to focus rendering resources on only the areas of the
display that have changed. To do this, applications must maintain information about
what areas of their display are out of date and perform rendering operations clipped
to these areas. We call this technique ‘screen management’.

Existing windowing systems do determine when windows need refreshing (e.g.
because they have been moved or resized), and they also clip rendering operations
to windows (so changes to one window do not effect other windows). In this sense,
windowing systems carry out primitive screen management on behalf of applications.
But windows are assumed to be rectangular and opaque (X Windows includes an
extension to support non-rectangular windows, but there is a performance penalty
for using it), and windowing systems still leave it up to the application to manage
the contents of each window. To handle large windows effectively, applications must
implement their own screen management schemes.

To help applications carry out screen management, all the common windowing
systems also provide clipping primitives that use Shape alg8bshjch lets appli-
cations clip 2D graphic operations to arbitrary polygonal shapes. Shape algebra is
useful because it supports efficient clipping and boolean operations. Using Shape
algebra, applications can implement sophisticated screen management schemes.

In a ZUI such as Paed, screen management is further complicated by three
factors. First, objects can be non-rectangular and semi-transparent, so a change to
an object may require re-rendering the objects in front of and behind it. Secondly,
rendering is double-buffered, so objects can never just directly modify pixels on the
screen, but must coordinate with the double-buffering mechanism. Thirdly, because
of portals, a change to an object may require several different parts of the screen
to be redrawn.

Pad++uses shape algebra in conjunction with a ‘damage and restoration’ scheme
to keep the display up to date.

Damage and restoration

The Pad++screen management system is based on a painting metaphor. The
display is treated as a ‘painting’, and changes to objects visible on the display are
seen as ‘damage’ to the painting. A ‘restorer’ is an object whose contract is to fix
up damage. Each restorer maintains a Shape specifying what area of the display to
work on, and an integer level indicating what refinement level to work at (more on
refinement in a moment). At any time, a number of restorers may be working on
different areas of the painting, each at different refinement levels. The system ensures
that no two restorers are working on the same portion of the screen—newer restorers
always receive priority over older restorers (their Shape is subtracted from the Shape
stored in earlier restorers).

When objects change, they register damage on the Padrfa&ce. Objects register
damage in object coordinates by calling tbamageroutine, passing it a bounding
box. When damage occurs, Padsearches for a restorer with refinement level O to
register the damage with, creating a new restorer if necessary. Once a restorer is
obtained, Pad++adds the bounding box to the Shape record within the restorer. In
principle, it is desirable to maintain damage information in floating point surface
coordinates. In practice, because Padises the Shape algebra utilities provided by

Motorola PX 1006_129

1114 B. BEDERSON AND J. MEYER

the underlying windowing system, damage coordinates are always converted to
integer screen coordinates before being added to the Shape.

Notice that some changes to objects may generate multiple calls to the Damage
routine—for example, when an object is moved, it generates damage for both the
old and the new bounding box of the object.

When the system becomes idle (when all the events in the input queue have been
handled), any restorers in the pending queue are removed from the pending queue
and ‘run’'—causing the appropriate regions of the display to be re-rendered. Appli-
cations can also force pending restorers to be rendered, for example during animations.

Damage through portals

Portals complicate damage, since a single object may be visible on the screen in
multiple portals at difference scales. The system must also handle the case of damage
to an object which is visible through a portal looking at a portal looking at the
object (and so on). Damage to objects visible through portals must be clipped
correctly to the portal’'s screen bounds.

A simple approach is to perform an exhaustive depth-first search every time an
object is damaged, checking each portal to see if the damage is visible. This is too
slow in practice, and doesn’t scale up to support large numbers of portals. (Notice
that the damage recording mechanism must be fast. During an animation, many
objects may be changing every frame, generating large numbers of damage requests.
If every damage request involves a large search operation, frame rate will drop
significantly.)

A better approach is to maintain a data structure indicating, for each object, which
portals can see that object. The damage routine can then just register damage with
each portal directly. A problem with this approach is that maintaining the per-object
portal lists is expensive. Every time an object is moved, the system must examine
all of the portals to check if the object is visible (directly or indirectly) in the portal.
The data structure must also be updated every time a portal’s view is changed.

A good compromise is to have each view (i.e. each portal or top-level window)
maintain a list of the portals visible within that view. Then, when damage occurs,
the system can quickly determine which portals are visible on the screen and
recursively check only those portals for damage. The visibility list is comparatively
lightweight to maintain, since it only involves work when a view is changed, and
not when other objects are changed.

A further optimization would be to divide portals into high-priority and low-
priority portals. High-priority portals are used for areas which the user can actually
interact with (main displays, editor windows, lenses, etc.), and which must be kept
up-to-date. Low-priority portals are used for static non-interactive information displays
(bookmarks, icons, snapshots, etc.). Whenever damage occurs, all the visible low-
priority portals are scheduled for repainting after a time-out of one second, regardless
of the visibility of the specific object in those portals. High-priority portals register
damage recursively as described above. With this mechanism, high-priority portals
are always kept up-to-date (but require more work to damage). Low-priority portals
can become out-of-date, but they incur a smaller penalty during animations. We are
currently implementing this last optimization.

Motorola PX 1006_130

IMPLEMENTING A ZOOMING USER INTERFACE 1115

Sticky objects

In a ZUI, it is sometimes important to have objects stay in a fixed location on
the screen, and to not pan and zoom with other objects on the surface. Silukye
objects are useful for bookmarks, cut buffers, status lines and other interface
components. How should these sticky objects be handled?

Ideally, a hardware solution such as overlay planes (found, for example, on SGI
workstations) would be used for sticky objects. Overlay planes let two distinct frame
buffers be mapped to a single window. The hardware includes a mechanism for
indicating which buffer is visible in each pixel location (e.g. via a special transparent
pixel value).

Overlay planes would let Pad+treat sticky objects and non-sticky objects as two
separate planes of information. However, not all systems support overlay planes, and
overlay planes prevent sticky objects from being beneath or interleaved with non-
sticky objects.

A second approach to handle sticky objects is to maintain two separate scene
graphs for each surface—one representing non-sticky objects, the other representing
sticky objects. The renderer and event manager must then consult both graphs. The
drawback of this approach is that it introduces complexity into the code, since
functions must be aware of the two different cases (sticky and zoomable). We tried
this approach, but abandoned it once we realized how many duplications this would
introduce to the code.

Our current approach is to implement sticky objects as normatPathjects with
a simple one-way constraint: whenever the main view of a surface is changed, all
the sticky objects on the surface are transformed by the inverse of the view’s change.
Since the number of sticky objects is generally small (limited screen real-estate
offers a natural incentive to keep the number of sticky objects down), this does not
impact hugely on the cost of view changes. To the user, the effect is that all sticky
objects maintain a fixed location on the screen. Internally, sticky objects are main-
tained in the same scene graph as non-sticky objects.

An advantage of this approach is that it allows objects to be sticky only in one
dimension, e.g. objects that pan left and right, but always stay the same size (we
call thesesticky-zobjects). The notion of constraints makes it easy to customize the
specific behavior of the sticky object.

Level of refinement

During pans and zooms, the main role of the display in a ZUIl is to provide
information as quickly as possible to orient the user—giving them visual cues
indicating where in the space they are looking. But when the view is stationary (e.g.
because the user is reading a document), text and diagrams should be as legible as
possible. These two different modes of viewing introduce a design conflict, since
producing legible text at arbitrary scales is a compute-intensive operation, and during
pans and zooms you want to spend as little computation time as possible.

One solution to this problem is to render the contents of the display using fast
low-quality algorithms during animated pans and zooms, and then use higher quality
rendering algorithms to redraw the display when it has been stationary for a period
of time.

To support this approach, restorers in fadcan work at differentLevels of

Motorola PX 1006_131

1116 B. BEDERSON AND J. MEYER

Refinement (LOR). At LOR 0, the restorer draws objects as quickly as possible. At
higher LORs, restorers draw with increasing detail, although they take longer to
complete. In practice, only LORs 0, 1 and 2 are used.

When a restorer has finished work, it can schedule another restorer to redraw the
same region at a higher LOR—allowing areas of the display to be ‘refined’ (see
Figure 3). Restorers determine whether refinement is needed by querying each
rendered object to see if it has more detail available. If an object has further detail
available, its bounding box is added to a ‘refining restorer’. At the end of the render,
the refining restorer is scheduled to run. With this mechanism, a change to an object
on one area of the screen may cause that area to iterate through a number of
refinements. Changes to other areas of the screen do not interfere with this refinement
process, but instead initiate new refinement processes. Damage to areas that overlap
with a refining restorer cause that area to be removed from the shape managed by
the refining restorer and rescheduled for rendering by a new restorer using LOR 0,
potentially canceling the refining restorer if it becomes empty.

Refinements can be visually jarring to the user. For example, when switching
from LOR 0 to LOR 1, small text alters its appearance from dashed lines (‘greeked’
text) to individual letters. The change in appearance can be distracting. To resolve
this problem, Pad+wses a dissolve transition to update areas of the screen as they
are refined. Although this effect slows down the total time taken to refine a region,
it also reduces screen flashing, so the overall impression is an improvement.

Interruption

Adding refinement to a system introduces a new problem. Refinements may take
a considerable time to complete. For example, rendering a large image using color
dithering takes nearly a second on a mid-range PC. During this time, the user may
decide to interact with one of the objects on the surface, or pan to a different
location. Forcing the user to wait for refinements to complete is undesirable.

In Pad++, refinements are interruptible. Periodically during a refining render, the
system checks for input events (keyboard or mouse button events). If an event is

Mo York Uninersity

Figure 3. Before and after refinement. The left view shows the scene before refinement. The right view
shows the same scene after refinement. Greeked text is replaced with fully rendered text. Images are
refined using color dithering. Refinement is introduced using a dissolve effect, to reduce screen flashes

Motorola PX 1006_132

IMPLEMENTING A ZOOMING USER INTERFACE 1117

found on the input queue, the renderer finishes rendering the back buffer at LOR
0, leaves the front buffer unmodified, and schedules a new restorer to come back
during idle time to redraw the region. Then the event is processed as normal.

Fast panning

A second problem with refinement is that when the user pans or zooms the whole
display, it jumps back to refinement level 0. This introduces a distracting flash to
the display, although this is less distracting than the flash produced by successive
refinements, since it is user-initiated, and not initiated by the system during idle
time. Still, considering that the display may contain an entire page of text rendered
at a high refinement level, it is desirable to preserve this image at high refinement
level when the user performs a small pan (e.g. to read the bottom of the page).

Using a BitBIt operation, it is comparatively fast to shift the contents of the back
buffer by a number of pixels. Then restorers can be scheduled to redraw the strips
at the edges of the back buffer that are out of date. With this approach, much of
the display contents can be retained for incremental panning operations. A secondary
advantage is that, for complex scenes, there is a performance improvement (since
only the objects in the exposed strips need to be rendered, and not the whole display).

There are three complications to consider. First, if there are any sticky objects,
the areas under the sticky objects must be damaged both before and after the BitBlt,
so that the sticky objects are rendered in the new location. Secondly, any outstanding
restorers must also have their Shape records updated to reflect the new screen
coordinate system. Thirdly, there will inevitably be some aliasing problems. For
example, consider a pan by 1.1 ‘pixels’ to the left. This is a legal operation in
Pad++, which uses a floating point coordinate system. BitBlts, on the other hand,
always move data a whole number of pixels. After ten successive pans by 1.1 pixels,
the objects on the screen will have moved 10 pixels, whereas Pad will think they
have moved 11. Tearing and other visual artifacts will become apparent.

To address this problem, after performing any BitBlt operations on the screen,
Pad++schedules a restorer to redraw the entire screen after one second of idle time.

PART II: VISIBLE OBJECT DETERMINATION

Having a powerful rendering engine is important, but rendering resources are always
finite. For datasets containing only a few dozen objects this is unlikely to be a
problem, but for datasets containing tens of thousands of objects, a more intelligent
approach is needed.

A basic implementation of a ZUI would simply draw every object every frame,
and rely on the clipping mechanisms provided in the graphics hardware to avoid
modifying pixels that are outside the current clipping region. However, clipping is
compute-intensive, and as the number of objects increases this approach becomes
too slow. For a ZUI that must scale up to handle tens of thousands of objects, the
approach is unworkable.

A slightly better approach is to test each object for visibility, and only draw
objects that are visible in the current view. In this way, if an object is not within
the current view (or outside the current clip region), it does not consume any
rendering resources. In most applications, only a small fraction of the total objects

Motorola PX 1006_133

1118 B. BEDERSON AND J. MEYER

in a world are visible at a usable size in a given view, so this approach can
significantly improve frame rates. Frame rates also improve if only a small fraction
of a view needs to be redrawn.

Bounding boxes are often used to perform these coarse visibility checks. Testing
of two bounding boxes intersect is cheap. A Pentium can performs hundreds of
thousands of 2D bounding box intersection tests a second. So for medium sized
datasets, performing bounding box checking alone is enough to yield good frame
rates. Tabula Rasaand the original Pad implementatfoboth use this approach.
However, since the time spent doing visibility checks is linearly proportional to the
number of objects in the world, as the number of objects increases, there will be a
point where the system spends more time checking than rendering, and frame
rates drop.

For very large datasets, a faster mechanism for determining which objects are
visible within a given view is essential. Once such a mechanism is available, it is
also useful for event processing, since determining which objects lie underneath a
point is essentially a constrained version of the same type of query.

Common approaches

There are several popular approaches to handle visible object determination.
Windowing systems typically only manage a relatively small number of windows,
and so don't need special purpose mechanisms for performing visibility tests.
Windowing systems are also hierarchical by nature—top-level windows enclose sub-
windows, which enclose sub-sub-windows, and so on. This enforced segregation
means that windowing systems can quickly eliminate whole trees from consideration,
further speeding up visibility checks. By comparison, ZUIs need to support datasets
in which there is no rigorous enclosure hierarchy—such as you might find in a map.

ZUls are more akin to 3D systems, in which objects can be distributed anywhere
throughout space. The distribution of objects within space depends on the specific
application, but there are several classes of applications that are instructive to look
at. Two representative types of 3D systems are vehicle simulators and architectural
walkthrough systems. Vehicle simulators typically have strict frame-rate requirements,
and have objects distributed fairly uniformly through space, frequently lying on a
large two-dimensional surfaée. Architectural walkthrough systems on the other
hand, tend to have a large number of objects concentrated in a small three-
dimensional spac®. In most 3D systems, there can be a fairly wide range of sizes
of objects, as both large structures and fine details must be represented.

Object visibility in 3D systems is determined by what is called thewing
frustum?? This is the truncated pyramid of space that can be seen from the current
view position. It is truncated byear and far clipping planes—so objects that are
too near or too far from the view are clipped. Often, some kind of spatial indexing
data structure is used to efficiently determine which objects overlap the viewing
frustum. In addition, some systems use knowledge about the model to eliminate
objects from consideration. For instance, in an architectural walkthrough of a room
on one floor, no objects on any other floors are visible, and only a limited number
of objects in other rooms on the same floor are vistBle.

Other 2D systems that maintain large numbers of objects and must quickly
determine object visibility include integrated circuit design systems (VLSI) and

Motorola PX 1006_134

IMPLEMENTING A ZOOMING USER INTERFACE 1119

Geographical Information Systems (GIS). Both VLSI and GIS systems manage very
large numbers of 2D objects and support limited forms of zooming. VLSI and GIS
systems also contain objects with a wide range of sizes.

The visible-object determination needs of a ZUI are similar to these 2D and 3D
systems. In all cases, the basic problem is to quickly determine the set of objects
that overlap a specified view. The differences between 2D and 3D approaches to
this problem are not great, since most spatial indexing data structures can accommo-
date scenes of arbitrary dimensionality.

However, ZUIs impose two new constraints on the visible object retrieval system:
small objects should be eliminated quickly, and objects must somehow be sorted by
display-list order. We discuss these two issues below, comparing them with related
issued in other graphical systems. Afterwards, we describe how spatial indexing is
handled in Pad++.

Object ordering

In a ZUI, objects need to be rendered in a specific order—this order determines
which objects are in front of other objects, and which are partially obscured or
behind other objects.

Unfortunately, every spatial indexing data structure we found does not return the
objects specified by a query in a guaranteed order. This is not a problem for 3D
systems, which can render objects in any order and rely on a depth buffer (or ‘Z-
buffer’) to perform hidden surface removal. Order is also not a problem for GIS
and VLSI systems because those systems are designed to avoid display order
requirements through the use lafyers. In these systems, objects of different types
are put on different logical layers, and each layer is rendered in its entirety before
any objects of another layer are rendered. Objects within a layer should not overlap
because there is no ability to control the rendering order of objects within a layer.
For instance, in most GIS systems, streets may appear on one layer with highways
on another layer, and county boundaries on a third layer. When streets do overlap
each other, the order in which they are rendered cannot be controlled.

Two-dimensional windowing systems do require that windows get rendered with
specified overlapping, but they do not use a spatial index. Rather, they maintain
regions for each window specifying what portion of the window is not occluded,
and only that portion of the window is rendered when the window contents change—
thus maintaining the correct overlapping of windows on the screen. This approach
is too costly when there are many thousands of objects, and doesn’t handle semi-
transparent objects well.

Small object elimination

Objects in a ZUI can differ in size by many orders of magnitude. In a zoomed
out view, only the very large objects are visible, and many objects will be so small
that they are less than a pixel in size. Spending time rendering these objects is
wasteful, especially if rendering time is limited. Ideally, the visible object determi-
nation mechanism should quickly eliminate these small objects.

This requirement is similar for some other systems, but not identical. Windowing
systems have no such requirement—they render every window unless it is occluded.

Motorola PX 1006_135

1120 B. BEDERSON AND J. MEYER

VLSI and GIS systems do avoid rendering small objects, but as with sorting, use
layers to avoid a per object solution. That is, rather than deciding whether or not
to render each object by size, VLSI and GIS systems decide whether to render an
entire layer depending on the magnification.

3D systems usually base culling efforts on object position rather than on relative
size. Instead of culling objects that are in the current view but are very small, they
are often optimized to eliminate objects that are positioned beyond the viewing
frustum. Small objects that are within the viewing frustum still get rendered, or at
best are checked on an individual basis. This is not sufficient for ZUIs.

Spatial indexing in Pad++

Spatial indexing is the general term for a data structure that encodes spatial
characteristics about a set of objectsnidimensional space. These spatial character-
istics are then used to provide efficient mechanisms for retrieving objects given
spatial queries. One typical query is to retrieve all objects intersecting a given
rectangle (for a two dimensional index.) This query can be used in a ZUI to return
all objects visible in a given view, or to find all objects that overlap a single point
in order to process events.

There are several widely used spatial indexing algorithms (a survey of spatial
indexing algorithms and their applications can be found elsew#iéte.Many are
hierarchical, and are based on partitioning space in smaller and smaller segments.
Algorithms include R-tree¥, MX-CIF quad-tree$; binary space partitioning tre€s
and k-d treeg? Each algorithm has maintenance (insertion and deletion) methods
and query methods. Typically, there is a trade-off in time between these methods,
where increasing the efficiency of one introduces a higher cost for the other.
Consequently, the choice of algorithm depends partially upon whether the scene
consists of static or dynamic objects. For static scenes, a higher maintenance cost
is usually acceptable, whereas for dynamic scenes the maintenance costs become
more critical.

In implementing Pad++, we chose to use an R-tree. An R-tree is a hierarchical
structure based obounding regions. Objects are contained in leaf nodes, and internal
nodes contain regions that specify the bounds of its children. Each region has a
specified minimum and maximum number of children. Regions can overlap, so while
an object is only a member of a single region, a query can need to look at several
regions at each level. R-trees are similar to quad-trees, except that they partition
space into regions based on the objects within the space, and not based on fixed-
sized grids. R-trees are balanced so they have a guaranteed maximum depth.

We chose to use R-trees rather than the more advanced R*®tR#etrees produce
more efficient structuring of regions, but they take longer to maintain. Since visible
object determination is not the biggest factor determining rendering speeds (see the
‘Timing Results’ section below), we decided to choose an algorithm which offers
effective indexing and very fast insertion and deletion times. This supports our goal
to handle very dynamic data spaces, in which many objects move and resize over
time. A basic R-tree appears to have lower maintenance costs than the other
algorithms we examined. In addition, R-trees are amenable to efficient small object
culling during queries.

Motorola PX 1006_136

IMPLEMENTING A ZOOMING USER INTERFACE 1121

Object elimination in Pad++

As mentioned earlier, a ZUI typically has overlapping objects with sizes that
differ by several orders of magnitude, so it is crucial to quickly eliminate objects
that are much smaller than the query window. For +*adve chose to ignore all
objects that are less than one pixel in both screen dimensions. We cannot eliminate
very large objects, because even if they are huge, they may still get rendered and
have a large visual effect. Since the hierarchy within R-trees is based on enclosure,
we are guaranteed that every child of a node is no larger than the parent node.
Thus, if we determine that a given node is smaller than a minimum size, we do
not have to descend that portion of the tree. In our implementation, in addition to
the rectangle we pass in for each query, we also pass in a minimum size. All
queries use this extra parameter to cull sub-trees that are too small during a search.

Even eliminating all non-visible and small objects may not be enough. For
example, if the system is performing an animated zoom and attempting to maintain
at least ten frames a second, what happens when the number of visible objects in
a scene is too high, and there is not enough time to render every object?

A general approach is to render only a partial or fixed set of visible objects
during animation frames, and then render the full set of objects during refinements.
For example, the system can avoid rendering text labels during animated view
changes, and only render them when the view remains stationary for a while.
Alternatively, it could render only the first few hundred objects during an animation.

A drawback of this approach is that it doesn’'t adapt according to the hardware
or data. Even for simple scenes containing only a few objects, the user is given an
impoverished presentation of the data during the animation. Animations don’t scale
according to the hardware—yet people with faster computers expect to see more
detail during animations.

Instead of adopting a simple, fixed approach to controlling frame rates, a better
solution is to include adaptive mechanisms in the renderer. The idea is to monitor
frame rates, and use the statistics about prior frame rates to control how much work
is done during the current render.

There are several things that can potentially be controlled. The renderer can make
decisions about what objects are rendered, culling more objects when frame rates
are low. The renderer can also switch to lower-quality rendering algorithms (e.qg.
algorithms which have a lower level-of-detail) when frame rates drop.

In Pad++, in addition to using a spatial index to eliminate small and non-visible
objects, we use frame rate statistics to control how text is rendered and how many
small objects are rendered. If frame rates are low, the number of ‘small’ objects
(objects beneath a certain pixel size in their largest dimension) rendered each frame
is reduced, and the notion of what constitutes a ‘small’ object is increased to be
more inclusive. Similarly, if frame rates are low, the system switches to using
‘greeked’ fonts for small text. If, during any frame, a time-limit is exceeded, the
system can switch to an emergency mechanism—this renders the remaining large
objects using the lowest level-of-detail possible.

Object ordering in Pad++

As described earlier, a query must not only retrieve the objects that overlap the
specified rectangle, but it must retrieve those objects in display-list order, so they
can be drawn with the correct overlapping behavior.

Motorola PX 1006_137

1122 B. BEDERSON AND J. MEYER

The easiest solution to this problem (and the one adopted by Pad++) is to simply
retrieve the objects from the spatial index unsorted, and then apply a sorting
algorithm (e.g. QuickSort). However, sorting can become quite expensive if a large
number of objects are visibldzigure 4 shows the time to retrieve and sort objects
in a scene depicting a map of New York City. In this case with a scene of over
2000 objects, the sorting time took longer than the retrieval when the number of
objects to be sorted became greater than about 400.

We attempted to reduce this sorting time by maintaining the list of objects in
each R-tree leaf node in sorted order. We then performed a merge sort, motivated
by the fact that we had already done a fair amount of the sorting work since the
objects at each node were sorted. Unfortunately, this approach did not result in
sorting any faster than using the system QuickSort function on all the visible objects.
It appears that the overhead of copying objects and maintaining extra lists required
for a merge-sort consumes more time than is saved.

Compromise solutions do exist. For example, given that the number of overlapping
objects in any scene is likely to be much less than the total number of objects in
the world, we could provide for only a fixed number of different drawing depths
(perhaps a few thousand). Objects with the same depth would be rendered in an
arbitrary order—for objects that don’t overlap this is not a problem. Objects with

10 ‘ OSort Time ‘

Retrieval Time

Full time to retrieve and sort
objects with spatial indexing

1,717 objects being
sorted at this point

Time (milliseconds)
(3]

Portion of time to retrieve objects
with spatial indexing, not including
sorting

_

i

0 20 40 60 80 100 120 140 160 200 220 240
Frame Number

Figure 4. Time taken to retrieve and sort visible objects in a scene depicting a map of New York City
containing 2135 objects

Motorola PX 1006_138

IMPLEMENTING A ZOOMING USER INTERFACE 1123

different depths are rendered in order according to their depth, with lower depth
numbers being rendered first. This lets users specify overlapping constraints when
they are important.

Another possibility is to use Binary Space Partition (BSP) fieesth the drawing
order of each object representing its Z depth. This approach has the advantage of
eliminating the sort entirely as BSP trees implicitly sort objects. However, maintaining
BSP trees for dynamic scenes tends to be compute intensive.

We are currently experimenting with an indexed approach, which eliminates the
need for sorting and is still reasonably efficient. We construct an array of flags, one
flag per object. The flags are maintained in pages, each page containing 256 flags,
as well as ausedbit that is set whenever one of the flags in the page is set. The
retrieval algorithm clears all the used bits, and then invokes the R-Tree spatial index
described earlier to locate visible objects. For each visible object, the corresponding
flag in the array is set. Whenever a page of flags is referenced for the first time,
the page is marked as used and the flags in the page are cleared. After the spatial
index query is complete, the renderer examines each of the pages. If a page is
marked as used, then all the flags in the page are checked, and each object whose
flag is set is rendered.

With this paging approach, if every object on a surface is visible the algorithm
has a worst case running time @f(N), whereN is the number of objects on the
surface. This is much better than the QuickSort approach, whi€(MogN). If no
objects are visible, the paging approach still has a performance overhe@Q@\}f
since every used bit must be checked. But the costs involved are very low, since
there is only a single used bit to check for each group of 256 objects. By paging
the used bits themselves, the overheads can be reduced still further, leading to good
overall performance. The timing tests in the next section do not reflect this new
approach which is still under development.

A hardware solution to this problem also exists: using a depth buffer eliminates
the need for sorting. Depth buffers are commonly found on many 3D cards, and
also on our hypothetical ZGA card. To render the ZUI scene, the depth buffer is first
cleared, then objects are drawn in arbitrary order, but with a Z-depth corresponding to
their drawing order number. The graphics hardware then takes care of clipping
objects according to their depth. For this to work well, the depth buffer must have
at least 16 bits per pixel to offer a reasonable number of depths.

Timing results

In this section, we present the results of several timing tests o#Rathowing
the performance of rendering and visible object determination. Remember that the
goal is frame times of at most 100 milliseconds (ms), or 10 frames per second
(fps). All tests were performed on a 200 MHz Pentium Pro running Linux, with an
800x 600 pixel graphics window. Window size is significant, because each frame
render involves both clearing the back buffer to the background color, and copying
the back buffer to the window. The overhead for this clearing and copying on the
reference platform is 4 ms.

Four different tests were performed, to compare hand-created scenes with computer-
generated scenes, and to compare scenes of uniformly sized objects with scenes of
objects of many different sizes. See the graphs-igures 5-8.

Motorola PX 1006_139

1124 B. BEDERSON AND J. MEYER

180 Frame 20 Frame 130 Frame 2010 Frama 30 Frama 40 Feama 500
e Tolal render ima
140 I Soatinl Iinda quany Tims
Linear List quany tme
Spikes comespand da Tading bas
120 witich Bs Tim-0ors U ming % mndar
H \‘
100
i 10 fps goal
.
E B
-
8

i 50 100 180 200 250 300 =0 400 450 £] S50
Frams Mumber

Figure 5. Times for 20 copies of a hand-created scene of a typicarPadcument. Objects have very
different sizes, and only a small number are visible at any given time. Total of 11,620 objects

Each graph shows the total rendering time for each frame as the view is changed
to move through all parts of the scene, zooming in and out, and panning to each
area of the scene. The total rendering time is further broken into two parts: time
spent querying the spatial index (and sorting the results), and time spent actually
doing the drawing.

Each graph also shows the time it takes to perform a simple linear visible object
check (i.e. checking every object for visibility every frame). This lets us compare
the effectiveness of the spatial index with a simple linear approach.

Intuitively, the time taken by the linear approach should be constant, since every
object is checked in every frame. In practice, for visible objects the system also
performs small-object culling, so the total time taken in each frame varies slightly
according to the number of visible objects (i.e. visible objects take two checks,
whereas objects that are not in the view require only one).

To evaluate the cost of maintaining the spatial index, we performed a test where
we moved many objects at once. For the scenes usdedwes 7and 8, we moved
all the objects, with and without spatial indexing. The timing results are shown
in Table I.

Motorola PX 1006_140

IMPLEMENTING A ZOOMING USER INTERFACE 1125

Seawan
snapshots
during besi

i Frame 40 Frame 70
1,717 algecis
rendared af Bis
180 pokt
120
E 1M
E 0 fps goad
T a0
E Spaiial Index
G0 limes-Garmuming
bocase
of sarting
- | S Total render lime
I poalia] Irafiaz quany bma
20 Linear List query lima

a n 40] BO 100 120 Tal 160 180 200 =0 240
Frame Humbar

Figure 6. Times for hand-created scene of 2135 objects where all objects are of similar sizes. The
scene depicts a map of lower Manhattan

We also tested the time it takes to build the index in the first place. For the first
scene, building the index took 1.75 seconds, so about 12,485 objects can be inserted
a second. The second scene, inserting objects into the index took 1.82 seconds, or
12,363 objects per second.

Analysis

These results collectively show that we are very close to meeting our goals for
typical scenes of a ZUIl. Many scenes met our frame rate goal of 10 fps, and the
spatial index is effective. For most scenes, the spatial index is no slower than a
simple linked list, and for scenes with many objects where only a small percentage
of them are visible, the spatial index cuts down on visible object determination time
substantially. For all scenes, the time spent detecting visible objects is a small
fraction of the time spent actually drawing.

Regarding maintenance efficienclable | shows that maintaining the spatial index
does impact object movement speed, but by a factor which is less than two. With

Motorola PX 1006_141

1126 B. BEDERSON AND J. MEYER

" ! bt
srapshois
== during fest

Frame 10 Frame 50 Frarme 100 Frame 200

16D

=50 Tolal rendar Gima
240 I Ceatial Inden quary s
— Linear List queny tme

120

1015 goal

Time {millisaconds|

o 20] Y i1 iy 30 ER 0 160 M0 0 240 260
Frama Musmbar

Figure 7. Times for a computer-generated scene of 21,849 objects with significant size differences
between objects. The scene contains seven levels of nested rectangle where each rectangle contains
four others

spatial indexing, we can move an average of 461 objects per second. With no
indexing, we can move 633 objects per second (we suspect that rewriting the test
in C instead of Tcl would increase both of these numbers substantially).

The one type of scene for which our implementation does not meet our rendering
goals is where there are many objects of similar size. When zoomed out to a certain
point, all of these objects become visible and the spatial index spends a lot of time
sorting these objects, and the renderer spends even more time rendering all of these
objects. Thus, our current implementation of fPadis effective for scenes that
contain many objects at different sizes, but is not effective for scenes with many
objects at similar sizes.

PART Illl: PAD++ STRUCTURE

Pad++is an object-oriented graphical interface library which implements a Zooming
User Interface (ZUI) as previously described. It is object-oriented in both its

Motorola PX 1006_142

IMPLEMENTING A ZOOMING USER INTERFACE 1127

Frama 7% Framix 10

during bagl

Frama 25 Frame 50

160
=== Tokal render time
I Cnatal Indas quary lima
(E1E + o ovoo w | ipar Lisl query lims
170 ‘Wreem zpomed oud, al 22 500 abyects

werk soried and rendered. Totl
render e pesked at 2.5 seconds

B

Time (millisconds)
=

-3

40

Frama Mismbae

Figure 8. Times for a computer-generated scene of 22,500 objects with no size differences between
objects. The scene contains an array of 26060 identical rectangles. When zoomed out, all 22,500
rectangles are visible, and thus rendering times grow very high

Table I. Time taken to move many objects, comparing linear list approach with spatial index approach

Number of Linear list Spatial index Cost ratio
Objects Time to move Time to move Spatial Index:
every object every object Linear List
(seconds) (seconds)
Scene from
Figure 7 21,849 32 53 1.66
Scene from
Figure 8 22,500 38 43 1.13

Motorola PX 1006_143

1128 B. BEDERSON AND J. MEYER

implementation and its use. All graphical elements in-+Radre instances of objects
and share certain functionality, such as the ability to be moved and resized.
This section describes the structure of Padand how its different components
are designed and implemented. We discuss the object hierarchy, and the implemen-
tation of unusual features.

Structure

Pad++ is implemented in C++, and provides application interfaces for several
languages, including C++, Tcl, Scheme, Perl, and KPL (an in-house reverse-polish
language for rendering). In addition, an interface to Java is under development. Most
applications to date have been written in Tcl as that is the language we originally
targeted, though we have also developed a procedural animation engine that runs
within Pad++ and uses KPE! While Pad++now runs on Windows 95/NT, we
originally designed and implemented Padfer UNIX with the X window system.

It runs on many versions of UNIX, including Linux, SunOS, Solaris, IRIX, and
FreeBSD. The Windows 95/NT version of Radmaps X windowing system calls

to equivalent functions under Windows. Since in some cases this mapping is not
straightforward, the Windows version is currently not as fast as the UNIX version.
We are working on a renderer that uses the Windows features more directly.

One continuing goal has been to make Pads portable as possible. Because
people download, compile, and run Pade#f all kinds of systems all around the
world, we decided to use only the most commonly available and most reliable
features of C++. For this reason, we decided not to use multiple inheritance or
templates. In some places, this made the code more complicated, but we feel it was
a necessary trade-off in order to minimize the time we spend supportingtPad

Pad++ consists of several components. At a high level, they are:

(a) Renderer:the renderer performs all the rendering to the screen. It maintains
a stack of transformations that specify translation and scale.

(b) Event Handler:the event handler is responsible for processing all input events.
It determines which objects receive events, it maps events through portals
and it takes care of event grabbing (insuring that that mouse motion and
release events go to the same object that received the associated press event.)

(c) Surfaces:a surface represents a single flat data space where graphical objects
exist. Objects can exist at any position and scale on the surface.

(d) Views: surfaces are mapped to the screen through views. A view specifies
the position and magnification at which the associated surface is seen. There
are currently two places where views are used: for windows and for portals.
The extent of the surface that is seen is specified indirectly by the size of
the associated window or portal.

(e) Objects: every graphical item on a Pad+surface is derived from a base
Object class. This class defines much of the behavior common to all objects.
It controls where and at what size an object appears, the object’s transparency,
and the range of sizes at which it is visible. It also controls the object’s
stickiness and drawing order, as well as what layer it is igure 9 shows
the hierarchy of all objects deriving from this base Object class.

This class hierarchy is somewhat complicated, partly because+Paddesigned to

Motorola PX 1006_144

IMPLEMENTING A ZOOMING USER INTERFACE 1129

Object

Line Image l View | | Alias | l Surface4|

Component

ISpliﬂ | Polygon I l Portal |
Eontainer I I HTML I I TextField | rTextAreaJ | Button]

I ScrollbarJ | Text | l Canvas I I Label |

| WindowJ IPane] l | CheckBox I I MenuItem—I

ﬁrame] I MenuBar | I CheckBoxMenultemJ [Menul

ChoiceMenu

Figure 9. Pad++object hierarchy

be connected to both Tcl and to Java. We made a strong effort to be consistent
with the programming and visual interface standards of both languages.

Surfaces, views, and portals

The Pad++dataspace is structured around surfaces and views. A surface is a
plane on which objects exist. The Padenvironment supports multiple surfaces
simultaneously. Each surface can be visible within top-level windows, or can be
seen within portals. Objects exist on a surface within the surface’s coordinate system.
The Pad++coordinate system uses a standard right-handed Cartesian coordinate
system. The X axis increases to the right and the Y axis increagedNote that
this is different from many graphical windowing systems. All coordinates are specified
in floating point units that by default correspond to the dimensions of a single pixel
on the screen. This means that, when the top-level view is at a scale of 2.0, a line
drawn on the surface from 0.0 to 100.0 is 200 pixels long. Dimensions can also be
specified in inches, millimeters, or points.

Surfaces are mapped to the screen through views. Each surface that is mapped to
a top-level window implicitly gets a view that controls what part of the surface is
visible in that window. Views specify the visible portion of a surface with a point
and a magnification. The point specifies the portion of the surface that will appear
at the center of the view. The magnification specifies how much the surface should
be enlarged or shrunk.

Portals are a special type of view. They exist on a Padtface, and can be
moved and resized like other objects on the surface, but they also specify a
‘lookon’—this specifies the surface that is visible through the portal. Portals can
look onto the surface they themselves are on, or they can look onto any other
Pad++ surface.

Motorola PX 1006_145

1130 B. BEDERSON AND J. MEYER

Portals are implemented with special rendering and event processing methods. A
portal’'s render method sets the clipping region, and then renders the Portal’s lookon
surface, clipped by this region. A portal can render another portal within itself, but
prevents recursive rendering of itself. Portals also process events specially. When an
event hits a portal, if the event is on the portal’'s outer frame, the event is sent to
the portal object itself. If the event is within the portal, the event is passed through
to the surface the portal looks onto. When an object receives an event, it may query
the event to determine the list of portals (if any) that it was passed through.

Sample Pad++code

Here is a short example of some Tcl code that gives a feel for how some of the
simple features of Pad can be used. This example creates a surface, puts it within
a top-level window, and then creates several objects with event bindings, and changes
the view. In this example, ‘>’ represents a UNIX prompt, and ‘%’ represents a Tcl
prompt. Commands typed in by the user appear in bold face. The resulting output
is shown inFigure 10.

padwish # Start the Pad++ executable

% pad .pad # Make a Pad++ surface

.pad% pack .pad # Map it to a top-level window with a view
.I i Paliea w1 BEEVD |]
e e L [rEm——r—

Figure 10. Snapshot of the Pa#l window after executing the Sample Padesde

Motorola PX 1006_146

IMPLEMENTING A ZOOMING USER INTERFACE 1131

Create a rectangle. A unique integer is
generated which is used to identify this
rectangle in the future.

% .pad create rectangle 0 0 50 50 -fill red

3
System returns ‘3’, uniquely ident-
ifying object

Create some text and place it within
rectangle
% .pad create text -text “Hello World!” -font “Times-12" \
-anchor sw -position “10 10 1”
4
System returns ‘4’, uniquely
identifying object

Create an image from a file whose
bottom-left
;# corner is at the same place as the
;# top-right corner of the rectangle.
% .pad create image -image “pad.gif’ -anchor sw -position \
“50 50 1"
5 ; # System returns ‘5’, uniquely
identifying object

1

Create event bindings so that moving the
mouse over the rectangle highlights it,
and clicking on the rectangle moves it
10 pixels to the right.

% .pad bind 3 (Enter) {%P itemconfig %O -pen blue}

% .pad bind 3 (Leave) {%P itemconfig %O -pen black}

% .pad bind 3 (ButtonPress-1) {%P slide %0 10 0}
Zoom the view so that the center
of the image is at the center of the
view, and is 1.5 times larger than
normal.
;# The view change will be animated over a
period of 1000 milliseconds.

% .pad moveto 200 150 1.5 1000

Quantity of zooming space

Just how big is the zooming space of Pad Ideally, a ZUI would have unlimited
space so objects could be put at any position and at any scale. While this might
seem unnecessary, applications can easily use a lot of space. For example, a
visualization system that depicted hierarchies through containment uses a lot of
depth. If each level of the hierarchy were an order of magnitude smaller than the

Motorola PX 1006_147

1132 B. BEDERSON AND J. MEYER

parent, dozens of orders of magnitude of zooming could quickly be used up. In
addition to depth, the amount of breadth is also a concern. Just how far apart can
objects be placed? Again, this may not seem crucial, but as soon as you zoom out,
even objects that are very far apart are brought closer together visually. A user can
very easily zoom out, pan a little, and then zoom in with the result that they've
covered a very wide expanse of space. (Space-scale diagoeongle an analytical

tool that is useful for describing and analyzing these kinds of sp&ges.

In Pad++, the view and object coordinates are stored with standard 32 bit floats
that store roughly seven orders of magnitude of resolution (+/—). So, we expect 14
orders of magnitude for zooming and panning. Again, this may seem like a lot, but
to go from a dot to full screen is roughly three orders of magnitude (on a 1,000
pixel screen). Pad+€an do that about five times.

Care must be taken when implementing coordinate transformations in a ZUIL.
Unfortunately, the most simple and intuitive approach to implementing transform-
ations can result in reduced zooming space. To understand this, note that each view
has an offset and a magnification, which are stored as a tripléw(yview,
zoom). Every object has a position and a scalefféet, yoffset, scale). In
addition, objects such as polygons and lines also have coordinateg ,(...). To
apply a coordinate transformation from object to screen coordinates, we start by
applying the transform for the current view (in these examples, we show only the
x coordinate):

-(xview * zoom)
Now, we apply the object’'s transformation, leading to the expression:
(xoffset * zoom)—(xview * zoom)

However, consider when you zoom in and pan off to the side soxViatv and
zoom both become large, the quantityview * zoom) can overflow quickly. This
results in a reduced zooming space—that is, the more you zoom in, the less you
can pan (the effective space is pyramid shaped).

A better approach is to instead combine the two terms and compute transform-
ations using:

zoom * (xoffset—xview)

Since the offset of the object counters the offset of the view for visible objects, the
effects of overflow are reduced, and the result is a larger usable zooming space.

In implementation terms, computing transformations in this manner complicates
matters. In the earlier equation, view and object transformations are carried out
separately—an approach that lends itself to using a transform stack. Stacks are an
elegant mechanism for graphical systems, which often have hierarchical structures
(such as nested hierarchical groups) that are easily handled using recursion and stacks.

To implement this in Pad++, we keep a separate stack of view transformations
and object transformations. This lets us combine the two terms separately as we
compute coordinates.

An alternative solution to this problem is to use larger precision floating point

Motorola PX 1006_148

IMPLEMENTING A ZOOMING USER INTERFACE 1133

numbers within the coordinate transformation system (e.g. store the coordinates using
floats and perform transformations using doubles). One problem with this approach
is that higher precision arithmetic comes at a performance cost—the result is
increased space but slower rendering. Also, if the coordinates are already stored in
the highest precision format supported by hardware, this approach may not be feasible.

CONCLUSION

Pad++is an implementation of a Zooming User Interface (ZUI). We achieved our
goals of creating a substrate that supports rich zooming graphics with a large number
of objects, and a consistent high frame rate for typical scenes.

ZUls are strongly related to real time 3D graphical systems and 2D windowing
systems. While we have reused existing real-time graphics techniques as much as
possible, ZUIs present new and interesting challenges which distinguish them from
their 2D and 3D cousins. Consequently, Padepresents a unique combination of
features and implementation techniques.

There are still several areas where further research is required. Probably the most
serious problem with Pad+is its inability to maintain a high frame rate when many
objects are visible simultaneously. Part of the difficulty here is that we have not
solved the problem of visually presenting objects at many different levels of detalil.
While we do use level of detail to speed up rendering, object presentations do not
change rapidly or extensively enough. Instead, the system gets slow and animations
are poor when too many objects are visible in a scene. In 3D systems, rendering
lower-resolution models generally solves this problem. But this is hard to do in a
reasonable fashion for text and images, which form the bulk of the visual content
in a 2D system.

Finally, for Pad++to scale up, we need to be able to handle scenes with a much
larger number of objects. Currently, Pad+elds all objects in RAM, and so the
maximum number of objects is limited more by memory than anything else. Perhaps
the best way to scale up the number of objects would be to link Pad+a
persistent database, and keep only a small cache of objects in memory.

ACKNOWLEDGEMENTS

While Pad++was primarily implemented by the authors of this paper, many other
people have contributed to both the code and to our understanding of ZUIs. Our
primary collaborator at the University of New Mexico is Professor Jim Hollan. Our
primary collaborator at New York University is Professor Ken Perlin, the originator
of Pad. Other students and staff at UNM that we have worked with include Hugh
Bivens, Allison Druin, George Hartogensis, Ron Hightower, Mohamad ljadi, David
Proft, Laura Ring, David Rogers, Jason Stewart, David Thompson, David Vick, and
Ying Zhao. People we have worked with at New York University include David
Bacon, Troy Downing, Athomas Goldberg, and David Fox. Finally, people that have
been involved with Paght in other places include Mark Rosenstein, Larry Stead,
and Kent Wittenburg at Bellcore, and George Furnas at the University of Michigan.
It is interesting to note that six out of 24 people that worked on this project are
named David!

In regards to the Pad+#mplementation, we particularly appreciate the help of
David Fox who demonstrated how images could be scaled so quickly under X

Motorola PX 1006_149

1134 B. BEDERSON AND J. MEYER

Wi

ndows. We also appreciate Paul Haeberli from SGI who donated code for poly-

gonizing Adobe Type 1 fonts.

This project has been primarily supported by generous funding from DARPA

contract#N66001-94-C-6039 to which we are grateful.

1

19.

20.

21.

22
23

REFERENCES

. B. B. Bederson, J. D. Hollan, K. Perlin, J. Meyer, D. Bacon and G. Furnas+##dzoomable graphical
sketchpad for exploring alternate interface physic&iurnal of Visual Languages and Computing,
3-31 (1996).

. J. Meyer, ‘EtchaPad—disposable sketch based interfaBesteedings Companion of Human Factors
in Computing Systems (CHI'96), ACM, New York, 1996, pp. 195-196.

. A. Druin, J. Stewart, D. Proft, B. Bederson and J. D. Hollan, ‘KidPad: A design collaboration between
children, technologists, and educatoBtoceedings of Human Factors in Computing Systems (CHI'97)
ACM, New York, 1997, pp. 463-470.

. I. Sutherland, ‘Sketchpad: A man-machine graphical communication syste&oh Report#296, MIT
Lincoln Labs, Cambridge, MA, 1963.

. W. C. Donelson, ‘Spatial management of informatidfpceedings of Computer Graphics (SIGGRAPH
'78), ACM, New York, 1978, pp. 203—-209.

. K. Perlin and D. Fox. ‘PAD: An alternative approach to the computer interfa@edceedings of
Computer Graphics (SIGGRAPH '93ACM, New York, 1993, pp. 57-64.

. B. B. Bederson and J. D. Hollan, ‘Petl A zooming graphical interface for exploring alternate interface
physics’, Proceedings of User Interface Software and Technology (UIST, A&M, New York, 1994,
pp. 17-26.

. B. B. Bederson, J. D. Hollan, J. Stewart, D. Rogers, A. Druin, D. Vick, L. Ring, E. Grose and C.
Forsythe, ‘A zooming web browser’, in C. Forsythe, J. Ratner and E. Grose (étisnan Factors
and Web Developmentawrence Earlbaum, 1997.

. S. K. Card, G. G. Robertson and J. D. Mackinlay, ‘The Information Visualizer, an Information
Workspace’,Proceedings of Human Factors in Computing Systems (CHI'BOM, New York, 1991,
pp. 181-188.

. Perspecta, Inc., http://www.perspecta.com, 1997.

. Merzcom, Inc., http://www.merzcom.com, 1997.

. D. Fox, ‘Tab: The Tabula Rasa zooming user interface system’, URL http://www/cat/nyu.edu/fox/tab.html,
New York University, New York, 1997.

. J. H. Maloney and R. B. Smith, ‘Directness and liveness in the morphic user interface construction
environment’, Proceedings of User Interface Software and Technology (UIST, '8EM, New York,

1995, pp. 21-28.

. R. B. Smith, ‘Experiences with the alternate reality kit: An example of the tension between literalism
and magic’,Proceedings of the Human Factors in Computing Systems and Graphics Interface Conference
ACM, New York, 1987, pp. 61-67.

. D. A. Henderson, Jr. and S. K. Card, ‘Rooms: The use of multiple virtual workspaces to reduce space
contention in a window-based graphical user interfadEEE Transactions on Graphic$(3), 211-

243 (1987).

. FVWM, http://www.hpc.uh.edu/fvwm, 1997.

. Architecture Review Board (ARBQpenGL Reference Manual, Addison-Wesley, 1992.

. P. Haeberli, and M. Segal, ‘Texture mapping as a fundamental drawing primitive’, in M. Cohen (ed.),

Fourth Eurographics Workshop on RenderifigRL http:/mww.sgi.com/grafica/texmap/index.html), Paris,

France, June 1993.

J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hugl@smputer Graphics: Principles and Practice,

Addison-Wesley, 1990, pp. 992-996.

R. J. Deyo, A. Briggs and P. Doenges, ‘Getting graphics in gear: Graphics and dynamics in driving

simulation’, Proceedings of Computer Graphics (SIGGRAPH '883(4), 317-326 (July 1988).

J. M. Airey, J. H. Rohlf and F. P. Brooks, Jr., ‘Towards image realism with interactive update rates

in complex virtual building environments’ACM SIGGRAPH Special Issue on 1990 Symposium on

Interactive 3D Graphics24(2), 41-50 (1990).

. E. Angel,Interactive Computer Grapics, Addison-Wesley, 1996.

. T. Funkhouser, S. Teller, C. Sequin and D. Khorramabadi, ‘The UC Berkeley system for interactive

Motorola PX 1006_150

24.
25.

26.

27.

28.

29.

30.

31.

32.

IMPLEMENTING A ZOOMING USER INTERFACE 1135

visualization of large architectural modeldresence: Teleoperators and Virtual Environmeris(1)
(Winter 1996).

H. Samet,The Design and Analysis of Spatial Data Structurdsldison-Wesley, 1990.

H. Samet,Applications of Spatial Data Structures: Compter Graphics, Image Processing, and GIS
Addison-Wesley, 1990.

A. Guttman, ‘R-trees: A dynamic index structure for spatial searchifgiceedings of the SIGMOD
Conference, Boson, MA, June 1984, pp. 47-57.

G. Kedem, ‘The quad-CIF tree: A data structure for hierarchical on-line algoritHPneteedings of

the Nineteenth Design Automation Conference, Las Vegas, NV, June 1982, pp. 352-357.

H. Fuchs, Z. M. Kedem and B. F. Naylor, ‘On visible surface generation by a priori tree structures’.
Computer Graphics14(3), 124-133 (July 1980).

J. L. Bentley, ‘Multidimensional binary search trees used for associative seardBormghmunications of

the ACM (18), 509-517 (September 1975).

N. Beckmann, H. P. Kriegel, R. Schneider and B. Seeger, ‘The R*-tree: An efficient and robust access
method for points and rectangledroceedings of the SIGMOD Conferend&tlantic City, NJ, June
1990, pp. 322-331.

K. Perlin, ‘Layered compositing of facial expressioVjsual Proceedings of Computer Graphics
(SIGGRAPH '97) ACM, New York, 1993, pp. 226-227.

G. W. Furnas, B. B. Bederson, ‘Space-scale diagrams: Understanding multiscale inteFemaedings

of Human Factors in Computing Systems (CHI '9BCM, New York, 1995, pp. 234-241.

Motorola PX 1006_151

Pad++ Bederson - 5

Motorola PX 1006_152

Journal of Visual Languages and Computing (1996) 7, 3-31

<

Pad++: A Zoomable Graphical Sketchpad For Exploring
Alternate Interface Physics

Benjamin B. Beperson,* James D. Horran,” Ken PerLIN,T JoNATHAN
MEvER,T DAVID Bacont anD GEORGE Furnast

*Computer Science Department, University of New Mexico, Albuguerque, NM 87131, U.S.A.,
tMedia Research Laboratory, Computer Science Department, New York University, NY 10003,
U.S.A., iBell Communications Research, 445 South Street, Morristown, NJ 07960, U.S.A.

Received 7 March 1995 and accepred 29 September 1995

We describe Pad++, a zoomable graphical sketchpad that we are exploring as an
alternative to traditional window and icon-based interfaces. We discuss the motivation
for Pad++, describe the implementation and present prototype applications. In
addition, we introduce an informational physics strategy for interface design and
briefly contrast it with current design strategies. We envision a rich world of dynamic
persistent informational entities that operate according to multiple physics specifically
designed to provide cognitively facile access and serve as the basis for the design of
new computationally-based work materials.

©1996 Academic Press Limited

1. Introduction

Imagine a computer screen made of a sheet of a miraculous new material that is
stretchable like rubber but continues to display a crisp computer image, no matter
what the sheet’s size. Imagine that this sheet is very elastic and can stretch orders of
magnitude more than rubber. Further, imagine that vast quantities of information are
represented on the sheet, organized at different places and sizes. Everything you do
on the computer is on this sheet. To access a piece of information you just stretch to
the right part and there it is.

Imagine further that special lenses come with this sheet that let you look onto one
part of the sheet while you have stretched another part. With these lenses, you can see
and interact with many different pieces of data at the same time that would ordinarily
be quite far apart. In addition, these lenses can filter the data in any way you would
like, showing different representations of the same underlying data. The lenses can
even filter out some of the data so that only relevant portions of the data appear.

Imagine also new stretching mechanisms that provide alternatives to scaling objects
purely geometrlcally For example, instead of representing a page of text so small that
it is unreadable, it might make more sense to present an abstraction of the text, per-
haps so that just a title that is readable. Similarly, when stretching out a spreadsheet,

* (bederson, hollan)@ cs.umn.edu, 1 (perlin, meyer bacon)@ play.cs.nyun.edu, fgwf@bellcore.com
URL:http:/ /www.cs.unm.edu/pad++

1045-926X/96,/010003 + 29 $18.00/0 © 1996 Academic Press Limited

Motorola PX 1006_153

4 B. B. BEDERSON ET AL.

Figure 1. A sequence of views as we zoom into some data

instead of showing huge numbers it might make more sense to show the compu-
tations from which the numbers were derived or a history of interaction with them.

The beginnings of an interface like this sheet exists today in a program we call
Pad++. We don’t really stretch a huge rubber-like sheet, but we simulate it by
zooming into the data. We use what we call portals to simulate lenses, and a notion we
call semantic zooming to scale data in non-geometric ways. The user controls where
they look on this vast data surface by panning and zooming. Portals are objects on the
Pad++ data surface that can see anywhere on the surface, as well as filter data to
represent it differently than it normally appears.

Panning and zooming allow navigation through a large information space via direct
manipulation. By tapping into people’s natural spatial abilities, we hope to increase
users’ intuitive access to information. Conventional computer search techniques are
also provided in Pad++, bridging traditional and new interface metaphors. Figure 1
depicts a sequence of views as we pan and zoom into some data.

1.1. Motivation

If interface designers are to move beyond windows, icons, menus and pointers to
explore a larger space of interface possibilities, additional ways of thinking about
interfaces that go beyond the desktop metaphor are required.

There are myriad benefits associated with metaphor-based approaches, but they
also orient designers to employ computation primarily to mimic mechanisms of older
media. While there are important cognitive, cultural and engineering reasons to
exploit earlier successful representations, this approach has the potential of under-
utilizing the mechanisms of new media.

Motorola PX 1006_154

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 5

For the last few years we have been exploring a different strategy [21] for interface
design to help focus on novel mechanisms enabled by computation rather than on
mimicking mechanisms of older media. Informally, the strategy consists of viewing
interface design as the development of a physics of appearance and behavior for
collections of informational objects.

For example, an effective informational physics might arrange for an object’s
representation to be a natural by-product of normal activity. This is similar to the
physics of certain materials that evidence the wear associated with use. Such wear
records a history of use and at times this can influence future use in positive ways.
Used books crack open at frequently referenced places. It is common for recently
consulted papers to be at the tops of piles on our desks. Usage dog-ears the corners
and stains the surface of index cards and catalogs. All these wear marks provide
representational cues as a natural product of doing, but the physics of materials limit
what can be recorded and the ways it can influence future use.

Following an informational physics strategy has led us to explore history-enriched
digital objects [18, 19]. Recording on objects (e.g. reports, forms, source-code, manual
pages, email, spreadsheets) the interaction events that comprise their use makes it
possible on future occasions, when the objects are used again, to display graphical
abstractions of the accrued histories as parts of the objects themselves. For example,
we depict the copy history on source code. This allows a developer to see that a
particular section of code has been copied and perhaps be led to correct a bug not
only in the piece of code being viewed but also in the code from which it was derived.

This informational physics strategy has also lead us to explore new physics for
interacting with graphical data. As part of that exploration we have formed a research
consortium to design a successor to Pad [25]. This new system, Pad++, serves as a
substrate for exploration of novel interfaces for information visualization and
browsing in complex, information-intensive domains. The system is being designed to
operate on platforms ranging from high-end graphics workstations to PDAs (Personal
Digital Assistants) and interactive set-top cable boxes. Here we describe the
motivation behind the Pad++ development, report the status of the current
implementation and present initial prototype applications.

Today, there is much more information available than we can access readily and
effectively. The situation is further complicated by the fact that we are on the
threshold of a vast increase in the availability of information because of new network
and computational technologies. Paradoxically, while we continuously process
massive amounts of perceptual data as we experience the world, we have perceptual
access to very little of the information that resides within our computing systems or
that is reachable via network connections. In addition, this information, unlike the
world around is, is rarely presented in ways that reflect either its rich structure or
dynamic character.

We envision a much richer world of dynamic persistent informational entities that
operate according to multiple physics specifically designed to provide cognitively
facile access. These physics need to be designed to exploit semantic relationships
explicit and implicit in information-intensive tasks and in our interaction with these
new kinds of computationally-based work materials.

One physics central to Pad++ supports viewing information at multiple scales and
attempts to tap into our natural spatial ways of thinking. We address the information

Motorola PX 1006_155

6 B. B. BEDERSON ET AL.

presentation problem of how to provide effective access to a large structure of
information on a much smaller display. Furnas [15] explored degree of interest
functions to determine the information visible at various distances from a central focal
area. There is much to recommend the general approach of providing a central focus
area of detail surrounded by a periphery that places the detail in a larger context.

With Pad++ we have moved beyond the simple binary choice of presenting or
eliding particular information. We can also determine the scale of the information and,
perhaps most importantly, the details of how it is rendered can be based on various
semantic and task considerations that we describe below. This provides semantic
task-based filtering of information that is similar to the early work at MCC on
lens-based filtering of a knowledge base using HITS [20] and the recent work of
moveable filters at Xerox [4] [30].

The ability to make it easier and more intuitive to find specific information in large
dataspaces is one of the central motivations behind Pad++. The traditional approach
is to filter or recommend a subset of the data, hopefully producing a small enough
dataset for the user to navigate effectively. Pad++ is complementary to these filtering
approaches in that it promises to provide a useful substrate to structure information.

2. Description

Pad++ is a general-purpose substrate for creating and interacting with structured
information based on a zoomable interface. It adds scale as a first class parameter to
all items, as well as various mechanisms for navigating through a multiscale space. It
has several efficiency mechanisms which help maintain interactive frame-rates with
large and complicated graphical scenes.

While Pad++ is not an application itself, it directly supports creation and
manipulation of multiscale graphical objects, and navigation through spaces of these
objects. It is implemented as a widget in Tcl/Tk [24] (described in a later section)
which provides an interpreted scripting language for creating zoomable applications.
The standard objects that pad++ supports are colored text, graphics, images, portals
and hypertext markup language (HTML). Standard input widgets (buttons, sliders,
etc.) are supphed as extensions.

One focus in the current implementation has been to provide smooth zooming
within very large graphical datasets. The nature of the Pad++ interface requires
consistent high frame-rate interactions, even as the dataspace becomes large and the
scene gets complicated. In many applications, speed is important, but not critical to
functionality. In Pad++, however, the interface paradigm is inherently interactive.
One important searching strategy is to visually explore the dataspace while zooming
through it, so it is essential that interactive frame rates be maintained.

A second focus has been to design Pad++ to make it relatively easy for third
parties to build applications using it. To that end, we have made a clear division
between what we call the ‘substrate’ and applications. The substrate, written in
C++, is part of every release and has a well-defined API. It has been written with
care to ensure efficiency and generality. It is connected to a scripting language
(currently Tcl, but we are exploring alternatives) that provides a fairly high-level
interface to the complex graphics and interactions available. While the scripting
language runs quite slowly, it is used as a glue language for creating interfaces and

Motorola PX 1006_156

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 7

putting them together. The actual interaction and rendering is performed by the C++
substrate. This approach allows people to develop applications for Pad++ while
avoiding the complexities inherent in this type of system. (See the Implementation
section for more information on this.)

2.1. PadDraw: A Sample Application

PadDraw is a sample drawing application built on top of Pad++. It supports
interactive drawing and manipulation of objects as well as loading of predefined or
programmatically created objects. This application is written entirely in Tcl (the
scripting language) and was used to produce all the figures depicted in this paper. The
tools, such as navigation aids, hyperlinks and the outline browser, that we discuss
later, are part of this application.

The basic user interface for navigating in PadDraw uses a three button mouse. The
left button is mode dependent and lets users select and move objects, draw graphical
objects, follow hyperlinks, etc. The middle button zooms in and the right button
zooms out. Zooming is always centered on the cursor, so moving the mouse while
zooming lets the user dynamically control which point they are zooming around.

PadDraw has a primitive Graphical User Interface (GUI) builder that is in progress.
Among other things, it allows the creation of active objects. Active objects can
animate the view to other locations (a kind of hyperlink) or move other objects
around on the surface.

2.1.1. Navigation

Easﬂy ﬁndmg information on the Pad++ surface is obv10usly very important since
intuitive navigation through large dataspaces is one of its primary motivations.
Pad++ supports visual searching with direct manipulation panning and zooming in
addition to traditional mechanisms, such as content-based search.

Some applications animate the view to a certain piece of data. These animations
interpolate in pan and zoom to bring the view to the specified location. If the end
point is further than one screen width away from the starting point, the animation
zooms out to a point midway between the starting and ending points, far enough out
so that both points are visible. The animation then smoothly zooms in to the
destination. This gives both a sense of context to the viewer as well as speeding up the
animation since most of the panning is performed when zoomed out which covers
much more ground than panning while zoomed in. See the section on Space-Scale
Diagrams for more detail on the surprisingly complex topic of multiscale navigation.

Content-based search mechanisms support search for text and object names.
Entering text in a search menu results in a list of all of the objects that contain that
text. Clicking on an element of this list produces an automatic animation to that
object. The search also highlights objects on the data surface that match the search
specification with special markers (currently a bright yellow outline) that remain
visible no matter how far you zoom out. Even though the object may be so small as
to be invisible, its marker will still be visible. This is a simple example of task-based
semantic zooming. See Figure 2 for a depiction of the content-based search
mechanism.

We have also implemented visual bookmarks as another navigational aid. Users can

Motorola PX 1006_157

8 B. B. BEDERSON ET AL.

Figure 2. The content-based search window lets users search for text and names, and then animate to any
of those objects by clicking on the search entry

remember places they have been, and maintain miniature views onto those places.
Moving the mouse over one of these bookmark views places a marker in the main
view to identify where it will take you (although the marker may be off to the side
and hence not visible). Clicking on a view animates the main view to that place
(Figure 3).

2.2. Portals

Portals are special items that provide views onto other areas of the Pad++ surface, or
even other surfaces. Each portal passes interaction events that occur within it to the
place it is looking. Thus, you can pan and zoom within a portal. In fact, you can
perform any kind of interaction through a portal. Portals can filter input events,
providing a mechanism for changing behavior of objects when viewed through a
portal. Portals can also change the way objects are presented. When used in this
fashion, we call them lenses (see below).

Portals can be used to replicate information efficiently, and also provide a method
to bring physically separate data near each other. Figure 1 was created using several
portals, each looking at approximately the same place at different magnifications.

Portals can also be used to create indices. For example, creating a portal that looks
onto a hyperlink allows the hyperlink to be followed by clicking on it within the
portal, changing the main view. This however, may move the hyperlink off the screen.

Motorola PX 1006_158

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 9

Figure 3. Visual bookmarks let users remember interesting places they have been by showing miniature
views of those places. Clicking on one of the views animates the main view to the location

We can solve this by making the portal (or any other object for that matter) sticky,
which is a method of keeping the portal from moving around as the user pans and
zooms. Making an object sticky effectively lifts it off the Pad++ surface and sticks it
to the monitor glass. Thus, clicking on a hyperlink through a sticky portal brings you
to the link destination, but the portal index is not lost and can continue to be used.

2.3. Lenses

Designing user interfaces is typically done at a low level, focusing on user interface
components rather than on the task at hand. If the task is to enter a number, we
should be able to place a generic number entry mechanism in the interface. However,
typically, once the specific number entry widget, such as a slider or dial, is decided
on, it is fixed in the interface.

We can use lenses to design interfaces at the level of specific tasks. For example,
we have designed a pair of number entry lenses for Pad++ that can change a generic
number entry mechanism into a slider or dial, as the user prefers. By default the
generic number entry mechanism allows entering a number by typing. However,
dragging the slider lens over it changes the representation of the number from text to a
slider, and now the mouse can be used to change the number. Another lens shows the
data as a dial and lets you modify that with a mouse as well.

Motorola PX 1006_159

10 B. B. BEDERSON ET AL.

(8.7)
(6,6)
(4,6)
t2:3) (3.4)

(0,2) (1,5

Figure 4. Lenses that show textual data as scatter plots and bar charts

More generally, lenses are objects that alter appearance and behavior of components
seen through them. They can be dragged around the Pad++ surface examining
existing data. For example, data might normally be depicted by columns of numbers.
However, looking at the same data through a lens could show that data as a scatter
plot, or a bar chart (see Figure 4).

Lenses such as these support multiple representations so that information can be
displayed in ways most effective for the task at hand. They make the notion of
multiple representations of the same underlying data more intuitive and can be used to
show linkages between the representations. For example, if the slider lens only
partially covers the text number entry widge, then modifying the underlying number
with either mechanism (text or mouse) modifies both. So typing in the text entry
moves the slider, and vice versa.

2.4. Semantic Zooming

Once we make zooming a standard part of the interface, many parts of the interface
need to be reevaluated. For example, we can use semantic zooming to change the way
things look depending on their size. As we mentioned, zooming provides a natural
mechanism for representing abstractions of objects. It is natural to see extra details of
an object when zoomed in and viewing it up close. When zoomed out, instead of
simply seeing a scaled down version of the object, it is potentially more effective to
see a different representation of it.

Motorola PX 1006_160

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 11

For example, we implemented a digital clock that at normal size shows the hours
and minutes. When zooming in, instead of making the text very large, it shows the
seconds, and then eventually the date as well. Similarly, zooming out shows just the
hour. An analog clock (implemented as a lens that can be positioned over a digital
clock) is similar—it does not show the second hand or the minute markings when
zoomed out.

Semantic zooming can take an even more active role in the interface. It can be used
as a primary mechanism for retrieving data. We have built prototype tools for
accessing system usage including information about the print queue, the system load
and the users on the machine. They are depicted as small objects with labels. Zooming
into each of them starts a process which gathers the appropriate information and
shows it in the now larger object. Zooming out makes the information disappear and
the data-gathering process inactive.

3. Visualizations

We are exploring several different types of interactive visualizations within Pad++,
some of which are described briefly here. Each takes advantage of the variable
resolution available for both representation and interaction.

Layout of graphical objects within a multi-resolution space is an interesting
problem, and is quite different than traditional fixed-resolution layout. Deciding how
to visually represent an arbitrary graph on a non-zoomable surface is extremely
difficult. Often it is impossible to position all objects near logically related objects. In
addition, representing the links between objects often requires overlapping or crossing
edges. Even laying out a tree is difficult because, generally speaking, there are an
exponential number of children that will not fit in a fixed size space.

Traditional layout techniques use sophisticated iterative, adaptive algorithms for
laying out general graphs, and still result in graphs that are hard to understand. Large
trees are often represented hierarchically with one sub-tree depicted by a single box
that references another tree.

Using an interactive zoomable surface, however, allows very different methods of
visually representing large data structures. The fact that there is always more room to
put information ‘between the cracks’ gives many more options. Pad+ + is particularly
well suited to visualizing hierarchical data because information that is deeper in the
hierarchy can be made smaller. Accessing this information is accomplished by
zooming.

3.1. Hypertext Markup Language (HTML)

In traditional window-based systems, there is no graphical depiction of the
relationship among windows even when there is a strong semantic relationship. For
example, in many hypertext systems, clicking on a hyperlink brings up a new window
with the linked text (or alternatively replaces the contents of the existing window).
While there is an important relationship between these windows (parent and child),
this relationship is not represented.

We are experimenting with multiscale layouts of hypertext document traversals
where the parent—child relationships between links is represented visually. The layout

Motorola PX 1006_161

12 B. B. BEDERSON ET AL.

represents a tree that is distorted so that the page that has the focus (i.e. the one being
looked at) is quite large. As nodes get further away from the focus, they get smaller.
The distortion is controllable with a pop-up window. This is an example of a
graphical fisheye view [15]. As links are followed, they are added to the tree and
become the current focus. The view is animated so that the new node is centered and
large enough to read.

Pad++ reads hypertext written in the Hypertext Markup Language (HTML), the
language used to describe hypertext documents used by WWW browsers such as
Mosaic and Netscape. Pad++ also can follow links across the internet. Figure 5
shows a snapshot where several hypertext links have been followed. Two views show
the same tree focused on different nodes. The Pad++ user interface for accessing
hypertext is similar to traditional systems, but zooming mechanisms are employed.
There are also special mechanisms to return to an object’s parent.

An alternative layout technique (not shown here) uses a camera with a special
zoomed in view of the tree. The idea is to give an overview of the tree in one view
while allowing individual pages to be read in another view. This gives both a global
context and local detail simultaneously. The camera can be dragged around the
overview, and the detail view is updated to see what the camera is pointing at.
Clicking on a page causes the camera to animate to that page and, when a new page is
brought in, the camera centers its view on it.

This layout problem is challenging because the underlying data can be an arbitrary
cyclic graph. Any graph can be viewed as a hierarchy by taking a single node and
calling it the root node. Imagine taking that node and shaking the graph out. Its
neighbors become children, and the children’s neighbors become grandchildren, etc.
We use this approach to display HTML documents where the order of the links that
are followed describe the particular hierarchy imposed on the data. When a cycle is
encountered (i.e. a link is followed to a page that is already loaded), the user is
brought to the original copy of the page that was loaded, and the focus is put upon it.

3.2. Directory Browser

We built a zoomable directory browser as another exploration of multiscale layout.
The directory browser provides a graphical interface for accessing the directory
structure of a filesystem (see Figure 6). Each directory is represented by a folder icon
and files are represented by solid squares colored by file type. Both directories and
files show their filenames as labels when the user is sufficiently close to be able to read
them. Each directory has all of its subdirectories and files organized alphabetically
inside it. Searching through the directory structure can be done by zooming in and
out of the directory tree, or by using the content based search mechanisms described
above. Zooming into a file automatically loads its text or image inside the colored
square and it can then be annotated. At any particular view, typically three levels of
the hierarchy are visible.

3.2.1. Timeline

Scale can be used to convey temporal information. Events which take place over a
long period of time use a large scale and brief events are shown at a small scale. We
used this notion to visualize some of the history of computing and user interfaces.

Motorola PX 1006_162

13

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD

sopou uﬂuhuwm—u uo \Towﬂun.w 2211 2uwIes
U3l MOUS SMITA OM] IYT, "UONOLIAUT S Josn 9yl JO %hOum«& o3 smoys %ﬁuﬁo:&ﬁﬁ: u.DO\A.ﬁ IRYT, "+ +PeJ Ul pIPEO] SIudwWnoop TN H IUIHIp %ENE g Oh—‘—wmnﬁ

Tl

TS -

I S T LS

Motorola PX 1006 163

14 B. B. BEDERSON ET AL.

Figure 6. A view of our file system

The timeline visualization shows decades as large numbers. Zooming in on a decade
reveals the years within that decade. Further zooming on a particular year shows
events which took place during that year. Figure 7 shows a sequence of snapshots as
the view is zoomed in.

3.2.2. Owal Document Layout

Since objects on the Pad++ surface reside at absolute locations, the relative positions
of objects can be used to encode information. Thus, with the Pad++ HTML
browser, position is used to encode the order of a user’s traversal of a hypertext
document. In the Oval Document Layout, position is used to reinforce the narrative
structure of documents (such as guided tours) in which the reader follows a sequence
of steps which eventually lead back to the starting point (Figure 8).

In this layout, the first page is placed at the bottom edge of an arc. Subsequent
pages are placed around the edge of the arc and are drawn at a scale which reflects
their position in the tour—middle pages are shown distant and small, whereas start
and end pages appear larger and closer to the user.

Navigation buttons at the bottom edge of each page are used to advance through
the document. Clicking on a page when it is distant causes Pad++ to pan and zoom
so that the page fills most of the screen.

One advantage of this layout is that as the system animates from one page to the
next, the user can infer progress through the document by the direction of the
animation: near the start, pages move down and to the left; towards the end, pages
move up and to the right.

Motorola PX 1006_164

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 15

Graphical User Interfaces

Computer Technology and User Interfaces

Graphical User Interfaces

——
=

g B e =
o " " v _2_.-:_—‘

I v T u

1960s 1970s 1960s

Project MAC at MIT
B 8w MULTICS

imamm:tz

R Chup 1n a DIF R]jiza
Welzenbaum
PL/1 s
e TBM L+ 1T P

o o Bas Ken Iverson i E:..:.:;__
| gt ripy PRI e Doug Englekart ppn =
© 5500 BEE A" 1 e 0 oty et st SRR W ﬂaﬁu Floppy

e 2 i 10a e e e

1960s

Figure 7. A sequence that views the history of computers and interfaces

The layout is also effective for non-linear access to pages within the document.
Zooming out a small distance reveals the whole document, and clicking on a page
within the document takes you to that page.

Hotwords and hyperlink buttons in an oval document can be shown with arrows
which point towards the destination object. Clicking on the hyperlink animates
the Pad++ surface in the direction indicated by the arrow, reducing the

Motorola PX 1006_165

16 B. B. BEDERSON ET AL.

Project
%%%WSMULTICS

. BASIC
Kemeﬁy and Kurtz

g Chip in a DIP gl4iza
Weizenbaum

rﬁ”mtm 8Cieioe departneat fuiT= ", P | / APL

R e IBM

ﬁs‘ Sketchpa e ORI YerE0ON
Ivan Suth.erland L =_—————

el Lo Amaring. EYEUED e I iuamlu e T

American Sirlines 3"“"&‘&‘%,,.:
Burroughs 6500 SABRE system T - W—

1962 1963 1964 1985 19686

Figure 7. Continuned

sense of disorientation that many users experience when navigating hypertext docu-
ments.

The Oval document view illustrates that a pan/zoom coordinate system can lead to
interesting new ways of laying out even traditional page based material. However, the
layout has several drawbacks. It is only practical for relatively short documents and
for documents which adopt a circular narrative structure.

4. Space-Scale Diagrams

In an effort to understand multiscale spaces better, we have developed an analytical
tool for describing them which we call space-scale diagrams. By representing the
spatial structure of an information world at all its different magnifications simul-
taneously, these diagrams allow us to visualize various aspects of zoomable interfaces
and analyze their properties. We discuss these diagrams briefly here. They are
discussed in more detail in [16].

While Pad++ provides panning and zooming interactions over a two dimensional
surface, the basic ideas of a space-scale diagram are most easily illustrated in one
dimension. This would typically be a slice through a two-dimensional world.

The basic one-dimensional diagram concept is illustrated in Figure 9. This diagram
shows six points that are copied over and over at all possible magnifications. These
copies are stacked up systematically to create a two dimensional diagram whose
horizontal axes represents the original spatial dimension and whose vertical axis
represents the degree of magnification (or scale). Because the diagram shows an
infinite number of magnifications, each point is represented by a line emanating from

Motorola PX 1006_166

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 17

Figure 8. Pad++ help screen with oval document layout

——
1-D Viewing Window

q
() 'zoomed in’
(b)
(a) 'zoomed out'

Figure 9. A one dimensional space-scale diagram of six points as the view zooms in from () to (b) to (c)
around point ¢

Motorola PX 1006_167

18 B. B. BEDERSON ET AL.

Figure 10. Basic pan—zoom trajectories are shown in the heavy dashed lines; (4) is pure pan, (/) is pure
zoom, (c) is zoom around point ¢

the origin. We call these lines great rays. In the 2-D analog, whole 2D pictures would
be stacked up at all magmﬁcanons, forming a 3D space-scale diagram, with points still
becoming great rays and 2D regions becoming cones.

For comparison, compare this with a standard one-dimensional world. Here, a
standard viewer is a small one-dimensional window that shows a small piece of the
world (e.g. a view of a local-piece of a time-line). As the window is panned around it
moves to different parts of that time line. As it is zoomed in, it would narrow its
scope and look at a smaller region of the time line in detail. As it is zoomed out, it
looks at a larger section.

In space-scale diagrams, however, while the viewing window is also represented as a
one-dimensional segment, it has a constant size and is located at a particular place in
both space and scale. Thus, as the user pans and zooms around the world, the viewing
segment is moved rigidly (i.e. without changing its size) in space-scale. A whole
sequence of such movements can be represented by a path through the space-scale
diagram (Figure 10). Thus, the first advantage of these diagrams is that, by reifying
scale, they allow these multiscale movements to be represented statically and so are
easier to analyze. For example, a pan operation becomes a horizontal part of such a
path. A zoom becomes a movement along a great ray. Other types of movement
correspond to curves of other characteristic shapes.

The ability of space-scale diagrams to represent pan-zoom movements as a path in
space-scale has allowed us to solve two concrete problems in designing good
pan-zoom interactions. Both concern situations where the system needs to move the
user’s view automatically to another point in the space. This might happen, for
example, as the result of following some sort of hyperlink mechanism, or jumping to
the result of some content-based search.

The first problem occurs when the interface needs to not only move the user to
some other region of the world, but also needs to zoom in. The solution to doing
these actions in parallel, jointly panning and zooming to the new view, is not as
simple as it might seem. However, if one simply computes how much to pan and how
much to zoom and does the two independently in parallel, the result is disconcert-
ingly non-monotonic. The pan covers distance at a constant pace while the zoom-in is
magnifying the world exponentially. The result is that the target location first rushes

Motorola PX 1006_168

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 19

Figure 11. Solution to the simple joint pan—zoom problem. The trajectory s monotonically approaches
point (x5, z,) in both pan and zoom

away due to the magnification, and only later does the pan catch up. Various hacks to
fix this, taking logs and powers of various things, did not work.

Fortunately, using space scale diagrams, a monotonic approach to the target view is
captured by a kind of parallelogram constraint on trajectories in space-scale. In Figure
11, a path from (x;,z) to (x,,z,) that goes outside such a parallelogram is
non-monotonic. If the path exits the sides of the parallelogram, it will violate the
monotonicity requirement in space. If the path exits the top or bottom of the
parallelogram, it will violate the monotonicity requirement in zoom. A simple path
that is monotonic is just the diagonal of this parallelogram. A simple coordinate
transform that defines these diagrams (given in [16]) allows one to define this path
analytically, and yields a rather unintuitive hyperbolic relationship between the two.
We have implemented the trajectory derived from the space-scale diagram analysis
and have indeed found it far superior to any uninformed effort.

A second pan-zoom problem concerns the notion of shortest paths between two
points in this pan-zoom parameter space. This is a curious question because, in
space-scale motions, the shortest distance between two points is not generally a
straight line. This is because while panning may be expected to take a time or have a
cost that is linear in the spatial separation, zoom is logarithmic so that the fastest
way to get from some point p to some point ¢ that is far away would be very tedious
by pan alone. It is in fact much shorter to zoom out, make a small pan, and then
zoom in (see Figure 12.) Inspired by the space-scale diagrams we were able to define
an information theoretic metric over space-scale interactions: the cost of a path is a
function of the number of bits that would take to transmit a movie of the motion.
Then we addressed the question of finding good paths through the space, i.e. make
the movie as small as possible. We found that for points less than a few window
widths away, a pure panning motion is pretty good, but for points far away, zoom
must play a major role.

Another use of space-scale diagrams is to represent semantic zooming, where
objects change not just their size but also their appearance when they are magnified.
For example, an object could appear as a point when small. As it grows, it could then
in turn appear as a solid rectangle, then a labeled rectangle, then a page of text, etc.

Motorola PX 1006_169

20 B. B. BEDERSON ET AL.

Figure 12. The shortest path between two points is often not a straight line. Here, each arrow represents
one unit of cost. Because zoom is logarithmic, it is often shorter to zoom out (4), make a small pan (b) and
zoom back in (c), than to make a large pan (d)

Figure 13 shows how semantic zooming differs from ordinary geometric zooming, in
that the triangular regions change along the scale axis. By explicitly representing scale,
the scale-dependent aspects of an object’s representation can be made visible. We
intend to use such diagrams to help create semantically zoomable objects. The idea is
to provide an editing environment where transition boundaries could be moved or
aligned by direct manipulation.

All these uses of multiscale diagrams capitalize on the fact that they statically
represent scale so that multiscale concepts, which are inherently temporal, are more
readily analyzed.

3) 3 1 (d)
(2) =/] (C)
(1, /—==T—— CEmw 1 (b)

Figure 13. Semantic zooming. Bottom slices show views at different points

Motorola PX 1006_170

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 21

5. Procedural Animation

We are also using Pad++ as a substrate for building user-definable animated objects
such as complex interface widgets. We have recently applied the same techniques to
create animated human-like actors [27]. Although the widgets are much simpler, we
employ the same mechanisms that allow us to control human-like movements and
gestures to simulate personality and intentionality. The ultimate goal is to support an
informational physics in which objects animate naturally. Using these tools, the
Pad++ application designer can always convey to the user a clearly structured
animated narrative instead of merely an assortment of disjoint temporal events.

We approach this goal by providing a mechanism for the definition of moveable
graphical objects. In addition, we define high-level hierarchical control mechanisms
for the movements. We are starting to define simple widgets such as buttons and
sliders at a behavioral level that makes it easier for application developers to easily
change the look and feel of an application. While the widget definitions we supply
have a traditional Motif-like look and feel, a designer can easily change their visual
style or interaction mechanism.

In addition, we are exploring novel widgets that take advantage of the Pad++
zooming environment. We used our extension mechanisms to implement a choice
widget that provides an alternative to the traditional pop-up menu. Figure 14 shows
two views of the same widget. The view on the left shows a zoomed out view. Here
the widget just shows its current value. On the right we have zoomed into the widget
and now the available choices become visible for user selection.

These widgets are implemented with our KPL rendering language. This language
was designed to allow very fast run-time recompilation compact representation and
efficient execution (roughly 100 times faster execution time than Tcl). It is a post-fix

Figure 14. A prototype zoomable choice widget

Motorola PX 1006_171

22 B. B. BEDERSON ET AL.

stack language whose simple structure allows execution roughly 10 times faster than
other interpreted or byte-compiled languages. KPL’s speed allows us to execute
scripts during each render. Without this efficient mechanism, we would only be able
to render items pre-defined in the C++ substrate.

The next step uses KPL to create complex animations by the definition of simple
repetitive motions of objects based on stochastic processes along with a built-in
mechanism to make an automatic transition between different motions. The stochastic
processes are defined by rotation axes, periods and magnitudes with some coherent
noise [27] applied to give more natural behavior. The mechanism to change between
motions gives the hierarchical control described above.

By changing the parameters of the stochastic movement in response to the
environment and chaining sequences of motions, together with the transitioning
mechanism, we are able to build complex animated behavior in the user interface.

We handle transitions between two actions having different tempos via morphing
approach. At the start of the transition, we use the tempo of the first action, and at the
end, we use the tempo of the second action. During the time of the transition, we
continuously vary the speed of the master clock from the first to the second tempo. In
this way, any phase dependent synchronization of the two actions is always preserved
during transitions. We may also define new actions as extended transitions between
two or more other actions. When there are multiple actors, each actor maintains its
own individual tempo.

A related notion that we are exploring is peripheral attention. How does an actor
convey that a process is proceeding normally or abnormally, without distracting the
user from his/her current tasks? This is especially important in a zoomable
environment where the ability to provide peripheral awareness of processes is an
important attribute of the paradigm.

We are also studying the semantics of the discrete state transitions that visually
represent shifts in attention. In this way an actor on the Pad++ surface can quickly
convey to users which other actors and users it is interacting with. We are also
interested in determining to what extent we can encode the texture of interactions in
order to convey the visual impression of complex activities going on at different scales
without requiring all the detail to be specified. We suspect that some of the same
techniques used in character animation might be effective here too.

6. Implementation

Pad++ is implemented in C++ under various versions of the Unix operating system
using the standard X graphics library system. It currently runs on SGIs, Suns, IBM
RS-6000s, PCs running Linux, and should be trivially portable to other Unix systems.
Pad++ is implemented as a widget in Tcl/Tk and thus allows applications to be
written in the interpreted Tcl language. All Pad++ features are accessible through Tecl
making it unnecessary to write any C++ code for new applications.

6.1. Efficiency

In order to keep the animation frame-rate up as the dataspace size and complexity
increases, we utilized several standard efficiency methods in our implementation

Motorola PX 1006_172

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 23

which taken together create a powerful system. We have successfully loaded over

600 000 objects (with the directory browser) and maintained interactive rates of about

10 frames per second. Even when objects are not visible, appropriate checks must be

done each time there is movement to see if those objects should now be visible. The

key is that the rendering system takes a time roughly proportional to the number of

visible objects, independent of the number of objects in the database (on average).
Briefly, the efficiency methods we use in Pad++ include:

* Spatial Indexing: Objects are stored internally in a hierarchy based on bounding
boxes which allow fast indexing to visible objects.

* Clustering: Pad++ automatically restructures the hierarchy of objects to
maintain a balanced tree which is necessary for the fastest indexing.

* Refinement: Renders fast while navigating by using lower resolution, and not
drawing very small items. When the system is idle for a short time, the scene is
successively refined, until it is drawn at maximum resolution.

* Level-Of-Detail: Renders items differently depending on how large they appear
on the screen. If they are small, renders them with lower resolution.

* Region Management: Only updates the portion of the screen that has been
changed. Linked with refinement, this allows different areas of the screen to
refine independently.

* Clipping: Only renders the portions of large objects that are actually visible.
This applies to images and text.

* Adjustable Frame Rate: Animations and zooming maintain constant perceptual
flow, independent of processor speed, scene complexity, and window size. This is
accomplished by rendering more or fewer frames, as time allows.

* Interruption: Slow tasks, such as animation and refinement, are interruptible by
certain input events (such as key-presses and mouse-clicks). Animations are
immediately brought to their end state and refinement is interrupted, immedi-
ately returning control to the user.

* Ephemeral Objects: Certain objects that represent large disk-based datasets
(such as the directory browser) can be tagged ephemeral. They will automatically
get removed when they have not been rendered for some time, and then will get
reloaded when they become visible again.

* Optimized Image Rendering: The code to render zoomed images has been very
carefully optimized and allows real-time zooming of high-resolution images.

6.2. Scripting Language Interface

An important consideration in the design and implementation of Pad++ is how to
create a very fast and efficient graphics system, and yet still make it extensible. We
wanted to make sure that we and others would be able to experiment easily with new
interface mechanisms. Originally, Pad++ was implemented entirely in C++, making
it very difficult for anyone but the authors to add new objects and interactions. Even
for the authors, going through the compile and link cycle was very slow and tedious,
making it difficult to do much experimentation.

We decided to create an interpreted scripting language interface to Pad++ to get
around this problem. This approach is becoming quite common, and works well as
long as the scripting language is at the right level. On one side, you want as much as

Motorola PX 1006_173

24 B. B. BEDERSON ET AL.

possible to be in the scripting language so that the system is as easy to modify as
possible. On the other side, it is critical that all speed-critical code be written as
efficiently as possible. In a system like ours, there are three classes of code, each of
which have different speed requirements:

* Create objects: Slow—Scripting language is fine
* Handle events: Medium—Small amount of scripting language is ok
* Render scene: Fast—C++ or byte-compiled languages only

Rendering is done in C++ (for built-in Pad++ items) or in an efficient byte-
compiled language such as KPL (for user defined widgets or animated items). This
results in animation performance which is quite good, even on Linux based PC
platforms.

We chose Tcl [24] as our primary scripting language, largely because it comes in
combination with Tk, a Motif-like library for creating graphical user interfaces.
Pad++ is built as a new widget in Tk. This allows it to be used in combination with
standard, non-zooming widgets such as menubars, buttons, slidets, etc. This lets us
make complete applications while we build and debug widgets within Pad++. Just as
importantly, it prov1des a mechanism to compare zoomable interfaces with traditional
interface mechanisms in the same system.

The Tecl interface to Pad++ is designed to be very similar to the interface to the Tk
Canvas widget (which provides a surface for drawing structured graphics). While
Pad++ does not implement everything in the Tk Canvas yet, it adds many extra
features. The Tcl interface to Pad++ is summarized here to give a feel for what it is
like to program Pad++.

We are also experimenting with other scripting languages which are better suited to
some tasks—primarily those requiring higher speeds. As mentioned previously, we
use KPL for high-speed animations. We also are considering incorporating an
alternative language, such as Scheme or Java, for more general programming which
needs high speed interaction.

6.3. TCL Interface

There are many commands that create and manipulate objects, each referring to the
object’s unique integer id. Objects may be grouped by using tags, a mechanism for
associating data with each object. Every command can be directed to either a specific
object id or to a tag, in which case it will apply to all objects that share that tag. Each
Pad++ widget has its own name, and all commands start with the name of that
widget. In the examples that follow, the name of the widget is . pad.

Examples:

* A red rectangle with a black outline is created whose corners are at the points
(0, 0) and (200, 100):
.pad create rectangle 0 0 200 100 -fill red -pen black

* Put item number 5 at the point (30, 30), make the object twice as big, and make
the object anchored at that point on its northwest corner:
.pad itemconfig 5 -anchor nw -place 30 30 2'’

* Specify that item number 5 should be visible only when its largest dimension is
greater than 20 pixels and less than 100 pixels.
.pad itemconfig 5 -minsize 20 -maxsize 100

Motorola PX 1006_174

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 25

It is straightforward to get scripts evaluated when specific events hit objects or groups
of objects. Simple macros get expanded within the event script to specify information
specific to that event. Some examples follow:

* Make all items with tag foo turn blue when the left button of the mouse is
pressed over any of those objects:
.pad bind foo (ButtonPress-1){
.pad itemconfig foo -fill blue
}
¢ This is a single event binding for a group of objects that affects just the object
clicked on, using the macro ‘30’ to expand to the specific object:
.pad bind foo (ButtonPress-1){
.pad itemconfig 30 -fill blue

}

Some basic navigation and searching mechanisms are provided by the Tcl interface. A
few basic ones are:

* Smoothly go to the location (100,0) with a magnification of 5, and take 1000
milliseconds for the animation:
.pad moveto 100 0 5 1000

e Smoothly go to the location such that object number 37 is centered, and fills
three quarters of the screen, and take 500 milliseconds for the animation:
.pad center 37 500

¢ Return the list of objects ids that contain the text ‘foo’
.pad find withtext foo

6.4. Events

As briefly mentioned, it is possible to attach event handlers to items on the Pad++
surface so that when a specific event (such as ButtonPress, KeyPress, etc.) hits an
item, the appropriate event handler is evaluated. This system operates much as it does
with the Tk Canvas widget, but there are several significant additions:

* Extra Macro Expansions
When a command is invoked, several substitutions are made in the text of the
command that describe the specific event that invoked the command. In addition
to the substitutions that the Tk bind command makes, Pad++ makes a few
more. These include mechanisms to find the pad widget and item that actually
received the event, the coordinates of the event in Pad++ coordinates, which
portals the event went through, and a few other related items.

* New Events
Several new events were created that get fired at special times, depending on the
semantics of the event. (Create) gets fired whenever new Pad++ items are
created. (Modify) gets fired whenever an item is modified. (Delete) gets fired
whenever an item is deleted. (Write) gets fired whenever an item is written out
with the Pad++ write command. (Portallntercept) gets fired just before an event
passes through a portal. If the event handler executes the break command, then
the event stops at the portal and does not pass through.

Motorola PX 1006_175

26 B. B. BEDERSON ET AL.

* User-Specified Modifiers
Event handlers are defined by sequences of the same format as the Tk bind
command. A sequence contains a list of modifiers which are direct mappings
hardware such as the shift key, control key, etc. Event handlers only fire
sequences with modifiers that are active, as defined by the hardware.

Pad++ allows user-defined modifiers where the user can control which one
of the user-defined modifiers is active (if any). The advantage of modifiers is
that many different sets of event bindings may be declared all at once—each
with a different user-defined modifier. Then, the application may choose which
set of event bindings is active by setting the active user-defined modifier. This
situation comes up frequently with many graphical programs where there are
modes, and the effect of interacting with the system depends on the current
mode.

6.5. Callbacks

In addition to the event bindings that every item may have, every Pad++ item can
define Te¢l scripts associated with it which will get evaluated at special times. There are
currently three types of these callbacks:

* Render Callbacks
A render callback script gets evaluated every time the item is rendered. The script
gets executed when the object normally would have been rendered. By defaul,
the object will not get rendered, but the script may render the object at any time
with the renderitem function. An example follows where item number 22 is
modified to call the Tcl procedures beforeMethod and afterMethod surrounding
the object’s rendering.
.pad itemconfig 22 -renderscript {
beforeMethod
.pad renderitem
afterMethod
}
Instead of calling the renderitem command, an object can render itself.
Several rendering routines are available to render scripts, making it possible to
define an object that has any appearance whatsoever. Items which define a
render script are called procedural objects and are used for creating animated
objects (those that change the way they look on every render) and custom
objects. They also can be used to implement semantically zoomable objects,
since the size of an object is available within the callback.
* Timer Callbacks
A timer callback script gets evaluated at regular intervals, independent of
whether the item is being rendered, or receiving events.
* Zooming Callbacks
Zooming callback scripts are evaluated when an item gets rendered at a
different size than its previous render, crossing a pre-defined threshold. These
are typically used for creating efficient semantically zoomable objects. Since
many objects do not change the way they look except when crossing size
borders, it is more efficient to avoid having scripts evaluated except for when
those borders are crossed.

Motorola PX 1006_176

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 27

6.6. Extensions

Pad+ + is extensible with Tcl scripts (i.e. no C/C++ code). This provides an easy to
use mechanism to define new Pad++ commands as well as compound object types
that are treated like first-class Pad++ objects. That is, they can be created,
configured, saved, etc., with the same commands you use to interact with built-in
objects, such as lines or text. These extensions are particularly well-suited for widgets,
but can be used for anything.

Extensions are defined by creating Tcl commands with specific prefixes. Each
extension is defined by three commands which allow creation, configuration and
invocation of the extension, respectively. Defining the procedures makes them
automatically available to Pad++. No specific registration is necessary. All three
procedure definitions are necessary for creation of new Pad++ object types, but it is
possible to define just the command procedure for defining new commands without
defining new object types.

7. Physics-Based Strategies For Interface Design

Exploration of Pad++ is part of a research program to develop alternative strategies
for interface design. Our goal is to move beyond mimicking the mechanisms of earlier
media and to start to more fully exploit radical new computer-based mechanisms. We
propose an information physics view of interface objects that we think provides an
effective complement to traditional metaphor-based approaches.

While an informational physics strategy for interface design certainly involves
metaphor, we think there is much that is distinctive about a physics-based approach.
Traditional metaphor-based approaches map at the level of high-level objects and
functionality. They vyield interfaces with objects such as windows, trash cans and
menus, and functions like opening and closing windows and choosing from menus.
While there are ease-of-use benefits from such mappings, they also orient designers
towards mimicking mechanisms of earlier media rather than towards exploring
potentially more effective computer-based mechanisms. Semantic zooming is but one
example mechanism that we think arises more naturally from adopting an informa-
tional physics strategy. Even geometric zooming, especially with the orders of
magnitude possible in Pad++, is not a mechanism that traditional metaphors would
lead designers to investigate.

We are not the first to follow a physics-inspired course in thinking about interface
design. It derives, like most interesting interface ideas, from the seminal work of
Sutherland [31] on Sketchpad. Simulations and constraint-based interfaces that led to
the development of direct manipulation style interfaces are other examples of this
general approach. They too derive from Sutherland and continue to inspire
developments. Recent examples include the work of Borning and his students [5, 6].
Witkin [33] in particular has taken a physics-as-interface approach to construction of
dynamic interactive interfaces.

Smith’s Alternate Reality [28,29] and languages such as Self [32] are also examples
of following a physics-based strategy for interface design. These systems make use of
techniques normally associated with simulation to help ‘blur the distinction between
data and interface by unifying both simulation objects and interface objects as
concrete objects’ [9]. More importantly, they are based on implementation of
mechanisms at a different level than is traditional. Smith, for example, gives users

Motorola PX 1006_177

28 B. B. BEDERSON ET AL.

access to control of parameters of the underlying physics in his Alternate Reality Kit.
With this approach comes the realization that one can do much more than just mimic
reality. As Chang and Unger [9] point out about their use of cartoon animation
mechanisms in Self, ‘adhering to what is possible in the physical world is not only
limiting, but also less effective in achieving realism.’

It is important to look at the costs as well as the benefits of traditional,
metaphor-based strategies. They can lead away from exploration of new mechanisms
and limit views of possible interfaces in at least four ways.

First, metaphors necessarily pre-exist their use. Pre-Copernicans could never have
used the metaphor of the solar system for describing the atom. In designing interfaces,
one is limited to the metaphorical resources at hand. In addition, the metaphorical
reference must be familiar in order to work. An unfamiliar interface metaphor is
functionally no metaphor at all. One can never design metaphors the way one can
design self-consistent physical descriptions of appearance and behavior. Thus, as an
interface design strategy physics, in the sense described above, offers more design
options than traditional metaphor-based approaches.

Second, metaphors are temporary bridging concepts. When they become ubi-
quitous, they die. In the same way that linguistic metaphors lose their metaphorical
impact (e.g. foot of the mountain or leg of table), successful metaphors also wind up
as dead metaphors (e.g. file, menu, window, desktop). The familiarity provided by the
metaphor during earlier stages of use gives way to a familiarity with the interface due
to actual experience.

Thus, after a while, it is the actual details of appearance and behavior (i.e. the
physics) rather than any overarching metaphor that form much of the substantive
knowledge of an experienced user. Any restrictions that are imposed on the behaviors
of the entities of the interface to avoid violations of the initial metaphor are potential
restrictions of functionality that may have been employed to better support the users’
tasks and allow the interface to continue to evolve along with the users’ increasing
competency.

Similarly, the pervasiveness of dead metaphors, such as files, menus and windows,
may well restrict us from thinking about alternative organizations of interaction with
the computer. There is a clash between the dead metaphor of a file and newer
concepts of persistent distributed object hierarchies.

Third, since the sheer amount and complexity of information with which we need
to interact continues to grow, we require interface design strategies that scale. A
traditional metaphor-based strategy does not scale. A physics approach, on the other
hand, scales to organize greater and greater complexity by uniform application of sets
of simple laws. In contrast, the greater the complexity of the metaphorical reference,
the less likely it is that any particular structural correspondence between metaphorical
target and reference will be useful. We see this often as designers start to merge the
functionality of separate applications to better serve the integrated nature of complex
tasks. Metaphors that work well with the individual simple component applications
typically do not integrate smoothly to support the more complex task.

Fourth, it is clear that metaphors can be harmful as well as helpful since they may
well lead users to import knowledge not supported by the interface. Our point is not
that metaphors are not useful but that, as the primary design strategy, they may well
restrict the range of interfaces designers consider and impose less effective trade-offs

Motorola PX 1006_178

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 29

than those designers might come to if they were led to consider a larger space of
possible interfaces.

There are, of course, also costs associated in following a physics-based design
strategy. One cost is that designers can no longer rely as heavily on users’ familiarity
with the metaphorical reference (at least at the level of traditional objects and
functionality), and so physics-based designs may take longer to learn. However, the
power of metaphor comes early in usage and is rapidly superceded by the power of
actual experience. One might want to focus on easily discoverable physics. As is the
case with metaphors, all physics are not created equally discoverable or equally fitted
to the requirements of human cognition.

8. Future Directions

To adequately explore the effectiveness of the Pad++ substrate and the informational
physics design strategy discussed here will require development of a wide range of
applications. One domain we plan to investigate is construction of active documents.
Most tools for interacting with documents (like World-Wide Web browsers such as
Mosaic and Netscape) predefine all of the interactive widgets within the client. Hooks
are provided so that documents may access those widgets but there is no method to
provide new ones, except to re-define the standards, modify the client and distribute
the client to enough of the user population so it becomes the new standard in practice.

Pad+ +’s extensibility ensures that new widgets can be defined by scripts which can
be included with a document. This will allow documents to provide new forms of
interactivity without depending on the client to supply it. We are currently in the
design stages of an extension to HTML, we call the MultiScale Markup Language
(MSML), that will be the markup language to describe documents within Pad++.
MSML will allow logical formatting of documents with different sized components
and will provide a method for allowing Pad++ scripts to be included with
documents—allowing truly active documents.

In addition to data visualizations, we are investigating the use of Pad++ as a
replacement for the standard windowing system. PadWin currently consists of a few
basic semantically zoomable gauges which display statistics such as the list of tasks
being scheduled, the state of the printer queue or the names of people who are logged
on. We intend to extend these tools so that most of the computers resources and
facilities are accessible through navigation within PadWin. We are also producing a
suite of zoomable applications for use in PadWin.

In order to support existing non-zoomable applications, PadWin will incorporate a
mechanism to control the placement of application windows on the screen to make
them blend into the Pad++ surface. By mapping, unmapping and moving these
windows appropriately, PadWin will act as an extended virtual window manager
where the effective screen size is huge, and where zoomable and non-zoomable
applications reside side by side.

Pad++ also seems well-suited to a collaborative work environment. While the
original Pad implementation allowed some basic shared workspaces (running from a
single process displaying on multiple X servers), we are designing a more sophisti-
cated approach. The goal is to be able to use portals to look remotely on to any
Pad++ surfaces on the network (assuming that the right permissions are set). Each

Motorola PX 1006_179

30 B. B. BEDERSON ET AL.

user’s system will contain a spatial database server that will send updates to all other
systems that have portals looking on to it. With this approach, there may be a lag in
retrieving others’ data but, once it arrives, it will be cached within the local system so
the high-speed interactivity of Pad++ will not be lost.

Finally, we are building a completely visual interface to Pad++ for creation of an
interactive visual dataspace. Multimedia authoring tools such as MacroMedia
Director™ and Apple’s Multimedia Authoring Tool™ are letting visual designers
without programming experience create beautiful and complex interactive hypertext
data retrieval systems. As we discussed with the layout of HTML, however, having a
huge data surface potentially alleviates some of the problems of navigating within a
large hypertext document. To this end, we are building a set of tools that will allow
non-technical visual designers to create interactive zoomable multimedia systems.

9. Availability

The Pad++ substrate is approaching the point where we can start to make it available
to a wider community. Our goal is to make it freely available for non-commercial use.
See the Pad++ project home page (http://www.cs.unm.edu/pad++) for current
information.

Acknowledgments

This work was supported in part by ARPA contract N66001-94-C-6039 to the
University of New Mexico. We especially appreciate the support we have received
from Craig Wier as part of the new HCI Initiative at ARPA. We thank David Fox
and Matthew Fuchs at NYU and Eric De Mund, David Vick and Jason Stewart at
UNM for enjoyable discussions about zoomable interfaces. We also would like to
acknowledge members of the Computer Graphics and Interactive Media Research
Group at Bellcore for discussions shared during our continuing search for the best
cheeseburger.

References

1. R. M. Baecker (1990) Human factors and typography for more readable programs. ACM
Press, Denver.

2. B. B. Bederson, L. Stead & J. D. Hollan (1994) Pad++: Advances in multiscale interfaces.
In: Proceedings of ACM SIGCHI Conference (CHI’94). Addison-Wesley, Reading, MA.

3. B. B. Bederson & J. D. Hollan (1994) Pad++: A zooming graphical interface for exploring
alternate interface physics. In: Proceedings of ACM Symposium on User Interface Software
and Technology (UIST *94). ACM Press, New York.

4. E. A. Bier, M. C. Stone, K. Pier, W. Buxton & T. D. DeRose (1993) Toolglass and magic
lenses: the see-through interface. In: Proceedings of ACM SIGGRAPH Conference (Sigraph
’93). Addison-Wesley, Reading, MA.

5. A. Borning (1979) Thinglab: a constraint-oriented simulation laboratory. Technical Report
SSL-79-3, Xerox Palo Alto Research Center.

6. A. Borning & R. Duisberg (1986) Constraint-based tools for building user interface. ACM
Transactions on graphics, 5(4), 345-374.

7. R. Brooks (1986) A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation 2(1), 14-23,

8. S. K. Card, G. G. Robertson & J. D. Mackinlay (1991) The information visualizer, an
information workspace. In: Proceedings of ACM Human Factors in Computing Systems
Conference (CHI’91). Addison-Wesley, Reading, MA.

Motorola PX 1006_180

PAD++: A ZOOMABLE GRAPHICAL SKETCHPAD 31

9. B.-W. Chang & D. Ungar. Animation: from cartoons to the user interface. In: Proceedings
of ACM Symposium on User Interface Software and Technology (UIST’93). ACM Press,
New York.

10. S. Deerwester, S. T. Dunais, G. W. Furmas, T. K. Landauer & R. Harshman (1990)
Indexing by latent semantic analysis. In: Journal of American Society of Information Science
41, 391-407,

11. W. C. Donelson (1978) Spatial management of information. In: Proceedings of 1978 ACM
SIGGRAPH Conference. Addison-Wesley, Reading, MA.

12. D. Ebert, Texturing and Modeling, A Procedural Approach. Academic Press, London.

13. S. G. Eick, J. L. Steffen & E. E. Sumner, Jr (1992) Seesoft: a tool for visualizing
line-oriented software statistics. In: JEEE Transactions on Software Engineering 18(11),
957-968.

14. K. M. Fairchild, S. E. Poltrock & G. W. Furnas (1980) SemNet: three-dimensional graphic
representations of large knowledge bases. In: Cognitive Science and its Applications for
Human-Computer Interaction. Lawrence Erlbaum Associates, Princetown.

15. G. W. Furnas (1986) Generalized fisheye views. In: Proceedings of 1986 ACM SIGCHI
Conference. Addison-Wesley, Reading, MA.

16. G. W. Furnas & B. B. Bederson (in press) Space-scale diagrams: understanding multiscale
interfaces. In: Proceedings of ACM SIGCHI’95. Addison-Wesley, Reading, MA.

17. M. Gleicher (1992) Briar: a constraint-based drawing program. In: CHI’92 Formal Video
Program. Addison-Wesley, Reading, MA.

18. W. C. Hill, J. D. Hollan, D. Wroblewski & T. McCandless (1992) Edit wear and read wear.
In: Proceedings of ACM SIGCHI’92. Addison-Wesley, Reading, MA.

19. W. C. Hill & J. D. Hollam (1994) History-enriched digital objects: prototypes and policy
issues. The Information Society, 10, 139-145.

20. J. D. Hollan, E. Rich, W. Hill, D. Wroblewski, W. Wilner, K. Wittenburg, J. Grudin &
Members of the Human Interface Laboratory (1991) An introduction to HITS: human
interface tool suite. In: Intelligent User Interfaces (Sullivan & Tyler, eds) pp. 293-337.

21. J. D. Hollan & S. Stornetta (1993) Beyond being there. In: Proceedings of the ACM
SIGCHI’92. Addison-Wesley, Reading, MA.

22. G. Lakoff & M. Johnson (1980) Metaphors We Live By. University of Chicago Press,
linois.

23. J. D. Mackinlay, G. G. Robertson & S. K. Card (1991) The perspective wall; detail and
context smoothly integrated. In: Proceedings of CHI’91 Human Factors in Computing
Systems. Addison-Wesley, Reading, MA.

24. J. K. Ousterhout (1994) Tcl and the Tk Toolkit. Addison Wesley, New York.

25. K. Perlin & D. Fox (1993) Pad: an alternative approach to the computer interface. In:
Proceedings of 1993 ACM SIGGRAPH Conference. Addison-Wesley, Reading, MA.

26. K. Perlin (1985) An image synthesizer. In: Proceedings of ACM SIGGRAPH ’85 19,
287-293.

27. K. Perlin (1994) Danse interactif. In: Video Proceedings of ACM SIGGRAPH 94, 28(3).

28. R. B. Smith (1986) The alternate reality kit: an animated environment for creating
interactive simulations. In: Proceedings of the 1986 IEEE Computer Society Workshop on
Visual Languages, Rome.

29. R. B. Smith (1987) Experiences with the alternate reality kit: an example of the tension
between literalism and magic. In: Proceedings of ACM CHI + GI ’87 Conference. ACM
Press, New York.

30. M. C. Stone, K. Fishkin & E. A. Bier (in press) The movable filter as a user interface tool.
In: Proceedings of ACM SIGCHI’94. Addison-Wesley, Reading, MA.

31. L. E. Sutherland (1963) Sketchpad: A man-machine graphical communications systems. In:
Proceedings of the Spring Joint Computer Conference. Spartan Books, Baltimore, pp.
329-346.

32. D. Ungar & R. B. Smith (1987) Self: The Power of Simplicity. In: Proceedings of OOPSLA
’87 Conference.

33. A. Witkin, M. Gleicher & W. Welch (1990) Interactive dynamics. Computer Graphics
24(2), 11-21.

Motorola PX 1006_181

Pad++ Programmer’s
Guide

Motorola PX 1006_182

Pad++ Programmer’s Guide
(Version 0.2.7)

URL: http://www.cs.unm.edu/pad++

KEYWORDS
Pad, Pad++, Widget, Zoom, Graphical User Interface, Multi-Scale, Zoomable Interfaces, Tcl, Tk.

INTRODUCTION

Pad++ is a structured graphics widget for Tcl/Tk that features zooming. It adds scale, as a first class parameter to
all items, as well as mechanisms for navigation through the multi-scale space of the Pad++ widget. Pad++ provides
an alternative to the Canvas widget in Tk. The syntax used to interact with a Pad++ widget is similar to the syntax
used to interact with a Tk Canvas. Pad++ has special mechanisms to maintain efficiency for large numbers of
graphical items, and also supports special item types such as HTML and portals. While it does not offer all of the
features of a Canvas, Pad++ offers several extras.

Pad++ widgets implement structured, multi-scale graphics such as rectangles, lines, text, and images. These items
can be manipulated (e.g. moved or re-colored) and/or associated with commands using event bindings. This is
similar to the way that the Tk bind command uses events to associate commands with widgets. For example, a
particular command/script may be associated with the <Button-1> event. This command/script is then invoked
whenever button 1 is pressed with the mouse cursor over a particular item (or items).

Pad++ is connected to the Tcl scripting language. This provides a high-level interface to its complex graphics and
interactions. While Tcl runs slowly, it is used as a glue language for rapidly creating interfaces and putting them
together. The actual interaction and rendering on Pad++ widgets are performed by the Pad++ substrate (written in
C++). This approach allows people to develop applications for Pad++ at a high level while avoiding the
complexities inherent in this type of system. Pad++ also supports Scheme as an alternative to Tcl.

Note that change bars appear wherever this document differs from the previous version.

AVAILABILITY

Pad++ is Free Access Software. It is not public-domain, but it is available for free for education, research, and non-
commercial use. You must obtain a Free Access License to use Pad++.

As a Free Access Licensee, you have the right to use the Pad++ System as long as it is not combined with any
product or service in any way. Use of the Pad++ System with commercially acquired software that depends on the
Pad++ System in any way requires the commercial software supplier to have negotiated a Distribution License with
the Pad++ Consortium.

See the files License and LicenseTerms for more information.

RUNNING PAD++

To run Pad++, simply type "pad" (assuming Pad++ has been properly installed.) This runs a demo application,
PadDraw. PadDraw shows off many of Pad++’s abilities. It is written entirely in Tcl, and looking at its code is a
good way to learn how to create Pad++ applications. There is currently no documention for PadDraw.

Running PadDraw in this fashion does not give access to the Tcl interpreter. This is because the "pad" program is

Page 1

Motorola PX 1006_183

actually a shell script that runs the pad executable (which is named "padwish"), and then loads the Tcl files to run
PadDraw. To access the Tcl interpreter, you must set a few environment variables, and then run padwish.

The environment variables to set are TCL_LIBRARY and TK_LIBRARY (which point to the Tcl/Tk run-time
libraries), and PADHOME (which points to the Pad++ run-time library and the PadDraw application). Looking at the
"pad" script will show you what to set these environment variables to. If the padwish executable you are using was
built with Scheme, then you must also set the ELK_LOADPATH environment variable to point to the Elk runtime
library.

Once you’ve run padwish, the Pad++ windowing shell, you can start writing your own applications, or you can run
PadDraw by typing in the interpreter:

source S$env(PADHOME)/draw/pad.tcl

STARTUP FILES

When Pad++ starts up, the file ~/.padinit automatically gets loaded before anything else. The file ~/.padinit is a
standard Tcl script that can contain any code the user wants. A typical use for this file is to start up a Pad++
application. To make the PadDraw application start up automatically when you run padwish, put this line in your ~/
padinit file:

source S$env(PADHOME)/draw/pad.tcl

The PadDraw application uses several other startup files as well. They are described below in the PadDraw section.

PADDRAW SAMPLE APPLICATION

Pad++ comes with a sample application called PadDraw. It is written entirely in Tcl and allows interactive creation
of multiscale items and navigation within the Pad++ dataspace. It includes several demos including a dynamic tree-
based Web browser and several lenses. PadDraw supplies basic drawing and zooming capabilities with lenses and
semantic zooming that will allow you to create mockups of an application or visualization without any
programming to motivate futher development.

PadDraw is contained in the draw subdirectory of the Pad++ distribution. It is intended to be both a user level
sample application for experimenting with the Pad++ widget and a model for the developer of new Pad++
applications.

There are several files that may be useful to the application programmer. In particular:
e events.tcl Contains all the event-handler code that can be used for creating panning and zooming behavior.
e misc.tcl Contains many utility procedures used by the rest of PadDraw that may be useful.
e draw.tcl Contains the code that makes the Drawing Tools palette.
* debugevent.tcl Contains the code that makes the GUI event debugger.

When PadDraw starts up, several different kinds of files are loaded that control the look of PadDraw, as well as
defining more specific things. Some of these files come with the Pad++ distribution, and some are available for
individual customization. They are loaded after the Pad++ System file ~/ padinit, in the following order:

e padrc - Distribution file: Contains X resource file. Specifies default colors, sizes, and fonts for system in
standard X resource file format.

e ~/.padrc - Customization file: Put your own changes to the X resource file here. They will override any
definitions in the padrc file.

* paddefaults - Distribution file: Contains Tcl code. Specifies defaults for the PadDraw application, including

Page 2

Motorola PX 1006_184

colors.

* ~/.padsetup - Program generated file: Do Not Modify! This is used to store information about the setup of
PadDraw between runs. For instance, the visibility and geometry of windows are stored here.

* ~/.paddefaults - Customization file: Put your own changes to the paddefaults here. They will override any
definitions in the paddefaults file. For example, you could redefine the color palette, or the default font size of
HTML pages here.

A PRIMER FOR PROGRAMMING PAD++ IN TCL/TK

The following sections provide a basic tutorial for programming Pad++ with Tcl/Tk. This is not a complete
description of all of the Pad++ programming interface, but rather a description of many commonly used features.
See the reference documentation for a definitive description.

ITEM IDS AND TAGS

Items on a Pad++ widget may be named in either of two ways: by id or by fag. Each item has a unique identifying
number (its id), which is assigned to that item when it is created. The id of an item never changes and id numbers
are never re-used within the lifetime of a pad widget. The surface itself always gets an id of 'I'. (It is sometimes
useful to manually set the id of an item. This is possible with the setid command.)

Each item may also have any number of tags associated with it. A tag is just a string of characters, and it may take
any form except that of an integer. For example, "x123" is OK, but "123" isn't. The same tag may be associated
with many different items. This is commonly done to group items in various interesting ways; for example, all
items associated with one user might have a tag with that user's name. Then, all of those items can be modified by
referring to that tag. Note that Pad++ also has a special group item for creating hierarchical groups.

The tag all is implicitly associated with every item on the Pad++ widget; it may be used to invoke operations on all
the items in the pad.

The tag current is managed automatically. It applies to the current item, which is the topmost item whose drawn
area covers the position of the mouse cursor. Note that events only go to the current item. Since an item gets the
current tag only if the cursor is over the drawn area, this means that an item receives events only when the cursor is
over the drawn area. For example, a rectangle with no fill color will not respond to events when the cursor is over
the undrawn interior. If the mouse is not in the pad widget or is not over an item, then no item has the current tag.
Portal items are treated somewhat differently, however, as described in the bind command and in the description
of Portal Items in the reference manual.

When specifying items in Pad++ widget commands, if the specifier is an integer then it is assumed to refer to the
single item with that id. If the specifier is not an integer, then it is assumed to be a tag, and refers to all of the items
on the Pad++ widget that have that tag. The symbol tagOrld is used to indicate that a tag or an id is to be used as
an argument to the command. For example, the manual entry for the command slide looks like this: pathName
slide tagOrld. An id selects a single item (which may be a group item), and a tag selects zero or more items to
be used by the command. Some widget commands only operate on a single item at a time. If tagOrld specifies
multiple items, then the normal behavior is for the command to use the first (lowest) of these items in the display
list that is suitable for the command. Exceptions are noted in the widget command descriptions.

There are commands to find the specific tags associated with an item (gettags), and to find all the items that
share a tag (£ind). Tags can be added to items with the addtag command or deleted with the deletetag
command. In addition, tags can be accessed with the -fags itemconfigure option.

ITEM CONFIGURATION

Every item has several options that may be configured with the itemconfigure command. Certain options are
shared by all item types (for example, see -transparency and -maxsize), while some options are specific to item

Page 3

Motorola PX 1006_185

types (like -fonf). Multiple options can be changed with a single itemconfigure command by alternating options and
values. If the value of the last option is not specified, then the current value of that option is returned.

Thus,

.pad itemconfigure foo -maxsize 50 -sticky 1

sets the maximum size of all items with the tag foo to 50, and makes them all sticky.

.pad itemconfigure 3 -penwidth

returns the current penwidth of item #3. If no options are specified, then a list of all the options and values are
returned. This is a good way to find out what options are available for a specific item type. Note that ic is an alias
for itemconfigure, so an equivalent command is:

.pad ic 3 -penwidth

COORDINATES

Coordinates are specified and are returned in the current Pad++ units. The default units are pixels (see —units
configuration option). All coordinates relating to the Pad++ surface are stored as floating-point numbers. All
coordinates refer to the Pad++ surface and are independent of the current view. Therefore if the view happens to
have a magnification (zoom) of 2.0, and you create an item that is 50 pixels wide, it will appear 100 pixels wide for
this specific view.

The origin of the Pad++ coordinate system is in the center of the window upon startup. As with a normal cartesian
coordinate system, larger y-coordinates refer to points higher on the screen; larger x-coordinates refer to points
farther to the right. Notice that the y coordinate is inverted as compared to the Tk canvas.

There are two parts to pad’s coordinate system. First, every item on the pad surface exists at a specific place, and
can be moved and scaled on the surface. In addition, there is a view which specifies what portion of the pad surface
is visible and at what magnification. Thus, the appearance of an item on the screen depends both on the position
and scale of the item (the item’s transformation) as well as the location and magnification of the current view.

The following code draws a simple ruler:

pad .pad -units inches
pack .pad
.pad create rectangle 0 0 5 1 -fill white -penwidth .05
for {set x 0} {$x <= 5} {set x [expr $x + 0.125]} {
if {[expr int($x) == $x]} {
Draw inch markers
.pad create line $x .5 $x 1 -penwidth .04
} elseif {[expr int($x / .5) * .5 == $x]} {
Draw half-inch markers
.pad create line $x .65 $x 1 -penwidth .04
} elseif {[expr int($x / .25) * .25 == $x]} {
Draw quarter-inch markers
.pad create line $x .8 $x 1 -penwidth .04
} else {
Draw eighth-inch markers
.pad create line $x .9 $x 1 -penwidth .04
}
}

.pad config -units pixels ;# Return to default units

Page 4

Motorola PX 1006_186

Views are defined by a list of three numbers which specify the (x, y) point at the center of the window, and the
magnification of the view, respectively. The default view, (0, 0, 1), has the origin at the center of the screen and is
not magnified. The getview command returns the current view, and the moveto command modifies the current
view with an optional animation.

.pad getview
= 001
This command makes the ruler appear twice as big
.pad moveto 0 0 2
This command smoothly animates the view back to its
starting point, and takes 1000 milliseconds for the animation.
.pad moveto 0 0 1 1000

Coordinates can also be managed in another way. Sometimes it is useful to specify coordinates relative to
something else, instead of with the absolute coordinate system just described. Pad++ maintains a stack of
coordinate frames. Suppose you wanted to create a layout of nested boxes. These coordinates would not be quite
as easy to compute if we remain in the original coordinate system. But we can use relative coordinate frames to do
this. Each coordinate frame is a bounding box on the Pad++ surface. All coordinates are specified as a unit square
within this coordinate frame, i.e., (0, 0)-(1, 1). That is, when a coordinate frame is specified, coordinates are no
longer absolute units. Instead they are relative to the specified frame. Coordinate frames may be specified by any
bounding box, or by an item (thereby using the item’s bounding box). Note that pen width and minsize and maxsize
are also relative to the coordinate frame. In these cases, a value of 1 refers to the average of the width and height of
the frame.

The following example draws a box with four boxes inside of it, and four boxes inside of each of those, and so on,
four levels deep. New coordinate frames are placed on the top of the coordinate frame stack using the
pushcoordframe command and removed from the top of the stack with the popcoordframe command. Note
that from now on, the examples assume a pad widget called .pad has already been created with pixels as the current
units, and packed with:

pad .pad
pack .pad

proc draw_a box {x1 yl x2 y2 level} {
set id [.pad create rectangle $xl1 $yl $x2 $y2 -penwidth .01]
puts $id
.pad pushcoordframe $id
draw_nested boxes [expr $level + 1]
.pad popcoordframe

Page 5

Motorola PX 1006_187

}

proc draw nested boxes {level} {
if {$level >= 5} {return}
draw_a box .1 .1 .45 .45 Slevel ;# Draw lower-left box
draw_a_box .55 .1 .9 .45 Slevel ;# Draw lower-right box
draw_a_box .1 .55 .45 .9 slevel ;# Draw upper-left box
draw_a box .55 .55 .9 .9 $level ;# Draw upper-right box

}

draw_a box 0 0 300 300 1

ooj |og
oog| (oo
ooj |og ooj |og
oog| (oo oog| (oo

See the pushcoordframe, popcoordframe, and resetcoordframe commands for more information.

TRANSFORMATIONS

Pad++ maintains a distinction between the surface and the view. All graphical items sit at a distinct location on the
surface with a given size. The view shows any given location on the surface at any magnification.

Initially the view onto the Pad++ surface looks at the origin (0, 0) with a magnification of 1.0. The view is always
represented by a list of 3 numbers representing the (x, y) position and magnification, respectively. The view is
specified by the point currently at the center of the window. It is possible to adjust the view onto the surface by
using the moveto widget command. The getview command returns the current view.

Individual items may be moved or scaled, relative to the surface, using the widget commands slide and scale,
respectively. Currently, rotation is not supported for either individual items, or the view.

Every item on the Pad++ surface has an anchor and an anchor point associated with it that controls the item's
position and size. The anchor and the position of the anchor point can be accessed directly with the —anchor, and
-place itemconfigure options. The —place consists of a list of three values where the first two values specify
the position of the anchor point of the item, and the third value specifies its size. For example, an image with a —
place of "25 30 2" and an —anchor of "center" will appear centered at the point (25, 30) with a magnification of
2. Changing its anchor to "w" will make the west side of the image appear at the point (25, 30).

Some items (such as text and images) get created with a -place of (0, 0, 1). Items with coordinates, however,
(lines, rectangles, polygons, splines, and portals) are special in that these items get created with a -place that is
determined by the coordinates. So, creating a rectangle from (0, 0) to (50, 50) with a center anchor gets a -place of
"25251".

Let’s look at how the various transformations work. We’ll start by creating two squares.

.pad create rectangle 0 0 100 100 -tags "rectl" -fill black

Page 6

Motorola PX 1006_188

.pad create rectangle 0 0 100 100 -tags "rect2" -fill white

Notice that only the white rectangle is visible because both rectangles are drawn at the same place, and the one
drawn last appears on top. We now slide the black rectangle to the left and shrink the white one.

.pad slide rectl -100 0
.pad scale rect2 .5

These commands operate by modifying the item’s configuration. We can see this by using the itemconfigure
command to look at them.

.pad itemconfigure rectl -place => "-50 50 1"
.pad itemconfigure rect2 -place => "50 50 .5"

If we zoom in a bit with the moveto command, both items will appear larger. This, however, is not the same as

magnifying each item with the scale command. Changing the view affects the way all items are rendered (except
sticky items, see below). Transforming items changes just the way those items are rendered.

.pad moveto 0 0 2

Page 7

Motorola PX 1006_189

Note that the item configurations do not change when the view is changed:

.pad itemconfigure rectl -place => "-50 50 1"
.pad itemconfigure rect2 -place => "50 50 .5"

We can retrieve the current view with the getview command:

.pad getview => "0 0 2"

EVENT BINDINGS

It is easy to attach Tcl scripts to items so that when the user interacts with that item (via a mouse button press, key
press, or whatever), the Tcl script is evaluated. This is implemented with the bind command. For example, the
following code creates two squares. Clicking on the left one zooms in a bit, and clicking on the right one zooms out
a bit. (Pad++ offers some unique features for the bind command. See the Pad++ Reference Manual for details).

.pad create rectangle 0 0 50 50 -tags rectl -fill black
.pad create rectangle 100 0 150 50 -tags rect2 -fill white
.pad bind rectl <ButtonPress> {.pad moveto 0 0 2 1000}
.pad bind rect2 <ButtonPress> {.pad moveto 0 0 1 1000}

FONTS

Pad++ supports Adobe Typel fonts, however, this font support is still under development. You may notice that
fonts are not rendered very well when they are small, but look good when they are large. While these fonts are
rendered relatively quickly, they are expensive. The system will slow down when a lot of text is used with one of
these fonts. Fonts for text items are specified with the -font itemconfigure option. The system font is specified with
"System", and Typel fonts are specified by the filename that contains the font. This will be changed in a future
version to allow a system-independent way of specifying fonts.

Pad++ comes with a font named "System". This is a fixed-width vector-font modeled after courier. It is readable at
smaller sizes and it is quite fast. But, it is not very pretty when magnified.

IMAGES

Pad++ supports real-time zooming of images. The rendering speed is dependent only on the size of the resulting
image and is independent of the source image size. This real-time image zooming is only possible when the Pad++
program is being displayed on the console of the same machine that is running Pad++ (i.e., real-time zooming is
much slower across networks). Pad++ will print the message "Real-time image zooming supported", when starting
up, if real-time image zooming is available.

Page 8

Motorola PX 1006_190

TREES

Pad++ supports dynamic hierarchical trees of pad objects which animate to show a focus + context information
space. Dynamic trees are currently utilized in the Web browser utility, found in the Demos menu of PadDraw.

A dynamic tree is a hierarchical information space which is managed by layout objects which control the relative
positioning of the pad items they are associated with. Currently, pad++ supports one default type of layout - a
hierarchical tree layout which places child nodes to the right of the node.

Each pad has a treeroot slot, which is the master root of all dynamic trees for that pad. It is possible to create
special children of this master root node are "invisible" roots - nodes which have pad objects associated with them,
but are not used for anything except for managing their subtrees. These nodes separate the dynamic information
space into managed subtrees that do not "know" about each other. That is, these separate subtrees may interfere
when a layout occurs, because they are not connected by a functioning layout. The only way to get these top level
nodes to "cooperate" is to call layout on the master tree node owned by the pad.

Creating a tree
First, we will make some simple rectangles to represent the nodes of a tree. Then the following code creates a tree
attached to the master root, with one parent and three children, and lays out the tree.

set root [.pad create rectangle 0 0 50 50 -fill white]
set childl [.pad create rectangle 0 0 50 50 -fill red]
set child2 [.pad create rectangle 0 0 50 50 -fill green]
set child3 [.pad create rectangle 0 0 50 50 -fill blue]

Create the dynamic tree data nodes
.pad tree create $root
.pad tree create $childl
.pad tree create $child2
.pad tree create $child3

Create the tree structure
.pad tree addnode $childl $root
.pad tree addnode $child2 $root
.pad tree addnode $child3 $root

Layout the tree
.pad tree layout $root

The tree structure can be accessed with the getparent and getchildren commands. These return the ids of
the appropriate members of the hierarchy.

Page 9

Motorola PX 1006_191

.pad tree getparent $childl

=> Returns S$root
.pad tree getchildren $root

=> Returns a list of childl child2 child3
.pad tree getchildren $childl

=> Returns an empty string

Layout
The layout at a node is invoked by the following command which causes a layout of all nodes in the subtree rooted
at node.

.pad tree layout $root

The tree maintains a notion of focus. By default, no nodes have focus, and all nodes are the same size. However,

making a node get focus will increase it’s size (by an amount specified by setfocusmag). Executing the
following code will warp the tree layout as shown:

.pad tree setfocus $childl 1.0
.pad tree layout $root

Normally, when invoking the 1layout command on a tree, the tree will animate without changing the view. The -
view option in the layout command is used to animate the view while a layout is taking place. Because the user
may want to animate the view to a position based on the future position of a node, the getlayoutbbox provides
the bounding box of a node at the end of the current animation. These commands must be used in a specific order,
so that the information referenced by both the layout code and the user is valid.

To animate the view of a layout to center child1, use the following commands.

.pad tree computelayout $root

set bb [.pad tree getlayoutbbox $childl]

set x [lindex $bb 0]

set y [lindex $bb 0]

set z [lindex [.pad getview] 2]

.pad tree animatelayout $root -view "$x Sy $z"

Maintainance

A tree can be reorganized, added to, or parts of a tree can be deleted. A single node can be reparented, or its entire
subtree. The relevant commands are delete, removenode, and reparent. The following code will rearrange
the previously created tree, moving one child under another.

.pad tree reparent $child3 $child2
.pad tree layout $root

Page 10

Motorola PX 1006_192

APPLICATION-DEFINED ITEM TYPES AND OPTIONS

Pad++ may be extended entirely with Tcl scripts (i.e., no C/C++ code). This provides a mechanism to define new
Pad++ types and a way to define options for those types (or built-in types). These user-defined types and options
are treated like first-class Pad++ objects. They can be created, configured, saved, etc., with the same commands
you use to interact with built-in objects such as lines or text. These extensions are particularly well-suited for
widgets, but can be used for anything.

For example, the PadDraw application (written in Tcl), defines several widgets including buttons and sliders with
the type mechanism. It also defines ~-roughness and —undulate options for the built-in line type.

Types and options are defined with the addtype and addoption commands, respectively. The addtype
command defines a new type with a script that gets evaluated whenever a new item of that type is created with the
create command. The pathname of the pad widget is added on to the script as an extra parameter when the script
is evaluated. In addition, any other parameters before the first option (defined by a ’-’) are passed as extra
arguments after the pad widget pathname. The script must return the id of an item that it creates that is to be treated
as the new type. Any item type can be created for this purpose, and it will be treated as the new type. If a —
renderscript is attached to this item, then this item type can have any desired visual look. Alternatively, the

script might create a group with members that define the item’s look.

The addoption command defines a new option for a built-in or user-defined type. This option is accessed, the
regular way, with the itemconfigure command, and will get written out with the write command. Similar to
the addtype command, addoption defines a script that gets evaluated whenever the user-defined option is
accessed for an item of the specified type. The script must return the new value of the option. When the script is
evaluated, two or sometimes three extra parameters are added on to the end of the string. They are:

e pathName: The name of the pad widget the item is on.
° item: The id of the item being configured.
* [value]: Optional value. If value is specified, then the option must be set to this value.

The following example shows how to define a new "property" type that has two slots, -option and -value. When an
item of type property is created, it appears as text with the option on the left and the value on the right separated by
a colon and some space.

#

Add new "property" type

#

.pad addtype property propCreate

#
Define script to handle creation of property item
#
proc propCreate {PAD args} {
set option [.pad create text -anchor e -text "option: "]
set value [.pad create text -anchor w -text "value"]
set group [.pad create group -members "$option $value" -z 20]

return $group

}
#
Add "-option" and "-value" options to the property type

#
.pad addoption property -option "propConfig -option" "option"

Page 11

Motorola PX 1006_193

.pad addoption property -value ‘"propConfig -value" "value"

#
Handle property item configuration
#
proc propConfig {args} {
set option [lindex $args 0]
set PAD [lindex $args 1]
set id [lindex S$Sargs 2]
set got_value 0

Access arguments
if {[llength S$args] >= 4} {
set value [lindex $args 3]
set got value 1
} else {
set value

}
switch -exact -- $option {
-option { ;# Handle "-option" option
set option_id [lindex [$PAD ic $id -members] 0]
if {$got value} {
$PAD ic $option_ id -text "$value: "
} else {
set value [$PAD ic $option_ id -text]
set len [expr [string length $value] - 3]
set value [string range $value 0 $len]
}
}
-value { ;# Handle "-value" option
set option_id [lindex [$PAD ic $id -members] 1]
if {$got value} {
$PAD ic $option_ id -text "$value"
} else {
set value [$PAD ic $option_ id -text]
}
}
default {return -code error "Unknown option: $option"}
}

return S$value

The property item can be created and accessed just like any built-in item. The following code shows how one
might use a property item.

set prop [.pad create property]

.pad itemconfig $prop -option "color"
.pad itemconfig $prop -value "blue"

set color [.pad itemconfig $prop -value]

Page 12

Motorola PX 1006_194

puts "color of property is $color"

DISPLAY LISTS

There are two display lists maintained by Pad++, the regular display list and the sticky display list. Items are put on
the regular display list by default. The actual size and location of the items on the screen depends upon the view.
Items put on the sticky display list are unaffected by the view and thus seem to stick to the screen. Sticky items act
as if the view is always (0, 0) with a magnification of 1.0. Items can be moved between the display lists with the
-sticky itemconfiguration option.

Each display list maintains its own sense of drawing order. Items that are created later are drawn later, and thus
appear over other items. All sticky items are rendered after (i.e., on top of) non-sticky items. Drawing order within
display lists can be changed with the raise and lower commands.

REGION MANAGEMENT AND SCREEN UPDATING

Only the portions of the screen that change get rendered. This makes many operations, such as modifying and
dragging items, or panning the view, much more efficient. Panning is optimized by shifting the pixels in the
appropriate direction and then re-rendering just the strips left blank. This optimization can be turned off with the -
fastPan widget configuration option. Zooming speed is not improved by this process because it requires re-
rendering the entire view.

Screen updating is controlled by region management which uses the concepts of damage and repair. When an item
changes, the region within its bounding box is automatically damaged. The act of damaging a region adds it to a
list that gets scheduled for repair. The repair doesn't occur until either the system is idle, or the update command
is called. Many commands implicitly damage items, but damage can be triggered manually with the damage
command.

UNIQUE PAD++ FEATURES

While Pad++ is modeled after the Tk Canvas widget, there are several unique features of Pad++, in addition to the
basic multiscale concept.

e Portals

Portals are a special type of item in Pad++ that sit on the Pad++ surface with a view onto a different
location. Because each portal has its own view, the surface might be visible at several locations, each at a
different magnification, through various portals. In addition, portals can look onto surfaces of other Pad++
widgets. See the description of Portal Items in the reference manual, as well as the description of the bind
command for more information about portals.

e Events

It is possible to attach event handlers to items on the Pad++ surface so that when a specific event (such as
ButtonPress) is applied to an item, an associated command is executed. This system is similar to the way that
the Tk bind command uses events to associate commands with widgets; but the Pad++ bind command has
several significant additions. The extensions fall into the following three categories (See the pad bind
command in the Pad++ Reference Manual for complete details):

» Extra macro expansions are added.
* New events are added: <Create>, <Modify>, <Delete>, <Write>, and <Portallntercept>.
e User-specified modifiers are added.

e Callbacks

Page 13

Motorola PX 1006_195

In addition to the event bindings that every item may have, every Pad++ item can define Tcl scripts
associated with it which will get evaluated at special times. There are four types of these callbacks:

e Render Callbacks

A render callback script gets evaluated every time the item is rendered. See the —renderscript
itemconfigure option for more detail.

e Timer Callbacks

A timer callback script gets evaluated at regular intervals, independent of whether the item is being
rendered, or receiving events. See the ~timerscript and -timerrate itemconfigure options for
more detail.

e Zooming Callbacks

A zooming callback script gets evaluated when an item gets rendered at a different size than its
previous render (the relevant size thresholds are definable). This is a simple way of making
"semantically zoomable" items (i.e., items that look different when they are rendered at different
sizes). See the —zoomaction itemconfigure option for more detail.

¢ View Change Callbacks

A view change callback gets evaluated whenever the view onto the Pad++ surface changes (as a result
of commands such as moveto, center, etc.). See the —viewscript itemconfigure option for
more detail.

e Extensions

It is possible to add user-defined types and options to Pad++ entirely with Tcl scripts (i.e., no C/C++ code).
This provides a mechanism to define new compound item types that are treated like first-class Pad++ items.
The user-defined types can be created, configured, saved, etc., with the same commands you use to interact
with built-in items such as lines or text. These extensions are particularly well-suited for widgets, but can be
used for anything. See the Application-Defined Item Types and Options section above for a detailed
description.

* Animation

Pad++ has several methods for producing animations. The moveto command animates the view of the
surface to any new point in a specified time. Individual items can be animated with either render or timer
callbacks, the -place itemconfigure option, or the slide command. Finally, panning and zooming
is animated under user-control, defined by scripts supplied with the PadDraw application.

All automatic animations use slow-in-slow-out motion. This means that the motion starts slowly, goes
quicker in the middle, and ends slowly. This results in smoother feeling animations. slow-in-slow-out does
not affect the amount of time that the animation takes because time is effectively stolen from the middle to
put at the ends. User-controlled animations are specified precisely by the user, and there is no distortion in
the speed of the motion.

EFFICIENCY

Pad++ uses several techniques to maintain efficiency, even when handeling a large number of items. Understanding
these internal techniques may help the application designer to build faster programs. The techniques are:

e Spatial Indexing and Clustering

The items are stored in a hierarchy based upon the bounding box of each item. In effect, it is a kind of

Page 14

Motorola PX 1006_196

spatial indexing. This hierarchy is used to quickly locate the item(s) when the Pad++ widget is rendered, or
when an item must be found to match an event, based on its position on the Pad++ surface. The hierarchy is
defined by the invariant that every item whose bounding box is completely enclosed by another item's
bounding box becomes that item's child. Pad++ automatically performs cluster analysis and adds invisible
wrapper nodes around groups of items in order to keep down the fan-out of this hierarchy. These wrappers
are managed automatically and are invisible in all respects to the application developer.

* Refinement

Pad++ renders the scene at different resolutions depending on how much time is available. For example,
while panning or zooming and during other forms of interaction, Pad++ attempts to render the scene as
quickly as possible. It does this by not drawing items that are very small, and by drawing larger items at
lower resolution. The system refines the scene to it highest resolution, in steps, after a short pause, once the
interaction is over.

These iterative refinements each have numbers. Refinement level 0 (sometimes referred to as render level 0)
is the lowest-resolution, and thus the fastest. Each ensuing refinement is labeled with the next larger integer.
The starting refinement level (which is usually 0) can be controlled with the -defaultRenderLevel
configuration option.

e Level of detail

Some built-in items are drawn differently depending on how much time is available to draw them, and how
big the item appears on the screen. The two main examples are images and text. Images are drawn
undithered at low levels of refinement, and dithered at higher refinement levels. Note that it is possible to
stop images from ever being dithered with the -norgb option on the allocimage command. Text is drawn
as hashmarks, at small sizes, and as horizontal lines at extremely small sizes.

In addition, facilities are provided so that user-defined items can be drawn with different levels of detail. The
render and zooming callbacks can be used in combination with the getsize, getmag, and getlevel
commands to modify the way the item is drawn depending on the refinement level and size of the item.

* Region management

See the above section on Region Management and Screen Updating.

Adjustable frame rate

Pad++ adjusts the frame rate during animations and zooming to maintain constant perceptual flow. This
flow is independent of processor speed, scene complexity, or window size. For example, if a particular
animation is specified to take 750 milliseconds, just enough animation frames are rendered so that the
animation takes 750 milliseconds.

Interruptible

Whenever the system is doing a slow task, such as refining or animating, any event (such as a key-press or
mouse-click), will interrupt the task and give control back to the user. For example, pressing the space-bar
during an animation will bring you to the end of the animation. Panning during a refinement will stop the
refinement and perform high-speed panning. Interruption can be turned off with the -interruptible
configuration option.

SCRIPTING LANGUAGES

Pad++ is a prototyping system. It is intrinsically connected to an interpreted scripting language for writing
programs that create items and interact with them. By default Pad++ comes with the Tcl scripting language,
however, other languages may be added. Note that these other scripting languages can access the full functionality
of Pad++, but can not access any of the Tk interface system. The Pad++ substrate supports a fairly general

Page 15

Motorola PX 1006_197

mechanism for incorporating new scripting languages. We have done this with the Elk version of Scheme. The
README.SCHEME file describes specifically how to build Pad++ with Scheme support, and how to access Pad++
from Scheme. If Pad++ is built with Scheme included, then the setlanguage and settoplevel commands
will apply to Scheme as well as Tcl. These commands control which language is to be used.

The setlanguage command specifies what language is to be used to evaluate all callback scripts that are created
in the future. The settoplevel command specifies what language the toplevel interpreter should use. In
addition, the padwish executable has a -language option that specifies what language the interpreter should start
using. It defaults to Tcl. The following session trace shows how the two languages work together:

surf[164] padwish -language scheme
Real-time image zooming supported.

> (+ 2 2)

4

> (pad '.pad 'create 'line 0 0 50 50)

22

> (pad '.pad 'itemconfig 22 '-penwidth 5)

> (pad '.pad 'bind 22 '<Enter> "(pad '.pad 'ic %0 '-pen 'red)")
> (pad '.pad 'bind 22 '<Leave> "(pad '.pad 'ic %0 '-pen 'black)")
> (settoplevel 'tcl)

%

% puts [expr 2 + 2]

4

% .pad create line 0 0 0 50

23

% .pad settoplevel scheme

scheme

>

>

> (exit)

surf[165]

Adding a new interpreted scripting language to Pad++ requires creating some C++ interface code, modifying the
Pad++ C++ substrate to access that code, and building a new padwish executable. Several callback procedures
must be defined to add a language. Then a new instance of the Pad_Language class must be created in tkMain.C.
The necessary callback procedures are:

e Callback when a pad widget is created. This routine gets called whenever a new Pad++ widget is created.
This leads to the creation of a function for accessing the new widget in the new scripting language.

Pad_CreateProc *create_proc;

e Callback to process pad command. There should be a command for accessing the new scripting language
from Tcl, without using the top-level interpreter. For example, it should be possible to load and evaluate
files, and access variables from that language. This routine gets called when the Tcl command is evaluated,
and it must implement this functionality.

Pad_CommandProc *command_proc;

e Callback that specifies if command is complete and should be evaluated. Given a command in the scripting
language, this routine typically counts parenthesis, quotes, and braces, and determines if the command is
partial or complete. This routine is called whenever the user presses the return key at the top-level
interpreter to determine if the command should be evaluated yet.

Pad CompleteProc *complete proc;

Page 16

Motorola PX 1006_198

e Callback to generate a prompt. Given a flag specifying whether a command is, or is not complete
(according to the complete_proc), this routine should generate a distinctive prompt for this language.

Pad_PromptProc *prompt proc;

* Callback to evaluate a string. This routine should evaluate the specified string as a command in the
scripting language.

Pad_EvalProc *eval_proc;

There are several relevant C++ files that should be examined to see how Scheme is currently connected to Pad++.
The files are all in the PADHOME/src directory. pad-scheme.C implements all of the callback routines that form
the connection between C++ and scheme. script.h declares the Pad_Language and Pad_Script classes. script.C
implements those classes. tkMain.C instantiates the Pad_Language class for each available scripting language.

LOGO

The first Pad++ widget created within a session has a small logo in the bottom right corner of the screen.

CREDITS

The scripting language interface to the Pad++ widget was greatly inspired by John K. Ousterhout's canvas widget in
Tk. The zooming concept was originally described by Ken Perlin and David Fox at New York University in
SIGGRAPH'93.

Pad++ is being developed by an ARPA funded consortium led by Jim Hollan at the University of New Mexico in
collaboration with New York University.

The development group is being led by Ben Bederson (UNM), and consists of people at UNM: Jim Hollan, Allison
Druin, Mohamad Ijadi, David Rogers, David Proft, Jason Stewart, and people at NYU: Ken Perlin, and Jon Meyer.

In addition, other people that have been involved with the Pad++ project include: David Bacon, Duco Das, David
Fox, David Vick, Eric De Mund, Mark Rosenstein, Larry Stead, and Kent Wittenburg.

Pad++ is supported in part by ARPA contract #N66001-94-C-6039.
BUGS

For a list of known bugs, see the Bugs file in the Pad++ home directory.

CHANGES

For a list of changes since prior version, see the ChangeLog file in the Pad++ home directory.

CONTACT

Please use the following email address for contacting us:
* pad-bug@cs.unm.edu: Bug reports.
* pad-comment@cs.unm.edu: Comments, questions, suggestions, etc.
* pad-info@cs.unm.edu: Information requests.

* pad-users@cs.unm.edu: List of people currently using Pad++. This is currently the best way to contact other
pad users.

Page 17

Motorola PX 1006_199

Pad++ Tour

Motorola PX 1006_200

http://www.cs.umd.edu/hcil/pad-++/tour/

A Brief Tour Through Pad++

Jonathan Meyer, April 1997

e The Pad++ Metaphor
o What exactly is meant by zooming?
e Why zoom? Three example applications
o 1. An outline viewer
m Interaction with the outline view
m Hypermedia presentations using outlines
o 2. A file browser
m Semantic zooming in the file browser
o 3. An HTML browser
m Preserving history in the HTML browser
e Other Pad++ features
o Portals - twists in Pad++ space
m Portals vs Windows

o Hyperlinks

o Sticky objects
m Sticky portals as indexes

o Portal filtering and 'magic lenses'
m QOther uses for lenses
e Conclusion

Page 1 of 142

1of 1 1/10/2012 3:56 PM
Motorola PX 1006_201

1ofl

http://www.cs.umd.edu/hcil/pad-++/tour/metaphor.html#a3

The Pad Metaphor

Imagine that the computer screen is a section of wall about the size of a typical bulletin board or whiteboard.
Any area of this surface can then be accessed comfortably without leaving one's chair.

Imagine further that by applying extraordinarily good eyesight and eye-hand coordination, a user can both
read and write as comfortably on any micron wide section of this surface as on any larger section. This would
allow the full use of a surface which is several million pixels long and high, on which one can comfortably
create, move, read and compare information at many different scales.

The above scenario would, if feasible, put vast quantities of information directly at the user's fingertips. For
example, several million pages of text could be fit on the surface by reducing it sufficiently in scale, making
any number of on-line information services, encyclopedias, etc., directly available. In practice one would
arrange such a work surface hierarchically, to make things easier to find. In a collaborative environment, one
could then see the layout (in miniature) of many other collaborators' surfaces at a glance.

Page 2 of 142

1/10/2012 3:40 PM
Motorola PX 1006_202

1ofl

http://www.cs.umd.edu/hcil/pad-++/tour/metaphor1.html

The Pad++ Metaphor (continued)

The above scenario is impossible because we can't read or write at microscopic scale. Yet the concept is very
natural since it mimics the way we continually manage to find things by giving everything a physical place. A
good approximation to the ideal depicted would be to provide ourselves with some sort of system of ‘magic
magnifying glasses' through which we can read, write, or create cross-references on an indefinitely
enlargeable ("zoomable') surface.

Pad++ gives users this zoomable surface. Before we look in detail at Pad++, though, lets clarify what we
mean by zooming.

What exactly is meant by zooming?

To illustrate what we mean by zooming, there follows a series of snapshots of a Pad++ session which show
how you might interact with a zoomable drawing application.

Click on the Next button below to read on.

Page 3 of 142

1/10/2012 3:40 PM
Motorola PX 1006_203

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a (]

Here we see a simple shape drawn on surface of our Pad++ drawing application.

In Pad++, clicking and holding on the middle mouse button performs an smooth animated zoom in.

Your browser, unfortunately, can't show this! Instead, click on the next button above to single-step to the next
image in the sequence...

Click on the next button to go on.

Page 4 of 142

10f9 1/10/2012 3:41 PM
Motorola PX 1006_204

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 5 of 142

20f9 1/10/2012 3:41 PM
Motorola PX 1006_205

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

!

After zooming in a little, we have drawn a second, smaller shape.

This process can be repeated indefinitely...

Click on the next button to go on.

Page 6 of 142

30f9 1/10/2012 3:41 PM
Motorola PX 1006_206

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 7 of 142

40f9 1/10/2012 3:41 PM
Motorola PX 1006_207

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |]

Here we have zoomed in a little more and drawn a third shape and also some text.

Click on the next button to go on.

Page 8 of 142

50f9 1/10/2012 3:41 PM
Motorola PX 1006_208

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 9 of 142

6 0f 9 1/10/2012 3:41 PM
Motorola PX 1006_209

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

At any point, you zoom out to see an overview of what's been done.

Page 10 of 142

70f9 1/10/2012 3:41 PM
Motorola PX 1006_210

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 11 of 142

8 of 9 1/10/2012 3:41 PM
Motorola PX 1006_211

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 12 of 142

9 0f9 1/10/2012 3:41 PM
Motorola PX 1006_212

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a (]

Here we see a simple shape drawn on surface of our Pad++ drawing application.

In Pad++, clicking and holding on the middle mouse button performs an smooth animated zoom in.

Your browser, unfortunately, can't show this! Instead, click on the next button above to single-step to the next
image in the sequence...

Click on the next button to go on.

Page 13 of 142

10f9 1/10/2012 3:41 PM
Motorola PX 1006_213

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 14 of 142

20f9 1/10/2012 3:41 PM
Motorola PX 1006_214

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

!

After zooming in a little, we have drawn a second, smaller shape.

This process can be repeated indefinitely...

Click on the next button to go on.

Page 15 of 142

30f9 1/10/2012 3:41 PM
Motorola PX 1006_215

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 16 of 142

40f9 1/10/2012 3:41 PM
Motorola PX 1006_216

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |]

Here we have zoomed in a little more and drawn a third shape and also some text.

Click on the next button to go on.

Page 17 of 142

50f9 1/10/2012 3:41 PM
Motorola PX 1006_217

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 18 of 142

6 0f 9 1/10/2012 3:41 PM
Motorola PX 1006_218

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

At any point, you zoom out to see an overview of what's been done.

Page 19 of 142

70f9 1/10/2012 3:41 PM
Motorola PX 1006_219

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 20 of 142

8 of 9 1/10/2012 3:41 PM
Motorola PX 1006_220

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 21 of 142

9 0f9 1/10/2012 3:41 PM
Motorola PX 1006_221

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a (]

Here we see a simple shape drawn on surface of our Pad++ drawing application.

In Pad++, clicking and holding on the middle mouse button performs an smooth animated zoom in.

Your browser, unfortunately, can't show this! Instead, click on the next button above to single-step to the next
image in the sequence...

Click on the next button to go on.

Page 22 of 142

10f9 1/10/2012 3:42 PM
Motorola PX 1006_222

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 23 of 142

20f9 1/10/2012 3:42 PM
Motorola PX 1006_223

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

!

After zooming in a little, we have drawn a second, smaller shape.

This process can be repeated indefinitely...

Click on the next button to go on.

Page 24 of 142

30f9 1/10/2012 3:42 PM
Motorola PX 1006_224

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 25 of 142

40f9 1/10/2012 3:42 PM
Motorola PX 1006_225

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |]

Here we have zoomed in a little more and drawn a third shape and also some text.

Click on the next button to go on.

Page 26 of 142

50f9 1/10/2012 3:42 PM
Motorola PX 1006_226

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 27 of 142

6 0f 9 1/10/2012 3:42 PM
Motorola PX 1006_227

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

At any point, you zoom out to see an overview of what's been done.

Page 28 of 142

70f9 1/10/2012 3:42 PM
Motorola PX 1006_228

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 29 of 142

8 of 9 1/10/2012 3:42 PM
Motorola PX 1006_229

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 30 of 142

9 0f9 1/10/2012 3:42 PM
Motorola PX 1006_230

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a (]

Here we see a simple shape drawn on surface of our Pad++ drawing application.

In Pad++, clicking and holding on the middle mouse button performs an smooth animated zoom in.

Your browser, unfortunately, can't show this! Instead, click on the next button above to single-step to the next
image in the sequence...

Click on the next button to go on.

Page 31 of 142

10f9 1/10/2012 3:42 PM
Motorola PX 1006_231

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 32 of 142

20f9 1/10/2012 3:42 PM
Motorola PX 1006_232

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

!

After zooming in a little, we have drawn a second, smaller shape.

This process can be repeated indefinitely...

Click on the next button to go on.

Page 33 of 142

30f9 1/10/2012 3:42 PM
Motorola PX 1006_233

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 34 of 142

40f9 1/10/2012 3:42 PM
Motorola PX 1006_234

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |]

Here we have zoomed in a little more and drawn a third shape and also some text.

Click on the next button to go on.

Page 35 of 142

50f9 1/10/2012 3:42 PM
Motorola PX 1006_235

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 36 of 142

6 0f 9 1/10/2012 3:42 PM
Motorola PX 1006_236

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

At any point, you zoom out to see an overview of what's been done.

Page 37 of 142

70f9 1/10/2012 3:42 PM
Motorola PX 1006_237

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 38 of 142

8 of 9 1/10/2012 3:42 PM
Motorola PX 1006_238

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 39 of 142

9 0f9 1/10/2012 3:42 PM
Motorola PX 1006_239

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a (]

Here we see a simple shape drawn on surface of our Pad++ drawing application.

In Pad++, clicking and holding on the middle mouse button performs an smooth animated zoom in.

Your browser, unfortunately, can't show this! Instead, click on the next button above to single-step to the next
image in the sequence...

Click on the next button to go on.

Page 40 of 142

10f9 1/10/2012 3:42 PM
Motorola PX 1006_240

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 41 of 142

20f9 1/10/2012 3:42 PM
Motorola PX 1006_241

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

!

After zooming in a little, we have drawn a second, smaller shape.

This process can be repeated indefinitely...

Click on the next button to go on.

Page 42 of 142

30f9 1/10/2012 3:42 PM
Motorola PX 1006_242

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 43 of 142

40f9 1/10/2012 3:42 PM
Motorola PX 1006_243

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |]

Here we have zoomed in a little more and drawn a third shape and also some text.

Click on the next button to go on.

Page 44 of 142

50f9 1/10/2012 3:42 PM
Motorola PX 1006_244

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 45 of 142

6 0f 9 1/10/2012 3:42 PM
Motorola PX 1006_245

http://www.cs.umd.edu/hcil/pad-++/tour/zoom.html#z1

= Pad++ v0.1.8 a |

At any point, you zoom out to see an overview of what's been done.

Page 46 of 142

70f9 1/10/2012 3:42 PM
Motorola PX 1006_246

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 47 of 142

8 of 9 1/10/2012 3:42 PM
Motorola PX 1006_247

http://www.cs.umd.edu/hcil/pad++/tour/zoom.html#z1

Page 48 of 142

9 0f9 1/10/2012 3:42 PM
Motorola PX 1006_248

1ofl

http://www.cs.umd.edu/hcil/pad++/tour/outline.html

Why zoom? Three example applications

Once you add zooming to a user interface, new kinds of interactions are possible. The following sections
introduce three sample applications that we have developed which use zooming.

1. An outline viewer

The Pan/Zoom space is a powerful visualisation for any kind of hierarchical data - nested details can be
shown at a smaller scale, conveying the relations between objects very naturally.

For example, we have developed an interactive outline viewer which we use for giving presentations. The
outline viewer shows the text of the whole presentation - you simply zoom in on the points you want to make.

Main topic headings are shown at a large scale, subheadings are shown at a smaller scale, and individual
points are shown even smaller.

Click on the Next button below to read on.

Page 49 of 142

1/10/2012 3:42 PM
Motorola PX 1006_249

http://www.cs.umd.edu/hcil/pad++/tour/outlinel .html#z1

For example, here we see a distant view of an outline for a presentation about Pad++ itself.

Click on the next button to go on.

Page 50 of 142

1of7 1/10/2012 3:43 PM
Motorola PX 1006_250

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 51 of 142

20f7 1/10/2012 3:43 PM
Motorola PX 1006_251

http://www.cs.umd.edu/hcil/pad-++/tour/outline1.html#z1

Pad++ v0.1.8

Motivaticn For Pad++

When you zoom in, the major headings become legible.

Click on the next button to go on.

Page 52 of 142

30f7 1/10/2012 3:43 PM
Motorola PX 1006_252

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 53 of 142

4of7 1/10/2012 3:43 PM
Motorola PX 1006_253

http://www.cs.umd.edu/hcil/pad-++/tour/outline1.html#z1

= Pad++ v0.1.8 a |]

What for?

St . e, S e

IoberT; I
{6 5: Paracial Dlsital Asoldtarta (FLA=)

When you click on a piece of text, Pad++ zooms in so that that text fills the screen horizontally and appears
near the top of the screen vertically.

Page 54 of 142

50f7 1/10/2012 3:43 PM
Motorola PX 1006_254

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 55 of 142

6 0f 7 1/10/2012 3:43 PM
Motorola PX 1006_255

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 56 of 142

70f 7 1/10/2012 3:43 PM
Motorola PX 1006_256

http://www.cs.umd.edu/hcil/pad++/tour/outlinel .html#z1

For example, here we see a distant view of an outline for a presentation about Pad++ itself.

Click on the next button to go on.

Page 57 of 142

1of7 1/10/2012 3:43 PM
Motorola PX 1006_257

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 58 of 142

20f7 1/10/2012 3:43 PM
Motorola PX 1006_258

http://www.cs.umd.edu/hcil/pad-++/tour/outline1.html#z1

Pad++ v0.1.8

Motivaticn For Pad++

When you zoom in, the major headings become legible.

Click on the next button to go on.

Page 59 of 142

30f7 1/10/2012 3:43 PM
Motorola PX 1006_259

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 60 of 142

4of7 1/10/2012 3:43 PM
Motorola PX 1006_260

http://www.cs.umd.edu/hcil/pad-++/tour/outline1.html#z1

= Pad++ v0.1.8 a |]

What for?

St . e, S e

IoberT; I
{6 5: Paracial Dlsital Asoldtarta (FLA=)

When you click on a piece of text, Pad++ zooms in so that that text fills the screen horizontally and appears
near the top of the screen vertically.

Page 61 of 142

50f7 1/10/2012 3:43 PM
Motorola PX 1006_261

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 62 of 142

6 0f 7 1/10/2012 3:43 PM
Motorola PX 1006_262

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 63 of 142

70f 7 1/10/2012 3:43 PM
Motorola PX 1006_263

http://www.cs.umd.edu/hcil/pad++/tour/outlinel .html#z1

For example, here we see a distant view of an outline for a presentation about Pad++ itself.

Click on the next button to go on.

Page 64 of 142

1of7 1/10/2012 3:43 PM
Motorola PX 1006_264

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 65 of 142

20f7 1/10/2012 3:43 PM
Motorola PX 1006_265

http://www.cs.umd.edu/hcil/pad-++/tour/outline1.html#z1

Pad++ v0.1.8

Motivaticn For Pad++

When you zoom in, the major headings become legible.

Click on the next button to go on.

Page 66 of 142

30f7 1/10/2012 3:43 PM
Motorola PX 1006_266

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 67 of 142

4of7 1/10/2012 3:43 PM
Motorola PX 1006_267

http://www.cs.umd.edu/hcil/pad-++/tour/outline1.html#z1

= Pad++ v0.1.8 a |]

What for?

St . e, S e

IoberT; I
{6 5: Paracial Dlsital Asoldtarta (FLA=)

When you click on a piece of text, Pad++ zooms in so that that text fills the screen horizontally and appears
near the top of the screen vertically.

Page 68 of 142

50f7 1/10/2012 3:43 PM
Motorola PX 1006_268

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 69 of 142

6 0f 7 1/10/2012 3:43 PM
Motorola PX 1006_269

http://www.cs.umd.edu/hcil/pad++/tour/outlinel.html#z1

Page 70 of 142

70f 7 1/10/2012 3:43 PM
Motorola PX 1006_270

http://www.cs.umd.edu/hcil/pad++/tour/outline2.html

Interaction with the outline view

To move through a presentation shown in the outline view, you can simply click on successive pieces of text.

Alternatively, the 'n' and the 'p' keys move to the next or the previous item in the presentation using smooth
animated zooms.

Of course, at any time you can use the mouse to pan and zoom to another part of the presentation - great if
you want to quickly skip a few sections or go back to a previous section.

Click on the Next button below to read on.

Page 71 of 142

1of1 1/10/2012 3:43 PM
Motorola PX 1006_271

http://www.cs.umd.edu/hcil/pad++/tour/outline3.html

Hypermedia presentations using outlines

Outline documents can include things other than text: images and interactive objects can be incorporated in
the outline; you could even include a whole document nested within the outline, drawn at a smaller scale -
here you see an HTML document and an image nested within the outline:

Page 72 of 142

1of1 1/10/2012 3:44 PM
Motorola PX 1006_272

http://www.cs.umd.edu/hcil/pad-++/tour/dir.html

2. A file browser

Many hierarchical structures are suitable for visualisation within Pad++. The second application we will look
at is a file browser.

An important concept in the zoomable coordinate system is that objects have an absolute physical location.
The metaphor is not one of viewing a small part of the data through a window, as in MS-Windows. Instead,
all of the data is placed directly on the Pad++ surface, and you navigate through the data by panning and
zooming. In this sense, Pad++ is a 2.5 dimensional virtual reality.

For example, in the Pad++ file browser, each file is shown as a small rectangle with a label.

Click on the Next button below to read on.

Page 73 of 142

1of 1 1/10/2012 3:44 PM
Motorola PX 1006_273

http://www.cs.umd.edu/hcil/pad-++/tour/dir1.html#z1

= Pad++ v0.1.8 a (]

Above you see the file browser looking at some of the files that constitute this document.

Colors are used to denote file type - text documents are shown using a solid blue rectangle, whereas the
'images' folder is shown as an unfilled rectangle outline.

Click on the next button to go on.

Page 74 of 142

1of 1l 1/10/2012 3:44 PM

Motorola PX 1006_274

http://www.cs.umd.edu/hcil/pad++/tour/dirl .html#z1

Page 75 of 142

20f 11 1/10/2012 3:44 PM
Motorola PX 1006_275

http://www.cs.umd.edu/hcil/pad-++/tour/dir1.html#z1

= Pad++ v0.1.8 a (]

!
To see more detail, simply zoom in. Here, we have zoomed in for a closer view of the 'images' folder and the

'begin.html' document. At this distance, you can't make out individual pictures or words, but you can see the
outlines of files within the 'images' folder and the shape of the text in the HTML file.

Click on the next button to go on.

Page 76 of 142

3of11 1/10/2012 3:44 PM
Motorola PX 1006_276

http://www.cs.umd.edu/hcil/pad++/tour/dirl .html#z1

Page 77 of 142

4of11 1/10/2012 3:44 PM
Motorola PX 1006_277

http://www.cs.umd.edu/hcil/pad-++/tour/dir1.html#z1

= Pad++ v0.1.8 a (]

!

To read the contents of the 'begin.html' file, zoom in further.

Click on the next button to go on.

Page 78 of 142

50f 11 1/10/2012 3:44 PM
Motorola PX 1006_278

http://www.cs.umd.edu/hcil/pad++/tour/dirl .html#z1

Page 79 of 142

60f 11 1/10/2012 3:44 PM
Motorola PX 1006_279

http://www.cs.umd.edu/hcil/pad++/tour/dirl.html#z1

= Pad++ v0.1.8 a |l

Now we have zoomed out and panned across.

You can see the pictures within the 'images' folder, and some of the contents of another file. Of course you
could zoom in further to see the images in greater detail.

Click on the next button to go on.

Page 80 of 142

7of 11 1/10/2012 3:44 PM

Motorola PX 1006_280

http://www.cs.umd.edu/hcil/pad++/tour/dirl .html#z1

Page 81 of 142

8of 11 1/10/2012 3:44 PM
Motorola PX 1006_281

http://www.cs.umd.edu/hcil/pad-++/tour/dir1.html#z1

Pad++ v0.1.8

Zoom out again. The file browser performs 'lazy loading'; it only loads the contents of the files that you zoom
in on. When you zoom out again, you can see which documents you have seen and which are still unloaded.

Page 82 of 142

90f 11 1/10/2012 3:44 PM
Motorola PX 1006_282

http://www.cs.umd.edu/hcil/pad++/tour/dirl .html#z1

Page 83 of 142

10 of 11 1/10/2012 3:44 PM
Motorola PX 1006_283

http://www.cs.umd.edu/hcil/pad++/tour/dirl .html#z1

Page 84 of 142

11 0f 11 1/10/2012 3:44 PM
Motorola PX 1006_284

1ofl

http://www.cs.umd.edu/hcil/pad++/tour/dir2.html

Semantic zooming in the file browser

The file browser illustrates what we call 'semantic zooming' - objects can render themselves differently when
viewed at different sizes. So when a file is very small, it is shown only as a rectangle. A little larger and the
label appears. Larger still and the contents are visible.

Through semantic zooming, many of the mode switches required in traditional windowing systems can be
removed. The user does not have to double click on a file icon to switch into a mode where its contents are
visible - instead they learn and reuse the simple principal that, to see more detail, you look more closely.

Lets move on to the third application in Pad-++...

Click on the Next button below to read on.

Page 85 of 142

1/10/2012 3:46 PM
Motorola PX 1006_285

http://www.cs.umd.edu/hcil/pad++/tour/html.html

3. An HTML browser

A zooming version of Mosaic and Netscape? This is not such a strange idea. The third example Pad++
application we will look at is a simple Pad++ web browser.

Although the web browser we show here is still fairly primitive, you could imagine a much more advanced
version. Does the idea of using a zoomable Web browser excite you? If so, why not email us at
pad-comment@cs.unm.edu and tell us your thoughts.

Click on the Next button below to read on.

Page 86 of 142

1of1 1/10/2012 3:46 PM
Motorola PX 1006_286

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

Bani Badarzon's Acine Page
Eeo Bederoom'n Boae Page

e
i .. & -

Here is a screen snapshot showing Pad++ displaying an HTML document.

Click on the next button to go on.

Page 87 of 142

1 of9 1/10/2012 3:46 PM
Motorola PX 1006_287

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

Page 88 of 142

20f9 1/10/2012 3:46 PM
Motorola PX 1006_288

30f9

Pad++ v0.1.8

Click here

.- Frofesgional Interests

.- » Pad++: _Maltiscale interf
.- v Audic Augmented Reality

for tundra ima

= Papers

ther Interests

| s /|
=
- Ed L AT

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

Here is a zoomed in view of the document. Hotwords are shown in blue - positioning the pointer over a
hotword changes its color to red. In this snapshot the pointer was over the 'Pad++: Multiscale interfaces' link.

Click on the next button to go on.

Page 89 of 142

1/10/2012 3:46 PM
Motorola PX 1006_289

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

Page 90 of 142

40f9 1/10/2012 3:46 PM
Motorola PX 1006_290

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

= Pad++ v0.1.8 a |]

E.E.:

When you follow a link, the relevant document is loaded into Pad++ and placed on the surface to the right of
the original document, at a smaller scale. Here you can see the 'Pad++: Multiscale interfaces' document
loaded beside the home page.

The Pad++ HTML browser will lay out sub-documents in two columns next to the parent document. Because
Pad++ is zoomable, there is always enough space between those two columns for placing further documents
reached from those sub-documents!

Click on the next button to go on.

Page 91 of 142

50f9 1/10/2012 3:46 PM
Motorola PX 1006_291

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

Page 92 of 142

6 0f 9 1/10/2012 3:46 PM
Motorola PX 1006_292

7 0of 9

Pad++ v0.1.6
AbatTacts Pach-+i ATWATNGS 10 Multiecale Imerfaces

Bandmmin B. Bedersmm tead Ball Coomand oaticos
peEres Jis R Bt Bkl o TGS

James 0. Aol ter Spleoo= Thoiversd
Sy e e R FTLL TTec S

FEIPORDS

T S B S

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

Page 93 of 142

1/10/2012 3:46 PM
Motorola PX 1006_293

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

Page 94 of 142

8 of 9 1/10/2012 3:46 PM
Motorola PX 1006_294

http://www.cs.umd.edu/hcil/pad++/tour/html1.html#z1

Page 95 of 142

9 0f9 1/10/2012 3:46 PM
Motorola PX 1006_295

http://www.cs.umd.edu/hcil/pad-++/tour/html2.html

Preserving history in the HTML browser

You can see the history of the user's interaction implicitly in the layout of the documents on the Pad++
surface. Here's what the Pad++ surface looks like after we've done a little browsing. Four documents were
accessed via Ben's home page. From the first of these, another two documents were visited. Just zoom in to
view the documents.

Page 96 of 142

1of 1 1/10/2012 3:50 PM
Motorola PX 1006_296

Portals in Pad++ http://www.cs.umd.edu/hcil/pad++/tour/portals.html

1ofl

Other Pad++ features

We have seen three example Pad++ applications. Now we will look at some other Pad++ features: portals,
hyperlinks and magic lenses.

Portals - twists in Pad++ space

The Pad++ surface as an infinite zoomable space, with objects residing at specific x, y, zoom coordinates
within that space.

Sometimes, however, you want to be able to compare two distant locations, or to look at a zoomed out view
of a document together with a close up view.

Portals allow you to do this - they introduce 'holes' in the Pad++ surface through which you look onto other
regions of the Pad++ surface, or in fact onto other Pad++ surfaces.

Page 97 of 142

1/10/2012 3:51 PM
Motorola PX 1006_297

http://www.cs.umd.edu/hcil/pad++/tour/portals1.html#z1

When you initially create a portal it looks like a colored rectangle with a drop shadow. Here we have created
a portal over a squiggle on the Pad++ surface.

Click on the next button to go on.

Page 98 of 142

10f9 1/10/2012 3:51 PM
Motorola PX 1006_298

http://www.cs.umd.edu/hcil/pad-++/tour/portals1.html#z1

Page 99 of 142

20f9 1/10/2012 3:51 PM
Motorola PX 1006_299

http://www.cs.umd.edu/hcil/pad++/tour/portals1.html#z1

= Pad++ v0.1.8 a |]

!

When you select the portal and move it away, it drags off a copy of what was underneath it.

Click on the next button to go on.

Page 100 of 142

30f9 1/10/2012 3:51 PM
Motorola PX 1006_300

http://www.cs.umd.edu/hcil/pad-++/tour/portals1.html#z1

Page 101 of 142

40f9 1/10/2012 3:51 PM
Motorola PX 1006_301

http://www.cs.umd.edu/hcil/pad++/tour/portals1.html#z1

= Pad++ v0.1.8 a |]

=
In fact, however, it isn't a copy - its the 'real thing' - its another view onto the same part of the Pad++ surface.

So when you draw a second squiggle next to the first, it appears in two places... on the Pad++ surface, and
within the portal's view of the Pad++ surface.

Click on the next button to go on.

Page 102 of 142

50f9 1/10/2012 3:51 PM
Motorola PX 1006_302

http://www.cs.umd.edu/hcil/pad-++/tour/portals1.html#z1

Page 103 of 142

6 0of 9 1/10/2012 3:51 PM
Motorola PX 1006_303

http://www.cs.umd.edu/hcil/pad++/tour/portals1.html#z1

= Pad++ v0.1.8 a |]

Each portal has its own independant view - you can pan and zoom inside a portal without changing the view
outside the portal. Here we see the portal looking at a zoomed in view of the squiggle and line.

Page 104 of 142

70f9 1/10/2012 3:51 PM
Motorola PX 1006_304

http://www.cs.umd.edu/hcil/pad-++/tour/portals1.html#z1

Page 105 of 142

8 of 9 1/10/2012 3:51 PM
Motorola PX 1006_305

http://www.cs.umd.edu/hcil/pad-++/tour/portals1.html#z1

Page 106 of 142

9 0f9 1/10/2012 3:51 PM
Motorola PX 1006_306

1ofl

http://www.cs.umd.edu/hcil/pad++/tour/portals2.html

Portals vs Windows

A portal is not like a window, which represents a dedicated link between a section of screen and a specific
thing (eg: a Unix shell in X-Windows or a directory in the Macintosh Finder). A portal is, rather, a view onto
the infinite Pad++ surface; links to specific items are established and broken continually as the portal's view
changes.

Also, unlike windows, portals can recursively look onto other portals - you can get some pretty interesting
effects with portals:

We will discover more about portals later. First, lets look at hyperlinks.

Click on the Next button below to read on.

Page 107 of 142

1/10/2012 3:51 PM
Motorola PX 1006_307

Hyperlinks in Pad++ http://www.cs.umd.edu/hcil/pad++/tour/hyper.html

1ofl

Hyperlinks

We have seen that, when you move the pointer over text within the Pad++ outliner, the text changes color to
red; clicking on the text causes Pad++ to pan and zoom until that text fills the screen horizontally and appears
near the top of the screen vertically. The text is acting as a hyperlink to a location on the Pad++ surface.

(Similarly, in the Pad++ HTML browser, some words are shown in blue. They are 'hotwords' - positioning the
pointer over the word causes it to change color to red. When you click on the word, the appropriate document
is placed on the Pad++ surface.)

In Pad++, this concept is generalised. Any object an be turned into a hyperlink.

For example, suppose | am writing a zoomable narrative, and [want to make the text in the story active, so
that users can click on lines of text to progress through the story. Read on to discover how to do this.

Click on the Next button below to read on.

Page 108 of 142

1/10/2012 3:52 PM
Motorola PX 1006_308

http://www.cs.umd.edu/hcil/pad-++/tour/hyperl.html#z1

.. whe foacght ccnetantlyr
bt Wik AboLA be

.- —|Pat++ Hyp(- | 1]
SIF]
] = %

In this snapshot we are making the 'there lived a king' line of text a hyperlink.

From within the Pad++ draw application, bring up the 'Hyperlink' panel. Then set the 'from object' (the object
you wish to make active), and the 'to point' (the place you want the hyperlink to take you to), then click on
apply.

Click on the next button to go on.

Page 109 of 142

10f7 1/10/2012 3:52 PM
Motorola PX 1006_309

http://www.cs.umd.edu/hcil/pad-++/tour/hyperl.html#z1

Page 110 of 142

20f7 1/10/2012 3:52 PM
Motorola PX 1006_310

http://www.cs.umd.edu/hcil/pad++/tour/hyper].html#z1

= Pad++ v0.1.8 a |]

The text is now active. Here we have zoomed out and you can see the whole story.

The pointer is positioned over the 'there lived a king' line, and it has changed color to red to indicate that it is
a hyperlink.

Click on the next button to go on.

Page 111 of 142

30f7 1/10/2012 3:52 PM
Motorola PX 1006_311

http://www.cs.umd.edu/hcil/pad-++/tour/hyperl.html#z1

Page 112 of 142

40of7 1/10/2012 3:52 PM
Motorola PX 1006_312

http://www.cs.umd.edu/hcil/pad++/tour/hyper].html#z1

= Pad++ v0.1.8 a |]

Clicking on the 'there lived a king' line performs an animated pan/zoom to the location that the author
specified.

Page 113 of 142

50f7 1/10/2012 3:52 PM
Motorola PX 1006_313

http://www.cs.umd.edu/hcil/pad-++/tour/hyperl.html#z1

Page 114 of 142

6 0f 7 1/10/2012 3:52 PM
Motorola PX 1006_314

http://www.cs.umd.edu/hcil/pad-++/tour/hyperl.html#z1

Page 115 of 142

7 0f 7 1/10/2012 3:52 PM
Motorola PX 1006_315

http://www.cs.umd.edu/hcil/pad++/tour/sticky.html

Sticky objects

Pad++ objects can be made 'sticky' - so that they stick to the surface of the glass, rather than being on the
Pad++ surface. When you pan and zoom the Pad++ surface, sticky object remain stationary. In these
snapshots, the 'Pad++' label has been made sticky, and does not pan and zoom with other objects:

Page 116 of 142

1of 1 1/10/2012 3:52 PM
Motorola PX 1006_316

http://www.cs.umd.edu/hcil/pad-++/tour/sticky portals.html

Sticky portals as indexes

By making a portal sticky and changing its view so that it looks at a hotword or an active document, you
create automatic hyper-buttons and indexes which float above the Pad++ surface.

Here you can see an example of a portal acting as an index to the Pad++ outline: Clicking on text within the
portal causes the main Pad++ surface to pan/zoom to show the text you clicked on, giving you rapid access to
the outline.

Page 117 of 142

1of1 1/10/2012 3:53 PM
Motorola PX 1006_317

1ofl

http://www.cs.umd.edu/hcil/pad++/tour/lenses.html

Portal filtering and 'magic lenses'

Portals can be used to filter what is seen through them. This concept goes by the name of 'Portal Filters' or
'Magic Lenses'.

When an object is seen through a portal, the portal can communicate with the object during rendering to
change how the object appears.

The portal can also filter user events (mouse clicks, etc.) which pass through it - either passing these events
on unchanged, blocking them, or communicating with the object to decide how to interpret the event. So
objects can behave differently when seen through portals.

By using these features, developers can create portals which act as magic lenses - lenses which change the
nature of the data in unique ways. (the concept of portal filters and magic lenses was developed
independently by Ken Perlin and David Fox in the original version of Pad and by Eric Beir, et. al. at Xerox
PARC).

Lets look at some examples.

Click on the Next button below to read on.

Page 118 of 142

1/10/2012 3:53 PM
Motorola PX 1006_318

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1.html#z1

= Pad++ v0.1.8 a (]

In the image above you can see a table of numbers and two portals.

Click on the next button to go on.

Page 119 of 142

1of15 1/10/2012 3:53 PM
Motorola PX 1006_319

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1 .html#z1

Page 120 of 142

20f 15 1/10/2012 3:53 PM
Motorola PX 1006_320

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1.html#z1

= Pad++ v0.1.8 a |l

When you slide the orange portal over the table of numbers, it modifies how the table appears so that it uses a
bar chart view.

Click on the next button to go on.

Page 121 of 142

30f15 1/10/2012 3:53 PM
Motorola PX 1006_321

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1 .html#z1

Page 122 of 142

40of15 1/10/2012 3:53 PM
Motorola PX 1006_322

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1.html#z1

= Pad++ v0.1.8 a |l

Slide the blue portal in place, and you see the table of numbers as a scatter plot.

Lenses such as these could make a good teaching aid, since they show students alternate views of the same
data.

Lets see another example.

Click on the next button to go on.

Page 123 of 142

1/10/2012 3:53 PM

50f15
Motorola PX 1006_323

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1 .html#z1

Page 124 of 142

60f 15 1/10/2012 3:53 PM
Motorola PX 1006_324

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1.html#z1

Pad++ v0.1.8

=
In this example, the 0 digit shown above is a simple digital counter. When you position the pointer over the
number and hit a number key between 0 and 9, the counter changes to show that number.

Click on the next button to go on.

Page 125 of 142

70f 15 1/10/2012 3:53 PM
Motorola PX 1006_325

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1 .html#z1

Page 126 of 142

8 of 15 1/10/2012 3:53 PM
Motorola PX 1006_326

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1.html#z1

= Pad++ v0.1.8 a (]

However, some people prefer to use a slider to set numeric values.

Here, the dark gray lens has been placed over the number, and the user has clicked and dragged the slider
handle to change the number to 7.

This shows how portals can change how an object behaves as well as how it appears.

Click on the next button to go on.

Page 127 of 142

90f15 1/10/2012 3:53 PM
Motorola PX 1006_327

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1 .html#z1

Page 128 of 142

10 of 15 1/10/2012 3:53 PM
Motorola PX 1006_328

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1.html#z1

= Pad++ v0.1.8 a |[]

WA

3

You may prefer to see the number as a guage. Use the light gray lens. Here we are setting the number to 3.

Click on the next button to go on.

Page 129 of 142

11 0f 15 1/10/2012 3:53 PM
Motorola PX 1006_329

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1 .html#z1

Page 130 of 142

12 0f 15 1/10/2012 3:53 PM
Motorola PX 1006_330

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1.html#z1

= Pad++ v0.1.8 a (]

MWA s

./

With a little simple trickery, all three representations can be used at the same time - you can choose which
version to interact with.

Page 131 of 142

130f 15 1/10/2012 3:53 PM
Motorola PX 1006_331

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1 .html#z1

Page 132 of 142

14 of 15 1/10/2012 3:53 PM
Motorola PX 1006_332

http://www.cs.umd.edu/hcil/pad++/tour/lenses 1 .html#z1

Page 133 of 142

150f 15 1/10/2012 3:53 PM
Motorola PX 1006_333

http://www.cs.umd.edu/hcil/pad++/tour/lenses2.html

Other uses for lenses

Whilst the example shown here are relatively trivial, you could create a much more complex lens.

Lenses are used for rendering and interacting with data in specialised ways. You could for example create a
translation lens, which shows a piece of text in an alternate language.

More sophisticated lenses might be used for editing text, or for painting, or for modifying bitmap data.
Instead of constantly switching between large applications and using the Import/Export options to move data
between the applications, you simply pick up the relevant lens and slide it into place.

Click on the Next button below to read on.

Page 134 of 142

1of 1 1/10/2012 3:53 PM
Motorola PX 1006_334

1ofl

http://www.cs.umd.edu/hcil/pad++/tour/conclusion.html

Conclusion

In Pad++ there is a sense of peripheral awareness. When objects are small or off to one side, you can still see
them, and still make out a little of their contents, though they are not shown in all their detail. When you look
directly at them and zoom in, all of the detail becomes available. Hence the Pad++ metaphor offers a new
route for tapping into our natural spatial and geographic ways of thinking.

This metaphor is more powerful than the tradional (and now dated) view of a computer screen as a collection
of small windows through which you peer at your data.

Click on the Next button below if you want to read answers to frequently asked questions about Pad++.

Page 135 of 142

1/10/2012 3:54 PM
Motorola PX 1006_335

Pad++ - Frequently asked questions http://www.cs.umd.edu/hcil/pad++/faq.html

Frequently asked questions

This document contains a list of answers to common questions about Pad++ and Zoomable User Interfaces.
Questions about the Pad++ consortium

Where did Pad++ come from?

Who is working on Pad++?

What research directions are you following?
How do I contact the Pad++ group?

How do I get a Pad++ license?

How do I get on the Pad++ mailing lists?

Questions about Pad++

e What other online info is there on Pad++ or Zoomable interfaces?
e [s Pad++ available?

e What platforms does Pad++ run on?

e Why does the Windows version run slower than the Unix version?
e [s there a Pad++ ftp site?

e What are the plans for the Web browser?

e Are you going to port Pad++ to Java?

Questions about the approach

e [ts all very well, but why isn't Pad++ 3D?
e How does Pad++ relate to traditional windowing systems?

Technical questions about Pad++

What does the Pad++ code consist of?

How do you get Pad++ to zoom so quickly?

Pad++ dies as it starts up on Windows95/NT. Why?
Building Pad++ on Solaris with gcc 2.8.1 hangs. Why?

Technical questions about Tcl/Tk that Pad++ users have asked

e Why does my Tcl socket code hang when using Pad++?

Page 136 of 142

1of7 1/10/2012 3:54 PM
Motorola PX 1006_336

Pad++ - Frequently asked questions http://www.cs.umd.edu/hcil/pad++/faq.html

2 of 7

Questions about the Pad++ consortium

Where did Pad++ come from?

Ken Perlin at New York University came up with the initial zoomable surface concept. He and David Fox
implemented the first versions of Pad (described in the 1993 SIGGRAPH paper available here), which were
the precursors to the current implementation, Pad++. Perlin and Fox's original work was supported in part
originally by NYNEX, and then NSF.

Pad++ was designed by Ben Bederson and Jim Hollan while at Bellcore, and implemented by Ben Bederson.
They both moved to the University of New Mexico where they developed the bulk of Pad++ in collaboration
with Jon Meyer and Ken Perlin at NYU.

Now, Ben Bederson has moved to the University of Maryland, College Park where he is continuing
responsibility for the further development of Pad++. Jim Hollan moved to the University of California, San
Diego where he is building applications using Pad++.

Who is working on Pad++?

Pad++ research and development is supported in part by DARPA grant #N660011-94-C-6039. Work is being
carried out at the University of Maryland, University of California, San Diego, and at the NYU Media
Research Laboratory. Much of the initial work on Pad++ was done at the University of New Mexico.

Here are the links to folks currently working on Pad++:

e University of Marvland, HCIL
Benjamin Bederson
Allison Druin

Tammara Combs
e Univ. of California, San Diego, Cognitive Science Dept.
James Hollan
e University of New Mexico, CS Dept.
Jason Stewart
e NYU Media Research Laboratory
Ken Perlin

Jonathan Meyer

And here are the folks who have worked on Pad++ in the past:

e University of New Mexico, CS Dept.
Hugh Bivens
George Hartogensis
David Proft
Laura Ring
David Rogers
David Vick

Page 137 of 142

1/10/2012 3:54 PM
Motorola PX 1006_337

Pad++ - Frequently asked questions http://www.cs.umd.edu/hcil/pad++/faq.html

30of7

Ron Hightower
Mohamad ljadi
David Thompson
Ying Zhao

e The NYU Media Research Laboratory

David Bacon

Troy Downing
David Fox

Athomas Goldberg
Noah Wardrip-Fruin

e Bellcore

Larry Stead

What research directions are you following?

The Pad++ group is developing Pad++ in many ways, such as:

o Creating Pad++ GUI components.

o Developing an internet based distributed Pad++.

o Performing Pad-++ usability studies.

o Developing Pad++ applications for understanding large datasets.
o Porting Pad++ to Windows95/NT.

o Developing easy to use authoring tools.

How do I contact the Pad++ group

You can contact the Pad++ group at the following email addresses:
o pad-info@cs.umd.edu - Send your comments and information requests here
o pad-bug@cs.umd.edu - Report bugs here
o pad-chat@cs.umd.edu - Send questions/comments to all Pad++ users that have asked to be on
this list

How do I get a Pad++ license?

For non-commercial (education, research, or in-house) use, all you need to do to use Pad++ is to fill in
the online registration form. If you are interested in a commercial license, you should contact us at
pad-info@cs.umd.edu. The Pad++ Consortium currently consists of UNM and NYU, and license can
be negotiated from either institution.

How do I get on the Pad++ mailing lists?

When you download Pad++, there are two checkboxes to add you to the mailing lists. Or, you can send
mail to pad-info@cs.umd.edu, and we'll add you manually.

There is an announce list which has very low volume. This list is just for us to send you mail about
new Pad++ releases and other important information. This is a private list, and others can not use it, so

Page 138 of 142

1/10/2012 3:54 PM
Motorola PX 1006_338

Pad++ - Frequently asked questions http://www.cs.umd.edu/hcil/pad++/faq.html

4 of 7

you don't have to worry about getting much unsolicited mail. There is also a chat list which has
moderate volume. This list is for the Pad++ user community to communicate with us and each other
about ideas, solutions, requests, etc.

Questions about Pad++

What other online info is there on Pad++ or Zoomable interfaces?

There are several online papers about Pad++ and related issues here

Is Pad++ available?

Yes it is. You can register online and download it here.

What platforms does Pad++ run on?

Pad++ runs on just about any Unix platform. We have tested it on PCs running Linux, SGIs, and Suns
(SunOS and Solaris).

Pad++ now also runs on Windows95/NT. This port is still early, and the Windows version is not very
reliable. Also, it is slower because it is currently implemented with Tk's X emulator.

Why does the Windows version run slower than the Unix version?

The Windows version of Pad++ runs slower than the Unix version because we are using the Tk X
emulator. In a future version, we will write a native Windows renderer, and expect that it will be at
least as fast as the Unix version.

Is there a Pad++ FTP site

No, all public information about Pad++ is at this web site.

What are the plans for the Web browser?

We built a prototype Web browser in Pad++ in 1995. At that time, HTML was quite simple, and the
idea of building our own better browser was quite tempting. We build what was at the time a cutting
edge browser - with HTML 1.0. Since then, the web has advanced greatly, and we realized that we

Page 139 of 142

1/10/2012 3:54 PM
Motorola PX 1006_339

Pad++ - Frequently asked questions http://www.cs.umd.edu/hcil/pad++/faq.html

5o0f7

didn't want to get in the business of competing with the major Web browser companies.

Instead, we are taking advantage of the new features of HTML by building a new generation Web
browser that piggybacks on existing commercial ones. The new Pad++ Web browser, called PadPrints,
monitors what the browser is doing and what pages are being visited. It builds a map showing your
history of interaction with Web. You can use your commercial browser normally, but at any time, you
can go to PadPrints in a separate window to control the browser.

Are you going to port Pad++ to Java?

We are looking into connecting Pad++ to Java so that it will be possible to write zooming applications
entirely in Java using the C++ core. However, this work still has a long way to go.

Another approach would be to build Pad++ entirely in Java. We have experimented with this, and it
appears that at least for the time being, Java is too slow, and the AWT graphics package is not powerful
enough. Perhaps when Java compilers are common, and Java2D is commonly available (and
well-implemented), it will be possible, but that is still in the future. However, we have created a simple
zooming Java applet to give a flavor of what the interaction feels like. See the link on the home page.

Questions about the approach

Its all very well, but why isn't Pad++ 3D?

There are some very attractive 3D systems out there (the Information Visualizer is one of them).
However, although they may look impressive, 3D systems are typically hard to navigate using current
display and pointer technologies. They also require high levels of computing resources. Its not obvious
that a 3D interface is appropriate for a handheld device or for a cheap home computer.

Pad++, on the other hand, can be implemented very efficiently using a small home computer, and is
easy to navigate using a mouse.

How does Pad++ relate to traditional windowing systems?

There are two answers to this - choose one you like:

1. Pad++ can be seen as a mechanism for creating applications which have a zooming component. For
some applications, a zoomable interface may be more appropriate than a more traditional windows
based approach - for example, zooming seems to be particularly effective for applications which need

Page 140 of 142

1/10/2012 3:54 PM
Motorola PX 1006_340

Pad++ - Frequently asked questions http://www.cs.umd.edu/hcil/pad++/faq.html

6 of 7

to present large amounts of data in an intuitive and understandable manner. This especially true for data
that is hierarchical in nature as information that is deeper in the hierarchy can be represented as being
smaller on the Pad++ surface.

2. Pad++ could also be viewed as a way to implement an alternative windowing system based on
zooming. Your whole desktop could be zoomable. This seems especially attractive for systems which
have small screens, such as handheld computers (i.e. PDA's).

Technical questions about Pad++

What does the Pad++ code consist of?

Pad++ consists of a C++ core that provides zoomable objects. Applications can be written in C++ (this
API is still under development), or with Tcl/Tk, a scripting language that implements the zoomable
draw application which you have seen.

Pad-++ runs on most unix machines including PC's running Linux, on workstations from Silocon
Graphics, IBM and Sun, and probably on most other UNIX-like systems that support X11. Pad++ also
runs on Windows95/NT, but this port is still slow and unreliable.

How do you get Pad++ to zoom so quickly?

In order to keep zoom animations fast, Pad++ employs several tricks:

Spatial Indexing

Pad++ uses an R-Tree internally to quickly determine which objects are visible in a given view.

Level of Detail

When things become too small to see, Pad++ ceases to render them. When Pad++ starts to get too slow,
it renders medium sized things in a more ugly fashion. When the system is idle, things that have not
been rendered fully are refined - see below.

Refinement

When trying to achieve a high frame rate, Pad++ use a reduced level of detail. Then, when the system
is idle, successive refinements are performed to increase the level of detail.

Page 141 of 142

1/10/2012 3:54 PM
Motorola PX 1006_341

Pad++ - Frequently asked questions http://www.cs.umd.edu/hcil/pad++/faq.html

7 of 7

Adaptive render scheduling

The system monitors render times, and adapts the rendering algorithm to maintain a constant frame rate
during zooms and pans.

Pad++ dies as it starts up on Windows95/NT. Why?

There is a bug in the Windows95/NT version where it dies if there is a space in any of the directory
names that Pad++ is installed in. So, if you installed Pad++ in the 'Program Files' directory, it will die
with this behavior. Try re-installing (or just moving Pad++) in the top-level directory, and it should
work. Sorry about this - we'll try and fix this in the next version.

Building Pad++ on Solaris with gce 2.8.1 hangs. Why?

We've had reports that building Pad++ on Solaris 2.5 with gcc 2.8.1 hanges when compiling
generic/object.cpp. A workaround is to remove the -fPIC flag from the Makefile. This flag is only
necessary when compiling shared libraries, but isn't necessary when just compiling an executable, so
you should be able to remove it safely.

Another approach is to configure with:
configure --disable-load
and then add '-1dI' at the end of the link line

Why does my Tcl socket code hang when using Pad++?

When Tcl 7.6 performs a socket read in "line buffered" mode, it reads only until the new-line character.
If the writer sends a zero-terminated string, Tcl 7.6 leaves the zero byte in the buffer. The next read,
then, returns a string that begins with a zero byte; we interpreted this incorrectly as a read of a null
string, when in fact it was a long string following a zero byte. This problem does not occur with Tcl
8.1, the latest release.

Page 142 of 142

1/10/2012 3:54 PM
Motorola PX 1006_342

