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44 Entity-Relationship Model Chapter 2

2.7 Every weak entity set can be converted to a strong entity set by
simply adding appropriate attributes. Why, then, do we have weakentities?

2.8 Suppose that you design an E-R diagram in which the same entity
set appears several times. Why is this a bad practice that should be
avoided whenever possible?

2.9 When designing an ER diagram for a particular enterprise, there
exists several alternative designs.

a. What criteria should you consider in deciding on theappropriate choice?

b. Come up with several alternative E-R diagrams to represent an
enterprise. List the merits of each alternative and argue infavor of one of the alternatives.

2.10 Explain the difference between generalization and specialization.

Bibliographic Notes
The entity relationship data model was introduced by Chen [1976].
Discussions concerning the applicability of the E-R approach to database
design are offered by Chen [1977], Sakai {1980], and Ng [1981]. Modeling
techniques based on the E-R approach are covered by Schiffner and
Scheuermann [1979], Lusk et al. [1980], Casanova [1984], and Wang [1984].

Various data manipulation languages for the E-R model have been
proposed. These include CABLE [Shoshani 1978], GERM [Benneworth et
al. 1981], and GORDAS [ElMasri and Wiederhold 1983]. A graphical query
Eggplage for the E—R database was proposed by Zhang and Mendelzon

The concepts of generalization, specialization, and aggregation were
introduced by Smith and Smith [1977]. benzerini and Santucd [1983] have
used these concepts in defining cardinality constraints in the E-R model.

Basic textbook discussions are offered by Tsicluitzis and Lochovsky[1982] and by Chen [1983].
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3

Relational Model

From a historical perspective, the relational data model is relatively new.
The first database systems were based on either the hierarchical model (see
Chapter 5) or the network model (see Chapter 4). Those two older models
are tied more closely to the underlying implementation of the databasethan is the relational model.

The relational data model represents the database as a collection of
tables. Although tables are a simple, intuitive notion, there is a direct
correspondence between the concept of a table and the mathematical
concept of a relation.

In the years following the introduction of the relational model, a
substantial theory has developed for relational databases. This theory
assists in the design of relational databases and in the efficient processing
of user requests for information from the database. We shall study this
theory in Chapter 6, after we have introduced all the major data models.

3.1 Structure of Relational Databases

A relational database consists of a collection of tables, each of which is
assigned a unique name. Each table has a structure similar to that
presented in Chapter 2, where we represented E-R databases by tables. A
row in a table represents a relationship among a set of values. Since a table
is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from
which the relational data model takes its name. in what follows, we
introduce the concept of relation.

In this chapter, we shall be using a number of different relations to
illustrate the various concepts underlying the relational data model. These
relations represent part of a banking enterprise. They differ slightly from
the tables that were used in Chapter 2 in. order to simplify our
presentation. We shall discuss appropriate relational structures in great
detail in Chapter 6.

Consider the deposit table of Figure 3.1. it has four attributes: brunch-
rmme, account-number, customer-name, balance. For each attribute, there is a
set of permitted values, called the domain of that attribute. For the 
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46 Relational Model Chapter 3

_——m
Downtown 500
Mianus 700

Perryridge , 400Round Hill

Perryridge
Redwood
Bri . hton
 

Figure 3.1 The deposit relation.

attribute branch—name, for example, the domain would be the set of all
branch names. Let Dl denote this set and let 02 denote the set of all
account-numbers, 03 the set of all customer names, and D4 the set of all
balances. As we saw in Chapter 2, any row of deposit must consist of a 4-
tuple (01, v2, 03, 114) where Ul is a branch name (that is, ”I is in domain
01), 02 is an account number (that is, 122 is in domain Dz), v; is a customer
name (that is, 113 is in domain D3), and v‘ is a balance (that is, 214 is in
domain 0,). In general, deposit will contain only a subset of the set of all
possible rows. Therefore deposit is a subset of:

Mathematicians define a relation to be a subset of a cartesian product of
a list of domains. This corresponds almost exactly with our definition of
table. The only difference is that we have assigned names to attributes,
while mathematicians rely on numeric “names," using the integer l to
denote the attribute whose domain appears first in the list of domains, 2
for the attribute whose domain appears second, etc. Because tables are
essentially relations, we shall use the mathematical terms relation and tuple
in place of the terms table and raw.

In the deposit relation of Figure 3.1, there are seven tuples. Let the tuple
variable I refer to the first tuple of the relation. We use the notation
t[branch-name] to denote the value of t on the branch-name attribute. Thus,
t[branch-name| = “Downtown". Similarly, t[account-number] denotes the
value of t on the account-number attribute, etc. Alternatively, we may write

Hr...

an>i...5.-

Section 3.1 Structure of Relational Databases 47\

ill] to denote the value of‘tuple t on the first attribute (branch-name), t[2]
for account-number, etc. Since a relation is a set of tuples, we use the
mathematical notation of l a r to denote that tuple t is in relation r.

When we talk about a database, we must differentiate between the

database schema, that is, the logical design of the database, and a database
instance, which‘is the data in the database at a given instant in time.

The concept of a relation scheme corresponds to the programming
language notiori of type definition. A variable of a given type has a
particular value at a given instant in time. Thus, a variable in
programming languages corresponds to the concept of an instance of arelation. '

It is convenient to give a name to a relation scheme, just as we give
names to type definitions in programming languages. We adopt the
convention of using lowercase names for relations and names beginning
with an uppercase letter for relation schemes. Following this notation, we
use Deposit-scheme to denote the relation scheme for relation deposit. Thus,

Deposit—scheme = (branch-name, account-number, customer-name, balance)

In general, a relation scheme is a list of attributes and their corresponding
domains. We denote the fact that deposit is a relation on scheme Deposit by

deposit (Deposit-scheme)

We shall not, in general, be concerned about the precise definition of
the domain of each attribute until we discuss file systems in Chapter 7.
However, when we do wish to define our domains, we use the notation

(branch-name : string, account-number : integer,
customer-name : string, balance : integer)

to define the relation scheme for the relation deposit.
As another example, consider the customer relation of Figure 3.2. The

scheme for that relation is '

Customer-scheme = (customer-name, street, customer-city)

Note that the attribute customer-name appears in both relation schemes.
This is not a coincidence. Rather, the use of common attributes‘in relation
schemes is one way of relating tuples of distinct relations. For example,
suppose we wish to find the cities where depositors of the Perryridge
branch live. We would look first at the deposit relation to find all depositors
of the Perryridge branch. Then, for each such customer, we look in the
customer relation to find the city he or she lives in. Using the terminology

 

a(:2;  
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48 Relational Model Chapter 3

customer-name m customer~cit
Jones Harrison

Smith Rye
Hayes Harrison
Curry Rye
Lindsay Pittsfield
Turner Stamford
Williams Princeton
Adams Pittslield
Johnson Palo Alto
Glenn Woodside

Brooks Brooklyn
Green Stamford

 
Figure 3.2 The customer relation.

of the entity—relationship model, We would say that the attribute customer-
name represents the same entity set in both relations.

It would appear that, for our banking example, we could have just one
relation scheme rather than several. That is, it may be easier for a user to
think in terms of one relation scheme rather than-several. Suppose we
used only one relation for our example, with scheme

Account~info—scheme = (branch-name, account-number, customer-name,
balance, street, customer-city)

Observe that if a customer has several accounts, we must list her or his
address once for each account. That is, we must repeat certain information
several times. This repetition is wasteful and was avoided by our use of
two relations. [f a customer has one or more accounts, but has not
provided an address, we cannot construct a tuple on Account-info-sdreme,
since the values for the street and customer-city are not known. To represent
incomplete tuples, we must use null values. Thus, in the above example,
the values for street and customer-city must be null. By using two relations,
one on Customer-scheme and one on Deposit—scheme, we can represent
customers whose address is unknown, without using null valu s. We
simply use a tuple on Deposit-scheme to represent the information ab ut the
account, and create no tuple on Customer-scheme until the address
information becomes available. In Chapter 6, we shall study criteria to help
us decide when one set of relation schemes is better than another. For
now, we shall assume the relation schemes are given.

,.-.-.'-om.

Am.A.~3-'

a.

-Mists-

-sun-tam:Maw.

Section 3.1 Structure of Relational Databases 49\

For the purpose of this'chapter. we assume that the relation schemes
for our banking enterprise are as follows:

Branch-scheme = (branch—name, assets, branch-city)
Customer-scheme = (customemmnie, street, custonm-city)
Deposit—scheme = (branch-name, account-number, customer-name, balance)

' Borrow-scheme = (branch-name, loan-number, customer-name, amount)

We have already seen an example of a deposit relation and a customer
relation. Figure 3.3 shows a sample barrow (Borrow-scheme) relation.

The notion of a superkey, candidate key, and primary key, as discussed in
Chapter 2, is applicable also to the relational model. For example, in
Branch—scheme, {branch-name} and (branch-name, branch-city} are both
superkeys. {branch-name, branclr‘city} is not a candidate key because
{branch—name} (_: {branch-name, branch-city) and {branch-name} itself is a
superkey. {branch-name}, however, is a candidate key, which for our
purpose will also serve as a primary key. The attribute branch-city is not a
superkey since two branches in the same city may have different names
(and different asset figures). The primary key for the customer~scheme is
customer-name. We are not using the social-security number, as was done in
Chapter 2, in order to have smaller relation schemes in our running
example of a bank database. We expect that in a real world database the
social—security attribute would serve as a primary key.

Let R be a relation scheme. If we say that a subset K of R is a superkey
for R, we are restricting consideration to relations r(R) in which no two
distinct tuples have the same values on all attributes in K. That is, if
tl and (2 are in rand tl 1H2, then t1[KJ $121K].

branch-name customer-name m
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Downtown Jones 1000
Redwood Smith 2000
Perryridge Hayes
Downtown Jackson
Mianus CurryRound Hill Turner
Pownal Williams
North Town Adams
Downtown Johnson
Perryridge Glenn
 Brighton Brooks

Figure 3.3 The barrow relation.
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SO Relational Model Chapter 3

3.2 Formal Query Languages

A query language is a language in which a user requests information from
the database. These languages are typically higher-level languages than
standard programming languages. Query languages can be mtegorized as
being either procedural or nonproceduml. In a procedural language, the user
instructs the system to perform a sequence of operations on the database
to compute the desired result. In a nonprocedural language, the user
describes the information desired without giving a specific procedure for
obtaining that information.

Most commercial relational database systems offer a query language
that includes elements of both the procedural and the nonprocedural
approaches. We shall study several commercial languages later in this
chapter. First, we look at two "pure” languages: one procedural and one
nonprocedural. These “pur'e” languages lack the "syntactic sugar" of
commercial languages, but they illustrate the fundamental techniques for
extracting data from the database. '

3.2.1 The Relational Algebra

The relational algebra is a procedural query language. There are five
fundamental operations in the relational algebra. These operations are:
select, project, mrtesian-product, union, and set—difference. All of these
operations produce a new relation as their result.

In addition to the five fundamental operations, we shall introduce
several other operations, namely, set intersection, theta join, natural join, and
division. These operations will be defined in terms of the fundamental
operations.

Fundamental operations

The select and project operations are called unary operations, since they
operate on one relation. The-other three relations operate on pairs of
relations and are, therefore, called binary operations.

The select operation selects tuples that satisfy a given predicate. We use
the lowercase Greek letter sigma (a) to denote selection. The predicate
appears as a subscript to 0'. The argument relation is given in parentheses

  —m_m
Perryridge 15 Hayes 1500
Perryridge 25 Glenn 2500

.. (borrow).

 

   
 Figure 3.4 Result of ”branch-mime = “Perryridge
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following the 0. Thus, to select those tuples of the borrow relation where
the branch is “Perryr-idge," we write

"brandivname. = “Pctryridge” (W)
. . ‘ 'l .

If the borrow relation Is as shown in Figure 3.3, then the relation that
results from the above query is as shown in Figure 3.4. We may find all
tuples in which the amount borrowed is more than $1200 by writing

"amount > I200 (borrow)

In general, we allow comparisons using =, it, <, S, >, 2 in the
selection predicate. Furthermore, several predicates may be combined into
a larger predicate using the connectives and (A) and or (v). Thus, to find
those tuples pertaining to loans of more than $1200 made by thePerryn'dge branch, we write

“branch-name = “Perryridgc” A amount > 1200 (borrow)

The selection predicate may include comparisons between two attributes.
To illustrate this, we consider the relation scheme

Client-scheme = (customer-name, employee-name)

indicating that the employee is the "personal banker" of the customer. The
relation client (Client-scheme) is shown in Figure 3.5. We may find all those
customers who have the same name as their personal banker by writing.

o’custarrrer‘rmrnc a employee-name (dim!)

If the client relation is as given in Figure 3.5, the answer is the relation
shown in Figure 3.6.

In the above example, we obtained 2-. relation (Figure 3.6) on (customer-
name, employee-name) in which “customer-name] = “employee-name] for all
tuples t. It seems redundant to list the person's name twice. We would .

 
Figure 3.5 The client relation.
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SCCHOH 3-2 ; Formal Query Languages 53 [.{Ii1 I“:

prefer a one attribute relation on (customer-name) which lists all those who _ ' it'll
have the same name as their personal banker. The project operation allows - i client. ”I'm" I .“j,
us to produce this relation. The project operation is a unary operation that E C“5’°’"”'"""‘ em '1“ ee-namc i'jll
copies its argument relation, with certain columns left out. Since a relation Ill];
is a set. any duplicate rows are eliminated. Projection is denoted by the ; Rye fl;
Greek letter pi (II). We list those attributes that we wish to appear in the 3 Harrison [1

result as a subscript to n. The argument relation follows It in parentheses. i Rye ’ 91Suppose we want a relation showing customers and the branches from ; Pittsfield {'11
which they borrow, but do not care about the amount of the loan, nor the .3 Stamford l' ’
loan number. We may write :1 Princeton

‘ E Pittsfield , _
"brand-want, customer-name (borrow) P310 Alto ‘ ;

Sand Hill Woodside I ‘ i
Let us revisit the query “Find those customers who have the same Senator Brooklyn 1 l

name as their personal banker." We write _ Walnut Stamford l l
' Main Harrison l '

"customer-name (”customer-name = emplacement-“mm” North Rye . '
- Main Hamson ‘1 ;

Notice that instead of giving the name of a relation as the argument of the . North Rye ‘ j V' ,7
projection operation, we give an expression that evaluates to a relation. Park ““556“ i ' ; /

The operations we have discussed up to this point allow us to extract _ . Putnam Stamford ill 3

information from only one relation at at time. We have not yet been able to Williams Nassau Princeton f lcombine information from several relations. One operation that allows us Adams Spnng “"558“
to do that is the cartesian product operation, denoted by a cross (x). This Johnson Alma _ P310 Alto
operation is a binary operation. We shall use infix notation for binary Glenn Sand "'11 Woodside

operations and, thus, write the cartesiah product of relations rl and r2 as Brooks Senator Brooklyn ll'
1' X r2. We saw the definition of Cartesian product earlier in this chapter {gfifiion fife“ nalnut Stamford I .
(recall that a relation is defined to be a subset of a cartesian product of a Johnson Smiet: N33] garrison ' l, ;
set of domains). From that definition we should already have some , Johnson Hayes Main ultimo i
intuition about the definition of the relational algebra operation X. Johnson Cu North R e n , 3
However, we face the problem of choosing the attribute names for the Johnson Uni-(3’3 Park “£55 ld .» i
relation that results from a Cartesian product. Johnson Tumery Putnam 5' mterd 2

Suppose we want to find all clients of bank employee johnson, as well Johnson Williams Nassau pé a; v I
as the dties in which the clients live. We need the information in both the Johnson Adams - 5' fin “it; 1‘3“ j i 2
client relation and.the customer relation in order to do so. Figure 3.7 shows Johnson Iohnson Arlmag [’an like i ‘ t
the relation r = client x customer. The relation scheme for I 15 Johnson Glenn Sand Hill Woodside ”'1 l

Johnson Brooks Senator Brooklyn 1'1 ‘
lohnson Green Walnut Stamford ‘j i

_m §= ‘
—-mai- . l 7.

\ . figure 3'6 new" of "alumna-Mme = “Plow-MW (Chem) Figure 3.7 Result of client x customer. . I. gl
‘, l

El }
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54 Relational Model Chapter 3

(clientrustomtrmnme, client.employee—name, customerxuslomer-nnme
customerslrcet, customer.custonwr-city)

That is, we simply list all the attributes of both relations, and attach
the name of the relation from which the attribute originally came. We need
to attach the relation name to distinguish clicnt.customer-name tromcustomer.customer—name.

Now that we know the relation scheme for r = client x customer, what
tuples appear in r? As you may have suspected; we construct a tuple of I
out of each possible pair of tuples: one from the client relation and one
from the customer relation. Thus r is a large relation, as can be seen from
Figure 3.7.

Assume we have n, tuples in client and "2 tuples in customer. Then
there are nln2 ways of choosing a pair of tuples: one tuple from each
relation, so there are "1"2 tuples in r. In particular, note that it may be the
case for some tuples t in r that t[cIient.custorner-name] # l[customer.custamer—
name].

in general, if we have relations rl(Rl) and r2(R2), then rl x r2 is a
relation whose scheme is the concatenation of RI and R2. Relation R
contains all tuples t {or which there is a tuple il in 'l' and t2 in r2 for
which rum = MN and t[R21 = tlezl. ,

Returning to the query “Find all clients of Johnson and the city in
which they live," we consider the relation r = client x customer. If we write

0clientemployee-mm - “lohnson’ (client x customer)

then the result relation is as shown in Figure 3.8. We have a relation
pertaining only to employee Johnson. However, the customer.customer—name
column may contain customers of employees other than Johnson (if you
don’t see why, look at the definition of cartesian product again). Note that
the client.custonrer‘narne column contains only customers of Johnson. Since
the cartesian product operation associates every tuple of customer with every
tuple of client, we know that some tuple in client x customer has the
address of, the employee‘s customer. This occurs in those cases where it
happens that client.customer-name = customer.customer—name. So if we write

"clientmstomer-mm: = customer.custmner-name

\ ("clientmployee-namz = “Johnson" (client x customer»

we get only those tuples of client x customer that:

o Pertain to Johnson.

0 Have the street and city of the customer of Johnson.

new

ma-"i
.t‘h-‘grurflll..
ms..»..a».
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client. client. customer. customer. customer.
customer-name emlo ce-mmic customer-name street customercil

Johnson ‘Jones M
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Johnson Smith North Rye
Johnson Hayes Main Harrison
Johnson Curry North Rye
Johnson Lindsay Park Pittsfield
Johnson Turner Putnam Stamford
Johnson Williams Nassau Princeton
Johnson Adams Spring Pittsfield
Johnson Johnson Alma Palo Alto
Johnson Glenn ' Sand Hill Woodside
Johnson Brooks Senator Brooklyn
Johnson Green Walnut Stamford
Johnson Jones Main Harrison

Johnson Smith North Rye
Johnson Hayes Main Harrison
Johnson Curry North Rye
Johnson Lindsay Park Pittsfield
Johnson Turner Putnam Stamford
Johnson Williams Nassau Princeton
Johnson Adams Spring Pittsfield
Johnson Johnson Alma Palo Alto
Johnson Glenn Sand Hill Woodside
Johnson Brooks Senator Brooklyn
Johnson Green Walnut Stamford 

Figure 3.8 Result of acthLemployec-name = "Johnson" (client x customer).

Finally, since we want only customer-name and customer-city, we do aprojection

ncilentxustamer-name. customa.custamtr-cily
(“clientxustamer-Mme = customa.customer~mme

(adienl.employee-name =- “Johnson"
(client x mstnmer)»

'Ihe result of this expression is the correct answer to our query.
Let us now consider a query that might be posed by a bank’s

advertising department: “Find all customers of the Perryridge branch."
That is, find everyone who has a loan, an account, or both. To answer. this
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 query, we need the information in the borrow relation (Figure 3.3) and the 2. megomains of the ith attribute of r and the ith attribute of 5 must bedeposit relation (Figure 3.1). We know how to find all customers with a . me.
loan at the Perryridge branch:

 
 a:

 

 The set-difference operator, denoted by -, allows us to find tuples that
l] ‘ (a _ = .. . .. (borrow)) are in one relation, but not'in another. The expression r - 5 results in acustomer mm: brand! name Penyndge relation containing those tuples infr but not in s .

We can find all customers of the Perryridge branch who have an
account there but do not have a loan there by writing:

 
  
 We know also how to find all customers with an account at the Perryn'dgebranch:

 
 “customer-name (“brunch-name = “‘Perryridgc" (deposim  
 "customer-Mme (”Mandi-Mme = "Pcrryridge" (deposfln

— customer-name ("brandy-name = "Perryridge" (barman)
  ....a

 
To answer the query, we need the union of these two sets, that is, all

customers appearing in either or both of the two relations. This is
accomplished by the binary operation union, denoted, as in set theory, by

 
  
 The result relation for this query appears in Figure 3.10.   

 
 

  
 

U. So the expression the advertising department needs in our example is - Formal definition of the relational algebra

llcummmme (omndpmm = “Pctryridge” (borrow)) . Tpe five operators we have justseen allow us to give a complete definition
U "customer-name (chandbmm = "Pcrryridge" «4,05,,» 0 an expressron in the relational algebra. A basic expression in the   relational algebra consists of either one of the following:    

 The result relation tor this query appears in Figure 3.9. Notice that , .
there are three tuples in the result even though the Perryridge branch has . A relation m the database.
two borrowers and two depositors. This is due to the fact that Hayes is o Aconstant relation.
both a borrower and a depositor of the Perryridge branch. Since relations

are sets, duplicate values are eliminated. A general expression in the relational algebra is constructed out of smaller
Observe that, in our example, we took the union of two sets, both of ’ subexpressions. Let E I and 52 be relational algebra expressions Thenwhich consisted of customer-name values. In general, we must ensure that ' ’

unions are taken between compatible relations. For example, it would not

 

  
  
  
  
  
  
  
  

0 E U E
make sense to take the union of the borrow relation and the customer I 2

relation. The former is a relation of four attributes and the latter of three. 0 El - £2
Furthermore, consider a union of a set of customer names and a set of . E x Ecities. Such a union would not make sense in most situations. Therefore, I 2

:31; umon operation r U s to be legal, we require that two conditions . ofiEI): where [7 is_a predicate on attributes on E.
  

 
0 II E ), where S is a list cons'stin t ‘ '

1. The relations r and 5 must be of the same arity. That is, they must ins-15" l ' g 0 some 0‘ *he attributes appearinghave the same number of attributes.  
 are all relational algebra expressions.
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Figure 3.9 Names of all customers of the Perryridge branch. Figure 3'10 Customers with only an account 3‘ the Perryridge branch.
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Additional operators

\‘Ve have now seen the five fundamental operations of the relational
algebra: o, n, x, U, -. These five operators are sufficient to express any
relational algebra query; However, if we restrict ourselves to just the five
fundamental operators, some common queries are lengthy to express.
Therefore. we define additional operators. These new operators do not add
any power to the algebra, but they do simplify common queries.

For each new operator we define, we give an equivalent expression
using only the five fundamental operators.

The first additional relational algebra operation we shall define is set
intersection (n). Suppose we wish to find all customers that have both a
loan and an account at the Perryridge branch. Using set intersection, wecould write:

chstomrr-name (”brunch-name = “Perryridgc“ (bor'row))
n nmstmner-name (obmndr-hame - “Pcrryridge” (deposit))

The result relation for this query appears in Figure 3.11.
Note, however, that we do not include set intersection as a

fundamental operation. We do not do so because we can rewrite any
relational algebra expression using set intersection by replacing the
intersection operation with a pair of set difference operations as follows:

rns=r-(r—5)

Thus, set intersection does not add any power to the relational algebra. It
is simply more convenient to write I n 5 than r - (r - s).

The next operations we add to the algebra are used to simplify many
queries that require a Cartesian product. Typically, a query that involves a
(anesian product includes a selection operation on the result of the
Cartesian product. Consider the query “Find all customers who have a loan
at the Perryridge branch and the cities in which they live." We first form
the Cartesian product of the borrow and customer relations, then we select
those tuples that pertain to IPerryr-idge and pertain to only one customer-name. Thus we write

“humanism-name. customer.custnmcr—dty ("P‘bo mm x custom»
Where: \

P = borrow.branch-name = "Pen-yddge"
A bonaw.customer—name = customer.customer-nnme

.wanna.-
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custamrr~name 

Figure 3.11 Customers with an account and a loan at the Perryridge branch.

The theta join is a binary operation that allows us to combine the
selection and cartesian product into one operation. The theta join is
denoted by W 9, where N is the "join" symbol and the subscript 8 (the
Greek letter theta) is replaced by the selection predicate. The theta join
operator forms the mrtesian product of its two arguments and then
performs a selection using the predicate 6.

We rewrite our relational algebra expression for “Find all customers
having a loan at the Perryridge branch and the cities in which they live,"using the theta join as follows:

nbanuwcuslomer-name. atstamncustamcr-city (borrow N 9 ("5'0”")
In this example, 8 is the predicate:

borrow.bmnch-name = “Perryridge”
A barma.customet-mme = customtrxusmmer-Mmr

In general, 9 can be an arbitrary predicate. Given two relations, r and s,and a predicate 0,

rNes=oe(rXs)

The natural-join operation is a further notational simplification of the
relational algebra. Let us consider a simpler version of the above example,
“Find all customers having a loan at some branch and their dties." If we
write this query as a theta join we obtain

nborrawuslmnrr—mme. mstamrmustomer-city
(borrow N bommustomn—nnme = atstamer.cusiom-nnme customer)

Observe that this particular theta join forces equality on those attributes
that appear in both relation schemes. This sort of predicate occurs
frequently in practice. Indeed, if we are printing out pairs of (customer-
name, customer-city), we would normally want the dty to be the city in
which customer lives, and not some arbitrary city. The natural-join
operation is designed precisely for this sort of query.
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Although the definition of natural-join is a bit complicated, it is applied
easily. We can use the natural join to write the query “Find all customers
having a loan at some branch and their cities" as follows:

ntustamn-Mme,custmner~dty (barrow N cusmm")

Since the schemes for borrow and customer (that is, Borrow-scheme and
Customer-scheme) have the attribute customer-name in common, the natural-
join operation considers only pairs of tuples that have the same value on
customer-name. It combines each such pair of tuples into a single tuple on
the union of the two schemes (that is, branch-name, loan-number, customer-
name, amount, street, customer-city). After performing the projection, we
obtain the relation shown in Figure 3.12. The earlier example, “Find all
customers having a loan at the Perryridge branch and their cities," can bewritten as

ncusttmrer-rmme. customer-city

(“branch-name = «pmyfidgen (borrow no customer»

We are now ready for a formal definition of the natural join. Consider
two relation schemes R and S which are, of course, lists of attribute names.
Let us consider the schemes to be sets rather than lists. This allows us to
denote those attributes in both R and S by R n S , and to denote those
attributes that appear in R, in S, or in both by R U S . Note that we are
talking, here, about union and intersection on sets of attributes, notrelations.

Consider two relations r(R) and 5(5). The natural ioin of r and s,
denoted by r N s is a relation on scheme R U S . It is the projection onto

customer-name _
Iones  

 

 
  

 
 
 

  
 
 

 
 

 
 
 

customer-cit
Harrison

 

 
  

 
 
 
 
 

  

 
 

Smith Rye
Hayes Harrison
Curry Rye
Turner Stamford
Williams Princeton
Adams Pittstield
Johnson Palo Alto
Glenn Woodside

Brooks Brooklyn
 

Figure 3.12 Result of flmsmmmmm‘ customer-city (borrow to customer).
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R U S of a theta join where the predicate requires LA = 5A for each
attribute A in R n S . Formally,

r N s= “RUSU Nut] =5.Al/\..,Ar.A =s.A 5). n n
l

i whereR n S = {Al' A"). "
‘ Now that we have introduced the natural join, we adopt the following

convention for attribute names in cartesian products of relations: We shall
use the notation rctation~nnme.attribute—name only when necessary to avoid
ambiguity. When no ambiguity results, we shall drop the relation-nameprefix.

% Because the natural join is central to much of relational database theory
and practice, we give several examples of its use:

0 Find the assets and name of all branches which have depositors (that
is, customers with an account) living in Port Chester.

"brunch-mime. assets

(”customer-city = “Port Chester" (cus’amw M dEPOSit N ”and.”

Notice that we wrote customer 06 deposit N branch without inserting. parentheses to specify

(customer X- deposit) to branch
or customer N (deposit M branch)

We did not specify which expression we intended because they are
equivalent. That is, the natural join is associative.

I Find all customers who have both an account and a loan at thePerryridge branch.

“customer—name (”branch-name = “Perryridge” (borrow N ‘d‘POSFmt

Note that we could have written an expression for this query using setintersection:

“customer-name ("branch-name = "Pcn'yridge" (“W9”)
n “customer-name (”branch-name = “Perryridge” (barraw))

This example illustrates a general fact about the relational algebra: It is
possible to write several equivalent relational algebra expressions thatare quite different from each other.
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0 bet r(R) and 5(5) be relations without any attributes in common, that is,
R n S = o. (2: denotes the empty set.) Then 7 N s = r x s .

We now introduce one final relational algebra operation, called division
(+). The division operation is suited to queries that include the phrase "for
all." Suppose we wish to find all customers who have an account at all
branches located in Brooklyn, We can obtain all branches in Brooklyn by
the expression:

’1 = “brunch-name ("branch-city = “Brooklyn“ 0"“an

We can find all customer-name, branch-mm pairs for which the customer has
an account at the branch by writing

r2 = “customer-name, brunch-mime (deposit)

Now we need to find customers who appear in 12 with every branch name
in ’l' The operation that provides exactly those customers is the divide
operation. The query can be answered by writing

"customn-vwme. branch-mm Mews")

+ “brunch-mm: ("brunch-city = “Brooklyn“ (branch)

Formally, let r(R) and 5(5) be relations, and let S g R . The relation r + s
is a relation on scheme R — S . A tuple t is in r + s if for every tuple is in
5 there is a tuple t, in r satisfying both of the following:

his] = lslsl

trlR - S] =th - S]

It may be surprising to discover that the division operation can, in fact, be
defined in terms of the five fundamental operations. Let rtR) and 5(5) be
given, with s g R .

'+5=nR—S(')'nR—s((nR—Smxs)"1

To see that this is true, observe that "R _ S (r) gives us all tuples t that
satisfy the second condition of the definition of division. The expression on
the right side of the set difference operator,

uR‘S((nR—S(’)xs)-') \
seryes to eliminate those tuples that fail to satisfy the first condition of the
definition of division. Let us see how it does this. Consider

l'lR _ 5 (r) x s . This is a relation on scheme R which pairs every tuple in
[IR _ S (r) with every tuple in 5. Thus (l'lR _ 5*(r) x s) - r gives us those

“any”...y—e-KH‘WW'
..l3mmJ
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pairs of tuples from "R _-5 (r) and s which do not appear in I. If a tuple tis in

“R _ s(,(llR _ s(r) X s)- r)

then there is some tuple is in s'that does not combine with tuple t to form
a tuple in 7. Thus t holds a value. for attributes R - S which does not
appear in r + s . It is these values that we eliminate from HR _ 5 (r).

At times it is necessary to express the cartesian product of a relation
with itself. In order to distinguish between the attributes of the resulting
relation, we must rename one of the operands of the cartesian product. For
this purpose, we define a rename operator which allows us to refer to a
relation by more than one name. Define renadel. R2) to be a function
which returns the relation specified by RI, but under the name R2. See
exercises 3.5e, 3.53 and 3.11d for examples of the use of renaming.

3.2.2 The Relational Calculus

The relational algebra is a procedural language because, when we write a
relational algebra expression, we provide a sequence of operations that
generates the answer to our query. The relational calculus, on the other
hand, is a nonprocedural language. In the relational calculus, we give a
formal description of the information desired without specifying how toobtain that information.

There are two forms of the relational calculus, one in which the
variables represent tuples, and one in which the variables represent values
of domains. These variants are called‘ the tuple relational calculus and the
domain relational calculus. The two forms are very similar. As a result, we
shall emphasize the tuple relational calculus.

A query in the tuple relational calculus is expressed as

{I I Pm}

that is, the set of all tuples t such that predicate P is true for t. Following
our earlier notation, we use “Al to denote the value of tuple t on attribute
A, and we use i e r to denote that tuple t is in relation I.

Before we give a formal definition of the tuple relational calculus, we
retum to some of the queries for which we wrote relational algebra
expressions in the last section.

Find the branch-name, loan-number, customer-name, and amount for loans
of over $1200:

{t l t e borrow A ([amount] > 1200}

Suppose we want only the customer-name attribute. rather than all attributes
of the barrow relation. To write this query in the tuple relational calculus,
we need to write an expression for a relation on scheme (customer-mime).

 ..‘Iu‘fi
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We need those tuples on (customer-name) such that there is a tuple in
borrow pertaining to that customer-name with the amount attribute > 1200. In
order to express this, we need the construct “there exists” from the

predicate calculus in mathematical logic. The notation
3 l (QM)

means “there exists a tuple t such that predicate (20') is true."
Using this notation, we may write the query “Find all customers who

have a loan for an amount greater than $1200" as:

(t I 3 s (s e borrow A “customer-name] = slcustamer-name]
A simunt] > l200)}

In English, we read the above expression as “the set of all tuples t such
that there exists a tuple s in relation borrow for which the values of t and s
for the customer—name attribute are equal, and the value of s for the amount
attribute is greater than $1200.”

Consider the query “Find all customers having a loan from the
Perryridge branch and the cities in which they live." This query is slightly
more complex than we have seen so far since it involves two relations,
namely, customer and borrow. But as we shall see, all this requires is that
we have two “there exists" clauses in our tuple relational calculus
expression. We write the query as follows:

{I I 3 s (s e borrow A “customer—name] = s[customcr-mme]
A s[brum:h—mme] = “Pelryridge”

A 3 u (u e customer A ulcustmner-name] = s[customer-mzme]
A “customer-city] = u[custamcr-city]))}

In English, this is “the set of all (customer-name, customer-city) tuples for
which customer-name is a borrower at Perryridge branch and customercity is
the city of customer-name." Tuple variable 5 ensures that the customer is a
borrower at the Perryridge branch. Tuple variable u is restricted to pertain
to the same customer as s, and it ensures that the customer-city is the city ofthe customer.

To find all customers having a loan, an account, or both at the
Perryridge branch, we used the union operation in the relational algebra.
In the tuple relational mlculus, we shall need two “there exists" clauses,
connected by "or" (v).

{t t 3 s (s e borrow A “custom-name) = s[custamer-name]
A s[brandr—mme] = “Perryridge“)

v 3 u (u e deposit A “customer-name] = u[customer-mme]
A u[branch-name] = “Perryridgc")}

,rr" r 3—. w: A4771!" cgkjrl

~—.m.mmt-..;.
.“.mb’w-uthtat-«‘23.?w-,m
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The above expression gives us the set of all customer-name tuples such that
at least one of the following holds:

I The customer-name appears in some tuple of the borrow relation as a
borrower from the Perryridge'brunch.

o The customer-name appears in some tuple of the deposit relation as a
depositor of the Perryridge branch.

if some customer has both a loan and an account at the Perryridge branch,
that customer appears only once in the result because the mathematical
definition of a set does not allow duplicate members of a set.

If we now want only those customers that have both an account and a
loan at the Perryridge branch, all we need to do is change the “or" (V) to
“and" (A) in the above expression.

(t I 3 s (s e borrow A “customer-name] = s[custamer-mme]
A s[branch-name] = “Perryridge”)

A 3 u (u e deposit A “customer-name] = u[customer-name]
A u[branchvname] - “Penyridge”))

Now consider the query, “Find all customers who have an account at
the Perryridge branch but do not have a loan from the Perryridge branch."
The tuple relational calculus expression for this query is similar to those we
have just seen, except for the use of the “not“ (fl) symbol.

{t l 3 u (u e deposit A “customer-name] = utcustamer-name)
‘ A u[lmznch-name] = “Perryridge")

A 't 3 s (s e borrow A “customer-name] = summon-name]
A s[brandr—nnme] = “Perryridge"))

The above tuple relational alculus expression uses the 3 u (...) clause to
require that the customer have an account at the Perryridge branch, and it
uses the ‘1 3 s(...) clause to eliminate those customers who appear in
some tuple of the burrow relation as having a loan from the Perryridgebranch.

Finally, let us consider the query we used in Section 3.2.1 to illustrate
the division operation, “Find all customers who have an account at all
branches located in Brooklyn." To write this query in the tuple relational
calculus, we introduce the “for all" construct, denoted V. The notation

V KQU»
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means “Q is true for all tuples t." We write the expression for our query asfollows:

{i I V u (u 1 branch V u[bmnch—cityl 9* “Brooklyn"
V 3 s (s e deposit A ”customer-name] = slcuslomcr—mme]

A ulbranch-name] = s[bmnch-name])))

In English, We interpret the above expression as “the set of all (customer-
name) tuples t such that for all (brandi-name, brunch-city) tuples at least one
of the following is true: *

0 u is not a tuple of the branch relation (and therefore, does not pertain
to a branch in Brooklyn).

0 The value of u on attribute brunch-city is not Brooklyn.

0 The customer has an account at the branch whose name appears in thebranch-name attribute of H.

We are now ready to give a formal definition of the tuple relational
calculus. A tuple relational calculus expression is of the form:

{I 1 PM}

where P is a formula. Several tuple variables may appear in a formula. A
tuple variable is said to be a free variable unless it is quantified by a “ 3" or“ V". Thus in:

f e borrow A 3 s (“customer-name] = s[customer-name])

t is a free variable. Tuple variable 5 is said to be a bound variable.
A tuple relational calculus formula is built up out of atoms. An atom is

of one of the following forms:

0 s e r, where s is a tuple variable and r is a relation.

0 SM 6 uly], where s and u are tuple variables, x is an attribute on
which 5 is defined, y is an attribute on which u is defined, and 6 is a
comparison operation (<, s, =, s, >, 2). We require that attributes x
and y have domains whose members can be compared by 8.

O SIX] 6 c, where s is a tuple variable, x is an attribute on which 5 is
defined, 6 is a comparison operator, and c is a constant in the domainof attribute x.

Section 3.2 ; Formal Query language: 67

Formulae are built up from atoms using the following rules:
0 An atom is a formula.

I If PI is a formula. then so are ‘tPl and (Pl).

0 If PI and P2 are formulae, then so are Pl v P2 and P, A P2.
0 [f Pl(s) is a formula containing a free tuple variable s, then:

3503(9) and Vs(P,(5))
are also formulae.

As was the raise for the relational algebra, it is possible to write
equivalent expressions that are not identical in appearance. In the tuple
relational calculus, these equivalences include two rules:

1. Pl A P2 is equivalent to o (‘tl’l v 'fiPz).

2. V t (Pl(t)) is equivalent to ‘I 3 t (‘IPl(t)).

There is one final issue we must address in the tuple relational
mlculus. A tuple relational calculus may generate an infinite relation.
Suppose we wrote the expression:

{tl Hbarrow}

There are infinitely many tuples that are not in borrow. Most of these
tuples contain values that do not even appear in the database! Clearly, we
do not wish to allow such expressions. Another type of expression wewish to disallow is:

(I l 3 s (slxl 1‘ c A t[y] = sLyD)

where x and y are attributes and c is a constant. It is possible that the only
tuples that satisfy SIX] :39 c are tuples whose values do not appear in the
database. Finding such a tuple requires a search among the potentially
infinite number of tuples that do not appear in the database.

To assist us in defining a restriction of the tuple relational alculus, we
introduce the concept of the domain of a tuple relational calculus formula.
Let P be a formula. lntuitively, the domain of P, denoted dam(P), is the set
of all values referenced in P. These include values mentioned in P itself as
well as values that appear in a tuple of a relation mentioned in P. Thus,
the domain of P is the set of all values that appear explide in P or that
appear in one or more of the relations whose names appear in P.

a
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These considerations motivate the concept of sale tuple relational
calculus expressions. We say an expression (t 1 P0» is safe if all of thefollowing hold:

1. All values that appear in tuples of the expression are values fromdom(P).

2. For every “there exists" subformula of the form 35(Pl(5)), the
sublormula is true if and only if there is a tuple s with values from
dam(Pl) such that Pl(s) is true. '

3. For every “for all" subformula of the form V s (PI(S)), the subformula is
true if and only if Pl(s) is true for all tuples s with values from dam(Pl).

The purpose of the notion of safety is to ensure that only values from
domu’) appear in the result and to ensure that we can test "for all" and
“there exists" subformulae without having to test infinitely manypossibilities.

Consider the second rule in the definition of safety. For 3 s (P|(s)) to
be true, we need to find only one s for which Pl(s) is true. In general,
there would be infinitely many tuples to test. However, if the expression is
safe, we know that we may restrict our attention to tuples with values
from _dom(Pl). This reduces the number of tuples we must consider to a
finite number: The situation for subforrnulae of the form Vs(Pl(s)) is
similar. To assert that Vs(Pl(s)) is true, we must, in general, test all
possible tuples. This requires us to examine infinitely many tuples. As
above, if we know the expression is safe, it is suffident for us to test Pl(s)
for those tuples 5 whose values are taken from dam(Pl).

All the tuple relational calculus expressions we have written in theexamples of this section are safe.

The tuple relational calculus, restricted to safe expressions, is
equivalent in expressive power to the relational algebra. This means that
for every relational algebra expression, there is an equivalent safe
expression in the tuple relational calculus. and for every safe tuple
relational calculus expression there is an equivalent relational algebra
expression. We will not prove this fact here, but the bibliographic notes
contain references to the proof. Some parts of the proof are included in theexercises.

There is a second form of the relatjonal calculus called the domain
relational calculus. In this form of the relational calculus, we use domain
variables that take on values from an attribute's domain, rather than values
for an entire tuple. The domain relational calculus. however, is closelyrelated to the tuple relational calculus.
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An expression in the domain relational calculus is of the form
{<rl. :2. xn> l P(x,. x2. x")) where the 1;. I S i S n. represent
domain variables. P represents a formula. As was the case for the tuple
relational calculus, a formula is composed of atoms. An atom in the
domain relational calculus is of the following forms:II

o <x,~. x"> e r. where r is a relation on n attributes and xi. l s i s n
are domain variables or domain constants.

C x 6 y, where x and y are domain variables and 8 is a comparison
operator (<, S, =, at, >, a). We require that attributes x and y have
domains that can be compared by 6,

0 x 9 c, where x is a domain variable, (-9 is a comparison operator, and c
is a constant in the domain 0! the attribute for which I is a domainvariable.

Formulae are built up from atoms using the following rules:

0 An atom is a formula.

0 if PI is a formula, then so are ml" and (Pl).

o If PI and P2 are formulae, then so are Pl v P2 and PI A P2.
0 If Pl(x) is a formula in x, where x is a domain variable, then

3 :r (P'(x)) and V x (Plum
are also formulae.

As a notational shorthand, we write

3 n.b.c (Pta.b.c))
for:

3 n (3 17(3 C (”mid”)

The notion of safety applies to the domain calculus as well. The
domain relational calculus, restricted to safe expressions, is equivalent to

. the tuple relational calculus, restricted to sale expressions. Since we noted
earlier that the tuple relational calculus, restricted to safe expressions, is  
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equivalent to the relational algebra, all three of the following areequivalent:

0 The relational algebra.

o The tuple relational calculus restricted to safe expressions.

0 The domain relational calculus restricted to safe expressions.

We now give domain relational calculus queries we considered earlier.
Note the similarity of these expressions with the corresponding tuplerelational calculus expressions:

Find the branch name, loan number, customer name, and amount forloans of over $1200:

{<b.l.c,n > I <b,l,c,a > e borrow A a > 1200)

Find all customers who have a loan for an amount greater than $1200:

(<c > I 3 b,l,a (<b.l.c,a > e borrow A a > 1200))

Find all customers having a loan from the Perryridge branch and the
city in which they live:

{<t.x > I 3 b,l.a (<b,l.c.n > e borrow A b = “Penyridge”
A 3 y (<c,y.x > e customer»)

Find all customers having a loan, an account, or both at the Perryn’dgebranch:

{<c > I 3 b.I.a (<b,l,c',a > e barrow A b = “dec")
v 3 1mm (<b,a,c.rx > e deposit A b = “Perryridgc")}

Find all customers who have an account at all branches located in
Brooklyn:

(<c > I v x,y,z (<x,y,z > c branch v 2 at “Brooklyn"
v (3 am (<xa.c,n > e deposit)))}

3.3 Commercial Query Languages
The fomial languages we have just seen provide a concise language for
representing queries. However, database system products require a more
“user-friendly" query language. in this section, we study three of these
product languages: SQL, Quel, and QBE. We “have chosen these languages

 

database systems but also in.

Commercial Query Languages

comm ‘

Although we refer to these langu

. minimize potential confusion.
A typical SQL query has the form:

select A\,. A2. A
from r],

n

72, ..., rmwhere P

The A15 represent attributes,
predicate. This query is equivale

the rls represent relations, and P is a
nt to the relational algebra expression: 
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"A.,A,. ....A,,(."P(’1 x ’2 X "' X 'm»

If the where clause is omitted, the predicate P is true. The list
Al. A2. A" .of attributes may be replaced with a star (') to select all
attributes of all relations appearing in the from clause.

SQL forms the cartesian product of the relations named in the from
dause, performs a relational algebra selection using the where clause
predicate, and projects the result onto the attributes of the select clause. In
practice, SQL may convert the expression'into an equivalent form that can
be processed more efficiently. However, we shall defer concerns about
effidency to Chapter 9.

The result of an SQL query is, of course, a relation. Let us consider a
very simple query using our banking example, “Find the names of all
branches in the deposit relation":

select branch-name

from deposit

In the formal query languages, the mathematical notion of a relation
being a set was used. Thus, duplicate tuples did not ever appear in
relations. In practice, dupliate elimination is relatively time-consuming.
Therefore, SQL (and most other commercial query languages) allow
duplicates in relations. The above query will, thus, list each branch-name
once for every tuple in which it appears in the deposit relation.

in those cases where we want to tome the elimination of duplicates,
we insert the keyword distinct after select. We can rewrite the above
query as

select distinct brunch-name

from deposit

if we want duplicates removed. We note for historical accuracy that early
implementations of SQL used the keyword unique in place of distinct.

SQL includes the operations union, intersect, and minus, which
operate on relations, and correspond directly to the relational algebra
operations U, n, and —.

Let us see how the example queries that we considered earlier are
written in SQL. First, we find all customers having an account at the

Perryridge branch: \
select customer-name

from deposit
where branch-name - “Perryridge”
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Next, let us find all customers having a loan from the Perryridge branch:

select customer-name
from borrow . _
where brunch-Mme = “Perryridge”

To find all customers having a loan, an account, or both at the Perryridgebranch we write . ‘

(select customer-name
from deposit
where branch-name - “Perryridge")union

(select customer-name
from barrow

where Mandi-name = “Perryridge")

Similarly, to find all customers who have both a loan and an account at the
Perryridge branch, we write

(select mstamer—name
from deposit
where branch-name = "l’erryridge")intersect

(select hammer-name
from human

where brunch—name = “Perryridge")

To find all customers of the Perryridge branch who have an account there
but no loan there, we write

(select customer-name
. from deposit

where branch-name = “Perryridge")uunus

(select customer-name
from borrow

where Mandi-name = “Perryridge")

SQL does not have a direct representation of the natural-join
operation. However, since the natural join is defined in terms of a
cartesian product, a selection, and a projection, it is a relatively simple
matter to write an SQL expression for the natural join.
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Recall that we wrote the relational algebra expression:

naGlefl-Mme. mstonm-dtym N customer)

for the query “Find all customers having a loan at some branch and their
city." in SQL, we write

select customer.customer—mme, customer-city
from lam-mo, customer
where barrow.cuslomer-name = mtamer.cuslomcr-mme

Notice that SQL uses the notation relatrbn-nam.auribute-mre, as did the
relational algebra, to avoid ambiguity in cases where an attribute appears
in the scheme of more than one relation. We could have written
customatstomercity instead of customer-city in the select clause. However,
since the attribute customer-city appears in only one of the relations named

_ in the from clause, there is no ambiguity when we write customer-city.
let us consider a somewhat more complicated query in which we

require that the customers have a loan from the Perryridge branch: “Find
the names of all customers having a loan at the Perryridge branch and
their respective city." In order to state this query, we shall need to state
two constraints in the where clause, connected by " ."

select customer.customer-name. customer-city
from borrow, customer
where boflow.customcr-mm - custamer.mstonrer-name and

branch-name = “Perryridge”

SQL uses the logical connectives “and," “or," and “not” rather than the
mathematical symbols “A." “v" and “‘i.“

SQL draws on the relational calculus for operations that allow testing _
tuples for membership in a relation. To illustrate this, reconsider the query
“Find all customers who have both a loan and an account at the Perryridge
branch." Earlier, we took the approach of intersecting two sets: the set of
aocount holders at the Perryridge brand! and the set of borrowers from the
Perryrldge branch. We can take the alternative approach of finding all
account holders at the Perryridge branch who are members of the set of
borrowers from the Perryridge branch. Clearly, this is an equivalent
approach, but it leads us to write our query using the in connective ofSQL.

The in connective tests for set membership, where the set is a
collection of values produced by a select dause. The not in connective tests
for the absence of set membership.
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Let us use in to write the query “Find all customers who have both a
loan and account at the Perryrid e branch." W be ' '
account holders, and write the subqigrery: e gm by finding all

(select custorhéfmnu
from deposit -

where branch-name = “Penyfidge")

We then need to find those customers who are bo. rrowers from the
Perryndge branch and who appear in the list of account holders obtained
in the above subquery. We do this b bedd‘ ’
outer select. The resulting query is y em mg the above subquery m an

select Customer-name
from-“borrow

where Mandi-name = “Perryr-idge" and
customer-name in (select autumn-name

from deposit

where brunch-name = "Perryr-idge")

relation. It is possible to test for membershi ' ' ' SQ. p In an arbitrary relation. L
uses the notation qr], v2, ..., vn> to denote a tuple of arity n containing
values ol, ”2 ..., on. Using this notation, we can write the query “Find allcustome h h '
in a . 5;; ave both an account and a loan at the Perryndge branch"

select custom-name
from borrow I

where brunch-name = “Pen-yridge“ and
<brmdr-name, autumn-name) in
(select branch-name, customer-name
from deposit) \

We now illustrate the use of the “not in" construct. To find all
customers who have an amount at the Perryrid branch but d
loan at the Perryridge branch, we can write 88 o “0' have a

m /.
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 from deposit
where brunch-mime = “Perryridge” and

customer-name not in (select customer-name
from barrow .

where branch-name = “Perryridge")

SQL borrows the notion of tuple variables from the tuple relational
calculus. A tuple variable in SQL must be associated With-a particular
relation. Tuple variables are defined in the from clause. We illustrate the
use of tuple variables by rewriting the query “Find all customers havmg a
loan at some bank and their city”:

select customer-name

from deposit
where brunch-name in

(select brunch-mm
from deposit
where customer-name = “Jones") \

We were able to use the in construct in the above query because we

were testing for equality between two branch names. Consider the query“Find all branches that have greater assets than some branch located in
Brooklyn." We can write the SQL expression:

7mmJMA.t....

 

. I _ Itselect T.brancIi-name * ‘
from branch T, branch 5
where T.assrts‘> S.nsscts and

S.brnnc_lr-city = "Brooklyn"., 4

Since the companson IS a greater than comparison, we cannot wnte thisexpression using the in construct.

SQL does, however, offer an alternative style for writing the above
query. The phrase “greater than some" is represented in SQL by > any.
This construct allows us to rewrite the query in a form that resembles
closely our formulation of the query in English.

using the "> all" construct:

select branch-name
from branch
where assets > all

(select assets
from brunch

where branch-city = “Brooklyn“)

The constructs in, > any, > all, etc. allow us to test a single value
against members of an entire set. Since a select generates a set of tuples,
we may, at times, want to compare sets to determine if one set contains all

 

.‘4

fi select brunch—name ‘ i
select T.custamer-name, customer-city '- from brunch . i ‘1
from borrow 5, Customer T 1" where assets > any | I
where S.custamer-mrme = Tasman-name 3 (select assets ’ ‘

. 5 from branch - . - _
Note that a tuple variable is defined in the from clause by placing it after ‘1 where branch~city = “Brooklyn") 1 Cthe name of the relation it is assoc'ated with. an I l ‘ . .

Tuple variables are most useful when we need to compare two tuples " The subquery

' in the same relation. Suppose we want to find all customers who have an 1‘ .account at some bank at which Jones has an account. We write this query 2' (select assets

as follows: from branch ’ 1
’ where branch—city = “Brooklyn") . : I

select T.custamer-Mme .; . ~
from deposit S, deposit T generates the set of all asset values for branches in Brooklyn. The “> any" . t
where $.custamer-name = “Jones" and - comparison in the where clause of the outer select IS true if the assets value '

S.branch-mrme - T.brunch-Mme ', of the tuple is greater than at least one member of the set of all asset
‘ ,values for branches in Brooklyn.

’on d it.bmndr-mme since it ' SQL alsa allows "< any," “5 any,“ «a any," ..= any," and nae any" 23232:1031: czearcx‘hlighrigferuesrfceut: 112:: is infided. ; comparisons. As an exercise, verify that .«= any" is identical to “in.“ i ‘
We note that an alternative way to express thisquery is i Now let us modify our query slightly. Let us find all branches that :

; have greater assets than all branches in Brooklyn. We write this query i’
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the members of some other set. Such comparisons are made in SQI1 usingthe contains and not contains constructs.

Consider the query “Find all customers who have an account at all
branches located in Brooklyn." For each customer, we need to. see if the se;of all branches at which that customer has an account contains the set 0
all branches in Brooklyn.

select customer-name
from deposit 5
where (select branch-name

from deposit '1'
where S.customer—nnme = T.customer-name)contains

(select brunch-name
from brunch

where branch-city = “Brool<lyn")

The subquery

(select branch-name
from branch

where branch-city = “Brooklyn")

finds all the branches in Brooklyn. The subquery

(select branch-name
from deposit T
where $.custamn-mzme = [customer-name)

at which customer S.customer-nam¢ has an account.

giftlliefl‘oitzare‘lhe: takes each customer and tests whether the set of all
branches at which that customer has an account contams the set of all

Manges? :1?!me some control over the order in which tuples in a
relation are displayed. The order by dause causes the tuples in thledresulli
of a query to appear in sorted order. To list in alphabetic 0 er a
customers having a loan at the Perryridge branch, we can write

select customer-name
from bimaw

where branch-name = “Perryfidse'
. order by customer-name

-..4‘»Mmmw.
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In order to fulfill an order by request, SQL must perform a sort. Since
sorting a large number of tuples may be costly, it is desirable to sort onlywhen necessary. 2

form groups. Tuples with the‘same value on this attribute are placed in

0 average: avg
0 minimum: min ~

0 maximum: max

0 total: sum

0 count: count

To find the average account balance at all branches, we write

select branch-name, avg (balance)
from deposit
group by branch-name

aggregates of tuples.

At times it is useful to state a condition that applies to groups rather
than to tuples. For example, we might be interested only in branches
where the average account balance is more than 51,200. To express such a
query, we use the having clause of SQL. Predicates in the having clause
are applied after the formation of groups, so aggregate operators may be
used in the having clause. We express this query in SQL by

select branch-name, avg (balance)
from deposit
group by branch-name
having avg (balance) > 1200.

The aggregate operator count is used frequently to count the number
of tuples in a relation. The notation used for this in SQL is count (‘). Thus,
to find the number of tuples in the customer relation, we write

select count (‘)
from customer.

Counting can be used to check for negative information. Suppose we
wish to find all customers who have a deposit at the Perryridge branch,
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but for whom no address is on file. Our approach is to count the number
of customer tuples pertaining to each depositor of the Perryridge branch. If .
the count is 0 for a depositor, we know we have no address for that
person.

select crtstomcwnamc
from deposit
where brunch-name = "Perryridge“and 0 =

select count (‘)
from customer

where dcposit.customcr—name = customcrcustomcr-namc

As an alternative, SQL includes a special construct for the application
of count used in the above example. The predicate exists takes a select
statement as its argument and returns true unless the select results in an
empty relation. We rewrite the example as follows:

select customer-name
from deposit
where branch-name = “Perryridge”and not exists

select '
from customer

where deposit.custamer-mzme = custanmcustomer-mmz

SQL is as powerful in expressiveness as the relational algebra (which,
as we said earlier, is equivalent in power to the relational calculus). SQL
includes the five basic relational algebra operators. Cartesian product is
represented by the from clause of SQL. Projection is performed in the
select clause. Algebra selection predicates are represented in SQL's where
clause. Set union and difference appear in both the relational algebra and
SQL. SQL allows intermediate results to be stored in temporary relations;
thus we may encode any relational algebra expression in SQL.

SQL offers features that do not appear in the relational algebra. Most
notable among these features are the aggregate operators. Thus, SQL is
strictly more powerful than the algebra.

In this section, we have seen that SQL offers a rich collection of‘
features, including capabilities not included in the formal query languages
aggregate operations, ordering of tuples, etc. Many SQL implementations
allow SQL queries to be submitted from a program written in a general
purpose language such as Pascal, PUl, Fortran, C, or Cobol. This extends
the programmer’s ability to manipulate the database even further. We
show how P111 and SQL are combined in an actual system in Chapter 15.

is r to declare t to be a tuple variable restricted to take on values oftuples in r.

O The retrieve clause is similar in function to the select clause 0! SQL.
0 The where dause contains the selection predicate.

A typical Quel query is of the form:

range of tl is ’1
range of f2 is r2
range of tm is rm
retrieve (t,- .A- t- .A- ., t. .A‘)i ll' '2 ’2'" ’ l
whereP " u

The ti, are the tuple variables. The 'i' are relations, and the A], areathibutes. Quel uses the notation k

LA

to denote the value of tuple variable ton attribute
as fIA] in the tuple relational calculus.

Quel does not include relational algebra operations like intersect,
union, or minus. Furthermore, Quel does not allow nested subqueries
(unlike SQL). That is, we cannot have a nested retri ' 'a where clause. . evevwhere clause rnsrde

Let us return‘to our bank example,
queries using Quel. first. we find all cu to -
Perryridge branch: 5 mers havrng an account at the

A. ”115' means the same

range oft is deposit
retrieve “customer-name)
where wrench-name = “Perryn‘dge”

0 show a Quel query involving more than one relation, let us consider
'1'

ggkqggyn‘find all customers having a loan at the Perryridge branch and

 .‘n.y...”-"I:M3:).III;
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range of t is borrow
range of s is arstomev
retrieve (t.customer-nanu, salstama-dty)
where thrush-name = “Perryn‘dge” and

Leustomer-mm: = stamina-name

Note that Que], like SQL, uses the logical connectives and, or, and not,
rather than the mathematical symbols “A." N.” and "fl" as used in the
tuple relational calculus. ‘

As another example of a query involving two relations, consider the
query “Find all customers who have both a loan and an account at the
Perryridge bran

range of s is barrow
range of t is deposit
retrieve (s.customer-mmc)

where thunk-name = “Perryridge” and shrank-Mme = "Pen-yridge“and Loam-name = sardonic-name

In SQL, we had the option of writing a query such as the above one
using the relational algebra operation intersect. As we noted above, Que]
does not include this operation.

Let us consider a query for which we used the union operation in '
SQL: “Find all customers who have an account, a loan, or both at the
Perryridge branch." Since we do not have a union operation in Quel, and
we know that Quel is based on the topic relational calculus, we might be
guided by our tuple relational calculus expression for this query:

{t l 3 s (s e borrow A tImstomer-mmr] = s[custamer-Mme]
/\ slbmndr-name] = Wage")

v 3 u (u e deposit A “customer-name] = u[cusfomer-nam¢]
A u[branch~mm| - ‘Perryridge"»

Unfortunately, the above expression does not lead us to a Quel query.
The problem is that in the tuple relational calculus que , we obtain
customers from both tuple variable 5 (whose range is borrow) and tuple
variable v (whose range is deposit). ln Quel, our retrieve clause must beeither

retrieve s.custamer-mre
or retrieve mustang-name

If we choose the former, we exclude those depositors who are not
borrowers. If we choose the latter, we exclude those borrowers who are
not depositors.
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range of u is ‘deposit
retrieve into temp (u.custamer~name)
where thrush—name = “Perryridge”

range of s is borrow

append to temp (s.cu5toruer—nnme)
where s.brandr—mme = “Pen'yridge”

range of t is temp
retrieve unique (”Blarney-name)

Qu'el sorts temp and eliminates duplimtes.
The strategy of using append allows us to ' '. perform uruons in One]. To

perform a set difference r - 5 (minus in SQL), we create a temporary
relation representing 7 and delete tuples of this tern ora '. relatro th
also in 5. To find all customers who have an a P ry n at are

following

range of u is deposit
retrieve into temp (madam-name)
where u.bmndr-mm¢ = ‘Perryridge"

At tlus point temp has all custome

fi.__

a.“she‘s—“3manions/'a,—
sax  
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range of s is barrow
range of t is temp
delete (I)
where swatch-name = “Perryridge” andhumanly-name = s.customa-name

The relation temp contains the desired list of customers. We write

range of t is temp
retrieve «customer-name)

to com lete our query. ’ '
Forrt’unately. there is a more natural way to express this query in Quel.

First, however, we must introduce the Quel aggregate expressions, whichtake the form

<aggregate-operation> (LA where P)

where <aggre ate-operatic» is one of count, sum, avg-max, min,- or any,
t is a tuple vasriable, A is an attribute, and P rs‘a predicate Similar to the
where clause in a retrieve. An aggregate expressron may appear anywheretant r.

a cofllhus, SEEK; average ac'count balance for all accounts at the
Perryridge branch, we write

ran e of t is deposit _ .retrieve avg (balanoc where branch-name = “Perryndge ')
‘ ' find allA ates ma a ar in the where dause. Suppose we Wish to

acgcgrueris whosz bilgfrce is higher than the average balance at the branchwhere the account is held. We write:

range of u is deposit
range of t is depmr't
retrieve amount-number
where Malaria: > avg (u.balancc where

' u.brundr-mme = menchmame)

' lance of all accounts
The above avg (...) expression computes the average ba .
at the branch represented by t. Because expressions of this sort are
frequent, Quel allows the syntax:

range of t is deposit
retrieve Lamont-number
where t.balance > avg (t.balance by thumb-name)

:ML
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The avg (...) expression performs the same computation as above. For a
given t, the average balance is computed of the set of all tuples having thesame value on the branch-numeattribute as Lbranch-mzmr.

Let us return to the query “Find all customers who have an accOunt at
the Perryridge'branch but do not have a loan from the Perryridge branch.“
We can write this query using the count aggregate operation if we think of
the query as “Find all customers who have an account at the Perryridge
branch and for whom the count of the number of loans from the
Perryridge branch is zero."

range of t is deposit
range of u is borrow
retrieve t.custamer-namr

where “much—name = “Perryridge” and

count (uJarm-numkr where u.branch-name = “Perryridge”
and u.custamer—name = t.customer-namz) = 0

This is a more natural way to express this query than our earlier example.
Quel offers another aggregate operation that is applicable to this

example, called any. If we replace count in the above query with any, we
obtain 1 it the count is greater than 0; otherwise we obtain 0. The
advantage in using any is that processing can stop as soon as one tuple is
found. This allows taster execution of the query.

As a .more complicated example, consider the query “Find all
customers who have an account at all branches located in Brooklyn." Our
strategy for expressing this query in Quel is as follows: First find out how
many branches there are in Brooklyn. Then compare this number with the
number of distinct branches in Brooklyn at which each customer has an
account. The count aggregate operation we used earlier counts duplicates.
Therefore, we use the countu operation, which counts unique values.

range of t is deposit
range of u is branch

range of s is br'anchretrieve trimaran-name

where countu (staunch-um where shrank-city = “Brooklyn“
and shard—name - t.bmnch-rurme) =

countu (u.lmmd1-mrn¢ where u.bmnch-city = “Brooklyn")

We have observed that Quel is related closely to the tuple relational
calculus. The range of clause corresponds to the “there exists." However,
there is no analog in Quel to “for all." That is why we -needed to use
insertion and deletion to state in Quel some of the queries that we could
write in the tuple relational calculus. To see more clearly the relationship  
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between Quel and the tuple relational calculus, consider the following
Quel query

range of fl is rl
range of t2 is 12
range of tm is rm

retrieve “WAIT tl-z.A]-2. tl-njli")where P

The above Quel query would be expressed in the tuple relationalcalculus as:

(H 3t1,t2. .... tm(tlerlAt2572Atmerml\
’ .=. ....= ...A

”"1 All] t‘I [All] A t[r,1 A12] tl2 [Ah] A
miu‘AI'n] — ii“ Min] A F (t1, t2. imn)

This expression can be understood by looking at the formula within
the “there exists“ formula in three parts:

0 t, e rl A t2 e 72A A 1m e rm. This part constrains each tuple in
‘1' 12. .... t"I to take on values of tuples in the relation it ranges over.

‘._.=.. ... ...A._./\.‘.=.r. '
o a": All] i‘lmhi A ninth] = :1": Ah] 'l'." Ah] gnmlni This

part corresponds to the retrieve clause of the Quel query. We need to
ensure that the kth attribute in tuple t corresponds to the kth entry in

the retrieve clause. Consider the first entry: "TAN This is the value of
some tuple of rl-I (since range of 'i is ril) on attribute Ai'. Thus, we

I

need tlAill = tillAhl. We used the more cumbersome notation

tlrl-‘AI-l] = till/til] to be able to deal with the possibility that the same
attribute name appears in more than one relation.

0 P01. t2! tm). This part is the constraint on acceptable values for
t1. t2, .... tm imposed by the where clause in the Quel query.

3.3.3 Qliery-by-Example

Query—by-Example (QBE) is the name of both a query language and the
database system which includes this language. There are two distinctive
features of QBE. Unlike most query languages and programming
languages, QBE has a two-dimensional syntax. A query in a one-dimensional
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Figure 3.13 QBE skeleton tables for the bank example.

language (for example SQL or Quel) can be written i '‘ ‘ , ' n one ( ossrbl ve
long) line. A two-dimensional language requires two dimenpsions for irt:
expression. (There does am a one-dimensional version of QBE. We shall
not consrder this verston in our discussion of QBE.) The second distinctive
feature of QBE is tha .queries are. expressed “by example." instead of giving

3‘ the user gives an example of. is example to corn ute the
answer to the query. Despite these unusual features, there ispa dose
correspondence between QBE and the domain relational calculus.

Queries in QBE are expressed using skeleton tables. These tables show
the relation scheme and appear as in Fi_ . , gure 3.13. Rather than clutter the
display With all skeletons, the user seleds those skeletons needed for a

G7
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given query. The user fills in these skeletons with “example rows." An
example row consists of constants and "example elemenls." An example
element is really a domain variable. To distinguish domain variables from
constants, domain variables are preceded by an underscore character (" _ ")
as in - x. Constants appear without any qualification. This is in contrast to
most other languages in which constants are quoted and variables appear
without any qualification.

To find all customers having an account at the Perryridge branch, we
bring up the skeleton for the deposit relation and fill it in as follows:

d nsit branch-name account—number customer-name balance

Perryridge P. _ x

The above query causes the system to look for tuples in deposit that have
“Perryridge” as the value for the branch-name attribute. For each such tuple,
the value of the customer—mm: attribute is assigned to the variable x. The
value of the variable x is "printed" (actually displayed) because the
command "P." appears in the customer-name column next to the variable x.

Unlike Quel and SQL, QBE performs duplicate elimination
automatically. To suppress duplicate elimination, the command “ALL." isinserted after the “P." command.

4 _——m
l’.ALL. _ x   

The primary purpose of variables in 085 is to force values of certain
tuples to have the same value on certain attributes. Suppose we wish to
find all customers having a loan from the Perrytidge branch, and theircities. We write:

borrow —mmm
Perryridge - x

customer custann-nume m customer-d
-P._x P.-y

To execute the above query, the system finds tuples in borrow with
“Perryridge" as the value for the branch-name attribute. For each such tuple,
the system finds tuples in customer with the same value for the customer-
name attribute as the borrow tuple. The values for the customer-name and
customer-city attributes are displayed. Observe that this is similar to what
would be done to answer the domain relational calculus query:

Section 3.3 1 Commercial Query Languages 89s

{<x.y > t 3 s (<x,s,y > e customer»

A technique similar to the one above can be used to write the query
"Find all customers who have 60th an account and a loan at the Perryridge
branch": - ‘. il

d .. I" ———mP.-xPerryridge

  

  
borrow branch-name loan-number customer-name m-xPerryridge

Suppose our query involves a less than or greater than comparison, rather
than an equality. comparison, as in “Find all account numbers with abalance of more than $1200":

dnsit account-number mm
P.-x >1200

Until now, all the conditions we have imposed were connected by
and. To'expressfian “or" in QBE, we give aseparate example row for the

two conditions being “or”-ed, using distinct domain variables. Consider the
query “Find all customers having an account at the Pe 'd e b d1 th
Redwood branch, or both": rryn 3 ran ' e

   

 
Contrast the above query with "Find all customers having an account at
both the Perryridge branch and the Redwood branch":

1

Perryridge

 

  

 

 
 

\
The critical-distinction between these two queries is the use of the same
domain vanable (-x) for both rows in the latter query, while, in the former
query, we used distinct domain variables (x and y). To illustrate this, note
that in the domain relational calculus, the former query would be writtenas

H4"gr

:‘m'11""
,A
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I ‘l.' {Q > I 3 b.11." (<b,a,x.n > e deposit A b = “Perryrids‘c? i In English. the above query reads “display all customer-name values that I; I .V 3 b.a.n (<bm.x.n > I deposit /\ b = “ROdWOOd )} : appear in at least two tuples, with the second tuple having a branch-name . 1' Idifferent from the first."

hile the latter query wouldbewritten as it the result of a query, is spread over several tables, we need aw ,
mechanism to display this result in a single table. To accomplish this, we ‘
can declare a' temporary result table which includes all the attributes of the 5 Ii .
result relation. Printing of the desired result is done by including the ‘1command "P." only in the result table.

<1 > I 3 11.41.71 (<b.n.x,n > e deposit A b = “Perryridgc?( A 3 b,n,n (<b.a.x,n > e deposit /\ b = “Redwood )} “my2..__

in the above query. We do that by bringing up the condition box and 'entering the constraint "1' ab Jones":—m 3 .

- ' ' ' ‘ ‘ ll the constraints on the domain 1 i. . . ssed m BE b laqng a not 'lt IS inconvenient at times to express a ' . . .- Queues that "1w“: In:g:“Eli-L139? lizprfalation ngme 3);“: next to an i variables Within the table skeletons. QBE includes a condition box feature .! ’i5'8“ (1) m a “be 5 ee 0 f that allows the expression of such constraints. Suppose we modify the I"examp row. . ‘ above ue to “Find all customers not named "Jones" who have accounts '- “Find all customers who have an ‘ q _ ry . . rkt, :ftflogeggigsgghechqzfifydo not have a loan from that branch": -, at two different branches," We want to Include an “x a6 Jones" constraint i faccoun I _
 

barrow —MMm ‘ QBE includes aggregate operations similar to those of SQL and Quel. - I-i Perryridge - x To find the average balance at all branches, we may write:
Compare the above query with our earlier query "Find all customers who d H it w accaiml-number “Homepwmehave both an account and a loan at the Perryridge branch." The only \—_-:m

  

l
l

' P-G P. v .ALL ‘difference is the “‘l“ appearing next to the example row in the borrow ~ a B Iskeleton. This difference, however, has a major effect on the processing of

ll 1 f h‘ h Besides avg, the aggregate operators max, min, count, and sum are
the query. QBE finds a x va ues or w u:

iincluded in QBE. The “G" in the "P.G" entry in the branch-name column is !

analogous to SQL's “group by branch-name" construct. The average balance I I

 
1. There is a tuple in the deposit relation in which branch-name is

“Perryridge” and customer-name is the domain variable x. is computed on a branch-by-branch basis. The “ALL" in the “P.avg.ALL"
entry in the balance column ensures that all balances are considered (recall ‘ .i‘There is no tuple in the borrow relation in which branch-mm: is that QBE eliminates duplicates by default).“Perryridge” and customer-name is the same as in the domain variable x.

v

ruminantslimited“'"
Legs

n.-
.N

l

l
Th “-1" can be mad as “there does not exist." We have restricted our attention until now to the extraction of information I

5 e

‘ ' l The f ct that we laced! the “-I“ under the relation name rather than from the database. We have not, however, shown how to add new Ii d aattribute napme is important. Use of a “-1" under an attribute '. information, remove information, or change infon-nation. While we did do ’4un :23: shorthand for «,t -- To find an customers who have accounts at f. some insert and delete operations in our Quel examples, we never altered l
nam '

m different branches we write the database. Instead, we dealt with temporary relations constructed for !
o ,

the sole purpose of helping us to express the query. . I ~.

- y

ll:

The formal query languages (the relational algebra and the relational '

calculi) do not include any provision for modifying the database. All Icommercial languages do include such features, but we shall restrict our '

attention to examples in SQL. I I ‘I
l
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3.4.1 Deletion

Deletion of tuples from a relation is simple. A delete request is expressed
in much the same way as a query. However, instead of displaying tuples
to the user, the selected tuples are removed from the database. We may
delete only whole tuples; we cannot delete values on only particular
attributes. In SQL, a deletion is expressed by

delete r
where P

P represents a predicate and 7 represents a relation. Those tuples t in r forwhich P(t) is true are deleted from r.

We note that a delete command operates on only one relation. If we
want to delete tuples from several relations, we must use one delete
command for each relation. The predicate in the where clause may be as
complex as a select command's where clause. At the other extreme, we can
have an empty where clause. The request:

 
delete barrow

deletes all tuples from the borrow relation. (Well-designed systems will
seek confirmation from the user before executing such a devastatingrequest.)

We give some examples of SQL delete requests:

0 Delete all of Smith’s account records.

delete deposit
where customer—name = “Smith“

0 Delete all loans with loan numbers between 1300 and 1500.

delete borrow

where loan-number > 1300 and loan-number < 1500

0 Delete all accounts at branches located in Needham

delete deposit
where branch-name in (select branch-name

from brunch

where branch-city = “Needham")
 

 
 

The above delete request first finds all branches in Needham, and then
deletes all deposit tuples pertaining to those branches.

.._..,..._...
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Note that although we may delete tuples from only one relation at a
time, we may reference any number of relations in a select-from-where
embedded in the where clause of a delete.

relatron from which tuples'are to be deleted

delete deposit

where balance < (select avg (balance)
from deposit)

However. as we delete tu
we reevaluate the select
depend upon the order in

ples from deposit, the average balance changes! If .
for each tuple in deposit, the final result will
which we process tuples of deposit!

Such ambiguities are avoided by the following simple rule: During the
execution of a delete request, we only mark tuples to be deleted; we do
not actually delete them. Once we have finished processing the request,
that is, once we are done marking tuples, then we delete all marked
tuples. This rule guarantees a consistent interpretation of deletion. Thus,
our delete request above does, in fact, work the way we would hope and
expect. (Some implementations of SQL sim l disallo ' d l t '
the above one.) p y \\ e e e requests lrke
3.4.2 Insertion

insert into deposit ‘
values ("Needham", 9732, "Smith", 1200)

More generally, we might want to insert tuples based on the result of a
query. Suppose that we want to provide all loan customers in the
Needham branch with a $200 savings account. bbt the loan number serve
as the account number for the new savings account. We write

insert into deposit

select branch-name. loan-number, customername, 200from borrow

where branch-name = “Needham“
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instead of specifying a tuple as we did earlier, we use a select to
specify a set of tuples. Each tuple has the branch-name (Needham), a loan-
number (which serves as the account number for the new account), the
name of the loan customer who is being given the new account, and the
initial balance of the new account, $200.

3.4.3 Updating

There are situations in which we wish to change a value in a tuple without
changing all values in the tuple. If we make these changes using delete
and insert, we may not be able to retain those values that we do not wish
to change. instead, we use the update statement. As was the case for
insert and delete, we may choose the tuples to be updated using a query.

Suppose interest payments are being made, and all balances are to be
increased by 5 percent. We write

update deposit '
set balance = balance ' 1.05

The above statement is applied once to each tuple in deposit.
Let us now suppose that accounts with balances over $10,000 receive 6

percent interest, while all others receive 5 percent. We write two updatestatements: -

update deposit .
. set balance = balance ‘ 1.06

where balance > 10000

update deposit ‘
set balance = balance ' 1.05
where balance 5 10000

In general, the where clause of the update statement may contain any
construct legal in the where clause of the select statement (including
nested selects). Note that in the above example the (order in which we
wrote the two update statements is important. If we changed the order of
the two statements, an account whose balance is just under $10,000 would
receive 11.3 percent interest!

\
3.5 Views

In our examples up to this point, we have operated at the conceptual
model level. That is, we have assumed that the collection of relations we
are given are the actual relations stored in the database.
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It is not desirable for all users to see the entire conceptual model.
Security considerations may require that we "hide" certain data from
certain users. Consider, for example, a clerk who needs to know a
customer‘s loan number but has no need to see the loan amount. This
clerk should see a relation described, in the relational algebra, by, .\

”branch-name, loan-number. customer—name (borrow)

Aside from security concerns. we may wish to create a personalized
collection of relations that is better matched to a certain user’s intuition
than is the conceptual model.__An employee in the advertising department,
for example, might like to see a relation consisting of the customers of each
branch; that is, for each branch we would like to list those people who
have either an account or a loan at that branch. The relation we would like
to create for the employee is

"Wild-Mme. customer-name (dtPOSit)

U "Much-name. customer-mm (borrow)

We use the term view to refer to any relation not part of the conceptual
model that is made visible to a user as a “virtual relation." It is possible to
support a large number of views on top of any given set of actual relations.

Since the actual relations in the conceptual model may be modified by
insert, update, or delete operations, it is not generally possible to store

'views. Instead, a view must be recomputed for each query that refers to it.
In Chapter 9 we shall consider techniques for reducing the overhead of
this recomputation. For now, we restrict our attention to the definition
and use of views in SQL.

A View is defined in SQL using the create view command. To define a
view, we must give the view a name and state the query that computes theview. The form of the create view command is

create view v as <query expression>

where <query expression> is any legal query expression. The view name is
represented by a.

As an example, consider the view consisting of branches.and their
customers. Assume we wish this view to be called all-customer. We definethis view as follows: '

create view all-customer at
(select branch-name, customer-name
from deposit)

, union ‘
(select branch-name, customer-name
from barrow)

r—J
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: View: 97

  
Once we have defined a view, the view name can be used to refer to

the virtual relation the view generates. View names may appear in any
place that a relation name may appear. Using the view all-customer, we can
find all customers of the Perryridge branch by writing

Assume we have inserted the above tuple, producing the relation shown
in Figure 3.14. Consider the following query to total all loan balances:     

 
select sum (amount)
from Wow‘   select customer-name

from all—customer

.. . .. It is not possible to perform addition using null. Similar problems arise
where branch-name = Pcrryndge using other aggregate operators. As a result, all aggregate operations

_ . . . . except count ignore tuples with null values on the argument attributes.
Recall that we wrote the same query In Section 3.3 wrthout using news. All compafisons involving "u" are false by definition. However a

al‘houtfih “:WS 3"? a useful ‘00:! fpr'querics, they Pref“ significant _ special keyword, null may be tised in a predicate to test for a null valiie.
pro ems i up ates, insertions. or e ehons are expresse using VIEWS. To find all customers who an ear in the borrow relati - 'th
The difficulty is that a modification to the database expressed in terms of a Mam, we write PP on m null values {orview must be translated to a modification to the actual relations in the
conceptual model of the database. We illustrate the problem of database
modification through views with a simple example. '

Consider the clerk we discussed earlier who needs to see all loan data
in the borrow relation except loan-amount. Let loan-info be the view given tothe clerk. We define this view as

 
 

1—“.—
 

  
  
  
  
  
 

select customer-name
from borrow
where balnm is null

  

    
  
 

 The predicate is not null tests for the absence of a null value.
We illustrate another problem rsulting from modification of the

database through views with an example involving the following View:

   
create view loan-info as

select branch-name, loan-number, customer-name
from barrow

 

  
 create view branch-city as

- select brunch-name, custom-city
Since SQL allows a view name to appear wherever a relation name is from borrow, customerallowed, the clerk may write  
  insert into loan—info

values ("Perryridge", 3, “Ruth")  

 'l'his insertion must be represented by an insertion into the relation borrow,
since barrow is the actual relation tram which the view loan-info is
constructed. However, to insert a tuple into borrow, we must have some
value for amount. There are two reasonable approaches to dealing with thisinsertion:

 
“avg...  

  
 

 O Reject the insertion and return an error message to the user.

,, 0 Insert a tuple (“Pen-yridge", 3, “Ruth", null) into the borrow relation. 
 

armMr.“-
 The symbol null represents a null~value, or place-holder value. It signifiesthat the value is unknown or does not exist.

Most systems take the latter approach and create null values.
However, the presence of null values adds complexity to database queries.
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This view lists the cities in which borrowers of each branch live. Consider

the following insertion through this View:

insert into branch—city
values (“Br-ighton", “Woodside")

The only possible method of inserting tuples into the honour and customer
relations is to insert (“Brighton", null, null, null) into borrow and (null, null,
“Woodside") into customer. Suppose the system did that. Then we obtain
the relations shown in Figure 3.15. This turns out to be unsatisfactory since

select ‘

from brunchvcity

does not include the tupie (“Brighton“, "Woodside"). To see why this is so,
recall that all comparisons involving null are defined to be false. Thus,
the where clause in the view definition (borrow.cuslomer~rmme =
customer.customer—nnme) is never satisfied for the tuples added to the borrow
and customer relations.

As a result of the anomaly we have just discussed, many database
systems impose the following constraint on modifications allowed throughviews:

0 A modification is permitted through a view only if the view in question
is defined in terms of one relation of the actual relational database.

Under this constraint, update, insert, and delete operations would be
forbidden on the example views brunch-city and all-customer that we definedabove.

The general problem of database modification through views is a
subject of current research. The bibliographic notes mention recent works
on this subject.

Another view~related research area of interest is the universal relation

model. ln this model, the user is given a view consisting of one relation.
This one relation is the natural join of all relations in the actual relational
database. The major advantage of this model is that users need not be
concerned with remembering what attributes are in which relation. Thus,
most queries are easier to formulate in a universal-relation database system
than in a standard relational database system. For example, a universal-
relation version of SQL would not need a from clause. ,

There remain unresolved questions regarding modifications to
universal relation databases. Furthermore, a consensus has not yet
developed on the best definition of the meaning of certain complex types
of universal-relation queries. '

\

-..-

‘
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I u wntown Jones
Redwood Smith

Perryridge , . Hayes
Downtown Jackson
Mianus Curry
Round Hill Turner
Pownal Williams
North Town Adams
Downtown Johnson

.Perryn'dge " Glenn
Brighton Brooks
Bri hton null

customer-name

Jones ' Harrison
Smith Rye
Hayes ‘ Harrison
CU [Ty Rye
Lindsay ‘ Pittsfield
Turner Stamford
Williams . Princeton
Adams ' Pittsfield
Johnson Palo Alto
Glenn ' Woodside

Brooks BrooklynGreen Stamford
null Woodside

 
Figure 3.15 Tuples inserted into borrow and customer.

We can summarize our discussion of views briefly as follows. Views
are a useful mechaan for simplifying database queries, but modifimtion
of the database through views has potentially disadvantageous
consequences. A strong case can be made for requiring all databasemodifications to refer to actual relations in the database.

3.6 Summary

The relational data model is based on a collection of tables. The user of the
database system may query these tables, insert new tuples, delete tuples,
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if: . ’ll. . - . . . ~: fand update (modify) tuples. There are several languages for expressing _- 3.4 Eggstiruc; ghe lollowmg SQL quenes (or the relational database of f. 1' I
these Operations. The tuple relational calculus and the domain relational ‘ C58 ‘ ‘ ”III Icalculus are nonprocedural languages that represent the basic power . - . ‘ ll 1‘required in a relational query language. The relational algebra is a ‘ a. Fmt; (hf Alotlaglsgumlfer 0! persons whose car was Involved In an ll,"
procedural language that is equivalent in power to both forms of the am en m ‘ Ill . WI
relational calculus. The algebra defines the basic operations used within b. Find the number of ‘accidents in which the cars belonging to - Illrelational query languages. “John Smith" were involved. IIIEIThe relational algebra and the relational ulculi are terse, formal 3i:
languages that are inappropriate for casual users of a database system. c. Add a new customer '0 the database. . III
Commercial database system have, therefore, used languages with more d. Delete the car “Mazda“ belonging to “John Smith." I I‘,“syntactic sugar." These languages include constructs for update, insertion, . . ‘ .. .. . 1' ,
and deletion of information as well for querying the database. We have 2' Add a new acudent record for “‘e Toyota be}m‘8'"8 ‘0 JOMS- ' Iconsidered the three most influential of the commercial languages: SQL, i ' . .
Quel. and 0313- ‘ 3.5 Consider the relational database of Figure 3.17. Give an expression ._ " ‘ 1!

Different users of a shared database may benefit from individualized in: i I
views of the database. We used SQL as an example to show how such . ; 4“views can be defined and used. 5. 0 The relational algebra

‘ .3 0 The tuple relational calculus l VJ)
EXCI‘CISES .7 o The domain relational calculus ‘I

3.1 Design a relational database for a university registrar's office. The § . SQL _
office maintains data about each class, including the instructor, the :- 0 Que] ‘ I Ienrollment, and the time and place of the class meetings. For each ; . QBE . i , I:student-class pair, a grade is recorded. = . ‘.

 
.u3.2 Describe the differences between the terms relation and relation

for each of the queries below: . A. , . scheme. Illustrate your answer be referring to your solution to I ' .. l
' .1. . . .' Exercrse 3 ~ a. Find the name of all people who work for First Bank .'

1 1 3.3 Design a relational database corresponding to the E-R diagram of _ Corporation. . ;l l' .. F .1 . ~ ~ 3 ‘ ,l ll Igure 3 6 . b. Find the name and city of all people who work for First Bank I 1f q . Corporation. . ‘ .
I; c. Find the name, street, and city of all people who work for First ’ ~ 1

1'.

Bank Corporation and earn more than $10,000. ll i. -lI - .

-ult-n<none-m'~- 
’ l

lives (person-name, street, city) ( ll VI: works (person-name, company-name, salary) ‘ ‘ ' :L’l. . located-in (company-name, city) 1 I '
I f I manages (person-name, manager—name) II ,3 - i :‘rf ‘ . ‘l l

i: II b l’l l‘4 §I figure 3-15 5-“ diagram Figure 3.17 Relational database. il l
‘ t V l: l;

'l' l I 4 l
, 1r

«.4...., . . ><~
- ‘e. - —-(a.—-—,~!!q91"_
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101 Relational Model Chapter 3 : Exercises 103 ii! I;l K ' ' .
d. Find all people who live in the same city as the company they ' 3'8 In Chapter 2,-we Show“ how to represent many-to-many, many- .

work for. . to—one, one-to-many, and one-to-one relationship sets. Explain how 'j‘ it
primary keys help us to represent such relationship sets in the " ‘l: 3

e. Find all people who live in the same city and on the same relational model. 9 RI
street as the" manager. 3.9 Let the following relatiOn schemes be given: .le

f. Find all people who do not work for First'Bank Corporation. ‘1 l. '

. '3: . R = (ARC) lg. Find all people who earn more than every employee of Small 5 = (D E n lull
Bank Corporation. . ' ' l‘l‘l

h. Assume the companies may be located in several cities. Find . Let {91350115 ’lR) imd 5(5) be given- Give an expression in the t“P19 ill 'all companies located in every my in which Small Bank relational calculus that- is equivalent to each of the following: ""Corporation is located.

a. RAM
3.6 Consider the relational database of Figure 3.17. Give an expression J"

m: b. "B = l7 (r) .‘ }
- c. r x s l i‘

0 SQL 1.
d. HA}: (CC = DU X 5))

0 Que] . A)
. QBE _ 3.10 Let R = (14.8.0 and let I, and 72 both be relations on scheme x. '

Give an expression in the domain relational calculus that is
for each of the queries below: ‘ equivalent to:

a. Find all people who earn more than the average salary of _ a. HAUI) |people working in their company.

b. Find the company employing the most people.

 
ll

l
b. as _ 1., (rl) - ii: =',i- . U l ’

N 5‘ c. Find the company with the smallest payroll. c '1 '2 i i 1 l
i c]. Find those companies that pay more, on average, than the d' 'l 0 r2 5 'I

‘ average salary at First Bank Corporation. e. 11 ~ 72 i , ll 2 y“u . g
l

a . 3.7 Consider the relational database of Figure 3.17. Give an expression f‘ "ARV” x "Bd'zl jin SQL for each query below: _ ‘

‘ . 3.11 Let, R = (AB) and S = (AC), and let r(R) and 5(5) be relations. l
‘ l

ll

a. Modify the database so that Jones now lives in Newtown. Write relational algebra expressions equivalent to the following il
b. Give all employees of First Bank Corporation a 10 percent raise. domain relational calculus expressions. l l: .

I c. Give all managers a 10 Percent raise. - I ' T {q > I 3 b (q'b > e r A b = 17)} 3l l I}!
:5 d. Give all managers a 10 percent raise unless the salary becomes 5- {GAG > | <a,b> e r A <a.c > e 5)) l’ ”l
I: first“ than $100,000. In such cases, give only a 3 percent c. (<11). Va (<a,b>¢7v3c(<u.c>es)} ' } ~.
3 - e. Delete all tuples in the warts relation for employees of Small d' {<4 >/\' 3 c (<a,c > e 5 A 3 bl'bZ (at? E r ll

4 '. Bank Corporation. <5. b2> e ' A bl > ‘’2)» l

l
l

 



VAQOOOWSI'lSfl

 
as

ll_tiimtflijltlill‘lll_

104 Relational Model Chapter 3

3.12 Write expressions for the queries of Exercise 3.11 in -

a. QBE

b. QUEL

c. SQL

3.13 Consider the relational database of Figure 3.17. Using SQL define a
View consisting of manager-name and the average salary of
employees working for that manager. Explain why the database
system should not allow updates to be expressed in terms of thisView.

3.14 List reasons why null values may be introduced into the database.

3.15 Some systems allow marked nulls. A marked null ii is equal to
itself, but if i at j , then ii 75 1,. One application of marked nulls is
to allow certain updates through views. Consider the view branch-
city (Section 3.5). Show how marked nulls can be used to allow the
insertion of the tuple (Brighton, Woodside) through branch-city.
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Query Processing

In the preceding sections, we have considered how to structure the data in
the database. These decisions are made at the time the database is
designed. Although it is possible to change this structure, it is relatively
costly to do 50. Thus, when a query is presented to the system, it is
necessary to find the best method of finding the answer using the existng

 

_database_stmcture.—Thereeare-a—large-numb'ef‘6f"p'6§§ible strategies for
processing a query, especially if the query is complex. Nevertheless, it is
usually worthwhile for the system to spend a substantial amount of time
on the selection of a strategy. Typically, strategy selection can be done
using information available in main memory, with little or no disk
accesses. The actual execution of the query will involve many accesses to
disk. Since the transfer of data from disk is slow relative to the' speed of
main memory and~the central processor of the computer sy'stem, it is
advantageous to spend a considerable amount of processing to save diskaccesses.

9.1 Query Interpretation

Given a query, there are generally a variety of methods for computing the
answer. For example, we saw that in SQL a query could be expressed in
several different ways. Each way of expressing the query “suggests" a
strategy for finding the answer. However, we do not expect users to write
their queries in a way that suggests the most efficient strategy. Thus, it
becomes the responsibility of the system to transform the query as entered
by the user into an equivalent query which can be computed more
efficiently. This “optimizing," or more accurately, improving of the strategy
for processing a query, is called query optimization. There is a close analogy
between code optimization by a compiler and query optimization by a
database system. We shall study the issues involved in effident query
processing both in high-level languages and at the level of physical accessto the data.

Query optimization is an important issue in any database system since
the difference in execution time between a good strategy and a bad one
may be huge. In the network model and the hierarchical model, query
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optimization is left, for the most part, to the application programmer. Since
the data manipulation language statements are embedded in a host
programming language, it is not easy to transform a network or
hierarchical query to an equivalent one unless one has knowledge about
the entire application program.

Since a relational query can be expressed entirely in a relational query
language without the use of a host language, it is possible to optimize
queries automatically. Since the most useful optimization techniques apply
to the relational model, we shall emphasize the relational model in this
chapter. The bibliographic notes reference techniques for optimization of
network and hierarchical queries.

Before query processing can begin, the system must translate the query
into a usable form. Languages such as SQL are suitable for human use, but
ill-suited to be the system's internal representation of a query. A more
useful internal representation of query is one based on the relational
algebra. The only difference between the form of the relational algebra we
shall use here and that of Chapter 3 is that we shall add redundant
parentheses to indicate—the— arderofoperation evaluation.

Thus, the first action the system must take on a query is to translate
the query into its internal form. This translation process is similar to that
done by the parser of a compiler. in the process of generating the intemal
form of the query, the parser checks the syntax of the user’s query, verifies
that the relation names appearing in the query are names of relation in the
database, etc. If the query was expressed in terms of a view, the parser
replaces all references to the view name with the relational algebra
expression to compute a view.

The details of the parser are beyond the scope of this text. Parsing is
covered in most compiler texts (see the bibliographic notes).

Once the query has been translated to an internal relational algebra
form, the optimization process begins. The first phase of optimization is
done at the relational algebra level. An attempt is made to find an
expression that is equivalent to the given expression but that is more
effident to execute. The next phase involves the selection of a detailed
strategy for processing the query. A choice must be made as to exactly
how the query will be executed. A choice of specific indices to use must be
made. The order in which tuples are processed must be determined. The
final choice of a strategy is based primarily on the number of disk accesses
required.

9.2 Equivalence of Expressions .
The relational algebra is a procedural language. Thus, each relational
algebra expression represents a particular sequence of operations. We have
already seen that there are several ways to express a given query in the
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lNe use our bank example to illustrate optimization techniques. In
particular, we shall use the relations customer (Customer-scheme), deposit
(Deposit-scheme), and branch (Branch-scheme). As was the case earlier, wedefine our relation scheme as follows: ' '

Customer-scheme = (customzrmame, strut, customer-city)
Deposit-scheme = (brunch-name, account-number, customer-name, balance)
Branch-scheme = (branch-name, assets, branch-city)

9.2.1 Selection Operation

Let us consider the relational algebra expression we wrote in Chapter 3 for
the query "Find the assets and name of all banks who_have,depositors

 

“branch-name. assets (“customer-city = “Port Chester“
(customer In deposit N branch»

This expression constructs a large relation, customer to deposit 90 branch.
However, we are interested in only a few tuples of this relation (those
pertaining to residents of.Port Chester), and in only two of the eight
attributes of this relation. The large intermediate result:

customer 01 deposit N branch

is Probably too large to be kept in main memo and thus t
on disk. This means that in W "‘“S be “med

. addition to the disk accesses required to read
the relations customer, deposit, and branch, the system will need to access
disk to read and write intermediate results. Clearly, we could process the
query more efficiently if there were a way to reduce the size of theintermediate result.

Since we are concerned only about tuples for which customer-city =
"Port Chester," we need not consider those tuples of the customer relation
that do not have customer-city = “Port Chester." By reducing the number of
tuples of the customer relation that we need to access, we reduce the size of
the intermediate result. Our query is now represented by the relationalalgebra expression:

"brunch-name. «sets ( ("customer-city - “Port Chester” (mstomern
N depostl to branch)
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at . 'i ' :E 'E E
_" , The above example suggests the following rule for transforming ._ 5 We now add a second transformation rule:
—.j‘l relational algebra queries: . ‘ “I E

a! _ _ 1 '5 0 Replace expressions of the form: if" E:
3’: 0 Perform selection operations as early as posstble. ' "l E‘ E

in our example, we recognized that the selection operator pertained only 1} UPIN’z (e) '. 'E El rI" to the customer relation, so we performed the selection on customer directly. E
a Suppose that we modify our original query to restrict attention to byt customers with a balance over $1000. The new relational algebra query is . . .

_ n . op] (up2 (r)) . E: EE E“branch-name. assets (”customafity = “Port Chester"A balance > I000 'j 1E EEE‘. .' ,1 I I

I _ (customer ,4 depostt N branch» j 4‘ where PI and P2 are prediates and e is a relational algebra expression. E E E:
i i . E i-'l ElE

__‘ We cannot apply “‘9. selection. E An easy way to remember this transformation is by noting the following El E” t. a e uiva ences amon relati nal ' : '- ' '

i customencity = "Port Chester" /\ balance > l000 E q . g o algebra expressmns E' EE'EE‘ E_ directly to the customer relation, since the predicate involves attributes of E upI (up2 (5)) = q?2 (upI (2)) = GP4"?2 (e) ' E Al‘
1: ‘ ' ' ""cista‘rrw—FaTdifiimowever, 'the'ErEn'ch relation doeTn‘ét‘ifi'finlve eith'er' —_" "—“‘ "' ”“ " " ' "' " ' ‘ ‘ ' " " '— ‘l 4: ‘,_ customer-city or balance. If we decide to process the join as: ' E p ,-E .‘ ,/

- E «.. 9.2.2 Natural in ‘ ' " E—— .. «customer N deposit) on brunch) V «A IO Operation '. Ia l}?

flip: then we can ”mite our query as: , f By modifying queries so that selections are done early, we reduce the size ' E E—.E 1 3‘ of temporary results. Another way to reduce the size of temporary results ’ Z
__ [1m”firm": was i r. Eh“) fhooge :1; pptimal ordering of the join operations. We mentioned in E- . - ‘ 3 er a na ‘ ' ‘ ' ' '

E“ ((om‘mfly a “P0" Chem!" A MEW> I000 (customer on deposxm ‘ . r rP and ’ ' tura 10m IS assocmhve. Thus, for all relations l .
- L' to branch) - . l' 2’ .-3‘ , ngE E)
‘3- . , g _ ;* E :

iI Let us examine the subquery: , .‘ ’ (’1 N '2) N '3 — 'l N (’2 "l '3) . l HE E"""I t . ~ - E E

3i; customer-city = “P0" Chester" Abama) 1000 (customer N deposit) i although these expressions are equivalent, the costs of computing them a: h .
’12 , é may differ. Consider again the expression: ' E I“

E We can split the selection predicate into two, forming the expression: , § ,. .
,‘ - ' i. .: ”brunch-name. assets ( ("customer-city = “Port OtesIor" “WWW” . E1
17.: customer-city - “PonChester'(”balance> 1000(‘"5’°'"" °° dePOS'm ‘ 1 N “W" N Much) . E
_ . ' , E

i': Both of the above expressions select tuples with customer4:in = “Port. ‘ - We could choose to compute deposit M branch first and then join the result :E Eu
2' : Chester" and balance > 1000. However, the latter form of the expression wrth. ' EEE E ~ E
‘E provides a new opportunity to apply the "perform selections early" rule. - ' ll! E'
:z‘ We now rewrite our query as: - . . omstomn-a'ty = “Port Chester" (“Slam”) :E E Q‘ , ' .. :9 Eur

w . . - . . . E

1:? (“melanin-city = -Pm Chasm," (customer)) In (chum > {000 (deposit)) _ 7 However, deposit N branch is hkely to be a large relation since it contains EE Ein . i . E.
-- 5- i t

E‘ y! :1 E E . ,
. .: ‘ .t E l E ' E1 E I, E“' .

i; _ I l EE l Et *“‘I
\4
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one tuple for every account. However,

"customer-city = "Port Chester“ (customer)

is probably a small relation. To see this, note that since the bank has a
large number of widely distributed branches, it is likely that only a small
fraction of the bank’s customers live in Port Chester. [f we compute:

(customer-city = “Port Chester“ (customer)) to deposit

first, we obtain one tuple for each account held by a resident of Port
Chester. Thus, the temporary relation we must store is smaller than if we

_. x compute deposit N borrow first.
.4 There are other options to consider for evaluating our query. We do

-j _______._ _ _th_care_about the.order_in which-attributes-appear_in_Ljoin,_smce.it.is.

 .s .‘ easy to change the order before displaying the result. Thus, for all
relations 1' and 12:

; YIN72=72NTI

That is, natural join is commutative.
Using this fact, we can consider rewriting our relational algebra

’1 expression as

3‘ nbmmh—Mme, assets «(customer-city = "Port Chester" (customern
l" N branch) N deposit)

j: That is, we could join “customer-city = "Port We!» (customer) with branch as
. the first join operation performed. Note, however, that there are no

j; attributes in common between Branch-scheme and Customer-scheme, so the
‘5 join is really just a canesian product. if there are c customers in Port V I

Chester and b branches, this cartesian product generates be tuples, one for
every possible pair of customers and branches (without regard for whether
or not the customer has an account at the branch). Thus, it appears that

. - this cartesian product will produce a large temporary relation. As a result,
-’ we would reject this strategy. However, if the user had entered the above

expression, we could use the associativity and commutativity of natural

1P
l
1

Al join to transform this expression to the more efficient expression we used
I earlier.!

‘1 9.2.3 Projection Operation
‘1 We now consider another technique for reducing the size of temporary
1; results. The projection operation, like the selection operation, reduces the
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size of relations. Thus, whenever we need to generate a temporary
relation, it is advantageous to apply any projections that are possible. This
suggests a companion to the “perform selections early" rule we statedearlier:

0 Perform projections early.

Consider the following form of our example query:

"branch-name. asscls («ocustoniercity = “Port Chester" (customer))no deposit) to branch)

When we compute the subexpression:

, —_ .--—- «-,—--—.«anomalyTum-cm...“-(wstomc'r-»m-dcpasm-—— . ——~—-- -.__- _.- —

we obtain a relation whose scheme is:

(customer-name, customer-city, branch-mime, account-number, balance)

We can eliminate several attributes from the scheme. The only attributes
we must retain are those that:

O Appear in the result of the query or

I Are needed to process subsequent operations.

By eliminating unneeded attributes, we reduce the number of columns of
the intermediate result. Thus, the size of the intermediate result is
reduced. In our example, the only attribute we need is brunch-name.
Therefore, we modify the expression to:

“branch-Mme. assets (( I“hunch-name «customer-city = “Port Chester" (customerD
no deposit» N branch)

9.2.4 Other Operations

The example we have used involves a sequence of natural joins. We chose
this example because natural joins arise frequently in practice and because
natural joins are one of the more costly operations in query processing.
However, we note that equivalences similar to those presented above hold
for the union and set difference operations. We list some of these
equivalences below:
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"WI U ’2) = “P"I) U “P"z’

“WI “ '2) = ”P‘fi) ‘ '2 = “11"!) _ ”M’z’

(rI U 72) U r3 = I. U (12 U r3)

 
rIUr2=r2Url

We have seen several techniques for generating more efficient
relational algebra expressions for a query. For queries whose structure is
more complex than thoSe of our example there may be a large number of
possible strategies that appear to be efficient. Some query processors
simply choose from such a set of strategies based on certain heuristics.
Others retain all promising strategies and perform the latter phases of
query optimization for each strategy. The final choice of strategy is made
only after the details of each strategy have been worked out and an
estimate is made of the processing cost of each strategy.
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9.3 Estimation of awry-Processing Cost
The strategy we choose for a query depends upon the size of each relation
and the distribution of values within columns. In the example we have
used in this chapter, the fraction of customers who live in Port Chester has
a major impact on the usefulness of our techniques. In order to be able to1....«um-g.A-—r
store statistics for each relation r. These statistics include:

1. '1', the number of tuples in the relation 7.

2. 5,, the size of a record (tuple) of relation r in bytes (for fixed—length
records).

attribute A. 

 
 

I X s occupies s, + 55 bytes.

selection predicate of the form:

<attfflmte-name> = <oalue>

 
 

choose a strategy based on reliable information, database systems may ‘

3. V(A,r), the number of distinct values that appear in the relation 7 for ,

The first two statistics allow us to estimate accurately the size of a canesian '

product. The cartesian product 1 X 5 contains "r": tuples. Each tuple of ..

The third statistic is used to estimate how many tuples satisfy 11'

However, in order to perform such an estimation, we need to know how i
often each value appears in a column. if we assume that each value -
appears with equal probability, then 0‘: “(7) is estimated to have :
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n, /V(A.r) tuples. However, it may not always be realistic to assume that
each value appears with equal probabilily. The branch—name attribute in the
deposit relation is an example of such a case. There is one tuple in the
deposit relation for each amount. it is reasonable to expect that the large
branches have more accounts than smaller branches. Therefore certain
branch-name values appear with greater probability than others.

Despite the fact that our uniform distribution assumption is not always
true, it is a good approximation of reality in many cases. Therefore, many
query processors make such an assumption when choosing a strategy. For
simplicity, we shall assume a uniform distribution for the remainder of this
chapter.

Estimation of the size of a natural join is somewhat more complicated
than estimation of the size of a selection or a cartesian product. Let 11(Rl)
and r2012) be relations lf RI n R2 = a, then II N 72 is the same as
'I X r2, and wé' can use our estimation technique for cartesian products. If

_R £82 i_sa_k_ey_for R l,_then.we_l<now..thatatuple-of-r2 —will—join-with-
exactly one tuple from r'. Therefore, the number of tuples in rl N r2 is no
greater than the number of tuples in r2.

The most difficult case to consider is when Rl n R2 is a key for neither
Rl nor R2. In this case, we use the third statistic and assume, as before,

that each value appears with equal probability. Consider a tuple t of rl,
and assume Rl n R2 = {A}. We estimate that there are n,2/V(A.r2) tuples
in r2 with an A value of HA]. So tuple t produces

 

n
'2

V(A.rz)

 

 

 

 
tuples in 71 N r2. Considering all of the tuples in 'l' we estimate thatthere are '

 
"rim:

V(A.rz)
 

 

 
 
 

 
 

tuples in rl N 12. Observe that if we reverse the roles of II and 72 in the ‘_ 9
above estimate, we obtain an estimate of n,ln,z/ V(A,rl) tuples in 71 N r2. l n . .
These two estimates differ if V(A.rl) aé V(A,r2). If this situation occurs, 1 '1

1there are likely to be some dangling tuples that do not participate in the
join. Thus, the lower of the two estimates is probably the better 'one.



098000W8|‘J.S:l

 

. shall.see.in.Section.9.4.__

Stu Query Processing Chapter 9

The above estimate of join size may be too high if the V(A.rl) A values
in rI have few values in common with the V(A.r2) A values in r2.
However, it is unlikely that our estimate will be very far off in practice
since dangling tuples are likely to be only a small fraction of the tuples in a
real-world relation. lf dangling tuples appear frequently, then a correction
factor could be applied to our estimates.

if we wish to maintain accurate statistics, then every time a relation is
modified, it is necessary also to update the statistics. This is a substantial
amount of overhead. Therefore, most systems do not update the statistia
on every modification. Instead, statistics are updated during periods of
light load on the system. As a result, the statistics used for choosing a
query processing strategy may not be accurate. However, if the interval
between the update of the statistics is not too long,'the statistics will be
sufficiently accurate to provide a good estimation of the size of the results
of expressions.

Statistical information about relations is particularly useful when
several indices are available to assist in the processing of a query, as we

9.4 Estimation of Costs of Access Using Indices
The cost estimates we have considered for relational algebra expressions
did not consider the affects of indices and hash functions on the cost of
evaluating an expression. The presence of these structures, however, has a
significant influence on the choice of a query-processing strategy.

0 [ndices and hash functions allow fast access to records containing a
specific value on the index key.

0 Indices (though not most hash functions) allow the records of a file to
be read in sorted order. In Chapter 8, we pointed out that it is efficient
to read the records of a file in an order corresponding closely to
physical order. if an index allows the records of a file to be read in an
order that corresponds to the physical order of records, we call that
index a clustering index. Clustering indices allow us to take advantage .
of the physical clustering of records into blocks.

The detailed strategy for processing a query is alled an access plan for the
query. A plan includes not only the relational Operations to be performed
but also the indices to be used and the order in which tuples are to be '
accessed and the order in which operations are to be performed.

Of course, the use of indices im the overhead of access to those
blocks containing the index. We need to take these blod<s accesses into 

account when we estimate the cost of a strategy that involves the use of;indices.
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in this section, we consider
use the selection predicate to
use in processing the query.

As an example of the estimation of
assume that we are processing the query:

.queries involving only one relation. We
guide us in the choice of the best index to

the cost of a query using indices

select accouirt-nmnlxr
from deposit

where branch-name = “Perryridge” and customer-i = --w-| - ..
and balance > 1000 name i hams

Assume that we have the followin statistical informa ' -
relation: 5 tron about the deposrt

O 20 tuples of deposit fit in one block.

0 V(branclr-tmme. deposit) = 50.

o Wizalance, deposit) = 5000.

O The deposit relation has 10,000 tuples.

Let us assume that the following indices exist on deposit:

0 A clustering, B+-tree index for branch-mime.

0 A npnclustering, B+-tree index for customer—name.

As before, we shall make th
distributed uniformly.

Since thranch-name, deposit) = 50, we ex ect that 1 =
of the deposit relation pertain to the Perryridge branch.ol(ioevliouse2t(t]\(:tifff::
on branch-name, we will need to read these 200 tuples and check each one
for satisfaction of the where clause. Since the index is a clustering index
200/20 = to block reads are required to read‘ the deposit tuples. in addition.
several index blocks must be read. Assume the B+-tree index stores 20
painters per node. This means that the B+-tree index must have between 3
and 5 leaf nodes. With this number of leaf nodes, the entire tree has a
depth of 2, so at most 2 index blocks must be read. Thus the above
stratlcggy requirg‘s 12 total block reads.we use t e index for customer-name, we estimate the
accesses as follows. Since V(custamer~imme. deposit) = 200,“:Z1beexrp22tblthcal:
10000/200 .= 50 tuples of the deposit relation pertain to Williams. However
srnce the index for customer-name is nonclustering, we antidpate that one

e simplifying assumption that values are
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block read will be required for each tuple. Thus, 50 block reads are
required, just to read the deposit tuples. Let us assume that 20 pointers fit
into one node of the B+-tree index for customer-name. Since there are 200
customer names, the tree has between it and 20 leaf nodes. So. as was the

case for the other B+vtree index, the index for customer-name has a depth of
2 and 2 block accesses are required to read the necessary index blocks.
Therefore, this strategy requires a total of 52 block reads. We conclude that
it is preferable to use the index for brauclhnmne.

Observe that if both indices were nondustering, we would prefer to
use the index for customer-name since we expect only 50 tuples with
customer-name = “Williams" versus 200 tuples with branch-name =
“l"erryridge." Without the clustering property, our first strategy would
have required 200 block accesses to read the data plus 2 index block
accesses for a total of 202 block reads. However, because of the clustering
property of the branch-name index, it is actually less expensive in this
example to use the branch-name index.

We did not consider using the balance attribute and the predicate
.hlgmsz toileustarting pain.t for sateen .pnocessing..strategy.fontwo.reasons:

0 There is no index for balance.

0 The selection predicate on balance involves a “greater than" comparison.
In general, equality predicates are more selective than “greater than"
predicates. Since we have an equality predicate available to us (indeed,
we have two), we prefer to start by using such a predicate since it is
likely to select fewer tuples.

Estimation of the cost of access using indices allows us to estimate the
complete cost, in terms of block accesses, of a plan. For a given relational
algebra expression, it may be possible to formulate several plans. The
access plan selection phase of a query optimizer chooses the best plan for a
given expression.

We have seen that different plans may have significant differences in
‘ cost. It is possible that a relational algebra expression for which a good

plan exists may be preferable to an apparently more efficient algebra
expression for which only inferior plans exist. Thus, it is often worthwhile
for a large number of strategies to be evaluated down to the access plan
level before a final choice of query-processing strategy is made.

9.5 Join Strategies

Earlier, we estimated the size of the result of a relational algebra expression . :
involving a natural join. In this section, we apply our techniques for , ‘g
estimating the cost of processing a query to the problem of estimating the . '
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cost of processing a join. We shall see that several factors influence the
selection of an optimal strategy:

0 The physical order of tuples in a relation.

OThe presence of indices and the type of index (clustering ornonclustering).

o The cost of computing a temporary index for the sole purpose of
processing one query.

Let us begin by considering the expression

deposit N customer

and assume that we have no indices whatsoever. Let:

. ndmsi, = i'o.ooo.

. "customer = 200"‘—“—_— v—

9.5.1 Simple Iteration

If we are not willing to create an index, we must examine every possible
pair of tuples tl in deposit and t2 in customer. Thus, we examine
10000 r 200 = 2000000 pairs of tuples.

[f we execute this query cleverly, we can reduce the number of block
accesses significantly. Suppose that we use the procedure of Figure 9.1 for
computing the join. We read each tuple of deposit once. This may require
as many as 10,000 block accesses. However, if the tuples of deposit are
stored together physically, fewer accesses are required. If we assume that
20 tuples of deposit lit in one block, then reading deposit requires 10000/20 =500 block accesses.

. for each tuple d in deposit do
begin

for each tuple c in customer do
begin

:st pair (d,c) to see if a tuple should be added to the resulten
end
 

Figure 9.1 Procedure for computing join.
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. Our choice of deposit for the outer loop and customer {or the inner looptogeach blxk Bd of dams" do was arbitrary. If we had used customer as the relation for the outer loopefgm h bl k 8 f t re do and deposit for the inner loop, the cost of our final strategy would have0:2?“ on c o cuts on r ' been slightly lower (5010 block accesses). See Exercise 9.10 {or a derivationi' . of these costs. , _ .4' (0::th tuple b m N do , A major advantage to the use of the smaller relation (customer) in the I‘ {I' :3” h m l , Bcd . .. inner loop is that it may be possible to store the entire relation in main I -3;; 0;“? P e c m o . - memory temporarily. This speeds query processing significantly since it is y-i 9:8"; . b ) t “a m le necessary to road the inner loop relation only once. It customer is indeed {rmes Pa" ( ,c 0 see P _ small enough to fit in main memory, out strategy requires only 500 blocks ‘ 3if should be added to the result . . . i”d to read depasxt plus 10 blocks to read customer for a total of only 5l0 block ‘‘ en T accesses. - '1end _ ' .‘' d . _ . .1end en -3 9.5.3 Merge-Jain 1!”, ,' it . q . 1it ‘ In those cases in which neither relation fits in main memory, it is still :21. iii“.—" Figure 9.2 Procedure to compute deposit 90 customer . ‘« possible to process theJoin efficiently if_hoth.relations.happen~to-be stored " ‘ "I" )
______7__ —————————-— *"in'sort‘e‘d—o'rder on the join attributes. Suppose that both customer and h wt,V -_— ———- -- ---'- ""— “"“'" '—— ': deposit are sorted by customer—name. We can then perform a merge-join ’t‘ . We read each tuple of customer once for each tuple of deposit. This g operation. To compute a merge-join, we assodate one pointer with each i. , ,4. ,‘ ‘ suggests that we read each tuple of customer 10,000 times. Since .!' relation. These pointers point initially to the first tuple of the respective it t“ i; nmmm, = 200, we could make as many as 2,000,000 accesses to read :1 relations. As the algorithm proceeds, the pointers move through the '1 ‘pi ‘‘.tl customer tuples. As was the case for deposit, we can reduce the required _‘ “ "3'3.“0’1- AIS’OUP 0‘ tuples 0‘ one T913501} With the 53!“ value 0“ “‘9 la.“ ’2 t l; 3q" number of accesses significantly if we store the customer tuples together ' attnhutes '5 read- Then the corresponding u-‘P'95 of any) 0‘ the other l1 in t;it '} physically. [f we assume that 20 customer tuples fig in one block, then only . relation are read. Since the relations are in sorted order, tuples with the t! ,l' ': 10 accesses are required to read the entire customer relation. Thus, only 10 . same value on the join attributes are in consecutive'order. This allows us ‘4 if 1v .3. accesses P9? tuple of deposit rather than 200 are required. This implies that ~_ . to read. each tuple only once. In the case in which the tuples of the ; _‘; .i : only 100,000 block accesses are needed to process the query. ‘ relations are stored together physically, this algorithm allows us to J! -. R compute the join by reading each block exactly once. For our example of It 4in 9.5.2 Block-Oriented Iteration _ deposit N customer there is a total of 510 block accesses. This is as good as 1- l h;: . . . . . " the earlier join method we presented for the special case in which the - .r'“ A ma savm s in block accesses results it we rocess the relations on a . , . , , . ,.it !. per-bl’gk basisgrather than a per-tuple basis. Aggin, assuming that deposit . . entire customer'relauon fit ll'l main memory. . The algorithm .of Figure 9.3 “’1 I , ‘.“i tuples are stored together physically and that customer tuples are stored _:. doe; not require the entire 'relahon to fit in main “5“?” Rather, .'t j "‘ ‘ to ether hysically we can use the procedure of Figure 9.2 to compute " suf_ ces to keep 3.“ .tuples mth the same yalue for the 10m attnbutes m "h; I _ d 3 it oopcustomer ' This procedure performs the join by considering an L: _ mam memory. This Is usually feasible even if both relations are large. ll .. ”ii : eme block of deposit tuples at once. We still must read the entire deposit ” A disadvantage Of the merge-[om method '5 the ”Winnie“ a“. bah i 'i l: Vj '1 relation at a cost of 500 accesses. However, instead of reading the customer ‘, reiations be Started physically. However, it may be worthwhile to sort the l. H If i. relation once for each tuple of deposit, we read the customer relation once for ' , re ahons m or er t° a °w a “"33“" to be performed. I“ .,' . ‘ each block of deposit. Since there are 500 blocks of deposit tuples and 10 _ ‘ .‘; ‘ blocks of customer tuples, reading customer once for every block of deposit . _ 954 Use Of an Index 5“. . tuples requires 10 X 500 = 5000 blodt accesses. Thus, the total cost in ‘ Fr tl . . . . III I. . 5000 l equen y, the pin attributes form a search key for an index as one of the ‘ l Ii ; tel! ms 5060”“ accesstes '2 550.? alclcesses ( Cl access? of??? Pilimnt . .- ~- relations being joined. In such a case, we may consider a join strategy that :5! ‘i Iii t- P us accesses ho 370;; focks). 9;: 2" S l 3:; om ' uses such an index. The simple strategy of Figure 9.1 is more efficient if an "i n3“ .t ; Wig???“ over t e num r o accesses a were necessary ' . 7 index exists on customer for customer-name. Given a tuple d in deposit, it is l, ‘ ll1: .5 . '1“ 5 ‘98)" - in2 it 'i. .
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pd := address of first tuple of deposit;
A. pc := address of first tuple of customer;

« while (pc aé null) do
begin

16 := tuple to which pc points;
,; sc := {It};

a set pc to point to next tuple of customer;
—. done :=, false;

: while (not done) do
begin;

IL. := tuple to which pc points;

if t: '[customer-name] = “customer—name]
’ then begin '

.‘ 5'. ;= 5‘ U (gc }; ~
‘ ' set pc to point to next tuple of customer;

—_

.- end. . —————-'
Else done :=7 true;

end .
‘d := tuple to which pd pomts; _
set pd to point to next tuple of deposxt;
while (tdlcustomer—mzme] < thustomer-numen do

begin '
‘ -'d := tuple to which pd pomts;

set pd to point to next tuple of deposit;

join Strategies 317

Without use of an index, and without special assumptions about the
physical storage of relations, it was shown that as many as 2 million
accesses might be required. Using the index, but without making any
assumptions about physical storage, the join can be computed with
significantly fewer block accesses. We still need 10,000 accesses to read
deposit. However, for each tuple of deposit only an index lockup is
required. If we assume (as belore) that "customers = 200, and that 20
pointers fit in one block, then this lookup requires at most 2 index block
accesses plus a block access to read the customer tuple itself. We access 3

-3 blocks per tuple of deposit instead of 200. Adding this to the 10,000 accesses
‘ "_; to read deposit, we find that the total cost of this strategy is 40,000 accesses.

‘ Although a cost of 40,000 accesses appears high, we must remember
- that we achieved more efficient strategies only when we assumed that

;‘ ‘ tuples were stored physically together. If this assumption does not hold for
l d the relations being joined, then the strategy we just presented is highly

immi‘gtfist‘lr'

.4.e.‘ks..;__;v

creation- ot'v the‘index:‘Even'if‘we‘c’refite—tlfe‘iiidex for the sole purpose of
processing this one query and erase the index afterwards, we may perform
fewer accesses than if we use the strategy of Figure 9.1.
9.5.5 Three-Way Join

Let us now consider a join involving three relations:

 

"melons.t

branch to deposit N customer

 Assume that "deposit and nmmm are as above and that "branch = 50. Notfind __ t _ 1) do onlyrdo we 'have a choice of strategy for join processing but also we havewhile (idicustomer-namc] " tc[cus omer name a choice of which join to compute first. There are many possible strategiesbegin to consider. We shall analyze several of them below and leave others to1‘ for each t in St do the exercises.
begin '

; ' - compute t N ‘d and add this to result; 0 Strategy 1. Let us first compute the join (deposit 00 customer) using one
. end of the strategies we presented above. Since customer-name is a key for.1] set pd to point to next tuple of deposit; customer, we know that the result of this join has at most 10,000 tuples3 td 2: tuple to which Pd points; (the number of tuples in deposit). If we build an index on branch for'i end branchrmme, we can compute:

_—,I’ ' end. branch N (deposit 90 customer)
. Figure 9.3 Merge-join. by consxdenng each topic t of (deposit to customer) and looking up theh. _ tuple in branch With a brand-name value of “brunch-mime] Since brandi-
| name is a key for branch, we know that we must examme only one

. - - , les In (d sit to customer) The,- to read the entire customer relation. instead. the index branch tuple {0" each of the 10 000 “f? ‘P": : £013;:2 ’11:???tuples in customer for which the customer-name value is exact number of block accesses required by this strategy depends on“‘ d[customer-name]. '
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branch is stored physically. Several exercises examine the costs of
various possibilities.

0 Strategy 2. Compute the join without constructing any indices at all.
This requires checking 50 - 10000 - 200 possibilities, a total of
100,000,000.

0 Strategy 3. instead of performing two joins, we perform the pair of
joins at once. The technique is first to build two indices:

On branch for branch-name.

On customer for customer-name.

Next we consider each tuple t in deposit. For each i, we look up the
corresponding tuples in customer and the corresponding tuples in
branch. Thus, we examine each tuple of deposit exactly once.

Strategy 3 represents a form of strategy we have not considered before. it
does not—correspond. directly—to-a_relational-algebra -operation.—lnstead,—it
combines two operations into one special-purpose operation. Using

1: strategy 3, it is often possible to perform a join of three relations more
efficiently than it is using tvvo joins of two relations. The relative costs
depend on the way in which the relations are stored, the distribution of
values within columns, and the presence of indices. The exercises provide
an opportunity to compute these costs in several examples.

9.6 Structure of the Query Optimizer
We have seen only some of the many query processing strategies used in
database systems. Most systems implement only a few strategies and, as a
result, the number of strategies to be considered by the query optimizer is
limited. Other systems consider a large number of strategies. For each
strategy a cost estimate is computed.

in order to simplify the strategy selection task, a query may be split
into several subqueries. This not only simplifies strategy selection but also
allows the query optimizer to recognize cases where a particular subquery

 
only once, time is saved both in the query optimizing phase and in the

, ,x' . execution of the query itself. Recognition of common subqueries is
analogous to the recognition of common subcxprcssions in many optimizing
compilers for programming languages.

Clearly, examination of the query for common subqueries and the
estimation of the cost of a large number of strategies impose a substantial
overhead on query processing. However, the added cost of query
optimization is usually more than offset by the savings at query.execution

  

  

  

  

 
 

  

 

 

appears several times in the same query. By performing such subqueries .

_.. strategyfonprocessinga query.is.called query.optimization._.._

<V"I_A‘r'

at:
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time. Therefore, most commercial systems include relatively sophisticated
optimizers. The bibliographic notes give references to descriptions of query
optimizers of actual database systems.

9.7 Summary

There are a large number of possible strategies for processing a query,
especially if the query is complex. Strategy selection can be done using
information available in main memory, with little or no disk accesses. The
actual execution of the query will involve many accesses to disk. Since the
transfer of data from disk is slow relative to the speed of main memory
and the central processor of the computer system, it is advantageous to
spend a considerable amount of processing to save disk accesses.

Given a query, there are generally a variety of methods for computing
the answer. It is the responsibility of the system to transform the query as
entered by the user;into an equivalent query which can be computed more
efficiently. This "optimizing," or, __more accurately, improving of the

The first action the system must take on a query is to translate the
query into its internal form which (for relational database systems) is
usually based on the relational algebra. In the process of generating the
internal form of the query, the parser checks the syntax of the user's
query, verifies that the relation names appearing in the query are names of 1
relation in the database, etc. If the query was expressed in terms of a View, ‘
the parser replaces all references to the view name with the relational '
algebra expression to compute the view. i

Each relational algebra expression represents a particular sequence of l
operations. The first step in selecting a query-processing strategy is to find i
a relational algebra expression that is equivalent to the given expression i
and is efficient to execute. There are a number of different rules for ‘
transforming relational algebra queries, including: i.

0 Perform selection operations as early as possible.

0 Perform projections early.

The strategy we choose for a query depends upon the size of each , . ‘
relation and the distribution of values within columns. In order to be able
to choose a strategy based on reliable information, database systems may
store statistifi for each relation r. These statistics include:

 

  
 

O The number of tuples in the relation r.

O The size of a record (tuple) of relation r in bytes (for fixed-length
records).
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O The number of distinct values that appear in the relation r for a
particular attribute.

The first two statistics allow us to estimate accurately the size of a cartesian
product. The third statistic allows us to estimate how many tuples satisfy a
simple selection predicate.

Statistical information about relations is particularly useful when
several indices are available to assist in the processing of a query. The
presence of these structures has a significant influence on the choice of a
query-processing strategy.

Queries involving a natural join may be processed in several ways,
depending on the availability of indices and the form of physical storage
used for the relations. lf tuples of a relation are stored together physically,
a block-oriented join strategy may be advantageous. If the relations are
sorted, a merge-join may be desirable. it may be more efficient to sort a
relation prior to join computation (so as to allow use of the merge-join
strategy). It may also be advantageous to compute a temporary index for
the sole purpose of allowing a more efficient join strategy to be used.

 

Exercises

9.1 At what point during query processing does optimization occur?

9.2 Why is it not desirable to force users to make an explicit choice of a
query processing strategy? Are there cases in which it is desirable
for users to be aware of the costs of competing query processing
strategies?

9.3 Consider the following SQL query for our bank database:

select custonm-mme

from deposit S
where (select branch-mm

from deposit T
where $.customcr-Mmz = T.custamer-rmme)contains

(select branch-name
from branch

where branch-city = “Brooklyn")

Write an efficient relational algebra expression that is equivalent to ' ’
this query. Justify your choice.

 

«anewkeystroke1‘'
‘I

1.;er uses .521

9.4 Consider the following SQL query for our bank database:

select T.bmnth-name
from branch T, branch 5
where T.assets > $.nsscls and

S.bmich-city = “Brooklyn"

dl‘Av'a Write an efficient relational algebra expression that is equivalent to
this query. Justify your choice.

9.5 Show that the following equivalences hold, and explain how they
can be applied to improve the efficiency of certain queries:

a. UPO'] U 72) = opal) U oping)

b. 0P0] - r2) = ap(rl) - r2 = opal) - 0P(r2)

c. (rl u :2) u :3 = r1 u (rZU r3)

till U '2_=_72iJ_Vl;.
 

9.6 Consider the relations rl(A.B.C), r2(C,D.E), and r3(E,I-'), with
primary keys A , C , and E respectively. Assume that ’1 has 1000
tuples, r2 has 1500 tuples and 13 has 750 tuples. Estimate the size
of ’l N r2 N 13, and give an effident strategy for computing the
join.

9.7 Consider the' relations 7|(A,B,C), r2(C.D.E), and 13(E.F) of Exercise
‘_ .9.6 again, but now assume there are no primary keys except the

entire scheme. Let V(C.rl) be 900, V(C.rz) be 1100, V(E.r2) be 50,
and V(E.r3) be 100. Assume that I, has 1000 tuples, 12 has 1500
tuples and r3 has 750 tuples. Estimate the size of r] w r2 N r3,
and give an efficient strategy for computing the join.

1

9.8 Clustering indices may allow faster access to data than a
nonclustering index. When must we create a nondustering index
despite the advantages of a clustering index?

9.9 What are the advantages and disadvantages of hash functions
relative to B+‘tree indices? How might the type of index available
influence the choice of a query processing strategy?

9.10 Recompute the cost of the strategy of Section 9.5.2 using deposit as
the relation of the inner loop and customer as the relation of the
output loop (thereby reversing the roles they played in the
example of Section 9.5.2).
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9.11 Explain the difference between a clustering index and a
nonclustering index.

9.12 Let relations rl(A.B.C) and r2(C.D.E) have the following properties:

0 rl has 20,000 tuples.

O 12 has 45,000 topics.

0 25 tuples of 'I fit on one block.

4‘ O 30 tuples of r2 fit on one block.

Estimate the number of block accesses required using each of the
following join strategies for rl W 12:

0 Simple iteration.

_._ ._ 1 _B_l_ockor_ign_te_d iteration.

0 Merge—join

9.13 Consider relations 'I and r2 of Exercise 9.12 along with a relation
r3(E.F). Assume that 13 has 30,000 tuples and that 40 tuples of r3
fit on one block. Estimate the costs of the 3 strategies of Section
9.5.5 for computing r1 N 72 M r3.

Bibliographic Notes
Some the ideas used in query optimization are derived from solutions to

“Ir

‘1.m¢ni"tit'l.’t.,.

similar problems in code optimization as performed by compilers of ';_ ‘
standard programming languages. There are several texts that present -;.

amming languages point of View, including [Aho ':'optimization from a progr
et al. 1986}, and [Tremblay and Sorenson 1985]. Selinger et al. [1979] a.
describes access path selection in System R. Kim [l981_, 1982] desuibe join {-
strategies and the optimal use of available main memory. These papers
discuss many of the strategies that we presented in this chapter. Wong
and Youssefi [1976l' introduce a technique called decomposition, which is '
used in the Ingres database system. The Ingres decomposition strategy ;
motivated the third strategy we presented for three-way joins. [n Ingres. .
an extension of this technique is used to choose a strategy for general_ —
queries. lngres and System R are discussed in more detail in Chapter 15.

If an entire group of queries is considered, it is possible to discover

t
common subexpressions that can be evaluated once for the entire group.‘~
Finkelstein [1982], and Hall [1976] consider optimization of a group of

.
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queries and the use of common subcxpressions. When queries are
generated through views, it is often the case that more relations are joined
than IS necessary to compute the query. A collection of techniques for ioinminimization have been grouped under the name tableau optimization. The
notion of a tableau was introduced by Aho et al. [1979a, 1979c]. Ullman
[1982a] and Maier [1983] provide a textbook coverage of tableaux.

Theoretical results on the complexity of the computation of relational

algjbéa operati‘tggsélappear in [Goftlieb 1975], [Pecherer 1975], and [Blasgenan swaren . surve .o ue rocessin tec ‘ ‘
Uarke and Koch 1984]. y q W P g hmques appeals In

An actual query processor must translate statements in the query
language into an internal form suitable for the analysis we have discussed
in this chapter. Parsing query languages differs little from parsing of
traditional programming languages. Most compiler texts (including [Alto
et al. 1986], and [Tremblay and Sorenson 1985]) cover the main parsing
techniques. A more theoretical presentation of parsing and language
translation is given by Aho and Ullman [1972, 1973). ’

_Query processing for distributed database systems use some concepts
trom"tfiis‘cifi:$t'e?._Te_clifiiQtiés ‘sp‘e’cifi'c‘to‘distributed systems”appear ‘in
Chapter 12 and the bibliographic notes to that chapter.

 

 

 


