1338 U.S. P‘&Q

er the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PTO/SB/57 (04-04)
Approved for use through 4/30/2007. OMB 0631-0033
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

05/09#

as FORM PTO-1465)

EQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL FORM - I
14338 U.S.PTO

JIUI

W

O

Address to: 9000864 B

Mail Stop Ex Parte Reexam
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450 Date: May 7, 2007

This is a request for ex parte reexamination pursuant to 37 CFR 1.510 of patent number_5.826.259
issued October 20. 1998. This request is made by: -

O patent owner. X third party requester.
The name and address of the person requesting reexamination is:

William L. Anthony, Jr.
Orrick, Herrington & Sutcliffe

1000 Marsh Road
Menlo Park, CA 94025

a. A check in the amount of § is enclosed to cover the reexamination fee, 37 CFR 1.20(¢)(1);

b. The Director is hereby authorized to charge the fee as set forth in 37 CFR 1.20(c)(1)
to Deposit Account No. 15-0665 (submit duplicate of this form for fee processing); or

¢. Payment by credit card. Form PTO-2038 is attached.

Any refund should be made by [[] check or [] credit to Deposit Account No.
37 CFR 1.26(c). If payment is made by credit card, refund must be to credit card account.

A copy of the patent to be reexamined having a double column format on one side of a separate
paper is enclosed. 37 CFR 1.510(b)(4)

CD-ROM or CD-R in duplicate, Computer Program (Appendix) or large table

Nucleotide and/or Amino Acid Sequence Submission
If applicable, all of the following are necessary.

a. [Computer Readable Form (CRF)
b. Specification Sequence Listing on:

i. [CD-ROM(2 coples) or CD-R (2 copies); or
ii. [J paper

¢. [J Statements verifying identity of above copies
A copy of any disclaimer, certificate of correction or reexamination certificate issued in the patent is included.
Reexamination of claim(s) __1-18 is requested.

A copy of every patent or printed publication relied upon is submitt, erewith including a listing thereof on
Form PTO-1449 or equivalent. ﬁf? laié 5%23 w4

An English language translation of all nécessar.y and pertinent non-English language patents and/or printed
publications is included.

* torney ocket No.: ass323 NN
4

[Page 1 of 2]

This collection of information is required by 37 CFR 1.510. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the
amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Departiment of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Mail Stop Ex Parte Reexam, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

OHS West:260227791.1

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

I

85/22/2887 JACDGUGA @E8BBBA1 156665 988BRGAS

IBM Ex. 1021

001

cmillevi
Text Box
IBM Ex. 1021

PTQ/SB/57 (04-04)
) Approved for use through 4/30/2007. OMB 0651-0033
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Papcrwork Reduction Act of 1993, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

12. X The attached detailed request includes at least the following items:

a.

b.

A statement identifying each substantial new question of patentability based on prior patents and printed
publications. 37 CFR 1.510(b)(1)

An identification of every claim for which reexamination is requested, and a detailed explanation of the
pertinency and manner of applying the cited art to every clalm for which reexamination is requested.

37 CFR 1.510(b)(2)

13. O A proposed amendment is included (only where the patent owner is the requester). 37 CFR 1.510(¢)

14. X a:

It is certified that a copy of this request (if filed by other than the patent owner) has been served in its
entirety on the patent owner as provided in 37 CFR 1.33(c).
The name and address of the party served and the date of service are:

ALLEN, DYER. DOPPELT, MILBRATH & GILCHRIST P.A.

1401 CITRUS CENTER 255 SOUTH ORANGE AVENUE

O b

Orlando, FL 32802-3791

Date of Service: May 7, 2007 ; or

A duplicate copy is enclosed since service on patent owner was not possible.

wh

O Customer Number:

OR

Correspondence Address: Direct all communication about the reexamination to:

X Firm or
Individual Name

Orrick Herrington & Sutcliffe, LLP
William L. Anthony, Jr.

Address (line 1)

1000 Marsh Road

Address (line 2)

City Menlo Park State Zip
CA 94023

Country USA

Telephone 650 614-7400 | Fax | 650 614-7401

16. O The

.

0
O
a

WARNING:

patent is currently the subject of the following concurrent proceeding(s):
a. Copending reissue Application No.
b. Copending reexamination Control No.
c. Copending Interference No.
d. Copending litigation styled:

Information on this form may become public. Credit card information should not be

included on this forgn. PYovide credit card information and authorization on PTO-2038.

- Lo
) Date
Williams L. Anthony, Jr. 24771 (0 For Patent Owner Requester
Typed/Printed Name Registration No., if applicable B For Third Party Requester
[Page 2 of 2]

OHS West:260227791.

1

002

1338 "U.S.PTO

lll\\lllllll\\ll\!\\ll\ﬂ\l\l\lll\\Ilmlll\llll

05/09/07 o . PATENT
IN THE UNITED STATES PATENT OFFICE 1338 US.PTO
‘ 90008648 A
- l|ll||||||ImHI\NIIIHII\III\HlIIII\IIHlIl
Request For Ex Parte Reexamination Of:
U.S. Patent No. 5,826,259
Inventor: | Karol Doktor
Avssignee: gi;larictilal Systems Technology EEIIDEE()/(XIE/I% AE"I)‘(I gﬁkgg U.S. PATENT
NO. 5,826,259
Filed: May 22, 1997
Issued: October 20, 1998
For: Easily Expandable Data
Processing Systems and
Method |

Mail Stop Ex Parte Reexam

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:
Enclosed please find Foundry Networks, Inc.’s request for ex parte reexamination of U.S.
Patent No. 5,826,259. Included with the request is a compact disk that contains all

exhibits and references in PDF format. The request comprises the following documents:

DOCUMENT | , NoO. OF
| PAGES
USPTO From SB/08A | » 2
Exhibits to Form SB/08A:
Exhibit PA-A - U.S. Patent No. 4,506,326 28

003

DOCUMENT NoO. OF
PAGES

Exhibit PA-B ‘U.S. Patent No. 4,774,661 _ 16
Exhibit PA-C U.S. Patent No. 4,918,593 38

Exhibit PA-D Toby J. Teorey, et al., A Logical Design 25
Methodology for Relational Databases
Using the Extended Entity-Relationship
Model, Computing Surveys (June 1986) -

Exhibit PA-E Daniel R. Dolk, et. al., A Relational 14
’ Information Resource Dictionary
System, Computing Practices,
Communications of the ACM (January
1987)

Exhibit PA-F M.M. Zloof, Query-by-Example: A 20
Data Base Language, IBM Systems
Journal, No. 4 (1977)

Exhibit PA-G Tsichritzis, LSL: A Link and Selector 11
Language, Proceedings of the 1976
ACM SIGMOD International
Conference on Management of Data,
Washington, D.C. (June 2-4, 1976)

Exhibit PA-H Munz, Rudolf, The Well System: A 17
Multi-User Database System Based on
Binary Relationships and Graph-
Pattern-Matching, 3 Information
Systems 99-115 (Pergamon Press 1978)

Exhibit PA-I Munz, Rudolf, Design of the Well 18
System, in Entity-Relationship
Approach to Systems Analysis and
Design. Proc. 1st International
Conference on the Entity Relationship
Approach - -

Exhibit PA-J Ashok Malhotra, Yakov Tsalalikhin, 27
Donald P. Pazel, Luanne M. Burns and
Harry M. Markowitz, Implementing an
Entity-Relationship Language on a
Relational Data Base, IBM Research
Report RC 12134 (#54499) (Aug. 27,

004

DOCUMENT

1986)

| Exhibit PA-K ‘Rudolph Munz, “Das WEB-Modell”
(translated pages)(1976).

Exhibit PA-L Gio Wiederhold, “Database Design
' Second Edition” (1995).

Exhibit PA-M Pin-Shan Chen, The entity-relationship
model — A basis for the enterprise view
of data (1977).

Exhibit PA-N Mark L. Gillenson, Database Stép-by-
Step 2nd Edition (1990). Other
References

Exhibit PAT-A1 U.S. Patent No. 5,826,259

Exhibit PAT-A2 Preliminary Infringement Contentions
filed by FST in Financial Systems
Technology. et al. v. Oracle Corporation

(“PICS™).
Exhibit PAT-A3 FST’s Response to the Notice of Non-
' Compliant Amendment, filed on Sept.
21, 2006. '
Exhibit PAT-A4 U.S. Reissue App’n, Amendment Filed

July 25, 2006, 11/152,835.

Exhibit PAT-AS FST’s Information Disclosure Statement
' (IDS) in the 90/007,707 re-examination
(stamped by the USPTO on October 23,
20006).

Exhibit PAT-A6 Second Office Action in the .
' Reissue/Reexamination Proceedings for
the ‘259 Patent.

Exhibit PAT-A7 Livingston Enterprises, Inc., _
Configuration Guide for PortMaster
Products (Dec. 1995)

Exhibit OTH-A Full copy of the complaint filed by
Patent Owner in Financial Systems

005

No. OF
PAGES

40

46
50

47

44

52

DOCUMENT NoO. OF

PAGES
Technology, et al. v. Oracle
Corporation, Case No. 2:04-CV-358-
TJW (E.D. Tex.) filed on October 12,
2004.
Exhibit OTH-B "~ The IBM Dictionary of Computing 4
' ' Terms 87 (8th Ed. 1987).
Exhibit OTH-C Telebit Corp., Telebit NetBlazer® 5
Version 2.3 Release Notes (March 25,
1994)
Certificate of Service 1
Postcard v 1

CD

Respectfully submitted,

Dated: May 8, 2007 , W/(/(/KQ/\/J

William L. Anthony V
Reg. No. 24771 .
Attorney for Oracle Corporation

OHS West:260228539.1

006

‘

1338 U.S.PTO

T

PATENT
‘1338 U.S.PTO

05/09/07 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 90008648

Request for Reexamination of:
U.S. Patent No. 5,826,259

Inventor: Karol Doktor

Assignee: Financial Sysfems Technology
(Intellectual Property) Pty Ltd

Melbourne, Australia

Filed: © May 22, 1997
Issued: October 20, 1998
For: Easily Expandable Data

Processing System and Method

Mail Stop Ex Parte Reexam
Commissioner for Patents
P.O. Box 1450,

Alexandria, VA 22313-1450

007

NIRRT
05/09/07
REQUEST FOR EX PARTE

REEXAMINATION OF U.S. PATENT NO.
5,826,259

ATTACHMENT TO FORM 1465
MATTER IN REEXAMINATION

ATTN: EXAMINER LUKE S. WASSUM

GAU: 2167

omm g

Page
TABLE OF EXHIBITS 5
LIST OF EXHIBITS 5
A. Prior Art (PA) “d
B. Relevant Patent Materials (PAT) .6
C; Other Documents (OTH) .6
REQUIREMENTS UNDER 37 C.F.R. § 1.510 .8
A. PAYMENT OF FEES; 37 C.F.R. § 1.510(A) 8
B. STATEMENT POINTING OUT EACH SUBSTANTIAL NEW
QUESTION OF PATENTABILITY; 37 C.F.R. § 1.510(B)(1) cccceovverraraencncsaas 8
C. IDENTIFICATION OF CLAIMS FOR REEXAMINATION ;3 37
C.F.R. § 1.510(B)(2) “8
APPLICATION OF CITED PRIOR ART; 37 C.F.R. § 1.510(B)(2) ..cceecncenes 9
COPIES OF THE PRIOR ART; 37 C.F.R. § 1.510(B)(3) “9
COPY OF US. PATENT 5,826,259; 37 C.F.R. § 1.510(B)(4)...cccccereruecueacneeeee 9
CERTIFICATION OF SERVICE ON PATENT OWNER; 37 C.F.R.
§ 1.510(B)(5) : .9
IL. CLAIMS FOR WHICH RE-EXAM IS REQUESTED 10
III. STATEMENT OF SUBSTANTIAL NEW QUESTION OF
PATENTABILITY 11
. The Prior Art 11
B. New Question of Patentability . 12
IV. EXPLANATION OF THE PERTINENCE AND MANNER OF
APPLYING CITED PRIOR ART TO EVERY CLAIM FOR WHICH
REEXAMINATION IS REQUESTED BASED ON PRIOR ART 14
A. Teorey ' 14
B - Huber 18
C Ku_mpati .22
D. Dolk 24
E Zloof 26
F. Shaw 28
V. DISCUSSION OF FST’S RESPONSE TO NOTICE OF NON-
COMPLIANT AMENDMENT 29

TABLE OF CONTENTS

008

TABLE OF CONTENTS

(continued)
Page
A. FST Identification of Alleged “Benefits Achieved by the
Claimed Invention” is Unavailing as the “Benefits” are
Unclaimed, and Because the “Benefits’ are Disclosed by Prior
Art ; : 30
‘B. The ‘259 Patent Claims are Non-Statutory 38
C. The ‘259 Patent is Invalid Under 35 USC 102/103 Over the
Munz, Malhotra and Tsichritzis References .. 39
VI. DISCUSSION OF FST’S RESPONSE TO THE EXAMINER’S
SECOND OFFICE ACTION 43
A. Wiederhold’s “Database Design Second Edition” Discloses
Definition Tables ; 43
B Requester Agrees with Examiner’s Section 101 Rejections.......cceeue. 45
C The Munz Reference is Anticipatory Prior Art 48
D. The Malhotra Reference is Anticipatory Prior Art........ 52
E. The Claims Are Not Entitled to a Presumption of Validity............... 53
‘VII. APPLICATION OF PRIOR ART PATENTS AND PUBLICATIONS........ 54
A. Teorey and Huber...... : 54
B. Teorey and Kumpati.. ; 80
C. Dolk, Teorey, Z100f and/or Shawc.coeccvernsccncssnsssssssecsasssasssnsesns 108
D. Tsichritzis, Munz, Zloof, and Shaw References.......cccceeercrnerecaeerenns 132
VIII. CONCLUSION ..cocciicnnninisansssscacssesssssssessssosssassssssesesssssssesssssssssssassnssassonsasssnces 138
3

009

TABLE OF EXHIBITS

LIST OF EXHIBITS

The exhibits to the present Request are arranged in three groups: prior art (“PA”),
relevant patent prosecution file history, patents, and claim dependency relationships
(“PAT”), and other (“OTH”).

A.

PA-SB/0SA

PA-A

PA-B

PA-C

PA-D

PA-E

PA-F

PA-G

PA-H

PA-1

Prior Art (PA)

USPTO Form SB/08A

U.S. Patent No. 4,506,326 to Philip S. Shaw, et al., Apparatus and

Method for Synthesizing a Query for Accessing a Relational Database,
issued March 19, 1985, filed Feb. 28, 1983 (“Shaw™).

U.S. Patent No. 4,774,661 to Murari Kumpati, Database Management
System with Active Data Dictionary, issued Sept. 27, 1988, filed Nov.
19, 1985 (“Kumpati”). |

U.S. Patent No. 4,918,593 to Val. J. Huber, Relational Database System,
issued April 17, 1990, filed January 8, 1987 (“Huber”).

Toby J. Teorey, et al., A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model, Computing
Surveys, Vol. 18, No. 2, June 1986, pp. 197-222 (“Teorey”).

Daniel R. Dolk, et. al., A Relational Information Resource Dictionafv
System, Computing Practices, Communications of the ACM, Vol. 30,
No. 1, January 1987 (“Dolk”).

M.M. Zloof, Query-by-Example: A Data Base Language, IBM Systems
Journal, No. 4, 1977, pp. 324-343 (*“Zloof™). :

Tsichritzis, LSL: A Link and Selector Language, Proceedings of the 1976
ACM SIGMOD International Conference on Management of Data,
Washington, D.C. June 2-4, 1976 (“Tsichritzis™). ' :

Munz, Rudolf, The Well System: A Multi-User Database System Based
on Binary Relationships and Graph-Pattern-Matching, 3 Information
Systems 99-115 (Pergamon Press 1978) (“Munz I””).

Munz, Rudolf, Design of the Well System, in Entity-Relationship
Approach to Systems Analysis and Design. Proc. 1st International
Conference on the Entity Relationship Approach, 505-522 (1979)
(“Munz II”)

010

PA-J Ashok Malhotra, Yakov Tsalalikhin, Donald P. Pazel, Luanne M. Burns
and Harry M. Markowitz, Implementing an Entity-Relationship
Language on a Relational Data Base, IBM Research Report RC 12134
(#54499) (Aug. 27, 1986) (“Malhotra™).

PA-K Rudolph Munz, “Das WEB-Modell” (translated pages), pp. 155-156, Fig.
10.2.1, (1976) (“Munz IIT”’), with English translation. '

PA-L Gio Wiederhold, “Database Design Second Edition”, Discloses
: Definition Tables, Sections 7-3-1, 7-3-7, 7-4-4, 7-4-5, and 9-7-6 and
Figs. 8-5, 8-7, 8-9 (1995).

PA-M Pin-Shan Chen, The entity-relationship model — A basis for the enterprise
view of data 77 (1977).
PA-N Mark L. Gillenson, Database Step-by-Step 141-42, 2d Ed. (1990).

B. } Relevant Patent Materials (PAT)

PAT-Al U.S. Patent No. 5,826,259 (the ‘259 patent).

PAT-A2 Preliminary Infringement Contentions filed by FST in Financial Systems
Technology, et al. v. Oracle Corporation (“PICS™).

PAT-A3 FST’s Response to the Notice of Non-Compliant Amendment, Filed on
Sept. 21, 2006. |

PAT-A4 U.S. Reissue App’n, Amendment, Filed on July 25, 2006, 11/152,835.

PAT-AS FST’s Information Disclosure Statement (IDS) in the 90/007,707 re-
examination, stamped by the USPTO on October 23, 2006.

PAT-A6 Second Office Action in the Reissue/Reexamination Proceedings for the
‘259 Patent.

PAT-A7 FST’s Response to Office Action, Filed on March 22, 2007.

C. Othér Documents (OTH)

OTH-A Full copy of the complaint filed by Patent Owner in Financial Systems

Technology, et al. v. Oracle Corporation, Case No. 2:04-CV-358-TJW
(E.D. Tex.) filed on October 12, 2004. '

OTH-B The IBM Dictionary of Computing Terms 87 (8th Ed. 1987).
OTH-C ~ Webster’s New World Dictionary of Computer Terms 107 (3d Ed. 1988).
5

011

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Request for Reexamination of: REQUEST FOR EX PARTE

REEXAMINATION OF U.S. PATENT NO.
U.S. Patent No. 5,826,259 5,826,259
Inventor: Karol Doktor ATTACHMENT TO FORM 1465

Assignee: Financial Systems Technology MATTER IN REEXAMINATION

(Intellectual Property) Pty Ltd

Melbourne, Australia ATTN: EXAMINER LUKE S. WASSUM

Filed: May 22, 1997 | GAU: 2167
Issued: October 20, 1998
For: Easily Expandable Data

Processing System and Method

Mail Stop Ex Parte Reexam
Commissioner for Patents

P.O. Box 1450,
Alexandria, VA 22313-1450

Deér Sir: .

Pursuant to the provisions of 35 U.S.C. §§ 302 et seq. and 37 C.F.R. § 1.510,
Oracle Corporation (“Oracle” or “Requester”) hereby requests ex parte reexamination of
U.S. Patent No. 5, 826,259 (“the ‘259 patent”). Attached as Exhibit PAT-A1 is a copy of
the ‘259 patent, as required under 37 C.F.R. § 1.510(b)(4). The ‘259 patent was issued
on October 20, 1998 to Karol Doktor. On its face, the ‘259 patent indicates that it was
assigned to Financial Systems Technology.Pty Lid. Financial Systems Technology Pty
Ltd. claims it has assigned the patent to Financial Systems Technology (Intellectual
Property) Pty Ltd. For convenience, both entities will be referred to as “FST” in this
request. FST has stated it believes the ‘259 patent is enforceable and there is no terminal
disclaimer, certificate of correction, or reexamination certificate.

The ‘259 patent is presently the subject of a merged re-issue/re-examination. Re-

012

issue serial number 11/152,835, reexamination serial number 90/007,707. Additionally,
the ‘259 patent was previously the subject of litigation proceedings in the District Court

for the Eastern District of Texas, styled as Financial Systems Technology. et al. v. Oracle

Corporation, Case No. 2:04-CV-358-TIW. A copy of the Complaint is attached as
Exhibit OTH-A. During these proceedings, FST prepared and served on Oracle its
Preliminary Infringement Contentions (“PICs”) as required under the Pafent Local Rules
of the Eastern District of Texas. The PICs, as admissions by the patent owner of record
in a court record, may be utilized in combination with a patent or printed publication

- during an ex parte reexamination proceeding. United States Patent & Trademark Office,

' Manual‘of Patent Examining Procedure § 2217(1). Admissions by the patent owner as to
any matter affecting patentability may be utilized to determine the scope and content of
the prior art in conjunction with patents and printed publications in a prior art
rejection, whether such admissions result from patents or printed publications or from
some other source. Id. A copy of these PICs is attached as Exhibit PAT-A2. This
litigation was dismissed without prejudice to allow FST to pursue the above-noted reissue
application. FST has stated that it intends to assert the ‘259 patent following the reissue
proceedings.

REQUIREMENTS UNDER 37 C.F.R. § 1.510

Pursuant to 37 C.F.R. § 1.510, Oracle satisfies each of the requirements for ex
parte reexamination of the ‘259 patent.

A. Payment of Fees; 37 C.F.R. § 1.510(a)

Requester authorizes the Patent Office to charge Deposit Account No. 15-0665
for the fee set in 37 CFR § 120(c)(1) for reexamination. The fee for reexamination is
$8,800, and the fee for an Information Disclosure Statement is $180.00.

B. Statement Pointing OQut Each Substantial New Question of
Patentability; 37 C.F.R. § 1.510(b)(1)

A statement pointing out each substantial new question of patentability based on
prior patents and publications is provided in Section IL

C. Identification of Claims for Reexamination; 37 CFR § 1.510(b)(2)

Requester requests reexamination of claims 1-18 of the ‘259 Patent, as further

013

discussed in Section 1.

D. Application of Cited Prior Art; 37 C.F.R. § 1.510(b)(2)

A detailed explanation of the pertinency and manner of applying the cited prior
art to every claim for which reexamination is requested is provided in Section III.
E. Copies of the Prior Art; 37 C.F.R. § 1.510(b)(3)

Patent Office Form 1449 states the patents and printed publications upon which
this Request is based. A complete copy of each listed patent and printed publication is
included herewith as further outlined in Section II. ‘

F. Copy of U.S. Patent 5,826,259; 37 C.F.R. § 1.510(b)(4)

As noted ébove, attached as Exhibit PAT-A1 is a copy of the ‘259 patent, as
required under 37 C.F.R. § 1.510(b)(4). There is no Certificate of Correction, Terminal
Disclaimer, or Certificaté of Reexamination.

G. Certification of Service on Patent Owner; 37 C.F.R. § 1.510(b)(5)

The undersigned certifies that a complete and entire copy of the Request for Ex
Parte Reexamination and all supporting documents have been provided to the Patent
Owner by serving the attorneys of record at the Patent Office for the “259 Patent and for
the pending reissue/reexamination proceedings:

Kwok, Edward

MacPherson, Kwok, Chen & Heid LLP
2033 GATEWAY PLACE

Suite 400

San Jose CA 95110

(on file for the ‘259 Patent)

Allen, Dyer, Doppelt, Milbrath & Gilchrist, P.A.
1401 Citrus Center

255 South Orange Avenue

P.O. Box 3791
.Orlando, FL 32802-3791

(on file for the reissue/reexamination proceedings)

The undersigned further certifies that it served an additional copy on the Patent
Owners’ current litigation counsel of record:

Sam Baxter, Esq.
McKool Smith P.C.
- 505 E. Travis, Suite 105, P.O. Box O

014

Marshall, TX 75760

IL CLAIMS FOR WHICH RE-EXAM IS REQUESTED

. Reexamination is requested of claims 1-18 of the ‘259 patent in view of the
disclosure in Toby J. Teorey, et al., A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model, Computing Surveys, Vol. 18,
No. 2, June 1986, pp. 197-222, attached as Exhibit PA-D.

Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the
disclosure in US Patent No. 4,918,593 to Val. J. Huber, Relational Database System,
issued April 17, 1990, filed January 8, 1987, attached as Exhibit PA-C

_ Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the
disclosure in US Patent No. 4,774,661 to Murari Kumpati, Database Management System
with Active Data Dictionary, issued Sept. 27, 1988, filed Nov. 19, 1985, attached as
Exhibit PA-B.

‘Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the

disclosure in Daniel R. Dolk, et. al., A Relational Information Resource Dictionary

System, Computing Practices, Communications of the ACM, Vol. 30, No. 1, January
1987, attached as Exhibit PA-E.

Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the
disclosure in M. M. Zloof, Query-by-Example: a data base language, IBM Systems |
Journal, No. 4, 1977, pp. 324-343, attached as Exhibit PA-F.

Reexamination is also requested of claims 1-18 of the 259 patent in view of the
disclosure in US Patent No. 4,506‘,326 to Philip S. Shaw, et al., Apparatus and Method
for Synthesizing a Query for Accessing a Relational Database, issued Maréh 19, 19835,

- filed Feb. 28, 1983, attached as Exhibit PA-A. ' |
All of the claims cited above are anticipated under 35 U.S.C. § 102 and/or

rendered obvious under 35 U.S.C. § 103 in view of the five prior art publications noted

above.

015

III. STATEMENT OF SUBSTANTIAL NEW QUESTION OF
PATENTABILITY

A. The Prior Art

FST’s Response filed Sept. 21, 2006, has presented certain new interpretations
that it attributes to certain claims 'in the ‘259 patent. Due to these new interpretations,
Requester Oracle has identified additional prior art references which anticipate or render
obvious the claims of the ‘259 patent. Of the additional prior art documents cited above, -
Teorey, Kumpati, Dolk, Zloof, and Shaw were not of record in the file of the ‘259 patent.

In addition to the foregoing, FST’s amendment of claims 4, 9, 12, 17, and 18 in its
first reexamination request have raised a substantial new question of patentability with
respect to those claims. U.S. Reissue App’n, Amendment Filed July 25, 2006,
11/152,835, attached as Exhibit PAT-A4. Under the Manual of Patent Examining
Procedure, the second or subsequent request for reexamination may raise a substantial
new question of patentability with respect to any new or amended claim which has been
proposed under 37 CFR 1.530(d) in the first (or priér) pending reexamihation proceeding.
United States Patent & Trademark Office, Manual of Patent Examining Procedure § 2240,
II (8th ed. 2001).

Teorey, as part of the 90/007,707 re-examination, was cited as reference BA in an
Information Disclosure Statement (IDS) (stamped by the USPTO on October 23, 20062),
attached as Exhibit PAT-AS, and initialed by the Examiner on December 18, 2006. This
reference was cited more or less in the middle of 63 citations in the IDS. As this
 reference was effectively buried in dozens of other references, reconsideration of this
reference is warranted. Also, in light of the positions taken by FST as to claim breadth
and the amended claims, a substantial question of patentability exists as to the Teorey
reference. |

Huber was of record in the file of the ‘259 patent, but qualifies for consideration
in this re-examination proceeding. Huber was cited by the Examiner on a PTO-892 form

during prosecution of the great-grandparent application for this patent, but was otherwise

! Oracle notes that while FST may have advanced certain claim interpretations, Oracle does not necessarily
adopt them, and is therefore is not bound by those interpretations.

? The same Information Disclosure Statement, included in Examiner’s second office action, has a receipt
stamp of July 25, 2006.

10
016

not referenced by the Examiner in any further proceedings. Huber was cited by FST on
PTO-1449 forms in each subsequent filing, but Applicant failed to make references to
Huber in these filings as well. MPEP § 2242.11.A permits consideration of art previously
before the Examiner, where such art is presented in a new light or in a different way as
compared with its use in the earlier concluded examination(s). Since Huber was not used
in any manner in the prior Examinations, its use here constitutes a presentation in a new
or different way. Furthermore, Huber is being used in this request in combination with
art not previously before the Examiner. |

Additionally, Requester Oracle presents an update to the required “detailed
explanation and pertinency and manner of applying the cited prior art to every claim for .
which reexamination is requested” pursuant to 37 CFR 1.510 and MPEP § 2214, for the
Munz, Malhotra, and Tsichritzis references that are already cited and are already of
record:

Tsichritzis, LSL: A Link and Selector Language, Proceedings of the 1976 ACM
SIGMOD International Conference on Management of Data, Washington, D.C. June 2-4,
1976, attached as Exhibit PA-G; | ‘

‘Munz, Rudolf, The Well System: A Multi-User Database System Based on

Binary Relationships and Graph-Pattern-Matching, 3 Information Systems 99-115
(Pergamon Press 1978), attached as Exhibit PA-H;

Munz, Rudolf, Design of the Well System, in Entity-Relationship Approach to
Systems Analysis and Design. Proc. 1st International Conference on the Entity
Relationship Approach, 505-522 (1979), attached as Exhibit PA-I; and

Ashok Malhotra, Yakov Tsalalikhin, Donald P. Pazel, Luanne M. Burns and
Harry M. Markowitz, Implementing an Entity-Relationship Language on a Relational
Data Base, IBM Research Report‘RC 12134 (#54499) (Aug. 27, 1986), attached as - .
Exhibit PA-]J.

B. New Question of Patentability

The prior art documents discussed herein, including the additional prior art
documents and the presently pending prior art documents, are closer to the subject matter
of the ‘259 patent than any prior art which was cited during the prosecution of the ‘259

patent, as demonstrated in detail below. These prior art documents provide teachings not

1
017

provided during prosecution of the ‘259 patent.

FST now identifies four features, as listed below in Section IV, that it believes are
benefits of the supposed “inventions” recited in the claims: (1) interposing metadata
between the table catalog and the query; (2) using two-part keys; (3) using an inquiry
table; or (4) using multi-tailed relation types. As will be discussed in detail below, all of
these features are found in the additional prior art cited above (Teorey, Huber, Kumpati,
Dolk, Zloof, and Shaw) and in the prior art cited in the presently pending re-issue/re-
examination proceedings (Munz, Malhotra, Tsichritzis). Accordingly, all of the claims of
the ‘259 patent are either anticipated or obvious in light of the cited prior art.

Claims 1-18 specify systems and methods for retrievihg data from a relational
database. Presuming these distinctions are embodied in the language of the claims, a
substantial new question of patentability in this reexamination is whether (1) interposing
metadata between the table catalog and the query; (2) using two-part keys; (3) using an
inquiry table; or (4) using multi-tailed relation types, is anticipated and/or obvious in
view of the prior art cited herein.

In any event, the Teorey, Huber, Kumbati, Dolk, Zloof, and Shaw publications
" anticipate and/or render obvious, either alone or in combination with each other or with
the prior art of record in this patent, claims 1-18 of the ‘259 patent. All of the references
cited herein raise a substantial new issue of patentability because they anticipate or render

obvious all of the claims for which reexamination is sought and, except for Huber, they
 were not previously of record or cited by the Examiner or the Applicants. As discussed
above, Huber is being presented in a new or different way than it was used in the prior
examination.

The prior art cited herein and presently of record in this merged re-issue/re-
examination is more relevant to patentability than the prior art previously considered by
the Examiner. For example, as discussed above, the Examiner determined that the prior
art of record in the prosecution of the ‘259 patent did not teach using a relation instance .
table or an entity definition table to contain records to be retrieved while processing
queries. As described below, each of the references disclosed herein, either alone or in
combination, contains “relation instance tables” and an “entity definition table” and thus

satisfies the deficiencies identified by the examiner as not found in the prior art. Each

12
018

reference either alone or in combination additionally contains a relation definition table,
entity instance tables, and the other limitations recited in the claims of the 259 patent,
making each reference more relevant to patentability than the prior art of record in the
prosecution of the ‘259 patent. Each reference, either alone or in combination, also
contains each of the four purported “benefits” cited by FST in their Response. Asa
consequence, these references create a substantial new question of patentability, are more
relevant than the prior art of record, and should cause cancellation of claims 1-18.

IV. EXPLANATION OF THE PERTINENCE AND MANNER OF APPLYING
CITED PRIOR ART TO EVERY CLAIM FOR WHICH

REEXAMINATION IS REQUESTED BASED ON PRIOR ART.

| Claims 1-18 of the ‘259 patent are considered to be fully anticipated under 35

U.S.C. § 102 or obvious under 35 U.S.C. § 103 by the prior art references to Teorey,
Huber, Kumpati, Dolk, Zloof, and Shaw. These references are summarized below, with
an explanation and detailed charts showing how each prior art reference, alone or in
combination, meets all of the recited features of claims 1-18 of the ‘259 patent.

Claims 1-18 of the ‘259 patent are also considered to be fully anticipated under 35
U.S.C. 102 by the prior art references to Tsichritzis, Munz and Malhotra. The Tsichritzis, -
Munz and Malhotra references are diécuésed in detail in Requester’s First Request for
Reexamination. As part of Requester’s presentation of the required “detailed explanation
and pertinency and manner of applying the cited prior art to every claim for which re-
examination is requested.” in the reexamination (37 CFR 1.510; MPEP § 2214),
Requester addresses certain mischaracterizations of the ‘259 patent and the cited prior art
made by FST, and explains how these prior art references meet all of the recited features

of the claims 1-18 of the ‘259 patent, even in light of FST’s new arguments.

A. Teorey

Teorey, in combination with (1) Huber and (2) Zloof and/or Shaw teaches all of

the claims set forth in the ‘259 patent’. In addition to the forgoing combination, Teorey,

* Teorey teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the definition
table limitations in claims 1, 7, 8, 10, 15, 16, 17, and 18 are rendered obvious by Teorey, in combination
with Huber, to the extent that Teorey does not anticipate these limitations. Further, the inquiry table
limitations in claims 5, 6, and 14 are rendered obvious by Teorey, in combination with Zloof and Shaw, to
the extent that Teorey does not anticipate these limitations.

13
019

in combination with (1) Kumpati and (2) Zloof and/or Shaw also teaches all of the claims
set forth in the 259 patent*. The Teorey article discloses a conceptual schema and
methodology for creating and extending a large relational databases, using the well-
established Entity-Relationship (“E-R”) approach to database design. Under the entity-
relationship approach, information is presented in terms of entities, their attributes, and
the associations between entity occurrences, also called relationships. Entity sets are the
principal objects about which information is collected, and denote persons, places, things,
or events of informational interest. Relationships represent the real-world associations
among entities. The concepts and terms entities, entities sets, relationships, and |
relationship sets are all disclosed throughout the Teorey article. Teorey also teaches the
use of a data dictionary to map the contents of the database. Relation and entity
definitions also appear throughout the article, as do table instances and records of entities
and relationships. |

As disclosed in greater detail in the claim charts that follow, Teorey teaches the
connection between entities and relations: a relation defines the relétiohship between two
or more entities. Further,vthese entity and relation types may be defined within and
accessed in a relational database through a data dictionary, which contains both entity and
;elation definitions. Records of these entity and relation types may be stored in instance
tables, wherein each table may contain a plurality of entity records or a plurality of
relation records. Also, a plurality of relation or entity instance tables may comprise an
entity-relation database. Further, keys within a relation and entities may uniquely
identify the relation or entity. '

Figure 13 and Table 1 depict various entity relation types, including SKILL-
USED, ASSIGNED-TO, and BELONGS-TO. They also depict entity types SKILL,

DEPARTMENT and DIVISION.

* Teorey teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the definition

table limitations in claims 1, 7, 8, 10, 15, 16, 17, and 18 are rendered obvious by Kumpati, in combination

with Huber, to the extent that Teorey does not anticipate these limitations. Further, the inquiry table

limitations in claims 5, 6, and 14 are rendered obvious by Teorey, in combination with Zloof and Shaw, to
the extent that Teorey does not anticipate these limitations.

14
020

SKitL DEPARTHENT DIVISION

‘num | [;,m—_l B0

SKiLL-USED
PPN SXLL-ND PRO-NAE

i

PROJECT EMPLOYER

ASSIGNED-TQ

LOCATION

EMP.MANAGER EMP.ENGINEER EMPTECHNICIAN E£MP SECRETARY

BELONGS-TO

PRF~ASSOC PC

Figure 18, Cormpany pessannal and project database candidate relativos.

Fig. 13 of the Teorey article depicts a number of relation and entity types.

Table 1. Transformation of Entities and Reletionships to Relations (Example)
Step 2.1. Entities to relations
. DIVISION(DIV-NO, HEAD-EMP-NO)
. DEPARTMENT(DEPT.NO, DEPT.NAME, ROOM-NO, PHONE-NO, . . ., DIV-NO,
- MANAG-EMP-NO)
. EMPLOYEE(EMP-NO, EMP.NAME, JOB-TITLE, ..., DEPT-NO, SPOUSE-EMP-NO, PC.-NO)
. SKILL(SKILL-NO, ..)
PROJECT(PROJ-NAME. ..)
. LOCATION(LOC-NAME, ..)
. EMP.MANAGER(IEMP-NO, .. .)
EMP.ENGINEER(EMP-NO, ..)
. EMP. TECHNICIAN(EMP-NG, ..)
10. EMP.SECRETARY(EMP-NO,...)
i1, PCIPC-NO,..)
12 PRF-ASSOCIPA-NO, ..)}

LB RS R RN S

Step 2.2, Binary or unary relationships to relations
13. BELONCGCS-TO{PA-NO, EMP-NO)

Step 2.3. Ternary lor any n.ary} relationships to relations

14. SKILL-USED(EMP-NO, SKILL-NO, PROJ-NAME)
15. ASBIGNED-TO{EMP-NO, LOC-NAME, PROJ-NAME)

Table 1 of the Teorey article depicts a number of relationship types, such as BELONGS-
TO, SKILL-USED, and ASSIGNED-TO and entity types such as DIVISION,
DEPARTMENT, and EMPLOYEE. The table also depicts how an entity or relation may

be defined by various attribﬁtes, one or more of which may be keys.

15
021

. ' \

An engineer will use one cesebeok for 8 given
groject. Ditferant enginaers use oiffsrent
cassdcoks 10r the same project, No engineer
will use the sama cosadook for differeat

orofects, but different enginaere can use the
m sama cs3ebook for differant projects.

ENGINEERTE n

INEER(EMP-ND,)

USY'“SEBWK PROJECT(PROU-NAME,)
CASEBQOKIBOGK=NO,

)
USE-CASEBCOMIENP-NO, PROJ-NAME BOOK-NG)

FDS : EMP-NQ, PROLI-NAME ~~=) BOOK-ND
BOOK-NO, PROJ-NAME ~-~> EMP-NO
EMP-RD, BOOK-NO ---> PROJ-NAME

[PrOvECT] [casesoox]

USE-CASEBOOX .
EMP-NO PROJ-NAME BOOK-NO

ALPHA 1001
BETA 1008
DELTA 1004
SANMMA 1003
DETA._. 1007
ALPHA 1009
EPSILON 1001

{0}

Fig. 10(a) (directly above) depicts a ternary relation USE-CASEBOOK of three entities,

ENGINEER, PROJECT and CASEBOOK. The ternary relationship reflects the fact that

under the given E-R model, an ENGINEER can use a particular CASEBOOK, depending

on the PROJECT. It also includes an instance of a USE-CASEBOOK relationship table

containing individual USE-CASEBOOK records and depicts how the entities and

relationships may be defined, i.e. ENGINEER(EMP-NO...), PROJECT(PROJ-NAME...),
CASEBOOK(BOOK-NO...), and USE-CASEBOOK(EMP-NO, PROJ-NAME, BOOK-

NO...).

VRO b [jie

16
022

SKILL-USED EMP-NO | SKILL-ND | PROJ-NANE,

38 27 GAMNMA
38 51 GAMNMA
38 27 DELTA
8 X DELTA

{a}

SKILL-AVAILABLE [EMP-NO|SKILL-NO PROJ-NAME |

14 22 ALPHA

14 22 BETA

14 3S ALPHA

14 35 BETA

EMP-SKiLL [EMP-ND SKILL-NO] EMP-PROJ [EFF- TRANE
14 22 14 ALPHA
14 3s P BETA
() '

Fig. 4 of the Teorey article depicts relationship instances tables, each of which éontain a
plurality of relation instance records. Each of the relationships depicts, SKILL-USED,
SKILL-AVAILABLE, and EMP-SKILL, contain multiple rows, where each row -
indicates an instance of a particular relationship. Thus the SKILL-AVAILABLE instance
table discloses what sort of skill (SKILL-NO) a given employee (EMP-NO) has, as a
function of the project (PROJ-NAME). o

B. Huber

Huber, in combination with (1) Teorey and (2) Zloof and/or Shaw teaches all of
the claims set forth in the ‘259 patent®. Huber describes how a database may relyon a -
data dictionary to manage the underlying data within the database, particularly through
the use of definitions. Spécifically, the Huber patent discloses a way to maintain a
- dependence between a user-defined field in one base table of a relational data base
system and the state of a row in another relational data base system, when one base table
references the other. Two base tables make up a referenced-referencing pair, and one

row has a primary key, which is used as a foreign key in the set of rows of another base

* Teorey teaches all elements of all of the claims set forth in the 259 patent. At a minimum, the definition
table limitations in claims 1, 7, 8, 10, 15, 16, 17, and 18 are rendered obvious by Teorey, in combination
with Huber, to the extent that Teorey does not anticipate these limitations. Further, the inquiry table
limitations in claims 5, 6, and 14 are rendered obvious by Teorey, in combmatlon with Zloof and Shaw, to
the extent that Teorey does not anticipate these limitations.

17
023 .

table. A change in thie row of one base table may imply changes in the other base table.
Where such a dependence or relationship exists, the system must ensure the appropriate
changes in both base tables.

jFor the purposes of this reexamination application, the key to the Huber system
lies in the fact that it maintains the dependence between the user-defined fields by the use
of a data dictionary and reestablishing means. Huber provides in greater detail, one
implementation of a data dictionary to define data items, including entities, and to

identify the locations, or files,_ of data instances, where records are located.

FIG. 2 D uwzor

Q 00
0 Q9

CO

APROG
223

INT BT DEF 2134n}

""‘"I .

! ICOMM’

100EF 1 P 2
}
1

l F DEF 215

OINFO 229

POBOP
SDD
cOMP ¥ 2130} 23!
209 !
! 8TR 217 |
, QoD 21 : ’F 219
L e .
DOICT 202 ‘
BT 101 (n) BY 101(2)

Fig. 2 provides of an overview of one type of relational data base system, as
taught by Huber. It depicts a detailed layout of a data dictionary (DDICT 202) describes
arelational data base accessed by the data base system, and explicitly includes relation
definition tables (BT DEF 213). DDICT 202 contains both entity or relatiohship
definition tables, as taught in both Huber and Teorey. Each BT DEF 213, e.g., BT DEF
213(n) .. 213(x), has a pointer to its relation instanqe table BT 101, e.g.,, BT 101(n) ...
BT 101(x). The BT DEF table, which may define both entities and relationships may
point to both entity and relation instance tables, when Huber and Teorey are viewed in

combination.

18
024

BT DEF KEY 4%2
- N PTR a3y
b UPTR 435
& REF A PTR 437
Y KEYA PTR 439
& FOEFAPTR 441
T NAME 443
T Fid 449
g TRLEN 447
- TCCIND " das [lsor
%{ TECIND 451
3 TDC IND 453
w NO REFS 433
RO KEYS 457
NO F DEFS a59
“REFAS 461
KEYAS 463
F DEFAS 465
NOREFGAF 467
NO REF DAF 469
AFCF a7y
BT DEFT 404

FIG. 4

REFAE REFKEY 407
405 REFPTR 310 p——weT0 REF DEF
313
REFA 403
KEYAE KEYINFO a7
413 e Ty
KEYA 41
FOFF 423
;gﬁr FLEN 425
T L FcomPY 427

FOEFA 624

Fig. 4 of Huber shows BT DEF 401, which is an expanded version of the BT DEF
213 of data dictionary 202 in Fig. 2 of Hubér’ above. The “three fields [443, 445, and
447] relate BTDEF 213 to BT 101 which it defines. TNAME 443 is the name of BT 101; '
TFID 445 is the file identifier of the file which contains BT 101; TRLEN 447 is the
length of the records which represent the rows of BT 101 in the file.” Huber, 15:17-21,

15:43-49. Thus, a data dictionary under Huber and Teorey contains the name of the

entity or relation type and a pointer to an instance table, which contains the data for the

entity or relation type.

19
025

[_~MC 317 SUMC32(, COUNTC 321
<
FROM DEP DEF 313
: oOMC 3i9

__________ < CRA 327
. 3
¢ BTA / a1a 3
‘1 so3te)« - (3030 F-E 303 ! \

cc W]

i 306(c)™;] : 10{x) | Lo . [o‘s
| \rcc PTR 307 f BTR 217 (c)(a)
" J BTR 217 (ahn) :

BT DEF 213(a) B1 DEF 213 (e} ! I
| .
| ! - [68
| m—— X BTIO1 (0) BTR 217 (cHn}
1 REF PTR !
! Q . 3gd TN DFfPTR3N 8T 101 ()
1 - !
, REFD REF DEF 313 I
i l:]:R TO COUNTC 32t

uz2 S \
i [¢F3is REFG
1 PTR 314

00 21

Fig. 3 of the Huber patent depicts another detailed layout of a data dictionary and
further references a REFDEEF table (REF DEF 313), which contains data defining the
referenced-referencing relationship between base tables, such as the base tables which are
used to create the relationship relation that itself is represented as a table. The REFDEF
table 313 stores a pointer, REFDPTR 312 that points to a referenced base table (BT 101),
and another pointer, REFGPTR 314, which points to a referencing base table (BT 101).
These two pointers are entity table type identifiers. These entity tables contain entity

records, which are retrievable by the user.

BASE TABLES 10#

VF 106 FKEYIn PKEY103
Y2 CAFIQ% I/ l/
PReY 1D | NAME | ACCT BAL | CRL T 0B 1D Jon] oo Toul os ;
\SAaF 103 ’ 7
I—————— L — CF 107
CUSTOMER TABLE I0Ha) . e e e)
ORDER TABLE 10t{c)
onN | P | PR | aquant : e oEsc | cp
\acor i3 BCDSF n5-"
rv/—\/\‘”?:—fA'\v/,-] M‘
ORDER ITEM TABLE (01(b) ' PARTS TABLE 101(q)
on | N[PR | QuanT | DESC Jcp
N W
. ORDER ITEM-PARTS VIEW TABLE N7

026

Fig. 1 of the Huber patent is an example of the relational database. It depicts
customer, order, and parts instance tables; the tables contain instances of customers,
orders, and parts entities. Inforrhation'about customers in the data base may be presented
as shown in CUSTOMER TABLE ‘101(a).' Huber, 5:5-10. The items of information
CUST ID (customer ID), NAME (customer name), ACCT BAL (account balance), CRL
(credit limit), and OB (orders booked) are associated with each customer and appear in a
row belonging to the customer. Each row in the CUSTOMER TABLE 101(a).is uniquely
identified by a primary key consisting of one or more fields. The pfimary key in the
CUSTOMER TABLE would be CUST ID. On the other hand, a view table, unlike a
base table, is a virtual table, i.e. “one whose rows do not correspond to a set of records in
a file, but is instead made up by the relational data base system for items from one or
more base tables.” Huber, 5:21-25.

Thus, relation instance tables containing relation records are present under Huber.
In the same way that a relation defines the relationship between two entity instances
under the ‘259 patent, a relétionship or dependence will define the relationship between
two records, or between parent and child records under the Huber patent. Record
identifiers, in the form of primary keys for a base table, aré also present under Huber.
Table identifiers for relation tables also exist under Huber, in the form of information
about the location of base tables. Huber also teaches the use of record identifiers in the
form of primary keys. In addition, it teaches the use of table identifiers iﬁ the form of

location information that points to the files containing the actual base tables (BT).
‘ C. Kumpati '

Kumpati, in combination with (1) Teorey and (2) Zloof and/or Shaw teaches all of
the claims set forth in the 259 patent®. Kumpati also describes in detail the use of a data
dictionary to define and access the underlying data in a relational database. Kumpati
pertains to a détabase management system, which has an active data dictionary

component that a user can access. The user can make use of simple commands to query

8 Teorey teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the definition
table limitations in claims 1, 7, 8, 10, 15, 16, 17, and 18 are rendered obvious by Teorey, in combination
with Kumpati, to the extent that Teorey does not anticipate these limitations. Further, the inquiry table
limitations in claims 5, 6, and 14 are rendered obvious by Teorey, in combination with Zloof and Shaw, to
the extent that Teorey does not anticipate these limitations.

21
027

the underlying data controlled by the database management system, as well as the
contents of the data dictionary. The data dictionary provides the user with the definitions
of the entity sets and relation (i.e., relationship) sets, of which the database is comprised,

but also the identity and locations of the entity and relation (i.e., relationship) instances

within the database management system.

FI1G. 7 /70\
' [- BUILDING l
706 — 7
‘ ma‘:aoons‘ﬁz
}/705
; 706
+
703
I ROOMS I

Fig. 7 of Kumpati shows a data model based upon relationships (diamonds 702,
704, and 706) and entities (rectangles 701, 703, and 705). This data model is part of the
data dictionary. Kumpati at 8:30-39. .

By means of a query processor- and a database command processor, the system
transfers the requested information - including the entity and relation records - to a buffer
file, which an application program may access.

Under Kumpati, access to all thé data stored in the database is controlled by a
database command processor, which receives and processes requests for information
from the operating system. The processed, decoded information is transmitted to query
processor, which retrieves the identity of the various requested data elements from the
schema stored in the data definition library. Using this information, the query processor
ascertains the location of the requested data, which resides in the form of entity and
relation instance tables. The tables themselves are comprised of entity and relation
instance records. Kumpati also teaches the use of entity instance record identifiers,
relation instance record identifiers, and relation instance table identifiers. -It also teaches

the use of a plurality of entity records and relation instance tables.

22
028

FIG. 2

FIE 1 FILE n

ker o[& (4, [4o v] S Sl
stcwn /1 n ™ oara | : |

TE LT ILY I
M [}
N 1

1
[
1
i

' sey 2[4, A T4 T -

es (%804

T

DATABASE

Y 1] 8 ATA T -1~
DATABASC uid LS -

T
HANACEMENT <:C KEY 2f« 18,0~ |- 1A
SYSTEM P N L R
20 £V 31 241 Ayl As1 Ay

KEY af - 3 Al Ay) - 1 AC[A,

Bl B b >
~ f |

Fig. 2 of the Kumpati patent depicts sample instance tables with distinguishing keys for

each record.

D. Dolk

Dolk, in combination with (1) Téorey and (2) Shaw and/or Zloof teaches all of the
claims set forth in the ‘259 patent’. Dolk discloses a relational model of information
resource dictionary system (“IRDS”) used in database management. An important
component of an IRDS is a data dictioﬁary (D/D), which is a catalog of information about
the logical and physical aspects of the underlying database. The D/D essentially
describes the contents of the underlying operational database. The article also discloses a
directory component, which may appear in an IRDS; the directory component describes
where information resources are located and how they are accessed.

The IRDS architecture described by Dolk (depicted below) includes an IRD
schema layer as Well as a IRD data layer. It also includes an operational data layer,

which is essentially the underlying E-R database system.

” Dolk teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the inquiry table
limitations in claims 5, 6, and 14 are rendered obvious by Dolk, in combination with Zloof and Shaw, to the
extent that Dolk does not anticipate these limitations.

23
029

D schoms description fayes Emitytype Retationship-type Atribute-type
IRD schema tayer ELEMENT, RECORD, ¢t¢. RECORD- CONTAINS - DATE - ADDED, LERGTH,
CLEMENT LOCAT 1D, ote.
1RD data tayer Soc -Sec-Ho, Empl - Empl-Record- 23noves, 12 (Char)
Record, etr. CONTAINS-50¢- Bldg A-Room J
Sec-Ho
Operationa data 554521 6666 (Employos Empl -Regord for {Attritutes go Not appear as
tecord for Kirk) Kirk -CONTAINS» instances in operationas
(555-23.66686) datobasaes)

FIGURE 1. IROS Architacture

The IRD schema layer consists of instances of meta-entities, meta-relationships,
and meta-attributes at the IRD schema description level. The schema layer describes
various entity types (SYSTEM, FILE, RECORD, ELEMENT, USER, etc.), attribute
types (ACCESS-NAME, ADDED-BY, CLASSIFICATION), and relationship types
(CONTAINS, PROCESSES, RUNS, etc.), which comprise the layer underneath (the IRD
data layer). See Fig. 2. The IRD data layer itself consists of entities, attributes, and the
relationships that are the instances 61’ the corresponding IRD schema entity-types,
relationship-types, and attribute types. The IRD data layer maps the contents of the
entity-relationship instance tables in the underlying operational layer. At all levels,
including the organization layer, entities and relationships conform to a basic relational
representation, as depicted in Figure 4. |

ENTITY(gname,ctype,dname,added-by,
date-added,mod-by, last -mod, neods |
dug-valu¢,dur -type, comments descy,
security,lang,lines-code , nréca,
rec-cat , data-clags , doc-cat)

RELSHIP{rtype ,@lnane ettype v2name,eltyps,

access -mothod, frequency ,ral_pos)

FIGURE 4. S8asic Relational Representation
of the IRDS Entity-Relationship Modet

Entities and relationships within the Dolk IRDS architecture are “similar to a
semantic network where the entities are the nodes, and relationships are the arcs that
connect the nodes.” Dolk at 50. Thus, an ENTITY might have primary keys ename
(entity name) and etype (entity type), and a RELSHIP (relationship) might have as
primary keys rtype (relationship type), elname (first entity name), eltype (first entity
type), e2name (second entity type), and e2type (second entity type).

Dolk discloses that all three levels may be implémented in ORACLE by creating

relations and views, as depicted in figure 4, 5, and 6, and by ﬁsing SQL commands

24
030

CREATE TABLE and CREATE VIEW commandé. Figure 7 provides examples of this
process of creating ENTITY and RELSHIP tables.

{a) Croate INTITY 800 RRLSHIP tables,

®)

)

E.

CREATE TABLE ENTITY

({ENANE CHAR(IS) BOY HULL,
ETYPE CTHAR(S) NO?® NULL,
OHANE CHAR(30),

ADDED_BY CHAR(15) ROT MOLL,

DATE_AUDED RAYE BQT NULL,

DA+A_EW§ CHAR{BY
DOCLCAT CHAR{B))

CREATE TABLE RELSHIP
(RPYPE CHAR(12) NOT WULL,
EIRAKE CHAR(IS) NOT HULL,
EVEYRE CHAR(E) NOT NGLL,
BIMANE CHAR(1S) NOT NULL,
E2PYPE CRAR(E; NDY NVLL,
ACC_METHOD CHAR(10},
FREQUENCY CHAR{10),
HEL_ 08 RUBBENLS))¢

Create antity and genensl relationship views.

CHEATE VIEW PROTRAM AS

{GBLECT ANAME, ONAME, ADDED.BY, DATR_.AUDDED, MOD_BY, LAST.MOD, NMCDS,
DURLIYEE, LANG, LINEZ CODE, COMKENTS, DBSCR, SECHRITY

FROM ENTITY

WHRRR ETYPE®’PROGRAN') ¢

CREATE V1EW PROCESSES AS

(BRLECY EINARE, EITYPE, S2NANE, E2TYGL
FRON RELSHLS

WHERE BTYPE='PROCESSES');

Creato specic refaticnship views,

CREATE VIEW PROCRAN- PROCESSES FILE AS

(BELECT BYRAME, EINAME, ACCESS_METHOD

FROW BELIHIW

WHERK RTYPESPROCESSES" AND ZITYPE~'PROGKAM' AKD
E2YVPE="PILE") ;

FIGURE 7. Creating RIRDS Tebiss and Views in ORACLE

Zloof

BUR.VALUE,

QBE and the use of inquiry tables were well know in the prior art before 1990.

QBE is a high-level data base management language that provides a convenient and

unified style to query, update, define, and control a relational data base. Zloof, which fs

- cited in the Shaw reference described below, taught the use of an inquiry table, as

claimed in claims 5, 6, and 14 of the ‘259 patent. Specifically, Zloof teaches use of the

Query-by-Example language (QBE), which allows users to graphically query the

underlying database. When a user performs an operation to query, update, define, or

control the data base, the user can enter an example of a solution to a given operation in

skeleton tables, which can be associated with actual tables in the database.

Figure 13 Gualified retrievol wring links

v oty | omom | s saufs | ceet HEm
Pyt | GREEN oY Uy
—— il

i

For illustration, suppose we want all green items sold in the toy department. Fig.

25
031

13 of Zloof below shows the two skeleton tables: “TYPE” and “SALES”. A user would

generate blank skeleton tables of these types and then fill out the headings and required

entries. The same example element must be used in both tables, to indicate that if an

example item such as NUT is green, that same item is also sold by the toy department.

Only if these two qualifications are met simultaneously does the item qualify as a

solution. Thus, Figuré 13 shows an inquiry table consisting of two skeleton tables (i.e.,

inquiry records) linked together by the linking item NUT. They would be analogous to
levels 1 and 2 rows of the INQ.DEF table 740 in Figure 7-1 of Doktor.

. _— 5]
FIG. 7-1 30\‘1 L 131 P
740
REQUEST ~\
: { INQLDEE
{a S:;(réh KON -Entity- -Relation- Level
m% Inquiry Lyag b q
(9 Uptte -+ EREn AR
O Srem A~ D
e g % Yo
1els ”
A e N (M o wa [
i o T~
RN Head Rel Tai(1} N AN
e B Tve _E L744

}—-———-—-—-————<—-

+ (02 (20 Gl]
= 28] == e
3[cu]] (au] [ao]3]
+[cd 4 [eu] [ro] 2]
3=

/* 743

Figure 11 of Zloof (below) shows a skeleton table that prints the names of the

'employees Who Work in tha tnv danartmant and anrn

more than $10,000.

Figure 17 Qualified retrievol
EMP] NAME G4, wOR |
p w05 o8

A similar example is shown Table 24 of Shaw (the employees who work in the

San Jose Department, and earn more than $20,000).

TABLE 24
DEPENDENT RETRIEVAL

SELECT ENAME,SAL, _EMP__ENAME SAL DNO
DNG '

FROM EMP P. > 20000 D
WHERE SAL > 20000 -
AND DNO = ANY DEPT DNQO LOC
(SELECT DNO D s)

FROM DEPT
WHERE LOC = ‘SJ)

032

A snapshot can be created by giving the resultant table a name. A snapshot is a
newly stored table that contains the data from the resultant table. For example, a
resultant table can be created from the results of the search on the two skeleton tables in
Fig. 13 of Zloof. This resultant table, once named, becomes a new stored table.

Thus, the linked retrieval in Figure 13 of Zloof is an inquiry table. And the
individual skeleton tables, “TYPE” and “SALES”, are the claimed inquiry records. The
Zloof patent therefore discloses the portions of claims 5, 6, and 14 in the ‘259 patent
which reference inquiry tables and records.

F. Shaw

Shaw teaches the use of an inquiry table aé claimed in claims 5, 6, and 14 of the ‘
259 patént. The Shaw patent teaches how to synthesize a linear query for accessing the
contents of a relational database from a graphic query input at a user terminal.

Shaw cites Zloof as a graphic query language which provides for defining,
éccessing, and modifying stored tables in a data base, and provides a particularly “user
friendly” format for the terminal operator. Shaw converts the QBE skeleton tables into
SQL queries, which are, in turn, used to retrieve the inquiry results from the relational
database.

For the purposes of this reexamination application: Shaw teaches that an SQL
query can be stored in an inquiry table for execution by a query processor on the database.
The SQL query is tran_slatéd from a QBE query input by a user, and the translated SQL
query is stored in a table. According to one embodiment, the lihear query is expressed in
Structure Query Language (SQL) syntax, and the graphic query in Query by Example
(QBE) syntax. Responsive to a QBE print query, an SQL commaﬁd is generated which
comprises the UNION of one or more select statements. Generated SQL queries are
stored in DXEGFT tables. More specifically, the SQL query is generated into a buffer
area (GFTSQL) in storage. The Shaw patent funhe; teaches that the QBE query input
from the user is stored in an example table, from which the query information is read in

order to generate the SQL quefy during query processing.

27
033

Specifically, Figure 5 of Shaw shows a cbllection of tables DXTGTF 106 that
provide a table GFTTABLE 72 having one entry for each skeleton or example table in a
query 2. Shaw at 11:1-2. Thus, GFTTABLE 72 is an inquiry definition table, as
contemplated by Doktor.
| In Fig. 5 of Shaw, GFTCOLMN 78 provides one entry for each column of an
example table in a query Q. The content 89 of GFTCOLMN 78 includes a GFTCNMPT

DrEDFY 108 .

| exmmmnz=se | . PO § Stramrrn s |
IGFTEan, IRt e | 72 (GFTTABLE (C==+
| Emmaeacm e § 3 e e——moeees | i
R4 ——e——IGFTPTCOL | |
|) 71 IGFTCOLCY
b l- =T ———wy :
) 78 4 ! e BFTPTROW 1 4
{z=angueTon] L LW l __|BFTRONCT ¢ H
TEFTCOLN ~¢—i—+ 1 = YT awsmeea—o. 4 H
! T o G — | H H } e H
I{BFTONMPY [wnae H 52'—\L —S ' :_;7
[el go A >4 ' H
[. 4 ! o b'H atmau [RETY P
P - H 1] 4
[T v r— \ “—/} . b N
{GF YCDATA ‘1" LI I b § 11
{ZRE=EReams | 112 Bb/fmAEIK imweae
IGFTPTCDT 'T':—-+ 1 § m————— !
‘@“TCDTLN H ¢ 11 :/ﬂ? H i H |
- 921 a3 i - a1
|CPTB (N0R Y I il R TS Y p— (W
——) 4} 95 } e=me——IGFTCIMLEN H
IGF‘I‘Stn:n "3:- e ey HET TR o H
i - {_“ o wwmn s EEPTPTRCN H i
95 1 o3 T 98 IBFTCOMLM :
H H e -3 |
102t S 100 IGFTROMIX !--—=——t
{~amooazoos [4 H _‘———-._..._;
SGFTCONTB (== | Lo OO 3 1 o 1
e wm===) i 104 e
t 17 H H \W--nn::z:
¢ M BFTCNTNY !
[mmmware s g
Fle.s ' &

field 80 providing a pointer 71 to GFTSQL 70. GFTSQL 70 contains the SQL command,
such as the SQL SELECT statement for the query for the employees who work in the San
Jose Department, and earn more than $20,000, as shown by Table 24 of Zloof above.

Thus, GFTTABLE 72 and the QBE skeleton or example tables constitute inquiry
tables and records, as claimed. The Shaw patent therefore discloses the portions of
claims 5, 6, and 14 in the ‘259 patent which reference inquiry tables and records.

V. DISCUSSION OF FST’S RESPONSE TO NOTICE OF NON-COMPLIANT
AMENDMENT

FST filed a Response to Notice of Non-Compliant Amendment, filed on Sept. 21,
2006 (hereinafter the “Response”), attached as Exhibit PAT-A3. In this Response, FST
makes numerous misleading characterizations of both the 259 patent and the cited prior

art. The present proceedings are a merged re-examination and a re-issue. Therefore, as

28
034

. ’

part of Requester’s presentation of the required “detailed explanation and pertinency and
manner of applying the cited prior art to every claim for which re-examination is
requested” in the reexamination (37 CFR 1.510; MPEP § 2214), Requester addresses
FST’s mischaracterizations of the ‘259 patent and the cited prior art.

The Examiner mailed an Office Communication on Decembeér 22, 2006,
(hereinafter the “Second Office Action” or “2nd OA”) in response to FST’s Response.
This Second Office Action is attached as Exhibit PAT-A6. In the Second Office Action,
the Examiner has in many instances correctly noted FST’s mischaracterizations and
properly disregarded them. Requester appreciates the Examiner’s careful attention to this

case.

A. FST Identification of Alleged ‘“Benefits Achieved by the Claimed
 Invention” is Unavailing as the ‘“Benefits” are Unclaimed, and
Because the “Benefits” are Disclosed by Prior Art

The ‘259 patent claims a relational database system that is based on the well-
established entity-relation model. Under this well-established model, relation types |
associate entity types with each other.- The database stores, until retrieval, entity and
relation records within instance tables where each table holds records of a given entity or
relation type. Entity and relation definition tables hold the entity and relation type
.definitions. The patent also mentions, in its dependent claims, entity and relation record
identifiers, entity and relation table identifiers, and inquiry tables.

FST claims that the ‘259 “invention” discloses four additional “benefits”,
distinguishing it from the prior art. FST recites a number of supposed “real-world”
results that the claimed inventions realize. (Response 17-18)

Interposing Metadata Between the Table Catalog and the Query: the ‘259 patent
allegedly introduces meta tables (entity definition and relation defihition tables) which sit
above the table catalog (which lists the table identifiers and files locators for the entity
and relation instance tables).

Two-Part Keys: the ‘259 patent allegedly introduces two-part keys where relation
instances explicitly store the entity type of a related entity, as well as a record identifier
of that entity instance record.

Inquiry Table: FST alleges that the 259 patent describes a feature whereby a

relational database contains an inquiry table that stores relation types and/or entity types

29
035

to be queried. |

Multi-Tailed Relation Types: the 259 patent allegedly claims relation instance
records that may involve more than two entity instances. This may be known as a multi-
tailed instance, where there is one head entity identifier and at least two tail entity
idehtifiers in the relation instance record. |

. None of these supposed results, however, are recited in the ianguage of the

claims, nor is FST even able to identify any specific claim language that would lead to
thesc; supposed results. As the Examiner correctly notes, none of the claims recite any
tangible result or function, and thus the claims are non-statutory. (2nd OA at 5, 31.)

Further, all of these features are found in the prior art cited in either this request or
in the presently pending proceedings. Accordingly, all of the claims of the ‘259 patent
are either anticipated or obvious in light of the cited prior art.

1. Interposing Metadata

a. Munz Interposes Metadata

FST concedes that all relational databases have a catalog of system tables, called a
“table catalog”, which list table identifiers and file locétors for the tables. FST contends
that its inventive contribution was to add a second layer of meta-table information, that
maps an entity type or relation type to a given table identifier in the table catalog.
However, this mapping is precisely what the Munz references teach. In Munz, the meta-
table information maps entity type codes and relationship codes into “tabcodes”, and then
uses the “tabcodes” in the “descriptors” discussed in Munz to locate the actual tables and
table pages where the data is stored. (Munz II at 515-516.)

FST contends that the claimed “entity definition table” has two features. It
identifi-es an entity type, and it specifies an entity instance table. (Response at 21.)
However, Munz’s schema table also identifies an entity type, and also specifies an entity

instance table. * The entity type is identified by the “entity type code” found in the

¥ Recall that the Munz references refer to two different types of “relationships” as that term is used in Munz.
The first type is a relationship between “entities” as that term is used in Munz. This type of relationship is
referred to in the First Reexamination Request as an “entity-entity relationship”, which corresponds to the
term “relation type” as that term is used in the ‘259 patent. The second type is a relationship between an
“entity” and an “attribute” as those terms are used in the Munz references. This type of relationship is
referred to in the First Reexamination Request as an “entity-attribute relationship”, which corresponds to

the term “entity type” as that term is used in the ‘259 patent. See First Reexamination Request at 45 n.12.

30
036

schema table records, as shown in Munz II on page 515 (figure replicated below).

X100 entity type |relationship | length-| relations-| card type
code code tield shipname
1 byte 1 byte 1 byte 1 byte variable 1 byte 2 byte
length
N . i —? M — 4

ID-field value field

The entity instance table is specified by the “.tabcode”, which is an encoded
combination of the entity type code (name) and the relatiorfship code (name).” (Munz II
at 515-16.)

Similarly, FST contends that the claimed “relation instance table” has two
features; identifying a relation type and specifying a relation instance table. These same
features are found in Munz’s schema table. The relation type is identified by the
relationship code, and the relation instance table is specified by the “tabcode”, which is
an encoded combination of the entity type code (name) and the relationship code (name).
(Munz II at 515.) |

b. Malhotra Interposes Metadata

The Malhotra reference also teaches this mapping. Malhotra’s ERLANG system
is built on top of a standard relational database, which FST concedes has a “table
catalog”. (Malhotra at 2.) Malhotra adds a second layer of meta-table information on top
of the standard relational database, in particular the “RELATIONSHIPS” table and the
“ENT.TYPE” table. _

The ENT.TYPE table identifies an entity type, and it specifies an entity instance
table, just like FST contends its “entity definition table” does. The entity type is -

-identified by the NAME field of the ENT.TYPE table (Malhotra, p. 16, line 1). the entity
instance table is also specified by the NAME field. (Id.)

The RELATIONSHIPS table identifies a relation type, and it specifies a relation

instance tdble, j-u.st like FST contends its “relation definition table” does. The relation

type is identified by the REL_TYPE field of the RELATIONSHIPS table, and the

° The entity type name and relation type name noted by the Examiner as identifying the entity instance table
and relation instance table, respectively, are each encoded as part of the tabcode.

31
037

relation instance table is specified by the REL._NAME field of the RELATIONSHIPS
table. (Malhotra at 4.) _ '

c Tsichritzis Interposes Metadata

The Tsichritzis reference also teaches this mapping. Tsichritzis’ LSL system “can

be thought of as a relational system implemented on a network environment, or a network

system with a relational interface for end users.” (Tsichritzis at 123, { 2) (emphasis
added.) Thus, Tsichritzis is a relational database and therefore élso has the “table
catalog” that FST concedes is inherent in ali relational databases. Tsichritzis adds a
‘second layer of meta-table information on top of this “table catalog”, in particular the
RECORD DEFINITION TABLE (RDT) and the LINK DEFINITION TABLE (LDT).
The RDT identifies an entity type, and specifies an entity instance table, just like

_FST contends its “entity definition table” does. The entity type is identified by the name
of the record type (e.g. “Employees” for the record type example in Tsichritzis, p. 124,
2). The entity instance table is also specified by this name, since the entity instance table
is the loaded record type (Tsichritzis, pg. 125, 2.)

The LDT identifies a relation type, and it specifies a relation instance table, just
like FST contends its “relation instance table” does. The relation type is identified by the
name of the link (e.g. “own” for the link example in Tsichritzis, p. 124, {6). The relation
instance table (which is the intermediate pointer structure in Tsichritzis) is also specified
by the name of the link. For example, the “Create link own from Houses to Employees”
command creates an intermediate pointer structure, associated with the name “own?”, that
relates House entity instances to Employee entity instances. (Tsichritzis, p. 125, 6-7.)

2. Two-Part Keys

‘ Initially, as the Examiner has hoted, claims 2,3 ahd 12 fail to reflect the particular
interpretation that FST has advanced in its Response for this supposedly novel feature.
Therefore, all of the Tsichritzis, Munz and Malhotra references anticipate or render

obvious claims 2, 3 and 12 as presently presented, as demonstrated in the First Re-
A Y

Examination Request.

32
038

a. Munz Includes FST’s New Interpretation of Two-Part
Keys

The WELL database system designed by Dr. Munz does contemplate two-part
keys as described by FST in the Response. The previously-submitted Munz II reference, |
which discussed Dr. Munz’s WELL System database, clearly disclosed the desired record
identifiers being stored in each relation instance record, and disclosed that each relation
instance record implicitly specified the desired entity type. (First Re-Examination
Request at 47.) '

Submitted with this Second Re-Examination Request is an additional reference,
titled “Das WEB-Modell” (hereinafter “Munz II>I”), also authored by Dr. Munz, which
further describes the WELL System database. This reference clearly shows that Dr.
Munz’s system contemplated that relation instance tables could store and use both the
entity type and the record identifier. See Munz III (translated pages), attached as
Exhibit PA-K, at 155-6, FIG. 10.2.10. These translated pages recite how the data
structures of the WEB model can be implemented. Munz III at 154. In FIG. 10.2,

reproduced below, the relation instances of an example relation instance table are shown.

Node ID field Edge Node ID field
Hans 1096 loves cat 523
Hans 1096 pets cat 523
Cat 523 name Max 144
Cat 523 chases mouse 217
Hans 1096 hates cat 701
Cat 701 eats mouse 27
Cat 523 eats mouse 27
Cat 701 name Moritz 49
Cat 701 eats fish 87
Hans 1096 feeds fish 87

Figure 10.2 Triple visual display of a WEB

b.

Malhotra Includes FST’s New Interpretation of Two-

Part Keys

Additionally, two-part keys are anticipated by the Malhotra reference. As noted

by the Examiner, a reference may be used not only for what it expressly teaches, but for

' This reference was published in Germany, in 1976, and thus qualifies as prior art under 35 U.S.C. §
102(b). Since the reference is in German, Requester has supplied translations of the relevant pages of the
reference. :

33
039

® ®
what it fairly suggests, including fair suggestions to unpreferred embodiments and to
structures not specifically chosen to illustrate concepts. Second Office Action at 34
(citing CCPA caselaw). FST claims that Malhotra only allows for a single entity type as
source and a single entity type as target. Response at 44, citing to Malhotra at 4.
However, FST fails to cite to the very next sentences in the Malhotra reference, which
provides that “[t]his restriction is not necessary if relationships are stored by pointers or
by system defined keys as, for example, in EAS-E (13). It is however, a minor
restriction.” FST’s selective citation to a single sentence misrepresents the teachings of
the Malhotra reference. This reference plainly teaches that the purported advantage
realized by two-part keys is also realizable using the teachings of Malhotra, in an
alternate embodiment. By explaining that the “single entity type” restriction, which is
caused by the binding of a key attribute to a single table, is not necessary in the alternate
embodiment, Malhotra fairly suggests a two-part key, for example a system-defined key,
that can refer to more thaﬁ one source or target entity type. Therefore, even assuming
that claims 2, 3 and 12 properly recited this two-part key limitation as discussed by FST,

those claims would still be anticipated by the Malhotra reference, either standing alone or

in combination with the Munz references cited above.

3. Inquiry Table

FST’s argument in the Response discusses several purported additional features of
the “inquiry tables” claimed in claims 5, 6, and 14. However, none of these additional
features are actually cl.aimed in claims 5, 6, and 14. Therefore, none of those purported
additional features can serve as a basis for overcoming the cited prior art, which art
includes all of'the elements actually claimed in claims 5, 6, and 14. |

Furthermore, as discussed in detail in the prior section, the Shaw reference
includes an inquiry table which has the purported additional features that FST discusses

“in its ReSponse. Thus the Shaw reference, alone or in combination with Teorey, Huber,
Kumpati, Dolk, Zloof, Munz, Malhotra and Tsichritzis references anticipates or renders
obvious claims 5, 6 and 14, even if those claims are somehow intérpreted- differently in

light of FST’s argument in the Response.

34
040

4. Multi-Tailed Relation Types

a. FST’s Argument is Inconsistent With The Claim
Language

FST’s argument in the Response again discusses several purported features, in
this instance of their “relation types”, which features are not recited in their claims. FST
contends that claims 7-8 are directed to “multi-tailed relation types.” However, neither
claim 7 nor claim 8 (nor any other claim of the *259 patent, for that matter) recites any-
“multi-tailed relation type”. The disclosure of the ‘259 patent explains that “multi-tailed”
relation types are implemented using additional fields in the relation type records for all
of these additional tails, and a “tail-activation mask” or else NULL values in the
additional fields. ‘259 patent, 22:56-23:20. Yet the claims include no mention of
additional fields, of “tail activation masks” or any of the other features discussed in the
‘259 patent relating to “multi-tailed relation types™. Since the claims make no mention of

this supposed feature, FST’s argument here has no foundation in the claim language, and
| thus fails to point out specific claim limitations alleged to be not met by the prior art, as
required by MPEP § 2666 and 37 CFR § 1.111.” The Examiner has properly rejected
claims 7-8 on the basis of his interpretation of the scope of these claims. If FST now
wishes to change the meaning of claims 7-8, then it must amend those cl.aims to properfy
recite the limitations it seeks to use to distinguish these claims from the cited prior art, if
it indeed can identify any such limitations.

b. Claims 7-8 Are Still Anticipated, Even Under FST’s
New Position

Even if claims 7-8, with or without amendment, were to be read as being limited
to the “multi-tailed relation types” that FST now argues, those claims would still be
anticipated by the art of record in this reexamination/reissue proceeding. FST contends
that a “multi-tailed relation type” describes the feature “whereby a single relation
instance record may involve more than two entity instances.” (Response at 27.) FST
further contends that this feature “allows for more complex relation types than simple
‘binary relations.”* FST then contends that claim 7 is directed to the specific case where
the relation instance record has two tails, and that claim 8 is directed to the specific case

where the relation instance record has three tails.

35
041

c. Malhotra Teaches Multi-Tailed Relationships

This feature, as now argued by FST, is taught, or at least fairly suggested, by the
Malhotra reference. It is true that Malhotra’s preferred embodiment teaches that
relationships (aka relation types) can only have a single entity type as a source and a
single entity type as a target. (Malhotfa, pg. 4.) However, Malhotra also teachés that an
alternate embodiment can remove this “minor restriction” to its relationships, simply by
changing the way that key values are used. As Malhotra explains, “if relationships are
stored by pointers or by system defined keys” then the restriction to a single target entity
type “is not necessary.” Id. This teaching would instruct one of skill in the art that a
relationship could have multiple target entity types (i.e. multiple tails), if the simple
modification taught by Malhotra were made to the way that Malhotra’s relationships store
key values. Thus, Malhotra teaches or at least fairly suggests the use of relation types
having multiple tails, and claims 7-8 are therefore invalidated by Malhotra, even if they

are given the meaning FST now argues for these claims.
d. Teorey Teaches Multi-Tailed Relationships
Additionally, this feature, as now argued by FST, is expressly taught by the

Teorey reference, which was discussed in detail in the prior section. Teorey teaches that
relations can involve more than two entities. In particular, Teorey teaches that all:
relationships used in any Extended Entity-Relationship based database, which includes
the relational database that Teorey itself is based on, can have any number of different
entity types. (Teorey, p. 201, sec. 1.3.) Teorey teaches that “the degree of a relationship
is the number of entities associated with the relationship.” (Id.) Thus a relationship of
degree 3 (a ternary relationship) would have two taifs, as shown in FIG. 4(b). Teorey
depicts two alternate ways of representing the relationship shown in FIG. 4(b). The first
way of representing this relationship is the multi-tailed relationship labeled “SKILL-
AVAILABLE”, shown with one head entity signified by “EMP-NO”, and two tail
entities, signified by “SKILL-NO” and “PROJ-NAME?”. The alternate way of
representing this multi-tailed relationship is by using two single-tailed relationships,
“EMP-SKILL” and “EMP-PROJ”, as shown in FIG. 4(b). A relationship of degree 4
would simply be the obvious extension of FIG. 4(b) to include a fourth column. Thus,

Teorey teaches the use of relation types having multiple tails, and claims 7-8 are

36
042

invalidated by Teorey, even if they are given the special and uninstantiated meaning FST
now argues for these claims. '

‘B. The ‘259 Patent Claims are Non-Statutor

Regarding the Examiner’s Section 101 rejections, FST argues that claim 10
recites a “computer-readable medium” and therefore is directed to statutory subject
matter. Response at 11. However, as the Examiner correctly notes in the 2nd OA, the
claims merely recite an arrangement of data, which is non-statutory. 2nd OA at 5, 31.
FST attempts to support its interpretation of the claim by citing the definition of a term,
“computerized database”, from the specification that appears nowhere in claim 10. FST’s
citation thus misrepresents the language of claim 10. This citation, even if it could
somehow be read to demonstrate the presence of statutory subject matter, cannot support
the patentability of claim 10 because the recited term is not found in claim 10.

FST argues that claims 1 and 10 are statutory because they have the practical
application of “transforming” prior art databases into improved databases. FST contends
that “the steps of the method [of claim 1] transform relational databases of the prior art
into a database that allows certain changes to be made to the database schemas...”
(Response at 15), and that claim 10 “is directed to a relational database processing system
which provides the same benefits...”. (Response at 16.) This argument mischaracterizes
the claim language. There is no step of “transforming” found anywhere in claim 1, nor is
any “transformed” database claimed in claim 10. Claims 1 and 10 do not operate on prior
art databases to somehow turn them into different databases. These claims simply recite
abstract ideas or arrangements of data, without any tangible results, as noted by the
Examiner. (2nd OA at 5, 31-2.) The point to the “transformation” test is to require that a
claimed invention transforms an article into something different, not merely that the
claim itself is directed to some abstract idea that may be different. Despite FST’s
mischaracterizations of claims 1 and 10, these claims transform nothing, they merely

recite an abstract method and a non-functional arrangement of data.

37
043

C. The ‘259 Patent is Invalid Under 35 USC 102/103 Over the Munz, Malhotra
and Tsichritzis References

1. Despite FST’s Misrepresentations, FST’s Statements
Regarding Claim Breadth are Inconsistent with FST’s

Response

FST leads off its arguments that the claims of the“259 patent are pateﬁtable over
the cited references by contending that its Preliminary Infringcxhent Contentions (“PICs”)
reflect an “appropriate scope” for the claims. (Response at 20.) Requestor disputes the
validity and assertions of the PICs. Nevertheless, the PICs are a reflection of FST’s view
as to claim breadth. Indeed, FST contends that its analysis is “consistent with those
Preliminary Infringement Contentions.” (Id.) The inconsistency of these positions,
however, can clearly be seen by a comparison of FST’s positions on dependent claims 7-
8, from the PICs and from the Response.

In FST’s PICs, they simply repeat their interpretation of what an entity definition
table is, from claim 1, and then add on a conclusory statement that a second (or third)
record would be handled the same way. (Exh. B to First Re-Examination Request, PICs
at 2, 8-9.) There is nothing in FST’s PICs about any “multi-tailed relation ihstances,” nor
~any showing that a single relation instance record involves more than two entity
instances. However, in the Response FST for the first time contends that claims 7-8
describe this “multi-tailed relation instance” feature, and contends that these claims relate
to a single relation instance record that has more than two tail entity identifiers. Notably,
the language of claims 7-8 is totally devoid of any language about “multi-tailed relation

instances”. In fact, these claims do not even mention “relation instances” at all.

Statement in the PICS Statement in the Response

[Comparing claim 7 to accused Oracle :

product]

The OBJ$ table serves as an entity ' Claims 7 and 8 describe the feature
definition table. A data type table (an whereby a single relation instance record
entity type) is defined in the OBJS$ table by | may involve more than two entity

way of a record that contains alternative . | instances. This is known as a multi-tailed

‘identifiers of the data table type including | relation instance, where there is one head
the NAME, obj# and OIDS fields in the entity identifier and at least two tail entity
record. A second record would be handled | identifiers in the relation instance record.

_in the same way as the first. (Exhibit B to (Response at 27.)

First Re-Examination Request, PICs at 8)

38
044

| (emphasis added). |

FST’s obvious change in positions in the Response confirms that FST’s PICs
cannot be considered as an “appropriate scope” for any claim of the ‘259 patent, and that
FST’s apparently believes that its analysis can change at will, depending on who its

2

audience is.

Node ID field Edge Node ID field
Hans 1096 loves cat 523
Hans 1096 pets cat 523
Cat 523 name Max - 144
Cat 523 chases mouse 27
Hans 1096 hates cat 701 .
Cat 701 eats . mouse 27
Cat 523 eats mouse 27
Cat 701 name Moritz 49
Cat 701 eats fish 87
Hans 1096 feeds . fish 87

Figure 10.2 Triple visual display of a WEB (Munz III)

For example, looking at the fourth row of FIG. 10.2 (disregarding the header
row), the entity coded with a record identifier (ID number) 523, with the entity type
“Cat”, is related to the entity coded with a record identifier (ID number) 27, with the
entity type “mouse”, by the reiation type “chases”. Similarly, looking at the fifth row, the
entity coded as ID number 1096, with the entity type “Hans”, is related to the entity
coded as ID number 701, with the entity type “cat”, by the relation type “hates”. Thus
this table includes relation instances which point to at least two different entity instance
tables (namely the table for “cat” entities and the table for “mouse” entities). This table
clearly depicts the use, as discussed in FST’s Response, of two-part keys in Dr. Munz’s
WELL System database, which is the subject of all three of the Munz references cited to

the Examiner.

39
045

RI0 Y ' AN

RiN T.REL-1
'\ Head Rel. Tail(1)
e _Ei Type __Ei
1 a b _ ¢ d e
1[cy 2] [Bu] [an]4]
ZZ_2|Cu| 5| -BU-| [AD E_-::::
3[cu] 1][-8u] [ap] 3
4[cu] 4] [8u] [a0] 2]
s[cu] 5] [Bu-] [aD] 5]

Relation Instance Table (from FIG. 7-1 & 7-2 of ‘259 patent)

In fact, comparing Munz’s FIG. 10.2 with the relation instance table depicted in
.. FIG. 7 of the ‘259 patent (and replicated above), there is no apparent différen’ce between
FIG. 10.2 and the relation instance table 730 disclosed in the ‘259 pafent. Both tables
include an entity type and an ID number for the head and tail entities, as well as a field
for the relation type. Therefore, even assuming that claims 2, 3 and 12 properly recited
this two-part key limitation as discussed by FST, those claims would still be anticipated

by Dr. Munz’s database, as described in the various Munz references.

2. Tsichritzis Reference Has Relation Instance Tables

In the 2nd OA, the Examiner finds that the Tsichritzis reference “fails to disclose

40
046

the relation instance records which define a relation of a provided relation type between a
provided entity and a desired entity.” On this basis, the Examiner has withdrawn his
rejections under 35 USC 102(b) over the Tsichritzis reference. (2nd OA at 33, ‘][53.)

However, in FST’s Response which preceded the 2nd OA, the only argument FST
presented to rebut the Examiner’s rejection in his First Office Action, was that
“Tsichritzis does not show the -design of the int:ermediate pointer structures.” (Response
at 30.) The Examiner’s rejection in the First Office Action supported by the facts and the
discussion in the First Re-Examination Request (First Request at 8-12, 30, 39), that
Tsichritzis in fact teaches the claimed “relation instance tables.” Furthermore, as the
Examiner has noted in maintaining other rejections in this proceeding, “it is a well settled
rule that a reference must be considered not only for what it expressly teaches, but also
for what it fairly suggests.” 2nd OA at 34 (citing to In re Burckel, 592 F.2d 1175, 201
USPQ 67 (CCPA 1979)). Furthermore, “it is an equally well settled rule that what a
reference can be said to fairly suggest relates to the concepts fairly contained therein, and
is not limited by the specific structure chosen to illustrate such concepts.” 2nd OA at 34
(citing to In re Bascom, 230 F.2d 612, 109 USPQ 98 (CCPA 1956).

Tsichritzis clearly discusses that the intermediate pointer structures are created,
using the definitions found in the link definition table, when a “Create link” command is
issued. (Tsichritzis, p. 125, 6.) These links define connections between record types
(recall that record types correspond to the entity types claimed in the ‘259 patent). Thus,
the intermediate pointer structures, when created, plainly pfovide a connection (i.e. a
relation) between the various instances of the relation between the provided entity and the
desired entity. Additionally, Tsichritzis at least fairly suggests a design of the
intermediate pointer structures that anticipates the “relation instance tables” of the 259
patent.

For exampie, the link “own” is defined by the statement “Define link own
between Houses and Employees”. This link (aka relation definition) defines a relation
between the two record types (aka entity types) House and Employees. (Tsichritzis, p.
124, 6.) When the “Create” command is executed, this command reads a previously-

. defined link, and uses that link to create the intermediate pointer structure (aka relation

instance table) that corresponds to that link. For example, the command “Create link

41
047

Own from Houses to Employees” uses the previously defined link discussed above,
where “the result of a create selector (link) is the construction of intermediate pointer
structures which implement an access path according to the selector (link).” (Tsichritzis, |
p- 125,96.) This implementation of an access path from the provided entity House to the
desired entity Employee is a relation instance table. One of skill in the art would easily
be able to implement a particular structure or design for the concepts fairly contained
within the Tsichritzis reference.

Furthermore, these intermediate pointer structures are not merely temporary
structures that disappear once a query has been executed. These structures can persist for
a long time, including for the lifetime of the database if that is what is desired. For
example, if the two participating record types are not locked (i.e. they are permitted to be
modified), then the intcmiediate pointer structures are maintained. (Tsichritzis, p. 125, {
6, 8.) Thus the intermediate pointer structures as taught by Tsichritzis are the same as the
relation instance tables taught by the ‘259 patent. Therefore, the Tsichritzis reference
was, and still is, properly asserted to invalidate all of the claims of the ‘259 patent, as the
Examiner originally held in his First Office Action.

VI. DISCUSSION OF FST’S RESPONSE TO THE EXAMINER’S SECOND
OFFICE ACTION

FST filed a “Response to Office Action” on March, 22 2007 (hereinafter “FST’s
Respohse”), attached as Exhibit PAT-A7. This new response, yet again, appears to
mischaracterize the prior art, and is mostly comprised of a re-hashing of arguments that
FST made in its previous papers. | |

A. Wiederhold’s “Database Design Second Edition” Discloses Definition
) Tables

As the Examiner noted, FST cited reference CL, or Gio Wiederhold’s “Database
Design Second Edition” (“Database Désign”), attached as Exhibit PA-L in the IDS
(received and stamped by the U.S.P.T.O. on October 23, 2006), but failed to provide
adequate detail as to its relevance. The Examiner noted in his Second Office Action that
the Database Design reference is approximately 700 pages. Second Office Action at 3.
FST failed to give guidance as to the specific portions of the book that are relevant to

patehtability. In its Response to the Second Office Action, submitted on March 22, 2007

42
048

(“FST’s Response”), FST noted several sub-sections which it believed are relevant, along
with explanations of those sub-sections. FST cited specifically to Sections 7-3-1, 7-3-7,
7-4-4, 7-4-5, and 9-7-6 and Figure 8-9.

FST focuses on the fact that the Database Design reference does not contain any
entity definition tables or relation definition tables. To the contrary, the Database Design
reference teaches a relation definition table. For example, Figure 8-5 on page 416 of the
Wiederhold textbook depicts the schema'for a relation definition in “STRUCTURE”,
within a given database under Wiederhold’s model. As explained more thoroughly in the

Wiederhold text, for every STRUCTURE, there is a relation.

PLEASE NAME YOUR DATABASE: EMPLOYEE >

E NEED TO KNOW THE STRUCTURE OF YOUR DATABASE.
PLEASE DESCRIBE EACH ITEM

ITEM NAME SiZE TYPE

i EMPLOYEE, 20 o
2)

3 SACARY, 8N O

4 ADDRESS, 20,C D
5

6

CiTY, 20>

Carriage Return terminates structure description.

EMPLOYEE CURRENTLY CONTAINS 0 72-CHMARACTER RECORDS,
EMPLOYEE *STR.D*NOW CONTAINS BASE STRUCTURE.

Figure 8-B Schems creation.

Defined STRUCTURE:S are also retrievable by the database user during a

database session, as depicted in Figure 8-7 on page 418.

43
049

QETIIEYE

The citubant vt praared i LY
PLEASE NAME YOUR DATABASE: PERSONNEL 5 of RETRIEVE, e o

PERSORNEL CURBERTLY CONTAINS B ABCHARACTER RECORDS,
THIRPLTUAE o T8 ttrattuse detined pemsioodly it Siphived,

ITEM TYPE WIDTH NAME
3 [36 EMBLOYEE

2 G it 30C8EC

3 K 4 SAalARY

a N 3 Ry

3 N 2 Pav
* APPENG Yows revioedy wre i Yo the decatiaty,
ENPLGYER S.3EC SALARY HFY 434

MARZHALL MITHARL, IAT.T2 85
EOLLINS Wil LIAM, 48290 3

2

1 necoRpEBRACESSED
~SOHTBY EMPLOYED The tatutone s soetod LD .
HALEY QYRS curiovee, et

PEHSONNEL ' OLO CONTAIRS YOUS URSORYED DATADASE,
PEASONREL 15 NOW SORTED,
SHALL WE ALTAN FERSORNEL 'OLDM 50>

SLEE Tl estivw aeabind s apayed,

RECHG EMPLOYEE SLBEC SALARY HAZ e
1 ANDRLWS RARL - ABD. 2095310 135 <0 0
3 SRADFORD SUSAN 480217 430 0 4]
3 COLLING WiLLiAM 2903059 a7 4« 4]
4 FRENCH MARK $19450713 730 & [
5 MARIHARL MCHATL 242728528 mIO 0
B NELSON DONALD 313612620 830 40 9
7 PALMER DAVID 257483168 HO00 4]
8 PARRERNMAAY 351-DA8IC0 4,16 45 [}
4 KOUBIGUES MARIA IBIS TN 18870 3 3
10 SWINTON JUAN A28 734e a4 4

1 RECUBNS PROCESIED
i

Figure 8-7 A database seasion.

The PERSONNEL STRUCTURE relates EMPLOYEE, SOCIAL SECURITY, SALARY,
HOURS and PAY entities, eéch of which are defined within the STRUCTURE. Upon
typing in “RETRIEVE” and entering the name of the database (i.e. “PERSONNEL”), the
system indicates how many records exist in the database in question. The text also
teaches entity definition tables indicating the size and type of variables in which the

entity instances are encoded.

B. Requester Agrees with Examiner’s Section 101 Rejections

With respect to § 101 of the Patent Act, FST continues to re-assert a number of
arguments which the Examiner considered and rejected in his Second Office Action.
Second Office Action at 4-5. As described in greater detail below, FST continues to
assert various uses for the subject matter described in the claims, or extensions of the
subject matter in the claims. None of the language within the actual claims are directed
to statutory subject matter, and thus the claims, in their current form, fail to satisfy § 101.

FST first responds to the Examiner’s rejection of claims 1-18 under 35 U.S.C. §

101 because the claimed invention was directed towards non-statutory subject matter.

44
050

FST’s Response at 9. Essentially, FST appears to be rearguing that claims 1-18 are
encoded in a “computer readable medium.” Id. at 10. FST asserts that the “[t]he bit
strings [of database information] are distributed spatially within a tangible medium of
data storage such as an array of magnetic disks, optical disks or other information
representing means capable of providing mass storage.” Id. “‘Nonfunctional descriptive
material’ such as music, literary works, and a compilation or mere arrangement of data is
nonstatutory” even if the non-functional descriptive matter is recurring on a c'omputer
readable medium. United States Patent & Trademark Office, Manual of Patent
Examining Procedure § 2106.01 (8th ed. 2001). On the other hand, “{w]hen functional
descriptive material is recorded on some computer-readable medium, it becomes
| structurally and functionally interrelated to the medium and will be statutory in most
cases since use of technology perrhits the function of the descriptive material to be
realized.” Id. As Examiner correctly notes, Claims 1-18 do not explicitly recite computer
readable media, and therefore do not satisfy statutory subject matter requirements.

FST next responds to the Examiner’s argument that claims 1-9 fail “to recite a
tangible result, a requirerhent for compliance with the provisions of 35 U.S.C. § 101 for a
process that can be interpreted as being implementéd through software.” FST’s Response
at 11. As the Examiner notes, “[f]or a result to be tangible, it must be more than just a
thought or a computation; it must have real-world value rather than an abstract result.”
Second Office Action at page 5. A closer examination reveals that FST’s arguments
regarding this issue are merely a re-hashing of its arguments from its previous papers.
Requester agrees with the Examiner’s conclusion that claims 1-9 fail to recite a tangible:
result. FST continues to assert, as it did in its first set of papers, that claim 1 does, in fact,
recite steps involving the retrieval of various records, i.e. “said desired element from said
desired entity instance table” in the final step. This same argument was made by FST,
and considered and rejected by the Examiner before the Second Office Action. In the
Second Office Action, the Examiner wrote:

Claim 1 recites a number of steps for retrieving data from a variety of tables. However,

at no time is the retrieved data written to a table (which would constitute a tangible result),

nor is there any recitation of the retrieved data being displayed to a user, nor transmitted

to another computer (either of which would constitute a tangible result).

45
051

Second Office Action at 32. FST nonetheless continues to make this same argument
without having amended any of its claims. Claim 1, as it is currently drafted, does not
récite a tangible output visible to the user, however, and therefore fails the tangible result
requirement.

FST also responds to the Examiner’s conclusion by incorrectly arguing that some
of the claims merely involve the rearrangement of data. Specifically, the Examiner
stated the following in the second office action:

Claims 10-18 are claimed as a system in the preamble. However, all of the limitations

comprise a mere rearrangenierit of data. In accordance with MPEP § 2106.01, mere

arrangements of data constitute nonfunctional descriptive material, and is non-statutory

under the provisions of 35 U.S.C. § 101.
Second Office Action at 31. FST responds by referring to the preamble, which specifies
“[a] relational database processing system” and noting that such preamble gives life and
vitality to the-claims. FST’s Response at 17. FST essentially concedes and agrees with
the Examiner’s conclusion that all of the limitations of claim 10 merely recite the
arrangement of data in tables and records. |

FST continues in its argument that the claimed in?ention does result in a “useful,
concrete and tangible result.” FST’s Response at 20. FST writes that “the claimed
method and system allows the various schema to be changed without recompiling
application queries and programs.” Id. In fact, this alleged improvement is not recited in
any. of the claims. FST also states that “[ilndependent Claim 10 transforms an ordinary
relational database processing system into one that has improved functionality and
flexibility over Prior Art relational database systems.” Id. Requester notes that the
“transformation” of which FST writes does not involve the physical transformation
resulting from the claimed invention operating on something. Instead, the

“transformation” that FST refers to'' is the mere fact that the claimed arrangement of data

"' To be statutory, a claimed computer-related process must either: (1) result in a physical
transformation outside the computer for which a practical application in the technological arts is
either disclosed in the specification or would have been known to a skilled artisan (discussed in
(1) below), or (2) be limited by the language in the claim to a practical application within the
technological arts. See Diamond v. Diehr, 450 U.S. 175, 183-84 (1981) (quoting Cochrane v.
Deener, 94 U.S. 780, 787-88 (1877); In re Alappat, 33 F.3d 1526, 1543 (Fed. Cir. 1994).

46
052

is allegedly different from prior arrangements of data. This is not the sort of
“transformation” contemplated by the patent laws.

C. The Munz Reference is Anticipatory Prior Art

Turning to the Examiner’s rejection over Munz, FST first argues that entity type
schema records'?, or Munz’s version of entity definition records, cannot provide valid tab
codes (which designate an entity type name and a relationship name for each record) .

FST’s Response at 32. The Schema Record layouts are provided below.

ID-field value field
4 - M -~ B
'00'X | entity type code '00'X | length | entity type name
field _
1 byte 1 byte 1 byte 1 byte variable length

First Schema Record Layout

X'00° entity type irelationship | length«] relations-| card type
code . code tield shipname ’
1 byte 1 byte 1 byte 1 byte variable 1 byte 2 byte
O length ' »
ID-field value field

Second Schema Record Layout

See Munz II at 515. According to FST, the only schema records that can have valid
.tabcodes are the ones in the second schema layout. FST’s Response at 32. However,
Tabcodes under Munz II are merely 2 byte table identifiers. Munz II at 516. Specifically,
“all tables can be uniquely designated by an entity type name and a relationship name.
Internally an entity type name and a relationship name is ,e‘ncoded by using one byte for
each name.” Munz II at 515. Contrary to what FST indicates, the first Schema Record

Layout can have a valid tabcode and may function as an entity definition record. As a

"2 In the Second Office Action, the Examiner concluded that the first schema record layout corresponded to
Entity type definition records, and that the second schema record layout corresponded to Relation type -
definition records. C

47
053

tabcode is a two byte identifier contéining an entity type name and a relationship name,
the tabcode in the first schema record layout would be comprised of (1) the 1 byte entity
type code and (2) the 1 byte hexadecimal code to the right being a (‘00’X) if the record
defines an entity, as opposed to a relationship. Essentially, the “relationship code” for
entity definition records is alwayé “0”.

FST’s second argument turns on the fact that all Munz tables only have two
columns: one for ‘ID’ and another for ‘value’. FST appears to be basing its argument on
the fact that the columns do not disclose entity type names and relationship type names.
Munz II does, in fact, coniemplate the construction of multi-column tables, as evidenced

by Figure 2-4 of the same.

. Person { Name, Birthdate, Sex, living_at}
Black 410327 M San Prancisco

Srzith 480514 UNDE¥ San Diego
e o Green 491127 F Salt Lake City

)

figure 2-4: Record layout and organization by tables

In the above figure, entity type Person may have relationships Name, Birthdate, Sex, and
Living_at. |
Even if it were the case that all Munz tables contained only two columns,
however, they do in fact disclose entity type names and relationship type names. Each
Munz table contains ID and value columns, but each is also labeled by a tabcode, in the
same manner depicted by FST (in its Diagram entitled “[Munz Expanded Fig. 22 -
Drawn by FST.]”) in its Response to the Examiner’s Second Office Action. An excerpt
of FST’s Diagram (which models the tables found in Fig. 22 of Munz I at page 111) is
depicted below: - |

48
054

{ [Tabcode 01-01 Tabcode 02-01

[VALUE Al 65168 have b coms. ID__[VALUE

i[453 |SMiH »153_|0BS

‘" 512 _[GREEN 25—IMIS

: |64 Tabcode 01-03 679 |DOC
[] D \

o IO 453 325 .
| entity.solafionship-valug tabps rg'}ﬁ i—‘%g“L entiy-celationship-valus tabies |
t [Tabcode 01-02 == o] Tabcode 0202

[0 [VALUE D__[VALUE

i[453 TBERLIN : »153 [1.7.75

; enifv-selationsbio-entfy

{812 |PARIS tavle 5—1.1.73

i[Te14_|[ronNpoN .
!["[674_[[NEW YORK

FST contends that for each relationship of an entity, there exist tables like the ones
depicted above. The very tables that FST depicts on page 34 of its Response to the
Sécond Office Action disclose tabcodes representing entity type names and relation type
names (i.e. 01-01, 01-02, 01-03, 02-01, and 02-02). Entity type tables would have
tabcodes eﬁding in ‘0, as the relationship type for entities might arbitrarily be set to ‘0.
FST next incorrectly argues that entity types must be stored as data in the record
under claim 2. In fact, claim 2, which is dependent on claim 1, requires that the subject
relation instance record mérely “specify” the desired entity by the subject entity type and
subject entity record identifier. The Examiner stated that, under Munz, and in reference
to claim 2: '
The relation instance record also implicitly specifies the desired elitity type,
because Munz’s relation instance tables contain records for only a single relation
type, with a single desired entity.type. The desired entity type is implicitly in
each record. For Example, ... the desired record identifier in the first relation
instance record of the “Person, works_in, (Department)” relation table [might be)
“17”, and the desired entity type [would be] “(Department)”.
Second Office Action at 10. According to FST, Munz fails to satisfy this alleged
Trequirement because, according to FST, “[d]ata that is implied by a query or its context is
not the same as data béing specified within the record itself.” FST’s Response at 3. It
appears that.FST construes the claim to require each record to store the entity type

information. The word “store” does not, however, appear in claim 2.

49
055

FST argues that “each Munz ID (in a Munz relationship table) does not identify a
single record in a single table, but rather identifies a multitude of records in a multitude
of tables” FST’s Response at 36. Even if FST’s characterization of Munz were true,
it would be irrelevant, because the ‘259 teaches precisely the same thing. See ‘259 Patent,
Fig. 7-1 (re-using numerical identifiers in T.REL-1 and in other tables, to refer to other
tables or rows). The identifiers the Patent teaches may identify a multitude of records in
a multitude of tables either through their re-use or because they refer to sets of records or
tables. Perhaps more importantly, however, FST’s mischaracterizes the use of a “record
identifier.” A “record identifier” uniquely ideritifies a single record in .a given table in
which that identifier appears; under the claims, it is irrelevant whether a record identifier
appears in othet relationship tables. Under Munz, a desired record identifier does
uniquely identify a single record in a given table in which that identifier appears. Munz
therefore teaches “record identifiers.” |

EST then challenges the Examiner’s conclusion that Munz “clearly teaches a non-
preferred embodiment including a relational database on Figure 2.4 on page 513.” FST’s
Response at 37. As the Examiner correctly noted, Figure 2.4 teaches a relational
database. Thus, in Figure 2.4, each column could reflect entity instances, and the entity

records within a row would be related to each other.

. Person (Name, Birthdate, Sex, living_at)
Black 410327 M San Francisco

Smith 480514 UNDEF San Diego
— Green 491127 F . Salt Lake City

A

Figure 2-4: Record layout and organization by tables

50
056

FST then incorrectly argues that the Munz system does not include entity instance
tables. In order for the Munz system to work, tables storing entity ID numbers, which
match up with different types of entities must exist.

Munz must have a way of storing the entity ID numbers in a manner such that it
knows which ID numbers belong to which kind of entities. Otherwise the relationships
wouldn’t work. So it has to have entity instance tables so that it can keep track of which
entity ID’s are People, which ones are Projects, which are Departments. So it either has
separate tables that do that or else the person_name, project_name, and department_name
tables are entity instance tables. _

Again, FST interprets the word “specify” to mean that the data, in this case, entity
type information, must be stored within the relation instance record. Requester agrees
with the Examiner’s interpretation of the word “specify”. While claims 2, 3, and 12 state
that records in the relation instance table must define, relate and specify certain

“information, they do not explicitly claim that the relation instance table schema must

include an entity type data field. Second Office Action at 36.
D. The Malhotra Reference is Anticipatory Prior Art

FST focuses again on the word “specify” in claim 2, and argues that the Examiner
incorrectly concludes that Malhotra “additionally teaches ... the entity type as deduced
from the key value and the context...” FST’s Response at 41. There is no prohibition
against specifying the entity type using pieces of data, or the query context, rather than
the contents of the record itself. As noted above, the language in claim 2, as drafted, does
not require the contents of a record to disclose the entity type.

FST then focuses on the word “associated” in claim 1, which states “...retrieving
~ adesired entity type record containing said desired entity type from an entity definition
table, wherein said desired entity type record specifies a desired entity instance table
associated with said desired entity type...” FST’s Response at 43 (emphasis added).
Malhotra discloses the ENT.TYPE table, which has only one column, NAME, which acts
as the table identifier. As the Examiner correctly notes, the entity type and table name
can be one in the same. Second Office Action at 36. FST incorrectly construes the
language in claim 1 to require that the entity type record in an entity definition table must

contain both an entity type, as well as the entity instance table associated with the entity

51
057

type. Essentially, FST argues that both the entity type and the table identifier would have
to be specified within the record in order for the association to exist. FST incorrectly
assumes that the entity type record must record the association between the two in the
claim. As in Munz, the entity type and table name can be one and the same. The claim
merely requires that an association between the entity type and the table name exist, not
that the association between the two be explicitly spelled out and manifest.

FST then addresses its argument that the ENT.TYPE table in Malhotra manages
data only in main memory, and therefore fails to disclose a table iﬁ a relational database. -
FST now asserts that its claimed invention “describes an entity definition table used to
manage tables in a relational database, not simply records in main memory.” FST’s
Response at 45. FST’s statement is misleading in that it implies that references which
describe records stored in main memory cannot be prior art. Whether the records are
actually part of a relational database is irrelevant if they are in main memory, from FST’s
perspective. In fact, there are no requirements in the claims, as currently written, that
limit the claimed relational database to one that is stored in long term storage - such as a

hard drive. If FST wishes to introduce this new limitation it must amend its claims.

E. The Claims Are Not Entitled to a Presumption of Validit§

On a final note, FST incorrectly claims that it “is entitled to a presumption of validity for
the claims issued in the original patent.” See FST’s Response at 48. It is well accepted
that “[c]laims in a reissue application enjoy no “presumption of validity” whatsoever. In
re Doyle, 482 F.2d 1385, 1392 (CCPA 1973); see also Hewlett-Packard Co. v. Bausch &
Lomb Inc., 882 F.2d 1556, 1563 (Fed. Cir. 1989), In re Sneed, 710 F.2d 1544, 1550 n.4
(Fed. Cir. 1983). As stated in 37 C.F.R. 1.176, a reissue application, including all the
claims therein, is subject to “be examined in the same manner as a non-reissue, non-
prbvisional application.” United States Patent & Trademark Office, Manual of Patent
Examining Procedure § 1440, § 1445 (8th ed. 2001). “Accordingly, the claims in a
reissue application are subject to any and all rejections which the examiner deems
appropriate.” Id. This would include determinations as to utility under Section 101, or
under any other condition of patentability, contrary to what FST indicates-in its

Response.

52
058

VII. APPLICATION OF PRIOR ART PATENTS AND PUBLICATIONS

As required by 37 C.F.R. § 1.510(b)(2), Oracle provides below a detailed

explanation of how each reference renders the above-cited claims unpatentable, raising a

substantial new question of patentability.

A. Teorey and Huber

Teorey and Huber together teach all limitations of claims 1-4, 7-13, 15-18 of the

‘259 patent as discussed in the chart below. Teorey, Huber, and Shaw together teach all

limitations of claims 5-6 and 14 of the ‘259 patent, as discussed in the chart below:

Claim Language”

Teorey, Huber and Zloof/Shaw References

1. A method for retrieving a desired
entity of a desired entity type from
a relational database, wherein said
desired entity is related to a
provided entity by a provided
relation type associating an entity
type of said provided entity with
said desired entity type, said
method comprising:

The primary aims of relational database design
revolve around organizing and storing data so that the
information within the database may later be accessed by
the database user. According to an article by Peter Chen,
“to design a database is to decide how to organize data into
specific forms (record types, tables) and how to access
them.” Further, another related problem in database design
is to make the “output of the database design process-the
user schema (a description of the user view of the data)”
more like the way humans represent the real world. Peter
Pin-Shan Chen, The entity-relationship model — A basis for
the enterprise view of data 77 (1977), attached as Exhibit
PA-M.

In addition an inherent component of databases is that they
allow the retrieval of items, including relation type records.
Front end user interfaces that enable users to easily retrieve
the information in the underlying databases have been well
known in the arts from at least from the mid 1980’s, if not
sooner. One type of front-end user interface is created
using the QBE language. According to The Database Step-
by-Step textbook, “The [QBE] user interface, designed for
technical and nontechnical people alike, is a two-
dimensional, on-line, video display terminal oriented query
facility.” To issue a query, the user gives an example of
the required information, which amounts to specifying a
variable name in the column of the desired information.”
Mark L. Gillenson, Database Step-by-Step 141-42 (2d Ed.
1990), attached as Exhibit PA-N.

' The claim language recited is inclusive of the amendments patentee included in its Response.

53
059

Claim Language”

Teorey, Huber and Zloof/Shaw References

Teorey extends the Entity-Relationship model to a
relational database (abstract, p.197). Teorey in Figure 8(f)
shows that one can retrieve an engineer (desired entity) of
the “ENGINEERS” (desired entity type) that “BELONGS-
TO” (relation type) a particular professional association
(provided entity) of the. PRF-ASSOC (provided entity

type).

retrieving a specific relation type
record defining said provided
relation type from a relation
definition table; '

Teorey teaches a data dictionary that includes a relation
definition table that contains relation type records which
define relation types. A user would supply such a relation
type in making a search (query) on the database. Teorey,
in combination with Huber, teaches the same things and
offers different design choices.

Teorey teaches that relation types (i.e. relationships) can be
defined for a relational database. Teorey at 205 (Sec. 2.1,
step 1.3). Each of these relation types defines a
relationship between two or more entities. For example,
FIG. 13 and Table 1 depict several relation types, including
SKILL-USED, ASSIGNED-TO AND BELONGS-TO.
Teorey at 216, FIG. 13, Table 1.

SKILL DEPARTIMENT DIVISION .

B O e

SKRL ~USED

PROJECT EMPLOYEE
ASSIGNED-TO

LOCATION
LaC- AP

EMP MANAGER EMPEMGINEER EMP.TECHNICIAN EMPSECRETARY
il ol Gl) G

BELONGS-TD

PRF-ASS0C PC

Figure 13. Company personne] and project database candidate relations.

54
060

Claim Language”

Teorey, Huber and Zloof/Shaw References

Tabte 3. Transiormation of £ntites and F 23 10 Falanons (€

Step 2.1, Entities to relntions

L DIVISION(DIV-NG, . .., HKAD-EMP-NO)
2 DEPARTMENT(DEPT- 'ND. DEPT-NAME, ROOM-NO, PHONE-NO, ..., RIV-NQ,
MANAG.-EMP-NO)

3 EMPLOYER(EMP.-NO, EMP-NAME, JOB-TITLE, . .., DEPT-NO, SPOUSE-EMP-NO, PC-NO}
4, SKILLSKILL-NO, ..)

3. PROJECTIPROJ-NAME, ..)

0 LOGATION(LOC-NAME, .. }

7. EMP.MANAGERIEMP-NO, ..)

8. EMPENGINEER(EMP.NO, ..)

9. EMP.TECHNICIAN(EMP-NO, ..)
10. EMP.SECRETARY(EMP-NQ, .. .)
1. PCPCND, ..)
19, PRE-ASSOC{PA-NO, ..)

Step 2.2. Binary or unary relationships to relotions
13. BELONGS.TO{PA-NO, EMP-NOG)

Step 2.3 Ternary (or uny re-ary) relationships o reiations
14. SKILL-USEIMEMP-NO, SKILL NO, PROJ-NAME}
15. ABSIGNED-TO{EMP.NU, LOC.NAME, FROJ. NAME}

Teorey further teaches that each of the defined relation
types can be transformed into a “relation” Teorey at 216,
Table 1. The definitions of these relation types
transformed into relations are stored in the data dictionary
because that is the location where Teorey teaches that
attributes of candidate relations are stored and can be
retrieved from. Teorey at 217 (Step 3.2).

The use of data dictionaries to map the contents of the
underlying database, including the entities and
relationships within it, was well known in the field. A data
dictionary was considered “[a] system database that
contain[ed] information about a user database, such as
location of data, lists of fields and tables, and data types
and lengths.” They were also known as ‘catalogs’. . The
IBM Dictionary of Computing Terms defines “data
dictionary” as “[a] list of all files, fields, and variables used
in a data base management system. A “data dictionary”
helps users remember what items they have to work with
and how they have been defined. Particularly helpful when
writing a large number of linked procedures or programs
that share a data base.” The IBM Dictionary of Computing
Terms 87 (8th Ed. 1987), attached as Exhibit OTH-B.
Webster’s New World Dictionary of Computer Terms
defines “data dictionary” as “1. A centralized repository of
information about data such as meaning, relationships to
other data, origin, usage, and format. It assists
management, data base administrators, system analysts,
and application programmers in planning, controlling, and
evaluating the collection, storage, and use of data. 2. In the
System/36 interactive data definition utility, a folder that
contains field, format, and file definitions.” Webster’s New
World Dictionary of Computer Terms 107 (3d Ed. 1988),
attached as Exhibit OTH-C. Thus in light of Teorey, the

55
061

Claim Language”

Teorey, Huber and Zloof/Shaw References

data dictionary is the relation definition table.

Huber further teaches that the definitions of these tables
(i.e. the definitions of the relation types) are stored in the
data dictionary. Huber, 6:68-7:8. Each of these table
definitions contains field definitions defining the fields of
each relation type, as well as location information that
points to the file containing the actual base table (BT),
which contains the relation data (i.e. the relation instance
tables). Huber,.7:3-8. Thus, BTDEF 213 of Data
Dictionary 202 specifies where BT 101 is located, the size -
and fields of the records representing the rows, the keys
used to access the records. Huber, 15:43-49. BTDEF 213 is
related in part to BT 101 by three fields: TNAME 443 is
the name of BT 101; TFID 445 is the file identifier of the
file which contains BT 101; and TRLEN 447 is the length
of the records which represent the rows of BT 101 in the
file. 15: 17-21.

Huber further teaches that the data dictionary is itself
stored as a database, and thus the data dictionary itself
includes tables that contain the table definitions. Huber,
7:10-13. Each table definition (BTDEF) is stored as a
record in the table. Huber, 14:44-45. Thus Huber in
conjunction with Teorey teach that the data dictionary can
be a relation definition table.

In addition, Huber further teaches that the REFDEF table
313 contains data defining the referenced-referencing
relationship between base tables, such as the base tables
which are used to create the relationship relation that is
itself represented as a table.. Huber, 10:43-49. The
REFDEF table stores a pointer, REFDPTR 312, which
points to the referenced base table, and another pointer,
REFGPTR 314, which poirits to the referring base table.
Huber, 11:1-4. These two pointers are entity table type
identifiers. Thus Huber teaches that the REFDEEF table 313
contains data defining the relationship relations defined in
Teorey and can be a relation definition table.

A critical component of databases is that they allow
retrieval of items, including relation instance records. One
type of front-end user interface which eases access to the
information stored in the database is one created using the
QBE language, as noted above.

56
062

Claim Language®

Teorey, Huber and Zloof/Shaw References

retrieving a specific relation
instance record defining a relation
of said provided relation type
between-said provided entity and
said desired entity from a relation
instance table corresponding to said
specific relation type record;

Teorey in combination with Huber teaches that relation
instance records define relations between entities, and that
these records are stored in relation instance tables, each of
which corresponds to a particular relation type.

Teorey teaches that relationship relations store information
that relates two or more entities to each other, and are
represented as tables. Teorey at 203, FIG. 3; 212-13, FIG.
10; 216, FIG. 13.

CONCEPT REPRESENTATION EXANPLE
LONCEPT
DEGREE .
¢l
snery [___m ERPLOYEE Yo
stoery [:]_,O_E] ARTRENT IviSIo
PART-
oF
Larnary i 1 sk gL PROLIECT
SXILL-USED
FrepLOVED
CONRECTIVITY
[P] < > d DEFT
HANAGED-67
in —<>——- oeer j—-(}—{mmm:]
coNTaINs
mn —Pp—rmou PROJECT
WORKS-QN
HEMBERSHIP
CLASS ___.0——-—
mendetary & occunien-ay

eptsons

Figure 3. Pund

Employses ute & wida rangavc! ditferent
skills 6n asch groject they ore sssccieted
with.

EHP!.DVEE(EM)
SKILL(SKILL-ND, }
WECTM
SK'LL'US@(SEMQ.SMM_E}
FOs : EMP-NO, SKILL-ND, PROJ-KO -~ b
(ot xay)
SKILL-USED
EMP-NO SKILL-NO PROG-NAME
3 A3 ALPHA
3 AS BETA
3 86 ALPHA
3 & BETA
4 2 OELT A
4 2 GAMMA
AY BETA
8 cs BETA
A ALPHA
G132 EPSILON
o ALPHA
C8 EPSILON

)

Figure 10. Ternary relationabip transfunimation rulea.

57
063

Claim Language”

Teorey, Huber and Zloof/Shaw References

Huber teaches that each of the sets of related items, in this
case the relationship relations (i.e. relation types) defined
in Teorey, are stored in two-dimensional tables. Huber,
4:66-5:3. These tables are associated with the relation type
information stored in the REFDEF table 313 and in the
table definition for the relationship relation. REFDEF
table 313 contains general information about the
relationship (15:55-60), and the table definition (6:68-7:8).

In Teorey, each relation instance table contains a plurality
of relation instance records. The relationships in Teorey
are transformed into relationship relations. Teorey at 208,
Sec. 3.1(3). Examples of these relationship relations are
shown in FIGS. 4 and 10, clearly showing that each
relationship relation includes a plurality of rows, each of
which is a relation instance record. Teorey at 203, FIG. 4;
212-13, FIG. 10.

Fig. 10 depicts a plurality of relation instance records for
the relation type SKILL-USED. Each relation instance
record relates an entity instance in one entity table to an
entity instance in a second entity table. For example, the
SKILL_USED relationship instance table relates entities in
the EMPLOYEE table to entities in the SKILL table.
Teorey at 203, FIG. 4; 216, FIG. 13, Table 1.

SleL-USED ENP-NO | SKILL-NO | PROJ-NANE,
38 27 GANRA

38 51 GAMNMA
38 27 DELTA
38 3 DELTA

{a)

Fig. 4 depicts the relationship instance table for the
relationship SKILL-USED.

A critical component of databases is that they allow
retrieval of items, including relation instance records. One
type of front-end user interface which eases access to the
information stored in the database is one created using the
QBE language, as noted above.

retrieving a desired entity type
record containing said desired

.| Teorey in combination with Huber teaches that entity type

information is stored in entity type records in entity

58
064

Claim Language"

Teorey, Huber and Zloof/Shaw References

entity type from an entity definition
table, wherein said desired entity
type record specifies a desired
entity instance table associated with
said desired entity type; and

definition tables, and that this data can be retrieved in order
to operate on the database. The entity type records identify
entity instance tables, including the entity instance tables
containing entities that a user would desire to retrieve.

Teorey teaches that entity types (i.e. entities) can be
defined for a relational database. Teorey at 204 (Sec. 2.1,
step 1.1) For example, FIG. 13 and Table 1 depict a
variety of entity types, including SKILL, DEPARTMENT,
DIVISION, PROJECT, EMPLOYEE and others.

SKILL DEPARTHENT CIVISION
T o

SKILL-USED

BP0 DAL PRO-NAE

PROJECT EMPLOYEE

ASSIGNED-TO

LOCATION

ENMP.MANAGER EMPENGINEER EMP.TECHNICIAN ErP.SECRETARY
il Y I e |
BELONGS-TO

PRF-ASSOL °C

Figure 13. C«mp-ny personne! and project database candidate relations.

Tablo 1. ion of Entilies and ips to
Step L1 Entitica to relotions
1. DIVISIONUMV-ND, . .., HEAD-EMP-NO)
2. DEPARTMENT(DEPT-NO, DEPT-NAME, ROOM.NO, PRONE-NO, .., DIV-ND,
MANAG-EMP-NO)
4. EMPLOYER(EMP-NO, EMP-NAME, JOB-TITLE, ..., DEPT.NO, SPOUSE-EMP-NO, PC-NO}
4. SKILL{SKILL-NG, ..)
5. PROJECT(PROJ-NAME. ..}
. }

9. EMP.TECHNICIAN(EMP-NOQ, ..)}
10, EMP.SECRETARY(EMP-NO, . ..}
1L PCPC-ND,. .)

12. PRF.ASSOCIPA-ND, ..)

Step 22, Binary or unary relationships to relations
13. BELONGS-TO(PA-NU, EMP-NO)

Step 23, Ternary {or any n-ory) refationships to relations
4. SKILL-USER(EMP-NO, SKILL-NO, PROJ.-NAME)
15, ASSIGNED- TO{EMP-NO. LOC-NAME, PROM-NAMER)

Teorey at 216, FIG. 13, Table 1. Teorey further teaches
that its database system includes a data dictionary. Teorey
at 217. (“If the EER constructs do not include nonkey
attributes, the data requirements specification (or data
dictionary) must be consulted.”). Teorey further teaches
that each of the defined entity types can be transformed to

59
065

Claim Language"

Teorey, Huber and Zloof/Shaw References

a “relation.” Teorey at 216, Table 1.

Yobte 1. Trenstarmation of Enities and Relationships to (Exampls)
Step 2.1, Entities to relations
1. DIVISIONIDIV.NO, HEAD-EMP.NO!
2. DEPARTMENT(DEPT-NO, DEPT- NAME, ROOM-NO, PHONE-NO, ..., DIV.NO,
MANAG-EMP-NO)
3. EMPLOYEE(EMP-NO, EMP-NAME, JOR-TITLE, ..., DEPT-NO, SPOUSE-EMP-NO, PC-NO)

4. SKILL(SKILL-NO, .. .)

S. PROVECT(PROJ-VAME, .. }

6. LOCATION(LOC-NAME, ...}

7. EMP.MANAGER(EMP-NO, . ..)

& EMP.ENGINEER(EMP-NO, ..)

9. EMP.TECHNICIAN(EMP-NO. ..)
10. EMP.SECRETARY(EMP-NO,...)
11 PC(PC-NO, .,)

12. PRF-ASSO(XPA-NO, ..)

Step 2.2. Binary or unary relationchips to relations !
13. BELONGS-TO(PA-NO, EMP-NO)

Step 2.3, Ternary lur any n-cry) refationships to rebuima'
14, SKILLAISED(EMP-NO, SKILL-NQ, PROA-NAME)
15, ASSIGNED-TOLEMP. NO, 1.OC-NAME, PROJ-NAME)

The definitions of these entity types transformed into
relations are stored in the data dictionary, because that is
the location where Teorey teaches that attributes of
candidate relations are stored and can be retrieved from.
Teorey at 217 (Step 3.2).

While Teorey clearly teaches that its relational database
has and uses a data dictionary, Teorey does not describe
the detailed layout of the data dictionary. However, the
‘593 patent to Huber does provide a detailed layout of a
data dictionary for a relational database. Huber, FIG 2
(DDICT 202); FIG. 3 (ODD 211).

Huber teaches that a relational database, such as the
relational database depicted in Teorey, includes sets of
related items (i.e. the entity types of Teorey), which are -
stored in two-dimensional tables. Huber, 4:66-5:3. Huber
further teaches that the definitions of these tables (i.e. the
definitions of the entity types) are stored in the data
dictionary. Huber, 6:68-7:8. Each of these table
definitions contains field definitions defining the fields of
each entity type, as well as location information that points
to the file containing the actual base table (BT), which
contains the entity data (i.e. the entity instance tables).
Huber, 7:3-8. Thus BTDEF 213 of Data Dictionary 202
specifies where BT 101 is located, the size and fields of the
records representing the rows, the keys used to access the
records. Huber, 15:43-49. BTDEF 213 is related in part to
BT 101 by three fields:. TNAME 443 is the name of BT
101; TFID 445 is the file identifier of the file which
contains BT 101; and TRLEN 447 is the length of the
records which represent the rows of BT 101 in the file. 15:
17-21.

60
066

Claim Language®

Teorey, Huber and Zloof/Shaw References

Huber teaches that the data dictionary is itself stored as a
database, and thus the data dictionary itself includes tables
that contain the table definitions. Huber, 7:10-13. Each
table definition (BTDEF) is stored as a record in the table.
Huber, 14:44-45. Thus Huber, in combination with Teorey
teaches, that the data dictionary can be an entity definition
table. :

As indicated above, while Huber teaches the use of a entity
definition table, the use of data dictionaries to map the
contents of the underlying database, including the entities
within it, was already common in the field. A data
dictionary was considered “[a] system database that
contain[ed] information about a user database, such as
location of data, lists of fields and tables, and data types
and lengths.”

These entity definition records specify the location
information that identifies the files containing the entity
instance tables. The entity instance tables shown in Teorey
are examples of tables which contain entity data. Teorey,
FIG. 13 (SKILL, DEPARTMENT, DIVIS ION, PROJ ECT,
EMPLOYEE and other tables).

SKILL OEPARTHMENT CIVISION
SKRLL,-NO

DIPT-NO on-no

SKILL-USED
DMPNG SKRL-NO PRO-NAME

PROJECT EMPLOYEE
PROV-MAME 0P-NO

-ASSIGNED-TO
OP-NO LOC-NAME

LOCATION
LOC-NAME

EMP.MANAGER EMP.ENGINEER EMPTECHNICIAN EMP.SECRETARY
EMP-N0 aP-0 29-n0 oP-iD

BELONGS-TO

PRF-ASSOC PC
‘PA-’O I I PC-NO l

Figure 13. Company personnel and project database candidate relations.

61
067

Claim Language >

Teorey, Huber and Zloof/Shaw References

Tadle 1. Trunstormation of Entibes end Relationships to Relations (Exampte)
Step 2.1. Entities to relations . :
1. DIVISIONIDIV-NO, ..., HEAD-EMP-NO}
2. DEPARTMENT(LEFT-N, DEPT-NAME, ROOM-NO, PHONE-NO, _.., DIV-NO,
MANAG-EMP-NO)
3. EMPLOYEE{EMP-NO, EMP.NAME, JOB-TITLE, .. ., DEPT-NO, SPOUSE-EMP-NO, PC-NO}
4. SKILL(SKILL-NO., . ..)
6, PROJECT(PROJ-NAME. ...)
6. LOCATION(LOC-NAME, ...)
7. EMP.MANAGRR{EMP-NQ, ...}
8. EMP ENGINERR(EMP-NOQ, ..)
9. EMP.TECHNICIAN(EMP-NO, .. .)
10. EMP SECRETARY(EMP-NQ,...)
11. PCIPC-NO, . .)
12. PRF-ASSOC(PA-NO, ..)

Step 2.2. Binary or unary relationshipa to relations
13, BELONGS-TO{PA-NO, EMP-NO)

Step 2.3. Ternary lor any n-ary) mﬁliﬂmha}us tn relations
14, SKILL- USEDEMP-NO, SKILL-NO. PROV-NAME)
15. ASSIGNED-TO(EMP-NO, LOC-NAME, PROJ.NAME)}

These entity instance tables are each associated with a
corresponding entity type, as shown in FIG. 13 and Table
1. Teorey, FIG. 13, Table 1. Further entity instance tables
are shown in FIG. 1 of Huber, for example the Customer
Table 101(a), the Order Table 101(c), and the Parts Table
101(d). Huber, FIG. 1.

A critical component of databases is that they allow
retrieval of items, including entity type records. One type
of front-end user interface which eases access to the
information stored in the database is one created using the
QBE language, as noted above.

retrieving said desired entity from
said desired entity instance table.

Desired entities, just like all entities, are stored in entity
instance tables, and can be retrieved therefrom.

In Teorey, each entity instance table contains a plurality of
entity instance records. The entities in Teorey are
transformed into entity relations. Teorey at 208, Sec.
3.1(1). Examples of these entity relations are:
EMPLOYEE (with identifier EMP-NO and descriptors
EMP-NAME, HOME-ADDRESS, DATE-OF-BIRTH,
JOB-TITLE, SALARY, SKILL), ENGINEER (with
identifier EMP-NO and descriptors EMP-NAME, HOME-
ADDRESS, SPECIALTY), SECRETARY (with identifiers
EMP-NO and descriptors EMP-NAME, DATE-OF-
BIRTH, SALARY, SPEED-OF-TYPING), TECHNICIAN
(with identifier EMP-NO and descriptors EMP-NAME,
SKILL, YEARS-OF-EXPERIENCE). Teorey, Step 1.2 at
205.

Thus each entity relation (i.e. entity instance table) in
Teorey contains a plurality of entity instance records. The
entity instance tables in Huber, for example the Customer

62
068

Claim Language”’

Teorey, Huber and Zloof/Shaw References

Table 101(a), the Order Table 101(c), and the Parts Table
101(d), also each contain entity instance records which
correspond to the instances of the entities Customer, Order
and Parts. Huber, 4:66-5:13, FIG. 1.

A critical component of databases is that they allow
retrieval of items, including entity instance records. One
type of front-end user interface which eases access to the
information stored in the database is one created using the
QBE language, as noted above.

2. The method of claim 1, wherein
said relation instance record
specifies said desired entity by said
desired entity type and a desired
record identifier.

Teorey teaches that each relation instance record contains a
record identifier that corresponds to the desired entity
instance record. For example, in the relation instance table
of FIG. 4, the SKILL-USED relations instances each
contain a SKILL-NO record identifier that identifies the
desired SKILL entity instance record. Teorey at 203, FIG.
4; 216, FIG. 13. Each relation instance record also
contains a desired entity type, reflected in the column
header, for example “SKILL” in the column header
SKILL-NO in FIG. 4.

Teorey further teaches that a key (i.e. a record identifier)
can be a composite identifier, that is, an identifier
composed of two or more attributes. Teorey at 204 (Step
1.1(5)). These two attributes could include the entity type
and a record identifier, and thus anticipate this claim.
Teorey teaches two alternate treatments for composite
identifiers, one of which is to eliminate them where
possible, but the second treatment is to retain the identifier
where it is reasonably natural. Id. It would be reasonably
natural to retain a composite identifier where it permitted
the overloading of the record identifier column to designate
two or more different target tables, as suggested by FST.

Huber also teaches the use of two-part keys, by providing
that “[e]ach row in a base table 101(x) must be uniquely
identified by a primary key consisting of one or more
fields.” Huber, 5:28-30. Similarly, foreign keys may
include “fields which are a primary key in a different base
table 101(y).” Huber, 5:31-33. Therefore, a relationship
relation as taught in Teorey, which is stored as a base table
in Huber, would include two foreign keys to the two entity
relations that it referenced, and each of those two foreign
keys would be two-part keys.

3. The method of claim 2, wherein

Teorey teaches that each entity instance record contains a

63
069

Claim Language”

Teorey, Huber and Zloof/Shaw References

said desired entity is identified by
said desired record identifier in said
desired entity instance table.

record identifier that corresponds to the desired entity. For
example, in the SKILL entity instance table of FIG. 13, the
SKILL entity instances each contain a SKILL-NO record
identifier that identifies the desired SKILL entity instance
record. Teorey at 216, FIG. 13.

4. (once amended) The method of
claim 1, wherein said retrieving a
specific relation instance record
comprises:

retrieving a table identifier for said
relation instance table from said
specific relation type record; and

Teorey teaches that each relationships relation (i.e. relation
type record) includes the name of the relationship. Teorey
at 216, Table 1. This relationship relation is stored in the
data dictionary as a table definition BT DEF (i.e. specific
relation type record). Huber, 7:3-8. Huber further teaches
that every table definition includes location information
that permits the database to locate the file containing the
corresponding table data (i.e. the relation instance table).
Huber 7:3-8, 15:17-21, 15:43-45 This location information
is the table identifier, as claimed.

retrieving said specific relation
instance record from said relation
instance table based on said specific
relation type record and said
provided entity. '

In Huber, the base table (BT) identified by the table
identifier is the table (i.e. the relation instance table), which
contains the specific relation instance records that are
based on the specific relation type récord and provided
entity. ~ :

In Teorey, each relation instance table contains a plurality:
of relation instance records. The relationships in Teorey
are transformed into relatioriship relations. Teorey at 208,
Sec. 3.1(3). Examples of these relationship relations are
shown in FIGS. 4 and 10, clearly showing that each
relationship relation includes a plurality of rows, each of
which is a relation instance record. Teorey at 203, FIG. 4,
212-13, FIG. 10. Each relation instance record relates an
entity instance in one entity table to an entity instance in a
second entity table. For example, the SKILL_USED
relationship instance table relates entities in the :
EMPLOYEE table to entities in the SKILL table. Teorey
at 203, FIG. 4; 216, FIG. 13, Table 1. These relation
instance tables are represented in Huber as base tables
(BT). Huber, 4:66-5:3; 5:17-20, 15:17-21, 15:43-45 .

A critical component of databases is that they allow
retrieval of items, including relation instance records. One
type of front-end user interface which eases access to the

64
070

Claim Language” |

Teorey, Huber and Zloof/Shaw References

information stored in the database is one created using the
QBE language, as noted above.

5. The method of claim 1, further
comprising retrieving data
specifying said provided relation
type from an inquiry table.

Teorey teaches that relationships (relation types) are
transformed into relationship relations. Teorey at 208, Sec.
3.1(3). Each of these relationships bears a name, for
example SKILL_USED is the name of a relationship
between the EMPLOYEE entity type and the SKILL entity
type. Teorey at 203, FIG. 4; 216, FIG. 13, Table 1. The
relation instance table for SKILL_USED is represented in
the database systems of Huber as a base table (BT).

Huber, 4.66-5:3; 5:17-20.

The use of inquiry tables such as ones based on the QBE
language was an inherent part of managing E-R databases.
A QBE table was one form of a graphical front-end
interface that allowed a user to access the underlying
database containing entities and relations. According to
The Database Step-by-Step textbook, “The [QBE] user
interface, designed for technical and nontechnical people
alike, is a two-dimensional, on-line, video display terminal
oriented query facility.” Mark L. Gillenson, Database Step-.
by-Step 141-42 (2d Ed. 1990). While a QBE interface is
pictorial in nature, a SQL’s interface is more linear and
textual. Id. “The user begins by specifying which table is
needed for a particular query. Once a table(s) is chosen,
the system displays an outline of that table, showing the
table name and the names of its fields. To issue a query,

the user gives an example of the required information,

which amounts to specifying a variable name in the
column of the desired information.” Id.

Zloof teaches Query-by-Example (QBE). When a user
performs an operation , e.g., query, update, define, or
control, against the data base, the user fills in an example
of a solution to that operation in skeleton tables that can be
associated with actual tables in the database. For
illustration, suppose we want all green items sold in the toy
department.

figure 13 Quelified reirieval ubng Feks

weg Em coue §oma saks | omr 3 ooy |

tor Wt f

L4501 SHEEN

65
071

Claim Language

Teorey, Huber and Zloof/Shaw References

Fig. 13 of Zloof above shows the two skeleton tables:
“TYPE” and “SALES”. These two tables are linked by the
word “NUT”. Thus Figure 13 shows an inquiry table
consisting of two skeleton tables linked together like the
level 1 and 2 rows of the INQ.DEF table 740 in Figure 7-1
of Doktor.

The ‘326 patent to Shaw teaches how to syrithesizé a linear
query for accessing the contents of a relational database
from a graphic query input at a user terminal, including
relation records. Shaw takes the QBE skeleton tables , for
example, from Zloof, and generates an SQL query, which
is then used to retrieve the inquiry results from the
relational database.

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry
for each skeleton or example table in a query 2 [col. 11,
lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in
Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of an example table in a query Q. The content
89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL
70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24.

66
072

Claim Language”

Teorey, Huber and Zloof/Shaw References

DXEGFT 106
. | smmoomswws { semnoosman)
iGFTSQ. 1€wue 7 72 IGFTTABLE iC~—+
i i / -473 Tanswonomens | t
R ~-=-1GFTPTCOL | {
LI 74 (GFTCOLCT H
o 73 P ————————} H
M| 0--1--—---- IGFTPTROM !
aSannommms | H H 76 IGFTROMCY. 4
GFTCOLMN oot | § m—e—————————— § 4
{e=ronaneon | H H H 91 t —
IGFYCNMPT |+ : 82 - 177
I T g0 — S t
H 29 *= -=>{GF TRON S R
+ > ' H H
. a8 s 84')3- GFTPTRCL ! oo
Satmsmnow t 1 4 {GFTOFLDS | L |
1eFTcDATA T [Jom s § L
{ emTssooaes | 90 i %/S.GFTBLEIX e}
IBFTPTCDT -T2~ L it ' t
IGFTECOTLN ¢ H t 1 a8y : a3 t 4
: ——=1.921 83 1 e1
{GFYBINDR l—-—l—-'L——-# [] 9 —immrasmmoss | LY
H —*‘-‘—"‘-I/V4 H a3 { ¢~———=>iGFTCOLCN
IGFTSIMCN | e ey {anonaoaann !
rmm e ———— o == IGFTPTRCN
! e} ! P 103 i 98 :GFTCOMIN @ H
! H e ——————1 !
102: { 100 (GFTROWIX !we————s
{ ronomponms H H ~— I ________ e
IGFTCONTB iC~—e 1054 t 99
| mmasonosma ! . H 104 -
H 97 ¢ H L e ——
b D IGFTCNINT ¢
) {mowsnsmoens |
F I G 5 1 101 i

Where the SQL query operates on a relationship relation as
described in Teorey, the SQL query will include an SQL
FROM statement which identifies the name of relationship
relation being queried. Shaw, 15:28-31. This name is the
relation type, since the relationship relation is named with
it’s type, e.g. the SKILL_USED relationship type is also
the name of the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.
10; 216, FIG. 13, Table 1.

The query translator of Shaw receives as an input a QBE
query, which is a “graphic language query expressed as
one or more elements . . . appearing in rows and columns
of an example table including one or more source and
target tables.” Shaw, 2:38-42. Where the source table
included in the example table is a relationship relation, as
discussed in Teorey, this example table contains the name
of the source table, which is “data specifying said provided
relation type” as claimed. When the example query is
translated as part of the query processing, this relation type
data is retrieved in order to form part of the SQL query
submitted to the DBMS. Shaw, 15:29-31.

6. The method of claim 1, further
comprising retrieving data

As noted above, the use of inquiry tables such as ones

| based on the QBE language was an inherent part of

67
073

Claim Language"

Teorey, Huber and Zloof/Shaw References

specifying said provided entity
from an inquiry table.

managing E-R databases. A QBE table was one form of a
graphical front-end interface that allowed a user to access
the underlying database containing entities and relations.
According to The Database Step-by-Step textbook, *“The
[QBE] user interface, designed for technical and
nontechnical people alike, is a two-dimensional, on-line,
video display terminal oriented query facility.” Mark L.
Gillenson, Database Step-by-Step 141-42 (2d Ed. 1990).

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry
for each skeleton or example table in a query 2 [col. 11,
lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in
Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of-an example table in a query Q. The content
89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL
70. GFTSQL 70 contains the SQL for the query.

One element of the SQL query stored in the GFTSQL 70 is
the entity provided as a parameter to the query. For
example, Table 24 of Shaw depicts an example of a query,
in both SQL and QBE formats. Shaw, 26:59-68. In this
example, the query is seeking the employees who work in
the San Jose Department, and who meet a salary condition
of > $20,000. Id. The provided entity is “DEPT”, and the
desired entity is “EMP”. Id.

The QBE example table shown in Table 24 is another
example of an inquiry table as claimed. This inquiry table
contains the same DEPT provided entity information,
which is retrieved from the table in order to create the SQL
statement SELECT DNO FROM DEPT shown in Table
24. Shaw, 15:38-42, 26:59-68.

7. The method of claim 1, further
comprising retrieving a second
desired entity type record
containing a second desired entity
type from said entity definition
table, wherein said second desired
entity type record specifies a second
desired entity instance table
associated with said second desired
entity type.

This limitation requires the presence of two entity type
records, and thus two entity instance tables. Otherwise it is
the same as the “retrieving a desired entity type record”
element of Claim 1. :

Teorey clearly teaches relation types which create relation
instance tables that involve more than two entity instances.
Such relationships are disclosed as “ternary” or more
generally “n-ary” relationships. For example, see the
ternary relationships of FIG. 10. Teorey at 212-13, FIG.

68
074

‘,

Claim Language

Teorey, Huber and Zloof/Shaw References

10. When executing queries on these relationships, the
entity type records of, for example, the EMPLOYEE,
PROIJECT and SKILL entities would be retrieved, for the
ternary relationship SKILL-USED of FIG. 10(b). Teorey
at 212; see also id at 216, Fig. 13. -

A critical component of databases is that they allow
retrieval of items, including entity type records. One type
of front-end user interface which eases access to the

.| information stored in the database is one created using the

QBE language, as noted above.

8. The method of claim 7, further
comprising retrieving a third
desired entity type record
containing a third desired entity
type from said entity definition
table, wherein said third desired
entity type record specifies a third
desired entity instance table
associated with said third desired
entity type.

This limitation requires the presence of three entity type
records, and thus three entity instance tables. Otherwise it
is the same as the “retrieving a desired entity type record”
element of Claim 1.

Teorey clearly teaches relation types which create relation

'| instance tables that involve more than two entity instances.

Such relationships are disclosed as “ternary” or more
generally “n-ary” relationships. For example, see the
ternary relationships of FIG. 10.

ENGINEER

SKILL-USED

SKILL PROJECT

Fig. 10 depicting a ternary relation.

Teorey at 212-13, FIG. 10. When executing queries on
these relationships, the entity type records of, for example,
the EMPLOYEE, PROJECT and SKILL entities would be
retrieved, for the ternary relationship SKILL-USED of
FIG. 10(b). Teorey at 212; see also id at 216, Fig. 13.

A critical component of databases is that they allow
retrieval of items, including entity type records. One type
of front-end user interface which eases access to the
information stored in the database is one created using the

69
075

Claim Language"

Teorey, Huber and Zloof/Shaw References

QBE language, as noted above.

9. The method of claim 1, further
comprising retrieving a second
specific relation instance record
defining a relation of a second
provided relation type between said
provided entity and said desired
entity from a second relation
instance table corresponding to said
second provided relation type
record.

This claim as now amended requires retrieval of a second
specific relation instance record of a second relation type,
between the same two entities. Otherwise this claim is the
same as the “retrieving a relation instance record defining a
relation of said provided relation type” element of claim 1.

Teorey expressly permits the existence of two different
relationships, of two different relation types, between the
same two entities. Teorey at 205 (Step 1.3(1)) (“Note that
two or more relationships are allowed between the same
two entities as long as the two relationships have different
meanings.”). Thus a query could provide two relation
types between the two entities, and both relation instance
records defining the two relations between the two entity
instance records would be retrieved.

A critical component of databases is that they allow
retrieval of items, including relation instance records. One
type of front-end user interface which eases access to the
information stored in the database is one created using the
QBE language, as noted above. B

10. A relational database processing
system comprising:

an entity definition table containing
a first entity type record defining a
first entity type;

Teorey teaches that entity types (i.e. entities) can be
defined for a relational database. Teorey at 204 (Sec. 2.1,
step 1.1) For example, FIG. 13 and Table 1 depict a
variety of entity types, including SKILL, DEPARTMENT,
DIVISION, PROJECT, EMPLOYEE and others. Teorey
at 216, FIG. 13, Table 1. '

70
076

Claim Language”

Teorey, Huber and Zloof/Shaw References

SKILL DEPARTMENT 0IVISION :

bt DPT-HO |°"""‘

SKILL-USED

PROJECT EMPLOYEE

ASSIGNED-TO

LOCATION
LOC-NAME

EMP.MANAGER EMPENGINEER EMPTECHMNICIAN EMP SECRETARY
BELONGS-TO

PRF-ASSOC e

Figwo 13, Company personnel and project. database candidate relations.

Teorey further teaches that its database system includes a
data dictionary. Teorey at 217. (“If the EER constructs do
not include nonkey attributes, the data requirements
specification (or data dictionary)-must be consulted.”).
Teorey further teaches that each of the defined entity types
can be transformed to a “relation.” Teorey at 216, Table 1.
The definitions of these entity types transformed into
relations are stored in the data dictionary, because that is
the location where Teorey teaches that attributes of
candidate relations are stored and can be retrieved from.
Teorey at 217 (Step 3.2).

Huber teaches that a relational database, such as the
relational database depicted in Teorey, includes sets of
related items (i.e. the entity types of Teorey), which are
stored in two-dimensional tables. Huber, 4:66-5:3. Huber
further teaches that the definitions of these tables (i.e. the
definitions of the entity types) are stored in the data
dictionary. Huber, 6:68-7:8. Each of these table
definitions contains field definitions defining the fields of
each entity type, as well as location information that points
to the file containing the actual base table (BT), which
contains the entity data (i.e. the entity instance tables).
Huber, 7:3-8. Thus BTDEF 213 of Data Dictionary 202
specifies where BT 101 is located, the size and fields of the
records representing the rows, the keys used to access the

records. Huber, 15:43-49. BTDEF 213 is related in part to

71
077

Teorey, Huber and Zloof/Shaw References

Claim Language"

BT 101 by three fields:. TNAME 443 is the name of BT
101; TFID 445 is the file identifier of the file which
contains BT 101; and TRLEN 447 is the length of the
records which represent the rows of BT 101 in the file. 15:
17-21.

Huber teaches that the data dictionary is itself stored as a
database, and thus the data dictionary itself includes tables
that contain the table definitions. Huber, 7:10-13. Each
table definition (BTDEF) is stored as a record in the table.
Huber, 14:44-45. Thus Huber, in combination with Teorey
teaches, that the data dictionary can be an entity definition
table.

a first entity instance table
associated with said first entity

type,

The entity instance tables shown in Teorey are examples of
tables which contain entity data. Teorey, FIG. 13 (SKILL,
DEPARTMENT, DIVISION, PROJECT, EMPLOYEE
and other tables). These entity instance tables are each
associated with a corresponding entity type, as shown in
FIG. 13 and Table 1. Teorey, FIG. 13, Table 1. Further
entity instance tables are shown in FIG. 1 of Huber, for
example the Customer Table 101(a), the Order Table
101(c), and the Parts Table 101(d). Huber, FIG. 1.

a plurality of entity instance records
stored in said first entity instance
table;

In Teorey, each entity instance table contains a plurality of
entity instance records. The entities in Teorey are
transformed into entity relations. Teorey at 208, Sec.
3.1(1). These entity relations are similar in layout to the
relationship relations shown in FIGS. 4 and 10, except they
contain entity instance records rather than relationship
instance records. Teorey at 203, FIG. 4; 212-13, FIG. 10.

Examples of these entity relations are: EMPLOYEE (with
identifier EMP-NO and descriptors EMP-NAME, HOME-
ADDRESS, DATE-OF-BIRTH, JOB-TITLE, SALARY,
SKILL), ENGINEER (with identifier EMP-NO and
descriptors EMP-NAME, HOME-ADDRESS,
SPECIALTY), SECRETARY (with identifiers EMP-NO
and descriptors EMP-NAME, DATE-OF-BIRTH, o
SALARY, SPEED-OF-TYPING), TECHNICIAN (with
identifier EMP-NO and descriptors EMP-NAME, SKILL,
YEARS-OF-EXPERIENCE). Teorey, Step 1.2 at 205:
Thus each entity relation (i.e. entity instance table) in
Teorey contains a plurality of entity instance records.

The entity instance tables in Huber, for example the
Customer Table 101(a), the Order Table 101(c), and the

72
078

Teorey, Huber and Zloof/ShziW References

Claim Language13

Parts Table 101(d), also each contain entity instance
records which correspond to the instances of the entities
Customer, Order and Parts. Huber, 4:66-5:13, FIG. 1.

a relation definition table
containing a first relation type
record defining a provided relation

type;

Teorey also teaches that relation types (i.e. relationships)
can be defined for a relational database. Teorey at 205
(Sec. 2.1, step 1.3). For example, FIG. 13 and Table 1
depict several relation types, including SKILL-USED,
ASSIGNED-TO AND BELONGS-TO. Teorey at 216,
FIG. 13, Table 1. Teorey further teaches that each of the
defined relation types can be transformed into a “relation”
Teorey at 216, Table 1. The definitions of these relation
types transformed into relations are stored in the data
dictionary because that is the location where Teorey
teaches that attributes of candidate relations are stored and
can be retrieved from. Teorey at 217 (Step 3.2).

Huber further teaches that the definitions of these tables
(1.e. the definitions of the relation types) are stored in the
data dictionary. Huber, 6:68-7:8. Each of these table
definitions contains field definitions defining the fields of
each relation type, as well as location information that
points to the file containing the actual base table (BT),
which contains the relation data (i.e. the relation instance
tables). Huber, 7:3-8. Thus, BTDEF 213 of Data
Dictionary 202 specifies where BT 101 is located, the size
and fields of the records representing the rows, the keys
used to access the records. Huber, 15:43-49.

Huber further teaches that the data dictionary is itself
stored as a database, and thus the data dictionary itself
includes tables that contain the table definitions. Huber,
7:10-13. Each table definition (BTDEF) is stored as a
record in the table. Huber, 14:44-45. Thus Huber in
conjunction with Teorey teach that the data dictionary can

'| be a relation definition table.

As indicated above, while Huber teaches the use of a
relation definition table, the use of data dictionaries to map
the contents of the underlying database, including the
entities and relationships within it, was already common in
the field. A data dictionary was considered “[a] system
database that contain[ed] information about a user -
database, such as location of data, lists of fields and tables,
and data types and lengths.”

73
079

Claim Language13

Teorey, Huber and Zloof/Shaw References

Huber further teaches that the REFDEEF table 313 contains
data defining the referenced-referencing relationship
between base tables, such as the base tables which are used
to create the relationship relation that is itself represented
as a table. Huber, 10:43-49. The REFDEF table stores a
pointer, REFDPTR 312, which points to the referenced
base table, and another pointer, REFGPTR 314, which
points to the referring base table. Huber, 11:1-4. These
two pointers are entity table type identifiers. Thus Huber
teaches that the REFDEEF table 313 contains data defining
the relationship relations defined in Teorey.

a first relation instance table
associated with said provided
relation type; and

Teorey teaches that relationship relations are represented
as tables. Teorey at 203, FIG. 4; 212-13, FIG. 10; 216,
FIG. 13. For example, in FIG. 10 SKILL-USED is a
relation type associated with the following relation

-| instance table:

SKILL-USED

EMP-NO SKILL~NO PROS-NAME

3 A3 ALPHA
AS BETA

K 86 ALPHA

3 [BETA

4 2 CELT &

4 2 GAMMA

B A BEYA

8 o BETA
AS ALPHA
612 EPSILON
- ALPHA
Cé EPBILON

[G)]

Figure 10. Ternary relatinnship transformation rules.

Huber teaches that each of the sets of related items, in this
case the relationship relations (i.e. relation types) defined
in Teorey, are stored in two-dimensional tables. Huber,
4:66-5:3. These tables are associated with the relation type

_information stored in the REFDEF table 313 and in the

table definition for the relationship relation. REFDEF
table 313 contains general information about the
relationship (15:55-60), and the table definition (6:68-7:8).

a first relation instance record of
said provided relation type, said -
first relation instance record relating
a desired entity in one of said entity
instance records to a provided
entity.

In Teorey, each relation instance table contains a plurality
of relation instance records. The relationships in Teorey
are transformed into relationship relations. Teorey at 208,
Sec. 3.1(3). Examples of these relationship relations are
shown in FIGS. 4 and 10, clearly showing that each
relationship relation includes a plurality of rows, each of
which is a relation instance record. Teorey at 203, FIG. 4;
212-13, FIG. 10. Each relation instance record relates an
entity instance in one entity table to an entity instance in a

second entity table. For example, the SKILL,_USED

v 74
080

Claim Language”

Teorey, Huber and Zloof/Shaw References

relationship instance table relates entities in the
EMPLOYEE table to entities in the SKILL table. Teorey
at 203, FIG. 4; 216, FIG. 13, Table 1. :

11. The relational database
processing system of claim 10,
wherein each of said entity instance
records is identified by a record
identifier.

Teorey teaches that the entity instance records have key
fields, which uniquely identify the entity instances. Teorey
at 198 (“The major interattribute dependencies are between
the entity keys (unique identifiers) of different entities that
are captured in the ER modeling process.). Huber also
teaches that the entity instance records, stored in the base

tables, have primary key fields. Huber, 5:28-31.

12. The relational database
processing system of claim 10,
wherein said first relation instance
record contains a desired record
identifier and a desired entity type
corresponding to a desired entity
instance record containing said
desired entity.

Teorey teaches that each relation instance record contains a
record identifier that corresponds to the desired entity
instance record. For example, in the relation instance table
of FIG. 4, the SKILL-USED relations instances each
contain a SKILL-NO record identifier that identifies the
desired SKILL entity instance record. Teorey at 203, FIG.
4; 216, FIG. 13. Each relation instance record also
contains a desired entity type, reflected in the column
header, for example “SKILL” in the column header
SKILL-NO in FIG. 4.

Teorey further teaches that a key (i.e. a record identifier)
can be a composite identifier, that is, an identifier
composed of two or more attributes. Teorey at 204 (Step
1.1(5)). These two attributes could include the entity type
and a record identifier, and thus anticipate this claim.
Teorey teaches two alternate treatments for composite
identifiers, one of which is to eliminate them where
possible, but the second treatment is to retain the identifier
where it is reasonably natural. Id. It would be reasonably
natural to retain a composite identifier where it permitted
the overloading of the record identifier column to designate
two or more different target tables, as suggested by FST.

Huber also teaches the use of two-part keys, by providing
that “[e]ach row in a base table 101(x) must be uniquely
identified by a primary key consisting of one or more
fields.” Huber, 5:28-30. Similarly, foreign keys may
include plural “fields which are a primary key in a different
base table 101(y).” Huber, 5:31-33. Therefore, a
relationship relation as taught in Teorey, which is stored as
a base table in Huber, would include two foreign keys to
the two entity relations that it referenced, and each of those
two foreign keys would be two-part keys.

13. The relational database

Teorey teaches that relationship relations are stored in

75
081

Claim Language”

Teorey, Huber and Zloof/Shaw References

processing system of claim 10,
wherein said first relation type
record comprises a table identifier
identifying said first relation
instance table.

tables. Teorey at 203, FIG. 4; 216, FIG. 13. Huber further
teaches that the definitions of these tables (i.e. the
definitions of the relation types) are stored in the data
dictionary. Huber, 6:68-7:8. Each of these table
definitions contains field definitions defining the fields of
each relation type, as well as location information that
points to the file containing the actual base table (BT),
which contains the relation data (i.e. the relation instance
tables). Huber, 7:3-8. Thus the relation type records
include an identifier that points to the relation instance
table.

14. The relational database
processing system of claim 10,
further comprising an inquiry table
containing an inquiry record,
wherein said inquiry record
specifies said provided relation type
and said provided entity.

Teorey teaches that relationships (relation types) are

| transformed into relationship relations. Teorey at 208, Sec.

3.1(3). Each of these relationships bears a name, for
example SKILL_USED is the name of a relationship
between the EMPLOYEE entity type and the SKILL entity
type. Teorey at 203, FIG. 4; 216, FIG. 13, Table 1. The
relation instance table for SKILL_USED is represented in
the database systems of Huber as a base table (BT). -
Huber, 4:66-5:3; 5:17-20.

Shaw takes the QBE skeleton tables, for example, from
Zloof, and generates an SQL query, which is then used to
retrieve the inquiry results from the relational database.

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry
for each skeleton or example table in a query 2 [col. 11,
lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in
Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of an example table in a query Q. The content
89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL
70. GFTSQL 70 contains the SQL , such as the SQL select

| statement in Table 24 (inquiry record).

Where the SQL query operates on a relationship relation as
described in Teorey, the SQL query will include an SQL
FROM statement which identifies the name of relationship
relation being queried. Shaw, 15:28-31. This name is the
relation type, since the relationship relation is named with
it’s type, e.g. the SKILL_USED relationship type is also
the name of the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.
10; 216, FIG. 13, Table 1. Thus for example,

SKILL_USED is the name of a relationship between a

76
082

Claim Language

Teorey, Huber and Zloof/Shaw References

provided EMPLOYEE entity and a desired SKILL entity.

15. The relational database
processing system of claim 10
further comprising:

a second entity instance table
associated with a second entity
type; and

Teorey teaches two entity instance tables, for example the
SKILL and DEPARTMENT entity instance tables of FIG.
13. Teorey at 216, FIG. 13, Table 1.

wherein said entity definition table
contains a second entity type record
containing said second entity type
and associating said second entity
instance table with said second
entity type.

Teorey teaches that all entities, including both SKILL and
DEPARTMENT entities, are transformed into relations
that are stored in the data dictionary. Teorey at 216, Table
1. Huber teaches that the data dictionary contains a set of
table definitions. Huber, 6:68-7:3. A set, by its very
nature, can contain two (or more) entity type records.

As indicated above, while Huber teaches the use of a
relation definition table, the use of data dictionaries to map
the contents of the underlying database, including the
entities and relationships within it, was already common in
the field. A data dictionary was considered “[a] system
database that contain[ed] information about a user _
database, such as location of data, lists of fields and tables,
and data types and lengths.”

16. The relational database
processing system of claim 15
further comprising:

a third entity instance table
associated with a third entity type;
and

Teorey teaches three entity instance tables, for example the
SKILL, DEPARTMENT and DIVISION entity tables of
FIG. 13. Teorey at 216, FIG. 13, Table 1.

77
083

Claim Language”

Teorey, Huber and Zloof/Shaw References

SKiLL DEPARTMENT DIVISION
SXAL-ND

DEPT-NO DW-to

SKILL-USED
OP-ND SKLL-NO PROV-NAME

PROJECT EMPLOYEE
PROJ-NAME BMP-N0

ASSIGNED-TOD

‘UWWN LOC-NAME

LOCATION -
LOC-NAME

EMP.MANAGER EMP.ENGINEER - EMP.TECHNICIAN EMP.SECRETARY
EP-0 £P-N) oP-80 PN

BELONGS-TO
l PA-NO CMP-NO]

PRF-ASSOC PC
kaan I PC-ND

Figure 13. Campany personnel and project database candidate relations.

wherein said entity definition table
contains a third entity type record
containing said third entity type and
associating said third entity instance
table with said third entity type.

Teorey teaches that all entities, including SKILL,
DEPARTMENT and DIVISION entities, are transformed
into relations that are stored in the data dictionary. Teorey
at 216, Table 1. Huber teaches that the data dictionary
contains a set of table definitions. Huber, 6:68-7:3. A set,
by its very nature, can contain three (or more) entity type
records.

As indicated above, while Huber teaches the use of a
relation definition table, the use of data dictionaries to map
the contents of the underlying database, including the
entities and relationships within it, was already common in
the field. A data dictionary was considered “[a] system
database that contain[ed] information about a user
database, such as location of data, lists of fields and tables,
and data types and lengths.”

17. The relational database
processing system of claim 10
further comprising:

78
084

Claim Language”

Teorey, Huber and Zloof/Shaw References

a second relation instance table
associated with a second relation
type; and

Teorey teaches two relation instance tables, for example
the SKILL-USED and ASSIGNED-TO relation instance
tables of FIG. 13. Teorey at 216, FIG. 13, Table 1.

wherein said relation definition
table contains a second relation type
record containing said second
relation type and associating said
second relation instance table with
said second relation type.

Teorey teaches that all relationships, including both
SKILL-USED and ASSIGNED-TO relationships, are
transformed into relations that are stored in the data
dictionary. Teorey at 216, Table 1. Huber teaches that the
data dictionary contains a set of table definitions. Huber,
6:68-7:3. A set, by its very nature, can contain two (or
more) relation type records. Huber further teaches that the
REFDEEF table used to define relationships contains a
separate record for each relationship. Huber, 10:43-51;

-15:50-55. Thus the relation definition table can contain

two (or more) relation definition records, each of which are
associated to a different relation instance table (e.g.
SKILL-USED and ASSIGNED-TO relation instance
tables). :

18. The relational database
processing system of claim 17
further comprising:

a third relation instance table
associated with a third relation type;
and

Teorey teaches three relation instance tables, for example
the SKILL-USED, ASSIGNED-TO and BELONGS-TO
relation instance tables of FIG. 13. Teorey at 216, FIG. 13,
Table 1.

wherein said relation definition
table contains a third relation type
record containing said third relation
type and associating said third
relation instance table with said
third relation type.

Teorey teaches that all relationships, including SKILL-
USED, ASSIGNED-TO and BELONGS-TO relationships,
are transformed into relations that are stored in the data
dictionary. Teorey at 216, Table 1. Huber teaches that the
data dictionary contains a set of table definitions. Huber,
6:68-7:3. A set, by its very nature, can contain three (or
more) relation type records. Huber further teaches that the
REFDEF table used to define relationships contains a
separate record for each relationship. Huber, 10:43-51;
15:50-55. Thus the relation definition table can contain
three (or more) relation definition records, each of which
are associated to a different relation instance table (e.g.
SKILL-USED, ASSIGNED-TO and BELONGS-TO
relation instance tables).

B. Teorey and Kumpati

Teorey and Kumpati together teach all limitations of claims 1-4, 7-13, 15-18 of

the ‘259 patent as discussed in the chart below. Teorey, Kumpati and Zloof and/or Shaw

79
085

together teach all limitations of claims 5-6 and 14 of the ‘259 patent, as discussed in the

chart below:

Claim Language*

1. A method for retrieving a desired
entity of a desired entity type from
a relational database, wherein said
desired entity is related to a
provided entity by a provided
relation type associating an entity
type of said provided entity with
said desired entity type, said '
method comprising:

Teorey, Kumpati, and Zloof/Shaw References

Data dictionaries were well-known in the arts in 1990.
The IBM Dictionary of Computing Terms defines
“data dictionary” as “[a] list of all files, fields, and
variables used in a data base management system. A
“data dictionary” helps users remember what items
they have to work with and how they have been
defined. Particularly helpful when writing a large
number of linked procedures or programs that share a
data base.” The IBM Dictionary of Computing Terms
87 (8th Ed. 1987).

Kumpati teaches that the active data dictionary of
Kumpati is used to process queries for desired data,
including the entities stored in the data files of
Kumpati. Kumpati, 5:52-68.

It would have been obvious to combine the data
dictionary of Kumpati with the relational database of
Teorey to help users remember what items they have
to work with and how they have been defined.

Teorey in Figufe 8(f) shows that one can retrieve an
engineer (desired entity) of the “ENGINEERS”
(desired entity type) that “BELONGS-TO” (relation
type) a particular professional association (provided-
entity) of the PRF-ASSOC (provided entity type).

Evary Seutsesi oyl eysociticn could have
meny MomOers wha ere anginders, 6r &d
enfingere. Evony enginnor coutd belong 19
mery prefessions! BesoCistions, o rand.

T

EMGINEER(EIT NG, ¥
BELONGS-TCRA-ND ENP-NDD

(1]

retrieving a specific relation type
record defining said provided
relation type from a relation
definition table;

Teorey in combination with Kumpati teaches a data
dictionary that includes a relation definition table that
contains relation type records which define relation
types. A user would supply such a relation type in
making an inquiry to the query module 124 of
Kumpati. Kumpati, 5:63-68. The query processor 12

N

' The claim language recited is inclusive of the amendments patentee included in its Response.

80
086

Claim Language™

Teorey, Kumpati, and Zloof/Shaw References

retrieves the identity of the various requested data
elements from the data dictionary. Kumpati, 3:66-4:2.

Teorey teaches that relation types (i.e. relationships)
can be defined for a relational database. Teorey at 205
(Sec. 2.1, step 1.3). Each of these relation types
defines a relationship between two or more entities.
For example, FIG. 13 and Table 1 depict several
relation types, including SKILL-USED, ASSIGNED-
TO AND BELONGS-TO. Teorey at 216, FIG. 13,
Table 1.

SKILL DEPARTHMENT DIVISION
SKAL-ND '

DEPT-ND . DIv-NO

SKILL-USED _
!f:w-m SKLL-NO PROU-NAME

PROJECT EMPLOYEE
PROJ-NAME - EMP-NO

ASSIGNED-TO
Inf-uo LOC-NAME

LOCATION
LOC-NAME

EMP MANAGER EMP.ENGINEER EMPTECHNICIAN EMP.SECRETARY
eP-No 2P-NO oaP-N0 oP-0

BELONGS-TOD
I PA-NG EMP-MO 1

PRF-ASSOC PC

‘Pd-’d I PC-NO

Figuwre 13. Company personnel and project database candidate relations.

81
087

Claim Language™

Teorey, Kumpati, and Zloof/Shaw References

Tabte 1. Transtormation of Entities end Relativnships ta Retations (Example)
Step 2.1. Entities to retations
1. DIVISION{DIV-NO,, HEAD-EMP-NO)
2. DEPARTMENT(DEPT-NO, DFEPT-NAME, ROOM-NO, PHONE-NO, ..., PIV.ND,
MANAG-EMP-NO)
3. EMPLOYEB(EMP-NO, EMP.NAME, JOB.TITLE, ..., DEPT-NO, SPOUSE.EMP.NO, PC.NO)
4. SKILL(SKILL-NO, ..)
5. PROJECTiPROJ-NAME, ..)
6. LOCATION(LOC-NAME, ...)
7. EMP.MANACER(EMP.NO, ...}
8. EMP ENGINEER(EMP-NO, ..)
9. EMPTECHNICIAN(EMP-NO, ..)}
10. EMP.SECRETARY(EMP-NO, ..)
1. PCIPC.NO, ..
12. PRF-ASSOC(PA-NO, ..)

Step 2.2. Binary or unary relationships to relations
13. BELONGS-TO(PA-NG, EMP-NO)

Step 23. Ternary (ar any n-ary} miationships to relations

14, SKILL-USEIXEMP-NA), SKILL-NO, PROJ-NAME)
15. ASSIGNED-TO(EMP-NO, LOC-NAME, PROJ-NAME)

Teorey further teaches that each of the defined relation
types can be transformed into a “relation” Teorey at
216, Table 1. The definitions of these relation types
transformed into relations are stored in the data
dictionary because that is the location where Teorey
teaches that attributes of candidate relations are stored
and can be retrieved from. Teorey at 217 (Step 3.2).

Kumpati further teaches that the definitions of these
tables (i.e. the definitions of the relation types) are
stored in the data dictionary. Kumpati, 8:35-59. The
data dictionary contains the entity set (i.e. relation
definition table) ERSET, which is the set of all
relationship sets (i.e. relation types) contained in the
database. Id. The table ERSET includes, for example,
records that define the relation types Building-Rooms
and Exits-Rooms. Id.

While Kumpati teaches the use of a relation definition
table, the use of data dictionaries to map the contents
of the underlying database, including the entities and
relationships within it, was already common in the
field. The IBM Dictionary of Computing Terms
defines “data dictionary” as “[a] list of all files, fields,
and variables used in a data base management system.
A “data dictionary” helps users remember what items

| they have to work with and how they have been

defined. Particularly helpful when writing a large
number of linked procedures or programs that share a
data base.” The IBM Dictionary of Computing Terms
87 (8th Ed. 1987). Webster’s NewWorld Dictionary
of Computer Terms defines “data dictionary” as “1. A
centralized repository of information about data such
as meaning, relationships to other data, origin, usage,
and format. It assists management, data base '

82
088

Claim Language'

Teorey, Kumpati, and Zloof/Shaw References

administrators, system analysts, and application
programmers in planning, controlling, and evaluating
the collection, storage, and use of data. 2. In the
System/36 interactive data definition utility, a folder
that contains field, format, and file definitions.”
Webster’s NewWorld Dictionary of Computer Terms
107 (3d Ed. 1988).

Under Kumpati, the user can make ‘“use of simple
commands to control, order and query not only the
underlying data controlled by the database
management system but also the contents of the data
dictionary.” Kumpati, Abstract. Thus, this “capability
enables the user to write generic application programs
which are logically independent of the data since the
subject database management system enables the
user/application program to access all data in the
database independent of each application program’s
data model.” Id.

Further, a critical component of databases is that they
allow retrieval of items, including relation type
records. One type of front-end user interface which
eases access to the information stored in the database
is one created using the QBE language. According to
The Database Step-by-Step textbook, “The {QBE]

| user interface, designed for technical and nontechnical

people alike, is a two-dimensional, on-line, video
display terminal oriented query facility.” To issue a
query, the user gives an example of the required
information, which amounts to specifying a variable

-name in the column of the desired information.” Mark

L. Gillenson, Database Step-by-Step 141-42 (2d Ed.
1990).

retrieving a specific relation
instance record defining a relation
of said provided relation type
between said provided entity and
said desired entity from a relation
instance table corresponding to said
specific relation type record;

Teorey in combination with Kumpati teaches that
relation instance records define relations between
entities, and that these records are stored in relation
instance tables, each of which corresponds to a
particular relation type. The query processor 124
retrieves the identity of the various requested data
clements from the data dictionary. Kumpati, 3:66-4:2.

Teorey teaches that relationship relations store
information that relates two or more entities to each
other, and-are represented as tables. Teorey at 202,

83
089

Claim Language

Teorey, Kumpati, and Zloof/Shaw References

FIG. 3, 203, FIG. 4; 212-13, FIG. 10; 216, FIG. 13.

CONCEPT REPRESENTATION EXAMPLE
$oilo il
DEGREE
unal MARRIED
v =
binary :_0_{: bepartrent——pvisic]
PART-
oF
temery wiL Loy
SKILL-USED
EMPLOVEE]
GNNECTIVITY
conmect —O———- cEPT EMPLOVEE
NABED-6¥
1:n —<>— DEPT Wmv:s]
CONTAINS
m:n + EHPLOVEE PROJECY
WORKS-ON
MEHBERSHIP OFF ICE
. TLASS ___0——
mendatany : L occurizo-gv
optionol c m
Figure 3. Fund, 1 EER ip types.

LAy SKILL-USED

Employess use a wide range.of different
skills on each project they ere essocictes
with,

SKiLL-USED(ENP-NQ, SKILL-NO PROJ-NAME)
FDs - EMP-NQ, SKiLL-NQ, PROJ-NQ -~-> b
(el key)
SKiLL-USED
EMP-NQ SKILL-NO PROJ-NAME
3 AY ALPHA
3 TAS BETA
3 88 ALPHA
3 BS BETA
4 Gi2 DELTA
4 Gl2 GAMMA
8 A3 BETA
9 §4 BETA
AS ALPHA
G12 EPSILON
Ce ALPHA
[o: EPSILON
(b)

Figure 10. Ternary relationship transformation rulgs,

Kumpati teaches that each of the sets of related items,
in this case the relationship relations (i.e. relation
types) defined in Teorey, are stored in two-
dimensional tables in the data files. Kumpati, 4:44-66.
For example, the relation instance table Building-

84
090

Claim Language*

Teorey, Kumpati, and Zloof/Shaw References

Rooms 702 stores the set of all relationships between
buildings and rooms. Kumpati, 9:43-44, FIG. 7.

FIG. 7 ' 701
BUILDING

BUILDING-EXITS

7
EXITS |- 705

< ™

ROOMS

704
BUILDING-ROOMS

/703

This relation instance table is associated with the
relationship set (i.e. relation type) “Buildings-Rooms”
that is stored in the relation definition table ERSET.
Kumpati, 8:35-39.

In Teorey, each relation instance table contains a
plurality of relation instance records. The
relationships in Teorey are transformed into
relationship relations. Teorey at 208, Sec. 3.1(3).
Examples of these relationship relations are shown in
FIGS. 4 and 10, clearly showing that each relationship
relation includes a plurality of rows, each of which is a
relation instance record. Teorey at 203, FIG. 4; 212-
13, FIG. 10.

SKILL-USED EMP-ND | SKILL-NO | PROJ-NAME.
38 27 GAMMA
38 st _GAMMA
38 27 DELTA
38 3 DELTA

(8)

Fig. 4 of Teorey depicts the relationship instance table
for the relationship SKILL-USED.

Each relation instance record relates an entity instance
in one entity table to an entity instance in a second
entity table. For example, the SKILL_USED
relationship instance table relates entities in the
EMPLOYEE table to entities in the SKILL table.

85
091

Claim Language*

Teorey, Kumpati, and Zloof/Shaw References

Teorey at 203, FIG. 4; 216, FIG. 13, Table 1.

In Kumpati, the relation instance records also contain
information that relates the two entities in the
relationship defined by the relation instance record.
For example, attributes of the Buildings-Rooms
relationship include information that identifies what
rooms are located in what buildings. Kumpati, 9:43-
46.

retrieving a desired entity type
record containing said desired
entity type from an entity definition
table, wherein said desired entity
type record specifies a desired
entity instance table associated with
said desired entity type; and

Teorey in combination with Kumpati teaches that
entity type information is stored in entity type records
in entity definition tables, and that this data can be
retrieved in order to operate on the database. The
entity type records identify entity instance tables,
including the entity instance tables containing entities
that a user would desire to retrieve. The query
processor 124 retrieves the identity of the various
requested data elements from the data dictionary.
Kumpati, 3:66-4:2.

Teorey teaches that entity types (i.e. entities) can be
defined for a relational database. Teorey at 204 (Sec.
2.1, step 1.1) For example, FIG. 13 and Table 1 depict
a variety of entity types, including SKILL,
DEPARTMENT, DIVISION, PROJECT,
EMPLOYEE and others. Teorey at 216, FIG. 13,
Table 1.

86
092

Claim Language"

Teorey, Kumpati, and Zloof/Shaw References

SKILL DEPARTHMENT . DIVISION

SKRL-NO

DEPT-NO dw-NO

SKILL-USED
[w-«o SKLL-KO PROJ-NAME

PROJECT EMPLOYEE
PMMK EMP-NO

ASSIGNED-TD
luf-uo LOC-NAME

LOCATION
LOC-NAME

EMP MANAGER EMP.ENGINEER EMP.TECHNICIAN EMP.SECRETARY
EMP-NO EMP-ND EMP-RO owP-g

BELONGS-TO
l PA-H0 EMP-MD]

PRF-ASSOC PC

|PA-¢U | PC-NO

Figure 13. Company peraonne! and project database candidate relations.

Teble t. Transformation of Entities and Relationships to Relations (Exampie)
Step 2.1. Entities to relations

- DIVISION(DIV-NO, . .., HEAD-EMP-NO}

DEPARTMENT(DEPT-NO, DEPT-NAME, ROOM-NO, PHONE-NO, .. ., DIV-NO,
MANAG-EMP-NO)

EMPLOYEE(EMP-NO, EMP-NAME, JOB-TITLE, . .., DEPT-NO, SPOUSE-EMP-NO, PC-N

. SKILIASKILL-NO, ..)

. PROJECT(PROJ-NAME, ..)

LOCATION(LOC-NAME, ..)

. EMPMANAGER{EMP-NQ,. ..}

. EMP ENGINEER(EMP-NQ, ..)

. EMPTECHNICIAN(EMP-NO, ..)

10. EMP.SECRETARY(EMP-NO,..))

L PC{PC-NO, .. 4

12. PRF-ASSOC(PA-NO,...)

-

CHPAC G

Step 2.2. Binary or unary relationships to relctions
13. BELONGS-TO(PA-NO, EMP-NO)

Step £3. Ternary (or any n-ury) relationships to relations
4. SKILL-ASSEDIEMEP-NO, SKILL-NO, PROJ-NAME)
15, ASSIGNED- ' TO(EMP-NO, LOC-NAME, PROJ-NAME)

Teorey further teaches that its database system
includes a data dictionary. Teorey at 217. (“If the
EER constructs do not include nonkey attributes, the
data requirements specification (or data dictionary)
must be consulted.”). Teorey further teaches that each
of the defined entity types can be transformed to a
“relation.” Teorey at 216, Table 1. The definitions of
these entity types transformed into relations are stored

in the data dictionary, because that is the location

87
093

Claim Language™

Teorey, Kumpati, and Zloof/Shaw References

where Teorey teaches that attributes of candidate

relations are stored and can be retrieved from. Teorey

at 217 (Step 3.2).

While Teorey clearly teaches that its relational
database has and uses a data dictionary, Teorey does
not describe the detailed layout of the data dictionary.
However, the ‘661 patent to Kumpati does provide a
detailed layout of a data dictionary for a relational
database. Kumpati, 8:30-9:27, FIG. 6.

601 FIC. 6 e02 603
| eRser
BUILDING
BUILO‘}NG-ROOHS
DEPENDENCY > BUILDEP%%gszS & ASSOCIATION
EXITS-ROOMS

604 —
ERSET-ATTRIBUTES

ATTRIBUTES

BUILDING NO.
BUILDING OLO“

0.
ac.
\

£

60’5/

Kumpati further provides that “[i]t is well known in
the art to provide a data dictionary in an database
management system.” Kumpati, 5:51-52. The data
dictionary contains the entity set (i.e. entity definition
table) ERSET, which is the set of all entity sets (i.e.
entity types) contained in the database. Kumpati,
8:35-39. The table ERSET includes, for example,
records that define the entity types Building, Rooms
and Exits. Id.

Kumpati teaches the entity definition table having
entity type records. These entity definition records
specify the location information that identifies the files
containing the entity instance tables. The entity
instance tables shown in Teorey are examples of tables
which contain entity data. Teorey, FIG. 13 (SKILL,
DEPARTMENT, DIVISION, PROJECT,
EMPLOYEE and other tables).

88
094

Claim Language™

Teorey, Kumpati, and Zloof/Shaw References

SKILL DEPARTMENT DIVISION
SKLL-HO PIPT-HO OIV-HOD

SKILL-USED
[w-m SKRL-HO PROMNAME

PROJECT EMPLOYEE
PROJ-MAME DP-R0

ASSIGNED-TO
EMP-NO LOC-NAIE

LOCATION
LOC-NAME

EMP.MANAGER EMPENGINEER EMP.TECHNICIAN EMP.SECRETARY
EMP-NO oP-0 £P-N0 o

BELONGS-TO

PRF-ASSOC ec
=] =]
Figure 13. Company personnel and project database candidate relations.
These entity instance tables are each associated with a
corresponding entity type, as shown in FIG. 13 and
Table 1. Teorey, FIG. 13, Table 1. Further entity
instance tables are shown in FIG. 7 of Kumpati, for
example the Building Table 701, the Exits Table 705,
and the Rooms Table 703. Kumpati, 9:29-42, FIG. 7.
These entity instance tables are associated with the
corresponding entity types “Building”, “Rooms” and
“Exits”.

retrieving said desired entity from

said desired entity instance table.

Desired entities, just like all entities, are stored in

entity instance tables, and can be retrieved therefrom.

In Kumpati, the database update processor 122
retrieves the requested data from database 130 and
stores it in a designated segment of a file buffer 121,

where it is buffered for use by the application program

89
095

Claim Languagéﬁ

Teorey, Kumpati, and Zloof/Shaw References

that requested it. Kumpati, 4:8-17.

In Teorey, each entity instance table contains a
plurality of entity instance records. The entities in
Teorey are transformed into entity relations. Teorey at
208, Sec. 3.1(1). These entity relations are similar in
layout to the relationship relations shown in FIGS. 4
and 10, except they contain entity instance records
rather than relationship instance records. Teorey at
203, FIG. 4; 212-13, FIG. 10, at 205 Step 1.2. Thus
each entity relation (i.e. entity instance table) in
Teorey contains a plurality of entity instance records.
The entity instance tables in Kumpati, for example the
Building Table 701, the Exits Table 705, and the
Rooms Table 703, also each contain entity instance
records which correspond to the instances of the entity
types “Building”, “Rooms” and “Exits”. An example
of the records contained within a typical file
representing an instance table is shown in FIG. 2.
Kumpati, 4:44-56. '

2. The method of claim 1, wherein
said relation instance record
specifies said desired entity by said
desired entity type and a desired
record identifier.

Teorey teaches that each relation instance record
contains a record identifier that corresponds to the
desired entity instance record. For example, in the
relation instance table of FIG. 4, the SKILL-USED
relations instances each contain a SKILL-NO record
identifier that identifies the desired SKILL entity
instance record. Teorey at 203, FIG. 4; 216, FIG. 13.
Each relation instance record also contains a desired
entity type, reflected in the column header, for
example “SKILL” in the column header SKILL-NO in
FIG. 4. Kumpati also teaches that the relation instance
records have key fields. Kumpati, 7:66-68. Kumpati
further teaches that the relation instance records
identify the desired entity type. For example, the
Building-Rooms table includes attributes that specify
the entity type “Building” and the entity type “Room”
for each relation instance. Kumpati, 9:43-45.

Even under FST’s new argument, advanced in their
Response, Teorey anticipates this claim. Response,
22-23. Teorey further teaches that a key (i.e. a record
identifier) can be a composite identifier, that is, an
identifier composed of two or more attributes. Teorey
at 204 (Step 1.1(5)). These two attributes could
include the entity type and a record identifier, and thus

90
096

Claim Language'

Teorey, Kumpati, and Zloof/Shaw References

anticipate this claim. Teorey teaches two alternate
treatments for composite identifiers, one of which is to
eliminate them where possible, but the second
treatment is to retain the identifier where it is
reasonably natural. Id. It would be reasonably natural
to retain a composite identifier where it permitted the
overloading of the record identifier column to
designate two or more different target tables, as
suggested by FST. Therefore, a relationship relation
as taught in Teorey, which is stored as a relationship
table in Kumpati, would include two foreign keys to
the two entity relations that it referenced, and each of
those two foreign keys would be two-part keys, as
discussed in FST’s Response.

3. The method of claim 2, wherein
said desired entity is identified by
said desired record identifier in said
desired entity instance table.

Teorey teaches that each entity instance record
contains a record identifier that corresponds to the
desired entity. For example, in the SKILL entity
instance table of FIG. 13, the SKILL entity instances
each contain a SKILL-NO record identifier that
identifies the desired SKILL entity instance record.
Teorey at 216, FIG. 13. Kumpati also teaches that the
entity instance records have key fields (i.e. Key 1, Key
2, ...) that are used to identify the entities stored in the
records of the entity instance tables. Kumpati, 4:51-
56, FIG. 2.

FIG. 2

FlLE 1

KEY :lﬂ,lﬂzlﬂﬂ 8,
! :

FILE n

\ KEY ‘! A?.l AS] ‘Si ‘QPI
H DatTa | .

. i

RECORD

i M Kl '
i : | t
t
¥

avz]f (4[5] -

i
1
1
§

key 3[4, T4, T4,

t——

DATARASE
) REY 1A AR TR T)
DATABASE e !
MANACEPENT KEY 2|~ [Ap] - A 53
SYSIEN KEY 3| 8,0 A 1A T AT A,
120
KEY 4] - [8,18y A5 4] 47

4. (once amended) The method of
claim 1, wherein said retrieving a
specific relation instance record
COMpIrises: '

retrieving a table identifier for said

Teorey teaches that each relationships relation (i.e.

91
097

Claim Language *

Teorey, Kumpati, and Zloof/Shaw References

relation instance table from said
specific relation type record; and

relation type record) includes the name of the
relationship. Teorey at 216, Table 1. This
relationships relation is stored in the data dictionary as
a table definition (i.e. relation type record). Kumpati,
5:58-63. These definitions include information (i.e. a
table identifier) that is used to ascertain the physical
location in the database of the requested data.
Kumpati, 3:66-4:2. This location information is the
table identifier as claimed.

retrieving said specific relation
instance record from said relation

instance table based on said specific

relation type record and said
provided entity.

In Kumpati, the data table identified by the table
identifier is the table which contains the specific
relation instance records that are based on the specific
relation type record and entity provided, for example
the Building-Rooms, Building-Exits, and Exit-Rooms
relationship sets in FIG. 7. Kumpati, 9:43-58, FIG. 7.

FIG. ? ._/701

BUILDING

704
BUILDING-EXITS wxmmw
705 :
EXITS -
- 706
EXIT-ROONS
/703
ROOMS

In Teorey, each relation instance table contains a
plurality of relation instance records. The
relationships in Teorey are transformed into
relationship relations. Teorey at 208, Sec. 3.1(3).
Examples of these relationship relations are shown in
FIGS. 4 and 10, clearly showing that each relationship
relation includes a plurality of rows, each of which is a
relation instance record. Teorey at 203, FIG. 4; 212-
13, FIG. 10. Each relation instance record relates an
entity instance in one entity table to an entity instance
in a second entity table. For example, the
SKILL_USED relationship instance table relates
entities in the EMPLOYEE table to entities in the
SKILL table. Teorey at 203, FIG. 4; 216, FIG. 13,
Table 1. S

92
098

Claim Language’

Teorey, Kumpati, and Zloof/Shaw References

5. The method of claim 1, further
comprising retrieving data
specifying said provided relation
type from an inquiry table.

Teorey teaches that relationships (relation types) are
transformed into relationship relations. Teorey at 208,
Sec. 3.1(3). Each of these relationships bears a name,
for example SKILL_USED is the name of a
relationship between the EMPLOYEE entity type and
the SKILL entity type. Teorey at 203, FIG. 4; 216,
FIG. 13, Table 1. The relation instance table for -
SKILL_USED is represented in the database systems
of Huber as a base table (BT). Huber, 4:66-5:3; 5:17-
20. -

The use of inquiry tables such as ones based on the
QBE language was an inherent part of managing E-R
databases. A QBE table was one form of a graphical
front-end interface that allowed a user to access the .
underlying database containing entities and relations.
According to The Database Step-by-Step textbook,
“The [QBE] user interface, designed for technical and
nontechnical people alike, is a two-dimensional, on-
line, video display terminal oriented query facility.”
Mark L. Gillenson, Database Step-by-Step 141-42 (2d
Ed. 1990). While a QBE interface is pictorial in
nature, a SQL’s interface is more linear and textual.
Id. “The user begins by specifying which table is
needed for a particular query. Once a table(s) is
chosen, the system displays an outline of that table,
showing the table name and the names of its fields. To
issue a query, the user gives an example of the
required information, which amounts to specifying a
variable name in the column of the desired
information.” Id.

Zloof teaches Query-by-Example (QBE). When a user
performs an operation , e.g., query, update, define, or
control, against the data base, the user fills in an
example of a solution to that operation in skeleton
tables that can be associated with actual tables in the
database. For illustration, suppose we want all green
items sold in the toy department.

Figure 13 Owalifed refiavol using finds

8L e et | ogux Bhkn | tewr | oo

- #
Fraiy SEEEN "y 1

93
099

Claim Language*

Teorey, Kumpati, and Zloof/Shaw References

Fig. 13 of Zloof above shows the two skeleton tables:
“TYPE” and “SALES”. These two tables are linked
by the word “NUT”. Thus Figure 13 shows an inquiry
table consisting of two skeleton tables linked together
like the level 1 and 2 rows of the INQ.DEEF table 740
in Figure 7-1 of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a
linear query for accessing the contents of a relational
database from a graphic query input at a user terminal,’
including relation records. Shaw takes the QBE
skeleton tables , for example, from Zloof, and -
generates an SQL query, which is then used to retrieve
the inquiry results from the relational database.

Figure 5 of Shaw shows a collection of tables
DXTGTF 106 that provides a table GFTTABLE 72
having one entry for each skeleton or example table in
a query 2 [col. 11, lines 1-2]. Thus GFTTABLE 72 is
the Inquiry table 740 in Doktor Fig. 7-1. GFTCOLMN
78 provides one entry for each column of an example -
table in a query Q. The content 89 of GFTCOLMN 78
includes a pointer 71 to GFTSQL 70. GFTSQL 70 .
contains the SQL , such as the SQL select statement in
Table 24. '

94
100

Claim Language14

Teorey, Kumpati, and Zloof/Shaw References

DXEGFT 106
H wram {70 {oommnoomces |
1BFTSQL 1t 7Y 72 IGFTTABLE |~
i H 0/ 73 . Tammm s o § 1
TR At —IBFTPTEOL | ¢
tot 78 1GFTCOLCT ¢
L s e et | !
78 t ¢ 0—--1--—----SGFTPTRDu 1 !
=mamnmmes | LR 76 {GFTRONCT ! H
GFTCOLMN A jommes g e pAS. : '
| s wnone | H H H 91 t Sy
IGFYCNMPT [w—+ t 82 - 1 77
O, T eo SN P
89 - —=>{GF TRON eI R
RS > t t o
! 84-7IGFTPTRCL ! to
1=---nu-~:/ss I | ¢meeeee (GFTRFLDS o
1IBFTCDATA 7 t 1 § e e § I
{ soomauszen! 90 H Bé/faprgg_ggx [|
IBFTPTEDT Tt P P : :
IGFTEDTLN ¢ t - t1 1 @7 3 t
: ~——1.921 83 ¢ 81 !
1GFTBINDR T ==Ly § 96 | meumzsaome | o
e P LT 83 temeee >iIGFTCOLCN ¢ H
IGFTSIMEN Mmooy { smmpazannn
e et I Wy e IGFTPTRON ¢
s ! 1 103 i 98 (GFTCONLN
t : T T e e 1
1023 {100 GFTROWIX {~——c—s
HES L 10T e H H e ————— —
IGETCONTE 1<+ 105+ t 99
| mmammmozom | ’ H 104 -
' 97 ' H \Ysemounenan |
. $me——e > GFTCNTNT ¢
s wemaamnms |
FIG.5 Pl :

Where the SQL query operates on a relationship
relation as described in Teorey, the SQL query will
include an SQL FROM statement which identifies the
name of relationship relation being queried. Shaw,
15:28-31. This name is the relation type, since the
relationship relation is named with it’s type, e.g. the
SKILL_USED relationship type is also the name of
the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13
FIG. 10; 216, FIG. 13, Table 1.

. The query translator of Shaw receives as an input a
QBE query, which is a “graphic language query
expressed as one or more elements . . . appearing in
rows and columns of an example table including one
or more source and target tables.” Shaw, 2:38-42.
Where the source table included in the example table
is a relationship relation, as discussed in Teorey, this
example table contains the name of the source table,
which is “data specifying said provided relation type”
as claimed. When the example query is translated as
part of the query processing, this relation type data is
retrieved in order to form part of the SQL query
submitted to the DBMS. Shaw, 15:29-31.

95
101

Claim Language *

Teorey, Kumpati, and Zloof/Shaw References

6. The method of claim 1, further
comprising retrieving data
specifying said provided entity
from an inquiry table.

Shaw takes the QBE skeleton tables , for example,
from Zloof, and generates an SQL query, which is then |
used to retrieve the inquiry results from the relational
database.

Figure 5 of Shaw shows a collection of tables
DXTGTF 106 that provides a table GFTTABLE 72
having one entry for each skeleton or example table in
a query 2 [col. 11, lines 1-2]. Thus GFTTABLE 72 is
the Inquiry table 740 in Doktor Fig. 7-1. GFTCOLMN
78 provides one entry for each column of an example
table in a query Q. The content 89 of GFTCOLMN 78
includes a pointer 71 to GFTSQL 70. GFTSQL 70
contains the SQL statement.

One element of the SQL query stored in the GFTSQL
70 table of the DXEGFT tables 106 is the entity
provided as a parameter to the query. For example,
Table 24 of Shaw depicts an example of a query, in
both SQL and QBE formats. Shaw, 26:59-68. In this
example, the query is seeking the employees who
work in the San Jose Department, and who meet a
salary condition of > $20,000. Id. The provided entity
is “DEPT”, and the desired entity is “EMP”. Id.

The QBE example table shown in Table 24 is another
example of an inquiry table as claimed. This inquiry
table contains the same DEPT provided entity
information, which is retrieved from the table in order
to create the SQL statement SELECT DNO FROM
DEPT shown in Table 24. Shaw, 15:38-42, 26:59-68.

7. The method of claim 1, further
comprising retrieving a second
desired entity type record
containing a second desired entity
type from said entity definition
table, wherein said second desired
entity type record specifies a second
desired entity instance table
associated with said second desired
entity type.

This limitation requires the presence of two entity type
records, and thus two entity instance tables. Otherwise
it s the same as the “retrieving a desired entity type
record” element of Claim 1.

FST’s Response advances a new construction for this
claim, the scope of which appears to be inconsistent
with the claim language. Under FST’s new
construction, which relates to “multi-tailed” relation
types, this limitation is still anticipated by Teorey.
FST contends that this claim “describe[s] the feature
whereby a single relation instance record may involve
more than two entity instances.” Response at 27.
Furthermore, FST recites that these instances “allow([]

96
102

_Claim Language™

Teorey, Kumpati, and Zloof/Shaw References

for more complex relation- types than simple binary
relationships.” Id.

Teorey clearly teaches relation types which create
relation instance tables that involve more than two
entity instances. Such relationships are disclosed as
“ternary” or more generally “n-ary” relationships. For
example, see the ternary relationships of FIG. 10.
Teorey at 212-13, FIG. 10. When executing queries
on these relationships, the entity type records of, for
example, the EMPLOYEE, PROJECT and SKILL
entities would be retrieved, for the ternary relationship
SKILL-USED of FIG. 10(b). Teorey at 212; see also
id at 216, Fig. 13. '

8. The method of claim 7, further
comprising retrieving a third
desired entity type record
containing a third desired entity
type from said entity definition
table, wherein said third desired
entity type record specifies a third
desired entity instance table
associated with said third desired
entity type.

This limitation requires the presence of three entity
type records, and thus three entity instance tables.
Otherwise it is the same as the “retrieving a desired
entity type record” element of Claim 1.

FST’s Response advances a new construction for this

-claim, the scope of which appears to be inconsistent

with the claim language. Under FST’s new
construction, which relates to “multi-tailed” relation
types, this limitation is still anticipated by Teorey.

FST contends that this claim “describe[s] the feature
whereby a single relation instance record may involve
more than two entity instances.” Response at 27. .
Furthermore, FST recites that these instances “allow|[]
for more complex relation types than simple binary
relationships.” Id.

Teorey clearly teaches relation types which create
relation instance tables that involve more than two
entity instances. Such relationships are disclosed as
“ternary” or more generally “n-ary” relationships. For
example, see the ternary relationships of FIG. 10.
Teorey at 212-13, FIG. 10.

97
103

Claim Language'

Teorey, Kumpati, and Zloof/Shaw References

ENGINEER

SKILL-USED

SKILL

PROJECT

Fig. 10 depicting a ternary relationship.

When executing queries on these relationships, the
entity type records of, for example, the EMPLOYEE,
PROJECT and SKILL entities would be retrieved, for
the ternary relationship SKILL-USED of FIG. 10(b):
Teorey at 212; see also id at 216, Fig. 13.

9. (Once amended) The method of
claim 1, further comprising
retrieving a second specific relation
instance record defining a relation
of a second provided relation type
between said provided entity and
said desired entity from a second
relation instance table
corresponding to said second
provided relation type record.

This claim as now amended requires retrieval of a
second specific relation instance record of a second
relation type, between the same two entities.
Otherwise this claim is the same as the “retrieving a
relation instance record defining a relation of said
provided relation type” element of claim 1.

Teorey expressly permits the existence of two different
relationships, of two different relation types, between
the same two entities. Teorey at 205 (Step 1.3(1))
(“Note that two or more relationships are allowed
between the same two entities as long as the two
relationships have different meanings.”). Thus a query
could provide two relation types between the two
entities, and both relation instance records defining the
two relations between the two entity instance records
would be retrieved.

10. A relational database processing
system comprising;

an entity definition table containing
a first entity type record defining a
first entity type;

Teorey teaches that entity types (i.e. entities) can be
defined for a relational database. Teorey at204 (Sec.
2.1, step 1.1) For example, FIG. 13 and Table 1 depict
a variety of entity types, including SKILL,
DEPARTMENT, DIVISION, PROJECT,
EMPLOYEE and others. Teorey at 216, FIG. 13,
Table 1.

98
104

Claim Language*

Teorey, Kumpati, and Zloof/Shaw References

SKiLL DEPARTHENT DIVISION

SKLL-HO DEPT-ND DAV-NO

SKILL-USED
[w-no SKRL-KO PROJ-NAME

PROJEET ' EMPLOVEE
PROJ-MAME EMP-IO

ASSIGNED-TO

[nv-uo LOC-NAME

LOCATION
LOC-NAME

EMP.MANAGER EMP.ENGINEER EMP.TECHNICIAN Eﬂ?.éECRETARV
Erp-N0 EMP-NO eP-N0 P40

BELONGS-TO
[PA-NO EMP-ND I

PRF-ASSOC PC

|PA-0D I PC-ND

Figure 13, Company personnel and project database candidate relations.

Teorey further teaches that its database system
includes a data dictionary. Teorey at 217. (“If the
EER constructs do not include nonkey attributes, the
data requirements specification (or data dictionary)
must be consulted.”). Teorey further teaches that each
of the defined entity types can be transformed to a
“relation.” Teorey at 216, Table 1. The definitions of
these entity types transformed into relations are stored
in the data dictionary, because that is the location
where Teorey teaches that attributes of candidate
relations are stored and can be retrieved from. Teorey
at 217 (Step 3.2).

While Teorey clearly teaches that its relational
database has and uses a data dictionary, Teorey does’
not describe the detailed layout of the data dictionary.
However, the ‘661 patent to Kumpati does provide a
detailed layout of a data dictionary for a relational
database. Kumpati, 8:30-9:27, FIG. 6.

99
105

Claim Language™

Teorey, Kumpati, and Zloof/Shaw References

601 FIC. 6 02 603
\ \ ERSET \
BUILOTHG
BUILOING-RGOMS
DEPENDENCY > BUILDEQéE?XITS ASSOCIA
EXITS-R00MS

604
ERSET-ATTRIBUTES —

ATTRIBUTES

Kumpati further provides that “[i]t is well known in
the art to provide a data dictionary in an database
management system.” Kumpati, 5:51-52. The data
dictionary contains the entity set (i.e. entity definition
table) ERSET, which is the set of all entity sets (i.e.
entity types) contained in the database. Kumpati,
'8:35-39. The table ERSET includes, for example,
records that define the entity types Building, Rooms
and Exits. Id. :

a first entity instance table

associated with said first entity

type;

The entity instance tables shown in Teorey are
examples of tables which contain entity data. Teorey,
FIG. 13 (SKILL, DEPARTMENT, DIVISION,
PROJECT, EMPLOYEE and other tables). These -
entity instance tables are each associated with a
corresponding entity type, as shown in FIG. 13 and
Table 1. Teorey, FIG. 13, Table 1. Further entity
instance tables are shown in FIG. 7 of Kumpati, for
example the Building Table 701, the Exits Table 705,
and the Rooms Table 703. Kumpati, 9:29-42, FIG. 7.
These entity instance tables are associated with the
corresponding entity types “Building”, “Rooms” and
“Exits”.

a plurality of entity instance records
stored in said first entity instance

table;

In Teorey, each entity instance table contains a
plurality of entity instance records. The entities in
Teorey are transformed into entity relations. Teorey at
208, Sec. 3.1(1). These entity relations are similar in
layout to the relationship relations shown in FIGS. 4
and 10, except they contain entity instance records
rather than relationship instance records. Teorey at

100
106

Teorey, Kumpati, and Zloof/Shaw References

Claim Language*

203, FIG. 4; 212-13, FIG. 10. Thus each entity
relation (i.e. entity instance table) in Teorey contains a
plurality of entity instance records. The entity instance
tables in Kumpati, for example the Building Table
701, the Exits Table 705, and the Rooms Table 703,
also each contain entity instance records which
correspond to the instances of the entity types
“Building”, “Rooms” and “Exits”. An example of the
records contained within a typical file representing an
instance table is shown in FIG. 2. Kumpati, 4:44-56.

a relation definition table
containing a first relation type
record defining a provided relation

type;

Teorey also teaches that relation types (i.e.
relationships) can be defined for a relational database.
Teorey at 205 (Sec. 2.1, step 1.3). For example, FIG.

.13 and Table 1 depict several relation types, including

SKILL-USED, ASSIGNED-TO AND BELONGS-
TO. Teorey at 216, FIG. 13, Table 1. Teorey further
teaches that each of the defined relation types can be
transformed into a “relation” Teorey at 216, Table 1.
The definitions of these relation types transformed into
relations are stored in the data dictionary because that
is the location where Teorey teaches that attributes of
candidate relations are stored and can be retrieved
from. Teorey at 217 (Step 3.2).

Kumpati further teaches that the definitions of these
tables (i.e. the definitions of the relation types) are
stored in the data dictionary. Kumpati, 8:35-59. The
data dictionary contains the entity set (i.e. relation
definition table) ERSET, which is the set of all
relationship sets (i.e. relation types) contained in the
database. Id. The table ERSET includes, for example;
records that define the relation types Building-Rooms
and Exits-Rooms. Id.

a first relation instance table
associated with said provided
relation type; and

Teorey teaches that relationship relations are
represented as tables. Teorey at 203, FIG. 4; 212-13,
FIG. 10; 216, FIG. 13. Kumpati teaches that each of
the sets of related items, in this case the relationship
relations (i.e. relation types) defined in Teorey, are
stored in two-dimensional tables in the data files.

-‘Kumpati, 4:44-66. For example, the relation instance

table Building-Rooms 702 stores the set of all
relationships between buildings and rooms. Kumpati,
9:43-44, FIG. 7. This relation instance table is ,
associated with the relationship set (i.e. relation type)
“Buildings-Rooms” that is stored in the relation

101
107

Claim Language

Teorey, Kumpati, and Zloof/Shaw References

definition table ERSET. Kumpati, 8:35-39.

a first relation instance record of
said provided relation type, said
first relation instance record relating
a desired entity in one of said entity
instance records to a provided
entity.

In Teorey, each relation instance table contains a
plurality of relation instance records. The
relationships in Teorey are transformed into
relationship relations. Teorey at 208, Sec. 3.1(3).
Examples of these relationship relations are shown in
FIGS. 4 and 10, clearly showing that each relationship
relation includes a plurality of rows, each of which is a
relation instance record. Teorey at 203, FIG. 4; 212-
13, FIG. 10. Each relation instance record relates an
entity instance in one entity table to an entity instance
in a second entity table. For example, the '
SKILL_USED relationship instance table relates
entities in the EMPLOYEE table to entities in the
SKILL table. Teorey at 203, FIG. 4; 216, FIG. 13,
Table 1. :

In Kumpati, the relation instance records also contain
information that relates the two entities in the
relationship defined by the relation instance record.
For example, attributes of the Buildings-Rooms
relationship include information that identifies what
rooms are located in what buildings. Kumpati, 9:43-
46.

11. The relational database
processing system of claim 10,
wherein each of said entity instance
records is identified by a record
identifier.

Teorey teaches that the entity instance records have
key fields, which uniquely identify the entity
instances. Teorey at 198 (“The major interattribute
dependencies are between the entity keys (unique
identifiers) of different entities that are captured in the
ER modeling process.) Kumpati also teaches that the
entity instance records have key fields that are used to
identify the entities stored in the records of the entity
instance tables.. Kumpati, 4:51-56, FIG. 2.

12. The relational database
processing system of claim 10,
wherein said first relation instance
record contains a desired record
identifier and a desired entity type
corresponding to a desired entity
instance record containing said
desired entity.

Teorey teaches.that each relation instance record
contains a record identifier that corresponds to the
desired entity instance record. For example, in the
relation instance table of FIG. 4, the SKILL-USED
relations instances each contain a SKILL-NO record
identifier that identifies the desired SKILL entity
instance record. Teorey at 203, FIG. 4; 216, FIG. 13.
Each relation instance record also contains a desired
entity type, reflected in the column header, for
example “SKILL” in the column header SKILL-NO in
FIG. 4.

102
108

Claim Language*

Teorey, Kumpati, and Zloof/Shaw References

Even under FST’s new argument, advance in their
Response, Teorey anticipates this claim. Response,
22-23. Teorey further teaches that a key (i.e. a record
identifier) can be a composite identifier, that is, an
identifier composed of two or more attributes. Teorey
at 204 (Step 1.1(5)). These two attributes could
include the entity type and a record identifier, and thus
anticipate this claim. Teorey teaches two alternate
treatments for composite identifiers, one of which is to
eliminate them where possible, but the second
treatment is to retain the identifier where it is
reasonably natural. Id. It would be reasonably natural
to retain a composite identifier where it permitted the
overloading of the record identifier column to
designate two or more different target tables, as
suggested by FST. '

Therefore, a relationship relation as taught in Teorey,
which is stored as a relation instance table in Kumpati,
would include two foreign keys to the two entity
relations that it referenced, and each of those two
foreign keys would be two-part keys, as discussed in
FST’s Response.

13. The relational database
processing system of claim 10,
wherein said first relation type
record comprises a table identifier
identifying said first relation
instance table.

Teorey teaches that relationship relations are stored in
tables. Teorey at 203, FIG. 4; 216, FIG. 13. Kumpati
further teaches that the definitions of these tables (i.e.
the relation type records defining the relation types)
are stored in the data dictionary. Kumpati, 5:58-63.
These definitions include information (i.e. a table
identifier) that is used to ascertain the physical
location in the database of the requested data.
Kumpati, 3:66-4:2.

14. The relational database
processing system of claim 10,
further comprising an inquiry table
containing an inquiry record, -
wherein said inquiry record
specifies said provided relation type
and said provided entity.

Teorey teaches that relationships (relation types) are
transformed into relationship relations. Teorey at 208,
Sec. 3.1(3). Each of these relationships bears a name,
for example SKILL_USED is the name of a
relationship between the EMPLOYEE entity type and
the SKILL entity type. Teorey at 203, FIG. 4; 216,
FIG. 13, Table 1. Kumpati teaches that each of the
sets of related items, in this case the relationship
relations (i.e. relation types) defined in Teorey, are
stored in two-dimensional tables in the data files.
Kumpati, 4:44-66. For example, the relation instance
table Building-Rooms 702 stores the set of all
relationships between buildings and rooms. Kumpati,

103
109

Claim Language"

Teorey, Kumpati, and Zloof/Shaw References

9:43-44, FI1G. 7. Similarly, the SKILL_USED relation
would also be stored as a table in the Kumpati
database.

As noted above, in claim 5, the ‘326 patent to Shaw
provides that an SQL query can be stored in an inquiry
table, for execution by a query processor on the
database. The SQL query is translated from a QBE
query input by a user, and the translated SQL query is
stored in GFTSQL 70 (inquiry record), which is
pointed to by GFTTABLE (inquiry table). Shaw,"
10:59-68, 11:1-12.

Where the SQL query operates on a relationship
relation as described in Teorey, the SQL query will
include an SQL FROM statement, which identifies the -
name of relationship relation being queried. Shaw,
15:28-31. This name is the relation type, since the
relationship relation is named with it’s type, e.g. the
SKILL_USED relationship type is also the name of
the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13
FIG. 10; 216, FIG. 13, Table 1. Thus for example,
SKILL_USED is the name of a relationship between a
provided EMPLOYEE entity and a desired SKILL
entity.

One element of the SQL query stored in the GFTSQL
70 table is the entity provided as a parameter to the
query. For example, Table 24 of Shaw depicts an
example of a query, in both SQL and QBE formats.
Shaw, 26:59-68. In this example, the query is seeking
the employees who work in the San Jose Department,
and who meet a salary condition of > $20,000. Id.
The provided entity is “DEPT”, and the desired entity
is “EMP”. Id.

The QBE example table shown in Table 24 is another
example of an inquiry table as claimed. This inquiry
table contains the same DEPT provided entity
information, which is retrieved from the table in order
to create the SQL statement SELECT DNO FROM
DEPT shown in Table 24. Shaw, 15:38-42, 26:59-68.

4 15. The relational database
processing system of claim 10

104
110

Claim Language'

Teorey, Kumpati, and Zloof/Shaw References

further comprising:

a second entity instance table
associated with a second entity
type; and

Teorey teaches two entity instance tables, for example
the SKILL and DEPARTMENT entity instance tables

of FIG. 13. Teorey at 216, FIG. 13, Table 1. Kumpati
also teaches two entity instance tables, for example the
Building and Rooms tables of FIG. 7. Kumpati, 9:29-

42, FIG. 7.

wherein said entity definition table
contains a second entity type record
containing said second entity type
and associating said second entity
instance table with said second
entity type.

Teorey teaches that all entities, including both SKILL
and DEPARTMENT entities, are transformed into
relations that are stored in the data dictionary. Teorey
at 216, Table 1. Kumpati teaches that the data
dictionary contains a set of entity definitions.
Kumpati, 8:35-39. A set, by its very nature, can
contain two (or more) entity type records, for example
the entity types for Building and Rooms. Kumpati,
8:35-39.

16. The relational database
processing system of claim 15
further comprising:

a third entity instance table
associated with a third entity type;
and '

Teorey teaches three entity instance tables, for
example the SKILL, DEPARTMENT and DIVISION
entity tables of FIG. 13. Teorey at 216, FIG. 13, Table
1.

SKILL

SKRS -NO

DIVISION

D0

DEPARTMENT

CPT-NO

SKILL -USED
[:w-«n SKRL-ND PROJ-NAME

PROJECT
PROJ-MAME

EHPLOYEE
joP-i0

ASSIGNED-TO
MP-NC LOC-NAME

LOCATION
LOC-NAME

EMP MANAGER EMP.ENGINEER EMP.TECHNICIAN EMP.SECRETARY

PR oP-0 DP-N0 PP-R0
BELONGS~TO
Pa40 ow-0
PRF-ASSOC PC

Figure 13. Cnmpnn_y personnel and project database candidate relations.
Kumpati also teaches three entity instance tables, for

105
111

Claim Langl»lage14

Teorey, Kumpati, and Zloof/Shaw References

example the Building, Rooms and Exits tables of FIG.
7. Kumpati, 9:29-42, FIG. 7.

wherein said entity definition table
contains a third entity type record
containing said third entity type and
associating said third entity instance
table with said third entity type.

Teorey teaches that all entities, including SKILL,
DEPARTMENT and DIVISION entities, are
transformed into relations that are stored in the data
dictionary. Teorey at 216, Table 1. H Kumpati
teaches that the data dictionary contains a set of entity
definitions. Kumpati, 8:35-39. A set, by its very
nature, can contain two (or more) entity type records,

for example the entity types for Building, Rooms and

Exits. Kumpati, 8:35-39.

17. The relational database
processing system of claim 10
further comprising:

a second relation instance table
associated with a second relation
type; and

Teorey teaches two relation instance tables, for
example the SKILL-USED and ASSIGNED-TO
relation instance tables of FIG. 13. Teorey at 216,
FIG. 13, Table 1. Kumpati also teaches two relation
instance tables, for example the Building-Rooms and
Exit-Rooms tables of FIG. 7. Kumpati, 9:29-42, FIG.
7.

wherein said relation definition
table contains a second relation type
record containing said second
relation type and associating said
second relation instance table with
said second relation type.

Teorey teaches that all relationships, including both
SKILL-USED and ASSIGNED-TO relationships, are
transformed into relations that are stored in the data
dictionary. Teorey at 216, Table 1. Kumpati teaches
that the data dictionary contains a set of relation
definitions. Kumpati, 8:35-39. A set, by its very
nature, can contain two (or more) relation type
records, for example the relation types for Building-
Rooms and Exits-Rooms. Kumpati, 8:35-39.

Thus the relation definition table can contain two (or
more) relation definition records, each of which are
associated to a different relation instance table (e.g.
Building-Rooms and Exits- Rooms relation instance
tables).

18. The relational database
processing system of claim 17
further comprising:

a third relation instance table
associated with a third relation type;
and

Teorey teaches three relation instance tables, for
example the SKILL-USED, ASSIGNED-TO and
BELONGS-TO relation instance tables of FIG. 13.

106
112

Claim Language'

Teorey, Kumpati, and Zloof/Shaw References

. Teorey at 216, FIG. 13, Table 1. Kumpati also teaches

three relation instance tables, for example the
Building-Rooms, Exit-Rooms and Buildings-Exits
tables of FIG. 7. Kumpati, 9:29-42, FIG. 7.

wherein said relation definition
table contains a third relation type
record containing said third relation
type and associating said third
relation instance table with said
third relation type.

Teorey teaches that all relationships, including SKILL-
USED, ASSIGNED-TO and BELONGS-TO
relationships, are transformed into relations that are
stored in the data dictionary. Teorey at 216, Table 1.
Kumpati teaches that the data dictionary contains a set
of relation definitions. Kumpati, 8:35-39. A set, by its
very nature, can contain three (or more) relation type
records, for example the relation types for Building-
Rooms, Exits-Rooms and Buildings-Exits. Kumpati,
8:35-39.

Thus the relation definition table can contain three (or
more) relation definition records, each of which are
associated to a different relation instance table (e.g.
Building-Rooms, Exits-Rooms and Buildings-Exits
relation instance tables).

C. Dolk, Teorey, Zloof and/or Shaw

Dolk and Teorey together teach all. limitations of claims 1-4, 7-13, 15-18 of the

‘259 patent as discussed in the chart below. Dolk, Téorey, and Zloof/Shaw together

teach all limitations of claims 5-6 and 14 of the ‘259 patent, as discussed in the chart

below:

Claim Language”

Dolk, Teorey, and Zloof/Shaw References

1. A method for retrieving a desired
entity of a desired entity type from
a relational database, wherein said
desired entity is related to a
provided entity by a provided
relation type associating an entity
type of said provided entity with
said desired entity type, said
method comprising:

The primary aims of relational database design
revolve around organizing and storing data so that the
information within the database may later be accessed by
the database user. According to an article by Peter Chen,
“to design a database is to decide how to organize data into
specific forms (record types, tables) and how to access
them.” Further, another related problem in database design
is to make the “output of the database design process-the
user schema (a description of the user view of the data)”
more like the way humans represent the real world. Peter

Pin-Shan Chen, The entity-relationship model — A basis for

'* The claim language recited is inclusive of the amendments patentee included in its Response.

107
113

Claim Language”

Dolk, Teorey, and Zloof/Shaw References

the enterprise view of data 77 (1977).

In addition an inherent component of databases is that they
allow the retrieval of items, including relation type records.
Front end user interfaces that enable users to easily retrieve
the information in the underlying databases have been well
known in the arts from at least from the mid 1980’s, if not
sooner. One type of front-end user interface is created
using the QBE language. According to The Database Step-
by-Step textbook, “The [QBE] user interface, designed for
technical and nontechnical people alike, is a two-
dimensional, on-line, video display terminal oriented query
facility.” To issue a query, the user gives an example of
the required information, which amounts to specifying a
variable name in the column of the desired information.”
Mark L. Gillenson, Database Step-by-Step 141-42 (2d Ed.
1990).

A critical component of databases is that they allow the

retrieval of items, including relation type records. Front

end user interfaces that enable users to access the
information in the underlying databases are inherent to
database management systems. One type of front-end user
interface is created using the QBE language. According to
The Database Step-by-Step textbook, “The [QBE] user
interface, designed for technical and nontechnical people
alike, is a two-dimensional, on-line, video display terminal
oriented query facility.” To issue a query, the user gives
an example of the required information, which amounts to
specifying a variable name in the column of the desired
information.” Mark L. Gillenson, Database Step-by-Step
141-42 (2d Ed. 1990).

“A DBMS-dependent IRDS uses an existing DBMS to
implement the description, manipulation, and control of its
metadata, and therefore can avail itself of the underlying
query processor, security, backup/recovery, and other
features.” Dolk at 49.

retrieving a specific relation type
record defining said provided
relation type from a relation
definition table;

Dolk teaches a data definition table in the form of a
information resource definition system (IRDS) that
includes a relation definition table that contains relation
type records which define relationship types. A user would

108
114

Dolk, Teorey, and Zloof/Shaw References

Claim Language”

-associate two entities with names elname and e2name.

supply such a relation type in making a search (query) on
the database. ‘

Dolk teaches that relation types (i.e. relationships) can be
defined for a relational database. Dolk at 51, Fig. 4. Fig. 4
depicts a basic relational representation of the IRDS
Entity-Relationship Model. Specifically, one standard
template for defining a relationship would be as follows:

RELSHIP(rtype,einame,eltype,e2namne,eltyp
access-method, frequency,rel_pos)

Fig. 4. According to Dolk, relationships have certain core
attributes, as depicted below in Fig. 5, below. They

Relationships ‘
All relationships have the same attributes and keys:
REL(elname,eltype,eZname,e2type) o

where e 'name , e 2name are the entity instances

eltype,e2type are the entity-types of which
e 1name, e 2name are instances, respectively
REL is any of the relationships CONTAINS, 4
PROCESSES, RUNS, RESP.FOR, CALLS,
GOES_TO, DERIVED_FROM, ALIAS, and KWI(

See Figure 3

FIGURE 5. Relational IRDS (RIRDS)

(in pértinent part).

All relationships are binary, relate entities to each other,
and are named self-descriptively according to the entity-
types that participate in them. Dolk at 50, 51. Under the
model proffered by Dolk, different relationship types
connect various entity types. For example, Fig. 2 listing
various entity types and relationship types; the relationship
types may relate two entities. Fig. 1 provides an example
of a relationship Empl — Record for Kirk - CONTAINS -~
(555-23-6666) that falls within the Relationship type
RECORD-CONTAINS-ELEMENT.

The definitions of these relationship types are stored in the

109
115

Claim Language”

| Dolk, Teorey, and Zloof/Shaw References

IRD data layer of a relational information resource
dictionary system (RIRDS). Dolk, Fig. 1, p. 50. These
definition of these relation types must have the following
basic relational representation:

RELSHIP{rtype, e1name;e 1type,e2name,e2type,
access-method, frequency ,rel.pos)

Dolk, fig. 4 at p. 53.

The IRDS is itself of an implementation of a ORACLE
database and by using the SQL CREATE TABLE and
CREATE VIEW commands. Dolk at pp. 49, 55 (“The
RIRDS is implemented very straightforwardly in ORACLE
by creating the relations and views given in Figures 4, S,
and 6 using the SQL CREATE TABLE and CREATE
VIEW commands.”) Therefore, the data dictionary
component of the IRDS itself includes tables that contain
relationship table definitions. Fig. 7 depicts how RIRDS
Tables and Views may be created in ORACLE. '

RELSHIP(rtypo,olname, e ltype alname eZtype,
access-mothod, frequency rel_pos)

Further, in extending the RIRDS, relationship tuples, or
definition rows, may be added to the data dictionary by the
process mentioned p. 56-57 of Dolk.

retrieving a specific relation
instance record defining a relation
of said provided relation type
between said provided entity and
said desired entity from a relation
instance table corresponding to said
specific relation type record;

Dolk teaches that relation instance records define relations -
between entities, and that these records are stored in
relation instance tables, each of which corresponds to a
particular relation type.

Dolk teaches that relationship relations store information
that relates two entities to each other and are represented as
tables. “All relationships are binary, and entities may be
related to themselves.” Dolk at S0. The IRDS network
contains entities, or nodes, which are connected to each
other by relationships, or arcs. Id. As the underlying
database upon which the freestanding IRDS is based may
be programmed in Oracle, the relationship instances may
be stored in a relation instance table, corresponding to a
specific relationship type record. See i.e. p. 60. Emp-
Record for Kirk- CONTAINS (555-23-6666) is one
relationship instance record the relationship Emp-Record-
CONTAINS-Soc-Sec-No between Soc-Sec-No and Empl-
Rec entities. Fig. 1 (depicting IRDS architecture).
Relationship instance records in the underlying Oracle

110
116

Claim Language”

Dolk, Teorey, and Zloof/Shaw References

database may be retrieved using SQL queries (Dolk at 58,
60), regardless of whether the RIRDS system is integrated
with the host RDBMS. [see also textbooks on QBE and
Chen articles]

Dolk further teaches that the RIRDS may contain a
directory component “describing where information
resources [i.e. relationship tables] are-located and how they
can be accessed.” Dolk at 49. Put another way, the
directory is analogous to a physical description of where
the relationship instance table is located in computer
memory. Dolk at 49. The “directory description would

contain data on the machine, operating system, and the file

structure under which the file is stored.” Dolk at 49.

retrieving a desired entity type
record containing said desired
entity type from an entity definition
table, wherein said desired entity
type record specifies a desired
entity instance table associated with
said desired entity type; and

Dolk teaches that entity type information is stored in entity
records in entity definition tables, and that this data can be
retrieved in order to operate on the underlying database.
The entity type records identify entity instance tables,
including the entity instance tables containing entities that
a user would desire to retrieve.

Dolk teaches that entity types can be defined for a
relational database. Dolk at 50, Fig. 4. Fig. 4 depicts a
basic relational representation of the IRDS Entity-
Relationship Model. Specifically, one standard template
for defining an entity would be as follows:

ENTITY(ename,etype,dname,added-by,
date-added,mod-by,last -mod,nmods,
dur-value,dur-type,comnents ,descr
security,lang,lines-code,nrecs,
rec-cat,data-class,doc-cat)

Fig. 4. ename would represent the name of the entity;
etype would represent the entity type. Fig. 2 lists various
entity types such as SYSTEM, PROGRAM, MODULE,
USER, FILE, RECORD, ELEMENT, etc.

The definitions of these relationship types are stored in the
IRD data layer of a relational information resource
dictionary system (RIRDS). Dolk, Fig. 1, p. 50.

The IRDS is itself of an implementation of a ORACLE
database and by using the SQL CREATE TABLE and
CREATE VIEW commands. Dolk at 49, 55. Therefore,
the data dictionary component of the IRDS itself includes

111
117

Claim Language"

Dolk, Teorey, and Zloof/Shaw References

tables that contain entity table definitions. Fig. 7 depicts

‘how RIRDS Tables and Views may be created in

ORACLE.

Further, in extending the RIRDS, entity tuples, or
definition rows, may be added to the data dictionary by the’
process mentioned on pp. 56-57 of Dolk. '

Dolk further teaches that the RIRDS may contain a
directory component *“describing where information
resources [i.e. entity instance tables] are located and how
they can be accessed.” Dolk at 49. Put another way, the
directory is analogous to a physical description of where
the entity instance table is located in computer memory.
Dolk at 49. The “directory description would contain data
on the machine, operating system, and the file structure
under which the file is stored.” Dolk at 49.

retrieving said desired entity from
said desired entity instance table.

Dolk teaches that desired entities, just like all entities, are
stored in entity instance tables, and can be retrieved
therefrom.

The IRDS network contains entities of various entity types.
P. 50. As the underlying database upon which the
freestanding IRDS is based may be programmed in Oracle,
the entity instances may be stored in entity instance tables,
corresponding to a specific entity type record. See i.e. p.
60. Fig. 1 provides an example of a entity record 555-23-
6666 (Employee record for Kirk), in the form of a social
security number. This entity record may be stored in and
retrieved from a Soc-Sec-No entity instance table. Entity
instance records in the underlying Oracle database may be
retrieved using SQL queries at pp. 58, 60 of Dolk,
regardless of whether the RIRDS system is integrated with
the host RDBMS.

2. The method of claim 1, wherein

"| said relation instance record

specifies said desired entity by said
desired entity type and a desired
record identifier.

Dolk teaches that each relation instance record contains a
record identifier that corresponds to the desired relation
instance record.

Specifically, Dolk teaches that a record identifier for an
entity may be made of composite keys. Fig. 4 depicts a
generic representation of a relationship, where rtype,
elname, eltype, e2name, and e2type are keys to a given
relationship of relationship type rtype, which associates
entities elname and e2name of entity types eltype and

e2type.

112
118

Claim Language

Dolk, Teorey, and Zloof/Shaw References

RELSHIP(rtype,elname,eltype,eZname, e2type,
access-method, frequency ,rel_pos)
Fig. 4 of Dolk.

3. The method of claim 2, wherein
said desired entity is identified by
said desired record identifier in said
desired entity instance table.

Dolk teaches that each entity instance record contains a
record identifier that corresponds to the desired entity
instance record.

Specifically, Dolk teaches that a record identifier for an
entity may be made of composite keys. Fig. 4 depicts a
generic representation of an entity, where ename and etype
are keys to a given entity by entity name ename and entity

type etype.

ENTITY(ename,etype,dname,added-by,
date-added,mod-by,last -mod,nmods,
dur-value,dur-type,comments,descr,
security,lang,lines-code,nrecs,
rec-gat;data-class ;doc-cat)

Fig. 4 of Dolk.

4. The method of claim 1, wherein
said retrieving a specific relation
instance record comprises:

retrieving a table identifier for said
relation instance table from said
specific relation type record; and

Dolk teaches that each relationship relation (i.e. relation

type record) includes the name of the relationship. Fig. 1.
Relationships are named self-descriptively according to the
entity-types that participate in them. Therefore the
relationship that associates Empl-Record and Soc-Sec-No
would be named Empl-Record-CONTAINS-Soc-Sec-No.
Dolk at 50, 51.

retrieving said specific relation
instance record from said relation

| instance table based on said specific
relation type record and said
provided entity.

Under Dolk, the table identified by a specific tale 1dent1f1er
is the table which contains the specific relation instance
records that are based on the specific relation type record
and entity provided.

Each relation instance table contains a plurality of relation
instance records. The relationships in Dolk are transformed
into relationship relations. As the organizational data
underneath is stored in an Oracle database, p. 50 of Dolk,
the relationship relations are stored in tables, containing a
plurality of rows, each of which is a relation instance
record. Dolk at 59-60. Each relation instance record
relates an entity instance in one entity table to an entlty
instance in a second entity mstance table.

5. The method of claim 1, further

The use of inquiry tables such as ones based on the QBE

113
119

Claim Language >

Dolk, Teorey, and Zloof/Shaw References

comprising retrieving data
specifying said provided relation
type from an inquiry table.

language was an inherent part of managing E-R databases.
A QBE table was one form of a graphical front-end
interface that allowed a user to access the underlying
database containing entities and relations. According to
The Database Step-by-Step textbook, “The [QBE] user
interface, designed for technical and nontechnical people

-alike, is a two-dimensional, on-line, video display terminal

oriented query facility.” Mark L. Gillenson, Database Step-
by-Step 141-42 (2d Ed. 1990). While a QBE interface is
pictorial in nature, a SQL’s interface is more linear and
textual. Id. “The user begins by specifying which table is
needed for a particular query. Once a table(s) is chosen,
the system displays an outline of that table, showing the
table name and the names of its fields. To issue a query,
the user gives an example of the required information,
which amounts to specifying a variable name in the
column of the desired information.” Id.

Zloof teaches Query-by-Example (QBE). When a user
performs an operation , e.g., query, update, define, or

“control, against the data base, the user fills in an example

of a solution to that operation in skeleton tables that can be
associated with actual tables in the database. For
illustration, suppose we want all green items sold in the toy
department. ‘

Fig. 13 of Zloof above shows the two skeleton tables:
“TYPE” and “SALES”. These two tables are linked by the
word “NUT”. Thus Figure 13 shows an inquiry table
consisting of two skeleton tables linked together like the
level 1 and 2 rows of the INQ.DEF table 740 in Figure 7-1
of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a linear
query for accessing the contents of a relational database
from a graphic query input at a user terminal, including
relation records. Shaw takes the QBE skeleton tables , for
example, from Zloof, and generates an SQL query, which
is then used to retrieve the inquiry results from the
relational database.

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry
for each skeleton or example table in a query 2. Shaw,
11:1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in

114
120

Claim Language™

Dolk, Teorey, and Zloof/Shaw References

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of an example table in a query Q. The content

"89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24.

. DXEGFT 106
:mmy7° { swssc oo |
IGFTSOL 1t 71 72 {GFTTABLE i<-——+
{ mwrmmmwasrees | '/ 73 Tmonoonmeems | H
1 oe-L ——IGFTPTCOL 1 |
t ot 74 IGFTCOLCT ¢ ;
to 75 o e § H
v -v--l--«----—:em'mou LR
{moomsaw=nn | TR B 76 - !GFTROWCY t
IBFTCOLMN A Comim—t e t
| == mneeooe | H 1 91 1 —
{GFTCNMPT fme—e : 82—~ 1 77
o T" 80 — > : 1
1 8% ! i = 3 { GF TROW (<o s
. P+ > ! TR
. an-)x'BFTPm P
{naxnesuees ! 88 ! ! 4~ GFTRFLDS | I
IBF TCDATA 1’ t & § e e e § [I
|smemncomen | 90 !t Bo~"IGFTBLEIX :-——x P
{GFTPTCOT “Tomme I | m——————— t H
IGFTCOTLN ¢ : b :/ - Y 2] 93
- ——t 921 83 : - 81
IGFTBINDR ometo-f Tt t | 96 jecas=mmmms! <
R e I ¥ 83 I e~——=>!GFTCOLCN !
IGFTSIMCN Tommfomd e {wmamamnean |
el S W e | GFTPTREN
95 1 ¢ 103 i 98 {GFTCONLN
H : s S —_—1 1
102! ! 100 IGFTROWIX |=—————s
H sn:mnmj/ 3 H e e st v §
IGFTCONTB “1¢-—e 105 4 t 99
§ mmomw o= . H 108 -
H 22 t H Srmmnonece)
+ >IGFTCNTNT ¢
| noammaw=ms)
FlG 5 H 101 H

Where the SQL query operates on a relationship relation as
described in Teorey, the SQL query will include an SQL
FROM statement which identifies the name of relationship
relation being queried. Shaw, 15:28-31. This name is the
relation type, since the relationship relation is named with
it’s type, e.g. the SKILL_USED relationship type is also
the name of the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.
10; 216, FIG. 13, Table 1. o

The query translator of Shaw receives as an input a QBE
query, which is a “graphic language query expressed as
one or more elements . . . appearing in rows and columns
of an example table including one or more source and
target tables.” Shaw, 2:38-42. Where the source table
included in the example table is a relationship relation, as
discussed in Teorey, this example table contains the name
of the source table, which is “data specifying said provided
relation type” as claimed. When the example query is

115
121

Claim Language

Dolk, Teorey, and Zloof/Shaw References

translated as part of the query processing, this relation type
data is retrieved in order to form part of the SQL query
submitted to the DBMS. Shaw, 15:29-31.

6. The method of claim 1, further
comprising retrieving data
specifying said provided entity
from an inquiry table.

The use of inquiry tables such as ones based on the QBE
language was an inherent part of managing E-R databases.
A QBE table was one form of a graphical front-end
interface that allowed a user to access the underlying
database containing entities and relations. According to
The Database Step-by-Step textbook, “The [QBE] user
interface, designed for technical and nontechnical people
alike, is a two-dimensional, on-line, video display terminal
oriented query facility.” Mark L. Gillenson, Database Step-
by-Step 141-42 (2d Ed. 1990). While a QBE interface is
pictorial in nature, a SQL’s interface is more linear and
textual. Id. “The user begins by specifying which table is
needed for a particular query. Once a table(s) is chosen,
the system displays an outline of that table, showing the
table name and the names of its fields. To issue a query,
the user gives an example of the required information,
which amounts to specifying a variable name in the
column of the desired information.” Id.

Zloof teaches Query-by-Example (QBE). When a user
performs an operation , e.g., query, update, define, or
control, against the data base, the user fills in an example
of a solution to that operation in skeleton tables that can be
associated with actual tables in the database. For
illustration, suppose we want all green items sold in the toy
department. -

Fig. 13 of Zloof above shows the two skeleton tables:
“TYPE” and “SALES”. These two tables are linked by the
word “NUT”. Thus Figure 13 shows an inquiry table
consisting of two skeleton tables linked together like the

| level 1 and 2 rows of the INQ.DEF table 740 in Figure 7-1

of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a linear
query for accessing the contents of a relational database
from a graphic query input at a user terminal, including
relation records. Shaw takes the QBE skeleton tables , for
example, from Zloof, and generates an SQL query, which
is then used to retrieve the inquiry results from the
relational database.

116
122

Claim Language”

Dolk, Teorey, and Zloof/Shaw References

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry
for each skeleton or example table in a query 2 [col. 11,
lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in
Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of an example table in a query Q. The content
89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL
70. GFTSQL 70 contains the SQL, such as the SQL select
statement in Table 24.

DXEGFT 106
] mmermoom mwme L. 70 I e— {omzosoenxs |
iGFTSOL I wme 71 72 IGFTTABLE (¢-—+
| mEmwwswwes 73 : IEIEnmeewn | 1
t O-J - {GFTPTCOL. | 4
it 74° (GFTCOLCTY ¢ '
: o e | H
78 1 oo _ieFTPTRON 1
{ m=ormarnsesan § L R | 76 iGFTROWCT :
IGFTCOLMN ~Cm e | e e———t H
{errnasuecs | H] ¢ 91 { —
IGFTCNMPT |-t $ 82 - 177
el T" B0 - —)I\‘ HE
! R —-=>{ GF TRON I R g
P+ >3 i 1 i
i a4 ijFTPTRQ. H t
lm-u_l/ t | ¢r—e—— I GFTHFLDS it
IGFTCDATA T 111 o s s § [
{mecmrsnxes | Q0 1 Sé/l.mEl X —-——+ 1
IBFTPTCOT '("" LI § e —————— !
IGFTEDTLN ¢ H LI - ¥ 4 H 23 H :
fom et 92} a3 !
IGFTBINDR Tom-t-—-Loos | | 98 mmmmmcmmms .
{owe— '--—'-’l‘94 H JBS ! *=«-—=>10FTCOLCN ! H
IGFTSIMCN == ——demme e | smammoena ¢
§ e e s i § g o L GFTPTRON §
4 95 ! ! 103 i 98 IGFTCONMLN ¢ H
s t Ty !
102 { 100 (GFTROWIX !<c—emwus
{znoasnaoms H H i it e §
IGFTCONTB (< ~—+ 105 { 9
{ swosam=m=g | H 104 -
ﬂ 1 1. sr=asowonm)
+-=——=> I GFTCNTNY
HE T T T TS H
FlIg.s ' o

Where the SQL query operates on a relationship relation as
described in Teorey, the SQL query will include an SQL
FROM statement which identifies the name of relationship
relation being queried. Shaw, 15:28-31. This name is the
relation type, since the relationship relation is named with
it’s type, e.g. the SKILL_USED relationship type is also
the name of the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.
10; 216, FIG. 13, Table 1. Thus for example,
SKILL_USED is the name of a relationship between a
provided EMPLOYEE entity and a desired SKILL entity.

One element of the SQL query stored in the GFTSQL 70 is

the entity provided as a parameter to the query. For

117
123

Claim Language”

Dolk, Teofey, and Zloof/Shaw References

example, Table 24 of Shaw depicts an example of a query,
in both SQL and QBE formats. Shaw, 26:59-68. In this
example, the query is seeking the employees who work in
the San Jose Department, and who meet a salary condition
of > $20,000. Id. The provided entity is “DEPT”, and the
desired entity is “EMP”. Id.

The QBE example table shown in Table 24 is another
example of an inquiry table as claimed. This inquiry table
contains the same DEPT provided entity information,
which is retrieved from the table in order to create the SQL
statement SELECT DNO FROM DEPT shown in Table
24. Shaw, 15:38-42, 26:59-68. '

7. The method of claim 1, further
comprising retrieving a second
desired entity type record '
containing a second desired entity
type from said entity definition

table, wherein said second desired

| entity type record specifies a second
desired entity instance table
associated with said second desired
entity type.

This limitation requires the presence of two entity type
records, and thus two entity instance tables. Otherwise, it
is the same as “retrieving a desired entity type record” of
Claim 1. Fig. 1 of Dolk depicts the association of two
different entity types, Soc-Sec-No and Empl-Record to
generate a relationship Empl-Record-CONTAINS-Soc-
Sec-No. Two entity instance records appear in Fig. 1: Soc-
Sec-No 555-23-6666 and Empl-Record Kirk.

8. The method of claim 7, further
comprising retrieving a third
desired entity type record _
containing a third desired entity
type from said entity definition
table, wherein said third desired
entity type record specifies a third
desired entity instance table
associated with said third desired
entity type.

This limitation requires the presence of three entity type
records, and thus three entity instance tables. Otherwise, it
is the same as “retrieving a desired entity type record” of
Claim 1. '

Teorey provides another example ternary relationships
relating three entities. Specifically, Teorey clearly teaches
relation types which create relation instance tables that
involve more than two entity instances. Such relationships
are disclosed as ‘“‘ternary” or more generally “n-ary”
relationships. For example, see the ternary relationships of
FIG. 10. Teorey at 212-13, FIG. 10. When executing
queries on these relationships, the entity type records of,
for example, the EMPLOYEE, PROJECT and SKILL
entities would be retrieved, for the ternary relationship
SKILL-USED of FIG. 10(b). Teorey at 212; see also id at
216, Fig. 13.

9. The method of claim 1, further
comprising retrieving a second

|| specific relation instance record
defining a relation of a second

This claim merely requires the retrieval of a second
specific relation instance record of a second relation type,
between the same two entities. Otherwise, it is the same as
“retrieving a desired entity type record” of Claim 1.

118
124

Claim Language15

Dolk, Teorey, and Zloof/Shaw References

provided relation type between said
provided entity and said desired
entity from a second relation
instance table corresponding to said
second provided relation type
record.

Dolk expressly permits the existence of two different
relationships, of two different relation types, between the
same two entities. Fig. 2 indicates that not only can an
IRDS contain entities of different Entity-types, i.e. FILE,
RECORD, or ELEMENT, but an IRDS may also contain
different Relationship-types, i.e. CONTAINS,
PROCESSES, RESPONSIBLE-FOR, or RUNS.
Specifically, Fig. 2 provides in pertinent part, as follows:

SYSTEM' FILE BIT-STRING
_PROGRAM RECORD . CHARACTER- STRING
" MODULE ELEMENT . ' FIXED-POINT

USER DOCUMENT FLOAT

Retationship-types

CONTAINS GOES-TO

PROCESSES CALLS

RESPONSIBLE-FOR . DERIVED-FROM

RUNS REPRESENTED- AS

Fig. 2, entitled “Core Sysfem-Standard Schema Types”

RD schema description tayer Entity-type Relationsiip-type
IRD schema tayer ELEMENT, RECORD, efc. RECORD-CONTAINS -
ELEMENT
IRD data tayer 8ac-Sec-No, Empl - Empl-Record-
Record. etc. CONTAINS-Goc-
Sec-No
Operational data 55%-23- 6666 (Employee Empl -Record for

record for Kirk) Kirk-CONTAINS -

(555-23-6666)

FIGURE 1. IRDS Architeciure

| 10. A relational database processing
system comprising:

The primary aims of relational database design
revolve around organizing and storing data so that the
information within the database may later be accessed by
the database user. According to an article by Peter Chen,
“to design a database is to decide how to organize data into
specific forms (record types, tables) and how to access
them.” Further, another related problem in database design
is to make the “output of the database design process-the
user schema (a description of the user view of the data)”
more like the way humans represent the real world. Peter
Pin-Shan Chen, The entity-relationship model — A basis for
the enterprise view of data 77 (1977). ‘

119
125

Claim Language~

Dolk, Teorey, and Zloof/Shaw References

In addition an inherent component of databases is that they
allow the retrieval of items, including relation type records.
Front end user interfaces that enable users to easily retrieve
the information in the underlying databases have been well
known in the arts from at least from the mid 1980’s, if not
sooner. One type of front-end user interface is created
using the QBE language. According to The Database Step-
by-Step textbook, “The [QBE] user interface, designed for
technical and nontechnical people alike, is a two-
dimensional, on-line, video display terminal oriented query
facility.” To issue a query, the user gives an example of
the required information, which amounts to specifying a
variable name in the column of the desired information.”
Mark L. Gillenson, Database Step-by-Step 141-42 (2d Ed.
1990). ‘ ‘

A critical component of databases is that they allow the
retrieval of items, including relation type records. Front
end user interfaces that enable users to access the
information in the underlying databases are inherent to
database management systems. One type of front-end user
interface is created using the QBE language. According to
The Database Step-by-Step textbook, “The [QBE] user
interface, designed for technical and nontechnical people
alike, is a two-dimensional, on-line, video display terminal
oriented query facility.” To issue a query, the user gives
an example of the required information, which amounts to
specifying a variable name in the column of the desired
information.” Mark L. Gillenson, Database Step-by-Step
141-42 (2d Ed. 1990).

The Dolk article discloses an IRDS which contains an
enhanced data dictionary D/D. Specifically, Dolk
discloses a relational model of a passive IRDS (i.e. a
“stand-alone” IRDS, or “DBMS independent”) that is
consistent with the subset of the FIPS specifications and
can easily be implemented and used with existing RDBMS
products. Dolk at 49.

an entity definition table containing
a first entity type record defining a
first entity type;

Dolk teaches that entity types (i.e. entities) can be defined
for a relational database. P.50. As noted above, Fig. 4
provides a template for how an entity may be defined with
various attributes:

120
126

Claim Language”

Dolk, Teorey, and Zloof/Shaw Réferences

ENTITY(ename,etype ,dname,added-by,
date-added,mod-by,last-mod, nmods,
dur-value ,dur-type,comments,descr,
security,lang,lines-code,nrecs,

" rec-cvat;data-class,doc-cat)

Fig. 2 depicts two example of entity types, Soc-Sec-No and
Empl-Record. p. 50. As noted above, Dolk further teaches
that an IRDS contains an enhanced data dictionary D/D.
p-49. The entity definitions are contained in the IRD data
and schema layers, which are separated from the
operational data layer (which contain the entity and
relationship instance records). Dolk at 50.

Finally, the data dictionary containing the entity definitions
are stored in a table. As the data and scheme layers are
based on the E-R model, Dolk teaches the implementation
of these layers using ORACLE tables and SQL tables.
Dolk at 55 (“The RIRDS is implemented very
straightforwardly in ORACLE by creating the relations and
views given in Figures 4, 5, and 6 using the SQL CREATE
TABLE and CREATE VIEW commands.”)

a first entity instance table

associated with said first entity

type;

Dolk discloses entity instance tables as part of the IRDS
architecture. The IRD schema and data layers map the
contents of the underlying database, including entity
instance tables.

Entity instance definitions can be retrieved in order to
operate on the underlying database. The entity type
definition records identify entity instance tables, including
the entity instance tables containing entities that a user
would desire to retrieve.

Dolk teaches that entity types can be defined for a
relational database. Dolk, Fig. 4, p. 50. Fig. 4 depicts a
basic relational representation of the IRDS Entity-
Relationship Model. Specifically, one standard template
for defining an entity would be as follows: o

ENTITY(ename,etype,dname, added-by,
date-added, mod-by,last-mod,nmods,
dur-value,dur- type,comments,descr
security,lang,lines-.code, nrecs,
rec-cat;data-class doc-¢cat)

Fig. 4. ename would represent the name of the entity;

121
127

_ Claim Language

Dolk, Teorey, and Zloof/Shaw References

etype would represent the entity type. Fig. 2 lists various
entity types such as SYSTEM, PROGRAM, MODULE,
USER, FILE, RECORD, ELEMENT, etc.

The definitions of these relationship types are stored in the
IRD data layer of a relational information resource
dictionary system (RIRDS). Dolk, Fig. 1, p. 50.

The IRDS is itself of an implementation of a ORACLE
database and by using the SQL CREATE TABLE and
CREATE VIEW commands. P.49, 55. Therefore, the data
dictionary component of the IRDS itself includes tables
that contain entity table definitions. Fig. 7 depicts how
RIRDS Tables and Views may be created in ORACLE.
Further, in extending the RIRDS, entity tuples, or
definition rows, may be added to the data dictionary by the
process mentioned on p. 56-57 of Dolk.

Dolk further teaches that the RIRDS may contain a

' directory component “describing where information

resources [i.e. entity instance tables] are located and how
they can be accessed.” P. 49. Put another way, the
directory is analogous to a physical description of where
the entity instance table is located in computer memory. P.
49. The “directory description would contain data on the
machine, operating system, and the file structure under
which the file is stored.” Dolk at 49.

a plurality of entity instance records
stored in said first entity instance
table;

Dolk teaches that desired entities, or entity instance
records, are stored in entity instance tables.

The IRDS network contains éntities of various entity types.
Dolk at 50. As the underlying database upon which the
freestanding IRDS is based may be programmed in Oracle,
the entity instances may be stored in entity instance tables,
corresponding to a specific entity type record. See i.e. p.
60. Fig. 1 provides an example of a entity record 555-23-
6666 (Employee record for Kirk), in the form of a social
security number. This entity record may be stored in and
retrieved from a Soc-Sec-No entity instance table. Entity
instance records in the underlying Oracle database may be
retrieved using SQL queries at p. 58, 60 of Dolk,
regardless of whether the RIRDS system is integrated with
the host RDBMS.

a relation definition table

Dolk teaches a data definition table in the forfn ofa

122
128

Claim Language15

Dolk, Teorey, and Zloof/Shaw References

containing a first relation type
record defining a provided relation

type;

information resource definition system (IRDS) that
includes a relation definition table which contains relation
type records which define relationship types.

Dolk teaches that relation types (i.e. relationships) can be
defined for a relational database. Dolk at 51, Fig. 4. Fig. 4
depicts a basic relational representation of the IRDS
Entity-Relationship Model. Specifically, one standard
template for defining a relationship would be as follows:

RELSHIP(xtype,einame,eltype, e2name,e2typl
access-method, frequency ,rel_pos)

Fig. 4. According to Dolk, relationships have certain core
attributes, as depicted below in Fig. 5, below. They
associate two entities with names elname and e2name.

Retationships |
All relationships have the same attributes and keys:
REL(e1n'ame,eltjma,eZname‘,eztype) ‘ '

where e 1name , e 2name are the entity instances ‘
eltype,e2type are the entity-types of which
e1name, e 2nane are instances, respectively
REL is any of the relationships CONTAINS ,

PROCESSES, RUNS, RESP..FOR, CALLS,
GOES..TO, DERIVED._FROM, ALIAS, and KWI(

Integrity consiraints
See Figure 3

FIGURE 5. Relational IRDS (RIRDS)

(in pertinent part).

All relationships are binary, relate entities to each other,
and are named self-descriptively according to the entity-
types that participate in them. Dolk at 50, 51.

The definitions of these relationship types are stored in the
IRD data layer of a relational information resource
dictionary system (RIRDS). Fig. 1, p. 50. These definition
of these relation types must have the following basic .
relational representation:

123
129

Claim Language”

Dolk, Teorey, and Zloof/Shaw References

RELSHIP(rtype,eliname,eltype,e2name,e2type,
access-method, fregquency , rel_pos)

Fig. 4 at p. 53 of Dolk.

The IRDS is itself of an implementation of a ORACLE
database and by using the SQL. CREATE TABLE and
CREATE VIEW commands. P.49, 55 (“The RIRDS is
implemented very straightforwardly in ORACLE by
creating the relations and views given in Figures 4, 5, and
6 using the SQL CREATE TABLE and CREATE VIEW
commands.”) Therefore, the data dictionary component
of the IRDS itself includes tables that contain relationship
table definitions. Fig. 7 depicts how RIRDS Tables and
Views may be created in ORACLE.

RELSHIP(rtype,einane, elitype a2name e2type,
access-mothod, frequency ,rel_pos}

Further, in extending the RIRDS, relationship tuples, or
definition rows, may be added to the data dictionary by the
process mentioned on pp. 56-57 of Dolk.

a first relation instance table
associated with said provided
relation type; and

Dolk teaches that relation instance records define relations
between entities, and that these records are stored in
relation instance tables, each of which corresponds to a
particular relation type.

Dolk teaches that relationship relations store information
that relates two entities to each other and are represented as
tables. The IRDS network contains entities, or nodes,
which are connected to each other by relationships, or arcs.
Dolk at 50. As the underlying database upon which the
freestanding IRDS is based may be programmed in Oracle,
the relationship instances may be stored in a relation
instance table, corresponding to a specific relationship type
record. See i.e. p. 60 of Dolk. Emp-Record for Kirk-
CONTAINS (555-23-6666) is one relationship instance
record. The relationship Emp-Record-CONTAINS-Soc-
Sec-No between Soc-Sec-No and Empl-Rec entities. Fig. 1
(depicting IRDS architecture). Relationship instance
records in the underlying Oracle database may be retrieved
using SQL queries at pp. 58, 60 of Dolk, regardless of
whether the RIRDS system is integrated with the host
RDBMS.

a first relation instance record of
said provided relation type, said -
first relation instance record relating

Dolk teaches that a relationship instance record, which
corresponds to a particular relationship type, defines
relations between entities.

124
130

Claim Language

Dolk, Teorey, and Zloof/Shaw References

a desired entity in one of said entity
instance records to a provided
entity.

Dolk teaches that relationship relations store information
that relates two entities to each other. “All relationships are
binary, and entities may be related to themselves.” P. 50.
The IRDS network contains entities, or nodes, which are
connected to each other by relationships, or arcs. P. 50. As
the underlying database upon which the freestanding IRDS
is based may be programmed in Oracle, the relationship
instances may be stored in a relation instance table,
corresponding to said relationship type record. See i.e. p.
60 of Dolk. Emp-Record for Kirk- CONTAINS (555-23-
6666) is one relationship instance record the relationship
Emp-Record-CONTAINS-Soc-Sec-No between Soc-Sec-
No and Empl-Rec entities. Fig. 1 (depicting IRDS
architecture). Relationship instance récords in the
underlying Oracle database may be retrieved using SQL
queries at p. 58, 60 of Dolk, regardless of whether the
RIRDS system is integrated with the host RDBMS.

'11. The relational database
processing system of claim 10,
wherein each of said entity instance
records is identified by a record
identifier. '

Dolk teaches that each entity instance record contains a
record identifier that corresponds to the desired entity
instance record.

Specifically, Dolk teaches that a record identifier for an
entity may be made of composite keys. Fig. 4 depicts a
generic representation of an entity, where ename and etype
are keys to a given entity by entity name ename and entity

type etype.

ENTITY(ename,etype,dname,added-by,
date-added,mod-by,last-mod,nmods,
dur-value ,dur-type,comments,descr,
security,lang,lines-code,nrecs,
rec-cat,;data-class;doc-cat)

Fig. 4 of Dolk.

12. The relational database
processing system of claim 10,
wherein said first relation instance
record contains a desired record
identifier and a desired entity type
corresponding to a desired entity

| instance record containing said
desired entity.

Dolk teaches that each relation instance record contains a
record identifier that corresponds to the desired relation
instance record. The relation instance record also contains
desired entity type corresponding to a desired entity
instance record containing said desired entity.

Specifically, Dolk teaches that a record identifier for an
entity may be made of composite keys. Fig. 4 depicts a
generic representation of a relationship, where rtype,

elname, eltype, e2name, and e2type are keys to a given

125
131

Claim Language

Dolk, Teorey, and Zloof/Shaw References

relationship of relationship type rtype, which associates
entities elname and e2name of entity types eltype and

e2type.

RELSHIP(rtype,elname,eltype,e2name,e2type,
access-method, frequency,rel..pos)
Fig. 4 of Dolk. ‘

13. The relational database
processing system of claim 10,
wherein said first relation type
record comprises a table identifier
identifying said first relation
instance table.

Dolk teaches that each relation instance record contains a
record identifier that corresponds to the desired relation
instance record.

Fig. 4 depicts a generic representation of a relationship,
where rtype, elname, eltype, e2name, and e2type are keys
to a given relationship of relationship type rtype, which
associates entities elname and e2name of entity types
eltype and e2type.

RELSHIP(rtype,elname,eltype,e2name,eltype,
access-method, frequency,rel..pos)

Fig. 4 of Dolk. One of the attributes to the relationship

may identify which table the relationship may be found in

the underlying database.

Dolk further teaches that the RIRDS may contain a
directory component “describing where information
resources [i.e. relationship tables] are located and how they
can be accessed.” Dolk at 49. Put another way, the '
directory is analogous to a physical description of where
the relationship instance table is located in computer
memory. Dolk at 49. The “directory description would
contain data on the machine, operating system, and the file
structure under which the file is stored.” Dolk at 49.

14. The relational database
processing system of claim 10,
further comprising an inquiry table
containing an inquiry record,
wherein said inquiry record
specifies said provided relation type
and said provided entity.

As noted above under claim 1, the use of running inquiries
on the underlying databases was an inherent part of
managing E-R databases. A QBE table was one form of a
graphical front-end interface that allowed a user to access
the underlying database containing entities and relations.

Shaw takes the QBE skeleton tables , for example, from
Zloof, and generates an SQL query, which is then used to
retrieve the inquiry results from the relational database.

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry

for each skeleton or example table in a query 2 [col. 11,

126
132

Claim Language15

Dolk, Teorey, and Zloof/Shaw References

lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in
Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of an example table in a query Q. The content
89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL
70. GFTSQL 70 contains the SQL statement (inquiry
record).

Where the SQL query operates on a relationship relation as
described in Teorey, the SQL query will include an SQL
FROM statement, which identifies the name of relationship
relation being queried. Shaw, 15:28-31. This name is the
relation type, since the relationship relation is named with
it’s type, e.g. the SKILL_USED relationship type is also
the name of the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.
10; 216, FIG. 13, Table 1. Thus for example,
SKILL_USED is the name of a relationship between a
provided EMPLOYEE entity and a desired SKILL entity.

15. The relational database
processing system of claim 10
further comprising:

a second entity instance table
associated with a second entity
type; and

Dolk discloses the existence of a second entity instance
tables as part of the IRDS architecture. The IRD schema
and data layers map the contents of the underlying
database, including entity instance tables. As relationships
associate two entities, a second entity instance table
associated with a second entity type is part of the IRDS
architecture, and is mapped by the IRD schema and data
layérs.

A relationship associates two entities with (names elname
and e2name)

127
133

Claim Language”

Dolk, Teorey, and Zloof/Shaw References

Retationships ,
All relationships have the same attributes and lse'vs:;
REL(e1tiame,e1typg,ezname‘,eZtype} '

where e Iname, e 2name are the entity instances

eltype,e2type are the entity-types of which
elname, e 2nanme are instances, respectively

REL is any of the relationships CONTAINS .-
PROCESSES, RUNS, RESP_FOR, CALLS,
GOES..TO, DERIVED._FROM, ALIAS, and KWI(

See Figure 3

FIGURE 5. Relational IRDS (RIRDS)

(in pertinent part).

Thus, an entity instance table associated with a second
entity type is taught by Dolk. Thus, a second entity
instance table might be one for Empl-Record, where the
first entity instance table was one for Soc-Sec-No. The

two entity types might be associated by the relationship

Empl-Record-CONTAINS-Soc-Sec-No.

wherein said entity definition table
contains a second entity type record
containing said second entity type
and associating said second entity
instance table with said second
entity type.

Dolk teaches that an entity type record of a second entity
type may be contained in a second instance table of said
second entity instance type. Further, the entity definition
table may contain the second entity type as a record.

As noted in Fig. 1 of Dolk, the IRD Layer defines both
entity type records Soc-Sec-No and Employee-Rec.

IRD schema description layer : Ent&y-iype

IRD schema layer ELEMENT, RECORD, etfc.
IRD data layer . 8oc-Sec-No, Empl -
Record, elc.
Operational data 555-23- 6666 (Employee
record for Kirk)
16. The relational database
128

134

Claim Language

Dolk, Teorey, and Zloof/Shaw References

processing system of claim 15
further comprising:

a third entity instance table
associated with a third entity type;
and

-t Teorey teaches three entity instance tables, for example the

SKILL, DEPARTMENT and DIVISION entity tables of
FIG. 13. Teorey at 216, FIG. 13, Table 1.

SKILL DEPARTMENT DIVISION

SKLL-NO SEPTNO DI-NO

SKiLL-USED
EMP-RD SKRL-NO PROV-NAME

PROJECT EMPLOVYEE
PROV-NAME EMP-NO

ASSIGNED-TO
De-NO0 LOC-HAME

"LOCATION
LOC-NAME

EMP.MANAGER EMP ENGINEER EMP.TECHNICIAN EMP.SECRETARY
EMP-NO 0"e-N EMP-HO OP-50

- BELONGS-T0
[u—«om .]

PRF-ASSOC PC
ln—m I PC-ND '

Figure 13, Compan_y personnel and projact database candidate relations.

wherein said entity definition table
contains a third entity type record
containing said third entity type and
associating said third entity instance
table with said third entity type.

Teorey teaches that all entities, including SKILL,
DEPARTMENT and DIVISION entities, are transformed
into relations that are stored in the data dictionary. Teorey
at 216, Table 1. Huber teaches that the data dictionary
contains a set of table definitions. Huber, 6:68-7:3. A set,
by its very nature, can contain three (or more) entity type
records.

As indicated above, while Huber teaches the use of a
relation definition table, the use of data dictionaries to map
the contents of the underlying database, including the
entities and relationships within it, was already common in
the field. A data dictionary was considered “[a] system
database that contain[ed] information about a user
database, such as location of data, lists of fields and tables,
and data types and lengths.”

129
135

Claim Language*

Dolk, Teorey, and Zloof/Shaw References

17. The relational database
processing system of claim 10
further comprising:

a second relation instance table
associated with a second relation
type; and

Dolk teaches that a plurality of relationship types may exist
within a given IRDS system and within a given relation
instance table. As the IRDS in Dolk maps the contents of
the underlying ORACLE E-R database, a second relation
instance table may exist.

A second relation type and an associated relation instance
table may be part of the relational database. More than one
relation type may exist - “The IRD architecture is based on
the entity-relationship [E-R] model The IRD consists
of entities, attributes, and relationships that are instances of
the corresponding IRD schema entity-types, relation-types,
and attribute-types.” Dolk at 50. The IRDS may be
implemented using Oracle tables and the contents of the
same may be accessed using SQL commands. Dolk at 55.
Finally, as the IRDS maps the contents of the operational
data in the underlying database, the second relationship
type in the IRDS is associated with a relationship table in
the underlying database.

wherein said relation definition
table contains a second relation type
record containing said second
relation type and associating said
second relation instance table with
said second relation type.

Dolk teaches that a relationship instance record, which
corresponding to the second relationship type may be
found in a second relation instance table.

As the underlying database upon which the freestanding
IRDS is based may be programmed in Oracle, the
relationship instances may be stored in a relation instance
table, corresponding to said relationship type record.

18. The relational database
processing system of claim 17
further comprising:

a third relation instance table
associated with a third relation type;
and

Dolk teaches that a plurality of relationship types may exist
within a given IRDS system and within a given relation
instance table. As the IRDS in Dolk merely maps the
contents of the underlying ORACLE E-R database, a third
relation instance table, to which the IRDS maps, may exist.

wherein said relation definition
table contains a third relation type
record containing said third relation
type and associating said third
relation instance table with said
third relation type.

Dolk teaches that a relationship instance record, which
corresponding to the third relationship type may be found
in a second relation instance table.

130
136

D. Tsichritzis, Munz, Zloof, and Shaw References

The Tsichritzis, Munz I, and Munz II references, in combination with Zloof

and/or Shaw, as taught in the above charts and in the below, teach all limitations of

claims 5-6 and 14 of the ‘259 patent.

Claim Language

Tsichritzis, Munz, Zloof, and Shaw References

5. The method of claim 1, further
comprising retrieving data
specifying said provided relation
type from an inquiry table.

Tsichritzis ,

‘259 specification description of INQ.DEF or inquiry table
The ‘259 specification describes path selection using the
inquiry table as '
<starting entity type>

<connecting relationship type><intermediate entity type>
<connecting relationship type><intermediate entity
type>...”259 patent, col. 29, lines 57-65.

Tsichritzis description of inquiry table
In Tsichritzis, a user constructs a relation by selecting a

record type, then linking on a different type record type
and possibly selecting and linking again. See Tsichritzis,
pp 126, para 6. v
E.g.: Define relation relation-name
from A select SA

(This is <starting entity type>)
Link with LAB to B select SB

(This is <connecting relationship type><intermediate
entity type>)
Link with LBC to C select SC

(This is <connecting relationship type><intermediate

entity type>)
The above relation (path) is stored in a RELATION
TABLE. See Tsichritzis, pp. 126, para. 5. The
RELATION TABLE is the claimed inquiry table. When a
relation is created, the relation definition in the
RELATION TABLE is retrieved, including the link name,
which specifies the link (provided relation type). 16

Munz

According to Munz I, Munz queries are supplied as a
comma-separated values table (pattern string) to a
procedure call. This pattern string is inherently stored by
the PL/1 procedure in a data structure (such as an array)

131 .
137

Claim Language

Tsichritzis, Munz, Zloof, and Shaw References

which is a table. See Munz I, sec. 4.3.3, p. 107. The
example pattern strings in Munz I are laid out in a row and
column style. This layout corresponds to the layout of the
rows of the inquiry table of this claim. Compare Munz I,
sec. 4.3.3 (example pattern string) with ‘259 patent, 25:44-
26:10, FIG. 7-1, element 740. This pattern string is simply
a textual representation of the same underlying data
structure as claimed.

The provided relation type data is retrieved from the table
the query is stored in, since this how such data is provided
to the Munz system by the procedure call. See Munz I, p.
108, sec. 4.3.4. (FIND_DB procedure is how patterns are
provided to the database; pattern string is a parameter to
FIND_DB). For example, using the first pattern string
discussed in sec. 4.3.3 of Munz I, the relation type data
would be “WORKS_IN” in either of the first two lines.
See id at 4.3.3. '

Zloof/Shaw

The use of inquiry tables such as ones based on the QBE
language was an inherent part of managing E-R databases.
A QBE table was one form of a graphical front-end
interface that allowed a user to access the underlying
database containing entities and relations. According to
The Database Step-by-Step textbook, “The [QBE] user
interface, designed for technical and nontechnical people -
alike, is a two-dimensional, on-line, video display terminal
oriented query facility.” Mark L. Gillenson, Database Step-
by-Step 141-42 (2d Ed. 1990). While a QBE interface is
pictorial in nature, a SQL’s interface is more linear and
textual. Id. “The user begins by specifying which table is
needed for a particular query. Once a table(s) is chosen,
the system displays an outline of that table, showing the

| table name and the names of its fields. To issue a query,

the user gives an example of the required information,
which amounts to specifying a variable name in the
column of the desired information.” Id.

Zloof teaches Query-by-Example (QBE). When a user
performs an operation , e.g., query, update, define, or
control, against the data base, the user fills in an example
of a solution to that operation in skeleton tables that can be
associated with actual tables in the database. For
illustration, suppose we want all green items sold in the toy

132
138

Claim Language

Tsichritzis, Munz, Zloof, and Shaw References

department.

Figure 13 Quolified rotiwval using Hoda

g nEw Ctim § ml Bugs | oepr wew |

rr | oeta B)

Fig. 13 of Zloof above shows the two skeleton tables:
“TYPE” and “SALES”. These two tables are linked by the
word “NUT”. Thus Figure 13 shows an inquiry table

| consisting of two skeleton tables linked together like the

level 1 and 2 rows of the INQ.DEF table 740 in Figure 7-1
of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a linear
query for accessing the contents of a relational database
from a graphic query input at a user terminal, including
relation records. Shaw takes the QBE skeleton tables , for
example, from Zloof, and generates an SQL query, which .
is then used to retrieve the inquiry results from the
relational database.

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry
for each skeleton or example table in a query 2 [col. 11,
lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in
Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of an example table in a query Q. The content
89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL
70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24.

133
139

Claim Language

‘Tsichritzis, Munz, Zloof, and Shaw References

DXEGFT 106
| smouommwen | .70 © jememo oo |
: GFTSOL (e 78 72 ISGFTTABLE (<~—e
. 3 | AmWe nwme § H
RPN Sl —ISFTPTCOL 1 i
ot H 74 IGFTCOLCT ¢
tot 73 [pRS—
l— H H H
) 79 ! | te—re e —— IGFTPTRON | 1
i SCoannme=ws | H H H 76 !GFTRONCT ! H
IGFTCOLIMN A } e s !
{m=mnnananon | H H o1 { ‘.—\
IGFTCNMPT {omms : a2 - 1 77
o T €0 - }. : 1
-] : - ——> 1 GFTROW <= =
i+ > H H 4
. 1 64'){ GFTPTRCL. ! H H
H =-m--_:/aa f 1t (GFTSFLDS | ! 1
1BFTCDATA 7 | I I ¢ H | I
{socoowoxen! 90 L] Bb/farrm.sxx I e
18FTPTEDT T Pord f e e ! :
" IGFTCDTLN ¢ H RN - ¥ 4 H 2 ¢ H
fmmmmmme—t 92} 'Y 81 !
tarTBINOR Aoy L] 11 96 mes==wooms| (-
| R ,l,‘M H as [¢=~———=>iBFTCOLCN ! H
IGFYSIMON Mewwfomdem s {moomameaos §
et S U — IGFTPTRCN 1
H s ! : 103 i 98 GFTCO’I..N :
H H S T ——— H !
102 H 100 (GFTROWIX ! wew- ——
| sTRmms ey | t - B — o §
IGFTCONTB (Cw—e 10854 H 99
| mwunonmmma . H 108 —
H _9_2] l \L,g:a:nuusu H
$——mew D IGFTCNYNT ¢
{esmsomamons |
F 'G 5) t 101 ¢

Where the SQL query operates on a relationship relation as
described in Teorey, the SQL query will include an SQL
FROM statement which identifies the name of relationship
relation being queried. Shaw, 15:28-31. This name is the
relation type, since the relationship relation is named with
it’s type, e.g. the SKILL_USED relationship type is also
the name of the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.
10; 216, FIG. 13, Table 1.

The query translator of Shaw receives as an input a QBE
query, which is a “graphic language query expressed as
one or more elements . . . appearing in rows and columns
of an example table including one or more source and
target tables.” Shaw, 2:38-42. Where the source table
included in the example table is a relationship relation, as
discussed in Teorey, this example table contains the name
of the source table, which is “data specifying said prov1ded
relation type” as claimed. When the example query is
translated as part of the query processing, this relation type
data is retrieved in order to form part of the SQL query
submitted to the DBMS. Shaw, 15: 29 31.

6. The method of claim 1, further
comprising retrieving data

Tsichritzis
See claim 5 above. When a relation is created, the

134
140

Claim Language

Tsichritzis, Munz, Zloof, and Shaw References

specifying said provided entity
from an inquiry table.

provided entity is also retrieved from the RELATION
TABLE. Tsichritzis, p. 128, para. 2.

Munz

According to Munz I, Munz queries are supplied as a
comma-separated values table (pattern string) to a
procedure call. This pattern string is inherently stored by
the PL/1 procedure in a data structure (such as an array)
which is a table. See Munz I, sec. 4.3.3, p. 107. The
example pattern strings in Munz I are laid out in a row and
column style. This layout corresponds to the layout of the
rows of the inquiry table of this claim. Compare Munz I,
sec. 4.3.3 (example pattern string) with ‘259 patent, 25:44-
26:10, FIG. 7-1, element 740. This pattern string is simply
a textual representation of the same underlymg data
structure as claimed.

The provided entity data is retrieved from the table the
query is stored in, since this how such data is provided to
the Munz system by the procedure call. See Munz I, p.
108, sec. 4.3.4. (FIND_DB procedure is how patterns are
provided to the database; pattern string is a parameter to
FIND_DB). For example, using the first pattern string
discussed in sec. 4.3.3 of Munz I, the provided entity data
would be “P=PROJECT” in the second line, or “U” in the
last line. See id at 4.3.3. and FIG. 18.

Zloof/Shaw

As noted above, the use of inquiry tables such as ones
based on the QBE language was an inherent part of
managing E-R databases. A QBE table was one form of a
graphical front-end interface that allowed a user to access
the underlying database containing entities and relations.
According to The Database Step-by-Step textbook, “The
[QBE] user interface, designed for technical and
nontechnical people alike, is a two-dimensional, on-line,
video display terminal oriented query facility.” Mark L.
Gillenson, Database Step-by-Step 141-42 (2d Ed. 1990).

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry
for each skeleton or example table in a query 2 [col. 11,
lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in
Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of an example table in a query Q. The content

135
141

Tsichritzis, Munz, Zloof, and Shaw References

Claim Language

89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL
70. GFTSQL 70 contains the SQL for the query.

One element of the SQL query stored in the GFTSQL 70 is
the entity provided as a parameter to the query. For
example, Table 24 of Shaw depicts an example of a query,
in both SQL and QBE formats. Shaw, 26:59-68. In this
example, the query is seeking the employees who work in
the San Jose Department, and who meet a salary condition
of > $20,000. Id. The provided entity is “DEPT”, and the
desired entity is “EMP”. Id.

The QBE example table shown in Table 24 is another
example of an inquiry table as claimed. This inquiry table
contains the same DEPT provided entity information,
which is retrieved from the table in order to create the SQL
statement SELECT DNO FROM DEPT shown in Table
24. Shaw, 15:38-42, 26:59-68.

14. The relational database
processing system of claim 10,
further comprising an inquiry table
containing an inquiry record,
wherein said inquiry record
specifies said provided relation type
and said provided entity.

Tsichritzis

The RELATION TABLE is the inquiry definition table.
See claim 5.

The relation table contains the definition of a relation.
Specific example:

Define relation relation-name from A select SA

Link with LAB to B select SB

| See Tsichritzis, pp 127, para 6.

Each relation definition is a inquiry record. Each relation
definition specifies the provided relation type (LAB) and
said provided entity (A select SA).

Munz

According to Munz I, Munz queries are supplied as a
comma-separated values table (pattern string) to a
procedure call. This pattern string is inherently stored by
the PL/1 procedure in a data structure (such as an array)
which is a table. See Munz I, sec. 4.3.3, p. 107. The
example pattern strings in Munz I are laid out in a row and
column style. This layout corresponds to the layout of the
rows of the inquiry table of the this claim. Compare Munz
I, sec. 4.3.3 (example pattern string) with ‘259 patent,
25:44-26:10, FIG. 7-1, element 740. This pattern string is
simply a textual representation of the same underlying data
structure as claimed.

136
142

Claim Language

Tsichritzis, Munz, Zloof, and Shaw References

The provided relation type data and provided entity data is
retrieved from the table the query is stored in, since this
how such data is provided to the Munz system by the
procedure call. See Munz I, p. 108, sec. 4.3.4. (FIND_DB
procedure is how patterns are provided to the database;
pattern string is a parameter to FIND_DB). For example,
using the first pattern string discussed in sec. 4.3.3 of
Munz I, the relation type data would be “WORKS_IN” in
either of the first two lines, and the provided entity data
would be “P=PROJECT” in the second line, or “U” in the
last line. See id at 4.3.3. and FIG. 18.

Zloof/Shaw :

Shaw takes the QBE skeleton tables, for example, from
Zloof, and generates an SQL query, which is then used to
retrieve the inquiry results from the relational database.

Figure 5 of Shaw shows a collection of tables DXTGTF
106 that provides a table GFTTABLE 72 having one entry
for each skeleton or example table in a query 2 [col. 11,
lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in
Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for
each column of an example table in a query Q. The content
89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL
70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24 (inquiry record).

Where the SQL query operates on a relationship relation as
described in Teorey, the SQL query will include an SQL
FROM statement which identifies the name of relationship
relation being queried. Shaw, 15:28-31. This name is the
relation type, since the relationship relation is named with
it’s type, e.g. the SKILL_USED relationship type is also
the name of the relationship relation containing the relation
instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.
10; 216, FIG. 13, Table 1. Thus for example,
SKILL_USED is the name of a relationship between a
provided EMPLOYEE entity and a desired SKILL entity.

VIII. CONCLUSION

The prior art references attached hereto as Exhibits PA-A through PA-J,

considered in view of the admissions presented in this application, raise substantial new

questions of patentability of claims 1-18 of the 259 patent. These references render

137
143

these claims unpatentable under 35 U.S.C. §§ 102 and/or 103. Accordingly it is
respectfully requested that the Request for Reexamination be granted and that the PTO

give due consideration to the prior art discussed herein.

Respectfully submitted,

Dated: May 9.2007 / /[%/W

William L. Anthony, Jr.

Reg. No. 24771

Attorney for Petitioner Oracle
Corporation

138
144

PATENT

IN THE UNITED STATES PATENT OFFICE

Request For Ex Parte Reexamination Of:

U.S. Patent No. 5,826,259

Inventor: Karol Doktor

Assignee: Financial Systems Technology
Pty. Ltd.

Filed: May 22, 1997

Issued: October 20, 1998

For: Easily Expandable Data

- Processing Systems and

Method

INDEX FOR EX PARTE
REEXAMINATION OF U.S. PATENT
NO. 5,826,259

CERTIFICATE OF SERVICE

I, Stephanie C. Hart, hereby certify that on May 9, 2007, true and correct copies of the

following documents were served on the following counsel of record at the addresses and in the

manner indicated:

1. REQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL

FORM 1465

2. PTO-1449 AND REFERENCES CITED THEREON
3. REQUEST FOR EX PARTE REEXAMINATION OF U.S. PATENT

NO.259 ATTACHMENT

4. CERTIFICATE OF SER

OHS West:260227810.1

TO FORM 1465

VICE

145

I hereby certify that the attached associated documents are being deposited with the
United States Postal Service on this date in an envelope as “Express Mail Post Office to
Addressee” addressed to the following:

EDWARD KWOK, ESQ,

MACPHERSON KWOK CHEN & HEID LLP
2033 GATEWAY PLACE

SUITE 400

SAN JOSE, CA 95110

ALLEN, DYER, DOPPELT, MILBRATH & GILCHRIST, P.A.
1401 CITRUS CENTER '

25 SOUTH ORANGE AVENUE

P.O. BOX 3791

ORLANDO, FL 32802-3791

SAM BAXTER, ESQ.
McKOOL SMITH P.C.
505 EAST TRAVIS, SUITE 105
P.0.BOX O
MARSHALL, TEXAS 75670

" TELEPHONE: 903-927-2111
FACSIMILE: 903-927-2622

‘Date of Mailing: May 9, 2007

Stephanig C. Hart

OHS West:260227810.1

6883-23 SHO/SHO
146

