
A PRINCIPLE FOR RESILIENT SHARING OF DISTRIBUTED RESOURCES*

Peter A. Alsberg and John D. Day
Center for Advanced Computation

University of Illinois at Urbana—Champaign

Keywords: resilient protocols, resource sharing, dis—
tributed control, distributed computer systems, resil—
ient resource sharing

A technique is described which permits distributed
resources to be shared (services to be offered) in a
resilient manner. The essence of the technique is to a
priori declare one of the server hosts primary and the
others backups. Any of the servers can perform the
primary duties. Thus the role of primary can migrate
around the set of servers. The concept of n-host resil-
iency is introduced and the error detection and recov—

ery schemes for two-host resiliency are presented. The
single primary, multiple backup technique for resource
sharing is shown to have minimal delay. In the general
case, this is superior to multiple primary techniques.

Introduction

The development of large packet switched networks
servicing wide geographic areas has generated a great
deal of interest in distributed resource sharing. A
communications network is a necessary but, by itself,
is not a sufficient basis to make automated distributed

resource sharing facilities generally available. High-
level protocols must be provided to allow cooperation
in other than an ad hoc manner and techniques must be
developed to provide resilient service to the user.
This paper discusses one means by which resilient ser—
vice may be provided to the user for a wide variety of
situations, e.g., synchronization, data base access,
and load sharing.

For our purposes we will consider a distributed

resource sharing environment which requires the sharing
of resources dispersed over a large number of possibly
heterogeneous host computers. Large packet switched
computer networks like the ARPANET, CYCLADES, and EIN
represent examples of this environment. Since the

hosts in this environment may be separated by very
large distances, there is a significant and unavoidable
message delay between hosts. Hence, a major considera—
tion when choosing a resource sharing strategy is to
reduce, as much as possible, the number of message
delays required to effect the sharing of resources.

In these networks, some of the resources to be
shared will be identical (e.g. duplicate copies of data
bases may be maintained for reliability). Others will

* This work was performed as part of Contract DCA100-75—
C—0021 with the Command and Control Technical Center —
WWMCCS ADP Directorate of the Defense Communications
Agency.

be completely dissimilar (e.g., weather data may be
stored on the ARPANET datacomputer and proeessed on the
ILLIAC IV). Between these two extremes lie the re-
source sharing concerns of interest to most users.

The user expects a tolerable, as well as tolerant,
resource sharing environment. The user we are inter—
ested in wants a maximum degree of automation and
transparency in his resource sharing. He wishes the
resource sharing to be resilient to host failures and,
when catastropic failures occur, he would like a "best
effort" recovery to be automatically initiated by the
resource sharing system.

The concept of resiliency applies to
A resilient ser-

Resiliency.
the use of a resource as a service.

vice has four major attributes.

1. It is able to detect and recover from a given
maximum number of errors.

2. It is reliable to a sufficiently high degree
that a user of the resilient service can

ignore the possibility of service failure.

3. If the service provides perfect detection and
recovery from n errors, the (n+l)st error is
not catastrophic. A "best effort" is made to
continue service.

4. The abuse of the service by a single user
should have negligible effect on other users
of the service.

What we are trying to describe here are concepts of ex—
treme reliability and serviceability. The user of a
resilient service should not have to consider the fail-

ure of the service in his design. He shOuld be able to
assume that the system will make a "best-effort" to
continue service in the event that perfect service can-
not be supported; and that the system will not fall
apart when he does something he is not supposed to.

Resiliency Criteria. In this paper we discuss a
technique for providing resilient services. This tech-
nique is resilient to communication system and host
failures. Host failures include not only complete
failure (e.g., a major hardware failure) but also par-
tial failure (e.g., a malfunctioning host operating
system). Resiliency cannot be perfect in the large
network environments we are considering. It is, for
instance, possible but not likely that all 50 of the
hosts on a large computer network will simultaneously
fail and all services will be disrupted. What is of
interest is the establishment of criteria for accept-
able resiliency in this environment. We introduce the

562

EMCVMW 1030f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

concept of n-host resiliency. In order for service to
be disrupted, n hosts must simultaneously fail in a
critical phase of service. We point out that it may
be possible for n or more hosts to fail outside of such
a critical phase without disrupting service. The re—
siliency techniques discussed in this paper assume a
two-host resiliency criterion. Expansion of the tech-
niques to treat three—host or greater resiliency is
straightforward. A two—host resiliency criterion has
been used because it appears Sufficient to provide an
adequate level of service in most situations and to
illustrate the principle.

Examples. Examples of the kind of resilient ser—
vices we envision are ntework synchronization primi-
tives or a network virtual file system. The techniques
discussed below can support synchronization primitives
like P and V, lock and unlock, and block and wakeup in
a resilient fashion on a network. Network virtual file
systems which provide directory services and data
access services can be provided in an automated and re—
silient fashion. The network Virtual file system would
appear to be a single file system to the user, but
would in fact be dispersed over a large number of pos-
sibly heterogeneous hosts on a packet switched network.

Related Work in Distributed Systems

There are two main problems that are addressed by
the technique we are presenting here: synchronization
of the users of the service and the resiliency of the
service. Other researchers have proposed techniques to
achieve the synchronization but haven't treated the re—
siliency issue carefully.

Perhaps the first work in this area was by Johnson
[1974]. Johnson proposed that updates to a data base
be timestamped by the host which generates the update.
The updates are then broadcast to the copies of the
data base. The data base managers then apply the up—
dates in chronological order, as determined by time—
stamps. (Ties are broken by an arbitrary ordering of
the hosts.) Johnson's model introduces the problem
that during some time interval the copies may be mutu—
ally inconsistent due to message delays, etc. This
system was primarily intended for an accounting file,
in which updates are restricted to assignments of
values to single fields. From the resiliency stand—
point, it is difficult to ensure that the n-host crite—
rion has been met and that all copies of the data base
will eventually receive all of the updates.

Bunch [1975] attempted to avoid some of the diffi-
culties of Johnson‘s scheme by introducing a central
name (sequence number) generator. This approach has
the additional problem of introducing a potential
bottleneck. Grapa [1975] was able to avoid this prob—
lem in his "reservation center" model. Grapa's model
is somewhat more general than either the Bunch or
Johnson model and in a sense includes them as limitingcases.

Despite the fact none of these models treat the
resiliency issues (they were never really intended to),
there are also several problems that might be encoun—
tered in more general data base environments. We have
already mentioned the problem that for some time inter—
val the data base may be inconsistent. This may cause
problems for some applications. Also, an update opera—
tion on one field may use values of other fields to
compute the new value (in an irreversible manner). In
this case, the Johnson and Grapa models must include a
time delay before applying the updates to guarantee
that there are no delayed updates with earlier time—
stamps than those already received. Similarly, it is
difficult for these models to provide a quick response

time for updates that modify multiple fields. The
technique we describe here avoids these problems. It
provides the minimum response time allowed by the n—
host resiliency criterion but requires a somewhat more
complex mechanism.

A Technique for a Resilient Service

Consider synchronization on a network. The pacing
item in a network synchronization operation is network
message delay time. Network message delay is on the
order of 100 milliseconds. The execution of a process
synchronization primitive in the typical single site
environment is on the order of .1 to 1 milliseconds.
The processing incurred at the site is expected to be
the same for both network and local operation. As a
result, an appropriate measure of the efficiency of a
network scheme is the number of message delays incurred.

As we have indicated above, what we are interested
in is a method by which we can provide resilient Sup-
port for some distributed resource sharing activity.
For purposes of illustration, let us assume we have
some sort of data base (in the general sense) which is
being read and modified by a group of network users.
Let us consider, at least for purposes of description,
that there is a set of server hosts which do nothing
but perform the updates and mediate the synchronization
of these updates generated by user processes. (This
may appear to be somewhat excessive for the practical
case; but if one is really concerned about having a
reliable service, it is unwise to make it susceptible
to the kind of environment found in the typical appli-
cation host. However, there is nothing about this
scheme that requires that the synchronizing function be
in a devoted host.) One of the hosts of this set is
designated as the primary and the rest are backups.
The backups are ordered in a linear fashion. We will
discuss recovery schemes in a subsequent section. For
now, let us consider how the resiliency scheme works
without failures.

Update operations may be sent to the primary or to
any backup. The user process then blocks, waiting for
either a response from the service or a timeout indi—
cating that the message has been lost and should be
retransmitted.

For the purposes of this discussion we will ignore
to some extent the details of the end—to-end transmis—
sion. Some of the ACK's and timeouts mentioned below
may be provided by an end—to—end protocol such as those
described in Cerf and Kahn [1974] and Cerf et a1.
[1975]. In addition, the communication between the
user and the service could be a single message connec-
tion to the service. Such a connection would take more

than one message to convince both sides that no mes-
sages have been lost or duplicated [Belsnes, 1975].
However, for our purposes we are mainly interested in
the delays incurred. Although multiple parallel mes-
sages may be generated, the number of sequential mes—
sage delays will be inherent to any system performing
this service.

Dedicated Servers. Figure 1 shows the message
flow for an update operation which has been transmitted
to the primary server host of a data base. The first
network message delay is incurred in figure 1a. The
application host transmits the update to the primary
server host.

The second network message delay is incurred in
figure 1b. The primary server host requests cooperation
in executing the update operation from the first backup
server host. The primary server host has already up-
dated its data base. The first backup synchronization

563

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

server

hosfo

updafe

request

server server server . .
has?1 has?2 hos+3 ’

1a: Application host transmits update request to primary server host.

cooperate

requesf server server server

hosto host2 hosts ° ‘ '

appHc.
has?

1b: Primary server host requests cooperation from the first
backup in executing the update request.

server

hosf3 ° ' ‘

3: cooper01e l: backup

1C: First backup issues three messages in the following order:

1. A backup for an update request is sent to the next backup host.
2. An acknowledgement message is sent to the application host.
3. An acknowledgement of the cooperate message is sent to

the primary server host.

Figure 1

Update request sent to a primary server host

564

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

host will perform the same update. The backup host
will be expected to issue the update ACK message to the
application host.

In figure 1c the third network message delay is
incurred. Three messages are transmitted by the first
backup server host. In terms of network delay, these
messages are essentially simultaneously transmitted.
Small improvements in resiliency can be achieved by
issuing them in the designated order. First, the back—
up server host passes a backup update message to the
next backup server host. At this time only two server
hosts, the primary and the first backup, have positive
knowledge of the existence of the update operation.
Should the backup message be successfully received at
the second backup server host, a third server host
would also be aware of the update operation. The third
host would be able to assist in recovery should the
first backup server host or network fail to transmit
the next two messages. The second "simultaneous" mes—
sage would be the update ACK message to the application
host. The third "simultaneous" message would be trans—
mitted back to the primary server host to acknowledge
that the cooperation request on an update operation has
been received.

Once the primary server host has received the co-
operation acknowledgement, it is certain that the two—
host resiliency criterion has been met. Similarly,
once the application host has received the update ACK
message it is also certain that the two—host resiliency
criterion has been met. Should the primary server host
fail to receive the cooperation acknowledgement, appro—
priate retry and recovery techniques will be initiated.

Figure 2 shows the message flow for an update
operation which has been transmitted to a backup server
host. The first network message delay is incurred in
figure 2a. The application host transmits the update
to a backup server host.

The second network message delay is incurred in
figure 2b. The backup server host forwards the update
operation to the primary server host. The application
hosts have no knowledge of the ordering of server hosts.
However, each of the server hosts is assumed to have
explicit knowledge of the ordering. The backup server
host performs no updates on the data base. A11 updates
must be initiated by the primary server host. However,
the backup now has knowledge of the existence of the
update request from the application host. It will not
discard this request until a backup message referring
to that same update operation ripples down the backup
chain and through it.

In figure 2c the third network message delay is
incurred. Three messages are transmitted by the pri—
mary server host. As was the case previously, these
messages are essentially simultaneous but a specific
ordering can provide some small improvements in resil—
iency. First, a backup message is sent to the first
backup server host. Second, an update ACK message is
transmitted to the application host since the two-host
criterion has now been met. Third, a forward message
acknowledgment is transmitted to the forwarding backup
host. The message flow is summarized in figure 3.

Participating Servers. In a service environment
where there is no special set of hosts dedicated to the
service, updates from a user on one of the hosts parti—
cipating in the service will only experience two net—
work delays as opposed to the three found in the dedi—
cated host case. Figure 4 shows that the first delay
is generated when the host in which the update was gen-
erated sends the update to the primary as a forward re-
quest. (Note that since members of the service will
most likely maintain the necessary connections among

each other, many of the single message connection dif—
ficulties can be avoided in this case.) The second
delay is incurred when the primary responds with a for~
ward ACK message to the originating backup host. The
primary also sends the backup request to the first
backup server. From this point on, the procedure is
identical to the dedicated server scheme.

Alternative Backup Architectures. The backup ser—
vers have been arranged in a linear, ordered string.
This is not essential. We have used the linear archi—

tecture in this paper for several reasons. It is easy
to describe. It is one example of the single primary,
multiple backup strategy for resilient resource sharing.
It is also a minimum delay scheme for two—host resil-
iency. An example of a non—linearly ordered backup
scheme is a broadcast scheme. In this scheme the pri—
mary broadcasts backup messages simultaneously to all
backups. The broadcast scheme also has minimum delay.
It requires fewer total messages than the linearly
ordered scheme, but error recovery is more complex.
Grapa is currently investigating the range of feasible
backup architectures.

Summa y. Resiliency is achieved in this scheme by
a combination of techniques. The basic organization of
the resiliency scheme provides the skeleton on which to
construct the resilient service. The additional mecha—

nisms used for a particular application will depend
heavily on the degree of resiliency required. This
additional resiliency is gained by applying a combina—
tion of sequence numbering schemes and ACK and time~out
mechanisms. For instance, to get two—host resiliency
for updates being passed down the chain, a "Backup for—
warded ACK" is used in the following way:

When a backup server host receives the "backup
ACK" corresponding to the backup message sent to its
right—hand neighbor (see figure 3), it sends a "backup
forwarded ACK" to its left—hand neighbor. This assures
that neighbor that the update has progressed to at
least the second backup beyond itself.

Also, for most applications one sequence number
scheme can be applied to the messages to detect lost or
duplicate messages. A second sequence number scheme
can be applied to the requests themselves. This allows
proper recovery in the event of failures. It also de-
fines the order in which requests will be applied to
the data base.

There are two properties of this scheme that should
be noted. First, regardless of where the user process
sends the update request, he will get a response in
three message delay times. (If the synchronizing scheme
is moved into the application hosts, this delay can be
cut to two message times.) Second, two nearly simul-
taneous host falures during a small critical interval
are required to disrupt the scheme.

Failure Detection and Recovery

Failure Detection. The detection of failures may
be accomplished in a variety of ways. Clearly, the
time—outs associated with the ACK's will allow the sys—
tem to detect a failure during the course of performing
a request. If there are relatively long idle periods
between requests, and if one wants to avoid the delays
required to recover from a failure, it may be useful,
for some applications, to have a low level "are you
alive" protocol among the members of the chain. Other—
wise, the error will not be detected until the next
request is sent.

There are basically two kinds of failures which
must be handled: l) host failure and 2) network parti—
tion. Recovery from a host failure is relatively

565

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

server server server server . . .

hosto host1 host2 hosfs

2a: Application host transmits update request to a backup server.

forward

request

server server server

hos?o host1 . hos1'2

appHc.
host

2b: Backup host forwards update request to the primary host.

server . . .
host3

3: forward

 server

hosf1

server

hos?2

server

hos’r3

server

hosfo

2c: Primary host issues three messages in the following order:

1. A backup for an update request is sent to the first backup host.
2. An acknowledgement message is sent to the application host.
3. An acknowledgement of the forwarding message is sent to the

forwarding backup host.

Figure 2

Update request sent to a backup server host

566

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

