
 

 

Scalable, Secure, and

Highly Available
Distributed File Access

or the users of a distributed system

F to collaborate effectively, the abil-ity to share data easily is vital. Over
the last decade, distributed file systems
based on the Unix model have been the

subject ofgrowing attention. They are now
widely considered an effective means of
sharing data in academic and research en
vironments. This article presents a sum~
mary and historical perspective of work
done by my colleagues, students, and I in
designing and implementing such systems
at Carnegie Mellon University.

This work began in 1983 in the context
of Andrew, a joint project of CMU and
IBM to develop a state-of-the-art comput-
ing facility for education and research at
CMU. The project envisioned a dramatic
increase in computing power made pos
sible by the widespread deployment of
powerful personal workstations. Our char—
ter was to develop a mechanism that would
enable the users of these workstations to

collaborate and share data effectively. We
decided to build a distributed file system
for this purpose because it would provide
the right balance between functionality
and complexity for our usage environment.

It was clear from the outset that our

distributed file system had to possess two
critical attributes: It had to scale well, so
that the system could grow to its antici-
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Andrew and Coda are

distributed Unix file

systems that embody

many of the recent

advances in solving

the problem of data

sharing in large,

physically dispersed
workstation

environments.

pated final size ofover 5,000 workstations.
It also had to be secure, so that users could

be confident of the privacy of their data.
Neither of these attributes is likely to be
present in a design by accident, nor can it
be added as an afterthought. Rather. each
attribute must be treated as a fundamental

constraint and given careful attention dur»
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ing the design and implementation of a
system.

Our design has evolved over time, re-
sulting in three distinct versions of the
Andrew file system, called AFS-l, AFS-Z,
and AFS-3. In this article “Andrew file

system“ or “Andrew" will be used as a
collective term referring to all three ver—
sions.

As our user community became more
dependent on Andrew, the availability of
data in it became more important. Today, a
single failure in Andrew can seriously
inconvenience many users for significant
periods. To address this problem, we be-
gan the design of an experimental file
system called Coda in 1987, Intended for
the same computing environment as An-
drew, Coda retains Andrew’s scalability
and security characteristics while provid-
ing much higher availability.

The Andrew

architecture

The Andrew computing paradigm is a
synthesis of the best features of personal
computing and timesharing. It combines
the flexible and visually rich user interface
available in personal computing with the
ease of information exchange typical of
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Figure 1. A high-level view of the An-
drew architecture. The structure la-
beled “Vice” is a collection of trusted
file servers and untrusted networks.

The nodes labeled “W" are private or
public workstations, or timesharing
systems. Software in each such node
makes the shared files in Vice appear
as an integral part of that node’s file
system.

tmp bin lib
Local files

vmunix ats

Shared files

Figure 2. File system view at a work-
station: how the shared files in Vice

appear to a user. The subtree under
the directory labeled “afs” is identical
at all workstations. The other directo-
ries are local to each workstation.

Symbolic links can be used to make lo-
cal directories correspond to directo-
ries in Vice.

timesharing. A conceptual view of this
model is shown in Figure 1.

The large. amoeba-like structure in the
middle, called Vice, is the information-

sharing backbone of the system. Although
represented as a single entity, it actually
consists of a collection of dedicated file

servers and a complex local area network.
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User computing cycles are provided by
workstations running the Unix operating
system.

Data sharing in Andrew is supported by
a distributed file system that appears as a
single large subtree of the local file system
on each workstation. The only files outside
the shared subtree are temporary files and
files essential for workstation initializa—

tion. A process called Venus, running on
each workstation, mediates shared file
access. Venus finds files in Vice, caches

them locally, and performs emulation of
Unix file system semantics. Both Vice and
Venus are invisible to workstation pro-
cesses, which only see a Unix file system,
one subtree of which is identical on all
workstations. Processes on two different
workstations can read and write files in this

subtree just as if they were running on a
single timesharing system. Figure 2 de—
picts the file system view seen by a work-
station user.

Our experience with the Andrew archi—
tecture over the past six years has been
positive. It is simple and easily understood
by naive users, and it permits efficient
implementation. It also offers a number of
benefits that are particularly valuable on a
large scale:

. Data sharing is simplified, A worksta-
tion with a small disk can potentially ac—
cess any file in Andrew by name. Since the
file system is location transparent, users do
not have to remember the machines on

which files are currently located or where
files were created. System administrators
can move files from one server to another

without inconveniencing users, who are
completely unaware of such a move.

0 User mobility is supported. A user can
walk to any workstation in the system and
access any file in the shared name space. A
user’s workstation is personal only in the
sense that he owns it.

- System administration is easier. Op-
erations staff can focus on the relatively
small number of servers, ignoring the more
numerous and physically dispersed clients.
Adding a new workstation involves merely
connecting it to the network and assigning
it an address.

- Better security is possible. The servers
in Vice are physically secure and run
trusted system software. No user programs
are executed on servers. Encryption—based
authentication and transmission are used

to enforce thesecurity of server—worksta~
tion communication. Although individuals
may tamper with the hardware and soft-
ware on their workstations, their malicious

actions cannot affect users at other work-
stations.

- Client autonomy is improved. Work—
stations can be turned off or physically
relocated at any time without inconvee
niencing other users. Backup is needed
only on the servers, since workstation disks
are used merely as caches.

Scalability in Andrew

A scalable distributed system is one that
can easily cope with the addition of users
and sites, its growth involving minimal
expense, performance degradation, and
administrative complexity. We have
achieved these goals in Andrew by reduc-
ing static bindings to a bare minimum and
by maximizing the number of active clients
that can be supported by a server. The
following sections describe the evolution
of our design strategies for scalability in
Andrew.

AFS-l. AFS-l was a prototype with the
primary functions of validating the An-
drew file system architecture and provid-
ing rapid feedback on key design deci—
sions. Each server contained a local file

system mirroring the structure of the
shared file system. Vice file status infor-
mation. such as access lists, was stored in
shadow directories. If a file was not on a

server, the search for its name would end in
a stub directory that identified the server
containing that file. Since server processes
could not share memory, their only means
of sharing data structures was via the local
file system.

Clients cached pathname prefix infor-
mation and used it to direct file requests to
appropriate servers. The Vice-Venus inter-
face named files by their full pathnames.
There was no notion of a low—level name.
such as the inode in Unix.

Venus used a pessimistic approach to
maintaining cache coherence. All cached
copies of files were considered suspect.
Before using a cached file, Venus would
contact Vice to verify that it had the latest
version. Each open of a file thus resulted in
at least one interaction with a server, even

if the file was already in the cache and up
to date.

For the most part, we were pleased with
AFS—l. Almost every application was able
to use Vice files without recompilation or
relinking. There were minor areas of in-
compatibility with standard Unix seman-
tics, but these were never serious enough to
discourage users.
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Design principles from Andrew and Coda

The design choices of Andrew and
Coda were guided by a few simple
principles. They were not specified a
priori, but emerged in the course of
our work. We share these principles
and examples of their application in
the hope that they will be useful to de-
signers of other large—scale distributed
systems. The principles should not be
applied dogmatically but should be
used to help crystallize thinking during
the design process.

- Workstations have the cycles to
burn. Whenever there is a choice be»
tween performing an operation on a
workstation and performing it on a
central resource, it is preferable to
pick the workstation. This enhances
the scalability of the design because it
lessens the need to increase central
resources as workstations are added.

The only functions performed by
servers in Andrew and Coda are those

critical to security, integrity, or location
of data. Further, there is very little in-
terserver traffic. Pathname translation
is done on clients rather than on serv-
ers in AFS-2, AFS—3, and Coda. The
parallel update protocol in Coda de-
pends on the client to directly update
all AVSG members, rather than updat-
ing one of them and letting it relay the
update.

- Cache whenever possible.
Scalability, user mobility, and site au-
tonomy motivate this principle. Cach»
ing reduces contention on centralized
resources and transparently makes
data available wherever it is being
used.

AFS-1 cached files and location in
formation. AFS-2 also cached directo-

ries, as do AFS-3 and Coda. Caching
is the basis of disconnected operation
in Coda.

AF8—] was in use for about a year, from
late 1984 to late 1985. At its peak usage,
there were about 100 workstations and six

servers. Performance was usually accept—
able to about 20 active users per server. But
sometimes a few intense users caused per-
formance to degrade intolerably. The sys-
tem turned out to be difficult to operate and
maintain, especially because it provided
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. Exploit flle usage properties.
Knowledge of the nature of file accesses
in real systems allows better design
choices to be made. Files can often be

grouped into a small number of easily
identifiable classes that reflect their ac-
cess and modification patterns. These
class-specific properties provide an op—
portunity for independent optimization
and. hence, improved performance.

Almost one-third of the file references
in a typical Unix system are to temporary
files. Since such files are seldom
shared, Andrew and Coda make them
part of the local name space. The ex-
ecutable files of system programs are of-
ten read but rarely written. AFS-2, AFS—
3. and Coda therefore support read-only
replication of these files to improve per-
formance and availability. Coda's use of
an optimistic replication strategy is
based on the premise that sequential
write sharing of user files is rare.

. Minimize systemwide knowledge
and change. In a large distributed sys—
tem, it is difficult to be aware at all times
of the entire state of the system. It is
also difficult to update distributed or rep-
licated data structures consistently. The
scalability of a design is enhanced if it
rarely requires global information to be
monitored or atomically updated.

Workstations in Andrew and Coda

monitor only the status of servers from
which they have cached data. They do
not require any knowledge of the rest of
the system. File location information on
Andrew and Code servers changes rela-
tively rarely. Caching by Venus. rather
than file location changes in Vice. is
used to deal with movement of users.

Coda integrates sewer replication (a
relatively heavyweight mechanism) with
caching to improve availability without
losing scalability. Knowledge of a cach-
ing site is confined to servers with call-
backs for the caching site. Coda does

few tools to help system administrators.
The embedding of file location informa-
tion in stub directories made it hard to
move user files between servers.

AFS-Z. The design of AFS-Z was based
on our experience with AFS-l as well as on
extensive performance analysis.‘ We re-
tained the strategy of workstations caching

not depend on knowledge of sys-
temwide topology, nor does it incorpo-
rate any algorithms requiring sys-
temwide election or commitment.

Another instance of the application
of this principle is the use of negative
rights. Andrew provides rapid revoca—
tion by modifications of an access list
at a single site rather than by sys-
temwide change of a replicated protec-
tion database.

- Trust the fewest possible enti-
tles. A system whose security depends
on the integrity of the fewest possible
entities is more likely to remain secure
as it grows.

Rather than trusting thousands of
workstations, security in Andrew and
Coda is predicated on the integrity of
the much smaller number of Vice serv-
ers. The administrators of Vice need

only ensure the physical security of
these servers and the software they
run. Responsibility for workstation in-
tegrity is delegated to the owner of
each workstation. Andrew and Coda

rely on end»to-end encryption rather
than physical link security.

0 Batch if possible. Grouping op»
erations (and hence scalability) can im-
prove throughput, although often af the
cost of latency.

The transfer of files in large chunks
in AFS—S and in their entirety in AFS-t,
AFS-2, and Coda is an instance of the
application of this principle. More effi-
cient network protocols can be used
when data is transferred en masse
rather than as individual pages. In
Coda the second phase of the update
protocol is deferred and batched. La-
tency is not increased in this case be-
cause control can be returned to appli—
cation programs before the completion
of the second phase.

 
entire files from a collection of dedicated

autonomous servers. But we made many
changes in the realization of this architec—
ture, especially in cache management,
name resolution. communication, and
server process structure.

A fundamental change in AFS-2 was the
manner in which cache coherence was

maintained. Instead of checking with a
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Figure 3. AFS-2 versus Sun NFS performance under load on identical client,
server, and network hardware. A load unit consists of one client workstation
running an instance of the Andrew benchmark. (Full details of the benchmark
and experimental configuration can be found in Howard et al.,1 from which this
graph is adapted.) As the graph clearly indicates, the performance of AFS-Z,
even with a cold cache, degrades much more slowly than that of NFS.

server on each open, Venus now assumed
that cache entries were valid unless other-
wise notified. When a workstation cached

a file or directory, the server promised to
notify that workstation before allowing a
modification by any other workstation.
This promise, known as a callback, re-
sulted in a considerable reduction in cache
validation traffic.

Callback made it feasible for clients to

cache directories and to translate path-
names locally. Without callbacks, the
lookup of every component of a pathname
Would have generated a cache validation
request. For reasons of integrity, directory
modifications were made directly on serv-
ers. as in AFS-l. Each Vice file or direc-

tory in AFS-Z was identified by a unique
fixed‘length file identifier. Location infor—
mation was contained in a slowly changing
volume location database replicated on
each server.

AFS-2 used a single process to service

all clients of a server. thus reducing the
context switching and paging overheads
observed in AFS-l. A nonpreemptive
'lightweight process mechanism supported
concurrency and provided a convenient
programming abstraction on servers and
clients. The RPC (remote procedure call)

12

mechanism in AFS-Z, which was inte—
grated with the lightweight process mecha-
nism, supported a very large number of
active clients and used an optimized bulk-
transfer protocol for file transfer.

Besides the changes we made for per—
formance, we also eliminated AFS-l ’s
inflexible mapping of Vice files to server
disk storage. This change was the basis of
a number of mechanisms that improved
system operability. Vice data in AFS—2
was organized in terms of a data—structur-
ing primitive called a volume, a collection
of files forming a partial subtree of the
Vice name space. Volumes were glued
together at mount points to form the com-
plete name space. Venus transparently
recognized and crossed mount points dur—
ing name resolution.

Volumes were usually small enough to
allow many volumes per server disk parti—
tion. Volumes formed the basis of disk

quotas. Each system user was typically
assigned a volume, and each volume was
assigned a quota. Easily moved between
servers by system administrators, a vol-
ume could be used (even for update) while
it was being moved.

Read-only replication of volumes made
it possible to provide increased availabilr

ity for frequently read but rarely updated
files, such as system programs. The backup
and restoration mechanism in AFSrZ also

made use of volume primitives. To back up
a volume, a read-only clone was first made.
Then, an asynchronous mechanism trans—
ferred this frozen snapshot to a staging
machine from which it was dumped to tape.
To handle the common case of accidental

deletion by users, the cloned backup vol-
ume ofeach user’s files was made available

as a read-only subtree of that user’s home
directory. Thus, users themselves could
restore files within 24 hours by means of
normal file operations.

AFS—2 was in use at CMU from late 1985

until mid—1989. Our experience confirmed
that it was indeed an efficient and come

nient system to use at large scale. Con-
trolled experiments established that it per—
formed better under load than other con—

temporary file systems.“2 Figure 3 presents
the results of one such experiment.

AFS-3. In 1988, work began on a new
version of the Andrew file system called
AFS—3. (For ease of exposition, all changes
made after the AFS-2 release described in

Howard et al.1 are described here as pertain-
ing to AFS-3. In reality, the transition from
AFS—Z to AFS-3 was gradual.) The revision
was initiated at CMU and has been contin-

ued since mid-1989 at Transarc Corpora—
tion, a commercial venture involving many
of the original implementers ofAFS—3. The
revision was motivated by the need to pro-
vide decentralized system administration,
by the desire to operate over wide area
networks, and by the goal of using industry
standards in the implementation.

AFS—3 supports multiple administrative
cells, each with its own servers, worksta-
tions, system administrators, and users.
Each cell is a completely autonomous
Andrew environment, but a federation of

cells can cooperate in presenting users with
a uniform, seamless filename space. The
ability to decompose a distributed system
into cells is important at large scale because
it allows administrative responsibility to be
delegated along lines that parallel institu~
tional boundaries. This makes for smooth

and efficient system operation.
The RPC protocol used in AFS-3 pro-

vides good performance across local and
wide area networks. In conjunction with the
cell mechanism, this network capability has
made possible shared access to a common,
nationwide file system, distributed over
nodes such as MIT, the University ofMichi~
gan, and Dartmouth. as well as CMU.

Venus has been moved into the Unix

COMPUTER

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

Other contemporary distributed file systems

A testimonial to the importance of
distributed file systems is the large
number of efforts to build such sys-
tems in industry and academia. The
following are some systems currently
in use:

Sun NFS has been widely viewed
as a de facto standard since its intro-
duction in 1985. Portability and
heterogeneity are the dominant con-
siderations in its design. Although
originally developed on Unix, it is now
available for other operating systems
such as MS-DOS.

Apollo Domain is a distributed
workstation environment whose devel-

opment began in the early 19805.
Since the system was originally in-
tended for a close-knit team of col-

Further reading

Surveys

Satyanarayanan, M., “A Survey of Distrib-
uted File Systems," in Annual Review of
Computer Science, J.F. Traub et al., eds.,
Annual Reviews. Inc., Palo Alto, Calif.,
1989.

Svobodova, L., “File Sewers for Network-
Based Distributed Systems.“ ACM Comput-
ing Surveys, Vol. 16, No.4, Dec. 1984.

Individual systems

Amoeba
van Renesse, 11.. H. van Staveren. and AS.
Tanenbaum, “The Performance of the
Amoeba Distributed Operating System.”

kernel in order to use the vnode file inter-

cept mechanism from Sun Microsystems,
a de facto industry standard. The change
also makes it possible for Venus to cache
files in large chunks (currently 64 Kbytes)
rather than in their entirety. This feature
reduces file-open latency and allows a
workstation to access files too large to fit
on its local disk cache.

Security in Andrew

A consequence of large scale is that the
casual attitude toward security typical of
close-knit distributed environments is not

May 1990

laborating individuals, scale was not a
dominant design consideration. But large
Apollo installations now exist.

lBM AlX-DS is a collection of distrib-

uted system services for the AIX operat-
ing system, a derivative of System V
Unix. A distributed file system is the pri-
mary component of AlX-DS. Its goals in-
clude strict emulation of Unix semantics,
ability to efficiently support databases,
and ease of administering a wide range
of installation configurations.

AT&T RFS is a distributed file system
developed for System V Unix. its most
distinctive feature is precise emulation of
local Unix semantics for remote tiles.

Sprlte is an operating system for net-
worked uniprocessor and multiprocessor
workstations, designed at the University
of California at Berkeley. The goals of the

Software Practice and Experience, Vol. 19. No.
3, Mar. 1989.

Apollo Domaln
Levine, P., “The Apollo Domain Distributed
File System" in Theory and Practice ofDistrib-
uted Operating Systems, Y. Paker, J.-T. Ba-
natre, and M. Bozyigit, eds., NATO AS] Series,
Springer-Verlag, 1987.

AT&T RFS
Rifldn, A.P., et al., “RFS Architectural Over—
view" Proc. Summer Usem'x Conf., Atlanta,
1986, pp. 248-259.

Echo
Hisgen, A., et al., “Availability and Consis-
tency Trade-Offs in the Echo Distributed File
System," Proc. Second IEEE Workshop an

acceptable. Andrew provides mechanisms
to enforce security, but we have taken care
to ensure that these mechanisms do not

inhibit legitimate use of the system. Of
course, mechanisms alone cannot guaran—
tee security; an installation also must fol-
low proper administrative and operational
procedures.

A fundamental question is who enforces
security. Rather than trusting thousands of
workstations, Andrew predicates security
on the integrity of the much smaller num-
ber of Vice servers. No user software is

ever run on servers. Workstations may be
owned privately or located in public areas,
Andrew assumes that the hardware and

Sprite file system include efficient use
of large main memory caches.
diskless operation, and strict Unix
emulation.

Amoeba is a distributed operating
system built by the Free University
and CWI (Mathematics Center) in
Amsterdam. The first version of the

distributed file system used optimistic
concurrency control. The current ver-
sion provides simpler semantics and
has high performance as its primary
objective.

Echo is a distributed file system
currently being implemented at the
System Research Center of Digital
Equipment Corporation. It uses a pri—
mary site replication scheme, with
reelection in case the primary site
fails.

Workstation Operating Systems, CS Press,
Los Alamitos, Calif., Order No. 2003. Sept.
1989.

IBM AlX-DS
Sauer, C.H., et 31., “RT PC Distributed Ser-
vices Overview," ACM Operating Systems
Review, Vol. 21, No. 3, July 1987, pp. 18-29.

Sprite
Ousterhout, J .K., et al., “The Sprite Network
Operating System," Computer, Vol. 21. No.
2, Feb. 1988, pp. 23-36.

Sun NFS
Sandberg, R., et 7.11., “Design and Implemen-
tation of the Sun Network File System."
Proc. Summer Usenix Confi, Portland, 1985,
pp. 119-130.

 
software on workstations may be modified
in arbitrary ways.

This section summarizes the main as—

pects of security in Andrew, pointing out
the changes that occurred as the system
evolved. These changes have been small
compared to the changes for scalability.
More details on security in Andrew can be
found in an earlier work.3

Protection domain. The protection do—
main in Andrew is composed of users and
groups. A user is an entity, usually a hu-
man, that can authenticate itself to Vice, be
held responsible for its actions, and be
charged for resource consumption. A
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