L ¥8000NdI-1Sd

ABOUT THE BOOK

This book lives up to its title by describing the fundamental concepts behind
database systems, Database System Concopts shows how to 80lvo many of
tho problems encountored in deslgning and using a database system.
Readers are introduced to the entity/relationship and relational models first,
followed by the network and hierarchical models. Several chapters are
devated to the physical organization of databases, index techniques, and
Query processing, and the latter part of the book delves into advanced areas,
including coverage of distributed databases, database security, and artificial
intefligence.

ABOUT THE AUTHORS

Henry F. Korth is Assistant Prof of Computer Sciences al the
University of Texas at Austin. Prior to joining the University of Texas faculty,
Dr. Korth was a staff member of the IBM T.J. Watson Research

Center in New York, where he was involved in the design and
Implementation of a distributed office automation system. His witings on
database systems have appeared in several ACM and IEEE publications.

Abraham Silberschatz is Professor of Computer Sciences at the University
of Texas at Austin, where he specializes in the area of concurrent
processing. His research interests include ¢ perating systems, datab
systems, distributéd systems, and programming languages. Or. Silberschatz
is the holder of the First David Bruton Jr. Centennial Professorship in

Computer Sciences, and coauthor of the best-seliing Operating System

Concepts textbook,

SEST AVAILABLE COPY

McGraw-Hill Book Comparny
smgmmmwwmo

1221 Avenus of the Americas

New York, NY. 10020 ISBN 0-07-044752-7

DATABASE
SYSTEM

o, NN i

y RELATIONAY

11BM Ex. 1010

egoryuno
Text Box
IBM Ex. 1010

Z¥8000NQI-1SA

AT e i i)
\

|

s

B

ol in

e Sy~ e
P Perd i e Y

T

S2SR3
TIARS

T,
S

EEL

¥ 1
3
1
1
4
{
1
i
i
1

T S S~

R —
T

[FERSETERR R

€¥8000NQI-1SA

McGraw-Hill Advanced Computer Science Series

Davis and Lenat: Knowledge-Based Systems in Artificial Intelligence

Kogge: The Architecture of Pipelined Computers .
Lindsay, Bachanan, Feigenbaum, and Lederberg: Applications of Artificial Intelligence

for Organic Chemistry: The Dendral Project
Nilsson: Problem-Solving Methods in Artificial Intelligence
Wulf, Levin, and Harbison: HYDRA/C.mmp: An Experimental Computer System

DATABASE SYSTEM CONCEPTS

Copyright © 1986 by McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.

67890 DODO 89

ISBN O=07-044?52-7

The editor was Kaye Pace; the production supervisor was joe Campanella; the
cover was designed by Anne Canevari Creen. Project supervision was done by
Caliber Design Planning, Inc.

=

T B
—2xo.

oot AT A Y MO B 1

[

Ty

S

.3

iy o P b

,
NP .
T A, 5

s

1

et b e
Frhn e e

i b
RASTLIRER

¥¥8000NQI-1SA

44 Entity-Relationship Model Chapter 2

2.7 Every weak entity set can be converted to a strong entity set by
simply adding appropriate attributes. Why, then, do we have weak
entities?

2.8 Suppose that you design an E-R diagram in which the same entity
set appears several times. Why is this a bad practice that should be
avoided whenever possible?

2.9 When designing an E-R diagram for a particular enterprise, there
exists several alternative designs.

a. What criteria should you consider in dedding on the
appropriate choice?

b. Come up with several alternative E-R diagrams to represent an
enterprise. List the merits of each alternative and argue in
favor of one of the alternatives.

2.10 Explain the difference between generalization and specialization.

Bibliograi)hic Notes

The entity relationship data model was introduced by Chen [1976).
Discussions concerning the applicability of the E-R approach to database
design are offered by Chen [1977], Sakai [1980)], and Ng [1981). Modeling
techniques based on the E-R approach are covered by Schiffner and
Scheuermann [1979), Lusk et al. {1980), Casanova [1984}, and Wang [1984].

Various data manipulation languages for the E-R model have been
proposed. These include CABLE [Shoshani 1978], GERM [Benneworth et
al. 1981}, and GORDAS {EIMasri and Wiederhold 1983). A graphical query
ﬁ;\g;]age for the E-R database was proposed by Zhang and Mendelzon

The concepts of generalization, spedialization, and aggregation were
introduced by Smith and Smith [1977]. Lenzerini and Santucci (1983] have
used these concepts in defining cardinality constraints in the E-R model.

Basic textbook discussions are offered by Tsichritzis and Lochovsky
[1982] and by Chen [1983].

\

3
Relational Model

From a historical perspective, the relational data model is relatively new.
The first database systems were based on either the hierarchical model (see
Chapter 5) or the network model (see Chapter 4). Those two older models
are tied more closely to the underlying implementation of the database
than is the relational model.

The relational data model represents the database as a collection of
tables. Although tables are a simple, intuitive notion, there is a direct
correspondence between the concept of a table and the mathematical
concept of a relation.

In the years following the introduction of the relational model, a
substantial theory has developed for relational databases. This theory
assists in the design of relational databases and in the efficient processing
of user requests for information from the database. We shall study this
theory in Chapter 6, after we have introduced all the major data models.

3.1 Structure of Relational Databases

A relational database consists of a collection of tables, each of which is
assigned a unique name. Each table has a structure similar to that
presented in Chapter 2, where we represented E-R databases by tables. A
row in a table represents a relationship among a set of values. Since a table
is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from
which the relational data model takes its name. In what follows, we
introduce the concept of relation.

In this chapter, we shall be using a number of different relations to
illustrate the various concepts underlying the relational data model. These
relations represent part of a banking enterprise. They differ slightly from
the tables that were used in Chapter 2 in order to simplify our
presentation. We shall discuss appropriate relational structures in great
detail in Chapter 6.

Consider the deposit table of Figure 3.1. It has four attributes: branch-
name, account-number, customer-name, balance. For each attribute, there is a
set of permitted values, called the domain of that attribute. For the

S¥8000NQI-1SA

46 Relational Model Chapter 3
branch-name | account-number | customer-name | balance
|
Downtown 101 Johnson 500
Mianus 215 Smith 700
Perryridge 102 Hayes 1 400
Round Hill 305 Turner 350
Perryridge 201 Williams 900
Redwood 222 Lindsay 700
Brighton 217 Green 750

Figure 3.1 The deposit relation.

attribute branch-name, for example, the domain would be the set of all
branch names. Let D; denote this set and let D, denote the set of all
account-numbers, D3 the set of all customer names, and D, the set of all
balances. As we saw in Chapter 2, any row of deposit must consist of a 4-
tuple (v,, v,, v4, v;) where v, is a branch name (that is, v, is in domain
D)), v, is an account number (that is, v, is in domain D,), vy is a customer
name (that is, v4 is in domain D;), and v, is a ba!ance (that is, v, is in
domain D,). In general, deposit will contain only a subset of the set of all
possible rows. Therefore deposit is a subset of:

Mathematicians define a relation to be a subset of a cartesian product of
a list of domains. This corresponds almost exactly with our definition of
table. The only difference is that we have assigned names to attributes,
while mathematicians rely on numeric “names,” using the integer 1 to
denote the attribute whose domain appears first in the list of domains, 2
for the attribute whose domain appears second, etc. Because tables are
essentially relations, we shall use the mathematical terms relation and tuple
in place of the terms table and row.

In the deposit relation of Figure 3.1, there are seven tuples. Let the tuple
wariable t refer to the first tuple of the relation. We use the notation
t{branch-name] to denote the value of t on the branch-name attribute. Thus,
t{branch-name] = “Downtown". Similarly, t[account-number]| denetes the
value of t on the account-number attribute, etc. Alternatively, we may write

e Siagd

PRI W o > .

Section 3.1 . Structure of Relational Databases 47

~

t{1] to denote the value of tuple ¢t on the first attribute (branch-name), (2}
for account-number, etc. Since a relation is a set of tuples, we use the
mathematical notation of f € r to denote that tuple ¢ is in relation r.

When we talk about a database, we must differentiate between the
database schema, that is, the logica) design of the database, and a database
instance, which'is the data in the database at a given instant in time.

The concept of a relation scheme corresponds to the programming
language notiort of type definition. A variable of a given type has a
particular value at a given instant in time. Thus, a varable in
programming languages corresponds to the concept of an instance of a
relation. ‘

It is convenient to give a name to a relation scheme, just as we give
names to type definitions in programming languages. We adopt the
convention of using lowercase names for relations and names beginning
with an uppercase letter for relation schemes. Following this notation, we
use Deposit-scheme to denote the relation scheme for relation deposit. Thus,

Deposit-scheme = (branch-name, account-number, customer-name, balance)

In general, a relation scheme is a list of attributes and their corresponding
domains. We denote the fact that deposit is a relation on scheme Deposit by

deposit (Deposit-scheme)

We shall not, in general, be concerned about the precise definition of
the domain of each attribute until we discuss file systems in Chapter 7.
However, when we do wish to define our domains, we use the notation

(branch-name : string, account-number : integer,
customer-name : string, balance : integer)

to define the relation scheme for the relation deposit.
As another example, consider the customer relation of Figure 3.2. The
scheme for that relation is

Customer-scheme = (customer-name, street, customer-ity)

Note that the attribute customer-name appears in both relation schemes.
This is not a coincidence. Rather, the use of common attributes|in relation
schemes is one way of relating tuples of distinct relations. For example,
suppose we wish to find the cities where depositors of the Perryridge
branch live. We would look first at the deposit relation to find all depositors
of the Perryridge branch. Then, for each such customer, we look in the
customer relation to find the city he or she lives in. Using the terminology

9%8000NQI-1SA

3

3.

Lt

"

ST
2

48

Relational Model

customer-name street customer-city

Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

Figure 3.2 The customer relation.

Chapter 3

of the entity-relationship model, we would say that the attribute customer-
name represents the same entity set in both relations.

It would appear that, for our banking example, we could have just one
relation scheme rather than several. That is, it may be easier for a user to
think in terms of one relation scheme rather than.several. Suppose we
used only one relation for our example, with scheme

Account-info-scheme = (branch-name, account-number, customer-name,
balance, street, customer-city)

Observe that if a customer has several accounts, we must list her or his
address once for each account. That is, we must repeat certain information
several times. This repetition is wasteful and was avoided by our use of
two relations. If a customer has one or more accounts, but has not
provided an address, we cannot construct a tuple on Account-info-scheme,
since the values for the street and customerity are not known. To represent
incomplete tuples, we must use null walues. Thus, in the above example,
the values for street and customer-city must be null. By using two relations,
one on Customer-scheme and one on Deposit-scheme, we can represent
customers whose address is unknown, without using null valugs. We
simply use a tuple on Deposit-scheme to represent the information abdut the
account, and create no tuple on Customer-scheme until the address
information becomes available. In Chapter 6, we shall study criteria to help
us decide when one set of relation schemes is better than another. For
now, we shall assume the relation schemes are given.

2

L2

A 3e 5 RIS 7 SoollY s

Section 3.1 Structure of Relational Databases 49

N

For the purpose of this'chapter, we assume that the relation schemes
for our banking enterprise are as follows:

Branch-scheme = (branch-name, assets, branch-city)

Customer-scheme = (c name, street, c r-city)

Deposit-scheme = (branch-name, account-number, customer-name, balance)
" Borrow-scheme = (branch-name, loan-number, customer-name, amount)

We have already seen an example of a deposit relation and a customer
relation. Figure 3.3 shows a sample borrow (Borrow-scheme) relation.

The notion of a superkey, candidate key, and primary key, as discussed in
Chapter 2, is applicable also to the relational model. For example, in
Branch-scheme, {branch-name} and {branch-name, branch-city} are both
superkeys. {branch-name, branch-city} is not a candidate key because
{branch-name} C {branch-name, branch-city} and {branch-name} itself is a
superkey. {branch-name}, however, is a candidate key, which for our
purpose will also serve as a primary key. The attribute branch-city is not a
superkey since two branches in the same city may have different names
(and different asset figures). The primary key for the customer-scheme is
customer-name. We are not using the social-security number, as was done in
Chapter 2, in order to have smaller relation schemes in our running
example of a bank database. We expect that in a real world database the
social-security attribute would serve as a primary key.

Let R be a relation scheme. If we say that a subset K of R is a superkey
for R, we are restricting consideration to relations r(R) in which no two
distinct tuples have the same values on all attributes in K. That is, if
t, and t, are in r and t, # t,, then t,[K] # t,[K].

branch-name | loan-number | customer-name | amount
Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500
Round Hill n Turner 900
Pownal 29 Williams 1200
North Town 16 Adams 1300
Downtown 18 Johnson 2000
Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200

Figure 3.3 The borrow relation.

.L¥8000NQI-1SA

S0 Relational Made! Chapter 3

3.2 Formal Query Languages

A query language is a language in which a user requests information from
the database. These languages are typically higher-level languages than
standard programming languages. Query languages can be categorized as
being either procedural or nonprocedural. In a procedural language, the user
instructs the system to perform a sequence of operations on the database
to compute the desired result. In a nonprocedural language, the user
describes the information desired without giving a specific procedure for
obtaining that information.

Most commercial relational database systems offer a query language
that includes elements of both the procedural and the nonprocedural
approaches. We shall study several commercial languages later in this
chapter. First, we look at two “pure” languages: one procedural and one
nonprocedural. These “pure” languages lack the “syntactic sugar™ of
commercial languages, but they illustrate the fundamental techniques for
extracting data from the database.

3.2.1 The Relational Algebra

The relational algebra is a procedural query language. There are five
fundamental operations in the relational algebra. These operations are:
select, project, cartesian-product, union, and set-difference. All of these
operations produce a new relation as their result.

In addition to the five fundamental operations, we shall introduce
several other operations, namely, set intersection, theta join, natural join, and
division. These operations will be defined in terms of the fundamental
operations.

Fundamental operations

The select and project operations are called unary operations, since they
operate on one relation. The other three relations operate on pairs of
relations and are, therefore, called hinary operations.

The select operation selects tuples that satisfy a given predicate. We use
the lowercase Greek letter sigma (o) to denote selection. The predicate
appears as a subscript to 0. The argument relation is given in parentheses

branch-name | loan-number | customer-name | amount
Perryridge 15 Hayes 1500
Perryridge 25 Glenn 2500

Figure 3.4 Result of Obranch-name = “Perryridge” (borrow).

Section 3.2 . Formal Query Languages 51

.

following the o. Thus, to select those tuples of the borrow relation where

the branch is “Perryridge,” we write

branch-name = “Perryridge™ (borrow)

1

If the borrow relation is as shown in Figure 3.3, then the relation that

results from the above query is as shown in Figure 3.4. We may find all
tuples in which the amount borrowed is more than $1200 by writing

Camount > 1200 (borrow)

In general, we allow comparisons using =, #, <, <, >, = in the
selection predicate. Furthermore, several predicates may be combined into
a larger predicate using the connectives and (A) and or (v). Thus, to find
those tuples pertaining to loans of more than $1200 made by the
Perryridge branch, we write

Cbranch-name = “Perryridge” A amount > 1200 (PorTow)

The selection predicate may include comparisons between two attributes.
To illustrate this, we consider the relation scheme

lient-cch,)
C (cust

name, employee-name)
indicating that the employee is the “personal banker” of the customer. The

relation client (Client-scheme) is shown in Figure 3.5. We may find all those
customers who have the same name as their personal banker by writing‘

Ceustomer-name = employ e (client)

If the client relation is as given in Figure 3.5, the answer is the relation
shown in Figure 3.6. -

In the above example, we obtained a relation (Figure 3.6) on (customer-
name, employee-name) in which t{customer-name] = tlemployee-name) for all

tuples ¢. It seems redundant to list the person’s name twice. We would .

customer-name emplo.yee-name'
Tumner Johnson
Hayes Jones
Johnson Johnson

Figure 3.5 The client relation.

P

88000 QI-1SH

52 Relational Model Chapter 3

prefer a one attribute relation on (customer-name) which lists all those who

have the same name as their personal banker. The project operation allows -

us to produce this relation. The project operation is a unary operation that
copies its argument relation, with certain columns left out. Since a relation
is a set, any duplicate rows are eliminated. Projection is denoted by the
Greek letter pi (IT). We list those attributes that we wish to appear in the
result as a subscript to I1. The argument relation follows Il in parentheses.

Suppose we want a relation showing customers and the branches from
which they borrow, but do not care about the amount of the loan, nor the
loan number. We may write

Moranch-name, customer-name (borrow)

Let us revisit the query “Find those customers who have the same
name as their personal banker.” We write

n " wame (client))

name ©cust name = employ

Notice that instead of giving the name of a relation as the argument of the
projection operation, we give an expression that evaluates to a relation.

The operations we have discussed up to this point allow us to extract
information from only one relation at at ime. We have not yet been able to
combine information from several relations. One operation that allows us
to do that is the cartesian product operation, denoted by a cross (x). This
operation is a binary operation. We shall use infix notation for binary
operations and, thus, write the cartesian product of relations r, and ry as
ry X r,. We saw the definition of cartesian product earlier in this chapter
(recall that a relation is defined to be a subset of a cartesian product of a
set of domains). From that definition we should already have some
intuition about the definition of the relational algebra operation Xx.
However, we face the problem of choosing the attribute names for the
relation that results from a cartesian product.

Suppose we want to find all clients of bank employee Johnson, as well
as the cities in which the clients live. We need the information in both the
client relation and the customer relation in order to do so. Figure 3.7 shows
the relation r = client x customer. The relation scheme for r is

[4 -name iployee-name
Johnson Johnson
Figure 3.6 Resultof o, name = lovee-name (client).

Section 3.2 X Formal Query Languages 53
client. client. ¢ 3 ¢]« :
customer-name | employee-name | customer-name | street ' customer-city
Turner Jjohnson Jones Main Harrison
Turner Johnson Smith North Rye
Turner Johnson Hayes Main Harrison
Turner Johnson Curry North Rye
Turner Johnson Lindsay Park Pittsfield
Turner Johnson Turner Putnam Stamford
Turner Johnson . Williams Nassau Princeton
Turner Johnson Adams Spring Pittsfield
Turner Johnson Johnson Alma Palo Alto
Turner Johnson Glenn Sand Hill | Woodside
Turner Johnson Brooks Senator Brooklyn
Turner Johnson Green Wainut Stamford
Hayes Jones Jones Main Harrison
Hayes Jones Smith North Rye
Hayes Jones Hayes Main Harrison
Hayes Jones Curry North Rye
Hayes Jones Lindsay Park Pittsfield
Hayes Jones Turner Putnam | Stamford
Hayes Jones Williams Nassau Princeton
Hayes Jones Adams Spring Pittsfield
Hayes Jones Johnson Alma Palo Alto
Hayes Jones Glenn Sand Hill | Woodside
Hayes Jones Brooks Senator Brooklyn
Hayes Jones Green Walnut Stamford
Johnson Johnson Jones Main Harrison
Johnson Johnson Smith North Rye
Johnson Johnson Hayes Main Harrison
Johnson Johnson Curry North Rye
Johnson Johnson Lindsay Park Pittsfield
Johnson Johnson Tumner Putnam Stamford
Johnson Johnson Williams_ Nassau Princeton
Johnson’ Johnson Adams Spring Pittsfield
Johnson ! Johnson Johnson Alma Palo Alto
Johnson Johnson Glenn Sand Hill | Woodside
Johnson Johnson Brooks Senator Brooklyn
Johnso;t Johnson Green Walnut Stamford

Figure 3.7 Result of client X customer.

N

6¥8000NQI-1SA

54 Relational Model Chapter 3 Section 3.2 : Formal Query Languages §S !
< i
(client.customer-name, client.employee-name, customer.customer-name, client. dient. p] ust, | customer. .
C .street, cust cust -City) cust -name ployce-name | customer-name | street customer-cily ! ”
T, 5 = = r
That is, we simply list all the attributes of both relations, and attach T::::: }g:::g: JS‘::S; :I[::‘h ;la:—lson ‘
the name of the relation from which the attribute originally came. We need Turner Johnson ﬁay es Main H); rrison 1
;35'::;c!2us:::'erf:‘|’amheon name to distinguish client.customer-name from }.umer Johnson C_urry North Rye I ,
Now that we know the relation scheme for r = client % customer, what T::::: :g:::g: ?un:‘:y Ir::::am ls’:ttsf;elc‘ii :
tuples appear in r? As you may have suspected, we construct a tuple of r Turner Johnson Williams Nassau P ::‘ce(::) '
out of each possible pair of tuples: one from the client relation and one Turner Johnson Adams Spring I’illsﬁeldn 1
22:1 retl;e;‘ustomer relation. Thus r is a large relation, as can be seen from s Turner johnson Johnson Alma Palo Alto i
-4 . . : Turner Johnson Glenn* Sand Hill | Woodside
Assume we have n, tuple.s in chen.l and n, tuples in customer. Then R Turner johnson Brooks Senator Brooklyn
there are n;n, ways of choosing a pair of tuples: one tuple from each H Turner Johnson Green Walnut Stamford i
relation, so there are n,n, tuples in r. In particular, note that it may be the : Johnson Johnson Jones Main Harrison ,I
case for some tuples ¢ in r that {[client.customer-name] # t[customer.customer- ¥ Johnson Johnson Smith North Rye : :
name]. : Johnson Johnson Hayes Main Harrison ;l .
In general, if we have relations r{(R,) and ry(R,), then 7, X r, is a Johnson Johnson Curry North Rye {)
relation whose scheme is the concatenation of R, and R,. Relation R i Johnson Johnson Lindsay Park Pittsfield il ‘
contains all tuples ¢ for which there is a tuple t, in r;, and t, in r, for ‘ Johnson Johnsan Turner Putnam | Stamford i
which f[R,] = {|[R,] and {{Ry] = ,[R,) }°:““’°“ }O:I\SOH x;lllams Nassau Princeton
. : . ohnson ohnson ams Spri Pittsfi
B Returning to the query “Find all clients of Johnson and the city in Johnson Johnson Johnson A;;:\:g PlaI: Z‘:)
%‘ ‘ which they live,” we consider the relation r = client X customer. If we write }o:nson Johnson Glenn Sand Hill | Woodside .
9 . . ohnson Johnson Brooks Senator Brooklyn |
A E Oclient employee-name = “lohnson™ (Client X customer) Johnson Johnson Green Walnut Stamford]

{ then the result relation is as shown in Figure 3.8. We have a relation
_I& pertaining only to employee Johnson. However, the customer.customer-name Figure 38 Result of o,

i = “Johnson™ (Client X ¢ 7).
column may contain customers of employees other than johnson (if you lient.employee-name = (clien)
don’t see why, look at the definition of cartesian product again). Note that
the client.customer-name column contains only customers of Johnson. Since

- . . . Finally, si cust name cust i
the cartesian product operation associates every tuple of customer with every Pl':i ec);i o :mce we want only and ity, we do a
o tuple of client, we know that some tuple in client X customer has the
P . address ofj the employee’s customer. This occurs in those cases where it) n,. .
X happens that client.customer-name = customer.customer-name. So if we write client.customer-name, customer..customer-city
= O tiont.c me = cust customer-name
" . Pelient. cust name = ¢ « name o4 pioy
% (o, o .. (client x customer ient.employee-name = “johnson™ ‘
- p \ client.employee-name = “Johnson' » (client X customer))) .
\,‘ we get only those tuples of client X customer that: The result of this expression is the correct answer to our query. ! ‘
e Pertain to Johnson. Let _us now consider a query that might be posed by a bank’s J
‘ advertising department: “Find all customers of the Perryridge branch.”
® Have the street and city of the customer of Johnson. That is, find everyone who has a loan, an account, or both. To answer. this It

058000 4I-1SA

56 Relational Model Chapter 3

query, we need the information in the borrow relation (Figure 3.3) and the
deposit relation (Figure 3.1). We know how to find all customers with a
loan at the Perryridge branch:

D ustomer-name Cbranch-name = “Perryridge" (borrow))
We know also how to find all customers with an account at the Perryridge
branch:

ncustomer-name (“bmnch-namc = “Perryridge” (deposit))

To answer the query, we need the union of these two sets, that is, all
customers appearing in either or both of the two relations. This is
accomplished by the binary operation union, denoted, as in set theory, by
U. So the expression the advertising department needs in our example is

T customer-name Tbranch-name = “Perryridge™ (borrow)))
Y Ty stomer-name Cbranch-name = “Perryridge” (deposit))

The result relation for this query appears in Figure 3.9. Notice that
there are three tuples in the result even though the Perryridge branch has
two borrowers and two depositors. This is due to the fact that Hayes is
both a borrower and a depositor of the Perryridge branch. Since relations
are sets, duplicate values are eliminated.

Observe that, in our example, we took the union of two sets, both of
which consisted of customer-name values. In general, we must ensure that
unions are taken between compatible relations. For example, it would not
make sense to take the union of the borrow relation and the customer
relation. The former is a relation of four attributes and the latter of three.
Furthermore, consider a union of a set of customer names and a set of
cities. Such a union would not make sense in most situations. Therefore,
for a union operation r U s to be legal, we require that two conditions
hold:

1. The relations 7 and s must be of the same arity. That is, they must
have the same number of attributes.

customer-name
Hayes
Glenn
Williams

Figure 3.9 Names of all customers of the Perryridge branch.

Section 3.2 . Formal Query Languages 57

~

2. The domains of the ith attribute of r and the ith attribute of s must be
the same.

'-I‘he set-difference operator, denoted by —, allows us to find tuples that
are in one relation, but not'in apother. The expression r ~ s results in a
relation containing those tuples inr but notin s .

We can find all customers of the Perryridge branch who have an
account there but do not have a loan there by writing:

D evstomer-name Obranch-name = “Pemryvidge~ (deposit))

- ncustomer—mmi Cbranch-name = “Perryridge (borrow))
The result relation for this query appears in Figure 3.10.

Formal definition of the relational algebra

The five operators we have just seen allow us to give a complete definition
of an expression in the relational algebra. A basic expression in the
relational algebra consists of either one of the following:

® A relation in the database.
® A constant relation.

A general expression in the relational algebra is constructed out of smaller
subexpressions. Let E| and E, be relational algebra expressions. Then,

®E UE,
®E -k
®E xE,
® op(E,), where Pis a predicate on attributes on E,
(] 'Hsi:El), where S is a list consis‘ting of some of the attributes appearing
|
are all relational algebra expressions.

\

cusiomer-name
e
Williams

Figure 3.10 Customers with only an account at the Perryridge branch.

1G8000NdI-1S4H

MIMIHM

iy ﬂ&hﬂ!uﬁn

S8 Relational Model ' Chapter 3

Additional operators

We have now seen the five fundamental operations of the relational
algebra: o, I, X, U, —. These five operators are sufficient to express any
relational algebra query. However, if we restrict ourselves to just the five
fundamental operators, some common queries are lengthy to express.
Therefore, we define additional operators. These new operators do not add
any power to the algebra, but they do simplify common queries.

For each new operator we define, we give an equivalent expression

-using only the five fundamental operators.

The first additional relational algebra operation we shall define is set
intersection (M). Suppose we wish to find all customers that have both a
loan and an account at the Perryridge branch. Using set intersection, we
could write:

chslomn-name (”branchmame = “Pemyridge™ (borrow))

ncus!mner-name (cbmndr-'mme = “Perryridge” (deposit))

The result relation for this query appears in Figure 3.11.

Note, however, that we do not include set intersection as a
fundamental operation. We do not do so because we can rewrite any
relational algebra expression using set intersection by replacing the
intersection operation with a pair of set difference operations as follows:

rNs=r—(r~s)

Thus, set intersection does not add any power to the relational algebra. It
is simply more convenient to write r N's thanr — (r - s).

The next operations we add to the algebra are used to simplify many
queries that require a cartesian product. Typically, a query that involves a
cartesian product includes a selection operation on the result of the
cartesian product. Consider the query “Find all customers who have a loan
at the Perryridge branch and the cities in which they live.” We first form
the cartesian product of the borrow and customer relations, then we select
those tuples that pertain to 'Perryridge and pertain to only one customer-
name. Thus we write

LIv— name, cust ity (oplborrow X customer))

Where: \

P = borrow.branch-name = “Perryridge”

N borrow.cust name = ¢ ¢ name

Section 3.2)) Formal Query Languages 59

customer-name
Hayes

Figure 3.11 Customers with an adeount and a loan at the Perryridge branch.

The theta join is a binary operation that allows us to combine the
selection and cartesian product into one operation. The theta join is
denoted by % g, where % is the “join™ symbol and the subscript 8 (the
Greek letter theta) is replaced by the selection predicate. The theta join
operator forms the cartesian product of its two arguments and then
performs a selection using the predicate @.

We rewrite our relational algebra expression for “Find all customers
having a loan at the Perryridge branch and the cities in which they live,”
using the theta join as foliows:

nborruw cusl name, cust cust <ity (borrow » @ Customer)
In this example, @ is the predicate:

borrow.branch-name = “Perryridge™
A borrow.customer-name = customer.customer-name

In general, @ can be an arbitrary predicate. Given two relations, r and s,
and a predicate 0,

rN95=oe(rXs)

The natural-join operation is a further notational simplification of the
relational algebra. Let us consider a simpler version of the above example,
“Find all customers having a loan at some branch and their cties.” If we
write this query as a theta join we obtain

nbormw- 1 name, cust ¢ -city

(borrow ¥ borrow.cust name = cusk cust -name CUSt)

Observe that this particular theta join forces equality on those attributes
that appear in both relation schemes. This sort of predicate occurs
frequently in practice. Indeed, if we are printing out pairs of (customer-
name, customer<ity), we would normally want the dty to be the city in
which customer lives, and not some arbitrary Gty. The natural-join
Operation is designed precisely for this sort of query.

P

258000 4I-1SA

L0 S

A X A RO

Ll 2t

60 Relational Model Chapter 3

Although the definition of natural-join is a bit complicated, it is applied
easily. We can use the natural join to write the query “Find all customers
having a loan at some branch and their cities” as follows:

Nevstomer-name. customer-city (bOrrow % customer)

Since the schemes for borrow and cusiomer (that is, Borrow-scheme and
Customer-scheme) have the attribute customer-name in common, the natural-
join operation considers only pairs of tuples that have the same value on
customer-name. It combines each such pair of tuples into a single tuple on
the union of the two schemes (that is, branch-name, loan-number, customer-
name, amount, street, customer-ity). After performing the projection, we
obtain the relation shown in Figure 3.12. The earlier example, “Find all
customers having a loan at the Perryridge branch and their cities,” can be
written as

ncustomcr—name. customer-city

(Cbranch-name = “Perryridge” (bOrTow ™ customer))

We are now ready for a formal definition of the natural join. Consider
two relation schemes R and S which are, of course, lists of attribute names.
Let us consider the schemes to be sets rather than lists. This allows us to
denote those attributes in both R and S by RN S, and to dencte those
attributes that appear in R, in S, or in both by R U S. Note that we are
talking, here, about union and intersection on sets of attributes, not
relations.

Consider two relations r(R) and s(S). The natural join of r and s,
denoted by r 4 s is a relation on scheme R U § . It is the projection onto

Figure 3.12 Result of W yistomer-name. customer. <ity (borrow W customer).

f name ~City
Jones Harrison
Smith Rye
Hayes Harrison
Curry Rye
Turmer Stamford
Williams Princeton
Adams Pittsfield
Johnson Palo Alto
Glenn Woodside
Brooks Brooklyn

Section 3.2 Formal Query Languages 61

a

RUS of a theta join where the predicate requires 7.A = 5.4 for each
attribute A in R N S . Formally,

rx s=ﬂRU5(r.l;o

t

rA =SsAA.LA rA,=sA, s)

whereRN S = {A]. . A

Now that we have introduced the natural join, we adopt the following
convention for attribute names in cartesian products of relations: We shall
use .the notation relation-name.attribute-name only when necessary to avoid
amlf)‘xgmty. When no ambiguity results, we shall drop the relation-name
prefix.

Because the natural join is central to much of relational database theory
and practice, we give several examples of its use:

. Find the assets and name of all branches which have depositors (that
15, customers with an account) living in Port Chester.

nbmnch-nnme. assets

O customer ~city = “Port Chester™ (CUStomer X deposit b branch))

Notice that we wrote customer x: deposit @ branch without inserting
. Parentheses to specify

(customer x deposit) % branch
or customer % (deposit X branch)

We did not specify which expression we intended because they are
equivalent. That is, the natural join is associative.

® Find all customers who have both an account and a loan at the
Perryridge branch.

ncuslamtr—m:mc (abmnch-name = “Permryridge” (borrow % «deposit))
{

!
Note that we could have written an expression for this query using set
intersection:

ncuslamer-name (abmm:h-mm = “Perryridge™ (d'kos“))

customer-name Cbranch-name = “Pemryridge™ (borrow))

This example illustrates a general fact about the relational algebra: It is

possible to write several equivalent relational algebra expressions that
are quite different from each other.

€G8000NgaI-1SA

62 Relational Model Chapter 3

® Let r(R) and s(S) be relations without any attributes in common, that is,
RN S =0@. (@ denotes the empty set.) Thenr W s =r X 5.

We now introduce one final relational algebra operation, called division
(*). The division operation is suited to queries that include the phrase “for
all.” Suppose we wish to find all customers who have an account at all
branches located in Brooklyn. We can obtain all branches in Brooklyn by
the expression:

" = Myranch-name (Cbranch-city = “Brooklyn~ (branch))

We can find all customer-name, branch-name pairs for which the customer has
an account at the branch by writing

n= ncuslamzr-name. branch-name (deposit)

Now we need to find customers who appear in r, with every branch name
in r). The operation that provides exactly those customers is the divide
operation. The query can be answered by writing

"customzr-vwme. branch-name (deposit)

* Myranch-name (Cpranch-city = “Brooklyn™ (oranch))

Formally, let 7(R) and 5(S) be relations, and let SC R. The relation r + s
is a relation on scheme R — 5. A tuple tisinr + s if for every tuple f, in

s there is a tuple ¢, in r satisfying both of the following:
44S) = 18]
tIR — S = R - §]
It may be surprising to discover that the division operation can, in fact, be

defined in terms of the five fundamental operations. Let r{R) and s(S) be
given, with SC R,

'+S=nR_S(T)-HR_S((nR_S(’)XS)")

To see that this is true, observe that iy _ ¢ () gives us all tuples ¢ that

satisfy the second condition of the definition of division. The expression on
the right side of the set difference operator,

nR-s((nR_s(’)xs)")

serves to eliminate those tuples that fail to satisfy the first condition of the
definition of division. Let us see how it does this. Consider
[lg _ g () X s. This is a relation on scheme R which pairs every tuple in
| P s () with every tuple in 5. Thus Mg _ s (1) X s) — r gives us those

Section 3.2 Formal Query Languages 63

~

pairs of tuples from Iy _-¢ (r) and s which do not appear in r. If a tuple ¢
is in
Mg _ (Mg _g)yxs)=r)

then there is some tuple t; in s'that does not combine with tuple ¢ to form
a tuple in r. Thus ¢ holds a value for attributes R — 5§ which does not
appear in r + s . Itis these values that we eliminate from Mz _ ¢ (r).

At times it is necessary to express the cartesian product of a relation
with itself. In order to distinguish between the attributes of the resulting
relation, we must rename one of the operands of the cartesian product. For
this purpose, we define a rename operator which allows us to refer to a
relation by more than one name. Define rename(R1, R2) to be a function
which returns the relation specified by Rl, but under the name R2. See
exercises 3.5¢, 3.5g and 3.11d for examples of the use of renaming.

3.2.2 The Relational Calculus

The relational algebra is a procedural language because, when we write a
relational algebra expression, we provide a sequence of operations that
generates the answer to our query. The relational calculus, on the other
hand, is a nonprocedural language. In the relational calculus, we give a
formal description of the information desired without specifying how to
obtain that information.

There are two forms of the relational calculus, one in which the
variables represent tuples, and one in which the variables represent values
of domains. These variants are called' the tuple relational calculus and the
domain relational calculus. The two forms are very similar. As a result, we
shall emphasize the tuple relational calculus.

A query in the tuple relational calculus is expressed as

{t1 P)}

that is, the set of all tuples ¢ such that predicate P is true for t. Following
our earlier notation, we use {{A] to denote the value of tuple f on attribute
A, and we use t e r to denote that tuple ¢ is in relation r.

Before we give a formal definition of the tuple relational calculus, we
return to some of the queries for which we wrote relational algebra
expressions in the last section.

Find the branch-name, loan-number, customer-name, and amount for loans
of over $1200:

{t 1 ¢t € borrow A tlamount] > 1200}
Suppose we want only the customer-name attribute, rather than all attributes

of the borrow relation. To write this query in the tuple relational caleulus,
we need to write an expression for a relation on scheme (customer-name).

~
g

R S

¥S8000NQI-1SH

Y

64 Relational Model Chapter 3

We need those tuples on (customer-name) such that there is a tuple in
borrow pertaining to that customer-name with the amount attribute > 1200. In
order to express this, we need the construct “there exists” from the
predicate calculus in mathematical logic. The notaﬁo&

36QM)

means “there exists a tuple f such that predicate Q(t) is true.”
Using this notation, we may write the query “Find all customers who
have a loan for an amount greater than $1200" as:

{t1 3 s(s € borrow A t{customer-name] = s[customer-name)
A slamount] > 1200)}

In English, we read the above expression as “the set of all tuples t such
that there exists a tuple s in relation borrow for which the values of t and s
for the customer-name attribute are equal, and the value of s for the amount
attribute is greater than $1200."

Consider the query “Find all customers having a loan from the
Perryridge branch and the cities in which they live.” This query is slightly
more complex than we have seen so far since it involves two relations,
namely, customer and borrow. But as we shall see, all this requires is that
we have two “there exists” clauses in our tuple relational calculus
expression. We write the query as follows:

{t1 3 s (s € borrow A t[customer-name) = s{customer-name)
A slbranch-name} = “Perryridge”
A 3 u (u € customer A ulcustomer-name) = s[customer-name)
A l[customercity) = ulcustomer-city)))}

In English, this is “the set of all (customer-name, customer<city) tuples for
which customer-name is a borrower at Perryridge branch and customer-ity is
the city of customer-name.” Tuple variable s ensures that the customer is a
borrower at the Perryridge branch. Tuple variable u is restricted to pertain
to the same customer as s, and u ensures that the customer-ity is the city of
the customer.

To find all customers having a loan, an account, or both at the
Perryridge branch, we used the union operation in the relational algebra.
In the tuple relational calculus, we shall need two “there exists” clauses,
connected by “or” (v).

{t1 3 s (s € borrow A t{customer-name} = s{customer-name]
A slbranch-name] = “Perryridge™)
v 3 u (u € deposit A t{customer-name) = ulcustomer-name)
A ulbranch-name] = “Perryridge™)}

TR e R

- - AN A AL it -

R R S
———t

Section 3.2 Formal Query Languages 65

-

The above expression givés us the set of all customer-name tuples such that
at least one of the following holds:

® The customer-name appears in some tuple of the borrow relation as a
borrower from the Perryridge‘pmnch.

® The customer-name appears in some tuple of the deposit relation as a
depositor of the Perryridge branch.

If some customer has both a lcan and an account at the Perryridge branch,
that customer appears only once in the result because the mathematical
definition of a set does not allow duplicate members of a set.

If we now want only those customers that have both an account and a
loan at the Perryridge branch, all we need to do is change the “or" (v) to
“and™ (A) in the above expression.

{t1 3 s (s € borrow A t{customer-name) = s(customer-name)
A slbranch-name] = “Perryridge’
A 3 u (u € deposit A tcust name} = u{cust name}
A ulbranch-name] = “Perryridge™)}

Now consider the query, “Find all customers who have an account at
the Perryridge branch but do not have a loan from the Perryridge branch.”
The tuple relational calculus expression for this query is similar to those we
have just seen, except for the use of the “not™ (1) symbol.

{tt 3 u (u e deposit A t{customer-name] = ulcustomer-name)
" A ufbranch-name) = “Perryridge™)
A 7 3 s (s € borrow A t[customer-name) = s(customer-name])
A s(branch-name] = “Perryridge™)}

The above tuple relational calculus expression uses the 3 u (...) dause to
require that the customer have an account at the Perryridge branch, and it
uses the 3 s(...) clause to eliminate those customers who appear in
some tuple of the borrow relation as having a loan from the Perryridge
branch.

Finally, let us consider the query we used in Section 3.2.1 to illustrate
the division operation, “Find all customers who have an account at all
branches located in Brooklyn.” To write this query in the tuple relational
calculus, we introduce the “for all” construct, denoted V. The notation

v HQ1)

GG8000NgI-1SA

R R e M A (D

66 Relational Model Chapter 3

means “Q is true for all tuples £." We write the expression for our query as
follows:

{t1 V u(u ¢ branch v u[branch-cily_] # “Brooklyn™
v 3 s (s € deposit A t[cust -name) = s|c name)
A ulbranch-name} = s{branch-name}))}

In English, we interpret the above expression as “the set of all (customer-
name) tuples t such that for all (branch-name, branch-city) tuples at least one
of the following is true: .

® u is not a tuple of the branch relation (and therefore, does not pertain
to a branch in Brooklyn).

® The value of ¥ on attribute branch-city is not Brooklyn.

® The customer has an account at the branch whose name appears in the
branch-name attribute of u.

We are now ready to give a formal definition of the tuple relational
calculus. A tuple relational calculus expression is of the form:

{t 1 P()}

where P is a formula. Several tuple variables may appear in a formula. A
tuple variable is said to be a free variable unless it is quantified by a “ 3" or
“V". Thus in:

t € borrow A 3 s (t{customer-name] = s(customer-name))

tis a free variable. Tuple variable s is said to be a bound variable.
A tuple relational calculus formula is built up out of atoms. An atom is
of one of the following forms:

® s er, where s is a tuple variable and r is a relation.

® s[x] 8 uly], where s and u are tuple variables, x is an attribute on
which s is defined, y is an attribute on which u is defined, and O is a
comparison operation (<, <, =, #, >,). We require that attributes x
and y have domains whose members can be compared by ©.

® s[x] © ¢, where s is a tuple variable, x is an attribute on which s is

defined, 6 is a comparison operator, and ¢ is a constant in the domain
of attribute x.

~

Section 3.2 X Formal Query Languages 67

Formulae are built up from atoms using the following rules:

® An atom is a formula.

® If P, is a formula, then so age P, and (P)).

® If P| and P, are formulae, then so are PyvPyand Py A P,.
o If Pl(s) is a formula containing a free tuple variable s, then:

35(Py(s) and Vs (P(s))
are also formulae.

As was the case for the relational algebra, it is possible to write
equivalent expressions that are not identical in appearance. [n the tuple
relational calculus, these equivalences include two rules:

L. P\ A P, is equivalent to = (7P v TPy,
2. Vit (Pl(t)) is equivalent to - 3 ¢ (P ().

There is one final issue we must address in the tuple relational
calculus. A tuple relational calculus may generate an infinite relation.
Suppose we wrote the expression:

{t1 t ¢ borrow)

There are infinitely many tuples that are not in borrow. Most of these
tuples contain values that do not even appear in the database! Clearly, we
do not wish to allow such expressions. Another type of expression we
wish to disallow is:

{t! IsGlx)#cA tlyl = slyh}

where x and y are attributes and c is a constant. [t is possible that the only
tuples that satisfy s[x] # c are tuples whose values do not appear in the
database. Finding such a tuple requires a search among the potentially
infinite number of tuples that do not appear in the database.

To assist us in defining a restriction of the tuple relational calcujus, we
introduce the concept of the domain of a tuple relational calculus formula.
Let P be a formula. Intuitively, the domain of P, denoted dom(P), is the set
of all values referenced in P. These include values mentioned in P itself as
well as values that appear in a tuple of a relation mentioned in P. Thus,
the domain of P is the set of all values that appear explicitly in P or that
appear in one or more of the relations whose names appear in P.

968000NdI-1S4d

68 Relational Model Chapter 3

These considerations motivate the concept of safe tuple relational

calculus expressions. We say an expression {t 1 P(t)} is safe if all of the
following hold:

1. All values that appear in tuples of the expression are values from
dom(P).

2. For every “there exists" subformula of the form 35(Pl(s)), the

subformula is true if and only if there is a tuple s with values from
dom(Pl) such that P,(s) is true. !

3. For every “for all" subformula of the form V s (P(s)), the subformula is
true if and only if Pl(s) is true for all tuples s with values from dam(Pl).

The purpose of the notion of safety is to ensure that only values from
dom(P) appear in the result and to ensure that we can test “for all" and
“there exists” subformulae without having to test infinitely many
possibilities.

Consider the second rule in the definition of safety. For 3 s (Py(s) to
be true, we need to find only one s for which P,(s) is true. In general,
there would be infinitely many tuples to test. However, if the expression is
safe, we know that we may restrict our attention to tuples with values
from dom(P|). This reduces the number of tuples we must consider to a
finite number. The situation for subformulae of the form Vs (P(s)) is
similar. To assert that Vs(Pl(s)) is true, we must, in general, test all
possible tuples. This requires us to examine infinitely many tuples. As
above, if we know the expression is safe, it is suffident for us to test P\(s)
for those tuples s whose values are taken from dom(P,).

All the tuple relational calculus expressions we have written in the
examples of this section are safe.

The tuple relational calculus, restricted to safe expressions, is
equivalent in expressive power to the relational algebra. This means that
for every relational algebra expression, there is an equivalent safe
expression in the tuple relational calculus, and for every safe tuple
rélational calculus expression there is an equivalent relational algebra
expression. We will not prove this fact here, but the bibliographic notes
contain references to the proof. Some parts of the proof are included in the
exercises.

There is a second form of the relational calculus called the domain
relational calculus. In this form of the relational calculus, we use domain
variables that take on values from an attribute’s domain, rather than values
for an entire tuple. The domain relational calculus, however, is closely
related to the tuple relational calculus.

Section 3.2 . Formal Query Languages 69

N

An expression in the domain relational calculus is of the form
{<x,. T 2> 1 Plxy. xy. x,)} where the Xl sSi=<wu, represent
domain variables. P represents a formula. As was the case for the tuple
relational calculus, a formula’is composed of atoms. An atom in the
domain relational calculus is of the following forms:

t

1

® <x;, x> €r, where r is a relation on » attributes and Nolsi=<p
are domain variables or domain constants.

® x O y, where x and y are domain variables and © is a comparison
operator (<, =, =, ¢, >, =). We require that attributes x and v have
domains that can be compared by 6.

® x 8 ¢, where x is a domain variable, @ is a comparison operator, and ¢
is a constant in the domain of the attribute for which x is a domain
variable.

Formulae are built up from atoms using the following rules:

® An atom is a formula.
o If PI is a formula, then so are “\P. and (Pl)'
e If P, and P, are formulae, then so are Pyv Py and P A P,

® If P,(x) is a formula in x, where x is a domain variable, then
3x (P(x) and V x Py (xn
are also formulae.
As a notational shorthand, we write
3 a,b.c (Pla,b.c)
for:

3a@b@Ac(P@abo))

The notion of safety applies to the domain calculus as well. The
domain relational calculus, restricted to safe expressions, is equivalent to

- the tuple relational calculus, restricted to safe expressions. Since we noted

earlier that the tuple relational calculus, restricted to safe expressions, is

/G8000N4I-1SA

70 Relational Model Chapter 3

equivalent to the relational algebra, all three of the following are
equivalent:

@ The relational algebra.

© The tuple relational calculus restricted to safe expressions.

® The domain relational calculus restricted to safe expressions.

We now give domain relational calculus queries we considered earlier.

Note the similarity of these expressions with the corresponding tuple
relational calculus expressions:

Find the branch name, loan number, customer name, and amount for
loans of over $1200:

{<blic,a>1 <blca>eborrowAa> 1200}
Find all customers who have a loan for an amount greater than $1200:
{<c>1 3bla(<blca>eborrowAa> 1200)}

Find all customers having a loan from the Perryridge branch and the
city in which they live:

{<e.x>1 3 bla(<b,l.ca > € borrow A b = “Perryridge”
Ay (<c,y.x > € customer))}

Find all customers having a loan, an account, or both at the Perryridge
branch:

{<c>1 3bla(<blia>eborrownb = “Perryridge™)
v 3 ban (<ba,cn > edeposit Ab = “Perryridge”)}

Find all customers who have an account at all branches located in
Brookiyn:

{<c>1 Vayz (<x,y,z > ¢ branch v z # “Brooklyn™
v(3an(<xacn>e deposit)))}

3.3 Commercial Query Languages

The formal languages we have just seen provide a concise language for
representing queries. However, database system products require a more
“user-friendly” query language. In this section, we study three of these
product languages: SQL, Quel, and QBE. We have chosen these languages

Section 3.3 : ial Query L -

because they represent a v;riety of styles. QBE is based on i

L . the domain
relational calculus; Quel is based on the tuple relational calculus:
uses a combination of relational v ional calculus comro oL
All three of these languages have been influential not only in research
data'l:‘ashe systems but also in comméyg lly marketed systems,

though we refer to these languages as “query lan ages,” this i
0 ," th

ach.lally incorrect. SQL, Quel, and QBE contaiq o s ties
besides querying a database. These i

equent chapters
Qur goal is not to provide a com

these details in Chapter 15.
3.3.1 SQL

SQL was introduced as the query language for System R, SQL is an

acronym for Structured Query Lan age. It is still
its former name, Sequel. 7 anguage. Itls sl referred to frequently by

The basic structure of an SQL e i i :
select, trom, g e Te © QL expression consists of three dauses:

corresponds to. the Projection operation of the
— is used to list the attributes desired in the result of

® The from clause is a list of relations to be scanned in th, :
the expression. in the execution of

® The _where clause corresponds to the selection predicate of the
relational algebra. It consists of a predicate involving attributes of the
relations that appear in the from clause.

select A}, 4,, ..., 4,
from TR/ TN A
where P

The 'A,-s represent attributes, the TS represent relations, and p is a
predicate. This query is equivalent to the relational algebra expression:

868000 4aI-1SA

A
2

UMY
ST

-

.2

£

2 ey

_ IWJJL!

Pt y '\.:

"I'L
- K

7

72 Relational Model Chapter 3

Ny, Ay a@plry Xy X o oe Xap))

If the where clause is omitted, the predicate P is true. The list
Ay Ay, ...l A, Of attributes may be replaced with a star (*) to select all
attributes of all relations appearing in the from clause.

SQL forms the cartesian product of the relations named in the from
dause, performs a relational algebra selection using the where clause
predicate, and projects the result onto the attributes of the select clause. In
practice, SQL may convert the expression‘into an equivalent form that can
be processed more efficiently. However, we shall defer concerns about
efficiency to Chapter 9.

The result of an SQL query is, of course, a relation. Let us consider a
very simple query using our banking example, “Find the names of all
branches in the deposit relation™:

select branch-name

from deposit

In the formal query languages, the mathematical notion of a relation
being a set was used. Thus, duplicate tuples did not ever appear in
relations. In practice, duplicate elimination is relatively time-consuming.
Therefore, SQL (and most other commercial query languages) allow
duplicates in relations. The above query will, thus, list each branch-name
once for every tuple in which it appears in the deposit relation.

In those cases where we want to force the elimination of duplicates,
we insert the keyword distinct after select. We can rewrite the above
query as

select distinct branch-name
from deposit

if we want duplicates removed. We note for historical accuracy that early
implementations of SQL used the keyword unique in place of distinct.

SQL includes the operations union, intersect, and minus, which
operate on relations, and cdmrespond directly to the relational algebra
operations U, N, and —.

Let us see how the example queries that we considered earlier are
written in SQL. First, we find all customers having an account at the
Perryridge branch: \

select customer-name
from deposit
where branch-name = “Perryridge™

Section 3.3 Commercial Query Languages 73

.

Next, let us find all customers having a loan from the Perryridge branch:

select customer-name
from borrow
where branch-igme = “Perryridge”

To find all customers having a loan, an account, or both at the Perryridge
branch we write '

(select customer-name

from deposit

where branch-name = “Perryridge")
union
(select customer-name

from borrow

where branch-name = “Perryridge")

Similarly, to find all customers who have both a loan and an account at the
Perryridge branch, we write

(select customer-name

from deposit

where branch-name = “Perryridge”)
intersect
(select customer-name

from borrow

where branch-name = “Perryridge”)

To find all customers of the Perryridge branch who have an account there
but no loan there, we write

(select customer-name
. from deposit
where branch-name = “Perryridge")
minus
(select customer-name
from borrow
where branch-name = “Perryridge™)

SQL does not have a direct representation of the naturaljoin
operation. However, since the natural join is defined in terms of a
cartesian product, a selection, and a projection, it is a relatively simple
matter to write an SQL expression for the natural join.

658000 QI-1SA

it L A

74 Relational Model . Chapter 3

Recall that we wrote the relational algebra expression:

n " o, (borrow & customer)

..... e, ~city

for the query “Find all customers having a loan at some branch and their
dty.” In SQL, we write

select ¢ name, customer~city
from borrow, customer
where borrow.cust name = cust .customer-name
Notice that SQL uses the notation relation-nam ibute-name, as did the

relational algebra, to avoid ambiguity in cases where an attribute appears
in the scheme of more than one relation. We could have written

t customer-city instead of customer-ity in the select clause. However,
since the attribute customer-city appears in only one of the relations named

_ in the from clause, there is no ambiguity when we write customer-city.

Let us consider a somewhat more complicated query in which we
require that the customers have a loan from the Perryridge branch: “Find
the names of all customers having a loan at the Perryridge branch and
their respective city.” In order to state this query, we shall need to state
two constraints in the where clause, connected by “and.”

select customer.customer-name, customer-city

from borrow, customer

where borrow.customer-name = customer.customer-name and
branch-name = “Perryridge™

SQL uses the logical connectives “and,” “or,” and “not” rather than the
mathematical symbols “A," “v" and “~."
SQL draws on the relational calculus for operations that allow testing

tuples for membership in a relation. To illustrate this, reconsider the query

“Find all customers who have both a loan and an account at the Perryridge
branch.” Earlier, we took the approach of intersecting two sets: the set of
account holders at the Perryridge branch and the set of borrowers from the
Perryridge branch. We can take the alternative approach of finding all
account holders at the Perryridge branch who are members of the set of
borrowers from the Perryridge branch. Clearly, this is an equivalent
approach, but it leads us to write our query using the in connective of
SQL.

The in connective tests for set membership, where the set is a
collection of values produced by a select clause. The not in connective tests
for the absence of set membership.

Section 3.3 : C

S

ial Query Languag 75

Let us use in to write the query “Find all customers who h
ave both a
loan and account at the Perryridge branch.” We begin by finding all
account holders, and write the subquery:

(select custo; e “name
from deposit -
where branch-name = “Perryridge")

We then need to find those customers who are bo:
) rrowers from the
Perryridge branch and who appear in the list of account holders obtained

in the above subquery. We do this b beddi i
Outer select. The resulting query is yem 178 the above subquery in an

select customer-name
from borrow
where branch-name = “Perryridge” and
customer-name in (select customer-name
from deposit
where branch-name = “Perryridge")

These last two examples show that it is possible to write th
) e sa
query several ways in SQL. This is beneficial since it allows a user to thinn\:

about the query in the way that appears most natural. W
there is a substantial amount of redundancy in SQL. el e shall see that

In the above example, we tested membership i i

; _above , In a one-attribut
relation. It is possible to test for membership in an agbitrary relation, SQ[e,
uses the notation <Pp» Uy, ..., U,> to denote a tuple of arity n containing
values v,, V2 ., O, Using this notation, we can write the query “Find all

customers wh i
(ustom rs v::; have both an account and a loan at the Perryridge branch”

select customer-name

from borrow]

where branch-name = “Perryridge” and
<branch-name, customer-name> in
(select branch-name, customer-name

from deposit) \

We now illustrate the use of the “not in” construct. T
. To find all
customers who have an account at the Perryridge branch but d
loan at the Perryridge branch, we can write & ot havea

098000 4I-1SH

76 Relational Model Chapter 3

select customer-name
from deposit
where branch-name = “Perryridge” and
‘customer-name not in (select customer-name
from borrow .
where branch-name = “Perryridge”)

SQL borrows the notion of tuple variables from the .tuple relafional
calculus. A tuple variable in SQL must be assocated with a particular
relation. Tuple variables are defined in the from clause. We dlustratg the
use of tuple variables by rewriting the query “Find all customers having a
loan at some bank and their city”:

select T.cuslomer-name, customer-city
from borrow S, customer T
where S.customer-name = T.customer-name

Note that a tuple variable is defined in the from dause by placing it after
the name of the relation it is associated with.
Tuple variables are most useful when we need to compare two tuples

" in the same relation. Suppose we want to find all customers who have an

account at some bank at which Jones has an account. We write this query
as follows:

select T.customer-name

from deposit S, deposit T

where S.customer-name = “Jones” and
S.branch-name = T.branch-name

Observe that we could not use the notation deposit.branch-name since it
would not be dear which reference to deposit is intended. .
We note that an alternative way to express this query is

select customer-name
from deposit !
where branch-name in

(select branch-name

from deposit

where customer-name = “Jones™) |

We were able to use the in construct in the above query because we
were testing for equality between two branch names. Consider the query
“Find all branches that have greater assets than some branch located in
Brooklyn."” We can write the SQL expression:

s 1 LU

Section 3.3

~

select T.branch-name
from branch T, branch $
where T.assets-> S.assets and
S.branch-city = “Brooklyn"
A
Since the comparison is a “greater than™ comparison, we cannot write this
expression using the in construct.

SQL does, however, offer an alternative style for writing the above
query. The phrase “greater than some"” is represented in SQL by > any.
This construct allows us to rewrite the query in a form that resembles
closely our formulation of the query in English.

select branch-name
from branch
where assets > any
(select assels
from branch
where branch-city = “Brooklyn™)

The subquery

(select assets
from branch
where branch-city = “Brooklyn™)

generates the set of all asset values for branches in Brooklyn. The *> any"
comparison in the where clause of the outer select is true if the assets value

of the tuple is greater than at least one member of the set of all asset
values for branches in Brooklyn.

SQL also allows “< any," “=< any,” “= any," “= any,” and “# any"
comparisons. As an exercise, verify that = any" is identical to “in."
Now let us modify our query slightly. Let us find all branches that

have greater assets than all branches in Brooklyn. We write this query
using the “> all" construct:

select branch-name
from branch
where assets > all
(select assets
from branch
where branch-city = “Brooklyn")

The constructs in, > any, > all, etc. allow us to test a single value
against members of an entire set. Since a select generates a set of tuples,
we may, at times, want to compare sets to determine if one set contains all

Commercial Query Languages 77

Fa i

198000NdI-1S4d

ol

78 Relational Model Chapter 3

the members of some other set. Such comparisons are made in SQL using
the contains and not contains constructs.

Consider the query “Find all customers who have an account at all
branches located in Brooklyn.” For each customer, we need to see if the se;
of all branches at which that customer has an account contains the set of
all branches in Brooklyn.

select customer-name
from deposit S
where (select branch-name
from deposit T
where S.customer-name = T.customer-name)
contains
(select branch-name
from branch
where branch-city = “Brooklyn")

The subquery

(select branch-name
from branch
where branch-city = “Brooklyn™)

finds all the branches in Brooklyn. The subquery

(select branch-name
from deposit T

where S.cust

" ane)
name = T.c name)

at which customer S.customer-name has an account.
Tﬁ:::, atl:nemo:xt:?:eclheits takes each customer and tests whe‘ther the set of all
branches at which that customer has an account contains the set of all
bmnscgis cll?ffrx:ct,hk:wu:er some control over the order in which tuples in a
relation are displayed. The order by dause causes the tuples in th:d resull:
of a query to appear in sorted order. To list in alphab.etxc order a
customers having a loan at the Perryridge branch, we can write

select customer-name

from borrow

where branch-name = “Perryridge™
. order by customer-name

Section 3.3 o C ial Query Languag, 79

.

In order to fulfill an order by request, SQL must perform a sort. Since
sorting a large number of tuples may be costly, it is desirable to sort only
when necessary. :

form groups. Tuples with the' same value on this attribute are placed in
one group. SQL includes functions to compute:

® average: avg

® minimum: min “
® maximum: max

® total: sum

® count: count
To find the average account balance at all branches, we write
select branch-name, avg (balance)

from deposit
group by branch-name

Operations like avg are called aggregate operations because they operate on

aggregates of tuples.

At times it is useful to state a condition that applies to groups rather
than to tuples. For example, we might be interested only in branches
where the average account balance is more than $1,200. To express such a

are applied after the formation of Broups, so aggregate operators may be

select branch-name, avg (balance)
from deposit

group by branch-name

having avg (balance) > 1200.

The aggregate operator count is used frequently to count the number
of tuples in a relation. The notation used for this in SQL is count (*). Thus,
to find the number of tuples in the customer relation, we write

select count (*)
from customer.

Counting can be used to check for negative information. Suppose we
wish to find all customers who have a deposit at the Perryridge branch,

fim et i

298000 4I-1SA

I fog

7.

pear

i SN i

—

R MR, bt

80 Relational Model Chapter 3

but for whom no address is on file. Our approach is to count the number

of customer tuples pertaining to each depositor of the Perryridge branch. If .

the count is 0 for a depositor, we know we have no address for that
person.

select customer-name
from deposit
where branch-name = “Perryridge”
and 0 =
select count (*)
from customer
where deposit.customer-name = customer.customer-name

As an altemative, SQL includes a special construct for the application
of count used in the above example. The predicate exists takes a select
statement as its argument and returns true unless the select results in an
empty relation. We rewrite the example as follows:

select customer-name
from deposit
where branch-name = “Perryridge”
and not exists
select *
from customer
where deposit.customer-name = customer.customer-name

SQL is as powerful in expressiveness as the relational algebra (which,
as we said earlier, is equivalent in power to the relational calculus). SQL
includes the five basic relational algebra operators. Cartesian product is
represented by the from clause of SQL. Projection is performed in the
select clause. Algebra selection predicates are represented in SQL’s where
clause. Set union and difference appear in both the relational algebra and
SQL. SQL allows intermediate results to be stored in temporary relations;
thus we may encode any relational aigebra expression in SQL.

!
SQL offers features that do not appear in the relational algebra. Most

notable among these features are the aggregate operators. Thus, SQL is
strictly more powerful than the algebra.

In this section, we have seen that SQL offers a rich collection of\
features, including capabilities not included in the formal query languages
aggregate operations, ordering of tuples, etc. Many SQL implementations
allow SQL queries to be submitted from a program written in a general
purpose language such as Pascal, PL/1, Fortran, C, or Cobol. This extends
the programmer’s ability to manipulate the database even further. We
show how PL/1 and SQL are combined in an actual system in Chapter 15.

Section 3.3

3.3.2 Quel

Quel was introduced as the query language for the Ingres database system.
The basic structure of the language closely parallels that of the tuple
relational calculus. Most Quel i

clauses: range of, retrieve, and Wwhere.

® Each tuple variable is dedared in a range of clause. We say range of ¢
15 r to declare ¢ to be a tuple variable restricted to take on values of
tuples in r,

® The retrieve clause is similar in function to the select clause of SQL.

® The where dause contains the selection predicate.
A typical Quel query is of the form:

range of ¢, is n
range of t, is r
rangeof ¢, isr,
retrieve ;4. by Ajps ot

/) A)
where P

iﬂ' ill

The t;, are the tuple variables. The Ty are relations, and the A., are
attributes. Quel uses the notation w

tA

to denote the value of tuple variable ¢ on attribute A. This m,
: . e
as f{A] in the tuple relational calculus. ans the same
.Quel do?s not include relational algebra operations like intersect,

?nx:ﬂll:' ;a Ju_;;s. Furthermore, Quel does not allow nested subqueries
unlike . That is, we cannot have a nested retri insi
e . T i eve-where clause inside

Let us retum ‘to our bank example, and write som i

- ' s e of our earlier
quertes using Quel. First, we find all customers hav
Berryridas o5, 2ue VINg an account at the

range of ¢ is deposit
retrieve (F-customer-name)
where ¢.branch-name = “Perryridge”

To show a Quel query involving more than one relation, let us consider

::irq:;gn“l’md all customers having a loan at the Perryridge branch and

" .
D

€98000NgI-1SA

82 Relational Model Chapter 3

range of t is borrow
1ange of s is customer

retrieve (t.c name, s.c ~city)
where t.branch-name = “Perryridge” and
t.cush name = s.cust name

{ I i i d not

Note that Quel, like SQL, uses the logical mnnechves_ a:\d, or, and 3

rather thathhe mathematical symbals “A," “\/," and “" as used in the

tuple relational calculus. -))) N

As another example of a query involving two relations, consider the

query “Find all customers who have both a loan and an account at the
Perryridge branch.”

range of s is borrow

range of ¢ is deposit

retrieve (s.customer-name) . o

where t.branch-name = “Perryridge” and s.branch-name = Perryridge'
and t.customer-name = s.customer-name

In SQL, we had the option of writing a query such as the above one
using tshi2 relational a.lgebr: operation intersect. As we noted above, Quel
does not include this operation.

Let us consider a query for which we used the union operation in -

SQL: “Find all customers who have an account, a loan, or both at the
Perryridge branch.” Since we do not have 2 union operation in Quel, and
we know that Quel is based on the tuple relational calculus, we might be
guided by our tuple relational calculus expression for this query:

{tt 35 (s € borrow A t{customer-name} = s[customer-name)
N slbranch-name] = “Pemryridge™)
v 3 ¥ (u e deposit A t[c] = ufcust
A ulbranch-name] = “Perryridge”)}

name)

i 1 query.
Unfortunately, the above expression does not lead us to a2 Quel query
The probleu? is that in the tuple relational calculus query, we obtain
customers from both tuple variable s (whose range is borrow) and tuple
variable u (whose range is deposif). In Quel, our retrieve clause must be
either

retrieve s.customer-name
or retrieve u.customer-name

If we choose the former, we exclude those depositors who are not
borrowers. If we choose the latter, we exclude those borrowers who are
not depositors.

r

Section 3.3 . Co

~

ial Query L

8 83

- In order to write this query in Quel, we must create a new relation and
insert tuples into this new relation. Let us call this new relation temp. We
obtain all depositors of the Perryridge branch by writing

range of u is deposit
retrieve into temp (u.customer-name)
where u.branch-name = “Perryridge"

The into temp clause causes a new relation,
result of this query. Now we can find all
and insert them in the newl
append command.

, temp, to be created to hold the

borrowers of Perryridge branch
y created relation temp. We do this using the

range of s is borrow
append to temp (s.customer-narme)
where s.branch-name = “Perryridge”

The append command operates similarly
that the tuples retrieved
keyword to.

We now have a relation femp containing all customers who have an
account, a loan, or both, at the Perryridge branch. This relation
course, have the same customer appearing more than once. Quel, like

SQL, eliminates duplicates only if specifically requested to do so. If we
write -

to the retrieve command except
are added to the relation appearing after the

range of ¢ is temp
retrieve unique (t.c

\
name)

Quel sorts temp and eliminates duplicates.

The strategy of using append allows us to perform unions in Quel. To
perform a set difference r — s (minus in SQL), we create a temporary
relation representing r and delete tuples of this temporary relation that are
also in s. To find all customers who have an account at the Perryridge

branch but do not have a loan from the Perryridge branch, we write the
following

range of u is deposit
tetrieve into temp (u.customer-name)
where u.branch-name = “Perryridge”

At this point temp has all customers who have an account at the Perryridge
branch, including those with a loan from that branch. We now delete those
customers who have a loan.

¥98000NQI-1SA

84 Relational Model Chapter 3

range of s is borrow

range of t is temp

delete (t)

where s.branch-name = “Perryridge” and
t.customer-name = s.customer-name

The relation temp contains the desired list of customers. We write

range of t is temp
retrieve (t.customer-name)

to complete our query.))

Forrt’unately, there is a more natural way to express this query in Ql{el.
First, however, we must introduce the Quel aggregate expressions, which
take the form

<aggregate-operation> (f.A where P)

here <aggregate-operation> is one of count, mm avg, max, mm, or any,
:vis a tuple vasriable?eA is an attribute, and P is a predicate similar to the
where clause in a retrieve. An aggregate expression may appear anywhere
tant may a r.
: co'?'ls\us, 't: yﬁnspet:e average account balance for all accounts at the
Perryridge branch, we write

range of ¢ is deposit .
relr%we avg (balance where branch-name = “Perryridge”)

i ish to find all
Aggregates may appear in the where clause. Suppose we wis
accour%ts whosz b:lgf\ce is higher than the average balance at the branch
where the account is held. We write:

range of u is deposit
range of t is depoasit
retrieve {.account-number
where t.balance > avg (u.balance where
© u.branch-name = t.branch-name)

i lance of all accounts
The above avg (...) expression computes the average ba ;
at the branch represented by t. Because expressions of this sort are
frequent, Quel allows the syntax:

range of ¢ is deposit
retrieve t.account-number
where t.balance > avg (t.balance by t.branch-name)

Section 3.3 Commercial Query Languages 85

The avg (...) expression performs the same computation as above. For a
given t, the average balance is computed of the set of all tuples having the
same value on the branch-name attribute as t.branch-name.

Let us return to the query “Find all customers who have an account at
the Perryridge branch but do nat have a loan from the Perryridge branch.”
We can write this query using tHe count aggregate operation if we think of
the query as “Find all customers who have an account at the Perryridge
branch and for whom the count of the number of loans from the
Perryridge branch is zero.”

range of ! is deposit
range of « is borrow
retrieve t.customer-name
where t.branch-name = “Perryridge™ and
count (u.loan-number where u.branch-name = “Perryridge"
and w.customer-name = t.customer-name) = 0

This is a2 more natural way to express this query than our earlier example.

Quel offers another aggregate operation that is applicable to this
example, called any. If we replace count in the above query with any, we
obtain 1 if the count is greater than 0; otherwise we obtain 0. The
advantage in using any is that processing can stop as soon as one tuple is
found. This allows faster execution of the query.

As a more complicated example, consider the query “Find all
customers who have an account at all branches located in Brooklyn.” Our
strategy for expressing this query in Quel is as follows: First find out how
many branches there are in Brooklyn. Then compare this number with the
number of distinct branches in Brooklyn at which each customer has an
account. The count aggregate operation we used earlier counts duplicates.
Therefore, we use the countu operation, which counts unique values.

range of ¢ is deposit
range of u is branch
range of s is branch
retrieve t.customer-name
where countu (s.branch-name where s.branch-city = “Brooklyn”
and s.branch-name = t.branch-name) =
countt\x (u.branch-name where u.branch-city = “Brooklyn™)

We have observed that Quel is related closely to the tuple relational
calculus. The range of clause corresponds to the “there exists.” However,
there is no analog in Quel to “for all.” That is why we -needed to use
insertion and deletion to state in Quel some of the queries that we could
write in the tuple relational calculus. To see more clearly the relationship

G980004I-1SA

i), e

86 Relational Madel Chapter 3

between Quel and the tuple relational calculus, consider the following
Quel query

range of t isr,
range of t, is ry
range of t, isr,

retrieve (1,-|.Aj A t A

LA Lt
"2 N n In

where P
The above Quel query would be expressed in the tuple relational
calculus as:
{tt 3 LT Yoy S (™ nAbLeryAt er, A
‘ A=t A LAl =t [A: A
Hry A} =t A 1AL AL =t TAIA
f[rin.Al."] =t Ml'n] APy, bty s 1)}

This expression can be understood by looking at the formula within
the “there exists™ formula in three parts:

S therpAbyeryN... Nt er,. This part constrains each tuple in
t. t5, ... 8, to take on values of tuples in the relation it ranges over.

® Hrj A1 = LA TAG AL =t ALTA A Hr Al =1; [A;). This
part corresponds to the retrieve clause of the Quel query. We need to

ensure that the kth attribute in tuple t corresponds to the kth entry in
the retrieve clause. Consider the first entry: "'{Ain' This is the value of

some tuple of Tiy (since range of l,-l is rl-l) on attribute Ai'. Thus, we
need c[Aill = tillA’-I]. We used the more cumbersome notation
tlr,-l.A’-l] = l,-l[Al-l] to be able to deal with the possibility that the same
attributé name appears in more than one relation.

® P(t), t5! ... t,). This part is the constraint on acceptable values for
by, &y, ..., 8, imposed by the where clause in the Quel query.

3.3.3 Q\xery-by-Example

Query-by-Example (QBE) is the name of both a query language and the
database system which includes this language. There are two distinctive
features of QBE. Unlike most query languages and programming
languages, QBE has a two-dimensional syntax. A query in a one-dimensional

Section 3.3 : C ial Query L

branch | branch-name | assets | branchcity |

e

customer | customer-name | streel customer-city

borrow | branch-name | loan-number | cust name

deposit | branch-name | account b

name | balance

Figure 3.13 QBE skeleton tables for the bank example.

language (for example, SQL or Quel) can be written in one (possibl
long) line. A two-dimensional language requires two dimeS\psions ¥o;, e:z
expression. (Thge does exist a one-dimensional version of QBE. We shall
not consider this version in our discussion of QBE.) The second distinctive
feature of QBE is that queries are expressed “by example.”
a procedure for obtaining the desired answer, the user gives an example of
what is desired. The system generalizes this example to compute the
answer to the query. Despite these unusual features, there is a close
mrrespor.ldeltnce between QBE and the domain relational calculus.

Quepes in QBE are expressed using skeleton fables, These tables show
d}e relahop scheme, and appear as in Figure 3.13. Rather than clutter the
display with all skeletons, the user selects those skeletons needed for a

Instead of giving

87

998000 4aI-1SH

R w i Sl o i s VNS

88 Relational Model Chapter 3

given query. The user fills in these skeletons with “example rows.” An
example row consists of constants and “example elements.” An example
element is really a domain variable. To distinguish domain variables from
constants, domain variables are preceded by an underscore character (* _ ")
as in _ x. Constants appear without any qualification. This is in contrast to
most other languages in which constants are quoted and variables appear
without any qualification.

To find all customers having an account at the Perryridge branch, we
bring up the skeleton for the deposit relation and fill it in as follows:

deposit | branch-name | account-number | customer-name | balance
Perryridge P._x

The above query causes the system to look for tuples in deposit that have
“Perryridge™ as the value for the branch-name attribute. For each such tuple,
the value of the customer-name attribute is assigned to the variable x. The
value of the variable x is “printed” (actually displayed) because the
command “P.” appears in the customer-name column next to the variable x.

Unlike Quel and SQL, QBE performs duplicate elimination
automatically. To suppress duplicate elimination, the command “ALL.” is
inserted after the “P.” command.

deposit | branch-name | account-number | customer-name | balance
Perryridge P.ALL. _x

The primary purpose of variables in QBE is to force values of certain

tuples to have the same value on certain attributes. Suppose we wish to
find all customers having a loan from the Perryridge branch, and their
cities. We write:

borrow | branch-name | loan-number | customer-name | amount
Perryridge -x

customer | customer-name | street | customer-city
P._x P..y

To execute the above query, the system finds tuples in borrow with
“Perryridge” as the value for the branch-name attribute. For each such tuple,
the system finds tuples in customer with the same value for the customer-
name attribute as the borrow tuple. The values for the customer-name and
customer-ity attributes are displayed. Observe that this is similar to what
would be done to answer the domain relational calculus query:

Section 3.3

A technique similar to the one above can
“Find all customers who have both an account

. Commercial Query Languages 89

~

{<xy>1 Is(<xsy>e customer)}

be used to write the query
and a loan at the Perryridge

branch™; Vi
(-
deposit | branch-name | account ber | cust name | balance
Perryridge P..x
borrow | branch-name | loan-number | customer-name | amount
Perryridge -x

Suppose our query involves a less than or
than an equality, comparison, as in “Fin
balance of more than $1200™:

greater than comparison, rather

d all account numbers with a

deposit

branch-name

account-number

customer-name

Until now, all the conditions we have i
“and.” To express an “or” in QBE, we
two conditions being “or™
query “Find all customers having

Redwood branch, or both™:

P._x

balance
>1200

mposed were connected by
give a separate example row for the
-ed, using distinct domain variables. Consider the
an account at the Perryridge branch, the

branch-name

deposit account-number | customer-name | balance
Perryridge P._x
Redwood P._y

Contrast the above query with
both the Perryridge branch and t

!

“Find all customers having an account at
he Redwood branch™:

deposit | branch-name | account-number | customer-name balance
Perryridge P._x
Redwood -x

The critical distinction between these two queries is the use of the same
domain variable (x) for both rows in the latter query, while, in the former
query, we used distinct domain variables (x and). To illustrate this, note

that in the domain relational calculus, the former query would be written
as

S

EEEREEEE eSS

7

At e i ts i a0

-3,

e e o

/98000 4QI-1SA

Z

b

o s, 00 501, it

90 Relational Model Chapter 3

<x>1 3 ba,n (<b.a,x.n>edeposit ANb = “Perryridg'c"")
¢ v 3 ba,n (<ba,x,n > € deposit A b = “Redwood™)}

while the latter query would be written as

<x > 3 ba,n(<bax,n> edeposit ANb = “Pcn'yridgc:)
{ A3 ba,n (<ba,x,n > edeposit A b = “Redwood")}

i i i i lacing a not
ueries that involve negation are expressefi in QBE by pl
signQ(’\) in a table skeleton under the relation name and next to an
le row.
exanl\z us now consider the query “Find all customers who have an
account at the Perryridge branch but do not have a loan from that branch™;

deposit | branch-name | account-number | customer-name | balance

Perryridge P._x
borrow | branch e | loa b t name
- Perryridge _x

the above query with our earlier query “Find all cust‘?mets who
::\::Pab:;eth an accou?\t z\d a loan at the Perryridge bran?h. The only
difference is the “—" appearing next to the example row in the borrov«;
skeleton. This difference, however, has a major effect on the processing o
the query. QBE finds all x values for which

1. There is a tuple in the deposit relation in which branch-name is
“Perryridge” and cust name is the domain variable x.

2. There is no tuple in the borrow relation in which bvlanch-r.mmz is
“Perryridge” and customer-name is the same as in the domain variable x.

The “~" can be read as “there does not exist.”)

The fact that we placed'the “2" under the relation name rather 'than
under an attribute name is important. Use of a “—" under an attribute
name is a shorthand for “#.” To find all customers who have accounts at

two different branches, we write

deposit | branch-name | account-number | customer-name | balance
-y P._x
= _ y - X

~

Section 3.3 : C ial Query Languag, 91

In English, the above query reads “display all customer-name values that
appear in at least two tuples, with the second tuple having a branch-name
different from the first.” .

If the result of a query. is spread over several tables, we need a
mechanism to display this result in a single table. To accomplish this, we
can declare a temporary result table which includes all the attributes of the
result relation. Printing of the desired result is done by including the
command “P.” only in the result table.

It is inconvenient at times to express all the constraints on the domain
variables within the table skeletons. QBE includes a condition box feature
that allows the expression of such constraints. Suppose we modify the
above query to “Find ali customers not named “Jones" who have accounts
at two different branches.” We want to include an “x # Jones” constraint
in the above query. We do that by bringing up the condition box and
entering the constraint “x # Jones":

conditions
x # Jones

QBE includes aggregate operations similar to those of SQL and Quel.
To find the average balance at all branches, we may write;

deposit | branch-name | account ber | customer-name balance
P.G P.avg.ALL |

Besides avg, the aggregate operators max, min, count, and sum are
included in QBE. The “G” in the “P.G” entry in the branch-name column is
analogous to SQL’s “group by branch-name” construct. The average balance
is computed on a branch-by-branch basis. The “ALL" in the “P.avg. ALL"
entry in the balance column ensures that all balances are considered (recall
that QBE eliminates duplicates by default).

3.4 Modifying the Database

We have restricted our attention until now to the extraction of information
from the database. We have not, however, shown how to add new
information, remove information, or change information. While we did do
some insert and delete operations in our Quel examples, we never altered
the database. Instead, we dealt with temporary relations constructed for
the sole purpose of helping us to express the query.

The formal query languages (the relational algebra and the relational
calculi) do not include any provision for modifying the database. All
commercial languages do include such features, but we shall restrict our
attention to examples in SQL.

N

898000 4I-1SA

92 Relational Model Chapter 3

3.4.1 Deletion

Deletion of tuples from a relation is simple. A delete request is expressed
in much the same way as a query. However, instead of displaying tuples
to the user, the selected tuples are removed from the database. We may
delete only whole tuples; we cannot delete values on only particular
attributes. In SQL, a deletion is expressed by

delete r
where P

P represents a predicate and r represents a relation. Those tuples ¢t in r for
which P(1) is true are deleted from r.

We note that a delete command operates on only one relation. If we
want to delete tuples from several relations, we must use one delete
command for each relation. The predicate in the where clause may be as
complex as a select command’s where clause. At the other extreme, we can
have an empty where clause. The request:

delete borrow

deletes all tuples from the borrow relation. (Well-designed systems will
seek confirmation from the user before executing such a devastating
request.)

We give some examples of SQL delete requests:
® Delete all of Smith’s account records.

delete deposit
where customer-name = “Smith"

® Delete all loans with loan numbers between 1300 and 1500,

delete borrow
where loan-number > 1300 and loan-number < 1500

® Delgte all accounts at branches located in Needham

delete deposit
where branch-name in (select branch-name
from branch
where branch-city = “Needham™)

The above delete request first finds all branches in Needham, and then
deletes all deposit tuples pertaining to those branches.

Ly PP

: ot ...

~ MR 4.

Section 3.4

Note that although we may delete tuples from only one relation at a
time, we may reference any number of relations in a select-from-where
embedded in the where clause of a delete.

If the delete request contains an embedded select that references the
relation from which tuples-dre to be deleted, we face potential anomalies.

Suppose we want to delete the records of all accounts with balances below
the average. We might write

delete deposit
where balance < (select avg (balance)
) from deposit)

However, as we delete tuples from deposit, the average balance changes! If .

we reevaluate the select for each tuple in deposit, the final result will
depend upon the order in which we process tuples of deposit!
Su_ch ambiguities are avoided by the following simple rule: During the

that is, once we are done marking tuples, then we delete all marked
tuples. This rule guarantees a consistent interpretation of deletion. Thus,
our delete request above does, in fact, work the way we would hope and

expect. (Some implementations of SQLU simply disallow delete requests like
the above one.)

3.4.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or
write a query whose result is a set of tuples to be inserted. Obviously, the
attribute values for inserted tuples must be members of the attribute’'s
domain. Similarly, tuples inserted must be of the correct arity.

The simplest insert is a request to insert one tuple. Suppose we wish

to insert the fact that Smith has $1200 in account 9732 at the Needham
branch. We write

insert into deposit .
values (“Needham", 9732, “Smith™, 1200)

More generally, we might want to insert tuples based on the result of a
query. Suppose that we want to provide all loan customers in the
Needham branch with a $200 savings account. Lt the loan number serve
as the account number for the new savings account. We write

insert into deposit
select branch-name, loan-number, customer-name, 200
from borrow
where branch-name = “Needham™

. Modifying the Database 93

4

£d
fx
-
{

e gyt

698000 QI-1SA

e

94 Relational Model Chapter 3

Instead of specifying a tuple as we did earlier, we use a select to
specify a set of tuples. Each tuple has the branch-name (Needham), a loan-
number (which serves as the account number for the new account), the
name of the loan customer who is being given the new account, and the
initial balance of the new account, $200. .

3.4.3 Updating

There are situations in which we wish to change a value in a tuple without
changing all values in the tuple. If we make these changes using delete
and insert, we may not be able to retain those values that we do not wish
to change. Instead, we use the update statement. As was the case for
insert and delete, we may choose the tuples to be updated using a query.
Suppose interest payments are being made, and all balances are to be
increased by 5 percent. We write
update deposit :
set balance = balance * 1.05

The above statement is applied once to each tuple in deposit.

Let us now suppose that accounts with balances over $10,000 receive 6
percent interest, while all others receive 5 percent. We write two update
statements: .

update deposit .
. set balance = balance * 1.06
where balance > 10000

update deposit ’
sel balance = balance * 1.05
where balance < 10000

In general, the where clause of the update statement may contain any
construct legal in the where clause of the select statement (including
nested selects). Note that in the above example the [order in which we
wrote the two update statements is important. If we changed the order of
the two statements, an account whose balance is just under $10,000 would
receive 11.3 percent interest!

\

3.5 Views

In our examples up to this point, we have operated at the conceptual
model level. That is, we have assumed that the collection of relations we
are given are the actual relations stored in the database,

Section 3.5 . Views 95

~

It is not desirable for all users to see the entire conceptual model.
Security considerations may require that we “hide” certain data from
certain users. Consider, for example, a clerk who needs to know a
customer’s loan number but has no need to see the loan amount. This
clerk should see a relation desc’riped, in the relational algebra, by

.
1

nbmm“' e, I umb f name (borrow)

0

Aside from security concerns, we may wish to create a personalized
collection of relations that is better matched to a certain user’s intuition
than is the conceptual model. An employee in the advertising department,
for example, might like to see a relation consisting of the customers of each
branch; that is, for each branch we would like to list those people who
have either an account or a loan at that branch. The relation we would like
to create for the employee is

W yranch-name, customer-name (deposit)
v nbmnéh-mme. customer-name (borrow)

We use the term view to refer to any relation not part of the conceptual
model that is made visible to a user as-a “virtual relation.” It is possible to
support a large number of views on top of any given set of actual relations.

Since the actual relations in the conceptual model may be modified by
insert, update, or delete operations, it is not generally possible to store

"views. Instead, a view must be recomputed for each query that refers to it.

In Chapter 9 we shall consider techniques for reducing the overhead of
this recomputation. For now, we restrict our attention to the definition
and use of views in SQL.

A view is defined in SQL using the create view command. To define a
view, we must give the view a name and state the query that computes the
view. The form of the create view command is

create view v as <query expression>

where <query expression> is any legal query expression. The view name is
represented by v.

As an example, consider the view consisting of branches.and their
customers. Assume we wish this view to be called all-customer. We define
this view as follows: :

create view all-customer as
(select branch-name, customer-name
from deposit)
. union)
(select branch-nams, customer-name
from borrow)

13

€3 R WIS

0/8000W4I-1SA

9 Relational Model Chapter 3

Once we have defined a view, the view name can be used to refer to
the virtual relation the view generates. View names may appear in any
place that a relation name may appear. Using the view all-customer, we can
find all customers of the Perryridge branch by writing

select customer-name
from all-customer

where branch-name = *Perryridge”

Recall that we wrote the same query in Section 3.3 without using views.

Although views are a useful tool for queries, they present significant
problems if updates, insertions, or deletions are expressed using views.
The difficulty is that a modification to the database expressed in terms of a
view must be translated to a modification to the actual relations in the
conceptual model of the database. We illustrate the problem of database
modification through views with a simple example.

Consider the clerk we discussed earlier who needs to see all loan data
in the borrow relation except loan-amount. Let loan-info be the view given to
the clerk. We define this view as

create view loan-info as
select branch-name, loan-number, customer-name
from borrow

Since SQL allows a view name to appear wherever a relation name is
allowed, the clerk may write

insert into loan-info
values (“Perryridge”, 3, “Ruth”)

This insertion must be represented by an insertion into the relation borrow,
since borrow is the actual relation from which the view loan-info is
constructed. However, to insert a tuple into borrow, we must have some
value for amount. There are two reasonable approaches to dealing with this
insertion;

® Reject the insertion and return an error message to the user.
® Insert a tuple (“Perryridge™, 3, “Ruth®, null) into the borrow relation.

The symbol null represents a null-value, or place-holder value. It signifies
that the value is unknown or does not exist.

Most systems take the latter approach and create null values.
However, the presence of null values adds complexity to database queries.

o e

v AN -

e L R e w

3

Section 3.5 ! Views 97

~

Assume we have inserted the above tuple, producing the relation shown
in Figure 3.14, Consider the following query to tota! all loan balances:

select sum (amount)
from llirruo‘

It is not possible to perform addition using null. Similar problems arise
using other aggregate operators. As a result, all aggregate operations
except count ignore tuples with null values on the argument attributes.

All comparisons involving null are false by definition. However, a
special keyword, null may be used in a predicate to test for a null value.
To find all customers who appear in the borrow relation with null values for
balance, we write

select customer-name
from borrow
where balance is null

The predicate is not null tests for the absence of a null value,
We illustrate another problem resulting from modification of the
database through views with an example involving the following view:

create view branch-city as
select branch-name, customer-city
from borrow, customer :
where borrow.customer-name = customer.customer-name

branch-name loan-number | customer-name | amount
Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry S00
Round Hill 1 Tumer 900
Pownal 29 Williams 1200
North Town 16 Adams 1300
Downtown 18 Johnson 2000
Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200
Pa-ryriggg 3 Ruth null

Figure 3.14 A borrow relation containing null values.

1 /8000NdI-1S4

98 Relational Model Chapter 3

This view lists the cities in which borrowers of each branch live. Consider
the following insertion through this view:

insert into branch-city
values (“Brighton™, “Woodside™)

The only possible method of inserting tuples into the borrow and customer
relations is to insert (“Brighton™, mull, null, null) into borrow and (null, null,
“Woodside") into customer. Suppose the system did that. Then we obtain
the relations shown in Figure 3.15. This turns out to be unsatisfactory since

select *
from branch-city

does not include the tuple (“Brighton”, “Woodside"). To see why this is so,
recall that all comparisons involving null are defined to be false. Thus,
the where clause in the view definition (borrow.customer-name =
customer.customer-name) is never satisfied for the tuples added to the borrow
and customer relations.

As a result of the anomaly we have just discussed, many database
systems impose the following constraint on modifications allowed through
views:

® A modification is permitted through a view only if the view in question
is defined in terms of one relation of the actual relational database.

Under this constraint, update, insert, and delete operations would be
forbidden on the example views branch-city and all-customer that we defined
above.

The general problem of database modification through views is a
subject of current research. The bibliographic notes mention recent works
on this subject.

Another view-related research area of interest is the universal relation
model. In this model, the user is given a view consisting of one relation.
This one relation is the natural join of all relations in the actual relational
database. The major advantage of this model is that users need not be
concerned with remembering what attributes are in which relation. Thus,
most queries are easier to formulate in a universal-relation database system
than in a standard relational database system. For example, a univelsal-\
relation version of SQL would not need a from clause. .

There remain unresolved questions regarding modifications to
universal relation databases. Furthermore, a consensus has not yet
developed on the best definition of the meaning of certain complex types
of universal-relation queries. '

-

Section 3.5

Views

branch-name loan-numb cush name t
Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500
Round Hill 11 Turner 900
Pownal 29 Williams 1200
North Town 16 Adams 1300
Downtown 18 Johnson 2000
.Perryridge " 25 Glenn 2500
Brighton 10 Brooks 2200
Brighton nul! null null
customer-name street customer-cily
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putham Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Pale Alto
Glenn Sand Hil Woodside
Brooks Senator Brooklyn
Green Walnut Stamford
null null Woodside

Figure 3.15 Tuples inserted into borrow and customer.

99

We can summarize our discussion of views briefly as follows. Views
are a useful mechanism for simplifying database queries, but modification
of the database through views has potentially disadvantageous
consequences. A strong case can be made for requiring all database
modifications to refer to actual relations in the database.

3.6 Summary

The relational data model is based on a collection of tables. The user of the
database system may query these tables, insert new tuples, delete tuples,

Z/8000N4I-1S4

100 Relational Model Chapter 3

: Exercises 101 ’: }i
3.4 Construct the following SQL queries for the relational database of i

and update (modify) tuples. There are several languages for expressing Exercise 3.3

these operations. The tuple relational calculus and the domain relational
calculus are nonprocedural languages that represent the basic power
required in a relational query language. The relational algebra is a
procedural language that is equivalent in power to both forms of the
relational calculus. The algebra defines the basic operations used within
relational query languages.

The relational algebra and the relational calculi are terse, formal
languages that are inappropriate for casual users of a database system.
Commerdial database system have, therefore, used languages with more
“syntactic sugar.” These languages include constructs for update, insertion,
and deletion of information as well for querying the database. We have
considered the three most influential of the commercial languages: SQL,
Quel, and QBE.

Different users of a shared database may benefit from individualized
views of the database. We used SQL as an example to show how such
views can be defined and used.

i
a. Find the total number of persons whose car was involved in an
accident in 1983. %}

b. Find the number of ‘accidents in which the cars belonging to .
“John Smith” were involved. l

¢. Add a new customer to the database.
d. Delete the car “Mazda" belonging to “John Smith."

t 1
. |
e. Add a new accident record for the Toyota belonging to “jones." , ;

1
n: }

3.5 Consider the relational database of Figure 3.17. Give an expression
® The relational algebra

® The tuple relational calculus

. i
Exercises ® The domain relational calculus '

3.1 Design a relational database for a university registrar's office. The £ * sQL
office maintains data about each class, including the instructor, the ; ©® Quel .
enroliment, and the time and place of the dass meetings. For each : © QBE
student-class pair, a grade is recorded. N Q '
3.2 Describe the differences between the terms relation and relation . for each of the queries below: I
E scheme. llustrate your answer be referring to your solution to :
R Exercise 3.1. i
=1 . a. Find the name of all people who work for First Bank]
i : 3.3 Design a relational database corresponding to the E-R diagram of . Corporation. : b
! { Figure 3.16. b. Find the name and city of all people who work for First Bank t i
: Corporation. '

c. Find the name, street, and city of all people who work for First r
Bank Corporation and earn more than $10,000. I
N

Cerpm e EMErAR s -

i
lives (person-name, street, city) e
works (person-name, company-name, salary) i

1 ! located-in (company-name, city) . i :
I ‘ manages (person-name, manager-name) i
;,i ‘ I
A Figure 3.16 E-R diagram. Figure 3.17 Relational database. N
: i
i A

€/8000N4QI-1SA

2

Relational Model Chapter 3

d. Find all people who live in the same city as the company they
work for.

e. Find all people who live in the same city and on the same
street as their manager.

f. Find all people who do not work for First Bank Corporation.

g Find all people who earn more than every employee of Small
Bank Corporation.

h. Assume the companies may be located in several cities. Find
all companies located in every city in which Small Bank
Corporation is located.

3.6 Consider the relational database of Figure 3.17. Give an expression
in:

¢ SQL

¢ Quel
® QBE
for each of the queries below:
a. Find all people who earn more than the average salary of
people working in their company. .
b. Find the company employing the most people.
¢. Find the company with the smallest payroll.

d. Find those companies that pay more, on average, than the
average salary at First Bank Corporation.

3.7 Consider the relational database of Figure 3.17. Give an expression
in SQL for each query below:

. Modify the database so that Jones now lives in Newtown.

. Give all employees of First Bank Corporation a 10 percent raise.

. Give all managers a 10 percent raise.

A n o

- Give all managers a 10 percent raise unless the salary becomes
greater than $100,000. In such cases, give only a 3 percent
raise.

e. Delete all tuples in the works relation for employees of Small

Bank Corporation.

Exercises 103

1
Al

3.8 In Chapter 2, we showed how to represent many-to-many, many-
to-one, one-to‘many, and one-to-one relationship sets. Explain how
primary keys help us to represent such relationship sets in the
relational model. !

3.9 Let the following relation schemes be given:
¢

R =(A,B,0)
S = (D,E,F)

Let relations r(R) and s(S) be given. Give an expression in the tuple
relational calculus that-is equivalent to each of the following:

a. HA(r)

b. og _ 170

C.rXs

d. My g (o - plr X 5)

3.10 Let R = (A.B.C) and let r, and r, both be relations on scheme R.

Give an expression in the domain relational calculus that is
equivalent to:

a. I'IA(rl)
b. ‘0’8 =17 (fl)
. N U o)

a n

- n 0}
er~r .
f. T g(ry) x Ngry)

3.11 Let; R = (A,B) and S = (A,C), and let rR) and s(5) be relations.
Write relational algebra expressions equivalent to the following
domain relational calculus expressions.

. {<a>1 Ib(<ab>ernb= 17)}
b. {<abec>1 <ab>ern<ac>e s)}
¢ {1 Va(<ab>¢ry3Ic(<ac>es)

d. {<a>1i 3c(<n,c>'es/\3bl,b2(<a.b|>er
/\<c.b2>en\b,>bz)))

¥/8000NQI-1SA

104 Relational Model Chapter 3

3.12 Write expressions for the queries of Exercise 3.11 in

a. QBE
b. QUEL
c. SQL

3.13 Consider the relational database of Figure 3.17. Using SQL define a
view consisting of manager-name and the average salary of
employees working for that manager. Explain why the database
system should not allow updates to be expressed in terms of this
view.

3.14 List reasons why null values may be introduced into the database.

3.15 Some systems allow marked nulls. A marked null 4, is equal to
itself, but if i # j, then A1; 4 One application of marked nulls is
to allow certain updates through views. Consider the view branch-
city (Section 3.5). Show how marked nulls can be used to allow the
insertion of the tuple (Brighton, Woodside) through branch-city.

Bibliographic Notes

The relational model was proposed by E. F. Codd of the IBM San Jose

Research Laboratory in the late 1960s [Codd 1970). Following Codd’s
original paper, several research projects were formed with the goal of
constructing practical relational database systems, incuding System R at
the IBM San Jose Research Laboratory, Ingres at the University of
California at Berkeley, Query-by-Example at the IBM T. J. Watson Research
Center, and PRTV (Peterlee Relational Test Vehicle) at the IBM Scientific
Center in Peterlee, United Kingdom. System R and Ingres are discussed in
Chapter 15. The bibliographic notes of that chapter provide references to
those systems. Query-by-Example is described in Zloof (1977) and IBM
{1978b). PRTV is described in Todd [1976]. The original definition of the
relational algebra is in Codd [1970) and that of the relational calculi is in
Codd [1972b). A formal proof of the equivalence of the relational calculus
and relational algebra can be found in Codd [1972b] and Ullman [1982a].
Thequery language SQL was first defined by Chamberlin et al. {(1976).
Current versions of SQL available in commercial systems include those
described by IBM [1982] and Oracle [1983). There is a proposal in progress
under the auspices of the American National Standards Institute (ANSI) for
a standard SQL language. The SQL language served as the basis for a
proposal for a more general relational database language being developed

.

R 20 SR SR~ o905 §0 3 PRI > 5.2

'

! Bibliographic Notes 105

by ANSI Committee X3H2 (Commiitee on Computer and Information
Processing).

Quel is defined by Stonebraker et al. [1976], Wong and Youssefi (1976},
angd Zook et al. [1977]. A commercial version of Quel is described in RT}
{1983). ‘i,
The problem of updaﬁn‘g relational databases through views is
addressed by Cosmadakis and Papadimitriou {1984, Dayal and Bernstein
(1978, 1982), and Keller [1982, 1985). The universal relation view is
discussed by Sciore [1980], Fagin et al. [1982] and Ullman [1982a. 1982b}.
Several experimental database systems have been built to test the claim
that a universal relation view is simpler to use. In such systems, the user
views the entire database as one relation and the system translates
operations on the universal relation view into operations on the set of
relations forming the conceptual scheme. One such system is System/U,
which was developed at Stanford University in 1980-1982. System/U is
described by Ullman{1982a, 1982b] and Korth et al. [1984). The System/U
query language is similar to that of Quel. However, since the user sees
only one relation, the from dause is eliminated. Another universal relation
system, PITS, is discussed by Maier et al. [1981) and Maier {1983}.

General discussion of the relation data mode] appears in most database
texts, including Ullman {1982a) and Date [1986]. Maier [1983] is a text
devoted exclusively to the relational data model.

G/8000W4I-1SA

-
’
4

~ N

‘
.
:*'af

i
I

il

!ﬂﬁl J ﬁﬁ o

<

.

- wlhl Vo !I‘JL:V.-.....

-]

=

A

[n
s

=

","'.'M] Q Wi

i
~

-t

K

1
g
1
5

“

R S T

9

Query Processing

In the preceding sections, we have considered how to structure the data in
the database. These decisions are made at the time the database is
designed. Although it is possible to change this structure, it is relatively
costly to do so. Thus, when a query is presented to the system, it is

necessary to find the best method of finding the answer using the existing _
_database_structure.-—'lfhere—are—a—Iarge-numb'ef‘éf‘pﬁﬁible “strategies for

processing a query, especially if the query is complex. Nevertheless, it is
usually worthwhile for the system to spend a substantial amount of time
on the selection of a strategy. Typically, strategy selection can be done
using information available in main memory, with litle or no disk
accesses. The actual execution of the query will involve many accesses to
disk. Since the transfer of data from disk is slow relative to the' speed of
main memory and-the central processor of the computer system, it is
advantageous o spend a considerable amount of processing to save disk
accesses.

9.1 Query Interpretation

Given a query, there are generally a variety of methods for computing the
answer. For example, we saw that in SQL a query could be expressed in
several different ways. Each way of expressing the query “suggests” a
strategy for finding the answer. However, we do not expect users to write
their queries in a way that suggests the most efficient strategy. Thus, it
becomes the responsibility of the system to transform the query as entered
by the user into an equivalent query which can be computed more
efficiently. This “optimizing,” or more accurately, improving of the strategy
for processing a query, is called query optimization. There is a close analogy
between code optimization by a compiler and query optimization by a
database system. We shall study the issues involved in efficdent query
processing both in high-level languages and at the level of physical access
to the data.
Query optimization is an important issue in any database system since
e difference in execution time between a good strategy and a bad one
may be huge. In the network model and the hierarchical model, query

9/8000W4I-1SA

302 Query Processing Chapter 9

optimization is left, for the most part, to the application programmer. Since
the data manipulation language statements are embedded in a host
programming language, it is not easy to transform a network or
hierarchical query to an equivalent one unless one has knowledge about
the entire application program.

Since a relational query can be expressed entirely in a relational query
language without the use of a host language, it is possible to optimize
queries automatically. Since the most useful optimization techniques apply
to the relational model, we shall emphasize the relational model in this
chapter. The bibliographic notes reference techniques for optimization of
network and hierarchical queries.

Before query processing can begin, the system must translate the query
into a usable form. Languages such as SQL are suitable for human use, but
ill-suited to be the system’s internal representation of a query. A more
useful internal representation of query is one based on the relational
algebra. The only difference between the form of the relational algebra we
shall use here and that of Chapter 3 is that we shall add redundant
parentheses to indicate the order of operation evaluation.

Thus, the first action the system must take on a query is to translate
the query into its internal form. This translation process is similar to that
done by the parser of a compiler. In the process of generating the internal
form of the query, the parser checks the syntax of the user’s query, verifies
that the relation names appearing in the query are names of relation in the
database, etc. If the query was expressed in terms of a view, the parser
teplaces all references to the view name with the relational algebra
expression to compute a view,

The details of the parser are beyond the scope of this text. Parsing is
covered in most compiler texts (see the bibliographic notes).

Once the query has been translated to an internal relational algebra
form, the optimization process begins. The first phase of optimization is
done at the relational algebra level. An attempt is made to find an
expression that is equivalent to the given expression but that is more
effident to execute. The next phase involves the selection of a detailed
strategy for processing the query. A choice must be made as to exactly
how the query will be executed. A choice of specific indices to use must be
made. The order in which tuples are processed must be determined. The
final choice of a strategy is based primarily on the number of disk accesses
required.

9.2 Equivalence of Expressions

The relational algebra is a procedural language. Thus, each relational
algebra expression represents a particular sequence of aperations. We have
already seen that there are several ways to express a given query in the

N Section 9.2 Equivalence of Expressions 303

relational algebra. The first ste;
to find a relational algebra ex;
and is efficient to execute.
We use our bank example to illustrate optimization techniques. In
particular, we shall use the relations customer (Cust scheme), d
(Deposit-scheme), and branch (Branch-scheme). As was the case earlier,r we
define our relation scheme as follows: ' :

P in selecting a query processing strategy is
pression that is equivalent to the given query

o

Customer-scheme = (customer-name, street, customer-city)

. Deposit-scheme = (branch-name, account-number, customer-name, balance)
Branch-scheme = (branch-name, assets, branch-city)

—

9.2.1 Selection Operation

B

POV RTaRerY

Let us consider the relational algebra expression we wrote in Chapter 3 for

; the query “Find the assets and name of all banks who_have_depositors
B - living in Port Chestez™: "\~ —— ~ '

i

-
')

Wiranch-name, assets ("customemily = “Port Chester”
(customer » deposit % branch))

This expression constructs a large relation, customer x deposit ™ branch .
e Howgv'er, we are interested in only a few tuples of this relation (those

pertaining to residents of.Port Chester), and in only two of the eight
attributes of this relation. The large intermediate result:

T customer % deposit) branch

; is probably too large to be kept in main memory and thus must be stored

e on disk. _This means that in addition to the disk accesses required to read

§ t}_xe relations customer, deposit, and branch, the system will need to access

; disk to read and write intermediate results. Clearly, we could process the

%_ query more efficiently if there were a way to reduce the size of the
intermediate result.

Since we are concerned only about tuples for which customer-city =

“Port Chester," we need not consider those tuples of the customer relation

that do not have customer-city = “Port Chester." By reducing the number of

tuples of the customer relation that we need to access, we reduce the size of

the intermediate result. Our query is now represented by the relational
algebra expression: i

W yranch-name, assets ((oamoma-city = “Port Chester™ (CUstomer))
% deposit ® branch)

,/8000N4QI-1SA

e i o

]

[RRpeoNr SR

PR

,.il.lg-:_..g

»

|
e .

1

!ﬂ,,, FRURTY [

-

dud Query 'rucessiyg Claptes ¥

The above example suggests the following rule for transforming
relational algebra queries:
® Perform selection operations as early as possible.
In our example, we recognized that the selection operator pertained only
to the customer relation, so we performed the selection on customer directly.

Suppose that we modify our original query to restrict attention to
customers with a balance over $1000. The new relational algebra query is

"bmndl—name. assets (ocusfomer—city = “Port Chester" A balance > 1000
(customer %0 deposit % branch))

We cannot apply the selection:
customer-city = “Port Chester” A balance > 1000
directly to the customer relation, since the predicate involves attributes of
" customer and deposil. However, the branch relation does niot involvé either
customer~city or balance. If we decide to process the join as:

((customer ™ deposit) % branch)

then we can rewrite our query as:

nbmndx-mme, assets , .
((catstmr-city = “Port Chester” A balance > 1000 ¢ % deposil))
W branch) .

Let us examine the subquery:

O customer-city = “Port Chester” A balance > 1000 (customer % deposit)

We can split the selection predicate into two, forming the expression:

O customer-city = “Port Chester” (balance > 1000 (customer % deposit))

Both of the above expressions select tuples with customer-city = “Port -

Chester” and balance > 1000. However, the latter form of the expression

provides a new opportunity to apply the “perform selections early™ rule.
We now rewrite our query as: .

O customer-city = “Port Chester” (C4stomen)) ¥ (Tjgiance > 1000 (4eposit))

Y

]
4

—

—Lm\smmm;z-éimwin-‘ -

Jechon ¥4 Lyuivalence ot bxpressions 05

We now add a second transformation rule:
® Replace expressions of the form:
Tpap, ©
by
9p, (op, (&)
where P| and P, are predicates and ¢ is a relational algebra expression.

An easy way to remember this transformation is by noting the following
equivalences among relational algebra expressions:

" 9p, (9p, () = ap @p @) = Tp up, (O

9.2.2 Natural Join Operation

By modifying queries so that selections are done early, we reduce the size
?f temporary results. Another way to reduce the size of temporary results
is to choose an optimal ordering of the join operations. We mentioned in

Chapter 3 that natural join is associative. Thus, for all relations
T 9, andrr3:

(M) Wry=r ®(rKry

although these expressions are equivalent, the costs of comphh'ng them
may differ. Consider again the expression:

Myranch-name, assets ("alstomer-cify = “Port Chester™ (Customer))
4 deposit 0 branch)

W;\ could choose to compute deposit X branch first and then join the result
with: .

Ocusiomer-city = “Port Chester~ (CUstomer)

However, deposit % branch is likely to be a large relation since it contains

8/80004I-1SH

D Fhel

306 Query Processing Chapter 9

one tuple for every account. However,

Ocustomer-city = “Port Cheste™ (CUstomer)

is probably a small relation. To see this, note that since the bank has a
large number of widely distributed branches, it is likely that only a small
fraction of the bank’s customers live in Port Chester. If we compute:

(O ustomer -city = “Part Chester” (customer)) % deposit

first, we obtain one tuple for each account held by a resident of Port
Chester. Thus, the temporary relation we must stgre is smaller than if we
compute deposit 3 borrow first.

. There are other options to consider for evaluating our query. We do

! —-mmm . ——not_care_about the order_in which_attributes_appear_in_a_join,_since. it is.

easy to change the order before displaying the result. Thus, for all
o relations " and 1y

Tl Nr2=r2Nr|

That is, natural join is commutative.

Using this fact, we can consider rewriting our relational algebra
‘; expression as

M nbmm:h-mme, assets «(qcustumer-cily = “Port Chester” (cuslymer))
i W branch) X deposit)

! That is, we could join oy, .. ity = “Port Chester” (customer) with branch as
U the first join operation performed. Note, however, that there are no
‘; attributes in common between Branch-scheme and Customer-scheme, so the

i join is really just a cartesian product. If there are ¢ customers in Port

Chester and b branches, this cartesian product generates bc tuples, one for
every possible pair of customers and branches (without regard for whether
| or not the customer has an account at the branch). Thus, it appears that
;, : this cartesian product will produce a large temporary relation. As a result,
' we would reject this strategy. However, if the user had entered the above
ot expression, we could use the associativity and commutativity of natural
‘ join to transform this expression to the more efficient expression we used
| earlier.
1

‘] 9.2.3 Projection Operation

! We now consider another technique for reducing the size of temporary
i results. The projection operation, like the selection operation, reduces the

PRI DRSS P el by

IR

L A

i
kd

— e e e - AT cytomer-city—=-Port-Chester - (CUSLOMIET)) X - dEpOSit) - - =momm —oee - - il

Section 9.2 Equivalence of Expressions 307

size of rclations. Thus, whenever we nced to generate a temporary :
relation, it is advantageous to apply any projections that are possible. This K t: E

suggests a companion to the “perform selections carly” rule we stated
earlier:

® Perform projections early.

Consider the following form of our example query: 3

nbmnch-mzmc. assels «(“cuslomer'ciry = “Port Chestes" {CUstomer))
0 deposit) % branch) .

il
When we compute the subexpression: ‘{]

we obtain a relation whose scheme is:
(customer-name, customer-city, branch-name, account-number, balance) I

We can eliminate several attributes from the scheme. The only attributes
we must retain are those that:

® Appear in the result of the query or

i
® Are needed to process subsequent operations. BHil:
By eliminating unneeded attributes, we reduce the number of columns of !
the intermediate result. Thus, the size of the intermediate result is |
reduced. In our example, the only attribute we need is branch-name.)
Therefore, we modify the expression to: i l

Myranch-name, assets € Moranch-name (O customer-city = “Port Chester (customer)) i

X deposit)) ™ branch) ‘
'

I {
9.2.4 Other Operations .‘ g

The example we have used involves a sequence of natural joins. We chose
this example because natural joins arise frequently in practice and because
natural joins are one of the more costly operations in query processing.
However, we note that equivalences similar to those presented above hold I
for the union and set difference operations. We list some of these h ;

I

equivalences below:

6/8000NQI-1SA

9.3 Estimation of Elerg}:ﬁbcessing Cost

308 Query Processing Chapter 9

oplry U rg) = oplr) U aplry)

aplry = ry) = aplr)) = ry = op(ry) — ap(ry)
(rI U '2)] ry=n U ('2 V) r3)

n U =1 u "

We have seen several techniques for generating more efficient
relational algebra expressions for a query. For queries whose structure is
more complex than those of our example there may be a large number of
possible strategies that appear lo be efficient. Some query processors
simply choose from such a set of strategies based on certain heuristics.
Others retain all promising strategies and perform the latter phases of
query optimization for each strategy. The final choice of strategy is made
only after the details of each strategy have been worked out and an
estimate is made of the processing cost of each strategy.

Section 9.3 Estimation of Query-Processing Cost 309

n, IV(A.r) tuples. However, it may not always be realistic to assume that
each value appears with equal probability. The branch-name aticibute in the
deposit relation is an example of such a case. There is one tuple in the
deposit relation for each amount. It is reasonable to expect that the large
branches have more accounts than smaller branches. Therefore certain
branch-name values appear with greater probability than others.

Despite the fact that our uniform distribution assumption is not always
true, it is a good approximation of reality in many cases. Therefore, many
query processors make such an assumption when choosing a strategy. For
simplicity, we shall assume a uniform distribution for the remainder of this
chapter.

Estimation of the size of a natural join is somewhat more complicated
than estimation of the size of a selection or a cartesian product. Let "R
and ry(Ry) be relations. If Ry N Ry = @, then r) ¥ ry is the same as
7 X 1y, and wé can use our estimation technique for cartesian products. If
Ry, N R, is a key for R l,_(hen_we.know..that.a.mple-ol‘-r2 -will-jein-with-

The strategy we choose for a query depends upon the size of each relation
and the distribution of values within columns. In the example we have
used in this chapter, the fraction of customers who live in Port Chester has
a major impact on the usefulness of our techniques. In order to be able to

choose a strategy based on reliable information, database systems may

store statistics for each relation r. These statistics include:

1. n,, the number of tuples in the relation r.

2. s,, the size of a record (tuple) of relation r in bytes (for fixed-length §

records).

3. V(A,r), the number of distinct values that appear in the relation r for -

attribute A.

The first two statistics allow us to estimate accurately the size of a cartesian

product. The cartesian product r X s contains n_n, tuples. Each tuple of 3

r X s occupies s, + sg bytes.

The third statistic is used to estimate how many tuples satisfy a’

selection predicate of the form:

<attribute-name> = <value>

However, in order to perform such an estimation, we need to know how
often each value appears in a column. If we assume that each value 3
appears with equal probability, then o, _ () is estimated to have

|

exactly one tuple from r,. Therefore, the number of tuples in T W r,isno
greater than the number of tuples in r,.

The most difficult case to consider is when R; O R, is a key for neither
R, nor R,. In this case, we use the third statistic and assume, as before,
that each value appears with equal probability. Consider a tuple t of .
and assume R N R, = {A}. We estimate that there are n,le(A.rz) tuples
in r, with an A value of A]. So tuple ¢ produces

n,
2
V(A.ry)

tuples in r; @ r,. Considering all of the tuples in ;. we estimate that
there are -

e
V(A.rz)

tuples in r; & 7,. Observe that if we reverse the roles of 7, and 7, in the

above estimate, we obtain an estimate of n, /V(A,r)) tuplesin 7, % r,.
These two estimates differ if VAr) # V(A,r,). If this situation occurs,
there are likely to be some dangling tuples that do not participate in the
join. Thus, the lower of the two estimates is probably the betterone.

- et e et e,
-,

PR

088000 4I-1SA

-

i

e

3w Query Processing Chapter 9

The above estimate of join size may be too high if the V(A.rl) A values
in " have few values in common with the V(A,rz) A values in ry.
However, it is unlikely that our estimate will be very far off in practice
since dangling tuples are likely to be only a small fraction of the tuples in a
real-world relation. If dangling tuples appear frequently, then a correction
factor could be applied to our estimates.

If we wish to maintain accurate statistics, then every time a relation is
modified, it is necessary also to update the statistics. This is a substantial
amount of overhead. Therefore, most systems do not update the statistics
on every modification. Instead, statistics are updated during periods of
light load on the system. As a result, the statistics used for choosing a
query processing strategy may not be accurate. However, if the interval
between the update of the statistics is not too long, "the statistics will be
sufficiently accurate to provide a good estimation of the size of the results
of expressions.

Statistical information about relations is particularly useful when
several indices are available to assist in the processing of a query, as we

.. shall see.in.Section9.4._ __ _ ._ __ —— et

9.4 Estimation of Costs of Access Using Indices

The cost estimates we have considered for relational algebra expressions
did not consider the affects of indices and hash functions on the cost of
evaluating an expression. The presence of these structures, however, has a
significant influence on the choice of a query-processing strategy.

® Indices and hash functions allow fast access to records containing a
spedific value on the index key.

® Indices (though not most hash functions) allow the records of a file to
be read in sorted order. In Chapter 8, we pointed out that it is efficient
to read the records of a file in an order corresponding closely to
physical order. If an index allows the records of a file to be read in an
order that corresponds to the physical order of records, we call that

index a clustering index. Clustering indices allow us to take advantage

of the physical clustering of records into blocks.

The detailed strategy for processing a query is called an access plan for the
query. A plan includes not only the relational operations to be performed

but also the indices to be used and the order in which tuples ase to be ¥

accessed and the order in which operations are to be performed.
Of course, the use of indices imposes the overhead of access to those
blocks containing the index. We need to take these blocks accesses into

account when we estimate the cost of a strategy that involves the use of

indices. :

At

R I b e+

T T Vicustomer-name, deposit) = 200,

PE

Section 9.4 Estimation of Costs aof Access Using Indices 311

In this section, we consider
use the selection predicate to
use in processing the query.

As an example of the estimation of
assume that we are processing the query:

Queries involving only one relation. We
guide us in the choice of the best index to

the cost of a query using indices

select accouitt-number
from deposit

where branch-name = “Perryridge™ and customer-name =

“Willi v
and balance > 1000 illiams

Assume that we have the following

statistical informati :
relation: tion about the deposit

® 20 tuples of deposit fit in one block.
® V(branch-name, deposit) = S0.

. V(Patance, deposit) = 5000.
® The deposit relation has 10,000 tuples.

Let us assume that the following indices exist on deposit:

® A clustering, B*-tree index for branch-name.

® A nonclustering, B*-tree index for customer-name.

As before, we shall make the
distributed uniformly.

Since V(branch-name, deposit) = 50, we expect that 1 =
of the deposit relation pertain to the Penyridge branch.ogoalzousezt(}]\z‘i‘:n':::
on brar_tch-na'me, we will need to read these 200 tuples and check each one
for satisfaction of the where clause. Since the index is a clustering index
200/20 = 10 block reads are required to read the deposit tuples. In addition,
se\{eral index blocks must be read. Assume the B*-tree index stores 26
pointers per node. This means that the B*-tree index must have between 3
and 5 leaf nodes. With this number of leaf nodes, the entire tree has a
depth of 2, 50 at most 2 index blocks must be read. Thus the above
stratl;;gy requirf‘s 12 total block reads.

we use the index for customer-name, we estimate the n

accesses as follows. Since V(customer-name, deposit)y = 200, :Zlbeexrp(e:itblt:cal:
190001200 = 50 tuples of the deposit relation pertain to Williams. However,
since the index for customer-name is nonclustering, we anticipate that oné

simplifying assumption that values are

188000NdI-1S4H

}‘.

o -

W, . Bf"‘ e b

o |

e Query 'rocessing Chapter 9

block read will be required for each tuple. Thus, 50 block reads are
required, just to read the deposit tuples. Let us assume that 20 pointers fit
into one node of the B¥-tree index for customer-name. Since there are 200
customer names, the tree has between 11 and 20 leaf nodes. So, as was the
case for the other B*.tree index, the index for customer-name has a depth of
2 and 2 block accesses are required to read the necessary index blocks.
Therefore, this strategy requires a total of 52 block reads. We conclude that
it is preferable to use the index for branch-name.

Observe that if both indices were nonclustering, we would prefer to
use the index for customer-name since we expect only 50 tuples with
customer-name = “Williams™ versus 200 tuples with branch-name =
“Perryridge.” Without the dustering property, our first strategy would
have required 200 block accesses to read the data plus 2 index block
accesses for a total of 202 block reads. However, because of the clustering
property of the branch-name index, it is actually less expensive in this
example to use the branch-name index.

We did not consider using the balance attribute and the predicate

.balance > 1000 _as a_starting point for a query processing_strategy._for_two.
reasons:

¢ There is no index for balance.

® The selection predicate on baiance involves a “greater than” comparison.
In general, equality predicates are more selective than “greater than"
predicates. Since we have an equality predicate available to us (indeed,

we have two), we prefer to start by using such a predicate since it is
likely to select fewer tuples.

Estimation of the cost of access using indices allows us to estimate the
complete cost, in terms of block accesses, of a plan. For a given relational
algebra expression, it may be possible to formulate several plans. The
access plan selection phase of a query optimizer chooses the best plan for a
given expression.

We have seen that different plans may have significant differences in

" cost. It is possible that a relational algebra expression. for which a good

plan exists may be preferable to an apparently more efficient algebra
expression for which only inferior plans exist. Thus, it is often worthwhile
for a large number of strategies to be evaluated down to the access plan
level before a final choice of query-processing strategy is made.

9.5 Join Strategies

Earlier, we estimated the size of the result of a relational algebra expression ‘g8

involving a natural join. In this section, we apply our techniques for

estimating the cost of processing a query to the problem of estimating the E

%
3

Section 9.5 Join Strategies 313

cost of processing a join. We shall see that several factors influence the
selection of an optimal strategy:

® The physical order of tuples in a relation.

® The presence of indices and the type of index (clustering or
nonclustering).

® The cost of computing a temporary index for the sole purpose of
processing one query.

Let us begin by considering the expression

deposit X customer

and assume that we have no indices whatsoever. Let:

L} "deposil = 10,000.

7 Poustomer — 200.

9.5.1 Simple Iteration

If we are not willing to create an index, we must examine every possible
pair of tuples t; in deposit and ty in customer. Thus, we examine
10000 + 200 = 2000000 pairs of tuples.

If we execute this query cleverly, we can reduce the number of block
accesses ssignificantly. Suppose that we use the procedure of Figure 9.1 for
computing the join. We read each tuple of deposit once. This may require
as many as 10,000 block accesses. However, if the tuples of deposit are
stored together physically, fewer accesses are required. If we assume that

20 tuples of deposit fit in one block, then reading deposit requires 10000/20 =
500 block accesses.

. for each tuple d in deposit do
begin
for each tuple c in customer do
begin
t:st pair (d.c) to see if a tuple should be added to the result
en
end

Figure 9.1 Procedure for computing join.

i —t
e ks e

e e e o e e A

288000 4I-1sA

g oo e

il

- - - e AFw

N er ol o men -

'

&

-

34 Query Processing Chapter 9

for each block Bd of deposit do
begin
for each block Bc of customer do
begin
for each tuple b in 8d do
begin
for each tuple ¢ in Bc do
begin
test pair (b,c) to see if a tuple
should be added to the result
end
end
end
end

Figure 9.2 Procedure to compute deposit % customer .

= 2

We read each tuple of customer once for each tuple of deposit. This
suggests that we read each tuple of customer 10,000 times. Since
Aeustomer = 200, we could make as many as 2,000,000 accesses to read
customer tuples. As was the case for deposit, we can reduce the required
number of accesses significantly if we store the customer tuples together
physically. If we assume that 20 customer tuples fit in one block, then only
10 accesses are required to read the entire customer relation. Thus, only 10
accesses per tuple of deposit rather than 200 are required. This implies that
only 100,000 block accesses are needed to process the query.

9.5.2 Block-Oriented Iteration

A major savings in block accesses results if we process the relations on a
per-block basis rather than a per-tuple basis. Again, assuming that deposit
tuples are stored together physically and that customer tuples are stored
together physically, we can use the procedure of Figure 9.2 to compute
deposit o customer . This procedure performs the join by considering an
entire block of deposit tuples at once. We still must read the entire deposit
relation at a cost of 500 accesses. However, instead of reading the customer

blocks of customer tuples, reading customer once for every block of deposit
tuples requires 10 X 500 = 5000 block accesses. Thus, the total cost in
terms of block accesses is 5500 accesses (5000 accesses to customer blocks

plus 500 accesses to deposit blocks). Clearly, this is a significant * 3

improvement over the number of accesses that were necessary for our

initial strategy,

g x sgat o

Section 9.5 Join Steategies 315

Our choice of deposit for the outer loop and customer for the inner loop
was arbitrary. If we had used customer as the relation for the outer loop
and deposit for the inner loop, the cost of our final Strategy would have
been slightly lower (5010 block accesses). See Exercise 9.10 for a derivation
of these costs. .

A major advantage to the use of the smaller relation (customer) in the
inner loop is that it may be possible to store the entire relation in main
memory temporarily. This speeds query processing significantly since it is
necessary to read the inner loop relation only once. If customer is indeed
small enough to fit in main memory, out strategy requires only 500 blocks

to read deposit plus 10 blocks to read customer for a total of only 510 block
accesses. :

9.5.3 Merge-Join

In those cases in which neither relation fits in main memory, it is still
possible to process the join efficiently. if both relations-happen-to-be stored

operation. To compute a merge-join, we associate one pointer with each

relation. These pointers point initially to the first tuple of the respective
relations. As the algorithm proceeds,

same value on the join attributes are in consecutive order. This allows us
to read. each tuple only once. In the case in which the tuples of the
relations are ‘stored together physically, this algorithm allows us to
compute the join by reading each block exactly once. For our example of
deposit W customer ‘there is a total of 510 block accesses. This is as good as
the earlier join method we presented for the special case in which the
entire customer relation fit in main memory. The algorithm of Figure 9.3
does not require the entire relation to fit in main memory. Rather, it
suffices to keep all tuples with the same value for the join attributes in
main memory. This is usually feasible even if both relations are large.

A disadvantage of the merge-join method is the requirement that both
relations be sorted physically. However, it may be worthwhile to sort the
relations in order to allow a merge-join to be performed.

9.5.4 Use of an Index

Frequendly, the join attributes form a search key for an index as one of the
relations being joined. In such a case, we may consider a join strategy that
uses such an index. The simple strategy of Figure 9.1 is more efficient if an
index exists on customer for customer-name. Given a tuple d in deposit, it is

P ST ——

£88000NQI-1SA

316 Query Processing Chapter 9

pd := address of first tuple of dcposit;
pe 1= address of first tuple of customer;
while (pc # null) do
begin
1. := tuple to which pe points;
sei={t.}
set pc to point to next tuple of customer;
done := false;
while (not done) do
begin;
. := tuple to which pc points;
if t. '[custcmer-name] = lc[cuslomer-namel
then begin ,
Si=S5.Uu{t.)
set pc to point to next tuplé of customer;
end :

else done := true;
end)
t4:= tuple to which pd points;)
set pd to point to next tuple of deposit;
while (¢ j[customer-name) < t [customer-name]) do
begin)
.ty := tuple to which pd points; ‘
set pd to point to next tuple of deposit;

end
while (t;fcustomer-name)] = t [customer-name)) do
begin
for each t in 5, do
begin
compute f X t, and add this to result;
end

set pd to point to next tuple of deposit;
td := tuple to which pd points;
end
end.

Figure 9.3 Merge-join.

no longer necessary to read the entire customer relation. Instead, the inde:x
is used to look up tuples in customer for which the customer-name value is
d{customer-name).

Y S AR

e B

Section 9.5 Join Strategies 317

Without use of an index, and without special assumptions about the
physical storage of relations, it was shown that as many as 2 million
accesses might be required. Using the index, but without making any
assumptions about physical storage, the join can be computed with
significantly fewer block accesses. We still need 10,000 accesses to read
deposit. However, for each tuple of deposit only an index lookup is
required. If we assume (as before) that Aeustomers = 200, and that 20
pointers fit in one block, then this lookup requires at most 2 index block
accesses plus a block access to read the customer tuple itself. We access 3
z blocks per tuple of deposit instead of 200. Adding this to the 10,000 accesses
B to read deposit, we find that the total cost of this strategy is 40,000 accesses.
- Although a cost of 40,000 accesses appears high, we must remember

that we achieved more efficient strategies only when we assumed that
: tuples were stored physically together. If this assumption does not hold for
i the relations being joined, then the Strategy we just presented is highly
B desirable. Indeed the savings (160,000 accesses saved) is enough to justify_
creation- of- the-index:-Even-if-we create the index for the sole purpose of
processing this one query and erase the index afterwards, we may perform
fewer accesses than if we use the strategy of Figure 9.1.

9.5.5 Three-Way Join

Let us now consider a join involving three relations:

T

branch % deposit ™ customer

Assggle that deposit and Reustomer @T€ as above and that Myranch = 50. Not
only do we have a choice

of strategy for join processing, but also we have
a choice of which join to compute first. There are many possible strategies

to consider. We shall analyze several of them below and leave others to
the exercises.

® Strategy 1. Let us first compute the join (deposit 4 customer) using one
of the strategies we presented above. Since customer-name is a key for
customer, we know that the result of this join has at most 10,000 tuples

(the number of tuples in deposit). If we build an index on branch for
branch-name, we can compute:

branch % (deposit % customer)

by considering each tuple ¢ of (deposit 0 customer) and looking up the
tuple in branch with a branch-name value of t{branch-name). Since branch-
name is a key for branch, we know that we must examine only one
branch tuple for each of the 10,000 tuples in (deposit ™ customer). The
exact number of block accesses required by this strategy depends on
the way we compute (deposit & customer) and on the way in which

Sepeee

e - .\A-

¥88000NQI-1SA

oo Nuviy §iveessing Chapics 3

branch is stored physically. Several exercises examine the costs of
various possibilities.

® Strategy 2. Compute the join without constructing any indices at all.
This requires checking 50+ 10000 » 200 possibilities, a total of
100,000,000.

® Strategy 3. Instead of performing two joins, we perform the pair of
joins at once. The technique is first to build two indices:

On branch for branch-name.

On customer for customer-name.

Next we consider each tuple ¢ in deposit. For each , we look up the
corresponding tuples in customer and the corresponding tuples in
branch. Thus, we examine each tuple of deposit exactly once.

Strategy 3 represents a form of strategy we have not considered before. It

combines two operations into one special-purpose operation. Using
strategy 3, it is often possible to perform a join of three relations more
efficiently than it is using two joins of two relations. The relative costs
depend on the way in which the relations are stored, the distribution of
values within columns, and the presence of indices. The exercises provide
an opportunity to compute these costs in several examples.

9.6 Structure of the Query Optimizer

We have seen only some of the many query processing strategies used in
database systems. Most systems implement only a few strategies and, as a
result, the number of strategies to be considered by the query optimizer is
limited. Other systems consider a large number of strategies. For each
strategy a cost estimate is computed.

In order to simplify the strategy selection task, a query may be split
into several subqueries. This not only simplifies strategy selection but also
allows the query optimizer to recognize cases where a particular subquery

only once, time is saved both in the query optimizing phase and in the
execution of the query itself. Recognition of common subqueries is
analogous to the recognition of common subexpressions in many optimizing
compilers for programming languages.

Clearly, examination of the query for common subqueries and the
estimation of the cost of a large number of strategies impose a substantial
overhead on query processing. However, the added cost of query
optimization is usually more than offset by the savings at query.execution

appears several times in the same query. By performing such subqueries .

does not-correspond. directly~to-a-relational-algebra -operation.-Instead,-it——4-— - strategy.for-processing.a query-is.called query. optimization. .

LN

IS FIVIUR) Dltuniuie Ol e gy s 24l

time. Therefore, most commercial systems include relatively sophisticated
optimizers. The bibliographic notes give references to descriptions of query
4 optimizers of actual database systems.

3 9.7 Summary

There are a large number of possible strategies for processing a query,
espedially if the query is complex. Strategy selection can be done using
information available in main memory, with little or no disk accesses. The
actual execution of the query will involve many accesses to disk. Since the
transfer of data from disk is slow relative to the speed of main memory
and the central processor of the computer system, it is advantageous to
spend a considerable amount of processing to save disk accesses.

Given a query, there are generally a variety of methods for computing
~ the answer. It is the responsibility of the system to transform the query as

1 entered by the user:into an equivalent query which can be computed more

efficiently. This “optimizing,” or, more accurately, improving of the

The first action the system must take on a query is to translate the
query into its internal form which (for relational database systems) is
usually based on the relational algebra. In the process of generating the
internal form of the query, the parser checks the syntax of the user's

i
g query, verifies that the relation names appearing in the query are names of
3,

relation in the database, etc. If the query was expressed in terms of a view,
the parser replaces all references to the view name with the relational
algebra expression to compute the view.

operations. The first step in selecting a query-processing strategy is to find

E: Each relational algebra expression represents a particular sequence of
B

a relational algebra expression that is equivalent to the given expression
» and is efficient to execute. There are a number of different rules for
) transforming relational algebra queries, including:

@ Perform selection operations as early as possible.
@ Perform projections early.

The strategy we choose for a query depends upon the size of each
relation and the distribution of values within columns. In order to be able
to choose a strategy based on reliable information, database systems may
store statistics for each relation r. These statistics include:

¢ The number of tuples in the relation r.

@ The size of a record (tuple) of relation r in bytes (for fixed-length
records).

688000 4I-1SA

the sole purpose of allowing a more efficient join strategy to be used.

LY \uery Pruwessing Chapter 9

® The number of distinct values that appear in the relation r for a
particular attribute.

The first two statistics allow us to estimate accurately the size of a cartesian
product. The third statistic allows us to estimate how many tuples satisfy a
simple selection predicate.

Statistical information about relations is particularly- useful when
several indices are available to assist in the processing of a query. The
presence of these structures has a significant influence on the choice of a
query-processing strategy.

Queries involving a natural join may be processed in several ways,
depending on the availability of indices and the form of physical storage
used for the relations. If tuples of a relation are stored together physically,
a block-oriented join strategy may be advantageous. If the relations are
sorted, a merge-join may be desirable. It may be more efficient to sort a
relation prior to join computation (so as to allow use of the merge-join
strategy). It may also be advantageous to compute a temporary index for

Exercises

9.1 At what point during query processing does optimization occur?

9.2 Why is it not desirable to force users to make an explicit choice of a
query processing strategy? Are there cases in which it is desirable

for users to be aware of the costs of competing query processing
strategies?

9.3 Consider the following SQL query for our bank database:

select customer-name
from deposit S
where (select branch-name
from deposit T
where S
contains
(select branch-name
from branch
where branch-city = ‘Brooklyn™)

name = T.cust name)

o

Write an efficient relational algebra expression that is equivalent to 3

this query. Justify your choice.

S e

g ey o FoeR

PR

1
l
\

tacicses 321

9.4 Consider the following SQL query for our bank database:

select T.branch-name

from branch T, branch §

where T.assets > S.assets and
S.branch~ity = “Brooklyn™

Write an efficient relational algebra expression that is equivalent to
this query. Justify your choice. .

9.5 Show that the following equivalences hold, and explain how they
can be applied to improve the efficiency of certain queries:

- oplry U rpy) = aplr)) U aplry)
b. op(r, -)= op(rl) = ry = oplry) ~ oplry)
C(MURIUIL=rur,ur)

B

dnUn=nUr ;;.

9.6 Consider the relations rl(A,B.C), r2(C,D.E), and r3(E,I-'), with
primary keys A, C, and E respectively. Assume that r, has 1000
tuples, r, has 1500 tuples and r; has 750 tuples. Estimate the size
of ry W ry ® 13, and give an efficient strategy for computing the
join.

9.7 Consider the relations 7\(A.8,0), r5(C,D,E), and ry(E.F) of Exercise

. -9:6 again, but now assume there are no primary keys except the
entire scheme. Let V(C,r|) be 900, V(C.r;) be 1100, V(E,r,) be 50,
and V(E.ry) be 100. Assume that 7; has 1000 tuples, r, has 1500
tuples and ry has 750 tuples. Estimate the size of "Ry Mo,
and give an efficient strategy for computing the join.

9.8 Clustering indices may allow faster access to data than a

nonclustering index. When must we create a nonclustering index
despite the advantages of a clustering index?

9.9 What are the advantages and disadvantages of hash functions
relative to B*-tree indices? How might the type of index available
influence the choice of a query processing strategy?

9.10 Recompute the cost of the strategy of Section 9.5.2 using deposit as
the relation of the inner loop and cusiomer as the relation of the

output loop (thereby reversing the roles they played in the
example of Section 9.5.2).

988000 QI-1SA

322 Query Processing Chapter 9

Hvaupiapiie ovies Sed

9.11 Explain the difference between a clustering index and a

queries and the use of common subexpressions. When queries are
nonclustering index.

gener.a(ed through views, it is often the case that more relations are joined
th.an' is necessary to compute the query. A collection of techniques for join
minimization have been grouped under the name tableau optimization. The
notion of a tableau was introduced by Aho et al. [1979a, 1979¢]. Ullman
[1982a] and.Maier (1983] provide a textbook coverage of tableaux.
« 1 has 45,000 tuples. 3 Theorehcal_ results on t'hc comPlexity of the computation of relational
v | alg:béa operat;c;r;sé appear in [Gotlieb 1975], {Pecherer 1975}, and [Blasgen
and Eswaren]. A survey.of query processing techniques aj i
[Jarke and Koch 1984]. P & 4 ppears I
An actual query processor must translate statements in the query

_ language into an internal form suitable for the analysis we have discussed
Estimate the number of block accesses required using each of the - in this chapter. Parsing query languages differs little from parsing of
following join strategies for r, % ry: : traditional programming languages. Most compiler texts (including [Aho
et al. 1986), and [Tremblay and Sorenson 1985]) cover the main parsing
techniques. A more theoretical presentation of parsing and language
translation is given by Aho and Ullman {1972, 1973]. ’
C)_ucfry processing for distributed database systems use some concepts
fom this chapter. Technigues specificto distributed systems~appear in = -~ "=~
Chapter 12 and the bibliographic notes to that chapter.

:) 9.12 Let relations r,(A,B.C) and ro(C.D.E) have the following properties:

_—:;
w
=
i
\
e
-

|
-1

PRV T e i

1| has 20,000 tuples.

® 25 tuples of r| fit on one block.

® 30 tuples of r, fit on one block.

o Simple iteration.

!

__ __ e Block-oriented iteration.

e Merge-join

9.13 Consider relations r, and r, of Exercise 9.12 along with a relation
ro(E.F). Assume that 75 has 30,000 tuples and that 40 tuples of ry

fit on one block. Estimate the costs of the 3 strategies of Section S
9.5.5 for computing ry X 75 X r3. F

B —
e ————

Bibliographic Notes 4 F 14 :
Some the ideas used in query optimization are derived from solutions to

similar problems in code optimization as performed by compilers of N

standard programming languages. There are several texts that present

optimization from a programming languages point of view, including [Aho Y
et al. 1986), and [Tremblay and Sorenson 1985). Selinger et al. [1979] - Es
describes access path selection in System R. Kim (1981, 1982] describe join A
strategies and the optimal use of available main memory. These papers -y
discuss many of the strategies that we presented in this chapter. Wong 2§
and Youssefi [1976) introduce a technique called decomposition, which is 3
used in the Ingres database system. The Ingres decomposition strategy T
motivated the third strategy we presented for three-way joins. In Ingres, §
an extension of this technique is used to choose a strategy for general §
queries. Ingres and System R are discussed in more detail in Chapter 15.

If an entire group of queries is considered, it is possible to discover
—4 common subexpressions that can be evaluated once for the entire group.‘g

3 Finkelstein [1982), and Hall (1976] consider optimization of a group of

P

~seoad

