
Network Working Group R. Rivest
Request for Comments: 1321 MIT Laboratory for Computer Science
 and RSA Data Security, Inc.
 April 1992

 The MD5 Message-Digest Algorithm

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Acknowlegements

 We would like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle,
 David Chaum, and Noam Nisan for numerous helpful comments and
 suggestions.

Table of Contents

 1. Executive Summary 1
 2. Terminology and Notation 2
 3. MD5 Algorithm Description 3
 4. Summary 6
 5. Differences Between MD4 and MD5 6
 References 7
 APPENDIX A - Reference Implementation 7
 Security Considerations 21
 Author’s Address 21

1. Executive Summary

 This document describes the MD5 message-digest algorithm. The
 algorithm takes as input a message of arbitrary length and produces
 as output a 128-bit "fingerprint" or "message digest" of the input.
 It is conjectured that it is computationally infeasible to produce
 two messages having the same message digest, or to produce any
 message having a given prespecified target message digest. The MD5
 algorithm is intended for digital signature applications, where a
 large file must be "compressed" in a secure manner before being
 encrypted with a private (secret) key under a public-key cryptosystem
 such as RSA.

Rivest [Page 1]

EMCVMW 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 1321 MD5 Message-Digest Algorithm April 1992

 The MD5 algorithm is designed to be quite fast on 32-bit machines. In
 addition, the MD5 algorithm does not require any large substitution
 tables; the algorithm can be coded quite compactly.

 The MD5 algorithm is an extension of the MD4 message-digest algorithm
 1,2]. MD5 is slightly slower than MD4, but is more "conservative" in
 design. MD5 was designed because it was felt that MD4 was perhaps
 being adopted for use more quickly than justified by the existing
 critical review; because MD4 was designed to be exceptionally fast,
 it is "at the edge" in terms of risking successful cryptanalytic
 attack. MD5 backs off a bit, giving up a little in speed for a much
 greater likelihood of ultimate security. It incorporates some
 suggestions made by various reviewers, and contains additional
 optimizations. The MD5 algorithm is being placed in the public domain
 for review and possible adoption as a standard.

 For OSI-based applications, MD5’s object identifier is

 md5 OBJECT IDENTIFIER ::=
 iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 5}

 In the X.509 type AlgorithmIdentifier [3], the parameters for MD5
 should have type NULL.

2. Terminology and Notation

 In this document a "word" is a 32-bit quantity and a "byte" is an
 eight-bit quantity. A sequence of bits can be interpreted in a
 natural manner as a sequence of bytes, where each consecutive group
 of eight bits is interpreted as a byte with the high-order (most
 significant) bit of each byte listed first. Similarly, a sequence of
 bytes can be interpreted as a sequence of 32-bit words, where each
 consecutive group of four bytes is interpreted as a word with the
 low-order (least significant) byte given first.

 Let x_i denote "x sub i". If the subscript is an expression, we
 surround it in braces, as in x_{i+1}. Similarly, we use ^ for
 superscripts (exponentiation), so that x^i denotes x to the i-th
 power.

 Let the symbol "+" denote addition of words (i.e., modulo-2^32
 addition). Let X <<< s denote the 32-bit value obtained by circularly
 shifting (rotating) X left by s bit positions. Let not(X) denote the
 bit-wise complement of X, and let X v Y denote the bit-wise OR of X
 and Y. Let X xor Y denote the bit-wise XOR of X and Y, and let XY
 denote the bit-wise AND of X and Y.

Rivest [Page 2]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 1321 MD5 Message-Digest Algorithm April 1992

3. MD5 Algorithm Description

 We begin by supposing that we have a b-bit message as input, and that
 we wish to find its message digest. Here b is an arbitrary
 nonnegative integer; b may be zero, it need not be a multiple of
 eight, and it may be arbitrarily large. We imagine the bits of the
 message written down as follows:

 m_0 m_1 ... m_{b-1}

 The following five steps are performed to compute the message digest
 of the message.

3.1 Step 1. Append Padding Bits

 The message is "padded" (extended) so that its length (in bits) is
 congruent to 448, modulo 512. That is, the message is extended so
 that it is just 64 bits shy of being a multiple of 512 bits long.
 Padding is always performed, even if the length of the message is
 already congruent to 448, modulo 512.

 Padding is performed as follows: a single "1" bit is appended to the
 message, and then "0" bits are appended so that the length in bits of
 the padded message becomes congruent to 448, modulo 512. In all, at
 least one bit and at most 512 bits are appended.

3.2 Step 2. Append Length

 A 64-bit representation of b (the length of the message before the
 padding bits were added) is appended to the result of the previous
 step. In the unlikely event that b is greater than 2^64, then only
 the low-order 64 bits of b are used. (These bits are appended as two
 32-bit words and appended low-order word first in accordance with the
 previous conventions.)

 At this point the resulting message (after padding with bits and with
 b) has a length that is an exact multiple of 512 bits. Equivalently,
 this message has a length that is an exact multiple of 16 (32-bit)
 words. Let M[0 ... N-1] denote the words of the resulting message,
 where N is a multiple of 16.

3.3 Step 3. Initialize MD Buffer

 A four-word buffer (A,B,C,D) is used to compute the message digest.
 Here each of A, B, C, D is a 32-bit register. These registers are
 initialized to the following values in hexadecimal, low-order bytes
 first):

Rivest [Page 3]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 1321 MD5 Message-Digest Algorithm April 1992

 word A: 01 23 45 67
 word B: 89 ab cd ef
 word C: fe dc ba 98
 word D: 76 54 32 10

3.4 Step 4. Process Message in 16-Word Blocks

 We first define four auxiliary functions that each take as input
 three 32-bit words and produce as output one 32-bit word.

 F(X,Y,Z) = XY v not(X) Z
 G(X,Y,Z) = XZ v Y not(Z)
 H(X,Y,Z) = X xor Y xor Z
 I(X,Y,Z) = Y xor (X v not(Z))

 In each bit position F acts as a conditional: if X then Y else Z.
 The function F could have been defined using + instead of v since XY
 and not(X)Z will never have 1’s in the same bit position.) It is
 interesting to note that if the bits of X, Y, and Z are independent
 and unbiased, the each bit of F(X,Y,Z) will be independent and
 unbiased.

 The functions G, H, and I are similar to the function F, in that they
 act in "bitwise parallel" to produce their output from the bits of X,
 Y, and Z, in such a manner that if the corresponding bits of X, Y,
 and Z are independent and unbiased, then each bit of G(X,Y,Z),
 H(X,Y,Z), and I(X,Y,Z) will be independent and unbiased. Note that
 the function H is the bit-wise "xor" or "parity" function of its
 inputs.

 This step uses a 64-element table T[1 ... 64] constructed from the
 sine function. Let T[i] denote the i-th element of the table, which
 is equal to the integer part of 4294967296 times abs(sin(i)), where i
 is in radians. The elements of the table are given in the appendix.

 Do the following:

 /* Process each 16-word block. */
 For i = 0 to N/16-1 do

 /* Copy block i into X. */
 For j = 0 to 15 do
 Set X[j] to M[i*16+j].
 end /* of loop on j */

 /* Save A as AA, B as BB, C as CC, and D as DD. */
 AA = A
 BB = B

Rivest [Page 4]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 1321 MD5 Message-Digest Algorithm April 1992

 CC = C
 DD = D

 /* Round 1. */
 /* Let [abcd k s i] denote the operation
 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
 [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
 [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
 [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

 /* Round 2. */
 /* Let [abcd k s i] denote the operation
 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
 [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
 [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
 [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

 /* Round 3. */
 /* Let [abcd k s t] denote the operation
 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
 [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
 [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
 [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

 /* Round 4. */
 /* Let [abcd k s t] denote the operation
 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
 [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
 [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
 [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

 /* Then perform the following additions. (That is increment each
 of the four registers by the value it had before this block
 was started.) */
 A = A + AA
 B = B + BB
 C = C + CC
 D = D + DD

 end /* of loop on i */

Rivest [Page 5]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

