
6/7/13 https://groups.google.com/forum/message/raw?msg=comp. com pression/HgdnKthij0/3c3hnU RtZAAJ

Path:

sparky!uunet!munnari.oz.au!yoyo.aarnet.edu.au!sirius.ucs.adelaide.edu.au!spam!ross

From: ro...@spam.ua.oz.au (Ross Williams)

Newsgroups: comp.compression

Subject: An algorithm for matching text (possibly original).

Summary: An algorithm for matching text (possibly original).

Keywords: data compression differences super diff text matching algorithm string

searching

Message-ID: <1276@spam.ua.oz>
Date: 27 Jan 92 15:10:05 GMT

Sender: news@spam.ua.oz

Followup-To: comp.compression

Organization: Statistics, Pure & Applied Mathematics, University of Adelaide
Lines: 176

Dear Compressor Heads,

Here is a description of an idea I just had for text matching. It may

have some compression application (see the end of the description of

the idea). I don't know if it is original. Whether it is or not, it

could be of interest to compressor heads and those involved with large

text databases and text matching.

Mainly though, I'm just posting this idea here publicly to impede

anyone who might independently have had the idea from patenting it. If

you like this idea and you want it to be in the public domain, do

something to make it even clearer that the idea has been exposed

publicly (and is therefore more clearly prior art).

Ross Williams

ro...@spam.adelaide.edu.au
27-Jan-1992.

(Header for my Guru text database program).
--<Guru>--

D=27-Jan-1992

F=superdiff.mes

S=An idea for a super differences algorithm/program.

K=differences super differences text matching algorithm string searching
--<Guru>--

IDEA FOR SUPERDIFFERENCES ALGORITHM/PROGRAM

Author : Ross Williams.

Date : Monday 27-Jan-1992, 10:40pm CST Australia (when I had the idea).

The Problem

Quite often one finds that because of various backup activities and so

on, that one has multiple large directory trees full of files, many of

which are identical or share large identical chunks. From this grows

the need for a superdifferences program, that not only compares files,
but also directories of files.

To construct a program to find all identical files in a file system is

easy --- just compute a table of checksums, one for each file, and

then perform full comparisons on files that share the same checksum.

(If you wish, for "checksum" read "hash value").
EMC/VMware v. PersonalWeb
IPR2013-00083

EMCVMW 1049

https://groups.google.com/forum/message/raw?msg=comp. com pression/HgdnKthij0/3c3hnU RtZAAJ 1/4
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


6/7/13 https://groups.google.com/forum/message/raw?msg=comp. com pression/HgdnKthij0/3c3hnU RtZAAJ

A harder problem is identifying files that are NEARLY identical or

which share large slabs of text. For example, two .C files being

nearly the same versions of a program will share most of their text.

The problem proposed is to construct an algorithm/utility that will

find such shared slabs of text in the file system. The result would be

a very useful utility.

A Brute Force Solution

An extremely thorough brute force approach would be to take every

subsequence of N characters (e.g. with N=1000 say) at every alignment

(i.e. commencing at every byte) in every file and form a huge table of
checksums in the same manner as the table of checksums at the file

level. The table would identify all common strings of 1000 characters

in different files and these connections could be used to explore and

identify longer matches.

The only problem with this idea is that the table would be about four

times the size of the filesystem (because there would be (say) a

4-byte checksum for each byte (being the checksum for the string of N

characters commencing at that byte)).

To cut down on the number of checksums required, we might think of

only recording a checksum every M bytes (where M=50 say). If M<<N this

should pose no problem. Unfortunately, this scheme fails totally

because of alignment problems. Two files sharing a span of text may

not have those two spans aligned at MOD 50 boundaries.

Example:
File1:

!This is some shared text.

File2:

This is some shared text.

In the above, although the two files share a slab of text, the two

slabs are not aligned (because one has the exclamation mark). If

checksums are performed every M bytes, the match will not be detected.

Only checksums on every byte boundary will do the trick.

The Good Part (My Idea)

My idea provides a stochastic solution that does not guarantee to find

all matches, but will most likely find most matches. It could

certainly be used to construct a practical tool.

The idea is this: Run through each file computing a checksum of C bits

(e.g. C=32) of all N-byte strings on ALL byte boundaries as with the

brute force approach. HOWEVER, only store a (checksum,file,position)

tuple in the checksum table if the bottom B bits (e.g. with (say)
3:10) of the checksum are zero (or some other B-bit constant).

B can be chosen to taste, with the size of the table and the

probability of finding each match being inversely related to B. A

value of 8:0 corresponds to the brute force approach which will find

all matches, but produce a massive table. A value of B=C will produce

a table of at most one entry and will most likely find no matches. The

number 1/(2AB) is the probability that the checksum commencing at any

https://groups.google.com/forum/message/raw?msg=comp. com pression/HgdnKthij0/3c3hnU RtZAAJ 2/4
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


6/7/13 https://groups.google.com/forum/message/raw?msg=comp. compression/HgdnKthij0/3c3hnURtZAAJ

particular byte will be entered into the checksum table.

A sliding window checksum could be used so that only about two

arithmetic operations are required per byte.

Discussion

The technique that the algorithm uses is to collect a "random" sample

of checksums of N-byte sequences from all of the files, but to define

"random" deterministically so that the same "random" strings will tend

to be collected from the different files. Thus, if the algorithm scans

over a span of identical text in two different files, it may not pick

up any checksums from the texts (although if B is not set too high

this should not happen too often), but if it does pick up any

checksums, it will pick them up at the SAME points in the strings -
and so a match will be detected!

The idea behind this approach was inspired by the way that humans

might perform the task. A human, asked to roughly compare several

documents would not compare every substring against every other, but

would visually scan each document for "interesting" features and these

would be used as reference points to see if large slabs of the

document have been seen before. For example, if you put "BISHOP IN SEX

SCANDAL" in a comment in the middle of one of your Pascal source

files, a human reader would probably consider that string a relatively

"interesting" feature of that file, and, if the same feature was seen

in another file, the reader would instantly recognise it and try to

compare that file against the earlier one seen with the same feature.

Note that the reader's definition of "interesting" means that the

reader (whom we will temporarily think of as a semi-automaton) does
not remember "ISHOP IN SEX SCANDAL ", or " BISHOP IN SEX SCANDA", but

"BISHOP IN SEX SCANDAL". The interestingness or otherwise of the

information automatically, deterministically, creates a set of

alignments at which the various scraps of the different files can be

compared.

To get the computer to do the same thing, we merely need to define

"interesting". A simple definition, and the one I have chosen to use

in the above algorithm is "random" - just carve out a subspace of the

checksum space! The algorithm then stores these points as

"interesting". So long as the total number of interesting things

recorded is eclipsed by the size of the reduced checksum space, this

algorithm forms an efficient method for identifying documents sharing

large slabs of text. B, which determines the density of interesting

things can be set so an interesting feature appears only every couple

of thousand bytes or so. And remember that we can set N (the number of

bytes used in the checksum) up high too (e.g. 1000).

Once the algorithm has identified different files containing text

slabs having the same checksum, it can explore around the shared parts

of the files to see just how long the match is. The result could be a

comprehensive report outlining (nearly all of) the shared texts in

one's file system.

It would be easy to calculate the performance (e.g. failure to match,

size of tables etc) probabilities for this system.

https://groups.google.com/forum/message/raw?msg=comp. com pression/HgdnKthij0/3c3hnU RtZAAJ 3/4
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


6/7/13 https://groups.google.com/forum/message/raw?msg=comp. com pression/HgdnKthij0/3c3hnU RtZAAJ

A Compression Application

A file system that ran this idea continuously could identify large

tracts of shared text in the file system and replace them by

references to their copies. This would be substring macro compression

on a grand scale. The files being compared would have to be in

uncompressed form though, because ordinary compression scrambles

everything, making comparisons of substrings difficult.

Conclusion

It is possible that this is an original idea. It would be fun to write a

utility that uses this algorithm! The utility would be extremely

useful for locating old backup copies of programs in one's file system

or any other number of searching tasks.

--<End of Idea>--

https://groups.google.com/forum/message/raw?msg=comp. com pression/HgdnKthij0/3c3hnU RtZAAJ 4/4
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/

