
001

PTO/SB/57 (04-04)
Approved for use tltrough 4/30/2007. OMB 065l-0033

1338 U8. P39 4 US Patent and Trademark Office; U. S DEPARTMENT OF COMMERCEn er the Paerwork Reduction Act of I995 no uersons are re-uired to resend to a collection ofinformation unlessIt dis-la s a \alid OMB control number

”II"mm as FORM PTO- I465) EQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL FORM . ,

Address to: 90008640
Mail Stop Ex Parte Reexam ,
Commissioner for Patents Attorney Docket No.: 6883/23 llllllllllllllllllllllllllllllll
PO. Box 1450 05/09/0

Alexandria, VA 22313-1450 Date: May 7, 2007

 |||lll|||||||

This is a request for ex parte reexamination pursuant to 37 CFR [.510 of patent number 5 826 259
issued October 20 1998. This request is made by:

El patent owner. ‘X third party requester.

The name and address ofthe person requesting reexamination is:

William L. Anthony Jr. '
Orrick, Herrington & Sutcliffe -

[000 Marsh Road

Menlo Park CA 94025

A check in the amount of$ is enclosed to cover the reexamination fee, 37 CFR 120(c)(1);

The Director is hereby authorized to charge the fee as set forth in 37 CFR l.20(c)(l)
to Deposit Account No. 15-0665 (submit duplicate ofthis form for fee processing); or

c. _ Payment by credit card. Form PTO-2038 is attached.

Any refund should be made by [:I check or E] credit to Deposit Account No.
37 CFR l.26(c). If payment is made by credit card, refund must be to credit card account.

A copy ofthe patent to be reexamined having a double column format on one side ofa separate
paper is enclosed. 37 CFR 1.510(b)(4) -

CD-ROM or CD-R in duplicate, Computer Program (Appendix) or large table

Nucleotide and/or Amino Acid. Sequence Submission
lfapplz'cable, all ofthefollowing are necessary.

a. I] Computer Readable Form (CRF)
b. Specification Sequence Listing on:

i. [:1 CD-ROM (2 copies) or CD-R (2 copies); or
ii. E] paper

c. El Statements verifying identity of above copies

A copy of any disclaimer, certificate of correction or reexamination certificate issued in the patent is included.

Reexamination ofclaim(s) 1-18 Is requested.

A r d bl I d b 85/22/2697 JHClDlljllBA 85835381]1 158565 955545
COpyo every patent or printe PU Ication re 16 upon is su mitlfiil 2%?ng Inc u lggaae. [BSIBInlfilt ereo onForm PTO- 1449 or equivalent.

An English language translation of all necessary and pertinent non-English language patents and/or printed
publications is included.

[Page I of2]
This collection ot infonnationIS required by 37 CFR 1.510. The informationIS required to obtain or Ietain a benefit by the public whichIs to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 USC [22 and 37 CFR l 14. This collection is estimated to take 2 hours to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the
amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U S. Patent and

Trademark Office US Department of Commerce, PO Box 1450, Alexandria, VA 223l3- I450. DO NOT SEND FEES OR COMPLETED FORMS TO THISADDRESS SEND TO: Mail Stop Ex Parte Reexam, Commissioner for Patents, P.O. Box 1450 Alexandria, VA 223”- I450.
[/yuu needaxsislunce in completing tthorm call I800-1’10.)l99 and select option 2

OHS West1260227791.-Il IBM EX_ 1 021
001

cmillevi
Text Box
IBM Ex. 1021

002

PTO/SB/57 (04--04)
Approved for use t111011g|1 4/30/2007. OMB 065| -0033

U S. Patent and Trademark Office; US DEPARTMENT OF COMMERCE
Under the Pa-erwork Reduction Act of 1995 no Iersons are re uIred to resond to a collection ofinfonnation unless it dis In S a valid OMB control number

X The attached detailed request includes at least the following items:

a. A statement identifying cach substantial new question of patentability based on prior patents and printed
publications. 37 CFR 1. 510(b)(l)

b. An identification of every claim for which reexamination is requested and a detailed explanation ofthe
pertinency and manner of applying the cited art to every claim for which reexamination is requested.
37 CFR 1.510(b)(2) -

[:1 A proposed amendment is included (only where the patent owner is the requester). 37 CFR 1.5 10(e)

X a.- It is certified that a copy ofthis request (if filed by other than the patent owner) has been served in its
' entirety on the patent owner as provided in 37 CFR 1.3 3(c). .

The name and address ofthe party served and the date of service are:

ALLEN DYER DOPPELT MlLBRATH & GILCHRIST P.A.

' 1401 CITRUS CENTER 255 SOUTH ORANGE AVENUE

Orlando FL 32802-3791

Date of Service: May 7, 2007 ; or

A duplicate copy is enclosed since service on patent owner was not possible.

Correspondence Address: Direct all communication about the reexamination to:

El CUStomer Number:

OR

X] Firm or Orrick Herrington & Sutcliffe, LLP

1nd1v1dua| Name William L. Anthon , Jr.

Address (line D 1000 Marsh Road

Address—line2)
Menlo Park State Zip

CA 94025

_ountryT—elephone 650 6147400 - 650 6147401
The patent is currently the subject ofthe following concurrent proceeding(s):

E] .a. Copending reissue Application No.
C] b. Copending reexamination Control No.
C] c. Copending Interference No.
1:] d. Copending litigation styled:

WARNING: Information on this form may become public. Credit card information should not be

' ' ovide credit card inf rmationand authorization on PTO-2038..l 330’?

Date

Williams L. Anthony, Jr. 24771 El For Patent Owner Requester
Typed/Printed Name Registration No, ifapplicable XI For Third Party Requester

[Page 2 of2]

OHS West:260227791.1

002

003

1338 "US: PTO

WWWWWWWWMW
05/09/07 ‘ . . PATENT

IN THE UNITED STATES PATENT OFFICE 1338 U3 pm ‘

‘ 90008648

WMWWWWWWWWWI
- 05/09/07Request For Ex Parte Reexamination Of:

US. Patent No. 5,826,259

Inventor: Karol Doktor

' - - - INDEX FOR EX PARTE
A : F l S t T h l

SSlgnee 1,13%: ys ems 6C no Ogy REEXAMINATION OF US. PATENT
' ' NO. 5,826,259

Filed: May 22, 1997

Issued: October 20, 1998

For: Easily Expandable Data

Processing Systems and
Method

Mail Stop Ex Parte Reexam
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Enclosed please find Foundry Networks, Inc.’s request for ex parte reexamination of US.

Patent No. 5,826,259. Included with the request is a compact disk that contains all

exhibits and references in PDF format. The request comprises the following documents:

DOCUMENT , NO. OF

. PAGES

USPTO From SB/08A I p 2
Exhibits to Form SB/OSA:

V Exhibit PA-A - US. Patent No. 4,506,326 28

003

004

DOCUMENT No. OF

PAGES

Exhibit PA-B US. Patent No. 4,774,661 . 16

Exhibit PA-C US. Patent No. 4,918,593 38

Exhibit PA-D Toby J. Teorey, et al., A Logical Design 25

Methodology for Relational Databases

Using the Extended Entity-Relationship

Model, Computing Surveys (June 1986) -

Exhibit PA-E Daniel R. Dolk, et. al., A Relational 14

1 Information Resource Dictionary

System, Computing Practices,
Communications of the ACM (January

1987)

Exhibit PA-F M.M. Zloof, Query-by-Example: A 20

Data Base Language, IBM Systems

Journal, No. 4 (1977)

Exhibit PA-G Tsichritzis, LSL: A Link and Selector 1 1

Language, Proceedings of the 1976
ACM SIGMOD International

Conference on Management of Data,

Washington, DC. (June 2-4, 1976)

Exhibit PA-H Munz, Rudolf, The Well System: A 17

Multi-User Database System Based on

Binary Relationships and Graph-

Pattern—Matching, 3 Information

Systems 99-115 (Pergamon Press 1978)

Exhibit PA-I Munz, Rudolf, Design of the Well 18

System, in Entity-Relationship

Approach to Systems Analysis and

Design. Proc. lst International

Conference on the Entity Relationship

Approach » ' '

Exhibit PA-J Ashok Malhotra, Yakov Tsalalikhin, 27

Donald P. Pazel, Luanne M. Burns and

Harry M. Markowitz, Implementing an

Entity-Relationship Language on a

Relational Data Base, IBM Research

Report RC 12134 (#54499) (Aug. 27,

004

005

’ Exhibit PA-K

Exhibit PA-L'

Exhibit PA-M

Exhibit PA-N

Exhibit PAT-A1

Exhibit PAT-A2

Exhibit PAT-A3

Exhibit PAT-A4

Exhibit PAT-A5

Exhibit PAT-A6

Exhibit PAT-A7

Exhibit OTH-A

99%

1986)

Rudolph Munz, “Das WEB-Modell”

(translated pages)(1976).

Gio Wiederhold, “Database Design

Second Edition” (1995). '

Pin-Shan Chen, The entity-relationship

model — A basis for the enterprise View

ofdata (1977).

Mark L. Gillenson, Database Step-by-

'S_t§p 2nd Edition (1990), Other
References

US. Patent No. 5,826,259 ‘

Preliminary Infringement Contentions

filed by FST in Financial Systems

Technology, et a1. V. Oracle Corporation
(“PICS”).

FST’s Response to the Notice of Non-

Compliant Amendment, filed on Sept.

21, 2006. '

U.S. Reissue App’n, Amendment Filed

July 25, 2006, 11/152,835.

FST’s Information Disclosure Statement

(IDS) in the 90/007,707 re-examination

(stamped by the USPTO on October 23,

2006).

Second Office Action in the .

Reissue/Reexamination Proceedings for
the ‘259 Patent.

Livingston Enterprises, Inc., _

Configuration Guide for PortMaster

Products (Dec. 1995)

Full copy of the complaint filed by

Patent Owner in Financial Systems

005

NO. OF

PAGES

40

46

50

47

44

52

006

Exhibit OTH-B

Exhibit OTH-C

Certificate of Service

Postcard

CD

Respectfully submitted,

Dated: May 8, 2007

OHS West:260228539.l

DOCUMENT

Technology, et al. v. Oracle

Corporation, Case No. 2:04-CV-358-

TJW (E.D..Tex.) filed on October 12,
2004.

' The IBM Dictionary of Comguting

Terms 87 (8th Ed. 1987).

Telebit Corp., Telebit NetBlazer®

Version 2.3 Release Notes (March 25,

1994)

Wllliam L. Anthony

Reg. No. 24771 .

NO. OF

PAGES

Attorney for Oracle Corporation

006

007

{3'36 u.é."i5T'o_

.Imuuummmmmmwumnumm‘ 7 - P6333133
05/09/07 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 90008648

illl I

05/09/07

Request for Reexamination of: REQUEST FOR EX PARTE
REEXAMINATION OF US. PATENT NO.

5,826,259

US. Patent No. 5,826,259

Inventor: Karol Doktor ATTACHMENT TO FORM 1465

Assignee: Financial Systems Technology MATTER IN REEXAMINATION
(Intellectual Property) Pty Ltd
Melbourne, Australia ATTN: EXAMINER LUKE S. WASSUM

GAU: 2167
Filed: ' May 22, 1997

Issued: ' October 20, 1998

'For: Easily Expandable Data
Processin S stem and Method

Mail Stop Ex Parte Reexam
Commissioner for Patents

PO. Box 1450,

Alexandria, VA 223 1 3- 1450

007

008

Pram:

TABLE OF CONTENTS

Page

TABLE OFEXHIBITS....................... 5

LIST OF EXHIBITS....................; ... 5

A. Prior Art (PA) .. 5

B. Relevant Patent Materials (PAT) ... 6

C. Other Documents (0TH) ... 6

REQUIREMENTS UNDER 37' C.F.R. § 1.510.. 8

A. PAYMENT OF FEES; 37 C.F.R. § 1.510(A)...................................'. 8

B. . STATEMENT POINTING OUT EACH SUBSTANTIAL-NEW

QUESTION OF PATENTABILITY; 37 C.F.R. § 1.510(B)(1) 8

C. IDENTIFICATION OF CLAIMS FOR REEXAMINATION; 37
C.F.R. § 1.510(B)(2) ... 8

APPLICATION OF CITED PRIOR ART; 37 C.F.R. § 1.510(B)(2) 9

COPIES OF THE PRIOR ART; 37 C.F.R. § 1.510(B)(3) 9

COPY OF US. PATENT 5,826,259; 37 C.F.R. § 1.510(B)(4) 9

CERTIFICATION OF SERVICE ON PATENT OWNER, 37 C.F.R.
§ 1.510(B)(5).. 9

II. CLAIMS FOR WHICH RE-EXAM IS REQUESTED.................................. 10

III. STATEMENT OF SUBSTANTIAL NEW QUESTION OF ‘
PATENTABILITY .. 11

' A. The Prior Art .. 11

B. New Question of Patentability .. 12

IV. EXPLANATION OF THE PERTINENCE AND MANNER OF

APPLYING CITED PRIOR ART TO EVERY CLAIM FOR WHICH

REEXAMINATION IS REQUESTED BASED ON PRIOR ART 14

A. Teorey.._............................... 14

B ' Huber .. 18

C Kuinpati 22

D. Dolk ..'. 24’

E Zloof .. 26

F. Shaw... 28

V. DISCUSSION OF FST’S RESPONSE TO NOTICE OF NON-I

COMPLIANT AMENDMENT... 29

2

008

009

VI.

_VII.

VIII.

TABLE OF CONTENTS

(continued)

Page

A. FST Identification of Alleged “Benefits Achieved by the

Claimed Invention” is Unavailing as the “Benefits” are .

Unclaimed, and Because the “Benefits” are Disclosed by Prior
Art... 30

-B. The ‘259 Patent Claims are Non-Statutory ... 38

C. The ‘259 Patent is Invalid Under 35 USC 102/103 Over the

'Munz, Malhotra and Tsichritzis References 39

DISCUSSION OF FST’S RESPONSE TO THE EXAMINER’S

SECOND OFFICE ACTION.. 43

A. Wiederhold’s “Database Design SecOnd Edition” Discloses
Definition Tables .. 43

B Requester Agrees with Examiner’s Section 101 Rejections 45

C The Munz Reference is Anticipatory Prior Art 48

D. The Malhotra Reference is Anticipatory Prior Art.................... 52

E The Claims Are Not Entitled to a Presumption of Validity 53

APPLICATION OF PRIOR ART PATENTS AND PUBLICATIONS 54

A. Teorey andHuber........................ 54

B. . Teorey and Kumpati.. 80

C. Dolk, Teorey, Zloof and/or Shaw ... 108

D. Tsichritzis, Munz, Zloof, and Shaw References 132

CONCLUSION .. 138

3

009

010

TABLE OF EXHIBITS

LlST OF EXHIBITS

The exhibits to the present Request are arranged in three groups: prior art (“PA”),

relevant patent prosecution file history, patents, and claim dependency relationships
(“PAT”), and other (“0TH”).

A. Prior Art gPAg

PA-SB/08A USPTO Form SB/08A .

PA-A ' US. Patent No. 4,506,326 to Philip S. Shaw, et al., Apparatus and
Method for Synthesizing a Query for Accessing a Relational Database,
issued March 19, 1985, filed Feb. 28, 1983 (“Shaw”).

PA-B US. Patent No. 4,774,661 to Murari Kumpati, Database Management
System with Active Data Dictionary, issued Sept. 27, 1988, filed Nov.

19, 1985 (“Kumpati”). '

PA—C US. Patent No. 4,918,593 to Val. J. Huber, Relational Database System,

issued April 17,- 1990, filed January 8, 1987 (“Huber”).

PA-D Toby J. Teorey, et al., A Logical Design Methodology for Relational

Databases Using the Extended Entity-Relationship Model, Computing

Surveys, Vol. 18, No. 2, June 1986, pp. 197-222 (“Teorey”).

PA-E Daniel R. Dolk, et. al., A Relational Information Resource Dictionary
System, Computing Practices, Communications of the ACM, Vol. 30,

No. 1, January 1987 (“Dolk”).

PA-tF M.M. Zloof, Query-by-Example: A Data Base Language, IBM Systems
Journal, No. 4, 1977, pp. 324-343 (“2100f”). ,

PA—G Tsichritzis, LSL: A Link and Selector Language, Proceedings of the 1976

ACM SIGMOD International Conference on Management of Data,

Washington, DC. June 2-4, 1976 (“Tsi‘chritzis”). '

PA-H - Munz, Rudolf, The Well System: A Multi-User Database System Based

on Binary Relationships and Graph-Pattern-Matching, 3 Information ,

Systems 99-115 (Pergamon Press 1978) (“Munz I”).

PA-I Munz, Rudolf, Design of the Well System, in Entity-Relationship

’ Approach to Systems Analysis and Design. Proc. lst International

Conference on the Entity Relationship Approach, 505-522 (1979)

(“Munz II”)

010

011

PA-J

PA-K

PA-L

PA-M

PA-N

B.)

PAT-A1

PAT-A2

PAT-A3

PAT-A4

PAT-A5

PAT-A6

PAT—A7

C.

OTH-A

OTH—B

OTH—C

Ashok Malhotra, Yakov Tsalalikhin, Donald P. Pazel, Luanne M. Burns

and Harry M. Markowitz, Im lementin an Entit —Relationshi

Lan ua e on a Relational Data Base, IBM Research Report RC 12134

(#54499) (Aug. 27, 1986) (“Malhotra”).

Rudolph Munz, “Das WEB-Modell” (translated pages), pp. 155-156, Fig.

10.2.1, (1976) (“Munz III”), with English translation. '

Gio Wiederhold, “Database Design Second Edition”, Discloses
Definition Tables, Sections 7-3-1, 7-3-7, 7-4-4, 7-4-5, and 9-7-6 and

Figs. 8-5, 8-7, 8-9 (1995).

Pin-Shan Chen, The entity-relationship model — A basis for the entegprise
View of data 77 (1977).

Mark L. Gillenson, Database Step-by-Step 141-42, 2d Ed. (1990).

Relevant Patent Materials (PAT)

US. Patent No. 5,826,259 (the ‘259 patent).

Preliminary Infringement Contentions filed by FST in Financial Systems
Technology, et al. v. Oracle Corporation (“PICS”). ‘

FST’s Response to the Notice of Non-Compliant Amendment, Filed on

Sept. 21, 2006.

US. Reissue App’n, Amendment, Filed on July 25, 2006, 11/152,835.

FST’s Information Disclosure Statement (IDS) in the 90/007,707 re-

examination, stamped by the USPTO on October 23, 2006.

Second Office Action in the Reissue/Reexamination Proceedings for the
‘259 Patent.

FST’s Response to Office Action, Filed on March 22, 2007.

Other Documents 10TH)

Full copy of the complaint filed by Patent Owner in Financial Systems

Technology, et al. v. Oracle Copporation, Case No. 2:04-CV-358-TJW

(E.D. Tex.) filed on October 12, 2004. '

The IBM Dictionary of Computing Terms 87 (8th Ed. 1987).

Webster’s New World Dictionary of Computer Terms 107 (3d Ed. 1988).

011

012

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Request for Reexamination of: REQUEST FOR EX PARTE
REEXAMINATION OF US. PATENT NO.

5,826,259

US. Patent No. 5,826,259

Inventor: Karol Doktor ATTACHMENT TO FORM 1465

Assignee: Financial Systems Technology MATTER IN REEXAMINATION
(Intellectual Property) Pty Ltd
Melbourne, Australia ATTN: EXAMINER LUKE S. WASSUM

Filed: May 22, 1997 GAU: 2167

Issued: October 20, 1998

For: Easily Expandable Data
Processin S stern and Method

Mail Stop Ex Parte Reexam
Commissioner for Patents

P.O. Box 1450,

Alexandria, VA 22313-1450

Dear Sir: .

Pursuant to the provisions of 35 U.S.C. §§ 302 et seq. and 37 CPR. § 1.510,

Oracle Corporation (“Oracle” or “Requester”) hereby requests ex parte reexamination of

US. Patent No. 5, 826,259 (“the ‘259 patent”). Attached as Exhibit PAT-A1 is a copy of

the ‘259 patent, as required under 37 CPR. § 1.510(b)(4). The ‘259 patent was issued

on October 20, 1998 to Karol Doktor. On its face, the ‘259 patent indicates that it was

assigned to Financial Systems Technology'Pty Ltd. Financial Systems Technology Pty

Ltd. claims" it has assigned the patent to Financial Systems Technology (Intellectual

Property) Pty Ltd. For convenience, both entities will be referred to as “FST” in this

request. FST has stated it believes the ‘259 patent is enforceable and there'is no terminal

disclaimer, certificate of correction, or reexamination certificate.

The ‘259 patent is presently the subject of a merged re-issue/re-examination. Re-

012

013

issue serial number 11/152,835, reexamination serial number 90/007,707. Additionally,

the ‘259 patent was previously the subject of litigation proceedings in the District Court

for the Eastern District of Texas, styled as Financial S stems Technolo et al. v. Oracle

Corporation, Case No. 2:04-CV-358-TJW. A copy of the Complaint is attached as

Exhibit OTH—A. During these proceedings, FST prepared and served on Oracle its

Preliminary Infringement Contentions (“PICS”) as required under the Patent Local Rules

of the Eastern District of Texas.” The PICs, as admissions by the patent owner of record

in a court record, may be utilized in combination with a patent or printed publication

, during an ex parte reexamination proceeding. United States Patent & Trademark Office,

I Manuallof Patent Examining Procedure § 2217(11). Admissions by the patent owner as to

any matter affecting patentability may be utilized to determine the scope and content of

the prior art in conjunction with patents and' printed publications in a prior art

rejection, whether such admissions result from patents or printed publications or from

some other source. Id. A copy of these PICs is attached as Exhibit PAT-A2. This

litigation was dismissed without prejudice to allow FST to pursue the above-noted reissue

application. FST has stated that it intends to assert the ‘259 patent following the'reissue

proceedings. '

RES QUIREIVIENTS UNDER 37 C.F.R. § 1.510

Pursuant to 37 C.F.R. § 1.510,’Oracle satisfies each of the requirements for ex

parte reexamination of the ‘259 patent.

A. Payment of Fees; 37 C.F.R. § 1.510(a)

Requester authorizes the Patent Office to charge Deposit Account No. 15-0665

for the fee set in 37 CFR § 120(c)(1) for reexamination. The fee for reexamination is

$8,800, and the fee-for an Information Disclosure Statement is $180.00.

B. Statement Pointing Out Each Substantial New Question of

Patentability; 37 C.F.R. § 1.510(b)(1)

A statement pointing out each substantial new queStion of patentability based on

prior patents and publications is provided in Section II.

C. Identification of Claims for Reexamination; 37 C...FR § 1.510(b)(2)

Requester requests reexamination of claims 1-18 of the ‘259 Patent, as further

013

014

discussed in Section I.

D. Application of Cited Prior Art; 37 C.F.R. § 1.510(b)(2)

A detailed explanation of the pertinency and manner of applying the cited prior

art to every claim for which reexamination is requested is provided in Section III.

E. Copies of the Prior Art; 37 C.F.R. § 1.510(b)(3)

Patent Office Form 1449 states the patents and‘printed publications upon which

this Request is based. A complete copy of each listed patent and printed publication is

included herewith as further outlined in Section II.

F. Copy of US. Patent 5,826,259; 37 C.F.R. § 1.510(b)(4)

As noted above, attached as Exhibit PAT-A1 is a copy of the ‘259 patent, as

required under 37 C.F.R. § 1.510(b)(4). There is no Certificate of Correction, Terminal

Disclaimer, or Certificate of Reexamination.

G. Certification- of Service on Patent Owner; 37 C.F.R. § 1.510(b)(5)

The undersigned certifies that a complete and entire copy of the Request for Ex

Parte Reexamination and all supporting documents have been provided to the Patent

Owner by serving the attorneys of record at the Patent Office for the ‘259 Patent and for

the pending reissue/reexamination proceedings:

Kwok, Edward

MacPherson, Kwok, Chen & Heid LLP
2033 GATEWAY PLACE

Suite 400

San Jose CA 95110

(on file for the ‘259 Patent)

Allen, Dyer, Doppelt, Milbrath & Gilchrist, RA.
1401 Citrus Center

255 South Orange Avenue
PO. Box 3791

Orlando, FL 32802-3791

(on file for the reissue/reexamination proceedings)

The undersigned further certifies that it served an additional copy on the Patent

Owners’ current litigation counsel of record:

Sam Baxter, Esq.
McKool Smith P.C.

- 505 E. Travis, Suite 105, PO. Box 0

014

015

Marshall, TX 75760

11. CLAIMS FOR WHICH RE-EXAM IS REQUESTED

Reexamination is requested of claims 1-18 of the ‘259 patent in View of the

disclosure in Toby J. Teorey, et al., A Logical Design Methodology for Relational

Databases Using the Extended Entity-Relationship Model, Computing Surveys, Vol. 18,

No. 2, June 1986,,pp. 197-222, attached as Exhibit PA-D.

Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the

disclosure in US Patent No. 4,918,593 to Val. J. Huber, Relational Database System,

issued April 17, 1990, filed January 8, 1987, attached as Exhibit PA-C

Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the

disclosure in US Patent No. 4,774,661 to Murari Kumpati, Database Management System

with Active Data Dictionary, issued Sept. 27, 1988, filed Nov. 19, 1985, attached as

Exhibit PA-B.

Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the

disclosure in Daniel R. Dolk, et. al., A Relational Information Resource Dictionary

System, Computing Practices, Communications of the ACM, Vol. 30, No. 1, January

1987, attached as Exhibit PA-E.

Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the

disclosure in M. M. Zloof, Query-by-Example: a data base language, IBM Systems ‘

Journal, No. 4, 1977, pp. 324-343, attached as Exhibit PA-F.

Reexamination is also requested of claims 1-18 of the ‘259 patent in view of the

disclosure in US Patent No. 4,506,326 to Philip S. Shaw, et a1., Apparatus and Method

for Synthesizing a Query for Accessing a Relational Database, issued March 19, 1985,

' filed Feb. 28, 1983, attached as Exhibit PA-A. '

All of the claims cited above are anticipated under 35 U.S.C. § 102 and/or

rendered obvious under 35 U.S.C. § 103 in view of the five prior art publications noted

above. _

015

016

III. STATENIENT OF SUBSTANTIAL NEW QUESTION OF
PATENTABILITY

A. The Prior Art

FST’s Response filed Sept. 21, 2006, has presented certain new interpretations

that it attributes to certain claims Iin the ‘259 patent. Due to these new interpretations,

Requester Oracle has identified additional prior art references which anticipate or render

obvious the claims of the ‘259 patent. Of the additional prior art documents cited above, ‘

Teorey, Kumpati, Dolk, Zloof, and Shaw were not of record in the file of the ‘259 patent.

In addition to the foregoing, FST’s amendment of'claims 4, 9, 12, 17, and 18 in its

first reexamination request have raised a substantial new question of patentability with

respect to those claims. U.S. Reissue App’n, Amendment Filed July 25, 2006,

11/152,835, attached as Exhibit PAT-A4. Under the Manual of Patent Examining

Procedure, the second or subsequent request for reexamination may raise a substantial

new question of patentability "with respect to 'any new or amended claim which has been

proposed under 37 CFR l-.530(d) in the first (or prior) pending reexamination proceeding.

United States Patent & Trademark Office, Manual of Patent Examining Procedure § 2240,

11 (8th ed. 2001).

Teorey, as part of the 90/007,707 re-examination, was cited as reference BA in an

Information Disclosure Statement (IDS) (stamped by the USPTO on October 23, 20062),

attached as Exhibit PAT-A5, and initialed by the Examiner on December 18, 2006. This

reference was cited more or less in the middle of 63 citations in the IDS. As this

1 reference was effectively buried in dozens of other references, reconsideration of this

reference is warranted. Also, in light of the positions taken by FST as to claim breadth

and the amended claims, a substantial question of patentability exists as to the Teorey

reference. .

Huber was of record in the file of the ‘259 patent, but qualifies for consideration

in this re-examination proceeding. Huber was cited by the Examiner on a PTO-892 form

during prosecution of the great-grandparent application for this patent, but was otherwise

1 Oracle notes that while FST may have advanced certain claim interpretations, Oracle does not necessarily
adopt them, and is therefore is not bound by those interpretations.

2 The Same Information Disclosure Statement, included in Examiner’s second office action, has a receipt
stamp of July 25, 2006.

10

016

017

not referenced by the Examiner in any further proceedings. Huber was cited by FST on

PTO-1449 forms in each subsequent filing, but Applicant failed to make references to

Huber in these filings as well. MPEP § 2242.II.A permits consideration of art previously

before the Examiner, where such art is presented in a new light or in a different way as

compared with its use in the earlier concluded examination(s). Since Huber was not used

in any manner in the prior Examinations, its use here constitutes a presentation in a new

or different way. Furthermore, Huber is being used in this request in combination with

art not previously before the Examiner. .

Additionally, Requester Oracle presents an update to the required “detailed

explanation and pertinency and manner of applying the cited prior art to every claimfor _

which reexamination is requested” pursuant to 37 CFR 1.510 and MPEP § 2214, for the

Munz, Malhotra, and Tsichritzis references that are already cited and are already of

record:

Tsichritzis, LSL: A Link and Selector Language, Proceedings of the 1976 ACM

SIGMOD International Conference on Management of Data, Washington, DC. June 2-4,

1976, attached as Exhibit PA-G; I

'Munz, Rudolf, The Well System: A Multi-User Database System Based on

Binary Relationships and Graph—Pattern-Matching, 3 Information Systems 99-115

(Pergamon Press 1978), attached as Exhibit PA-H;

Munz, Rudolf, Design of the Well System, in Entity-Relationship Approach to

Systems Analysis and Design. Proc. lst International Conference on the Entity

Relationship Approach, 505-522 (1979), attached as'Exhibit PA-I; and

Ashok Malhotra, YakovTSalalikhin, Donald P. Pazel, Luanne M. Burns and

Harry M. Markowitz, Implementing an Entity-Relationship Language on a Relational

Data Base, IBM Research ReportRC 12134 (#54499) (Aug. 27, 1986), attached as , ,

Exhibit PA-J.

B. New Question of Patentability

The prior art documents discussed herein, including the additional prior art

documents and the presently pending prior art documents, are closer to the subject matter

of the ‘259 patent than any prior art which was cited during the prosecution of the ‘259

patent, as demonstrated in detail below. These prior art decuments provide teachings not

11.

017

018

provided during prosecution of the ‘259 patent.

FST now identifies four features, as listed below in Section IV, that it believes are

benefits of the supposed “inventions” recited in the claims: (1) interposing metadata

between the table catalog and the query; (2) using two-part keys; (3) using an inquiry

table; or (4) using multi-tailed relation types. As will be discussed in detail below, all of

these features are found in the additional prior art cited above (Teorey, Huber, Kumpati,

Dolk, Zloof, and Shaw) and in the prior art cited in the presently pending re-issue/re-

examination proceedings (Munz, Malhotra, Tsichritzis). Accordingly, all of the claims of

the ‘259 patent are either anticipated or obvious in light of the cited prior art.

Claims 1-18 specify systems and methods for retrieving data from a relational

database. Presuming these distinctions are embodied in the language of the claims, a

substantial new question of patentability in this reexamination is whether (1) interposing

metadata between the table catalog and the query; (2) using two-part keys; (3) using an

inquiry table; or (4) using multi—tailed relation types, is anticipated and/or obvious in

view of the prior art cited herein.

In any event, the Teorey, Huber, Kumpati, Dolk, Zloof, and Shaw publications

' anticipate and/or render obvious, either alone or in combination with each other or With

the prior art of record in this patent, claims 1-18 of the ‘259 patent. All of the references

cited herein raise a substantial new issue of patentability because they anticipate or render

obvious all of the claims for which reexamination is sought and, except for Huber, they

I were not previously of record or cited by the Examiner or the Applicants. As discussed

above, Huber is being presented in a new or different way than it was used in the prior

examination.

The prior art cited herein and presently of record in this merged re-issue/re-

examination is more relevant to patentability than the prior art previously considered by

the Examiner. For example, as discussed above, the Examiner determined that the prior

art of record in the prosecution of the ‘259 patent did not teach using a relation instance ,

table or an entity definition table to contain records to be retrieved while processing

queries. As described below, each of the references disclosed herein, either alone or in

combination, contains “relation instance tables” and an “entity definition table’i and thus

satisfies the deficiencies identifiedby the examiner as not found in the prior art. Each

12

018

019

reference either alone or in combination additionally contains a relation definition table,

entity instance tables, and the other limitations recited in the claims of the ‘259 patent,

making each reference more relevant to patentability than the prior art of record in the

prosecution of the ‘259 patent. Each reference, either alone or in combination, also

contains each of the four purported “benefits” cited by FST in their Response. As a

consequence, these references create a substantial new question of patentability, are more

relevant than the prior art of record, and should cause cancellation of claims 1-18.

IV. EXPLANATION OF THE PERTINENCE AND MANNER OF APPLYING

CITED PRIOR ART TO EVERY CLAIM FOR WHICH

REEXAMINATION IS RES QUESTED BASED ON PRIOR ART.

3 Claims 1-18 of the ‘259 patent are considered to be fully anticipated .under 35

U.S.C. § 102 or obvious under 35 U.S.C. § 103 by the prior art references to Teorey,

Huber, Kumpati, Dolk, Zloof, and Shaw. These references are summarized below, with

an explanation and detailed charts showing how each prior art reference, alone or in

combination, meets all of the recited features of claims 1-18 of the ‘259 patent.

Claims 1-18 of the ‘259 patent are also considered to be fully anticipated under 35

U.S.C. 102 by the prior art references to Tsichritzis, Munz and Malhotra. The Tsichritzis, ~

Munz and Malhotra references are discussed in detail in Requester’s First Request for

Reexamination. As part of Requester’s presentatiOn of the required “detailed explanation

and pertinency and manner of applying the cited prior art to every claim, for which re-

examination is requested.” in the reexamination (37 CFR 1.510; MPEP § 2214),

Requester addresses certain mischaracterizations of the ‘259 patent and the cited prior art

made by FST, and explains how these prior art references meet all of the recited features

of the claims 1-18 of the ‘259 patent, even in light of FST’s new arguments.

A. Teorey

Teorey, in combination with (1)_Huber and (2) Zloof and/or Shaw teaches all of

the claims set forth in the ‘259 patent3. In addition to the forgoing combination, Teorey,

3 Teorey teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the definition
table limitations in claims 1, 7, 8, 10, 15, l6, l7, and 18 are rendered obvious by Teorey, in combination

with Huber, to the extent that Teorey does not anticipate these limitations. Further, the inquiry table

limitations in claims 5, 6, and 14 are rendered obvious by Teorey, in combination with Zloof and Shaw, to
the extent that Teorey does not anticipate these limitations.

13

019

020

in combination with (1) Kumpati and (2) Zloof and/or Shaw'also teaches all of the claims

set forth in the ‘259 patent4. The Teorey article discloses a conceptual schema and

methodology for creating and extending a large relational databases, using the well-

established Entity-Relationship (“E-R”) approach to database design. Under the entity-

relationship approach, information is presented in terms of entities, their attributes, and

the associations between entity occurrences, also called relationships. Entity sets are the

principal objects about which information is collected, and denote persons, places, things,

or events of informational interest. Relationships represent the real-world associations

among entities. The concepts and terms entities, entities sets, relationships, and .

relationship sets are all disclosed throughout the Teorey article. Teorey also teaches the

use of a data dictionary to map the contents of the database. Relation and entity

definitions also appear throughout the article, as do table instances and records of entities

and relationships. I

As disclosed in greater detail in the claim charts that follow, Teorey teaches the

connection between entities and relations: a relation defines the relationship between two‘

or more entities. Further,rthese entity and relation types may be defined within and

accessed in a relational database through a data dictionary, which contains both entity and

relation definitions. Records of these entity and relation types may be stored in instance
tables, wherein each table may contain a plurality of entity records or a plurality of

relation records. Also, a plurality of relation or entity instance tables may comprise an

entity-relation database. Further, keys within a relation and entities may uniquely

identify the relation or entity.

Figure 13 and Table 1 depict various entity relation types, including SKILL-

USED, ASSIGNED-TO, and BELONGS-TO. They also depict entity types SKILL,

DEPARTMENT and DIVISION.

4 Teorey teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the definition
table limitations in claims 1. 7, 8, IO. 15. l6, l7, and 18 are rendered obvious by Kumpati. in combination
with Huber, to the extent that Teorey does not anticipate these limitations. Further, the inquiry table
limitations in claims 5, 6, and 14 are rendered obvious by Teorey, in combination with Zloof and Shaw, to
the extent that Teorey does not anticipate these limitations.

14

020

021

SKILL DEPARTMENT DIVISION

E0,” BM
SKILL‘USED

[m uni-OHM I”3me ENLO‘IE‘

ASSIMD-TO

LDCAI’IODI

ErlRHAHAGER (WINNER WJ'ECRNICIAN EHPSEEREl’iiV

“LOWS-YO

FRI-ASSOC 96

run 1:. Company personal use] mine: dambmm-didm milling;

a

Fig. 13 of the Teorey article depicts a number of relation and entity types.

Table 1. Transfoanafion a! Enfltles and Relationships to Relations (Example)

Step 2.1. Entities “Mentions
1. DIVISIONtDIV—NO. HEAD-EMENO)

DEPARTMENTCDEPTWO. DEPENAME. RO0M~NO, PHONE-ND. DIVNO,
‘ MANAG-‘EMP-NO)

EM PLOYFLEwMP-NO, EMRNAME, JOBII‘ITLE. . . . , DEFY-N0, SPOUSE-EMP-NO, PC-NO)
SKILMSKILbNO. . . .)
PROJECTCPRaI-NAME. .. .)
LOCATION(LDC-NAME, . . .)
EMP.MANAGEWEMP~N0. , . .)
EMP.ENGINEER(EMP-NO, .. .)

9. EMPJ'ECHNICIAMEMP-NO. . . J
:0. EMPSECRETARHEMRNO. . . .)
ll. PCtPC‘NO. . . .)
12. l‘flF~ASSOC(PA-ND. . . .l

¢999FPp
Step 2.2. Rinary or aviary relationships to relations

13. BELONCS‘TOWAvNO. EMP~NO)

Slnp 2.3. 712mm (a! any wary) Malionships so relations
14. $KlLL-USEDIEMP-N0. SKILL-NO. PRGI.NAME)
15. ASSIBNED»TOIEMI‘«N0. LOCwNAME', .PROJsNAME]

Table 1 of the Teorey article depicts a number of relationship types, such as BELONGS-

TO, SKILL-USED, and ASSIGNED-TO and entity types such as DIVISION,

DEPARTMENT, and EMPLOYEE. The table also depicts how an entity or relation may

be defined by various attributes, one or more of which may be keys.

15

021

022

. . \

An engineer will use one counsel: (or a given
nmtect, mumm engine": use airlomnt
casebook: (or the some arojoel, No engineer
win an the same casebook for {Imam-n
umyecu, but amanni angtnnrs can use the
same “swank [or atrlerant protects,

em; “2(- gm EHP-N)

AUSFUSEBOOK Pauzmpaggmng;....... 1
usesuoxtm)
USE-CASSBOOKlgng—Nu Pins-mu; BOOK-NO)

FD! : [HP-N0, PREbNAflE "'0 BUOX'ND
BOOK-N0. PRDJ'NN‘IE "’a EflP‘NO
EflP-RD, BOOK-N0 ---) PROJ-NAHE

USE -CASEBOO¥

(a)

Fig. 10(3) (directly above) depicts a ternary relation USE-CASEBOOK of three entities,

ENGINEER, PROJECT and CASEBOOK. The ternary relationship reflects the fact that

under the given E-R model, an ENGINEER can use a particular CASEBOOK, depending

on the PROJECT. It also includes an instance of a USE-CASEBOOK relationship table

containing individual USE-CASEBOOK records and depicts how the entities and

relationships may be defined, i.e. ENGINEER(EMP-NO. . .), PROJECT(PROJ—NAME. . .),"

CASEBOOK(BOOK-NO...), and USE—CASEBOOK(EMP-NO, PROJ-NAME, BOOK-

NO. . .).

16

022

023

SKILL- USED

SK ILL-AVAILABLE

5:194an

(b)

Fig. 4 of the Teorey article depicts relationship instances tables, each of which contain a

plurality of relation instance records. Each of the relationships depicts, SKILL-USED,

SKILL-AVAILABLE, and EMF-SKILL, contain multiple rows, where each row -

indicates an instance of a particular relationship. Thus the SKILL-AVAILABLE instance

table discloses what sort of skill (SKILL—NO) a given employee (EMP~NO) has, as a

function of the project (PROJ-NAME). I ‘

B. Huber

Huber, in combination with (1) Teorey and (2) Zloof and/or Shaw teaches all of

the claims set forth in the ‘259 patents. Huber describes how a database may rely on a -

data dictionary to manage the underlying data within the database, particularly through

the use of definitions. Specifically, the Huber patent discloses a way to maintain a

, dependence between a user-defined field in one base table of a relational data base

system and the state of a row in another relational data base system, when one base table

references the other. Two base tables make up a referenced-referencing pair, and one

row has a primary key, which is used as a foreign key in the set of rows of another base

5 Teorey teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the definition
table limitations in claims 1, 7, 8, 10, 15, l6, l7, and 18 are rendered obvious by Teorey, in combination
with Huber, to the extent that Teorey does not anticipate these limitations. Further, the inquiry table

limitations in claims 5, 6, and 14 are rendered obvious by Teorey, in combination with Zloof and Shaw, to
the extent that Teorey does not anticipate these limitations. '

17

023 .

024

table. A change in the row of one base table may imply changes in the other base table.

Where suCh a dependence or relationship exists, the system must ensure the appropriate

changes in both base tables.

iFor the purposes of this reexamination application,'the key to the Huber system

lies in the fact that it maintains the dependence between the user-defined fields by the use

of a data dictionary and re'establishing means. Huber provides in greater detail, one

implementation of a data dictionary to define data items, including entities, and to

identify the locations, or files, of data instances, where records are located.

 APROG

223

LDBOP
225

811010!) BT10] (1)

Fig. 2 provides of an overview of one type of relational data base system, as

taught by Huber. It depicts a detailed layout of a data dictionary (DDICT 202) describes

a relational data base accessed by the data base system, and explicitly includes relation

definition tables (BT DEF 213). DDICT 202 contains both entity or relationship

definition tables, as taught in both Huber and Teorey. Each BT DEF 213, e.g., BT DEF

213(n) .. 213(x), has a pointer to its relation instance table BT 101, e.g., BT 101(n)

BT 101(x). The BT DEF table, which may define both entities and relationships may

point to both entity and relation instance tables, when Huber and Teorey are viewed in

combination.

18

024

025

g; Toma-oerv 3‘3

3 —'
Ex

new 403

fr}. ’ - ’ ‘
w chmo v - -- “9 V '30., KEYINFO m
2 13340 ‘ 419.J

3

KE’TA an

FOFF 423 '
MM 425

_ ..,, 5:03am 427

FIG‘ 4 FDEFA 421

 MO MP“? V 457N0 REF 0A? 469

BT DEFT “0!

Fig. 4 of Huber shows BT DEF 401, which is an expanded version of the BT DEF

213 of data dictionary 202 in Fig. 2 of Huber’ above. The “three fields [443, 445, and

447] relate BTDEF 213 to BT 101 which it defines. TNAME 443 is the name of ET 101; '

TFID 445 is the file identifier of the file which contains BT 101; TRLEN 447 is the

length of the records which represent the rows of ET 101 in the file.” Huber, 15: 17-21,

15:43 -49. Thus, a data dictionary under Huber and Teorey contains the name of the

entity or relation type and a pointer to an instance table, which contains the data for the

entity or relation type.

19

025

026

rMC 3|? Sutlc 32}
COUNTC SZI

FROM DEP DEF 3I3
BCDC

BTR 2I7cho)

[EE-

ETR 2I7 (c101)

8T IO! 1:)

T0 COUNTC 32!
:2ch Im 3m

ODD 2|!

Fig. 3 of the Huber patent depicts another detailed layout of a data dictionary and

further references a REFDEF table (REF DEF 313), which contains data defining the

referenced-referencing relationship between base tables, such as the base tables which are

used to create the relationship relation that itself is represented as a table. The REFDEF

table 313 stores a pointer, REFDPTR 312 that points to a referenced base table (ET 101),

and another pointer, REFGPTR 314, which points to a referencing base table (ET 101).

These two pointers are entity table type identifiers. These entity tables contain entity

records, which are retrievable by the user.

BASE YABLES um

”'05 CAFIOS

*—
fg‘f" mmmm

‘ CUSTOMER TABLE IOllai

-
. 0" mm—

c»

BCDF ”3 BCDSF H5

_ D :mj
FIG. 1 ORDER ITEM-PARTS VIEW TABLE II?

20

026

027

Fig. 1 of the Huber patent is an example of the relational database. It depicts

customer, order, and parts instance tables; the tables contain instances of customers,

orders, and parts entities. Information-about customers in the data base may be presented
as shown in CUSTOMER TABLE l01(a). Huber, 5:5-10. The items of information

CUST ID (customer ID), NAME (customer name), ACCT BAL (account balance), CRL

(credit limit), and OB (orders booked) are associated with each customer and appear in a

row belonging to the customer. Each row in the CUSTOMER TABLE 101(a). is uniquely

identified by a primary key consisting of one or more fields. The primary key in the

CUSTOMER TABLE would be CUST ID. On the other hand, a view table, unlike a

base table, is a virtual table, i.e. “one whose rows do not'correspond to 'a set of records in '

a file, but is instead made up by the relational data base system for items from one or

more base tables.” Huber, 5:21-25.

Thus, relation instance tables containing relation records are present under Huber.

In the same way that a relation defines the relationship between two entity instances

under the ‘259 patent, a relationship or dependence will define the relationship between

two records, or between parent and child records under the Huber patent. Record

identifiers, in the form of primary keys for a base table, are also present under Huber.

Table identifiers for relation tables also exist under Huber, in the form of information

about the location of base tables. Huber also teaches the use of record identifiers in the

form of primary keys. In addition, it teaches the use of table identifiers in the form of

location information that points to the files containing the actual base tables (BT).

C. Kumpati .

Kumpati, in combination with'(1) Teorey and (2) Zloof and/or Shaw teaches all of

the claims set forth in the ‘259 patenté. Kumpati also describes in detail the use of a data

dictionary to define and access the underlying data in a relational database. Kumpati

pertains to a database management system, which has an active data dictionary

component that a user can access. The user can make use of simple commands to query

6 Teorey teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the definition
table limitations in claims 1, 7, 8, 10, 15, l6, l7, and 18 are rendered obviousby Teorey, in combination
with Kumpati, to the extent that Teorey does not anticipate these limitations. Further, the inquiry table
limitations in claims 5, 6, and 14 are rendered obvious by Teorey, in combination with Zloof and Shaw, to
the extent that Teorey does not anticipate these limitations.

21

027

028

the underlying data controlled by the database management system, as well as the

contents of the data dictionary. The data dictionary provides the user with the definitions

of the entity sets and relation (i.e., relationship) sets, of which the database is comprised,

but also the identity and locations of the entity and relation (i.e., relationship) instances

within the database management system.

70 I

' _ BUILDING

/‘
EUILDING—EXI TS

FIG. 7

 :3"

\
BUI LDING-RODHS

Fig. 7 of Kumpati shows a data model based upon relationships (diamonds 702,

704, and 706) and entities (rectangles 701, 703, and 705). This data model is part of the

data dictionary. Kumpati at 8:30-39. I I

By means of a query processor and a database command processor, the system

transfers the requested information — including the entity and relation records - to a buffer

file, which an application program may access.

Under Kumpati, access to all the data stored in the database is controlled by a

database command processor, which receives and processes requests for information

from the operating system. The processed, decoded information is transmitted to query

processor, which retrieves the identity of the various requested data elements from the

schema stored in the data definition library. Using this information, the' query processor

ascertains the location of the requested data, which resides in the form of entity and

relation instance tables. The tablesthemselves are comprised of entity and relation

instance records. Kumpati also teaches the use of entity instance record identifiers,

relation instance record identifiers, and relation instance table identifiers. -It also teaches

the use of a plurality of entity records and relation instance tables.

22

028

029

DAIABASI

mutton
svsicn ’

IZO

Fig. 2 of the Kumpati patent depicts sample instance tables with distinguishing keys for

each record.

D. Dolk

Dolk, in combination with (1) Teorey and (2) Shaw and/or Zloof teaches all of the

claims set forth in the ‘259 patent7. Dolk discloses a relational model of information

resource dictionary system (“IRDS”) used in database management. An important

component of an IRDS is a data dictionary (D/D), which is a catalog of information about

the logical and physical aspects of the underlying database. The D/D essentially

describes the contents of the underlying operational database. The article also discloses a

directory component, which may appear in an IRDS; the directory component describes

where information resources are located and how they are accessed.

The IRDS architecture described by Dolk (depicted below) includes an IRD

schema layer as well as a IRD data layer. It also includes an operational data layer,

which is essentially the underlying E—R database system.

7 Dolk teaches all elements of all of the claims set forth in the ‘259 patent. At a minimum, the inquiry table
limitations in claims 5, 6, and 14 are rendered obvious by Dolk, in combination with Zloof and Shaw, to the
extent that Dolk does not anticipate these limitations.

23

029

030

“DummnaxmflnMM Equm DwmanQw mmuuuu
1RD schema W ELENEK'I'. RECORD, etc. chow- comnrus- on: amaze, LGc'm.

ensue"? Locnrxon,am.

IRD dam layer soc ‘Sec «No, nmpl - 21w! ~ Record - Ziuova‘i, ‘2 (char)
Recoxe,aw. cokrarus‘soc- Brag A—Room]

Sac-80 _
Operat'nna! dam . 555 - 23 ~ 6666W Mp1 ~ Record for (AM do Mm as

record in: Kirk) Ki rt vcou'nxus . (:1sz in comm
(55543-6666) databases)

Mlmm

The IRD schema layer consists of instances of meta-entities, meta-relationships,

and meta-attributes at the IRD schema description level. The schema layer describes

various entity types (SYSTEM, FILE, RECORD, ELEMENT, USER, etc.), attribute

types (ACCESS-NAME, ADDED-BY, CLASSIFICATION), and relationship types

(CONTAINS, PROCESSES, RUNS, etc.), which comprise the layer underneath (the IRD

data layer). See Fig. 2. The IRD data layer itself consists of entities, attributes, and the

relationships that are the instances of the corresponding IRD schema entity-types,

relationship-types, and attribute types. The IRD data layer maps the contents of the

entity-relationship instance tables in the underlying operational layer. At all levels,

including the organization layer, entities and relationships conform to a basic relational

representation, as depicted in Figure 4.

ENTlfthnamc.cczgc.dname,add¢d-by.
date-added.aod~by.lactvmoa,nnnds,
dur~Value.dur-type,camments;deacr,
security . lung ,1 inc: wade ,n‘k‘éca ,
rcc~cat,daca~e1as$,doc-cae)

RELEHIPtrtzEg,oiname,ettzgg,a2name,92tzgg,
access-nothod,frequency,re1_pua)

FIGURE‘. mamsmamm
“WWW-BMW“

Entities and relationships within the Dolk IRDS architecture are “similar to a

semantic network where the entities are the nodes, and relationships are the arcs that

connect the nodes.” Dolk at 50. Thus, an ENTITY might have primary keys m

(entity name) and mpg (entity type), and a RELSHIP (relationship) might have as

primary keys Mpg (relationship type), elnfl (first entity name), gltypg (first entity

type),m(second entity type), andm (second entity type).

Dolk discloses that all three levels may be implemented in ORACLE by creating

relations and views, as depicted in figure 4, 5, and 6, and by using SQL commands

24

030

031

CREATE TABLE and CREATE VIEW commands. Figure 7 provides examples of this

process of creating ENTITY and RELSHIP tables.
ta) Clem mm maxmnm

CREATE Till-E E"! TY
(ENAKE CHM“ i5) “01‘ KULL,
my: CHANG) NO! NULL,
Dwmz (manna) ,
ROBE“! CKAK('5) KW NULL,
DATLA°959 HAT! m HULL,

DATA-EWE CHMHS)
DOE—CAT (3102(8)) x
can": nu: menu
new: cuuuz) war uuu.

EDHAIIZ mums) um um»,
um". (mama) um NULL,
mum: Cinema 210? NULL.
221:9: comma; my! uvm,
ACUEHIOD cmknai,
rumuncv mum 10).
nxgws nunam 5) u

(h) mmmmmm

it)

E.

CHE!!! ViEU HEDGE“ AS
(GKLM ”MAIL, OWE, WELBY, DATWDRB, max, mansion, "”005, waana,

0011.3198, W6. LINES—CODE. commas. DBSCR,non sun"
Hun“ mver-z’vnocnu') I

can“ vuzw racemes A8
(81%|.ch ‘mnmz. “TYPE, “NM”. 32‘"?!
new unsure
Hun: mer-‘noccssu'n

MM'WM
CHM?! V12" PIOGWvPlOCISSM’FXLB AS
(SELECT BIRME, BRIAM, ACCHLHZ'PHODFIB“ EKLSMIP
«an ITYPII‘FROCKJSLB' ”(D unvu'rmcnn‘ no

INN”)?! LZ') 3

886011th

m1. ammmumhm

Zloof

QBE and the use of inquiry tables were well-know in the prior art before 1990.

QBE is a high—level data base management language that provides a convenient and

unified style to query, update, define, and control a relational data base] Zloof, which is

' cited in the Shaw reference described below, taught the use of an inquiry table, as

claimed in claims 5, 6, and 14 of the ‘259 patent. Specifically, Zloof teaches use of the

Query—by-Example language (QBE), which allows users to graphically query the

underlying database. When a user performs an operation to query, update, define, or

' control the data base, the user can enter an example of a solution to a given operation in

skeleton tables, which can be associated with actual tables in the database.

Figure 33 Gmifiifiad whim? using links

For illustration, suppose we want all green items sold in the toy department. Fig.

25

031

032

13 of Zloof below shows the two skeleton tables: “TYPE” and “SALES”. A user, would

generate blank skeleton tables of these types and then fill' out the headings and required

entries. The same example element must be used in both tables, to indicate that if an

example item such as M is green, that same item is also sold by the toy department.

- Only if these two qualifications are met simultaneously does the item qualify as a
solution. Thus, Figure 13 shows an inquiry table consisting of two skeleton tables (i.e.,

inquiry records) linked together by the linking item NUT. They would be analogous to

levels 1 and 2 rows of the INQDEF table 740 in Figure 7-1 of Doktor.

FIG. 7-1 WP

neoussr _

(a; 55:23! 'RBlalIOfl Levelfatal”. ~ > - flit
lgggnm ten-Int]

involving
the relationship:

Rel Tami)
1m --E.i

Figure 11 of Zloof (below) shows a skeleton table that prints the names of the .

employees who work in the "W department 'md M more than $10,000.
Figure 1? Qualified retrieval

m—
1: mm if}?

A similar example is shown Table 24 of Shaw (the employees who work in the

San Jose Department, and earn more than $20,000).

TABLE 24

o DEPENDENT RETRIEVAL
SELECT ENAMESAL ‘ EMF ENAME SAL DNOONO

FROM em 9. >2aom r)
wnEaE SAL > 20000 _
mo one =. ANY _ can DNO LOC

5 (SELECT DNO ~.D 5:FROM DEPT

WHERE. LDC a 'SJ') _w

032

033

A snapshot can be created by giving the resultant table a name. A snapshot is a

newly stored table that contains the data from the resultant table. For example, a

resultant table can be created from the results of the search on the two skeleton tables in

Fig. 13 of Zloof. This resultant table, once named, becomes a new stored table.

Thus, the linked retrieval in Figure 13 of Zloof is an inquiry table. And the _

individual skeleton tables, “TYPE” and “SALES”, are the claimed inquiry records. The

Zloof patent therefore discloses the portions of claims 5, 6, and 14 in the ‘259 patent

which reference inquiry tables and records.

F. Shaw

Shaw teaches the use of an inquiry table as claimed in claims 5, 6, and 14 of the I

‘259 patent. The Shaw patent teaches how to synthesize a linear query for accessing the

contents of a relational database from a graphic query input at a user terminal.

Shaw cites Zloof as a graphic query language which provides for defining,

accessing, and modifying stored tables in a data base, and provides a particularly “user

friendly” format for the terminal operator. Shaw converts the QBE skeleton tables into

SQL queries, which are, in turn, used to retrieve the inquiry results from the relational

database.

For the purposes of this reexamination application: Shaw teaches that an SQL

query can be stored in an inquiry table for execution by a query processor on the database.

The SQL query is translated from a QBE query input by a user, and the translated SQL
query is stored in a table. According to one embodiment, the linear query is expressed in

Structure Query Language (SQL) syntax, and the graphic query in Query by Example

(QBE) syntax. Responsive to a QBE print query, an SQL command is generated which

comprises the UNION of one or more select statements. Generated SQL queries are

stored in DXEGFT tables. More specifically, the SQL query is generated into a buffer

area (GFTSQL) in storage. The Shaw patent further teaches that the QBE query input
from the user is stored in an example table, from which the query information is read in

order to generate the SQL query during query processing.

27

033

034

Specifically, Figure. 5 of Shaw shows a collection of tables DXTGTF 106 that

provide a table GFTTABLE 72 having one entry for each skeleton or example table in a

query 2. Shaw at 11:12 Thus, GFTTABLE 72 is an inquiry definition table, as

contemplated by Doktor.

4 In Fig. 5 of Shaw, GFTCOLMN 78 provides one entry for each column of an
example table in a query Q. The content 89 of GFTCOLMN 78 includes a GFTCNMPT

21:56? me ,
I—m'ym ”HIM {Am-ml
331’“ l(“* -71 72 (airframe Him
I l V" 73 W—u-Il l

' l f-V/ -'—- 'errmcm. 8 1

: 3 71“..set—"mum? ‘ 'u '-—"‘-l .

7a a l .___l.--n---__-:smmcu I a
. manna“: t I l M IEFTRDHCT : '
«'WCDLI‘N .<—:-+ I 3—........ g 3
ficzn-wl I 3 l V 9 '
rename-1 _l---—+ : a: ‘5 ' i?
l“-"-""-:‘ 30 mm munasx.' 3
| 12 I- >: atmau l(--l--5

: +-—---——>' ==uuwn=auu 1 I

a . MfGFTPm I I Km-n' 1 S '—--"-BFT’FLDB l I I
:Gfltcnn'ra 1’88 t : : »-—-——~—: I l
launcufian: I i : Bb/Im.5 I I ---‘ i
:5?me *1’1-—+ I l : - z : :
;U“TCDILN I I I I p37 1 ‘73 |- v2! ' a: : : _ er '
«Erratum :---:-/—-~o l I 1M. a aaW‘‘‘ -| \J

~~-«-—I 94' pm 3 *“—-FIBFTCQLCN I f
imitate ’31-...W-d—V“-0 Eva.....was: 2
i “I I.“ *""'" '11me I lE 1 ‘ 03 2 96 IGFTCW ' '

: I 1" “E I
1021 2 100 {Wm}! :------+

| -1-Ir_~=:x=xnxuy | ; HT——~.--‘
IGPTCGNIB '(‘W 1.03.... 1 99 I
: ==nmu==== : a 1 04 m.
I 17 I I Win-15:3:

‘ 6-—--~>IBFTENYNT 1
[nun-qum;

FIG 5 ' -‘°‘

field 80 providing a pointer 71 to GFTSQL 70. GFTSQL 70 contains the SQL command,

such as the SQL SELECT statement for the query for the employees who work in the San

Jose Department, and earn more than $20,000, as shown by Table 24 of Zloof above.

Thus, GETTABLE 72 and the QBE skeleton or example tables constitute inquiry

tables‘and records, as claimed. The Shaw patent therefore discloses the portions of

claims 5, 6, and 14 in the ‘259 patent which reference inquiry tables and records.

V. DISCUSSION OF FST’S RESPONSE TO NOTICE OF NON-COMPLIANT

ANIENDMENT

FST filed a Response to Notice of Non-Compliant Amendment, filed on Sept. 21,

2006 (hereinafter the “Response”), attached as Exhibit PAT-A3. In this Response, FST

makes numerous misleading characterizations of both the ‘259 patent and the cited prior

art. The present proceedings are a merged re-examination and a re-issue. Therefore, as

28

034

035

. .

part of Requester’s presentation of the required “detailed explanation and pertinency and

manner of applying the cited prior art to every claim for which re-examination is

requested” in the reexamination (37 CFR 1.510; MPEP § 2214), Requester addresses

FST’s mischaracterizations of the ‘259 patent and the cited prior art.

The Examiner mailed an Office Communication on'December 22, 2006,

(hereinafter the “Second Office Action” or “2nd OA”) in response to FST’s Response. .

This Second Office Action is attached as Exhibit PAT-A6. In the Second Office Action,

the Examiner has in many instances correctly noted FST’s mischaracterizations and

properly disregarded them. Requester appreciates the Examiner’s'careful attention to this

C356.

A. FST Identification of Alleged “Benefits Achieved by the Claimed

_ Invention” is Unavailing as the “Benefits” are Unclaimed, and

Because the “Benefits” are Disclosed by Prior Art

The ‘259 patent claims a relational database system that is based on the well-

established entity-relation model. Under this well-established model, relation types I

associate entity types with each other. The database stores, until retrieval, entity and

relation records within instance tables where each table holds records of a given entity or

relation type. Entity and relation definition tables hold the entity and relation type

.definitions. The patent also mentions, in its dependent claims, entity and relation record

identifiers, entity and relation table identifiers, and inquiry tables.

FST claims that the ‘259 “invention” discloses four additional “benefits”,

distinguishing it from the prior art. FST recites a number of supposed “real-world”

results that the claimed inventions realize. (Response 17-18)

Interposing Metadata Between the Table Catalog and the Query: the ‘259 patent

allegedly introduces meta tables (entity definition and relation definition tables) which sit

above the table catalog (which lists the table identifiers and files locators for the entity

and relation instance tables).

Two-Part Keys: the ‘259 patent allegedly introduces two-part keys where relation

instances explicitly store the entity type of a related entity, as well as a record identifier

of that entity instance record.

Inquiry Table: FST alleges that the ‘259 patent describes a feature whereby a

relational database contains an inquiry table that stores relation types and/or entity types

29

035

036

to be queried. '

Multi-Tailed Relation Types: the ‘259 patent allegedly claims relation instance

records that may involvemore than two entity instances. This may be known as a multi-

tailed instance, where there is one head entity identifier and at least two tail entity

identifiers in the relation instance record.
. None of these supposed results, however, are recited in the language of the

claims, nor is FST even able to identify any specific claim language that would lead to

these supposed results. As the Examiner correctly notes, none of the claims recite any

tangible result or function, and thus the claims are non-statutory. (2nd CA at 5, 31.)

Further, all of these features are found in the prior art cited in either this request or

in the presently pending proceedings. Accordingly, all of the claims of the ‘259 patent

are either anticipated or obvious in light of the cited prior art.

1. Interposing Metadata

a. Munz Interposes Metadata

FST concedes that'all relational databases have a catalog of system tables, called a

“table catalog”, which list table identifiers and file locators for the tables. FST contends

that its inventive contribution was to add a second layer of meta-table information, that

maps an entity type or relation type to a given table identifier in the table catalog.

However, this mapping is precisely what the Munz references teach. In Munz, the meta-

table information maps entity type codes and relationship codes into “tabcodes”, and then

uses the “tabcodes” in the “descriptors” discussed in Munz to locate the actual tables and

table pages where the data is stored. (Munz II at 515-516.)

FST contends that the claimed “entity definition table” has two features. It

identifies an entity type, and it specifies an entity instance table. (Response at 21.)

However, Munz’s schema table also identifies an entity type, and also specifies an entity

instance table. 8 The entity type is identified by the “entity type code” found in the

8 Recall that the Munz references refer to two different types of “relationships” as that term is used in Munz.
The first type is a relationship between “entities” as that term is used in Munz. This type of relationship is

referred to in the First Reexamination Request as an “entity-entity relationship”, which corresponds to the
term “relation type” as that term is used in the ‘259 patent. The second type is a relationship between an

“entity” and an “attribute” as those terms are used in the Munz references. This type of relationship is

referred to in the First Reexamination Request as an “entity-attribute relationship”, which corresponds to
the term “entity type” as that term is used in the ‘259 patent. See First Reexamination Request at 45 n. I2.

30

036

037

schema table records, as shown in Munz II on page 515 (figure replicated below).

X'OO‘ entity type relationship length- relations- card type
code code field shipname

1 byte 1 byte 1 byte 1 byte variable 1 byte 2 byte
length

musw

ID-field value field

The entity instance table is specified by the “tabcode”, which is an encoded

combination of the entity type code (name) and the relationship code (name).9 (Munz II

at 515—.16.)

Similarly, FST contends that the claimed “relation instance table” has two

features; identifying a relation type and specifying a relation instance table. These same

features are found in Munz’s schema table. The relation type is identified by the

relationship code, and the relation instance table is specified by the “tabcode”, which is

an encoded combination of the entity type code (name) and the relationship code (name).

(Munz II at 515.)

b. Malhotra Interposes Metadata

The Malhotra reference also teaches this mapping. Malhotra’s ERLANG system

is built on top of a standard relational database, which FST concedes has a “table

catalog”. (Malhotra at 2.) Malhotra adds a second layer of meta-table information on top

of the standard relational database, in particular the “RELATIONSHIPS” table and the

“ENT.TYPE” table. ‘

The ENT.TYPE table identifies an entity type, and it specifies an entity instance

table, just like FST contends its “entity definition table” does. The entity type is '

identified by the NAME field of the ENT.TYPE table (Malhotra, p. 16, line 1). the entity

instance table is also specified by the NAME field. (Id.)

The RELATIONSHIPS table identifies a relation type, and it specifies a relation

instance table, just like FST contends its “relation definition table” does. The relation

type is identified by the REL_TYPE field of the RELATIONSHIPS table, and the

9 The entity type name and relation type name noted by the Examiner as identifying the entity instance table
and relation instance table, respectively, are each encoded as part of the tabcode.

31

037

038

relation instance table is specified by the REL_NAME field of the RELATIONSHIPS

table. (Malhotra at 4.) _ I

c. Tsichritzis Interposes Metadata

The Tsichritzis reference also teaches this mapping. Tsichritzis’ LSL system “can

be thought of as a relational system implemented on a network environment, or a network

system with a relational interface for end users.” (Tsichritzis at 123, ‘I[2) (emphasis

added.) Thus, Tsichritzis is a relational database and therefore also has the “table

catalog” that FST concedes is inherent in all relational databases. Tsichritzis adds a

second layer of meta—table information on top of this “table catalog”, in particular the

RECORD DEFINITION TABLE (RDT) and the LINK DEFINITION TABLE (LDT).

' The RDT identifies an entity type, and specifies an entity instance table, just like

_ FST contends its “entity definition table” does. The entity type is identified by the name

of the record type (e.g. “Employees” for the record type example in Tsichritzis, p. 124, ‘I[

2). The entity instance table is also specified by this name, since the entity instance table

is the loaded record type (Tsichritzis, pg. 125, ‘][2.)

The LDT identifies a relation type, and it specifies a relation instance table, just

like FST contends its “relation instance table” does. The relation type is identified by the

name of the link (6.g. “own” for the link example in Tsichritzis, p. 124, ‘][6). The relation

instance table (which is the intermediate pointer structure in Tsichritzis) is also specified

by the name of the link. For example, the “Create link own from Houses to Employees?

command creates an intermediate pointer structure, associated with the name “own”, that

relates House entity instances to Employee entity instances. (Tsichritzis, p. 125, ‘][6-7.)

2. Two-Part Keys

Initially, as the Examiner has noted, claims 2, 3 and 12 fail to reflect the particular

interpretation that FST has advanced in its Response for this supposedly novel feature.

Therefore, all of the Tsichritzis, Munz and Malhotra references anticipate or render

obvious claims 2, 3 and 12 as presently presented, as demonstrated in the First Re- \

Examination Request.

32

038

039

a. Munz Includes FST’s New Inter retation of Two-Part1

Keys -

The WELL database system designed by Dr. Munz does contemplate two-pan

keys as described by FST in the Response. The previously-submitted Munz 11 reference, I

which discussed Dr. Munz’s WELL System database, clearly disclosed the desired record

identifiers being stored in each relation instance record, and disclosed that each relation

instance record implicitly specified the desired entity. type. (First Re-Examination

Request at 47.)

Submitted with this Second Re-Examination Request is an additional reference,

titled “Das WEB-Modell” (hereinafter “Munz III”), also authored by Dr. Munz, which

further'describes the WELL System database. This reference clearly shows that Dr.

Munz’s system contemplated that relation inStance tables could store and use both the

entity type and the record identifier. See Munz III (translated pages), attached as

Exhibit PA-K, at 155-6, FIG. 10.2.10. These translated pages recite how the data

structures of the WEB model can be implemented. Munz III at 154. In FIG. 10.2,

reproduced below, the relation instances of an example relation instance table are shown.

Cat

Hans “—- 701
Cat ——m

. Cat

Cat "m-
Cat

Hans m——-

Figure 10.2 Triple visual display of a WEB ’

b. ‘ Malhotra Includes FST’s New Interpretation of Two-
Part Keys

Additionally, two-part keys are anticipated by the Malhotra reference. As noted

by the Examiner, a reference may be used not only for what it expressly teaches, but for

'0 This reference was published in Germany, in 1976. and thus qualifies as prior art under 35 U.S.C. §
l02(b). Since the reference is in German, Requester has supplied translations of the relevant pages of the
reference. '

33

039

040

O 0

what it fairly suggests, including fair suggestions to unpreferred embodiments and to

structures not specifically chosen to illustrate concepts. Second Office Action at 34

(citing CCPA caselaw). FST claims that Malhotra only allows for a single entity type as

source and a single entity type as target. Response at 44, citing to Malhotra at 4.

However, FST fails to cite to the very next sentences in the Malhotra reference, which

provides that “[t]his restriction is not necessary if relationships are stored by pointers or

by system defined keys as, for example, in EAS-E (13). It is however, a minor

restriction.” FST’s selective citation to a single sentence misrepresents the teachings of

the Malhotra reference. This reference plainly teaches that the purported advantage

realized by two-part keys is also realizable using the teachings of Malhotra, in an

alternate embodiment. By explaining that the “single entity type” restriction, which is

caused by the binding of a key attribute to a single table, is not necessary in the alternate

embodiment, Malhotra fairly suggests a two-part key, for example a system-defined key,

that can refer to more than one source or target entity type. Therefore, even assuming

that claims 2, 3 and 12 properly recited this two-part key limitation as discussed by FST,

those claims would still be anticipated by theMalhotra reference, either standing alone or

in combination with the Munz references cited above.

3. Inguiry Table

FST’s argument in the Response discusses several purportedadditional features of

the “inquiry tables” claimed in claims 5, 6, and 14. However, none of these additional

features are actually claimed in claims 5, 6, and 14. Therefore, none of those purported

additional features can serve as a basis for overcoming the cited prior art, which art

includes all of’the elements actually claimed in claims 5, 6, and 14. I

Furthermore, as discussed in detail in the prior section, the Shaw reference

includes an inquiry table which has the purported additional features that FST discusses

' in its Response. Thus the Shaw reference, alone or in combination with Teorey, Huber,

Kumpati, Dolk, Zloof, Munz, Malhotra and Tsichritzis references anticipates or renders

obvious claims 5, 6 and 14, even if those claims are somehow interpreted differently in

light of FST’s argument in the Response.

34

040

041

4. Multi-Tailed Relation T es

a. FST’s Ar ument is Inconsistent With The Claim

Language

FST’s argument in the Response again discusses several purported features, in

this instance of their “relation types”, which features are not recited in their claims. FST

contends that claims 7-8 are directed to “multi-tailed relation types.” However, neither

claim 7 nor claim 8 (nor any other claim of the ‘259 patent, for that matter) recites any.

“multi—tailed relation type”. The disclosure of the ‘259 patent explains that “multi-tailed”

relation types are implemented using additional fields in the relation type records for all

of these additional tails, and a “tail-activation mask” or else NULL values in the

additional fields. -‘259 patent, 22:56-23:20. Yet the claims include no mention of

additional fields, of “tail activation masks” or any of the other features discussed in the

‘259 patent relating to “multi-tailed relation types”; Since the claims make no mention of

this supposed feature, FST’s argument here has no foundation in the claim language, and-

I thus fails to point out specific claim limitations alleged to be not met by the prior art, as

required by MPEP § 2666 and 37 CFR § 1.111.” The Examiner has properly rejected

claims 7-8 on the basis of his interpretation of the scope of these claims. If FST now

wishes to change the meaning of claims 7—8, then it must amend those claims to properly

recite the limitations it seeks to use to distinguish these claims from the cited prior art, if

it indeed can identify any such limitations.

b. Claims 7-8 Are Still Anticipated, Even Under FST’s
New Position

Even if claims 7-8, with or without amendment, were to be read as being limited

to the “multi-tailed relation types” that FST now argues, those claims would still be

anticipated by the art of record in this reexamination/reissue proceeding. FST contends

that a “multi-tailed relation type” describes the feature “whereby a single relation

instance record may involve more than two entity instances.” (Response at 27.) FST

further contends that this feature “allows for more complex relation types than simple

‘binary relations.’“ FST then contends that claim 7 is directed to the specific case where

the relation instance recOrd has two tails, and that claim 8 is directed to the specific case

where the relation instance record has three tails.

35

041

042

c. Malhotra Teaches Multi-Tailed Relationshi s

This feature, as now argued by FST, is taught, or at least fairly suggested, by the

Malhotra reference. It is true that Malhotra’s preferred embodiment teaches that

relationships (aka relation types) can only have a single entity type as" a source and a

single entity type as a target. (Malhotra, pg. 4.) However, Malhotra also teaches that an

alternate embodiment can remove this “minor restriction” to its relationships, simply by

changing the way that key values are used. As Malhotra explains, “if relationships are

stored by pointers or by system defined keys” then the restriction to a single target entity

type “is not necessary.” Id. This teaching would instruct one of skill in the art that a

relationship could have multiple target entity types (i.e. multiple tails), if the simple

modification taught by Malhotra were made to the way that Malhotra’s relationships store

key values. Thus, Malhotra teaches or at least fairly suggests the use of relation types

having multiple tails, and claims 7-8 are therefore invalidated by Malhotra, even if they

are given the meaning FST now argues for these claims.

d. Teorey Teaches Multi-Tailed Relationships

Additionally, this feature, as now argued by FST, is expressly taught by the

Teorey reference, which was discussed in detail in the prior section. Teorey teaches that

relations can involve more than two entities. In particular, Teorey teaches that all-

relationships used in any Extended Entity-Relationship based database, which includes

the relational database that Teorey itself is based on, can have any number of different

entity types. (Teorey, p. 201, sec. 1.3.) Teorey teaches that “the degree of a relationship

is the number of entities associated with the relationship.” (Id.) Thus a relationship of

degree 3 (a ternary relationship) would have two tails, as shown in FIG. 4(b). Teorey

depicts two alternate ways of representing the relationship shown in FIG. 4(b). The first

way of representing this relationship is the multi-tailed relationship labeled “SKILL-

AVAILABLE”, shown with one head entity signified by “EMF-NO”, and two tail

entities, signified by “SKILL-NO” and “PROJ-NAME”. The alternate way of

representing this multi-tailed relationship is by using two single-tailed relationships,

“EMF-SKILL” and “EMP-PROJ”, as shown in FIG. 4(b). A relationship of degree 4

would simply be the obvious extension of FIG. 4(b) to include a fourth column. Thus,

Teorey teaches the use of relation types having multiple tails, and claims 7-8 are

36

042

043

invalidated by Teorey, even if they are given the special and uninstantiated meaning FST

now argues for these claims.

'13. The ‘259 Patent Claims are Non-Statutor

Regarding the Examiner’s Section 101 rejections, FST argues that claim 10_ '

recites a “computer-readable medium” and therefore is directed to statutory subject

matter. Response at 11. However, as the Examiner correctly notes in the 2nd 0A, the

claims merely recite an arrangement of data, which is non-statutory. 2nd CA at 5, 31.

FST attempts to support its interpretation of the claim by citing the definition of a term,

“computerized database”, from the specification that appears nowhere in claim 10. FST’s

citation thus misrepresents the language 'of claim 10. This citation, even if it could

somehow be read to demonstrate the presence of statutory subject matter, cannot support

the patentability of claim 10 because the recited term is not found in claim 10.

FST argues that claims 1 and lO'are statutory because they have the practical

application of “transforming” prior art databases into improved databases. FST contends

that “the steps of the method [of claim 1] transform relational‘databases of the prior art

into a database that allows certain changes to be made to the database schemas...”

(Response at 15), and that claim 10 “is directed to a relational database processing system

which provides the same benefits...”. (Response at 16.) This argument mischaracterizes

the claim language. There is no step of “transforming” found anywhere in claim 1, nor is

any “transformed” database claimed in claim 10. Claims 1 and 10 do not operate on prior

art databases to somehow turn them into different databases. These claims simply recite

abstract ideas or arrangements of data, without any tangible results, as noted by the ‘

Examiner. (2nd CA at 5, 31-2.) The point to the “transformation” test is to require that a

claimed invention transforms an article into something different, not merely that the

claim itself is directed to some abstract idea that may be different. Despite FST’s

mischaracterizations of claims 1 and 10, these claims transform nothing, they merely

recite an abstract method and a non-functional arrangement of data.

37

043

044

C. The ‘259 PatentIS Invalid Under 35 USC 102/103 Over the Munz Malhotra

and Tsichritzis References

1. Des ite FST’S Misre resentations FST’S Statements
Re ardin Claim Breadth are Inconsistent with FST’S

Response

FST leads off its arguments that the claims of thei‘259 patent are patentable over
the cited references by contending that its Preliminary Infringement Contentions (“PICS”)

reflect an “appropriate scope” for the claims. (Response at 20.) Requestor disputes the

validity and assertions of the PICS. Nevertheless, the PICs are a reflection of FST’S view

as to claim breadth. Indeed, FST contends that its analysis is “consistent with those

Preliminary Infringement Contentions.” (Id.) The inconsistency of these positions,

however, can clearly be seen by a comparison of FST’S positions on dependent claims 7-

8, from the PICS and from the Response.

In FST’s PICS, they simply repeat their interpretation of what an entity definition

table is, from claim 1, and then add on a conclusory statement that a second (or third)

record would be handled the same way. (Exh. B to First Re-Examination Request, PICS

at 2, 8-9.) There is nothing in FST’S PICS about any “multi-tailed relation instances,” nor

. any showing that a single relation instance record involves more than two entity

instances. However, in the Response FST for the first time contends that claims 7-8

describe this “multi-tailed relation instance” feature, and contends that these claims relate

to a single relation instance record that has more than two tail entity identifiers. Notably,

the language of claims 7-8 is totally devoid of any language about “multi-tailed relation

instances”. In fact, these claims do not even mention “relation instances” at all.

Statement in the PICS 7 Statement in the Response
[Comparing claim 7 to accused Oracle -

roduct]

The OBJ$ table serves as an entity ' Claims 7 and 8 describe the feature

definition table. A data type table (an whereby a Single relation instance record

entity type) is defined in the OBJ$ table by may involve more than two entity

way of a record that contains alternative . ' instances. This is known as a multi-tailed

identifiers of the data table type including relation instance, where there is one head

the NAME, obj# and OID$ fields in the entity identifier and at least two tail entity
record. A second record would be handled identifiers in the relation instance record.

_ in the same way as the first. (Exhibit B to (Response at 27.)

First Re-Examination Reuest, PICS at 8)

3 8

044

045

(emhasis added). —

FST’s obvious change in positions in the Response confirms that FST’s PICS

cannot be considered as an “appropriate scope” for any claim of the ‘259 patent, and that ‘

IFST’s apparently believes that its analysis can change at will, depending on who itsa

audience is.

—__M
—-m--_—

—-m--__

—-EE-—_—'

Figure 10.2 Triple visual display of a WEB (Munz III)

For example, looking at the fourth row of FIG. 10.2 (disregarding the header

row), the entity coded with a meord identifier (ID number) 523, with the entity type

“Cat”, is related to the entity coded with a record identifier (ID number) 27, with the

entity type “mouse”, by the relation type “chases”. Similarly, looking at the fifth row, the

entity coded as ID number 1096, with the entity type “Hans”, is related to the entity

coded as ID number 701, with the entity type “cat”, by the relation type “hates”. Thus

this table includes relation instances which point to at least two different entity instance

tables (namely the table for “cat” entities and the table for “mouse” entities). This table

clearly depicts the use, as discussed in FST’s Response, of two-part keys in Dr. Munz’s

WELL System database, which is the subject of all three of the Munz references cited to

the Examiner.

39

045

046

 RiN T.~REL]

. Head Rel Tail (1)3-551 Ime -_Ei
1111mm

:z-.2.mg1m-mg1:

:131
Ann-£121

sun-151.51

Relation InstancepTable (from FIG. 7-1 & 7-2 of ‘259 patent)

In fact, comparing Munz’s FIG. 10.2 with the relation instance table depicted in

4. FIG. 7 of the ‘259 patent (and replicated above), there is no apparent difference between

FIG. 10.2 and the relation instance table 730 disclosed in the ‘259 patent. Both tables

include an entity type and an ID number for the head and tail entities, as well as a field

for the relation type. Therefore, even assuming that claims 2, 3 and 12 properly recited

this two-part key limitation as discussed by FST, those claims would still be anticipated

by Dr. Munz’s database, as described in the various Munz references.

2. Tsichritzis Reference Has Relation Instance Tables

In the 2nd 0A, the Examiner findsthat the Tsichritzis reference “fails to disclose

.40

046

047

the relation instance records which define a relation of a provided relation type between a

provided entity and a desired entity.” On this basis, the Examiner has withdrawn his

rejections under 35 USC 102(b) over the Tsichritzis reference. (2nd OA at 33, (II 53.)

However, in FST’s Response which preceded the 2nd 0A, the only argument FST

presented to rebut the Examiner’s rejection in his First Office Action, was that

“Tsichritzis does not show the design of the intermediate pointer structures.” (Response
at 30.) The Examiner’s rejection in the First Office Action supported by the facts and the

discussion in the First Re-Examination Request-(First Request at 8-12, 30, 39), that

Tsichritzis in fact teaches the claimed “relation instance tables.” Furthermore, as the

Examiner has noted in maintaining other rejections in this proceeding, “it is a well settled

rule that a reference must be considered not only for what it expressly teaches, but also

for what it fairly suggests.” 2nd CA at 34 (citing to In re Burckel, 592 F.2d 1175, 201

USPQ 67- (CCPA 1979)). Furthermore, “it is an equally well settled rule that what a

reference can be said to fairly suggest relates to the concepts fairly contained therein, and

is not limited by the specific structure chosen to illustrate such concepts.” 2nd CA at 34

(citing to In re Bascom, 230 F.2d 612, 109 USPQ 98 (CCPA 1956).

Tsichritzis clearly discusses that the intermediate pointer structures are created,

using the definitions found in the link definition table, when a “Create link” command is

issued. (Tsichritzis, p. 125, (II 6.) These links define connections between record types.

(recall that record types correspond to the entity types claimed in the ‘259 patent). Thus,

the intermediate pointer structures, when created, plainly provide a connection (i.e. a

relation) between the various instances of the relation between the prOvided entity and the

desired entity. Additionally, Tsichritzis at least fairly suggests a design of the

intermediate pointer structures that anticipates the “relation instance tables” of the ‘259

patent.

For example, the link “own” is defined by the statement “Define link own

between Houses and Employees”. This link (aka relation definition) defines a relation

between the two record types (aka entity types) House and Employees. (Tsichritzis, p.

124, (II 6.) When the “Create” command is executed, this command reads a previously-

, defined link, and uses that link to create the intermediate pointer structure (aka relation

instance table) that corresponds to that link. For example, the command “Create link

41

047

048

Own from Houses to Employees” uses the previously defined link discussed above, ..

where “the result of a create selector (link) is the construction of intermediate pointer

structures which implement an access path according to the selector (link).” (Tsichritzis, I

p. 125, ‘I[6.) This implementation of an access path from the provided entity House to the

desired entity Employee is a relation instance table. One of skill in the art would easily

be able to implement a particular structure or design for the concepts fairly contained

within the Tsichritzis reference.

Furthermore, these intermediate pointer structures are not merely temporary

structures that disappear once a query has been executed. These structures can persist for

a long time, including for the lifetime of the database if that is what is desired. For

example, if the two participating record types are not locked (i.e_. they are permitted to be

modified), then the intermediate pointer structures are maintained. (Tsichritzis, p. 125, ‘II

6, 8.) Thus the intermediate pointer structures as taught by Tsichritzis are the same as the

relation instance tables taught by the ‘259 patent. Therefore, the Tsichritzis reference

was, and still is, properly asserted to invalidate all of the claims of the ‘259 patent, as the

Examiner originally held in his First Office Action.

VI. DISCUSSION OF FST’S RESPONSE TO THE EXAMINER’S SECOND

OFFICE ACTION

FST filed a “Response to Office Action” on March, 22 2007 (hereinafter “FST’s

Response”), attached as Exhibit PAT-A7. This new response, yet again, appears to

mischaracterize the prior art, and is mostly comprised of a re-hashing of arguments that

FST made in its previous papers.

A. Wiederhold’s “Database Design Second Edition” Discloses Definition
‘ Tables

As the Examiner noted, FST cited reference CL, or Gio Wiederhold’s “Database

Design Second Edition” (“Database Design”), attached as Exhibit PA-L in the IDS
(received and stamped by the U.S.P.T.O. on October 23, 2006), but failed to provide

adequate detail as to its relevance. The Examiner noted in his Second Office Action that

the Database Design reference is approximately 700 pages. Second Office Action at 3.

FST failed to give guidance as to the specific portions of the book that are relevant to

patentability. In its Response to the Second Office Action, submitted on March 22, 2007

42

048

049

(“FST’s Response”), FST noted several sub-sections which it believed are relevant, along

with explanations of those sub—sections. FST cited specifically to Sections 7—3-1, 7—3-7, _

7-4-4, 7-4-5, and 9-7-6 and Figure 8-9.

FST focuses on the fact that the Database Design reference does not contain any

entity definition tables or relation definition tables. To the contrary, the Database Design

reference teaches a relation definition table. For example, Figure 8-5 on page 416 ofthe

Wiederhold textbook depicts the schema-for a relation definition in “STRUCTURE”,

within a given database under Wiederhold’s model. As explained more thoroughly in the

Wiederhold text, for every STRUCTURE, there is a relation.

PLEASE NAME Y‘oun DATABASE; mag p
INEEO TO KNOW THE STRUCTURE OF YOUR DATABASE.
PLEASE DESCRIBE EACH ”EM

ITEM NAME SlZE TYPE

I swwvrs, 2m: 3
2 ma 5 c :2
3 getaav, e N~ p
a flonsss, me p5
s

CITY 20C).—-——L——-L.
D Carrim Pom/n Min/imam Ifrucwrv Maabdm.

EMFLOYEE CURRENTLY CONTAINS O ”CHARACTER RECORDS.
EM?LOVEE 'SYR.D‘NOW CONYAlNS BASE STRUCTURE,

thure 8-5 Schema creation.

Defined STRUCTURES are also retrievable by the database user during a

database session, as depicted in Figure 8-7 on page 418.

43

049

050

9577mm: 7

V!» «was newW’ ’ m'
VLEM‘E ”AME 7W3 DATABASE fgmyggs‘ ’ a! Inf/9N6 VI; 4! . WWW“
PERSONNEL CUR NENYLY CQWMNS a ”CHARACTER 3500305»

. ‘gmgmgg > nu «ma«mamii «My-d,

WEN IV?‘ WIOTR NAHE
' t 20 fmlOYEE
3 C (I 30‘: SEC

‘3 R 6 55‘9““!5

N 2| HRSN 2 Mr

'MLEIQQD mewmmmm,
EMRLG'YEE 506.526 SALARY "M ’A‘!
may,Mm;sn.tticr.er;si.~.7.tn_ 2mm 49.? 2
QQEALWEEE$Muwlm3
1 REWRNPWCESSEI)

@9112“ M"! 91.97;) mfmawwmmM” ,VERSONRBL'OtD'COHTMKS YOUR WSOKVEO DATABASE.PERBON‘KEL ‘5 NOW 3031'“).
emu we Mum mnsomsvow': 11g)

~ 1,33;) fmwhm [I “W
RECm Humvee mace MLAW was an?

1 Manama KARL - mm! 135 GO 0
3 SHADFOFDEUSAN MAG-R217 ‘30 m 0
3 mums mum: WWW no 4a 0
I FRENCH MAR! “9156!!! 710 4i! 9}
5 MARBKAU. MSCNARL M74268?- mm ‘0 D
B Ni‘LSON 905A“) autumn 130 ‘0 07 PALMER DAVID mums: “QM w 0
E PAMENQMV 33le E20 ‘0 O
(C nwsrnaaswau 373757.302 $58?!) $0 0

“3 WWW “(MN ‘7149720 1.35 ‘9 0
so {RECORDS FROCESSEO

m

Figure 8-7 A dumbm scuba.

The PERSONNEL STRUCTURE relates EMPLOYEE, SOCIAL SECURITY, SALARY,

HOURS and PAY entities, each of which are defined within the STRUCTURE. Upon

typing in “RETRIEVE” and entering the name of the database (i.e. “PERSONNEL”), the

system indicates how many records exist in the database in question. The text also

teaches entity definition tables indicating the size and type of variables in which the

entity instances are encoded.

B'. Reguester Agrees with Examiner’s Section 101 Rejections

With respect to § 101 of the Patent Act, FST continues to re-assert a’number of

arguments which the Examiner considered and rejected in his Second Office Action.

Second Office Action at 4-5. As described in greater detail below, FST continues to

assert various uses for the subject matter described in the claims,.or extensions of the

subject matter in the claims. None of the language within the actual claims are directed

to statutory subject matter,,and thus the claims, in their current form, fail to satisfy § 101.

FST first responds to the Examiner’s rejection of claims 1-18 under 35 U.S.C. §

101 because the claimed invention was directed towards non-statutory subject matter.

44

050

051

FST’s Response at 9. Essentially, FST appears to be rearguing that claims 1-18 are

encoded in a “computer readable medium.” Id. at 10. FST asserts that the “[t]he bit

strings [of database information] are distributed spatially within a tangible medium of

data storage such as an array of magnetic disks, optical disks or other information

representing means capable of providing mass storage.” Id. “‘Nonfunctional descriptive

material’ Such as music, literary works, and a compilation or mere arrangement of data is

nonstatutory” even if the non-functional descriptive matter is recurring on a computer

readable medium. United States Patent & Trademark Office, Manual of Patent

Examining Procedure § 2106.01 (8th ed. 2001). On the other hand, “[w]hen functional

descriptive material is recorded on some computer-readable medium, it becomes

‘ structurally and functionally interrelated to the medium and will be statutory in most

cases since use of technology permits the function of the descriptive material to be

realized.” Id. As Examiner correctly notes, Claims 1-18 do not explicitly recite computer

readable media, and therefore do not satisfy-statutory subject matter requirements.

FST next responds to the Examiner’s argument that. claims 1-9 fail “to recite a

tangible result, a requirement for compliance With the provisions of 35 U.S.C. § 101 for a

process that can be interpreted as being implemented through software.” FST’s Response

at 11. As the Examiner notes, “[fjor a result to be tangible, it must be more than just a

thought or a computation; it must have real-world value rather than an abstract result.”

Second Office Action at page 5. A closer examination reveals that FST’s arguments

regarding this issue are merely a re-hashing of its arguments from its previous papers.

Requester agrees with the Examiner’s conclusion that claims 1-9 fail to recite a tangible

result. FST continues to assert, as it did in its first set of papers, that claim 1 does, in fact,

recite steps involving the retrieval of various records, i.e. “said desired element from said

desired entity instance table” in the final step. This same argument was made by FST,

and considered and rejected by the Examiner before the Second Office Action. In the

Second Office Action, the Examiner wrote:

Claim 1 recites a number of steps for retrieving data from a variety of tables. However,

at no time is the retrieved data written to a table (which would constitute a tangible result),

nor is there any recitation of the retrieved data being displayed to a user, nor transmitted

to another computer (either of which would constitute a tangible result).

45

051

052

Second Office Action at 32. FST nonetheless continues to make this same argument

without having amended any of its claims. Claim 1, as it is currently drafted, does not

recite a tangible output visible to the user,‘however, and therefore fails the tangible result

requirement.

FST also responds to the Examiner’s conclusion by incorrectly arguing that some

of the claims merely involve the rearrangement of data. Specifically, the Examiner

stated the following in the second office action:

Claims 10-18 are Claimed as a system in the preamble. However, all of the limitations

comprise a mere rearrangement of data. In accordance with MPEP § 2106.01, mere

arrangements of data constitute nonfunctional descriptive material, and is non-statutory

under the provisions of 35 U.S.C. § 101.

Second Office Action at 31. FST responds by referring to the preamble, which specifies

“[a] relational database processing system” and noting that such preamble gives life and

vitality to the~claims. FST’s Response at 17. FST essentially concedes and agrees with

the Examiner’s conclusion that all of the limitations ofclaim 10 merely recite the

arrangement of data in tables and records. .

FST continues in its argument that the claimed invention does result in a “useful,
concrete and tangible result.” FST’s Response at 20. FST writes that “the claimed

method and system allows the various schema to be changed without recompiling

application queries and programs.” Id. In fact, this alleged improvement is not recited in

any. of the claims. FST also states that “[i]ndependent Claim 10 transforms an ordinary

relational database processing system into one that has improved functionality and

flexibility over Prior Art relational database systems.” Id. Requester notes that the

“transformation” of which FST writes does not involve the physical transformation

resulting from the claimed invention operating on something. Instead, the

“transformation” that FST refers toll is the mere fact that the claimed arrangement of data

” To be statutory, a claimed computer-related process must either: (1) result in a physical
transformation outside the computer for which a practical application in the technological arts is

either disclosed in the specification or would have been known to a skilled artisan (discussed in

(i) below), or (2) be limited by the language in the claim to a practical application within the
technological arts. See Diamond v. Diehr, 450 US 175, 183-84 (1981) (quoting Cochrane v.

Deener, 94 US. 780,-787-88 (1877); In re Alappat, 33 F.3d 1526, 1543 (Fed. Cir. 1994).

46

052

053

is allegedly different from prior arrangements of data. This is not the sort of

“transformation” contemplated by the patent laws.

C. The Munz Reference is Antici ator Prior Art

Turning to the Examiner’s rejection over Munz, FST first argues that entity type

schema records”, or Munz’s version of entity definition records, cannot provide valid tab

codes (which designate an entity type name and a relationship name for each record) .

FST’s Response at 32. The Schema Record layouts are provided below.

ID-field value field

'00!x entity type code '00‘-X lenqth entity type name
field

1 byte 1 byte 1 byte 1 byte variable length

First Schema Record Layout

entity type relatiOnship relations- shipname

1 byte 1 byte i'byte 1 byte! variable 1 byte 2 byte
length '

.—.__-,.____V_.__MW

ID-field value field

Second Schema Record Layout

See Munz II at 515. AccOrding to FST, the only schema records that can havevalid

.tabcodes are the ones in the second Schema layout. FST’s Response at 32. However,

Tabcodes under Munz II are merely 2 byte table identifiers. Munz II at 516. Specifically,

“all tables can be uniquely designated by an entity type name and a relationship name.

Internally an entity type name and a relationship name is encoded by using one byte for

each name.” Munz II at 515. Contrary to what FST indicates, the first Schema Record

Layout can have a valid tabcode and may function as an entity definition record. As a

'2 In the Second Office Action, the Examiner concluded that the first schema record layout corresponded to
Entity type definition records, and that the second schema record layout corresponded to Relation type
defininonrecords

47

053

054

tabcode is a two byte identifier containing an entity type name and a relationship name,

the tabcode in the first schema record layout would be comprised of (1) the 1 byte entity

type code and (2) the l byte'hexadecimal code to the right being a (‘OO’X) if the record

defines an entity, as opposed to a relationship. Essentially, the “relationship code” for

entity definition records is always “0”.

FST’s second argument turns on the fact that all Munz tables only have two

columns: one for ‘ID’ and another for ‘value’. FST appears to be basing its argument on

the fact that the columns do not disclose entity type names and relationship type names.

Munz 11 does, in fact, contemplate the construction of multi-column tables, as evidenced

by Figure 2-4 of the same.

. Persian (Name. Birthdate. Sex, living_al;)

FigurgNZ-d: Record layout and organization by tables

In the above figure, entity type Person may have relationships Name, B irthdate, Sex, and

Living_at. I

Even if it were the case that all Munz tables contained only two columns,

however, they do in fact disclose entity type names and relationship type names. Each

Munz table contains ID and value columns, but each is also labeled by a tabcode, in the

same manner depicted by FST (in its Diagram entitled “[Munz Expanded Fig. 22 —

, Drawn by FST.]”) in its Response to the Examiner’s Second Office Action. An excerpt

of FST’s Diagram (which models the tables found in Fig. 22 of Munz I at page 111) is

depicted below: '

48

054

055

FST contends that for each relationship of an entity, there exist tables like the ones

depicted above. The very tables that FST depicts on page 34 of its Response to the

Second Office Action disclose tabcodes representing entity type names and relation type

names (i.e. 01-01, 01-02, 01-03, 02-01, and 02-02). Entity type tables would have

tabcodes ending in ‘0’, as the relationship type for entities might arbitrarily be set to ‘0’.

FST next incorrectly argues that entity types must be stored as data in the record

under claim 2. In fact, claim 2, which is dependent on claim 1, requires that the subject

relation instance record merely “specify” the desired entity by the subject entity type and

subject entity record identifier. The Examiner stated that, under Munz, and in reference

to claim 2: .

The relation instance record also implicitly specifies the desired entity type,

because Munz’s relation instance tables contain records for only a single relation

type, with a single desired entitytype. The desired entity type is implicitly in

each record. For Example, the desired record identifier in the first relation

instance record of the “Person, works_in, (Department)” relation table [might be]

“17”, and the desired entity type [would be] “(Department)”.

Second Office Action at 10. According to FST, Munz fails to satisfy this alleged

requirement because, according to FST, “[d]ata that is implied by a query or its context is

not the same as data being specified within the record itself.” FST’S Response at 3. It

appears that FST construes the claim to require each record to store the entity type

information. The word “stOre” does not, however, appear in claim 2.

49

055

056

FST argues that “each Munz ID (in a Munz relationship table) does not identify a

single record in a single table, but rather identifies a multitude of records in a multitude

of tables” FST’s Response at 36.. Even if FST’s characterization of Munz were true,

it would be irrelevant, because the ‘259 teaches precisely the same thing. See ‘259 Patent,

Fig. 7—1 (re-using numerical identifiers in T.~REL—1 and in other tables, to refer to other

tables or rows). The identifiers the Patent teaches may identify a multitude of records in

a multitude of tables either through their re—use or because they refer to sets of records or

tables. Perhaps more importantly, however, FST’s mischaracterizes the use of a “record
’

identifier.’ A “record identifier” uniquely identifies a single record in a given table in

which that identifier appears; under the claims, it is irrelevant whether a record identifier

appears in other relationship tables. Under Munz, a desired record identifier does

uniquely identify a single record in a given table in which that identifier appears. Munz

therefore teaches “record identifiers.”

FST then challenges the Examiner’s conclusion that Munz “clearly teaches a non-

preferred embodiment including a relational database on Figure 2.4 on page 513.” FST’s

Response at 37. As the Examiner correctly noted, Figure 2.4 teaches a relational

database. Thus, in Figure 2.4, each column could reflect entity instances, and the entity

records within a row would be related to each other. I I

I. Person (Name, Birthdate, Sex, living_a*t)

491127 ~ Salt Lake City

Figure 2%: Record layOut and organization by tables

50

056

057

FST then incorrectly argues that the Munz system does not include entity instance

tables. In order for the Munz system to work, tables storing entity ID numbers, which

match up with different types ofentities must exist.

Munz must have a way of storing the entity ID numbers in a manner such that it

knows which IDnumbers belong to which kind of entities. Otherwise the relationships

wouldn’t work. So it has to have entity instance tables so that it can keep track of which

entity ID’s are People, which ones are Projects, which are Departments. So it either has

separate tables that do that or else the person_name, project_name, and department_name

tables are entity instance tables. _

Again, FST interprets the word “specify” to mean that the data, in this case, entity

type information, must be stored within the relation instance record. Requester agrees

with the Examiner’s interpretation of the word “specify”. While claims 2, 3, and 12 state

that records in the relation instance table must define, relate and specify certain

' information, they do not explicitly claim that the relation instance table schema must

include an entity type data field. Second Office Action at 36.

D. The Malhotra Reference is Anticipatory Prior Art

FST focuses again on the word “specify” in claim 2, and argues that the Examiner

incorrectly concludes that Malhotra “additionally teaches the entity type as deduced

from the key value and the context. . FST’s Response at 41. There is no prohibition

against specifying the entity type using pieces of data, or the query context, rather than

the contents of the record itself. As noted above, the language in claim 2, as drafted, does

not require the contents of a record to disclose the entity type.

FST then focuses on the word “associated” in claim 1, which states “. . .retrieving

I a desired entity type record containing said desired entity type from an entity definition

table, wherein said desired entity type record specifies a desired entity instance table

associated with said desired entity type. . FST’s Response at 43 (emphasis added).

Malhotra discloses the ENT.TYPE table, which has only one column, NAME, which acts

as the table identifier. As the Examiner correctly notes, the entity type and table name

can be one in the same. Second Office Action at 36. FST incorrectly construes the

language in claim 1 to require that the entity type record in an entity definition table must

contain both an entity type, as well as the entity instance table associated with the entity

51

057

058

type. Essentially, FST argues that both the entity type and the table identifier would have

to be specified within the record in order for the association to exist. FST incorrectly

assumes that the entity type record must record the association between the two in the

claim. As in Munz, the entity type and table name can be one and the same. The claim

merely requires that an association between the entity type and the table name exist, not

that the association between the two be explicitly spelled out and manifest.

FST then addresses its argument that the ENT.TY~PE table in Malhotra manages

data only in .main memory, and therefore fails to disclose a table in a relational database. .

FST now asserts that its claimed invention “describes an entity definition table used to

manage tables in a relational database, not simply records in main memory.” FST’s

Response at 45. FST’s statement is misleading in that it implies that references which

describe records stored in main memory cannot be prior art. Whether the records are

actually part of a relational database is irrelevant if they are in main memory, from FST’s

perspective. In fact, there are no requirements in the claims, as currently written, that

limit the claimed relational database to one that is stored in long term storage - such as a

hard drive. If FST wishes to introduce this new limitation it must amend its claims.

E. The Claims Are Not Entitled to a Presumption of Validity.

On a final note, FST incorrectly claims that it “is entitled to a presumption of validity for

the claims issued in the original patent.” See FST’s Response at 48. It is well accepted

that “[c]1aims in a reissue application enjoy no “presumption of validity” whatsoever. In

re Doyle, 482 F.2d 1385, 1392 (CCPA 1973); see also Hewlett—Packard Co. v. Bausch &

Lomb Inc., 882 F.2d 1556, 1563 (Fed. Cir. 1989), In re Sneed, 710 F.2d 1544, 1550 n.4

(Fed. Cir. 1983). As stated in 37 CPR. 1.176, a reissue application, including all the

claims therein, is subject to “be examined in the same manner as a non-reissue, non-

provisional application.” United States Patent & Trademark Office, Manual of Patent

Examining Procedure § 1440, § 1445 (8th ed. 2001). “Accordingly, the claims in a

reissue application are subject to any and all rejections which the examiner deems

appropriate.” Id. This would include determinations as to utility under Section 101, or

under any other condition of patentability, contrary to what FST indicates-in its

Response.

52

058

059

VII. APPLICATION OF PRIOR ART PATENTS AND PUBLICATIONS

As required by 37 C.F.R. § 1.510(b)(2), Oracle provides below a' detailed

explanation of how each reference renders the above-cited claims unpatentable, raising a

substantial new question of patentability.

A. Teorey and Huber

Teorey and Huber together teach all limitations of claims 1-4, 7-13, 15-18 of the

‘259 patent as discussed in the chart below. Teorey, Huber, and Shaw together teach all

limitations of claims 5-6 and 14 of the ‘259 patent, as discussed in the chart below:

' Teore , Huber and Zloof/Shaw References

1. A method for retrieving a desired The primary aims of relational database design

entity of a desired entity type from revolve around organizing and storing data so that the

a relational database, wherein said information within the database may later be accessed by

desired entity is related to a the database user. According to an article by Peter Chen,

provided entity by a provided “to design a database is to decide how to organize data into

relation type associating an entity specific forms (record types, tables) and how to access

type of said provided entity with them.” Further, another related problem in database design

said desired entity type, said is to make the “output of the database design process-the

method comprising: user schema (a description of the user view of the data)”

more like the way humans represent the real world. Peter

Pin-Shan Chen, The entity-relationship model — A basis for

the enterprise view of data 77 (1977), attached as Exhibit
PA-M.

In addition an inherent component of databases is that they

allow the retrieval of items, including relation type records.

Front end user interfaces that enable users to easily retrieve ,

the information in the underlying databases have been well

known in the arts from at least from the mid 1980’s, if not

sooner. One type of front-end user interface is created
usingthe QBE language. According to The Database Step-

by—Step textbook, “The [QBE] user interface, designed for

technical and nontechnical people alike, is a two-

dimensional, on-line, video display terminal oriented query

facility.” To issue a query, the user gives an example of

the required information, which amounts to specifying a
variable name in the column of the desired information.”

Mark L. Gillens‘on, Database Step-by-Steg 141-42 (2d Ed.
1990), attached as Exhibit PA-N.

‘3 The claim language recited is inclusive of the amendments patentee included in its Response.

' 53

059

060

. Teore , Huber and Zloof/Shaw References

Teorey extends the Entity-Relationship model to a

relational database (abstract, p.197). Teorey in Figure 8(f)

shows that one can retrieve an engineer (desired entity) of

the “ENGINEERS” (desired entity type) that “BELONGS-

TO” (relation type) a particular professional association

(provided entity) of the-PRF-ASSOC (provided entity

t ‘I e).

Teorey teaches a data dictionary that includes a relation

definition table that contains relation type records which

define relation types. A user would supply such a relation

type in making a search (query) on the database. Teorey,

in combination with Huber, teaches the same things and

offers different design choices.

retrieving a specific relation type

record defining said provided

relation type from a relation

definition table; ' ‘

Teorey teaches that relation types (i.e. relationships) can be
defined for a relational database. Teorey at 205 (Sec. 2.1,

step 1.3). Each of these relation types defines a

relationship between two or more entities. For example,

FIG. 13 and Table l depict several relation types, including

SKILL-USED, ASSIGNED-TO AND BELONGS-TO.

Teorey at 216, FIG. 13, Table 1.SKILL DEPARTHEWT buns: DH -

SKILL-USED

PROJEU WLDYEE

ASSIGNED~TO

LOCATION

ENFHANBGER EMEENGINEER EHF.TECNNICIAN ENSECRETARV

E“-
BELONGS-TD

PEP-ASSOC PC

m 18. Cutaway maxim! and cm (Bu/bane candida“ minim

54

060

061

Teore , Huber and Zloof/Shaw References
note 1. nmmmmndmmw mmmmmm

Sup 2.}. Smirk: to Winn:
1. HWISIOMDIV.NO. .. l, HEAD-EMP-NO)
z DEPAMMENTIIIEW‘NO. DEF’I‘vNAME. ROOMANO. PKONbNO, ,. . . DW'NQ

MANAG-EMP‘NO)
a. HMS’WYEMEMHNO, EMF-NAME. 1108-11113, DBP’FNO. SPOUSB~EMP-NO, PC-NO)
I. SKILLISKIMrNO. . . J
5. PROJECTlPROl-NAMS. . t J
(3, LOCATIONtLOGNAME. . . l)
’3. ENEMANAGEWEMP-NO, . ..)

. 6. EMP.ENGINEBR(5MP~N0. .. ,)
9. BMP.1‘BCNNICIAS(EMP-N0. . . J

K). BMRSBCRETARWEMRNO. . . J
11. POPE-NU. . . .1
12. FRI-‘-ASSDC{PA~NO. . . .)

Step 2.2. Binary or mini)! "famine to retain."n. BELONGSITOWA-NO. EMP~N0)

Saw 5343. 7'1"!ny (or any Ix-ary) rdatioaullipu in relation
H. SKILDUSKMEMKNO. 8XILLNO. filial-NAME}
15. ASSMNEQTOQEMRNO. DOC-NAME. PROJ-NAMR}

Teorey further teaches that each of the defined relation

types can be transformed into a “relation” Teorey at 216,

Table 1. The definitions of these relation types

transformed into relations are stored in the data dictionary

because that is the location where Teorey teaches that
attributes of candidate relations are stored and can be

retrieved from. Teorey at 217 (Step 3.2).

The use of data dictionaries to map the contents of the

underlying database, including the entities and

relationships within it, was well known in the field. A data

dictionary was considered “[a} system database that

contain[ed] information about a user database, such as

location of data, lists of fields and tables, and data types

and lengths.” They were also known as ‘catalogs’. . The

IBM Dictionary of Computing Terms defines “data

dictionary” as “[a] list of all files, fields, and variables used

in a data base management system. A “data dictionary”

helps users remember what items they have to work with

and how they have been defined. Particularly helpful when

writing a large number of linked procedures or programs

that share a data base.” The IBM Dictionary of Computing

Terms 87 (8th Ed. 1987), attached as Exhibit OTH-B.

Webster’s New World Dictionary of Computer Terms

defines “data dictionary” as “1. A centralized repository of

information about data such as meaning, relationships to

other data, origin, usage, and format. It assists

management, data base administrators, system analysts,

and application programmers in planning, controlling, and

evaluating the collection, storage, and use of data. 2. In the

System/36 interactive data definition utility, a folder that
contains field, format, and file definitions.” Webster’s New

World Dictionary of Computer Terms 107 (3d Ed. 1988),

attached as Exhibit OTH-C. Thus in liht of Teore , the

55

061

062

Teore , Huber and Zloof/Shaw References

data dictionary is the relation definition table.

Huber further teaches that the definitions of these tables

(i.e. the definitions of the relation types) are stored in the

data dictionary. Huber, 6:68-7:8. Each of these table

definitions contains field definitions defining the fields of

each relation type, as well as location information that

points to the file containing the actual base table (BT),

which contains the relation data (Le. the relation instance

tables). Huber,.7:3-8. Thus, BTDEF 213 of Data

Dictionary 202 specifies where ET 101 is located, the size -

and fields of the records representing the rows, the keys
used to access the records. Huber, 15:43—49. BTDEF 213 is

related in part to ET 101 by three fields: TNAME 443 is

the name of ET 101; TFID 445 is the file identifier of the

file which contains ET 101; and TRLEN 447 is the length

of the records which represent the rows of BT 101 in the
file. 15: 17-21.

Huber further teaches that the data dictionary is itself

stored as a database, and thus the data dictionary itself

includes tables that contain the table definitions. Huber,

7: 10-13. Each table definition (BTDEF) is stored as a

record in the table. Huber, 14:44—45. Thus Huber in

conjunction with Teorey teach that the data dictionary can
be a relation definition table. I

In addition, Huber further teaches that the REFDEF table

313 contains data defining the referenced-referencing

relationship between base tables, such as the base tables

which are used to create the relationship relation that is

itself represented as a table; Huber, 10:43-49. The

REFDEF table stores a pointer, REFDPTR 312, which

points to the referenced base table, and another pointer,

REFGPTR 314, which points to the referring base table.

Huber, 11:1~4. These two pointers are entity table type
identifiers. Thus Huber teaches that the REFDEF table 313

contains data defining the relationship relations defined in

Teorey and can be a relation definition table.

A critical component of databases is that they allow

retrieval of items, including relation instance records. One

type of front-end user interface which eases access to the

information stored in the databaseis one created using the

QBE lan- uae, as noted above;

56

062

063

Teore , Huber and Zloof/Shaw References ,

——
retrieving a specific relation Teorey in combination with Huber teaches that relation

instance record defining a relation instance records define relations between entities, and that

of said provided relation type these records are stored in relation instance tables, each of
between-said provided entity and which corresponds to a particular relation type.

said desired entity from a relation

instance table corresponding to said

specific relation type record;

Teorey teaches that relationship relations store information

that relates two or more entities to each other, and are

represented as tables. Teorey at203, FIG. 3; 212-13, FIG.
10; 216, FIG. 13.

CONNECTIVITY
l 1 l

HEHBIREKIP
EzASS

mammary
m

A OCCUPIED-BY

' '

FM 3. Nashua“! 5211mm mummy: types.

 Emuloucu an a nice ranth dimnm
3km: on our: arojcct Um; an associate:with.

831mm;
rmmmm, . . . , . .)
smttm.....,)
92¢;an 3
smu-uszmmz—an 55 “-511 Pflggfigng)

FD: :EflP’NO, SKILL-ND. PRDJ-RO --‘> o
(on My)

SKILL-USED

Fianna ID. Ternary ulnfionahio transmutation min.

57

063

064

Teore , Huber and Zloof/Shaw References

Huber teaches that each of the sets of related items, in this

case the relationship relations (i.e. relation types) defined

in Teorey, are stored in two-dimensional tables. Huber,

4266-5z3. These tables are associated with the relation type
information stored in the REFDEF table 313 and in the

table definition for the relationship relation. REFDEF

table 313 contains general information about the

relationship (15:55-60), and the table definition (6268-728).

In Teorey, each relation instance table contains a plurality

of relation instance records. The relationships in Teorey
are transformed into relationship relations. Teorey at 208,

Sec. 3.1(3). Examples of these relationship relations are

shown in FIGS. 4 and 10, clearly showing that each

relationship relation includes a plurality of rows, each of

which is a relation instance record. Teorey at 203, FIG. _4;
212-13, FIG. 10.

Fig. 10 depicts a plurality of relation instance records for

the relation type SKILL-USED. Each relation instance

record relates an entity instance in one entity table to an

entity instance in a second entity table. For example, the

SKILL_USED relationship instance table relates entities in
the EMPLOYEE table to entities in the SKILL table.

Teorey at 203, FIG. 4; 216, FIG. 13, Table 1.

sxiLL—uszn m SKILL—nu PMWA.
' 3B 27

38 5!
38 .
38 3

(a)

Fig. 4 depicts the relationship instance table for the

relationship (SKILL-USED.

A critical component of databases is that they allow

retrieval of items, including relation instance records. One

type of front~enduser interface which cases access to the

information stored in the database is one created using the

QBE language, as noted above.

retrieving a desired entity type . Teorey in combination with Huber teaches that entity type
record containin said desired information is stored in entit t e records in entit

58

064

065

Teore , Huber and Zloof/Shaw References

entity type from an entity definition definition tables, and that this data can be retrieved in order

table, wherein said desired entity to operate on the database. The entity type records identify

type record specifies a desired entity instance tables, including the entity instance tables

entity instance table associated with containing entities that a user would desire to retrieve.

said desired entity type; and

Teorey teaches that entity-types (i.e. entities) can be

defined for a relational database. Teorey at 204 (Sec. 2.1,

step 1.1) For example, FIG. 13 and Table 1 depict a

variety of entity types, including SKILL, DEPARTMENT,

DIVISION, PROJECT, EMPLOYEE and others.DEPARTHENT DIVISION

““4“ I
SKILL‘USED

D945 “‘1‘“w

PROJECY EHPLOVEE

ASSIGNED-T0

LOCATION

EflFflANAGER EHPEMGINEER EHPJ’EEHNICIAN EI‘PSECRETARV

E3“-DEL ONES-TO

PEP-ASSOC PC

Fun 13. (Rm-puny pen-sound md praise! datum: andidnu minim;

but ‘. 1mm of Emma: and mumps to Edam (Ewnue)
Sup 2.1, Erratic: to relations

1. IHVISIONlDlV—NO..... HEADAEMP-NO)
2. DEPARTMENNDSP’FNO. DEPTJJAME, ROOMNO. PHONE» NO..... DIV-N0.MANAG-EMPINO)
it. EMPIDYEHEMPANU, EzMP-NAMI’LJOBJI‘ITLE, .. . , DEPTNO. SPOUSEKMP-NO, PC-NO)4. SKILUSKIIL-NO. . . J
5 PROJECNPRQLNAMH. , . J
(i. LOCATIONIUKENAAVE. . . J7. EM RMANAGENEMP-NI) J
A E .ENGINEER‘EMP-N . .
9. EMP.‘I'ECHN|CIAN(EMP-NO. . . .)

10. ENRSECRETARWEMP-NO. . . J
H. I‘ClPC-NU. . . J
[2. l’RFfiSSOClPAAND. . . J

Slip 2 2’. Binary or unary rrhtionthips Io radium
L1. UHLONGSTOWLNU. EMF—NO)

Srrp 23. Ternary (or any n-nry) mbxiomlu'p to relations
14. SKILLUSEDIEMI‘JNO. SKILL-NO, Him-NAME)
If» ASSIGNED-TolEMP-NI). ”XI-NAME, PRfM-NAMR)

Teorey at- 216, FIG. 13, Table 1. Teorey further teaches

that its database system includes a data dictionary. Teorey

at 217. (“If the BER constructs do not include nonkey

attributes, the data requirements specification (or data

dictionary) must be consulted”). Teorey further teaches
that each of the defined entit t es can be transformed to

59

065

066

Teore , Huber and Zloof/Shaw References

a “relation.” Teorey at 216, Table 1.

Tune t. Tmstamlation of Emma!!! Masha» to W(Emit)
Sup 2.). Emilia to relations

L DIVISlONiDIV~NO. HEAD-KMRNO)
2, DHPARTMBN’HDEPT-NO;DEPT—NAME. ROOM~NO. PHONENO..... D!V~.\'0,

MANAGvEMP~N0) .
3. EMPIHYEEEMP—NU. EMP‘NAME, JOB-T1113}. .1 . , DEFEND, SPOUSEEMP-NO, PCvNO)
4. SKILUSKlLb-NO, . . V)
5. PRWECFtPRw-NAME. . . .7
G, LOCA'I'XONwOC-NAME, i . .)
7. EMP.MANAGF.RIEMP—N0. , . J
a EMl’fiNGlNEERlEMP-NO‘ . . J
9. EMP.’I‘ECHNICIAN(EMP-NO. . . .)

to. EMPSECRETARWEMRNO. . . .)
u. PCtPC~N0...J
:2, PRF-ASSOCWA—NO. ...)

Step 2.2. Binary or unarjy nlutiomhip: to relation: :
13. BELONGS-‘l‘mlu-NQEMPNO)

Step 9.3. Ternary to! any nary) ~310sz to remit)»:
14. SKlLInUSElNSMP-NO. SKILL-NO. PROLNAME)
15, ASSIGNEDWHKMP'NO. LDC-NAME, ”(OJ-NAME)

The definitionsof these entity types transformed into

relations are stored in the data dictionary, because that is

the location where Teorey teaches that attributes of
candidate relations are stored and can be retrieved from.

Teorey at 217 (Step 3.2).

While Teorey clearly teaches that its relational database

has and uses a data dictionary, Teorey does not describe

the detailed layout of the data dictionary. However, the

‘593 patent to Huber does provide a detailed layout of a

data dictionary for a relational database. Huber, FIG 2

(DDICT 202); FIG. 3 (ODD 211),

Huber teaches that a relational database, such as the

relational database depicted in Teorey, includes sets of

related items (i.e. the entity types of Teorey), which are '

stored in two-dimensional tables. Huber, 4:66-523. Huber

further teaches that the definitions of these tables (i.e. the

definitions of the entity types) are stored in the data

dictionary. Huber, 6:68-7z8. Each of these table

definitions contains field definitions defining the fields of

each entity type, as well as location information that points

to the file containing the actual base table (BT), which

contains the entity data (i.e. the entity instance tables).

Huber, 7:3-8. Thus BTDEF 213 of Data Dictionary 202

specifies where ET 101 is located, the size and fields of the

records representing the rows, the keys used to access the

records. Huber, 15:43-49. BTDEF 213 is related in part to

ET 101 by three fields:. TNAME 443 is the name of ET

101; TFID 445 is the file identifier of the file which

contains BT 101; and TRLEN 447 is the length of the

records which represent the rows of ET 101 in the file. 15:
17-21.

60

066

067

Teore , Huber and Zloof/Shaw References

Huber teaches that the data dictionary is itself stored as a

database, and thus the data dictionary itself includes tables

that contain the table definitions. Huber, 7: 10-13. Each

table definition (BTDEF) is stored as a record in the table.

Huber, 14:44-45. Thus Huber, in combination with Teorey

teaches, that the data dictionary can be an entity definition
table.-

As indicated above, while Huber teaches the use of a entity

definition table, the use of data dictionaries to map the

contents of the underlying database, including the entities

within it, was already common in the field. A data

dictionary was considered “[a] system database that

contain[ed] information about a user database, such as

location of data, lists of fields and tables, and data types

and lengths.”

These entity definition records specify the location

information that identifies the files containing the entity

instance tables. The entity instanCe tables shown in Teorey

are examples of tables which contain entity data. Teorey,

FIG. 13 (SKILL, DEPARTMENT, DIVISION, PROJECT,

EMPLOYEE and other tables).
SKILL DEPARTHENT DIVISION

SKILL-USED
09-” “LPN PEN-NAP!

EHPLDVEE

ASSIGNED-T0

LOCATION

EHPHANAGER EHP.ENGINEER EMPTECHNICIAN EHRSECRETARV

BELONGS-TD

PRF—ASSOC PC

Fiowe 13. Company personnel and project database candidau: relations.

61

067

068

Teore , Huber and Zloof/Shaw References
1m 1. Ynmlamafim 01 Enlibes and Rumiatshlos to new»: (Examua)

Step 21. Enrin'n m mimic-m ‘
1. DIVISIONlDlV-NO... . . HEADvEMP-NO)
2. DEPAR’FMSN‘HHEPTANU. DEVFNAME. ROOM-N0, PHGNErNO..... DIVvNO.

MANAGAEMP-NO)
3. EMPLOYEElEMP-NO. EMF-NAME JOBleTLE. DEPTvNO. SPOUSEEMP-NO, PC-ND)1. SKILUSKILIrNO. . . J
5, PROJECNPRW-NAME. . . .)
G. LOCATIONILOGNAME. . . .1
7. EMEMANAGERIEMP-NO. . . .1
fl. EMPBNGlNEEmEMPuVO. . . J
9. EMP.TECHNICIANIEMP~NO. . . .1

l0. EMESECRETARYKKMRNO. . . J
11. PC1PC~N0. . . J
12. PRF-ASSOGPA-NO. . . .)

Step 2.2. Binary or unary rchliomhipa m "Idiom
13. BEHINGS‘TOIPAvNO. EMF-NO)

Step 23. Tommy ta: any man) mloliaruhips in relation;
14. SK lLL-USEDtEMP—Nf), SKILL-NO. I‘HNvNAMEI
15. ASSIGNEDJI‘OIEMHNO, LDC-NAME, PROJ‘NAME)

These entity instance tables are each associated with a

corresponding entity type, as shown in FIG. 13 and Table

1. Teorey, FIG. 13, Table 1. Further entity instance tables
are shown in FIG. 1 of Huber, for example the Customer

Table 101(a), the Order Table 101(c), and the Parts Table

101(d). Huber, FIG. 1.

A critical component of databases is that they allow

retrieval of items, including entity type records. One type
of front-end user interface which eases access to the

information stored in the database-is one created using the

QBE language, as noted above.

retrieving said desired entity from Desired entities, just like all entities, are stored in entity
said desired entity instance table. instance tables, and can be retrieved therefrom.

In Teorey, each entity instance table contains a plurality of

entity instance records. The entities in Teorey are

transformed into entity relations. Teorey at 208, Sec.

3.1(1). Examples of these entity relations are:

EMPLOYEE (with identifier EMP-NO and descriptors

EMP-NAME, HOME-ADDRESS, DATE-OF-BIRTH,

JOB-TITLE, SALARY, SKILL), ENGINEER (with

identifier EMP-NO and descriptors EMP-NAME, HOME-

ADDRESS, SPECIALTY), SECRETARY (with identifiers

EMP-NO and descriptors EMP-NAME, DATE-OF-

BIRTH, SALARY, SPEED-OF—TYPING), TECHNICIAN

(with identifier EMP-NO and descriptors EMP-NAME,

SKILL, YEARS-OF-EXPERIENCE). Teorey, Step 1.2 at
205.

Thus each entity relation (i.e. entity instance table) in

Teorey contains a plurality of entity instance records. The

entit instance tables in Huber, for examle the Customer

62

068

069

Teore , Huber and Zloof/Shaw References

Table 101(a), the Order Table 101(c), and the Parts Table

101(d), also each contain entity instance records which

correspond to the instances of the entities Customer, Order

and Parts. Huber, 4:66-5:13, FIG. 1.

A critical component of databases is that they allow

retrieval of items, including entity instance records. One

type of front-end user interface which cases access to the

information stored in the database is one created using the

QBE Ian ua e, as noted above.

2. The method of claim 1, wherein Teorey teaches that each relation instance record contains a

said relation instance record record identifier that corresponds to the desired entity

specifies said desired entity by said instance record. For example, in the relation instance table

desired entity type and a desired of FIG. 4, the SKILL-USED relations instances each

record identifier. . contain a SKILL-NO record identifier that identifies the

' desired SKILL entity instance record. Teorey at 203, FIG.
4; 216, FIG. 13. Each relation instance record also

contains a desired entity type, reflected in the column

header, for example “SKILL” in the column header
SKILL-NO in FIG. 4. ’

Teorey further teaches that a key (Le. a record identifier)

can be a composite identifier, that is, an identifier

composed of two or more attributes. Teorey at 204 (Step

1.1(5)). These two attributes could include the entity type

and a record identifier, and thus anticipate this claim.

Teorey teaches two alternate treatments for composite

identifiers, one of which is to eliminate them where

possible, but the second treatment is to retain the identifier

where it is reasonably natural. Id. It would be reasonably

natural to retain a composite identifier where it permitted

the overloading of the record identifier column to designate

two or more different target tables, as suggested by FST.

Huber also teaches the use of two-part keys, by providing

that “[e]ach row in a base table 101(x) must be uniquely

identified by a primary key consisting of one or more

fields.” Huber, 5:28-30. Similarly, foreign keys may

include “fields which are a primary key in a different base

table 101(y).” Huber, 5:31-33. Therefore, a relationship

relation as taught in Teorey, which is stored as a base table

in Huber, would include two foreign keys to the two entity

relations that it referenced, and each of those two foreign
ke s would be two-art ke s.

3. The method of claim 2, wherein Teore teaches that each entit instance record contains a

63

069

070

Teore , Huber and Zloof/Shaw References

said desired entity is identified by record identifier that corresponds to the desired entity. For

said desired record identifier in said example, in the SKILL entity instance table of FIG. 13, the

desired entity instance table. SKILL entity instances each contain a SKILL-NO record

identifier that identifies the desired SKILL entity instance

record. Teorey at 216, FIG. 13.

4. (once amended) The method of

claim 1, wherein said retrieving a"

specific relation instance record .
com-rises:

retrieving a table identifier for said Teorey teaches that each relationships relation (i.e. relation

relation instance table from said type record) includes the name of the relationship. Teorey

specific relation-type record; and at 216, Table 1. This relationship relatiOn is stored in the

data dictionary as a table definition BT DEF (i.e. specific

relation type record). Huber, 7:3-8. Huber further teaches

that every table definition includes location information

that permits the database to locate the file containing the

corresponding table data (i.e. the relation instance table).

Huber 7:3-8, 15:17-21, 15:43-45 This location information

is the table identifier, as claimed.

retrieving said specific relation In Huber, the base table (BT) identified by the table

instance record from said relation identifier is the table (i.e. the relation instance table), which

instance table based on said specific contains the specific relation instance records that are

relation type record and said based on the specific relation type record and provided

provided entity. ' entity. ‘

In'Teorey, each relation instance table contains a plurality-

of relation instance records. The relationships in Teorey

are transformed into relationship relations. Teorey at 208,
Sec. 3.1(3). Examples of these relationship relations are

shown in FIGS. 4 and 10, clearly showing that each

relationship relation includes a plurality of rows, each of

which is'a relation instance record. Teorey at 203, FIG. 4;

212-13, FIG. 10. Each relation instance record relates an

entity instance in one entity table to an entity instance in a

second entity table. For example, the SKILL_USED
relationship instance table relates entities in the .

EMPLOYEE table to entities in the SKILL table. Teorey

at 203, FIG. 4; 216, FIG. 13, Table 1. These relation

instance tables are represented in Huber as base tables

(BT). Huber, 4:66-53; 5:17-20, 15:17-21, 15:43-45 .

A critical component of databases is that they allow
retrieval of items, including relation instance records. One

t re of front-end user interface which eases access to the

64

070

071

—_QBE lannuae, as noted above.

5. The method of claim 1, further Teorey teaches that relationships (relation types) are

comprising retrieving data transformed into relationship relations. Teorey at 208, Sec.

specifying said provided relation 3.1(3). Each of these relationships bears a name, for

type from an inquiry table. example SKILL_USED is the name of a relationship

between the EMPLOYEE entity type and the SKILL entity

type. Teorey at 203, FIG. 4; 216, FIG. 13, Table 1. The

relation instance table for SKILL_USED is repreSented in

the database systems of Huber as a base table (BT).

Huber, 4:66-5’13; 5:17-20.

 The use of inquiry tables such as ones based on the QBE

language was an inherent part of managing E—R databases.

A QBE table was one form of a graphical front-end

interface that allowed a user to access the underlying

database containing entities and relations. According to

The Database Step-by-Step textbook, “The [QBE] user

interface, designed for technical and nontechnical people

alike, is a two-dimensional, on-line, video display terminal

oriented query facility.” Mark L. Gillenson, Database Step—.

by-Step 141-42 (2d Ed. 1990). While a QBE interface is

pictorial in nature, a SQL’s interface is more linear and

textual. Id. “The user begins by specifying which table is

needed for a particular query. Once a table(s) is chosen,

the system displays an outline of that table, showing the

table name and the names of its fields. To issue a query,

the user gives an example of the required information,

which amounts to specifying a variable name in the
column of the desired information.” Id.

Zloof teaches Query-by—Example (QBE). When a user

performs an operation , e.g., query, update, define, or

control, against the data base, the user fills in an example

of a solution to that operation in skeleton tables that can be
associated with actual tables in the database. For

illustration, suppose we want all green items sold in the toy

department.

”gum I!)

{humid ruhfimul Inning Nah

3%!M 11.50 W «use:3 new ”$36

65

071

072

Teore , Huber and Zloof/Shaw References

Fig. 13 of Zloof above shows the two skeleton tables:

“TYPE” and “SALES”. These two tables are linked by the

word ‘fNUT”. Thus Figure 13 shows an inquiry table

consisting of two skeleton tables linked together like the

level 1 and 2 rows of the INQ.DEF table 740 in Figure 7-1
of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a linear
query for accessing the contents of a relational database

from a graphic query input at a user terminal, including

relation records. Shaw takes the QBE skeleton tables , for

example, from Zloof, and generates an SQL query, which

is then used to retrieve the inquiry results from the
relational database.

Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GFTTAB LE 72 having one entry

for each skeleton 0r example table in a query 2 [co]. 11,

lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column of an example table in a query Q. The content

89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24.

66

072

073

D‘EVT 106

. :m'mJ/7O {manna-'5:

:BFYSGL K“? 71 72 KGFTTABLE ;(-._+

I I / .473 .’ “nuns-u g gI *- m ~ I GFTFTCU. 1 3
l 8 79 S BFTCOLCT ’ '
I l 73 W“‘------l l

78 l 3 0nl—--—--- SGFTP TRON l I
inan'l'ufll I I I 76 IGFTRONCT. 2 I
:BVTCOLM .<--:-—O x x —————————— g ;
gamut-nu | z 3 g 9 q I

 :BFTCNHPT _::--+ : 32 "' 777
i _________ ‘ 80 Q.._——.—.—-)} "Inna—1: i
3 £3 : .— --):BFTROU :<--l-—+

' O-—-—-—--> asaamu: I |
84 SBFTPTRCL I l

I 3
I I *—'m : WTMDS I I l

I wrcnam '/ l x I ‘ -—--.-i x x
gnaw“: 90 I ' ' all/{BFTBLEIX I"-+ l
IBFTPTCDT “(n-o : : : : -------- x x
IGFTCDTLN I 3 I I l 87 2 32 I I
- “—71.92: a: z : 4/ 81 :
BFTB I NOR In- I -~L—--+ X i 9b ‘Lhm-‘fl: K)
3“""""‘-|/94 3 85 I O---—-)1 BFTCDLCN 3:GFTSXHCN I-- I - --..-+ illulfl‘B-“i
3 """""“ *-- I GFTPTRCN I

E I 2 103 I ‘93 1 GFTCDIIJI I
l 5 i__..._1 l

1023 I {00 BBFTRCHXI 3°---—-+
3 saunas-um : g "1"._______._ ;
“EFTCWTB :<~-§ 105” t 99
| ”mam : ' I X“ ~
I 2 I I Kazan-ax:- g

*"'--. > I BFTCNTNY z
. Inst-unuu-u :

F IG 5 i 10 1 K

Where the SQL query operates on a relationship relation as
described in Teorey, the SQL query will include an SQL

FROM statement which identifies the name ofrelationship

relation being queried. Shaw, 15:28-31. This name is the

relation type, since the relationship relation is named with

it’s type, e.g. the SKILL_USED relationship type is also

the name of the relationship relation containing the relation

instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.
10; 216, FIG. 13, Table 1.

The query translator of Shaw receives as an input a QBE

query, which is a “graphic language query expressed as

one or more elements . . . appearing in rows and columns

of an example table including one or more source and

target tables.” Shaw, 2:38-42. Where the source table

included in the example table is a relationship relation, as

discussed in Teorey,'this example table contains the name
of the source table, which is “data specifying said provided
relation type” as claimed. When the example query is

translated as part of the query processing, this relation type

data is retrieved in order to form part of the SQL query
submitted to the DBMS. Shaw, 15:29-31.

6. The method of claim 1, further As noted above, the use of inquiry tables such as ones

com-,risin retrievin; data ' based on the QBE 1an__uae was an inherent art of

67

073

074

. Teore , Huber and Zloof/Shaw References

specifying said provided entity managing E-R databases. A QBE table was one form of a

from an inquiry table. graphical front-end interface that allowed a user to access

the underlying database containing entities and relations.

According to The Database Step-by-Step textbook, “The

[QBE] user interface, designed for technical and

nontechnical people alike, is a two-dimensional, on-line,

video display terminal oriented query facility.” Mark L.

Gillenson, Database Step-by-Step 141-42 (2d Ed. 1990).

 Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GFTTABLE 72 having one entry

fOr each skeleton or example table in a query 2 [ml 11,
lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column ofan example table in a query Q. The content

89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70. GFTSQL 70 contains the SQL for the query.

One element of the SQL query stored in the GFTSQL 70 is

the entity provided as a parameter to'the query. For

example, Table 24 of Shaw depicts an example of a query,

in both SQL and QBE formats. Shaw, 262159-68. In this .

example, the query is seeking the employees who work in

the San Jose Department, and who meet a salary condition
of > $20,000. Id. The provided entity is “DEPT”, and the

desired entity is “EMP”. Id.

The QBE example table shown in Table 24 is another

example of an inquiry table as claimed. This inquiry table

contains the same DEPT provided entity information,

which is retrieved from the table in order to create the SQL
statement SELECT DNO FROM DEPT shown in Table

24. Shaw, 15:38-42, 26:59-68.

7. The method of claim 1, further

comprising retrieving a second

desired entity type record

containing a second desired entity

type from said entity definition

table, wherein said second desired

entity type record specifies a second

desired entity instance table .
associated with said second desired

entit t ne.

This limitation requires the presence of two entity type

records, and thus two entity instance tables. Otherwise it is

the same as the “retrieving a desired entity type recor ”
element of Claim 1.

Teorey clearly teaches relation types which create relation

instance tables that involve more than two entity instances.

Such relationships are disclosed as “ternary” or more

generally “n-ary” relationships. For example, see the

temar relationshis of FIG. 10. Teore at 212-13, FIG. ‘

68

074

075

Teore , Huber and Zloof/Shaw References

10. When executing queries on these relationships, the

entity type records of, for example, the EMPLOYEE,

PROJECT and SKILL entities would be retrieved, for the

ternary relationship SKILL—USED of FIG. 10(b). Teorey

at 212; see also id at 216, Fig. 13;

A critical component of databases is that they allow

retrieval of items,including entity type records. One type
of front-end user interface which eases access to the

information stored in the database is one created using the

QBE lan e, as noted above.

8. The method of claim 7, further This limitation requires the presence of three entity type

comprising retrieving a third records, and thus three entity instance tables. Otherwise it

desired entity type record is the same as the “retrieving a desired entity type record”

containing a third desired entity element of Claim 1.

type from said entity definition

table, wherein said third desired

entity type record specifies a third Teorey clearly teaches relation types which create relation

desired entity instance table ' instance tables that involve more than two entity instances.

associated with said third desired Such relationships are disclosed as “ternary” or more

entity type. generally “n—ary” relationships. For example, see the

' ternary relationships of FIG. 10.

y SKILL-USED

Fig. 10 depicting a ternary relation.

Teorey at 212-13, FIG. 10. When executing queries on

these relationships, the entity type records of, for example,

the EMPLOYEE, PROJECT and SKILL entities would be

retrieved, for the ternary relationship SKILL—USED of

FIG. 10(b). Teorey at 212; see also id at 216, Fig. 13.

A critical component of databases is that they allow

retrieval of items, including entity type records. One type
of front-end user interface which eases access to the

information stored in the database is one created usin the

69

075

076

Teore , Huber and Zloof/Shaw References

—QBE lanuae, as noted above.
'9. The method of claim 1, further This claim as now amended requires retrieval of a second

comprising retrieving a second specific relation instance record of a second relation type,

specific relation instance record between the same two entities. Otherwise this claim is the

defining a relation of a second same as the “retrieving a relation instance record defining a

provided relation type between said relation of said provided relation type” element of claim 1.

provided entity and said desired

entity from a second relation

instance table corresponding to said

second provided relation type
record.

Teorey expressly permits the existence of two different

relationships, of two different relation types, between the

same two entities. Teoreyat 205 (Step 13(1)) (“Note that

two or more relationships are allowed between the same

two entities as long as the two relationships have different

meanings.”). Thus a query could provide two relation

types between the two entities, and both relation instance

records defining the two relations between the two entity
instance records would be retrieved.

 A critical component of databases is that they allow

retrieval of items, including relation instance records. One

type of front-end user interface which eases access to the

information stored in the database is one created using the
QBE lanuae, as noted above. ' '

10. A relational database processing

5 stern com._risin:

an entity definition table containing Teorey teaches that entity types (i.e. entities) can be
a first entity type record defining a defined for a relational database. Teorey at 204 (Sec. 2.1,

first entity type; step 1.1) For example, FIG. 13 and Table 1 depict a

variety of entity types, including SKILL, DEPARTMENT,
DIVISION, PROJECT, EMPLOYEE and others. Teorey

at 216, FIG. 13, Table 1. '

70

076

077

Teore , Huber and Zloof/Shaw References
SKILL neramnsm oiwsmn '

CZ“.
SKILL~USEO

PROJECT EWLOVEE

ASSIGNED-TO

LOCATION

EHPHANAGER SHEENGINEER ENETECHNICIAN WSECRETARV

BEL ONES-T O

PR5 -ASSOC PC

-
Flow 18. Company pennant] and paint dauhme undidau nhlinm.

Teorey further teaches that its database system includes a

data dictionary. Teorey at 217. (“If the BER constructs do

not include nonkey attributes, the data requirements

specification (or data dictionary)-must be consulted”).

Teorey further teaches that each of the defined entity types

can be transformed to a “relation.” Teorey at 216, Table 1.

The definitions of these entity types transformed into

relations are stored in the data dictionary, because that is

the location where Teorey teaches that attributes of
candidate relations are stored and can be retrieved from.

Teorey at 217 (Step 3.2).

Huber teaches that a relational database, such as the

relational database depicted in Teorey, includes sets of

related items (i.e. the entity types of Teorey), which are

stored in two—dimensional tables. Huber, 4:66-513; Huber

further teaches that the definitions of these tables (i.e. the

definitions of the entity types) are stored in the data

dictionary. Huber, 6:68-7:8. Each of these table

definitions contains field definitions defining the fields of

each entity type, as well as location information that points

to the file containing the actual base table (BT), which

contains the entity data (i.e. the entity instance tables).

Huber, 723-8. Thus BTDEF 213 of Data Dictionary 202

specifies where ET 101 is located, the size and fields of the

records representing the rows, the keys used to access the

records. Huber, 15:43-49. BTDEF 213 is related in art to

71

077

078

Teore , Huber and- Zloof/Shaw References

BT 101 by three fields:. TNAME 443 is the name of BT
101; TFID 445 is the file identifier of the file which

contains BT 101; and TRLEN 447 is the length of the

records which represent the rows of BT 101 in the file. 15:
17-21. '

 Huber teaches that the data dictionary is itself stored as a

database, and thus the data dictionary itself includes tables

that contain the table definitions. Huber, 7:10—13. Each

table definition (BTDEF) is stored as a record in the table.

Huber, 14:44-45. Thus Huber, in combination with Teorey

teaches, that the data dictionary can be an entity definition

table.

The entity instance tables shown in Teorey are examples of

tables which contain entity data. Teorey, FIG. 13 (SKILL,

DEPARTMENT, DIVISION, PROJECT, EMPLOYEE

and other tables). These entity instance tables are each

associated with a corresponding entity type, as shown in

FIG. 13 and Table 1. Teorey, FIG. 13, Table 1. Further

entity instance tables are shown in FIG. -1 of Huber, for

example the Customer Table 101(a), the Order Table
101(c), and the Parts Table 101(d). Huber, FIG. _1.

In Teorey, each entity instance table contains a plurality of

entity instance records. The entities in Teorey are

transformed into entity relations. Teorey at 208, Sec.

3.1(1). These entity relations are similar in layout to the

relationship relations shown in FIGS. 4 and 10, except they

contain entity instance records rather than relationship

instance records. Teorey at 203, FIG. 4; 212-13, FIG. 10.

a first entity instance table

associated with said first entity

type;

a plurality of entity instance records

stored in said first entity instance

table;

Examples of these entity relations are: EMPLOYEE (with

identifier EMP-NO and desCriptors EMP-NAME, HOME—

ADDRESS, DATE-OF-BIRTH, JOB-TITLE, SALARY,

SKILL), ENGINEER (with identifier EMP—NO and

descriptors EMP-NAME, HOME-ADDRESS,

SPECIALTY), SECRETARY (with identifiers EMP-NO

and descriptors EMP-NAME, DATE—OF—BIRTH, . '

SALARY, SPEED-OF-TYPING), TECHNICIAN (with

identifier EMP-NO and descriptors EMP-NAME, SKILL,

YEARS-OF-EXPERIENCE). Teorey, Step 1.2 at 205;

Thus each entity relation (i.e. entity instance table) in

Teorey contains a plurality of entity instance records.

 The entity instance tables in Huber, for example the

Customer Table 101(a), the Order Table 101(c), and the

72

078

079

Teore , Huber and Zloof/Shaw References
Parts Table 101(d), also each contain entity instance

records which correspond to the instances of the entities

Customer, Order and Parts. Huber, 4:66-5:13, FIG. 1.

a relation definition table Teorey also teaches that relation types (i.e. relationships)

containing a first relation type , can be defined for a relational database. Teorey at 205

record defining a provided relation (Sec. 2.1, step 1.3). For example, FIG. 13 and Table 1

type; ‘ depict several relation types, including SKILL-USED,

ASSIGNED-TO AND BELONGS-TO. Teorey at 216,

FIG. 13, Table 1. Teorey further teaches that each of the

defined relation types can be transformed into a “relation”

Teorey at 216, Table 1. The definitions of these relation

types transformed into relations are stored in the data

dictionary because that is the location where Teorey
teaches that attributes of candidate relations are stored and

can be retrieved from. Teorey at 217 (Step 3.2). Huber further teaches that the definitions of these tables

(i.e. the definitions of the relation types) are stored in the

data dictionary. Huber, 6:68-7:8. Each of these table

definitions contains field definitions defining the fields of ,

each relation type, as well as location information that

points to the file containing the actual base table (BT),

which contains the relation data (i.e. the relation instance

tables). Huber, 723-8. Thus, BTDEF 213 of Data

Dictionary 202 specifies where BT 101 is located, the size

and fields of the records representing the rows, the keys

used to access the records. Huber, 15:43-49.

Huber further teaches that the data dictionary is itself

stored as a database, and thus the data'dictionary itself

includes tables that contain the table definitions. Huber,

7: 10-13. Each table definition (BTDEF) is stored as a

record in the table. Huber, 14:44—45. Thus Huber in

conjunction with Teorey teach that the data dictionary can
' be a relation definition table. .

As indicated above, while Huber teaches the use of a

relation definition table, the use of data dictionaries to map

the contents of the underlying database, including the

entities and relationships within it, was already common in

the field. A data dictionary was considered “[a] system

database that contain[ed] information about a user '

database, such as location of data, lists of fields and tables,

and data types and lengths.”

73

079

080

Teore , Huber and Zloof/Shaw References

Huber further teaches that the REFDEF table 313 contains

data defining the referenced-referencing relationship
between base tables, such as the base tables which are used

to create the relationship relation that is itself represented
as a table. Huber, 10:43-49. The REFDEF table stores a

pointer, REFDPTR 312, which points to the referenced

base table, and another pointer, REFGPTR 314, which

points to the referring base table. Huber, 11:1-4. These

two pointers are entity table type identifiers. Thus Huber

teaches that the REFDEF table 313 contains data defining
the relationshi - relations defined in Teore .

Teorey teaches that relationship relations are represented

as tables. Teorey at 203, FIG. 4; 212-13, FIG. 10; 216,

FIG. 13. For example, in FIG. 10 SKILL-USED is a

relation type associated with the following relation
- instance table:

a first relation instance table

associated with said provided

relation type; and

SKILL -USEO

Fleur: to. Ternary nlm‘onshiv transformation nun.

Huber teaches that each of the sets of related items, in this

case the relationship relations (i.e. relation types) defined
in Teorey, are stored in two-dimensional tables. Huber,

4:66-5:3. These tables are associated with the relation type

. information stored in the REFDEF table 313 and in the

table definition for the relationship relation. REFDEF

table 313 contains general information about the

relationshi - (15:55-60), and the table definition (6:68-7:8).

In Teorey, each relation instance table contains a plurality

of relation instance records. The relationships in Teorey

are transformed into relationship relations. Teorey at 208,

Sec. 3.1(3). Examples of these relationship relations are

shown in FIGS. 4 and 10, clearly showing that each

relationship relation includes a plurality of rows, each of

which is a relation instance record. Teorey at 203, FIG. 4;
212-13, FIG. 10. Each relation instance record relates an

entity instance in one entity table to an entity instance in a

secOnd entit table. Forexamle, the SKILL_USED

a first relation instance recOrd of

said provided relation type, said -

first relation instance record relating

a' desired entity in one of said entity,

instance records to a provided

entity.

\' 74

080

081

Teore , Huber and Zloof/Shaw References

relationship instance table relates entities in the

EMPLOYEE table to entities in the SKILL table. Teorey

at 203, FIG. 4; 216, FIG. 13, Table 1. -

Teorey teaches that the entity instance records have key

fields, which uniquely identify the entity instances. Teorey

at 198 (“The major interattribute dependencies are between

the entity keys (unique identifiers) of different entities that

are captured in the ER modeling process.). Huber also

. teaches that the entity instance records, stored in the base
tables, have rimar ke fields. Huber, 5:28-31.

Teorey teaches that each relation instance record contains a

record identifier that corresponds to the desired entity

instance record. For example, in the relation instance table

of FIG. 4, the SKILL-USED relations instances each

contain a SKILL-NO record identifier that identifies the

desired SKILL entity instance record. Teorey at 203, FIG.

4; 216, FIG. 13. Each relation instance record also

contains a desired entity type, reflected in the column

header, for example “SKILL” in the column header

SKILL-NO in FIG. 4.

11. The relational database

processing system of claim 10,

wherein each of said entity instanCe
records is identified by a record
identifier.

12. The relational database

processing system of claim 10,
wherein said first relation instance

record contains a desired record

identifier and a desired entity type

corresponding to a desired entity

instance record containing said

desired entity.

Teorey further teaches that a key (i.e. a record identifier)

can be a composite identifier, that is, an identifier

composed of two or more attributes. Teorey at 204 (Step

1.1(5)). These two attributes could include the entity type

and a record identifier, and thus anticipate this claim.

Teorey teaches two alternate treatments for composite

identifiers, one of which is to eliminate them where

possible, but the second treatment is to retain the identifier

where it is reasonably natural. Id. It would be reasonably

natural to retain a composite identifier ‘where it permitted-
the overloading of the‘record identifier column to designate

two or more different target tables, as suggested by FST.

Huber also teaches the use of two-part keys, by-providing

that “[e]ach row in a base table 101(x) must be uniquely

identified by a primary key consisting of one or more

fields.” Huber, 5:28-30. Similarly, foreign keys may

include plural “fields which are a primary key in a different

base table 101(y).” Huber, 5:31-33. Therefore, a

relationship relation as taught in Teorey, which is stored as

a base table in Huber, would include two foreign keys to

the two entity relations that it referenced, and each of those
two forei n ke 5 would be two- art ke s.

Teore teaches that relationshi relations are stored in ‘

13. The relational database

75

081

082

Teore , Huber and Zloof/Shaw References

processing system of claim 10, tables. Teorey at 203, FIG. 4; 216, FIG. 13. Huber further

wherein said first relation type teaches that the definitions of these tables (i.e. the

record comprises a table identifier definitions of the relation types) are stored in the data

identifying said first relation dictionary. Huber, 6:68—7:8. Each of these table

instance table. definitions contains field definitions defining the fields of

I each relation type, as well as location information that

points to the file containing the actual base table (BT),

which contains the relation data (i.e. the relation instance

tables). Huber, 7:3-8. Thus the relation type records

include an identifier that points to the relation instance '
table.

\14. The relational database Teorey teaches that relationships (relation types) are
processing system of claim 10, ' transformed into relationship relations. Teorey at 208, Sec.
further comprising an inquiry table 3.1(3). Each of these relationships bears a name, for

containing an inquiry record, example SKILL_USED is the name of a relationship

wherein said inquiry record between the EMPLOYEE entity type and the SKILL entity

specifies said provided relation type type. Teorey at 203, FIG. 4; 216, FIG. 13, Table l. The

and said provided entity. relation instance table for SKILL_USED is represented in

the database systems of Huber as a base table (BT). -

Huber, 4:66—53; 5:17—20.

Shaw takes the QBE skeleton tables, for example, from

Zloof, and generates an SQL query, which is then used to

retrieve the inquiry results from the relational database.

Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GFTTABLE 72 having one entry

for each skeleton or example table in a query 2 [co]. 11,

lines 1-2]. Thus GFTTAB LE 72 is the Inquiry table 740 in

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column of an example table in a query Q. The content

89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70.‘ GFTSQL 70 contains the SQL , such as the SQL select

' statement in Table 24 (inquiry record).

Where the SQL query operates on a relationship'relation as

described in Teorey, the SQL query will include an SQL

FROM statement which identifies the name of relationship

relation being queried. Shaw, 15:28—31. This name is the

relation type, since the relationship relation is named with

it’s type, e.g. the SKILL_USED relationship type is also

the name of the relationship relation containing the relation

instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.

10; 216, FIG. 13, Table 1. Thus for example,

SKILL_USED is the name of a relationshi - between a

76

082

083

Teore Huber and Zloof/Shaw References3

—rov1ded EMPLOYEE entit and a desned SKILL ent1t
15. The relational database

processing system of claim 10

further comhrisin:

a second entity instance table Teorey teaches two entity instance tables, for example the

associated with a second entity SKILL and DEPARTMENT entity instance tables of FIG.

t e; and 13. Teore at 216, FIG. 13, Table 1.

wherein said entity definition table Teorey teaches that all entities, including both SKILL and

contains a second entity type record DEPARTMENT entities, are transformed into relations

containing said second entity type that are stored in the data dictionary. Teorey at 216, Table
and associating said second entity 1. Huber teaches that the data dictionary contains a set of
instance table with said second table definitions. Huber, 6:68—7:3. A set, by its very _

entity type. nature, can contain two (or more) entity type records.

As indicated above, while Huber teaches the use of a

relation definition table, the use of data dictionaries to map

the contents of the underlying database, including the
entities and relationships within it, was already common in

the field. A data‘dictionary was considered “[a] system

database that contain[ed] information about a user

database, such as location of data, lists of fields and tables,

and data types and lengths.”

16. The relational database

processing system of claim 15

further com - risin:

a third entity instance table ' Teorey teaches three entity instance tables, for example the

associated with a third entity type; SKILL, DEPARTMENT and DIVISION entity tables of

and FIG. 13. Teorey at 216, FIG. 13, Table 1.

77

083

084

Teore , Huber and Zloof/Shaw References

SKILL DEPARTHENT DIVlSION

WT'NO

SKILL-USED
DVflB au¢4w Hm¢flfl1

PROJECT EflPLDVEE

ASSIGNED-T0
0'“N0 Uxhflfli

LOCATION 5
KWWNM

EnPflANAGER EflP.ENGlNEER' ENPJ’ECHNICIAN EflPSECRETARV

iiiiiillll iiiiiilllll liiiilllllll liiiiilllllll
BEL ONES-TO

“W
PRF-ASSOC PC

Figure 1!. Company personnel and project database candidate relation

wherein said entity definition table Teorey teaches that all entities, including SKILL,
contains a third entity type record DEPARTMENT and DIVISION entities, are transformed

containing said third entity type and into relations that are stored in the data dictionary. Teorey

associating said third entity instance at 216, Table 1. Huber teaches that the data dictionary

table with said third entity type. contains a set of table definitions. Huber, 6:68—723. A set,

by its very nature, can contain three (or more) entity type
records.

As indicated above, while Huber teaches the use of a

relation definition table, the use of data dictionaries to map

the contents of the underlying database, including the

entities and relationships within it, was already common in

the field. A data dictionary was considered “[a] system

database that contain[ed] information about a user

database, such as location of data, lists of fields and tables,
and datat .es and len ths.”

17. The relational database

processing system of claim 10

further com risin_:

78

084

085

Teore , Huber and Zloof/Shaw References

a second relation instance table Teorey teaches two relation instance tables, for example
associated with a second relation the SKILL-USED and ASSIGNED-TO relation instance

type; and tables of FIG. 13. Teorey at 216, FIG. 13, Table 1.

wherein said relation definition

table contains a second relation type

record containing said second

relation type and associating said
second relation instance table with

said second relation type.

Teorey teaches that all relationships, including both

SKILL-USED and ASSIGNED-TO relationships, are
transformed into relations that are stored in the data

dictionary. Teorey at 216, Table 1. Huber teaches that the

data dictionary contains a set of table definitions. Huber,

6268—73. A set, by its very nature, can contain two (or

more) relation type records. Huber further teaches that the

REFDEF table used to define relationships contains a

separate record for each relationship. Huber, 10:43-51;
. 15:50-55. Thus the relation definition table can contain

two (or more) relation definition records, each of which are

associated to a different relation instance table (e.g.
SKILL-USED and ASSIGNED—TO relation instance

tables). -

18. The relational database

processing system of claim 17

further com risin_: I
a third relation instance table

associated with a third relation type;
and

Teorey teaches three relation instance tables, for example
the SKILL-USED, ASSIGNED-TO and BELONGS-TO

relation instance tables of FIG. 13. Teorey at 216, FIG. 13,
Table 1.

Teorey teaches that all relationships, including SKILL-

USED, ASSIGNED-TO and BELONGS-TO relationships,
are transformed into relations that are stored in the data

dictionary. Teorey at 216, Table 1. Huber teaches that the

data dictionary contains a set of table definitions. Huber,

6:68-7:3. A set, by its very nature, can contain three (or

more) relation type records. Huber further teaches that the

REFDEF table used to define relationships contains a '

separate record for each relationship. Huber, 10:43-51;
15:50-55. Thus the relation definition table can contain

three (or more) relation definition records, each of which

are associated to a different relation instance table (e.g.
SKILL-USED, ASSIGNED-TO and BELONGS-TO

relation instance tables).

wherein said relation definition

table contains a third relation type

record containing said third relation

type and associating said third
relation instance table with said

third relation type.

B. Teorey and Kumpati

Teorey and Kumpati together teach all limitations of claims 1-4, 7-13, 15-18 of

the ‘259 patent as discussed in the chart below. Teorey, Kumpati and Zloof and/or Shaw

79

085

086

together teach all limitations of claims 5-6 and 14 of the ‘259 patent, as discussed in the

chart below:

'Teore , Kum ati, and Zloof/Shaw References

1. A method for retrieving a desired ‘
entity of a desired entity type from Data dictionaries were well-known in, the arts in 1990.

a relational database, wherein said The IBM Dictionary of Computing Terms defines

desired entity is related to a “data dictionary” as “[a] list of all files, fields, and

provided entity by a provided variables used in a data base management system. A

relation type associating an entity “data dictionary” helps users remember what items

type of said provided entity with they have to work with and how they have been

said desired entity type, said ' defined. Particularly helpful when writing ‘a large

method comprising: number of linked procedures or programs that share a

data base.” The IBM Dictionary of Computing Terms

87 (8th Ed. 1987).

Kumpati teaches that the active data dictionary of

Kumpati is used to process queries for desired data,

including the entities stored in the data files of

Kumpati. Kumpati, 5:52—68.

It would have been obvious to combine the data
dictionary of Kumpati with the relational database of

Teorey to help users remember what items they have
to work with and how they have been defined.

Teorey in Figure 8(f) shows that one can retrieve an
engineer (desired entity) of the “ENGINEERS”

(desired entity type) that “BELONGS—TO” (relation

type) a particular professional association (provided'

entity) of the PRF-ASSOC (provided entity type).

Ev.“ Mflflllwl «summer» mum have
menu mum am an angina". ur no ,
matinee", (can; “gull! can"! below ‘0
mm; ontouionul “summing. or mm.

W
massnctam i
ammtsm-fl, , .. , ,.)
saunas-TM

(I)

retrieving a specific relation type Teorey in combination with Kumpati teaches a data

record defining said provided dictionary that includes a relation definition table that

relation type from a relation contains relation type records which define relation

definition table; types. A user would supply such a relation type in

making an inquiry to the query module 124 of

Kum:ati. Kumati, 5:63-68. The rocessor 124

‘4 The claim language recited is inclusive of the amendments patentee included in its Response.

80

086

087

Teore , Kum . ati, and ZIoof/Shaw References

retrieves the identity of the various requested data

elements from the data dictionary. Kumpati, 3:66-422.

Teorey teaches that relation types (i.e. relationships)

can be defined for a relational database. Teorey at 205

(Sec. 2.1, step 1.3). Each of these relation types

defines a relationship between two or more entities.

For example, FIG. 13 and Table 1 depict several

relation types, including SKH_.L—USED, ASSIGNED-

TO AND BELONGS-TO. Teorey at 216, FIG. 13,
Table 1.

SKILL DEPARTHENT DIVISIONI

SKILL-USED ‘
W-m SKLL'M MN!

PROJECT EHPLOVEE-

ASSIGNED-T0

LOCATION

EHPHANAGER EHP.ENGINEER EflP.TECI-INICIAN EI‘IPSECRETARV

BELONGS-TO

PRF ~ASSOC PC

Fiat" 13. Company personnel and project database candidate relations

81

087

088

Teore , Kum n ati, and Zloof/Shaw ReferencesTabb ‘l. Tmmaflon of Emma: m Relationships (a Rdafions (Elma!)
Sup 21. Smith: to "tut-baa

). DIVISlONfDIMNO..... HEAD-EMP-NO)
Z. DEPARTMFNNDEPT-NO. DEPT<NAMK ROOMANO. PHONEANO..... DIVANO,

MANAG~EMP-NO)
3. EMPmVEE(£MP~NO, EMF-NAME. .108va..... DBP'LNO, SPOUSE-EMENO, PC-NO)
‘. SKILHSKILL-NO. . . .3
5, FROJECI‘I'PRWNAMB. .. .)
6. LOCATIOMLOC-NAME. . . .)
7. ENRMANAGmlEMP-NO, . . .I
8. FMl’fiNGlNEENEMRNO. . . J
9. EMPTECHNICIANIEMFNO. . . .)

Io. EMP.SECRE‘I‘ARY(EMP-N0. . .J
11. PCiPC-Nl). . . .1
l2 FRF-ASSOQPA-NO. . . .l

Step 2.2. Binary arm-my NInliOmhipu to Iridium
l3. BELONGE'I‘OtPhNO, EMP~NO)

Sm: 23. 1'2qu (or any n-ary) relax-forum m Mariam

H. SKILLHSEDlEMPANO. SKILL-NO. PEN-NAME!
15. AS'S‘IGNED-TOlEMP-NO. LDC-NAME, PEN-NAME)

Teorey further teaches that each of the defined relation

types can be transformed into a “relation” Teorey at

21_6, Table 1. The definitions of these relation types
transformed into relations are stored in the data

dictionary because that is the location where Teorey
teaches that attributes of candidate relations are stored

and can be retrieved from. Teorey at 217 (Step 3.2).

Kumpati further teaches that the definitions of these

tables (i.e. the definitions of the relation types) are

stored in the data dictionary. Kumpati, 8:35-59. The

data dictionary contains the entity set (i.e. relation

definition table) ERSET, which is the set of all

relationship sets (i.e. relation types) contained in the

database. Id. The table ERSET includes, for example,

records that define the relation types Building-Rooms
and Exits-Rooms. Id.

While Kumpati teaches the use of a relation definition

table, the use of data dictionaries to map the contents

of the underlying database, including the entities and

relationships within it, was already common in the

field. The IBM Dictionary of Computing Terms
defines “data dictionary” as “[a] list of all files, fields,

and variables used in a data base management system.

A “data dictionary” helps users remember what items

they have to work with and how they have been

defined. Particularly helpful when writing a large

number of linked procedures or programs that share a

data base.” The IBM Dictionary of Computing Terms

87 (8th Ed. 1987). Webster’s NewWorld Dictionary

of Computer Terms defines “data dictionary” as “1. A

centralized repository of information about data such

as meaning, relationships to other data, origin, usage,

and format. It assists mana- ement, data base '

82

088

089

administrators, system analysts, and application

programmers in planning, controlling, and evaluating

the collection, storage, and use of data. 2. In the

System/36 interactive data definition utility, a folder

that contains field, format, and file definitions.”

Webster’s NewWorld DictiOnary of Computer Terms

107 (3d Ed. 1988).

 Under Kumpati, the user can make “use of simple

commands to control, order and query not only the

underlying data controlled by the database

management system but also the contents of the data

dictionary.” Kumpati, Abstract. Thus, this “capability

enables the user to write generic application programs

which are logically independent of the data since the

subject database management system enables the

user/application program to access all data in the

database independent of each application program’s
data model.” Id.

Further, a critical component of databases is that they

allow retrieval of items, including relation type

records. One type of front-end user interface which

eases access to the information stored in the database

is one created using the QBE language. According to

The Database Step-by-Step textbook, “The [QBE]

user interface, designed for technical and nontechnical

people alike, is a two-dimensional, on-line, video

display terminal oriented query facility.” To issue a

query, the user gives an example of the required

information, which amounts to specifying a variable
' name in the column of the desired information.” Mark

L. Gillenson, Database Step—by—Step 141-42 (2d Ed.

1990). .

Teorey in combination with Kumpati teaches that
relation instance records define relations between

entities, and that these records are stored in relation

instance tables, each of which corresponds to a

particular relation type. The query processor 124

retrieves the identity of the various requested data

elements from the data dictionary. Kumpati, 3:66-422.

retrieving a specific relation

instance record defining a relation

of said provided relation type

between said provided entity and

said desired entity from a relation

instance table corresponding to said

specific relation type record;

Teorey teaches that relationship relations store
information that relates two or more entities to each

other, and are re resented as tables. Teore at 202,

83

089

090

 Teore , Kum . ati, and Zloof/Shaw References

FIG. 3, 203, FIG. 4; 212—13, FIG. 10; 216, FIG. 13.

HARRIED
4’0

HEflEERSHIP

, CLASS
MBnflfllflflj

' ‘OCCUPIED-BY

m

"can a. “1m“. EEK annual: nhuomhap'' Ina“.

 Employees use a wide rangm! dllterepl
skills on each arnject they an associatedWith.

W
EMPLDVEEIEnbm)
sxitusmLL—ug)
PRQJECTW)
SKILL-USEDGflE-Nfl SglLL-ufl EBQJ-QAHE)

FDs .' EMF-N0. SKILL-ND. PROJ—NO ---) (b
(all keg)

 v SKILL-USED

EPSILDN

Figure 10. Tormry relnlionahip transformation rules.

Kumpati teaches that each of the sets of related items,

in this case the relationship relations (i.e. relation

types) defined in Teorey, are stored in two-

dimensional tables in the data files. Kumpati, 4:44-66.

For exam-le, the relation instance table Buildin-

84

090

091

Teore , Kum n ati, and Zloof/Shaw References

Rooms 702 stores the set of all relationships between

buildings and rooms. Kumpati, 9:43-44, FIG. 7.

FIG. 7 701

‘ BUILDING

BUILDING-200715

 This relation instance table is associated with the

relationship set (i.e. relation type) “Buildings-Rooms”
that is stored in the relation definition table ERSET.

Kumpati, 8:35-39.

In Teorey, each relation instance table contains a

plurality of relation instance records. The

relationships in Teorey are transformed into

relationship relations. Teorey at 208, Sec. 3.1(3).

Examples of these relationship relations are shoWn in

FIGS. 4 and 10, clearly showing that each relationship

relation includes a plurality of rows, each of which is a

relation instance record. Teorey at 203, FIG. 4; 212-

13, FIG. 10.

PROJ‘HAHE.SKILL-USED W900
38 27
33 51
3B 27

33 3

(a)

Fig. 4 of Teorey depicts the relationship instance table

for the relationship SKILL-USED.

Each relation instance record relates an entity instance

in one entity table to' an entity instance in a second

entity table. _ For example, the SKILL_USED

relationship instance table relates entities in the
EMPLOYEE table to entities in the SKILL table.

85

091

092

Teore , Kum ati, and Zloof/Shaw References

Teorey at 203, FIG. 4; 216, FIG. 13, Table 1.

In Kumpati, the relation instance records also contain
information that relates the two entities in the

relationship defined by the relation instance record.

For example, attributes of the Buildings-Rooms

relationship include information that identifies what

rooms are located in what buildings. Kumpati, 9:43-
46.

retrieving a desired entity type Teorey in combination with Kumpati teaches that

record containing said desired entity type information is stored in entity type records

entity type from an entity definition in entity definition tables, and that this data can be

table, wherein said desired entity retrieved in order to operate on the database. The

type record specifies a desired entity type records identify entity instance tables,

entity instance table associated with including the entity instance tables containing entities

said desired entity type; and 4 that a user would desire to retrieve. The query

processor 124 retrieves the identity of the various

requested data elements from the data dictionary.

Kumpati, 3:66-4:2.

Teorey teaches that entity types (i.e. entities) can be

defined for a relational database. Teorey at 204 (Sec.

2.1, step 1.1) For example, FIG. 13 and Table 1 depict

a variety of entity types, including SKILL,

DEPARTMENT, DIVISION, PROJECT,

EMPLOYEE and others. Teorey at 216, FIG. 13,
Table 1.

86

092

093

Teore , Kum n ati, and Zloof/Shaw References
SKILL DEPARTNENT _ DlVISION

SKILLvUSED

owwamuumfimuwut

PROJECT EflPLOVEE

assne~so~ro

LOCATION

EHPflANAGER SHRENGINEER EflP.TECHNIC|AN EflPSECRETARV

BELONGS-TO ,

PRF -ASSOC PC

Figuve 13. Company personnel and project database candidate relations.

Table 1. Transformation of 5mm and Relationships in Relations (Example)
Step 2. I, Entities to «station:

I. DIVISIONID/V—NO..... HEAD-EMP-NO}
2. DEPARTMENT(DI~JPT¢NO. DEPT‘NAME, RO0M~N0, PHONENO..... DIV~N0.

MANAG-EMPvNO)
EMPIDYEElEMP—NU, EMENAME, JOE—TITLE, . . , . DEPT-N0, SPOUSE-BMP-NO. PC-
SKILMSKIL rNO. . . J
PROJECTtPRal-NAME. . . .1
LOCATIONMOC~1VAME. . . .)
EMP.MANAGER{EMP-NO, . . .1
EM PIENGINEENEMP-NO, , . J
EMI’.TECHNICIAN(EMP-N0. . . .l

. EMP.SECRETARY(EMP-NO, . . .)
i PC(PC»NO. .i .t
i PRFASSOIXPA-NO. . . .l

wwseeéw
Step 22. Binary or unary relationship: (a relation:

:3. BELONGfl'I‘OU’mNO. EMF-N0)

SHIP 2.3. Ternary (0! any u-ary) relatiunslu'p: In relation:
14. SKILL~IJSED(EAN’-N0. SKILL-NOJ’ROLNAME)
l5. ASS|lINEl3v’l‘()ll-.’i'lfl"N(.l. LOG-NAME. PROJ-NAM E)

Teorey further teaches that its database system

includes a data dictionary. Teorey at 217. (“If the

BER constructs do not include nonkey attributes, the

data requirements specification (or data dictionary)

must be consulted”). Teorey further teaches that each

of the defined entity types can be transformed to a

“relation.” Teorey at 216, Table 1. The definitions of

these entity types transformed into relations are stored

in the data dictionar , because that is the location

87

093

094

Teore , Kum ati, and Zloof/Shaw References

where‘Teorey teaches that attributes of candidate

relations are stored and can be retrieved from. Teorey

at 217 (Step 3.2).

While Teorey clearly teaches that its relational

database hasand uses a data dictionary, Teorey does

not describe the detailed-layout of the data dictionary.

However, the ‘661 patent to Kumpati does provide a

detailed layout of a data dictionary for a relational

database. Kumpati, 8:30-9:27, FIG. 6.

601 FIG. 6 602 603

EU LUINC

BUILgi;u;M-Roons
DEPENDENCY Bung???“ 75 ASSOCIATION

[KITS-ROOMS

ERSET-ATTRIBUTES

ATTRIBUIES

BUILDENC NO.
BUILDING LDC..

Kumpati further provides that “[i]t is well known in

the art to provide a data dictionary in an database

management system.” Kumpati, 5:51-52. The data

dictionary contains the entity set (i.e. entity definition

table) ERSET, which is the set of all entity sets (i.e.

entity types) contained in the database. Kumpati,

8:35-39. The table ERSET includes, for example,

records that define the entity types Building, Rooms
and Exits. Id.

Kumpati teaches the entity definition table having

entity type records. These entity definition records

specify the location information that identifies the files

containing the entity instance tables. The entity

instance tables shown in Teorey are examples of tables

which contain entity data. Teorey, FIG. 13 (SKILL,

DEPARTMENT, DIVISION, PROJECT,

EMPLOYEE and other tables).

88

094

095

Teore , Kum ati, and Zloof/Shaw References

SKILL DEPARTflENT DIVISION

SKILL-USED
[Pf-M sun-no Witt

PROJECT EMPLOYEE

ASSIGNED-TO
WHO Lac-aw

EHPHANAGER EHPENGINEER EHRTECHNICIAN EI‘IPSECRETARV

BELONGS-TO ,

PRF~ASSOC PC

Flaws 13. Company personnel and project database candidate relations.

These entity instance tables are each associated with a

corresponding entity type, as shown in FIG. 13 and

Table 1. Teorey, FIG. 13, Table 1. Further entity

instance tables are shown in FIG. 7 of Kumpati, for

example the Building Table 701, the Exits Table 705,

and the Rooms Table 703. Kumpati, 9:29-42, FIG. 7.

These entity instance tables are associated with the

corresponding entity types “Building”, “Rooms” and
“Exits”. '

retrieving said desired entity from Desired entities, just like all entities, are stored in

said'desired entity instance table. _ entity instance tables, and can be retrieved therefrom.
' ' In Kumpati, the database update processor 122

retrieves the requested data from database 130 and

stores it in a designated segment of a file buffer 121,
where it is buffered for use b the a o lication

LOCATION
89

095

096

Teore , Kum ati, and Zloof/Shaw References

that requested it.‘ Kumpati, 4:8-17.

 In Teorey, each entity instance table contains a V _
plurality of entity instance records. The entities in

Teorey are transformed into entity relations. Teorey at

208, Sec. 3.1(1). These entity relations are similar in

layout to the relationship relations shown in FIGS. 4

and 10, except they contain entity instance records

rather than relationship instance records. Teorey at

203, FIG. '4; 212-13, FIG. 10, at 205 Step 1.2. Thus

each entity relation (i.e. entity instance table) in

Teorey contains a plurality of entity instance records.

The entity instance tables in Kumpati, for example the

Building Table 701, the Exits Table 705, and the

Rooms Table 703, also each contain entity instance

records which correspond to the instances of the entity

types “Building”, “Rooms” and “Exits”. An example

of the records contained within a typical file

representing an instance table is shown in FIG. 2.

Kum-ati, 4:44-56. '

Teorey teaches that each relation instance record

contains a record identifier that correspOnds to the

desired entity instance record. For example, in the

relation instance table of FIG. 4, the SKILL-USED
relations instances each contain a SKILL-NO record

identifier that identifies the desired SKILL entity

instance record. Teorey at 203, FIG. 4; 216, FIG. 13.
Each relation instance record also contains a desired

entity type, reflected in the column header, for

example “SKILL” in the column header SKILL-NO in

FIG. 4. Kumpati also teaches that the relation instance

records have key fields. Kumpati, 7:66-68. Kumpati
further teaches that the relation instance records

identify the desired entity type. For example, the

Building-Rooms table includes attributes that specify

the entity type “Building” and the entity type “Room”

"for each relation instance. Kumpati, 9:43-45.

2. The method of claim 1, wherein

said relation instance record

specifies said desired entity by said

desired entity type and a desired
record identifier.

 Even under FST’s new argument, advanced in their

Response, Teorey anticipates this claim. Response,

22-23. Teorey further teaches that a key (i.e. a record

identifier) can be a composite identifier, that is, an

identifier composed of two or more attributes. Teorey

at 204 (Step 1.1(5)). These two attributes could

include the entit t e and a record identifier, and thus

90

096

097

Teore , Kum . ati, and Zloof/Shaw References

anticipate this claim. Teorey teaches two alternate

treatments for composite identifiers, one of which is to

eliminate them where possible, but the second
treatment is to retain the identifier where it is

reasonably natural. Id. It would be reasonably natural

to retain a composite identifier where it permitted the

overloading of the record identifier column to

designate two or more different target tables, as
suggested by FST. Therefore, a relationship relation

as taught in Teorey, which is stored as a relationship

table in Kumpati, would include two foreign keys to

the two entity relations that it referenced, and each of

those two foreign keys would be two-part keys, as

discussed in FST’s Response.

Claim Lanuuae '

Teorey teaches that each entity instance record

contains a record identifier that corresponds to the

desired entity. For example, in the SKILL entity

instance table of FIG. 13, the SKH.L entity instances
each contain a SKILL-NO record identifier that

identifies the desired SKILL entity instance record.

Teorey at 216, FIG. 13. Kumpati also teaches that the

entity instance records have key fields (i.e. Key 1, Key

2, ...) that are used to identify the entities stored in the

records of the entity instance tables. Kumpati, 4:51-

56, FIG. 2.
FIE. 2

3. The method of claim 2, wherein

said desired entity is identified by

said desired record identifier in said

desired entity instance table.

4. (once amended) The method of

claim 1, wherein said retrieving a

specific relation instance record
com . rises: '

retrievin_ a table identifier for said Teore teaches that each relationshis relation (i.e.

91

097

098

Teore , Kum ati, and Zloof/Shaw References

relation instance table from said relation type record) includes the name of the

specific relation type record; and relationship. Teorey at 216, Table 1. This

relationships relation is stored in the data dictionary as

a table definition (i.e. relation type record). Kumpati,

5:58-63. These definitions include information (i.e. a

table identifier) that is used to ascertain the physical

location in'the database of the requested data.

Kumpati, 3:66-4z2. This location information is the

table identifier as claimed.

In Kumpati, the data table-identified bythe table
identifier is the table which contains the specific

relation instance records that are based on the specific

relation type record and entity provided, for example

the Building-Rooms, Building-Exits, and Exit-Rooms

relationship sets in FIG. 7. Kumpati, 9:43-58, FIG. 7.

FIC.7‘ .. 701’

retrieving said specific relation

instance record from said relation _

instance table based on said specific

relation type record and said

provided entity.

In Teorey, each relation instance table contains a

plurality of relation instance records. The

relationships in Teorey are transformed into

relationship relations. Teorey at 208, Sec. 3.1(3).

Examples of these relationship relations are shown in

FIGS. 4 and 10, clearly showing that each relationship

relation includes a plurality of rows, each of which is a

relation instance record. Teorey at 203, FIG. 4; 212-
13, FIG. 10. Each relation instance record relates an

entity instance in one entity table to an entity instance

in a second entity table. For example, the

SKILL_USED relationship instance table relates
entities in the EMPLOYEE table to entities in the

SKILL table. Teorey at 203, FIG. 4; 216, FIG. 13,
Table l. . '

92

098

099

Teore , Kum a mi, and Zloof/Shaw References

5. The method of claim 1, further Teorey teaches that relationships (relation types) are

comprising retrieving data transformed into relationship relations. Teorey at 208,

specifying said provided relation Sec. 3.1(3). Each of these relationships bears a name,

type from an inquiry table. for example SKILL_USED is the name of a

’ relationship between the EMPLOYEE entity type and

the SKILL entity type. Teorey at 203, FIG. 4; 216,

FIG. 13, Table 1. The relation instance table for -

SKILL_USED is represented in the database systems

of Huber as a base table (BT). Huber, 4:66-5:3', 5:17-
20. ‘ '

The use of inquiry tables such as ones based on the

QBE language was an inherent part of managing E—R

databases. A QBE table was one form of a graphical

fronteend interface that allowed a user to access the _

underlying database containing entities and relations.

According to The Database Step-by-Step textbook,

“The [QBE] user interface, designed for technical and

nontechnical people alike, is a two-dimensional, On-

line, video display terminal oriented query facility.”

Mark L. Gillenson, Database Step-by-Step 141-42 (2d

Ed. 1990). While a QBE interface is pictorial in

nature, a SQL’s interface is more linear and textual.

Id. “The user begins by specifying which table is

needed for a particular query. Once a table(s) is

chosen, the system displays an outline of that table,

showing the table name and the names of its fields. To

issue a query, the user gives an example of the

required information, which amounts to specifying a

variable name in the column of the desired
information.” Id.

Zloof teaches Query-by-Example (QBE). When a user

performs an operation , e.g., query, update, define, or

control, against the data base, the user fills" in an

example of a solution to that operation in skeleton
tables that can be assOciated with actual tables in the

database. For illustration, suppose we want all green

items sold in the toy department.

Mama 1!! 09mm“! mutual wing “at;
....m‘.m..._,..sw Mm...

43!» g mam i am} not; «aam.........t~....w .-. . __., .a.

Z

93

099-

100

Teore , Kum o ati, and Zloof/Shaw References

Fig. 13 of Zloof above shows the two skeleton tables:
“TYPE” and “SALES”. These two tables are linked

by the word “NUT”. Thus Figure 13 shows an inquiry

table consisting of two skeleton tables linked together

like the level 1 and 2 rows'of the INQ.DEF table 740

in Figure 7-1 of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a

linear query for accessing the contents of a relational

database from a graphic query input at a user terminal,‘

including relation records. Shaw takes the QBE

skeleton tables , for example, from Zloof, and '

generates an SQL query, which is then used to retrieve

the inquiry results from the relational database.

Figure 5 of Shaw shows a collection of tables

DXTGTF 106 that provides a table GFTTABLE 72

having one entry for each skeleton or example table'in

a query 2 [co]. 11, lines 1—2]. Thus GFTTABLE 72 is

the Inquiry table 740 in Doktor Fig. 7-1. GFTCOLMN

78 provides one entry for each column of an example -

table in a query Q. The content 89 of GFTCOLMN 78

includes a pointer 71 to GFTSQL 70. GFTSQL 70 _

contains the SQL , such as the SQL select statement in
Table 24. '

94

1 oo

101

z manna” :
72 {EFTTABLE K ----o

. H.nn-nanm: {
—IBFTPTCOL I 3

.7; IBFTCOLL'T : 'La-73 . ---————-- :
o--l--——--—-— :GFTPTRou I7a : armoucr' __.....—...._- Ia “ u

, xarrcumvr I 32 ' ”
1 ---------T 90 ~———————.—)g nun-man:
! £2 ‘ " "-) i GFTRDU

3 O—«-¢—> annnaun-i
I an :GFTPYRC‘L ':

tummy l s m—mzmmos aISFTCDATA . t x a ‘-———----:
{acamuf 90 I ' Bé/I‘WTBLE I X :
xwwrcnr '11—» : : : :-———'------ x
:13anan : x ' x t 1 e7 : z
. -——x 92: a: z - "

:erramm fi-l—«L—n—«e : E 95 am“:
,-_-_____..’,’94, as i o—-—--):BFTCOLCN :I“-] _ __.._§ flan-33233“:

g *-— IBFTPTRCN :
z 103 1 9B :BFrcaNLu 2, b.3 a

1023 i 100 :BFTROHXX
. 5T:lwamm I :

SGF'TCONTB :(--+ [05"
l—Mam: g ‘04
i 21 l 3 K I .m:fl.‘=fl I

- ’——-‘> IGFTCNTNT 5

no.5 "4“- ‘

Where the SQL query operates on a relationship

relation as described in Teorey, the SQL query will

include an SQL FROM statement which identifies the

name of relationship relation being queried. Shaw,

15:28-31. This name is the relation type, since the

relationship relation is named with it’s type, e.g. the

SKILL_USED relationship type is also the name of

the relationship relation containing the relation

instances of that type. Teorey',,203 FIG. 4; 212-13

FIG. 10; 216, FIG. 13, Table 1.

. The query translator of Shaw receives as an input a

QBE query, which is a “graphic language query

expressed as one or more elements . . . appearing in

rows and columns of an example table including one

or more source and target tables.” Shaw, 2:38-42.

Where the source table included in the example table

is a relationship relation, as discussed in Teorey, this

example table contains the name of the source table,

which is “data specifying said provided relation type’

as claimed. When the example query is translated as '

part of the query processing, this-relation type data is

retrieved in order to form part of the SQL query
submitted to the DBMS. Shaw, 15:29-31.

’

95

1 01

102

6. The method of claim 1, further Shaw takes the QBE skeleton tables , for example,

comprising retrieving data from Zloof, and generates an SQL query, which is then '

specifying said provided entity used to retrieve the inquiry results from the relational

from an inquiry table. database.

 Figure 5 of Shaw shows a collection of tables

DXTGTF 106 that provides a table GFTTABLE 72

having one entry for each skeleton or example table in

a query 2 [col. 11, lines 1-2]. Thus GFTTABLE 72 is

the Inquiry table 740 in Doktor Fig. 7-1. GFTCOLMN

78 provides one entry for each column of an example

table in a query Q. The content 89 of GFTCOLMN 78
includes a pointer 71 to GFTSQL 70. GFTSQL 70

contains the SQL statement.

One element of the SQL query stored in the GFTSQL

70 table of the DXEGFT tables 106 is the entity

provided as a parameter to the query. For example,

Table 24 of Shaw depicts an example of a query, in

both SQL and QBE formats. Shaw, 26:59-68. In this

example, the query is seeking the employees who

work in the San Jose Department, and who meet a

salary condition of > $20,000. Id. The provided entity

is “DEPT”, and the desired entity is “EMP”. Id.

The QBE example table shown in Table 24 is another

exampleof an inquiry table as claimed. This inquiry

table contains the same DEPT provided entity
information, which is retrieved from the table in order

to create the SQL statement SELECT DNO FROM

DEPT shown in Table 24. Shaw, 15:38-42, 26:59—68.

This limitation requires the presence of two entity type

records, and thus two entity instance tables. Otherwise

it is the same as the “retrieving a desired entity type
record” element of Claim 1.

7. The method of claim 1, further

comprising retrieving a second

desired entity type record

containing a second desired entity

type from said entity definition

table, wherein said second desired

entity type record specifies a second

desired entity instance table
associated with said second desired

entity type.

FST’s Response advances a new construction for this

claim, the scope of which appears to be inconsistent

with the claim language. Under FST’s new

construction, which relates to “multi-tailed” relation

types, this limitation is still anticipated by Teorey.

FST contends that this claim “describe[s] the feature

whereby a single relation instance record may involve

more than two entity instances.” Response at 27.
Furthermore, FST recites that these instances “allow[]

96

1 02

103

Teore , Kum ati, and Zloof/Shaw References

for more complex relation types than simple binary

relationships.” Id.

 Teorey clearly teaches relation types which create
relation instance tables that involve more than two

entity instances. Such relationships are disclosed as

“ternary” or more generally “n-ary” relationships. For

example, see the ternary relationships of FIG. 10.

Teorey at 212-13, FIG. 10. When executing queries

on these relationships, the entity type records of, for

example, the EMPLOYEE, PROJECT and SKILL

entities would be retrieved, for the ternary relationship

SKILL-USED of FIG. 10(b). Teorey at 212; see also
id at216,Fi. 13. '

This limitation requires the presence of three entity

type records, and thus three entity instance tables.

Otherwise it is the same as the “retrieving a desired

entity type recor ” element of Claim 1.

8. The method of claim 7, further

comprising retrieving a third

desired entity type record

containing a third desired entity

type from said entity definition
table, wherein said third desired

entity type record specifies a third

desired entity instance table

associated with said third desired

entity type. .

FST’s Response advances a new construction for this

claim, the scope of which appears to be inconsistent

with the claim language. Under FST’s new

construction, which relates to “multi-tailed” relation

types, this limitation is still anticipated by Teorey.

FST contends that this claim “describe[s] the feature

whereby a single relation instance record may involve

more than two entity instances.” Response at 27. .

Furthermore, FST recites that these instances “allow[]

for more complex relation types than simple binary

relationships.” Id.

 Teorey clearly teaches relation types which create
relation instance tables that involve more than two

entity instances. Such relationships are disclosed as

“ternary” or more generally “n-ary” relationships. For

example, see the ternary relationships of FIG. 10.
Teore at 212-13, FIG. 10.

97

1 03

104

Teore , Kum ati, and Zloof/Shaw References

9. (Once amended) The method of

claim 1, further comprising

retrieving a second specific relation

instance record defining a relation

of a second provided relation type

between said provided entity and

said desired entity from a second
relation instance table

corresponding to said second

provided relation type record.

7 SKILL-USED

Fig. 10 depicting a ternary relationship.

When executing queries on these relationships, the

entity type records of, for example, the EMPLOYEE,

PROJECT and SKILL entities would be retrieved, for

the ternary relationship SKILL-USED of FIG. 10(b);

Teore at 212; see also id at 216, Fi_. 13.

This claim as now amended requires retrieval of a

second specific relation instance record of a second

relation type, between the same two entities.

Otherwise this claim is the same as the “retrieving a

relation instance record defining a relation of said

provided relation type” element of claim 1.

Teorey expressly permits the existence of two different

relationships, of two different relation types, between

the same two entities. Teorey at 205 (Step 1.3(1))

(“Note that two or more relationships are allowed
between the same two entities as long as the two

relationships have different meanings”). Thus a query

could provide two relation types between the two

entities, and both relation instance records defining the

two relations between the two entity instance records
would be retrieved.

10. A relational database processing
s stem comrisin_:

an entity definition table containing

a first entity type record defining a

first entity type;

Teorey teaches that entity types (i.e. entities) can be

defined for a relational database. Teorey at-204 (Sec.

2.1, step 1.1) For example, FIG. 13 and Table 1 depict

a variety of entity types, including SKILL,
DEPARTMENT, DIVISION, PROJECT,

EMPLOYEE and others. Teorey at 216, FIG. 13,
Table 1.

98

1 04

105

 Teore , Kum ati, and Zloof/Shaw References

SKILL DEPARTHENT DIVISION

SKILL-USED

PROJECT EML-DYEE
ASSIGNED‘TO

LOCATION

EI‘IPfl-ANAGER EI‘IP.E-NGINEER an?TECHNICIAN EI‘IPS-EIZRETARV
BELONGS-TO

PRF-ASSOC PC

Figure 13. Company personnel and project database candidate relations.

 Teorey further teaches that its database system

includes a data dictionary. Teorey at 217. (“If the

BER constructs do not include nonkey attributes, the

data requirements specification (or data dictionary)

must be consulted”). Teorey further teaches that each

of the defined entity types can be transformed to a

“relation.” Teorey at 216, Table 1. The definitions of

these entity types transformed into relations are stored

in the data dictionary, because that is the location

where Teorey teaches that attributes of candidate

relations are stored and can be retrieved from. Teorey

at 217 (Step 3.2).

 While Teorey clearly teaches that its relational '

database has and uses a data dictionary, Teorey does

not describe the detailed layout of the data dictionary.

However, the ‘661 patent to Kumpati does provide a

detailed layout of a data dictionary for a relational
database. Kumati, 8:30-9:27, FIG. 6.

99

1 05

106

 Teore , Kum . ati, and Zloof/Shaw References

BUILDINGBUILD NG-ROOHS
ROOMS

BUILDING-EXITS
‘ x ISI
EXIIS-ROOMS

 DEPENDENCY ASSOCI-

ERSET-ATTRIBUTE“

ATTRIBUIES

Kumpati further provides that “[i]t is well known in

the art to provide a data dictionary in an database

management system.” Kumpati, 5:51-52. The data

dictionary contains the entity set (i.e. entity definition

table) ERSET, which is the set of all entity sets (i.e.

entity types) contained in the database. Kumpati,

'8235-39. The table ERSET includes, for example,

records that define the entity types Building, Rooms
and Exits. Id.

The entity instance tables shown in Teorey are

examples of tables which contain entity data. Teorey,

FIG. 13 (SKILL, DEPARTMENT, DIVISION,

PROJECT, EMPLOYEE and other tables). These ,

entity instance tables are each associated with a

corresponding entity type, as shown in FIG. 13 and

Table 1. Teorey,~FIG. 13, Table 1. Further entity
instance tables are shown in FIG. 7 of Kumpati, for
example the Building Table 701, the Exits Table 705,

and the Rooms Table 703. Kumpati, 9:29-42, FIG. 7.

These entity instance tables are associated with the

corresponding entity types “Building”, “Rooms” and
“Exits”.

In Teorey, each entity instance table contains a

plurality of entity instance records. The entities in

Teorey are transformed into entity relations. Teorey at

208, Sec. 3.1(1). These entity relations are similar in

layout tothe relationship relations shown in FIGS. 4

and 10, except they contain entity instance records
rather than relationshi. instance records. Teore at

a first entity instance table

associated with said first entity
type;

a plurality of entity instance records

stored in said first entity instance

table;

100

1 06

107

203, FIG. 4; 212-13, FIG. 10. Thus each entity

relation (i.e. entity instance table) in Teorey contains a

plurality of entity instance records. The entity instance
tables in Kumpati, for example the Building Table

701, the Exits Table 705, and the Rooms Table 703,

also each contain entity instance records which

correspond to the instances of the entity types

“Building”, “Rooms” and “Exits”. An example of the

records contained within a typical file representing an
instance table is shown in FIG. 2. Kumati, 4:44-56.

Teorey also teaches that relation types (i.e.

relationships) can be defined for a relational database.

Teorey at 205 (Sec. 2.1, step 1.3). For example, FIG.

.13 and Table 1 depict several relation types, including

SKILL-USED, ASSIGNED-TO AND BELONGS- -

TO. Teorey at 216, FIG. 13, Table 1'. Teorey further

teaches that each of the defined relation types can be

transformed into a “relation” Teorey at 216, Table 1.

The definitions of these relation types transformed into

relations are stored in the data dictionary because that

is the location where Teorey teaches that attributes of
candidate relations are stored and can be retrieved

from. Teorey at 217 (Step 3.2).

a relation definition table

containing a first relation type

record defining a provided relation

type;

Kumpati further teaches that the definitions of these

tables (i.e. the definitions of the relation types) are

stored in the data dictionary. Kumpati, 8:35-59. The

data dictionary contains the entity set (i.e. relatiOn

definition table) ERSET, which is the set of all

relationship sets (i.e. relation types) contained in the

database. Id. The table ERSET includes, for example,

records that define the relation types Building-Rooms
and Exits-Rooms. Id.

Teorey teaches that relationship relations are

represented as tables. Teorey at 203, FIG. 4; 212-13,

FIG. 10; 216, FIG. 13. Kumpati teaches that each of

the sets of related items, in this case the relationship

relations (i.e. relation types) defined in Teorey, are

stored in two-dimensional tables in the data files._

Kumpati, 4:44-66. For example, the relation instance

table Building-Rooms 702 stores the set of all

relationships between buildings and rooms. Kumpati,
9:43-44, FIG. 7. This relation instance table is

associated with the relationship set (i.e. relation type)
“Buildin s-Rooms” that is stored in the relation

a first relation instance table

associated with said provided

relation type; and

101

107

108

Teore , Kum ati, and Zloof/Shaw References

_definition table ERSET. Kumati, 8:35-39.
a first relation instance record of In Teorey, each relation instance table contains a

said provided relation type, said plurality of relation instance records. The

first relation instance record relating relationships in Teorey are transformed into

a desired entity in one of said entity relationship relations. Teorey at 208, Sec. 3.1(3).

instance records to a provided Examples of these relationship relations are shown in

entity. FIGS. 4 and 10, clearly showing that each relationship

relation includes a plurality of rows, each of which is a

relation instance record. Teorey at 203, FIG. 4; 212-
13, FIG. 10. Each relation instance record relates an

entity instance in one entity table to an entity instance

in a second entity table. For example, the '

SKILL_USED relationship instance table relates
entities in the EMPLOYEE table to entities in the

SKILL table. Teorey at 203, FIG. 4; 216, FIG. 13,
Table 1. ,

In Kumpati, the relation instance records also contain
information that relates the two entities in the

relationship defined by the relation instance record.

For example, attributes of the Buildings-Rooms

relationship include information that identifies what

rooms are located in what buildings. Kumpati, 9:43-
46.

Teorey teaches that the entity instance records have

key fields, which uniquely identify the entity

instances. Teorey at 198 (“The major interattribute

dependencies are between the entity keys (unique

identifiers) of different entities that are captured in the

ER modeling process.) Kumpati also teaches that the

entity instance records have key fields that are used to

identify the entities stored in the records of the entity
instance tables. Kumati, 4:51-56, FIG. 2.’

Teorey teaches—that each relation instance record

contains a record identifier that corresponds to the

desired entity instance record. For example, in the

relation instance table of FIG. 4, the SKILL-USED

relations instances each contain a SKILL-NO record

identifier that identifies the desired SKILL entity

instance record. Teorey at 203, FIG. 4; 216, FIG. 13.
Each relation instance record also contains a desired

entity type, reflected in the column header, for

example “SKILL” in the column header SKILL-NO in
FIG. 4.

11. The relational database

processing system of claim 10,

wherein each of said entity instance

records is identified by a record
identifier.

12. The relational database

processing system of claim 10,
wherein said first relation instance

record contains a desired record

identifier and a desired entity type

corresponding to a desired entity

instance record containing said

desired entity.

102

1 08

109

 Teore , Kum i ati, and Zloof/Shaw References

Even under FST’s new argument, advance in their

Response, Teorey anticipates this claim. Response,

22-23. Teorey further teaches that a key (i.e. a record

identifier) can be a composite identifier, that is, an

identifier composed of two or more attributes. Teorey

at 204 (Step l.1(5)). These two attributes could

include the entity type and a record identifier, and thus

anticipate this claim. Teorey teaches two alternate

treatments for composite identifiers, one of which is to

eliminate them where possible, but the second
treatment is to retain the identifier where it is

reasonably natural. Id. It would be reasonably natural

to retain a composite identifier where it permitted the

overloading of the record identifier column to

designate two or more different target tables, as

suggested by FST. '

Claim Lan_ua_e '

 TherefOre, a relationship‘relation as taught in Teorey,
which is stored as a relation instance table in Kumpati,

would include two foreign keys to the two entity

relations that it referenced, and each of those two

foreign keys would be two-part keys, as disCussed in
FST’s Res

Teorey teaches that relationship relations are stored in

tables. Teorey at 203, FIG. 4', 216, FIG. 13. Kumpati

further teaches that the definitions of these tables (i.e.

the relation type records defining the relation types)

are stored in the data dictionary. Kumpati, 5:58—63.

These definitions include information (i.e. a table

identifier) that is used to ascertain the physical

location in the database of the requested data.

Kumati, 3:66-4:2.

Teorey teaches that relationships (relation types) are

transformed into relationship relations. Teorey at 208,

Sec. 3.1(3). Each of these relationships bears a name,

for example SKILL_USED is the name of a

relationship between the EMPLOYEE entity type and

the SKILL entity type. Teorey at 203, FIG. 4; 216,

FIG. 13, Table 1. Kumpati teaches that each of the

sets of related items, in this case the relationship

relations (i.e. relation types) defined in Teorey, are
stored in two—dimensional tables in the data files.

Kumpati, 4:44-66. For example, the relation instance

table Building-Rooms 702 stores the set of all

relatiOnshi OS between buildin s and rooms. Kumati,

13. The relational database

processing system of claim 10,

wherein said first relation type

record comprises a table identifier

identifying said first'relation
instance table.

14. The relational database

processing system of claim 10,

further comprising an inquiry table

containing an inquiry record, ~

wherein said inquiry record

specifies said provided relation type

and said provided entity. V

103

1 09

110

i
-

Claim Lan - ua ' e ‘

15. The relational database

u_rocessin s stem of claim 10

Teore Kum - atl, and Zloof/Shaw References

9:43-44, FIG. 7. Similarly, the SKILL_USED relation

would also be stored as a table in the Kumpati
database.

As noted above, in claim 5, the ‘326 patent to Shaw

provides that an SQL query can be stored in an inquiry

table, for execution by a query processor on the

database. The SQL query is translated from a QBE

query input by a user, and the translated SQL'query is

stored in GFTSQL 70 (inquiry record), which is

pointed to by GFTTABLE (inquiry table). Shaw, '

10:59-68, 1111-12.

Where the SQL query operates on a relationship

relation as described in Teorey, the SQL query will

include an SQL FROM statement, which identifies the -

name of relationship relation being queried. Shaw,

15:28-31. This name is the relation type, since the

relationship relation is named with it’s type, e. g. the

SKILL_USED relationship type is also the name of

the relationship relation containing the relation

instances of that type. Teorey, 203 FIG. 4; 212-13

FIG. 10', 216, FIG. 13, Table 1. Thus for example,

SKILL_USED is the name of a relationship between a

provided EMPLOYEE entity and a desired SKILL

entity.

One element of the SQL query stored in the GFI‘SQL

70 table is the entity provided as a parameter to the

query. For example, Table 24 of Shaw depicts an

example of a query, in both SQL and QBE formats.

Shaw, 26:59-68. In this example, the query is seeking

the employees who work in the San Jose Department,

and who meet a salary condition of > $20,000. Id.

The provided entity is “DEPT”, and the desired entity
is “EMP”. Id.

The QBE example table shown in Table 24 is another

example of an-inquiry table as claimed. This inquiry

table contains the same DEPT provided entity
information, which is retrieved from the table in order

to create the SQL statement SELECT DNO FROM

DEPT shown in Table 24. Shaw, 15:38-42, 26:59-68.

104

110

111

Te’ore , Kum ati, and Zloof/Shaw References

——
a second entity instance table Teorey teaches two entity instance tables, for example

associated with a second entity the SKILL and DEPARTMENT entity instance tables

type; and of FIG. 13. Teorey at 216, FIG. 13, Table 1. Kumpati

also teaches two entity instance tables, for example the

Building and Rooms tables of FIG. 7. Kumpati, 9:29-

42, FIG. 7.

wherein said entity definition table Teorey teaches that all entities, including both SKILL

contains a second entity type record and DEPARTMENT entities, are transformed into

containing said second entity type relations that are stored in the data dictionary. Teorey

and associating said second entity at 216, Table 1. Kumpati teaches that the data

- instance table with said second dictionary contains a set of entity definitions.

entity type. Kumpati, 8:35-39. A set, by its very nature, can

contain two (or more) entity type records, for example

the entity types for Building and Rooms. Kumpati,
8:35-39.

16. The relational database

processing system of claim 15

further com ' ' , :

a third entity instance table Teorey teaches three entity instance tables, for .

associated with a third entity type; example the SKILL, DEPARTMENT and DIVISION

and ' entity tables of FIG. 13. Teorey at 216, FIG. 13, Table
1.

SKILL DEPARTHENT DIVISION

SKILL ‘USED
w-«n mum MM“

PROJECT EflFLOYEE

ASSIGNED'TO

LOCATION

EHPNANAGER EHPINGIHEER ENRTECHNICIAN EHRSECRETARV

BEL ONES-TO

PEP-ASSOC PC

Figure 13. Company personnel and project database candidate relation;

Kumati also teaches three entit instance tables, for

105

111 _

112

Teore , Kum - ati, and Zloof/Shaw References

example the Building, Rooms and Exits tables of FIG.

7. Kumpati, 9:29-42, FIG. 7.

wherein said entity definition table Teorey teaches that all entities, including SKILL,

contains a third entity type record DEPARTMENT and DIVISION entities, are
containing said third entity type and transformed into relations that are stored in the data

associating said third entity instance dictionary. Teorey at 216, Table 1. H Kumpati

table with said third entity type. teaches that the data dictionary contains a set of entity

definitions. Kumpati, 8235-39. A set, by its very

nature, can contain two (or more) entity type records,

' for example the entity types for Building, Rooms and

Exits. Kumpati, 8:35-39.

17. The relational database

processing system of claim '10
further comrisin: i
a second relation instance table

assooiated with a second relation

type; and

Teorey teaches two relation instance tables, for

example the SKILL-USED and ASSIGNED-TO

relation instance tables of FIG. 13. Teorey at 216,

FIG. 13, Table 1. Kumpati also teaches two relation

instance tables, for example the Building-Rooms and

Exit-Rooms tables of FIG. 7. Kumpati, 9:29-42, FIG.
7.

wherein said relation definition Teorey teaches that all relationships, including both .

table contains a second relation type SKILL-USED and ASSIGNED-TO relationships, are
record containing said second transformed into relations that are stored in the data

relation type and associating said dictionary. Teorey at 216, Table 1. Kumpati teaches
second relation instance table with that the data dictionary contains a set of relation

said second relation type. definitions. Kumpati, 8:35-39. A set, by its very

' nature, can contain two (or more) relation type

records, for example the relation types for Building-

Rooms and Exits-Rooms. Kumpati, 8:35-39.

Thus the relation definition table can contain two (or

more) relation definition records, each of which are

associated to a different relation instance table (e. g.

Building-Rooms and Exits-Rooms relation instance

tables). '

18. The relational database

processing system of claim 17

further 'corn - risin:

a third relation instance table Teorey teaches three relation instance tables, for

associated with a third relation type; example the SKILL-USED, ASSIGNED-TO and
and BELONGS-TO relation instance tables of FIG. 13.

106

112

113

.Teorey at 216, FIG. 13, Table l. Kumpati also teaches

three relation instance tables, for example the

Building-Rooms, Exit-Rooms and Buildings—Exits

tables of FIG. 7. Kumati, 9:29-42, FIG. 7.

Teorey teaches that all relationships, including SKILL-

USED, ASSIGNED-TO and BELONGS-TO

relationships, are transformed into relations that are

stored in the data dietionary. Teorey at 216, Table 1.

Kumpati teaches that the data dictionary contains a set

of relation definitions. Kumpati, 8:35—39. A set, by its

very nature, can contain three (or more) relation type

records, for example the relation types for Building-

Rooms, Exits-Rooms and Buildings-Exits. Kumpati,
8:35-39.

 wherein said relation definition
table contains a third relation type

record containing said third relation

type and associating said third
relation instance table with said

third relation type.

Thus the relation definition table can contain three (or

more) relation definition records, each of which are

associated to a different relation instance table (e.g.

Building-Rooms, Exits-Rooms and Buildings-Exits

relation instance tables).

C. Dolkl Teorey, Zloof and/or Shaw

Dolk and Teorey together teach all limitations of claims 1-4, 7-13, 15-18 of the

‘259 patent as discussed in the chart below. Dolk, Teorey, and Zloof/Shaw together

teach all limitations of claims 5-6 and 14 of the ‘259 patent, as discussed in the chart

below:

Dolk, Teore , and Zloof/Shaw References

1. A method for retrieving a desired The primary aims of relational database design
entity of a desired entity type from revolve around organizing and storing data so that the
a relational database, wherein said information within the database may later be accessed by

desired entity is related to a I the database user. According to an article by Peter Chen,
provided entity by a provided “to design a database is to decide how to organize data into

relation type associating an entity specific forms (record types, tables) and how to access

type of said provided entity with them.” Further, another related problem in database design

said desired entity type, said is to make the “output of the database design process-the

method comprising: user schema (a description of the user view of the data)”

more like the way humans represent the real world. Peter
Pin-Shan Chen, The entit -relationshi model — A basis for

'5 The claim language recited is inclusive of the amendments patentee included in its Response.

107

113

114

Dolk, Teore , and Zloof/Shaw References '

the ente rise View of data 77 (1977).

 In addition an inherent component of databases is that they

allow the retrieval of items, including relation type records.

Front end user interfaces that enable users to easily retrieve

the information in the underlying databases have been well

known in the arts from at least from the mid 1980’s, if not

sooner. One type of front-end user interface is created

using the QBE language. According to The Database Step-

by-Step textbook, “The [QBE] user interface, designed for

technical and nontechnical people alike, is a two-

dimensional, on—line, video display terminal oriented query

facility.” To issue a query, the user gives an example of

the required information, which amounts to specifying a

variable name in the column ofthe desired information.”

Mark L. Gillenson, Database Step-by-Step 141-42 (2d Ed.
1990).

 A critical component of databases is that they allow the

retrieval of items, including relation type records. Front
end user interfaces that enable users to access the

information in the underlying databases are inherent to

database management systems. One type of front-end user

interface is created using the QBE language. According to

The Database Step-by-Step textbook, “The [QBE] user

interface, designed for technical and nontechnical people

alike, is a two-dimensional, on-line, video display terminal
oriented query facility.” To issue a query, the user gives

an example of the required information, which amounts to

specifying a variable name in the column of the desired

information.” Mark L. Gillenson, Database Step-by-Step

141-42 (2d Ed. 1990).

 “A DBMS-dependent IRDS uses an existing DBMS to

implement the description, manipulation, and control of its

metadata, and therefore can avail itself of the underlying

query processor, security, backup/recovery, and other
features.” Dolk at 49.

Dolk teaches a data definition table in the form of a

information resource definition system (IRDS) that
includes a relation definition table that contains relation

t -e records which define relationshio t es. A user would

retrieving a specific relation type

record defining said provided

relation type from a relation

definition table;

108

114

115

Dolk, Teore , and Zloof/Shaw References

supply such a relation type in making a search (query) on
the database. ‘

Dolk teaches that relation types (i.e. relationships) can be

defined for a relational database. Dolk at 51, Fig. 4. Fig. 4

depicts a basic relational representation of the IRDS

Entity-Relationship Model. Specifically, one standard

template for defining a relationship would be as follows:

REmHIP(rtzEe,e1name, e I type ,eZname, e2: ‘-
access-method , frequency ,xe1_pos)

Fig. 4. According to Dolk, relationships have certain core

attributes, as depicted below in Fig. 5, below. They
associate two entities with names elname and e2name.

Beam 4

All relationships have the same attributes and ways;

R‘Eb(e1name,eItzpemznameyenyge), I '
where etname , e2name amine entity instances

e itype , e2type are the entity-typesdfwhich
e I name . eZname are instances, respectively

am. is any at the.vetatimships conmuns , ‘
PROCESSES , RUNS , 3259.303, -‘ CALLS ,1‘
6023.10, DERIVEIILFROH , ALIAS , and wat

See Figures

FIGURE 5. Relational IRDS (BIRDS)

(in pertinent part).

All relationships are binary, relate entities to each other,

and are named self—descriptively according to the entity-

types that participate in them. Dolk at 50, 51. Under the

model proffered by Dolk, different relationship types

connect various entity types. For example, Fig. 2 listing

various entity types and relationship types; the relationship

types may relate two entities. Fig. 1 provides an example

of a relationship Empl — Record for Kirk — CONTAINS —

(555-23-6666) that falls within the Relationship type
RECORD-CONTAINS—ELEMENT.

The definitions of these relationshi t es are stored in the

109

115

116

V Dolk, Teore , and Zloof/Shaw References
IRD data layer of a relational information resource

dictionary system (RIRDS). Dolk, Fig. 1, p. 50. These

definition of these relation types must have the following

basic relational representation:

REILSHIPHtxge , e1name,e I urge ,eZname , ethge ,
access «method , frequency , re1_pos)

Dolk, fig. 4 at p. 53.

The IRDS is itself of an implementation of a ORACLE

database and by using the SQL CREATE TABLE and

CREATE VIEW commands. Dolk at pp. 49, 55 (“The

RIRDS is implemented very straightforwardly in ORACLE

by creating the relations and views given in Figures 4, 5,

and 6 using the SQL. CREATE TABLE and CREATE

VIEW commands”) Therefore, the data dictionary

component of the IRDS itself includes tables that contain

relationship table definitions. Fig. 7 depicts how RIRDS

Tables and Views may be created in ORACLE.
RELQHKPtttXEm‘1nane, e H.233 ,ezname,e2tXE ,

access «ruched , frequency , re1_pos)

 Further, in extending the RIRDS, relationship tuples, or

definition rows, may be added to the data dictionary by the
urocess mentioned . 56-57 of Dolk.

Dolk teaches that relation instance records define relations >

between entities, and that these records are stored in

relation instance tables, each of which corresponds to a

particular relation type.

 retrieving a specific relation

instance record defining a relation

of said provided relation type

between said provided entity and

said desired entity from a relation

instance table corresponding to said

specific relation type record;-

Dolk teaches that relationship relations store information

that relates two entities to each other and are represented as
tables. “All relationships are binary, and entities may be
related to themselves.” Dolk at 50. The IRDS network

contains entities, or nodes, which are connected to each

other by relationships, or arcs. Id. As the underlying .

database upon which the freestanding IRDS is based may

be programmed in Oracle, the relationship instances may

be stored in a relation instanCe table, corresponding to a

specific relationship type record. Eii p. 60. Emp-

Record for Kirk- CONTAINS (555—23-6666) is one

relationship instance record the relationship Emp-Record-

CONTAINS-Soc—Sec-No between Soc-Sec-No and Empl-

Rec entities. Fig. 1 (depicting IRDS architecture).

Relationshi - instance records in the underl in ; Oracle

110

116

117

Dolk, Teore , and Zloof/Shaw References

database may be retrieved using SQL queries (Dolk at 58,

60), regardless of whether the RIRDS system is integrated

with the host RDBMS. [see also textbooks on QBE and

Chen articles] -

Dolk further teaches that the RIRDS may contain a

directory component “describing where information

resources [i.e. relationship tables] are-located and how they

can be accessed.” Dolk at 49. Put another way, the

directory is analogous to a physical description of where

the relationship instance table is located in computer

memory. Dolk at 49. The “directory description would

contain data on the machine, operating system, and the file
structure under which the file is stored.” Dolk at 49.

retrieving a desired entity type Dolk teaches that entity type information is stored in entity

record containing said desired records in entity definition tables, and that this data can be

entity type from an entity definition retrieved in order to operate on the underlying database.

table, wherein said desired entity The entity type records identify entity instance tables,

type record specifies a desired including the entity instance tables containing entities that
entity instance table associated with a user would desire to retrieve. V
said desired entity type; and ‘

Dolk teaches that entity types can be defined for a

relational database. Dolk at 50, Fig. 4. Fig. 4 depicts a

basic relational representation of the IRDS Entity-

Relationship Model. Specifically, one standard template

for defining an entity would be as follows:

ENTITY(ename , etxpe ,dname ,added — by ,
da te~ added ,mod - by , last -mod ,nmocts ,

dur - value ,dur‘ type ,comments ,descr

secur ity ,.1ang , lines «code , nrecs ,

rec ‘cae idata -class ,doc ~cat)

Fig. 4. ename would represent the name of the entity;

mpg would represent the entity type. Fig. 2 lists various _

entity types such as SYSTEM, PROGRAM, MODULE,

USER, FILE, RECORD, ELEMENT, etc.

The definitions of these relationship types are stored in the

[RD data layer of a relational information resource

dictionary system (RIRDS). Dolk, Fig. 1,.p. 50.

The IRDS is itself of an implementation of a ORACLE

database and by using the SQL CREATE TABLE and

CREATE VIEW commands. Dolk at 49, 55. Therefore,

the d’atadictionar com onent of the IRDS itself includes

111

117

118

Dolk, Teore , and Zloof/Shaw References

tables that contain entity table definitions. Fig. 7 depicts

'how RIRDS Tables and Views may be created in '
ORACLE.

Further, in extending the RIRDS, entity tuples, or

definition rows, may be added to the data dictionary by the

process mentioned on pp. 56-57 of Dolk.

 Dolk further teaches that the RIRDS may contain a

directory component “describing where information

resources [i.e. entity instance tables] are located and how

they can be accessed.” Dolk at 49. Put another way, the

directory is analogous to a physical description of where

the entity instance table is located in computer memory.

Dolk at 49. The “directory description would contain data

on the machine, operating system, and the file structure
under which the file is stored.” Dolk at 49.

Dolk teaches that desired entities, just like all entities, are

stored in entity instance tables, and can be retrieved
therefrom.

retrieving said desired entity from

said desired entity instance table.

The IRDS network contains entities of various entity types.

P. 50. As the underlying database upon which the

freestanding IRDS is based may be programmed in Oracle,

the entity instances may be stored in entity instance tables,

corresponding to a specific. entity type record. See 1’. e. p.

60. ' Fig. 1 provides an example of a entity record 555-23-

6666 (Employee record for Kirk), in the form of a social

security number. This entity record may be stored in and

retrieved from a Soc-Sec-No entity instance table. Entity

instance records in the underlying Oracle database may be

retrieved using SQL queries at pp. 58, 60 of Dolk,

regardless of whether the RIRDS system is integrated with
the host RDBMS. .

Dolk teaches that each relation instance record contains a

record identifier that corresponds to the desired relation
instance record. V

2. The method of claim 1, wherein

' said relation instance record

specifies said desired entity by said

desired entity type and a desired
record identifier.

Specifically, Dolk teaches that a record identifier for an

entity may be made of composite keys. Fig. 4 depicts a

generic representation of a relationship, where m,

elname, eltype, e2name, and e2type are keys to a given

relationship of relationship type rth_e, which associates

entities elname and eZname of entity types eltype and

e2type.

112

118

119

Dolk, Teore , and Zloof/Shaw References

RELSHIN rtxge,elname , e 1 type ,eZname, ethge ,
access ~me chad . frequency ,,re.1_pos)

Fi. 4 of Dolk.

Dolk teaches that each entity instance record contains a

record identifier that corresponds to the desired entity
instance record.

3. The method of claim 2, wherein

said desired entity is identified by
said desired record identifier in said

desired entity instance table.

Specifically, Dolk teaches that a record identifier for an

entity may be made of composite keys. Fig. 4 depicts a

generic representation of an entity, where ename and mpg

are keys to a given entity by entity name ename and entity

type etype.

 EflTrTrc ename , etxpe ,dname ,added - by ,
date-added,mod~by,1ast-mod,nmods,

duz ~va1ue ,dur . type ,comments .descr ,

secur ity , lanq , lines .cocie , nrecs,

.recocatidata-class ,doc-cae)

Fig. 4 of Dolk.

4. The method of claim 1, wherein

said retrieving a specific relation
instance record com - rises:

retrieving a table identifier for said
relation instance table from said

specific relation type record; and

Dolk teaches that each relationship relation (i.e. relation

type record) includes the name of the relationship. Fig. 1.
Relationships are named self-descriptively according to the

entity-types that participate in them. Therefore the

relationship that associates Empl-Record and Soc-Sec-No

would be named Empl-Record-CONTAINS-Soc-Sec—No.
Dolk at 50,51.

Under Dolk, the table identified bya specific tale identifier

is the table which contains the specific relation instance

records that are based on the specific relation type record

and entity provided.

retrieving said specific relation
instance record from said relation

- instance table based on said specific

relation type record and said

provided entity.

Each relation instance table contains a plurality of relation

instance records. The relatiOnships in Dolk are transformed

into relationship relations. As the organizational data

underneath is Stored in an Oracle database, p. 50 of Dolk,

the relationship relations are stored in tables, containing a

plurality of rows, each of which is a relation instance
record. Dolk at 59-60. Each relation instance record

relates an entity instance in one entity table to an entity

instance in a second entity instance table.

5. The method of claim 1, further The use of in-uir tables such as ones based on the QBE

113

119

120

Dolk, Teore , and Zloof/Shaw References

comprising retrieving data language was an inherent part of managing E-R databases.

specifying said provided relation A QBE table was one form of a graphical front-end

type from an inquiry table. interface that allowed a user to access the underlying

database containing entities and relations. According to

The Database Step-by-Step textbook, “The [QBE] user .
interface, designed for technical and nontechnical people

alike, is a two-dimensional, on-line, video display terminal

oriented query facility.” Mark L. Gillenson, Database Step-

by-Step 141-42 (2d Ed. 1990). While a QBE interface is

pictorial in nature, a SQL’S interface is more linear and '

textual. Id. “The user begins by specifying which table is

needed for a particular query. Once a table(s) is chosen,

the system displays an outline of that table, showing the

table name and the names of its fields. To issue a query,

the user gives an example of the required information,

which amounts to specifying a variable name in the
column of the desired information.” Id.

Zloof teaches Query-by-Examplei(QBE). When a user

performs an operation , e.g., query, update, define, or

' control, against the data base, the user fills in an example

of a solution to that operation in skeleton tables that can be
associated with actual tables in the database. For

illustration, suppose we want all green items sold in the toy

department. ‘

Fig. 13 of Zloof above shows the two skeleton tables:

“TYPE” and “SALES”. These two tables are linked by the

word “NUT”. Thus Figure 13 shows an inquiry table

consisting of two skeleton tables linked together like the

level 1 and 2 rows of the INQ.DEF table 740 in Figure 7—1
of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a linear

query for accessing the contents of a relational database

from a graphic query input at a user terminal, including

relation records. Shaw takes the QBE skeleton tables , for

example, from Zloof, and generates an SQL query, which

is then used to retrieve the inquiry results from the
relational database.

 Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GFTTABLE 72- having one entry

for each skeleton or example table in a query 2. Shaw,
1121—2]. Thus GFI‘TABLE 72 is the In-uir table 740 in

114

120

121

Dolk, Teore , and Zloof/Shaw References

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column of an example table in a query Q. The content

‘89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24.

. DXEBFT 106
{mmy7o gumgnm:
1mm. l(-O- 71 72 IBFTTABLE l(-—+
ImI 9/ ,' unsung-l- ;

73

; +_.£ -—- l BFTPTCOL I
z 7 19:71:01.0? :
I 73 *“~“‘*""
: «ml—m..-“— mmmm I ‘

I nan-acme: I I I 7é ' I GFTROuCT n
IGFTCOLM - <"‘ I —-0' I :——..-—..__-gI
: a=nunuuun | 1 it. IIGFTCNHPT IN 9?
1T 80 p.—————a); unnuaz:
x 33 . +-—--'—---> : 57mm

I §——-———) =======m z

I
l

781
I ""_I"""“"'"

xll

. a» xaFTPm .arm-n: ea 1 +-—-—-—-—:aFm-'Los I
Isrrcnmn 1’ x ; -._........;

-_—~13L”-
tum-=3 9o : l Bb/IBFTBLEIX
:9”??ch ‘14-. : : : x—-—...... :
sermon.» : : I 87
=- ~———: 92:

:marm _ : : QQA-m‘iu:.--—- > : enema»

_...

_-£?--1 sun-anus: :
*“"'"-'- 3 BFTPTRCN
I 98

too :Bchuu g......,,

t 22

“mus-a. I
) l GFTCNTNT

Where the SQL query operates on a relationship relation as

described in Teorey, the SQL query Will include an SQL
FROM statement which identifies the name of relationship

relation being queried. Shaw, 15:28-31. This name is the

relation type, since the relationship relation is named with

it’s type, e.g. the SKILL_USED relationship type is also

the name of the relationship relation containing the relation

instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.

10; 216, FIG. 13, Table 1. . '

The query translator of Shaw receives as an input a QBE

query, which is a “graphic language query expressed as

one or more elements . . . appearing in rows and columns

of an example table including one or more source and

target tables.” Shaw, 2:38-42. Where the source table

included in the example table is a relationship relation, as

discussed in Teorey, this example table contains the name

of the source table, which is “data specifying said provided
relationt e” as claimed. When the examle '

115

121

122

, Dolk, Teore , and Zloof/Shaw References .

translated as part of the query processing, this relation type

data is retrieved in order to form part of the SQL query
submitted to the DBMS. Shaw, 15:29-31.

The use of inquiry tables such as ones based on the QBE

language was an inherent part of managing E-R databases.

A QBE table was one form of a graphical front-end

interface that allowed a user to access the underlying _

database containing entities and relations. According to

The Database Stepry-Step textbook, “The [QBE] user
interface, designed for technical and nontechnical people

alike, is a two—dimensional, on-line, video display terminal

oriented query facility.” Mark L. Gillenson, Database Step-

by-Step 141-42 (2d Ed. 1990). While a QBE interface is,
pictorial in nature, a SQL’ s interface is more linear and

textual. Id. “The user begins by specifying which table is

needed for a particular query. Once a table(s) is chosen,

the system displays an outline of that table, showing the .

table name and the names of its fields. To issue a' query,

the user gives an example of the required information,

which amounts to specifying a variable name in the
column of the desired information.” Id.

6. The method of claim 1, further

comprising retrieving data

specifying said provided entity

from an inquiry table.

Zloof teaches Query-by-Example (QBE). When a user

performs an operation , e.g., query, update, define, or

control, against the data base, the user fills in an example
of a solution to that operation in skeleton tables that can be
associated with actual tables in the database. For

illustration, suppose we want all green items sold in the toy

department. -

 Fig. 13 of Zloof above shows the two skeleton tables:

“TYPE” and “SALES”. These two tables are linked by the

word “NUT”. Thus Figure 13 shows an inquiry table

consisting of two skeleton tables linked together like the

. level 1 and 2 rows of the INQ.DEF table 740 in Figure 7—1
of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a linear

query for accessing the contents Of a relational database

from a graphic query input at a user terminal, including

relation records. Shaw takes the QBE skeleton tables , for

example, from Zloof, and generates an SQL query, which

is then used to retrieve the inquiry results from the

relational database._

116

122 '

123

Dolk, TeOre , and Zloof/Shaw References

Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GFTTABLE 72 having one entry

for each skeleton or example table in a query 2 [001. 11,

lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column of an example table in a query Q. The content
89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24.

DIEBFT 106

I mmuy70 I mam I
IN |<“'9 71 '72 IGFTTABLE I(-+
|mg 73 finmnn-n I I

: 7-1 -- I BFTPTCG. 1 x74 ' IGFTCDLCT I '
- a : 7s "1‘-—-.--—--x
7e, 1 : ¢--l-——.--—- : (3779mm: x :

IEMWI I I I 76 IGFTRUHCT I I
:armm . <-- : ~+ I “’7———----—-~ I .
Ian-nun”: I I I I 91 I 5-3
xerrcunrr x--+ : 82 "" I 77
| —————————T 80 o—«—-—-—.-—~) | u-I‘Bna: I
I .32 I +- -->IGFYRO& I<--I-.+

{ ;_~—_——) ' ===nmmu : I I
' I B4/IIGFTP‘TRCL I I I

1mm? I I M----I BFTIFLDS I |IBFTCDATA .' I I I ‘ --m-‘-I I I
I-‘mni 90 I I I Bé/IhmEl X I---+ I
IBFTPTCOT 14-» : : : :--—-~—-_: :
IGFTCDTLN I 3 I I I 37 I 32 I :
I “w-—-r:,92 I 83 I I 81 I
:ermmon i—-—:-—L———+ : : «ILL—mud: K:
g---_ ..-_._,;’94: J35 : w—) : BFYCOLCN I I:G—"I’SIHCN I -” I - —"""9' I “'“nfla:
;__ -..... _.._.... g k +——-—-— I GFTPTRCN I
I 2.1 I I 103 I 98 I BFTCDIIJI

I I “'T--—--—- x I
3023 I £00 INTRDHXX I'-—-—-‘*

: :taas-amy t 2 fi----*““ I
IWTCDNTB I< *-+ ‘05“ I 99
lmm==== : x0. ‘—

1? | | ‘ “meanness:+—-—-> I GFTCNTNT
I :a-uau-naa :

FIG 5 ' £-

Where the SQL query operates on a relationship relation as

described in Teorey, the SQL query will include an SQL

FROM statement which identifies the name of relationship
relation being queried. Shaw, 15:28—31. This name is the

relation type, since the relationship relation is named with

it’s type, e.g. the SKILL_USED relationship type is also

the name of the relationship relation containing the relation

instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.

10; 216, FIG. 13, Table 1. Thus for example,

SKILL_USED is the name of a relationship between a

provided EMPLOYEE entity and a desired SKILL entity.

 One element of the SQL query stored in the GFTSQL 70 is

the entit orovided as a .arameter to the

117

123

124

Dolk, Teore , and Zloof/Shaw References
example, Table 24 of Shaw depicts an example of a query,

in both SQL and QBE formats, Shaw, 26:59-68. In this

example, the query is seeking the employees who work in

the San Jose Department, and who meet a salary condition

of > $20,000. Id. The provided entity isf‘DEPT”, and the
desired entity is “EMP”. Id.

 The QBE example table shown in Table 24 is another
example of an inquiry table as claimed. This inquiry table

contains the same DEPT provided entity information,

which is retrieved from the table in order to create the SQL

statement SELECT DNO FROM DEPT shown in Table

24. Shaw, 15:38-42, 26:59-68. '

7. The method of claim 1, further

comprising retrieving a second

desired entity type record I

containing a second desired entity

type from said entity definition .

table, wherein said second desired

. entity type record specifies a second

desired entity instance table
associated with said second desired

entit t p e. .

8. The method of claim 7, further

comprising retrieving a third

desired entity type record _

containing a third desired entity

type from said entity definition

table, wherein said third desired

entity type record specifies a third

desired entity instance table
associated with said third desired ‘

entity type.

This limitation requires the presence of two entity type

records, and thus two entity instance tables. Otherwise, it.

is the same as “retrieving a desired entity type record” of

Claim 1. Fig. 1 of Dolk depicts the association of two

different entity types, Soc-Sec-No and Empl-Record to

generate a relationship Empl—Record-CONTAINS—Soc—

Sec-No. Two entity instance records appear in Fig. 1: Soc-

Sec-No 555-23-6666 and Empl-Record Kirk.

This limitation requires the presence of three entity type

records, and thus three entity instance tables. Otherwise, it
is the same as “retrieving a desired entity type record” of
Claim 1. '

Teorey provides another example ternary relationships

relating three entities. Specifically, Teorey clearly teaches

relation types which create relation instance tables that

involve more than two entity instances. Such relationships

are disclosed as “ternary” or more generally “n-ary”

relationships. For example, see the ternary relationships of
FIG. 10. Teorey at 212—13, FIG. 10. When executing

queries on theserelationships, the entity type records of,

for example, the EMPLOYEE, PROJECT and SKILL

entities would be retrieved, for the ternary relationship

SKILL-USED of FIG. 10(b). Teorey at 212; see also id at

216, Fi. 13.

This claim merely requires the retrieval of a second

specific relation instance record of a second relation type,

between the same two entities. Otherwise, it is the same as

“retrievin a desired'entit t e record” of Claim 1.

9. The method of claim 1, further

comprising retrieving a second

. specific relation instance record

defining a relation of a second

118

124

125

Dolk, Teore , and'Zloof/Shaw References .

provided relation type between said

provided entity and said desired Dolk expressly permits the existence of two different

entity from a second relation relationships, of two different relation types, between the
instance table corresponding to said same two entities. Fig. 2 indicates that not only can an

second provided relation type IRDS contain entities of different Entity-types, i.e. FILE,

record. RECORD, or ELEMENT, but an IRDS may also contain

different Relationship-types, i.e. CONTAINS,

PROCESSES, RESPONSIBLE-FOR, or RUNS.

Specifically, Fig. 2 provides in pertinent part, as follows:

SYSTEM ‘ FILE BIT- STRING

_PR,OGRAK ' RECORD . CHARACTER-STRING
' MODULE _ ELEMENT . 'FIanEPomfr‘

USER . nocuus‘m' FLOAT

WWW

CONTAINS GOES ~‘ro
paocsssas CALLS
naspousrane- For: . DERIVED. FROM

RUNS REPRESENTED - AS

Fig. 2, entitled “Core System-Standard Schema Types”

mmmwm 5W W

IRD schema layer ELEMENT, RECORD, 61¢. RECORD-COHTAINS -ELEHEHT

IRD data layer Soc-Sec -No. Zap). - Empl ~ Record~Record. etc. CONTA 1 N8 . Soc -
Sec.no

Opemimal data 555 ~ 23 . 6666 (EM Sap! -Recotd for
reocmtov Kim) Kirk-CONTAINS-

(555-224-6666)

ME 1. ms Madam

. 10. A relational database processing - The primary aims of relational database design

system comprising: revolve around organizing and storingdata so that the

information within the database may later be accessed by

the database user. According to an article by Peter Chen,

“to design a database is to decide how to organize data into

specific forms (record types, tables) and how to access

them.” Further, another related problem in database design

is to make the “output of the database design process-the

user schema (a description of the user view of the data)”

more like the way humans represent the real world. Peter

Pin-Shah Chen, The entity-relationship model — A basis for
the enterprise view of data 77 (1977).

119

125

126

Dolk, Teore , and Zloof/Shaw References

In addition an inherent component of databases is that they

allow the retrieval of items, including relation type‘records.

Front end user interfaces that enable users to easily retrieve

the information in the underlying databases have been well

known in the arts from at least from the mid 1980’s, if not

sooner. One type of front-end user interface is created

using the QBE language. According to The Database Step-

by—Step textbook, “The {QBE} user interface, designed for

technical and nOntechnical people alike, is a two-

dimensional, on—line, video display terminal oriented query

facility.” To issue a query, the user gives an example of

the required information, which amounts to specifying a
variable name in the column of the desired information.”

Mark L. Gillenson, Database Step-by—Step 141-42 (2d Ed.

1990). . ‘

 A critical component of databases is that they allow the

retrieval of items, including relation type records. Front

end'user interfaces that enable users to access the

information in the underlying databases are inherent to

database management systems. One type of front—end user

interface is created using the QBE language. According to

The Database Step-by-Step textbook, “The [QBE] user

interface, designed for technical and nontechnical people

alike, is a two-dimensional, on—line, video display terminal

oriented query facility.” To issue a query, the user gives
an example of the required information, which amounts to

specifying a variable name in the column of the desired

information.” Mark L. Gillenson, Database Step-by-Step

141-42 (2d Ed. 1990).

The Dolk article discloses an IRDS which contains an

enhanced data dictionary D/D. Specifically, Dolk

discloses a relational model of a passive IRDS (i.e. a

“stand-alone” IRDS, or “DBMS independent”) that is

consistent with the subset of the FIPS specifications and

can easily be implemented and used with existing RDBMS
roducts. Dolk at 49.

Dolk teaches that entity types (i.e. entities) can be defined

for a relational database. P.50. As noted above, Fig. 4

provides a template for how an entity may be defined with
various attributes:

an entity definition table containing

a first entity type record defining a

first entity type;

120

1 26

127

Dolk, Teore , and Zloof/Shaw References
ENTI'I‘N enane,ettxpe ,dname ,added- by ,

date-added,mod-by,1ast-mod,nmods,

dux-va1ue,dur-type,comments,descr,

security , lang ,1ines -code ,nrecs,

'rec-cat.data-class,dac-cac)

Fig. 2 depicts two example of entity types, Soc-Sec-No and

Empl-Record. p. 50. As noted above, Dolk further teaches

that an IRDS contains an enhanced data dictionary D/D.

p.49. The entity definitions are contained in the [RD data

and schema layers, which are separated from the

operational data layer (which contain the entity and
relationship instance records). Dolk at 50.

Finally, the data dictionary containing the entity definitions

are stored in a table. As the data and scheme layers are

based on the E-R model, Dolk teaches the implementation

of these layers using ORACLE tables and SQL tables.

Dolk at 55 (“The RIRDS is implemented very

straightforwardly in ORACLE by creating the relations and

views given in Figures 4, 5, and 6 using the SQL CREATE

TABLE and CREATE VIEW commands”)

Dolk discloses entity instance tables as part of the IRDS

architecture. The 1RD schema and data layers map the

contents of the underlying database, including entity
instance tables.

a first entity instance table

associated with said first entity

type;

Entity instance definitions can be retrieved in order to

operate on the underlying database. The entity type

definition records identify entity instance tables, including

the entity instance tables containing entities that a user
would desire to retrieve.

 Dolk teaches that entity types can be defined for a

relational database. Dolk, Fig. 4, p. 50. Fig. 4 depicts a

basic relational, representation of the IRDS Entity-

Relationship Model. Specifically, one standard'template

for defining an entity would be as follows: ‘ ' '

 ENTITY(ename,etype,dname,added-by,
date~added,mod—by.1ast-mod,nmoas,

dut.va1ue,dur-type,comments,descr

security,lang,lines-code,nrecs,

rec‘eab,data-class,doc-eat)

'p . 4. ename Would re resent the name of the entit '

121

127

128

Dolk, Teore , and Zloof/Shaw References

etype would represent the entity type. Fig. 2 lists various

entity types such as SYSTEM, PROGRAM, MODULE,

USER, FILE, RECORD, ELEMENT, etc.

The definitions of these relationship types are stored in the

IRD data layer of a relational information resource

dictionary system (RIRDS). Dolk, Fig. _1, p. 50.

The IRDS is itself of an implementation of a ORACLE

database and by using the SQL CREATE TABLE and

CREATE VIEchommands. R49, 55. Therefore, the data

dictionary component of the IRDS itself includes tables

that contain entity table definitions. Fig. 7 depicts how

RIRDS Tables and Views may be created in ORACLE.

Further, in extending the RIRDS, entity tuples, or

definition rows, may be added to the data dictionary by the

process mentioned on p. 56-57 of Dolk. '

 Dolk further teaches that the RIRDS may contain a

' directory component “describing where information

resources [i.e. entity instance tables] are located and how

they can be accessed.” P. 49. Put another way, the

directory is analogous to a physical description of where

the entity instance table is located in computer memory. P.

49. The “directory description would contain data on the

machine, operating system, and the file structure under
which the file is stored.” Dolk at 49.

Dolk teaches that desired entities, or entity instance
records, are stored in entity instance tables.

a plurality of entity instance records

stored in said first entity instance

table;

The IRDS network contains entities of various entity types.

Dolk at 50. As the underlying database upon which the

freestanding IRDS is based may be programmed in Oracle,

the entity instances may be stored in entity instance tables,

corresponding to a specific entity type record. See 1'. e. p.

60. Fig. 1 provides an example of a entity record 555-23:

6666 (Employee record for Kirk), in the form of a social

security number. This entity record may be stored in and

retrieved from a Soc—Sec—No entity instance table. Entity

instance records in the underlying Oracle database may be

retrieved using SQL queries at p. 58, 60 of Dolk,

regardless of whether the RIRDS system is integrated with
the host RDBMS.

Dolk teaches a data definition table in the form of a 'a relation definition table

' 122

128

129

. Dolk, Teore , and Zloof/Shaw References

containing a first relation type information resource definition system (IRDS) that

record defining a provided relation includes a relation definition table which contains relation

type; type records which define relationship types.

 Dolk teaches that relation types (i.e. relationships) can be

defined for a relational database. Dolk at 51, Fig. 4. Fig. 4

depicts a basic relational representation of the IRDS

Entity—Relationship Model. Specifically, one standard

template for defining a relationship would-be as follows:

 RBLSBIPtz tzge,e1name, e I “223 ,eZname, e2: 3
access —met;hod . frequency , re1_.pos)

Fig. 4. According to Dolk, relationships have certain ”core

attributes, as depicted below in Fig. 5, below. They
associate two entities with names elname and eZname.

am 7

Ali relaflonships have the same attributes and keys;
REL(e1name,e1tzEe, eZnamo,e2tzge) , ’ -
where e 1 name , e2name are’the entity instances I

e 1 type , ezeype are the entity-types‘oS-Mfich
e Iname , eZn ame are instances. Wei)!

REL is any 01 meretatimships CONTAINS ,. ‘
paocr-zssas , nuns , RESP._E‘0R , -‘ CALLS ,‘
60135.10, _nsazvzo..snou, ALIAS, and KWI

MW

SeeFigures '

FEGURE 5. Relational [ROS (RiRDS)

(in pertinent part).

 All relationships are binary, relate entities to each other,

and are named self-descriptively aCcording to the entity- _

types that participate in them. Dolk at 50, 51.

The definitions of these relationship types are stored in the .

1RD data layer of a relational information resource

dictionary system (RIRDS). Fig. 1, p. 50. These definition

of these relation types must have the following basic .

relational representation:

123

129

130

Dolk, Teore , and Zloof/Shaw References

RELSHIH ttyge ,e lnazue ,e I type ,32name . e2tzge ,
access method , frequency , re1.p03)

Fig. 4 at p. 53 of Dolk.

The IRDS is itself of an implementation of a ORACLE

database and by using the SQL CREATE TABLE and

CREATE VIEW commands. R49, 55 (“The RIRDS is

implemented very straightforwardly in ORACLE by ’

creating the relations and views given in Figures 4, 5, and

6 using the SQL CREATE TABLE and CREATE VIEW

commands”) Therefore, the data dictionary component

of the IRDS itself includes tables that contain relationship

table definitions. Fig. 7 depicts how RIRDS Tables and

Viewsmay be created in ORACLE.
RELSHX’Ptrqammanmettzgg,c32name,e2tye,

access ~90 that! . frequency , re 14:03)

 Further, in extending the RIRDS, relationship tuples, or

definition rows, may be added to the data dictionary by the
rocess mentioned on I . 56-57 of Dolk.

Dolk teaches that relation instance records define relations

between entities, and that these records are stored in

relation instance tables, each of which corresponds to a

particular relation type.

a first relation instance table

associated with said provided

relation type; and

 Dolk teaches that relationship relations store information

that relates two entities to each other and are represented as

tables. The IRDS network contains entities, or nodes,

which are connected to each other by relationships, or arcs.

Dolk at 50. As the underlying database upon which the

freestanding IRDS is based may be programmed in Oracle,

the relationship instances may be stored in a relation

instance table, corresponding to a specific relationship type

record. See i. e. p. 60 of Dolk. Emp-Record for Kirk-

CONTAINS (555-23-6666) is one relationship instance

record. The relationship Emp-Record-CONTAINS-Soc—

Sec—No between Soc-Sec-No and Empl-Rec entities. Fig. 1

(depicting IRDS architecture). Relationship instance

records in the underlying Oracle database may be retrieved

using SQL queries at pp. 58, 60 of Dolk, regardless of

whether the RIRDS system is integrated with the host
RDBMS.

Dolk teaches that a relationship instance record, which

corresponds to a particular relationship type, defines
relations between entities.

a first relation instance record of

said provided relation type, said '

first relation instance record relatin

124

130

131

Dolk, Teore , and Zloof/Shaw References

a desired entity in one of said entity

instance records to a provided

entity.

Dolk teaches that relationship relations store information

that relates two entities to each other. “All relationships are

binary, and entities may be related to themselves.” P. 50.

The IRDS network contains entities, or nodes, which are

connected to each Other by relationships, or arcs. P. 50. As

the underlying database upon which the freestanding IRDS
is based may be programmed in Oracle, the relationship

instances may be stored in a relation instance table,

corresponding to said relationship type record. See i.e. p.

60 of Dolk, Emp-Record for Kirk- CONTAINS (555-23-

6666) is one relationship instance record the relationship

Emp—Record-CONTAINS-Soc-Sec-No between Soc-Sec-

No and Empl-Rec entities. Fig. 1 (depicting IRDS

architecture). Relationship instance records in the

underlying Oracle database may be retrieved using SQL

queries at p. 58, 60 of Dolk, regardless of whether the
RIRDS s stem is inte rated with the host RDBMS.

Dolk teaches that each entity instance record contains a

record identifier that corresponds to the desired entity
instance record.

' 11. The relational database

processing system of claim 10,

wherein each of said entity instance

records is identified by a record
identifier. '

Specifically, Dolk teaches that a record identifier for an

entity may be made of composite keys. Fig. 4 depicts a

generic representation of an entity, where ename and mpg

are keys to a given entity by entity name ename and entity

type etype.

 ENT‘ITN ename, etzpe ,dname ,added - by .
date--added,moa-by,1ast-mod,nmods ,

dur Avalue ,dur - type ,comments ,descr ,

security , lang , lines -code ,nrecs,

rec-cabfiata-clasa ,docucat)

Fig. 4 of Dolk.

12. The relational database

processing system of claim 10,
wherein said first relation instance

record contains a desired record ‘
identifier and a desired entity type

corresponding to a desired entity

' instance record containing said

desired entity.

Dolk teaches that each relation instance record contains a

record identifier that corresponds to the desired relation
instance record. The relation instance record also contains

desired entity type corresponding to a desired entity

instance record containing said desired entity.

Specifically, Dolk teaches that a record identifier for an

entity may be made of composite keys. Fig. 4 depicts a

generic representation of a relationship, where m,

elname, elt fine e2name, and e2t fine are ke s to a '

125

131

132

Dolk, Teore , and Zloof/Shaw References

relationship of relationship type rtype, which associates

entities elname and e2name of entity types eltype and

e2type.

RELSHIP (rtxge , e1name , e 1 type ,ezname , ethge ,
access— method , frequency , 111.908)

Fig. 4 of Dolk.

Dolk teaches that each relation instance record contains a

record identifier that corresponds to the desired relation
instance record.

13. The relational database

processing system of claim 10,

wherein said first relation type _

record comprises a table identifier

identifying said first relation
instance table.

Fig. 4. depicts a generic representation of a relationship,

where Mpg, elname, eltype, e2name, and e2type are keys

to a given relationship of relationship type mpg, which

associates entities elname and e2name of entity types

eltype and e2type.

RELSHIP(rtyEe,e1name ,e I type ,eZname , eZtXEe ,
access method , frequency , rel...pos)

Fig. 4 of Dolk. One of the attributes to the relationship

may identify which table the relationship may be found in

the underlying database.

 Dolk further teaches that the RIRDS may contain a

directory component “describing where information

resources [i;e. relationship tables] are located and how they

can be accessed.” Dolk at 49. Put another way, the I
directory is analogous to a physical description of where

the relationship instance table is located in computer

memory. Dolk at 49. The “directory description would

contain data on the machine, operating system, and the file
structure under which the file is stored.” Dolk at 49.

As noted above under claim 1, the use of running inquiries

on the underlying databases was an inherent part of

managing E-R databases. A QBE table was one form of a

graphical front-end interface that allowed a user to access

the underlying database containing entities and relatiOns.

14. The relational database

processing system of claim 10,

further comprising an inquiry table

containing an inquiry record,

wherein said inquiry record

specifies said provided relation type

and said provided entity.

Shaw takes the QBE skeleton tables , for example, from

Zloof, and generates an SQL query, which is then used to

retrieve the inquiry results from the relational database.

 Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GF'TTABLE 72 having one entry

for each skeleton or examle table in a uer 2 [col. 11,

126

1 32

133

Dolk, Teore , and Zloof/Shaw References

lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in ‘

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column of an example table in a query Q. The content

89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70. GFTSQL 70 contains the SQL statement (inquiry

record).

Where the SQL query operates on a relationship relation as

described in Teorey, the SQL query will include an SQL

FROM statement, which identifies the name of relationship

relation being queried. Shaw”, 15:28-31. This name is the

relation type, since the relationship relation is named with

it’s type, e.g. the SKILL_USED relationship type is also

the name of the relationship relation containing the relation

instances of that type. Teorey, 203 FIG. 4; 212-13 FIG.

10; 216, FIG. 13, Table 1. Thus for example,

SKILL_USED is the name of a relationship between a
urovided EMPLOYEE entit and a desired SKILL entit .

15. The relational database —processing system of claim 10

Dolk discloses the existence of a second entity instance

further com risin_:

a second entity instance table

tables as part of the IRDS architecture. The IRD schema

and data layers map the contents of the underlying
associated with a second entity

type; and

database, including entity instance tables. As relationships

associate two entities, a second entity instance table

associated with a second entity type is part of the IRDS

architecture, and is mapped by the IRD schema and data

layers.

A relationship associates two entities with (names elname

and eZname)

127

133

134

Dolk, Teore , and Zloof/Shaw References

wherein said entity definition table

contains a second entity type record

containing said second entity type

and associating said second entity
instance table with said second

entity type.

16. The relational database

Rm .

All relatimshlps have me same attributes and keys;
REb(e1namm_g Mpg, eZname, ethge } I '-

where e inane, e2name are the entity instances

e ttype ,eZtype are the entity-types d-m
e 1 name . eZname are tnstanoes. mspecfiveiy

REL is any at the relationships CONTAINS.

PROCESSES, Runs RESP.E‘0R CALLS,

6025“To DERIVBILFROM ALIAS, and KWI

See Figure 3

FIGURE 5. Relations! 180$ (81%}

(in pertinent part).

Thus, an entity instance table associated with a second

entity type is taught by Dolk. Thus, a second entity

instance table might be one for Empl-Record, where the

first entity instance table was one for Soc-Sec-No. The

two entity types might be associated by the relationship
Empl-Record-CONTAINS-Soc-Sec-No.

Dolk teaches that an entity type record of a second entity

type may be contained in a second instance table of said

second entity instance type. Further, the entity definition

table may contain the second entity type as a record.

As noted in Fig. 1 of Dolk, the IRD Layer defines both
entity type records Soc-Sec-No and Employee—Rec.

IRD schema description tan: . Entity-type

IRD schema layer ELEHENT. RECORD, etc.

[RD data layer , Soc - Sec - No. Empl -
Record. etc;

Operatbnal data 555 ~ 2 3 ~ 6666 (Emptoyee

record for Kirk)

128

134

135

 Dolk, Teore , and Zloof/Shaw References

processing system of claim 15

further com risin_:

a third entity instance table ' ' Teorey teaches three entity instance tables, for example the

associated with a third entity type; SKILL, DEPARTMENT and DIVISION entity tables of

and FIG. 13. Teorey at 216, FIG. 13, Table l.

SKILL DEPARTHENT DIVISION
“um

SKILL-USED
01PM SKIL‘ND ”RN-NW

PROJECT EHPLOVEE

ASSIGNED‘TO

'LOCATION

ENPHANAGER EHPENGINEER EHPIECHNICIAN EflPSECRETARY

' BELONGS-TO

PRF-ASSOC PC

Figwe 13. Company personnel and project database candidate relations.

 wherein said entity definition table

contains a third entity type record

containing said third entity type and

associating said third entity instance

table with said third entity type.

Teorey teaches that all entities, including SKILL,

DEPARTMENT and DIVISION entities, are transformed

into relations that are stored in the data dictionary. Teorey

at 216, Table 1. Huber teaches that the data dictionary

contains a set of table definitions. Huber, 6268-723. A set,

by its very nature, can contain three (or more) entity type
records.

 As indicated above, while Huber teaches the use of a

relation definition table, the use of data dictionaries to map

the contents of the underlying database, including the

entities and relationships within it, was already common in

the field. A data dictionary was, considered “[a] system
database that contain[ed] information about a user

database, such as location of data, lists of fields and tables,
and datat es and len ths.”

129

135

136

17. The relational database

processing system of claim 10

further com . risin _:

a second relation instance table

associated with a second relation

type; and

Dolk teaches that a plurality of relationship types may exist

within a given IRDS system and within a given relation

instance table. As the IRDS in Dolk maps the contents of

the underlying ORACLE E-R database, a second relation

instance table may exist.

 A second relation type and an associated relation instance

table may be part of the relational database. More than one

relation type may exist - “The IRD architecture is based on

the entity-relationship [E-R] model . The IRD consists

of entities, attributes, and relationships that are instances of

the corresponding IRD schema entity—types, relation—types,

and attribute-types.” Dolk at 50. The IRDS may be 4

implemented using Oracle tables and the contents of the

same may be accessed using SQL commands. Dolk at 55.

Finally, as the IRDS maps the contents of the operational

data in the underlying database, the second relationship

type in the IRDS is associated with a relationship table in
the under] in database.

Dolk teaches that a relationship instance record, which

corresponding to the second relationship type may be
found in a second relation instance table.

wherein said relation definition

table contains a second relation type

record containing said second

relation type and associating said
second relation instance table with

said second relation type.

As the underlying database upon which the freestanding

IRDS is based may be programmed in Oracle, the

relationship instances may be stored in a relation instance
table, corres-_ondin to said relationshi t e record.

18. The relational database

processing system of claim 17

further com rising:
a third relation instance table

associated with a third relation type;
and

Dolk teaches that a plurality of relationship types may exist

within a given IRDS system and within a given relation

instance table. As the IRDS in Dolk merely maps the
contents of the underlying ORACLE E-R database, a third

relation instance table, to which the IRDS maps, may exist.

wherein said relation definition

table contains a third relation type

record containing said third relation

type and associating said third
relation instance table with said

third relation t e.

Dolk teaches that a relationship instance record, which

corresponding to the third relationship type may be found
in a second relation instance table.

' 130

136

137

D. Tsichritzis Munz Zloof and Shaw References

The Tsichritzis, Munz I, and Munz II references, in combination with Zloof

and/or Shaw, as taught in the above charts and in the below, teach all limitations of

claims 5—6 and 14 of-the ‘259 patent.

Tsichritzis, Munz, Zloof, and Shaw References

5. The method of claim 1, further Tsichritzis ,

comprising retrieving data ‘259 specification description of [NQDEF or inguiry table

specifying said provided relation The ‘259 specification describes path selection using the

type from an inquiry table. inquiry table as '

<starting entity type>

<connecting relationship type><intermediate entity type>

<connecting relationship type><intermediate entity
type>. . .’259 patent, col. 29, lines 57-65.

 Tsichritzis description of inquiry table

In Tsichritzis, a user constructs a relation by selecting a

record type, then linking on a different type record type

and possibly selecting and linking again. See Tsichritzis,

pp 126, para 6. ‘ V
E.g.: Define relation relation-name
from A select SA

(This is <starting entity type>)

LEw LAB t_o B select SB

(This is <connecting relationship type><intermediate

entity type>)

ww LBC t_o C select SC

(This is <connecting relationship type><intermediate

entity type>)

The above relation (path) is stored in a RELATION

TABLE. See Tsichritzis, pp. 126, para. 5. The

RELATION TABLE is the claimed inquiry table. When a

relation is created, the relation definition in the

RELATION TABLE is retrieved, including the link name,

which specifies the link (provided relation type). '6

Munz

According to Munz I, Munz queries are supplied as a

comma-separated values table (pattern string) to a

procedure call. This pattern string is inherently stored by

the PL/l urocedure in a data structure (such as an arra)

131.

137

138

Tsichritzis, Munz, Zloof, and Shaw References

which is a table. See Munz I, sec. 4.3.3, p. 107. The

example pattern strings in Munz I are laid out in a row and

column style. This layout corresponds to the layout of the

rOws of the inquiry table of this claim. Compare Munz 1,
sec. 4.3.3 (example pattern string) with ‘259 patent, 25:44-

26110, FIG. 7-1, element 740. This pattern string is simply

.a textual representation of the same underlying data
structure as claimed.

 The provided relation type data is retrieved from the table

the query is stored in, since this how such data is provided

to the Munz system by the procedure call. See Munz I, p.

108, sec. 4.3.4. (FIND_DB procedure is how patterns are

provided to the database; pattern string is a parameter to

FIND_DB). For example, using the first pattern string

discussed in sec. 4.3.3 of Munz I, the relation type data

would be “WORKS_IN” in either of the first two lines.

See id at 4.3.3. '

Zloof/Shaw

The use of inquiry tables such as ones based on the QBE

language was an inherent part of managing E—R databases.

A QBE table was one form of a graphical front-end

interface that allowed a user to. access the underlying

database containing entities and relations. According to

The Database Step-by-Step textbook, “The [QBE] user

interface, designed for technical and nontechnical people ‘

alike, is a two-dimensional, on-line, video display terminal

oriented query facility.” Mark L. Gillenson, Database Step-

by-Step 141-42 (2d Ed. 1990). While a QBE interface is

pictorial in nature, a SQL’s interface is more linear and

textual. Id. “The user begins by specifying which table is

needed for a particular query. Once a table(s) is chosen,

the system displays an outline of that table, showing the

table name and the names of its fields. To issue a query,

the user gives an example of the required information,

which amounts to specifying a variable name in the
column of the desired information.” Id.

Zloof teaches Query-by-Example (QBE). When a user

performs an operation , e.g., query, update, define, or

control, against the database, the user fills in an example

of a solution to that operation in skeleton tables that can be
associated with actual tables in the database. For

illustration, sun ose we want all reen items sold in the to

132

138

139

Tsichritzis, Munz, Zloof, and Shaw References

department.
Name ID Genilflod "animal amino [lab

Fig. 113 of Zloof above shows the two skeleton tables:

“TYPE” and “SALES”. These two tables are linked by the

word “NUT”. Thus Figure 13 shows an inquiry table

consisting of two skeleton tables linked togetherlike the

level 1 and 2 rows of the INQ.DEF table 740 in Figure 7-1
of Doktor.

The ‘326 patent to Shaw teaches how to synthesize a linear
query for accessing the contents of a relational database

from a graphic query input at a user terminal, including

relation records. Shaw takes the QBE skeleton tables , for

example, from Zloof, and generates an SQL query, which i

is then used to retrieve the inquiry results from the

relational database. _

Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GFTTABLE 72 having one entry

for each skeleton or example table in a query 2 [col. 11,

lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column of an example table in a query Q. The content

89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24.

133

139

140

«was; |<--+ 71 72 IGFTTABLE :(v—o
I 3 / 73 E Ila-III.” :

z “.4... — l spwrcm. a
. l 3 75 [BFTCOLCT '

I : 75 “'11------—-
79 1 fl O—-l——-—--—-— IGFTPTROH

I
1

x x7 iGFTRONCT :
:ar'rcaLm .<-— : ——+ : ““T———-———_..;

I t: canny-nun | :

: 91

:BFTCNHPT l-* 92 "' x 77
g _________T 90 k-—————-—)g "In-n3“: I
x 33 - - «Mar-"mow :<--x-o {

63 iGFTPTRCL :
'.-'--18FTIFLDS X I

1

.

' I
, j : I

[am-3.: 88 S t I
aerrcmm 1’ t 2 x ‘- l x
sum-ax 90 s ' : ab/TBFrBLExx :~——+ l
xafiwrcor 4—» . . . :-———————— I :

‘:BFTCDTLN : x a a I 87 : g; : :
:—-—-«-——-:/92: a: : : V a: :
:enamm ¢—~-x--L—-—+ : 1 veg-mm": K:
I——-—-——-—: 94: as t o~-—-—>-.orrcm.cu : :
:errsmcu 41.-.-.L_-_-. :-....=..m.: :
f--—--——---«: is +-- stercu I :

. g i z 103 a 93 :srrcmn l :

x 02 z : ; --_-_..
: sauna-cam ' g :
:WTCONTB :(--+ 105.» t 99
l—umaaa: ' : 10‘ fi‘
5 22 I I K [rs-3..sauna“:

f—--°>IBFTCNTNT fl

no.5, —°i ‘

Where the SQL query operates on a relationship relation as

described in Teorey, the SQL query will include an SQL

FROM statement which identifies the name of relationship

relation being queried. Shaw, 15:28-31. This name is the

relation type, since the relationship relation is named with

it’s type, e.g. the SKILL_USED relationship type is also

the name of the relationship relation containing the relation

instanCes of that type. Teorey, 203 FIG. 4; 212-13 FIG.

10; 216, FIG. 13, Table 1.

The query translator of Shaw receives as an input a QBE

query, which is a “graphic language query expressed as

one or more elements . . . appearing in rows and columns

of an example table including one or more source and

target tables.” Shaw, 2:38-42. Where the source table

included in the example table is a relationship relation, as

discussed in Teorey, this example table contains the name

of the source table, which is “data specifying said (provided
relation type” as claimed. When the example query is

translated as part of the query processing, this relation type

data is retrieved in order to form part of the SQL query
submitted to the DBMS. Shaw, 15:29-31.

6. The method of claim 1, further Tsichritzis .

comrisin_ retrievin data See claim 5 above. When a relation is created, the

134

140

141

Tsichritzis, Munz, Zloof, and Shaw References

specifying said provided entity provided entity is also retrieved from the RELATION

from an inquiry table. TABLE. Tsichritzis, p. '128, para. 2.

Munz

According to Munz I, Munz queries are supplied as a

comma-separated values table (pattern string) to a

procedure call. This pattern string is inherently. stored by

the PL/l procedure in a data structure (such as an array)

which is a table. See Munz 1, sec. 4.3.3, p. 107. The

example pattern strings in Munz I are laid out in a row and

column style. This layout corresponds to the layout of the

rows of the inquiry table of this claim. Compare Munz 1,

sec. 4.3.3 (example pattern string) with ‘259 patent, 25:44-

26:10, FIG. 7-1, element 740. This pattern string is simply

a textual representation of the same underlying data
structure as claimed. '

The provided entity data is retrieved from the table the

query is stored in, since this how such data is provided to

the Munz system by the procedure call. See Munz I, p.

108, sec. 43.4. (FIND_DB procedure is how patterns are I

provided to the database; pattern string is a parameter to

FIND_DB). For example, using the first pattern string

discussed in sec. 4.3.3 of Munz I, the provided entity data

would be “P=PROJECT” in the second line, or “U” in the
last line. See id at 4. 3.3. and FIG. 18.

Zloof/Shaw

As noted above, the use of inquiry tables such as ones

based on the QBE language was an inherent part of

managing E-R databases. A QBE table was one form of a

graphical front-end interface that allowed a user to access

the underlying database containing entities and relations.

According to The Database Step-by-Step_ textbook, “The

[QBE] user interface, designed for technical and

nontechnical people alike, is a_ tWo-dimensional, on-line,

video display terminal oriented query facility.” Mark L.

Gillenson, Database Step-by«Step 141-42 (2d Ed. 1990).

Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GFTTABLE 72 having one entry

for each skeleton or example table in a query 2 [co]. 11,

lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column of an examle table in a uer Q. The content

135

141

142

Tsichritzis, Munz, Zloof, and Shaw References '

89 of GFI‘COLMN 78 includes a pointer 71 to GFTSQL

70. GFISQL 70 contains the SQL for the query.

One element of the SQL query stored in the GFTSQL 70 is

the entity provided as a parameter to the query. For

example, Table 24 of Shaw depicts an example of a query,

in both SQL and QBE formats. Shaw, 26:59-68. In this

example, the query is seeking the employees who work in

the San Jose Department, and who meet a salary condition

of > $20,000. Id. The provided entity is “DEPT”, and the

desired entity is “EMP”. Id.

 The QBE example table shown in Table 24 is another

example of an inquiry table as claimed. This inquiry table

contains the same DEPT provided entity information,

which is retrieved from the table in order to create the SQL
statement SELECT DNO FROM DEPT shown in Table

24. Shaw, 15:38-42, 26:59-68.

Tsichritzis

The RELATION TABLE is the inquiry definition table.
See claim 5.

The relation table contains the definition of a relation.

Specific example: ‘
Define relation relation-name from A select SA

Link m LAB t_o B select SB

14. The relational database

processing system of claim 10,

further comprising an inquiry table

containing an inquiry record,

wherein said inquiry record

specifies said provided relation type

and said provided entity.

. See Tsichritzis, pp 127, para 6.

Each relation definition is a inquiry record. Each relation

definition specifies the provided relation type (LAB) and

said provided entity (A select SA).

Munz

According to Munz I, Munz queries are supplied as a

comma-separated values table (pattern string) to a

procedure call. This pattern string is inherently stored by

the P111 procedure in a data structure (such as an array)

which is a table. See Munz 1, sec. 4.3.3, p. 107. The

example pattern strings in Munz I are laid out in a row and

column style. This layout corresponds to the layout of the

rows of the inquiry table of the this claim. Compare Munz

I, see. 4.3.3 (example pattern string) with ‘259 patent,

25:44-26:10, FIG. 7-—1, element 740. This pattern string is

simply a textual representation of the same underlying data
structure as claimed. .

136

142

143

Tsichritzis, Munz, Zloof, and Shaw References

The provided relation type data and provided entity data is

retrieved from the table the query is stored in, since this
how such data is provided to the Munz system by the

procedure call. See Munz I, p. 108, sec. 4.3.4. (FIND_DB

procedure is how patterns are provided to the database;

pattern string is a parameter to FIND_DB). For example,

using the first'pattem string discussed in sec. 4.3.3 of

Munz I, the relation type data would be “WORKS_IN” in

either of the first two lines, and the provided entity data

would be “P=PROJECT” in the second line, or “U” in the

last line. See id at 4.3.3. and FIG. 18.

Zloof/Shaw .

Shaw takes the QBE skeleton tables, for example, from

Zloof, and generates an SQL query, whiCh is then used to

retrieve the inquiry results from the relational database.

 Figure 5 of Shaw shows a collection of tables DXTGTF

106 that provides a table GFTTABLE 72 having one entry

for each skeleton or example table in a query 2 [col. 11,

lines 1-2]. Thus GFTTABLE 72 is the Inquiry table 740 in

Doktor Fig. 7-1. GFTCOLMN 78 provides one entry for

each column of an example table in a query Q. The content

89 of GFTCOLMN 78 includes a pointer 71 to GFTSQL

70. GFTSQL 70 contains the SQL , such as the SQL select
statement in Table 24 (inquiry record).

Where the SQL query operates on a relationship relation as

described in Teorey, the SQL query will include an SQL

FROM statement which identifies the name of relationship

relation being queried. Shaw, 15:28—31. This name is the

relation type, since the relationship relation is named with

it’s type, c.g. the SKILL_USED relationship type is also

the name of the relationship relation containing the relation

instances of that type. Teorey,.203 FIG. 4; 212-13 FIG.

10; 216, FIG. 13, Table 1. Thus for example,

SKILL_USED is the name of a relationship between a
rovided EMPLOYEE entit and a desired SKILL entit .

VIII. CONCLUSION

The prior art references attached hereto as Exhibits PA-A through PA—J,

considered in View of the admissions presented in this application, raise substantial new

questions of patentability of claims 1-18 of the ‘259 patent. These references render

137 '

143

144

these claims unpatentable under 35 U.S.C.‘§§ 102 and/or 103. Accordingly it is

respectfully requested that the Request for Reexamination be granted and that the PTO

give due consideration to the prior art discussed herein.

Respectfully submitted,

 Dated: May 91 2007

' il iam L. Anthony, Jr.

Reg. No. 24771

Attorney for Petitioner Oracle

Corporation ‘

138

144

145

PATENT

IN THE UNITED STATES PATENT OFFICE

Request For Ex Parte Reexamination Of:

US. Patent No. 5,826,259

Inventor: Karol Doktor

. . . INDEX FOR EX PARTE
A : F l S t T hn 1

“gm £31333 ys ems CC 0 ogy REEXAMINATION OF US. PATENT
' ' NO. 5,826,259

Filed: May 22, 1997

Issued: October 20, 1998

For: Easily Expandable Data

' Processing Systems and
Method

CERTIFICATE OF SERVICE

1, Stephanie C. Hart, hereby certify that on May 9, 2007, true and correct copies of the

following docurnents were served on the following counsel of record at the addresses and in the

manner indicated:

1. REQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL
FORM 1465

2. PTO-1449 AND REFERENCES CITED THEREON

3. REQUEST FOR EX PARTE REEXAMINATION OF US. PATENT
NO.259 ATTACHlVIENT TO FORM 1465

4. CERTIFICATE OF SERVICE

OHS West:2602278l0.l

.145

146

I hereby certify that the attached associated documents are being deposited with the

United States Postal Service on this date in an envelope as “Express Mail Post Office to

Addressee” addressed to the following:

EDWARD KWOK, ESQ,
MACPHERSON KWOK CHEN & HEID LLP

2033 GATEWAY PLACE

SUITE 400

SAN JOSE, CA 95110

ALLEN, DYER, DOPPELT, MILBRATH & GILCHRIST, RA.
1401 CITRUS CENTER '

25 SOUTH ORANGE AVENUE

PO. BOX 3791

ORLANDO, FL 32802-3791

SAM BAXTER, ESQ.
McKOOL SMITH RC.

505 EAST TRAVIS, SUITE 105

PO. BOX 0

MARSHALL, TEXAS 75670

_ TELEPHONE: 903—927-2111

FACSIMILE: 903-927-2622

.Date of Mailing: May 9, 2007

 Stephan' C. Hart

OHS West:260227810.l
6883-23 SHO/SHO

146

