SEL EXHIBIT NO. 2027

INNOLUX CORP. v. PATENT OF SEMICONDUCTOR ENERGY LABORATORY CO., LTD.

Page 6	Page 8
1 and spell your last name, please.	1 petition?
2 A. My name is Michael Escuti. Last name is	2 A. My assignment is to and was to consider
3 spelled E-s-c-u-t-i.	3 the prior art in relative terms to this patent and
4 Q. And I take it you've had your deposition	4 evaluate the positions that the positioner -- that
5 taken before?	5 the Petitioner was taking toward the Board or has
6 A. I've had a deposition taken three times	6 taken in the petition and form opinions about
7 before.	7 those and advise the team on what the technical
8 Q. Even though you're somewhat familiar	8 issues are and things like that.
9 with the process, I just want to go over the	9 Q. And other than attorneys for the patent
10 background rules briefly with y	10 owner, did you communicate with anyone regarding
11 You understand that you've taken an oat	11 the subject of your assignment at any time?
12 to tell the truth?	12 A. I have not communicated with anyone
13 A. I do understand that	13 aside from the attorney team on this matter.
14 Q. And that's the same oath you would take	14 Q. And what did you review to formulate
15 as if you were testifying in a court of law.	15 your opinion for this matter?
16 You understand that?	16 A. The complete list, I think, is listed in
17 A. I do understand that.	17 my declaration of what I've reviewed, but it began
18 Q. If at any time you do not understand one	18 with the ' 413 patent. I also reviewed the
19 of my questions, please let me know and I'll be	19 petition, the Board's decision, the request for
20 happy to rephrase it. The court reporter sitting	20 rehearing and the decision of the request for
21 to your right is taking down your testimony today	21 rehearing.
22 and at the conclusion of your deposition, you'll	22 Of course, I also reviewed the prior
23 receive a booklet of your testimony and have the	23 art, in particular Sukegawa and the patent
24 opportunity to make changes and corrections to	24 Nakamoto and others in connection with the '413
25 your testimony. But please be advised, if you do	25 litigation.
Page 7	Page 9
1 make any changes or corrections, we can comment on	1 Q. When you say "and others," what are you
2 your credibility as it pertains to those changes	2 referring to?
3 or corrections.	3 A. Well, Shiba is also another reference
4 Do you understand that?	4 that's -- that I commented on for this patent and,
5 A. I do understand that	5 of course, there's a closely related case that
6 Q. Any reason why your deposition cannot	6 we'll talk about tomorrow with at least one
7 proceed today?	7 additional reference.
8 A. There is no reason.	8 Q. Did you review any other prior art in
9 Q. When were you first contacted in this	9 performing your assignment on the ' 413 patent?
10 matter?	10 A. Certainly not in detail. Aside from
11 A. As b	11 these references, this is what I've examined in
12 April.	12 detail.
13 Q. Of this year?	13 Q. When you say "not in detail," are there
14 A. Of this year, yeah.	14 things that you looked at that you did not look at
15 Q. And what were you asked to do?	15 in detail, but there are other references that you
16 A. At first I was asked to review the ' 413	16 looked at?
17 patent that we're talking about today and join a	17 A. Along the way I certainly searched --
18 meeting with the attorneys here and discuss my	18 for example, one of the issues in this case is
19 understanding of the patent and the possibility of	19 contact through an opening and I certainly looked
20 my joining the IPR in support of this patent.	20 through other prior art for an understanding of
21 Q. And I take it you then accepted the	21 what other prior art gave about that -- that
22 assignment?	22 terminology and what an appropriate and reasonable
23 A. I did.	23 definition would be.
24 Q. And what did you understand that your	24 But it turned out that the references we
25 assignment was to do in this case or in this	25 already had were representative of that -- that

Page 10	Page 12
1 was evidence enough for my position on that, so	1 the university research.
2 that I didn't turn to those. I didn't need to	2 Q. And who were you consulting for?
3 turn to those because they were cumulat	ere were three firms that I
4 Q. Do you recall what you reviewed in tha	4 specifically remember. One was Cabot. Anothe
5 regard, the ones that you didn't need to turn to?	5 was a small firm that was -- to be honest, I d
6 A. I don't recal	6 remember their name. They were a very
7 Q. Did you review any other patents	7 and local to Providence, Rhode Island. And then
8 are owned by SEL other than the '204 and the ' 413 ?	8 -- then lastly, there was some consulting to 3 M ,
9 A. In this matter, I did not review any	9 of course at St. Pau
10 other patents. Of cour	10 Q. And what type of consulting work were
11 sometime in my career I've reviewed patents th	11 you doing for Cabot
12 are assigned to SEL.	12 A. The consulting work was to advise them
13 Q. But doing this assig	13 on their questions for using a particular kind of
14 remember reviewing any other SEL patents?	14 material that they had and had certain materia
15 A. That's correct. In this assignment, I	15 properties and they were looking for opportunities
16 didn't review any other patents owned by this	16 to use it and market it -- well, to use it in an
17 patent owner.	17 application that could lead to new business for
18 Q. Are you familiar with any other patents	18 them.
19 owned by SEL, other than '204 and '413, as you sit	19 Q. And for the small firm?
20 here today?	20 A. For the small firm, it was a -- it was
21 A. I'm not familiar with any other patents	21 actually to help them create a toy. It was quite
22 that are involved in any litigation that	22 fun. They were -- they were a firm, more of
23 SEL has.	23 more of a design firm, and they wanted to create
24 Q. Well, apart from litigation, are you 25 aware of any at all?	24 skateboarding/rollerblading glove that would have 25 a circuit inside it so that a child could press a
25 aware of any at all?	
	Page 13
1 A. No, I'm not.	1 button and then haver
2 Q. Let's talk a little bit about your	2 song or make various things happen. So it was an
3 educational background.	3 integrated circuit that I was designing and
4 If you can tell me where you graduat	4 prototyping for
5 from college and what year?	5 Q. Do you know if that was ev
6 A. I graduated with my Bachelor's of	6 commercialized?
7 Science in electrical and computer engineering in	7 A. It was a very small outfit and I
81997 at Drexel University. I then went on to	8 that project was -- came to a prototype and then
9 graduate school and earned two degrees, first a	9 didn't find any future funding.
10 Master's and then a Ph.D., where the final year	$10 \quad \mathrm{Q}$. And then what were you doing for 3M?
11 for the Ph.D. was 2002 and that was at Brown	11 A. For 3M, my principal role was to lead
12 University, also in electrical engineering.	12 short courses, a series of short courses that was
13 Q. And the Master's, is that also at Brown?	13 on the subject of LCDs and displays more
14 A. It was.	14 generally. It went beyond LCDs.
15 Q. And do you remember what year that was?	15 So this was in conjunction with my Ph.D.
16 A. It's in my CV specifically, of course,	16 advisor where we were both creating the short
17 but as best as I can remember, it was 1999.	17 course and presenting it to them in their facility
18 Q. And were you working in industry at all	18 to technical folks of all kinds.
19 from 1997 to 2002?	19 Q. And when did you first start eith
20 A. I consulted with industry as a	20 studying or working with LCDs?
21 consultant, but I was not employed or working.	21 A. I first became aware of the principles
22 during that time because I was a graduate student.	22 of LCDs and TFTs during my Bachelor's degree
23 So I had consulting outside of my academic	23 training, so that would be before 1997. During
24 responsibilities and, in addition, I was supported	24 graduate school is when I first began building
25 in part by industrial funding in the context of	25 them and making them myself in the lab, and that

Page 14	16
1 has continued in my research to today.	1 something. There were many, many things that we
2 Q. So during your graduate studies, what	2 looked at in the optical si
3 kind of LCDs were you building or making?	3 Q. And that's what your dissertation was,
4 A. We constructed most kinds. We had a la	4 was on the optical side?
5 facility where I and my colleagues would prototype	5 A. My dissertation had an emphasis on
6 the -- sometimes the whole display system, but	6 optical physics, but it also involved display
7 typically, it would be -- we'd make a single pixel	7 systems, and in one case the in-plane switching
8 or a small number of pixels.	8 mode, which definitely involved the electronics
9 And so we'd make it from the glass to	9 because key to that is a set of electrodes and
10 the substrates and to the patterning of electrodes	10 pixel control system that is different than
11 and in some occasions with TFTs and -- and the	11 standard, and I had to make that as well.
12 kinds of LCDs would vary quite a lot because it	12 Q. Now, when you obtained your Ph.D., you
13 was research, after all, so it wasn't simply the	13 then -- it looks like you did a post-doc in the
14 standard modes, the twisted nematic and the other	14 Netherlands, is that right?
15 modes, but it was -- it delved into other modes	15 A. I did, following my Ph.D., spend two
16 that would be more energy efficient, for example,	16 years as a post-doc in the Netherlands, in
17 and that was certainly a hot topic at the time.	17 Eindhoven specifically.
18 Q. When you say occasionally you were	18 Q. And what were you doing there?
19 dealing with TFTs, what were you doing when you	19 A. While I was there, I was physically at
20 were not dealing with TFTs?	20 the technical university that's in Eindhoven. But
21 A. Well, we studied, I think, the display	21 in their system, there's a blending that's quite
22 as a system. We didn't just study one smal	22 great. I think it's quite good for students where
23 aspect or a single aspect of displays during	23 industry serves roles within the university in a
24 graduate work. We studied displays as a system	24 very intimat
25 and so that system required multiple aspects. One	25 So while I was there, one of my
Page 15	Page 17
1 of them is, of course, the optics of an LCD. The	1 supervisors was a very senior person in Philips
2 other aspect has to do with the electronic control	2 Research labs, which is also located there. So
3 of the LCD pixels.	3 my projects were influenced by both the university
4 And then there's -- there's sort of the	4 side and the industry side that was there. So my
5 information that drives those circuits or that	5 work specifically focused on LCDs and -- among
6 goes into those circuits as well. So we've -- we	6 other things.
7 studied all of that and my emphasis was on the	7 Q. What were you doing with LCDs?
8 first two things I just said, the optics and the	8 A. Well, one of the things we were looking
9 electronics.	9 at there -- and as I recall, there's a publication
10 Q. What were you doing with the optics?	10 on this -- has to do with backlights and efficient
11 A. Could you say specifically when?	11 backlighting for LCDs.
12 Q. During your graduate studies, what were	12 Q. Anything else that you did in those two
13 you -- what were you studying or experimenting	13 years with LCDs?
14 with in terms of the optics?	14 A. Yes, yes.
15 A. I studied many things. So, for example,	15 Q. What's that?
16 my dissertation was about -- I can't remember	16 A. There were -- there were many other
17 precisely the title. That's also in my CV, but it	17 things that I've done during that time. It's --
18 was about novel LCDs and photonic switches. And	18 I'm certainly not going to remember all of it. It
19 so we looked at birefringent layers and the effect	19 was a dynamic research environment where we could
20 of controlling polarization.	20 explore different things.
21 We looked at holographic means to create	21 So another thing that we studied was
22 displays. We studied displays that would b	22 organic light-emitting diodes and some of the
23 bistable, so that you -- you didn't have to put	23 material properties that are involved in the
24 voltage on them all the time, but you could -- you	24 semiconducting materials.
25 could just activate them when you needed to change	25 So we looked for ways to optimize them

Page 18	Page 20
1 both from the chemistry -- I'm not a chemist, but	1 well, my focus has always been on the interaction
2 I was working with chemical engineers. We also	2 of light and matter and so it's this field
3 looked for ways, using other principals, to	3 optoelectronics, sometimes it's called photonics.
4 control the molecules themselves to improve	4 And many of the applications that I look at
5 performance, whether it was light extraction or	5 involve displays, not exclusively, but involve
6 mobility enhancement. There were many things that	6 displays, but also telecom, energy harvesting
7 we were looking at.	7 sensors, camera systems, optical recording.
8 Q. Anything else that you can recall in	8 And so my interest is to study and
9 that two-year period?	9 innovate in the material side and the architecture
10 A. Right now I can't specifically remember	10 of a system for a particular application. So one
11 anything else.	11 example of that is related to LCDs that has
12 Q. All right. And then you became a	12 continued even now is the design of projectors and
13 assistant professor at NC State?	13 LC -- direct-view LCDs which have improved energy
14 A. Following my post-doc, I began my	14 efficiency compared to our standard technology.
15 position at NC State in 2004 as an assistant	15 Q. Anything else you were researching in
16 professor.	16 that time period?
17 Q. And what types of courses were you	17 A. Yes. During that time period, I advised
18 teaching in that or have you taught in that	18 I think five Ph.D. students, four or five. We
19 six-year period?	19 studied topics that relate to nonmechanical beam
20 A. The six-year period being when I was an	20 steering. We studied topics that have to do with
21 assistant professor?	21 optical filtering. We studied topics that have to
22 Q. Y	22 do with optofluidics, which -- which is this field
23 A. Well, in my role as assistant profess	23 where particles or cells are within a fluid and
24 of course	24 there are optical means to control them, to move
25 teaching involved -- one course that I taught was	25 them, to grab them, to analyze them. So that was
Page 19	Page 21
1 the -- was an introductory circuits course that	1 still another -- another side
2 involves a lab as well and it's required by all	2 And in my research, we also investigated
3 our students in the department to take. So that's	3 optical TF -- I'm sorry -- organic TFTs and
4 "Circuits, Signals and Systems."	4 enhancements that we can offer using the other
5 Another course that I taught during that	5 principles that we have for improved performance.
6 time, actually created, was a course on LCDs and	6 Q. Anything else that you can recall in
7 organic electronics, and that course in particular	7 that six-year time period, from 2004 to 2010, in
8 had support from the National Science Foundation	8 terms of research?
9 for me to develop the lab portion of that course.	9 A. At the moment, I can't recall anything
10 And so in that course, students -- that	10 further.
11 I created with one of my graduate students, we	11 Q. All right. Then in 2010 you became an
12 would guide our students to actually make the	12 associate professor at NC State?
13 elements we were studying. So they made a simple	13 A. I did.
14 LCD , they made an organic TFT, they made an	14 Q. And did your courses change or did they
15 organic solar cell and an organic LED, and then	15 stay the same?
16 they tested it and evaluated it. So that's	16 A. My courses around that time changed. I
17 another course that I taught	17 began teaching a new course on electromagnetics
18 There's a third course I taught that	18 and it's also required by all students in my
19 I think it's at least approximately ti	19 department. It's an undergraduate course and that
20 "Introduction to Photonics and Optica	20 includes transmission lines and circuits inside
21 Communications."	21 it , as well as the more general principles of
22 Q. Okay. And in	22 classical electromagnetics.
23 were you doing while you were an assistant	23 Q. Any other courses that changed?
24 professor?	24 A. Yes, there's one other one which began
25 A. As an assistant professor, I studied --	25 this semester and it's the first time I'm teaching

I it. It's also the first time it's being taught
2 anywhere in the university. And this course is
3 "Introduction to Nanoscience and Nanotechnology."
4 So this has an emphasis on, of course,
5 nanotechnology and its applications in -- across
6 many fields, including nanoelectronics,
7 nanomaterials, biotechnology, among many others.
$8 \quad$ Q. And what about your research? Is there
9 anything different since 2010 in your research?
$10 \quad$ A. In my academic research, I think largely
11 I've continued the general directions that I laid
12 out. I certainly have a different emphasis now.
13 Some are more -- I'm spending much more time on
14 than others, but it's largely in the same
15 directions.
16 Q. What are you spending much more time on?
$17 \quad$ A. Well, the two project directions that
18 are more and more important, one of them is
19 displays and display systems where we have
20 technologies that solve energy problems or
21 complexity problems within display systems. So
22 that's one.
23
24
to makether is in telecom. So we are able
25 telecom industry. So we have an emphasis on

Page 23
studying that and providing prototypes for industry. It's industry-sponsored, in fact. Both of these are industry-sponsored.
Q. When you say "telecom," can you be a little more specific?
A. Well, this may not be as specific as you're asking, but it's hardware that would support an optical fiber system, for example, supporting the internet.

A third project that's taking much of our attention is in the direction of making optical films for astronomers and so there's several astronomers that we've been working for that study -- they're called exoplanets and solar systems that have planets around them and so we, in partnership with them, create elements that help them do that.
Q. Apart from ImagineOptix, which we'll get into in a moment, have you done -- and apart from what you've just discussed -- have you done any other work for industry while you've been at NC State?
A. I think it's the case that all of my work while I've been at NC State with industry, outside of ImagineOptix, has been through the

Page 24
1 university, through sponsored programs that
2 industry would pay the university to sponsor
3 research in my lab.
4 Q. And that's the kind of research you were 5 just discussing?
A. Yes.
Q. And ImagineOptix, how did that get started?
A. ImagineOptix started in -- actually,
right as I joined NC State, I encountered two of
my co-founders. They are father and son, so they
have the same last name and confusingly, they have
the same first name, but they have different middle names.

So I met them and we founded the company with -- where it was clear that they saw an opportunity to build pico projectors, small projectors that could be integrated into other devices including cell phones, but also other things like camcorders and it -- as we -- as we talked, we realized that my technology that I was already studying for my post-doc and had plans to pursue at NC State, would be a very good solution for that. So we joined together.

I became, you know, a majority
shareholder of the company and we then proceeded
from there. And that's really where it started.
It continued then to seek funding from -- from any
means that we could to establish the company and
pay for the intellectual property costs, for
example.
Q. And when you said your technology would be a great fit for what they were doing, what were you referring to in terms of your technology?
A. Well, the technology that we had been studying and continue to study today, offers a dramatic improvement to the energy efficiency of a display system when configured in the ways that we were pursuing. And so that means that, for example, your cell phone display or your projector could have twice the efficiency that it would otherwise without our technology using standard methods and, of course, that means that your cell phone would last twice as long roughly, or a projector could be twice as bright, still using all the same power or other technology.

So that's the basis of the technology, 23 but that can be applied in many ways and there
24 were at least two ways that we applied it. One
25 way was to integrate it into the liquid crystal

Page 26	Page 28
1 layer along with micro-displays and direct-vie	1 the simple reason was that we found better way
2 screen	2 do it that would not displace the curr
3 So in that case, we were design	3 technology quite as much. So it would compliment
4 systems and building prototyping systems th	4 it rather than replace
5 involved the TFT plane and our technology which	5 Q. And can you giver
6 directly applies in the optical layers and in a	6 description of how this technology
7 whole system, you know, with control drivers and	7 technology that you're working on now would
8 electronics and software that would do that. So	8 compliment and not replace?
9 my company was pursuing several projects or did	9 A. The energy -- the improvement in energy
10 pursue several projects and prototypes that lead	10 efficiency that l've been referring to this whole
11 to that kind of thing.	11 time occurs because the elements we make hand
12 Q. Is the technology focused on the optical	12 both polarizations of the light at the same time,
13 layer?	13 whereas almost all LCD systems use only one
14 A. Well, the technology involve	14 polarization at a time. Typically, that's one of
15 electronics. It's -- so I'm not sure -- can you	15 the linear polarizations.
16 rephrase the question?	16 In our case, we're making elements that
17 Q. You mentioned	17 handle and manipulate both at the same time. So
18 A. It's not	18 because we're handling both, we can send both
19 Q. -- the technology went into the optical	19 through the system. We can use unpolarized light
20 layer. So I'm just trying to understand, was the	20 rather than polarized light, and as you may know
21 technology -- is that what was special about the	21 most light sources, LEDs or fluorescent lights,
22 technology was the changes in the optical layer or	22 outside lighting is unpolarized. And so to be
23 was it something else?	23 used in an LCD, it first has to be formatted for
24 A. The technology's value occurs in the	24 use in the LCD and that process generally cuts out
25 optical layer and so this improvement in energy	25 half the light as absorption, as loss.
Page 27	Page 29
1 efficiency is related to the optics of what's	1 Q. So is this a technology that's focused
2 going on in the display, but the technology	2 on the optical layer?
3 depends on the electronics that support it. So	3 A. I don't think that's
4 it's not apart from the electronics. It's an	4 characterization. As we just said, it's a
5 optoelectronic technology. So --	5 technology that -- where the benefit occurs in the
6 Q. Is that described in -- I didn't mean to	6 optical layer, but it has consequences in the
7 cut you off. Go ahead.	7 electronic layer as well.
8 A. I'm sorry. Well, just as an example,	8 Q. Let me just go ahead and hand you your
9 because we're changing the liquid crystal layer,	9 declaration, which I think also has your CV
10 that necessarily in our case led to requirement	10 attached, which is Exhibit 2012
11 changes in the TFT layer. For example, we	11 (Document marked previously as Exhibit
12 required different voltages than were standard and	12 Number 2012 was presented.)
13 so we had to build backplanes and work with	13 BY MR. GIBSON:
14 systems that had that difference in particular.	14 Q. Do you recognize that as your
15 Q. Anything else in change in the TFT	15 declaration and your CV at the end? And I believe
16 layer?	16 your signature's on page 101.
17 A. I think many things changed in the TFT	17 Sorry, your signature's not on page 101.
18 layer. It had to be completely redesigned for our	18 It's earlier than that.
19 technology and that's what our team did.	19 A. My signature's on page 3. It appears to
20 Q. And is this -- are these products -	20 be my declaration and its appendices.
21 have they been commercialized at all or -	21 Q. And Appendix B is your -- that's your
22 A. That set of projects led to prototypes	22 curriculum vitae?
23 and it led to new ideas that we have continued	23 A. That's my CV as of the date that's on
24 with. So that particular approach to implementing	24 it, which of course was April.
25 the technology we have not pursued recently and	25 Q. Are there updates since then?

8 (Pages 26-29)

1 diffractive optical element that has unique
properties and that's what's being illustrated
here. Do you want me to go into the technical
properties of polarization gradings?
Q. No.

Is this some sort of a beam splitter?
Is that an accurate way to call this?
A. There are many ways to call this
element. One is as a hologram or a grading. If
you use it as a beam splitter, that's one thing
you could do. You could also use it in an LCD, as
we talked about earlier, as a way to switch the pixel or to switch what happens to the light through that pixel. It's not a simple beam splitter.
Q. So is this the technology you were describing earlier that you're currently working on at ImagineOptix?
A. This is part of the technology. There are many other pieces of the technology.
Q. Does this use an organic material?
A. It uses both. The inorganic substrate is usually some kind of glass. It could also be metal, aluminum. It could be ITO. It could be -could be silicon in one of my projects and -- but
the liquid crystal layer is necessarily an organic
material. All liquid crystals, that I'm aware of
are -- involve organic components to them.
Q. Are there TFTs used in this process with this technology?
A. Certainly. When this is combined with the backplane for an LCD system, as I talked about earlier, then yes, there are TFTs involved with that.
10 Q. And are those organic TFTs?
A. They were not. They were silicon-based TFTs and more recent projects with the company are looking at gallium nitride TFTs.
Q. Which is a liquid?
A. No, it's a compound semiconductor.

MR. GIBSON: Let me have this marked as 1007.
(Document marked as Exhibit Number 1007 for identification.)

BY MR. GIBSON:

Q. And can you tell me what Exhibit 1007 is?
A. 1007 appears to be a printout of my

24 university profile page as a faculty member in my
25 department. So it includes, as you can see, a

Page 34	Page 36
1 biography, list of education, kind of a mini --	1 A. It is not complete. It's not been
2 mini resume, certainly not complete and not	2 updated recently, but I'm not aware of anything
3 updated recently now that I'm looking at it.	3 that's inaccurate.
4 Q. And would you consider this to be	$4 \quad \mathrm{Q}$. And it's something else that you would
5 accurate?	5 plan to update in the next year or hope to update
6 A. As far as I'm aware, everything that's	6 in the next year?
7 here is accurate, but it's certainly not	7 A. I do hope to update, if I can find the
8 comprehensive and the audience -- I mean, the	8 time in my priority list.
9 purpose of this is simply to inform students of	9 Q. I think you discuss in your declaration
10 who I am and has a very different purpose than	10 that you've worked with students fabricating LCDs
11 being --I guess being a full, real resume	11 and TFTs?
12 Q . But there's nothing inaccurate about it?	12 A. Can you show me in my declaration where
13 A. Not that I'm aware of	13 you're referring to
14 MR. GIBSON: If we could mark this as	14 Q. Yeah, let me -- I believe it's
151008.	15 pages 6 to 7.
16 (Document marked as Exhibit Number 1008	16 A. You're referring to paragraph 9?
17 for identification.)	17 Q. Yes, at the bottom where it talks about
18 BY MR. GIBSON:	18 you developed a laboratory course on liquid
19 Q. And do you recognize Exhibit 1008?	19 crystal displays and organic electronics.
20 A. It's a little hard to say because I	20 A. I do see that in paragraph 9.
21 think this page doesn't look like this when it's	21 Q. Is that the research course you were
22 on the screen. But I suspect it's the -- it's a	22 talking about that also involved the lab before?
23 printout of my group's website, its main page	23 A. That is the course I was referring to
24 Q. When you say "group," this is your group	24 before. It's -- to be precise, it's not --
25 at NC State?	25 don't think it's proper to call it a research
Page 35	Page 37
1 A. Yes, my group from the point of view of	1 course.
2 my students and post-docs.	2 Q. It involves lab work, but it's not for
3 Q . And do you see anything inaccurate about	3 research?
4 this?	4 A. That's correct. It's for teaching
5 A. Like I said before, it's not updated I	5 which generally has a different purpose, but it
6 think recently and so it's certainly not complete,	6 was supported by, as it says, the NSF. And so
7 but it's --I don't -- I'm not aware of anything	7 creating the course involved research into how,
8 inaccurate.	8 with basic materials, to educate the students on
9 Q. Do you have plans to update it in the,	9 the organic materials and building systems without
10 you know, next month or two?	10 a full clean room to do so.
11 A. I don't have plans to update it in the	11 MR. GIBSON: If we could mark this as
12 next month or two. I do hope that sometime in the	121009 -- sorry -- 1010.
13 next year I update it.	13 (Document marked as Exhibit Number 1010
14 MR. GIBSON: If we could mark this as	14 for identification.)
15 Exhibit 1009.	15 BY MR. GIBSON:
16 (Document marked as Exhibit Number 1009	16 Q. And do you recognize Exhibit 1010?
17 for identification.)	17 A. I think so.
18 BY MR. GIBSON:	18 Q. And what is it?
19 Q. And do you recognize Exhibit 1009?	19 A. It appears to be another page from my
20 A. I think I do.	20 group's website that in this case is focused on
21 Q. And what is it?	21 the lab portion of that course we were just
22 A. It appears to be another printout of a	22 speaking about.
23 different page of my group's website.	23 Q. And is there anything inaccurate about
24 Q. And is there anything on this page	24 these pages?
25 that's inaccurate?	25 A. They're not current, but I'm not aware

Page 38	Page 40
1 of anything inaccurate in them.	1 It's a high molecular weight polymer that is --
2 Q. When you say "they're not current, how	2 has the acronym P3HT. That stands for, you know,
3 old are they?	3 the molecular name that you see in the paragraph
4 A. You mean when were they last updated?	4 there. So it's poly(3-hexylthiophene).
5 Q. Let's start with that. When were they	$5 \quad \mathrm{Q}$. And I take it on the front page there's
6 last updated?	6 a Module 4 -- there's a picture of Module 4 OTFT.
7 A. I don't recall. You know, you could	7 Is that a picture of the TFT as it's
8 probably just as easily find out online. If you	8 been fabricated?
9 want me to estimate, I think it's two years since	9 A. It is an example from a student in this
10 we updated these pages.	10 laboratory, which let's keep in mind, is designed
11 Q. Has the course changed in those two	11 so that undergraduate students with very limited
12 years?	12 knowledge can create a working and functional TFT
13 A. Somewhat, but I think in a very minor	13 within two hours or so in a fairly conventional
14 way.	14 lab room and not in a clean room process.
15 Q. And this is one of the courses you're	15 So it doesn't look all that impressive,
16 still teaching?	16 but it actually functions like a TFT and it's very
17 A. It's one of the courses that in general	17 exciting for students to go through that process
18 I'm teaching, but right now this semester, I'm not	18 building it themselves.
19 teaching it.	19 Q. You said the inorganic material was used
20 Q. The only module that relates to TFTs is	20 for the semiconductor in this one.
21 Module 4, is that correct?	21 Is there also an organic material used
22 A. Can you tell me what you mean by	22 for the gate dielectric?
23 "relates to"?	23 A. Well, that's true. I think there is a
24 Q. Where you're actually teaching a	$24-$ the insulating layer is a -- in this example,
Page 39	Page 41
1 A. In this course, in this lab -- this set	1 course the main reason for that is that that's an
2 of lab modules, the last one, Module 4, does focus	2 insulating layer that students can very easily
3 explicitly on TFTs, but I don't want to give the	3 apply or deposit.
4 impression that the other elements don't involve	4 It's very easy to create that kind of
5 that in -- don't involve TFTs because in the	5 insulating film as opposed to many of the other
6 course, the lecture part of the course, clearly	6 oxides that are possible. They have to be grown
7 we're teaching principles of active matrix TFTs	7 in CVD or some other very sophisticated chamber,
8 for use in LCDs, for use in organic light-emitting	8 which was counter to the goals of this course.
9 diode displays as well. So even if they're not	9 Q. And the ITO is being used as the source
10 being fabricated, they're certainly part of those	10 and drain electrodes for creating the electrical
11 other topics.	11 connections to the TFT?
12 Q. The Module 4 that's dealing with organic	12 A. In this case, that's the conductor that
13 thin film transistors, how would you define an	13 we used, ITO. Well, plus one other. It may be a
14 "organic thin film transistor"?	14 detail, but as part of the gate electrode, there's
15 A. I think a fair definition is to -- is to	15 also gallium indium, which is a liquid at room
16 look at the semiconducting layer and if that	16 temperature.
17 material is organic, then it's an organic TFT, as	17 Q. Let's look at your CV for a moment,
18 opposed to an inorganic TFT where the	18 which I think you said it lists all your
19 semiconductor is not -- is not formed from organic	19 publications, except for maybe there's one that
20 materials.	20 just came out which you identified, is that
21 Q. And what type of organic materials are	21 correct?
22 you using in your course?	22 A. As best I recall, there's at least one
23 A. Well, they're listed on the second page,	23 that is not listed here because it was published
24 so we have -- I'm sorry, listed on the third page.	24 since this was submitted and prepared. And there
25 The semiconducting layer has -- is a polymer.	25 are some additional patents that have been

	ge 44
1 awarded. They've gone from the application column	1 Q. Okay. So these may be the outcome
2 to the issued column	2 your own work or it could be in collaboratio
3 Q. Have you updated your CV since you	3 with students or other researcher
4 prepared this one?	4 A. I think all of my publications have
5 A. I have not. I update it as needed, whe	5 coauthors and that's on purpose because, of
6 asked.	6 course, l'm a mentor and an educator. So whenever
7 Q. So are -- the list of publications	7 possible, I want students involved in the wor
8 though, without that -- absent that one, you th	8 In addition, I also put
9 is correct?	9 emphasis on partnerships with industry and other
10 A. As best I recall, it's absent at leas	10 universities so that we can collaborate and come
11 one and I can't recall if there's any other	11 with up with something greater than just the sum
12 Q. And would you agree that as a university	12 of the partners. So I do have collaborators,
13 professor, your scholarly work is going to be	13 think, on all of my publications.
14 expected to be in the form of publications or	14 Q. Would you consider these publications to
15 journals or conferences?	15 be a personal contribution in the field of science
16 A. I wouldn't limit it as such, b	16 and technology?
17 includes that. My scholarly work certai	17 A. I would.
18 into the publications and journals and	18 Q. In terms of your expert witness
19 conferences, but it also goes into	19 experience, which I think is also listed here, it
20 intellectual property that's coming out	20 sounds like you've done a few cases with one
21 university as well as invited research	21 ongoing and the others have been resolved.
22 presentations that may not have a pa	22 I think you've done four cases ot
23 to them	23 than th
24 Q. All righ	
25 property, those would be in your patents or patent	25 my CV in the first page into the second page.
Page 43	e 45
1 applications?	1 Q. Do any of your p
2 A. They are -- of course they begin as	2 active matrix displays, circuit and peripher
3 invention disclosures and then something can	3 driving circuits that are provided on the same
4 happen to them and many times it does lead to one	4 substrate?
5 or more patent applications. And as best I	5 A. One of my publications include
6 recall, there are ten invention disclosures that	6 explicitly in the publication an active matrix
7 have come from my time with students at the	7 backplane. That's the one cited in my
8 university at NC State, and there were some from	8 declaration. There may be others, but I can't
9 my graduate school time as well and some from my	9 recall.
10 post-doc time.	10 Q. Can you identify which one that is?
11 Q. And those are all listed in your CV?	11 A. Sure. It's identified in paragraph 11
12 A. All of the patent applications and	12 of my declaration.
13 issued patents are listed. I don't think I	13 Would you like me to identify it in my
14 included the invention disclosures themselves.	14 CV?
15 Q. And the -- are there invention	15 Q. Yes.
16 disclosures that didn't become applications?	16 A. So that paper I'm referring to is
17 A. I can't recall any.	17 Number 29 in my conference proceedings list.
18 Q. And your invited research presentations,	18 Q. What's a conference proceeding?
19 those are listed on your CV, I believe, on page 7	19 A. It's a peer-reviewed paper that is
20 onto 8?	20 presented at a conference as well. So it's a very
21 A. T	21 much like a journal article but, of course,
22 Q. And focusing on the publications, were	22 there's an accompanying presentation.
23 you the one who did the first draft of these	23 Q. Is it something that is published?
24 publications?	24 A. Yes, it is publishe
25 A. It depends.	25 Q. The journal publications themselves,

Page 46	8
1 which you've listed as 1 through 33, do any of	1 A. Oh, I think the description in my
2 them deal with active matrix display circuin	2 declaration is the most helpful thing to turn to
3 peripheral driving circuits that are provided on	3 It's in paragraph 30. It says, "I believe a
4 the same substrat	4 person of ordinary skill in the art in the field
5 A. I should check to be sure. I belie	5 of the '413 patent in 1997
6 that none of the publications in the -- listed	6 liquid crystal display structures including
7 the journal publications include a focus on	7 techniques for providing connections therei
8 TFT backplane, but there's a reason for that and	8 to circuits outside a sealant
9 that is that it's -- that work that l've done	9 Q. Do you think that person would have
10 in relationship with my company and other	10 any expertise fabricating those circuits?
11 another company as well and for I guess business	11 A. I think there are many ways to get at
12 reasons, we haven't chosen to publish it.	12 this level of ordinary skill and some of the ways
13 Q. Would that be found in your patents?	13 could involve not personal experience with
14 A. Not necessarily. So, for example, the	14 fabricati
15 project that I referred to early on when I was	15 Q. What about any kind of educational
16 assistant professor, some of that is published in	16 background? Would they need to have any kind of
17 that journal -- I'm sorry -- in that conference	17 educational background in particular?
18 proceeding that I pointed to. But almost all of	18 A. Again it's, I don't think, limited. I
19 it is not published, expressly because it was	19 think there are many ways to get to this ordinary
20 related to intellectual property and business	20 level of skill. I think the typical way would be
21 opportunities.	21 --would involve education, some number of years
22 Q. And when you say the work that you did	22 in an engineering kind of program, could be up to
23 when you were an assistant professor that you	23 a Bachelor's degree, but I don't think it should
24 mentioned earlier, what specifically are you	24 be limited to that
25 discussing?	25 Q. What techniques would they have to be
Page 47	Pa
1 A. I could go back through the transcript	1 aware of in 1997?
2 and find that, but is that what you want me to do?	2 A. Well, the ones I'm specifically
3 Q. No, I just want you to refresh my memory	3 referring to here that I'm adopting from the case
4 as to what you're referring to.	4 before I joined it, is providing connections
5 A. We began this deposition going through	5 therein and to circuits outside a sealant.
6 my time as an assistant professor, then associate	6 Q. So from your perspective, that person
7 professor and in that discussion, I referred to a	7 may not even have to have a B.S. degree?
8 project that did involve TFTs. That's what I'm	8 A. It think so, yeah. I think in other
9 referring to.	9 countries there are many ways to get to this level
10 Q. That project?	10 of ordinary skill. Especially in Asia, I think
11 A. Well, that -- yeah, that work, which	11 they have different tracts that would be something
12 depending on how you look at it, is multiple	12 less than a Bachelor's degree equivalence over
13 projects, but that's what I'm referring to.	13 here.
14 Q. Any of your publications address	14 Q. And any type of courses that they would
15 peripheral driving circuits such as shift	15 need to take?
16 registers and decoders for driving an active	16 A. It's hard to say. Again, they would
17 matrix display circuit and external connecting	17 need to understand something about semiconductor
18 lines for electrically connecting those circuits?	18 processing, but it would not necessarily have to
19 A. They do not explicitly address that.	19 be in a lab. They would have to understand what
20 Q. And you would agree that 1997 is the	20 it means to work with a sealant and certain
21 point for determining one of ordinary skill in the	21 circuit principles and some of the basic aspects
22 art for this matter?	22 and fundamentals that relate to the materials
23 A. I would for this matter.	23 we're talking about.
24 Q. And what type of person would you say is	24 Q. What would they have to know about
25 one of ordinary skill in the art as of 1997?	25 certain circuit principles?

Page 50	Page 52
mple, they'd have to	1
2 understand conductivity and how materials relate	2 those two
3 to conduct	3 A. Those are clearly the primary ones. I
4 Q. Anything else?	4 think there are
5 A. There are many other things that Ithink	5 materials that were being pursue
6 go into this language and a person of ordinary	6 including organic TFTs and other materials, oxides
7 skill would need to understand many techniques. I	7 of all kinds, semiconducting ox
8 think I'd have a hard time listing them out all	8 Q. If we're just talking about p
	9 liquid crystal display products, what materials
10 Q. What would they have to know about	10 were being used with TFTs? Just those two?
11 sealant	11 A. No, I would not limit it to tho
12 A.	12 So, you know, there are other comp
13 how a sealant works, how it's generally applied in	13 semiconductors. Gallium nitride, which is
14 the field, the principles of adhesion of a sealant	14 used in some context, but clearly silico
15 on various surfaces,	15 polysilicon -- I'm sorry -- yeah, amorphous
16 Q. As of 1997, would you consider yourself	16 polydomain silicon would be the primary material
17 to have qualified as a person of ordinary skill in	17 used in -- by 199
18 the art?	18 Q. Okay. And in your publications, do an
19 A. I would	19 of those address amorphous silicon TFT
20 Q. And what is that based on?	20 A. The publication that I pointed to
21 A. At the time I would -- by 1997, I had	21 earlier in my conference proceedings list, it's
22 taken courses that involved labs as well as	22 mentioned in my declaration, the semiconductor in
23 lectures in microelectronics, in semiconduc	23 that project was silicon and it was a backplane of
24 processing and the operations of LCDs, not ju	24 silicon. And it's a -- yeah, it's a silico
25 the operation, but the building and construction	25 backplane.
Page 51	Page 53
1 and principles of LCDs, including the sealant,	1 Q. Was it amorphous silicon
2 well as the optics and the backplane driving	2 A. I can't recal
3 principles.	3 Q. Okay. And any of your other
4 So even by that time, 1997,	4 publications or your conference proceeding address
5 finished my Bachelor's degree, I had tha	5 amorphous silicon TFTs?
6 experience.	6 A. I can't recall if any of them have
$7 \quad$ Q. So you would consider this to be a	7 mention of it, but I think you're asking for more
8 fairly low level for an ordinary skill in the art?	8 than just a mention of it. But aside from that
9 It's not someone who has to have a Ph.D. or even a	9 publication, I don't recall that any of the other
10 Master's?	10 ones focus on amorphous silicon.
11 A.	11 Q. And can you tell at the time of the
12 It's a person of ordinary skill, not an expe	12 claimed invention, 1997, what type of TFTs wer
13 skill.	13 used in the fabrication of active matrix display
14 Q. Now, as of 1997, what typ	14 products that had an integrated driving circuit
15 transistors were used in the manufacture of active	15 that was on the same glass substrate?
16 matrix liquid crystal displays?	16 A. Well, to be clear, I think having the
17 A. Could you be any more specific in terms	17 active matrix and the peripheral circuits was not
18 of what types you mean? What are you referring	18 standard at the time and nor is it standard now.
19	19 It's one of the options that can be done
20 Q. What type of material?	20 Now, I do think that if a peripheral
21 A. Oh, there were many -- certainly many	21 driving circuit is present, then it's most likely
22 kinds that were used at the time commercially. I	22 amorphous or crystalline silicon that is used or a
23 guess the big categories would be amorphous	23 polycrystalline. It depends on the application.
24 silicon. Second category would be polysilicon,	24 Q. But in 1997 -- specifically focused on
25 and there, I think, are many others beyond that.	251997 and those LCD display products, you're saying

Page 54	Page 56
1 there are ones out there that were amorphous	1 Q. Do you recall what materials or what
2 silicon?	2 metals are used in the fabrication of the source
3 A. I'm not specifically aware of any, but	3 and drain electrodes for the thin film transistors
4 it is possible to create something like that for	4 in the various wirings over the glass substrate
5 -- for example, for low quality, low cost kinds of	5 that are taught by the ' 413 patent, the Sukegawa
6 displays that one might use in toys, it may be	6 patent and the Nakamoto patent?
7 possible to do that. It depends.	7 A. I'd have to see the specification to
8 Q. Are you aware of any that were using a	8 refresh my memory to be able to answer that.
9 polycrystalline silicon?	9 Q. And if I told you that there was -- that
10 A. Similar. Of course, polycrystalline	10 they reference chromium, aluminum, tantalum and
11 silicon would be -- would have a bette	11 molybdenum, would that refresh your memory?
12 performance and could be used for that in	12 A. That doesn't seem to relate to your
13 settings.	13 question. Those are, of course, conductors
14 Q. I guess my question wasn't "could." I	14
15 just want you -- to understand whether you were	15
16 aware of any liquid crystal display products that	16 conference papers address those types of metals
17 were actually using a polycrystalline silicon for	17 for making source and drain electrodes and wirings
18 the TFTs?	18 onto a glass subs
19 A. I can't name a product or paper from my	19 A. What was the specific list of metals?
20 memory that would include that, but I expect th	20 Q. Chromium, aluminum, tantalum and
21 there are som	21 moly
22 Q. Now, can you point to any	22 A. Yes, there are many publications I have
23 publication	23 on reflective substrates with some of those.
24 curriculum vitae that address polycrystalline	24 Q. Is it easy for you to identify a few of
25 silicon TFTs?	25 those?
Page 55	age 57
1 A. To my -- to my knowledge, the list of	1 A. It may not be easy. I'd have to go
2 publications, both in journals and conference	2 through the actual publications and confirm for
3 proceedings, do not include an explicit component	3 myself. But if you want, I can take a moment and
4 that would have polycrystalline silicon in a	4 look.
5 backplane. Any work that I've done in that regard	5 Q. That's fine.
6 is unpublished.	6 MR. GIBSON: Why don't we change the
$7 \quad$ Q. And can you point to any	7 tape?
8 publications in your curriculum vitae that deal	8 VIDEOGRAPHER: We're going off record.
9 with active matrix circuit and driving circuit	9 This is the end of Media Unit Number 1. The time
10 formed on a substrate using a TFT?	10 is $10: 55$.
11 A. As I think we've discussed already, I	11 (Short recess.)
12 think any work that I've done on that is not	12 VIDEOGRAPHER: We're back on record.
13 published.	13 This is the beginning of Media Unit Number 2 in
14 Q. And the work that you referred to was	14 the deposition of Dr. Michael Escuti and the time
15 unpublished was this work that you referred to	15 is 11:13. Please continue.
16 earlier as an associate professor working for the	16 BYMR. GIBSON:
17 company ImagineOptix?	17 Q. Before we broke, I think we were
18 A. It's work that was done as assistant	18 discussing whether any of your publications or
19 professor and associate professor, most likely,	19 conference papers dealt with those four materials.
20 with ImagineOptix and other partners.	20 And I don't know if you've had a chance to review
21 Q. What I'm getting at, that's what you --	21 that or think about that, but if you can identify
22 we've already covered that?	22 a few. If it's easy to do, fine. If it's not,
23 A. I believe so, but if -- we may need to	23 then we can move on.
24 go back through and see what you're asking me	24 A. I didn't take any time to do that over
25 about.	25 the break, no. So if you want me to take the time

Page 58	Page 60
1 now, I'm happy to.	1 the Sukegawa patent and the Nakamoto patent all
2 Q. It depends how long -- I don't want you	2 describe multi-layer wiring structures that are
3 to take, you know, too long. If it's going to be	3 used to carry signals via a flexible printed
4 too difficult, then we'll skip it	4 circuit into an active matrix display?
5 A. Well, there are almost 90 publications	5 MR. SCHLITTER: Objection, form,
6 here to think through and recall based on the	6 foundation.
7 titles, so I think it will take a whi	7 THE WITNESS: I would not agree. I
8 Q. All right. The '413 patent, Sukegawa,	8 would not agree with that statement.
9 Nakamoto, also lists several insulating films that	9 BY MR. GIBSON:
10 are used as insulating layers in the TFT array.	10 Q. Why not?
11 Do you recall that?	11 A. Well, you use the word "multi-layer
12 A. I'm not sure which specification you're	12 wiring structure," right, in singular, at least
13 referring to. Can you rephrase it or give me the	13 that's how I heard it. And so I instead would say
14 specification you're asking me about?	14 that in especially the '413 and the Sukegawa
15 Q. All right. So you don't recall w	15 patent, there are multiple wirings that form,
16 materials that were used for the insulating films?	16 along with an insulator in between and in the
17 A. Is that your question, what are the --	17 terminal portion other aspects, a connection from
18 repeat your question.	18 the terminal portion to the display portion.
19 Q. Those three patents, do you recall what	19 In Nakamoto, there is, as best I recall,
20 insulating -- what materials are used for the	20 and maybe you should -- I should see the reference
21 insulating layers?	21 before I offer this, but so -- I'll stop there.
22 A. And what are th	22 Q. I did use the word "structures."
23 Q. The '413, the Sukegawa and Nakamo	23 Does that change your answer if it's
24 MR. SCHLITTER: Objection, form.	24 plural?
25 THE WITNESS: I recall that some of the	25 A. It depends on what you mean by your
1 examples explicitly cited include silicon nitride,	1 phrase. What do you mean by "multi-layer wiring
2 but they are not limited to that.	2 structure"?
3 BY MR. GIBSON:	3 Q. Do you understand what that would mea
4 Q. Do you recall also if there was silicon	4 as one much ordinary skill in the art, multi-laye
5 oxide?	5 wiring structure?
6 A. As best I recall, yes, but l'd	6 A. A person of ordinary skill in the a
7 look through them to be certain. I think that	7 would -- could have multiple structures that con
8 would be typical in this context.	8 from that, multiple -- that phrase can have
9 Q. And are any of your publi	9 multiple meanings. It's not precise enough.
10 conference presentations, do any of those address	10 Q. All right. So you're not aware, as
11 metals for making source and drain electrodes and	11 you're testifying, how the ' 413 patent, Sukegawa,
12 wirings onto a -- onto a glass substrate?	12 Nakamoto describe multi-layer wiring structures
13 A. What do you mean by "address"?	13 that are used to carry signals via a flexible
14 Q. Do they discuss using those -- using	14 printed circuit into an active matrix display?
15 metals for making source and drain electrodes and	15 MR. SCHLITTER: Objection, form,
16 wirings onto the glass substrate?	16 foundation
17 A. I'd have to -- similar, I'd have to	17 THE WITNESS: I am aware of how these
18 identify which one. Certainly in my work I have	18 patents use multiple layers, some conductors, some
19 made prototypes that involve these metals for	19 insulators to provide connections from a flexible
20 source and drain electrodes, but what I can't	20 printed circuit to an active matrix display.
21 recall is whether it wound up in publications that	21 You're characterizing it as a
22 are listed here.	22 multi-layer wiring structure and each of those
23 Q. Or conference papers?	23 patents have very different structures in them,
24 A. Or conference papers.	24 and so I don't want to be limited to describing
25 Q. Would you agree that the '413 patent,	25 them all together with that one phrase.

Page 62	Page 64
1 BYMR. GIBSON:	1 Q. Let's go ahead and give you a few
2 Q. Do any of your printed publications or	2 exhibits in the case, Exhibit 1001, which is the
3 conference papers address using multiple layers of	3 '413 patent.
4 wiring to carry signals via a flexible printed	4 MR. SCHLITTER: Thank you.
5 circuit into an active matrix display?	5 (Document marked previously as Exhibit
6 A. I recall that all my work with a	6 Number 1001 was presented.)
7 flexible printed circuit is unpublished.	7 BY MR. GIBSON:
8 Q. And have you -- have we discussed that	8 Q. Do you recognize that as the patent
9 work that you've done with the flexible printed	9 that's at issue in the petition?
10 circuit earlier in the deposition?	10 A. I do. It does appear to be the ' 413
11 A. Some of the prototypes involved in the	11 patent.
12 work we've discussed involved a flexible printed	12 Q. Hand you Exhibit 1004.
13 circuit onto glass substrates with an active	13 MR. SCHLITTER: Thank you.
14 matrix on	14 (Document marked previously as Exhibit
15 Q. And would you characterize those as	15 Number 1004 was presented.)
16 having multi-layer wiring structures that are used	16 BY MR. GIBSON:
17 to carry the -- that are used to carry the	17 Q. And would you agree that that's the
18 signals?	18 Nakamoto patent along with its translation?
19 MR. SCHLITTER: Objection, form.	19 A. It does appear to be the Nakamoto patent
20 THE WITNESS: It depends on how you're	20 in the original and its translation.
21 characterizing that phrase	21 Q. Okay. And let's give you Exhibit 1003,
22 BYMR. GIBSON:	22 which is the Sukegawa patent.
Q. Are there multiple layers of wires?	23 (Document marked previously as Exhibit
MR. SCHLITTER: Objection, form.	24 Number 1003 was presented.)
THE WITNESS: Can you give me an example	25
Page 63	Page 65
1 of what you mean by "multiple layers of wires"?	1 BYMR. GIBSON:
2 BY MR. GIBSON:	2 Q . Is that the Sukegawa patent?
3 Q . Is there more than one layer of wiring?	3 A. It does appear to be the Sukegawa U.S.
4 A. If you mean by that are there multiple	4 patent.
5 metal deposition steps where they -- where there	5 Q. And those are the three patents that you
6 are conductors in different physical layers in the	6 reviewed for your declaration in this matter?
7 sequence of layers on the backplane, if that's	7 A. These are three of the prior art patents
8 what you mean, then yes.	8 that I reviewed. There's one additional, Shiba,
9 Q. In what project was -- were you dealing	9 that I included in my declaration.
10 with an FPC or a flexible printed circuit in that	10 Q. Why did you include Shiba in your
1 context?	11 declaration?
2 A. It was related to the work with	12 A. The primary reason was related to the
13 ImagineOptix and the partners through -- through	13 definition of the phrase "through an opening."
4 them in those early projects that I had in my	14 And there's a section we can turn to, if you'd
5 early time at NC State where we were applying the	15 like, where I give many examples in Shiba and
6 technology in a way that required changing and --	16 others where contact through an opening is
7 well, that required designing and fabricating	17 consistent with the Board's first definition as a
8 backplanes for that purpose for our technology.	18 term of art.
19 Q. And that work, none of that was	19 Q. Now, I want to focus on the sealant and
0 published I think you said, is that right?	20 I 'm going to give you Exhibit 2010, the placement
21 A. To my knowledge, that work is -- is	21 of sealant. I'm sure you're familiar with that
22 still not published.	22 issue in this matter?
Q. And it's not in any patents or patent	23 A. I am. I'm familiar with the matter and
4 applications?	24 this marked-up figure.
A. Not that I'm aware of.	

	68
1 (Document marked previously as Exhibit	1 Hatalis?
2 Number 2010 was presented.)	2 A. The marked up figure that's here on
3 BY MR. GIBSO	3 page 48 of my declaration does show a counter
$4 \quad$ Q. You understand this is a figure that	4 substrate that shows where I think one of ordinary
5 Professor Hatalis created during his deposition?	5 skill would understand that counter substrate to
6 A. That's my understanding.	6 be if the sealant was placed where Dr. Hatalis has
7 Q. And you disagree with where he put	7 placed it.
8 sealant, correc	8 Q. And the placing of the counter substrate
9 A. Well, my opinion more precisel	9 that you have there is consistent with Nakamoto,
10 Sukegawa disagrees with his placement.	10 corre
11 Q. But you disagree with his placement?	11 A. Can you tell me what you mean by
12 A. It's my opinion that one of ordinary	12 "consistent with"
13 skill would not put the seal where he has pla	13 Q. You've placed it the same way that
14	14 Nakamoto places the counter substrate over the
15 Q. Y	15 sealant?
16 sealant?	16 A. Can you tell me what you mean by "the
17 A. Sukegawa mentions that there is a	17 same way"? I don't understand what you mean.
18 sealant, but does not mention or disclose at	18 Q. Look at Fig. 9 of Nakamoto.
19 where the sealant would be positioned, except I	19 Do you have that in front of you?
20 note he does not illustrate it in this figure or	20 A. I do. I now have Fig. 9 of Nakamoto.
21 any of the terminal portions in Sukegawa.	21 Q. And you would agree that there's a -- in
22 So I think it's fair to say that	22 Fig. 9 we have a substrate?
23 Sukegawa is teaching that wherever	23 A. There's a substrate and a counter
24 it's not where Dr. Hatalis has put it	24 substrate in Fig. 9 of Nakamo
25 Q. Now, but my question was, you would	25 Q. And there's an SL marking. Would you
	Page 69
1 agree there is sealant being used in Sukegawa?	1 understand that to be sealant?
2 One of ordinary skill in the art would understand	2 A. That is what Nakamoto refers to as the
3 that there's going to be sealant used?	3 sealant.
4 A. I do agree that a person of ordinary	4 Q. And do you see that the counter
5 skill would -- would hear what Sukegawa has said	5 substrate is over the sealant?
6 about the fact that there should be sealant	6 A. I do see that.
7 holding the two substrates together and that	7 Q. And then just as you've drawn in your
8 should be somewhere between the two substrates	8 declaration on page 48, the counter substrate
9 illustrated in Fig. 3D.	9 extends into that open region if we look at
10 Q. And why do you believe there has to be	10 Sukegawa as marked by the 13?
11 some sealant?	11 A. Well, what I see is that the sealant is
12 A. Well,	12 not the edge of the counter substrate and that it
13 really do two things. It's to first keep the	13 does overhang in the explicit disclosure of
14 liquid crystal material, which is literally a	14 Nakamoto and I think that is a good example of
15 liquid, inside between the two substrates. And	15 what one of ordinary skill would -- would do in
16 it's also -- and it does so in large part by	16 any case with the sealant, to have an offset back
17 keeping the two substrates together with a firm	17 from the edge of the substrate some distance.
18 adhesion. And so by 1997, and it continues today,	18 Q. So your drawing in Fig. -- on Fig. 2C on
19 a sealant is the means to do that.	19 page 48 of your declaration is consistent with
20 Q. Now, in your declaration, if you'd turn	20 Nakamoto's Fig. 9?
21 to page 48.	21 MR. SCHLITTER: Objection, form.
22 A. Page 48, paragraph 94?	22 THE WITNESS: It's not consistent
23 Q. Right above that, the drawing that you	23 this aspect: My drawing of Fig. 2C includes the
24 made, you put a counter substrate on top of th	24 counter substrate where the whole point is that
25 sealant that was drawn by Dr. Hatalis or Professor	25 that counter substrate would then block the

Page 70	Page 72
1 checking terminal that is underneath element 13.	1 a different matter.
2 And certainly in Sukegawa, having access to that	2 Q . Why wouldn't you want it to adhere?
3 terminal after the two substrates are joined is	3 A. Could you repeat the question?
4 paramount. It's central to his objectives to	4 Q. Sure. I mean, is there -- why would you
5 still provide access to that checking terminal.	5 want the epoxy not to adhere to the two
6 So if the sealant was where Dr. Hatalis	6 substrates?
7 put it, the counter substrate would block access	7 A. Well, it's less about what I would want
8 to that.	8 to do, of course, but what Nakamoto discloses.
9 BY MR. GIBSO	9 Nakamoto discloses two things, right? First,
10 Q. And it's your view in Fig. 9 it's	10 there's a sealant which adheres to the two
11 blocked in Nakamoto?	11 substrates and keeps the liquid crystal inside
12 A. In Fig.	12 between glass and then there's an epoxy that
13 MR. SCHLITTER: Objection, form.	13 protects the sealant. There's just no disclosure
14 THE WITNESS: In Fig. 9, there is more	14 that it has to adhere to the substrates.
15 distance between the counter substrate and the	15 Q. My question's a little bit different.
16 FPC. So it is different. I mean, they both have	16 Why is -- why would one of ordinary
17 a counter substrate that is overhanging the	17 skill in the art want to design the epoxy so that
18 sealant, that's true. But in Nakamoto, the	18 it wouldn't adhere to the two substrates?
19 counter substrate is well away from the FPC so	19. MR. SCHLITTER: Objection, foundation.
20 that the checking terminal can still be accessed.	20 THE WITNESS: I don't -- I don't think I
21 BY MR. GIBSON:	21 can speculate on that.
22 Q . It's still overhanging the open area	22 BYMR. GIBSON:
23 that when we look at Fig. 2C it's designated 13,	23 Q. You don't know one way or the other?
24 correct?	24 A. Certainly Nakamoto doesn't disclose one
25 MR. SCHLITTER: Objection, form.	25 way or the other and at the moment I can't -- I
Page 71	Page 73
THE WITNESS: Can you point me to the	1 don't know one way or the other what one of
2 particular area in Fig. 9 that you're referring	2 ordinary skill would consider in that case.
3 to?	3 Q. In terms of - I think you had some
4 BY MR. GIBSON:	4 discussion about the repairing operation that's
5 Q. It looks like it has the initials -- I'm	5 described by Sukegawa. Do you recall that? I
6 not sure if it's MPX or -	6 think it starts on page 161 -- or paragraph 161,
7 A. EPX?	7 page 80.
8 Q. EPX. Do you see that area?	8 A. Let me take a quick look to refresh my
9 A. I do see the epoxy region.	9 memory.
10 Q. Okay. And what does the -- you see the	10 Are you referring to the paragraphs with
11 counter substrate's overhanging the epoxy region?	11 letters underneath that paragraph --
12 A. That's what the figure shows.	12 Q . Yes.
13 Q. And what do you understand the purpose	13 A. -- 161? Okay, so they relate to the
14 of the epoxy is there?	14 discussion of peeling, that's true.
15 A. Nakamoto describes the purpose of the	15 Q. And do you have anything in your CV that
16 epoxy as protecting the sealant.	16 discusses -- any publications or anything else,
17 Q. Is it also holding the two substrates	17 your experience on TFT LCD repair?
18 together?	18 A. It's a -- it's certainly true that in my
A. Not necessarily. If it's an epoxy, then	19 work I've had to repair and do my best with
t means it's a kind of glue and so to some	20 displays and TFT backplanes that have not turned
ent, it's adhering at least to the sealant.	21 out perfectly. I'm not sure I would call that the
I think it's possible to design materials so	22 peeling operation that -- that is identical to
sticks to the sealant and not to the	23 what's in Sukegawa, but certainly I have faced the
on the other side. Clearly it's	24 challenge of making the connection with an FPC to
25 contacting it, but whether it's adhering or not is	25 a backplane and certainly that doesn't always work

Page 74	Page 76
1 out the way we want it to.	1 BY MR. GIBSON:
2 Q . But have you published anything,	2 Q. Now, would you expect that the websites
3 patents, publications, conference papers, on TFT	3 would -- say the LG website or the CPT website,
4 LCD repair?	4 the first two that you mentioned, that they would
5 A. I can't recall that that kind of topic	5 publicly disclose their proprietary information
6 is in any of my publications or patents, but	6 related to the display module repair procedures?
7 certainly that kind of thing occurs when	7 A. I would not expect any company to -- if
8 fabricating real devices.	8 they were smart, to disclose proprietary
9 Q. But you don't have any publications or	9 information about any of their processes,
10 any particular --	10 including repair operations.
11 A. I can't recall.	11 Q. And do you have any knowledge of the
12 Q. -- conference papers or anything like	12 proprietary information from LG -- LG or CPT on
13 that?	13 the repair process?
14 A. I can't recall.	14 A. I do not.
15 Q. You attach a number of websites to	15 Q. And do you know if the equipment used in
16 declaration.	16 display repair is exactly the same as that used in
17 Did you look at any other websites that	17 display production?
18 you didn't attach?	18 A. I'm not aware of that kind of
19 A. In this matter regarding these pages,	19 requirement, but I am aware that as I looked into
20 no, I did not.	20 the literature for any mention anywhere in journal
21 Q. And how many hours did you spend	21 literature, conference proceedings or the patent
22 reviewing the websites on display inspection	22 literature on a repairing operation, that there
23 repair?	23 was very little disclosed at all.
24 A. Do you mean specifically these	24 Q. Is that because most of it's proprietary
25 approximately eight websites listed on these	25 or do you know?
Page 75	Page 77
1 pages?	1 A. I don't know. That's one possibility.
2 Q. Yeah.	2 Q . So you don't know whether the equipment
3 A. Not many, one hour.	3 used in the display repair is exactly the same as
4 Q. Would you consider that hour to make you	4 that used in the display production?
5 an expert in TFT LCD repair?	5 A. I think it's unlikely that it is exactly
6 MR. SCHLITTER: Objection, foundation.	6 the same, but it also is not likely some magic box
7 THE WITNESS: I can't agree with that	7 that's not disclosed anywhere else. And the tools
8 characterization of the time or if that would be	8 to form metals and the kinds of conductors and
9 sufficient. No, it's my general -- my own	9 insulators that are referred to in -- in the
10 experience and my research with the processes that	10 patent, those processes are pretty well-known and
11 are listed here, my familiarity through my	11 they have fundamental laws of physics that limit
12 students' work or my own personal work th	12 the temperatures and pressures that can be used in
13 enabled me to read the websites and understand	13 forming those layers, and those are well-known in
14 what's being talked about and fairly quickly form	14 the fabrication process.
15 an opinion on the text that's largely represented	15 Q. And are they well-known to you in the
16 here.	16 display repair process?
17 BYMR. GIBSON:	17 A. They're well-known to me in the display
18 Q. But you would agree that just reviewing	18 fabrication process, but those same physical
19 some websites wouldn't make you an expert on TFT	19 limitations would apply to the repair process.
20 LCD repair?	20 Q. Do you know how many displays can fit
21 MR. SCHLITTER: Objection, form.	21 onto a piece of a glass substrate?
22 THE WITNESS: To be an expert, one of	22 MR. SCHLITTER: Objection, foundation,
23 expert skill in the art of LCD fabrication takes	23 form.
24 much more than an hour of reviewing websites.	24 THE WITNESS: Of course it depends.
	25

Page 78	Page 80
1 BY MR. GIBSON	1 mainstream commercial product.
2 Q. And do you have a range of how many?	2 Wouldn't you agree that the production
3 A. The literature's pretty clear that it	3 equipment is going to have a large size glass
4 can be anywhere from one to arrays of various	4 substrate with many individual displays --
5 sorts. I've -- I recall seeing large TVs being	5 MR. SCHLITTER: Objection, form,
6 formed in a grid of three-by-three, sometimes	6 foundati
7 four-by-three. Smaller displays can be formed in	7 BY MR. GIBSON:
8 larger arrays than even that.	8 Q. -- that are being made all in parallel?
9 Q. And so you said "it depen	9 A. That's simply not required. The first
10 What do you mean, what does it depend	10 few months that I just mentioned, those are rea
11 on?	11 commercial products. Some of the devices we have
12 A. The number of displays formed on a	12 could have been made on that -- that kind of lin
13 particular mother substrate would depend on the	13 So I can't agree with that characterization that
14 size of that substrate and the size of the	14 that's either necessary or required, but it may be
15 eventual product that's being produced and the	15 typical.
16 processes that are being used to produce them, the	16 Q. Yeah. And my answer -- my question
17 generation of the LCD fab line.	17 rather, wasn't whether it's required. My question
18 Q. And would you agree that the production	18 is directed to what is typical, you know, in large
19 equipment that is made to handle large -- large	19 scale production.
20 sized glass substrates with many individual	20 A. Every large scale process of a product
21 displays all made in parallel onto that same	21 that I have -- that I'm aware of begins with a
22 substrate?	22 small production line process with typically one
23 MR. SCHLITTER: Objection, form.	23 -- one or a small number at a time.
24 THE WITNESS: I can't agree to that.	24 That's -- the partners I work with have
25 What I -- that's -- it's not required to be so	25 exactly that. But as soon as they can, if
Page 79	Page 81
1 There are, I'm sure, many fabrication lines that	1 customers justify it, there is a transfer to a
2 are smaller than that and that produce one display	2 higher throughput line where you do have parallel
3 at a time.	3 -- or you have multiple displays being produced in
4 BY MR. GIBSON:	4 parallel essentially through the line.
5 Q. Do you know any that do that?	5 Q. Or you have the larger size glass
6 A. I do. Some of my partners that I work	6 substrate with multiple displays?
7 with through ImagineOptix, I've seen them myself.	7 A. That's right. And to your question
8 Q. And are these actual products that are	8 then, in the commercial products, both can appear.
9 commercialized and sold?	9 Results from both can appear.
10 A. As you can appreciate, when a new	10 Q. Now, would you agree that the equipment
11 product comes out, the first step is a prototype	11 that's used to repair a display will be different
12 and then the next step is typically a limited	12 than the equipment that's being used when you have
13 production run. And most of the time a smaller	13 a large scale production where you've got a larger
14 fabrication facility is used for that. I've --	14 substrate that's -- where you're using multiple
15 I've toured one in Korea. And in that case, I	15 displays, producing multiple displays?
16 think it is common, depending on the size of the	16 A. You're asking me to speculate.
17 display, that it's a single display that's being	17 Q. No, I'm asking from your own knowledge,
18 produced.	18 if you know.
19 So for the first few months of the	19 MR. SCHLITTER: Object to the form and
20 production, it might be a few thousands every	20 foundation.
21 month and then as it ramps up and there's	21 THE WITNESS: Well, what I know is what
22 customers for it, then there's a general trend to	22 I've -- what I've written in here, right, that the
23 transfer that to a more sophisticated and higher	23 processes that are used to fabricate that involve
24 throughput factory.	24 high temperature and low pressure are
25 Q. In that situation we're talking about a	25 inappropriate to be used in a repairing operation

Page 82	Page 84
1 because they damage the whole display that's	1 A. I'd have to see the website printout to
2 already produced and being repaired. So they --	2 know for sure.
3 they would not -- it would not be possible to use	3 MR. GIBSON: Okay. Maybe we can take a
4 those for the repair operation.	4 break and if I can indulge you to grab his
5 I also know that there are limits on the	5 exhibits?
6 ability to create these layers that are	6 VIDEOGRAPHER: We're going off record.
7 fundamental to the materials themselves and to	7 The time is 11:48.
8 basic physics. So I can't even imagine another	8 (Short recess.)
9 way, for example, to form a high quality ITO layer	9 VIDEOGRAPHER: We're now back on record.
10 without having elevated temperatures and most	10 The time is 11:56. Please continue.
11 likely vacuum. You could -- you could deposit the	11 BY MR GIBSON:
12 atoms, but they wouldn't conduct in the way that's	12 Q. All right. We'll come back to that once
13 necessary for this application.	13 we have the documents.
14 BY MR. GIBSON:	14 In general, in the fabrication of
15 Q. Okay. I don't think that was an answer	15 display products, how important is it to conserve
16 to my question. My question is directed toward	16 space?
17 repair.	17 MR. SCHLITTER: Objection, form.
18 And wouldn't you expect tha	18 THE WITNESS: What space are you
19 equipment that's aimed to repair a display will	19 referring to?
20 only handle one display at a time?	20 BY MR. GIBSON:
21 MR. SCHLITTER: Objection, foundation.	21 Q. Well, the space in the structure itself.
22 THE WITNESS: I have no reason to -- to	22 MR. SCHLITTER: Same objection.
23 expect that. It could be that. It depends	23 THE WITNESS: I still don't have enough
24 otherwise.	24 information to answer your question.
25	25 Can you point me to a figure? Which
Page 83	Page 85
1 BY MR. GIBSON:	1 space or -- what space are you referring to in the
2 Q . Are you aware of any equipment that's	2 fabrication of a display product?
3 used to repair multiple displays at one time?	3 BY MR. GIBSON:
4 A. I can't recall if that was within the --	4 Q . Well, in the -- in the multi-layer
5 what I've -- what I've seen. The very few papers	5 terminal portion, is it important to conserve
6 that I noticed that mention repair at all do not	6 space?
7 -- I just don't recall what they said.	7 MR. SCHLITTER: Objection, form.
8 Q. The Pascal website that's mentioned in	8 THE WITNESS: It depends.
9 your paragraph D --	9 BY MR. GIBSON:
10 A. I see paragraph D. Is the attachment	10 Q. What does it depend on?
11 included here?	11 A. Well, there are various trade-offs that
12 Q. Unfortunately not. And if we -- if you	12 go into the design of a terminal portion.
13 need those, then we'll have to --I don't know if	13 Certainly there are the technical trade-offs, but
14 you have them handy, but we need to get a copy of	14 there's also the considerations of cost and the
15 them.	15 availability of the elements involved, especially
16 MR. SCHLITTER: I could -- I could get	16 the FPC.
17 them. I'm not sure that I have them handy.	17 So it depends on all those on whether --
18 THE WITNESS: It depends most likely on	18 you know, whether the area in space and size of
19 your question.	19 the terminal is larger or smaller.
20 BY MR. GIBSON:	20 Q. Do the display producers try to have a
21 Q. And we may -- we may need them for this	21 large border region around the TFT array or do
22 question.	22 they try to minimize the edge area?
23 The Pascal website, does it describe a	23 A. In general it is not an objective to
24 process that is aimed at displays from what you've 25 written?	24 maximize the area around a display area, that's 25 true.

Page 86	Page 88
1 Q. And why is that?	1 number of displays produced on a given glass
2 A. I think simply because it is visually	2 substrate?
3 unpleasing to most consumers and customers. We,	3 A. It depends.
4 even at the time of 1997, expect that what we're	4 Q. What does it depend on?
5 going to see is the display with a frame or border	5 A. It would depend on the size
6 around it that's modest in size compared to the	6 final display/display area and the number
7 display.	7 would be implemented there. It also depends on
8 Q. And are you familiar with the differen	8 the design of the terminal region for a particular
9 generations of glass substrate size that were in	9 manufacturer. I don't think there's one answer to
10 production?	10 that.
11 A. I'm in familiar -- excuse me. I am	11 Q. If the border area around a TFT array
12 familiar with the general ideas of those	12 increases, how does that affect the total number
13 generations, but not the specific sizes in tho	13 of displays produced per glass substrate?
14 generations. I don't recall that.	14 MR. SCHLITTER: Objection, form,
15 Q. Do you know how many displays we	15
16 produced on a given glass substrate of a give	16 THE WITNESS: Well, in general, if you
17 generation, or that's something you don't know?	17 begin from a certain number of displays on a
18 MR. SCHLLTTER: Objection, foundation.	18 substrate, for example, four-by-three and you
19 THE WITNESS: I don't recall that. I've	19 increase the border region of that, then at some
20 certainly seen that kind of description, but I	20 point the increase of the border region will
21 don't remember those kind of details.	21 require you to have less than the four-by-three
22 BYMR. GIBSON:	22 grid of those displays.
23 Q. What about in 1997, do you know what was	23 BY MR. GIBSON:
24 the state of the art in glass substrate size that 25 was in production as of 1997?	24 Q. So you would like to decrease the border 25 region to avoid that, correct?
Page 87	Page 89
1 A. I don't recall the substrate size at	1 A. Most of the time I think that's the
2 that point.	2 case. You would want to do whatever you can to
3 Q. Do you know how large a Gen 3 glas	3 minimize that border regi
4 substrate is?	4 Q. And one of the ways you could minimize
5 A. I suspect there's some variation in that	5 that border region is to put the sealant as close
6 size, but I don't recall even what that typi	6 as possible to the terminal region, correct?
7 answer would be	7 A. It think that is -- that one of ordinary
8 Q. Do you know how large the glas	8 skill would see that as one of the options
9 substrate is of a Gen 8,9 or 10?	9 available.
10 MR. SCHLITTER: Objection, fo	10 Q. If a -- if a terminal region is located
11 THE WITNESS: I don't recall	11 a large distance from the sealing region, how
12 specifically, but those are the more	12 would that affect the series resistance?
13 understand that to be more recent generations and	13 MR. SCHLITTER: Objection, form.
14 so they're likely larger than the previous	14 THE WITNESS: I think you're going to
15 generations.	15 have to tell me what you mean by "terminal
16 BY MR. GIBSON:	16 region." There could be many answers to what that
17 Q. Would you have any knowledge of how many	17 is.'
18 14-inch displays could fit on a Gen 3.5 versus a	18 So what do you mean by "terminal region"
19 Gen 8?	19 before I continue answering questions on this.
20 A. I can't recall any specific answer to	20 BYMR. GIBSON:
21 how many would be on those -- those generations.	21 Q. Or terminal portion, would you be more
22 Q. Do you know how the total area that a	22 comfortable than that?
23 display occupies, i.e., the TFT array plus the	23 A. Could you show me one so I can talk
24 border region that contains the terminals for	24 about it in relation to a figure?
25 connecting to the FPC, how is that related to the	25 Q. Well, if you look at --I think you used

Page 90	92
1 the words in paragraph 127 of your declaration.	1 THE WITNESS: Are you -- are you asking
2 A. Okay. I see terminal portion here	2 in a specific context or just as a gener
3 Q. And what were you referring to as the	3 principle?
4 terminal portio	4 BY MR. GIB
5 A. Well, this parag	5 Q. General princip
6 Dr. Hatalis' declaration and in this paragraph,	6 A. As a general principl
7 I'm addressing his assertion that it would be	7 if you shorten a conductor, then the resistance
8 obvious to a person of ordinary skill to place	8 lower
9 sealant over the wirings that are in the terminal	9
10 portion, the second wirings in particular. And	10
11	11 Q. -- would yo
12 Q .	12 Nakamoto is contem
13 can you tell me w	13 multi-conductor wiring from the terminal portion
14 referring to?	14 into the display portion?
15 A. Sure. Specifically in Sukegawa, we	15 A. Nakamoto in Fig. 9 shows two layers, G1
16 several figures that say "terminal portion.	16 and D1, which are both conductors, and that
17 Well, to be clear, Fig. 3C has arrows that say	17 running from underneath the tape carrier package
18 directions to the terminal portion and then	18 I think it's called in Nakamoto -- across th
19 of the other figures that show the FPC, for	19 sealant into the display area
20 example, Figs. 2, all of them, Fig. 3B, Fig.	20 Q. And that's the metal G1 and the I
21 Fig .3 E and later figures, they sho	21
22 -- what Sukegawa would, I think, call the term	$22 \quad \text { A. }$
23 portion	23 Q. And would you agree that D1 is the oute
24 Q. Okay. So if we tak	24 top metal in contact with the -- with ACF?
$25-$ as our terminal region,	25 MR. SCHLITTER: Objection, foundation,
	93
1 large distance from the sealing regio	
2 that impact the series resistan	2 THE WITNESS: I can't -- I can't agree
3 MR. SCHLITTER: Objection,	3 with that mainly because D1, if it's ITO, is not a
4 THE WITNESS: The basic principle of	4 metal. It's a conducting oxide. So it is the top
5 resistance is that when a conductor is longer than	5 conductor in connection with the ACF, but it is
6 the resistance of that conductor or that	6 not a metal.
7 connection will be higher. However, I don't think	7 BY MR. GIBSON
8 anybody in this case is saying that you're going	8 Q. Okay. Well, you would agree that D1 is
9 to put the terminal portion a country mile away	9 the outer top and it is in contact with the ACF?
10 from the display portion.	10 A. Let me make sure. Just take a moment.
11 We're really referring to what Sukegawa	11 Yeah, I think that's the case. The
12 is actually disclosing and that is what I was	12 layer immediately above layer D1 is the
13 referring to, as well as I think Nakamoto, with	13 anisotropic conducting film
14 regard to the conductors that are shown in the	14 Q. Which is referred to as ACF in Fig. 9 of
15 terminal portion, and the terminal portion is not	15 Nakamoto?
16 limited -- the terminal portion is more than just	16 A. I was looking for that. I can't find
17 those conductors, as is shown in Sukegawa.	17 the label.
18 BY MR. GIBS	18 Q. I think it's at the bottom
19 Q. So you would agree thoug	19 A. Ah, okay
20 resistance is proportional to the length of the	20 Q. Is that right?
21 line, correct?	21 A. Yes, thank you. So the ACF is in direct
22 A. It is.	22 contact with D1.
23 Q. So one way to reduce the resistance of	23 Q. Would you
24 the line is to reduce the length?	24 directed to the field of liquid crystal displays
25 MR. SCHLITTER: Objection, foundation.	25 and a means to provide reliable connections to

Page 94	Page 96
1 scan lines and data lines via wiring on the glass	1 fairly representative?
2 substrate connections to an FPC	2 A. I don't want to characterize it as good
3 A. That's a long question.	3 or not. It is one example, one option.
4 MR. SCHLITTER: Objection, form	$4 \quad$ Q. And it's a viable option?
5 THE WITNESS: I certainly can agree that	5 A. Certainly Nakamoto thought so.
6 Nakamoto is directed to the field of liquid	6 Q. Do you disagree with it?
7 crystal displays. I would have to read this -	7 A. I don't have any reason to disagree with
8 remind -- refresh my memory on the specification	8 Nakamoto's placement of the seal.
9 if it -- if it does disclose that it is intending	9 Q. If we look at Fig. 5 of Nakamoto, would
10 to provide a means for reliable connections to	10 you agree that the sealant region is formed on top
11 scan lines.	11 of PSV1?
12 BYMR. GIBSON	12 A. I'm not sure that's shown in Fig. 5
13 Q. Okay. So without reviewing the patent	13 right. It's especially shown by combining Fig. 5
14 again, you don't -- you don't know the answer to	14 with Fig. 9. So let me make sure. I'm looking.
15 that?	15 Is PSV1 the orientation layer? I'd have to remind
16 A. I don't recall if that's explicit	16 myself what PSV1
17 Nakamoto.	17 Q. PSV1 is the oxide silicon film. Go
18 Q. What about Sukegawa, same question?	18 ahead. If you want to look at --I think it's
19 A. Well, Sukegawa also is certainly	19 paragraph 89 that describes, if that helps.
20 directed toward liquid crystal displays. And what	20 A. It's called the protective film. Yeah.
21 I recall the primary objective of Sukegawa being	21 And it can be made in oxide silicon films
22 is a -- is the disclosure of a means to provide	22 nitride silicon films. So that's clearly an
23 corrosion resistance in the -- from the terminal	23 insulator. And your question is whether or not
24 portion or in the terminal portion and especially	24 that appears below the seala
25 around the checking terminal.	25 Q. Yes, if the sealant region is formed on
Page 95	Page 97
1 Q. And that's because you want to have a	1 top of PSV1?
2 reliable connection?	2 A. It appears that Fig. 9 is showing PSV1
3 MR. SCHLITTER: Objection, form.	3 as partially going under the sealant.
4 THE WITNESS: You're asking me -- are	4 Q. And from Fig. 5?
5 you asking me if I think it's good to have a	5 A. It's unclear to me if Fig. 5 shows the
6 reliable connection in LCDs? Of course.	6 sealant going around what's labeled as PSV1 or
7 BYMR. GIBSON:	7 it's going on top of.
8 Q. Well, and that's what Sukegawa is	8 Q. You can't tell?
9 directed to?	9 A. I don't think you can tell from Fig. 5.
10 MR. SCHLITTER:	10 Q. But you think Fig. 9 discloses that it
11 THE WITNESS: I'd have to read it	11 is underneath the sealant?
12 carefully to see whether or not he explicitly	12 MR. SCHLITTER: Objection, form.
13 speaks of a reliable connection. I just can't	13 THE WITNESS: Well, it's not clear from
14 recall.	14 Fig. 5, which is the top-down view, which would
15 BY MR. GIBSON:	15 show the plan regions of those two layers. Fig. 9
16 Q. Looking at a -- again, in Nakamoto in	16 shows a cross-section that may or may not be a
17 Fig. 9, would you agree that the placement of the	17 realistic cross-section and it does show, as
18 sealant there is an example of where you can place	18 drawn, a layer labeled PSV1 that is underneath the
19 sealant?	19 sealant.
20 A. Nakamoto Fig. 9 certainly shows one	$20 \quad$ But I do want to note that in at least
21 example of where to place sealant and I think is	21 one of the other patents, we have a cross-section
22 fairly representative in this sense that the	22 which is very misleading and I can't tell if
23 sealant is placed recessed back from the edge of	23 that's the case here where in the cross-section,
24 the counter substrate.	24 things are being labeled that aren't actually in
25 Q. So you think it's a good example or	25 the same cross-section.

Page 98	ge 100
1 BYMR. GIBSON:	1 think the sealant is -- maybe you could do that
2 Q. But you don't know one way or the other	2 for me. I don't know if you have a pen.
3 whether that's happened here in Fig. 5?	3 A. I can if you
4 A. In Fig. 5 it's hard to tell. If you	4 Q. You don't have a pen?
5 want to identify for me where the boundaries of	5 A. -- provide -- no, I'm sorry.
6 PSV1 are, then perhaps I could answer you better.	6 Q. You can use mine as long as you promise
7 But from the black and white drawing at	7 to give it back.
8 the moment, it's -- it's not apparent to me	8 A. Okay. So you're asking me to identify
9 whether the seal, which is labeled, is going on	9 the seal?
10 top of what appears to be labeled PSV1. It's a	10 Q . Where the sealant is
11 square with a circle in it, again whether it's	11 A. Okay.
12 going on top or whether it's going around.	12 Q. I know where the SL is. I see where
13 Q. Would you understand that the PSV1 is	13 the -- where that is. I don't need you to
14 going from the -- from the right -- looking at the	14 identify the letters SL, just where you think the
15 right of the figure, there's two horizontal lines	15 sealant would be and then next, I'd ask you to
16 that extend toward the square with the circle in	16 identify the sealant region.
17 it	17 A. Well, we can begin with following that
18 Would you understand that the PSV1 is	18 label and identifying the seal, SL, in Fig. 5 and
19 going to be extending -- going from the right to	19 I think that's an answer to your question.
20 the left toward that square with a circle going	20 Q. Okay. Now -- yes, and that's -- that's
21 around it	21 what I understand as w
22 MR. SCHLITTER: Objection	22 Now, what is the -- where is the PSV1?
23 BYMR. GIBSO	23 A. Well, you and I both can see it's
24 Q. -- and then going down to the bottom of 25 Fig. 5?	24 labeled and it has a line going from the text that 25 seems to point to the inside of a box that's
Page 99	ge 101
1 MR. SCHLITTER: Objection, form.	1 square with a circle in it.
2 THE WITNESS: I don't think that's my	2 Q. All right. So you wouldn't understand
3 understanding. I may misunderstand what you've	3 that PSV1 actually extends from the left -- I'm
4 just said and it would be helpful if you drew it	4 sorry -- from the right of Fig. 5 to the left and
5 for me so I can really respond to your question.	5 then is actually overlapping the sealant?
6 But it sounds like what you've just described is	6 A. Well, I guess now that I'm looking at
7 the seal region -- or the sealant. I'm sorry.	7 this, I notice that there's two labels for PSV1,
8 The sealant comes in from the right	8 right. There's one kind of in the middle and then
9 side. It's two parallel lines and then it comes	9 there's one in the -- more toward the bottom left.
10 over and goes around that square and then comes	10 Q. Right. That's my -- yes. And my
11 down to its label, SL.	11 question is that's what I'm trying --I was
12 BY MR. GIBSON:	12 focusing on the one that's in the bottom left.
13 Q . We'll the sealing region is much broader	13 And you're focusing on the one that was --
14 than that, right? The sealing region up almost	14 A. I was.
15 half of what we're seeing here in Fig. 5, correct?	15 Q. So my question was, when we're looking
16 MR. SCHLITTER: Objection, form.	16 at the right side of Fig. 5, the PSV1 is going to
17 THE WITNESS: I don't agree with that.	17 be extending to that line on the left side that is
18 The seal or the sealant is labeled SL. It's got	18 labeled PSV1?
19 specific locations in both Fig. 5 and Fig. 9. The	19 MR. SCHLITTER: Objection, form.
20 seal region is something different altogether and	20 THE WITNESS: From other figures we can
21 I'm not sure that's labeled here in Nakamoto. In	21 see PSV1 as a layer in, for example, Fig. 4 above
22 another reference it is, but not her	22 or as part of the TFT. So I certainly can agree
23 BY MR. GIBSON:	23 that there must be PSV1 in the bottom right of
24 Q. So let me make sure I under	24 Fig. 5.
25 If you were to draw in there where you	25 What's not clear is what's going on with

Page 102	Page 104
1 the lines in between. And there's two cuts in	1 would have to be removed at least partially. So
2 particular that are important, there's CT1 and CT2	2 Fig. 5 shows I think that, but it's not clear what
3 and those are going to be -- those are identified	3 else it's showing of where else PSV1 is being
4 as the cutting regions where the two substrates	4 removed.
5 are going to be diced. And again, I see the PSV1	5 Q. All right. But you would know that the
6 labels, but I can't see where they end. I can't	6 PSV1 is not over the DTM or the GTM?
7	7 MR. SCHLITTER: Objection, form.
8 BY MR.	8 THE WITNESS: Well, it's not shown in
9	9 Fig. 9. I can't imagine a way to contact to those
10 under	10 terminals if it was allowed to remain there in the
11 sealant, PSV1?	11 final product. Clearly this Fig. 5 is an
12 A. Well, bas	12 intermediate step, right, because it still has
e.	13 display substrates that haven't been cut to their
tially, only	14 final form. So the status of that in Fig. 5 is
Q. And the PSV1 that's on the left --	15 not clear at all to me.
l	16 BY MR. GIBSON:
17 the extent of the overlap, that there's going to	17 Q. Would
S	18 approximately 1 micron thick?
A. Well, if that were	19 A. I can agree that that's a typical
onsistent with Fig 9,	20 thickness of a passivation film. I don't recall
V	21 if Nakamoto specifically identifies thickness.
	22
23 And if we look at Fig. 5 and look where	23 A. Paragraph 90 points to PSV1 as being
	24 made
25 that the PSV1 just goes underneath the whole	25 Q. And if you look at paragraph 91, which
	Page 10
1 from -- from that line in the middle left side of	1 is discussing Fig. 5, does that help you
2 Fig. 5 all the way to the right and that can't be.	2 understand the extent of PSV1?
3 It has to end somewhere, right, because Fig. 9	3 A. I'll take a minute and read it
4 shows an example of where that is. So I can't	4 carefully. Okay. And can you remind me your
5 tell from this figure, this top-down, black and	5 question?
6 white illustration where those ending points are.	6 Q. Doesn't
7 Q. Well, there can be multiple embodiments	7 said, PSV1, it's going to be laid over and then
8 of a patent, right?	8 it's going to be cut back, right?
9 A. Yes.	9 A. Openings are going to be formed in it.
Q. Do you know if Fig. 5 and Fig. 9 are the	10 Q. Openings are going to be formed in it.
me embodiment?	11 And it's desirable to leave as much of
A. I don't recall if Nakamoto describes	12 the PSV1 in place as possible, right?
13 that way.	13 A. It depends. The disclosure in
Q. Okay. So you can't tell where	14 paragraph 91 describes removing it from certain
ssivation layer ends from Fig. 5?	15 parts. There's, I think, no teaching, explicitly
A. Fig. 5 is not clear on where	16 at least, that you have to leave it everywhere
n layer and where is not, PS	17 else or that -- or that he prefers to do that
nly is clear, even in Fig. 5, that you have	18
minals, right. There's DTM terminals and th	19 Q. Well, what's going to happen is there's
cs. And clearly PSV1 is	20 going to be a PSV1 that's going to -- when it's
all of the	21 laid down is going to cover up the GTM and the
uctors are depos	22 DTM; it's going to -- it's going to cover a large
all of the conducto	23 part of Fig. 5?
d before. So to have an electrical	24 A. When it's deposited, it should cover the 25 entire substrate that's below

Page 106	Page 108
1 Q. And then he's -- then Nakamoto's	1 I do see in Fig. 9 an instance where
2 disclosing what is going to be cut back in order	2 there's an opening underneath the sealant that's
3 to open up certain connections, correct?	3 been formed, and PSV1 is only over part of it. I
4 A. He's disclosing in at least one exampl	4 don't see Nakamoto limiting it to just those.
5 the openings that he would create	5 Q. What he teaches is just removing it over
$6 \quad$ Q. And he also discloses he want	6 the DTM and GT
7 the PSV1 cover as large a range -- cover large	7 A. His disclosure's not limited to that.
8 ranges, as large a range as possible, correct?	8 He also opens it up over the regions that relate
9 MR. SCHLITTER: Objection, fo	9 to the silver paste, AGP. It's that square or
10 foundation.	10 it's -- it's in that region with that square and
11 THE WITNESS: Could you point me to that	11 the second label of PSV1.
12 disclosure?	12 And so it sounds to me like you want m
13 BY MR. GIBSON	13 to speculate on where else he's making openings.
14 Q. Look at paragraph 93.	14 I don't know. He's identified at least three in
15 A. Well, his paragraph 93 says what i	15 this one figure.
16 says.	16 Q. Okay. But those are the only three he's
17 Q. Right. And as one of ordinary s	17 identified, the box with the circle, and then the
18 the art, you understand that you want to leave	18 DTM and GTM? He doesn't identify any others
19 much of the PSV1 in tact as possible?	19 correct?
20 A. I can agree that a person of ordinary	20 A. In the text and in Fig. 5, he doesn't
21 skill will be inclined to leave the layer present	21 identify any others because -- yeah.
22 but it does depend on the design on whether that'	22 Q. Now, in view of Fig. 5, where does the
23 an advantage or preferable or	23 -- where do the DTM lines run?
24 Q. But in Fig. 5, that's what he's teachin	24 A. Well, we see the DTM lines at the top of
25 to leave as much of it as possible and you're	25 the figure, top right.
Page	Page 109
1 going to open up the DTM and the GTM, right?	1 Q. Righ
2 A. Well, in paragraph 91 through apparently	2 A. And it's the series of vertical wirings.
393 at least, he's disclosing what he's doing with	$3 \quad$ Q. And where do they stop?
4 this PSV1 layer. He applies it through the whole	4 A. Well, the figure shows that they're
5 substrate. It generally has to be done that way	5 long -- vertically long traces with a smaller
6 and then openings are created. Clearly he wants	6 width and they -- at least some of them go from
7 to contact the conductors at the terminal regions	7 what is the terminal where the FPC will connect,
8 and those conductors which connect to the upper	8 as shown in Fig. 9, and then proceed, some
9 portion.	9 them, across the seal on the upper side of the
10 And beyond that, in 93, he's pointing	10 display and then into the display region. I think
11 out that his intention is to cover an area that's	11 it's called AR.
12 larger than the gate insulation film G1 so that it	12 Q. And where -- the GTM lines, where do
13 can cover the peripheral areas. That's what it	13 they extend?
14 says. That's his disclosure. I have no reason to	14 A. The GTM lines are on the orthogonal sid
15 disagree with that, but I would not generalize	15 of the substrate. They're in the bottom left of
16 that to an important principle that one of	16 Fig. 5 and they have their own terminals, of
17 ordinary skill would follow.	17 course, and they extend from that terminal from
18 Q. Doesn't that show you that in Exhibit 5	18 left to right and at least some of them go across
19 that the PSV layer is going to be over what you've	19 the sealant and also access the display area AR
20 drawn as the sealant? Isn't that explicitly	20 and each of those, of course, form independently
21 taught by Fig. 5 and the paragraphs that	21 connection to the TFT array, the gate and the
22 correspond to it?	22 drain.
23 A. I can't get there from this. I can't	23 Q. And do any of the GTM lines overlap the
24 see Fig. 5 and identify all of the openings that	24 DTM lines?
25 are formed.	25 A. In Fig. 5, none of those lines overlap

Page 110	Page 112
1 outside the seal or under the seal. If they ever	1 the terminal region.
2 cross, it's in the TFT, the display portion.	2 Q. Would you understand the tape carrier
3 Q. If you look at Fig. 9, would you agree	3 package to be the same thing as an FPC?
4 that -- we've talked about it discloses a sealant.	4 A. In general, I would.
5 Do you also see that it discloses a	5 Q. Let's look at the '413 patent for a
6 signal line?	6 moment, which you should have in front of you.
7 A. It discloses a DTM, so what I understand	7 A. I've got it.
8 to be the drain terminal. I think I'll need to	8 Q. It's Exhibit 1001. If you look at
9 refresh myself on the labels just for a moment.	9 Claim 1--
10 Q. Sure. I need to get my pen back too.	10 A. Got it.
11 A. Sorry.	11 Q. - and Claim 1 discusses first and
12 Q. Here's one if we need one later.	12 second wirings that extend under the sealant, is
13 A. Okay. The signal lines are identified	13 that correct?
14 as DL.	14 A. Well, to be precise, it says, "A sealant
15 Q. Right.	15 over a first wiring and a second region of a
16 A. And DL is labeled in Fig. 9.	16 second wiring."
17 Q. And that's the -- the DL is under the	17 Q. So you would expect there to be a first
18 sealant?	18 wiring and a second wiring under the sealant,
19 A. The element identified as DL seems to go	19 correct?
20 from the left of the bottom substrate across under	20 A. I would expect it to be --
21 the sealant to the right side.	21 Q. In that region?
22 Q. And the DL line, it connects to an	22 A. -- under the sealant at least partially
23 external tape carrier package, the TCP?	23 in that region.
24 A. When you say "connects," how do you mean	24 Q. Would you agree that the claims don't
25 connects? Clearly there's an electrical	25 specify whether those wirings are side by side or
Page 111	Page 113
1 connection.	1 stacked?
2 Q. Yes. There's an electrical connection?	2. A. I disagree. I think that Claim 1
3 A. So whether or not there's a direct	3 clearly teaches that it must be overlapping, at
4 connection, I'd have to study a bit more if that's	4 least partially. After all, it has in the claim
5 what you're asking me about.	5 element -- it says the second wiring overlaps at
6 Q. You would agree there's an electrical	6 least part of the first wiring and it refers to
7 connection?	7 all the others as being over each other.
8 A. There is an electrical connection from	8 MR. GIBSON: If we're at 10 minutes, why
9 DL to what's identified as DTM and the FPC that's	9 don't we go ahead and change the tape.
10 shown in Fig. 9.	10 VIDEOGRAPHER: We're going off record.
11 Q. In Fig. 9, the ITO layer, which is that	11 This is the end of Media Unit Number 2. The time
12 one?	12 is 12:42.
13 A. The ITO layer is D1 in Fig. 9.	13 (Whereupon, the deposition in the
14 Q. All right. And would you agree that	14 above-entitled cause was recessed to
15 that layer is in contact with the tape carrier	15 1:47 p.m. this date.)
16 package?	16
17 A. Again, contact -- which kind of contact	17
18 are you referring to, the electrical contact or	18
19 direct contact?	19
20 Q. We'll start -- is it an electrical	20
21 contact?	21
22 A. If the tape carrier package here is	22
23 defined to include the conductors on the tape	23
24 carrier package, then yes, the layer D1 is	24
25 electrically connected. That's the whole point of	25

Page 114	Page 116
1 AFTERNOON SESSION	1 semiconductor to replace a metal generally.
2 VIDEOGRAPHER: We're now back on record.	2 (Documents marked previously as Exhibit
3 This is the beginning of Media Unit Number 3 in	3 Numbers 2013 through 2020 were
4 the deposition of Dr. Michael Escuti and the time	4 presented.)
5 is 1:47. Please continue.	5 BY MR. GIBSON:
6 EXAMINATION (Resumed)	6 Q. Let's go ahead and look at the exhibits
7 BY MR. GIBSON:	7 that were attached to your declaration. I'm just
8 Q. You understand that you're still under	8 going to hand you the whole stack of them. It
9 oath?	9 will just be easier. Thank you for making a copy
10 A. I do.	10 of them or having a copy made. So if we --
11 Q. Did you have a chance to talk about your	11 MR. SCHLITTER: Just to be clear, I only
12 testimony or substance of your testimony with	12 asked for the exhibits that were referenced in
13 anyone at any of the breaks today?	13 that one paragraph, 161.
14 A. I've not talked about this deposition or	14 MR. GIBSON: And that's what I meant
15 my testimony at all.	15
16 Q. And we were covering some of the orga	16 MR. SCHLITTER: Okay.
17 materials in the TFTs that you used.	17 MR. GIBSON: -- say. So we're on the
18 What are some of the advantages of using	18 same page. That's what I've handed him and that's
19 organic materials?	19 what I mean to ask him about at this point, not
20 A. As opposed to what?	20 the other exhibits or the appendices. I think
21 Q . Inorganic	21 everything else is attached.
22 A. The principal advantage is one of cost	22 THE WITNESS: Which appendix do you want
23 in both the material itself and in the processing	23 me to tu
24 And that's why we have OLED displays rather than	24 BYMR. GIBSON:
25 LED displays in our phones that are made of	25 Q. Your exhibit --
Page 115	Page 117
1 inorganic materials.	1 A. Yeah, which exhibit do you want me to
2 Q. Any other advantages?	2 turn to?
3 A. There's -- there are many other	3 Q. Why don't we start -- the 2015, which is
4 advantages. Another one is that the device	4 the ShinMaywa.
5 structures that can be made with organic	5 A. I see it. Can I a take a moment to --
6 semiconductors can often be substantially	6 Q. Sure.
7 different and more advantageous than it could be	7 A. -- review it?
8 otherwise.	8 Okay. I've reviewed it again now.
9 For example, there are stacking	9 Q. Okay. And would you agree with me that
10 configurations that are possible and arrangements	10 this document is describing general purpose
11 of the layers in a way that's advantageous for a	11 coating equipment?
12 particular display.	12 A. This document doesn't limit the purpose
13 Q. Now, the '413 patent, would you agree	13 of the instrument and techniques that it's
14 that that's directed to inorganic TFTs?	14 referring to.
15 A. The ' 413 is not limited in that way.	15 Q. But what it's describing is general
16 Q. Are you aware of it describing any type	16 purpose coating equipment, correct?
17 of organic materials used as the metal layers or	17 MR. SCHLITTER: Objection, form.
18 instead of the metal layers?	18 THE WITNESS: I think that's a bit too
19 A. The ' 413 refers to the conductors and	19 broad. It's describing a thin film coating
20 the wirings as -- as being simply that, wirings	20 technique with two specific evaporation methods.
21 and conductors in the claims. One of the examples	21 There's -- I'm sorry, two specific deposition
22 that's given in the specification is aluminum.	22 methods, evaporation and sputtering. That's
23 Claim 2 includes aluminum. So the metals are --	23 not -- I wouldn't characterize that as a general
24 need to be conductors at a minimum, right? I, and	24 coating method.
25 one of ordinary skill, would not use an organic	25

Page 118	Page 120
1 BYMR. GIBSON:	1 epitaxial materials are used in flat panel
2 Q. Well, no. What's being discussed here	2 displays?
3 though is coating equipment? I mean, that's the	3 A. It's my understanding that epitaxial
4 purpose of the equipment that's being discussed,	4 growth is not a standard process.
5 right?	5 Q. For flat panel displays?
6 A. I'll give what I think is the same	6 A. For flat panel displays.
7 answer. It's discussing two specific methods of	7 Q. Would you understand that the size of a
8 creating films, one is evaporation; one is	8 substrate that can fit into one of the lasers that
9 sputtering. Those are not general coating methods	9 Pascal is describing is very small?
10 or equipment.	10 A. What do you mean by "very small"?
11 Q. Even though the document's titled "About	11 Q. Well, it would be smaller than your
12 Vacuum Thin Film Coating System"?	12 standard flat panel displays?
13 A. Even though that's what the document is	13 A. What do you mean by "standard flat panel
14 titled.	14 display"? I think all of us have typical sizes.
15 Q. Would you agree that display repair is	15 Q. Well, what's your -- what's your
16 not listed as a main application for this	16 understanding of a standard flat panel display?
17 equipment?	17 A. I don't think there is a standard size
18 A. I can agree that display repair is not	18 for a flat panel display, even in 1997.
19 explicitly mentioned at all.	19 Q. And do you know if this laser was
20 Q. If we turn to the next exhibit, 2016,	20 available in 1997?
21 which is the Pascal exhibit, if you want to tak	21 A. Well, as we said -- or as I just said
22 moment to refresh your	22 there's not much detail provided in this document
23	23 as to that laser. I can speculate, but I'm not
A. Yes, than	24 sure how helpful that is.
Okay, I've reviewed it.	25 Q. You don't know?
Page 119	Page 121
1 Q. Would you agree that the -- part of the	1 A. Well, it's a -- it's a pulsed laser and
2 website that you've attached to your declaration	2 that's a family of lasers that have been
3 does not describe a process that is aimed at	3 well-known for decades.
4 displays?	4 Q. What's the size of -- the largest size
5 A. It describes -- this document does not	5 substrate that could be used with this laser?
6 explicitly mention displays. It's a document	6 A. I'm not sure there is an answer to that.
7 about a technique of molecular beam epitaxy and	7 It would mostly depend on the size of the chamber
8 pulse laser deposition. It's silent on -- it does	8 that's, for example, illustrated in the first
9 mention some applications, but it's silent on	9 figure. It's, in my view, less constrained by the
0 displays.	10 laser and certainly one could put multiple targets
11 Q. Okay. And the website, it describes a	11 and multiple lasers in conjunction to illuminate a
12 laser that's used for epitaxial materials,	12 larger area if that was ever needed.
3 correct?	13 Q. But that's not what's being described
4 A. I don't think it describes it. It	14 here, correct?
5 mentions that the process involves a laser. It	15 A. No, no. Multiple lasers and multiple
6 doesn't say very much about it.	16 targets is not mentioned here.
7 Q. Okay. Do you understand that it's used	17 Q. And you don't have an idea of what size
8 for epitaxial materials, a laser?	18 substrate could fit inside one of the Pascal lase
9 A. The laser is used to -- as a kind of	19 MBEs ?
0 exciting energy to pulse the target and get the	20 A. I don't have specific knowledge of what
21 target materials off of the target and then	21 size could be accepted inside.
22 through the rest of the process onto the substrate	22 Q. Do you have any knowledge of the size?
23 that it's being deposited onto. And in this case,	23 A. I don't have any specific knowledge of
4 it's being used in a epitaxial process.	24 the size, no.
Q. Okay. And are you aware that no	25 Q. Do you know if these lasers are -- the

Page 122	Page 124
1 Pascal laser MBE is ever used with displays, LCD	1 the -- with control over where and what size, what
2 displays?	2 amount is being removed. And that's indeed a very
3 A. I don't know of any specific instance,	3 standard product to repair TFT substrates,
4 but that's not the purpose of these paragraphs or	4 especially at the time of 1997.
5 why I included these websites. It was more a	5 Q. Okay. But this document itself isn't
6 general analysis responding to Dr. Hatalis'	6 discussing any use of this equipment for repair,
7 comments about processes that might be used or	7 correc
8 could be used. And so this is my brainstorming	8 A. It doesn't explicitly discuss that. It
9 attempt at imagining what he could be referring	9 also doesn't rule it out. And I'm providing this
10 to, and this is one that came to mind.	10 document as simply an example of a tool that is
11 Q. Don't you think it would be important to	11 used for laser ablation and is a kind of tool that
12 know whether this was actually ever used with	12 is used in the LCD industry for repairs.
13 displays or not before including it in your	13 Q. Have you ever used any of the equipment
14 declaration that deals with LCD displays?	14 we've been talking about for repair?
15 A. On this issue, no, I don't think it's	15 A. I've used some of this for fabrication
16 important.	16 and what I think of as repair, but admittedly not
17 Q. If we look at the next one	17 in an industrial setting.
18 Exhibit 2017, the Micro-Tec, do you want to	18 Q. If we turn to Exhibit 2019, this is the
19 familiarize yourself again with that and just let	19 MicroFab website document. If you want to take
20 me know when you're --	20 moment to familiarize yourself with that, let me
21 A. Yes, thank you.	21 know when you're finished.
22 Q. ---done.	22 A. Yes, thank you. Okay. l've reviewed
23 A. Okay. I've reviewed it.	23 it.
24 Q. Would you agree that the equipment	24 Q. And would you agree that the MicroFab
25 listed is for products and not for repair?	25 website and the pages you've attached at least
Page 123	Page 125
A. I'm not sure I can limit it in that way.	1 does not list display repair?
2 I don't agree. It's a document that describes	2 A. It does not list display repair.
3 screen printing, which is common in LCD industry	3 Q. Would you agree that these products are
4 for various purposes.	4 not even aimed at display production?
5 Q. Does it ever mention any type of repair	5 MR. SCHLITTER: Objection, form.
6 anywhere in the document?	6 THE WITNESS: I'm not sure I can go that
7 A. To the best of my memory and to the best	7 far. It's an etching technique that, while I
8 of my review in these few minutes, it doesn't	8 don't know of a specific instance where it is
9 mention repair at all.	9 used, it's possible.
10 Q. If we could look at the next one which	10 BY MR. GIBSON:
11 is Exhibit 2018?	11 Q. Okay, but you're not aware of an
12 A. Okay, I've reviewed it.	12 instance where this is used for display
13 Q. And this is from the ULVAC website?	13 production?
14 A. Yes.	14 A. I'm not.
15 Q. Would you agree that this -- the	15 Q. And it doesn't state in the document
16 equipment that's listed here is directed to	16 that it should be used for display production,
17 production of thin film solar cells?	17 correct?
18 A. In part it's explicitly mentioned that	18 A. Well, it doesn't specifically mention
19 an application is thin film solar cells, but it is	19 displays, but certainly it's talking about
20 also representative of those systems that are used	20 microelectronics in general and highlights its
21 to prepare LCDs.	21 ability to increase yields and achieve tight
22 Q. It doesn't mention in here that it's	22 tolerances and all of this is consistent with its
23 intended for repair, correct?	23 use within display production.
24 A. What's mentioned is the ability of the	24 Q. But it doesn't talk about using it in
25 system to remove a transparent electrode with	25 display production, correct, the document itself?

Page 126	Page 128
1 A. The document itself doesn't mention	1 you trust those conclusions?
2 display production or display repair.	2 MR. SCHLITTER: Objection, form,
3 Q. I seem to not have the last one	3 foundation
4 Exhibit 2021 -- or I don't have that one, but	4 THE WITNESS: It depends.
5 maybe we don't need it for the questions. Let's	5 BY MR. GIBSON:
6 give it a shot.	6 Q. What does it depend on?
7 MR. SCHLITTER: I don't have it	7 A. It depends on how those websites are
8 BYMR. GIBSON:	8 being used in the argument or the conclusion that
9 Q. If it turns out we do, then w	9 the student is making.
10 A. Depends on the question.	10 Q. Let's go back to your declaration, or
11 Q. -- we can get it at a break.	11 this paragraph 180 of this declaration. Some of
12 I mean, Exhibit 21 you listed, it was a	12 the two declarations for both days -- or from both
13 paper from 1994, an SIJ digest of technical papers	13 patents, overlap so I'm endeavoring to use the
14 and I assume that you read it, correct?	14 paragraph numbers that correspond to today's
15 A. I certainly read it multiple times and I	15 declaration. So I think if we look at page 94,
16 recall some of it, but depending on your	16 you also have this in your declaration from the
17 questions, I may need it.	17 '102.
18 Q. Do you know anything about the company	18 This is some -- some opinions you formed
19 Photon Dynamics?	19 reviewing Shiba, correct?
20 A. No.	20 A. This is in the section where I discuss
21 Q. Did you review any of the Photon	21 Shiba. If you're going to ask me specifically
22 Dynamics' technology that was available in 1997?	22 about 180 and following, I'll probably take a
23 A. Not that I can recall. I did review as	23 minute to remind myself what's written here.
24 much as I could about anything that mentioned	24 Q. I was actually more going to focus on
25 display repair in the literature. Some of those	25 your -- on the -- on the drawing --
Page 127	Page 129
1 may have been, but I don't remember if it was that	1 A. Okay.
2 company in particular.	2 Q. -- that you've -- that you've got there.
3 Q. So you're not -- as you sit here today,	3 And you made some other -- in your other
4 you couldn't identify Photon Dynamic technology	4 declaration, I think you made another drawing as
5 that was available in 1997?	5 well and I'll probably show that to you as well so
6 A. I cannot -- I'm not familiar with that	6 we'll have those in front of us.
7 company in any great detail.	7 What exhibit number are we up to? This
8 Q. And do you know that they were acquired	8 is 1011 ?
9 by another company after 1997?	9 (Document marked as Exhibit Number 1011
10 A. No, I don't know that.	10 for identification.)
11 Q. And I take it you haven't contacted	11 BY MR. GIBSON:
12 Photon Dynamics or its present parent company as	12 Q. And what is Exhibit 1011 ?
13 part of your engagement here?	13 A. Exhibit 1011 is a magnified copy of my
14 A. I have not. I have no idea who that	14 modified figure on page 94 of my declaration.
15 parent company is or any of this history that	15 Q. And is this the modified figure or is
16 you're mentioning.	16 this the figure based on Shiba?
17 Q. Okay. And for any of the exhibits that	17 A. I suppose to be clear, this is Fig. A,
18 are listed in paragraph 161 of your declaration,	18 which is a schematic view of Fig. 4 where my
19 which we went through several of them, did you	19 intention is to redraw it so that the layers are
20 contact any of the companies as part of this	20 more clear. So in that sense, I've modified it.
21 assignment?	21 It's not just a copy of the patent figure.
22 A. I did not contact any of the companies	22 Q. Okay.
23 that are in this list.	23 A. But it is intended to match the
24 Q. Now, if a student came to you having	24 structures and layering that is already in Fig. 4
25 drawn conclusions from reviewing websites, would	25 of Shiba.

Page 130	Page 132
1 Q. Right. You didn't -- you didn't modify	1 Fig. A and Fig. B is the relationship between the
2 the layerings or the masking process or the	2 processing step that deposits the ITO layer which
3 etching process. This is meant to reflect what	3 is labeled pixel electrode 251 in both layers, the
4 would happen if you used Fig. 4 of Shiba?	4 relationship between that and the other layers,
5 A. That's correct	5 especially the source electrode material, but also
6 Q. I'm going to show you from page	6 to some extent the protective overco
7 your other declaration -- if we could mark this a	7 And Shiba discloses that first, the ITO
81012.	8 is deposited; subsequently, the source electrode
9 (Document marked as Exhibit Number 1012	9 metal is deposited and then finally, the
10 for identification.)	10 protective overcoat 241 is deposited. That's the
11 BYMR. GIBSON:	11 sequence that's disclosed in Shiba explicitly.
12 Q. And what is Exhibit 1012?	12 Now --
13 A. Fig. -- I'm sorry, Exhibit 1012 is	13 Q. And there's an orientation film which
14 largely the same thing but from my other	14 doesn't have much bearing on your assignment?
15 declaration.	15 A. Right. That's right. The orientation
16 MR. GIBSON: And let's mark this as	16 film must be there in an LCD display to control
171013.	17 the liquid crystal layer and that's largely the
18 (Document marked as Exhibit Number 1013	18 same in both.
19 for identification.)	19 So Dr. Hatalis has asserted that it
20 BYMR. GIBSON:	20 would be obvious and trivial to apply some known
21 Q. And what is Exhibit 1013?	21 principles from the prior art to create the ITO
22 A. Exhibit 1013 is from page 50 of my	22 layer in the terminal portion of Shiba and I
23 declaration for the '204 patent and it is a	23 disagree for several reasons.
24 modification of my drawing in Fig. A, which is in	24 And this is one of the reasons -- or
25 the first two exhibits we just mentioned, as	25 this figure is used in one of my reasons to say
Page 131	Page 133
1 hypothetical structure to consider some of the	1 no, it's not trivial and it's not obvious to a
2 arguments in the case.	2 person of ordinary sk
3 Q. And what led you to decide to illustrate	3 Q. Okay. And how have you modified the
4 this hypothetical structure?	4 steps -- when we're looking at Exhibit 1013 from
5 A. The arguments that we're talking about	5 Exhibit 1011, how have you modified the steps?
6 in the case or the issues relate to the location	6 A. Sure. So if we begin with Fig. A, then
7 of the ITO and Fig. 4 of Shiba is kind of hard to	7 we'll see what we compare to. So Fig. A -- I hope
8 see. It's really quite dense. So to make those	8 you can see -- in the capacitor portion, there's a
9 -- that discussion clearer, I prepared these	9 capacitor line Cj that is then overlaid with a
10 figures so that we could see very clearly the	10 gate dielectric material 211. And then on top of
11 relationship between the layers.	11 that is the ITO pattern next and that forms a
12 So Fig. A in both declarations is meant	12 capacitor. There's two electrodes. There's a
13 to be what Shiba explicitly discloses and Fig. B	13 carefully controlled dielectric insulator in
14 is a hypothetical to talk through and to consider	14 between those two electrodes and that's -- that's
15 a modification of the processing under a	15 how Shiba discloses forming the capacitor.
16 hypothetical that Dr. Hatalis seems to be	16 That ITO is deposited before the pad 751
17 suggesting is possible and obvious and I disagree	17 material and the protective overcoat. So it would
18 with him.	18 be not possible to keep the processing steps in
19 Q. And what you're doing is you're	19 Shiba and the relationship among those steps and
20 modifying -- in Exhibit 1013, you're modifying	20 simply create ITO in the terminal portion around
21 where the ITO layer goes?	21 pad 51--
22 A. Not quite.	22 Q. 751?
23 Q. You're trying to put it over the	23 A. --751.
24 protective yellow coat?	24 Q. One question I had and then I'll let you
25 A. What --I mean, the difference between	25 continue is, wouldn't you have the ITO layer on

Page 134	Page 136
1 pad 751 ?	1 of the sequence of the order. So I'm changing the
2 A. In Fig. A, it's not, all right, because	2 disclosure of Shiba to consider a hypothesis that
3 that's -- that's what's shown in Shiba. There's	3 Dr. Hatalis has said is trivial and obvious
4 no disclosure of ITO in the terminal portion. In	4 Q. Right. Okay. And the steps that you're
5 Fig. B, I didn't apply it there simply because	5 changing, you're still going to go ahead and put
6 that's not what I'm using. That's not the area of	6 your capacitor line Cj and your scanning line Yj
7 this -- that I'm focusing on. My discussion is	7 first, right?
8 about the consequence of reversing the order, as	8 A. That's correct, that's the same in both
9 Dr . Hatalis is saying, on the capacitor.	9 figures.
10 Q. Right. What I'm asking is, wouldn't you	10 Q. And then you're going to go and put dow
11 expect there to be an ITO layer on pad 751 as one	11 the gate dielectric 211, correct?
12 of ordinary skill in the art?	12 A. That's what would happen next in my
13 MR. SCHLITTER: Objection, form.	13 modified Fig. B, which of course is not disclosed
14 THE WITNESS: No. That's precisely wh	14 in Shiba.
15 I 'm trying to get at with this Fig. B. I'm saying	15 Q. Then you're going to put down the pad
16 that, first of all, a person of ordinary skill in	16 and the source -- and the source electrode?
17 the art would not do anything toward this	17 A. Well, maybe -- I think it's a bit out of
18 structure in Fig. B because it complicates the	18 order. If we want to talk about the pad and the
19 formation of that capacitor.	19 source electrode, then I need to back up to make
20 BY MR. GIBSON:	20 it more clear.
21 Q. Well, I'm talking about just focusing on	21 Q. Go ahead.
22 Shiba in Fig. -- Fig. A, which is --	22 A. All right. So as we already said, the
23 A. Okay.	23 capacitor lines would be formed first, then the
24 Q. -- you're saying there would be no ITO	24 gate dielectric 211 next. Now, in this structure,
25 layer on the pad?	25 the next step would be the source electrode metal
Page 135	Page 137
1 A. So first, Shiba does not disclose any	1 and the pad 751. That would need to be
2 ITO around or near or in any relationship with the	2 immediately after the protective overcoat.
3 pad 751. And a person of ordinary skill	3 Q. Right. And that's what I thought I
4 recognizes, in my opinion, that if in the	4 said.
5 processing of the unmodified Fig. 4 of Shiba,	5 A. I may have missed it. I apologize.
6 which I've reproduced in Fig. A, if the ITO was	6 Q. Okay. I may have said it incorrectly,
7 simply created over there in the same step as it	7 but that's what I thought I said.
8 is in the pixel electrode, then that material	8 That was my understanding was the next
9 would be underneath the pad and would not serve	9 step in your modified Shiba would be you put the
10 any of the purposes of corrosion protection that	10 pad down and put the source electrode down?
11 we are discussing in this case. So there wouldn't	11 A. And then after that put the protective
12 be any point to do that. No -- none of the art	12 overcoat and pattern -- pattern that.
13 that we're talking about puts ITO underneath the	13 Q. Right. Then you're going to create an
14 terminal metal.	14 opening so that the ITO can interact with the
15 Q. Right. I'm just saying as one of	15 source electrode, correct?
16 ordinary skill in the art, wouldn't you expect	16 A. There will need to be multiple openings
17 there ultimately to be an ITO layer on the pad	17 in the protective overcoat. Of course there needs
18 751?	18 to be an opening formed over pad 751, certainly an
19 A. Oh, I most certainly would not.	19 opening to connect to the source electrode 231.
20 Q. No? Okay. All right.	20 And most importantly to this discussion, there
21 So you're -- so in Fig. A, you've	21 would need to be an opening over the capacitor
22 reproduced what you have in Shiba and then in	22 line, as I think you can see above the capacitor
23 Fig. B, you're changing the steps as you were	23 Cj .
24 discussing, correct?	24 And it's that opening, that etching
25 A. In Fig. B, I'm hypothesizing the change	25 step, that is the complicating factor for one of

Page 138	Page 140
1 ordinary skill. That's a very difficult thing to	1 lines first.
2 do.	2 Do you see that
3 Q. What are you saying is the opening on	3 A. I do.
4 the -- are you -- you're saying the opening on	4 Q. And then you next put down the gate
5 protective overcoat 241 that's right above the	5 dielectric which is the same as your modification,
6 gate dielectric 211?	6 correc
7 A. Yes, that's the opening that I'm	7 A. Yes, that's unchanged in any of these.
8 referring to as being difficult and not trivial	8 Q. In both. And what's different in this
9 and not obvious and quite a complication for	9 one is the pad 751 and the source electrode is now
10 manufacturing.	10 being extended over the capacitor line.
11 Q . And that's what you consider to be wrong	11 Do you see that?
12 with what Dr. Hatalis has suggested?	12 A. I do.
13 A. Dr. Hatalis has suggested that it's	13 Q. And that would still be one step,
14 trivial and obvious to make the change that I've	14 correct?
15 pictured here and I disagree. It is not obvious	15 A. That would be -- applying the source
16 first because Shiba doesn't disclose it, but in	16 electrode would still be one step.
17 addition, it creates a complication in the	17 Q. And then the next step is to apply the
18 fabrication of that capacitor which really does	18 protective overcoat, correct?
19 require precision etching.	19 A. I see that.
20 And for the other areas of that	20 Q. And then the next step is to deposit
21 protective overcoat 41, the openings in the other	21 the -- or next step is then to do some etching to
22 regions, there needs to be really full etching	22 create some openings, correct?
23 into that. You can't under-etch protective	23 A. Well, after the deposition or growth of
24 overcoat 241 and balancing all of that is much	24 the protective overcoat insulator 241 , there would
25 harder than the real disclosure that's in Shiba.	25 need to be an etching step to create openings so
Page 139	Page 141
1 Q. And did you consider other	1 that you can contact the pad 751 and the source
2 modifications?	2 electrode.
3 A. At least one other modification that I	3 Q. And you see that has been done in this
4 considered was the process where we take the	4 modification?
5 disclosure of Shiba and simply add an additional	5 A. I do.
6 manufacturing step to apply the ITO after the	6 Q. And that's also a step that you include
7 protective overcoat 40-241 and the pad is	7 in your modification, is that correct?
8 already formed.	8 A. Well, creating openings in the
9 So this would be somewhere very late in	9 protective overcoat is in all of these.
10 the process and that's another possibility, but	10 Q. Yeah. And then the next step is to
11 that is explicitly against the teaching of Shiba	11 deposit the ITO layer.
12 which wants to increase or it wants to not	12 Do you see that?
13 increase manufacturing steps.	13 A. I see that as -- as drawn, yeah.
14 Q. Okay. Did you consider any other	14 Q. And then the final step is to deposit
15 modifications?	15 the orientation film.
16 A. If I didn't write about it, then I did	16 Do you see that?
17 not consider it, to the best of my memory at the	17 A. I do.
18 moment.	18 Q. All right. Would you agree that in this
19 MR. GIBSON: Let's mark this as 1014.	19 modification, there is no damage to the dielectric
20 (Document marked as Exhibit Number 1014	20 as the layer is going to be protected by the metal
21 for identification.)	21 of the source electrode?
22 BY MR. GIBSON:	22 A. Well, in this hypothetical, they're --
23 Q. And I'll submit to you 1014 is another	23 quite apart from whether there's damage to that
24 modification of Shiba and in this modification,	24 gate dielectric, this is now a double capacitor.
25 you still put down the capacitor and scanning	25 It's a totally different design for the capacitor.

Page 142
1 You've got an electrode in the capacitor line
2 that's labeled Cj and then you've got a
3 dielectric. And then you've got what's
4 illustrated bere as the metal of the source
5 electrode. And then on top of that you have
6 another insulator and then on top of that, you
7 have another conductor, the pixel electrode. So
8 that's -- that whole thing forms a capacitor. One
9 of ordinary skill would not look at this and say,
0 oh, that's an obvious trivial modification from
1 the disclosure in Shiba.
2 Q. Why not?
3 A. It's totally redesigned, not only the
4 processing steps and their sequence, but it's
15 created a totally different or new capacitor line
6 and very nonstandard, by the way.
7 Q. It's the -- it's the same number of
8 steps as the original Shiba design, correct?
9 A. In as -- to the extent that I understand
20 your description of it, it seems to be the same
21 number of steps but in a different order. And
22 more importantly, it arrives at a structure that's
23 -- that has a capacitor region that's very
24 meaningfully different than what is disclosed in
25 Shiba. And it's not trivial or obvious to one of

Page 143
ordinary skill to -- to get to here from Shiba.
Q. So let me just break this down.

You would agree that it's the same
number of steps, just a different order?
A. I agree with that.
Q. Would you also agree that there's not
going to be damage to the gate dielectric because
there's -- the metal covering is going to protect
it when the etching's done?
A. Well, the reason that changing the gate dielectric thickness is a problem is because the
capacitance of that capacitor can be
uncontrollable or different than it would be in
the disclosure of Shiba. And this suggested
structure also changes capacitance but for a
different reason, right. It adds another set of
electrodes and an insulator on the other side.
And so it's -- it's very dramatically
and possibly even more dramatically changing that
capacitance. It's a very significant design
change.
Q. Okay. Let's just start with my question.

Would you agree that the gate dielectric in this modification that we're looking at is
1 going to be protected by the metal layer from the
2 etching?
A. The gate dielectric will be protected by
that source electrode 231 during the etching of
protective overcoat 241 , but there still will be a
change to the capacitance of that capacitor.
Q. I'm not focusing on the change to the
capacitor.
What I'm focusing on, you said in the
way Dr. Hatalis had proposed to modify Shiba,
there would be a problem in damaging the gate
dielectric and this modification solves that
problem, correct?
A. I can't agree with that all the way
because the reason it's a problem to damage the
gate dielectric is because it changes the
capacitance of the -- of this structure and the
pixel.
And so the structure you're suggesting
here may not -- may not have the risk of damage to
the gate dielectric, but it creates another very
serious change to the design and the capacitance.
So it leads to the same eventual problem.
Q. Well, but it doesn't -- what I'm just
trying to get at is, there's not going to be
Page 145
1 damage to the gate dielectric in this modification
that's in Exhibit 1014?
A. I've already said that the source
electrode is going to be above the capacitor and
the gate dielectric during the etching step of the
241 layer but, again, there are other layers there
7 that you've added and changed because of the
sequence change that will lead to a serious
difference to the capacitor.
10 Q. Now, I take it you agree that it is
11 possible to reverse the order or to change the
order of the steps so that you can have the ITO
layer above the protective overcoat?
A. I agree it is possible to change the
order, but I don't think it is trivial or obvious
for a person of ordinary skill to begin with the
disclosure in Shiba and reach to this structure.
Q. Would you agree that changing the ITO
layer -- the order of the depositing of the ITO
layer allows you to get the ITO layer also on pad
751?
A. Well, you're offering a hypothetical
where you've drawn it that way and you've achieved
24 the placement of the ITO above pad 751. And I
disagree that this is something that a person of

Page 146	Page 148
1 ordinary skill would consider based on the	1 BY MR. GIBSON
2 disclosure of Shiba.	2 Q. Okay. And in Exhibit 1014, you agree
3 Q. All right. In the modification that you	3 there's no increase in the manufacturing steps?
4 suggested, you could also have put the -- if you	4 A. 10
5 look at Exhibit 1013, you could put the ITO laye	5 Q. 1014. 1013 is yours. 1014 is the
6 on pad 751, correct?	6 modified one that I've handed you.
7 A. It would in that case -- I didn't draw	7 A. I agree that there's no increase in the
8 it because I was focused on the capacitor portion	8 number of manufacturing steps, but it does lead to
9 but if it were applied, the only place it could	9 a capacitor that's going to behave very
10 would be above pad 751 but below the dielectric	10 differently. It's a very different design than
11 insulator called the protective overcoat 241	11 what's disclosed in Shiba.
12 Q. In your modification, it would be below	12 Q. And do you know how it would behave
13 A. I'm sorry. Yeah, I stand corrected.	13 differently, the capacitor?
14 I 'm sorry.	14 A. Well, this structure would -- would
15 In my modification, it would also be	15 essentially be two capacitors in a series and
16 above, similar to your drawing. Yes. So let m	16 there's a well-known expression from which you
17 correct myself.	17 could calculate the difference in the change in
18 Q. And in your modification, wouldn't it	18 that capacitance. It would likely be a dramatic
19 more appropriate to show the ITO layer on pad 751?	19 change and the consequence of that would be that
20 I know that's not what you were focused on, but	20 the switching speed or the time it takes to charge
21 shouldn't you show it there?	21 the pixel when the display is being addressed and
22 A. I didn't need to show it. That's not	22 being given its data signal, all of that changes
23 the part I was talking about.	23 very dramaticall
24 Q. But isn't it going to be sitting on pad	24 Q. And how do you know that? Is it just
25751 ?	25 based on there being two capacitors now as you
	Page 149
1 A. I still don't think one of ordinary	1 said?
2 skill, based on the disclosure in Shiba, would be	2 A. Specifically how do I know what?
3 inclined to put ITO on the pad.	3 Q. What you just said
4 Q. But you agree that it's poss	4 A. Well, basic electronics and basic
5 it?	5 electrical engineering supports the first part of
6 A. I agree that your hypothetical makes	6 what I said, that these are essentially capacitors
7 possible. I think your hypothetical is just not	7 in series.
8 reasonable. It's not obvious, it's not trivial to	8 Beyond that, I know from my experience
9 a person of ordinary skill	9 in LCDs that this capacitor has quite a lot to do
10 Q. And in your modified Fig. 4, it would	10 with the time -- the behavior and time of the LCD
11 also be possible to put the ITO layer on the pad,	11 pixel, not only as it's being charged, but also
12 correct?	12 its ability to hold that charge while the other
13 A. It would be possible. I did not draw	13 rows in the display are being addressed.
14 it, but I also don't think my modified Fig. 4 is	14 Q. And why do you say that the -- creating
15 -- is an option that one of ordinary skill would	15 the source electrode over the gate dielectric that
16 take based on the disclosure in Shiba.	16 is over the capacitor line creates a second
17 Q. But you could do it without adding	17 capacitor?
18 manufacturing steps?	18 A. Because a single capacitor has two
19 MR. SCHLITTER: Objection, form.	19 conductors and an insulator separating them and in .
20 THE WITNESS: In my modification, there	20 this case, there's three conductors with two
21 may not be additional manufacturing steps per se,	21 insulating films separating them.
22 but there's an increased sensitivity that will	22 So the stack of this double capacitor
23 likely degrade yield or maybe make it e	23 would begin at the bottom with capacitor line Cj
24 impossible to make that etch reliably over the	24 then go through the gate dielectric 211 and then
25 whole display surface.	25 go to the source electrode material 231, and then

```
                        Page 150
    go through the second insulator 241 and then
    finally arrive at the pixel electrode 251 as the
    last electrode.
    Q. So when you look at the -- just Shiba,
    as you drew it, are you saying that there's two
    capacitors there as well?
    A. Certainly not in any of my figures of
    Shiba or in the disclosure of Shiba. There's no
    exotic double capacitor design in Shiba.
    Q. Why are you saying that the pixel
    electrode forms a third capacitor in the modified
    figure in Exhibit 1014?
    A. I'm recognizing that it's true from your
    illustration.
        Q. Why?
        A. Again, because there's three electrodes
    that are in a stack with two insulating films in
    between.
        Q. Anything else?
        A. It's -- no, it's just what you've shown.
        Q. In terms of the word "through" that's
    used in both the '413 and the '204 patents, is
    that correct?
        MR. SCHLITTER: Objection, form.
        THE WITNESS: In the '413 patent, the
```

Page 151
word "through" is used in a phrase that involves
contact through an opening and I think it's that
phrase that should be examined more than just the
word "through."
BY MR. GIBSON:
Q. And you disagree with the Board's
interpretation of that word, I take it?
A. I disagree with the second definition
that the Board has offered in the decision. I
agree wholeheartedly with the first definition.
Q. If we look at Claim 1 of the '413 --
A. I've got it.
Q. -- there are a number of different
instances of the word "through," correct, in that
claim?
A. There are at least three uses of the
phrase "contact through an opening." I think it's
in the last three elements of the Claim 1.
Q. Well, it's not always contact through an
opening, right? The word "through" also appears
in to be "contact through the transparent
conductive layer," for example, if you look at --
A. Yes.
Q. -- line 63.
A. 163 ?
word "through" is used in a phrase that involves
1
2
3
4
5
6
7
1 Q. 63, line 63.
2 A. Oh. Yes, I'm sorry. You're right. So
3 there's one use of contact through the transparent
4 conductor and then two uses of contact through an
opening.
Q. And if you look at Fig. 4A -- which I'm
7 sure you've seen many times.
A. Yes, I have.
Q. If you want to look at it in the
declaration or you can look at it in the patent.
A. No, I have this claim chart in the
declaration that's helpful in identifying the
elements of the claim, so I'm preparing for a
discussion on that.
Q. When you look at Fig. 4A, we're only
seeing sort of half of the opening where the ITO
is connecting in the - in between the resin
interlayer film?
A. Is that a question?
Q. Yes.
A. I'm not sure that's -- I'm not sure I
know what you mean by "half the opening."
Q. Well, if you were to draw to the right
of what's occurring, which we don't see in
Fig. 4A, you would have more ITO layer than the

1
2 A. Oh. Yes, I'm sorry. You're right. So 3 there's one use of contact through the transparent
4 conductor and then two uses of contact through an
5 opening.
Q. And if you look at Fig. 4A -- which I'm 7 sure you've seen many times.
8 A. Yes, I have.
9 Q. If you want to look at it in the
0 declaration or you can look at it in the patent.
A. No, I have this claim chart in the

2 declaration that's helpful in identifying the
13 elements of the claim, so I'm preparing for a
4 discussion on that.
Q. When you look at Fig. 4A, we're only seeing sort of half of the opening where the ITO
is connecting in the -- in between the resin interlayer film?
A. Is that a question?
Q. Yes.
A. I'm not sure that's -- I'm not sure I
know what you mean by "half the opening."
Q. Well, if you were to draw to the right
of what's occurring, which we don't see in
Fig. 4A, you would have more ITO layer than the
Page 153
1 ITO would go above the insulating layer film, the resin?
A. I think the ' 413 patent is silent on what's to the right.
Q. And you as -- you don't think a person of ordinary skill in the art would understand that to the right there's going to be a place where the ITO stops and the insulating layer begins again?
A. Not necessarily. It's one of the
options certainly, but it's not -- not disclosed
and it's not required either. The rest of the
region to the right could simply a continuation of the very same pattern without the return of the element 113.
Q. Well, where is the -- where is the opening where the ITO -- in Fig. 4A, where is the opening that connects $4 \mathrm{~A}--$ or that in 4 A connects 114 to the external connection lines $403 ?$
A. The opening is where the element 113 is missing in this figure, regardless of what's going 21 on on the right side of the not illustrated part 22 of this figure.
23 Q. So 113 , the resin, could just end and
24 you would consider that to be an opening?
25 A. The resin is an insulator that would be

Page 154	Page 156
1 applied similar to one of the insulators that	1 Fig. 4A shows
2 we've already talked about today and it's	s the '413 patent disclose any
3 deposited on the whole -- the whole substrate and	3 problems with the failure of the bonding of the
4 then needs to be patterned and opened so that	4 seala
5 there would be ability to contact through that	5 A. I believe it does. You might be able to
6 opening to the conductive layers below.	6 direct me there to save us tim
$7 \quad \mathrm{Q}$. But we don't know what's going on	7 Q. All right. I'm not aware of it doing
8 after -- after this figure ends on the right, you	8 that.
9 don't know what's happening? There's many	9 A. Well, let me -- let me look. Okay.
10 possibilities?	10 Thank you for the moment to refresh my memory.
11 A. There are many possibilities and I think	11 It's clear from the specification
12 the two we identified is where this cross-section	12 inter-layer film is always disclosed as being
13 on the right side in the first region continues to	13 above the wiring below the sealant in the
14 the right.	14 specification and that's required in Claim 1, but
15 And the other possibility, as yo	15 there's no -- there doesn't seem to be any
16 suggested, is that at some point to the right,	16 explicit discussion as to why that's important in
17 there's a return or the other side of the opening	17 the spec.
-- where there's a	18 Q. And there's no discussion saying
ulator 113. Both are p	19 that was a problem in the prior art, that someho
20 Q. All right. And you would fid	20 there's a problem with the sealant in the
21 of ordinary skill in the art, you would think that	21 art and it's n
22 one of ordinary skill in the art would find that	22 because of some other structure
are possi	23
A person of ordinary	24 explicit disclosure of those kind of problem
25 both possible and both would be consistent with	25 Column 3 around lines 23 to 26 say -- or disclose
Page 15	Page 1
1 the claim language of contact through an opening.	1 the ordering of placing an inter-layer film made
2 Q . In the example that I gave where you	2 of a resin material on the wiring.
3 essentially have the mirror image of 4A to the	Q. Those are focused on heigh
4 right, and you have an opening that's formed by	4 differentiation, right?
5 cutting out the resin -- are you with me?	5 A. What do you mean by "those"?
6 A. I am,	Q. The object of the invention as described
7 Q. And you see that the -- the resin has a	7 there is to reduce a height difference, not to
8 vertical wall, correct, where it ends?	8 increase bonding because there's been some problem
9 A. There's a vertical wall that's	9 in the prior art with bonding.
10 illustrated for the resin, certainly.	10 A. In this section, that's -- that's the
11 Q. Is there any reason that this would not	11 sentence before the part that I just referred to.
12 be a vertical wall that you can think of? Does	12 Q. Even in the next sentence, it talks
13 the patent teach that it wouldn't be a vertical	13 about it is another object of the present
	14 invention to reduce the height difference under
A. The patent doesn't -- is silent on how	15 the sealant region.
how vertical or sharp these lines are. You	16 A. That's what it says, yeah.
17 know, a person of ordinary skill would know that	17 Q. Again, it doesn't talk about there bein
precision of that wall shape and potential	18 a problem with the bonding in prior art or in the
19 tilt angle really depends on how closely you look.	19 prior art, correct?
$20 \quad$ Q. But it certainly could be vertical?	20 A. The specification of the ' 413 does not
21 A. It could be at least approximately	21 discuss a problem in the prior art. One
22 vertical.	22 ordinary skill would know that there's a big
d embodiments,	23 difference in bonding
Fig	24 inter-layer film material, but it's not disclosed
25 A. That's what's shown. That's what	25 here.

Page 158	Page 160
1 Q. Right. But that's -- that's known --I	1 often in projecto
2 mean, that's been known for a long time, before	2 Q. So you would agree though that in ter
31997 that it was a problem to try to bond to	3 of bonding, it would be advantageous to
4 ITO layer, rig	4 ITO layer not be the layer directly
5 A. I think it is a princip	5 sealant to one of ordinary skill in
6 of ordinary skill would have known by 1997,	6
7 that was a situation to try to avoid.	7
8 Q. All right. So you would agree then thater	8 that as -- would have known that that would make a
9 a person of ordinary skill in the art in 1997	9 better seal and depending
10 would know that you would not want to have the ITO	10 constraints, that may be the choice that they
11 layer as your uppermost layer that would interact	11 would take advantage of.
12 with a sealant?	12 Q. When you say "the choice," what do you
13 A. I wouldn't characterize it that way	13 mean by "the choice"?
14 It's my opinion that a person of ordinary ski	14 A. It's a design choice that's made, righ
15 would -- would know that the adhesion between	15 the sequence of layers, the presence of ITO there
16 sealant and an ITO layer would be less strong a	16 or not or whether there's an opening there or not
17 have a shorter lifetime than one formed with a	17 or the insulator or not on both substrates a
18 resin inter-layer film or an insulator.	18 well. All those are things that have to b
19 still, a person of ordinary skill might still	19 chosen.
20 choose to make that bond anyway, perhaps beca	20 Q. Right. Well, I'm just -- the way yo
21 of cost reasons or a particular design in mind.	21 answered the question, I want to make sure we
22 Q. But you would agree that they would als	22 on the same pag
23 know that there would be issues with the bonding	23 You agree that one of ordinary skill in
24 if they had the ITO layer on top, so if you -- all	24 the art in 1997 would understand in terms of
25 things being equal, you would rather not have the	25 bonding, you would rather be bonding to an
Page 159	Page 161
1 ITO layer on top touching the sealants or bonding	1 insulating layer rather than the ITO
2 with the sealant?	2 A. If nothing else mattered, then bonding
3 A. All things are rarely equal when there's	3 to an insulating film with a sealant would be
4 so many dimensions of tradeoffs and I think it's	4 better than bonding to the ITO and I do think that
5 not clear what one of ordinary skill would do.	5 a person of ordinary skill at the time would have
6 And I certainly am aware of situations where the	6 known that.
7 ITO was the upper layer and it was nevertheless	7 Q. Are you aware of any prior art or any
8 still formed in that way.	8 statement in the '413 describing a problem with
9 Q. In what situations are you aware of	9 the prior art because the ITO overlaps where the
10 that?	10 -- and touches the sealant?
11 A. Especially in the prototypes that I've	11 A. The '413 specification and claims are
12 seen in my career.	12 silent on that.
13 Q. After 1997?	13 Q. Any of the prior art references that
14 A. That would be after 1997.	14 we've discussed today, do they show the sealant
15 Q. Have you seen any finished products	15 direct contact with the ITO?
16 since 1997 where the ITO layer was the layer that	16 A. Nakamoto shows it.
17 was bonding with the sealant?	17 Q. Which figure in Nakamoto?
18 A. I've seen it in some LCD s	18 A. Fig. 9 in Nakamoto is one example.
19 finished products.	19 Q. And what part of Fig. 9 are you
20 Q. What ones?	20 referring to?
21 A. I can't tell you their names or vendors.	21 A. Well, at the base of the sealant that's
22 Quite often it's in the -- the ones I can	22 illustrated there, the part that we've already
23 remember, the kind of displays I can remember are	23 talked about is the right side where the PSV layer
24 those that are small that are near-to-eye displays	24 is coming in from the right side and partially
25 or sometimes are called microdisplays. They're	25 entering the sealant and then -- but to the left

Page 162	Page 164
1 side of the sealant, it's touching whatever is	1 just want to know if you have a view if there is
2 below that.	2 an additional problem. I'm not asking for
3 To be honest, I can't tell, now that I'm	3 speculation.
4 looking at it, what that layer is. I thought it	4 A. I can't think of an additional problem
5 was ITO, but now upon inspecting it, it may	5 with having ITO underneath the insulating layer 9.
6 actually not be.	6 MR. GIBSON: Why don't we go ahead and
7 Q. Okay. Any othe	7 change the tape?
8 A. I'd have to examine Shiba to make sure	8 MR. SCHLITTER: Should we take a break
9 Shiba doesn't show that. I don't recall that it	9 then?
10 does.	10 VIDEOGRAPHER: We're going off record.
11 Q. If you look at -- I think we had before	11 This is the end of Media Unit Number 3. The time
12 Exhibit -- I think it's 2010. That's the Sukegawa	12 is the 3:05.
13 Fig. 2C that was drawn on by Professor Hatalis.	13 (Short recess.)
14 Yes, that's it.	14 VIDEOGRAPHER: We're back on record.
15 A. I've got it.	15 This is the beginning of Media Unit Number 4 in
16 Q. Would you agree that in that figure,	16 the deposition of Dr. Michael Escuti. The time is
17 assuming the sealant is where Professor Hatalis	17 3:21. Please continue.
18 drew it, that it is not touching the ITO layer?	18 BYMR. GIBSON:
19 A. Well, of course I disagree with the	19 Q. If you'd turn to your declaration,
20 placement of the sealant there, but despite tha	20 page 23.
21 it's not illustrated by Dr. Hatalis as touching	21 A. I've got
22 the ITO.	22 Q. And you've put a copy of Fig. 4A into
23 Q. It's not	23 that and then you've drawn a dotted line and
24 A. It is not	24 designated a first and a second region?
25 Q. Is there any problem with the ITO layer	25 A. That's what's shown. In fact, this is a
Page 163	Page 165
1 running under the insulating film that's touching	1 figure that I think I'd like to adopt another
2 the sealant?	2 figure in place of from the decision on page 13,
3 A. I'm not sure what you mean by is there a	3 because my modification here identifying the
4 problem.	4 regions is imprecise and not helpful in its
5 Q. Do you have any issue with the ITO layer	5 imprecision.
6 running under the insulating -- running under an	6 Q. Why do you say it's imprecise?
7 insulating film that's touching a sealant? Do you	7 A. Well, the reason I created this modified
8 think that would cause any issues?	8 figure was to emphasize how the -- these regions
9 A. Well, if we listen to the disclosure in	9 are spoken of in the claim as having items that
10 Sukegawa, the ITO is present there as one of the	10 are above -- or I should say over the regions of
11 double protection layers against corrosion. The	11 the second wiring. And that's why I was creating
12 insulating film above it is the second one. I	12 it, but I didn't precisely draw those arrows to
13 don't disagree with Sukegawa on that.	13 indicate what I think is the first and second
14 Q. So I'm not sure, is there -- is there a	14 region precisely. So it's misleading. So
15 problem or not with having the ITO layer run	15 instead, it's the decision page 13 has the figure
16 underneath the insulating layer that's bonding to	16 that I would like to adopt fully in place of this
17 the sealant?	17 figure.
18 A. In this discussion, the primary problem	18 Q. So when you look at Claim 1 of the
19 is that it's not disclosed in Sukegawa. That's	19 '413 --
20 expressly what's not disclosed. The sealant is	20 A. Got
21 not shown here. Wherever the sealant is, it's not	21 Q. -- in terms of the prior art, you would
22 here in Sukegawa. If you want me to speculate	22 agree we're talking about liquid crystal display
23 about additional problems that could happen --	23 devices? No dispute there?
24 Q . I don't want you to speculate. I just	24 A. No dispute there.
25 want to know --I don't want you to speculate. I	25 Q. The prior art has a first wiring over a

Page 166	Page 168
1 substrate?	1 it's present. Sukegawa does not disclose the
2 A. Prior art does have a first wiring over	2 location or position of the sealant at all, but I
3 a substrate.	3 do think one of ordinary skill would identify it
4 Q. Prior art also has a first insulating	4 as between the two substrates.
5 film over the first wiring?	5 Q. And because Sukegawa says there's an
6 A. In some cases, yes	6 insulating film as the outermost layer on the
7 Q. Like Sukegawa has that, for example	7 substrate, you would expect the sealant to be in
8 A. For example, Sukegawa	8 contact with that outermost layer?
9 Q . And there's also a second wiring ov	9 A. If I- if I look at the example that's
10 the substrate and the first insulating film,	10 illustrated in Fig. 3 or the series of Figs. 3, I
11 Sukegawa has that?	11 think that's consistent with -- that's one example
12 A. Sukegawa also has the second wiring over	12 where that's the case, where the sealant is in
13 the substrate and the first insulating film.	13 contact with that upper insulating film.
14 Q. And it also has a second insulating	14 Q. And you would agree that the second
15 film?	15 wiring overlaps at least part of the first wiring
16 A. Sukegawa does have a second insulating	16 in Sukegawa?
17 film over the second wiring, but I should note	17 A. Do I agree
18 that it's -- it's not over the second wiring in	18 Q. That the first and second wiring overlap
19 combination with the other limitations of the	19 at least in part?
20 of this Claim 1	20 A. I do agree that the first and second
21 Q. I'm just going down the -- down the	21 wirings in Sukegawa overlap at least in part.
22 order. It does have a second insulating film	22 Q. And if you look at Sukegawa, Fig. 2C,
23 the second wiring?	23 the first wiring would be element 2 ?
24 A. To this point, yes, but to the exte	24 A. The first wiring, Sukegawa doesn't call
25 that any of the other limitations affect what	25 it simply that. He's got other names, but that
Page 167	Page 169
1 qualifies as that second insulating film, I can't	1 might be a first wiring if we were to try to apply
2 agree.	2 the language from Claim 1 in the 413 patent.
3 But at least to this point, ye	3 Q. You think a person of ordinary skill in
4 another insulating film, which until this point we	4 the art would understand that, to be equivalent to
5 can identify as being over the second wiring.	5 a first wiring?
6 Q. And a transparent conductive layer, you	6 A. For the first wiring, I think so.
7 understand that to be an ITO?	7 Q. And then element 3, would you understand
8 A. I would not take that to be equivalent	8 that to be an insulating layer?
9 to ITO. ITO is an example of a transparent	9 A. Element 3 is called an inter-layer
10 conductor. It's a very common choice for that,	10 insulating film in Sukegawa, and so clearly it's
11 but it's not exclusively the choice that must be	11 an insulator, and it is the first one that appears
12 made.	12 over the first wiring.
13 Q. Fair enough. The transparent conductive	13 Q. And you would consider those -- the
14. layer, you have that in Sukegawa over a first	14 second wiring and first wiring to be in contact
15 region of the second wiring?	15 through the opening in insulating film 3?
16 A. Well, there is a transparent conducto	16 A. In Sukegawa, the upper metal layer
17 over a second wiring in Sukegawa, but I don't	17 wiring 7 is in contact with the first or lower
18 agree that it is in a first region in the way the	18 metal layer wiring 2 through the openings in the
19 rest of the claim talks about	19 insulating layer 3.
20 Q. Would you a	20 Q. And those are vertical openings as
21 somewhere in Sukegawa you're going to have sealant	21 depicted there?
22 that is in direct contact with the	22 A. They're depicted as vertical openings,
23 insulating film?	23 or to be more precise, they're openings that have
24 A. I understand Sukegawa to mention that	24 vertical side walls.
25 sealant is holding the substrates together or	25. Q. As of 1997, you would agree that it was

170	72
1 standard practice for one of ordinary skill in the	1 in the art looking at Sukegawa would understand
2 art to avoid sealing LCDs in a way that the	2 there would be sealant present?
3 sealant was in contact with a conductor such as an	3 A. Ye
4 ITO in the terminal region and instead have the	4 Q. And they would also understand that the
5 sealant be in contact with another material	5 sealant is ordinarily near the edge of the counter
6 MR. SCHLITTER: Objection, form	6 substrate but with some offset from the counter
7 BY MR. GIBSON:	7 substrate edge?
8 Q. -- such as an insulating resin?	8 MR. SCHLITTER: Objection, form.
9 A. Well, we discussed that before the	9 THE WITNESS: I'll note that the terms
10 break, right. It's a principle that would have	10 of "some offset" and the term "near" it's not
11 been known to a person of ordinary skill that the	11 defined in this conversation, but to the extent
12 adhesion in the two cases would be different. One	12 that there's normal meaning applied to those, then
13 is preferable, but not required.	13 that's where sealant is placed in general, offset
14 Q. Would you agree that it would be	14 from the edge of the counter substrate as we
15 standard practice to avoid sealing LCDs in a way	15 looked at in Nakamoto as one example.
16 that the sealant was in contact with the ITO	16 BY MR. GIBSON:
17 layer?	17 Q. So in Fig. 2C, where would one -- where
18 A. I don't think I can characterize a	18 would one of ordinary skill in the art put the
19 standard practice. I think both were options to a	19 sealant?
20 person of ordinary skill.	20 A. Well, Sukegawa, wherever it is, it's not
21 Q. And if you'd look at your declaratio	21 in any of these terminal figures, including 2C.
22 page 25 , if you look at the third line	22 The only place it might be found would be in
23 sentence that begins, "It is therefore stand	23 Fig. 3D because Fig. 3D includes the counter
24 practice for one of ordi	24
25 avoid sealing LCDs in such a way that the sea	25 So wherever Sukegawa would put it or
Page 171	Page 173
1 is in contact with a conductor (e.g., ITO) in the	1 that a person of ordinary skill would understand
2 terminal region with another material (e.g.,	2 it should be would be to the left side of Fig. 3D
3 insulating resin) elsewhere."	3 between the two substrates.
4 Do you see that?	4 Q. And there would be -- would you agree
5 A. I do. That's what it says	5 that there would be sealant between 100 and 200 in
6 Q. Do you stand by those words?	6 Fig. 3D?
7 A. Yeah, I do.	7 A. I do agree that the sealant would be in
8 Q. Would you agree that it's inappropriate	8 between there and, of course, that whole region is
9 to limit claims to the embodiments in the	9 off the illustrations of cross-sections in
10 specification?	10 Figs. 2C, 3B, 3E, for example.
11 A. I agree that it's inappropriate to do in	11 Q. And do you know how far off it is?
12 patents.	12 A. It's not illustrated, but it's certainly
13 Q. So if you had to -- you would understand	13 not right at the edge.
14 that -- we've gone over this --- in Sukegawa, you	14 Q. How do you know it's not right at the
15 would have sealant and that it would be preferable	15 edge?
16 to have it be near the edge of the counter	16 A. Well, it's not -- it's not clear, I
17 substrate, but with some offset from the counter	17 guess I should say
18 substrate?	18 Q. You mention in your declaration that the
19 MR. SCHLITTER:	19 '413 patent discloses that the sealant will
20 THE WITNESS: Could you rephrase the	20 include spacers in it.
21 question or restate it?	21 A. The sealants, as disclosed in the '413
22 BY MR. GIBSON:	22 patent, is spoken of as having spacers, at least
23 Q. Yeah, let me	23 one example of that. It's not required.
24 two pieces. We've covered some of this before.	24 Q. All right. But you use that as an
25 But in 1997, a person of ordinary skill	25 example as to why there would be unevenness if you

Page 174	Page 176
1 were to put the sealant in a counter substrate	1 Q. Right. But in interpreting the claims,
2 where Professor Hatalis did in 2C, correct?	2 you wouldn't limit the sealant to the example in
3 A. That's -- that's one negative	3 the specification, would you?
4 consequence of doing what Dr. Hatalis suggests.	4 A. I would not.
5 There are others that I think are more -- actually	5 (Document marked as Exhibit Number 1015
6 more important, but that's an additional one.	6 for identification.)
$7 \quad$ Q. But you would agree that sealant doesn't	7 BY MR. GIBSON:
8 have to have spacers in it?	8 Q. Exhibit 1015 is the '102 patent and I
9 A. I would agree that some sealants don't	9 take it from your testimony earlier today, you've
10 have spacers in them.	10 never seen that patent before?
11 Q. And the '413 patent doesn't limit itself	11 A. I don't recall ever seeing this patent.
12 to sealant with spacers in it, it's not a	12 Q. So in doing your assignment for either
13 restriction of the claims?	13 the '413 patent or the '204 patent, you didn't go
14 A. It's not a restriction of the claims,	14 and look at other prior art that was -- that was
15 but I-- certainly not of Claim 1.	15 around 1997 or earlier to determine the overall
16 Q. And you're not trying to read in that	16 state of the art?
17 restriction into your interpretation of Claim 1,	17 A. I did some searching, certainly
18 correct?	18 informally, but whatever I found didn't amount to
19 A. I'm not trying to read	19 much that was used to form my opinions.
20 requirement to Claim 1. It is a practice that a	20 Q. And you don't recall any of that art?
21 person of ordinary skill would commonly do,	21 A. I don
22 especially in 1997, but it's -- it's not required.	22 Q. Did you keep it anywhere?
23 Q. All right. And it would be reasonable	23 A.
24 not to do it, right, not to use sealant with	24 Q. What kind of searching did you do?
25 spacers, correct?	25 A. Google patent kind of searching.
Page 175	Page 177
1 A. It would depend.	1 Q. What did you do specifically in terms of
2 Q. It would depend on what they were trying	2 Google patent searching?
3 to achieve, but in certain situations, it would be	3 A. I don't recall specifically, but
4 reasonable to have sealant that didn't have	4 searching keywords that would be relevant to the
5 spacers, correct?	5 case and see what came up and then search the
6 A. By 1997, I am aware of techniques that	6 results to see if there's anything that's relevant
7 would provide alternate means to achieve the	7 or important to the - to the case or to forming
8 spacing between the substrates that would not	8 my opinions.
9 include necessarily a spacer that's in the	9 Q. How much time did you spend on it?
10 sealant, but it still would be, by that point, I	10 A. Not much time.
11 think, a fairly standard practice to use.	11 Q. Can you give me a number of hours?
12 Q. But it wouldn't be unreasonable to use	12 A. Single digit hours.
13 sealant without spacers, correct?	13 Q. So something like three to five?
14 A. It would depend on the situation on	14 MR. SCHLITTER: Objection.
15 whether or not it was reasonable, but it wouldn't	15 THE WITNESS: I just don't recall.
16 be required.	16 BY MR. GIBSON:
17 Q. I just want to make sure, through your	17 Q. How much time overall have you spent on
18 declaration, you're not trying to imply that the	18 this matter?
19 '413 patent requires the use of sealant with	19 A. I haven't looked lately, but it's
20 spacers?	20 last time I looked it was 130 hours.
21 A. Well, the claims do not require a	21 Q. And prior to submitting your declaration
22 sealant with spacers in it. I may need to refresh	22 or right after you'd submitted your declaration,
23 my memory on the specification and how it	23 how much time had you spent?
24 describes, but in any case, it would -- it would	24 A. Right after I submitted --
25 be an example of a sealant in the specification.	25 Q. Right.

Page 178	Page 180
1 A. By the time I submitted my declaration?	1 testimony about what Fig. 9 is?
2 Q. Yes.	2 A. I certainly would.
3 A. I think that's the number I gave you,	3 Q. And those three patents that I just
4100 and -- more than 130. I haven't looked since	4 showed you, those were not in any way considered
5 then.	5 by you in formulating your opinion either for the
6 Q. If you could look at the ' 102 patent and	6 '413 matter or the '204 matter?
7 look at just Figs. 5A, 5B, 5C, 5D.	7 A. I've never seen them before, so they had
8 A. I'll do my best but, of course I've	8 no part in my opinion.
9 never seen this, so I'm not sure what I can say	9 Q. If we could turn back to Sukegawa.
10 about a reference I've never seen.	10 A. I've got it.
11 Q. And you may not be able to and that's --	11 Q. And look at Fig. 2C.
12 that's fine.	12 A. I've got it.
13 I'm just going to ask you, do you	13 Q. And if you --9 is the -- is the resin
14 recognize the steps that are taking place in 5A	14 insulating layer in 2 C ?
15 through 5G?	15 MR. SCHLITTER: Objection, form.
16 MR. SCHLITTER: Objection, foundation.	16 BY MR. GIBSON:
17 THE WITNESS: 5A through --	17 Q. Or second insulating film?
18 BY MR. GIBSON:	18 A. Is that a question?
19 Q. 5G.	19 Q. Ye
20 A. I'd have to read the specification to	20 A. 9 is called the protective insulating
21 know what's going on here.	21 film and it would be an insulator
22 Q. Okay.	22 Q. And that also -- there's another part of
23 MR. GIBSON: Mark this as 1016.	239 over on the right-hand side?
24 (Document marked as Exhibit Number 1016	24 A. In Fig. 2C, prior art to Sukegawa, there
25 for identification.)	25 is a small piece of that layer to the right side,
Page 179	Page 181
1 BY MR. GIBSON:	1 yes. It's not labeled, but yes, it's there.
2 Q. I'd just ask you if you've seen this	2 Q . And that's been opened up through an
3 patent before today?	3 etching step?
4 A. I don't recall ever seeing this patent.	4 A. Well, the opening from that right
5 Q . And again, if you'd look at Figs. 5A	5 portion to the left portion was opened or was
6 through 5G, and I take it these are the same	6 etched to create the opening.
7 figures we saw before.	7 Q. And it's a -- it's a vertical opening?
8 Your answer would be the same, that you	8 MR. SCHLITTER: Objection, form.
9 would need to study this and read the	9 THE WITNESS: I'm not sure what you mean
10 specification to provide testimony on it?	10 by "vertical opening."
11 A. That certainly is my answer. I can take	11 BY MR. GIBSON:
12 that time now if you prefer.	12. Q. Well, the two -- the two walls on either
13 MR. GIBSON: If we could mark this as	13 side of Fig. 2 C are vertical?
141017.	14 A. They're illustrated as vertical.
15 (Document marked as Exhibit Number 1017	15 Q. And that's one possible construction of
16 for identification.)	16 them, correct?
17 BY MR. GIBSON:	17 A. It's one possible.
18 Q. And I'd just ask if you've ever seen	18 Q. And, in fact, it's one of the preferred
19 Exhibit 1017 before?	19 constructions of them, correct?
20 A. I don't recall ever seeing this	20 A. I think it's a common consequence th
21 document.	21 the side walls of these insulating layers as
22 Q. And if you'd look at the last page, and	22 they're being etched are largely vertical, if not
23 there's a -- there's a Fig. 9.	23 immeasurably so. But small variations from that
24 I take it you'd need to study this	24 vertical, I don't think would have any consequence
25 patent and these figures in order to provide	25 to a person of ordinary skill and the issues that

Page 182	Page 184
1 we're considering here.	1 A. The sealant is element 113 on the right
2 Q. And would you agree that that -- well,	2 side.
3 let me ask you this, what is part 10 or element	3 Q. And what is that -- what is under that
410 ?	4 element?
5 A. Element 10 is the anisotropic conducting	5 A. Element 113?
6 film.	6 Q. Yes.
7 Q. And that's connecting to the transparent	7 A. Well, element 113, similar to Nakamoto
8 conductive layer Number 8 ?	8 has -- is offset from the edge of the counter
9 A. Yes, it is, on its lower surface, of	9 substrate 500, and underneath element 113 are many
10 course, which is structured and has peaks and	10 structures. The first structure that it counters
11 valleys.	11 is the insulating layer 241. The next element
12 Q. Which in turn is connected to second	12 that it -- in going down from the sealant would be
13 wire 7?	13 the wiring 127, and proceeding onward, the next
14 A. What are you referring to as being	14 element is gate dielectric 211 and then finally
15 connected to second wire 7?	15 the substrate 200.
16 Q. The transparent conductive layer 8.	16 Q. So you would agree that the wiring units
17 A. 8 is in direct contact with 7 in this	17127 are running under the sealant in Shiba?
18 figure.	18 A. Some -- a portion of the wiring 127 lies
19 Q. And 7 is also in direct contact with 2?	19 under the sealant, largely along the direction of
20 A. Through the openings of layer 3, it is	20 the sealant.
21 contacting layer 2.	21 Q. If we look at -- back at Sukegawa and 2C
22 Q. You would consider those to be in direct	22 again.
23 contact, right, 7 and 2?	23 A. I've got it.
24 A. They are in direct contact through the	24 Q. And I think you have some opinions that
25 openings, yeah.	25 if lines 7 and 8 were extended, that there would
Page 183	Page 185
Q. Would you also consider them to be in	1 be a problem with the sealant having to adhere to
2 electrical contact, 7 and 2?	2 line 8. And I want to make sure I understand what
3 A. I would consider that they are also in	3 you're trying to say.
4 electrical contact between 7 and 2 specifically.	4 MR. SCHLITTER: Objection, form,
5 Q. And would you agree that -- well, strike	5 foundation.
6 that.	6 THE WITNESS: Well, can you point me to
7 Do you have Shiba in front of you?	7 the discussion in my disclosure that you're
8 A. I don't think I do. I don't think I've	8 referring to?
9 been given that yet. I'll look.	9 BY MR. GIBSON:
10 Q. I think you're right. I've given you a	10 Q. Look at paragraph 174, page 92.
11 lot of patents, but I didn't give you that one.	11 A. Do you have a specific question or do
12 If we could mark this as 1018.	12 you just want me to discuss what I'm talking about
13 (Document marked as Exhibit Number 1018	13 in that paragraph?
14 for identification.)	14 Q. No, I want to understand. If you're
15 BY MR. GIBSON:	15 looking at -- we're looking at Fig. 2C.
16 Q. And this is one of the patents that you	16 If you're going to have lines 7 and 8
17 reviewed, is that correct?	17 continue to the left, aren't they going to remain
18 A. This is one of the patents I've	18 covered by 9 ?
19 reviewed, commented on in my declaration.	19 A. Well, first, it's clear that every
20 Q. With respect to both the ' 413 and the	20 example given in Sukegawa, those wiring lines end
21 '204 patents?	21 before they reach the sealant or the display
22 A. Yes, with respect to both.	22 portion. So that's the explicit disclosure in
23 Q. If you'd look at Fig. 6.	23 Shiba.
24 A. I see it.	24 Now, if those lines were extended
25 Q. And do you see sealant there?	25 despite that fact, then indeed line 8 and $9-$ - I'm

Page 186	Page 188
1 sorry, line 8 and 7 would remain under the	1 That's the clear teaching of Sukegawa. Everywhere
2 insulating film 9, but that's not the case that	2 that you have wiring 7, you have double coverage.
3 I'm referring to in this paragraph, because this	3 That's central to his inventio
4 paragraph 174 in my disclosure is referring to a	4 Q. And you would still have that if you
5 transparent conductor that's been deposited	5 flipped the two layers, right?
6 according to the Claims 1 , which requires that the	6 A. You would only have that if you extended
7 transparent conductor be deposited through the	7 element 8, the transparent conductor, along with 7
8 opening in the insulating film. In this Fig. 2C,	8 to the left off this picture in this hypothetic
9 it would be element 9 .	9 Q. Why can't it just end the way it is now?
10 So that's not what's shown here. So if	10 A. It's possible, but that's not the
11 we -- in this hypothetical, if Sukegawa	11 disclosure in Sukegawa. Sukegawa says it's
12 modified so that the ITO layer was deposited	12 central and important to prevent corrosion of the
13 through that opening and then extended, well,	13 terminal to have double coverage over element 7 to
14 then, of course, the ITO would be above and would	14 prevent the pin holes and wiring corrosions that
15 then be in contact with the sealant. Because	15 are -- some of which are identified in Fig. 2B
16 there's no disclosure in Sukegawa to end the ITO	16 right above.
17 before getting to the sealant, the ITO in Sukegawa	17 Q. Now, I take it that you would agree that
18 is always for corrosion protection of the layer 7.	18 it's obvious for one of ordinary skill in the art
19 Q. Right. One of ordinary skill in the art	19 to open up the insulation layer to allow two
20 would know that you wouldn't want to have the ITO	20 metals to connect?
21 layer be the layer that the sealant would bond to.	21 MR. SCHLITTER: Objection, foundation.
22 We went over that, right?	22 THE WITNESS: Can you rephrase
23 A. Well, we have the teaching of Sukegawa	23 perhaps be more specific
24 that this ITO layer is intended to protec	24 BY MR. GIBSON
25 corrosion of element 7. And so if someone was	25 Q. Well, the prior art, even prior art to
Page 187	Page 189
1 beginning with Sukegawa and was -- was applying	1 Sukegawa 2C, you're seeing someone open up an
2 it, then a person of ordinary skill would keep it	2 insulation layer, layer 3, to connect two metal
3 despite the adhesion challenges that it may	3 layers, correct?
4 present.	4 A. That's what's going on in -- in the
5 Q. But we also know that one of ordinary	5 connection between element 7 and 2 through the
6 skill in the art is going to want to have a better	6 openings in layer 3, certainly.
7 bonding and better adhesion, correct?	7 Q. So as of 1997, that would be obvious to
8 A. Well, as we also discussed, that kind of	8 one of ordinary skill in the art, that's a way to
9 question has to be decided in view of the many	9 connect two wires is to open up the insulation
10 constraints in the display system. So Sukegawa is	10 layer and then deposit the second metal?
11 explicitly disclosing a solution for corrosion	11 A. That's one way --
12 resistance of these -- these wirings, especially	12 MR. SCHLITTER: Objection, foundation.
13 in the terminal portion.	13 THE WITNESS: That is one way a person
14 Q. But if I take and deposit 9 before 8,	14 of ordinary skill would -- could do a connection
15 which is what you're suggesting --	15 between two -- two metal wirings or two conductors
16 A. I'm not suggesting that Sukegawa would	16 with an insulator in between.
17 do that but, of course, that's what Claim 1	17 BY MR. GIBSON:
18 requires in the '413 patent.	18 Q. That would be obvious in 1997 given the
Q. If you deposit 9 before 8 and you're	19 prior art that we're looking at in Sukegawa?
Q going to have -- and you then open up 9 to	20 MR. SCHLITTER: Objection, foundation.
w 8 and 7 to connect, you're still going to	21 THE WITNESS: It's one of the many
ve corrosion protection, right?	22 options.
A. You would only have corrosion protection	23 BY MR. GIBS
e extent that you continue to cover all of	24 Q. Is it nonobvious or is it obvious as one
wiring 7 with both insulating film 9 and 8.	25 of the many options?

Page 190	Page 192
1 A. I'm not sure what you mean. It is	1 layer 9 , the only thing protecting wiring 7 is the
2 clearly disclosed in the prior art to have through	2 ITO layer 8 or the transparent conductor 8.
3 holes to connect two conductors through those	that's a single layer of coverage
4 holes or to make contact through those holes.	4 and his key observation is that that's not good
5 Q. There's nothing novel about that in	5 enough. And so he invents in Fig. 3 -- is one
61997 ?	6 example of his invention. He has others. He ha
7 A. No, there's probably six decades before	7 a scheme where he provides double coverage where
8 that where that would also be true	8 everywhere on wiring above wiring 7 there's tw
9 Q. When you say that if you were going to	9 things that protect it, including element 8,9 and
10 flip the layers under Sukegawa and still maintain	1010 in his invention.
11 protection against the corrosion that you'd have	11 BYMR. GIBSON:
12 to extend the wires further than we see in 2 C ,	12 Q . Is that in both the terminal portion and
13 what do you -- what exactly do you mean by that?	13 the display portion?
14 . MR. SCHLITTER: Objection, form.	14 A. It's not because he only has wiring 7 in
15 THE WITNESS: Well, if we hypothesize	15 the terminal portion. So it's not in the display
16 that a person takes Sukegawa and does not follow	16 portion at all. This wiring doesn't extend into
17 his disclosure, but instead extends wiring 7 off	17 the display portion.
18 the picture to the left, my point is that if a	18 Q. Why don't we look at paragraph 39 of
19 person does that, then Sukegawa teaches that th	19 your declaration?
20 person must also extend the transparent	20 A. I see
21 conductor 8.	21 Q. And you're describing the invention of
22 And if we're forming 8 last so that it	22 the '413 patent here?
23 through the opening in 9, then that would	23 A. That's the subject I'm commenting on,
24 necessarily also have to follow to provide th	24 the aspects of the invention, the '413
25 double coverage all along the length of wiring 7.	25 Q. And you write, "Furthermore, in order
Page 191	Page 193
1 That's the key disclosure of the invention in	1 improve the reliability of an LCD by providing
2 Sukegawa is double coverage protecting layer 7.	2 the sealant to have favorable adhesion, this
3 BY MR. GIBSON:	3 invention provides a structure where the sealant
4 Q. Why would you need to extend wiring 7?	4 does not overlap the ITO film.
5 A. Sukegawa teaches that wiring 7 is prone	5 Do you see that?
6 to corrosion and that it's important to have	6 A. I do.
7 double barriers to protect it and this is his --	$7 \quad$ Q. Is there anywhere in the specification
8 his way to achieve that everywhere.	8 that the patent, the '413, talks about the sealant
9 Q. Well, but Fig. 2C doesn't show the	9 having favorable adhesion?
10 wiring 7 going any further.	10 A. I don't recall that that phrase is in
11 A. That's exactly right. There's no	11 the specification.
12 example in Sukegawa where wiring 7 extends outside	12 Q. Anything similar to that phrase in the
13 this terminal region toward the sealant.	13 specification?
14 Q. And why are you saying that you would	14 A. Not that I recall, but here I'm
15 extend -- if you -- if we deposited 9 before 8,	15 recognizing that it's true.
16 why are you saying that 7 would then have to be	16 Q. As one of ordinary skill in the art in
17 extended?	171997 would know?
18 MR. SCHLITTER: Objection, form.	18 A. I can agree with that.
19 THE WITNESS: Well, it's less that I'm	19 Q. Now, you would agree that Sukegawa
20 saying it. I'm saying that Sukegawa goes on and	20 discloses a transparent conductive layer?
21 on and on about this. If you consider the prior	21 A. I do agree that Sukegawa discloses a
22 art figures that we're looking at here, $2 \mathrm{~A}, 2 \mathrm{~B}$,	22 transparent conductive layer in his invention
23 2C, Sukegawa lays out why the prior art is	23 well as in the prior art that's cited.
24 failing. And the reason the prior art is failing	24 Q. And would you agree that that's over a
25 is because in this open region, this opening in	25 second wiring, that disclosure?

194	Page 196
1 A. I wouldn't agree to that. If -- I would	1 Claim 1 of the ' 413 patent, there must be a
2 disagree with that statement if we understand by	2 transparent conductive layer over a first region
3 second wiring the same thing as in Claim 1 of the	3 of the second wiring
4 '413 patent.	4 And if we go to a later claim element,
5 Q. But you would agree that there's -- that	5 which I think is 13, that transparent conductive
6 in -- for example, in 2C in Sukegawa, there's a	6 layer must be in direct contact with that second
7 second wiring 7?	7 wiring through an opening in the second insulating
8 A. Well, there is an upper wiring, as	8 film.
9 Sukegawa calls it, that is in contact with layer 2	9 So the transparent conductor doesn't
10 through the openings of layer 3, and so that's	10 meet the claim element. And so how can I possibly
11 wiring -- that's wiring 7, but it doesn't meet the	11 agree that there's a first region that corresponds
12 claim limitations of Claim 1. So I hesitate to	12 to what's in the Claim 1? I can't.
13 call that the second wiring that's in Claim 1.	13 Q. And that's because of the order -- of
14 Q. And you're saying that because you think	14 the order of the layers in the prior art described
15 the second wiring has to be put down in a	15 in Sukegawa?
16 different order than what you're seeing in 2C?	16 A. Yes, the reason that wiring 7 does not
17 A. That's part of it. But the other major	17 have even a first region, let alone any other
18 part is there needs to be a first region and	18 regions, is because of the ordering of the
19 second region of the second wiring and ther	19 transparent conductor is, in Sukegawa at least,
20 there is not such a division of regions in	20 not being through the opening of layer 9 .
21 Sukegawa.	21 I'm sorry. It's not -- it's not in --
22 Q. You think there's just one region	22 should say it's not in direct contact through an
23 A. It depends.	23 opening in the second insulating film.
24 Q. What does it depend on?	24 Q. But you would agree there's a second
25 A. Well, are you asking me if the entire	25 wiring in Sukegawa?
Page 195	Page 197
1 wiring 7 meets the limitations for the first	1 A. There is a numerically additional wiring
2 region in Claim 1?	2 clearly, but it doesn't meet the claim language of
3 Q. No, I'm asking you whether you think	3 Claim 1 of the '413 patent.
4 there's only one region in Sukegawa?	4 Q. There's a -- there's a transparen
5 MR. SCHLITTER: Objection, foundation	5 conductive layer?
6 and form.	6 A. Again, there is a transparent conductive
7 THE WITNESS: It depends on why you're	7 layer, but it doesn't meet the claim limitations
8 looking for regions. I can't say in general.'	8 of Claim 1.
9 BYMR. GIBSON:	9 Q. And there's an FPC, a flexible printed
10 Q. Well, no, we're talking	10 circuit?
11 language of the ' 413 patent. In ' 413 they	11 A. There is that element, but it's --it's
12 describe a first region and a second region?	12 not meeting Claim 1
13 A. That's true. There's a first region of	13 Q. Would you agree that the FPC is
14 the second wiring that must have a transparent	14 connected through an opening in layer 9?
15 conductive -- conductive layer over it. There's a	15 A. It is maybe the only thing connecting
16 first region in the second wiring that must have a	16 through the opening of layer 9 .
17 flexible printed circuit over the first wiring.	17 Q. So you would agree with that?
18 Q. All right. So my question is there --	18 A. I do agree with that.
19 as you understand there being two regions in the	19 Q. Would you agree that if layer 9 extended
20 '413 patent, are you saying that Sukegawa, to one	20 over the entire transparent conductive layer 8 ,
21 of ordinary -- to a person of ordinary skill in	21 that the device would not function?
22 the art only has one region?	22 MR. SCHLITTER: Objection, form,
23 A. Well, at most it has one region, but	23 foundation.
24 even that would not meet the limitations of the	24 THE WITNESS: Can you tell me what you
25 claim because, for example, in element 6 of	25 mean by "function"?

Page 198	age 200
1 BY MR. GIBSON:	1 consider that to be in direct contact?
2 Q. It wouldn't serve its intended purpose.	2 A. Can you give me the example, for
3 A. I don't know about that, but if this	3 example, from the figure?
4 terminal region, which is also illustrated in --	4 Q. If you have a transparent conductive
5 from top down in other figures, you know, if	5 layer that's touching a piece of metal, would they
6 that -- if there were no opening in layer 9 for	6 be in direct contact?
7 contact to be had between the anisotropic	7 A. Well, referring to Fig. 2C, it sounds
8 conducting film 10 and the layers below it, then	8 like you're asking me if element 8 is in direct
9 there would be no electrical connection, at least	9 contact with layer 7. Yes, it is.
10 in this portion. Of course it's possible to	10 Q. And would a transparent conductive layer
11 provide it somewhere else.	11 be in electrical contact if it's touching a piece
12 Q. Right. But as you understand the prior	12 of metal?
13 art that's described in 2C, there would be no	13 A. At least to the extent that we're
14 electrical connection provided from the FPC	14 talking about the contact in Fig. C between the
15 conductive layer?	15 ITO and another metal, they would be in electrical
16 A. If this figure was modified simply so	16 contact.
17 that the opening that's illustrated was not there	17 Q. What if there's no electricity flowing,
18 but was instead fully layer 9, then there would be	18 are they still in electrical contact?
19 no contact be	19 A. Whether or not there's current or
Q. And there would be no electrical contact	20 potential in this situation has no bearing on
ween 7 and 8 either, correct?	21 whether there's electrical contac
22 A. I disagre	22 Q. I take it you've read the Motion to
23 hypothesis, the only thing different wa	23 Amend that's been filed in the ' 413 ?
24 layer 9 was -- was simply witho	24 A. I have read
25 But since element 8, the transparent conductor,	25 Q. And what's your understanding of it?
Page 199	Page 201
1 deposited before layer 9, then the electrical	1 A. I don't recall it very specifically, so
2 contact between 8 and 7 is already present. So	2 if you want me to, I'd prefer to review it so I
3 what -- what we do with layer 9 has no bearing on	3 can answer your questions.
4 the electrical connection between 8 and 7.	4 Q. Do you have an understanding that
5 Q. If two things are touching, are they in	5 there's been some -- a request -- should the
6 electrical contact?	6 petition be granted, there's been a request to
7 MR. SCHLITTER: Objection, form and	7 amend some of the claims?
8 foundation.	8 A. Yes, I do understand that that's the
9 THE WITNESS: It would depend on what	9 purpose of the amendment.
10 those two things are.	10 Q. And there's been some request to then
11 BYMR. GIBSON:	11 add some limitations?
12 Q. Two pieces of metal.	12 A. That's my understanding of that
13 A. If two things are adjacent to each	13 amendment.
er, then I would refer to that as direct	14 Q. Do you know what limitations are
if they're both metals, they would	15 requested?
e in electrical contact, but electrical	16 A. Since I wasn't involved in writing it
act is not the same as direct contact.	17 and I really only read it once, I don't recall.
Q. What's the difference?	18 Q. When you look at Claim 1 of the ' 413
A. In direct contact betwe	19 patent as an example, you see that it calls for a
d need to be adjacent to each other, at	20 first wiring over a substrate?
some portion of their surfaces. Whereas	21 A. I do. I see that.
al contact, there could be something	22 Q. Then it says there's going to be a first
tw	23 insulating film over the first wiring?
Q. And if you had a transparent conductive	24 A. Yes.
layer touching a piece of metal, would you	25 Q. And then the second wiring is going to

such that that vertical edge and plateau that's
over the second insulating film wasn't there. It
may not be preferable, but it certainly could be
done and it would still meet the claim language or
the claim requirements.
Q. You're talking about that piece of the

ITO that's on the - on the top of the insulating resin?
A. I'm referring to the left side of what's
illustrated as the ITO. It's a kind of upside
down L. And so part or all of that could
certainly be removed and we would still have the
direct contact through the opening in the second
insulating film as required by the claim
limitation.
Q. Would you agree in 2C of Sukegawa that
the flexible printed circuit is in electrical
contact or direct contact through the opening?
MR. SCHLITTER: Objection, form,
compound.
THE WITNESS: To be specific, the
element 10 --
BY MR. GIBSON:
Q. We'll break it down into two pieces --
A. Okay. Go ahead.
Q. -- since there's a compound objection.

Would you agree that the FPC is in direct contact through layer 9 with -- to the transparent conductive layer?
A. I'm trying to find out what element 31 is called. All right. So you asked me about a flexible printed circuit, which is the language of the ' 413 patent. In Sukegawa, that is composed of several things or it comprises several things. So it has a flexible wiring substrate 31 . It has a copper foil wiring 31 B , and at least it also has an anisotropic conducting film 10.

And depending on which of those or all of those that you're referring to as a flexible printed circuit, I would probably have to give different answers. So let me answer you this way and you can follow-up.

It is true that in Sukegawa, Fig. 2C, that the anisotropic conducting film 10 is in direct contact with the transparent conductor 8 through the opening of the insulator 9 .
Q. Would you also consider that to be electrical contact?
A. Element 10 is in electrical contact with layer 8 because it is a direct contact and they're both conductors.

Page 205
Q. And what's your issue with the -- the FPC? You seem to quibble with that.
A. I'm mostly trying to bridge the different languages between the ' 413 patent and the Sukegawa patent. In the ' 413 patent, it's simply a big block that's illustrated and referred to as the FPC without much detail about what's going on in there.
Q. Would you think that someone of ordinary
skill in the art in 1997 would understand that the
structure that's depicted in 2C that is in
electrical contact through 10 would be also
connectible or connecting to an FPC?
A. Well, looking at Sukegawa, I think a person of ordinary skill would identify the entire element 31 as forming the FPC and the anisotropic conducting film 10 being something added to the FPC to make the connection.

And so the claims that we have for the ' 413 have a claim element that says that the flexible printed circuit should be in electrical contact with the second wiring through the transparent conductive layer. So that's being met because it's electrical contact, not direct contact.

Page 206	Page 208
1 Q. So I take it that you would have an	1 of course, one option of many.
2 issue with Sukegawa showing a second wiring as	2 Q. But in 1997, that wouldn't be
3 it's described in the '413 patent?	3 particularly innovative, would it?
4 A. I think we've already discussed that	4 A. It would be a preferred example, but
5 that's the case.	5 not -- not innovative to use aluminum for wirings.
6 Q. All right. And you would also tak	6 Q. One of ordinary skill in the art would
7 issue with Sukegawa showing either a first or a	7 know that aluminum was an option in 1997 ?
8 second region as you've mentioned, correct?	8 A. Ye
9 A. I don't see a first region and certainly	9 Q. And if you look at claim -- Claim 4
10 not a second region in Sukegawa that meets the	10 A. I see it.
11 claim limitations of the '413, Claim 1.	11 Q. -- in 1997, one of ordinary skill in the
12 Q. When you look at Fig. 4A of the ' 413	12 art would know that a transparent conductive layer
13 patent, would you consider the auxiliary lines and	13 could be made from an ITO?
14 external connection lines to be in direct contact?	14 A. Yes, I think that would have been clear
15 A. I do consider them to be in direct	15 to a person of ordinary skill at the time of the
16 contact through the opening in element 112, the	16 '413 filing.
17 first inter-layer film as it's called in the	17 Q. And, in fact, are you aware that
18 Fig. 4A.	18 Sukegawa also discloses that?
19 Q. And you would consider them also to be	19 MR. SCHLITTER: Objection, form.
20 in electrical contac	20 BY MR. GIBSO
21 A. Yes.	21 Q. Are you aware that Sukegawa also
22 Q. What about the ITO and the external	22 discloses that the conductive layer, the
23 connection lines, do you consider those to be in	23 transparent conductive layer can be an ITO?
24 direct contac	24 A. Yes. I ag
25 A. The ITO is in direct contact with the	25 Q. Now, if you look at Claim 5?
Page 207	Page 209
1 external connection lines through the opening in	1 A. I see it.
2 layer 113.	2 Q. It says, "A liquid crystal display
3 Q. And you would consider them also to be	3 device, according to Claim 1, wherein the first
4 in electrical contact?	4 insulating film comprises silicon nitride."
5 A. I would, yes	5 Would you agree that one of ordinary
6 Q. And you would consider the ITO and the	6 skill in 1997 would have understood that that
7 external -- I'm sorry -- the auxiliary lines to be	7 would have been an option for the first insulating
8 in electrical contact?	8 film?
9 A. The ITO element 114 is in electrical	9 A. I do think that a person of ordinary
10 contact with the auxiliary lines 401 in Fig. 4A	10 skill would have known that that material would
11 through the external connection lines.	11 have been one of many choices that could be used
12. Q. And you would consider them not to be in	12 for the insulators throughout the Claim 1
13 direct contact?	13 structure.
14 A. Yes, that's exactly right	14 Q. And are you aware that Sukegawa also
15 Q. Okay. And the FPC that's depicted,	15 discloses that?
16 albeit very generally in the -- in the Fig. 4A,	16 A. Yes, I am
17 you would consider that to be in both direct and	17 MR. GIBSON: Why don't we take a brief
18 electrical contact with the ITO?	18 break?
19 A. Yes, that's right.	19 VIDEOGRAPHER: We're going off record.
20 Q. If you look at Claim 2 of the ' 413	20 This is the end of Media Unit Number 4. The time
21 patent --	21 is 4:37.
22 A. I see it	22 (Short recess.)
23 Q. -- do you see using aluminum as any	23 VIDEOGRAPHER: We're now back on record.
24 point of particular novelty in 1997?	24 This is the beginning of Media Unit Number 5 in
25 A. Using aluminum for the second wiring is,	25 the deposition of Dr. Michael Escuti and the time

Page 210	Page 212
1 is 4:49.	1 to make contacts through openings in an insulating
2 BY MR. GIBSON	2 film between two conductors
3 Q. Now, one of ordinary skill in the art	3 BYMR. GIBSON:
4 would understand that if you have a deposit of a	4 Q . Now, it's your view that in the '
5 second line -- second wiring and then an	5 patent, the claims are limited to the order of
6 insulation film on top and then an ITO layer on	6 materials as shown -- or the deposited materials
7 top of that, that the way to connect those is to	7 are in the order as shown in Fig. 4A?
8 create an opening in the insulation wire --	8 A. It's my opinion that the sequence of the
9 MR. SCHLITTER: Objection as to form.	9 elements that are disclosed here in Claim 1 is
10 BY MR. GIBSON:	10 uniquely specified. There are no materials
11 Q. -- the insulation line?	11 specified.
12 MR. SCHLITTER: Form and foundation.	12 Q. Well, putting aside the materials, the
13 THE WITNESS: To some extent it does	13 order of the manufacturing steps, you say in
14 depend on the situation. It's I don't think	14 Claim 1 they really correspond to what's in
15 possible to answer that in a vacuum without some	15 Fig. 4A?
16 more context.	16 A. Fig. 4A is an example that corresponds
17 BY MR. GIBSO	17 with the claim. It's not the only example, but
18 Q. Well, in 1997, if you were going to have	18 it's a good example.
19 a structure that has a second wiring and then an	19 Q. Is there some other example that you
20 insulation layer on top of that and then a	20 could come up with?
21 transparent conductive layer and you want to	21 A. Well, we discussed one example which
22 connect those two, one way to do that in 1997,	22 would be, for example, where the ITO portion doe
23 was known to open up the insulation layer?	23 not rise up over the second insulating film, but
24 MR. SCHLITTER: Objection, form.	24 instead just lies within the opening.
25 THE WITNESS: I can agree that it was	25 Q. But the manufacturing steps would still
Page 211	Page 213
1 known to a person of skill -- ordinary skill by	1 be the same in that situation, right?
2 the time of 1997 that one way is to -- to connect	2 A. That's correct.
3 those two conductors would be to create an opening	3 Q. And the order of deposits would still be
4 in the insulator before the insulating -- before	4 the same?
5 the second conductor was deposited and thereby,	5 A. The sequence of the manufacturing to
6 when you deposited the second conductor, it would	6 make the element in Claim 1, I believe is uniquely
7 make contact with the first conductor that was put	7 specified.
8 down. It's called a through hole. It's also	8 Q. And it's always going to have the order
9 called a contact hole, a via, right. There's many	9 that's specified in 4A under your view of Claim 1?
10 standard names for that.	10 A. And which order are you referring to?
11 BYMR. GBSSON:	11 Q. Well, you're going to have a substrate
12 Q . And contact holes or through holes were	12 first. You're then going to have your auxiliary
13 well-known in the art as of 1997 ?	13 lines. You're going to have a first insulating
14 A. They were very well-known to a person of	14 layer, then you're going to have external
15 ordinary skill and the claim language, of course,	15 connection lines, an ITO -- then you're going to
16 uses that terminology and specifies that the	16 have external connection lines and a second
17 contact should happen through the opening.	17 insulating layer and then your ITO layer.
18 Q. But there was nothing innovative or	18 That's going to be the order of deposit
19 novel about using contact hole to connect two	19 as set forth in Fig. 4A and is what you say is
20 two wires or a conductive layer and a wire?	20 mandated also by Claim 1?
21 MR. SCEHITTER: Objection, form,	21 A. You didn't mention anything about the
22 foundation.	22 first region and second region and the sealant.
23 THE WITNESS: I'm not sure I can comment	23 But aside from that, the order of the elements
24 on -- on how innovative that is, but it was a	24 that you specified or that you listed I believe is
25 well-known technique to a person of ordinary skill	25 dictated by the language of the claim as is.

$\text { Page } 214$	Page 216
1 Q. And it is -- Fig. 4A shows exactly what	1 be put down in the order that's depicted in
2 you say Claim 1 describes, correct?	2 Fig. 4A --
3 MR. SCHLITTER: Objection, form	3 MR. SCHLITTER: Objection, form.
4 BY MR. GIBSON:	4 BY MR. GIBSON:
5 Q. In terms of the deposit of the layers	5 Q. -- in all circumstances under Claim 1?
6 A. Well, my declaration probably goes	6 A. The sequence of depositions in Claim 1
7 for several paragraphs on this, but the sequence	7 must proceed from -- in this figure from the
8 of layers that would need to be fabricated would	8 bottom up. And we can go through that sequence in
9 be understood by a person of ordinary skill	9 the claim if
10 proceed from the bottom up and would correspo	10 Q. If you need to refresh yourself,
11 what's shown in Fig. 4A,	11 that's fin
12 right, at least in terms of this an examp	12 I'm just trying to understand whether as
13 sequence would still need to be the same even in	13 you read Claim 1, is there any way to do the
14 other embodiments and other examp	14 deposition order different than what you see in
15 Q. That's my question	15 Fig. 4A?
16 Is there any other sequence,	16 A. It depends. I may not be able to come
17 what's shown in 4A, that would fall und	17 up with an alternate order right now, but
18 claim language of Claim 1?	18 certainly the claim has a specific order and a
19 A. Could you rephrase the question	19 specific relationship between them. And it would
20 Q. Yes. According to you, the Claim	20 probably take me a little thought, extended
21 a particular sequence of deposits, correct?	21 thought to see if I could come up with something
22 A. Yes.	22 that was substantially different from Fig. 4A but
23 Q. A	23
24 correct?	24 What I can sp
25 A. Fig. 4A is an example of that sequence	25 require in terms of sequence and I have that in my
	Page 217
1 of deposition and patterning as well, of cours	1 declaration. We can say it ag
2 that does meet Claim 1	2 Q . And what I'm trying to understand is, is
3 Q. Focusing just on the deposition,	3 your -- is the sequence that you listed in your
4 there any other deposition that could be done	4 declaration that's in Claim 1, is that different
5 under Claim 1 other than what we see in Fig. 4A?	5 in any way or can you think of a different one
6 A. Well, yes, there are variations on that.	6 that's not the same as 4A?
7 So, for example, electrical contact between the	7 MR. SCHLITTER: Objection, form.
8 first wiring and the second wiring should be	8 THE WITNESS: Well, the sequence that
9 achieved through the opening in the first	9 I've discussed in my declaration does begin first
10 insulating film. And so one additional layer that	10 with the substrate, then there's a requirement
11 could possibly be there would be if instead of the	11 that there be a first wiring. Then there must be
12 second wiring extending into those openings, if	12 a first insulator and there must be holes created
13 there was some other material, some other	13 in it and then a second wiring needs to be applied
14 deposition that was provided to accomplish that,	14 and deposited.
15 that would be one example that would achieve the	15 And then the second insulator must be
16 specified electrical contact between those two	16 applied and an opening must be created in that.
17 layers through those openings, but would not be	17 And then finally, the ITO must then be formed
18 the deposition steps. It would be an additional	18 through the opening in the second insulating film.
19 step that would be involved.	19 That sequence must apply to any example or
20 Q. Okay. Focus on just -- we're only going	20 embodiment that would meet Claim 1.
21 to have -- or strike th	21 BY MR. GIBSON:
22 Whatever additions might be made, if	22 Q. All right. And my question still is, is
23 we're going to have an ITO, a second insulating	23 there anything other than Fig. 4A that would meet
24 film or layer, a second wire, a first insulating	24 what you just described?
25 layer and a first wire, are they going to have to	25 A. There may be. I'm not prepared to limit

55 (Pages 214-217)

Page 218	Page 220
1 it to Fig. 4A, as I've already said.	1 A. That's how I clearly understand it and I
2 Q. But you can't think of any as you sit	2 certainly think that one of ordinary skill would
3 here?	3 -- would also have that singular understanding.
4 A. As I sit here	4 Q. And that's fundamental to your opinion
5 MR. SCHLITTER: Objection, form	5 on this matter, correct?
6 THE WITNESS: As I sit here, I can't	6 MR. SCHLITTER: Objection, form.
7 think of an example beyond the one I already did	7 THE WITNESS: Which opinion and which
8 give you.	8 matter specifically are you referring to?
9 BY MR. GIBSON:	9 BY MR. GIBSON
10 Q . Now, the order that you just gave in	10 Q. It's fundamental to your interpretation
11 your -- in your declaration, you believe that	11 of the order that these layers must be deposited
12 order is required because of the use of the word	12 in, that definition of the word "through"?
13 "through" an opening?	13 MR. SCHLITTER: Objection, form.
14 A. Well, part of it is required from the	14 THE WITNESS: I think so.
15 word "over" that's used repeatedly and there's an	15 MR. GIBSON: And let me just have this
16 additional overlay. And then additionally, that	16 marked as the next, 101
17 sequence is required by the phrases of "contact	17 (Document marked as Exhibit Number 1019
18 through an opening" in various films. So they	18 for identification.)
19 altogether uniquely specify the sequence.	19 BY MR. GIBSON:
20 Q. And when you're looking at -- for	20 Q. And Exhibit 1019 has a couple different
21 example, it's not always contact through an	21 depictions of two metals as well as an insulating
22 opening as I think we discussed before, correct?	22 film. And if we -- let's assume that we're
23 MR. SCHLITTER: Objection, form.	23 depositing a metal 1 and then we want to form two
24 THE WITNESS: There is one use of the	24 additional layers, a metal 2 and an insulating
25 word "through" which is not in that phrase, that's	25 film and then an opening to the insulating film so
Page 219	Page 221
1 correct.	1 the two metals can be connected to a third metal
2 BY MR. GIBSON:	2 which we haven't depicted here.
3 Q . That's in 1.12 in your declaration,	3 Would you agree with me that the two
4 there's contact through the transparent conductive	4 ways you can do that are what's shown here?
5 layer?	5 MR. SCHLITTER: Objection, form,
6 A. That's correct. The electrical contact	6 foundation.
7 is by means or via the transparent conductive	7 THE WITNESS: Could you remind me what
8 layer to the second wiring and the FPC. So in	8 you're asking me to assume?
9 other words, the second wiring and FPC are in	9 BY MR. GIBSON:
10 electrical contact because of the transparent	10 Q. Yeah. We're going to lay down a first
11 conductive layer. It's an alternate way to read	11 metal. That's in yellow. You see metal 1?
12 that.	12 A. Yes.
13 Q. And when we look at 1.13 that does use	13 Q. And then we're going to have two
14 direct contact through an opening, you're using	14 additional layers, a metal 2?
15 the definition of "through" as because of?	15 A. Are we talking about the first
16 A. Whenever --	16 illustration?
17 MR. SCHLITTER: Objection, form.	17 Q. We're talking about both.
18 THE WITNESS: In both uses of the phrase	18 A. Okay.
19 in the claim, "contact through an opening," it --	19 Q. We're going to have a metal 2 and an
20 a person of ordinary skill would hear that as	20 insulating film and then we're going to have an
21 consistent with definition of via, because of,	21 opening in the insulating film so the two metals
22 certainly.	22 can -- which are touching each other can then be
23 BY MR. GIBSON:	23 connected to a third metal.
24 Q. And that's how you're using it in 1.13,	24 And what I'm asking you is, given th
25 correct?	25 construct, would you agree that these are the only

Page 222	Page 224
1 two structures that would do that?	1 sure what you're imagining.
2 A. Which construct are you referring to?	2 Q. Well, just another metal layer.
3 Q. Either of these. What I'm asking you	3 A. If you're asking me can a third metal
4 is, assuming the facts that I gave you, the metal	4. layer be applied on top of this, well, surely.
5 layers, the insulating film and the need to	5 And it can be patterned if desired.
6 connect to a third layer, metal layer --	6 Q. And it would be in electrical contact
7 MR. SCHLLTTER: Object.	7 with metal 2 and metal 1 ?
8 BY MR. GIBSON:	8 A. If it was simply deposited on this
9 Q. -- is there any other way that you	9 structure that's illustrated in Exhibit 1019, then
10 think to depict that other than	10 part of it could be in electrical contact with
11 MR. SCHLITTER: Object to form.	11 both metal 1 and metal 2.
12 THE WITNESS: I'm not trying to be	12 Q. Now, if you look at the second one and
13 difficult, but I'm not sure I understand you	13 we deposit metal 1 first and then we deposit
14 question.	14 metal 2, and then we deposit the insulating film,
15 BY MR. GIB	15 we can then create an opening to metal 2 through
16 Q. All right. W	16 that insulating film, correct?
17 there's a metal 1 that we've deposited?	17 A. That is one way to realize the
18 A. Yes, yes, I see that.	18 structure. Of course you could -- you could have
19 Q. And we have a metal 2 that's in contact	19 an alternative way where first metal 1 is
20 with metal 1?	20 deposited and patterned and then the insulating
21 A. Well, I see the illustrations. I guess	21 film is deposited and then patterned and then
22 part of what I'm missing is what's the sequence	22 metal 2 somehow created. I mean, it's --
23 that you're depositing these? Or what are you	23 Q. Isn't that what we did just up above?
24 assuming is the sequence of your deposition and	24 A. That would be consistent with what's
25 patterning?	25 above.
Page 223	Page 225
1 Q. What we're wanting to do is if you have	1 Q. And in the bottom example, we could also
$2 \mathrm{a}-\mathrm{two}$ metals that are contacting each other and	2 connect a metal 3 through that opening in order to
3 you're going to have an insulating film and you	3 achieve an electrical contact between metal -
4 need to have -- and that insulating film -- in one	4 with metal 2 and metal 1 ?
5 situation you've got the -- we'll take the top one	5 A. It sounds like a very similar question
6 first.	6 to the first illustration, that an additional
7 In the first one, we've got the 1	7 metal could be applied to the second illustration.
8 deposited, right? And then we deposit an	8 And in that case, the -- if metal 3 was applied,
9 insulating film over the metal, metal 1. We etch	9 it would be applied through the opening that's in
10 out that insulating film so that we can deposit	10 the second illustration. Whereas, of course, in
11 metal 2, right?	11 the first illustration, it would not be through
12 A. I see that.	12 any opening if a third metal was applied.
13 Q. And then metal 2 is deposited.	13 Q. Now, is there any other way that you
14 A. I see that.	14 could see to -- using two metals and an insulating
15 Q. And so we've created an opening in -- in	15 film, a metal 1, metal 2 and insulating film, is
16 the insulating film, correct?	16 there any other way you could design this so that
17 A. Based on your assumptions and what you	17 you could then connect to a third metal layer?
18 just described, it sounds like you have created an	18 MR. SCHLITTER: Objection, form.
19 opening in the insulating film and then -- and	19 THE WITNESS: So --
20 then deposited metal 2 through that opening, yes.	20 MR. SCHLITTER: And foundation.
21 Q. Okay. And now we want to be able to	21 THE WITNESS: I'm not quite clear on I
22 connect a third metal to metal 2 and metal 1.	22 guess what structure you're asking me to create.
23 Would you agree that first structure	23 Could you --
24 would be able to do that?	24 BY MR. GIBSON:
25 A. I don't see the third metal, so I'm not	25 Q. Well, if you're going to use two metal

Page 226	Page 228
1 layers and an insulating film -	1 BY MR. GIBSON:
2 A. Three -- three elements, right, two	2 Q. And do you recognize Exhibit 1020.
3 metals and one insulating film.	3 A. I do.
4 Q. One insulating film, and you're going to	4 Q. And what is Exhibit 1020 ?
5 have the first two metal layers in direct contact	5 A. It's a figure that's -- that l've
6 and then you're ultimately going to want to create	6 created or prepared and it's included in my '204
7 a way that you can connect to a third metal, what	7 declaration.
8 I'm trying to understand is, are these the only	8 Q. All right. And what were you trying to
9 two ways that you could use those layers?	9 illustrate with that?
10 A. I don't know. There might be a dozen	10 A. I can comment on what's shown, but I
11 other ways.	11 would need my disclosure to remind myself
12 Q. Can you illustrate one of those for me?	12 specifically what I was talking about in reference
13 A. If you would like, I can.	13 to it.
14 Q. Okay.	14 Q. Okay. Why don't you just comment on
15 A. On this exhibit?	15 what's shown? Part -- your declaration has
16 Q. Sure.	16 similar paragraphs, but sometimes you didn't
17 A. Well, you've -- if I hear you right,	17 include all the nice pictures in the 413 as you
18 you're saying there's a metal 1 , and there's a	18 did in the '204.
19 metal 2 and you're asking me are there other ways	19 A. Well, Fig. C is showing -- they are
20 than what's illustrated in these two where we	20 color figures and so in this black and white it's
21 could connect them.	21 a little less clear, but the pad 751 is the first
22 Q. No, metal 1 and metal 2 will be i	22 conductor over a substrate. And immediately on
23 direct contact.	23 top of that is an ITO layer and after that and
24 A. In direct contact, okay, and have there	24 above both of those on the Fig. C side is the
25 be an insulating film somehow?	
Page 227	Page 229
1 Q. Yes, and you'll be able to connect to a	1 using the language of Shiba.
2 third metal.	2 So this is a hypothetical structure
3 A. Sure. So one example would have first	3 using the language and labeling that's in Shiba
4 the metal 1, then another deposition before the	4 that, in my opinion, would be -- would correspond
5 insulator of metal 2. And then you could apply --	5 to the application of the teaching in Sukegawa to
6 it's really where you want to apply the insulating	6 create an ITO layer in the context of Shiba.
7 film, but the insulating film could be, for	7 Q. And which figure from Shiba are you
8 example, here or here, however you would like	8 using? Are you using Fig. 4 again or a different
9 And then in one or more of these regions you could	9 one?
10 apply metal 3.	10 A. Let me make sure. It's my expanded view
11 There are dozens of ways to do that,	11 of the left side of Fig. 4. Of course there's
12 right. You could fill this with metal 3. You	12 many things not shown as well, but that's the
13 could fill it -- or just part of it. You could	13 basic idea.
14 create the opening. You could create the opening	14 Q. All right. And I know that there's
15 in the insulating layer just over the metal 2. I	15 different shadings here, the bottom layer, what
16 mean, there are many ways, right.	16 did you say that again, that's the pad 751?
17 Q. But you're just moving the insulating	17 A. Well, the -- yeah, with the colors it's
18 layer over in that one, and the metal layer?	18 more helpful.
19 A. Well, I'm trying to answer your question	19 Q. Yeah, it's in orange in your
20 of other means to connect the three metals. You	20 declaration
21 know, this is another way that's	21 A. There's an orange and then
22 here.	22 Q. It's then gray and then blue.
23 Q. Let me just show you this.	23 A. Okay. So the orange -- I mea
24 (Document marked as Exhibit Number 1020	24 also in the Fig. A and B that we had referred to.
25 for identification.)	25 So the large rectangle at the bottom is the

$\text { Page } 230$	Page 232
1 substrate. The first layer that's shown there is	1 going to deposit the ITO?
2 -- corresponds to the gate dielectric 211. And	2 A. That sequence of elements is the way
3 then the next smaller rectangle, smaller at least	3 that I think Fig. D could be constructed. I think
4 from left to right, would be the pad 751,	4 pad 751 is just that, it's the pad here. It's not
5 conductor.	5 what I would point to as a first wiring in this
6 Q. It's another m	6 discussion, but it is a metal and it's -- it's
7 A. Well, it's the first metal in this -- in	7 applied. And then the insulator could be -- would
8 this term	8 need to be applied and then an opening created in
9 Q. And then you have the ITO layers on top?	9 it and then finally the ITO deposited and
10 A. So I'm taking the terminal portion of	10 patterned after that.
11 Fig. 4 in Shiba which begins from the substrate	11 Q. And those are the steps that we're
12 and then the dielectric and then the first	12 seeing in the first -- the first drawing on
13 conductor is this -- at least in this portion,	13 Exhibit 1019. We have a metal 1, then an
14 this pad 751. There's no other conductors be	14 insulating film, then second, in this case,
15	15 metal 2 but it could also be a conductive layer?
16 And I'm hypothesizing	16 A. If we're not concerned about what the
17 teaching in Sukegawa to create an ITO layer in	17 conductor material is made of, then it is the same
ould	18 between Fig. D and the upper illustration of 1019.
41.	19 Q. Okay. And then in Fig. C, what are you
think it's obvious to a person of ordinary	20 showing happening in Fig. C?
to do that, but I'm hypothesizing that if it	21 A. Isn't that what I just commented on?
22 is done, then Fig. C on the left is what would	22 Q. I think we were dealing with Fig. D.
	23 A. Okay. Well, Fig. C represents what I
Q.	24 think would result from beginning with Shiba and
25 ITO or what's	25 having a person of ordinary skill apply Sukegawa
Page 231	Page 233
MR. SCHLITTER: Objection, foundation.	1 to Shiba. I don't think that's appropriate. I
2 THE WITNESS: In this -- in this	2 don't think it's obvious to do so. But if that
3 hypothesis?	3 was done, the structure that would result would be
4 BY MR. GIBSON:	4 Fig. C.
5 Q. Uh-huh. Yes.	5 Q. And the order of the steps, what would
6 A. Again, I'd have to see my declaration to	6 those be?
7 see what the discussion was specifically. I don't	7 A. Well, the order of the steps would, like
8 think I commented on that.	8 in Shiba, be the conductors that would wind up
9 Q. Would you agree with me that what you've	9 being, at least in this figure, first applied to
10 drawn in 1020 is -- strike it.	10 be pad 751. That would have to be patterned.
1 Well, Fig. D in 1020 is similar to the	11 Then an ITO layer would need to be applied, and
2 top of Exhibit 1019?	12 then finally, protective overcoat and then that
3 A. What's 1019? Oh. It's similar in the	13 would need to be patterned to have an opening.
4 sense that the -- there's a metal 1 and then	14 Q. Would you agree that in Exhibit 1019,
5 there's a conductor that in 1019 is called	15 we're seeing those same steps, seeing a metal 1
6 metal 2, but in Fig. D, it's an ITO layer, which	16 deposited first, then you're seeing a metal 2 ,
7 is not a metal. It's a conductor, but it's not a	17 which in your Fig. C is an ITO, and then we have
	18 the insulation film, that order?
Q. But the way you would go about creating	19 MR. SCHLITTER: Objection, form.
. D would be you're depositing --I guess the	20 THE WITNESS: The order
1 gate dielectric's going to go first, but then	21 deposition and patterning steps appears to be the
2 you're going to have your first conductor,	22 same and I think would appear to be the same for a
u're going to deposit the protective overcoat.	23 person of ordinary skill between Fig. C and the
're going to deposit -- then you're going	24 second figure in 1019.

Page 234	Page 236
1 BYMR. GIBSON:	1 Q. Thank you for the clarification.
2 Q. Now, what you drew at the bottom of	2 A. These were the two -- well, Fig. C is
3 Exhibit 1019, could you apply that to Sukegawa	3 what I think would result and I think a person of
4 somehow?	4 ordinary skill would see as possible, even though
5 A. It sounds like you want me to speculate	5 I don't think that combination is obvious.
6 on -	$6 \quad$ Fig. D is what it would have to be to
7 Q. I'm just asking if	7 read on our claim in the ' 413 patent because in
8 A. -- something	8 Fig. D, the ITO layer, the transparent conductor,
9 Q. No, I don't want you --I don't want your	9 is being applied through the opening of the second
10 to speculate at all. That's never -- that's never	10 insulating film. Although, I mean, let's also be
11 what I'm asking you to do.	11 clear that there is no first insulating film in
12 What I want to know is, what you drew	12 these figures. It's simply an insulating film.
13 Exhibit -- at the bottom of Exhibit 1019, is tha	13 Q. I'm just asking you, is there a third
14 a structure that you think one of ordinary skill	14 option that you see applying Sukegawa to Shiba or
15 in the art would apply to Sukegawa to modify i	15 are these the only two?
16 MR. SCHLLITTER: Objection, form and	16 A. There is a third option. I think it's
17 foundation.	17 important to mention. If Shiba is taken by a
18 THE WITNESS: It depends. I mean, m	18 person of ordinary skill and really without
19 figure was in response to your request that I	19 modification to the processing steps an ITO layer
20 imagine another way to connect three metals and a	20 is created in the terminal portion, then this ITO
21 insulator.	21 would form beneath pad 751. It would be below
22 BY MR. GIBSON:	22 751. So that's a third -- third example. I talk
23 Q. Right.	23 about it, but I don't illustrate that.
24 A. And there are more. There are many more	24 Q. Can you draw that?
25 than what I've just shown here.	25 A. Should I draw it on 1021?
Page 235	Page 237
1 Q. Now I'm narrowing it.	1 Q. Please. 1020 I think that is.
2 A. Now you're asking if this -- if I can	2 A. I'm sorry, 1020. (Indicating.)
3 imagine a way that this could be applied to the	3 So I've drawn it there. That's the most
4 teaching in Sukegawa.	4 natural variation of Shiba to a person of ordinary
5 Q. Yes, just as you did with exhibits	5 skill to achieve ITO in the terminal portion
6 with your Figs. C and D.	6 without changing the manufacturing of the display.
7 A. Well, of course in that case, I was	$7 \quad$ Q. But Sukegawa would suggest putting the
8 applying the teaching of one patent to another and	8 ITO layer above, right, for protection?
9 considering what would result.	9 A. That's the teaching of Sukegawa, but
10 In this case, it's -- it's an arbitrary	10 it 's this third figure that I've drawn that is
11 connection of three metals and an insulator	11 trivial and obvious to a person of ordinary skill,
12 without a context. It's -- it would be hard for	12 not the Sukegawa combination.
13 me to do that. I think I can't imagine, as I'm	13 Q. But a person of ordinary skill would
14 here now, where it would be obvious to a person of	14 recognize that you'd want to put the ITO layer on
15 ordinary skill to employ this kind of structure in	15 top to avoid corrosion?
16 Sukegawa. There's no teaching against it, of	16 A. Well, a person beginning with the
17 course.	17 disclosure in Shiba would recognize that Shiba is
18 Q. Are there -- in looking at your Figs. C	18 intended to minimize and not increase the
19 and D, when you applied the teachings of Shiba to	19 manufacturing steps as well as other objectives
20 Sukegawa, did you see a third option beyond a	20 that have to do with the width of the seal region
21 Fig. C and D?	21 and those kind of things.
22 A. To be a little more clear, it was really	22 And so Sukegawa's objective and
23 applying the teaching of Sukegawa to Shiba.	23 disclosure is towards something very different,
24 Q. Okay.	24 right. It's the corrosion protection. And some
25 A. And --	25 of those objectives are either just different or

Page 238	Page 240
counter.	1 black?
2 Q. If you could turn back to Exhibit 1014,	2 A. Yes
3 this is the modified Shiba. You have that in	3 Q. Would you agree that because they're in
4 front of you?	4 contact, no charge can be stored?
5 A. I do have it	5 A. I would not agree with that because the
6 Q. I want to make sure I understand where	6 signals in this portion are changing in time and
7 the three cap	7 so it's not a static situation. It's something
8 A. There's two capa	8 that has fairly high frequency signals going on.
9 Q. Okay. You're sayi	9 If it were static and this was a display
10 capacitors and the first one is in	10 that was in the same image and nothing was
11 A. Well, a capacitor is formed with three	11 changing in this electrical portion, then they
12 elements. The first element would be a conductor.	12 would -- that may be, but that's not the case
13 That would be the pink element. The rest of the	13 here, right. There's going to be time varying
14 capacitor would be the dielectric, which is in	14 signals that are fairly high frequency.
15 orange. I guess it's 211 . And then finally, the	15 Q. So are you saying there would be a
16 black or dark brown illustrated here as a	16 voltage difference between these two?
17 extension of the source electrode 231.	17 A. Oh, there certainly could be a voltage
18 Q. Okay. So that's -- that's one	18 difference between the pixel electrode 251 as
19 capaci	19 illustrated here, and the source electrode 231.
20	20 It would depend on the signals that are going
21 pixel electrode itself?	21 through.
22 A. Well, no. All capac	22 Q. N
23 two conductors	23 though, the first capacitor you identified already
24 between. So the other one begins with the source	24 exists in Shiba? It's the second one that you're
25 electrode 231, proceeds up where the insulator is	25 pointing to as potentially causing an issue?
Page 239	Page 241
1 the protective overcoat 241 and then the final	1 A. By "first capacitor," do you mean the
2 conductor is pixel electrode 271 in this	2 capacitor formed by the capacitor line Cj and the
3 illustration.	3 extended source electrode 231 ?
4 Q. I see. And that forms a second	4 Q. Yes.
5 capacitor?	5 A. That's not disclosed in Shiba at all, of
6 A. It's a	6 course.
7 MR. SCHLITTER: 251.	7 Q. Do you think there's a capacitor in
8 THE WITNESS: I'm sorry, yes, 251 is the	8 Shiba?
9 pixel electrode. So those three elements form an	9 A. There certainly is a capacitor in Shiba
10 additional capacitor that is, in principle, in	10 and it's formed between the capacitor line Cj and
the first.	11 the pixel electrode 251 with the gate dielectric
MR. GIBSON:	12211 in between.
Q. Okay. And the source electrode is p	13 Q. So why don't you turn to paragraph 62?
both capacitors?	14 A. In my declaration?
A. Yes. This sounds like a fairly hard	15 Q. Yes. I'm not sure that's the --
question that I give my electromagnetic	16 actually the right paragraph. I don't think
here I ask them to derive the	17 that's the right paragraph.
acitance of the three electrode capacitor.	18 Let me ask you this, in 1997 -- well,
hopeful that this is all very	19 probably going to need you to have the ' 403 patent
nging.	20 in front of you. If you look at Fig. 4A --
Would you agree that the pixel electrode	21 A. Do you mean the ' 413 patent?
the source electrode are in contact?	22 Q. I'm sorry, the '413 patent, Fig. 4A.
A. They have a small bit of contact limited	23 A. I see
the right side of this illustration, yes.	24 Q. Too many patent numbers in the case.
Q. That's where the blue is touching the	25 I think we covered this a little bit

61 (Pages 238-241)
Page 242
1 before, but the connection that's being made
2 between the lines 401 and 403 through the
3 inter-layer film, that's something that was known
4 in 1997 before the ' 413 patent, correct?
5 A. Making connections through openings in
6 an insulating film similar to what's represented
7 here was well-known to a person of ordinary skill.
8 And that phrase "contact through an opening" is
9 representative of that enigmatic term in the art.
$10 \quad$ Q. Would you consider this to be a
11 multi-layer wiring?
12 MR. SCHLITTER: Objection to form.
13 Q THE WITNESS: What specifically are you
14 asking about?
15 BY MR. GIBSON:
$16 \quad$ Q. The connection between -- well, not the
17 connection, but the way that 111 and -- 111 --
18 sorry -- 401 and 403 are depicted in Fig. 4 , would
19 you consider that to be multi-layer wiring
20 structures?
21
22 A. I would not.

Page 243
refer to those elements 401 and 403 as separate
wirings, a first wiring and a second wiring in the claim.
figure, and so this is a single connection that
involves two wirings, but I don't think it's fair
to characterize this as a multi-layer wiring.
Q. What would you characterize as a
multi-layer wiring?
A. What would I characterize as a
Q. Yes.
A. It would depend on the context.
Q. Can you give me an example?
A. I can. Several of these patents refer a conductive path, a bus line or a scan ine
first in a thin layer and then aluminum in a
thicker layer. In many contexts, that's
multi-layer wiring.
Q. Would you consider that kind of wiring to be well-known in 1997?
A. I would.
Q. And what's the advantage of the
structure that's shown in Fig. 4A in terms of the
two wires and how they're connected through the insulation film?
A. Are you referring to the -- what's
labeled as 401 and 403 ?
Q. I am.
A. There's at least two advantages that I
think are identified in the spec that -- at least
as best I recall, first these lines, of course,
extend to the left in this illustration and go
across the sealant and that can be -- and so going
from the right side, the terminal portion, to the
left under the sealant in this illustration would
mean that the resistance of that connection from the right side, the terminal in this illustration
to the left through the sealant, that resistance is lowered.

An additional benefit or advantage is that the -- there's redundancy in those wirings and in this structure. So that's definitely an advantage in this context.
Q. And in 1997, were those advantages well-known to someone of ordinary skill in the art?
A. In this context, no.
Q. I don't mean -- I don't know what you

Page 245
1 meant by "in this context," but what I'm saying,
having a -- two wires connected through an
3 insulation layer, were there advantages to those
4 that were known to people of ordinary skill in the
5 art in 1997?
A. For a terminal connection in an LCD that 7 was not - not known to a person of ordinary
8 skill. Sukegawa comes maybe the closest, but he
ends the upper layer -- upper metal wiring every
time in his disclosure.
Q. Were there -- are you aware of other instances where you have two wires that are connected through a contact hole prior to the '413 patent?
A. Well, I suppose nearly every
microelectronic circuit -- circuit since circuits
began being integrated and patterned in
semiconductor processes had two wirings connected
through a hole and an insulating layer.
Q. And can you give some examples of those?
A. Well, that kind of connection is very
common in semiconductor chips where there are
typically multiple levels of wiring and CPUs,
graphics chips, wi-fi chips. And in those cases, I think there are connections made between those

Page 246	Page 248
1 wirings.	1 removed, but I think what's more likely is
2 Q. Any others?	2 material oxidizes or has some kind of chemical
3 A. Any others of examples of contacts being	3 change so that it's no longer a good conductor.
4 made through an opening between two conductors?	4 So if layer 7 and layer 2 were simply
5 Q. Right.	5 flat and laid on top of each other, there would be
6 A. I can't specifically name them, but they	6 immediate degradation -- or the potential would be
7 must be in just about every electronic circuit	7 immediate degradation more rapidly than in this
8 that we have in our pockets and on this table and	8 structure where the corrosion would have to go
9 they would have been similarly in 1997. But, of	9 around other structures.
10 course, in Claim 1, it's not simply that they're	10 Q. And this is obviously -- 2C and 2B are
11 connected, but there's other claim elements that	11 prior art that weren't dealing with the corrosion
12 show this advantage in the terminal region to	12 issue, right?
13 accomplish something specific.	13 A. I'd have to read the specification to be
14 Q. And why would they have been -- prior to	14 sure. It is prior art. I'm not so sure that they
15 1997, what were the advantages of connecting these	15 don't deal with corrosion. I think what he's
16 two lines through a contact hole?	16 as best I recall, what he does is he refers to
17 MR. SCHLITTER: Objection, form.	17 this prior art to say in these cases, there's only
18 THE WITNESS: In the terminal region --	18 a single layer of protection that's provided in
19 I mean, I can't really hypothesize and speculate	19 this region through the transparent conductor 8
20 on what's possible. I don't think that's why I'm	20 and he's illustrating the case that this is not
21 here, but I can turn to Sukegawa and comment on	21 good enough for his purposes. But until Sukegawa, 22 at least in some cases that was good enough.
23 cites does it. And I'd be glad to do that.	23 Q. And what I want to try to get at is,
24 BY MR. GIBSON:	24 before Sukegawa, you have two lines being -- two
25 Q. And why is that?	25 wires being connected through an insulating
Page 247	Page 249
1 A. Well, he explains that he uses this	1 opening, correct?
2 structure of wiring contact 7 and contacting	2 A. Certainly.
3 wiring 2 through the opening in 3 to -- well, to	3 Q. And you're saying the only motivation
4 ensure a corrosion-resistant terminal in	4 you knew of in 1997 to do that was to avoid
5 combination with the other elements.	5 corrosion?
6 And I think --I don't know if he	6 A. That's not at all what I'm saying.
7 explicitly says this, but I would recognize that	7 Q. Okay. What other reasons would someone
8 that structure helped Sukegawa in the peeling	8 do that, someone of ordinary skill in the art?
9 operation because it provides a rough surface with	9 A. In microelectronics, it is a common
10 peaks and valleys so that the anisotropic	10 occurrence that there needs to be a connection
11 conductor can better connect in his context than	11 between conductors of different layers, different
12 it would be if it was a flat layer.	12 physical layers. And that's achieved most
13 And if the FPC had to be removed, if the	13 commonly by making openings in that insulating
14 checking terminal failed, then there would be	14 layer and providing some kind of electrical
15 redundancy in that portion, in the terminal	15 connection, whether it's as depicted here or
16 portion, so that wirings would still be left	16 perhaps by some other metal that's -- that's also
17 behind even if some of them came off.	17 deposited.
18 Q. How does creating an opening in the	18 Q. And why is that advantageous over just
19 insulation wire help improve corrosion or	19 putting layer 7 on top of layer 2?
20 resistance to corrosion?	20 A. Are you asking specifically to Sukegawa
21 A. Well, it makes it much more challenging.	21 or just in general?
22 You can see in Fig. 2B of Sukegawa, he's got a	22 Q. To the prior art -- prior art in
23 pin hole illustrated 11 and what's illustrated as	23 general?
24 the corrosion that can happen which could -- it's	24 A. In general?
25 illustrated as if the material was literally	25 Q. As of 1997?

63 (Pages 246-249)

Page 250	Page 252
1 A. Well, again, there are many situations	1 think of any more.
2 where there's a circuit that has a metal wiring on	2 BYMR. GIBSON:
3 one layer and then an insulator and then another	3 Q. So if we look at Sukegawa again -- maybe
4 metal. The kind of chips that we have nowadays	4 we'll look at 1B this time
5 have, I think, half a dozen. It's very common.	5 A. I've got it.
6 And even my students prototype PC boards with	$6 \quad$ Q. And would you consider this to depict
7 multi-layer wiring. That's not	7 multi-layer wiring, a multi-layer wiring
8 semiconductor-based, but it's simply proto boards.	8 structure?
9 And in those cases, of course, they have	9 A. I would not and I think Sukegawa would
10 an insulator, they have different levels of	10 also not call it that.
11 wiring, and they often make holes in the insulator	11 Q. What type of structure would you call
12 and make contact through them. It's a way to make	12 it?
13 contact between metals that are in different	13 A. I think a person of ordinary skill at
14 layers.	14 the time of the ' 413 patent would call this a
15 Q. But it doesn't have any other	15 structure that -- that has multiple wirings in it
16 advantages, it's just a way to make contact?	16 and insulators. So if you're referring to
17 A. I wouldn't characterize it that way.	17 elements $2,3,7$ and 8 , then it's a four-layer
18 I'm saying that's -- that's what one of ordinary	18 structure.
19 skill would begin with. There may be advantages	19 Q. With multiple wirings?
20 to that beyond it. Sukegawa has one. There may	20 A. With multiple wirings.
21 be more.	21 Q. Would you consider those wires to be
22 Q. And as of 1997, are you aware of what	22 deposited in a layer?
23 those would be?	23 MR. SCHLITTER: Objection, form.
24 MR. SCHLITTER: Objection, form,	24 THE WITNESS: Which one in particular
25 foundation.	25 or
Page 251	Page 253
1 THE WITNESS: As I sit here now, I can't	1 BYMR. GIBSON:
2 speculate and list them all for you.	2 Q. Well, let's take 2. Is that deposited
3 BYMR. GIBSON:	3 in a layer on the substrate?
4 Q. Okay. Can you list any additional ones?	4 A. Well, whether it's a layer, it does
5 A. Any addition --	5 depend on the context. The word "layer" can be
6 MR. SCHLITTER: Same objection.	6 used in lots of different ways that can be
7 BY MR. GIBSON:	7 misleading. So, I mean, certainly layer 2 is
8 Q. You've listed corrosion as being one or	8 simply deposited or grown on the substrate 1. And
9 resisting corrosion as being one.	9 I think, at least in some contexts, that could be
10 Are there any others that you can	10 called not only a wiring, but that could be a
11 identify as of 1997?	11 layer.
12 MR. SCHLITTER: Object. I think this is	12 Q. What about wiring 7, can that be
13 beyond the scope of his declaration.	13 deposited on a layer?
14 MR. GIBSON: I don't agree.	14 A. Well, 7 is also a conductor that's
15 THE WITNESS: I'm having a -- having a	15 deposited in a single step and also then patterned
16 hard time understanding your question. I know you	16 subsequently. I can imagine contexts where that
17 don't want me to speculate, but that's what it	17 is by itself called a layer, but not this one,
18 sounds like you're asking me to do.	18 because it's referred to here as a wiring.
19 BYMR. GIBSON:	19 Q . If it called it a layering, would that
20 Q. Well, I don't want you to spec	20 change your view?
21 Im just asking if you can identify any other	21 A. If there was a context where element 7
22 advantages. You said there may be more. I'm just	22 was called a layer?
23 wondering if you can identify any of those.	23 Q. Yes.
24 MR. SCHLITTER: Objection, scope.	24 A. I'm not sure.
25 THE WITNESS: At the moment, I can't	25 MR. SCHLITTER: Objection, foundation.

Page 254	Page 256
1 THE WITNESS: I'm not sure. It would	1 corrosion?
2 depend on that context.	2 A. I agree that that's what Sukegawa says
3 BY MR. GIBSON	3 and I have no reason to disagree with that.
4 Q. You would agree with me that there's	4 Q. Would you agree that it's used
5 deposit of wire 2 and then over that there's a	5 extensively in the microelectronics industry as a
6 deposit of an insulating film 3?	6 final passivation or protection layer?
7 A. Yes, that's certainly what's in	7 A. Yes, it's very common.
8 Q. And then there's an etching step tha	8 Q. And if you look at -- let's look at
9 creates holes in layer 3?	9 Fig. 3C.
10 A. Yes, they're -- I the	10 A. I s
11 ordinary skill would expect that, even if it's	11 Q. And
12 explicitly talked about.	12 Fig. 3C, do you see layer 9?
13 Q. And then layer 7 or wiring 7 is	13 A. I do see it.
14 deposited?	14 Q. And would you agree that it's going to
15 A. That's corre	15 be present to the right of the arrow labeled "for
16 Q. And it fills in the holes that we have	16 terminal portion"?
17 in layer 3?	17 A. Well, there's two "for terminal portion"
18 A. I don't think it's illustrated a	18 labels, one to the right and one to the left.
19 filling in the holes, but clearly it's going into	19 Q. I'm talking about the one to the right.
20 the holes. It's going through the openings to	20 A. And the one on the left does not hav
21 make the contact in -- with layer 2 through th	21 layer 9 on it, of course, but the one on the righ
22 openings in layer 3.	22 does. So I would understand it, at least on the
23 Q. All right. So there's -- and there's	23 right side, to extend -- what's implied here is
24 electrical contact between layers -- or wire 7 and 25 wire 2 as a result of the holes in layer 3 ?	24 that it extends all the way to the terminal 25 portion.
Page 255	age 257
1 A. Yes, that's right.	1 Q. And if we look back at Fig. 1B --
2 Q. And 6 is depicting one of those holes?	2 A. I've got
3 A. Well, 6 is pointing to one of those	3 Q. -- do you see that there's layer 9 on
4 holes. I'm not sure if it's specifically the	4 the left?
5 opening in 3 or not. I'd have to check the spec,	5 A. I do.
6 but it is pointing to the vicinity of one of the	6 Q. And it's going to be extending to the
7 openings. Element 6 is the contact hole in	7 display portion, is that correct?
8 layer 3. They're also called through hole	8 A. I do see what Fig. 1B says about that,
9 Q. Looking again at 2C--	9 sure. Element 9 is there. It's on the left side
10 A. I've got it.	10 of Fig. 1B and I think what's implied is that it
11 Q. -- you woul	11 would extend to the left toward the display
12 insulation layer?	12 portion.
13 A. 9 is an insul	13 Q. Without interruption?
14 Q. And it's extending over 8 and 7	14 A. I can't say
15 A. In Fig. 2C, it is partially over	15 Q. Is there anything that tells you
16 elements 8 and 7, yes.	16 would be interrupted somewhere along that path?
17 Q. Do you know what it's made of,	17 A. Well, the one thing that tells me that,
18 element 9?	18 at least occasionally in Sukegawa's mind
19 A. The specification for Sukegawa mentions	19 element 9 does get interrupted is Fig. 3C where
20 that it can be made of silicon nitride.	20 it's interrupted on the left side of that figure
21 Q. And you would agree that's an insulating	21 and I can't say.
22 layer?	22 Q. I'm not talking about the left side,
23 A. Y	23 though. I'm talking about Fig. 3C from the right
24 Q. Would you also agree that can provide	24 extending to Fig. 1 B of the left.
25 protection from the environment and from	25 Is there anything that tells you that 9

Page 258	Page 260
1 would be interrupted in that area?	1 Q. Well, let me get to my question. And
2 A. There's nothing to suggest that it is	2 I'll move to strike the last sentence and just not
3 interrupted, but there certainly is nothing saying	3 being responsive.
4 that it's not	4 Will the -- you would agree that where
5 Q. Do you agree that the insulating layer 9	5 you see 7A, it is going to be under insulating
6 is the top layer between the display portion and	6 layer 9?
7 the terminal portion	7 MR. SCHLITTER: Objection, form.
8 A. Again, if we go back to Fig. 3C, that	8 THE WITNESS: The only time layer 7A is
9 seems to be true on the right side, but it's	9 illustrated, as far as I can tell, is in Fig. 3C.
10 clearly not true on the left side.	10 And clearly, it's under element 9 in that figure.
11 Q. I'm talking about from the right of 3C	11 BY MR. GIBSON:
12 to the left of 1 B , would you agree that layer 9 is	12 Q. And do you see any indication that 7A
13 shown to be -- is shown to be the top layer	13 would not be under element 9 ?
14 between the display portion and the terminal	14 A. It's -- it's not clear to me that it
15 portion?	15 would be either way. I can't tell either way.
16 A. Well, I thought I just answered that.	16 Q. And would you --- well, there's nothing
17 So Fig. 3C has two terminal portions, right?	17 that ever shows that 7A is above layer 9, correct?
18 There's one on the left side and one on the right	18 A. There's nothing that shows that,
19 side. I believe one of ordinary skill would see	19 Q. Okay. Is there anything that ever shows
20 Fig . 1B or terminal figures in Sukegawa as	207 A exposed without a layer 9 ?
21 representing either side of the display. It	21 A. Well, the whole terminal portion, yeah.
22 depends on how it's put into the display.	22 Q. What are you referring to
23 And so I think Fig. 1B can be seen on	23 A. Well, for example, we were talking about
24 both sides of Fig. 3C as -- as one option.	24 Fig. 1B, but this is true of many of the examples.
25 Fig. 3C clearly says that there are terminals on	$25 \mathrm{In} \mathrm{Fig}. \mathrm{1B}, \mathrm{there's} \mathrm{an} \mathrm{opening} \mathrm{created} \mathrm{in} \mathrm{the}$
Page 259	Page 261
1 either side of it and on the right side, layer 9	1 terminal port
2 does appear to extend from that side to the	2 underneath that opening is wiring 7 as well as
3 terminal portion. But on the left side, it	3 other things, and there is no insulating film 9
4 clearly cannot.	4 above that.
5 Q. Okay. But I'm focusing on the righ	5 Q. I'm referring specifically to 7A
6 side.	6 element 7A.
7 And on the right side, would you agree	7 Do you ever see a situation where 7A is
8 with me that it's the uppermost layer over the	8 exposed in an opening of 9?
9 display and the terminal portion?	9 A. There is no explicit disclosure of that
10 A. On the right side, it is likely that 9	10 situation in Sukegawa.
11 does extend from this TFT to the terminal portion,	11 Q. Is there any implicit disclosure
12 but not on the left side.	12 A. Only to the extent that Fig. 3C shows an
13 Q. Now, if you look at Fig. 3C, you see	13 example where layer 9 ends and conductors
14 wiring 7A?	14 continue.
15 A. I do.	15 Q. Well, that doesn't have a 7A?
16 Q. Would you agree that's the data signal	16 A. Well, it may not have a 7A, but it has
17 wiring that extends toward the terminal portion?	17 an 8A. I'm looking to see what 8A is called. In
18 A. Yes, 7A is the data signal wiring. It's	18 this case, it's a conductor. It's the pixel
19 not shown in Fig. 3C where it goes, but it	19 electrode.
20 certainly goes off this illustration and toward	20 Q. Now, would you agree that the sealant is
21 the terminal portion. But to be clear, of course,	21 going to be somewhere in between the terminal
22 it cannot simply extend out to the illustrations	22 portion and the display portion?
23 for the terminal in any of the other figures	23 A. It should
24 because it's not connected. It's expressly shown 25 as not being connected.	24 Q. And regardless of the exact location of 25 where that sealant is, will it be in direct

Page 262	Page 264
1 contact with layer 9?	1 the sealant.
2 MR. SCHLITTER: Objection, foundation.	2 Q. Do you know if Sukegawa discloses
3 THE WITNESS: It's not disclosed in	3 internal drivers or integrated drivers?
4 Sukegawa, but I can agree that a person of	4 A. As best as I recall at the moment,
5 ordinary skill would anticipate that that's so.	5 Sukegawa does not, but if you want a definitive
6 BYMR. GIBSON:	6 answer, I'd have to review Sukegawa to be sure.
7 Q. Now, in a liquid crystal display, would	$7 \quad \mathrm{Q}$. Why don't you take a moment and look
8 you agree that there are two sets of lines that	8 it?
9 run orthogonal to each other?	9 A. In Sukegawa, the driver circuit is
10 A. In the vast majority of displays that	10 identified in Column 1, Column 2 and it's
11 are sold, that's the case, yes.	11 consistently identified as being outside the
12 Q. And one of those -- one set of the lines	12 display. I can't find any mention of a peripheral
13 is for scan lines and one set is for signal	13 driving circuit.
14 data lines?	14 Q. And where would you see those in the
15 A. That's generally the case, and it's	15 figures? Where would you expect them to be?
16 case in all of the patents I think we're looking	16 A. Expect
17	17 Q. The external drive
18 Q. And, for example, in the '413 patent,	18 A. Which figure?
19 you look at Fig. 13, that illustrates prior art	19 Q. I'm asking you if you see a figure that
20 showing signal and data lines that are orthogonal	20 depicts those or where they would be connected.
21 to each other?	21 A. Fig. 3D I think comes closest, although
22 A. It's not clear to me that that's show	22 they're not shown as far as I can tell. Fig. 3D
23 in Fig. 13, but I	23 shows, of course, the two substrates on the left
24 Q. Are those lines shown to extend outside	24 side 100 and 200. There's the anisotropic
25 the display portion at the bottom and right-hand	25 conducting film 10 that connects the flexible
Page 263	Page 265
1 side?	1 printed circuit 31 to the display. And then to
2 MR. SCHLITTER: Objection, form.	2 the right, this structure 32,33, 300, all of
3 THE WITNESS: On the bottom and	3 that, that goes then eventually to the right side
4 right-hand side are the short rings, as they're	4 to connect to the drivers.
5 called, and these are helpful in manufacturing to	5 Q. All right. So you would agree that
6 minimize the static buildup that occurs during	6 there -- there have to be some external display
7 fabrication. So those are wirings. Those are	7 drivers in Fig. 3D?
8 conductors.	8 A. I don't agree that there would have to
9 BY MR. GIBSON:	9 be . There would certainly need to be something
10 Q . But sure not sure whether those are data	10 that this flexible printed circuit connects to.
11 lines or scan lines?	11 Sukegawa I don't think refers to internal
12 A. I would hesitate to call them data lines	12 peripheral circuits inside the display explicitly,
13 and scan lines simply. I think they're something	13 but I don't think there's any disclosure against
14 more. They may be formed in the same metal	14 that or away from that.
15 deposition process, but they are something	15 Q. Okay. But one possibility that you
16 distinct, something different.	16 would see from Fig. 3D or the person of ordinary
17 Q. Do they -- in addition to perbaps doing	17 skill in the art would see in 1997 was a possible
18 other things, do they serve the purpose of scan	18 use in Fig. 3D of external drivers?
19 lines and data lines?	19 A. I think a person of ordinary skill would
20 A. Certainly not external to the sealant,	20 read the disclosure in Sukegawa and understand
21 no.	21 that the drivers in his examples are external to
22 Q. Would you agree that the lines are	22 the display on the right side of Fig. D, not
23 extending outside the display portion at the	23 shown.
24 bottom and right-hand side?	24 Q. And how many types of external drivers
25 A. Those short rings 1509 do extend outside	25 would there be?

67 (Pages 262-265)

	Page 268
1 MR. SCHLITTER: Objection, foundation	1 A. Now that I've reviewed that column, I
2 THE WITNESS: Can you tell me what you	2 can see that some of my comments were not informed
3 mean by "types"?	3 by that -- those elements about Fig. 3D. So I
4 BY MR. GIBSON	4 could revise them if you'd like. But yes, I can
5 Q. Yeah. What kind of lines?	5 see that element 32 is the driver IC in this
6 MR. SCHLITTER: Same objection	6 example.
7 THE WITNESS: Can you tell me what you	7 Q. And how does that inform your testimony?
8 mean by "lines"?	8 A. Well, it's principally to point out that
9 BY MR. GIBSON:	9 Fig. 3D does show in element 32 the driver IC.
10 Q. Well, there are scan lines, data line	10 It 's actually shown. I think I had said it was
11 A. Do you want me to characterize all	11 off to the right side, so that's incorrect.
12 driver circuits?	12 But this is, nevertheless, still just
13 Q. No, just in reference to Fig. 3D, what	13 one example of a connection to the terminal that
14 would you expect that someone of ordinary skill in	14 is disclosed in 3B, 3C, 3E, et cetera. And there
15 the art looking at Fig. 3D would assume that there	15 would be many other configurations that I think
16 would be in terms of external drivers?	16 would be fair variations to one of ordinary skill
17 A. Well, I think Fig. 3D is silent on what	17 in light of Sukegawa.
18 kind of driver or purpose is -- is connected to	18 Q. Okay. Would you understand that there
19 this FPC. So, for example, yes, scan line drivers	19 would be a scan line driver and a data or signal
20 could be connected. Data line drivers could be	20 line driver in Fig. 3D?
21 connected.	21 A. Fig. 3D refers to a driver IC dye. I
22 But another important example is the	22 don't think it specifies whether that is the scan
23 ground and voltage lines could be -- reference	23 or the data driver. I think he's implying it
24 voltages could be connected in this way as well.	24 could be either or something else.
25 It's a -- it's a generic connection, a generic	25 Q. Do you know what the role of the driver
Page 267	Page 269
1 terminal that could be applied to any electrical	1 is?
2 connection that's desired to the active matrix	2 MR. SCHLITTER: Objection, form.
3 substrate.	3 BY MR. GIBSON:
4 Q. Would you consider, if you look at -- if	4 Q. What's it used for?
5 we look at element 31, would you consider that to	5 A. It's typically used to convert signals
6 be a flexible wiring substrate?	6 in some way from what's external to the display to
7 A. Flexible wiring substrate is what	7 the format that's needed by at least this portion
8 Sukegawa calls 31.	8 of the active matrix substrate. It may transform
9 Q. And element 32 is a driver IC?	9 voltages. It could split wirings. It could
10 A. That may be. Do you have the column	10 change frequencies. It could have a lot of
11 that that is in in Sukegawa?	11 functions.
12 MR. GIBSON: Why don't we go ahead and	12 Q. Okay. If you consider an LCD display
13 change the media here and I'll try to help find	13 driver IC in which the terminal portions are shown
14 that for you.	14 in Fig. 2C of Sukegawa, can you tell if Fig. 2C
15 VIDEOGRAPHER: We're going off the	15 depicts a terminal portion for a scan line or a
16 record. This is the end of Media Unit Number 5.	16 signal line?
17 The time is $6: 15$.	17 A. Fig. 2C shows a terminal portion where
18 (Short recess.)	18 the only conductor that extends toward the display
19 VIDEOGRAPHER: We're back on record.	19 is wiring 2. And wiring 2 in Fig. 3C at least is
20 This is the beginning of Media Unit Number 6 in	20 identified only as -- to the extent that there's
21 the deposition of Dr. Michael Escuti and the time	212 A , which is not the same, but it's the gate of
22 is 6:24. Please continue.	22 that TFT. So that would be -- it would be
23 BY MR. GIBSON:	23 consistent to see that as showing a scan line.
24 Q. Column 5, I think, at line 39 describes	24 Certainly it's not limited to that, but
25 the element 32 as a driver IC.	25 that's one example where the TFT is a bottom gate

Page 270	Page 272
1 TFT. The inverse would be true if it was a top	1 signal line 7A, that terminal line is not going to
2 gate TFT.	2 look like Fig. 1B, correct?
3 Q. Then it would show a data line	3 A. Well, if we try to combine Fig. 1B, the
4 A. In that case it would show a data line,	4 prior art that's cited, and Fig. 3C, then this
5 yeah.	5 terminal would -- would not necessarily lead to a
6 Q. So would you agree though that Fig. 2C	6 connection with 7A unless something else was in
7 is showing a scan line terminal?	7 between changing the electrical connection from
8 A. Well, I can't say that definitively	8 the layer 2 up toward layer 7A.
9 because, of course, Fig. 2C is prior art. It's	$9 \quad$ Q. And would you understand that a figure
10 not his invention. In Sukegawa, Fig. 3 is the	10 such as 1B could be modified so that it would
11 beginning of the series of embodiments and it's	11 function with 3C so that you would have line 7
12 not clear that Sukegawa definitely wants to say	12 extending into the terminal portion?
13 that element 2 in Fig. 2C is the same as what's in	13 A. I don't think the disclosure supports
14 Fig. 3C. Ithink it's consistent with the	14 that. I think what's explicitly disclosed is
15 disclosure, but I don't think he requires it.	15 that 2 goes in, and I think what a person of
16 Q. Okay. So but I think what you said	16 ordinary skill would more likely see is that
17 before is that you're going to have -- say in 3C	17 there's a later opening to the left of what's
18 we have a -- here we have a data line with 7A?	18 illustrated in Fig. 1B that has a similar
19 A. Yes.	19 connection through that opening of the layer 7
20 Q. That's going to be extending, is that	20 down to layer 2. I think that's what's much more
21 correct?	21 obvious to a person of ordinary skill.
22 A. It does seem to be extending off to the	22 Q. And that would be so you could have a
23 right of Fig. 3	23 connection between 7 and 7A?
24 Q. And would you then expect there to be a	24 A. Via layer 2.
25 driver for that data line that would be off to the	25 MR. GIBSON: Okay. And I assume we have
Page 271	Page 273
1 right in the terminal portion?	1 the same understanding I had with you on these two
2 A. Well, it's -- it's not disclosed	2 depositions, that we can use the transcript in
3 clearly, but I think one of ordinary skill would	3 either of the two proceedings since there is so
4 expect that wiring 7A does eventually connect	4 much overlap and that P'll endeavor not to repeat
5 through perhaps other conductors to a driver IC of	5 myself tomorrow, though I might not be perfect at
6 some kind.	6 that.
7 Q. And this would be the reverse TFT that	7 MR. SCHLITTER: I think that would be
8 we were talking about in 2C?	8 fine as long as -- you know, with that
9 A. I'm not sure what you mean, "the reverse	9 understanding that we won't plow the same ground
10 TFT."	10 again.
11 Q. Let's not -- I think you said it better	11 MR. GIBSON: No, I'm going to do my best
12 earlier. That you would have a display TFT if we	12 not to. I mean, there may be -- there may be some
13 were talking about line 2 and you're going to have	13 overlap just because of the nature of the way
14 a TFT that's driving the data line if we have	14 these things are. But with that, I am done for
15 line 7A?	15 the day, although I'll reserve the right to ask
16 MR. SCHLITTER: Objection, form.	16 questions after you do.
17 THE WITNESS: I'm afraid I don't know	17 MR. SCHLITTER: I just have one topic.
18 what a display TFT is.	18 EXAMINATION
19 BY MR. GIBSON:	19 BY MR. SCHLITTER:
20 Q. Okay. That was not -- that's not what I	20 Q. I wanted to refer to Exhibit 101
21 meant.	21 A. Did you say 1011?
22 I guess if you look at Fig. 3C and	22 Q. Yes.
23 Fig. 1B --	23 A. I don't seem to have that. What does it
24 A. I see them.	24 look like?
25 Q. -- and you consider a terminal for the	25 MR. GIBSON: Too much paper.

69 (Pages 270-273)

Page 274	Page 276
1 THE WITNESS: Yes.	INITED STATES PATENT AND TRADEMARK OF
2 Ah, finally.	2 BEFORE THE PATENT TRIAL AND APPEA
3 BY MR. SCHLITTER:	
4 Q. Okay. Exhibit 1011 is from page 94 of	INNOLUX CORPORATION,
5 your declaration in the '413 case?	4 Petitioner,)
6 A. Yes, it is.	5 vs.) TPR2013-00066
7 Q. And you mentioned that -- on your direct	$6 \quad$ vs.)IPR2013-00066
8 testimony or your cross testimony that the	SEMICONDUCTOR ENERGY) 7,876,413
9 capacitor line Cj and the scanning lines Yj would	7 LABORATORY CO., LTD.,)
10 be the first thing that would be formed as shown	8 Patent Owner.)
11 in this figure, correct?	
12 A. Yes, that's correct.	10 I, MTCHAEL J. ESCUTI, Ph.D., being first 11 duly sworn, on oath say that T am the deponent in
13 Q. And the second thing that would be	12 the aforesaid deposition taken on September 5th,
14 formed would be gate dielectric 211?	13 2013; that I have read the foregoing transcript of 14 my deposition, consisting of pages 1 through 278
15 A. That's correct.	15 inclusive, and affix my signature to same.
16 Q. Do you see the two white rectangles	
17 overlying the scanning line, vertically above the	17 as it now appears with corrections
18 scanning lines Yj ?	
19 A. I do.	19 MCHAEL J. ESCUTI, Ph.D.
20 Q. What are those?	
21 A. Those are the semiconducting layers that	SUBSCRIBED and swom to
22 form the channel of the TFT.	22 before me this \quad _ day
23 Q. What is the difference between the	
24 smaller rectangle on the top and the larger	24 Notary Public
25 rectangle on the bottom, the white rectangles I'm	$25 \sim$
Page 275	Page 277
1 referring to?	1 CERTIFICATE OF CERTIFIED SHORTHAND REPORTER
2 A. It's a particular design of the TFT	2 I, Sandra L. Rocca, a State of Illinois
3 which has different amounts of doping in -- in	3 licensed Certified Shorthand Reporter, License No.
4 those two regions. And the purpose of that	4 084-003435, do hereby certify:
5 relates to the etch that has to happen in that	5 That on the 5th day of September, 2013,
6 region above that. And this structure is a	6 at 9:39 a.m., 115 South LaSalle Street, Chicago,
7 well-known design to ensure careful etching of	7 Illinois, the deponent MICHAEL J. ESCUTI, Ph.D.
8 that back channel.	8 personally appeared before me;
9 Q. When would those semiconductor layers be	9 That the said MICHAEL J. ESCUTI, Ph.D.
10 deposited?	10 was duly swom by me to testify and that the
11 A. Well, they would need to be deposited	11 foregoing was stenographically recorded and
12 before the source electrodes, obviously, because	12 constitutes a true record of the testimony given
13 those overlie them. In this figure, it's not	13 and the proceedings had at the aforesaid
14 required whether they're formed below -- before	14 deposition;
15 the ITO or after the ITO, but I -- so that's not	15 That the deposition terminated at
16 clear from the figure.	$16 \text { 6:37 p.m.; }$
17 MR. SCHLITTER: Okay. I have nothing	17 That the reading and signing of the
18 further.	18 deposition was not waived, and the deposition was
19 MR. GIBSON: I don't have anything	19 submitted for signature. Pirsuant to Rule 30(e)
20 additional.	20 of the Rules of Civil Procedure, if deponent does
21 VIDEOGRAPHER: This concludes the	21 not appear or read and sign the deposition within
22 videotaped deposition of Dr. Michael Escuti. The	2230 days, or make other arrangements for reading
23 time is 6:37. We're now off record	23 and signing, the deposition may be used as fully
24 (Whereupon, the deposition concluded	24 as though signed, and this certificate will then
25 at 6:37 p.m.)	25 evidence such failure to appear as the reason for

Veritext Chicago Reporting Company

\&	$\begin{aligned} & 1006 \quad 3: 1330: 24 \\ & 31: 1,4 \end{aligned}$	$\begin{gathered} 113 \text { 153:14,19,23 } \\ 154: 19 ~ 184: 1,5,7,9 \end{gathered}$	$\begin{aligned} & 176: 15 \text { 189:7,18 } \\ & 190: 6 \text { 193:17 } \end{aligned}$
$\begin{aligned} & \& \quad 2: 2,83: 16,175: 5 \\ & 5: 18 \\ & \hline \end{aligned}$			
	$\begin{aligned} & 1007 \text { 3:14 33:17,18 } \\ & 33: 21,23 \end{aligned}$	207:2	205:10 207:24
0		114 153:18 207:9	208:2,7,11 209:6
	$\begin{aligned} & 1008 \quad 3: 16 \quad 34: 15,16 \\ & 34: 19 \end{aligned}$	115 1:15 2:9 5:5	210:18,22 211:2,1
$0064398 \quad 4: 9$ 084-003435 277:4 278:12		277:6	241:18 242:4
	1009 3:1735:15,16	116 4:17,18,19,20,21	243:22 244:21
	35:19 37:12	4:22,23,25	245:5 246:9,15
1	101 29:16,17	11:13 57:15	249:4,25 250:22
1 4:12,18 46:1 57:9	1010 3:19 37:12,13	11:48 84:7	251:11 265:17
104:18,24 112:9,11	1011 3:20 129:8,9	11:56 84:10	1999 11:17
113:2 151:11,18		120 2:14	1:47 113:15 114:5
156:14 165:18	$\begin{aligned} & 129: 12,13 \quad 133: 5 \\ & 273: 20.21 \quad 274: 4 \end{aligned}$	127 90:1 184:13,17	1b 252:4 254:7
166:20 169:2		184:18	257:1,8,10,24
174:15,17,20 186:6	$\begin{aligned} & 1012 \quad 3: 22 \quad 130: 8,9 \\ & 130: 12,13 \end{aligned}$	129 3:21	258:12,20,23
187:17 194:3,12,13		12:42 113:12	260:24,25 271:23
195:2 196:1,12	$\begin{aligned} & 130: 12,13 \\ & 1013 \text { 4:4 130:17,18 } \end{aligned}$	13 69:10 70:1,23	272:2,3,10,18
197:3,8,12 201:18	$\begin{gathered} 1013 \quad 4: 4130: 17,18 \\ 130: 21,22 \quad 131: 20 \end{gathered}$	165:2,15 196:5	2
206:11 209:3,12	133:4 146:5 148:4,5	262:19,23,23	2 4:12,17,19,20,22
212:9,14 213:6,9,20	1014 4:6 139:19,20	130 3:23	57:13 90:20 113:11
214:2,18,20 215:2,5	139:23 145:2 148:2	178:4	115:23 168:23
216:5,6,13 217:4,20	148:5,5 150:12	139 4:6	169:18 182:19,21
220:23 221:11	238:2	14 87:18	182:23 183:2,4
222:17,20 223:9,22	1015 4:7 176:5,8	1509 263:25	189:5 194:9 207:20
224:7,11,13,19	1016 4:8 178:23,24	$16173: 6,6,13$	220:24 221:14,19
225:4,15 226:18,22	$\begin{aligned} & 1017 \text { 4:9 179:14,15 } \\ & 179: 19 \end{aligned}$	116:13 127:18	222:19 223:11,13
227:4 231:14		163 151:25	223:20,22 224:7,11
232:13 233:15	1018 4:10 183:12,13	174 185:10 186	224:14,15,22 225:4
246:10 253:8	1019 4:11 220:16,17	176 4:7	225:15 226:19,22
264:10 276:14	220:20 224:9	178 4:8	227:5,15 231:16
1.12 219:3	$232: 13,18233: 14$	179	232:15 233:16
1.13 219:13,24		180 128:11, 2	247:3 248:4 249:19
$10 \quad 87: 9$ 113:8 182:3	$233: 24234: 3,13$	183 4:10	252:17 253:2,7
182:4,5 192:10	$102 \quad 128: 17 \quad 176: 8$	1994 126:13	254:5,21,25 264:10
198:8,19 203:21	$\begin{aligned} & 178: 6 \\ & \mathbf{1 0 2 0} \quad 4: 13 \quad 227: 24 \end{aligned}$	1997 11:8,19 13:23	269:19,19 270:13
204:11,18,23		47:20,25 48:5 49:1	271:13 272:8,15,20
205:12,17 264:25	228:2,4 231:10,11	50:16,21 51:4,14	272:24
$100 \quad 173: 5178: 4$	237:1,2	52:17 53:12,24,25	200 172:24 173:
264:24	1021 236:25	67:18 86:4,23,25	184:15 264:24
$10013: 1064: 2,6$ $112: 8$	$\begin{array}{lll} \text { 10:55 } & 57: 10 \\ \mathbf{1 1} & 45: 11 & 247: 23 \end{array}$	120:18,20 124:4	2002 11:11,19
112:8		126:22 127:5,9	2004 18:15 21:7
$\begin{array}{ll}1003 & 3: 11 \\ 1004 & \text { 64:12 } \\ \text { 64:12, }\end{array}$	$\begin{array}{ll} 1100 & 2: 3 \\ 111 & 242: 17,17 \\ 112 & 206: 16 \end{array}$	158:3,6,9 159:13,14	2010 4:14 21:7,11
		159:16 160:6,24	22:9 65:20 66:2
		$\begin{aligned} & 169: 25 \text { 171:25 } \\ & 174: 22 \text { 175:6 } \end{aligned}$	162:12

2012 4:15 29:10,12	2a 191:22 269:21	3:05 164:12	150:22,25 151:11
2013 1:17 4:16 5:2	2b 188:15 191:22	3:21 164:17	153:3 156:2 157:20
116:3 276:13,22	247:22 248:10	3a 90:20	161:8,11 165:19
277:5 278:9	2c 4:14 69:18,23	3b 90:20 173:10	169:2 173:19,21
2014 4:18	70:23 162:13	268:14	174:11 175:19
2015 4:19 117:3	168:22 172:17,21	3c 90:17 256:9,12	176:13 180:6
278:13	173:10 174:2	257:19,23 258:8,11	183:20 187:18
2016 4:20 118:20	180:11,14,24	258:17,24,25	192:22,24 193:8
2017 4:21 122:18	181:13 184:21	259:13,19 260:9	194:4 195:11,11,20
2018 4:22 123:11	185:15 186:8 189:1	261:12 268:14	196:1 197:3 200:23
2019 4:23 124:18	190:12 191:9,23	269:19 270:14,17	201:18 202:23
2020 4:24 116:3	194:6,16 198:13	270:23 271:22	204:7 205:4,5,20
2021 126:4	200:7 203:15	272:4,11	206:3,11,12 207:20
204 3:23 4:5 10:8,19	204:17 205:11	3d 67:9 172:23,23	208:16 212:4
130:23 150:22	248:10 255:9,15	173:2,6 264:21,22	228:17 236:7
176:13 180:6	269:14,14,17 270:6	265:7,16,18 266:13	241:21,22 242:4,25
183:21 228:6,18	270:9,13 271:8	266:15,17 268:3,9	245:13 252:14
21 126:12	3	268:20,21	262:18 274:5
$\begin{array}{cc}211 & 133: 10 \\ 136: 24 & 138: 11\end{array}$	3 2:3 29:19 40	3e 90:21 173:10	48 67:21,22 68:3
149:24 184:14	87:3 114:3 156:25	3m 12:8 13:10,11	49 3:23 130:6
230:2 238:15		4	4:37 209:21
241:12 274:14	182:20 189:2,6	4 3:20,23 4:4,6,23	4:49 210:1
220 4:12	192:5 194:10 225:2	4 $4: 25$ 38:21 39:2,12	4a 152:6,15,25
2200 2:14	225:8 227:10,12	40:6,6 101:21	153:16,17,17 155:3
227 4:13	247:3 252:17 254:6	129:18,24 130:4	155:24 156:1
23 156:25 164:20	$254: 9,17,22,25$	131:7 135:5 147:10	164:22 202:18,23
231 137:19 144:4	255:5,8 270:10	147:14 164:15	206:12,18 207:10
149:25 238:17,25	3.5 87:18	208:9 209:20 229:8	207:16 212:7,15,16
240:19 241:3	30 48:3 277:19,22	229:11 230:11	213:9,19 214:1,11
241 132:10 138:5,24	$300 \quad 265: 2$	242:18	214:17,23,25 215:5
139:7 140:24 144:5	31 3:13 204:4,9	$40 \quad 139: 7$	216:2,15,22 217:6
145:6 146:11 150:1	205:16 265:1 267:5	$401 \quad 207: 10 \quad 242: 2,18$	217:23 218:1
184:11 228:25	$267: 8278: 13$	$243: 1244: 4$	241:20,22 243:25
230:19 239:1	$312 \quad 2: 10,10,15,15$	403 153:18 241:19	5
25 170:22	31b 204:10	242:2,18 243:1	5 3:4 96:9,12,13
251 132:3 150:2	$\begin{array}{ll}32 & 265: 2 \\ \text { 267:9,25 }\end{array}$	244:4	$97: 4,5,9,1498: 3,4$
239:7,8 240:18	268:5,9	$41 \quad 138: 21$	98:25 99:15,19
241:11	33 3:15 46:1 265:2	413 3:21 7:16 8:18	100:18 101:4,16,24
26 156:25	34 3:16	8:24 9:9 10:8,19	102:12,16,23 103:2
$\begin{array}{lll}271 & 239: 2 \\ 273 & 3.5\end{array}$	$\begin{array}{lll}35 & 3: 18\end{array}$	48:5 56:5 58:8,23	103:10,15,16,18
$\begin{array}{ll}273 & 3: 5 \\ \mathbf{2 7 8} & 276 \cdot 14\end{array}$	37 3:19	59:25 60:14 61:11	104:2,11,14 105:1
$278 \quad 276: 14$	39 192:18 267:24	64:3,10 112:5	105:23 106:24
29 4:15 45:17		115:13,15,19	107:18,21,24

108:20,22 109:16	188:13 189:5	9	ablation 124:11
109:25 208:25	190:17,25 191:2,4,5	9 36:16,20 68:18,20	able 22:23 56:8
209:24 267:16,24	191:10,12,16 192:1	68:22,24 69:20	156:5 178:11
5,636,329 $3: 11$	192:8,14 194:7,11	70:10,14 71:2 87:9	216:16 223:21,24
5,684,555 $4: 10$	195:1 196:16	92:9,11,15 93:14	227:1
$50 \quad 4: 5130: 22$	198:21 199:2,4	95:17,20 96:14 97:2	absent 42:8,10
$500184: 9$	200:9 247:2 248:4	97:10,15 99:19	absorption 28:25
$51 \quad 133: 21$	249:19 252:17	102:13,20,20 103:3	academic 11:23
526-1535 2:15	253:12,14,21	103:10 104:9 108:1	22:10
577-1250 $2: 10$	254:13,13,24	109:8 110:3,16	accepted 7:21
577-1370 2:10	255:14,16 261:2	111:10,11,13	121:21
5a 178:7,14,17	272:11,19,23	161:18,19 164:5	access 70:2,5,7
179:5	7,697,102 4:7	179:23 180:1,13,20	109:19
5b 178:7	7,876,413 1:6 3:10	180:23 185:18,25	accessed 70:20
5c 178:7	276:6	186:2,9 187:14,19	accompanying
5d 178:7	751 133:16,22,23	187:20,25 190:23	45:22
5g 178:15,19 179:6	134:1,11 135:3,18	191:15 192:1,9	accomplish 215:14
5th 1:16 5:2 276:12	137:1,18 140:9	196:20 197:14,16	246:13
277:5	141:1 145:21,24	197:19 198:6,18,24	accurate 32:734:5,7
6	146:6,10,19,25	199:1,3 204:2,20	acf 92:24 93:5,9,
6 36:15 183:23	$228: 21229: 16$ $230: 4,14232 \cdot 4$	255:11,13,18	
195:25 255:2,3,7	230:4,14 232:4 233:10 236:21,22	256:12,21 257:3,9	achieve 125:21 175:3,7 191:8
267:20		257:19,25 258:5,12	$215: 15225: 32$
6,404,480 4:8	$260: 8,12,17,20$	259:1,10 260:6,10	achieved 145:23
60603 2:10	$261: 5,6,7,15,16$	260:13,17,20 261:1	215:9 249:12
60606 2:15	$\begin{aligned} & 261: 5,6,7,15,16 \\ & 270: 18271: 4,15 \end{aligned}$	$\begin{array}{r}\text { 261:1,3,8,13 } 262: 1 \\ \hline 58.5104 .223\end{array}$	acquired 127:8
62 241:13	$272: 1,6,8,23$	90 58:5 104:22,23	$\begin{array}{ll}\text { acronym } & 40: 2\end{array}$
623-7202 2:4	8	107:2	activate 15:25
63 151:24 152:1,1	8 43:20 87:9,19	$92 \quad 185: 10$	active 39:7 45:2,6
$643: 10,11,12$	182:8,16,17 184:25	92614 2:4	46:2 47:16 51:
655-1501 2:15	185:2,16,25 186:1	93 106:14,15 107:3	53:13,17 55:9
66 4:14	187:14,19,21,25	107:10	61:14,20 62:5,13
6:15 267:17	188:7 190:21,22	94 3:21 67:22	267:2 269:8
6:24 267:22	191:15 192:2,2,9	128:15 129:14	I
6:37 275:23,25	197:20 198:19,21	274:4	
277:16	198:25 199:2,4	949 2:4,4	
7	200:8 204:19,24	9:39 1:17 5:3 277:6	
7 4:21 36:15 43:19	248:19 252:17	a	52:4 138:17 251:
169:17 182:13,15	$\begin{gathered} \text { 255:14,16 } \\ 80 \quad 73: 7 \end{gathered}$	a.m. 1:17277:6	263:17
182:17,19,23 183:2		ability 82:6123:24	additional 9:7 30:19
183:4 184:25		125:21 149:12	41:25 65:8 139:5
185:16 186:1,18,25		154:5	147:21 163:23
187:21,25 188:2,7			164:2,4 174:6 197:1

[additional - applied]
Page 4

215:10,18 218:16	afraid 271:17	ahead 27:729:8	210:15 227:19
220:24 221:14	agp 108:9	30:23 64:1 96:18	264:6
225:6 239:10	agree 42:12 47:20	113:9 116:6 136:5	answered 160:21
244:17 251:4	59:25 60:7,8 64:17	136:21 164:6	258:16
275:20	66:15 67:1,4 68:21	203:24 267:12	answering 89:19
additionally 218:16	75:7,18 78:18,24	aimed 82:19 83:24	answers 89:16
additions 215:22	80:2,13 81:10 91:19	119:3 125:4	204:15
address 47:14,19	92:11,23 93:2,8,23	albeit 207:16	anticipate 262:5
52:19 53:4 54:24	94:5 95:17 96:10	alcohol 40:25	anybody 91:8
56:16 59:10,13 62:3	99:17 101:22	allow 187:21 188:19	anyway 158:20
addressed 148:21	104:17,19 106:20	allowed 104:10	apart 10:24 23:18
149:13	110:3 111:6,14	allows 145:20	23:19 27:4 141:23
addressing 90:7	112:24 115:13	alternate 175:7	apologize 137:5
adds 143:16	117:9 118:15,18	216:17 219:11	apparent 98:8
adhere $72: 2,5,14,18$	119:1 122:24 123:2	alternative 202:24	apparently 107:2
185:1	123:15 124:24	224:19	appeal 1:1276:2
adheres 72:10	125:3 141:18 143:3	altogether 99:20	appear 64:10,19
adhering 71:21,25	143:5,6,24 144:14	218:19	65:3 81:8,9 233:22
adhesion 50:14	145:10,14,18 147:4	aluminum 32:24	259:2 277:21,25
67:18 158:15	147:6 148:2,7	56:10,20 115:22,23	appearances $2: 1$
170:12 187:3,7	151:10 158:8,22	207:23,25 208:5,7	appeared $2: 6,17$
193:2,9	160:2,23 162:16	243:18	277:8
adjacent 199:13,20	165:22 167:2,18,20	amend 200:23 201:7	appears 29:19 31:5
admittedly 124:16	168:14,17,20	amendment 201:9	33:23 35:22 37:19
adopt 165:1,16	169:25 170:14	201:13	96:24 97:2 98:10
adopting 49:3	171:8,11 173:4,7	amorphous 51:23	151:20 169:11
advantage 106:23	174:7,9 182:2 183:5	52:15,19 53:1,5,10	233:21 276:16,17
114:22 160:11	184:16 188:17	53:22 54:1	appendices 29:20
243:24 244:17,20	193:18,19,21,24	amount 124:2	116:20
246:12	194:1,5 196:11,24	176:18	appendix 29:21
advantageous 115:7	197:13,17,18,19	amounts 275:3	116:22
115:11 160:3	203:15 204:1	analysis 122:6	applicable 1:14
249:18	208:24 209:5	analyze $20: 25$	application 12:17
advantages 114:18	210:25 221:3,25	angle 155:19	20:10 42:1 53:23
115:2,4 244:6,21	223:23 231:9	anisotropic 93:13	82:13 118:16
245:3 246:15	233:14 239:21	182:5 198:7 204:11	123:19 229:5
250:16,19 251:22	240:3,5,22 251:14	204:18 205:16	applications 20:4
advise 8:712:12	254:4 255:11,21,24	247:10 264:24	22:5 43:1,5,12,16
advised 6:25 20:17	256:2,4,14 258:5,12	ann 2:215:1	63:24 119:9
advisor 13:16	259:7,16 260:4	answer 56:8 60:23	applied 25:23,24
affect 88:12 89:12	261:20 262:4,8	80:16 82:15 84:24	50:13 103:21 146:9
166:25	263:22 265:5,8	87:7,20 88:9 94:14	154:1 172:12
affix 276:15	270:6	98:6 100:19 118:7	217:13,16 224:4
aforesaid 276:12	ah 93:19 274:2	121:6 179:8,11	225:7,8,9,12 232:7
277:13		201:3 204:15	232:8 233:9,11

Veritext Chicago Reporting Company

235:3,19 236:9	72:17 75:23 86:24	aspects 14:25 31:23	aware 10:25 13:21
267:1	106:18 132:21	49:21 60:17 192:24	33:2 34:6,13 35:7
applies 26:6 107:4	133:2 134:12,17	asserted 132:19	36:2 37:25 48:5
apply 41:3 77:19	135:12,16 153:6	assertion 90:7	49:1 54:3,8,16
132:20 134:5 139:6	154:21,22 156:19	assigned 10:12	61:10,17 63:25
140:17 169:1	156:21 157:9,18,19	assignment 7:22,25	76:18,19 80:21 83:2
217:19 227:5,6,10	157:21 158:9 160:5	8:2,11 9:9 10:13,15	115:16 119:25
232:25 234:3,15	160:24 161:7,9,13	127:21 132:14	125:11 156:7 159:6
applying 63:15	165:21,25 166:2,4	176:12	159:9 161:7 175:6
140:15 187:1	169:4 170:2,24	assistant 18:13,15	208:17,21 209:14
230:16 235:8,23	172:1,18 176:14,16	18:21,23 19:23,25	245:11 250:22
236:14	176:20 180:24	46:16,23 47:6 55:18	b
appreciate 79:10	186:19 187:6	associate 21:12 47:6	b 4:4 29:21 131:13
approach 27:24	188:18,25,25 189:8	55:16,19	132:1 134:5,15,18
appropriate 9:22	189:19 190:2	assume 126:14	35:23,25 136:13
146:19 233:1	191:22,23,24	220:22 221:8	129.24
approximately 5:3	193:16,23 195:2	266:15 272:25	b. 49:7
19:19 31:9 74:25	196:14 198:13	assuming 162:1	bachelor's 11:6
104:18,24 155:21	205:10 208:6,1	222:4,24	13:22 48:23 49:
april 7:12 29:24	210:3 211:13	assumptions 223:17	51:5
ar 109:11,19	234:15 242	astronomers 23:12	back
arbitrary 23	244:23 245:5	23:13	7:12 69:16 84:9,12
architecture 20:9	246:22 248:11,14	atoms 82:1	95:23 100:7 105:8
area 70:22 71:2,8	248:17 249:8,22,22	attach 74:15,18	106:2 110
85:18,22,24,24	262:19 265:17	attached 29:10	128:10 136:19
87:22 88:6,11 92:19	266:15 270:9 272	116:7,21 119:2	164:14 180:9
107:11 109:19	ar	24.25	84:21 209
121:12 134:6 258:1	asia 49:10	attachment 83:	238:2 257:1 258
areas 107:13 138:20	aside 8:139	attempt	267:19 275:8
argument 128:8	212:12 213:23	attention	background 6:10
arguments 131:2,5	asked	attorney 8:13 278:4	11:3 48:16,17
arrangements	116:12 20	attorneys 5:117:18	backlighting 17
115:10 277:22	asking 23:7 53:7	8:9	backlights 17:10
array 58:10 85:21	55:24 58:14 81:16	audienc	backplane 33:745:7
87:23 88:11 109:21	81:17 92:1 95:4,5	auxiliary 206:13	46:8 51:2 52:23,25
arrays 78:4,8	100:8 111:5 134:10	207:7,10 213:12	55:5 63:7 73:25
arrive $150: 2$	164:2 194:25 195:3	availability 85	backplanes 27:13
arrives 142:22	200:8 221:8	available	63:18 73:20
arrow 256:15	4:3 225:2	:20 126:22	balancing 138:24
arrows 90:17	226:19 234:7,11	$7: 5$	arriers 191:7
165:12	5:2 236:13	avoid	base 161:21
art 4:14 8:3,23 9:8	242:14 249:20	170:2,15,25 237:15	based 33:11 50:20
0,21 47:22,25	51:18,21 264:19	249:4	58:6 102:9,12
$48: 4$ 50:18 51:8 $61: 4,665 \cdot 7.1867 .2$	aspect 14:23,23 15:2	awarded 42:	129:16 146:1 147:2
61:4,6 65:7,18 67:2	69:23		

147:16 148:25	beyond 13:14 51:25	229:25 234:2,13	252:10,11,14
223:17 250:8	107:10 149:8 218:7	262:25 263:3,24	263:12
basic 37:8 49:21	235:20 250:20	269:25 274:25	called 1:12 20:3
82:8 91:4 149:4,4	251:13	boundaries 98:5	23:14 30:18 92:18
229:13	big 51:23 157:22	box 77:6 100:25	96:20 109:11
basis 25:22	205:6	108:17	146:11 159:25
beam 20:19 32:6,10	bio 3:15	brainstorming	169:9 180:20 204:5
32:14 119:7	biography 34:1	122:8	206:17 211:8,9
beams 30:18,19	biotechnology 22:7	break 57:25 84:4	231:15 253:10,17
bearing 132:14	birefringent 15:19	126:11 143:2 164:8	253:19,22 255:8
199:3 200:20	bistable 15:23	170:10 171:23	261:17263:5
began 8:17 13:24	bit 11:2 72:15 111:4	203:23 209:18	calls 194:9 201:19
18:14 21:17,24 47:5	117:18 136:17	breaks 114:13	267:8
245:17	202:17 239:23	bridge 205:3	camcorders 24:20
beginning 57:13	241:25	brief 209:17	camera 20:7
114:3 164:15 187:1	black 98:7 103:5	briefly 6:10	capacitance 143:12
209:24 232:24	228:20 238:16	bright 25:20	143:15,20 144:6,17
237:16 267:20	240:1	broad 117:19	144:22 148:18
270:11	blackwell 2:13 5:19	broader 99:13	239:18
begins 80:21 153:8	blending 16:21	broke 57:17	capacitor 133:8,9,12
170:23 230:11	block 69:25 70:7	brown 11:11,13	133:15 134:9,19
238:24	205:6	238:16	136:6,23 137:21,22
behalf 2:6,17 5:15	blocked 70:11	build 24:17 27:13	138:18 139:25
5:19	blue 229:22 239:25	building 13:24 14:3	140:10 141:24,25
behave 148:9,12	board 1:18:5 151:9	26:4 37:9 40:18	142:1,8,15,23
behavior 149:10	276:2	50:25	143:12 144:6,8
believe 29:15 36:14	board's 8:19 65:17	buildup 263:6	145:4,9 146:8 148:9
43:19 46:5 48:3	151:6	bus 243:16	148:13 149:9,16,17
55:23 67:10 156:5	boards 250:6,8	business 12:17	149:18,22,23 150:9
213:6,24 218:11	bond 158:3,20	46:11,20	150:11 238:11,14
258:19	186:21	butler 2:2	238:19 239:5,10,18
beneath 236:21	bonding 156:3,21	button 13:1	240:23 241:1,2,2,7
benefit 29:5 244:17	157:8,9,18,23	c	241:9,10 274:9
benefits 22:24	158:23 159:1,17	c 4:13 6:3 200:14	capacitors 148:15
best 7:11 11:17	160:3,25,25 161:2,4	$228: 19,24 \text { 230:22 }$	148:25 149:6 150:6
30:10 41:22 42:10	163:16 187:7		238:7,8,10,22
43:5 59:6 60:19	booklet 6:23	$23 \cdot 1723235 \cdot 6$	239:14
73:19 123:7,7	border 85:21 86:5	$235: 21 \quad 236: 2$	caption 5:7
139:17 178:8 244:8	87:24 88:11,19,20	ca $2: 4$	career 10:11 159:12
248:16 264:4	88:24 89:3,5	cabot 12:4,	careful 275:7
273:11	bottom 36:1793:18		carefully 95:12
better 28:1 54:11	98:24 101:9,12,23		105:4 133:13
98:6 160:9 161:4	109:15 110:20		carrier 92:17
187:6,7 247:11	149:23 214:10		110:23 111:15,22
271:11	216:8 225:1 229:15	194.13 242.24	111:24 112:2

Veritext Chicago Reporting Company

carry 60:3 61:13	126:15 135:19	characterize 62:15	48:10 49:5 53:17
62:4,17,17	137:18 150:7	96:2 117:23 158:13	245:16 265:12
case 5:7 7:25 9:5,18	153:10 155:10,20	170:18 243:7,8,10	266:12
16:7 23:23 26:3	159:6 173:12	250:17 266:11	circumstances
27:10 28:16 37:20	174:15 176:17	characterizing	216:5
41:12 49:3 64:2	179:11 180:2 189:6	61:21 62:21	cited 45:7 59:1
69:16 73:2 79:15	203:2,11 206:9	charge 148:20	193:23 272:4
89:2 91:8 93:11	216:18 219:22	149:12 240:4	cites 246:23
97:23 102:19	220:2 240:17 241:9	charged 149:11	civil 277:20
119:23 131:2,6	249:2 253:7 254:7	chart 152:11	cj 133:9 136:6
135:11 146:7	258:3 259:20	check 46:5 255:5	137:23 142:2
149:20 168:12	263:20 265:9	checking 70:1,5,20	149:23 241:2,10
175:24 177:5,7	269:24	94:25 247:14	274:9
186:2 206:5 225:8	certificate 277:1,24	chemical 18:2 248:2	claim 112:9,11
232:14 235:7,10	certified 277:1,3	chemist 18:1	113:2,4 115:23
240:12 241:24	certify 277:4	chemistry 18:1	151:11,15,18
248:20 261:18	cetera 268:14	chicago 1:16 2:10,15	152:11,13 155:1
262:11,15,16 270:4	challenge 73:24	5:6 277:6	156:14 165:9,18
274:5	challenges 187:3	child 12:25	166:20 167:19
cases 44:20,22 166:6	challenging 239:20	chips $245: 22,24,24$	169:2 174:15,17,20
170:12 245:24	247:21	250:4	187:17 194:3,12,12
248:17,22 250:9	chamber 41:7	choice 160:10,12,13	194:13 195:2,25
categories 51:23	chance 57:20 114:11	160:14 167:10,11	196:1,4,10,12 197:2
category 51:24	change 15:25 21:14	choices 209:11	197:3,7,8,12 201:18
cause 113:14 163:8	27:15 57:6 60:23	choose 158:20	202:12 203:3,4,13
causing 240:25	113:9 135:25	chosen 46:12 160:19	205:20 206:11,11
cell 19:15 24:19	138:14 143:21	chromium 56:10,20	207:20 208:9,9,25
25:15,18	144:6,7,22 145:8,11	243:17	209:3,12 211:15
cells 20:23 123:17	145:14 148:17,19	chunghwa 4:18	212:9,14,17 213:6,9
123:19	164:7 248:3 253:20	circle 98:11,16,20	213:20,25 214:2,18
central 70:4 188:3	267:13 269:10	101:1 108:17	214:18,20 215:2,5
188:12	changed 21:16,23	circuit 12:25 13:3	216:5,6,9,13,18
certain 12:14 49:20	27:17 38:11 145:7	45:2 46:2 47:17	217:4,20 219:19
49:25 59:788:17	changes 6:24 7:1,2	49:21,25 53:14,21	236:7 243:3 246:10
105:14 106:3 175:3	26:22 27:11 143:15	55:9,9 60:4 61:14	246:11
certainly 9:10,17,19	144:16 148:22	61:20 62:5,7,10,13	claimed 53:12
14:17 17:18 22:12	changing 27:9 63:16	63:10 195:17	claims 112:24
33:6 34:2,7 35:6	135:23 136:1,5	197:10 203:16	115:21 161:11
39:10 42:17 51:11	143:10,19 145:18	204:6,14 205:21	171:9 174:13,14
51:21 59:18 70:2	237:6 240:6,11	245:16,16 246:7	175:21 176:1 186:6
72:24 73:18,23,25	272:7	250:2 264:9,13	201:7 205:19 212:5
74:7 85:13 86:20	channel 274:22	265:1,10	216:23,24 242:25
94:5,19 95:20 96:5	275:8	circuits 15:5,6 19:1	clarification 236:1
101:22 103:18	characterization	19:4 21:20 45:3	classical 21:22
121:10 125:19	29:4 75:8 80:13	46:3 47:15,18 48:8	

Veritext Chicago Reporting Company

clean 37:10 40:14	combine 272:3	compared 20:14	conductivity 50:2,3
clear 24:16 53:16	combined 33:6	86:6	conductor 41:12
78:3 90:17 97:13	combining 96:13	complete 8:1634:2	91:5,6 92:7,13 93:5
101:25 102:12	come 31:13 43:7	35:6 36:1	142:7 152:4 167:10
103:16,18 104:2,15	44:10 61:7 84:12	completely 27:18	167:16 170:3 171:1
116:11 129:17,20	212:20 216:16,21	complexity $22: 21$	186:5,7 188:7
136:20 156:11	comes 79:11 99:8,9	complicates 134:18	190:21 192:2 196:9
159:5 173:16	99:10 245:8 264:21	complicating	196:19 198:25
185:19 188:1	comfortable 89:22	137:25	202:13,17 204:19
208:14 225:21	coming 42:20	complication 138:9	211:5,6,7 228:22
228:21 235:22	161:24	138:17	230:5,13 231:15,17
236:11 259:21	comment 7:1 211:23	compliment 28:3,8	231:22 232:17
260:14 262:22	228:10,14 246:21	component $55: 3$	236:8 238:12 239:2
270:12 275:16	commented 9:4	components 33:3	247:11 248:3,19
clearer 131:9	183:19 231:8	composed 204:7	253:14 261:18
clearly 39:6 52:3,14	232:21	compound 33:15	269:18
71:24 96:22 103:20	commenting 192:23	52:12 203:19,25	conductors 56:13
104:11 107:6	comments 122:7	comprehensive 34:8	61:18 63:6 77:8
110:25 113:3	268:2	comprises 204:8	91:14,17 92:16
131:10 169:10	commercial 80:1,11	209:4	103:22,23 107:7,8
190:2 197:2 220:1	81:8	computer 11:7	111:23 115:19,21
254:19 258:10,25	commercialized	concerned 232:16	115:24 149:19,20
259:4 260:10 271:3	13:6 27:21 79:9	concluded 275:24	189:15 190:3
close 89:5	commercially 51:22	concludes 275:21	204:25 211:3 212:2
closely 9:5 155:19	common 79:16	conclusion 6:22	230:14 233:8
closest 245:8 $264: 21$	123:3 167:10	128:8	238:23 246:4
cmo 4:9	181:20 245:22	conclusions 127:25	249:11 261:13
coat 131:24	249:9 250:5 256:7	128:1	263:8 271:5
coating 117:11,16	commonly 174:21	conduct 82:12	conference 31:14
117:19,24 118:3,9	249:13	conducting 93:4,13	45:17,18,20 46:17
118:12	communicate 8:10	182:5 198:8 204:11	52:21 53:4 54:23
coauthors 44:5	communicated 8:12	204:18 205:17	55:2 56:16 57:19
collaborate 44:10	communication	264:25	59:10,23,24 62:3
collaboration 44:2	30:20	conductive 151:22	74:3,12 76:21
collaborators 44:12	communications	154:6 167:6,13	conferences 42:15
colleagues 14:5	19:21	182:8,16 193:20,22	42:19
college 11:5	companies 127:20	195:15,15 196:2,5	configurations
color 228:20	127:22	197:5,6,20 198:15	115:10 268:15
colors 229:17	company 24:15 25:1	199:24 200:4,10	configured 25:13
column 42:1,2	25:4 26:9 31:10,16	202:8,21 204:3	confirm 57:2
156:25 264:10,10	33:12 46:10,11	205:23 208:12,22	confusingly 24:12
267:10,24 268:1	55:17 76:7 126:18	208:23 210:21	conjunction 13:15
combination 166:19	127:2,7,9,12,15	211:20 219:4,7,11	121:11
236:5 237:12 247:5	compare 133:7	232:15 243:16	$\begin{gathered} \text { connect } 107: 8109: 7 \\ 137: 19187: 21 \end{gathered}$

Veritext Chicago Reporting Company
[connect - correct]
Page 9

188:20 189:2,9	consequences 29:6	consulting 11:23	contemplating
190:3 210:7,22	conserve 84:15 85:5	12:2,8,10,12	92:12
211:2,19 222:6	consider 8:2 34:4	consumers 86:3	context 11:25 30:21
223:22 225:2,17	44:14 50:16 51:7	contact 9:19 65:16	52:14 59:8 63:11
226:7,21 227:1,20	73:2 75:4 131:1,14	92:24 93:9,22 104:9	92:2 210:16 229:6
234:20 247:11	136:2 138:11 139:1	107:7 111:15,17,17	235:12 242:24
265:4 271:4	139:14,17 146:1	111:18,19,21	243:13 244:20,24
connected 42:22	153:24 169:13	127:20,22 141:1	245:1 247:11 253:5
111:25 182:12,15	182:22 183:1,3	151:2,17,19,21	253:21 254:2
197:14 221:1,23	191:21 200:1	152:3,4 154:5 155:1	contexts 243:19
230:24 244:1 245:2	204:21 206:13,15	161:15 167:22	253:9,16
245:13,18 246:11	206:19,23 207:3,6	168:8,13 169:14,17	continuation 153:12
248:25 259:24,25	207:12,17 242:10	170:3,5,16 171:1	continue 25:11
264:20 266:18,20	242:19 243:21	182:17,19,23,24	57:15 84:10 89:19
266:21,24	252:6,21 267:4,5	183:2,4 186:15	114:5 133:25
connectible 205:13	269:12 271:25	190:4 194:9 196:6	164:17 185:17
connecting 47:17,18	considerations	196:22 198:7,19,20	187:24 261:14
87:25 152:17 182:7	85:14	199:2,6,15,16,17,17	267:22
197:15 205:13	considered 139:4	199:19,22 200:1,6,9	continued 3:24 14:1
246:15	180:4	200:11,14,16,18,21	20:12 22:11 25:3
connection 8:24	considering 182:1	202:15 203:12,17	27:23
60:17 73:24 91:7	235:9	203:17 204:2,19,22	continues 67:18
93:5 95:2,6,13	consistent 65:17	204:23,24 205:12	154:13
103:25 109:21	68:9,12 69:19,22	205:22,24,25	contribution 44:15
111:1,2,4,7,8	125:22 154:25	206:14,16,20,24,25	control 15:2 16:10
153:18 189:5,14	168:11 219:21	207:4,8,10,13,18	18:4 20:24 26:7
198:9,14 199:4	224:24 269:23	211:7,9,12,17,19	124:1 132:16
205:18 206:14,23	270:14	215:7,16 218:17,21	controlled 133:13
207:1,11 213:15,16	consistently 264:11	219:4,6,10,14,19	controlling 15:20
235:11 242:1,16,17	consisting 276:14	222:19 224:6,10	conventional 40:13
243:5 244:13 245:6	constitutes 277:12	225:3 226:5,23,24	conversation 172:11
245:21 249:10,15	constrained 121:9	239:22,23 240:4	convert 269:5
266:25 267:2	constraints 160:10	242:8 245:13	copper 204:10
268:13 272:6,7,19	187:10	246:16 247:2	copy 83:14 116:9,10
272:23	construct 221:25	250:12,13,16	129:13,21 164:22
connections 41:11	222:2	254:21,24 255:7	corp 5:7
48:7 49:4 61:19	constructed 14:4	262:1	corporation 1:3
93:25 94:2,10 106:3	232:3	contacted 7:9	276:3
242:5 245:25	construction 38:25	127:11	correct 10:15 37:4
connects 110:22,24	50:25 181:15	contacting 71:25	38:21 41:21 42:9
110:25 153:17,17	constructions	182:21 223:2 247:2	44:24 66:8 68:10
264:25 265:10	181:19	contacts 212:1	70:24 88:25 89:6
consequence 134:8	consultant 11:21	246:3	91:21 99:15 106:3,8
148:19 174:4	consulted 11:20	contains 87:24	108:19 112:13,19
181:20,24			117:16 119:13
Veritext Chicago Reporting Company			
312-442-9087	800-	-3290	847-406-3200

121:14 123:23	69:8,12,24,25 70:7	241:25	102:2
124:7 125:17,25	70:15,17,19 71:11	covering 114:16	cumulative 10:3
126:14 128:19	95:24 171:16,17	143:8	rent 28:2 $37: 2$
130:5 135:24 136:8	172:5,6,14,23 174:1	cpt 76:3,12	8:2 200:19
136:11 137:15	184:8 238:1	cpus 245:23	currently 32:17
140:6,14,18,22	counters 184:10	create 12:21,23	curriculum 29:22
141:7 142:18	countries 49:9	15:21 23:16 31:1	54:24 55:8
144:13 146:6,17	country 91:9	40:12 41:4 54:4	customers 79:22
147:12 150:23	couple 220:20	82:6 106:5 132:2	81:1 86:3
151:14 155:8	course 8:22 9:5	133:20 137:13	cut 27:7 104:13
157:19 174:2,18,25	10:10 11:16 12:9	140:22,25 181:6	105:8 106:2
175:5,13 181:16,19	13:17 15:1 18:24,25	210:8 211:3 224:	cuts 28:24 102
183:17 187:7 189:3	19:1,5,6,7,9,10,17	225:22 226:6	cutting 102:4 155:5
198:21 206:8 213:2	19:18 21:17,19 22:2	227:14,14 229:6	cv 11:16 15:17 29:9
214:2,21,24 218:22	22:4 25:18 29:24	230:17	9:15,23 41:17 42:3
219:1,6,25 220:5	36:18,21,23 37:1,7	created 19:6,1131:8	43:11,19 44:25
223:16 224:16	37:21 38:11 39:1,6	66:5 107:6 135:7	45:14 73:15
242:4 249:1 254	39:6,22 41:1,8 43:2	142:15 165:7	cvd 41:7
257:7 260:17	44:6 45:21 54:10	217:12,16 223:	d
270:21 272:2	56:13 72:8 77:24	223:18 224:22	d 2:13 3:1 4:13 83:9
274:11,12,15	95:6 109:17,20	228:6 232:8 236:20	83:10 231:11,16,20
corrected 146:13	136:13 137:17	260:25	2:3,18,22 235:6
corrections 6:24 7:1	162:19 173:8 178:8	creates 138:17	55:19,21 236:6,8
7:3 276:17	182:10 186:14	144:21 149:16	265:22
correspond 107	187:17 198:10	254:9	
128:14 212:14	208:1 211:15 21	creating 13:16 37:7	$93: 8,12,22 \text { 111:13 }$
214:10 229:4	224:18 225:10	41:10 118:8 141:8	111:24
corresponds 19	229:11 235:7,17	149:14 165:11	damage 82:1 141:19
212:16 230:2	241:6 243:4 244:8	231:19 247:18	141:23 143:7
corrosion 94:23	246:10 250:9	credibility 7:2	144
135:10 163:11	256:21 259:21	cross 97:16,17,21,23	damaging 14
186:18,25 187:11	264:23 270:9	97:25 110:2 154:12	dark 238:16
187:22,23 188:12	courses 13:12,12	173:9 274:8	data 94:
190:11 191:6	18:17 21:14,16,23	crr 1:15 278:1	243:17 259:16,18
237:15,24 247:4,19	38:15,17 49:14	crystal 25:25 27:9	62:14,20 263:10
247:20,24 248:8,11	50:22	33:1 36:19 48:6	63:12,19 266:10
248:15 249:5 251:8	court 5:12 6:15,20	1:16 52:9 54:1	66:20 268:19
251:9 256:1	cover 105:21,22,24	67:14 72:11 93:24	70:3,4,18,25
corrosions 188:1	106:7,7 107:11,13	94:7,20 132:17	271:14
cost 54:5 85:14	187:24	165:22 209:2 262:7	date 5:2
114:22 158	coverage	crystalline 53	de
costs 25:5	90:25 191:2 192:3	crystals 33:2	
counsel 278:2,4	192:	csr 1:15 278:12,12	276:22 277:5 278:8
counter 41:8 67:24	covered 55:22	ct1 102:2	
68:3,5,8,14,23 69:4	171:24 185:18		

days 128:12 277:22	220:12	187:14,19 189:10	196:14 198:13
deal 45:1 46:2 55:8	definitive 264:5	210:4 213:18 214:5	206:3 217:24
248:15	definitively 270:8	223:8,10 224:13,13	223:18
dealing 14:19,20	degradation 248:6,7	224:14 231:23,24	describes 71:15
39:12 63:9 232:22	degrade 147:23	232:1 254:5,6	96:19 103:12
248:11	degree 13:22 48:23	deposited 103:22,24	105:14 119:5,11,14
deals 122:14	49:7,12 51:5	105:24 119:23	123:2 175:24 214:2
dealt 57:19	degrees 11:9	132:8,9,10 133:16	267:24
decades 121:3 190:7	delved 14:15	154:3 186:5,7,12	describing 32:17
decide 131:3	dense 131:8	191:15 199:1 211:5	61:24 115:16
decided 187:9	department 19:3	211:6 212:6 217:14	117:10,15,19 120:9
decision 8:19,20	21:19 33:25	220:11 222:17	161:8 192:21
151:9 165:2,15	depend 78:10,13	223:8,13,20 224:8	description 28:6
declaration 3:21,23	85:10 88:4,5 106:22	224:20,21 232:9	48:1 86:20 142:20
4:5,15 8:17 29:9,15	121:7 128:6 175:1,2	233:16 249:17	design 12:23 20:12
29:20 36:9,12 45:8	175:14 194:24	252:22 253:2,8,13	71:22 72:17 85:12
45:12 48:2 52:22	199:9 210:14	253:15 254:14	88:8 106:22 141:25
65:6,9,11 67:20	240:20 243:13	275:10,11	142:18 143:20
68:3 69:8,19 74:16	253:5 254:2	depositing 145:19	144:22 148:10
90:1,6 116:7 119:2	depending 47:12	220:23 222:23	150:9 158:21
122:14 127:18	79:16 126:16 160:9	231:20	160:14 225:16
128:10,11,15,16	204:12	deposition 1:11 3:9	275:2,7
129:4,14 130:7,15	depends 27:3 43:25	4:3 5:4 6:4,6,22 7:6	designated 70:23
130:23 152:10,12	53:23 54:7 58:2	47:5 57:14 62:10	164:24
164:19 170:21	60:25 62:20 77:24	63:5 66:5 113:13	designed 40:10
173:18 175:18	78:9 82:23 83:18	114:4,14 117:21	designing 13:3 26:3
177:21,22 178:1	85:8,17 88:3,7	119:8 140:23	63:17
183:19 192:19	105:13 126:10	164:16 209:25	desirable 105:11
214:6 217:1,4,9	128:4,7 155:19	215:1,3,4,14,18	desired 224:5 267:2
218:11 219:3 228:7	194:23 195:7	216:14 222:24	despite 162:20
228:15 229:20	216:16 234:18	227:4 233:21	185:25 187:3
231:6 241:14	258:22	263:15 267:21	detail 9:10,12,13,15
251:13 274:5	depict 222:10 252:6	275:22,24 276:12	30:6 41:14 120:22
declarations 128:12	depicted 169:21,22	276:14 277:14,15	127:7 205:7
131:12	205:11 207:15	277:18,18,21,23	details 86:21
decoders 47:16	216:1 221:2 242:18	depositions 216:6	determine 176:15
decrease 88:24	249:15	273:2	determining 47:21
define 39:13	depicting 255:2	deposits 132:2 213:3	develop 19:9
defined 111:23	depictions 220:21	214:21	developed 36:18
172:11	depicts 264:20	derive 239:17	device 115:4 197:21
definitely 16:8	269:15	describe 60:2 61:12	209:3
244:19 270:12	deponent 276:11	83:23 119:3 195:12	devices 24:19 74:8
definition 9:23	277:7,20	described 27:6	80:11 165:23
39:15 65:13,17	deposit 41:382:11	31:22 73:5 99:6	diced 102:5
151:8,10 219:15,21	140:20 141:11,14	121:13 157:6	

Veritext Chicago Reporting Company

dictated 213:25	dimensions 159:4	discloses 72:8,9	156:16,18 163:18
dielectric 40:22	diode 39:9	97:10 106:6 110:4,5	185:7 231:7 232:6
133:10,13 136:11	diodes 17:22	110:7 131:13 132:7	displace 28:2
136:24 138:6 140:5	direct 20:13 26:1	133:15 173:19	display 4:16 14:6
141:19,24 142:3	93:21 111:3,19	193:20,21 208:18	16:6 22:19,21 25:13
143:7,11,24 144:3	156:6 161:15	208:22 209:15	25:15 27:2 46:2
144:12,16,21 145:1	167:22 182:17,19	264:2	47:17 48:6 52:9
145:5 146:10	182:22,24 196:6,22	disclosing 91:12	53:13,25 54:16 60:4
149:15,24 184:14	199:14,17,19 200:1	106:2,4 107:3	60:18 61:14,20 62:5
230:2,12 238:14	200:6,8 202:15	187:11	74:22 76:6,16,17
241:11 274:14	203:12,17 204:2,19	disclosure 69:13	77:3,4,16,17 79:2
dielectric's 231:21	204:24 205:24	72:13 94:22 105:13	79:17,17 81:11 82:1
difference 27:14	206:14,15,24,25	106:12 107:14	82:19,20 84:15 85:2
131:25 145:9	207:13,17 219:14	134:4 136:2 138:25	85:20,24 86:5,7
148:17 157:7,14,23	226:5,23,24 261:25	139:5 142:11	87:23 88:6,6 91:10
199:18 240:16,18	274:7	143:14 145:17	92:14,19 104:13
274:23	directed 80:18	146:2 147:2,16	109:10,10,19 110:2
different 16:10	82:16 93:24 94:6,20	150:8 156:24 163:9	115:12 118:15,18
17:20 22:9,12 24:13	95:9 115:14 123:16	185:7,22 186:4,16	120:14,16,18 125:1
27:12 34:10 35:23	direction 23:11	188:11 190:17	125:2,4,12,16,23,25
37:5 49:11 61:23	184:19	191:1 193:25	126:2,2,25 132:16
63:6 70:16 72:1,15	directions 22:11,15	228:11 237:17,23	147:25 148:21
81:11 86:899:20	22:17 90:18	245:10 261:9,11	149:13 165:22
115:7140:8 141:25	directly 26:6160:4	265:13,20 270:15	185:21 187:10
142:15,21,24 143:4	278:5	272:13	192:13,15,17 209:2
143:13,16 148:10	disagree 66:7,11	disclosure's 108:7	237:6 240:9 257:7
151:13 170:12	96:6,7 107:15 113:2	disclosures 43:3,6	257:11 258:6,14,21
194:16 198:23	131:17 132:23	43:14,16	258:22 259:9
204:15 205:4	138:15 145:25	discuss 7:18 36:9	261:22 262:7,25
216:14,22 217:4,5	151:6,8 162:19	59:14 124:8 128:20	263:23 264:12
220:20 229:8,15	163:13 194:2	157:21 185:12	265:1,6,12,22 269:6
237:23,25 243:4	198:22 256:3	discussed 23:20	269:12,18 271:12
249:11,11 250:10	disagrees 66:10	55:11 62:8,12 118:2	271:18
250:13 253:6	disclose 66:18 72:24	118:4 161:14 170:9	displays 13:13 14:21
263:16 275:3	76:5,8 94:9 135:1	187:8 206:4 212:21	14:23,24 15:22,22
differentiation	138:16 156:2,25	217:9 218:22	20:5,6 22:19 26:1
157:4	168:1	discusses 73:16	36:19 39:9 45:2
differently 148:10	disclosed 76:23 77:7	112:11	51:16 54:6 73:20
148:13	132:11 136:13	discussing 24:5	77:20 78:7,12,21
difficult 58:4 138:1	142:24 148:11	46:25 57:18 105:1	80:4 81:3,6,15,15
138:8 222:13	153:10 156:12	118:7 124:6 135:11	83:3,24 86:15 87:18
diffractive $32: 1$	157:24 163:19,20	135:24	88:1,13,17,22 93:24
digest 126:13	173:21 190:2 212:9	discussion 47:773:4	94:7,20 114:24,25
digit 177:12	241:5 262:3 268:14	$73: 14131: 9134: 7$	119:4,6,10 120:2,5
	271:2 272:14	137:20 152:14	120:6,12 122:1,2,13

[displays - electrodes]

122:14 125:19	dozens 227:11	266:19,20	effect 15:19
159:23,24 262:10	dr 5:10 57:14 66:24	drives 15:5	efficiency 20:14
dispute 165:23,24	67:25 68:6 70:6	driving 45:3 46:3	25:12,16 27:1 28:10
dissertation 15:16	90:6 114:4 122:6	47:15,16 51:2 53:14	efficient 14:16 17:10
16:3,5	131:16 132:19	53:21 55:9 264:13	eight 74:25
distance 69:17	134:9 136:3 138:12	271:14	eindhoven 16:17,20
70:15 89:11 91:1	138:13 144:10	dtm 103:19 104:6	either 13:19 31:13
distinct 263:16	162:21 164:16	105:22 107:1 108:6	80:14 153:11
division 194:20	174:4 209:25	108:18,23,24	176:12 180:5
dl $110: 14,16,17,19$	267:21 275:22	109:24 110:7 111:9	181:12 198:21
110:22 111:9	draft 43:23	duly 5:21 276:11	206:7 222:3 237:25
doc 16:13,16 18:14	drain 41:10 56:3,17	277:10	258:21 259:1
24:22 43:10	59:11,15,20 103:25	dye 268:21	260:15,15 268:24
docs 35:2	109:22 110:8	dynamic 17:19	273:3
document 29:11	dramatic 25:12	127:4	electrical 11:7,12
31:1 33:18 34:16	148:18	dynamics 126:19,22	41:10 103:24
35:16 37:13 64:5,14	dramatically 143:18	127:12	110:25 111:2,6,8,18
64:23 66:1 117:10	143:19 148:23	e	111:20 149:5 183:2
117:12 118:13	draw 99:25 146:7	e $3: 16: 3$ 114:1,1	183:4 198:9,14,20
119:5,6 120:22	147:13 152:23	$277: 19$	199:1,4,6,16,16,22
123:2,6 124:5,10,19	165:12 236:24,25		200:11,15,18,21
125:15,25 126:1	drawing 67:23	earlier $29 \cdot 1830 \cdot 22$	203:16 204:22,23
129:9 130:9,18	69:18,23 98:7	32.12,1733:846:24	205:12,21,24
139:20 176:5	128:25 129:4	$52: 2155: 1662: 10$	206:20 207:4,8,9,18
178:24 179:15,21	130:24 146:16	176:9,15 271:12	215:7,16 219:6,10
183:13 220:17	232:12	early $46: 1563 \cdot 14,15$	224:6,10 225:3
227:24	drawings 4:11,13	earned 11.9	240:11 249:14
document's 118:11	31:12,13,17	easier 116.9	254:24 267:1 272:7
documents 84:13	drawn 67:25 69:7	$\text { easily } 38: 841: 2$	electrically $47: 18$
116:2	97:18 107:20	$\text { easy } 41: 456: 2457: 1$	111:25
doing 10:13 12:11	127:25 141:13	$57: 22$	electricity 200:17
13:10 14:19 15:10	145:23 162:13	edge	electrode 41:14
16:18 17:7 19:23	164:23 231:10	edge	123:25 132:3,5,8
25:8 107:3 131:19	237:3,10	2.7	135:8 136:16,19,25
156:7 174:4 176:12	drew 99:4 150:5	$184: 8202: 25$	137:10,15,19 140:9
246:22 263:17	162:18 234:2,12	educate $37: 8$	140:16 141:2,21
doping 275:3	drexel 11:8		142:1,5,7 144:4
dotted 164:23	driver 264:9 266:12	$48: 2$	145:4 149:15,25
double 141:24	266:18 267:9,25		150:2,3,11 238:17
149:22 150:9	268:5,9,19,20,21,23	18:	238:21,25 239:2,9
163:11 188:2,13	268:25 269:13	educator 44	239:13,18,21,22
190:25 191:2,7	270:25 271:5	edward $2: 135: 18$	240:18,19 241:3,11
192:7	drivers 26:7 264:3,3	edward.manzo 2:16	261:19
dozen 226:10 250:5	264:17 265:4,7,18		electrodes 14:10
	265:21,24 266:16		16:9 41:10 56:3,17

Veritext Chicago Reporting Company

59:11,15,20 133:12	214:14 270:11	118:10,17 122:24	exam 239:16
133:14 143:17	emitting 17:22 39:8	123:16 124:6,13	examination 1:13
150:16 275:12	emphasis 15:7 16:5	equivalence $49: 12$	5:23 114:6 273:18
electromagnetic	22:4,12,25 44:9	equivalent 167:8	examine 162:8
239:16	emphasize 165:8	169:4	examined 3:3 5:21
electromagnetics	employ 235:15	escuti 1:12 3:2,15,21	9:11151:3
21:17,22	employed 11:21	3:23 4:4,15 5:10,20	example 9:18 14:16
electronic 15:2 29:7	employee 278:4	6:2 57:14 114:4	15:15 20:11 23:8
246:7	enabled 75:13	164:16 209:25	25:6,15 27:8,11
electronics 3:16,17	encountered 24:10	267:21 275:22	40:9,24 46:14 50:1
15:9 16:8 19:7 26:8	endeavor 273:4	276:10,19 277:7,9	50:15 54:5 62:25
26:15 27:3,4 36:19	endeavoring 128:13	especially 49:10	69:14 82:9 88:18
149:4	ends 103:15 154:8	60:14 85:15 94:24	90:12,20 95:18,21
element 32:1,9 70:1	155:8 245:9 261:13	96:13 124:4 132:5	95:25 96:3 101:21
110:19 113:5	energy 1:65:8 14:16	159:11 174:22	103:4 106:4 115:9
153:14,19 168:23	20:6,13 22:20 25:12	187:12	121:8 124:10
169:7,9 172:24	26:25 28:9,9 119:20	essentially 81:4	151:22 155:2
182:3,5 184:1,4,5,7	276:6	148:15 149:6 155:3	161:18 166:7,8
184:9,11,14 186:9	engagement 127:13	establish 25:4	167:9 168:9,11
186:25 188:7,13	engineering 3:16,18	estimate 38:9	172:15 173:10,23
189:5 192:9 195:25	11:7,12 48:22 149:5	et 268:14	173:25 175:25
196:4,10 197:11	engineers 18:2	etch 138:23 147:24	176:2 185:20
198:25 200:8	english 3:12	223:9 231:25 275:5	191:12 192:6 194:6
203:21 204:4,23	enhancement 18:6	etched 181:6,22	195:25 200:2,3
205:16,20 206:16	enhancements 21:4	etching 125:7 130:3	201:19 202:19
207:9 213:6 238:12	enigmatic $242: 9$	137:24 138:19,22	208:4 212:16,17,18
238:13 253:21	ensure 247:4 275:7	140:21,25 144:2,4	212:19,21,22
255:7,18 257:9,19	entering 161:25	145:5 181:3 254:8	214:12,25 215:7,15
260:10,13 261:6	entire 105:25	275:7	217:19 218:7,21
267:5,9,25 268:5,9	194:25 197:20	etching's 143:9	225:1 227:3,8
270:13	205:15	evaluate 8:4	236:22 243:14
elements 19:13	entitled 113:14	evaluated 19:16	260:23 261:13
22:24 23:16 28:11	environment 17:19	evaporation 117:20	262:18 266:19,22
28:16 39:4 85:15	255:25	117:22 118:8	268:6,13 269:25
151:18 152:13	epitaxial 119:12,18	eventual 78:15	examples 59:1 65:15
212:9 213:23 226:2	119:24 120:1,3	144:23	115:21 214:14
232:2 238:12 239:9	epitaxy 119:7	eventually $265: 3$	245:20 246:3
243:1 246:11 247:5	ероху 71:9,11,14,16	271:4	260:24 265:21
252:17 255:16	71:19 72:5,12,17	evidence 10:1	exciting 40:17
268:3	epx 71:7,8	277:25	119:20
elevated 82:10	equal 158:25 159:3	exact 261:24	exclusively $20: 5$
embodiment 103:11	equipment 76:15	exactly 76:16 77:3,5	167:11 214:11
217:20	77:2 78:19 80:3	80:25 190:13	excuse 86:11
embodiments 103:7	81:10,12 82:19 83:2	191:11 207:14	exhibit 3:9 4:3
155:23 171:9	117:11,16 118:3,4	214:1	29:10,11 31:1 33:18
Veritext Chicago Reporting Company			
312-442-9087	800-2	3290	847-406-3200

33:21 34:16,19	expertise 48:10	extent 71:21 102:17	fairly 40:13 51:8
35:15,16,19 37:13	expires 278:13	105:2 132:6 142:19	75:14 95:22 96:1
37:16 64:2,5,12,14	explains 247:1	166:24 172:11	175:11 239:15
64:21,23 65:20 66:1	explicit 55:3 69:13	187:24 200:13	240:8,14
107:18 112:8 116:2	94:16 156:16,24	210:13 261:12	fall 214:17
116:25 117:1	185:22 261:9	269:20	familiar 6:8 10:18
118:20,21 122:18	explicitly 39:3 45:6	external 47:17	10:21 65:21,23 86:8
123:11 124:18	47:19 59:1 95:12	110:23 153:18	86:11,12 127:6
126:4,12 129:7,9,12	105:15 107:20	206:14,22 207:1,7	familiarity 75:11
129:13 130:9,12,13	118:19 119:6	207:11 213:14,16	familiarize 122:19
130:18,21,22	123:18 124:8	263:20 264:17	124:20
131:20 133:4,5	131:13 132:11	265:6,18,21,24	family 121:2
139:20 145:2 146:5	139:11 187:11	266:16 269:6	far 34:6 125:7
148:2 150:12	247:7 254:12	extraction 18:5	173:11 260:9
162:12 176:5,8	265:12 272:14	eye 159:24	264:22
178:24 179:15,19	explore 17:20	f	father 24:11
183:13 220:17,20	exposed 260:20	f 114:1	favorable 193:2,9
224:9 226:15 227:24 228:2,4	$\begin{array}{ll}\text { 261:8 } \\ \text { expression } & 148: 16\end{array}$	fab 78:17	fax $2: 4,10,15$ fi $245: 24$
227:24 228:2,4 231:12 232:13	expression 148:16 expressly $46: 19$	fabricate 81:23	
231:12 232:13 2314 234:3,13,13	expressly 46:19	fabricated 39:10	$\text { field } \quad 20: 2,2244: 15$
233:14 234:3,13,13 238:2 273:20 274:4	163:20 259:24	40:8 214:8	
$238: 2 ~ 273: 20 ~ 274: 4 ~$ exhibits $3 \cdot 74 \cdot 164 \cdot 2$	extend 98:16 109:13	fabricating 36:10	48:4 50:14 93:24
exhibits 3:7 4:1 64:2 84:5 116:6,12,20	109:17 112:12	48:10 63:17 74:8	$94: 6$ fields 22.6
$\begin{aligned} & 84: 5 ~ 116: 6,12,20 \\ & 127: 17130: 25 \end{aligned}$	190:12,20 191:4,15 192:16244:9	fabrication 48:14	fields 22:6 fig 3:20,22,23 4:4,4
235:5	256:23 257:11	53:13 56:2 75:23	4:6,13,13,14 67:9
exists 240:24	259:2,11,22 262:24	84:14 85:2 124:15	68:18,20,22,24
exoplanets 23:14	263:25	138:18 263:7	69:18,18,20,23
exotic 150:9	extended 140:10	faced 73:23	70:10,12,14,23 71:2
expanded 229:10	184:25 185:24	facility $13: 1714: 5$	90:17,20,20,21 92:9
expect 54:20 76:2,7	186:13 188:6		92:11,15 93:14
82:18,23 86:4	191:17 197:19	fact $23.267: 6$	95:17,20 96:9,12,13
112:17,20 134:11	216:20 241:3		96:14 97:2,4,5,9,10
135:16 168:7	extending 98:19	$185 \cdot 25$ 208:17	97:14,15 98:3,4,25
254:11 264:15,16	101:17 215:12	factor $137: 25$	99:15,19,19 100:18
266:14 270:24	255:14 257:6,24	factory 79:24	101:4,16,21,24
271:4	263:23 270:20,22	facts 222:4	102:12,13,16,20,20
expected 42:14	272:12	faculty 33:24	102:23 103:2,3,10
experience 44:19	extends 69:9 101:3		103:10,15,16,18
48:13 51:6 73:17	190:17 191:12	failing 191:24	104:2,9,11,14 105:1
75:10 149:8	256:24 259:17	failure 156:3 277:25	105:23 106:24
experimenting	269:18	fair 29:3 39:15	107:21,24 108:1,20
15:13	extension 238:17		108:22 109:8,16,25
expert 44:18 51:12	extensively 256:5	66.22 167:13 268.6	110:3,16 111:10,11
75:5,19,22,23			111:13 129:17,18

[fig - flexible]
Page 16

129:24 130:4,13,24	figs 90:20 168:10	169:10,15 180:17	first 5:217:9,16
131:7,12,13 132:1,1	173:10 178:7 179:5	180:21 182:6 186:2	11:9 13:19,21,24
133:6,7 134:2,5,15	235:6,18	186:8 187:25 193:4	15:8 21:25 22:1
134:18,22,22 135:5	figure 65:24 66:4,20	196:8,23 198:8	24:13 28:23 43:23
135:6,21,23,25	68:2 71:12 84:25	201:23 202:2,4,10	44:25 65:17 67:13
136:13 147:10,14	89:24 98:15 102:7	202:14,16,18,22	72:9 76:4 79:11,19
152:6,15,25 153:16	103:5 108:15,25	203:1,13 204:11,18	80:9 112:11,15,17
155:24 156:1	109:4 121:9 129:14	205:17 206:17	113:6 121:8 130:25
161:18,19 162:13	129:15,16,21	209:4,8 210:6 212:2	132:7 134:16 135:1
164:22 168:10,22	132:25 150:12	212:23 215:10,24	136:7,23 138:16
172:17,23,23 173:2	153:20,22 154:8	217:18 220:22,25	140:1 149:5 151:10
173:6 179:23 180:1	161:17 162:16	220:25 221:20,21	154:13 164:24
180:11,24 181:13	165:1,2,8,15,17	222:5 223:3,4,9,10	165:13,25 166:2,4,5
183:23 185:15	182:18 198:16	223:16,19 224:14	166:10,13 167:14
186:8 188:15 191:9	200:3 216:7 228:5	224:16,21 225:15	167:18 168:15,18
192:5 200:7,14	229:7 233:9,24	225:15 226:1,3,4,25	168:20,23,24 169:1
202:23 204:17	234:19 237:10	227:7,7 232:14	169:5,6,11,12,14,17
206:12,18 207:10	243:5 257:20	233:18 236:10,11	184:10 185:19
207:16 212:7,15,16	260:10 264:18,19	236:12 242:3,6	194:18 195:1,12,13
213:19 214:1,11,23	272:9 274:11	244:2 254:6 261:3	195:16,17 196:2,11
214:25 215:5 216:2	275:13,16	264:25	196:17 201:20,22
216:15,22 217:23	figures 90:16,19,21	films 23:12 58:9,16	201:23 202:1,8
218:1 228:19,24	101:20 131:10	96:21,22 118:8	206:7,9,17 209:3,7
229:8,11,24 230:11	136:9 150:7 172:21	149:21 150:17	211:7 213:12,13,22
230:22 231:11,16	179:7,25 191:22	218:18	215:8,9,24,25 216:9
231:20 232:3,18,19	198:5 228:20	filtering 20:21	217:9,11,12 221:10
232:20,22,23 233:4	236:12 258:20	final 11:10 88:6	221:15 223:6,7,23
233:17,23 235:21	259:23 264:15	104:11,14 141:14	224:13,19 225:6,11
236:2,6,8 241:20,22	filed 200:23	239:1,16 256:6	226:5 227:3 228:21
242:18 243:25	filing 208:16	finally 132:9 150:2	230:1,7,12 231:21
247:22 254:7	fill 227:12,13	184:14 217:17	231:22 232:5,12,12
255:15 256:9,12	filling 254:19	232:9 233:12	233:9,16 236:11
257:1,8,10,19,23,24	fills $254: 16$	238:15 274:2	238:10,12 239:11
258:8,17,20,23,24	film 39:13,14 41:5	find 13:9 36:7 $38: 8$	240:23 241:1 243:2
258:25 259:13,19	51:14 56:3 93:13	47:2 93:16 154:20	243:18 244:8
260:9,24,25 261:12	96:17,20 104:20,24	154:22,24 204:4	274:10 276:10
262:19,23,23	107:12 117:19	264:12 267:13	fit 25:8 77:20 87:18
264:21,22 265:7,16	118:12 123:17,19	fine 57:5,22 178:12	120:8 121:18
265:18,22 266:13	132:13,16 141:15	216:11 273:8	five 20:18,18 177:13
266:15,17 268:3,9	152:18 153:1	finished 51:5 124:21	flat $120: 1,5,6,12,13$
268:20,21 269:14	156:12 157:1,24	159:15,19	120:16,18 247:12
269:14,17,19 270:6	158:18 161:3 163:1	firm 12:5,6,19,20,22	248:5
270:9,10,13,14,23	163:7,12 166:5,10	12:23 31:11 67:17	flexible 60:3 61:13
271:22,23 272:2,3,4	166:13,15,17,22	firms 12:3	61:19 62:4,7,9,12
272:18	167:1,4,23 168:6,13		63:10 195:17 197:9
Veritext Chicago Reporting Company			
312-442-9087	800-24	-3290	847-406-3200

203:16 204:6,9,13	181:8 185:4 190:14	188:21 189:12,20	furthermore 192:25
205:21 264:25	191:18 195:6	195:5 197:23 199:8	future 13:9
265:10 267:6,7	197:22 199:7	210:12 211:22	g
flip 190:10	203:18 208:19	221:6 225:20 231:1	g1 92:15,20 107:12
flipped 188:5	210:9,12,24 211:21	234:17 250:25	$\begin{array}{ll}\text { gallium } & 33: 13 \\ 41: 15\end{array}$
flowing 200:17	214:3 216:3 217:7	253:25 262:2 266:1	52:13
fluid 20:23	218:5,23 219:17	founded 24:15	gate 40:22 41:14
fluorescent 28:21	220:6,13,23 221:5	founders 24:11	ga 103:25 107:12
focus 20:1 39:2 46:7	222:11 225:18	four 20:18 44:22,24	109:21 133:10
53:10 65:19 128:24	233:19 234:16	57:19 78:7 88:18,21	136:11,24 138:6
215:20	236:21 239:9	252:17	140:4 141:24 143:7
focused 17:5 26:12	242:12 246:17	fpe 63:10 70:16,19	143:10,24 144:3,11
29:1 30:12 37:20	250:24 252:23	73:24 85:16 87:25	144:16,21 145:1,5
53:24 146:8,20	260:7 263:2 269:2	90:19 94:2 109:7	149:15,24 184:14
157:3	271:16 274:22	111:9 112:3 197:9	230:2 231:21
focusing 43:22	format 269:7	197:13 198:14	241:11 269:21,
101:12,13 134:7,21	formation 134:19	204:1 205:2,7,13,16	$270: 2274: 14$
144:7,9 215:3	formatted 28:23	205:18 207:15	$\text { gen } 87: 3,9,18,19$
256:11 259:5	formed 39:19 55:10	219:8,9 247:13	general $21: 2122: 11$
foil 204:10	78:6,7,12 96:10,25	266:19	28:5 38:17 75:9
folks 13:18	105:9,10 107:25	frame 86:5	79:22 84:14 85:23
follow 107:17	108:3 128:18	frequencies 269:10	86:12 88:16 92:2,5
190:16,24 204:16	136:23 137:18	frequency 240:8,14	92:6 112:4 117:10
following 16:15	139:8 155:4 158:17	front 40:5 68:19	117:15,23 118:9
18:14 100:17	159:8 217:17	112:6 129:6 183:7	122:6 125:20
128:22	238:11 241:2,10	238:4 241:20	72:13 195:8
follows 5:22	243:17 263:14	full 34:11 $37: 10$	249:21,23,24
foregoing 276:13	274:10,14 275:14	138:22	generalize 107:15
277:11	forming 77:13	fully 165:16 198:18	generally 13:14
form 8:6 42:14	133:15 177:7	277:23	28:24 37:5 50:13
58:24 60:5,15 61:15	190:22 205:16	fun 12:22	107:5 116:1 207:16
62:19,24 69:21	forms 133:11 142:8	function 67:12	262:15
70:13,25 75:14,21	150:11 239:4	197:21,25 272:11	generation 78:17
77:8,23 78:23 80:5	formulate 8:14	functional $40: 12$	
81:19 82:9 84:17	formulating 180:5	functions 40:16	generations
85:7 87:10 88:14	forth 213:19	269:11	$86: 1487: 13,15,21$
89:13 91:3 93:1	found 28:1 46:13	fundamental 77:11	generic 266:25,25
94:4 95:3,10 97:12	172:22 176:18	82:7 220:4,10	getting 55:21 186:17
99:1,16 101:19	foundation 19:8	fundamentals 49:22	gibson 2:3 3:4 5:15
104:7,14 106:9	60:6 61:16 72:19	funding 11:25 13:9	5:15,24 29:13 30
109:20 117:17	75:6 77:22 80:6	25:3	
125:5 128:2 134:13	81:20 82:21 86:18	further 21:10	
147:19 150:24	88:15 91:25 92:25	190:12 191:10	37.11, 15 57:6.16
170:6 171:19 172:8	106:10 128:3	275:18	59:3 60:9 62:1,22
176:19 180:15	178:16 185:5		59:3 60:9 62:1,22
Veritext Chicago Reporting Company			
312-442-9087	800-2	-3290	847-406-3200

4:7,16 65:1	65:20 100:7 118:6	98:9,12,12,14,19,19	graduated 11:4,6
66:3 70:9,21 71:4	126:6 177:11	98:20,24 100:24	granted 201:6
72:22 75:17 76:1	183:11 200:2	101:16,25 102:3,5	graphics 245:24
78:1 79:4 80:7	204:14 218:8	102:17 105:7,8,9,10	gray 229:22
82:14 83:1,20 84:3	239:16 243:14	105:19,20,20,21,22	great 16:22 22:24
84:11,20 85:3,9	245:20	105:22 106:2 107:1	25:8 30:6 127:7
86:22 87:16 88:23	given 86:16,16 88:1	107:19 113:10	greater 44:11
89:20 91:18 92:4	115:22 148:22	116:8 128:21,24	grid 78:6 88:22
93:7 94:12 95:7,15	183:9,10 185:20	130:6 136:5,10,15	ground 266:23
98:1,23 99:12,23	189:18 221:24	137:13 141:20	273:9
102:8 104:16	277:12	143:7,8 144:1,25	group 3:16,18 $34: 24$
106:13 113:8 114:7	glad 246:23	145:4 146:24 148:9	34:24 35:1
116:5,14,17,24	glass 14:9 32:23	153:7,20 154:7	group's 34:23 35:23
118:1 125:10 126:8	53:15 56:4,18 59:12	164:10 166:21	37:20
128:5 129:11	59:16 62:13 72:12	167:21 178:13,21	grown 41:6 253:8
130:11,16,20	77:21 78:20 80:3	184:12 185:16,17	growth 120:4
134:20 139:19,22	81:5 86:9,16,24	187:6,20,21 189:4	140:23
148:1 151:5 164:6	87:3,8 88:1,13 94:1	190:9 191:10	gtm 103:20 104:6
164:18 170:7	glove 12:24	201:22,25 202:5	105:21 107:1 108:6
171:22 172:16	glue 71:20	205:8 209:19	108:18 109:12,14
176:7 177:16	go 6:9 27:7 29:8	210:18 213:8,11,12	109:23
178:18,23 179:1,	30:23 32:3 40:17	213:13,14,15,18	guess 34:11 46:11
179:17 180:16	47:1 50:6 55:24	215:20,23,25	51:23 54:14 101:6
181:11 183:15	57:1 64:1 85:12	221:10,13,19,20	173:17 222:21
185:9 188:24	96:17 109:6,18	223:3 225:25 226:4	225:22 231:20
189:17,23 191:3	110:19 113:9 116:6	226:6 230:24,25	238:15 271:22
192:11 195:9 198:	125:6 128:10 136:5	231:21,22,23,24,24	guide 19:12
199:11 203:22	136:10,21 149:24	232:1 240:8,13,20	h
208:20 209:17	149:25 150:1 153:1	241:19 244:10	half $28: 2599: 15$
210:2,10,17 211:11	164:6 176:13 196:4	254:19,20 256:14	$152: 16,22250$
212:3 214:4 216:4	202:1,5 203:24	257:6 260:5 261:21	hand $4: 11,1329$
217:21 218:9 219:2	216:8 230:25	267:15 270:17,20	64:12 116:8 180:23
219:23 220:9,15,19	231:19,21 244:9	271:13 272:1	$262: 25 \text { 263:4,24 }$
221:9 222:8,15	248:8 258:8 267:12	273:11	278:8
225:24 228:1 231:4	goals 41:8	good 5:25 16:22	handed 116:18
234:1,22 239:12	goes 15:6 42:17	24:23 69:14 95:5,25	148:6
242:15 246:24	99:10 102:25	96:2 192:4 212:18	handle 28:11
251:3,7,14,19 252:2	131:21 191:20	248:3,21,22	$78: 1982: 20$
253:1 254:3 260:11	214:6 259:19,20	google 176:25 177:2	
262:6 263:9 266:4,9	265:3 272:15	grab 20:25 84:4	handy 83:14,17
267:12,23 269:3	going 17:18 27:2	grading $32: 9$	happen 13:2 43:4
271:19 272:25	42:13 47:5 57:8	gradings 31:25 32:4	105:19 130:4
273:11,25 275:19	58:3 65:20 67:3	graduate 11:9,22	136:12 163:23
give 28:5 39:3 58:13	80:3 84:6 86:5	13:24 14:2,24 15:12	
62:25 64:1,21 65:15	89:14 91:8 97:3,6,7	19:11 43:9	211.17247 .24

[happen - impression]

275:5	history 3:18 127:15	ideas 27:23 86:12	illustrates 262:19
happened 98:3	hold 149:12	entical 73:2	illustrating 248:20
happening 154:9	holding 67:771:17	identification 31:2	illustration 103:6
232:20	167:25	33:19 34:17 35:17	150:14 221:16
happens 32:13	hole 211:8,9,19	37:14 129:10	225:6,7,10,11
happy 6:20 58:1	245:13,19 246:16	130:10,19 139:21	232:18 239:3,24
hard 34:20 49:16	247:23 255:7	176:6 178:25	244:9,12,14 259:20
50:8 98:4 131:7	holes 188:14 190:3,4	179:16 183:14	illustrations 173:9
235:12 239:15	190:4 211:12,12	220:18 227:25	222:21 259:22
251:16	217:12 250:11	identified 41:20	image 155:3 240:10
harder 138:25	254:9,16,19,20,	45:11 102:3 108:	imagine 3:13 30:15
hardware 23:7	255:2,4,8	108:17 110:13,	82:8 104:9 234:20
harvesting 20:6	hologram 32:9	111:9 154:12	235:3,13 253:16
hatalis 66:5,24	holographic 15:21	188:15 240:23	imagineoptix 23:18
67:25 68:1,6 70:6	honest 12:5 162:3	244:7 264:10,	23:25 24:7,9 31:6,6
90:6 122:6 131:16	hope 35:12 36:5,	269:20	32:18 55:17,20
132:19 134:9 136:3	133:7	identifies 104:2	63:13 79:7
138:12,13 144:10	hopeful 239:19	identify 5:12 45:10	imagining 122:9
162:13,17,21 174:2	horizontal 98:15	45:13 56:24 57:21	224:1
174:4	hot 14:17	59:18 98:5 100:8,1	immeasurably
hear 67:5 219:20	hour 1:17 75:3,4,24	100:16 107:24	181:23
226:17	hours 40:13 74:21	108:18,21 127:4	immediate 248:6,7
heard 60:13	177:11,12,20	167:5 168:3 205:	immediately 93:12
height 157:3,7,14	huh	251:11,21,23	137:2 228:22
held 5:4	husch	identifying 100:18	impact 91:2
help 12:21 23:17	huschb	2:12 165	implemented 88:7
105:1 247:19	16	il $2: 10,15$	implementing 27:24
267:13	hypothesis 136:2	illinois 1:16 5	implicit 261:11
helped 247:8	198:23 231:3	277:2,7	implied 256:23
helpful 48:2 99:4	hypothesize 190:15	illuminate 121:11	257:10
120:24 152:12	246:19	illustrate 66:20	imply 175:18
165:4 229:18 263:5	hypothesizing	131:3 226:12 228:9	implying 268:23
helps 96:19	135:25 230:16,21	236:23	important 22:18
hereof 278:6	hypothetical 131:1	illustrated 32:2 67:9	84:15 85:5 102:2
hereto 278:5	131:4,14,16 141:22	121:8 142:4 153:21	107:16 122:11,16
hereunto 278:7	145:22 147:6,7	155:10 161:2	156:16 174:6 177:7
hesitate 194:12	186:11 188:8 229:2	162:21 168:10	188:12 191:6
263:12	i	173:12 181:14	236:17 266:22
hexylthiophene 40:4		198:4,17 202:18	importantly 137:20
high 40:1 81:24 82:9		203:9 205:6 224:9	142:22
240:8,14	$8: 2126$	226:20 238:1	impossible 147:24
higher 79:23 81:2		19 247:23,23	imprecise 165:4,6
91:7		7:25 254:18	imprecision 165:5
highlights 125:20	$229: 13$	260:9 272:18	impression 39:4

Veritext Chicago Reporting Company

impressive 40:15	indication 260:12	163:12,16 164:5	250:3,10,11
improve 18:4 193:1	indirectly 278:6	166:4,10,13,14,16	insulators 61:19
247:19	indium 41:15	166:22 167:1,4,23	77:9 154:1 209:12
improved 20:13	individual 78:20	168:6,13 169:8,10	252:16
21:5	80:4	169:15,19 170:8	integrate 25:25
improvement 25:12	indulge 84:4	171:3 180:14,17,20	integrated 13:3
26:25 28:9	industrial 11:25	181:21 184:11	24:18 53:14 245:17
inaccurate 34:12	124:17	186:2,8 187:25	264:3
35:3,8,25 36:3	industry 11:18,20	196:7,23 201:23	intellectual 25:5
37:23 38:1	16:23 17:4 22:25	202:1,4,10,14,16,18	42:20,24 46:20
inappropriate 81:25	23:2,2,3,21,24 24:2	202:22 203:1,6,13	intended 123:23
171:8,11	44:9 123:3 124:12	209:4,7 211:4 212:1	129:23 186:24
inch 87:18	256:5	212:23 213:13,17	198:2 237:18
inclined 106:21	influenced 17:3	215:10,23,24	intending 94:9
147:3	info 4:16	217:18 220:21,24	intention 51:11
include 46:7 54:20	inform 34:9 105:6	220:25 221:20,21	107:11 129:19
55:3 59:1 65:10	268:7	222:5 223:3,4,9,10	inter 156:12 157:1
111:23 141:6	informally 176:18	223:16,19 224:14	157:24 158:18
173:20 175:9	information 15:5	224:16,20 225:14	169:9 206:17 242:3
228:17	76:5,9,12 84:24	225:15 226:1,3,4,25	interact 137:14
included 43:14 65:9	informed 268:2	227:6,7,15,17	158:11
83:11 122:5 228:6	initials 71:5	228:25 232:14	interaction 20:1
includes 21:20	innolux 1:3 5:7	236:10,11,12 242:6	interest 20:8
33:25 42:17 45	276:3	245:19 248:25	interested 278:5
69:23 115:23	ovate 20:9	249:13 254:6	interlayer 152:18
172:23	innovative 208:3,5	255:13,21 258:5	intermediate 104:12
including 22:6	211:18,24	260:5 261:3	internal 264:3
24:19 48:6 51:1	inorganic 32:22	insulation 107:12	265:11
52:6 76:10 122:13	39:18 40:19 114:21	188:19 189:2,9	internet 23:9
172:21 192:9	115:1,	210:6,8,11,20,23	interpretation
inclusive 276:15	inside 12:25 21:20	233:18 244:2 245:3	151:7 174:17.
inconsistent 102:20	67:15 72:11 100:25	247:19 255:12	220:10
incorrect 268:11	121:18,21 265:12	insulator 60:16	interpreting 176:1
incorrectly 137:6	inspecting 162:5	96:23 103:21	interrupted 257:16
increase 88:19,20	inspection 74:22	133:13 140:24	257:19,20 258:1,3
125:21 139:12,13	instance 108:1	142:6 143:17	interruption 257:13
148:3,7 157:8	122:3 125:8,12	146:11 149:19	intimate 16:24
237:18	instances 151:14	150:1 153:25	introduction 19:20
increased 147:22	245:12	154:19 158:18	22:3
increases 88:12	instrument 117:13	160:17 169:11	introductory 19:1
independently	insulating 40:24	180:21 189:16	invention 43:3,6,14
109:20	41:2,5 58:9,10,16	204:20 211:4	43:15 53:12 157:6
indicate 165:13	58:20,21 149:21	217:12,15 227	157:14 188:3 191:1
indicating 237:2	150:17 153:1,8	232:7 234:21	192:6,10,21,24
	161:1,3 163:1,6,7	235:11 238:23,25	193:3,22 270:10

[invents - laid]
Page 21

invents 192:5	161:1,4,9,15 162:5	keywords 177:4	193:17 198:3,5
inverse 270:1	162:18,22,25 163:5	kind 12:13 14:3	201:14 208:7,12
investigated 21:2	163:10,15 164:5	24:4 26:11 31:25	226:10 227:21
invited 42:21 43:18	167:7,9,9 170:4,16	32:23 34:1 41:4	229:14 234:12
involve 20:5,5 33:3	171:1 186:12,14,16	48:15,16,22 71:20	244:25 247:6
39:4,5 47:8 48:13	186:17,20,24 192:2	74:5,7 76:18 80:12	251:16 255:17
48:21 59:19 81:23	193:4 200:15	86:20,21 101:8	264:2 268:25
involved 10:22 16:6	202:24 203:6,9	111:17 119:19	271:17 273:8
16:8 17:23 18:25	206:22,25 207:6,9	124:11 131:7	knowledge 40:12
26:5 33:8 36:22	207:18 208:13,23	156:24 159:23	55:1 63:21 76:11
37:7 44:7 50:22	210:6 212:22	176:24,25 187:8	81:17 87:17 121:20
62:11,12 85:15	213:15,17 215:23	203:9 235:15	121:22,23
201:16 215:19	217:17 228:23	237:21 243:21	known 77:10,13,15
involves 19:2 26:14	229:6 230:9,17,25	245:21 248:2	77:17 121:3 132:20
37:2 119:15 151:1	230:25 231:16	249:14 250:4 266:5	148:16 158:1,2,6
243:6	232:1,9 233:11,17	266:18 271:6	160:8 161:6 170:11
ipr 7:20	236:8,19,20 237:5,8	kinds 13:18 14:4,12	209:10 210:23
ipr2013-00066 1:5	237:14 275:15,15	51:22 52:7 54:5	211:1,13,14,25
276:5	J	77:8	242:3,7 243:22
irvine $2: 4$	j 1:11 3:2 5:20	knew 249:4 know 6:19 13:5	244:22 245:4,7
island $12: 7$	$\text { j } 1: 113: 25: 20$		275:7
issue 64:9 65:22		$\begin{aligned} & \text { know 6:19 13:5 } \\ & 24: 25 \quad 26: 728: 20 \end{aligned}$	korea 79:15
122:15 163:5 205:1	japanese 3:12	$30: 4,7,1231: 8$	1
206:2,7 $240: 25$	jeffer 2:2 jmbm.com 2:5 johnson 2:8 5:5,18	$\begin{aligned} & 30: 4,7,1231: 8 \\ & 35: 1038: 740: 2 \end{aligned}$	l 1:14 203:10 277:2
248:12		49:24 50:10 52:12	278:12
issued 30:3 42:2	johnson 2:8 5:5,18	$57: 2058: 3 ~ 72: 23$ $73 \cdot 176 \cdot 15,2577 \cdot 1$	lab 3:19 5:8 13:25
43:13	joined 24:10,24 49:4	73:1 76:15,25 77:1	14:4 19:2,9 24:3
issues 8:8 9:18	70:3	77:2,20 79:5 80:18	36:22 37:2,21 39:1
131:6 158:23 163:8	joining 7:20	$81: 18,2182: 583: 13$	39:2 40:14 49:19
181:25	journal 30:7,10	84:2 85:18 86:15,17	label 93:1799:11
items 165:9	45:21,25 46:7,17	86:23 87:3,8,22	100:18 108:11
ito 32:24 41:9,13		94:14 98:2 100:2,12	labeled 97:6,18,24
82:9 92:20 93:3	journals 42:15,18	103:10 104:5	98:9,10 99:18,21
111:11,13 131:7,21	55:2	108:14 118:23	100:24 101:18
132:2,7,21 133:11	justify 81:1	120:19,25 121:25	110:16 132:3 142:2
133:16,20,25 134:4	justify 81:1	$122: 3,12,20124: 21$	181:1 244:4 256:15
134:11,24 135:2,6	$\frac{k}{40.1067 .13}$	125:8 126:18 127:8	labeling 229:3
135:13,17 137:14	keep 40:10 67:13	127:10 146:20	labels 101:7 102:6
139:6141:11	133:18 176:22	148:12,24 149:2,8	110:9 256:18
145:12,18,19,20,24	187:2	152:22 154:7,9	laboratory 1:6
146:5,19 147:3,11	keeping 67:17	155:17,17 157:22	$36: 18 \text { 40:10 } 276: 7$
152:16,25 153:1,8	keeps 72:11	158:10,15,23	labs 17:2 50:22
153:16 157:23	key 16:9 191:1	163:25 164:1	laid 22:11 105:7,21
158:4,10,16,24	192:4	173:11,14 178:21	248:5
159:1,7,16 160:4,15		186:20 187:5	

language 50:6 155:1	131:21 132:2,17,22	249:19,19 250:3,7	20:11,13 36:10 39:8
169:2 195:11 197:2	133:25 134:11,25	252:7,7,17,22 253:3	50:24 51:1 95:6
203:3 204:6 211:15	135:17 141:11,20	253:4,5,7,11,13,17	123:21 149:9 170:2
213:25 214:18	144:1 145:6,13,19	253:22 254:9,13,17	170:15,25
229:1,3	145:20,20 146:5,19	254:21,22,25 255:8	lead 12:17 13:11
languages 205:4	147:11 151:22	255:12,13,22 256:6	26:10 43:4 145:8
large 67:16 78:5,19	152:25 153:1,8	256:12,21 257:3	148:8 272:5
78:19 80:3,18,20	156:12 157:1,24	258:5,6,12,13 259:1	leads 144:23
81:13 85:21 87:3,8	158:4,11,11,16,18	259:8 260:6,8,17,20	leave 105:11,16
89:11 91:1 105:22	158:24 159:1,7,16	261:1,1,13 262:1	106:18,21,25
106:7,7,8 229:25	159:16 160:4,4	272:8,8,19,20,24	lecture 39:6
largely $22: 10,14$	161:1,1,23 162:4,18	layering 129:24	lectures 50:23
75:15 130:14	162:25 163:5,15,16	253:19	led 19:15 27:10,22
132:17 181:22	164:5 167:6,14	layerings 130:2	27:23 114:25 131:3
184:19	168:6,8 169:8,9,16	layers 15:19 26:6	leds 28:21
larger 78:8 81:5,13	169:18,19 170:17	58:10,21 61:18 62:3	left 98:20 101:3,4,9
85:19 87:14 107:12	180:14,25 182:8,16	62:23 63:1,6,7	101:12,17 102:15
121:12 274:24	182:20,21 184:11	77:13 82:6 92:15	102:16,22 103:1
largest 121:4	186:12,18,21,21,24	97:15 115:11,17,18	109:15,18 110:20
lasalle 1:15 2:9 5:6	188:19 189:2,2,6,10	129:19 131:11	161:25 173:2 181:5
277:6	191:2 192:1,2,3	132:3,4 145:6 154:6	185:17 188:8
laser 119:8,12,15,18	193:20,22 194:9,10	160:15 163:11	190:18 203:8
119:19 120:19,23	195:15 196:2,6,20	181:21 188:5 189:3	229:11 230:4,22
121:1,5,10,18 122:1	197:5,7,14,16,19,20	190:10 196:14	244:9,12,15 247:16
124:11	198:6,15,18,19,24	198:8 199:19 214:5	256:18,20 257:4,9
lasers 120:8 121:2	199:1,3,25 200:5,9	214:8 215:17	257:11,20,22,24
121:11,15,25	200:10 202:8,21	220:11,24 221:14	258:10,12,18 259:3
lastly 12:8	204:2,3,24 205:23	222:5 226:1,5,9	259:12 264:23
late 139:9	206:17 207:2	230:9 249:11,12	272:17
lately 177:19	208:12,22,23 210:6	250:14 254:24	length 91:20,24
law 6:15	210:20,21,23	274:21 275:9	190:25
laws 77:11	211:20 213:14,17	lays 191:23	letters 30:11 73:11
lay 221:10	213:17 215:10,24	lc 20:13	100:14
layer 26:1,13,20,22	215:25 219:5,8,11	lcd 15:1,3 19:14	level 48:12,20 49:9
26:25 27:9,11,16,18	222:6,6 224:2,4	28:13,23,24 32:11	51:852:4
29:2,6,7 33:1 39:16	225:17 227:15,18	33:7 53:25 73:17	levels 245:23 250:10
39:25 40:24 41:2	227:18 228:23,25	74:4 75:5,20,23	Ig 4:16 76:3,12,12
60:2,11 61:1,4,12	229:6,15 230:1,17	78:17 122:1,14	license 277:3 278:12
61:22 62:16 63:3	231:16 232:15	123:3 124:12	licensed 277:3
82:9 85:4 92:21	233:11 236:8,19	132:16 149:10	lies 184:18 212:24
93:12,12 96:15	237:8,14 242:3,11	159:18 193:1 245:6	lifetime 158:17
97:18 101:21	242:19 243:7,9,11	269:12	light 17:22 18:5
103:15,17 104:17	243:18,19,20 245:3	lcds 13:13,14,20,22	20:2 28:12,19,20,21
106:21 107:4,19	245:9,19 247:12	14:3,12 15:18 17:5	28:25 32:13 39:8
111:11,13,15,24	248:4,4,18 249:14	17:7,11,13 19:6	268:17
Veritext Chicago Reporting Company			
312-442-9087	800-248-3290		847-406-3200

lighting 28:22	155:16 156:25	235:22 241:25	looking 12:15 17:8
lights 28:21	184:25 185:16,20	Ilp 2:2,8,13	18:7 33:13 34:3
lightwave 3:16,17	185:24 206:13,14	local 12:7	93:16 95:16 96:14
limit 42:16 52:11	206:23 207:1,7,10	located 5:5 17:2	98:14 101:6,15
77:11 117:12 123:1	207:11 213:13,15	89:10 90:25	133:4 143:25 162:4
171:9 174:11 176:2	213:16 242:2 244:8	location 131:6 168:2	172:1 185:15,15
217:25	246:16 248:24	261:24	189:19 191:22
limitation 203:14	262:8,12,13,14,20	locations 99:19	195:8 205:14
limitations 77:19	262:24 263:11,11	long 25:19 58:2,3	218:20 235:18
166:19,25 194:12	263:12,13,19,19,22	94:3 100:6 109:5,5	255:9 261:17
195:1,24 197:7	266:5,8,10,10,23	158:2 273:8	262:16 266:15
201:11,14 206:11	274:9,18	longer 91:5 248:3	looks 16:13 71:5
limited 40:11 48:18	liquid 25:25 27:9	look 9:14 20:4 34:21	loss 28:25
48:24 59:2 61:24	33:1,2,14 36:18	39:16 40:15 41:17	lot 14:12 44:8 149:9
79:12 91:16108:7	41:15 48:6 51:16	47:12 57:4 59:7	183:11 269:10
115:15 212:5	52:9 54:16 67:14,15	68:18 69:9 70:23	lots 253:6
239:23 269:24	72:11 93:24 94:6,20	73:8 74:17 89:25	Iow 51:8 54:5,5
limiting 108:4	132:17 165:22	90:12 92:9 96:9,18	81:24
limits 82:5	209:2 262:7	102:23,23 104:22	lower 102:16 169:17
line 78:17 80:12,22	list 8:16 30:2,5 34:1	104:25 106:14	182:9
81:2,4 91:21,24	36:8 42:7 45:17	110:3 112:5,8 116:6	Iowered 92:8 244:16
100:24 101:17	52:21 55:1 56:19	122:17 123:10	m
103:1 110:6,22	125:1,2 127:23	128:15 142:9 146:5	m 2:3 4:15
133:9 136:6,6	251:2,4	150:4 151:11,22	magic 77:6
137:22 140:10	listed 8:16 39:23,24	152:6,9,10,15	magnified 129:13
142:1,15 149:16,23	41:23 43:11,13,19	155:19 156:9	main 34:23 40:25
151:24 152:1	44:19,24 46:1,6	162:11 165:18	$41: 1 \text { 118:16 }$
164:23 170:22	59:22 74:25 75:11	168:9,22 170:21,22	mainstream 80
185:2,25 186:1	118:16 122:25	176:14 178:6,7	maintain 190:10
210:5,11 241:2,10	123:16 126:12	179:5,22 180:11	major 194:17
243:16,16,17	127:18 213:24	183:9,23 184:21	majority $24: 25$
266:19,20 267:24	217:3 251:8	185:10 192:18	262:10
268:19,20 269:15	listen 163:9	201:18 206:12	making 13:25 14:3
269:16,23 270:3,4,7	listing 50:8	207:20 208:9,25	$\begin{array}{r} \text { mang } 28: 11 \text { 56:17 } \end{array}$
270:18,25 271:13	lists 41:1858:9	219:13 224:12	$59: 11,1573: 24$
271:14,15 272:1,1	literally 67:14	241:20 252:3,4	108:13 116:9 128:9
272:11 274:9,17	247:25	256:8,8 257:1	242:5 249:13
linear 28:15	literature 76:20,21	259:13 262:19	mandated 213:20
lines 21:20 47:18	76:22 126:25	264:7 267:4,5	mangels $2: 2$
79:1 94:1,1,11	literature's 78:3	271:22 272:2	manipulate $28: 17$
98:15 99:9 102:1	litigation 8:25 10:22	273:24	manufacture 51:15
103:25 108:23,24	10:24	looked 9:14,16,19	manufacturer 88:9
109:12,14,23,24,25	little 11:2 23:5	15:19,21 16:2 17:25	
110:13 136:23	34:20 72:15 76:23	18:3 76:19 172:15	$138: 10139: 6,13$
140:1 153:18	216:20 228:21	177:19,20 178:4	

147:18,21 148:3,8	212:6,6,10,12	media 57:9,13	220:24 221:1,11,11
212:13,25 213:5	matrix 39:7 45:2,6	113:11 114:3	221:14,19,23 222:4
237:6,19 263:5	46:2 47:17 51:16	164:11,15 209:20	222:6,17,19,20
manuscript 30:17	53:13,17 55:9 60:4	209:24 267:13,16	223:7,9,9,11,13,20
manuscripts 30:16	61:14,20 62:5,14	267:20	223:22,22,22,25
manzo 2:13 5:18	267:2 269:8	meet 194:11 195:24	224:2,3,7,7,11,11,13
mark 30:24 34:14	matter 7:10 8:13,15	196:10 197:2,7	224:14,15,19,22
35:14 37:11 130:7	10:9 20:2 47:22,23	203:3 215:2 217:20	225:2,3,4,4,7,8,12
130:16 139:19	65:6,22,23 72:1	217:23	225:15,15,17,25
178:23 179:13	74:19 177:18 180:6	meeting 7:18 197:12	226:5,7,18,19,22,22
183:12	180:6 220:5,8	meets 195:1 206:10	227:2,4,5,10,12,15
marked 29:11 31:1	mattered 161:2	member 33:24	227:18 230:6,7
33:16,18 34:16	maximize 85:24	memory 47:3 54:20	231:14,16,17,18
35:16 37:13 64:5,14	mbe 122:1	56:8,11 73:9 94:8	232:6,13,15 233:15
64:23 65:24 66:1	mbes 121:19	118:22 123:7	233:16 245:9
68:2 69:10 116:2	mean 27:6 34:8 38:4	139:17 156:10	249:16 250:2,4
129:9 130:9,18	38:22 51:18 59:13	175:23	263:14
139:20 176:5	60:25 61:1,3 63:1,4	mention 53:7,8	metals 56:2,14,16
178:24 179:15	63:8 68:11,16,17	66:18 76:20 83:6	56:19 59:11,15,19
183:13 220:16,17	70:16 72:4 74:24	119:6,9 123:5,9,22	77:8 115:23 188:20
227:24	78:10 89:15,18	125:18 126:1	199:15 220:21
market 12:16	110:24 116:19	167:24 173:18	221:1,21 223:2
marking 68:25	118:3 120:10,13	213:21 236:17	225:14 226:3
mary 2:215:1	126:12 131:25	264:12	227:20 234:20
masking 130:2	152:22 157:5 158:2	mentioned 26:17	235:11 243:17
master's 11:10,13	160:13 163:3 181:9	30:22 46:24 52:22	250:13
51:10	190:1,13 197:25	76:4 80:10 83:8	method 117:24
match 129:23	224:22 227:16	118:19 121:16	methods 25:18
material $12: 14,14$	229:23 234:18	123:18,24 126:24	117:20,22 118:7,9
17:23 20:9 32:21	236:10 241:1,21	130:25 206:8 274:7	michael 1:113:2
33:2 39:17 40:19,21	244:13,25 246:19	mentioning 127:16	5:10,20 6:2 57:14
51:20 52:16 67:14	253:7 266:3,8 $271: 9$	mentions 66:17	114:4 164:16
114:23 132:5	273:12	119:15 255:19	209:25 267:21
133:10,17 135:8	meaning 172:12	mentor 44:6	275:22 276:10,19
149:25 157:2,24	meaningfully	met 24:15 205:23	277:7,9
170:5 171:2 209:10	142:24	216:23	micro 4:21 26:1
215:13 232:17	meanings 61:9	metal $4: 12,1232: 24$	122:18
247:25 248:2	means 15:21 20:24	63:5 92:20,24 93:4	microdisplays
materials 17:24	25:4,14,18 49:20	93:6115:17,18	159:25
37:8,9 39:20,21	67:19 71:20 93:25	116:1 132:9 135:14	microelectronic
49:22 50:2 52:5,6,9	94:10,22 175:7	136:25 141:20	245:16
56:1 57:19 58:16,20	219:7 227:20	142:4 143:8 144:1	microelectronics
71:22 82:7 114:17	meant 116:14 130:3	169:16,18 189:2,10	50:23 125:20 249:9
114:19 115:1,17	131:12 245:1	189:15 199:12,25	256:5
119:12,18,21 120:1	271:21	200:5,12,15 220:23	

Veritext Chicago Reporting Company

microfab 4:23 124:19,24	186:12 198:16 238:3 272:10	$\begin{aligned} & \text { 245:23 } 252: 15,19 \\ & 252: 20 \end{aligned}$	$71: 19153: 9175: 9$
$4: 19,24$	27	2.	272:5
middle 24:14 101:8	144:10 234:15		necessary 80:14
103:1	modifying 131:20		82:13
mile 91:9	131:20	nakamoto 3:12 8:24	need 10:2,5 48:16
mind 40:10 122:10	module 3:19 38:20		49:15,17 50:7 55:23
158:21 257:18	38:21 39:2,12 40:6	60:19 61:12 64:18	83:13,14,21 100:13
mine 100:6	40:6 76:6	64:19 68:9,14,18,20	110:8,10,12 115:24
mini 34:1,2	modules 39:2	68:24 69:2,14 70:11	126:5,17 136:19
minimize 85:22 89:3	molecular 40:1,3	$70: 18 \text { 71:15 72:8,9 }$	137:1,16,21 140:25
89:4 237:18 263:6	119:7		146:22 175:22
minimum 115:24	molecules 18:4	23	179:9,24 191:4
minnesota 12:9	molybdenum 56:11	94:6,17 95:16,20	199:20 214:8,13
minor 30:1 38:13	56:21	103:12 99:21 5,9:	216:10 222:5 223:4
minute 105:3	moment 21:9 23:19	104:21 108:4	228:11 232:8
128:23	41:17 57:3 72:25		233:11,13 241:19
minutes 113:8 123:8	93:10 98:8 110:9	$172 \cdot 15184 \cdot 7$	265:9 275:11
mirror 155:3	112:6 117:5 118:22	nakamoto's 69:20	needed 15:25 42:5
misleading 97:22	124:20 139:18		121:12 269:7
165:14 253:7	156:10 251:25	5•110	needs 137:17 138:22
missed 137:5	264:4,7	6:2,2 12:6 24:12,13	154:4 194:18
missing 153:20	month 35:10,12		217:13 249:10
222:22	79:21	names 24.14 159.21	negative 174:3
misunderstand 99:3	months 79:19 80:10	168:25 211:10	nematic 14:14
mitchell 2:2	morning 5:25		netherlands 16:14
mobility $18: 6$	mother 78:13	22.6	16:16
mode 16:8	motion 200:22	nanomaterials 22:7	never 176:10 178:9
modes 14:14,15,15	motivation 249:3	nanomaterials 22.7	178:10 180:7
modest 86:6	move 20:24 57:23		234:10,10
modification 130:24	260:2		nevertheless 159:7
131:15 139:3,24,24	moving 227:17	235	268:12
140:5 141:4,7,19	mpx 71:6		new 4:6 12:17 21:17
142:10 143:25	multi 60:2,11 61:1,4		27:23 28:6 79:10
144:12 145:1 146:3	61:12,22 62:16 85:4	natural 273.13	142:15
146:12,15,18	92:13 242:11,19		nice 228:17
147:20 165:3	243:7,9,11,20 250:7		nitride 33:13 52:13
236:19	252:7,7	10,23 34:25 43:8	59:1 96:22 209:4
modifications 139:2	multiple 14:25		255:20
139:15	47:12 60:15 61:7,8	near 135.2 15	noise 13:
modified 4:4,6	61:9,18 62:3,23		nonmechanic
129:14,15,20 133:3	63:1,4 81:3,6,14,15		20:19
133:5 136:13 137:9	83:3 103:7 121:10		nonobvious 189:24
147:10,14 148:6	121:11,15,15	33:1 46:14 49:18	nonstandard 142:16
150:11 165:7	126:15 137:16		
Veritext Chicago Reporting Company			
312-442-9087	800	290	847-406-3200

rmal 172:12	87:10 88:14 89:13	occasions 14:11	269:12 270:16
notary 276:24	91:3,25 92:25 94:4	occupies 87:23	271:20 272:25
note 66:20 97:20	95:3,10 97:12 98:22	occurrence 249:10	274:4 275:17
166:17 172:9	99:1,16 101:19	occurring 152:24	old 38:3
notice 1:13 101:7	104:7 106:9 117:17	occurs 26:24 28:11	oled 114:24
noticed 83:6	125:5 128:2 134:13	29:5 74:7 263:6	once 84:12 201
novel 15:18 190:5	147:19 150:24	offer 21:4 60:21	ones 10:5 49:2 52:3
211:19	170:6 171:19 172:8	offered 151:9	53:10 54:1 159:20
novelty	177:14 178:16	offering 145:2	159:22 251:4
nowadays 250	180:15 181:8 185	offers 25:11	ongoing 44:21
nsf 3:19 37:6	188:21 189:12,20	office 1:15:5,9	online 38:8
number 3:8 4:2	190:14 191:18	276:1 278:8	onward 184:13
29:12 31:1 33:18	195:5 197:22 199:7	offs 85:11,13	open 69:970:22
34:16 35:16 37:13	203:18,25 208:19	offset 69:16 171:17	106:3 107:1 187:20
45:17 48:21 57:9,13	210:9,24 211:21	172:6,10,13 184:8	88:19 189:1,9
64:6,15,24 66:2	214:3 216:3 217:7	oh 48:1 51:21	191:25 210:23
74:15 78:12 80:23	218:5,23 219:17	135:19 142:10	opened 154:4 181:2
88:1,6,12,17 113:11	220:6,13 221:5	152:2 231:13	181:5
114:3 129:7,9 130:9	225:18 231:1	240:17	opening 9:19 65:13
130:18 139:20	233:19 234:16	okay 19:22 31:17	65:16 108:2 137:14
142:17,21 143:4	242:12 246:17	44:1 52:18 53:3	137:18,19,21,24
148:8 151:13	250:24 251:6,24	64:21 71:10 73:13	138:3,4,7 151:2,17
164:11,15 176:5	252:23 253:25	82:15 84:3 90:2,24	151:20 152:5,16,22
177:11 178:3,24	260:7 262:2 263	93:8,19 94:13 100:8	153:16,17,19,24
179:15 182:8	266:1,6 269:2	100:11,20 103:14	154:6,17 155:1,4
183:13 209:20,24	271:16	105:4 108:16	160:16 169:15
220:17 227:24	objective 8	110:13 116:16	181:4,6,7,10 186:8
267:16,20	94:21 237:22	117:8,9 118:25	186:13 190:23
numbers 1	objectives 70:4	119:11,17,25	191:25 196:7,20,23
128:14 241:24	237:19,25	122:23 123:12	197:14,16 198:6,17
numerically 197:1	observation	124:5,22 125:11	198:24 202:16
0	obtained 16:12	127:17 129:1,	203:12,17 204:20
	27.1	133:3 134:23	206:16 207:1 210:8
oath 6:11,14 114:9	obvious 90:8 131:17	135:20 136:4 137:6	211:3,17 212:24
$276: 11$	132:20 133:1 136:3	139:14 143:22	215:9 217:16,18
	138:9,14,15 142:10	148:2 156:9 162:7	218:13,18,22
	142:25 145:15	178:22 203:24	219:14,19 220:25
251	147:8 188:18 189:7	207:15 215:20	221:21 223:15,19
	189:18,24 230:20	221:18 223:21	223:20 224:15
objection	233:2 235:14 236:5	226:14,24 228:14	25:2,9,12 227:
$69: 21 \text { 70:13,25 }$	237:11 272:21	229:23 232:19,23	227:14 232:8
	obviously 248:10	235:24 238:9,18	233:13 236:9 242:8
$78: 2380: 582: 21$	275:12	239:13 249:7 251	246:4 247:3,18
84:17,22 85:7 86:18	occasionally 14:18	259:5 260:19	249:1 255:5 260:25
84.17,22 85.786.18	257:18	265:15 268:18	261:2,8 272:17,19

openings 105:9,10	optix 3:13	195:21,21 205:9,15	146:11 228:25
106:5 107:6,24	opto 3:16,17	208:6,11,15 209:5,9	230:19 231:23,25
108:13 137:16	optoelectronic 27:5	210:3 211:1,15,25	233:12 239:1
138:21 140:22,25	optoelectronics 20:3	214:9 219:20 220:2	overhang 69:13
141:8 169:18,20,22	optofluidics 20:22	230:20 232:25	overhanging 70:17
169:23 182:20,25	30:21	233:23 234:14	70:22 71:11
189:6 194:10 212:1	orange $229: 19,21,23$	235:15 236:4,18	overlaid 133:9
215:12,17 242:5	238:15	237:4,11,13 242:7	overlap 102:10,17
249:13 254:20,22	order 106:2 134:8	242:24 244:22	109:23,25 128:13
255:7	136:1,18 142:21	245:4,7 249:8	168:18,21 193:4
opens 108:8	143:4 145:11,12,15	250:18 252:13	273:4,13
operation 50:25	145:19 166:22	254:11 258:19	overlapping 101:5
73:4,22 76:22 81:25	179:25 192:25	262:5 265:16,19	113:3
82:4 247:9	194:16 196:13,14	266:14 268:16	overlaps 113:5
operations 50:24	212:5,7,13 213:3,8	271:3 272:16,21	161:9 168:15
76:10	213:10,18,23 216:1	organic 17:22 19:7	overlay 218:16
opinion 8:15 30:2	216:14,17,18	19:14,15,15 21:3	overlie 275:13
66:9,12 75:15 135:4	218:10,12 220:11	32:21 33:1,3,10	overlying 274:17
158:14 180:5,8	225:2 233:5,7,18,20	36:19 37:9 39:8,12	owned 10:8,16,19
212:8 220:4,7 229:4	ordering 157:1	39:14,17,17,19,21	owner 1:7 2:17 5:19
opinions 8:6128:18	196:18	40:21 52:6 114:16	8:10 10:17 276:8
176:19 177:8	ordinarily 172:5	114:19 115:5,17,25	oxide 59:5 93:4
184:24	ordinary 47:21,25	orientation 96:15	96:17,21
opportunities 12:15	48:4,12,19 49:10	132:13,15 141:15	oxides 41:6 52:6,7
46:21	50:6,17 51:8,12	original 64:20	oxidizes 248:2
opportunity 6:24	61:4,6 66:12 67:2,4	142:18	p
24:17	68:4 69:15 72:16	orthogonal 109:14	p.m. 113:15 275:25
opposed 39:18 41:5	73:2 89:7 90:8	262:9,20	$277: 16$
114:20	106:17,20 107:17	otft 40:6	p3ht 40:2
optical 16:2,4,6	115:25 133:2	outcome 44:1 278:6	package 92:17
19:20 20:7,21,24	134:12,16 135:3,16	outer 92:23 93:9	110:23 111:16,22
21:3 23:8,12 26:6	138:1 142:9 143:1	outermost 168:6,8	111:24 112:3
26:12,19,22,25 29:2	145:16 146:1 147:1	outfit 13:7	pad 133:16,21 134:1
29:6 30:18 32:1	147:9,15 153:6	outside 11:23 23:25	134:11,25 135:3,9
optics 15:1,8,10,14	154:21,22,24	28:22 48:8 49:5	135:17 136:15,18
27:1 30:11 51:2	155:17 157:22	110:1 191:12	137:1,10,18 139:7
optimize 17:25	158:6,9,14,19 159:5	262:24 263:23,25	140:9 141:1 145:20
option 96:3,4 147:15	160:5,7,23 161:5	264:11	145:24 146:6,10,19
208:1,7 209:7	168:3 169:3 170:1	overall 176:15	146:24 147:3,11
235:20 236:14,16	170:11,20,24	177:17	228:21 229:16
258:24	171:25 172:18	overcoat 132:6,10	230:4,14 232:4,4
options 53:19 89:8	173:1 174:21	133:17 137:2,12,17	233:10 236:21
153:10 170:19	181:25 186:19	138:5,21,24 139:7	page 3:1,13,14 4:18
189:22,25	$\begin{aligned} & \text { 187:2,5 188:18 } \\ & \text { 189:8,14 193:16 } \end{aligned}$	$\begin{aligned} & \text { 140:18,24 141:9 } \\ & 144: 5145: 13 \end{aligned}$	4:19,20,23 29:16,17
Veritext Chicago Reporting Company			
312-442-9087	800-2	3290	847-406-3200

31:6,24 33:24	101:22 102:16,22	3,9,18,23	253:15
34:21,23 35:23,24	105:23 108:3 113:6	9:4,9 10:17 42:25	patterning 14:10
37:19 39:23,24 40:5	119:1 123:18	43:5,12 48:5 56:5,6	215:1 222:25
43:19 44:25,25	127:13,20 146:23	56:6 58:8 59:25	233:21
67:21,22 68:3 69:8	149:5 153:21	60:1,1,15 61:11	paul 12:9
69:19 73:6,7 116:18	157:11 161:19,22	63:23 64:3,8,11,18	pay 24:2 $25: 5$
128:15 129:14	168:15,19,21 180:8	64:19,22 65:2,4	pe $250: 6$
130:6,22 160:22	180:22 182:3	76:21 77:10 94:13	peaks 182:10 247:10
164:20 165:2,15	194:17,18 203:10	103:8 112:5 115:13	peeling 73:14,22
170:22 179:22	218:14 222:22	129:21 130:23	247:8
185:10 274:4	224:10 227:13	150:25 152:10	peer 45:19
pages 3:16,18,19	228:15 239:13	153:3 155:13,15	pen 100:2,4 110:10
4:17,21,22,24 36:15	partially 97:3	156:2 169:2 173:19	people 245:4
37:24 38:10 74:19	102:14,14 104:1	173:22 174:11	perfect 273:5
75:1 124:25 276:14	112:22 113:4	175:19 176:8,10,11	perfectly 73:21
panel 120:1,5,6,12	161:24 255:15	176:13,13,25 177:2	performance 18:5
120:13,16,18	particles 20:23	178:6 179:3,4,25	21:5 54:12
paper 30:7,12 42:22	particular 8:23	187:18 192:22,24	performing 9:9
45:16,19 54:19	12:13 19:7 20:10	193:8 194:4 195:11	period 18:9,19,20
126:13 273:25	27:14,24 30:17	195:20 196:1 197:3	20:16,17 21:7
papers 31:14 54:23	31:12 48:17 71:2	201:19 202:24	peripheral 45:2
56:16 57:19 59:23	74:10 78:13 88:8	204:7 205:4,5,5	46:3 47:15 53:17,20
59:24 62:3 74:3,12	90:10 102:2 115:12	206:3,13 207:21	107:13 264:12
83:5 126:13	127:2 158:21	212:5 235:8 236:7	265:12
paragraph 36:16,20	207:24 214:21	241:19,21,22,24	person 17:1 47:24
40:3 45:11 48:3	252:24 275:2	242:4 245:14	48:4,9 49:6 50:6,17
67:22 73:6,11 83:9	particularly 208:3	252:14 262:18	51:12 61:6 67:4
83:10 90:1,5,6	parties 278:3,5	276:1,2,8	90:8 106:20 133:2
96:19 104:22,23,25	partners 31:10	patents 10:7,10,11	134:16 135:3
105:14 106:14,15	44:12 55:20 63:13	10:14,16,18,21 30:3	145:16,25 147:9
107:2 116:13	79:6 80:24	41:25 42:25 43:13	153:5 154:24
127:18 128:11,14	partnership 23:16	46:13 58:19,22	155:17 158:5,9,14
185:10,13 186:3,4	partnerships 44:9	61:18,23 63:23 65:5	158:19 161:5 169:3
192:18 241:13,16	parts 105:15	65:7 74:3,6 97:21	170:11,20 171:25
241:17	pascal 4:20 83:8,23	128:13 150:22	173:1 174:21
paragraphs 73:10	118:21 120:9	171:12 180:3	181:25 187:2
107:21 122:4 214:7	121:18 122:1	183:11,16,18,21	189:13 190:16,19
228:16	passivation 103:15	243:15 262:16	190:20 195:21
parallel 78:21 80:8	103:17 104:20	path 243:16 257:16	205:15 208:15
81:2,4 99:9	256:6	pattern 133:11	209:9 211:1,14,25
paramount 70:4	paste 108:9	137:12,12 153:13	214:9 219:20
parent 127:12,15	pat 1:5 3:10,11 4:7,8	202:24	230:20 232:25
park 2:3	4:10 276:6	patterned 154:4	233:23 235:14
part 11:25 32:19	patent 1:1,1,7 2:17	224:5,20,21 232:10	236:3,18 237:4,11
39:6,10 41:14 67:16	3:12 5:8,9,19 7:17	233:10,13 245:17	237:13,16 242:7,23

245:7 252:13	pictured 138:15	71:1 84:25 87:2	258:6,7,14,15 259:3
254:10 262:4	pictures 228:17	88:20 100:25	259:9,11,17,21
265:16,19 272:15	piece 77:21 180:25	102:18 106:11	260:21 261:1,22,22
272:21	199:25 200:5,11	111:25 116:19	262:25 263:23
personal 44:15	203:5	135:12 154:16	269:7,15,17 271:1
48:13 75:12	pieces 32:20 171:24	166:24 167:3,4	272:12
personally 277:8	199:12 203:23	175:10 185:6	portions 66:21
perspective 49:6	pin 188:14 247:23	190:18 207:24	258:17 269:13
pertains 7:2	pink 238:10,13	232:5 268:8	position 10:1 18:15
petition 8:1,6,19	pixel 14:7 16:10	pointed 46:18 52:20	168:2
64:9 201:6	32:13,14 132:3	pointing 107:10	positioned 66:19
petitioner 1:4,12 2:6	135:8 142:7 144:18	240:25 255:3,6	positioner 8:4
5:16 8:5 276:4	148:21 149:11	points 103:6 104:23	positions 8:4
pg 3:21,23 4:5,18	150:2,10 238:21	polarization 15:20	possibilities 154:10
pgs 4:17,19,20,21,22	239:2,9,21 240:18	28:14 31:25 32:4	154:11
4:23,25	241:11 261:18	polarizations 28:12	possibility 7:19 77:1
ph.d. 1:12 3:2 5:20	pixels 14:8 15:3	28:15	139:10 154:15
11:10,11 13:15	place 90:8 95:18,21	polarized 28:20	265:15
16:12,15 20:18 51:9	105:12 146:9 153:7	poly 40:4	possible 41:6 44:7
276:10,19 277:7,9	165:2,16 172:22	polycrystalline	54:4,7 71:22 82:3
philips 17:1	178:14	53:23 54:9,10,17,24	89:6 105:12 106:8
phone 25:15,19	placed 66:13 68:6,7	55:4	106:19,25 115:10
phones 24:19	68:13 95:23 172:13	polydomain 52:16	125:9 131:17
114:25	placement 65:20	polymer 39:25 40:1	133:18 145:11,14
photograph 31:15	66:10,11 95:17 96:8	polysilicon 51:24	147:4,7,11,13
photon 126:19,21	145:24 162:20	52:15	154:19,23,25
127:4,12	places 68:14	polyvinyl 40:25	181:15,17 188:10
photonic 15:18	placing 68:8157:1	portion 19:9 37:21	198:10 210:15
photonics 19:20	plan 36:5 97:15	60:17,18,18 85:5,12	236:4 246:20
20:3	plane 16:726:5	89:21 90:2,4,10,13	265:17
phrase 61:1,8,25	planets 23:15	90:16,18,23 91:9,10	possibly 143:19
62:21 65:13 151:1,3	plans 24:22 35:9,11	91:15,15,16 92:13	196:10 215:11
151:17 193:10,12	plateau 202:25	92:14 94:24,24	post 16:13,16 18:14
218:25 219:18	play 30:16	107:9 110:2 132:22	24:22 35:2 43:10
242:8	plaza 2:3,14	133:8,20 134:4	potential 155:18
phrases 218:17	please 5:11 6:1,19	146:8 181:5,5	200:20 248:6
physical 63:677:18	6:25 57:15 84:10	184:18 185:22	potentially 240:25
249:12	114:5 164:17 237:1	187:13 192:12,13	power 25:21
physically 16:19	267:22	192:15,16,17	practice 170:1,15,19
physics 16:6 77:11	plow 273:9	198:10 199:21	170:24 174:20
82:8	plural 60:24	212:22 230:10,13	175:11
pico 24:17	plus 41:13 87:23	236:20 237:5 240:6	precise 36:24 61:
picture 4:18 40:6,7	pockets 246:8	240:11 244 :	112:14 169:23
188:8 190:18	point 35:1 47:21	247:15,16 256:16	precisely 15:17 66:9
	54:22 55:7 69:24	256:17,25 257:7,12	134:14 165:12,14

Veritext Chicago Reporting Company

precision 138:19	principles 13:21	proceeded 25:1	46:23 47:6,7 55:16
155:18	21:5,21 39:7 49:21	proceeding 45:18	55:19,19 66:5 67:25
prefer 179:12 201:2	49:25 50:14 51:1,3	46:18 53:4 184:13	162:13,17 174:2
preferable 106:23	132:21	proceedings 45:17	profile 33:24
170:13 171:15	printed 60:3 61:14	52:21 55:3 76:21	program 48:22
203:2	61:20 62:2,4,7,9,12	273:3 277:13	programs 24:1
preferred 155:23	63:10 195:17 197:9	proceeds 238:25	project 13:8 22:17
181:18 208:4	203:16 204:6,14	process 6:9 28:24	23:10 46:15 47:8,10
prefers 105:17	205:21 265:1,10	33:4 40:14,17 76:13	52:23 63:9
prepare 123:21	printing 123:3	77:14,16,18,19	projector 25:15,20
prepared 41:24 42	printout 31:5 33:23	80:20,22 83:24	projectors 20:12
131:9 217:25 228:6	34:23 35:22 84:1	119:3,15,22,24	24:17,18 160:1
preparing 152:13	prior 4:14 8:3,22	120:4 130:2,3 139:4	projects 17:3 26:9
presence 160:15	9:8,20,21 65:7	139:10 263:15	26:10 27:22 32:25
present 2:20 53:21	132:21 156:19,20	processes 75:10	33:12 47:13 63:14
106:21 127:12	157:9,18,19,21	76:9 77:10 78:16	promise 100:6
157:13 163:10	161:7,9,13 165:21	81:23 122:7 245:18	prone 191:5
168:1 172:2 187:4	165:25 166:2,4	processing 49:18	proper 36:25
199:2 256:15	176:14 177:21	50:24 114:23	properties 12:15
presentation 45:22	180:24 188:25,	131:15 132:2	17:23 30:19 32:2,4
presentations 42:22	189:19 190:2	133:18 135:5	property 25:5 42:20
43:18 59:10	191:21,23,24	142:14 236:19	42:25 46:20
presented 3:8 4:2	193:23 196:14	produce 78:16 79	proportional 91:20
29:12 45:20 64:6,15	198:12 245:13	produced 78:15	proposed 144:10
64:24 66:2 116:4	246:14,22 248:1	79:18 81:3 82:2	proprietary 76:5,8
presenting 13:17	248:14,17 249:22	86:16 88:1,13	76:12,24
press 12:25	249:22 262:19	producers 85:20	protect 143:8
pressure 81:24	270:9 272:4	producing 81:15	186:24 191:7 192:9
pressures 77:12	priority 36:8	product 4:16 54:19	protected 141:20
pretty 77:10 78:3	probably $38: 8$	78:15 79:11 80:1,20	144:1,3
prevent 188:12,14	128:22 129:5 190	85:2 104:11 124:3	protecting 71:16
previous 87:14	204:14 214:6	production 76:17	191:2 192:1
previously 29:11	216:20 241:19	77:4 78:18 79:13,20	protection 135:10
64:5,14,23 66:1	problem 143:11	80:2,19,22 81:13	163:11 186:18
116:2	144:11,13,15,23	86:10,25 123:17	187:22,23 190:11
primary 52:3,16	156:19,20 157:8,18	125:4,13,16,23,25	237:8,24 248:18
65:12 94:21 163:18	157:21 158:3 161:8	126:2	255:25 256:6
principal 13:11	162:25 163:4,15,18	products 27:20 52:8	protective 96:20
114:22	164:2,4 185:1	52:9 53:14,25 54:16	131:24 132:6,10
principally 26888	problems 22:20,21	79:8 80:11 81:8	133:17 137:2,11,17
principals 18:3	156:3,24 163:23	84:15 122:25 125:3	138:5,21,23 139:7
principle 91:4 92:3	procedure 277:20	159:15,19	140:18,24 141:9
92:5,6 107:16 158:5	procedures 76:6	professor 18:13,16	144:5 145:13
170:10 239:10	proceed 5:14 7:7	18:21,23 19:24,25	146:11 180:20
	109:8 214:10 216:7	21:12 42:13 46:16	228:25 230:19

231:23,25 233:12	56:15,22 57:2,18	question 26:16	236:7248:13
239:1	58:5 59:9,21 62:2	54:14 56:13 58:17	265:20 276:13
protects 72:13	73:16 74:3,6,9	58:18 66:25 72:3	277:21
proto 250:8	publicly 76:5	80:16,17 81:7 82:16	reading 277:17,22
prototype 13:8 14:5	publish 46:12	82:16 83:19,22	real 34:11 74:8
79:11 250:6	published 30:8,9	84:24 94:3,18 96:23	80:10 138:25
prototypes 23:1	31:13 41:23 45:23	99:5 100:19 101:11	realistic 97:17
26:10 27:22 59:19	45:24 46:16,19	101:15 105:5	realize 224:17
62:11 159:11	55:13 63:20,22 74:2	126:10 133:24	realized 24:21
prototyping 13:4	pulse 119:8,20	143:23 152:19	really 25:2 67:13
26:4	pulsed 121:1	160:21 171:21	91:11 99:5 131:8
provide 61:19 7	purpose 34:9,10	180:18 185:11	138:18,22 155:19
93:25 94:10,22	37:5 44:5 63:18	187:9 195:18	201:17 212:14
100:5 175:7 179:10	71:13,15 117:10,12	214:15,19 217:2	227:6 235:22
179:25 190:24	117:16 118:4 122:4	222:14 225:5	236:18 246:19
198:11 255:24	198:2 201:9 263:18	227:19 239:16	reason 7:6,8 28:1
provided 45:3 46:3	266:18 275:4	251:16 260:1	41:1 46:8 65:12
120:22 198:14	purposes 123:4	question's 72:15	82:22 96:7 107:14
215:14 248:18	135:10 248:21	questions 6:19	143:10,16 144:15
providence 12:7	pursuant 1:13,	12:13 89:19 126:	155:11 165:7
provides 192:7	277:19	126:17 201:3	191:24 196:16
193:3 247:9	pursue 24:23 26:10	273:16	256:3 277:25
providing 23:1 48:7	pursued 27:25 52:5	quibble	reasonable 9:22
49:4 124:9 193:1	pursuing 25:14 26:9	quick 73:8	147:8 174:23 175:4
249:14	put 15:23 44:8 66:7	quickly 75:1	175:15
psv 102:21 107:19	66:13,24 67:24 70:7	quite 12:21 14:12	reasons 46:12
161:23	89:5 91:9 121:10	16:21,22 28:3 131:8	132:23,24,25
psv1 96:11,15,16,17	131:23 136:5,10,15	131:22 138:9	158:21 249:7
97:1,2,6,18 98:6,10	137:9,10,11 139:25	141:23 149:9	recall 7:11 10:4,6,1
98:13,18 100:22	140:4 146:4,5 147:3	159:22 225:21	10:12 17:9 18:8
101:3,7,16,18,21,23	147:11 164:22	r	21:6,9 30:6,10 38:7
102:5,11,15,18,25	172:18,25 174:1		41:22 42:10,11 43:6
103:17,20,25 104:3	194:15 211:7 216:1		43:17 45:9 53:2,6,9
104:6,17,23 105:2,7	237:14 258:22		56:1 58:6,11,15,19
105:12,20 106:7,19	puts 135:13		58:25 59:4,6,21
107:4 108:3,11	putting 212:12		60:19 62:6 73:5
public 276:24	237:7 249:19	$\text { rarely } 159: 3$	74:5,11,14 78:5
publication 17:9	pva 40:25		83:4,7 86:14,19
45:6 52:20 53:9	q	read 75:13 94:7	87:1,6,11,20 94:1
publications 30:2,5		$95: 11105: 3126: 14$	94:21 95:14 103:12
31:14 41:19 42:7,14	qualifies 1	$126: 15174: 16,19$	104:20 126:16,23
42:18 43:22,24 44:4	quality $54: 5$		162:9176:11,20
44:13,14 45:1,5,25	quantum 30:19	200:22,24 201:17	177:3,15 179:4,20
46:6,7 47:14 52:18			193:10,14 201:1,17
53:4 54:23 55:2,8			244:8 248:16 264:4

Veritext Chicago Reporting Company

receive 6:23	referring 9:2 25:9	195:12,12,13,16,22	remove 123:25
recess 57:11 84:8	28:10 36:13,16,23	195:23 196:2,11,17	removed 104:1,4
164:13 209:22	45:16 47:4,9,13	198:4 202:8 206:8,9	124:2 203:11
267:18	49:3 51:18 58:13	206:10 213:22,22	247:13 248:1
recessed 95:23	71:2 73:10 84:19	230:18 237:20	removing 105:14
113:14	85:1 90:3,5,14	246:12,18 248:19	108:5
recognize $29: 14$	91:11,13 92:22	275:6	repair $73: 17,1974: 4$
34:19 35:19 37:16	111:18 117:14	regions 97:15 102:4	74:23 75:5,20 76:6
64:8 178:14 228:2	122:9 138:8 161:20	107:7 108:8 138:22	76:10,13,16 77:3,16
237:14,17 $247: 7$	182:14 185:8 186:3	165:4,8,10 194:20	77:19 81:11 82:4,17
recognizes 135:4	186:4 200:7 203:8	195:8,19 196:18	82:19 83:3,6 118:15
recognizing 150:13	204:13 213:10	227:9 275:4	118:18 122:25
193:15	220:8 222:2 244:3	registers 47:16	123:5,9,23 124:3,6
record 57:8,12 84:6	252:16 260:22	rehearing 8:20,21	124:14,16 125:1,2
84:9 113:10 114:2	261:5 275:1	relate 20:19 49:22	126:2,25
164:10,14 209:19	refers 69:2 113:6	50:2 56:12 73:13	repaired 82:2
209:23 267:16,19	115:19 248:16	108:8 131:6	repairing $73: 4$
275:23 277:12	265:11 268:21	related 9:5 20:11	76:22 81:25
recorded 277:11	reflect $130: 3$	27:1 46:20 63:12	repairs 124:12
recording $20: 7$	reflective 56:23	65:12 76:6 87:25	repeat 58:1872:3
rectangle $229: 25$	refresh 47:3 56:8,11	278:2	273:4
230:3 274:24,25	73:8 94:8 110:9	relates 38:20,23	repeatedly $218: 15$
rectangles 274:16	118:22 156:10	275:5	rephrase 6:20 26:16
274:25	175:22 216:10	relation 89:24	58:13 171:20
redesigned 27:18	regard 10:5 55:5	relationship 46:10	188:22 214:19
142:13	91:14	131:11 132:1,4	replace $28: 4,8116: 1$
redraw 129:19	regarding 8:10	133:19 135:2	reporter 5:13 6:20
reduce 91:23,24	74:19	216:19	277:1,3
157:7,14	regardless 153:20	relative 8:3 278:3	representative 9:25
redundancy 244:18	261:24	relevant 177:4,6	95:22 96:1 123:20
247:15	region 69:9 71:9,11	reliability 193:1	242:9
refer 199:14 202:23	85:21 87:24 88:8,19	reliable 93:25 94:10	represented 75:15
243:1,15 273:20	88:20,25 89:3,5,6	95:2,6,13	227:21 242:6
reference 9:3,7	89:10,11,16,18	reliably 147:24	representing 258:21
56:10 60:20 99:22	90:25 91:1 96:10,25	remain 104:10	represents 232:23
178:10 228:12	99:7,13,14,20	185:17 186:1	reproduced 135:6
266:13,23	100:16 108:10	remember 10:14	135:22
referenced 116:12	109:10 112:1,15,21	11:15,17 12:4,6	request $8: 19,20$
references 9:11,15	112:23 142:23	15:16 17:18 18:10	201:5,6,10 234:19
9:24 161:13	153:12 154:13	86:21 127:1 159:23	requested 201:15
referred 46:15 47:7	157:15 164:24	159:23	require 88:21
55:14,15 77:9 93:14	165:14 167:15,18	remind 94:896:15	138:19 175:21
157:11 205:6	170:4 171:2 173:8	105:4 128:23 221:7	202:12 216:25
229:24 253:18	191:13,25 194:18	228:11	required 14:25 19:2
	194:19,22 195:2,4		21:18 27:12 63:16

Veritext Chicago Reporting Company

63:17 78:25 80:9,14	238:13	111:14 115:24	riverside $2: 14$
80:17 153:11	restate 171:21	118:5 130:1 132:15	rmr 278:12
156:14 170:13	restriction 174:13	132:15 134:2,10	rocea 1:15 5:13
173:23 174:22	174:14,17	135:15,20 136:4,7	277:2 278:12
175:16 203:13	result $230: 23232: 24$	136:22 137:3,13	role 13:11 18:23
218:12,14,17	233:3 235:9 236:3	138:5 141:18	268:25
275:14	254:25	143:16 146:3	roles 16:23
requirement $27: 10$	results 81:9 177:6	151:20 152:2,23	rollerblading $12: 24$
76:19 174:20	resume 34:2,11	153:4,7,12,21 154:8	room 37:10 40:14
217:10	resumed 114:6	154:13,14,16,20	40:14 41:15
requirements 203:4	return 153:13	155:4 156:7 157:4	rough 247:9
requires 175:19	154:17,18	158:1,4,8 160:14,20	roughly $25: 19$
186:6 187:18	reverse 145:11	161:23,24 170:10	rows 149:13
202:14 270:15	271:7,9	173:13,14,24	rpr 278:12
research 12:114:1	reversing 134:8	174:23,24 176:1	rule 124:9 277:19
14:13 17:2,19 18:24	review 7:16 8:14 9:8	177:22,24,25	rules 1:14 6:10
19:22 21:2,8 22:8,9	10:7,9,16 57:20	180:23,25 181:4	277:20
22:10 24:3,4 36:21	117:7 123:8 126:21	182:23 183:10	run 79:13 108:23
36:25 37:3,7 42:21	126:23 201:2 264:6	184:1 186:19,22	163:15 262:9
43:18 52:4 75:10	reviewed 8:17,18,22	187:22 188:5,16	running 92:12,17
researchers 44:3	10:4,11 45:19 65:6	191:11 195:18	163:1,6,6 184:17
researching 20:15	65:8 117:8 118:25	198:12 204:5 206:6	S
reserve $273: 15$	122:23 123:12	207:14,19 211:9	s 6:3114:1,1,1
resin 152:17 153:2	124:22 183:17,19	213:1 214:12	sandra 1:14 5:13
153:23,25 155:5,7	268:1	216:17 217:22	277:2 278:12
155:10 156:11	reviewing 10:14	222:16 223:8,11	save 156:6
157:2,23 158:18	74:22 75:18,24	226:2,17 227:12,16	saw 24:16 179:7
170:8 171:3 180:13	94:13 127:25	228:8 229:14 230:4	saying 53:2591:8
203:7	128:19	234:23 237:8,24	134:9,15,24 135:15
resistance $89: 12$	revise 268:4	239:24 240:13	138:3,4 150:5,10
91:2,5,6,20,23 92:7	rhode $12: 7$	241:16,17 244:11	156:18 191:14,16
94:23 187:12	right $6: 2116: 14$	244:14 246:5	191:20,20 194:14
244:13,15 247:20	18:10,12 21:11	248:12 254:23	195:20 226:18
resistant 247:4	24:10 38:18 42:24	255:1 256:11,15,18	238:9 240:15 245:1
resisting 251:9	58:8,15 60:12 61:10	256:19,21,23	249:3,6 250:18
resolved 44:21	63:20 67:23 72:9	257:23 258:9,11,17	258:3
respect 183:20,22	81:7,22 84:12 93:20	258:18 259:1,5,7,10	says 37:648:3
respond 99:5	96:13 98:14,15,19	262:25 263:4,24	106:15,16 107:14
responding $122: 6$	99:8,14 101:2,4,8	265:2,3,5,22 268:11	112:14 113:5
response 234:19	101:10,16,23 102:9	270:23 271:1	157:16 168:5 171:5
responsibilities	102:20,21 103:2,3,8	273:15	188:11 201:22
11:24	103:19 104:5,12	rings $263: 4,25$	205:20 209:2 247:7
responsive $260: 3$	105:8,12 106:17	rise 212:23	256:2 257:8 258:25
rest 119:22 153:11	107:1 108:25 109:1	risk $144: 20$	
166:19 167:19	109:18 110:15,21		

scale 80:19,20 81:13	252:23 253:25	174:1,7,12,24 175:4	225:10 232:14
scan 94:1,11 243:16	260:7 262:2 263:2	175:10,13,19,22,25	233:24 236:9
262:13 263:11,13	266:1,6 269:2	176:2 183:25 184:1	238:20 239:4
263:18 266:10,19	271:16 273:7,17,19	184:12,17,19,20	240:24 243:2
268:19,22 269:15	274:3 275:17	185:1,21 186:15,17	274:13
269:23 270:7	scholarly 42:13,17	186:21 191:13	section 65:1497:16
scanning 136:6	school 11:9 13:24	193:2,3,8 213:22	97:17,21,23,25
139:25 274:9,17,18	43:9	244:10,12,15	128:20 154:12
schematic 3:20,22	science 11:7 19:8	261:20,25 263:20	157:10
4:4,6,14 129:18	44:15	264:1	sections 173:9
schematics $4: 11,13$	scope 251:13,24	sealant's 67:12	see 31:24 33:25 35:3
scheme 192:7	screen 34:22 123:3	sealants 159:1	36:20 40:3 55:24
schlitter 2:9 3:5	screens 26:2	173:21 174:9	56:7 60:20 69:4,6
5:17,17 58:24 60:5	se 147:21	sealing 89:11 91:1	69:11 71:8,9,10
61:15 62:19,24 64:4	seal 66:13 96:8 98:9	99:13,14 170:2,15	83:10 84:1 86:5
64:13 69:21 70:13	99:7,18,20 100:9,18	170:25	89:8 90:2 95:12
70:25 72:19 75:6,21	109:9 110:1,1 160:9	search 177:5	100:12,23 101:21
77:22 78:23 80:5	237:20 278:8	searched 9:17	102:5,6 107:24
81:19 82:21 83:16	sealant $48: 849: 5,20$	searching 176:17,24	108:1,4,24 110:5
84:17,22 85:7 86:18	50:11,13,14 51:1	176:25 177:2,4	117:5 131:8,10
87:10 88:14 89:13	65:19,21 66:8,16,18	second 39:23 44:25	133:7,8 137:22
91:3,25 92:25 94:4	66:19,23 67:1,3,6	51:24 90:10 108:11	140:2,11,19 141:3
95:3,10 97:12 98:22	67:11,19,25 68:6,15	112:12,15,16,18	141:12,13,16
99:1,16 101:19	69:1,3,5,11,16 70:6	113:5 149:16 150:1	152:24 155:7 160:7
104:7 106:9 116:11	70:18 71:16,21,23	151:8 154:18	171:4 177:5,6
116:16 117:17	72:10,13 89:5 90:9	163:12 164:24	183:24,25 190:12
125:5 126:7 128:2	92:19 95:18,19,21	165:11,13 166:9,12	192:20 193:5
134:13 147:19	95:23 96:10,24,25	166:14,16,17,18,22	201:19,21 202:11
150:24 164:8 170:6	97:3,6,11,19 99:7,8	166:23 167:1,5,15	206:9 207:22,23
171:19 172:8	99:18 100:1,10,15	167:17,22 168:14	208:10 209:1 215:5
177:14 178:16	100:16 101:5	168:18,20 169:14	216:14,21 221:11
180:15 181:8 185:4	102:11,14,21,24	180:17 182:12,15	222:16,18,21
188:21 189:12,20	107:20 108:2	189:10 193:25	223:12,14,25
190:14 191:18	109:19 110:4,18,21	194:3,7,13,15,19,19	225:14 231:6,7
195:5 197:22 199:7	112:12,14,18,22	195:12,14,16 196:3	235:20 236:4,14
203:18 208:19	156:4,13,20 157:15	196:6,7,23,24	239:4 241:23
210:9,12,24 211:21	158:12,16 159:2,17	201:25 202:4,5,8,10	247:22 256:10,12
214:3 216:3 217:7	160:5 161:3,10,14	202:13,15,16,18	256:13 257:3,8
218:5,23 219:17	161:21,25 162:1,17	203:1,12 205:22	258:19 259:13
220:6,13 221:5	162:20 163:2,7,17	206:2,8,10 207:25	260:5,12 261:7,17
222:7,11 225:18,20	163:20,21 167:21	210:5,5,19 211:5,6	264:14,19 265:16
231:1 233:19	167:25 168:2,7,12	212:23 213:16,22	265:17 268:2,5
234:16 239:7	170:3,5,16,25	215:8,12,23,24	269:23 271:24
242:12 246:17	171:15 172:2,5,13	217:13,15,18 219:8	272:16 274:16
250:24 251:6,12,24	172:19 173:5,7,19	219:9 224:12 225:7	
Veritext Chicago Reporting Company			
312-442-9087	800-24	3290	847-406-3200

seeing 78:599	214:25 216:6,8,25	shift	269:17
152:16 176:11	217:3,8,19 218:17	shinmaywa 4:19	side 16:2,4 17:4,4
179:4,20 189:1	218:19 222:22,24	117:4	20:9 21:1 71:24
194:16 232:12	232:2	short 13:12,12,16	99:9 101:16,17
233:15,15,16	series 13:12 89:12	57:11 84:8 164:13	102:21,22 103:1
seek 25:3	91:2 109:2 148:15	209:22 263:4,25	109:9,14 110:21
seen 79:783:5 86:20	149:7 168:10	267:18	112:25,25 143:17
152:7 159:12,15,18	239:11 270:11	shorten 92:7	153:21 154:13,17
176:10 178:9,10	serious 144:22	shorter 158:17	161:23,24 162:1
179:2,18 180:7	145:8	shorthand 277:1,	169:24 173:2
258:23	serve 135	shot 126:6	180:23,25 181:13
sel $4: 910: 8,12,14,19$	263:18	show 36:12 68:3	181:21 184:2 203:8
10:22,23	serves	89:23 90:19,21	228:24 229:11
semester 21:25	set 16:9 27:22	97:15,17 102:16	239:24 244:11,14
38:18	143:16 213:19	107:18 129:5 130	256:11,23 257:9,20
semiconducting	262:12,13 278:7	146:19,21,22	257:22 258:9,10,18
17:24 39:16,25 52:7	sets 262:8	161:14 162:9 191:9	258:19,21 259:1,1,2
274:21	setting 124:17	227:23 246:12	259:3,6,7,10,12
semiconductor 1:6	settings 54:13	268:9 270:3,4	263:1,4,24 264:24
5:8 33:15 39:19	sgibson 2:5	showed 180:4	265:3,22 268:11
40:20 49:17 50:23	shadings	showing 97:2 1	sides 258:24
52:22 116:1 245:18	shape $155: 18$	206:2,7 228:19	sign 277:21
245:22 250:8 275:9	shareholder 25	232:20 262:20	signal 110:6,13
276:6	sharp 155:16	269:23	148:22 259:16,18
semiconduc	shiba 3:20,22 4	shown 91:14,17	262:13,20 268:19
52:13 115:6	9:3 65:8,10,15	96:12,13 104:8	269:16 272:1
send 28:18	128:19,21 129:16	109:8 111:10 13	signals 19:4 60
senior 17:1	129:25 130:4 131:7	150:20 155:25	61:13 62:4,18 240:6
sense 95:22 129:20	131:13 132:7,11,22	163:21 164:25	240:8,14,20 269:5
1:14	133:15,19 134:3,22	186:10 212:6,7	signature 276:15
sensing 30:21	135:1,5,22 136:2,14	214:11,17 221:4	277:19 278:1
sensitivity 147:22	137:9 138:16,25	228:10,15 229:	signature's 29:16
sensors 20:7	139:5,11,24 142:11	230:1 234:25	29:19
sentence 157:11	142:18,25 143:1,14	243:25 258:13,1	signed 277:24
170:23 260:2	144:10 145:17	259:19,24 262:22	significant 143:20
separate 243:1	146:2 147:2,16	262:24 264:22	signing 277:17,23
separating 149:19	148:11 150:4,8,8,9	265:23 268:10	sij 4:24 126:13
149:21	162:8,9 183:7	269:13 274:10	silent 119:8,9 153:3
september 1:16 5:2	184:17 185:23	shows 68:4 71:12	155:15 161:12
276:12 277:5	229:1,3,6,7 230:11	92:15 95:20 97:5,16	266:17
sequence 63:7	232:24 233:1,8	102:13,20 103:4	silicon 32:25 33:11
132:11 136:1	235:19,23 236:14	104:2 109:4 156:1	51:24 52:14,16,19
142:14 145:8	236:17 237:4,17,17	161:16 214:1,23	52:23,24,24 53:1,5
160:15 212:8 213:5	238:3 240:24 241:5	260:17,18,19	53:10,22 54:2,9,11
214:7,13,16,21,23	241:8,9	261:12 264:23	54:17,25 55:4 59:1

59:4 96:17,21,22	sized 78:20	sl 68:25 99:11,18	140:15 141:1,21
209:4 255:20	sizes 86:13 120:14	100:12,14,18	142:4 144:4 145:3
silver 108:9	skateboarding	small 12:5,6,19,20	149:15,25 238:17
similar 54:10 59:17	12:24	13:7 14:8,22 24:17	238:24 239:13,22
146:16 154:1 184:7	skill 47:21,25 48:4	80:22,23 120:9,10	240:19 241:3
193:12 225:5	48:12,20 49:10 50:7	159:24 180:25	275:12
228:16 231:11,13	50:17 51:8,12,13	181:23 239:23	sources 28:21
242:6 272:18	61:4,6 66:13 67:2,5	smaller 78:7 79:2,13	south 1:15 2:9,14
similarly 246:9	68:5 69:15 72:17	85:19 109:5 120:11	5:5 277:6
simple 19:13 28:1	73:2 75:23 89:8	230:3,3 274:24	space $84: 16,18,21$
32:14	90:8 106:17,21	smart 76:8	85:1,1,6,18
simply 14:13 34:9	107:17 115:25	software 26:8	spacer 175:9
80:9 86:2 115:20	133:2 134:12,16	solar 19:15 23:14	spacers 173:20,22
124:10 133:20	135:3,16 138:1	123:17,19	174:8,10,12,25
134:5 135:7 139:5	142:9 143:1 145:16	sold 79:9 262:11	175:5,13,20,22
153:12 168:25	146:1 147:2,9,15	solution 24:23	spacing 175:8
198:16,24 205:6	153:6 154:21,22,24	187:11	speak 216:24
224:8 236:12	155:17 157:22	solve 22:20	speaking 37:22
246:10 248:4 250:8	158:6,9,14,19 159:5	solves 144:12	speaks 95:13
253:8 259:22	160:5,7,23 161:5	somewhat 6:838:13	spec 156:17244:7
263:13	168:3 169:3 170:1	son 24:11	255:5
single 14:7,23 79:17	170:11,20,24	song 13:2	special 26:21
149:18 177:12	171:25 172:18	soon 80:25	specific $23: 5,651: 17$
192:3 243:5 248:18	173:1 174:21	sophisticated 41:7	56:19 86:13 87:20
253:15	181:25 186:19	79:23	92:2 99:19 117:20
singular 60:12	187:2,6 188:18	sorry 21:3 27:8	117:21 118:7
220:3	189:8,14 193:16	29:17 37:12 39:24	121:20,23 122:3
sit 10:19 127:3	195:21 205:10,15	46:17 52:15 99:7	125:8 185:11
218:2,4,6 251:1	208:6,11,15 209:6	100:5 101:4 110:11	188:23 203:20
sitting 6:20 146:24	209:10 210:3 211:1	117:21 130:13	216:18,19 246:13
situation 79:25	211:1,15,25 214:9	146:13,14 152:2	specifically $11: 16$
158:7 175:14	219:20 220:2	186:1 196:21 207:7	12:4 15:11 16:17
200:20 210:14	230:21 232:25	237:2 239:8 241:22	17:5 18:10 46:24
213:1 223:5 240:7	233:23 234:14	242:18	49:2 53:24 54:3
261:7,10	235:15 236:4,18	sort 15:4 32:6	74:24 87:12 90:15
situations 159:6,9	237:5,11,13 242:7	152:16	104:21 125:18
175:3 250:1	242:24 244:22	sorts 31:15 78:5	128:21 149:2 177:1
six 18:19,20 21:7	245:4,8 249:8	sounds 44:20 99:6	177:3 183:4 201:1
190:7	250:19 252:13	108:12 200:7	220:8 228:12.231:7
size 78:14,14 79:16	254:11 258:19	223:18 225:5 234:5	242:13 246:6
80:3 81:5 85:18	262:5 265:17,19	239:15 251:18	249:20 255:4 261:5
86:6,9,24 87:1,6	266:14 268:16	source 41:9 56:2,17	specification 56:7
88:5 120:7,17 121:4	271:3 272:16,21	59:11,15,20 132:5,8	58:12,14 94:8
121:4,7,17,21,22,24	skip 58:4	136:16,16,19,25	115:22 156:11,14
124:1		137:10,15,19 140:9	157:20 161:11

Veritext Chicago Reporting Company

171:10 175:23,25	standard 14:14	237:19	19:25 20:19,20,21
176:3 178:20	16:11 20:14 25:17	steptoe 2:8 5:5,18	studies 14:2 15:12
179:10 193:7,11,13	27:12 53:18,18	steptoe.com 2:11	study 14:22 20:8
242:25 248:13	120:4,12,13,16,17	sticks 71:23	23:14 25:11 111:4
255:19	124:3 170:1,15,19	stop 60:21 109:3	179:9,24
specified 212:10,11	170:23 175:11	stops 153:8	studying 13:20
213:7,9,24 215:16	211:10	stored 240:4	15:13 19:13 23:1
specifies 211:16	stands 40:2	street 1:15 2:9 5:6	24:22 25:11
268:22	stanley 2:3,9	277:6	subject 8:11 13:13
specify 112:25 202:9	start 13:19 38:5	strike 183:5 215:21	192:23
218:19	111:20 117:3	231:10 260:2	submit 139:23
speculate 72:21	143:22	strong 158:16	submitted 41:24
81:16 108:13	started 24:8,9 25:2	structure 60:12 61:2	177:22,24 178:1
120:23 163:22,24	starts 73:6	61:5,22 84:21 131:1	277:19
163:25 234:5,10	state 3:14 5:25	131:4 134:18	submitting 177:21
246:19 251:2,17,20	18:13,15 21:12	136:24 142:22	subscribed 276:21
speculation 164:3	23:22,24 24:10,23	143:15 144:17,19	subsequently 132:8
speed 148:20	34:25 43:8 63:15	145:17 148:14	253:16
spell 6:1	86:24 125:15	156:22 184:10	substance 114:12
spelled 6:3	176:16 277:2	193:3 205:11	substantially 115:6
spend 16:15 74:21	statement 60:8	209:13 210:19	216:22
177:9	161:8 194:2	223:23 224:9,18	substrate 32:22 45:4
spending 22:13,16	states 1:1 5:9 276:1	225:22 229:2 233:3	46:4 53:15 55:10
spent 177:17,23	static 240:7,9 $263: 6$	234:14 235:15	56:4,18 59:12,16
split 269:9	status 104:14	243:25 244:19	67:24 68:4,5,8,14
splitter 32:6,10,15	stay $21: 15$	247:2,8 248:8 252:8	68:22,23,24 69:5,8
spoken 165:9	steering 20:20	252:11,15,18 265:2	69:12,17,24,25 70:7
173:22	stenographically	275:6	70:15,17,19 77:21
sponsor $24: 2$	277:11	structured 182:10	78:13,14,22 80:4
sponsored 23:2,3	step 79:11,12 104:12	structures 48:6 60:2	81:6,14 86:9,16,24
24:1	132:2 135:7 136:25	60:22 61:7,12,23	87:1,4,9 88:2,13,18
sputtering 117:22	137:9,25 139:6	62:16 115:5 129:24	94:2 95:24 105:25
118:9	140:13,16,17,20,21	184:10 222:1	107:5 109:15
square 98:11,16,20	140:25 141:6,10,14	242:20 248:9	110:20 119:22
99:10 101:1 108:9	145:5 181:3 215:19	student 11:22 40:9	120:8 121:5,18
108:10	253:15 254:8	127:24 128:9	154:3 156:4,21
sschlitter 2:11	steps 63:5 133:4,5	students 16:22 19:3	166:1,3,10,13 168:7
st 12:9	133:18,19 135:23	19:10,11,12 20:18	171:17,18 172:6,7
stack 116:8 149:22	136:4 139:13	21:18 31:19 34:9	172:14,24 174:1
150:17	142:14,18,21 143:4	35:2 36:10 37:8	184:9,15 201:20
stacked 1	145:12 147:18,21	40:11,17 41:2 43:7	202:1 204:9 213:11
stacking 115:9	148:3,8 178:14	44:3,7 75:12 239:17	217:10 228:22
$\boldsymbol{\operatorname { s t a n }} 5: 15,17$	212:13,25 215:18	250:6	230:1,11 253:3,8
stand 146:13 171:6	$\begin{aligned} & 232: 11 ~ 233: 5,7,15 \\ & 233: 21236: 19 \end{aligned}$	$\begin{array}{rr} \text { studied } & 14: 21,24 \\ 15: 7.15 .22 \quad 17: 21 \end{array}$	267:3,6,7 269:8
Veritext Chicago Reporting Company			
312-442-9087	800-2	-3290	847-406-3200

substrate's 71:11	208:21 209:14	253:24 254:1 255:4	216:20 223:5 253:2
substrates 14:10	229:5 230:17	257:9 263:10,10	264:7
56:23 62:13 67:7,8	232:25 234:3,15	264:6 271:9	taken 1:14 6:5,6,11
67:15,17 70:3 71:17	235:4,16,20,23	surely 224:4	8:6 31:16 50:22
71:24 72:6,11,14,18	236:14 237:7,9,12	surface 147:25	236:17 276:12
78:20 102:4 104:13	245:8 246:21 247:8	182:9 247:9	takes 75:23 148:20
124:3 160:17	247:22 248:21,24	surfaces 50:15	190:16
167:25 168:4 173:3	249:20 250:20	199:21	talk 9:6 11:2 89:23
175:8 264:23	252:3,9 255:19	suspect 34:22 87:5	90:24 114:11
sufficient 75:9	256:2 258:20	swear 5:13	125:24 131:14
suggest 237:7258:2	261:10 262:4 264:2	switch 32:12,13	136:18 157:17
suggested 138:12,13	264:5,6,9 265:11,20	switches 15:18	236:22
143:14 146:4	267:8,11 268:17	switching 16:7	talked 24:21 32:12
154:16	269:14 270:10,12	148:20	33:7 75:14 110:4
suggesting 102:24	sukegawa's 237:22	sworn 5:21 276:11	114:14 154:2
131:17 144:19	257:18	276:21 277:10	161:23 254:12
187:15,16	sum 44:11	system 14:6,22,24	talking 7:17 36:22
suggests 174:4	supervised 31:20,21	14:25 16:10,21	49:23 52:8 79:25
suite 2:3,14	supervisors 17:1	20:10 23:8 25:13	124:14 125:19
sukegawa 8:23 56:5	support 7:20 19:8	26:7 28:19 33:7	131:5 134:21
58:8,23 60:1,14	23:8 27:3	118:12 123:25	135:13 146:23
61:11 64:22 65:2,3	supported 11:24	187:10	165:22 185:12
66:10,15,17,21,23	37:6	systems 16:7 19:4	195:10 200:14
67:1,5 69:10 70:2	supporting 23:9	20:7 22:19,21 23:15	203:5 221:15,17
73:5,23 90:12,15,22	supports 149:5	26:4,4 27:14 28:13	228:12 256:19
91:11,17 94:18,19	272:13	30:20 37:9 123:20	257:22,23 258:11
94:21 95:8 162:12	suppose 129:17	159:18	260:23 271:8,13
163:10,13,19,22	245:15	t	talks 36:17 157:12
166:7,8,11,12,16	sure 26:15 45:11		167:19 193:8 202:7
167:14,17,21,24	46:5 58:12 65:21	table 246:8	tantalum 56:10,20
168:1,5,16,21,22,24	71:6 72:4 73:21	tact 106:19	tape 57:7 92:17
169:10,16 171:14	79:1 83:17 84:2	take 6:4,14 7.21	110:23 111:15,22
172:1,20,25 180:9	90:15 93:10 96:12	19:3 40:5 49:15	111:23 112:2 113:9
180:24 184:21	96:14 99:21,24	$5 \cdot 3,24,2558 \cdot 3$	164:7
185:20 186:11,16	110:10 117:6	$73: 8 \text { 84:3 93:10 }$	target 119:20,21,21
186:17,23 187:1,10	120:24 121:6 123:1	105:3 117:5 118:21	targets 121:10,16
187:16 188:1,11,11	125:6 133:6 152:7	124:19 127:11	taught 18:18,25
189:1,19 190:10,16	152:21,21 160:21	$128 \cdot 22139 \cdot 4$	19:5,17,18 22:1
190:19 191:2,5,12	162:8 163:3,14	145:10 147:16	56:5 107:21
191:20,23 193:19	175:17 178:9 181:9	$151: 7160: 11164: 8$	tcp 110:23
193:21 194:6,9,21	185:2 190:1 211:23	167:8 176:9 179:6	teach 18:24 155:13
195:4,20 196:15,19	222:13 224:1	179:11,24 187:14	teaches 108:5 113:3
196:25 203:15	226:16 227:3	$188 \cdot 17200 \cdot 22$	190:19 191:5
204:7,17 205:5,14	229:10 238:6	1806.1.6209.17	teaching 18:18,25
206:2,7,10 208:18	241:15 248:14,14	206:1,6 209.17	21:17,25 37:4 38:16

Veritext Chicago Reporting Company

,24 39:7	term 65:18 172:10	testified 5:22	197:15 198:23
66:23 105:15	242:9	testify 277:10	257:17 274:10,13
106:24 139:11	terminal 60:17,18	testifying 6:15 61:11	things 8:8 9:14 13:2
186:23 188:1 229:5	66:21 70:1,3,5,20	testimony 6:21,23	15:8,15 16:1 17:6,8
230:17 235:4,8,16	85:5,12,19 88:8	6:25 114:12,12,15	17:17,20 18:6 24:20
235:23 237:9	89:6,10,15,18,21	176:9 179:10 180:1	27:17 50:5 67:13
teachings 235:19	90:2,4,9,13,16,18,21	268:7 274:8,8	72:9 97:24 158:25
team 8:7,13 27:19	90:22,25 91:9,15,15	277:12	159:3 160:18 192:9
tec 4:21 122:18	91:16 92:13 94:23	text 31:24 75:1	199:5,10,13 204:8,8
technical 8:7 13:18	94:24,25 107:7	100:24 108:20	229:12 237:21
16:20 31:12,17,23	109:7,17 110:8	tf 21:3	261:3 263:18
32:3 85:13 126:13	112:1 132:22	tft 19:14 26:5 27:	273:14
technique 117:20	133:20 134:4	27:15,17 38:25	think 8:16 13:7
119:7 125:7 211:25	135:14 170:4 171:2	39:17,18 40:7,12,16	14:21 16:22 19:19
techniques 48:7,25	172:21 187:13	41:11 46:855:10	20:18 22:10 23:23
50:7 117:13 175:6	188:13 191:13	58:10 73:17,20 74:3	27:17 29:3,9 30:8
technologies 22:20	192:12,15 198:4	75:5,19 85:21 87:23	30:17 31:16 34:21
technology 4:24	230:8,10,18 236:20	88:11 101:22	35:6,20 36:9,25
20:14 24:21 25:7,9	237:5 244:11,14	109:21 110:2 124:3	37:17 38:9,13 39:15
25:10,17,21,22 26:5	245:6 246:12,18	259:11 269:22,25	40:23 41:18 42:8
26:12,14,19,21,22	247:4,14,15 256:16	270:1,2 271:7,10,1	43:13 44:4,13,19,22
27:2,5,19,25 28:3,6	256:17,24 258:7,14	271:14,18 274:22	48:1,9,11,18,19,20
28:7 29:1,5 32:16	258:17,20 259:3,9	275:2	48:23 49:8,8,10
32:19,20 33:5 44:16	259:11,17,21,23	tfts 13:22 14:11,19	50:1,5,8,12 51:25
63:16,18 126:22	260:21 261:1,21	14:20 21:3 33:4,8	52:1,4 53:7,16,20
127:4	267:1 268:13	33:10,12,13 36:11	55:11,12 57:17,21
technology's. 26:24	269:13,15,17 270:7	38:20 39:3,5,7 47:8	58:6,7 59:7 63:20
telecom 20:6 22:23	271:1,25 272:1,5,12	52:6,10,19 53:5,12	66:22 68:4 69:14
22:25 23:4	terminals 87:24	54:18,25 114:17	71:22 72:20 73:3,6
tell 6:12 11:4 31:4	103:19,19,20	115:14	77:5 79:16 82:15
31:22 33:21 38:22	104:10 109:16	thank 30:25 64:4,13	86:2 88:9 89:1,7,14
53:11 68:11,16	258:25	93:21 116:9 118:24	89:25 90:22 91:7,13
89:15 90:13 97:8,9	terminated 277:15	122:21 124:22	92:18 93:11,18 95:5
97:22 98:4 102:7	terminology 9:22	156:10 236:1	95:21,25 96:18 97:9
103:5,14 159:21	211:16	thick 104:18	97:10 99:2 100:1,14
162:3 197:24 260:9	terms 8:3 15:14	thicker 243:19	100:19 104:2
260:15 264:22	19:22 21:8 25:9	thickness 104:20,21	105:15 109:10
266:2,7 269:14	31:23 44:18 51:17	104:24 143:11	110:8 113:2 116:20
tells 257:15,17,25	73:3 150:21 160:2	thin 39:13,14 51:14	117:18 118:6
temperature 41:16	160:24 165:21	56:3 117:19 118:12	119:14 120:14,17
81:24	172:9 177:1 214	123:17,19 243:18	122:11,15 124:16
temperatures 77:12	214:12 216:25	thing 17:21 26:11	128:15 129:4
82:10	243:25 266:16	32:10 48:2 74:7	136:17 137:22
ten 43:6	tested 19:16	112:3 130:14 138:1	145:15 147:1,7,14
		142:8 192:1 194:3	151:2,17 153:3,5

Veritext Chicago Reporting Company

154:11,21 155:12	thousands - 79:20	today 6:21 7:7,17	tradeoffs 159:4
158:5 159:4 160:7	three 6:612:3 58:19	10:20 14:1 25:11	training 13:23
161:4 162:11,12	58:22 65:5,7 78:6,6	67:18 114:13 127:3	transcript 47:1
163:8 164:4 165:1	78:7 88:18,21	154:2 161:14 176:9	273:2 276:13
165:13 168:3,11	108:14,16 149:20	179:3	transfer 79:23 81:1
169:3,6 170:18,19	150:16 151:16,18	today's 5:2 128:14	transform 269:8
174:5 175:11 178:3	177:13 180:3 226:2	told 56:9	transistor 39:14
181:20,24 183:8,8	226:2 227:20	tolerances 125:22	transistors 39:13
183:10 184:24	234:20 235:11	tomorrow 9:6 273:5	51:15 56:3
194:14,22 195:3	238:7,11 239:9,18	tool 124:10,11	translation 64:18,20
196:5 205:9,14	throughput 79:24	tools 77:7	translations 3:12
206:4 208:14 209:9	81:2	top 67:24 92:24 93:4	transmission 21:20
210:14 217:5 218:2	tight 125:2	93:9 96:10 97:1,7	transparent 123:25
218:7,22 220:2,14	tilt 155:19	97:14 98:10,12	151:21 152:3 167:6
222:10 230:20	time 5:3,11 6:18	103:5 108:24,25	167:9,13,16 182:7
231:8 232:3,3,22,24	8:11 11:22 14:17	133:10 142:5,6	182:16 186:5,7
233:1,2,22 234:14	15:24 17:17 19:6	158:24 159:1 198:5	188:7 190:20 192:2
235:13 236:3,3,5,16	20:16,17 21:7,16,25	202:17 203:6 210:6	193:20,22 195:14
237:1 241:7,16,25	22:1,13,16 28:11,12	210:7,20 223:5	196:2,5,9,19 197:4
242:23 243:6 244:7	28:14,17 30:3,16	224:4 228:23 230:9	197:6,20 198:25
245:25 246:20	36:8 43:7,9,10 47:6	230:25 231:12	199:24 200:4,10
247:6 248:1,15	50:8,21 51:4,22	237:15 248:5	202:7,13,17,21
250:5 251:12 252:1	52:5 53:11,18 57:9	249:19 258:6,1	204:3,19 205:23
252:9,13 253:9	57:14,24,25 63:15	270:1 274:24	208:12,23 210:21
254:10,18 257:10	75:8 79:3,13 80:23	topic 14:17 74:5	219:4,7,10 236:8
258:23 262:16,23	82:20 83:3 84:7,10	273:17	248:19
263:13 264:21	86:4 89:1 113:11	topics 20:19,20,21	trend 79:22
265:11,13,19	114:4 124:4 148:20	39:11	trial 1:1276:2
266:17 267:24	149:10,10 156:6	total 87:22 88:12	trivial 132:20 133:1
268:10,15,22,23	158:2 161:5 164:11	totally 141:25	136:3 138:8,14
270:14,15,16 271:3	164:16 177:9,10,17	142:13,15	142:10,25 145:15
271:11 272:13,14	177:20,23 178:1	touches 161:10	147:8 237:11
272:15,20 273:7	179:12 208:15	touching 159:1	true $40: 2370: 18$
thinking 30:14	209:20,25 211:2	162:1,18,21 163:1,7	73:14,18 85:25 92:6
third 19:18 23:10	240:6,13 245:10	199:5,25 200:5,11	150:13 190:8
39:24 150:11	251:16 252:4,14	221:22 239:25	193:15 195:13
170:22 221:1,23	260:8 267:17,21	toured 79:15	204:17 258:9,10
222:6 223:22,25	275:23	toy 12:21	260:24 262:23
224:3 225:12,17	times 6:643:4	toys 54:6	270:1 277:12
226:7 227:2 235:20	126:15 152:7	traces 109:5	trust 128:1
236:13,16,22,22	title 15:17	tracts 49:11	truth 6:12
237:10	titled 19:19 118:11	trade 85:11,13	try 85:20,22 158:3,7
thought 96:5 137:3	118:14	trademark 1:1 5:9	169:1 $248: 23$
$\begin{aligned} & \text { 137:7 162:4 216:20 } \\ & 216: 21 ~ 258: 16 \end{aligned}$	titles 58:7	276:1	267:13 272:3

trying 26:20 101:11	225:14,25 226:2,5,9	66:4 67:2 68:5,17	unpublished 55:6
131:23 134:15	226:20 236:2,15	69:1 71:13 75:13	55:15 62:7
144:25 174:16,19	238:8,9,23 240:16	87:13 98:13,18	unreasonable
175:2,18 185:3	243:6,17 244:1,6	99:24 100:21 101:2	175:12
204:4 205:3 216:12	245:2,12,18 246:4	105:2 106:18 110:7	update 35:9,11,13
217:2 222:12 226:8	246:16 248:24,24	112:2 114:8 119:17	36:5,5,7 42:5
227:19 228:8	256:17 258:17	120:7 142:19 153:6	updated 34:3 35:5
tubes 4:18	262:8 264:23 273:1	160:24 167:7,24	36:2 38:4,6,10 42:3
turn 10:2,3,5 48:2	273:3 274:16 275:4	169:4,7 171:13	updates 29:25 30:1
65:14 67:20 116:23	type 12:10 39:21	172:1,4 173:1 185:2	30:4
117:2 118:20	47:24 49:14 51:14	185:14 194:2	upper 107:8 109:9
124:18 164:19	51:20 53:12 115:16	195:19 198:12	159:7 168:13
180:9 182:12 238:2	123:5 252:11	201:8 205:10 210:4	169:16 194:8
241:13 246:21	types 18:17 51:18	216:12 217:2 220:1	232:18 245:9,9
turned 9:24 73:20	56:16 265:24 266:3	222:13 226:8 238:6	uppermost 158:11
turns 126:9	typical 48:20 59:8	256:22 265:20	259:8
tvs 78:5	80:15,18 87:6	268:18 272:9	upside 203:9
twice $25: 16,19,20$	104:1	understanding 7:19	use $12: 16,1628: 13$
twisted 14:14	typically $14: 728$	9:20 66:6 99:3	28:19,24 32:10,11
two 11:9 15:8 16:15	79:12 80:22 245:23	102:10 120:3,16	32:21 39:8,8 54:6
17:12 18:9 22:17	269:5	137:8 200:25 201	60:11,22 61:18 82:3
24:10 25:24 35:10	u	201:12 220:3	100:6 115:25 124:6
35:12 38:9,11 40:13		251:16 273:1,9	125:23 128:13
52:2,10,11 67:7,8		understood 209:6	152:3 173:24
67:13,15,17 70:3		214:9	174:24 175:11,12
71:17 72:5,9,10,18		unevenness 173:25	175:19 208:5
76:4 92:15 97:15	ately	unfortunately 83:12	218:12,24 219:13
98:15 99:9 101:7		unique 32:1	225:25 226:9
102:1,4 117:20,21		uniquely 212 :	265:18 273:2
118:7 128:12	anged	213:6 218:19	uses 32:22 151:16
130:25 133:12,14		unit 57:9,13 113:11	52:4 211:16
148:15,25 149:18		14:3 164:11,15	219:18 247:1
149:20 150:5,17		9:20,24 267:16	usually 32:23
152:4 154:12 168:4		67:20	
170:12 171:24	$21: 1940: 11$	united 1:1 5:9 276:1	vacuum
173:3 181:12,12	underneath	units 184:	118:12 210:15
188:5,19 189:2,9,15	73:11 92:17 97	universities 44:10	lleys
189:15,15 190:3	.18 102.25 108.2	university $11: 8,12$	247:10
192:8 195:19 199:5	$135: 9,13163: 16$	12:1 16:20,23 17:3	
199:10,12,13,19	:5 184:9	22:2 24:1,2 33:24	riatio
203:23 210:22	understand $6 \cdot 11,13$	42:12,21 43:8	ariations
211:3,19,20 212:2	$6: 16,17,187: 4,5,24$	unmodified 135:5	215:6 268:16
215:16 220:21,23	0:2	unpleasing 86:3	various $13: 23$
221:1,3,13,21 222:1	50:7,12 54:15 61:3	unpolarized 28:19	50:15 56:4 78:4
222:10 223:2	50:7,12 54.15 61:3	28:22	

85:11 123:4 218:18	walls 169:24 181:12	224:17,19 225:13	wind 233:8
ary 14:12	181:21	225:16 226:7	wire 182:13,15
varying 240:13	want 6:9 32:3 38:9	227:21 231:19	210:8 211:20
vast 262:10	39:3 44:7 47:2,3	232:2 234:20 235:3	215:24,25 247:19
vendors 159:21	54:15 57:3,25 58:2	242:17 250:12,16	254:5,24,25
veritext 5:2,13	61:24 65:19 72:2,5	250:17 256:24	wires 62:23 63:1
versus 5:8 87:18	72:7,17 74:1 89:2	260:15,15 266:24	189:9 190:12
vertical 109:2 155:8	95:1 96:2,18 97:20	269:6 273:13	211:20 244:1 245:2
155:9,12,13,16,20	98:5 106:18 108:12	ways 17:25 18:3	245:12 248:25
155:22,24 169:20	116:22 117:1	25:13,23,24 28:1	252:21
169:22,24 181:7,10	118:21 122:18	32:8 48:11,12,19	wiring 60:2,12 61:1
181:13,14,22,24	124:19 136:18	49:9 89:4 221:4	61:5,12,22 62:4,16
202:25	152:9 158:10	226:9,11,19 227:11	63:3 92:13 94:1
vertically 109:5	160:21 163:22,24	227:16 253:6	112:15,16,18,18
274:17	163:25,25 164:1	we've 15:6 23:13	113:5,6 156:13
viable 96:4	175:17 185:2,12,14	55:11,22 62:12	157:2 165:11,25
vicinity 255:6	186:20 187:6 201:2	110:4 124:14 154:2	166:2,5,9,12,17,18
videographer 2:21	210:21 220:23	161:14,22 171:14	166:23 167:5,15,17
5:1 57:8,12 84:6,9	223:21 226:6 227:6	171:24 206:4	168:15,15,18,23,24
113:10 114:2	234:5,9,9,12 237:14	222:17 223:7,15	169:1,5,6,12,14,14
164:10,14 209:19	238:6 248:23	web $3: 13,14,16,18$	169:17,18 184:13
209:23 267:15,19	251:17,20 264:5	3:19 4:17,18,19,20	184:16,18 185:20
275:21	266:11	4:21,22,23,24	187:25 188:2,14
videotaped 1:11	wanted 12:23	website 31:6,7,8,11	190:17,25 191:4,5
275:22	273:20	34:23 35:23 37:20	191:10,12 192:1,8,8
view 20:13 26:1 35:1	wanting 223:1	76:3,3 83:8,23 84:1	192:14,16 193:25
70:10 97:14 108:22	wants 106:6 107:6	119:2,11 123:13	194:3,7,8,11,11,13
121:9 129:18 164:1	139:12,12 270:12	124:19,25	194:15,19 195:1,14
187:9 212:4 213:9	way 9:17 16:24	websites 74:15,17	195:16,17 196:3,7
229:10 253:20	25:25 32:7,12 38:14	74:22,25 75:13,19	196:16,25 197:1
visually $86: 2$	48:20 63:16 68:13	75:24 76:2 122:5	201:20,23,25 202:5
vitae 29:22 54:24	68:17 72:23,25 73:1	127:25 128:7	202:9,15 204:9,10
55:8	74:1 82:9,12 91:23	week 30:8	205:22 206:2
voltage 15:24	98:2 103:2,13 104:9	weight $40: 1$	207:25 210:5,19
240:16,17 266:23	107:5 115:11,15	went 11:813:1	215:8,8,12 217:11
voltages 27:12	123:1 142:16	26:19 127:19	217:13 219:8,9
266:24 269:9	144:10,14 145:23	186:22	232:5 242:11,19
vortex 30:18	158:13 159:8	whereof 278:7	243:2,2,7,9,11,20,21
vs 1:5 276:5	160:20 167:18	white 98:7 103:6	245:9,23 247:2,3
w	170:2,15,25 180:4	228:20 274:16,25	250:2,7,11 252:7,7
aived 277:18	188:9 189:8,11,13	wholeheartedly	253:10,12,18
	191:8 202:20	151:10	254:13 259:14,17
$155: 18$	204:15 210:7,22	wi 245:24	259:18 261:2 267:6
	211:2 216:13 217:5	width 109:6 237:20	267:7 269:19,19
	219:11 222:9		271:4

Veritext Chicago Reporting Company

wirings 56:4,17	word 60:11,22	years 16:16 17:13
59:12,16 60:15 90:9	150:21 151:1,4,7,14	38:9,12 48:21
90:10 109:2 112:12	151:20 218:12,15	yellow 131:24
112:25 115:20,20	218:25 220:12	221:11
168:21 187:12	253:5	yield 147:23
189:15 208:5 243:2	words 90:1 171:6	yields 125:21
243:6 244:18	219:9 243:4	yj 136:6 274:9,18
245:18 246:1	work 12:10,12 14:24	
247:16 252:15,19	17:5 23:21,24 27:13	
252:20 263:7 269:9	31:18,19,19,23 37:2	
witness 3:15:10,14	42:13,17 44:2,7	
30:25 44:18 58:25	46:9,22 47:11 49:20	
60:7 61:17 62:20,25	55:5,12,14,15,18	
69:22 70:14 71:1	59:18 62:6,9,12	
72:20 75:7,22 77:24	63:12,19,21 73:19	
78:24 81:21 82:22	73:25 75:12,12 79:6	
83:18 84:18,23 85:8	80:24	
86:19 87:11 88:16	worked 31:10 36:10	
89:14 91:4 92:1	working 11:18,21	
93:2 94:5 95:4,11	13:20 18:2 23:13	
97:13 99:2,17	28:7 32:17 40:12	
101:20 104:8	55:16	
106:11 116:22	works 50:13	
117:18 125:6 128:4	wound 59:21	
134:14 147:20	write 139:16 192:25	
150:25 171:20	writing 201:16	
172:9 177:15	written 81:22 83:25	
178:17 181:9 185:6	128:23	
188:22 189:13,21	wrong 138:11	
190:15 191:19	x	
195:7 197:24 199:9	x 3:1	
$\begin{aligned} & \text { 203:20 210:13,25 } \\ & 211: 23 \text { 217:8 218:6 } \end{aligned}$	$\underline{\mathrm{x}}$	
218:24 219:18	yeab 7:14 36:14	
220:7,14 221:7	47:11 49:8 52:15,24	
222:12 225:19,21	75:2 80:16 93:11	
231:2 233:20	96:20 108:21 117:1	
234:18 239:8	141:10,13 146:13	
242:13 246:18	157:16 171:7,23	
251:1,15,25 252:24	180:19 182:25	
254:1 260:8 262:3	221:10 229:17,19	
263:3 266:2,7	260:21 266:5 270:5	
271:17 274:1 278:7	year 7:13,14 11:5,10	
wondering 251:23	$\begin{aligned} & 11: 1518: 9,19,20 \\ & 21: 735: 1336: 5,6 \end{aligned}$	
Veritext Chicago Reporting Company		
312-442-9087	800-24	-3290

