
EMCVMW 1017

OFTW24RE
ACTICE 8 EXPERIENCE

ME12, No.12 DECEMBER 1982

EDITORS

DAVID BARRON

CHARLES LANG

DAVID HANSON

§«2Ang Q

18 1982Q

"BusH\‘°

JOHN WILEY & SONS

Chichester - New York - Brisbane - Toronto - Singapore

A Wile-v—lnterscience Publication
SPEXBL12(12) 1085-1173

4ISSN 0O38—O64 EMCVMW 1017

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SHORT COMMUNICATIONS

‘FINGERPRINTING’~A

TECHNIQUE FOR FILE
IDENTIFICATION AND

MAINTENANCE

D. R. MCGREGOR AND A. MARIANI

Department of Computer Science, University of
Strathclyde, Glasgow, Scotland

This short note describes a technique, which we
have called ‘fingerprinting’, to produce a quasi-
unique identifier for a file, derived from that file’s
contents. This allows the identification of identical
files with different names and the notification of

any changes to a known file.

File identification Sum check
Information content Documentation

Programme support environment
Source code control

KEY \V'ORDS

One problem associated with current operating
systems is the easy proliferation of multiple copies
of programs and data. While this is not only
wasteful of space and other resources, it can cause
problems when associated documentation has been
connected with a program by the program’s file
name.

The ‘fingerprinting’ technique described in this
short note outlines a solution whereby information
about a file is connected to that file by means of the
file’s contents, as opposed to its name.

The idea is to provide an identifying feature for
every file, which is intrinsically distinctive, and
analogous (hopefully) to a human’s fingerprint. In
our current implementation, a fingerprint is a 32-
bit number, formed simply by performing a
double check-sum on the program file, and provid-

ing a unique identifier for the file.
A fingerprint is calculated as follows*given a

file with N characters, the double checksum (s2) is
formed by the algorithm-

s1:=0;s2:=O;
for 1':=1toNdo

begin
s1 := s1+c[1];
s2 := $2 + 31

end

where s1 and s2 are 16-bit integers (overflow is

ignored) and c[f] is the ith character of the file.
These 2 16-bit numbers are then stored as a 32-

bit fingerprint. From an information theoretical
standpoint this algorithm does not generate the
best possible checksum. The chance of a clash in
fingerprints is therefore somewhat higher than the

1165

‘ideal’ value (1 in 232), but the simplicity of the
algorithm makes for a simple and very fast fin-
gerprinting program.

Hence, we are using the file’s content, as
opposed to the file’s name as in conventional
systems, to identify the file. In a simple fingerprint
(FP) system, for example, we can maintain a
database of FPS against associated documentation.

Therefore, when the user comes across an un-
documented file he can try to match its FP against
one in the database in an attempt to obtain any

information regarding that file. To build up the FP
database, users are free to add new files to the
system, as long as they are willing to enter appro-
priate information regarding that file.

Systems can naturally range upwards in sophist-
ication from the simple one described above. In the
case of program files, to ensure correct identificat-
ion, the FP database could also hold test data and
matching output for the program (for example, a
Pascal compiler could have a Pascal program as
data and the corresponding compiled listing as

output) which can be checked with the output of
the unknown program (by fingerprints again). In
the event of any difference, a more sophisticated
comparison of the programs could be called into
play.

The fingerprinting technique, as outlined this
far, is best used statically~i.e. with programs
which are rarely expected to change. The FP
database can be extended to handle different ver-

sions of a program, while programs (or program
versions) which are no longer supported can have
the updated version’s FP overwrite the old FP.

Static fingerprints can be used to detect any file
corruptions. One use FP was put to was as an
assurance of correct software transportation. Every

file transported was fingerprinted at our installa-
tion, and a list of FPS plus a copy of the finger-
printer sent with the software. The finger-
printer was then employed at the destination to
confirm the safe transportation of the files
involved.

The main use of the FP technique has been in

conjunction with the AutoProg system,’ which
essentially (for the purposes of this paper) main-
tains a library of user source modules accessible by
all users but maintained by their owners within
ther own file store. In this case, the files can be

expected to change, and the fact that a file has been
altered can be exposed by occasionally re-

fingerprinting all the modules and comparing these
dynamic FPS against the FPS as recorded in the
AutoProg database.

If modifications are detected, users of the af-
fected modules can be notified and re-compilation

Received 26 fuly 1982 Revised 21 September 1982

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1166

of affected programs can be automatically gen-
erated. Similarly, FPs can be extended to detect
changes in the associated documentation files.

In this short note we have presented a very

simple technique for connecting information about
a file with that file’s content. This method shares
the drawback of associating documentation with a
file name, as both a file’s name and contents can be
transient. However, the FP technique can be use-

fully applied in the diametrically opposing situa-

BOOK REVIEWS

tions where files are relatively static or where

changes to files are required to be trapped, such as
the AutoProg system or as a detection mechanism
for file corruption.

REFERENCES

l. D. R. N-IcGregor and J. A. Mariani, ‘AutoProg—a
software development and maintenance system’,
IUCC Bulletin, Summer 1981.

Book Reviews

INTRODUCTORY ALGOL 68 PROGRAMMING, D. F.
Brailsford and A. N. VValker, Ellis Horwood,
Chichester. No. of pages: 281. Price:£l4-.00 (hard-
back), £595 (paperback).

Algol 68 is not an easy language to teach. This
text on Algol 68 is intended both for under-
graduates attending their first course in pro-
gramming and for computer programmers and
system analysts in industry, research and com-
merce. I am afraid that the book’s approach is such

that most beginners will soon be put off pro-
gramming. Even for programmers conversant with
Fortran, Basic or Cobol, a gentler introduction to
some of the concepts would be helpful.

For a first course in programming I believe it is
necessary to have an approach led by a need to
write programs in order to solve problems rather
than a breadth-first approach through the elements
of a programming language. One requires a gentle
lead-in to the way that objects are represented in

programs rather than know all about objects, then
find out how programs are written and finally find
out how objects are manipulated within programs.
In another context, there is the phrase Algorithms
+ Data Structures = Programs where the operator
+ evaluates its operands concurrently. In this
book the right hand operand of + is evaluated
first, then the left hand operand and finally the +
is done in order to yield some programs.

Thus, chapter 1 is about objects. It introduces
the modes, real, int, bool and char, row modes
and structured modes. The chapter also mentions
heap generators and dope vectors and has a very
heavy dose of refs including:

ref ref int chain = heap ref int

:=heap int :=123

In my opinion this chapter contains too many new
ideas.

For example, consider the very first coverage of
arrays. There is one paragraph explaining in gen-
eral terms that it may be useful to regard a group of
objects as forming a composite object and that
Algol 68 has row modes and structured modes in
order to do this. The next paragraph contains an

example of an object of mode []real and intro-
duces the notation [,]real and [, ,]real and the
final paragraph explains how a [, ,]real is repre-
sented inside a computer. I feel that most of this
material should have been left until a later chapter.

Chapter 2 is called ‘Program Structure’. It starts
with sections on ‘primaries’, ‘expressions’, ‘unitary
clauses’ and ‘serial clauses’. This is an important

chapter becausevit contains some of the essentials
such as assignments, expressions, conditional
clauses and loops. However, there is too much
theory: there is not enough demonstration of how
these constructs are used and put together. For

example, at the start of this chapter, the first
Algol 68 program of the book is presented. It
contains two heap declarations, two calls of read
and a call ofprint. The second Algol 68 program of
the book appears at the end of the section on ‘serial
clauses’: it contains three heap declarations, a call
of read, an obscure while loop and a call of print.
In between the two programs, the fragments of
Algol 68 that are given are not presented as fulfil-
ling some need.

Chapter 2 continues with a discussion of scopes
and ranges. Until now heap generators have been
used. However, after a discussion of how runtime
storage is organized in terms of a stack and a stack
pointer, the book points out that heap storage
cannot be handled in this fashion and so it intro-
duces loc. Abbreviated declarations are then
covered.

Chapter 3 takes some elementary problems and
produces programs to solve them. The chapter
starts by producing many programs to solve a

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

