SEL EXHIBIT NO. 2026

INNOLUX CORP. v. PATENT OF SEMICONDUCTOR ENERGY LABORATORY CO., LTD.

IPR2013-00066

Page 6	Page 8
1 (Document marked previously as Exhibit	1 printing, but it does seem to be that there's two
2 Number 2011 was presented.)	2 copies of the same thing.
3 BY MR. GIBSON:	3 Q. Okay. And I'm not sure if that's
4 Q. And I'm going to hand you a copy of that	4 attached to the original that way or if that was
5 and ask you to take a look at it and confirm that	5 something that was done in the copying either, but
6 it's your declaration.	6 putting that aside, is it the same CV, albeit with
7 A. It does appear to be my declaration and	7 two copies of the one we went through yesterday?
8 exhibit -- I'm sorry, declaration and appendices	8 A. It does appear to be the same and that
9 but not the exhibits.	9 certainly was my intention.
10 Q. And if you look at Appendix B to your	10 Q. If you'd look at paragraph 52 of your
11 declaration --	11 declaration --
12 A. I see it	12 A. I see it.
13 Q. -- are those	13 Q. -- and if you have a moment, just to
14 reviewed to prepare your declaration?	14 read that to yourself. Just let me know when
15 A. Yes.	15 you're don
16 Q. And did you review	16 A. I've rea
17 preparing your declaration?	17 Q. And what are you trying to articulate
18 A. In forming the opinions	18 there?
19 expressed here and in preparing the declaration	19 A. The statement says what it says and I
20 itself, I didn't review anything else in addition	20 stand by it, that an ordinarily skilled artisan
21 to this	21 understands that this terminal in the ' 204 patent
22 Q	22 is fabricated generally from the bottom up,
23 for exam	23 beginning with the foundation and substrate and
24 A. Not for the purpose of forming the	24 then the other layers. And that's required
25 opinions and preparing the declaration, no. As	25 because of the processing that's needed during the
Page	Page 9
1 did mention yesterday, there were other things I	1 fabrication.
2 looked at but decided not to spend any more time	2 Q. And this figure's coming from the '204
3 on, other than recognizing that I had seen them.	3 patent, is that correct?
4 Q. And do you recall any patents you looked	4 A. Yes, I believe it's Fig. 4A.
5 at and decided not to consider?	5 (Document marked previously as Exhibit
6 A. No. I certainly don't recall any -- any	6 Number 1012 was presented.)
7 of those.	7 BY MR. GIBSON:
8 Q. How much time did you spend looking	8 Q. I'm going to
9 the things you decided not to consider?	$9 \text { And -- }$
10 A. A small -- small number of hours	10 A. To be clear, it's been colorized in my
11 one hour, not very much time at all.	11 declaration. So it's a modification of Fig. 4A,
12 Q. Were -- those things that you didn't	12 but that's wher
13 consider, were those provided to you by counsel or	13 Q. Right. Now, when you look at say
14 were those just things you looked at on your own?	14 Claim 1 of the '204 patent -- have you had a
15 A. Those were things that I looked at on my	15 chance to look at that
16 own.	16 A. While I have reviewed Claim 1 of the
17 Q. Were there any things that were provided	17 '204 patent, I certainly haven't spent a lot of
18 by counsel that you did not consider?	18 time reading it. That certainly was not my focus.
19 A. Not that I can recall. This list seems	19 Q. Okay, fair enoug
20 to be complete in tha	20 What would you consider to be a
21 Q. And the CV	21 representative claim that would embody
22 declaration, is it the same CV as yesterday	224 A in the '204 patent?
23 A. It appears to be, but there does appear	23 A. Can you tell me what you mean by
24 to be two copies of it. I'm not sure if that's	24 "representative claim"?
25 our error or an error that happened in your	25 Q. What's a claim that would claim the

Page 10	Page 12
1 features that you see in Fig. 4A of the '204	1 A. Well, in Claim 31, first of all, the
2 patent?	2 terms "first insulating film" and "second
3 A. Well, Fig. 4A is an embodiment of	3 insulating film" are part of the claim and they
4 Claim 31 and maybe others. So is that what you're	4 are part of the claim in a sequence of
5 asking, what my opinion is?	5 limitations, which I'd like to go through to lay
6 Q. Yeah, and what specific	6 the ground work for my answer, right.
7 think would cover that embodimen	7 So it's clearly a liquid crystal display
8 MR. SCHLITTER: Objection, form	8 device. There must be a substrate with thin film
9 THE WITNESS: Well, I'm quite ce	9 transistors, pixel electrodes each electrically
10 that Fig. 4A covers multiple claims in this	10 connected to one of the thin film transistors, a
11 patent. The one that comes to mind first	11 counter substrate facing the substrate, a liquid
12 Claim 31, but by no means is it limited to	12 crystal material and a sealant provided between
13 BY MR. GIBSON:	13 the substrate and the counter substrate.
14 Q. Okay.	14 And then we get into the claim
15 I'm asking for something that would be	15 limitations that are really particularly at issue.
16 representative.	16 There's an auxiliary line, an external connection
17 And Claim 31 uses the languag	17 line overlapping the auxiliary line with a first
18 "first" and "second," for example? There's	18 insulating film interposed there between. So
19 words in that claim?	19 that's the first instance of the word "first"
20 A. The words "first" and "second" are	20 applied to the insula
21 indeed in Claim 31, but of course applied to	21
22 -- oh, I'm sorry. Well, there's the insulating	22 require a sequence, but its relationship of this
23 films in Cl	23 element to the other elements identified here d
24	
25 it's used in a different way	25 "first," but rather that whole limitation that
1	Page 13
1 the words "first" and "second" do appear in	1 describes the relationship between those three
2 Claim 31.	2 elements.
3 Q. All right. And when you -- or when	3 Q. All right. And so it's obviously not --
4 ordinary -- when a person of -- an ordinary person	4 what you're saying is it's not the word "first" by
5 of skill in the art reads a claim that states	5 itself, but you understand in the context of that
6 "first" and "second," would you understand	6 claim when you see the words "first" and "second,"
7 that's referring to the order that the layers ar	7 there is an order that's being directed in how
8 deposited --	8 you're going to deposit these layers?
9 MR. SCHLITTER: Objection, form.	9 MR. SCHLITTER: Objection, form.
10 BY MR. GIBSON:	10 THE WITNESS: In Claim 31, the order
11 Q. -- on the subs	11 that is and sequence of the layers that are
12 MR. SCHLITTER: And foundation.	12 present is not principally linked to the use of
13 THE WITNESS: It would depend on the	13 the word "first" or the use of the word "second."
14 claim that the person of ordinary skill is	14 It's the other descriptions that are provided that
15 reading.	15 describe that.
16 BY MR. GIBS	16 The function in this claim of the word
17 Q. Well, the Claim 31, for example,	17 "first" and "second" principally goes to identify
18 would you interpret the order of the deposition	18 that there's two separate insulating films.
19 steps as being set forth in that claim?	19 BY MR. GIBSON:
20 A. Are you asking generally or do you wa	20 Q. Would that -- would you understand if
21 me to give you a comprehensive	21 you didn't have the words "first" and "second,"
22 Q. Specifically in Claim 31, how would a	22 that you could order these in a -- well, strike
23 person of ordinary skill in the art understand the	23 that.
24 words "first" and "second" in terms of a direction	24
25 into -- or the depositing of the layers?	25 you also have the words "first" and "second"?

1 A. Yes, they're used and applied on first	1 A. Well, in that case, I don't think a
2 conductive line, second conductive line as well a	2 person of ordinary skill would -- would be able to
3 first insulating film and second insulating film.	3 see that as the inverse. So in that case, it's
4 Q. And the statement where you say, "	4 building on top of that first conductive line
5 first conductive line over the substrate, " you	5 because of the word "over."
6 would understand that element to be telling you	6 Q. No, the word "over" is also used in the
7 sequence of how you're going to deposit that	7 previous ele
8 layer, correct?	8 A.
9 A. Well, not strictly speaking. If ther	9 Q. First conductive line over the
10 a substrate, there should be a -- in this claim	10 substrate
11 limitation, there should be a first conductive	11 A. It
12 line over that substrate. I think a person	12 Q. So how is the word "over" being used
13 ordinary skill would normally exp	13 differently in the element of first insulating
14 substrate is first somehow manufactured and th	14 film over the first conductive line?
15 prepared for the deposition of that conductive	15 A. Well, I'd like to be clear. I think a
16 line, but the claim certainly doesn't require	16 person of ordinary skill would normally read this,
17 that. It could be the inverse	17 a first conductive line over the substrate
18 Q. What do you mean it co	18 limitation and understand that the substrate would
19 inverse?	19 be prepared first and then the first wiring line
$20 \quad \text { A. }$	20 would be deposited and patterned on top of it, but
21 layer formed and a material deposited onto th	21 the claim limitation does not require that.
22 that will later s	22 That's simply what I'm -- I'm pointing out.
23 substrate. You	
24 displays,	24
25 it's common or -- or preferred, but it's certain	25 just two things. Whereas its second use refers
	Page 17
1 an aspect that's explored in that context.	1 its use with respect to more than two things.
2 Q. Okay. But looking at Claim 54, you	2 Q. So would you then read a limitation into
3 would not understand Claim 54 to be directing that	3 a first conductive line over the substrate as
4 kind of step, right?	4 saying the substrate's going to have to come
5 A. It doesn't direct either way. It simpl	5 before the first conductive line because the next
6 says there must be a first conductive line ov	6 element of first insulating film over the first
7 the substrate and that word "over" then places a	7 conductive line requires the insulating film to be
8 direction above a substrate that's going to be	8 over the conductive line?
9 built upon in the rest of the claim limitations.	9 MR. SCHLITTER: Objection, form
10 Q. All right. So you're saying the	10 THE WITNESS: I -- I don't think that a
11 substrate could come after the first condu	11 person of ordinary skill would read the phrase "a
12 line?	12 first conductive line over the substrate" as
13 A. Claim 54 could certainly appl	13 requiring that the substrate come first. That is
14 terminals where a first conductive line is fir	14 a preferable way to do it certainly, but it's not
15 somehow prepared and then a substrate material is	15 required.
16 applied onto th	16 However, when it's used in the next
17 It sounded to me like you wer	17 limitation, the first insulating film over the
18 if this limitation required a sequence b	18 first conductive line, there is an order that's
19 substrate first and then a first conductive line	19 required there because it's -- it's describing the
20 and I'm simply commenting	20 relationship of the first insulating film which
21 claim limitation requires. It could be	21 now must be over the first conductive line, which
22 inverse as well	22 of course is already over the substrate
23 Q. When you look at a first insulating film	23 BY MR. GIBSON:
24 over the first conductive line, could that be the	24 Q. Now, when you look at the next element,
25 inverse as well?	25 a second conductive line -- actually let me just

Page 18	Page 20
1 follow-up on what you just said.	1 conductive line and then put down -- put an
2 When you look at the two elements	2 insulating film and put a first conductive line
3 together, a first conductive line over the	3 next and then put a substrate on top of that?
4 substrate, a first insulating film over the	4 A. W
5 conductive line, are you saying that that	5 relative relationships between these element
6 tell you that the substrate is going to come fir	6 The claim doesn't have forming language. It's not
7 and then you're going to ha	7 a process claim. So no, I don't think I can agree
8 and then you're going to have an insulating film	8
9 over the conductive li	9 describe. This whole thing could have been
10 A. Perhaps I misun	10
11 "first." What	11
12 specifically, the sequence that is used during	12 would you be able to fabricate this? If you look
13 actual fabrication or	13 at all the claims, would you be able to fabri
14 Q. No, I'm looking at the claim language	14 this in an inverted way, opening up the particular
15 and I want to make sure it's	15 laye
16 understand, it's what you understand about the	16 A. Well, what I'm -- what I'm I guess most
17 words "first"	17 clearly trying
18 And I'm just trying to	18 fabrication, the process of creating these layer
19 you look at those two claim elements, a first	19 can take many different paths and I don't think
20 conductive line over the substrate, a first	20 the claim limits how the structure is gotten
21 insulating film over the first conductive line	21 It does limit the relative relationships of those
22 does that tell you	22
23 substrate and then a cond	23
24 substrate and then a first insulating film over 25 the first conductive line?	24 of ordinary skill would anticipate building this
Page 19	Page 21
1 A. At the end of whatever process is used	1 you're asking me to agree to, but I don't think
2 to implement these claim limitations, there should	2 the claim limits it to that.
3 be a substrate, which I'd prefer to talk about a	you wouldn't agree that in Claim 54,
4 being on the lower side of the element. The next	4 the sequence of the disclosed layers necessarily
5 element should be a first conduc	5 follows that you're going to have the first
6 then the next element should be a first insulating	6 conductive line deposited, then the insulating
7 film. I think that structure is required by those	7 film deposited and patterned to enable the
8 claim limitations. I think the difference that	8 required electrical connection?
9 I'm trying to express is that that structure can	9 A. Well, it depends on what you mean by
10 be reached even if the substrate isn't the first	10 "sequence."
11 thing that's actually fabricated.	11 Q. What
12 Q .	12 A. Well, again, if we're talking about the
13 a second conductive line over the first insula	13 sequence used during fabrication, that's one
14 film, would you understand that to requir	14 thing. If we talk about the sequence looking
15 the second conductive line is coming after	15 the structure itself at the end, it's a different
16 first conductive line has been deposited?	16 matter. So the claim does require the relative
17 A. I think a person of ordinary skill	17 sequence in the final structure.
18 would -- would read a second conductive line	18 Q. As one of ordinary skill
19 the first insulating film as requiring that the	19 isn't that how you're going to have to deposit
20 deposition and patterning of the second conductive	20 them in order to achieve that structure?
21 line should happen after the first insulating film	21 A. Again, I gave you the example in th
22 is already deposited.	22 first claim limitation that we were talking
23 Q. All rig	23 a first conductive line over the substrate. Ther
24 expect	24 are at least two ways to
25 words, we wouldn't start with the second	25 limitation. One is where the substrate is somehow

$\text { e } 22$	24
1 formed and then the first conductive line is	1 A. Do you mean the sequence of the
2 patterned -- deposited and patterned on top of	2 deposition steps?
3	3 Q. Yes.
4 example, but the opposite could have als	4 A. I -- I can't agree exactly
5 case, where the first conductive line is someho	5 Again, the claim doesn't describ
6 prepared and the substrate material a	6 process claim. It's a claim that limit
7 of that. In either way, you still wind up with	7 structure of the final terminal.
8 that relative relationship of the	8 Q. If you look
9 then process the rest of	9 paragraph 54 , and in paragraph 54 , you state "In
10 So in the end, t	10 Claim 54, and Claim 61, 68 and 76 reciting similar
11 looking at the final structure, going from the	11 limitations, the sequence of the disclosed layers
12 substrate and to the next layer that's over the	12 necessarily follows:
13 substrate in the language of the claim, the	13 "First, the first conductive line meta
14 sequence is prescribe	14401 in Fig. 4A is deposited. Second, the first
15 Q. But you think that the deposition steps	15 insulating film 112 in Fig. 4A is deposited and
16 could be reversed from what the sequence is when	16 patterned to enable the required electrical
17 you're looking at the finished product?	17 connection between the first and second conductive
18 A. What --	18 lines. Third, the second conductive line metal
19 MR. S	19403 in Fig. 4A is deposited. Fourth, the second
20 THE WITNESS: What are you asking	20 insulating film 113 in Fig. 4A is deposited and
21 reverse?	21 patterned to have an opening. Fifth
22 BY MR. GIB	22 transparent conductive film 114 in Fig. 4A is
23 Q. Well,	23 deposited and patterned."
24 the order of the deposition steps that you would	24 Those were your wor
25 understand would happen from Claim 54. And I	25 A. Yes, and I stand by paragraph 54 fully.
	25
2 anything. Let me jus	2 "in Claims 54, the sequence of the disclosed
3 Don't you think	3 layers necessarily follows"?
4 Claim 54 says, that a person of ordinary	4 A. I certainly do. That's what I'm
5 the art is going to understand the sequence of the	5 expressing right now. The sequence of the
6 disclosed layers to be that the first conductive	6 disclosed layers in the final terminal assembly
7 line is deposited, then the insulating film is	7 necessarily follows from the claim. How to get
8 deposited and patterned, then the -- then the	8 there is not specified in the claim. What I list
9 second conductive line is deposited, followed by	9 is the most likely way, but it's not the only way.
10 the second insulating film and then followed by	10 Q. It doesn't say the most likely way in
11 the transparent conductive film? Isn't that what	11 your declaration. It says "necessarily follows,"
12 Claim 54 is directing the sequence of deposition	12 correct?
13 steps to	13 A. It says that "the sequence of the
14 A. Claim 54 doesn't direct the sequence of	14 disclosed layers necessarily follows from
15 the deposition steps. It directs the sequence of	15 Claim 54." I still stand by that.
16 the layers in the final structure, the final	16 Q. Now, if you look at Fig. 4A -- and I
17 terminal. The sequence that you just described	17 just want to check to see if I've got a blowup of
18 certainly one example that I think a person	18 that. If not, we'll just use the one that's in
19 ordinary skill would -- would follow, but it's not	19 '204. I'll just use the one that's in the '204
20 limited to that. The claim is not limited to	20 patent.
21	21 So you've got that in front of you?
22 t	22 A. Yes
23	23 Q. And could you -- Claim 54 refers to a
24 deposition steps necessarily follow from the	24 first conductive line?
25 language of Claim 54?	25 A. Yes, it does.

Page 26	Page 28
1 Q. And if you could write down for me next	1 lines satisfy the first conductive line claim
2 to Fig. 4A what you would assume to be the first	2 limitation in Claim 54, yes.
3 conductive line.	3 Q. And the first insulating film, you
4 MR. SCHLITTER: Objection, form	4 understand that is the -- corresponds to the 112 ?
5 THE WITNESS: You want me to label on my	5 A. The first insulating film of Claim 54
6 copy of Fig. 4A --	6 does correspond or is -- that claim limitation is
7 BY MR. GIBSON	7 met by element 112 in Fig. 4A.
8 Q. Yes, please	8 Q. And then the second conductive line is
9 A. -- where is the first conductive line?	9 the 403 external connection lines?
10 Q. Yes.	10 A. 403 meets that claim limitation, the
11 A. Would you like me to just add the words	11 second conductive line.
12 to the label or actually color through the	12 Q. And the second insulating film is met by
13 element?	13 113, the resin inter-layer film?
14 Q. Oh, just add the words, please. That	14 A. Element 113 corresponds to the second
15 will be sufficient.	15 insulating film in Claim 54.
16 A. Okay. (Indicating)	16 Q. Okay. Let's look at Shiba again. I
17 Okay, I've done so.	17 think I've got the patent from the '204 matter.
18 Q. And then if you could -- Claim 54 also	18 MR. SCHLITTER: Thank you.
19 refers to a first insulating film?	19 (Document marked previously as Exhibit
20 A. It does.	20 Number 1013 was presented.)
21 Q. If you could write where that first	21 BY MR. GIBSON:
22 insulating film	22 Q. And this is one of the patents that you
23 A. (Indicating.)	23 reviewed in preparing your declaration for this
24 I've done that.	24 matter?
25 Q. Thank you.	25 A. Yes, it is.
Page 27	Page 29
1 And Claim 54 also refers to a second	1 Q. And if you'd look at Fig. 1 of Shiba,
2 conductive line?	2 what's your understanding of what's being
3 A. Yes.	3 disclosed there?
4 Q. And if you could write that on Fig. 4A	4 A. Well, Shiba describes Fig. 1 in
5 as well.	5 Column 3, line 32 as a plan view of an active
6 A. (Indicating.)	6 matrix LCD panel according to an embodiment of the
7 I've done it.	7 present invention.
8 Q. And Claim 54 refers to a second	8 Q. And there's a wiring 127, is that
9 insulating film?	9 correct?
10 A. Yes.	10 A. I see it. It has at least two labels in
11 Q. And if you could write that down as well	11 Fig. 1. It's a wiring that begins on the left
12 on Fig. 4A.	12 side, extends up the left side across the top of
13 A. (Indicating.) Yes.	13 the display and down the right side.
14 Q. All right. If I could just take a look	14 Q. That's the overall length of the
15 at that. Thank you.	15 wiring 127 ?
16 So as you've indicated there, the first	16 MR. SCHLITTER: Objection, form.
17 conductive line is equivalent to 401 auxiliary	17 THE WITNESS: I'm not sure I can
18 lines?	18 identify a length of wiring 127 , but that's where
19 A. I can't agree that it's equivalent, but	19 it is located and illustrated.
20 I 'm pointing to that label in Fig. 4A. The	20 BY MR. GIBSON:
21 auxiliary lines correspond to the first conductive	21 Q. And I'm going to ask for a specific
22 line of Claim 54.	22 dimension. I mean, if you knew the hypotenuse, I
23 Q. You understand that to satisfy that	23 suppose you could give us precise dimensions for
24 claim limitation?	24 wire 127 based on that, correct, so it's a right
25 A. I understand that the 401 auxiliary	25 angle triangle?

Page 30	Page 32
1 MR. SCHLITTER: Objection, form.	1 pad 735 and 738
2 THE WITNESS: I'm -- can you rephrase	2 A. Yes, 735 and 738 are included in the
3 your question? I'm not sure what you mean by a	3 list of pads in Column 5 and 6 that wiring 127
4 "precise dimension."	4 connects
5 BYMR. GIBSON	5 Q. Now, the wiring 127, would you agree
6 Q. If you knew the length of the hypotenu	6 that the distance it's traveling along the three
7 that runs -- there's a line that runs through the	7 sides of the rectangle is longer than the diagonal
8 middle	8 of the display?
9 A. It's a structure that has three sides of	9 MR. SCHLITTER: Objection, form.
10 a rectan	10 THE WITNESS:
11 hypotenuse applying to	11 mean by the distance of the wiring 127?
12 It's normally triangles that have hypotenuse. I'	12 BY MR. GIBSON
13 not sure what you're asking.	13 Q. Well, if we j
14 Q. Well, if you knew the d	14 from the three sides of the triangle, if we
15 side of the rectangle, you could figure out	15 traverse those three sides, it would be longer to
16 length of the overall wire 127, correct?	16
17 MR. SCHLITTER: Objection, for	17 the diagonal of the display?
18 THE WITNESS: You or someone else	18 A. I still have trouble applying your
19 need to define what they mean by the length of	19 question to element 127 because it's a complicated
20 that wiring.	20 pattern. But if you're asking me would the three
21 that's disclo	21 sides of this rectangle be longer than the
22 don't think without	22 diagonal dimension, then yes, it would. I think
23 a length of	23 that wou
24 BYMR.	24 Q . What's the impact of the resistance of
25 Q. All right. But you do agree the wiring	25 the 127 wiring on the ability to support frame
Page 31	33
1 runs from the bottom left corner up to the top and	1 inversion?
2 then across and then down to the bottom right	2 MR. SCHLITTER: Objection, form.
3 corner?	3 THE WITNESS: What do you mean by -
4	4 MR. SCHLITTER: Foundation.
5 illustrate that in page 47 of my dec	5 THE WITNESS: What do you mean by "frame
6 Q. You put it in green, I believe. We have	6 inversion"?
7 a black and white copy right now, but you put th	7 BYMR. GIBSON
8 in green?	8 Q. Is that a term that you've heard?
9 A. That's correct. I'm trying to highligh	9 A. It certainly is.
10 what Shiba indicates as Fig. 127 (sic) in Fig.	10 Q. Okay. How would one of ordinary skill
11 there as well as in Fig. 3.	11 in the art interpret frame inversion?
12 Q. And what is the purpose of wiring 127?	12 A. Well, frame inversion is what generally
13 A. Well, Shiba discloses that the purpose	13 is designed into displays because the DC bias, the
14 of wiring 127 in Column 5 and Column 6 is to	14 average voltage that appears in liquid cry
15 connect the power supply pads and the common pads	15 layer, needs to be zero. In other words, it needs
16 that are around the seal region. They h	16 to be unbi
17 numbers, for example, 731	17 And what that mean
18738 , and these are all being connected together so	18 voltages on either side of the pixel need to flip
19 that a steady reference voltage is -- would	19 or invert periodically and quite often, that's
20	20 every frame or every other frame kind of a thing.
21 electrode ca	21 So that
22 don't think he uses the word "steady," but that's	22 frame inversi
23 the idea.	23 Q. And does the wiring 127 have any impact
24 Q	24 on frame inversion in Shiba?
25 wiring 127 is supplying voltage to power supply	25 A. It's provided to support not only frame

	e 36
1 inversion itself, but the connection to the	1 Q. And would you also understand they can
2 counter electrod	2 be formed in the same step of forming the scanning
3 Q. And how does it -- how does it -- how	3 lines Yj?
4 does it perform that function?	4 A. While Shiba doesn't illustrate that,
5 A. Well, Shiba discloses that this w	5 is in Column 6, around lines 33 where it says
6 spread out along the sides of the display and	6 depending on the kind of TFTs, the aforementioned
7 connected to those eight pads, as well as	7 wiring lines can be formed in the same step
8 multiple terminal connections to that conduc	8 forming the scanning lines Yj . So that
9 pattern, all go to support an even voltag	9 alternate embodiment that he identifies
10 can be supplied to that. So that in general, the	10 Q. And then it goes on to explain that
11 -- the time it takes to reach the desired voltage	11 the wiring lines 127 may also be formed in
12 on that counter electrode would be small.	12 step of forming the scanning lines Yj and the data
13 I don't think he uses that language, but that's	13 lines Xi respectively, thereby constituting a
14 certainly my -- my recognition of what he's	14 two-layer structure.
15 talking about	15
16 Q. Now, i	16 A. Yes, I certainly do. After
17 support frame inversion?	17 comes after his paragraph where he says they
18 A. Well, it doesn't ap	18 be used -- it could be formed from the data lin
19 line 127 has high	19
20 that's the	20 and here he says it can be formed from both to
21 into multip	21 make
22 small line,	22 Q. So would you agree that Shiba disclos
23 far as why he spl	23 a single layer wiring, that is, a wirin
24 recognizes that th	24 formed from the same material as data lines X
25 Q. Right. But the wiring of -- having low	25 one possible option?
	37
1 resistance in wiring 127 is important so that you	1 MR. SCHLITTER: Objection, form.
2 can support frame inversion, correct?	2 THE WITNESS: Can you tell me what you
3 A. Having a resistance that's low enough	3 mean by a "single layer wiring."
4 support the design is important.	4 BYMR. GIBSON:
5 Q. And wiring 127 is critical to	5 Q. I think we ta
6 A. It's important to that, but that doesn't	6 yesterday that these wiring lines can be put down
7 necessarily mean that it needs to be as low as one	7 as a layer. That's what I was referring to.
8 can imagine. It needs to be good enough.	8 A. I think then that Shiba does illustrate
9 Q. Right. It needs to be low enough s	9 and talk about how wiring 127 is formed from a
10 that you don't have a signal distortion because if	10 single deposition step and a single layer of a
11 you have a signal distortion, your image quality	11 conductor that is the same as the data lines.
12 will be low?	12 Q. And it also can be the same as the
13 MR. SCHLITTER:	13 scanning lines Yj , that's also disclosed by Shiba?
14 foundation.	14 A. It could also be a single layer wire
15 THE	15 using your definition formed instead by the data
16 description of the disc	16 lines -- I'm sorry, the scanning lines Y.
17 BY MR. GIBSON:	17 Q. The scanning lines?
18 Q. Now, in Shiba, would you agree that the	18 A.
19 first wiring line 27 can be formed in the same	19 Q. And then it also goes on
20 step of forming the data lines Xi	20 double layer wiring where one layer is made from
21 A. I notice that Shiba in Colun	21 the material the data lines, Xi and one layer is
22 the figures of	22 made from the material the scanning lines, Yj ?
23 that the wiring lines 127 are formed in the same	23 A. Is that a question?
24 step of deposition and patterning as the data	24 Q. Yes
25 lines X, Xi.	25 A. I missed the question, I'm sorry. I'm

	Page 40
1 not trying to be difficult.	1 think of?
2 Q. I appreciate that	2 A. Well, I think one of ordinary skill
3 Would you agree that Shiba also	3 would not know what Shiba is talking about in
4 discloses that you can have a double layer wiring	4 these two sentences and it would be -- it would be
5 where one layer is made from the material of the	5 hard to implement anything in this direction. But
6 data line, Xi and one layer is made from the	6 I'll speculate on some things that would meet what
7 materi	7 he's describing if you'd like.
8 A. Well, the only	8 Q. Go ahead. Let me know what your best
9 Column 6 where he mentions in on	9 thoughts are on this.
10 wiring line 127 may be formed from the scannin	10 A. So I think one of ordinary skill would
11 lines and the data lines and he refers to it as	11 read two-layered structure to implement a wiring
12 two-layer structure.	12 line as, first of all, meaning that it would be
13 that's disclosed in Shiba	13 two conductors on top of each other forming a
14 And to me, it's very	14 two-layered structure accomplishing a wiring line.
15 person of ordinary skill -- well, I -- I think	15 And that's -- that's -- there
16 would be very unclear to a person of ordinary	16 examples in our prior art in this case where
17 skill what Shiba is disclosing there. Whatever	17 that's exactly the kind of wiring that's either
18 is, it should be a two-layer structure. That's	18 talked about in the specifications or illustrated
19 maybe the only thing that's clear.	19 in the figures in the other patents here. So I
20	20 think that
21 two-lay	21
22 formed in the step of forming the	22 But nevertheless, there's still many
23 and the data lines?	23 different ways to implement that wiring line 127
24 A. He's saying that a two-layer wiring	24 where you still have only partial connection. One
25 may be formed from those two metals, to accomp	25 example is if we turn to Fig. 1, one could imagine
39	Page 41
1 the purpose of wiring line 127 in two layers	1 keeping the wiring 127 as disclosed, but then in
2 Q. And then it goes on to say that the	2 addition, extending from the right side the scan
3 layers may then be partially connected to ea	3 lines, for example, element 724, a single terminal
4 other, correct?	4 or perhaps more that would extend from the
5 A. That's w	5 terminal region under the sealant and over into
6 yes.	6 the portion that is 127 , so that it could then
$7 \quad$ Q. And so we have a -- we have two options	7 thereby connect to it and provide additional
8 here. We have a single layer option or a double	8 support for that reference voltage. So that's one
9 layer option that's being discussed in Shiba in	9 example.
10 this column?	10 Q. And what were the other two that you ha
11 A	11 thought of?
12 three options. There's a single layer formed f	12 A. Well, another way to imagine it would
13 the data lines, a single layer formed from the	13 be -- well, another -- another implementation
14 scanning lines and then he mentions that s	14 would be for some part of the wiring line inside
15 combination of the two is a third option, but	15 the existing 127 without an additional terminal
16 certainly doesn't describe what that third option	16 connection to the scanning lines, as I mentioned
17 involves. And there's I think likely man	17 in my first example, but for some parts of that to
18 implementations that would meet the two sentence	18 have the additional metal deposited right on top.
19 that he's described h	19 So for example, one could have -- a
20 Q. The two-layer	20 along the upper line, have both the material from
21 be a number of ways to implement that	21 the data lines and the scanning lines deposited on
22 A. Yes, there certainly would be.	22 top of one another to form that connection.
23 think of	23 A third example, of course, is that
24 Q. And of a -- between a -- well, why don't	24 wiring line 127 has six sublines in it and
25 you tell me, what are those three that you can	25 certainly one can imagine that you could divide

Page 42	
1 those up between those patterning steps and	1 A. He does. But he calls it a two-layered
2 connect them at the start, at the end or perhaps	2 structure.
3 even somewhere in the middle and then form	3 Q. Wouldn't one of ordinary skill in the
4 structure that meets what he seems to be	4 art understand that if it's going to be partially
5 suggesting may be possible in those two sentences.	5 connected, that it's not going to be lying on top
6 Q. Now, in terms of a single layer	6 of each other?
7 structure that's mentioned earlier and then the	7 A. What do you mean by "lying on top of
8 double-layer structures, some examples of whi	8 each other"?
9 you provided, which would have a lower resistance?	9 Q . In direct contact.
10 A. Compared to what?	10 A. Certainly not. A person of ordinary
11 Q. The single layer that's mentioned	11 skill would -- would -- cannot come to that
12 compared to the double-layer structure.	12 conclusion based on both sentences that he's
13 A. You'd have to define from where to wher	13 provided here. It's a two-layered structure.
14 you want me to comment on where the resistance	14 It's not a three-layered structure.
15 would be.	15 Q. If it's -- if it's only a two-layered
16 Q. In line 127 where line 127 traverses the	16 structure, how would it be -- how would that
17 rectangle or the three sides of the rectangle?	17 structure not be in contact all the time?
18 A. Well, in all my cases I've -- I've	18 A. Well, first, let me note that Shiba
19 identified only local regions where the two	19 doesn't require that it's only partially
20 are on top of one another. If you'd like me to	20 connected. It says if the layers are partially
21 limit my answer to that I , of course, can.	21 connected, right. That's just one possible
22 Q. Why don't we start with that?	22 implementation of his sentence about the
23 A. Maybe the easiest thing to do is take my	23 two-layered st
24 second example and just use that.	24 But nevertheless, in the case that I've
25 second example, I'm commenting that wiring	25 offered in my first example where there's a
Page 43	Page 45
1 line 7 coul	1 connection that comes from the terminal on the
2 Q. 127?	2 right side of the display in Fig. 1, for example,
3 A. I'm sorry, yes, 127 could have the dat	3 coming from the connections in element 724, then
4 line layer as disclosed and then have the scanning	4 there would be a wiring that starts at the
5 line metal applied, for example, across the top	5 terminal that is not overlapping 127. It goes
6 border of the wiring line 127 only. And so if you	6 into the sealant. It's still not overlapping
7 want me to comment would the resistance be lowered	7 until it reaches 127. So it would being partially
8 from the top left of wiring 127 to the right, yes,	8 overlapping.
9 it would be.	9 My third example also would apply to
10 Q. And why would it be lowered?	10 that where it's only connected at the ends, the
11 A. Well, it would be lowered because there	11 beginning and the end of the conductors where
12 is more conductor. It would be a thicker wiring	12 those six lines are divided up, let's say three to
13 than it would be if it was a single wiring. But	13 the data lines and three to the scanning lines.
14 in no case that I've offered here is it a	14 Q. All right. But you're reading
15 three-layered structure with insulating material	15 two-layered structure to exclude an insulating
16 in between. I think that's the one thing that's	16 film, correct?
17 excluded from his description.	17 A. I'm commenting that Shiba calls it a
18 Q. Where does he exclude th	18 two-layered structure and it's my opinion that a
19 A. Well, he calls it a two-layered	19 person of ordinary skill would listen to him and
20 structure. A person of ordinary skill would never	20 understand it must have two layers and only two
21 look at a conductor and then an insulator and then	21 layers and thereby, would not have an insulating
22 another conductor and understand that to be a	22 film in between the two conductive films.
23 two-layered structure.	23 Q. You would agree at the time that Shiba
24 Q. Doesn't he talk about it being partially	24 is doing this, it was well-known in the art to
25 connected?	25 have two wiring layers that were separated by an

Page 46	Page 48
1 insulating film?	1 parallel lines to it.
2 A. I think it was well-known in the art by	2 Q . And is this the data line Xi or the
31997 to have a multi-layer wiring that was very	3 scanning line Yj ?
4 standard. Almost all the patents here talk about	4 A. What's illustrated in Fig. 6 is that the
5 that. And certainly it's well-known that	5 metal in 127 was deposited with -- from the data
6 connecting through an opening in an insulator was	6 line Xj or in that step. That's all he discloses
7 well-known in 1997 to connect two insulators	7 in any of his figures.
8 But nowhere except in the '204 or '413	8 Q. Is the Yj ?
9 patent is the structure of two conductors with an	9 A. It's the Xj .
10 insulating film in between where their electrical	10 Q. I'm sorry, it's the Xi.
11 contact is because of -- or through the openings	11 A. Xi.
12 in that insulating layer is that being used to	12 Q. That's what confused me.
13 provide some benefit in the -- in the direction of	13 A. I'm sorry.
14 the wiring. It is in Sukegawa, but that's	14 Q. So it's the Xi. Okay. And that is the
15 that's just fo	15 data line layer, correct?
16 Q. Now, you would agree that	16 A. Xi would be the data line metal, y
17 person of ordinary skill in the art, they bring	17 the metal that's deposited along with the data
18 the knowledge that they have to these patents,	18 lines is probably the most precise way to say it.
19 correct?	19 Q. All right.
20 A. Certainly	
21 Q. And they're presume	21 A. The layer below 127 is element 211 and
22 about the one patent, but about the other patents	22 that is called the g
23 as well in the field, correct?	23 Q . And is that an insulating lay
24 A.	24 A. That is an insulating material.
25 Q. So you can't look at the patent just by	25 Q. Is there any other layer shown below
1 itself. You are, as one of ordinary skill in the	1211 ?
2 art, permitted to look at the patents together in	2 A. The next layer that's illustrated is
3 the field?	3 element 200 which is the substrate. It's called
4 A. Certainly a person of ordinary skill is	4 the array substrate.
5 permitted to do that.	5 Q. You wouldn't consider that to be a layer
6 Q. Let's look at Fig. 6 of Shiba	6 in the sense that we've been using the word
7 A. I've got it. Oh, I notice that the	7 "layer" to talk about wiring layers and insulating
8 sealant is in direct contact with a transparent	8 layers?
9 conductive layer in Fig. 6. I couldn't -- I	9 A. It depends.
10 couldn't find the example yesterday in our	10 Q. In terms of Shiba, is the substrate
11 discussion, but here it is.	11 something you would understand to be a layer?
12 Q. I'll move to strike as nonresponsive. I	12 A. It depends.
13 hadn't asked a question.	13 Q. Well, in Fig. 6, would you consider the
14 Now, if we look at -- if we look at this	14 substrate to be a layer?
15 figure, you see wiring 127?	15 A. I know I'm repeating myself, but it
16 A. I do see wiring 127 on the bottom right	16 depends.
17 of the figure.	17 Q. So it might be; it might not?
18 Q. And is it a single layer or a double	18 A. I can't say either way at the moment.
19 layer in that figure?	19 It depends on the context.
20 A. In that figure,	20 Q. Looking at Fig. 6, would you consider
21 cross-section, of course, of something that Shiba	21 that to be the glass substrate 200?
22 calls a first wiring 127 and it's formed from a	22 A. Shiba calls it the array substrate and I
23 single layer of deposition and patterning. So I	23 think it's -- it would be commonly some kind of
24 think it's appropriate to call it a single layer	24 glass. I'm not sure Shiba requires it to be so.
25 wiring. But let's keep in mind it has multiple	25 I could study to find out.

Page 50	Page 52
1 Q. That's fine. Would you consider the	1 A. Element 113 is called the sealing age
2 gate dielectric layer 211 to be a first insulating	2 Q. And layer 241 runs under element 113?
3 film?	3 A. Are you asking me if that's the case in
4 A. What do you mean by "first insulating	4 Fig. 6?
5 film"?	5 Q.
6 Q.	6 A. In Fig. 6, it is illustrated that layer
7 on the substrate	7241 is -- is at least partially below the element
8 A. Well, it is the first layer	8113 . Of course, element 241 extends far beyond
9 illustrated in Fig. 6 in Shiba, but it is	9 that.
10 certainly not the first insulating film of the	10 Q. Now, if the wiring 127 is formed in the
11 claims in the '204 patent, specifically Claim 5	11 same step of forming the scan lines Yj , how will
12 It cannot be because it doesn't have a first	12 they appear in Fig. 6?
13 conductor underneath it	13 A. I don't think there's one answer to
14 Q. Putting that aside,	14 that.
15 is there any insulating film that comes before the	15 Q. Can you give me the different answers to
16 gate dielectric?	16 that then?
17 A. When you say "before," what do you mean?	17 A. Well, I guess the most -- because of
18 Q. There's nothing in between 211 and 200,	18 course Shiba doesn't say, right. Shiba has one
19 right?	19 sentence that says it can be done and doesn't
20 A. Elements 211 and 200 are illustrat	20 describe how. So it's not really fully disclosed
21 Fig. 6, as least in the region of 127, as being in	21 to one of ordinary
22 direct contact, yes.	22 One example I can think of is
23 Q. What's the layer that's above 127	23 would be the same structure, those six lines, at
24 A. There are many layers above 127. The	24 least in Fig. 6, and those would be -- those would
25 first --	25 appear between element 200 and element 211 instead
Page 51	Page 53
1 Q. I meant the first layer. Let's talk	1 of being as illustrated being between 211 and 241.
2 about that.	2 Q. Any other examples that you can think
3 A. Well, for -- of course 127 has six	3 of?
4 sublines and the -- all of them have element 241	4 A. Well, in this cross-section, I mean, of
5 on top of it and then beyond that, it varies. But	5 course this is not all of the wiring line 127.
6 let me see what 241 is called.	6 There's also the rest of the display. And so
$7 \quad$ Q. And what is 241?	7 there certainly are many variations on -- on how
8 A. It's the protective overcoat which is	8 to do that. I can't -- I don't think I could
9 identified as being, in one example, formed a	9 enumerate all the other possibilities. It's just
10 silicon nitride. So that's an insulating	10 not -- not clear what else could be done for a
11 material.	11 person of ordinary skill to implement this idea.
12 Q. So you would agree that 241 is a	12 MR. GIBSON: If we could marked this as
13 insulating layer?	131008.
14 A. I can agree that it's an insulating	14 (Document marked as Exhibit Number 1008
15 layer, yeah.	15 for identification.)
16 Q. And it's coming after the gate	16 BY MR. GIBSON:
17 dielectric insulating layer?	17 Q. And Exhibit 1008 is titled "Late-News
18 A. By "after," do you mean it's been	18 Paper: Polarization Independent Liquid Crystal
19 deposited in time after it?	19 Microdisplays" and it lists you among others as
20 Q. Yes.	20 one of the authors
21 A. I think that's -- that's the disclosure	21 Do you see that?
22 in Shiba that it would be formed in sequence after	22 A. Yes, I do
23 the other insulating layer. Of course there would	23 Q. And I think yesterday when we were
24 be other steps in between.	24 talking, you mentioned a particular paper and I
25 Q. What is the element 113?	25 was curious if this is that paper?

$\text { Page } 54$	Page 56
1 A. We talked about many papers. I agree	1 crystalline silicon.
2 that I did identify this paper in answer to one of	2 BY MR. GIBSON:
3 your questions. I don't remember specifically	3 Q. Would you agree that the backplane is
4 which one	4 not made on a glass substrate?
5 Q. Okay. I think it had to do with work on	5 A. In this example, it is -- it
6 TFTs. Do you recall th	6 glass substrate, that's righ
7 A. There was an extensive discussion on	$7 \quad$ Q. And would you agree that the transistors
8 work with TFTs and again, I don't remember the	8 used in this silicon backplane are conventional
9 specific question for which I identified this, but	9 single crystal silicon transistors?
10 this is -- this is one of the papers I identified	10 A. In this example, that's correct. In my
11 yesterday,	11 other work that's unpublished, that's -- that's
12	12 not correct.
13 single paper where you dea	13 Q. Okay. But I'm talking about this
14 displays and peripheral driving circuits	14 particular p
15 same substrata	15 So you would agree that the transistors
16 Do you recall	16 that are used here are conventional single crystal
17 A. Well, I don't recall exactly what I	17 silicon transi
18 said. What I do -- what is true is that this is	18 A. Well, they're
19 the -- maybe the only publication that came	19 because they have high voltage aspects to them,
20 my work involving TFTs and active	20 but they are more standard. They're -- they're
21 substrates, but my work, as I said, was largely	21 not thin film transistor
22 unpublished. This is the only thing that did come	22 Q. Would a person of ordinary skill in the
23 out that I can point to and sha	23 art characterize a single crystal silico
24	24 transis
25 deals with a 256 -by-256 pixel silicon backplane?	25 A. Not in general.
Page 55	age 57
1 A. Yes, exactly. This was one of the many	1 Q. Who fabricated this silicon backplane
2 implementations that we were working o	2 that's discussed in the article
3 Q. And what is the substrate for the	3 A. Well, this is -- this particula
4 silicon backplane?	4 backplane came in a partnership with a third
5 A. What do you mean? What is the material?	5 company that's identified here. It's Boulder
6 Q. Yes.	6 Nonlinear Systems and it's a modification of one
7 A. Well, you said it, it's cryst	7 of their standard silicon backplanes that we used
8 silicon.	8 and we were able to then publish on.
9 Q.	$9 \quad$ But by no means was this project limited
10 A. There are two substrates	10 to just this prototype or what we described here.
11 is glass and ITO. The lower one is predominantly	11 We had others where we -- we designed and at least
12 silicon but, of course, it has other layers	12 initially fabricated our own on -- on silicon
13 aluminum and other wirings and various dopings to	13 well as other TFTs that were on glass to form the
14 achieve the transistors that are in the	14 active matrix
15 microdisplay	15 Q. Now, did -- but this particular -- you
16 Q. Would	16 know, and I'll move to strike the last part as
17 silicon wafer?	17 nonresponsive.
18 A. Well, it's a piece that came from	18 The particular part here on -- dealing
19 silicon wafer,	19 with what's in this particular article, I think
20 Q. Does the silicon backplane use a singl	20 you agree that this was made and provided by
21 crystal silicon wafer?	21 Boulder Nonlinear Systems?
22 MR. SCHLITTER: Objectio	22 A. It was a modification of one of their
23 THE WITNESS: I think I'm not sure what	23 standard products for our project and then so we
24 you mean by a "silicon" -- I'm sorry, what you	24 modified it along with them. It's -- it's not a
25 mean by a "single crystal silicon wafer"? It is	25 standard thing from them.

58	60
1 Q. Do you know if Boulder Nonlinear Systems	1 in your company to fabricate TFT-based backplanes?
2 provides commercial products such as reflective	2 A. No, our company is in many way
3 liquid crystal spacial light modulat	3 virtual company. We don't have independent office
4 A. That is one kind of prod	4 or lab space in the company. We have multiple
5 they provide and those can be used in various	5 employees, but we leverage the university and all
6 applications, including near-to-eye displays.	6 its resources for the physical aspects of our
7 Q. I think you mentioned that you, in som	7 research and product development that we do here
8 of your recent projects, were looking at galliu	8 domestically and then we produce commercial
9 nitride TFTs?	9 products with our Japanese manufacturing partner.
10 A. Yes.	10 Q. And who is that?
11 Q. Are those really for LEDs as oppo	11 A. I'm not sure I can say. I'm sorry.
12 TFTs?	12 Yeah, I mean, I'd like to tell you, but I'm just
13 A. No, they're not.	13 not sure if it's public information.
14 Q. Is gallium nitride a material that's	14 Q. I understand.
15 used for fabricating LEDs?	15 All right. Why don't we take a break?
16 A. Yes, it's a -- it's a very common and	16 VIDEOGRAPHER: We're going off record.
17 very important one for green and blue.	17 This is the end of Media Unit Number 1. The time
18 Q. I think there's some acknowledgments and	18 is $11: 10$.
19 there's a reference in your article to anothe	19 (Short recess.)
20 company called Goldeneye, Inc.?	20 VIDEOGRAPHER: We're back ou record.
21 A. In addition to the reference to Boulde	21 This is the beginning of Media Unit Number 2 in
22 Nonlinear Systems, there's an additional company	22 the deposition of Dr. Michael Escuti. The time is
23 Goldeneye, Incorporated, yes.	23 11:26. Please continue
24 Q. And what were the contributions of that	24 BYMR. GIBSON:
25 company?	25 Q. All right. If you could look at page 52
59	
1 A. Well, you can see in the Fig. 4 right	1 of your decla
2 above the acknowledgments that the LEDs, the light	2 A. I've g
3 source for this projector, came -- or at least	3 Q. And these are the two figures we
4 part of it came from the company Goldeneye. They	4 discussed some yesterday.
5 had a -- at the time -- this is not recent, right.	5 What was your purpose of putting this
6 This is 2007, 2008. They had a technology th	6 into the declaration in the ' 204 matter?
7 would produce light with LEDs and then collimate	7 A. Well, the paragraphs explaining
8 it in an advantageous way and we were taking	8 certainly contain my purpose. I can certainly
9 advantage of that.	9 summarize that if you'd like.
10 Q. And how were you taking advantag	10 Q. So you're saying paragraph 107 sets
11 that?	11 forth your purpose?
12 A.	12 A. It's certainly not limited to 107. It's
13 needs light -- in this case, in this proje	13 this -- I think there are -- there are subsequent
14 needed light that would be produced by LEDs but	14 paragraphs that have to go carefully to notice
15 also fairly well collimated efficiently. That was	15 which paragraphs it ends on, but it certainly
16 important to us. So their technique would provide	16 includes $108,109,110$ and 111. It's the whole
17 that collimation for us, right. It's the light	17 section discussing those figures.
18 source for our projector.	18 Q. Okay. When you look at these two
19 Q. And do you know if Goldeneye is involved	19 figures, would you agree that there's a protective
20 in making gallium nitride LEDs?	20 overcoat and then an opening formed over it, or
21 A. I don't recall to what extent they'	21 formed into it might be a better way to say that?
22 actual fabricating their own LEDs or to wh	22 A. That would be a better way to say it.
23 extent they're getting the dye from those that	23 Both figures have a protective overcoat 241 and
24 fabricate it.	24 there is an opening that is illustrated as being
25 Q. And do you have processing capabilities	25 somehow created within that overcoat.

	4
1 Q. Now, can a person of ordinary skill in	1 actually opening up the insul
2 the art form the opening in the overcoat befor	2 MR. SCHLITTER: Objection, form
3 forming the overcoat itself?	NESS: In that example, and to be
4 A. Using standard semiconductor processing,	4 more specific applied here, if the mask was
5 no, but there are exotic ways to do such a thing.	5 literally some -- some kind of metal perhaps or
6 Q. Okay. But they would not be standard?	6 other substrate that's placed on the edge of a
7 A. In my experience, they would not b	7 display, it's another object that's being brought
8 standard	8 down to the glass substrate during the deposition
9 Q. Okay. So if we c	9 process, then it would cover up that region during
10 A. Well, let me make one more comm	10 that process.
11 There is -- I'm sorry. Can I clarify my answer?	11 And then when the deposition
12 Q. You weren't finished, so go ahead.	12 can be, of course, removed and there would be an
13 A. Okay. In the sense that it is	13 opening in that insulating layer that would appear
14 most common to create openings in an insulat	14 because the material was never deposited there to
15 layer in the way that we've been talking about,	15 begin with
16 that first the layer is deposited and then it's	16 BY MR. GIBSO
17 etched away -- some opening is etched away	17 Q. Okay
18 there's also a common technique which I don't	18 deposited an insulation layer, no mask and then
19 think is uncommon and this involves using a	19 you've created openings.
20 to cover up a portion of the substrate that you're	20 A. I can assume that,
21 depositing	21 Q. And let's call that formation of the
22 And in	22 protective overcoat as step
23 course,	
24 depositio	24 Q. And then forming the opening in the
25 another part is not and so that's another way	25 protective overcoat is step B.
1 create openings in an insulating la	1 A. Okay
2 Q. All right. When you're looking at the	2 Q. And when I'm talking about forming the
3 '204 patent as a person of ordinary skill in the	3 opening, I'm talking about all the steps necessary
4 art, would you understand that the insulating	4 to accomplish that as step B.
5 layer is being deposited and then it's being	5 Are you with me?
6 etched to create the openings?	6 A. I think so.
7 A. I'm -- I'm not sure that the '204	$7 \quad$ Q. What is the sequence of those two steps?
8 requires that. It's certainly a preferred	8 A. It sounds to me that it's in your
9 example, but I don't recall if the '204 pate	9 assumption, right. You said first let's assume
10 requires that.	10 that layer A is deposited wholly on the substrate
11 Q. Okay.	11 without any kind of mask, whether it's an external
12 you understand that's certainly one way it would	12 mask or resist that's down there. And then after
13 be done, correct?	13 that, the next step is to form the opening by, for
14 A. Yes.	14 example, etching.
15 Q. And you would consider for an insulating	15 Q. So it's step A, then step B ?
16 layer, that to be the more standard way it would	16 A. In your assumption, it is
17 be done rather than using a mask?	17 Q. Now, looking at the two figures you have
18 A. I consider both of those techniq	18 in your -- in your declaration, do you recognize
19 standard. Which one is used depends on whe	19 that there's another layer, the ITO layer?
20 opening is being made and how big the opening is.	20 A. There's several other layers. We talke
21 So I'm not sure I can point to one or the other as	21 about them all yesterday, but both figures have an
22 being more standard.	22 ITO layer that's illustrated.
23 Q. When you're	23 Q. Okay. So in my example, let's now call
24 you're not forming an opening at that point,	24 the -- forming the ITO layer as step
25 are depositing around a mask and then you're not	25 A. If you'd like to assume that, that's

	Page
1 fine.	1 that A is a layer that's explicitly put down
2 Q. And can you list the different ways a	2 everywhere, right, not masked, there's no lift off
3 person of ordinary skill in the art would	3 resist. And step B is the -- whatever process is
4 recognize that exists for performing these three	4 used to create an opening in the layer that's put
5 steps --	5 down in step A. So those two have to go in that
6 MR. SCHLITTER: Objection, foundation.	6 sequence, A and then B in processing by your
7 BY MR. GIBSO	7 assumptions. And so then the only two possible
8 Q. -- in sequence?	8 variations would be for C to either be before A
9 A. I'm not sure I understand your quest	9 and B or after
10 Fig . C shows the example of first ITO A is	10 Q. Do you still have Shiba around?
11 deposited and patterned on whatever is below	11 A. Yes, I have Shiba.
12 Then the protective overcoat 241 is applied and	12 Q. If you look at Fig. 4?
13 then lastly, the opening is created and that's	13 A. I see it.
14 consistent with what's in Sukegawa.	14 Q. Do you see the ITO layer?
15 Alternatively is what's in D, where	15 A. I see two ITO laye
16 insulating film is applied first, then the openin	16 Q. And what numbers are those?
17 and then the ITO's deposited and patterned.	17 A. Let me make sure. Layer 251 and 741
18 Q. Okay. But if we have these as three	18 Q. And where are you getting 741 from, what
19 steps, an A, a and a C , one obvious sequence	19 part of the specification?
20 could do is A and then B and then C.	20 A. I'm not very good at word searching.
21 Are there any other ways to reorder	21 Electronically it's much easie
22 those three steps?	22 Q. I mean, there may be other references,
23 A. Well, the A, B, C order in yo	23 but I was looking at Column 5, line -- it's
24 assumptions -- or assuming the way you've de	24 probably around line 38 . I think it refers to --
25 those steps would correspond to Fig. D at least	25 Shiba refers to 741 as a connecting projection?
ge 67	Page 69
1 partially. And Fig. C, however, would be	1 A. Yes, yes, exactly. So these are --
2 different. It would be C, A, B, consistent with	2 thank you for finding it. This is the contact on
3 Sukegawa, not just my Fig. C.	3 the counter substrate which extends out. It's the
4 Q. Right. So Fig. C, the steps would be	4 portion of the ITO layer 7 -- I'm sorry -- the
5 step C, then step A, then step B?	5 counter substrate electrode which is explicitly
6 A. Yes.	6 ITO, counter electrode 541, and the projection to
7 Q. And then Fig. D, the steps would be A,	7 the left side is the portion -- I understand that
$8 \mathrm{~B}, \mathrm{C}$?	8 to be the portion of the electrode on the other
9 A. Yes, but let's also keep in mind that	9 substrate that gets the contact from those pads
10 there could be other steps in between and	10 that are all around Shiba's display.
11 sometimes there has to be.	11 Q. Where does it call 741 a transparent
12 Q. I'm just talking about what we see in	12 conductive layer or an ITO?
13 these two figures.	13 A. I don't think it's -- it's text -- that
14 It would be A, B, C for Fig. D?	14 text is in the specification, but that's what
15 A. Sure. I'll say it again. Fig. D would	15 Fig. 4 shows. The layer 741 goes from the left
16 correspond to $\mathrm{A}, \mathrm{B}, \mathrm{C}$.	16 side and all the way to the right. And on the
17 Q. Are there any other ways to -- in terms	17 right side, I see 541, which is the pixel
18 of the sequence that we've been discussing, the	18 electrode and pixel electrode 541 appears both in
19 steps A, B and C, are there any other ways to do	19 Fig. 4, Fig. 6 and 541 is --I think it's clear
20 it or are these the only two?	20 from the specification that that is ITO.
21 A. You're asking me is there any other	21 Q. Well, and why would the patent call 741
22 ordering of three things?	22 something different than 541 if it was the same
23 Q. No, not any three things, these	23 thing?
24 particular three things.	24 A. That's a good question. If you look
25 A. Well, in your assumptions you've said	25 Fig. 3, there's a single conductive layer that has

Page 70	2
1 many of its reg	1 A. Well, it's not my belief. It's what the
2 numbers. For example, the wiring 127, the	2 disclosure in Shiba shows in Fig. 1. So 741 is
3125,731 , the line 121, the terminal 751 , th	3 part of the layer 541 and there are many other pad
4 all formed from the same deposition step and	4 protrusions. I mean, this is how the counter
5 these element numbers correspond to differen	5 electrode gets its potential, by those eight
6 pieces of it. So it's very consistent with Shib	6 conne
7 to do th	be
8	8 an ITO layer for there to be a connection, right?
9 actual different -- diffe	9 A. It doesn't, you're correct, but that's
10 Fig. 3, righ	10 what's show
11 A. Well, yes, but 741 is a differ	11 Q. As I said, we disagree about that, but
12 structure. We can see it in Fig. 1. So Fig.	12 I'm just trying to get to what you're basing your
13 has 741 on the bottom left. Of course Fig. 3	13 view on that the sealant is connecting to an ITO
14 the expanded view of the box labeled A in Fig.	14 layer and that's based on the connection -- at the
15 and we see 741 identified there and we can s	15 top of Fig. 4, there's -- there's some touching of
16 that there's a dashed line that runs all around	16 sealant and
17 the display.	17 A.
18 counter electro	18 counter substrate touching
19 And then shoot	19 Q. Wh
20 there are eight lit	20 A. In Fig. 4, it shows -- it shows what
21 dashed line, that same regi	21 might be a combination. It depends on where you
22 labeled 741 and other numb	22 define what the boundary between 741 and 541 is.
23 Q. Those are conn	23 So 541 is the counter electrode
24 connec	24 through most of the display, it's off to the right
25 A. They	25 side of Fig. 4. And then 741 appears to be this
1 they are -- from Fig. 1 it's clear	his protrusion which is in direct contact with
2 the same conducting layer. And while I don't	2 the glass substrate 501.
3 think Shiba requires that it be formed of ITO,	3 Q. And are you -- is it your view that
4 certainly is disclosed as such.	4 sealant is contacting the ITO layer in Fig. 4?
5 Q. Well, there's nothing th	5 Let me -- is it your view that sealant is
6 an ITO layer, correct?	6 contacting 741?
7 A. The specification does not	7 A. It appears that 741 is connected to both
8 it is disclosed in Fig. 4 and Fig.	8 element 115, which is the conductive resin or
$9 \quad \mathrm{Q}$. Well, we may just have to disagree about	9 the -- I think it's called the transfer material
10 that. But the sealant -- I take it,	10 made of a conducting resin, as well as a small
11 reference earlier today that the	11 part of the sealant 113 there
12 the ITO was based on 741 being an ITO?	12 Q. All right. Then Fig. 6, at the bottom
13 A. It's not. Fig. 6 also shows 541, the	13 of Fig. 6, you would agree that there's no contact
14 ITO counter electrode, as in con	14 between the sealant and the ITO layer?
15 counter electrode substrate with the sealant 113	15 A. In Fig. 6, I agree that the bottom part
16 Q. Okay. So let's start with Fig. 4 then	16 of the sealant does not contact ITO.
17 we'll move to Fig. 6.	17 Q. And at the top, where do you think
18 So Fig. 4, at the	18 there's a touching between the sealant and 541?
19 you would agree that the sealant is not in contact	19 A. Element 541 is extending from the left
20 with the ITO, correct?	20 side of the figure of Fig. 6 to most of the way
21 A. On the bottom substrate, I do agree with	21 across toward the right side, and it is in direct
	22 contact with the majority of the sealant that's
23 Q. And on the upper substrate, becau	23 illustrated in Fig. 6
24 believe 741 is an ITO layer, you would say there's	$24 \quad 541$ is called the
25 some contact with the sealant?	25 Column 5 has some language about that counter

Page 74	6
1 electrode around lines 24 through 28 or so.	1 substrate and the sealant that contacts it. It
2 says, "In this case, since the counter electro	2 mentions that there's a counter substrate facin
3 541" is -- I'm sorry -- "counter electro	3 the substrate and, of course, the sealant has
4 made of ITO, has a relatively high resistance" and	4 connect to th
5 then it go	5 But I don't see an explicit electrode
6 Q. And then what is 58	6 mentioned in Claim 54 for that counter elec
7	7 but certain
8 descri	8 Q. But it's not someth
9 immediately adjacent to the liquid	9
10 then that corresponds to the orient	10 A. It is implicit to Claim 54. If you
11 do suspect somewhere in Shiba he does disclos	11 didn't have it, you would -- most LCD modes would
12 what that's called, but I'm not finding it	12 not function; not all, b
13 Q. Would that be an insulating layer?	13 Q. So would you say that the claims are
14 A. It is typically formed of a polymer that	14 limited to that requirement that you're finding
15 would be insulating, an insulating material. It's	15 implicit?
16 not typically a conductor.	16 A. Maybe I'm being clumsy with the terms.
17 Q. And 581, does that also extend from the	17 It's -- it's not explicit in the claim and as
18 left to the right in Fig. 6?	18 such, the claim applies to both of those
19 A. It extends partially, right. You can	19 circumstances.
20 see that it only stays within the liquid crystal	20 Q. Is the -- you would agree that Claim 54
21 portion and ends immediately before the seala	21 is not directed to the type of structure we see in
22 and there's a good reason for that's because th	22 Fig. 6 with respect where we have element 54
23 very thin polymer film is even worse to adhere	23 connecting with the -- we have element 541 along
24 than ITO.	24 the top of the substrate
25 Q. Now, you would agree with me that the	25 MR. SCHLITTER: Object to form.
Page 75	Page 77
1 '204 patent is not directed to the fabrication	ITNESS: Do you mean Fig. 6 of
2 area that you're talking about where 541 extend	2 Shiba?
3 into the sealant area?	3 BY MR. GIBSON
4 A. I don't think I can a	4 Q. Yes.
5 second part of your characterization. Fig.	5 A. Fig. 6 in Shiba is not a cross-section
6 shows that element 541 goes all around the display	6 of the terminal portion, but it's clear from
7 and has -- it's roughly a rectangle with these	7 Fig. 1 that element 541 extends all around the
8 eight protrusions. And some of those protrusions	8 display. It necessarily has to and it certainly
9 are in the terminal region, but the two sides of	9 extends over the terminal portions. So if we took
10 element 541 do correspond to the termina	10 a cross-section there, that's a different matter.
11 portions. And while Fig. 1 shows the top-down	11 Q. No, I'm not talking about that. I'm
12 view all around, Fig. 6 is not corresponding to a	12 talking about Fig. 6.
13 terminal portion. But that's just Fig. 6.	13 And because it's not part of the
14 Q. You would agree that Fig. 6 does not	14 terminal portion, you would agree that Claim 54 is
15 correspond to a terminal portion?	15 not directed to the way 541 is being used in
16 A. Yes, I do agree with that. That would	16 Fig. 6?
17 be represented in Fig. 4, but also in other	17 MR. SCHLITTER: Objection, form
18 regions of Fig. 1.	18 THE WITNESS: Fig. 6 in Shiba is not a
19 Q. And we're looking at -- you still have	19 cross-section of the terminal portion, I agree to
20 the '204 patent so we can look at Claim 54.	20 that. But Fig. 1 makes it clear that the element
21 A. I've got	21541 extends into the terminal portions in Fig. 1.
22 Q. In Shiba, the 541 element that you've	22 And one example of that is Fig. 4, which does have
23 just described, is that -- does that correspond to	23 the terminal portions and which does have the
24 anything in Claim 54?	24 sealant in contact with ITO element 541.
25 A. Claim 54 applies to the active matrix	25

Page 78	Page 80
1 BYMR. GIBSON	1 the connecting protrusions -- I'm sorry
2 Q. Well, it's -- you call it 741. Now	2 connecting projections, 741 to 748.
3 you -- Fig. 4 shows 741, not 541, correct?	3 Q. What's the -- let me just see if I ca
4 A. That's not correct. Fig. 4 shows 741 on	4 show you. It may be harder to describe.
5 the left side. It's the flat part that's in	5 What is this part that's coming after
6 direct contact with the upper substrate.	6 the sealant
7 element 541 is labeled on the right	7 A. That's the rest of the laye
8 similarly extends across the substrate right abov	8 Q. Of 5
9 the orientation layer, just like it is in Fig. 6.	9 A. If I understand what you're referring
10 Q. Where does 541 begin and $740-$ or I	10 to, 541 corresponds to a layer that begins from
11 sorry.	11 the left side and goes all the way to the portion
12 Where does 541 end and 741 begin?	12 of it that I've marked.
13 A. I don't think that's the correct	13 Q. Right. And but you're also saying that
14 characterization. I think 541 is talked about a	14 what you put in red is part of 541 , correct?
15 being the counter electrode and it includes the	15 A. Yes.
16 entire region that's in the dashed line of Fig. 1.	16 Q. All right. And what comes right after
17 And those protrusions that Shiba identifies as	17 what you've marked in red when you're going to the
18 741, 745 -- he's got eight numberings for those --	18 left?
19 are a subset of the element 541	19 A. That's also 541
20 Q. In Fig. 6, can you just mar	20 Q. All right. That was my question.
21 Shiba where you believe there's contact betw	21 A. Yes.
22541 and the sealant?	22 Q. How far does that extend?
23 A. On my copy here?	23 A. Do you want me to draw it or to fill it
24 Q. Yes, please	24 in maybe with blue?
25 A. Anyone have a blue pen?	25 Q. With blue, that would be great.
Page 79	Page 81
1 MR. MANZO: What color do you want?	1 A. (Indicating.)
2 MR. GIBSON: Red is fine. It may stand	2 So I've marked in blue the portion of
3 out more.	3541 that is directly over the liquid crystal
4 THE WITNESS: I'm not sure it's possible	4 region.
5 for me to simply identify the interface of	5 Q. And then along the top of the substrate
6 contact, but I can identify where in 541 that th	6541 extends and then terminates in 521?
7 sealant 113 does contact it, which is what I've	7 MR. SCHLITTER: Objection, form.
8 tried to draw.	8 THE WITNESS: No, it doesn't at all. It
9 BY MR. GIBSON:	9 has no relationship to -- well, it does not end
10 Q. What do you mean by "interface"?	10 with 521, which is a completely different element.
11 A. Well, the interface is a line that on	11 BY MR. GIBSON:
12 that printout is a black line. That's the surface	12 Q. Okay. Where does it end at the top of
13 of contact. I can't simply draw a red line	13 the substrate or does it just continue on?
14 through that, you wouldn't see it. So I'm	14 A. It continues off to the left across the
15 highlighting the portion of the layer 541 that	15 display. Of course what's illustrated here is
16 is -- you know, is the layer above which that	16 just one pixel, or one TFT more specifically, and
17 contact occurs.	17 there should be more if it's a display.
18 Q. And does 541 -- you've got a lower part	18 Q. And then I may have asked you this
19 of 541 . Well, let me just hand it back to you.	19 already, but would you agree in Fig. 4 at the
20 Does 541 end on the left part where it's	20 bottom of the sealant, there's not -- there's no
21 touching the sealant?	21 contact with an ITO layer?
22 A. The material that corresponds to 541	22 A. On the bottom substrate of Fig. 4, there
23 ends about more than halfway through the sealant	23 is not contact of the sealant with an ITO layer.
24 in Fig. 6. In Fig. 4, it's different. It does	24 Q. Now, this Fig. 4, this is the one that
25 extend out and protrude and form what Shiba calls	25 you modified for your declaration?

Page 82	Page 84
1 A. Yes.	1 correct?
2 MR. GIBSON: I'm going to mark this as	2 A. Yes, we did.
3 an exhibit in this matter so we have it. Let's	3 Q. And yesterday you explained that this
4 mark these two as the next in order	4 modification would have two capacitors.
5 (Documents marked as Deposition	5 Do you remember that?
6 Exhibit Nos. 1009 and 1010 for	6 A. At least two capacitors, but yes,
7 identification.)	7 there's two capacitors -- two capacitive
8 BY MR. GIBSON:	8 structures that are shown.
9 Q. And those are 1009 and 1010. And 1009	9 Q. And you said they'd be in series even
10 should be the drawing that you made on page 49	10 though the pixel electrode is electrically
11 from your declaration.	11 connected to the source electrode?
12 Do you have that in front of you?	12 A. In a very small portion of the source
13 A. That's correct. It seems to be a	13 electrode, the pixel electrode is being
14 magnification of that.	14 illustrated as being connected.
15 Q. And as you stated yesterday, this is --	15 Q. And that makes you say that they'd be
16 what's in your declaration here, this is your	16 connected -- the capacitors would be connected in
17 attempt to draw out in color what is Fig. 4 in	17 series?
18 Shiba?	18 MR. SCHLITTER: Objection, form.
19 A. I'm not sure I'd characterize it that	19 THE WITNESS: I'm observing that the
20 way. It is -- I'm trying to represent what is	20 structure you're showing me is a sequence of three
21 explicitly in Fig. 4 of Shiba and I've left out	21 conductors with insulating material in between
22 quite a lot of things and, you know, I'm using it	22 those three, and I'm observing that that is -- one
23 as a way to discuss the possibility of the ITO	23 way to describe that is two capacitors in series.
24 layer being applied differently than what's	24 BY MR. GIBSON:
25 disclosed in Shiba.	25 Q. And the -- is there any reason that the
Page 83	Page 85
1 Q. All right. And then Exhibit $110-$ or	1 contact portion between the pixel electrode and
21010 , excuse me, is your modified version of	2 the source electrode could not be made bigger?
3 Shiba?	3 Could one of ordinary skill in the art do that?
4 A. It's my modification of Shiba's	4 A. It depends. I didn't create this
5 disclosure according to Dr. Hatalis' hypothesis,	5 figure.
6 or at least one variation of his hypothesis.	6 Q. Well, if you just etched out more of the
7 Q. As you understood his hypothesis?	7 protective overcoat on the left, you could create
8 A. Yes.	8 a bigger connection between the blue and the
9 Q. And you understood that from his	9 black?
10 deposition testimony?	10 MR. SCHLITTER: Objection, form.
11 A. At least.	11 THE WITNESS: Well, I suppose you could
12 Q. And it may have also been from the	12 do a lot of variations on -- on this figure, on
13 declaration that he submitted in this matter?	13 this hypothesis. Now, whether or not they would
14 A. Yes, that's correct. For example, he --	14 be either obvious or successful is not clear to
15 I think he explicitly asserts that it would be	15 me .
16 obvious to reorganize the layers of fabrication	16 BY MR. GIBSON:
17 in Shiba and I'm considering how that could	17 Q. If -- in this kind of a structure, do
18 possibly be.	18 you have to have the pixel electrode on top of the
19 MR. GIBSON: Then if we could mark this	19 storage electrode?
20 as 1012-1011.	20 MR. GIBSON: Objection, form.
21 (Document marked as Exhibit Number 1011	21 THE WITNESS: I don't understand this
22 for identification.)	22 structure at all beyond what you're showing me.
23 BYMR. GIBSON:	23 It's not my hypothesis. So what I see is a
24 Q. And Exhibit 1011 is another modification	24 cross-section of a structure and I'm commenting on
25 of Shiba and we discussed this yesterday as well,	25 that. I can't -- I don't think I can speculate

Page 86	Page 88
1 beyond that.	1 ordinary skill in the art removed that additional
2 BYMR. GIBSON:	2 protective overcoat, would that eliminate the
3 Q. Okay. So you can't tell me one way or	3 issue you raise with two capacitor
4 the other?	4 MR. SCHLITTER: Objection, form.
5 A. I can't tell you one way or the other.	5 THE WITNESS: It's not clear to me what
6 Q. And what's -- in your mind, what's	6 you mean. Could you mark this up to represent
7 causing the two capacitors is that -- well, strike	7 what you mean? Because it does sound like an
8 that.	8 additional hypothesis. It's not what's shown,
9 Would you agree that one of ordinary	9 right.
10 skill in the art would know how to etch the	10 BY MR. GIBSON:
11 protective overcoat so that it could be removed so	11 Q. It's probably easier to mark it on this.
12 that it was no longer above the capacitor line Cj ?	12 So where I've marked in blue would be -- the
13 A. I do agree that one of ordinary skill	13 protective overcoat would be etched out there.
14 knows how to -- would know how to etch openings	14 A. I see it.
15 into insulating films; for example, protective	15 Q. Would that then eliminate the two
16 overcoat 241 . That would be possible, sure.	16 capacitors issue that you raised yesterday?
17 Q. So maybe I can just mark for you on	17 A. In this additional hypothesis, I think
18 this. I've put a blue marking on the protective	18 it may. It depends on probably the other
19 overcoat to indicate if you etched to the right of	19 dimension as well.
20 that blue marking, so you removed the protective	20 Q. What other dimension?
21 overcoat all the way from that blue marking to	21 A. This is two of the dimensions, right.
22 the -- to the blue, you would then have a -- you	22 This is a three-dimensional structure, so the
23 would no longer have that protective overcoat.	23 third dimension is into the page.
24 Someone of ordinary skill in the art would know	24 Q. Okay. Do you know what the frame rate
25 how to etch that of	25 frequency of displays was back in 1997?
Page 87	Page 89
1 A. It's a long question. Can you rephrase	1 A. I have a rough understanding, but I
2 it?	2 don't think I have a precise number for it.
3 Q. Yeah, it wasn't -- it wasn't as clear as	3 Q. What's your rough understanding?
4 I could make it.	4 A. That the -- there are many different
5 So what I'm trying to find out is one of	5 rates and clock signals on a display. So are you
6 ordinary skill in the art could etch the	6 referring to the update rate on the screen itself
7 protective overcoat off from where I made that	7 at the level of the TFTs?
8 blue mark all the way over to where you see the	8 Q. Yeah, the frame rate frequency.
9 blue that's contacting with the black?	9 A. I don't think there's one answer to that
10 MR. SCHLITTER: Objection, form.	10 even in 1997. I think it's typically in the range
11 THE WITNESS: A person of ordinary skill	11 of 80 to 100 hertz.
12 would know how to do that. As I've said, they	12 Q. And do you know what was a typical
13 would know how to create openings in insulating	13 display format in 1997?
14 films. I've never seen that structure, so I don't	14 A. There were many display formats that
15 think any of these hypotheses are obvious to a	15 were typical. There's no one answer to what is a
16 person of ordinary skill.	16 standard format.
17 BY MR. GIBSON:	17 Q. What were some of the standard or
18 Q. Okay. But if you removed that extra	18 typical formats?
19 protective overcoat, as one of ordinary skill in	19 MR. SCHLITTER: Object to scope. That's
20 the art would at least know how to do that, would	20 beyond his declaration.
21 that eliminate the two capacitors?	21 THE WITNESS: Shall I answer the
22. A. So you're now suggesting an additional	22 question?
23 hypothesis?	23 MR. SCHLITTER: I'm not instructing you
24 Q. I'm suggesting a further removal of the	24 not to answer.
25 protective overcoat and asking you if one of	25 THE WITNESS: Okay. Well, can you just

Page 90	ge 92
1 clarify for me what you mean by "format"?	1 A. Are you asking specifically if the word
2 BY MR. GIBSON:	2 "redundancy" is in here?
3 Q. Something like VGA, would you consider	3 Q. Or -- or words that would convey that
4 that to be a display format back in 1997?	4 concept.
5 A. That resolution and video standard was	5 A. Okay. I'll take a minute and look.
6 certainly well-known by that point. Whether or	6 Okay. I think I've reminded myself enough. I
7 not it's a display format, it depends on the	7 apologize for the delay.
8 context, but yes, VGA, WVGA, there's SVGA. By	8 Certainly the reduced electrical
9 that point there were many.	9 resistance is identified in multiple places, but
10 Q. Any others that come to mind?	10 the -- there is redundancy that's mentioned, but
11 A. I don't think I could list with	11 that's indeed mentioned with respect to the
12 confidence which ones were before 1997 and which	12 peripheral driving circuits in, I think, Fig. 1.
13 were after. So none others come to mind with any	13 So I'm recognizing that it's true about
14 surety.	14 his structure, that it would be -- it would have
15 Q. And do you know how -- a display, how	15 redundancy, in addition to simply reducing the
16 many lines and how many columns it had in 1997?	16 resistance.
17 A. Likewise there's no one answer to that.	17 Q. That's not something that's identified
18 Q. Can you give me some examples?	18 in the text that you were able to find as being an
19 A. I think an example would be displays	19 improvement over the prior art?
20 with, for example, 600-by- 400 lines. As best I	20 A. The specification does not explicitly
21 remember, that would be a fairly high resolution	21 talk about that, but I'm recognizing that the
22 or medium resolution display.	22 specification does disclose it in its figures. I
23 Q. Any others?	23 mean, it's related to the fact that there's two
24 A. Yeah, there are many other	24 wires instead of one going at least partially in
25 Q. Can you just list any that from 1997	25 the same direction.
Page 91	Page 93
1 that come to mind?	1 Q. Okay. Did you consider that to be an
2 MR. SCHLITTER: Objection, form,	2 improvement over the prior art?
3 foundation.	3 A. I do.
4 THE WITNESS: I'm going to have a hard	4 Q. Okay. Do you understand that Shiba
5 time being able to identify --	5 specifically disclosed redundancy?
6 MR. SCHLITTER: Scope.	6 A. I'd have to see in Shiba where you're
7 THE WITNESS: -- those things with --	7 referring to. I know wiring 127 has multiple
8 with any certainty, mainly because I'm not sure	8 lines and that would also be redundant, six lines
9 when they appeared and began to be used.	9 next to each other. But are you referring to
10 BY MR. GIBSON:	10 something else?
11 Q. If you look at again back at the '204	11 Q. No, that's -- that's in the disclosure
12 patent.	12 that talks about line 27 that's in Column 6 that
13 A. Yes.	13 we looked at before.
14 Q. And look at Fig. 4A again.	14 That also discloses an advantage for
15 A. I see it.	15 redundancy, correct?
16 Q. And I think you yesterday listed two	16 A. Which lines?
17 advantages of the structures shown in Fig. 4A. I	17 Q. It's the -- I think it's the lines we
18 think you listed low resistance and redundancy.	18 looked at before in Column 6. In fact, there's
19 Do you remember that?	19 going to be two -- a two-layered structure?
20 A. That's correct.	20 A. Well, similar to the '204 patent, it
21 Q. Does the specification for the '204	21 doesn't say it is a redundant structure, but I'll
22 patent refer to redundancy anywhere?	22 observe that -- that at least some of the ways to
23 A. I'm not sure. I'd have to recollect my	23 implement what's referred to in those two
24 memory.	24 sentences in Column 6, in lines 36 through 42,
25 Q. Please do.	25 that would also have an improved redundancy. But

$\text { Page } 94$	Page 96
1 I'll also point out that, again, 127 is already	1. opposed to some other kind of transparent
2 split -- split up into six lines and that by	2 conductive layer?
3 itself has redundancy	3 A. I'm still not clear on what I'm
4 Q. All right. And I take it when you ju	4 comparing to, so it's hard to say where the
5 looked at the '204 patent -	5 advantage is, but I can comment on ITO if you
6 A. Y	
7 Q. -- you did consider Column 8	7 Q. Particularly in 1997, why would a person
8 Column 9. They particularly talk about low	8 of ordinary skill in the art, why would they want
9 resistance, but they don't claim an advantage	9 to use an ITO?
10 redundancy in Columns 8 and 9 of the ' 204 ?	10 A. The LCDs that we're talking about in
11 A. Well, of course these columns aren	11 this case are of a format where the electrodes
12 claims. So they don't claim anything,	12 need to be both conductive and transparent. And
13 refer to reducing the electrical resistance, but	13 ITO is a material that's been known for a long
14 not explicitly to the aspect of redundancy that	14 time that is a conducting oxide that is
15 I m observing is tr	15 transparent largely in the visible region.
16 Q. I wasn't using	16 So we can see through it, but it can
17 patent claim.	17 also hold a charge and act similar to metals and
18 statement.	18 other conductors. And I
19 But you would agree in Exampl	19 standard because its deposition has become
20 Column 8 and 9, there's no statement that	20 well-known. It's been well
21 there being an advantage of redundanc	21 obviously very successful
22 A. I don't see an explicit descriptio	22 Q. And that was known in 1997, correct?
23 that extent, but it is implicit to the strucher	23 A. It was very well-kno
24 that are b	24 Q. And in your view, would one of ordinary
25 recognizing that and I think one of ordinary	25 skill in the art be motivated to use an ITO in the
5	age 97
1 would as well.	1 terminal to connect to the flexible printed
2 Q. In Fig. 4 -- strike that.	2 circuit?
3 Example 3 is discussing Fig	3 MR. SCHLITTER: Objection, foundation.
4 correct?	4 THE WITNESS: Can you be more specific
5 A. Examp	5 of the motivation that I'm commenting on?
6 least.	6 BY MR. GIBSON:
7 Q. Do	7 Q. Let me ask it this way: To your
8 or states any advantages to using an ITO or	8 knowledge, in 1997, were ITO layers used in the
9 transparent conductive layer?	9 terminal pad region of commercial display
10 A. I don't recall any expli	10 products?
11 the advantage of using ITO as opposed to anything	11 A. I don't have specific knowledge of its
12 else. I think the '204 patent says that there	12 use in commercial display products. I don't have
13 should be a transparent conductor. An ITO is one	13 any proprietary information and I never analyzed a
14 possible choice and it's,	14 display for that question. But I do note that at
15 standard choice.	15 least two of the prior art pieces have ITO in the
16 Q	16 terminal portion; Sukegawa, of course, below the
17 A	17 second insulating layer and Nakamoto from
18 Q. What would a person of ordinary skill in	18 yesterday.
19 the art know about the advantages of using ITO in	19 Q. And
$201997 ?$	20 that discloses advantages of using an ITO layer in
21 A. Well, can you tell me what you mean by	21 the terminals used to make external connections to
22 an advantage compared to what?	22 the FPC?
23 Q. An advantage compared to anoth	23 A. Beyond the prior art that's in this
24 alternative.	24 case, I don't know of any other specific
25 I mean, why would you use an ITO as	25 discussion on that, on the advantages of that.

Page 98	Page 100
1 Q. But Sukegawa and Nakamoto would be	1 but -- .
2 examples of advantages of that?	2 A. There are probably several copies of
3 A. Yeah, there are disclosures mentioned,	3 Fig. 4 in my declaratio
4 some of those advantages, yeah. Well, to be	4 Q. I'm sure there are copies of Fig. 4 in
5 clear, I think Sukegawa does. I'm not sure --	5 your declaration. I've seen several myself. I
6 don't recall what Nakamoto discloses about that.	6 think the easiest thing to do, why don't you -- on
7 It may just be th	7 the Fig. 4A that's before you that's in the '204
8 comment on	8 patent that's Exhibit 1001, why don't you just
9 Q. In Fig. 4A	9 cross-hatch out
10 layer a little bit yesterday in terms of this	10 A. Would you like to cross-hatch out the
11 upside down	11 portion y
12 A. I see the upside down L. I have	12 Q . (Indicating.)
13 admit I don't remember our discussion yester	13 Okay. I've don
14 Q . That's fine.	14 A. Thank you. Can you remind me the
15 Could you pattern the ITO so that the	15 question?
16 bottom part of the upside down L was not there?	16 Q. Sure. So if we have the structure
17 A. Are you referring to the upper portion	17 that's before you in 4A the way I crossed it -
18 that's horizontal, the highest most portion of the	18 crossed it out, you would agree that that conforms
	19 to Claim 54 still?
20 Q. Yes,	20 A. I do. The little piece that you've
21 A. That could be patterned away like the	21 crossed out has no bearing to me on Claim 54.
22 rest of the ITO that is -- that is missing on the	22 Q. And if you have the structure that I put
23 left -- to the left side which would app	23 before you, how would a person of ordinary skill
24 underneath the sealant but, of course, it's been 25 etched away.	24 in the art determine in which order layers 113 and
Page 99	101
1 Q. You could etch away all of the upside	1 A. It would not be apparent from that
2 down L if you wanted to, right?	2 figure or from that cross-section alone
3 A. It think it's at least possible	3 Q. So you could form the ITO layer first
4 that kind of thing and I do	4 and then form the resin layer second?
5 practically feasible to really get precise abo	5 MR. SCHLITTER: Objection, misstates his
6 that, probably not worth the trouble, but that's	6 testimony.
7 my speculation. But nevertheless, it would still	7 THE WITNESS: The figure -- the modified
8 meet the claims, especially Claim 54 that w	8 figure doesn't give enough information to
9 talked about explicitly.	9 determine the sequence of deposition during
10 Q. Without the upside down L, you say that	10 fabrication between element 113 and 114.
11 the claim language of 54 is still met?	11 BY MR. GIBSON:
12 A. Oh, certainly, yeah.	12 Q. But it would be possible to form the ITO
13 Q. In that situation where the -- you don't	13 layer first and then form the resin layer over the
14 have the upside down L part of the ITO, how would	14 ITO layer and then open up and etch the resin
15 a person of ordinary skill in the art know which	15 layer out?
16 deposition process would come first between 113	16 A. If that was done, of course that would
17 and 114?	17 not meet the claim limitation, Claim 54.
18 A. Just so we can be clear, could we draw	18 Q. But you would agree that one of ordinary
19 that so I can comment on it? Or could we mark up	19 skill in the art could use that process?
20 a figure for that?	20 A. I must misunderstand your question.
21 Q. If you'd like to mark up the figure, go	21 Could you restate it?
22 ahead. Or is this one you've already marked on?	22 Q. One of ordinary skill in the art could
23 A. It is. It's where I labeled -- should I	23 put down the ITO layer and then put down the
24 mark that one?	24 insulating layer and then etch out the insulating
25 Q. I thought I had another copy of Fig. 4,	25 layer to reveal the ITO layer, correct?

Page 102	Page 104
1 A. It does -- I do think that that is a	1 This is the end of Media Unit Number 2. The time
2 possibility for one of ordinary skill, but of	2 is 12:47.
3 course, that is not what would meet Claim 54, if	3 (Whereupon, the deposition in the
4 that was done.	4 above-entitled cause was recessed to
5 Q. So we could have a completed structure	5 1:51 p.m. this date.)
6 and you wouldn't know whether it met Claim 54	6
7 unless you knew the steps that were used to	7
8 deposit the materials?	8
9 MR. SCHLITTER: Objection, form.	9
10 THE WITNESS: Well, Claim 54 has	10
11 limitations that relate to how contacts are being	11
12 formed. For example, there's a limitation near	12
13 the end of the claim that says there must be	13
14 direct contact through an opening between the	14
15 second conductive line and the transparent	15
16 conducting layer. And so if that contact is -- is	16
17 not through that opening, then it wouldn't meet	17
18 the claim. And so one would need to be able to	18
19 determine that that's true.	19
20 BY MR. GIBSON:	20
21 Q. And if you're looking at the modified	21
22 Fig. 4A, you don't know if that's true with that	22
23 figure unless you know the steps that were taken	23
24 to deposit and etch, correct?	24
25 A. Well, what I'm saying is this modified	25
Page 103	Page 105
1 figure is inconclusive to that regard.	1 AFTERNOON SESSION
2 Q. So you wouldn't know if that type of a	2 VIDEOGRAPHER: We're now on record.
3 structure was covered by Claim 54 unless you knew	3 This is the beginning of Media Unit Number 3 in
4 the deposition and etching steps, is that correct?	4 the deposition of Dr. Michael Escuti and the time
5 A. Well, as far as this figure goes, I	5 is 1:51. Please continue.
6 think that's correct. But it's most likely the	6 EXAMINATION (Resumed)
7 case that if it was a real display, you could	7 BY MR. GIBSON:
8 analyze it in such a way that you could tell the	8 Q. Welcome back. You understand you're
9 difference of whether the ITO was deposited before	9 still under oath?
10 or after the element 113 insulating film.	10 A. Yes.
11 Q. But in terms of this figure, my question	11 Q. And have you discussed your testimony
12 you agree with?	12 with anyone at any of the breaks either today or
13 A. In terms of the figure, it's	13 last night?
14 inconclusive. If a display was made in reality,	14 A. I have not discussed the testimony of ${ }^{\text {- }}$
15 it could be analyzed where I think one of ordinary	15 the ongoing deposition within the breaks of the
16 skill could tell the difference.	16 deposition.
17 Q. But you'd have to look at the particular	17 Q. Does that mean you did discuss it last
18 display to see if you actually could tell the	18 night when there wasn't a break?
19 difference or not, correct?	19 A. We -- we had a few comments about
20 A. You'd have to use an electron microscope	20 yesterday's deposition this morning, but I don't
21 to analyze the layers and look at the shapes of	$21-$ I don't think that's what you're referring to.
22 the interfaces and all that.	22 Q. What did you discuss this morning?
23 MR. GIBSON: Okay, why don't we take a	23 A. I don't recall.
24 break?	24 Q. You don't recall any of the
25 VIDEOGRAPHER: We're going off record.	25 conversations you had this morning regarding

Page 106	8
1 yesterday's testimony?	1 discusses the importance of layer 8 protecting
2 A. I don't. It was very brief and I don't	2 layer 7 everywhere His central invention, aft
3 think had anything substantial	3 all, is to provide a double coverage where one of
4	4 those coverages comes from the transpa
5 another patent that you cons	5 conductor 8 and where the other one comes from
6 declaration for the '204 patent, is that corre	6 several tio
7 A.	7
8	8 terminal p
9 Number 1005 was presented.)	9 A. It depends on what you define as the
10 BY MR. GIBSON	10 terminal portion. Could you identify that for me?
11 Q. I've got anothe	11 Q. Well, what we're looking at, for
12 that.	12 example, in 2 C , would you consider that to be part
13 And would you agree that Sukegawa	13 of the terminal portion?
14 addressing the exposed part of the wiring that's	14 A. Fig. 2C should include the termina
15 used for testing the contact with the FPC?	15 portion, certainly
16 A. Could you clarify what you mean by	16 Q. Is there somewhere in the display
17 "addressing"?	17 portion where Sukegawa is saying there should be
18 Q. That's	18 double coverage with both a layer 8 and
19 A. Among other thing	19 insulator 9 ?
20 the open portion of the terminal, the opening in	$20 \quad \mathrm{~A} .$
21 layer 9 , so that the FPC can have electrical	21 would be inside the display portion and
22 contact with the structure	22 course, within the seal region. And Fig. 3D shows
23 Q. Right. And one of the proble	23 the two substrates 100,200 , between which would
24 prior art was that there could be corrosion in	24 be the seal region -- well, the sealant, I should
25 that open region?	25 say.
	109
1 A. That is what is disclosed in Sukegawa	kk the clear teaching from
2 and Fig. 2 shows an examp	2 Sukegawa in the specification is that double
3 Q. Is Sukegawa directed to protecting a	3 coverage is necessary of layer 7 and as long as it
4 wire under an insulating layer?	4 is exposed to the environment outside the seal.
5 A. I'm not sure I can agree wit	5 Q. Right.
6 is a consequence or part of the disclosure in	6 A. So --
7 Sukegawa, but I don't think his disclosure is	7 Q. I didn't mean to interrupt you.
8 focused on that.	8 A. Just to get to the final point in your
9 Q. When we look at Fig. 2C, for example, if	9 question then, the Fig. 3C doesn't have the
10 the wiring 7 were to continue to extend under 9,	10 layer 8 in it because indeed, it's no longer
11 do you think there needs to be any other material	11 needed at that point because the additional
12 above it to protect it from corrosion?	12 coverage comes from the other elements in the
13 A. I think the clear disclosure in Sukegawa	13 display, including the counter substrate.
14 is that the layer 8, the transparent conductor,	14 Q. And the sealant?
15 should be always covering layer 7 , the second	15 A. Well, the sealant is not disclosed and
16 wiring or the upper wiring I should say here. And	16 so we have no idea what he would disclose about
17 if layer 7 is modified at all from what's	17 that. He's silent abo
18 disclosed here, then layer 8 should also	18
19 correspondingly modified to always cover it based	19 ordinary skill in the art would understand there
20 on the disclosure of Sukegawa.	20 would be sealant?
21 Q. Isn't it talking about layer -- or isn't	21 A. Sukegawa discloses that there is sealan
22 Sukegawa discussing the importance of layer 8	22 and one of ordinary skill would understand that it
23 covering layer 7 in the open region that's	23 should be somewhere between substrate 200 and 100
24 designated 13 in 2 C ?	24 in Fig. 3D, but not its position of course and in
25 A. I think it's clear in Sukegawa that he	25 this matter in particular, you're probing around

	Page 112
1 where Sukegawa would end layer 8 in between	1 about the relationship of layer 8 and 7 .
2 Fig. 3C and any of the other terminal portions and	2 Q . In looking at 2C, would one of ordinary
3 he's silent on	3 skill in the art understand that once wiring 7
4 Q. Where there is sealant, would the	4 goes under -- strike that.
5 provide extra protection for wiring 7?	5 Assume in 2C you continued wiring line 7
6 A. It should. You know, it would b	6 under insulator 9, but didn't continue the ITO
7 speculation on my part to know if Sukegawa would	7 layer. Are you with me?
8 agree to that, but it	8 MR. SCHLITTER: Objection, form.
9 Q. And maybe you answered	9 THE WITNESS: I can assume that, but
10 not -- I'm not sure I	10 course, I don't agree that that's at all
11 Would you agree that the display portion	11 disclosed.
12 of Sukegawa does not teach covering wire 7 with	12 BY MR. GIBSON:
13 both a layer 8 and an insulating film 9 ?	13 Q. Just assume it
14 A. I don't think it teaches one way or	14 Would you -- do you believe there's any
15 another. It does show Fig. 3C, which is inside	15 need in terms of corrosion to have 8 continue
16 the display portion and the metal 7 A and,	16 above 7 as 7 goes further under insulator 9?
17 course, 7B does not have layer 8	17 A. I think the disclosure in Sukegawa is
18 It's -- but it, of co	18 clear on exactly this question. He wants double
19 He's silent on	19 coverage above wiring 7 because of the corrosio
20 Q. It's not shown in Fig. 3C	20 potential and that corrosion comes from the air
21 A. Indeed, it's -- it's not shown above	21 that's above and around both in fabrication and in
22 layer 7. Of course Fig. 3C does have ITO. It's	22 the use of this
23 on the left. It's 8 A , forming the pix	23 And so I think it's clear from Sukegawa
24 electrod	24 that if layer 7 is extended under the sealant,
25 Q. Right, but it's not covering wiring 7	25 then layer 8 must be, according to his teaching,
Page 111	Page 113
1 throughout the entire Fig. 3C?	1 extended as well, at least as far as -- as under
2 A. It's only covering -- the ITO element 8	2 the sealant to provide that double coverage and
3 is only covering the element 7C on part of it and	3 most likely a bit longer.
4 it's not above it in other regions.	4 Q. What in Sukegawa are you relying on for
5 Q. And when you say that Sukegawa is	5 that answer?
6 silent, you would agree there's nothing in the	6 A. His disclosure, his specificatio
7 text that says you're going to have wire --	7 illustrations.
8 layering wire 8 covering 7 and also being covered	8 Q. Can you be specific?
9 by 9 in the display region?	9 A. Every cross-section that illustrates
10 A. Could you rephrase the question or make	10 both element 7 and element 8 has the indium tin
11 it more concise?	11 oxide 8 surrounding and going beyond wiring 7 on
12 Q. Sure. You said that Sukegawa is silent	12 all sides and that is because it's protecting it.
13 on the need for 8 to be over 7 in the display	13 So it has to seal it all the way around.
14 region, correct?	14 So if we -- if we extend 7, Sukegawa is
15 A. It seems that's largely correct. He has	15 clearly saying for corrosion protection, it needs
16 an instance where it is over -- where they do	16 to also extend 8 and this corrosion protection is
17 overlap and an instance where it doesn't.	17 principally necessary at least on the inside of --
18 Q. And you're looking at Fig. 3C that you	18 I'm sorry -- on the outside of the sealant during
19 just testified about when you say that?	19 its use, but during fabrication there's also the
20 A. Yes.	20 potential for corrosion and even in that case it
21 Q. All right. And is there anything in	21 would likely be extended beyond as well, beyond
22 text that describes 8 overlapping 7 in the display	22 the sealant as wel
23 region?	23 Q. And if 7 is extending into the display
24 A. There is no disclosure on what sho	24 region, is Sukegawa saying that 8 has to cover 7
25 happen in the display region, aside from Fig. 3C,	25 into the display region as well?

Page 114	ge 116
1 A. I think my answer's the same as it just	1 inside -- well inside the display, it only has
2 was before. He shows in Fig. 3C an example where	2 layer 9 over layer 7A.
3 part of it does and part of it doesn't and he	3 Q. And you would agree that 9 can be made
4 doesn't say much more about the display portion	4 out of something like silicon nitrate -- nitride?
5 than that.	5 A. I would agree that that's an option and
6 Q. And as one of ordinary skill in the	6 Sukegawa does mention that.
7 art or your -- in your view, would one of the	$7 \quad$ Q. And that's a good protection layer
8 ordinary -- would one of ordinary skill in the a	8 that's used commonly in the microelectronics
9 at some point stop layer 8 over layer 7 once	9 industry, is that right?
10 enters the display region?	10 A. Yes, that's correct.
11 A. Yes, and that's certainly wh	11 Q. And that was known to someone of
12 disclosed in Fig. 3C, in part of	12 ordinary skill in the art in 1997 to be a good
13 Q. Where would that happen?	13 protection layer?
14 A. He doesn't show.	14 A. It's certain
15 Q. So how would one of ordinary skill in	15 ordinary skill in 1997 that it's an insulating
16 the art determine that?	16 material that can be used to protect the circuits
17 A. It would depend on, I suppose, many	17 below. Whether it's characterized as good or not
18 things, the design of -- of the display. I'm not	18 probably depends on the context. Sukegawa seems
19 sure I can say if there's a single answer to that.	19 to teach that it's not good enough, at least in
20 Q. In terms of the prior art, the prior art	20 the terminal portion.
21 shows 7 extending into 13 and beyond it, correct	21 Q. And that wasn't quite my question. So
22 in Fig. 2C, for examp	22 I'll move to strike as nonresponsive.
23 A. In Fig. 2C, wiring 7 extends benea	23 Would someone of ordinary skill in the
24 element 13, certa	24 art in 1997 recognize that silicon nitride could
25 Q. And in 3E, wiring 7 is stopped, correct	25 be used as a protection layer in the
Page 115	Page 117
1 A. Well, Fig. 3E is the cross-section of	1 microelectronics industry?
2 the terminal which has a top-down view in 3A. So	2 A. Yes.
3 what you see is that wiring 7 is broken up into	3 Q. If we look at 3D?
4 two pads or rectangles. And in the cross-section,	4 A. I see it.
5 yes, there's a separation between the two.	5 Q. And Fig. 3C, there's a -- in 3D there's
6 Q. If you look at 3C--	6 a gap between element 200 and 31 A , is that
7 A. I see it.	7 correct?
8 Q. -- 7 is just covered by 9 there in	8 A. Yes.
9 let's say 7A is just covered by 9 , is that	9 Q. And then why don't you look at Fig. 2C?
10 correct?	10 A. I see it.
11 A. 7A and 7B are only covered by 9	11 Q. And there's also a gap shown there as
12 Q . And would you agree that that's	12 well, is that correct?
13 sufficient to prevent corrosion?	13 MR. SCHLITTER: Objection, form.
14 MR. SCHLITTER: Objection, foundation.	14 THE WITNESS: Which gap are you
15 THE WITNESS: I can't say. The figure	15 referring to in Fig. 2C?
16 speaks for itself. It's -- I have no idea if	16 BY MR. GIBSON:
17 Sukegawa would find that sufficient for that	17 Q. Well, let me ask
18 purpose, but it is an example of what he's shown	18 you're -- in 3D, the display portion, you're going
19 here.	19 to have that where 200 and 100 in the beginning of
$20 \text { BY MR. GIBSON }$	20 that, where 100 and 200 meet?
21 Q. All right. And there's not -- as we've	21 A. The precise beginning of that is not
22 said before, there's no ITO layer over there to	22 clear. Some of the other prior art identifies the
23 show a double layer structure needed to protect	23 display area as well within that. Sukegawa
24 against corrosion, right?	24 doesn't, I think, precisely provide the start of
25 A. In -- in Fig. 3C, which is a TFT	25 that.

Page 118	Page 120
1 Q. But either in what we see in Fig. 3D or	1 Fig. 3E with that difference.
2 off to the left of what would be in Fig. 3D, we're	2 Q. All right. And the sealant's not show
3 going to have a display area, correct?	3 in Fig. 3B either, correct?
4 A. Yes	4 A. That's correct, it's not
5 Q. And when you're -- as I understand	5 Q. But we would know or a person of
6 there's going to be a layer 7 that's going to be	6 ordinary skill in the art would know that there's
7 connected through that gap in 3D?	7 going to be sealant and a substrate 200 even
8 A. I'm not sure what you mean ab	8 though they're not shown in 3B?
9 Fig. 3D. Maybe you could point me to it or draw	9 MR. SCHLITTER: Objection, form.
10 it. Of course layer 7 is not shown in Fig. 3D.	10 THE WITNESS: Well, those elements
11 Q. Right. But would you assume that there	11 well, the substrate 200 and 100 are shown in 3D
12 is a layer 7 in Fig. 3D based on what you see in	12 and a person of ordinary skill knows that the
13 the other figures?	13 sealant has to be between those and it would be
14 MR. SCHLITTER: Objection, form.	14 most common to place that offset from the edge as
15 THE WITNESS: Well, the other parts of	15 we've talked about.
16 Fig. 3 show an FPC and the terminal portion and	16 BY MR. GIBSON
17 that does include Fig. 7. How that precisely	17 Q. But what I'm
18 matches up with Fig. 3D is not clear. It's not	18 in 3B, there's no sealant shown even though we
19 shown. But I do expect that there is a wiring 7	19 know it's going to be there?
20 or 7-1, 7-2 in Fig. 3D, largely underneath the FPC	20 MR. SCHLITTER: Objection, form.
21 and the anisotropic conducting film that's	21 THE WITNESS: Fig. 3B does not show
22 identified there.	22 sealant. A person of ordinary skill would not put
23 BY MR. GIBSON:	23 the sealant in the terminal portion. That's why
24 Q. Would you exp	
25 extend beyond what we have as 31A, the left of	25
	Page 121
131 A , do you expect layer 7 is going to extend	1 BY MR. GIBSON:
2 beyond that?	2 Q. You would agree that the terminal
3 A. Figs. 3E, for example, 3B, show that	3 portion connects the display portion, correct?
4 there's at least some portion of wiring 7 that is	4 A. Perhaps through other portions that we
5 to the left, however slightly, but to the left of	5 might identify, but certainly the substrate 100 in
6 the FPC in element 10.	6 3D corresponds to the element 1 in Fig. 3B, 3C,
7 Q. And can you tell from Figs. -- in	7 3E.
8 Fig. 3D how far that's going to extend to the left	8 Q. If you look at 2C-
9 after 31A ends?	9 A. I see it.
10 A. It's -- it's not shown in Fig.	10 Q. -- and wiring 2, you would consider that
11 can't tell. But one thing I can tell is that in	11 to be a scan line?
12 Fig. 3E and 3B, the terminal -- I'm sorry -- the	12 A. That corresponds to the gate metal
13 substrate 200 is not included or shown, nor is the	13 layer, so that is the same metal layer as the scan
14 sealant. So wherever it is, it has to be the left	14 lines. There may be a difference between calling
15 of any wiring 7 in the terminal portion in this	15 it a scan line in this portion or not, but it's
16 disclosure.	16 certainly the same metal layer.
17 Q. And that's just because you see that	17 Q. As the scan line?
18 there's the substrate 200 isn't shown in 3E?	18 A. As the scan line. Sukegawa, of course,
19 A. It's because the sealant is not shown	19 calls it the lower layer metal wiring 2.
20 and the subs	20 Q. But one of ordinary skill in the art
$21 \quad$ Q. Okay. But even if you look at say 3B,	21 would understand that's going to be a scan line,
22 no substrate 200 is shown in 3B, correct?	22 right?
23 A. The substrate is not shown in 3B either,	23 A. No, not necessarily. It's a -- it's a
24 but nor is the FPC 31 and	24 metal that's been deposited in the same layer as
25 et cetera, right. Fig. 3B is largely the same as	25 the scan lines, but there's no disclosure to limit

	24
1 it to that. It could be used for other things.	1 Fig. 3E. Well, to be more precise, he shows in
2 Q. And if we're talking about a bottom gate	2 Fig. 3E that the upper layer metal wiring is split
3 TFT, would you assume 2 is a scan line?	3 up into two parts, 7-1 and 7-2.
4 A. A person of ordinary skill cannot assum	4 Q. And it's connected through wiring 2?
5 that.	5 A. The two portions of wiring 7, 7-1 and
6 Q. Okay. What's your understanding	6 7-2, have electrical contact through the lower
7 bottom gate	7 layer metal wiring 2 as well as the transparent
8 A. It's a TFT that has its gate position	8 conductor
9 underneath the semiconducting layer, so	9 Q. But if we go to the right -- if you look
10 bottom of the TFT	10 at 3E-- well, strike that.
11 Q. And if you ass	11 As we go into the display portion and we
12 assume that you've got a bottom gate TFT	12 go from 3E to say 3 C , is there going to be a
13 wiring line 2	13 connection that's made -- it's not shown here, but
14 A. I can assume t	14 there's going to be a connection that's made
15 Q. And that's a structure that someone	15 between wire 7 and wire 2?
16 would see in industry?	16 MR. SCHLITTER: Objection, form.
17 A. It's one of the pos	17 THE WITNESS: Well, that -- that is not
18 certainly a person sees in industry, yeah	18 expressly disclosed in Sukega
19 that's disclosed in Sukegawa in Fig. 3C,	19 BY MR. GIBSON:
20 exampl	20 Q . Isn't it necessary to connect the data
21 Q.	21
22 with 2A	22 A.
23 A.	23 so. You'd wind up with a nonfunctioning pixel.
24 electr	24
25 electrode. It should also be par	25 But how are you going to connect to your
	age 125
1 line, but I'm not sure that's expressly in the	1 data lines in what's disclosed in 3 C
2 specification.	2 A. Well, 3C includes a source and a drain.
3 Q. Okay. But one of ordinary skill in the	3 Of course those are the data lines or involve the
4 art would understand that it would be part of the	4 data lines, for example, 7A. And the rest of the
5 scan line?	5 disclosure of Sukegawa is about the terminal
6 A. This gate metal 2 A should be part of the	6 portion and there are many ways to connect what's
7 scan line.	7 shown in the terminal portion to that wiring 7.
8 Q. And what if it's a top gate TFT -- or	8 One way would be that somewhere off to
9 let me first ask you, are you familiar with top	9 the left of these terminal portions inside the
10 gate TFTs as a term of art in the industry?	10 display to form an opening in insulator 3 and have
11 A. Yes, that's the situation where the	11 contact through that opening with the upper layer
12 structure is at least nominally inverted and the	12 metal wiring 7 , or whatever you want to call it,
13 gate is the upper metal	137 A . That seems to be -- to me to be the first
14 Q . And then 2A, would that still be a scan	14 thing that would come to the mind of
15 line?	15 ordinary skill looking at Sukegaw
16 A. In -- in that case, 2 A would still be	16 Q. And that's -- the structure you
17 the gate elect	17 discussed has the advantage of -- doesn't require
18 Q. Which would connect to a scan line?	18 extra contacts and would conserve space?
19 A. Which would be part of the scan line,	19 MR. SCHLITTER: Objection, form
	20 THE WITNESS: I'm -- I'm not sure wh
21 Q. So if you look at 3E, and 3E shows both	21 you mean by those advantages. I don't see it ha
22 wiring 2 and a wiring 7?	22 any consequence on the amount of space being used.
23 A. It shows a lower -	23 And I'm not sure what you mean by extra contacts.
24	24 One terminal is generally used to contact to one
25 wiring 2 and an upper layer metal wiring 7 in	25 data or scan line.

Page 126	Page 128
1 BY MR. GIBSON	1 foundation
2 Q. Well, you're not -- you're not having to	2 THE WITNESS: Whether or not it's more
3 use a third wiring, for example, to connect you	3 complicated depends. I don't have enough
4 -- to have 2 to connect to 7; you can open up a	4 information to make any kind of statement to th
5 hole and have 2 connect to 7 ?	5 regard
6 A. That's correct	6 BY MR. GIBSON:
7 Q. So that's simpler than using a thi	7
8 wiring, for example	8 A. -- in gener
9 A. I'm not sure I'd use	9 Q. Would you think that it would take extra
10 wiring" in this context because, you know, it's	10 space?
11 claim term. So it would be an additional -- let	11 A.
12 me -- let me clarify.	12 Q. Do you think it would -- well, strik
13 So if we did what I described, then	13
14 layer 7A can have electrical contact through the	14 In your view in 1997, would it have
15 opening in insulator 3 to the lower metal wiring 2	15 been -- for the ordinary person of skill in the
16 without an additional wiring somewhere. But I	16 art been more common to use an additional wiring
17 don't want to characterize any of these as third	17 or just open up contact holes in 3 for 7 and 2 to
18 wirings.	18 be in contact?
19 Q. And I wasn't looking for that. I'm ju	19 MR. SCHLITTER: Objection, foundation.
20 saying there's not an additional wiring that's	20 THE WITNESS: I can't say if there was a
21 going to be required the way you suggested you're	21 preference in
22 avoiding that additional wiring, correct?	22 BY MR. GIBSON
23 A. Yes, that's -- that's true in the	23 Q. You don't know one way or the othe
24 suggestion that I offered.	24 A. There's not enough information to know
25 Q. And that saves space?	25 one way or the other.
Page 127	Page 129
1 A. Saves space compared to what?	1 Q. Would you agree in 1997 that a person of
2 Q . Compared to having a third wiring. I'm	2 ordinary skill in the art was aware of opening up
3 sorry, I don't want to use the term "third	3 contact holes in layer 3 as depicted in Fig. 7C to
4 wiring."	4 enable a connection between 7A and 2A or betwee
5 It's better to avoid having a	5 wiring 7 and wiring 2?
6 wiring, it takes up extra space, it is an extra	6 A. No, I'm not aware of anything like that.
7 manufacturing step, right?	7 It would make the TFT not work.
8 MR. SCHLITTER: Objection, form,	8 Q. And maybe I misspoke when I said 7A and
9 foundation.	92 A .
10 THE WITNESS: I'm trying to follow you,	10 When -- you're talking about opening up
11 but I don't know what you mean by a "third	11 contact holes in 3, you were talking about
12 wiring."	12 having -- enabling a connection between 7 and 2,
13 BY MR. GIBSON:	13 correct?
14 Q. I'm using the word "additional wiring"	14 A. The one option -- not the only option,
15 now that you used --	15 but one option would be indeed to create an
16 A. Okay. Well, can you tell me what you	16 opening somewhere inside the display portion, an
17 mean by "additional wiring"?	17 opening in layer 3, so that some portion of 7A
18 Q. Well, how you suggested it. I'm not --	18 could have contact with the lower layer metal
19 you're the -- you're the expert here. What -- if	19 wiring 2 through that opening.
20 you were going to not open up a contact hole	$20 \quad \mathrm{Q}$. And that was something that was known to
21 between -- in layer 3 for 7 and 2 in Fig. 3C and	21 one of ordinary skill in the art in 1997?
22 instead you use an additional wiring, wouldn't	22 A. It was known as one of multiple options.
23 that be more complicated than just opening up a	23 Q. So if we look at --still looking at the
24 hole in 3 for contact between 7 and 2?	24 figures on -- where we have Figs. 3A, 3B and 3C?
25 MR. SCHLITTER: Objection, form and	25 A. I see it.

Page 130	age 132
$1 \quad \mathrm{Q}$. Is 2 A the gate of the TFT?	1 very strange display.
2 A. 2 A is the gate electrode of that TFT	2 Q. Right. Because you need to have lots of
3 Q . And what is to the left of the gate	3 pixels to have a good display?
4 electrode?	4 A. Usually.
5 MR. SCHLITTER: Objection, form	5 Q. And so you would agree that you're going
6 THE WITNESS: Immediately to the left is	6 to have a number of pixel electrodes in the
7 the insulator 3, of course in that same horizontal	7 display portion that are going to extend out to
8 direction. Above that are the other elements of	8 the terminal portion, you're not just going to
9 the TFT, including one of the source drain	9 have one?
10 electrodes and the pixel electrode, 8A, formed of	10 MR. SCHLITTER: Objection, form.
11 the same transparent conductor, most commonly is 8	11 THE WITNESS: I don't think you're going
12 in the terminal portion.	12 to have any pixel electrodes in the display
13 BY MR. GIBSON:	13 portion that are going to extend to the terminal
14 Q. So you would agree that 8A is the pixel	14 portion.
15 electrode?	15 BY MR. GIBSON:
16 A. I do. That's what Sukegawa calls it	16 Q. Instead you're going to have a plurality
17 the pixel electrode, 8A.	17 of pixels in the display portion?
18 Q. And you would agree that above the pixel	18 A. Certainly a plurality of pixels and each
19 electrode, there is no layer 9 ?	19 one should have its corresponding pixel electrode
20 A. I can't agree to that. Layer 9	20 in a -- at least approximately rectangular shape
21 partially overlaps 8 A .	21 connected to the TFT
22 Q. Well, the part that -- there is part of	22 Q. To the right of the TFT we see 7A?
23 it that -- part of 8A right there that does not	23 A. Yes.
24 have a insulating layer 9 on top of it, correct?	24 Q. And I think we agreed that that is a
25 A. There is a portion of 8A that is not	25 data line?
Page 131	Page 133
1 covered by insulator 9, that's true.	1 A. Yes.
2 Q. Do you know why that would have been	$2 \quad \mathrm{Q}$. Is the data line in the -- in the
3 removed?	3 display region continuous across the display?
4 A. I think I	4 MR. SCHLITTER: Objection, form.
5 Q. And why is that?	5 THE WITNESS: What do you mean by
6 A. Well, the response of the liquid crystal	6 "continuous"?
7 layer depends on the electric field that's	7 BY MR. GIBSON:
8 produced in it. And having additional insulators	8 Q. Does it start at one edge and then
9 between the electrode that's applying the	9 terminate at the opposing edge?
10 potential to the liquid crystal generally requires	10 A. Most of the time that's the way a data
11 higher voltages to switch. So it's a kind of	11 line is configured, but certainly not always.
12 negative direction in most -- most contexts and	12 Q. And the scan lines, are those continuous
13 while it's not catastrophic, it's generally to be	13 across the display?
14 avoided.	14 A. Same answer, most of the time they will
15 Q. So in other words, if you remove 9, you	15 extend from one side to the other side, but not
16 can use a smaller voltage?	16 always.
17 A. The voltage to get the same optical	17 Q. And would you agree that the scan lines
18 effect in the liquid crystal layer would be lower	18 are isolated from each other?
19 if you removed 9.	19 A. Individual scan lines should be
20 Q. And if you -- could you extend 8A, the	20 electrically isolated from each other to function.
21 pixel electrode all the way to the terminal	21 Q. And I think as you pointed out a couple
22 portion to the left?	22 times to me, the scan lines should also be
23 A. I don't think so. It sounds like you're	23 electrically isolated from the data lines?
24 saying can we make some very large portion of the	24 A. Yes, that's a general principle that
25 display a single pixel. That would seem like a	25 needs to happen for the TFT to work.

	Page 136
1 Q. And the data lines are also isolated	1 the terminal portion according to the disclosure
2 from one another?	2 in Sukega
3	3 Q. If you loo
4 Q. And in Fig. C3 (sic) we have th	4 A. I
5 insulating layer 9 above 7A?	5 Q. -- the scan line 2 is what's going from
6 A. In Fig. 3C we do, y	6 the terminal region to the display port
$7 \quad$ Q. All right. And as this line 7A extend	7 Do you know where that is going to --
8 across the display region, is 9 going to be ov	8 let me ask it this way: Is that going to go all
9 the entire length of tha	9 the way across through the display portion?
10 A. It's not shown, so it's not cleat	10 A. Element 2 is the conductor that
11 not disclosed	11 illustrated in Fig. 3E that does go into the
12	12 display portion. I disagree that it is identic
13 would not?	13 to the scan line, as we talked about earlier.
14 A. There's nothing explicit that sug	14 But it is the single conductor, the only
15 it would not. I just note that in Fig. 3C,	15 one that does extend to the left towards the
16 layer 9 does end over the pixel region.	16 display portion. So I think one of ordinary skill
17. Q. But as we're extending to the term	17 would understand that at least that does go toward
18 portion, would you expect 7A to -- as 7A	18 the displa
19 extending, to have 9 over it?	19 Q. And if you matched it with 3C, would you
20 A	20 then understand that 2 would be the scan line?
21 just not	21 A. Well, I wouldn't go quite th
22 Q .	22 think if Fig. 3E were assumed to be connecting
23 have layer 9 is where we have the pixel electrode,	23 Fig. 3C, then I think it's appropriate to say that 24 element 2 in 3 E does connect to element 2 A in 3 C
25 A. That's true in Fig. 3C.	25 Whether or not they should be characterized as all
	37
1 Q. And everywhere we see 7A, we see layer 9	1 the same scan line, it's not clear. That
2 on top of it, correct?	2 connection is not shown
3 MR. SCHLITTER: Objection, fo	3 Q. Do you think that if you're connecting
4 THE WITNESS: In Fig. 3C, that is	43 E to 3C, that 2 could be a data line?
5 correct.	5 A. Let me see if I understand your
6 BY MR. GIBSON:	6 question. You're asking me can the termin
$7 \quad$ Q. And Fig. 3C shows the line 7A is going	7 Fig. 3E be used to connect to the data line?
8 to be extended toward the terminal portion?	8 Q. No. I'm asking you if you're connecting
9 A. Well, it shows it extending off the	93 E to 3 C if 2 is going to be the data line.
10 illustration and then there's an additional a	10 MR. SCHLITTER: Object to form.
11 showing us the direction of the terminal portion	11 THE WITNESS: If the terminal in 3E is
12 on that side. It doesn't say whether it actually	12 used to connect to the gate electrode 2 A in
13 extends out there.	13 Fig. 3C, then it can be that that whole line could
14 Q. Would a person of ordinary skill in the	14 be referred to as the scan line. It's not
15 art understand that it would extend that way?	15 necessary to be so, but that's certainly a common
16 A. There's not enough information given to	16 configura
17 know one way or the other. Well, on the	17 BY MR.
18 hand, I mean, we have lots of terminal portions	18
19 disclosed here and clearly the metal 7 does not	19
20 extend all the way there in a continuous fashion.	20 configuration when looking at Fig. 3C and 3E?
21 It has to end at some point.	21 A. Well, one of ordinary skill would
22 Q. But you're not sure	22 understand that that's one possibility. I don
23 is?	23 think they would see the disclosure in Sukegaw
	24 requiring that. After all, element 2A
25 is clear is it does have to end before it gets to	25 identified differently, not only by numbering, but

8	0
1 by description from element 2 and neither of them	1 correct
2 are called scan line	2 A. It's a physical object, so of course it
3 Q. But you think that one of ordinary sk	3 has dimens
4 in the art would recognize that it would be	4 Q. So even if you have plenty of availabl
5 common configuration to have 2 be a scan line if	5 contact area, you're limited by the size of the
6 you were connecting Fig. 3 to Fig. 3C?	6 wiring on the flexible substrate 31, for example?
7 A. One of ordinary skill I think could find	7 A. Could you rephrase the question?
8 that as a common, typical situation	8 Q. Sure. I mean, regardless of how big
9 Q. If we look at 3A of Sukegawa	9 your contact area is in your terminal portion, the
10 A. I see it.	10 contact -- the actual area where there's contact
11 Q. And Sukegawa, I think, uses the term	11 is limited by the size of what you have as 31?
12 "tape carrier package 300"?	12 A. I'm not trying to be difficult, but I
13 A. Yes, that's correct. Of course that's	13 don't understand the question.
14 not shown in Fig. 3A.	14 Q. Okay. Well, you see -- in 3D you see
15 Q. Would you understand that the tape	15 31A and 31B?
16 carrier package also could be a flexible printed	16 A. Yes, I
17 circuit?	17 Q. What would you call those two things?
18 A. As a general matter, yes. Those a	18 A. Well, element 31 is the flexible wiring
19 terms that are often used interchangeably	19 substrate of the tape carrier package 300 and 3--
20 Q. Would you understand that the flexible	2031 B is the copper foil wirings. I don't see yet
21 printed circuit is going to overlap Fig. 3A?	21 what 31 A is. I could find that, but clearly the
22 A. Well, the tape carrier package that is	22 conductive portion is 31 B .
23 disclosed overlaps part of it. It's illustrated	23 Q. And you say that's part of the flexible
24 in, for example, 3E, kind of the right portion	24 substrate?
25 what's shown in Fig. 3A.	25 A. It appears that both 31A and 31B
Page 139	Page 141
1 Q. When you say "the right portion," what	1 together form element 31 and that is the flexible
2 are you referring to?	2 wiring substrate.
3 A. Well, if we look at Fig. 3E, we see the	3 Q. And you're going to connect that to your
4 anisotropic conducting film 10 which extends from	4 terminal portion?
5 the rightmost -- almost the rightmost portion of	5 A. It's shown in Fig. 3E, for example, as
6 the terminal region, not quite, but almost, most	6 connecting through the anisotropic conducting film
7 of the way across the opening that's been formed	7 to the conductors in the terminal portion.
8 in insulating film 9.	8 Q. And the film is element 10 ?
9 And so if we look at the Fig. 3A, we can	9 A. Yes, thank you.
10 see that the opening in element 9 is also shown	10 Q. And your contact area is going to be
11 and so that anisotropic conducting film goes from	11 limited by the size of the wiring on the flexible
12 the right side of Fig. 3A only part of the way	12 substrate, correct?
13 through, at least approximately halfway through.	13 MR. SCHLITTER: Objection, form.
14 Q. And would you agree that when we're	14 THE WITNESS: That will be one of the
15 looking at Fig. 3A, there's transparent conductive	15 limitations in this context, but there are many
16 film 8 where the flexible printed circuit can	16 others.
17 overlap and then connect?	17 BY MR. GIBSON:
18 A. There is a portion in Fig. 3A, as well	18 Q. That would be one?
19 as in 3E where the anisotropic conducting film is	19 A. That would certainly be one
20 in direct contact with the ITO and that is through	20 Q. And if the flexible printed circuit is
21 the opening in layer 9. That's not shown in	21 smaller than the available contact area, would you
22 Fig. 3A, but we could identify that region. I	22 agree then the area -- well, let me do it this
23 think I did in my declaration.	23 way.
24 Q. And then in -- and the flexible printed	24 Why don't you turn to page 40 of your
25 circuit is going to have a certain dimension,	25 declaration?

Page 142	Page 144
1 A. I've got it.	1 is limiting the resistance
2 Q. Which I know in your original it's in	2 ordinary skill in the art increase its size?
3 color. There's a -- I think here it's shown in	3 A. That is one option available to those of
4 darker shade of gray, which you had in red in your	4 ordinary skill but, of course, that then makes the
5 declaration.	5 entire terminal portion larger and, of course,
6 Do you see that darker shade	6 there are other terminals next to this that aren't
7 A. Well, the darker shade, of course, is	7 illustrated and there's a -- there's a limit
8 indicating the opening in layer 9 through which	
9 the ITO is exposed for contact.	9 Q. Let's take a look at Watanabe.
10 Q. That's your contact are	10 A. Thank
11 A. That's a subset of the contact area most	11 (Document marked previously as Exhibit
12 likely.	12 Number 1004 was presented.)
13 Q. Why	13 BY MR. GIBSON:
14 A. Most likely the anisotropic conducting	14 Q. And this is another one of the prior art
15 film overlays much more than just that little	15 pieces that you co
16 area.	16 A. Yes, it is.
17 Q. Where is it a	17 Q. Do y
18 that area?	18 region of an LCD
19 A. Well, direct	19 A. There is no one
20 that opening and -- but electrica	20 Q. What would be
21 be just in that opening.	21 A. In -- in 1997, I think a typical region
22 Q. And if the	22 would be in the range of millimeters.
23 substrate is smaller than that available are	23 Q. Can you give me an estimate?
24 that could be a	24 A. It depends
25 A. Well, I think it's unlikely. I think	25 Q. But millimeters, not centimeters?
	5
1 the way design -- the design process generally	1 A. I think for the larger sized displays,
2 goes at least would be that a particular size of	2 it could even get large enough to be close to the
3 the terminal is determined based on	3 scale of a centimeter, not multiple centimeters,
4 constraints and then a tape carrier package or	4 clearly not.
5 flexible substrate is chosen or designed to meet	5 Q. And would that be true in 1997.
. 6 exactly what's needed in that terminal portion.	6 A. Yeah, Ithink that the upper bound for
$7 \quad$ Q. But let's assume that you've got a	7 the size of a seal region would be -- could be as
8 flexible substrate that's smaller than the	8 high as tens of millimeters but not that many tens
9 available area.	9 of millimeters.
10 A. I can assu	10 Q. Do the adhesive properties of the seal
11 Q. Would you agree then that the shaded	11 material affect the weight -- the width of the
12 area is not limiting the resistance?	12 seal region?
13 A. In this unlikely assumption	13 A. They certainly do. And Shiba, for
14 hypothesis, I can agree to that.	14 example, goes to some effort to complement those
15 Q. Then let's assume if the flex	15 properties by structuring the bottom surface so
16 printed circuit is larger but the resi	16 that it has a little more surface area and thereby
17 the contact formed is within the specifications of	17 use the same set of materials but shrink the width
18 the system, would you then agree that the shaded	18 of the seal region and not compromise the
19 area is not limiting the performance of the LCD	19 adhesion
20 display?	20 Q. And so if you have a stronger adhesive,
21. MR. SCHLITTER: Object	21 it requires less width?
22 THE WITNESS: I can't agree to that in	22 A. That may be, but subject to other
23 general, even under your assumptions	23 constraints.
24 BYMR. GIBSON:	24 Q. Such as?
25 Q. Okay. In the event that the shaded area	25 A. Well, from one material to another, a

Page 146	
may be stronger or not. And let's say we	1 MR. SCHLITTER: What page are you
2 have two materials that are both equally strong in	2
3 their adhesion properties, but there are other	
4 factors in displays that are very in	4
$5 \quad$ First would be lifetime beh	5
6 should say reliability to temperature variation	6 Q. All right. So the sentence that begins
7 in the lifetime of the display and that may be	7 "Fig. 5 below shows," what do you mean by that
8 different, quite apart from the initial	8 statement
9 properties of the two sealants, and there are	9 A. Well, there's two sides to what I'm
10 other considerations like that	10 meaning there. First, Im observing that when
11 Q. All right. But you would	11 compared to the prior art that's disclosed in
12 general, a stronger adhesive requires less width?	12 Watanabe, Fig. 5 has a substantially wider seal
13 A. In general I can agree to that.	13 region by a factor of 8 or so, maybe 5. All
14 Q. And would you give -- would you	14 right. That's just what's illustrated in the
15 that a given seal material has an optimum width	15 figure
16 that can be established?	16 In addition, I'm observing that
17 MR. SCHLITTER:	17 also mean to say that central to the -- to the
18 THE WITNESS: It depends on how you're	18 disclosure in Watanabe is the presence of the
19 defining "optimum."	19 adjustment layers or adjusting layers -- let me
20 BYMR. GIBSON	20 get the term right -- the adjustment layers in the
21 Q. A width that is neither too wide nor too	21 sealing region around the lead portions. And by
22 small.	22 doing so, what he's of course trying to do is
23	23 create a more equal gap between the substrates.
24 THE WITNESS: If you define it that way	24 And when compared to the prior art, of
25 then you can -- you can -- a person of ordinary	25 course there's a less equal gap in the prior art.
Page 147	Page 149
1 skill could find the optimum according to those	1 And so if we look at Shiba, for example, Shiba
2 constraints, whatever you want to define those	2 improves his adhesion by having peaks and valleys,
	3 an uneven surface, which in Fig. 5 Watanabe is
4 BY MR. GIBSON:	4 removing or at least minimizing and decreasing by
5 Q. Well, for example, you don't want to use	5 the presence of those gap adjusting layers. So to
6 more sealant material than you need, right?	6 compensate for that, it seems that he is forced to
7 A. As a general principle, I can agree wit	7 widen the sealant region.
	8 Q. All right. So is it your testimony then
$9 \quad$ Q. And you don't want to use less than y	9 that the width of the sealing region in Watanabe
10 need, that wouldn't have good results?	10 is -- it doesn't depend upon the seal material,
11 A. As a general principle, I can agree wit	11 but rather by the design of the gap adjusting
12 that.	12 layers?
13 Q. If you look at -- I think it's page 55	13 A. That's not my testimony.
14 of your declaration.	14 Q. Well, what you said here was, Watanabe
15 You have a couple figures there and	15 is removing or at least minimizing and decreasing
16 those are coming out of Watanabe?	16 the presence of the gap adjustment -- adjusting
17 A. Yes, the figures on page 55 are	17 layers, so to compensate for that, it seems that's
18 reproductions, without modification as far as I	18 forced to widen the sealant region.
19 can tell. Oh, I think in my declaration, I may	19 And what I'm trying to understand is are
20 have highlighted something in them, but they are	20 you -- so you're saying he's widening the sealing
21 Fig. 9 and Fig. 5 from Watanabe.	21 region because he's using these gap adjusting
22 Q. A	22 layers?
23 thought you made a statement regarding Fig. 5 .	23 A. That's what he's showing. He's --he's
24 Let me -- it's on the previous page. If you go	24 not just illustrating the sealant region as being
25 ahead and read that to yourself.	25 wider for the convenience of his illustrating.

Page 150	Page 152
1 He's widening it because he has removed unevenness	1 Q. Where does it say that he will then
2 from the seal region and, therefore, he needs a	2 require wider space for the sealant?
3 wider seal to get the same adhesive strength even	3 A. He shows a wider space in all of his
4 with the same materials as compared to the prior	4 invention
5 art that he ha	5 Q. Where does he say that by decreasing the
$6 \quad \mathrm{Q}$. Is there any statement that your	6 unevenness, he has to have a wider space for the
7 basing this on or is it just on Fig. 5?	7 sealant?
8 A. I'm recognizing what's true about	8 A. I don't recall that he says something to
9 disclosure in Fig. 5 as compared to Fig. 9. I	9 that regard. He discloses it in his
10 don't think he states this, but I'll note that	10 illustration
11 it's also exactly the same principle that Shib	11 Q. But there's nothing disclosed in the --
12 uses to narrow the seal region.	12 in the text itself that this wider sealing range
13 Q. All right. But is there anything	$13-$ - this wider sealing area is required?
14 where -- is there anything that -- other th	14 A. There is not a discussion of that in the
15 Fig. 5 and your comparison to Fig. 9 of the prior	15 specification, but the principle is -- is true
16 art, is there anything else that you have to	16 nonetheless. If he wants to keep the same seal
17 support your statement?	17 strength and he has removed unevenness, then he
18 A. Well, in addition to that would be the	18 will need a larger width to a seal region as he's
19 other examples and embodiments that he has of	19 illustrating.
20 adjustment layers and all of them have a wider	20 Q. What if he just uses stronger sealant?
21 seal region. It seems to be every embodiment	21 A. That might be d
22 a wider seal region than the prior art that he's	22 Q. He doesn't rule out using a stronger
23 showing.	23 seal
24 Q. What are you referring to in particular?	24 A. He doesn't speak about changing
25 A. Well, I'm referring to -- we were just	25 sealants. He's silent on that.
Page 151	Page 153
1 talking about Fig. 5 and -- in compared with	1 Q. Are there any quantitative measurements
2 Fig. 9. Fig. 9 is the prior art and it does not	2 that you're using to form this conclusion?
3 have gap adjusting layers and clearly, Watanabe is	3 A. What do you mean by "quantitative
4 saying that that has a more uneven lead portion	4 measurements"?
5 surface underneath the sealant.	5 Q. Dimensions, are there any dimensions
6 So Fig. 5 adds those adjustment layers	6 that you're using?
7 and the unevenness is reduced and as a	7 A. I'm observing the illustrations from the
8 consequence, we also see that the seal region is	8 figure and recognizing the effect of his invention
9 wider. And that general trend is also true as	9 on the evenness of the bottom substrate.
10 well in Fig. 1, Fig. 6, Fig. 8A which has a seal.	10 Q . And the figures themselves don't have
11 region that is not a constant width, so it's a	11 dimensions, correct?
12 little more nuanced, but they all have a wider	12 A. There's no scale provided for them, no.
13 seal region than the prior art.	13 MR. GIBSON: If we could change the
14 Q. And you're observing that from just	14 media and we'll take a break.
15 looking at the proportions of the figures where	15 VIDEOGRAPHER: Going off record. This
16 the sealing region is shown compared to the prior	16 is the end of Media Unit Number 3. The time is
17 art?	17 3:15.
18 A. I'm doing more than that. As I've just	18 (Short recess.)
19 explained, there's a technical reason why that	19 VIDEOGRAPHER: We're back on record.
20 should be.	20 This is the beginning of Media Unit Number 4 in
21 Q. All right. Is that technical reason	21 the deposition of Dr. Michael Escuti. The time is
22 explained by Watanabe?	22 3:31. Please continue.
23 A. To some extent it is explained. He's	23 BY MR. GIBSON:
24 clearly reducing the unevenness of the bottom	24 Q. And before we broke, we were looking at
25 substrate that's central to his invention.	25 some of the figures from Watanabe.

Page 15	ge 156
1 Would you agree that these figures are	1 figure that you could understand?
2 frequently not drawn to scale?	2 A. In many cases, that is true. Of cours
3 A. Are you referring to the figures	3 that's not always true, but
4 Watanabe patent?	4 Q . Would you agree that in Fig. 5, the
5 Q. The figures in patents in gener	5 distinctive features are trying to show the
6 you agree they're frequently not drawn to scale?	6 absence of substrate gap adjusting regions?
7 A. In general, that's -- that's true.	7 MR. SCHLITTER: Objection, form.
8 would -- I would agree that most commonly scale is	8 THE WITNESS: Maybe you mean -- you
9 not provided in patent figures	9 should rephr
10 Q. And do you have any reason to belie	10 BY MR. GIBSON:
11 that these are drawn to scale?	11 Q . You mean the pre
12 A. Well, based on the absolute dimensi	12 A. Well, could you just restate the
13 they're not likely drawn to scale. After all,	13 question for me? I don't understand it.
14 dimensions of the seal regions in all of this	14 Q. All right. Fig. 5 is trying to show
15 substantially similar to the area of the nine	15 something regarding substrate gap adjusting
16 pixels that are disclosed and, of course, ther	16 regions, cor
17 more than nine pixels in the displays that wo	17 MR. SCHLITTER:
18 typically be imagined here.	18 THE WITNESS: Well, Fig. 5 is referred
19 But the -- but most of my comments	19 to as a plan view showing a liquid crystal display
20 just discussed about refer to the relative	20 apparatus according to the second embodiment of
21 comparison between the figures, not the ab	21 the present invention. There are gap adjusting
22 Q. And the comparison you're making between	22 layers identified, 25 and 27 , in that figure.
23 the figures, is that what you're talking abo	$23 \text { BY MR. GIBSO }$
24 Fig. 9 to Fig. 5, for exam	24 Q. And those are discussed in the te
25 A. Well, for example, when comparing Fig. 5	25 the specification, correct?
1 to Fig. 9, the pri	ussed
2 to the other dimensions is substantially smaller	2 in the text.
3 as illustrated and the seal in Fig. 5 is larger as	3 Q. And if you look at 3A
4 illustrated.	4 actually, let's look at -- I meant to look at
5 Q. Would you expect that Fig. 9 is drawn	5 '204, 3A and 3B.
6 scale?	6 A. So I've got 3 A and 3 B of the ' 204 before
7 A. I don't suspect that any of thes	
8 figures are drawn to an absolute scale.	8 Q. All right. And those are -- 3A is
9 Q. Would you understand that artwork such	9 showing an adjustment layer 301?
10 as this in patents is designed to describe certain	10 A. 3A shows multiple adjustment layers 301.
11 features or to show distinctive features?	11 Q. And 3B calls 301 an adjustment film, but
12 MR. SCHLITTER: Objection, foundatio	12 you would understand that to be an adjustment
13 form.	13 layer?
14 THE WITNESS: Well, that's my	14 A. I understand that those are the same
15 understanding, that the figures in patents are	15 element and I don't think there's a difference
16 meant to convey some kind of relationship between	16 between the adjustment layer terminology and
17 the elements and not an engineering drawing.	17 adjustment film terminology.
18 BYMR. GIBSON:	18 Q. And would you agree that they're located
19 Q. And they don't show all the -- usually a	19 next to the external connection lines?
20 figure doesn't show all the elements?	20 A. One of the adjustment layers is adjacent
21 A. It's quite common that a figure	21 to the external connection lines but, of
22 show all the elem	22 there are many others that are not. The second
23 Q. And	23 one is to the left of the first adjustment laye
24 where there are so many elem	24 Q. Okay. But there is one adjustment laye
25 to show them all, you probably wouldn't have a	25 shown next to the external connection line in both

Page 158	Page 160
13 A and 3 B ?	1 two conductors that are labeled the external
2 A. There is one shown that is next to the	2 connection line are an external connections to
3 first external connection lin	3 something external to the sealant, whereas all the
4 Q. And if you look at 6A and 6B of the '204	4 other adjustment layers that are conductors serve
5 patent.	5 to adjust the height difference.
6 A. I see	6 Q. Isn't their purpose to create a uniform
7 Q. These show adjustment layers 501 and	7 gap?
8502 , is that correct?	8 A. The adjustment layers would have that
9 A. It does, both 6A and 6B include those	9 purpose, y
10 two element	10 Q. And would you understand that to be the
11 Q. And they're both below and next to the	11 purpose in Claim 54 as well?
12 external connection lines?	12 A. The purpose of what in Claim 54?
13 A. Some of them are below and some are to	13 Q. To conduct -- the first and second
14 the side and	14 conductive layers?
15 Q. Where are the first and second	15 A. In Fig. 6A and 6B, I don't see a
16 conductive layers in the ' 204 patent?	16 structure that meets the limitations Claim 54.
17 A. In these figures?	17 Q. But Claim 54 does refer to a first and
18 Q. Or with reference to these figures.	18 second conductive layer, correct?
19 A. Well, by the terms first and second	19 A. It does, of course with many limitations
20 conductive layers, are you referring to Claim 54	20 on it
21 claim terms?	21 Q. What's your understanding of the purpos
22 Q. That's fine. You	22 of those layers?
23 A. Well, I think that the fi	23 A. Are you referring to the layers that are
24 conductive -- what's the language? Okay. The	24 in 6A or are you referring to the first and second
25 first conductive line over the	25 conductive layers in Claim 54?
Page 159	Page 161
1 has other limitations on it and that is not in	1 Q. The latter.
2 Fig. 6A and B. But I can, of course, identify	2 A. The claim doesn't say what the purpose
3 that there are two metal layers in 6A and 6B that	3 of those are. It speaks to the relative
4 are patterned for different purposes.	4 relationship of the first and second conductor and
5 Q. Okay. What are those?	5 the connection between them and what's above them
6 A. Well, the lower conductive layer that's	6 and regions of -- of them, but doesn't say what
7 shown in 6A and 6B is used to form multiple first	7 the purpose of them is.
8 adjustment layers 501, and the second conductive	8 Q. What would one of ordinary skill in the
9 layer that's been deposited and patterned forms	9 art, after reading the '204 patent, learn would be
10 both the external connection lines 108 and the 502	10 the purpose of having those two layers?
11 second adjustment layers.	11 MR. SCHLITTER: Objection, form.
12 Q. Do those overlap with the sealant?	12 THE WITNESS: In Claim 54, one
13 A. In 6A and 6B, all of those elements are	13 possibility is what's illustrated in Fig. 4A,
14 underneath the sealant.	14 where there's a connection that goes across the
15 Q. And what would you understand the	15 sealant toward the display portion. So they serve
16 purpose of the first and second conductive layers	16 to connect the terminal to something inside the
17 to be?	17 display.
18 A. Do you mean in these figures 6A and 6B?	18 BYMR. GIBSON:
19 Q. We can start with that.	19 Q. Any other purpose?
20 A. Well, I'll have to refresh my memory	20 A. That's one example. There certainly
21 the figures in the specification. In Figs. 6A and	21 could be other purposes.
226 B , a cross-section of a -- the cross-section of B	22 Q. What would they be?
23 to B prime, which appears most likely somewhere	23 A. Can you rephrase the question for me to
24 else in a plan view of the display -- I'm not sure	24 be maybe more specific?
25 where, we can find it -- but it appears that the	25 Q. Yes. So what would one of ordinary

Page 162	Page 164
1 skill in the art understand from reading the '204	1 A. I see it.
2 patent would be the purpose of the first and	2 Q. And that's located across the sealant?
3 second conductive layers in Claim 54?	3 A. As illustrated, those adjustment layers
4 MR. SCHLITTER: Objection, form.	4 do extend from one side to the other and also
5 THE WITNESS: Another purpose would be	5 extend away from the terminals.
6 to reduce the unevenness in the gap, whether or	6 Q. And they're in parallel to the external
7 not they extend it all the way through the sealant	7 connection lines?
8 and into the display portion.	8 A. In this portion it is, but clearly from
9 BY MR. GIBSON:	9 looking in Fig. 5, that's not the case everywhere.
10 Q. Any other purpose?	10 Q. But in 3A, that's what we're seeing, a
11 A. Not that I can think of right now.	11 parallel adjustment layer and external connection
12 Q. If we look back at Watanabe, Watanabe	12 lines?
13 Fig. 5.	13 A. In 3A, it shows the adjustment layers
14 A. Yes.	14 that are at least illustrated in parallel with the
15 Q. There's gap adjusting layers 25 and 27?	15 external connection lines.
16 A. I see them.	16 Q. And in 6A, which we looked at a minute
17 Q. And what is the purpose of those?	17 ago, the two adjustment layers 501 and 502 are
18 A. The purpose of those gap adjusting	18 located across the sealant?
19 layers is to provide an equal gap between the two	19 A. They do extend from one side of the
20 substrates, ultimately to improve display image	20 sealant to the next and underneath.
21 quality and display image contrast as he says in	$21 \quad \mathrm{Q}$. And they're also in parallel to the
22 Column 3.	22 external connection lines?
23 Q. Where in a typical LCD display is the	23 A. While 501, the first adjustment layers
24 sealant located?	24 are in parallel, 502 is not. 502 is illustrated
25 A. In the '204 patent, there are multiple	25 as orthogonal.
Page 163	Page 165
1 figures that -- that show it, Fig. 5, for example,	1 Q. If we look at Shiba.
2 and I think that's fairly emblematic. It's	2 A. Which part?
3 typically around most of the periphery of the	3 Q. Oh, Fig. 3. I don't think we've talked
4 display, but there needs to be an opening, at	4 a lot about Fig. 3 yet. We wouldn't want to leave
5 least one opening -- sometimes there's many	5 that one out.
6 openings -- so that the liquid crystal can be	6 Are the signal lines identified as X1,
7 filled after the seal has been applied and the two	$7 \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$?
8 substrates have been joined.	8 A. No.
9 Q. And would you understand that the	9 Q. What lines do you believe those are?
10 substrate gap adjusting layers 25 and 27 overlap	10 A. Those are referred to as the data lines,
11 with the sealant in Watanabe?	11 for example, Column 5, line 5.
12 A. In Fig. 5, they completely overlap. In	12 Q. Would you understand that one of
13 other figures they partially overlap.	13 ordinary skill in the art might use data and
14 Q. And so you would agree that typically	14 signal lines?
15 the sealant is along the edge of the display; it's	15 A. Yes. I think I'm getting tired and --
16 not, for example, in the middle of the display?	16 and didn't hear them as essentially the same thing
17 MR. SCHLITTER: Object to form.	17 to a person of ordinary skill, but yeah, I agree
18 THE WITNESS: It is typically on the	18 that they -- they can be used interchangeably.
19 periphery or edge of the display.	19 Q. But I will agree with you that the
20 BY MR. GIBSON:	20 patent does call them data lines.
21 Q. And if you could look at Fig. 3A of the	21 A. I didn't mean to be so abrupt, but it's
22 '204 patent.	22 been a long -- long few hours.
23 A. I see it.	23 Q. I understand.
24 Q. You see there's again adjustment layer	24 The data lines, would you agree that
25301 ?	25 they're located across the sealing region,

	Page 168
1 region 11	1 A. Fig. 3 is, after all, an expansion
2 A. In Fig. 3, they're clearly illustrat	2 the box labeled A in Fig. 1 and what's true in
3 as going from the terminals across the sealant	3 Fig. 3 should be true in Fig. 1 as well for that
4 region and into the display portion or the --	4 portion.
5 guess it's called the display area in Shiba.	5 Q. And in Fig. 1, do you see where the scan
6 Q. And if you look at Fig. 1, do you se	6 lines are
7 the data lines in Fig.	7 A. I see where their driver is and where
8 A. I don't see the lines themsel	8 their wirings in those big blocks are, 7-21 to
9 they're not illustrated X1, X2, X3, but there	9 7-24, but I don't see the lines themselves.
10 the elements 7-11 through 7-18 that hold the	10 They're not illustrated.
11 connections to the data lines and immediately	11 Q. Would you agree the scan lines are going
12 above them on the substrate would be the data	12 to be fed into the display from the right-hand
13	13 side of Fig. 1?
$14 \quad \mathrm{Q}$. So they're fed into the display from the	14 A. I do agree, in a manner that's at least
15 bottom of Fig. 1?	15 similar and analogous to Fig. 3, they would extend
16 A. That's -- that's generally correct, y	16 from the wiring film and go underneath the sealant
17 Q. And how do the data lines get their	17 toward the display area. Although, the one
18 signal in Shiba?	18 important difference is they would also have to
19 A. Do you mean	19 cross the wiring 127
20 terminal regions around the data lines?	20 Q. Right, because we don't have the wiring
21 Q. Right. Isn't there a driver?	21127 at the bottom of the rectangle?
22 A. There may be. I don't recall. I'd have	22 A. That's correct because it would short
23 to look to find out. Maybe you can point me to	23 all those 1
24 where that is. There is a driver board mentione	24 Q. But you
25 in, for example, Column 5. I don't think it's	25 go in from the right-hand side and be connected to
Page 167	Page 169
1 illustrated or numbered.	1 the drivers you pointed out, 7-21 to 7-24?
2 Q. Would you understand that driver board	2 A. Yes, that's correct.
3 would be at the bottom of Fig. 1?	3 Q. Are the -- looking at the bottom side of
4 A. The driver board could be -- could	4 Fig. 1 and the right side of Fig. 1 where the
5 arranged somewhere near the bottom of Fig. 1.	5 lines are going in, how are they positioned
6 It's not disclosed and I think there are many ways	6 relative to the sealant?
7 to do it. Certainly one could put it off to the	7 A. I'll try to answer your question, but
8 side and then connect it up that way. But I think	8 you may need to rephrase it. The data lines and
9 a very common way to do it would be to have the	9 the scan lines extend across the sealant in a way
10 driver board at the bottom or near the bottom of	10 that might be characterized as orthogonal to it,'
11 Fig. 1.	11 not parallel to the sealant.
12 Q. And in Fig. 1, would	12 Q. Could you call it transverse?
13 these data lines to go across the sealant region	13 A. I think that's an alternate way to
14 the same way it's shown in Fig. 3?	14 express it, yeah.
15 A. I'm sorry. I should correct myself	15 Q. And if you look at Fig. 3 again of
16 very briefly. There are identified the X driver	16 Shiba, you can see wiring lines 127?
17 circuit boards 800 and the Y driver circuit boards	17 A. Yes, I see that. That would be an
18900 , and it's that wide rectangle that's at the	18 example of something that's not transverse.
19 bottom and the right side respectively of Fig. 1.	19 Q. They would be parallel to the sealant?
20 So they are numbered. They are illustrated.	20 A. Most of wiring 127 is largely parallel
21 Q. Okay. Appreciate that.	21 to the sealant, yes. Of course there are portions
22 So the data lines that are going into	22 where that's not true, but they're very small.
23 Fig. 1 from the bottom, would you understand those	23 Q. And would you -- do you see that those
24 would go across the sealant region the same way as	24 wiring lines 127 cover the region 111 of the
25 shown in Fig. 3?	25 sealant in places?

Page 170	Page 172
1 A. I might reverse the order of that. The	1 A. Yes, that's correct.
2 seal region 111 covers a substantial portion of	2 Q. Would you agree that the gap adjusting
3 wiring 127, at least four of the lines. Two of	3 layers that are described in Watanabe can also be
4 the lines are, of course, inside the seal region	4 made from the same material that's used to form
5 and not under it	5 the signal lines?
6 Q. And then there's several that are unde	6 MR. SCHLITTER: Objection, form and
7	7 foundation
8 A. There are several that are under it and	8 THE WITNESS: Well, Column 12 and
9 those are pictured in Fig. 6.	9 beginning in line roughly 49 and then that
10 Q . And then would you agree that there ar	10 following paragraph discusses that issue and I
11 portions of the sealant region that have no wiring	11 think maybe more generally says that the material
12 lines 127 ?	12 of the substrate gap adjusting layers 25 and 27 is
13 A. I do agree. For example, in Fig. 1, the	13 the same, in this embodiment at least, as the
14 entire bottom horizontal portion of the seal does	14 material used in the first embodiment. And then
15 not have wiring 127 under it.	15 he goes on to clarify it could be used as the same
16 Q. But even in Fig. 3, you can see areas	16 material as the signal lines and so on.
17 where there's sealant and no wires, correct?	17 BY MR. GIBSON:
18 A. Yes.	18 Q. So you would agree?
19 Q. And looking back at Watanabe, would you	19 A. That's -- I do agree that's what's
20 agree that Watanabe discloses an adjustment layer?	20 disclosed in Watanabe.
21 A. To be precise, he calls it a gap	21 Q. So let's look back at Shiba for a
22 adjusting layer and he discloses several kinds.	22 mome
23 Q. Is that the gap adjusting layer	23 In Fig. 4 where you identified Item 741,
24 electrically isolated from the auxiliary line?	24 that's on the counter substrate, correct?
25 MR. SCHLITTER: Objection, form --	25 A. Yes, the connecting protrusion 741 and
Page 171	Page 173
1 THE WITNESS: I don't --	1 its brothers and sisters are on the counter
2 MR. SCHLITTER: -- and foundation.	2 substrate.
3 THE WITNESS: I don't think that	3 Q. And that's where you say the sealant is
4 Watanabe references an auxiliary line at all.	4 contacting an ITO layer is on the counter
5 BY MR. GIBSON:	5 substrate, is that correct?
6 Q. Is the -- you say there's multiple gap	6 A. I am saying that, but it's not limited
7 adjustment layers.	7 to that. As you can see, 741 is part of what it
8 Do you agree there's at least two in	8 -- what the sealant 113 contacts. But as the
9 Watanabe?	9 layer -- the ITO layer comes up -- well, I should
10 A. There's at least two designs of those	10 say it comes diagonally down and then across the
11 adjusting layers.	11 display, it's -- it's labeled 541. So it touches
12 Q. And you have a 25 and a 27 in Watanabe,	12 both of those regions.
13 correct?	13 Q. But that's on the counter substrate
14 A. In Fig. 5, there's adjusting layer 25	14 side?
15 and 27 , and they correspond to those that are near	15 A. It is all on the counter substrate side.
16 the scan and data lines respectively.	16 Q. And there is no sealant touching the ITO
17 Q. Is 25 electrically isolated?	17 on the substrate side?
18 A. All of the adjusting layers in Fig. 5	18 A. Not that's disclosed in Shiba.
19 are said to be electrically isolated from the lead	19 Q. And if you look at Fig. 6, the sealant
20 portions that they're next to.	20 that you're saying is touching an ITO layer is
21 Q. They're electrically isolated from the	21 again on the counter substrate?
22 TFTs?	22 A. In Fig. 6 it's even more clear and yes,
23 A. That's correct.	23 it's the counter substrate that has the ITO
24 Q. And they're electrically isolated from	24 directly touching at least partially the sealant.
25 the flexible printed circuit?	25 Q. And the sealant at the -- on the

Page 174	ge 176
1 substrate is not touching the ITO layer, correct?	1 the substrate
2 A. Well, just to be clear, the other	2 Q. Which we would understand to be an array
3 substrate we're talking about is element 200 i	3 substrate based on the fact that it's got a TFT
4 this answer and the question previously and that's	4 and pixel electrodes and it's for an LCD display,
5 called the array substrate. So yes, I agree the	5 corre
6 sealant is not touching the ITO on the array	6 A. Well, that's not the language of this
7 substrate or element 200.	7 specificat
8 Q. Now, if you look at the '204 patent,	8 Q. I understand. But someone of ordinary
9 we look at Claim 54.	9 skill in the art would understand that we're
10 A. I've got	10 talking about the array substrate there, not the
11 Q. And in Claim 54, we're talking about the	11 counter substrate?
12 array substrate when we look at the first use of	12 A. Well, the language of array substrate is
13 the word "substrate"?	13 what's used in Shiba. I'm simply holding to the
14 A. If the substrate has thin film	14 language that the spec in -- in the ' 204 which
15 transistors and pixel electrodes and it is an L	15 refers to these two substrates as simply a
16 device, then yes, it would correspond to the array	16 substrate in Claim 54 which, yes, would include
17 substrate in Shiba.	17 the thin film transistors and the active matrix
18 Q. All right. And we know in the very	18 electronics and the counter substrate, which would
19 bottom line on Column 19, it says a counter	19 be the other one. And certainly nearly all of the
20 substrate facing a substrate.	20 limitations in Column 20 apply to the substrate
21 Do you see that?	21 which would have the active matrix on it.
22 A. Yes, I do.	22 Q. And would that also be the same for
23 Q. Is there any other mention about what	23 Claim 31?
24 the counter substrate is going to be -- strike	24 A. I'll have to
25 that.	25 Claim 31 includes in its first few
Page 175	Page 177
1 Is there any mention in the -- in	1 limitations a very similar set that refers to the
2 Claim 54 about what is going to be on the counter	2 substrate having thin film transistors and a
3 substrate?	3 counter substrate facing that first substrate. So
4 A. Claim 54 is silent on that	4 what we just talked about in Claim 54 I think
5 Q. So the limitations about what's on the	5 applies to Claim 31.
6 substrate -- strike that.	6 MR. GIBSON: All right. Why don't we
7 The limitations that follow in claim --	7 take a break? I want to check my notes and then
8 in Column 20 apply to what is on the array	8 I'll probably wrap up.
9 substrate, correct?	9 VIDEOGRAPHER: We're going off record.
10 A. Except for the first limitation, I think	10 The time is 4:13.
11 that's correct, at least for Claim 54.	11 (Short recess.)
12 Q. And the limitation you're referring to	12 VIDEOGRAPHER: We're now back on record.
13 is a liquid crystal material provided between the	13 The time is $4: 24$. Please continue.
14 substrate and the counter substrate?	14 MR. GIBSON: I don't have any further
15 A. That's correct.	15 questions at this point, but I'll reserve my right
16 Q. So we know there's going to be a liquid	16 to ask additional questions if you ask questions.
17 crystal material in between the two substrates	17 MR. SCHLITTER: Okay. I have a topic.
18 from that limitation, correct?	18 EXAMINATION
19 A. From that limitation, of course the	19 BY MR. SCHLITTER:
20 first one where it's called the liquid crystal	20 Q. So would you please refer to the '204
21 display device.	21 patent?
22 Q. All right. And then everything after	22 A. I've got it.
23 that is applying to what's on the array substrate,	23 Q. Do you recall what the objectives are of
24 correct?	24 the invention that's described in the '204 patent
25 A. It applies to what's referred to here as	25 or any of the inventions that's described in the

Page 178	Page 180
1 '204 patent?	1 that region and that could be serving one of the
2 A. In the '204 patent, there's multiple	2 other objectives I mentioned.
3 objectives and one of them certainly is to provide	3 BY MR. SCHLITTER:
4 a reduced resistance from the terminal portion to	4 Q. You also mentioned unevenness. Is there
5 the display portion.	5 any limitation in Claim 31 that relates to the
6 Q. Is there any oth	6 objective of preventing unevenness of the gap?
7 A. There's a -- another that involves the	7 A. Yes, certainly. There's an adjustment
8 objective of reducing the gap unevenness by means	8 layer that's identified and that adjustment layer
9 of the adjustment layers that are provided.	9 must extend under the sealant and that goes to
10 Q. Any other objectives that you can	10 that objective.
11 recall?	11 Q. Are there any limitations in Claim 31
12 A. There are two other objectives, as best	12 that relate to the objective of providing strong
13 I recall. One of them is to provide a strong	13 adhesion of the sealant?
14 adhesion of the sealant to the lower substrate.	14 MR. GIBSON: Objection, scope.
15 And the last objective I can recall is to provide	15 THE WITNESS: Yes, there is. There's a
16 a reliable connection to the FPC in the terminal	16 limitation that says the sealant is in direct
17 portion.	17 contact with the second insulating film and so
18 Q. Would you refer, please, to Claim 31?	18 that's toward that objective.
19 A. I've got it.	19 BY MR. SCHLITTER:
20 Q. Do you see that one of the limitations	20 Q. Is there any limitation -- well, are
21 in Claim 31 is an auxiliary line?	21 there any other limitations in Claim 31 that
22 A. I do see in Claim 31 the auxiliary line	22 relate to the objective of stronger adhesion?
23 limitation	23 MR. GIBSON: Objection, scope.
24 Q. And another limitation is an external	24 THE WITNESS: Well, at least indirectly,
25 connection lin	25 the transparent conductive film is expressly not
Page 179	Page 181
1 A. Yes, and there's several limitations on	1 in contact with the sealant. There's a limitation
2 that external connection line.	2 that says the flexible printed circuit over an
3 . Q. What is the objective of the '204 patent	3 electrical contact with the external connection
4 with respect to the adjustment -- strike that.	4 line through a transparent conductive film.
5 What is the objective of the '204 patent	$5 \quad$ So there is a transparent conductive
6 with respect to the auxiliary line and the	6 film involved and the next limitation that I
7 external connection line?	7 already read about, the sealant, dictates that it
8 MR. GIBSON: Objection, scope.	8 should not -- it should not be under the seal.
9 THE WITNESS: Well, the objective in	9 BY MR. SCHLITTER:
10 that case has to do with the -- reducing the	10 Q. Are there any limitations in Claim 31
11 resistance of the connection from the terminal	11 that relate to the objective of providing a
12 portion at least partially into the sealant but	12 reliable connection to the FPC?
13 potentially beyond.	13 MR. GIBSON: Objection, scope.
14 BY MR. SCHLITTER:	14 THE WITNESS: The limitation I just read
15 Q. What -- are there any limitations in	15 about the flexible printed circuit goes to that
16 Claim 31 that relate to the objective of lowering	16 end. It's meant to be an electrical contact with
17 resistance?	17 the external connection line through the
18 A. Well, those -- those two lines and the	18 transparent conductive film.
19 connection that's formed between them, the	19 BY MR. SCHLITTER:
20 electrical connection, would serve that objective.	20 Q. Is there any limitation in Claim 54
21 Q. Would they serve any other objective?	21 relating to the objective of lowering resistance?
22 MR. GIBSON: Objection, scope.	22 MR. GIBSON: Objection, scope.
23 THE WITNESS: They may. They also	23 THE WITNESS: Well, after this long day,
24 present a difference in height under the seal	24 I think my answer is still the same, that there's
25 region and so they could provide a given height in	25 an auxiliary line that's provided, there's an

182	84
1 external connection line that needs to overlap it	1 the sealant.
2 and have electrical contact to it, and this can be	2 BY MR. SCHLITTER:
3 used toward that objective	3 Q. Are there any limitations in Clain
4 BY MR.	4 the '204
5 Q. Are there any limitations in Claim	5 providing strong adhesion of the sealant?
6 relating to the objective of preventing unevenness	6 MR. GIBSON: Objection, scope.
7 of the gap between the substrates?	7 THE WITNESS: Yes, there is. There is
8 A. Yes, the adjustment layer that's	8 sealant that is limited to be in direct contact
9 provided in the limitation says an adjustment	9 with the second insulating film.
10 layer -- at least part of the adjustment layer	10 BY MR. SCHLITTE
11 extending under the sealant goes toward th	11 Q. Do any of the other elements of Claim 54
12 objective.	12 pertain to this objective --
13 I'm sorry. I just noticed	13 MR. GIBSON: Objection, scope.
14 second round of questions, you started to	14 BY MR. SCHLITTER:
15 about Claim 54 instead of Claim 31 and I didn't	15 Q. -- of providing strong adhesion of the
16 track that. So I apologize. Maybe you should --	16 sealant?
17 Q. This is why I can't find it.	17 MR. GIBSON: Objection, scope.
18 A. -- re-ask -- ask me again. As I said,	18 THE WITNESS: The other elements ref
19 it's been a long day. I'm sorry. Could you	19 to a transparent conductive layer that are over a
20 perhaps ask me again?	20 first region of the second conductive line and
21 Q. Okay. With respect to Claim 54,	21 it's clear that the FPC is meant to connect in
22 there any limitations in Claim 54 that relate to	22 that region as well, and that also corresponds to
23 the objective of reducing resistance?	23 allowing the sealant to connect directly to the
24 MR. GIBSON: Objection, scope	24 second insulating film without the ITO below it.
25 THE WITNESS: Yes, there's a first	
83	Page 185
1 conductive line, a second conductive line and	1 BY MR. SCHLIT
2 these are both mentioned that -- to have a	2 Q. Are there any limitations in Claim 54
3 limitation where they are in electrical contact	3 that relate to providing a reliable connection of
4 and this is -- these are the elements that serve	4 the FPC?
5 that objective.	5 MR. GIBSON: Objection, scope.
6 BY MR. SCHLITTER:	6 THE WITNESS: Yes, there is. There's a
7 Q. Are there any elements of Claim 54 that	7 limitation that reads the second conductive line
8 relate to preventing unevenness of the gap between	8 and the flexible printed circuit are in electrical
9 the substrates?	9 contact through the transparent conductive layer.
10 A. Yes, there's a conductive layer over the	10 MR. GIBSON: Why don't you go off the
11 substrate that's provided for that purpose.	11 record?
12 Q . Is there any other limitation relating	12 VIDEOGRAPHER: We're going off the
13 to the conductive layer that pertains to the	13 record. The time is $4: 38$.
14 objective of preventing unevenness of the gap?	14 (Short recess.)
15 MR. GIBSON: Objection, form.	15 VIDEOGRAPHER: We're back on record.
16 THE WITNESS: Well, the full claim	16 The time is 4:40. Please continue.
17 limitation that mentions a conductive layer reads	17 BY MR. SCHLITTER:
18 a conductive layer over the substrate. And then	18 Q. Earlier today you were asked about
19 an additional limitation says wherein the	19 Example 3 of the '204 patent and Figs. 4A and 4B
20 conductive layer is electrically isolated from the	20 and you said that redundancy was implicit in the
21 other conductive elements that are listed.	21 structure that's disclosed in the '204 patent.
22 And there's another limitation that	22 Do you recall that?
23 identifies that the sealant should overlap	23 A. I vaguely recall that discussion.
24 least part of the conductive layer to provide	24 Q. Are there any limitations in the --
25 that -- a reduction of the unevenness underneath	25 Claim 31 that relate to redundancy?

Page 186	38
1 A. There are no limitations in Claim 31 or	1 well, in 1997 it was well-known to one of ordinary
2 Claim 54 that require that, but if the tor	2 skill in the art that if you had two lines running
3 conductors in both of those claims are connecte	3 in parallel, that could lower the resistance
4 through the first inter-layer	4 versus just having one l
5 insulating film, there will be at least partia	5 A. That general principle was well-known by
6 redundancy by that connection	61997 and Shiba shows a good example of that.
7 Q. Is it necessary to know the	7 Q. And in terms of the -- we covered som
8 which a structure is made in order to determin	8 of this in the '403 (sic) -- the '204 doesn't
9 whether it is covered by Claim 31 or Claim 54?	9 describe any sort of problem with sealant
10 MR. GIBSON: Objection, form.	10 connections, correct?
11 THE WITNESS: It is certainly not	11 A. In your question you referred to '403.
12 required to know the process by which it's m	12 I assume you mean the '413?
13 determine if it meets Claim 51 (sic) or the	13 Q. I'm sorry. The '413 we talked about
14 structure in Claim 54	14 yesterday.
15 MR. SCHLITTER: What specifically was	15 A. Well, the specification is the sam
16 your objection?	16 both of those patents. So whatever I said about
17 MR. GIBSO	17 that applies to the '204
18 MR. SCHLITTER: In what respect? In	18 Q. Right. There's nothing in the '204
19 what respect?	19 patent that discusses that somehow the prior art
20 MR. GIBSON: The -- let me	20 as having trouble having the sealant connect
21 the question. The question was compound and	21 the substrate or bond with the substrate?
22 vague.	22 A. There is -- as I've said in ou
23 BYMR. S	23 discussion about the ' 413 specification, that
24 Q. Let me restate the question	24 there is no explicit discussion of that in the
25 Is it necessary to know the process by	25 '204 specification.
Pag	Page 189
1 which a structure is -- has been made in order to	1 Q. And, in fact, it was well-known in the
2 determine whether it is covered by Claim 31?	2 art that a sealant would bond better with an
3 MR. GIBSON: Objection, form.	3 insulating layer than a transparent conductive
4 THE WITNESS: That is not required.	4 layer as of 1997, correct?
5 BY MR. SCHLITTER:	5 A. As a matter of general principle, that
6 Q. When I say "covered by Claim 31," do you	6 was known, but as we talked about also in that
7 understand that to mean whether it infringes	7 discussion, that's subject to other constraints
8 Claim 31?	8 and Shiba shows an example of that as well.
9 A. That's how I'm understanding your	9 Q. All right. But you would agree with me
10 question, yes	10 that it was well-known to people of ordinary skill
11 Q. Do you need to know the process by which	11 in the art in 1997 that a sealant would bond
12 a structure is made in order to determine whether	12 better with an insulating layer than an ITO lay
13 it infringes Claim 54?	13 correct?
14 MR. GIBSON: Objection, form.	14 A. As a general matter, yes.
15 THE WITNESS: A person of ordinary skill	15 MR. GBSSON: I have nothing furthe
16 does not need to know that to determine	16 MR. SCHLITTER: I have nothing further.
17 infringement of Claim 54. To be clear, does not	17 VIDEOGRAPHER: This concludes the
18 necessarily need to know that.	18 videotaped deposition of Dr. Michael Escuti and
19 MR. SCHLITTER: I have no further	19 the end of Media Unit Number 4. The time is 4:47.
20 questions.	20 We're now off record.
21 MR. GIBSON: I have a coup	21 (Whereupon, the following proceedings
22 follow-up questio	22 were had off the video record:)
23 EXAMINATION (Further)	23 MR. GIBSON: So after discussing a
24 BY MR. GIBSO	24 couple of the exhibits that were marked, we
25 Q. Would you agree with me that if you --	25 decided to mark them with additional numbers next

- Page 190	Page 192
1 in order. The '204 patent, which the witness made	1 CERTIFICATE OF CERTIFIED SHORTHAND REPORTER
2 some annotations on, we're going to mark as	2 I, Sandra L. Rocca, a State of Illinois
3 Exhibit 1012. And the Shiba patent, which is	3 licensed Certified Shorthand Reporter, License No.
4 Patent No. 5,684,555, where the witness made some	4 084-003435, do hereby certify:
5 markings on, we are going to mark that as	5 That on the 6th day of September, 2013,
6 Exhibit 1013.	6 at 9:49 a.m., 115 South LaSalle Street, Chicago,
7 MR. MANZO: You hadn't used those	7 Illinois, the deponent MICHAEL J. ESCUTI, Ph.D.
8 numbers before.	8 personally appeared before me;
9 MR. GIBSON: Not today.	9 That the said MICHAEL J. ESCUTI, Ph.D.
10 MR. SCHLITTER: That's fine.	10 was duly sworn by me to testify and that the
11 (Whereupon, the proceedings concluded	11 foregoing was stenographically recorded and
12 at 4:50 p.m.)	12 constitutes a true record of the testimony given
13	13 and the proceedings had at the aforesaid
14	14 deposition;
15	15 That the deposition terminated at
16	16 4:50 p.m.;
17	17 That the reading and signing of the
18	18 deposition was not waived, and the deposition was
19	19 submitted for signature. Pursuant to Rule 30(e)
20	20 of the Rules of Civil Procedure, if deponent does
21	21 not appear or read and sign the deposition within
22	2230 days, or make other arrangements for reading
23	23 and signing, the deposition may be used as fully
24	24 as though signed, and this certificate will then
25	25 evidence such failure to appear as the reason for
: Page 191	Page 193
1 UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD	1 signature not being obtained;
2	2 That I am not counsel for nor related to
3 INNOLUX CORPORATION,)	3 any of the parties herein, nor a relative or
4 Petitioner,)	4 employee of such attorney or counsel for any of
4 Petitioner,))	5 the parties hereto, nor am I interested directly
5 vs. ${ }^{\text {a }}$ IPR2013-00068	6 or indirectly in the outcome hereof.
) U.S. Pat. No.	7 IN WITNESS WHEREOF, I have hereunto set
6 SEMCONDUCTOR ENERGY) $8,066,204$ LABORATORY CO., LTD.,)	8 my hand and seal of office this day of
7)	9 , 2013.
8 Patent Owner.)	10
9 I, MICHAEL J. ESCUTI, Ph.D., being first	11
10 duly sworn, on oath say that I am the deponent in	12 SANDRA L. ROCCA, CSR, RPR, RMR, CRR
11 the aforesaid deposition taken on September 6,	CSR License No. 084-003435
12 2013; that I have read the foregoing transcript of 13 my deposition, consisting of pages 1 through 193	13 Expires May 31, 2015
14 inclusive, and affix my signature to same.	14
15	15
16 _ as it now appears with corrections	16
17	17
18 M MCHAEL J. ESCUTI, Ph.D.	18
20	19
SUBSCRIBED and sworn to	20
21 before me this_ day of	21
$22 \longrightarrow$	22
	23
23 Notary Public	24
25	25

\&	$1100 \quad 2: 3$	90:25 95:16,17,20	188:18,25
\& 2:2,8 4:6,22	111 61:16 169:24	96:7,21,22 97:8	211 48:21 49:1 50:2
0	170:2	116:12,15,24	50:18,20 52:25 53:1
084-003435 192:4	14	144:21 145:5 188:1	24 74:1
193:12	51:25 52:1,2,8	188:6 189:4,11	241 51:4,6,7,12 52:2
1	71:15 73:11 79:7	1:51 104:5 105:5	52:7,8 53:1 61:23
	$\begin{aligned} & \text { 99:16 100:24 } \\ & \text { 101:10 103:10 } \end{aligned}$	2	66:12 86:16
31:10 40:25 45:2		2 60:21 104:1 107:2	25 156:22 157:1
60:17 70:12,12,14	173:8	121:10,19 122:3,13	162:15 163:10
71:1,8 72:2 75:5,11	114 24:22 99:17	123:22,25 124:4,7	171:12,14,17
75:18 77:7,20,21	$100: 25101: 10$ $115 \quad 1: 152: 946$	124:15 126:4,5,15	172:12
78:16 92:12 121:6	115 1:15 2:9 4:6	127:21,24 128:17	251 68:17
151:10 166:6,7,15	73:8 192:6	129:5,12,19 136:5	256 54:25,25
167:3,5,11,12,19,23	11:10 60:18	136:10,20,24 137:4	27 35:19 93:12
168:2,3,5,13 169:4	11:26 60:23	137:9 138:1,5	156:22 157:1
169:4 170:13	12 172:8	$20 \quad 175: 8$ 176:20	162:15 163:10
191:13	120 2:14	$200 \quad 49: 3,2150: 18$	171:12,15 172:12
10 119:6,24 139:4	121 70:3	50:20 52:25 108:23	28 3:20 74:1
141:8	125 70:3	109:23 117:6,19,20	2a 122:22,23 123:6
100 89:11 108:23	127 29:8,15,18,24	119:13,18,22 120:7	123:14,16 129:4,9
109:23 117:19,20	30:16 31:10,12,14	120:11 174:3,7	130:1,2 136:24
120:11 121:5	31:25 32:3,5,11,19	2007 59:6	137:12,24
1001 100:8	32:25 33:23 34:16	2008 59:6	2c 107:9,24 108:12
1004 3:10 144:12	34:19 35:1,5,23	2011 3:21 6:2	108:14 112:2,5
1005 3:11 106:9	36:11 37:9 38:10	2013 1:17 4:3	$\begin{aligned} & 114: 22,23 \text { 117:9,15 } \\ & 121: 8 \end{aligned}$
1008 3:12 53:13,14	39:1 40:23 41:1,6		
53:17	41:15,24 42:16,16	193:9	3
1009 3:14 82:6,9,9	43:2,3,6,8 45:5,7	2013-00068 4:10	3 2:3 29:5 31:11
1010 3:16 82:6,9	47:15,16,22 48:5,20	2015 193:13	69:25 70:10,13
83:2	48:21 50:21,23,24	204 3:15,16 5:22	94:19 95:3,5 105:3
1011 3:17 83:20,21	51:3 52:10 53:5 $70.293 \cdot 794 \cdot 1$	8:21 9:2,8,14,17,22	118:16 125:10
83:24	$70: 293: 794: 1$ $168 \cdot 19,21169 \cdot 16$	10:1 25:19,19 28:17	126:15 127:21,24
1012 3:19 9:6 83:20	168:19,21 169:16	46:8 50:11 61:1,6	128:17 129:3,11,17
190:3	169:20,24 170:3,12	63:3,7,9,11 75:1,20	130:7 138:6 140:19
1013 3:20 28:20	170:15	91:11,21 93:20 94:5	153:16 162:22
190:6	12:47 104:2	94:10 95:7,12 100:7	165:3,4 166:2
106 3:11	$\begin{array}{lll}13 & 107: 24 \\ 144 & 3.10\end{array}$	106:6 157:5,6 158:4	167:14,25 168:1,3
107 61:10,12	$\begin{array}{ll}144 & 3: 10 \\ 177 & 3.5\end{array}$	158:16 161:9 162:1	168:15 169:15
108 61:16 159:10	$\begin{array}{ll}177 & 3: 5 \\ 187 & 3\end{array}$	162:25 163:22	170:16 185:19
109 61:16	$187 \text { 3:5 }$	174:8 176:14	30 192:19,22
11 166:1	$\begin{array}{lll}19 & 174: 19 \\ 193 & 191: 13\end{array}$	177:20,24 178:1,2	$\begin{array}{lll}300 & 138: 12 & 140: 19\end{array}$
110 61:16 83:1	$\begin{array}{ll} 193 & 191: 13 \\ 1997 & 46: 3,7 \\ 88: 25 \end{array}$	179:3,5 184:4	301 157:9,10,11
	$\begin{aligned} & 1997 \text { 46:3,7 88:25 } \\ & 89: 10,1390: 4,12,16 \end{aligned}$	185:19,21 188:8,17	163:25

31 10:4,12,17,21,23	118:7,9,10,12,18,20	4b 185:19	184:11 185:2 186:2
11:2,17,22 12:1	119:8,10 120:11	5	186:9,14 187:13,17
13:10 119:24 140:6	121:6 140:14	5 3:4 31:14 32:3	541 69:6,17,18,19,22
140:11,18 141:1	3e 114:25 115:1	5 \% 68.2373 .25147 .21	70:17 71:13 72:3,18
176:23,25 177:5	119:3,12,18 120:1	147:22,23 148:7,12	72:22,23 73:18,19
178:18,21,22	121:7 123:21,21		73:24 74:3,3 75:2,6
179:16 180:5,11,21	124:1,2,10,12 136:3	150.915 151.1.6	75:10,22 76:22,23
181:10 182:15	136:11,22,24 137:4	154:24,25 155:3	77:7,15,21,24 78:3
185:25 186:1,9	137:7,9,11,20	156:4,14,18 162:13	78:7,10,12,14,19,22
187:2,6,8 193:13	138:24 139:3,19	163:1,12 164:9	79:6,15,18,19,20,22
312 2:10,10,15,15	141:5	165:11,11 166:25	80:8,10,14,19 81:3
31a 117:6 118:25	4	171:14,18	81:6 173:11
$119: 1,9$ $140: 25$	4 3:18 59:1 68:12	5,504,601 3:10	$\begin{array}{ll} 55 & 147: 13,17 \\ 577-1250 & 2: 10 \end{array}$
31b 140:15,20,22,25	69:15,19 71:8,16,18	$\mathbf{5 , 6 3 6 , 3 2 9} \quad 3: 11$	577-1370 $\quad 2: 10$
32 29:5	75:17 77:22 78:3,4	5,684,555	581 74:6,8,8,17
33 36:5	79:24 81:19,22,24	$50 \quad 3: 16$	6
36 93:24	82:17,21 95:2 99:25	501 73:2 158:7	6 3:21 31:14 32:3
$\begin{array}{ll}38 & 68: 24 \\ 3.15 & 153\end{array}$	100:3,4 153:20	159:8 164:17,23	35:21 36:5 38:9
3:15 153:17	172:23 189:19	502 158:8 159:10	47:6,9 48:4 49:13
3:31 153:22	$40 \quad 3: 14141: 24$	164:17,24,24	49:20 50:9,14,21
3a 115:2 129:24	400 90:20	51 186:13	52:4,6,12,24 69:19
138:9,14,21,25	401 24:14 27:17,25	52 8:10 60:25	71:13,17 72:17
139:9,12,15,18,22	403 24:19 28:9,10	521 81:6,10	73:12,13,15,20,23
$157: 3,5,6,8,10$ $158 \cdot 1,163 \cdot 21$	188:8,11	526-1535 2:15	74:18 75:12,13,14
158:1 163	413 46:8 188:12,13	53 3:13	76:22 77:1,5,12,16
164:10,13	188:23	54 10:24 13:24,24	77:18 78:9,20 79:24
3b 119:3,12,21,22	42 93:24	15:2,3,13 21:3	93:12,18,24 151:10
119:23,25 120:3,8	47 31:5	22:25 23:4,12,14,25	170:9 173:19,22
120:18,21 121:6	49 82:10 172:9	24:9,9,10,25 25:2	191:11
129:24 157:3,5,6,11 $158 \cdot 1$	4:13 177:10	25:15,23 26:18 27:1	600 90:20
158:1	4:24 177:13	27:8,22 28:2,5,15	60603 2:10
3c 108:20 109:9	4:38 185:13	50:11 75:20,24,25	60606 2:15
$110: 2,15,20,22$ $111 \cdot 1,1825114 \cdot 2$	4:40 185:16	76:6,10,20 77:14	$61 \quad 24: 10$
111:1,18,25 114:2	4:47 189:19	99:8,11 100:19,21	623-7200 2:4
$114: 12115: 6,25$ $117.5121: 6122.19$	4:50 190:12 192:16	101:17 102:3,6,10	623-7202 2:4
117:5 121:6 122:19	4a 9:4,11,22 10:1,3	103:3 148:3 158:20	655-1501 2:15
122:21 124:12	10:10 24:14,15,19	158:22 160:11,12	68 24:10
$125: 1,2127: 21$ $129 \cdot 24134 \cdot 6,15,22$	24:20,22 25:16 26:2	160:16,17,25	6a 158:4,9 159:2,3,7
129:24 134:6,15,22	26:6 27:4,12,20	161:12 162:3 174:9	159:13,18,21
136:19,23,24 137:4	28:7 91:14,17 95:3	174:11 175:2,4,11	160:15,24 164:16
$136: 19,23,24137: 4$ $137: 9,13,20138: 6$	95:5 98:9 100:7,17	176:16 177:4	6b 158:4,9 159:3,7
$3 \mathrm{~d} \quad 108: 22$ 109:24	102:22 161:13	181:20 182:5,15,21	159:13,18,22
117:3,5,18 118:1,2	185:19	182:22 183:7 184:3	160:15

6th 1:16 4:3 192:5	134:18 135:1,7	a	adhesive 145
7	7b 110:17 115:11	$\begin{aligned} & \text { a.m. } 1: 17192: 6 \\ & \text { ability } 32: 25 \\ & \text { able } 16: 220: 12,13 \\ & 57: 891: 592: 18 \end{aligned}$	146:8,12 150:3
7 43:1 69:4 1	7		adjacent 157.20
107:15,17,23 108:2	8		adjust 160:5
109:3 110:5,12,22	8 94:7,10,20 107:14		
110:25 111:8,13,22	107:18,22 108:1,5	02:18	justing 148:19
112:1,3,5,16,16,19	108:18 109:10	abrupt 165:	149:5,11,16,21
112:24 113:10,11	110:1,13,17 111:2,8	absence 156:6	162:15,18 163:10
113:14,23,24 114:9	111:13,22 112:1,15	absolute 154:12,	170:22,23 171:11
114:21,23,25 115:3	112:25 113:10,11	155:8	171:14,18 172:
115:8 118:6,10,12	113:16,24 114:9	accomplish 38:25	adjustm
118:17,19 119:1,4	124:8 130:11	65:4	148:20 149:16
119:15 123:22,25	139:16 148:13	accomplishing	150:20 151:6
124:5,15 125:7,12	8,066,204 1:6 4:10	40:14	57:10,11,12,16,17
126:4,5 127:21,24	191:6	achieve 21:20,24	157:20,23,24 158:7
128:17 129:5,12	$\begin{array}{lll}\mathbf{8 , 0 6 8 , 2 0 4} & 3: 19,21 \\ \mathbf{8 0} & 89 \cdot 11 & \end{array}$	55:14.	159:8,11 160:4,8
135:19 $7-1 \quad 118: 20124: 35$	$\begin{array}{lll}80 & 89: 11 \\ 800 & 167 \cdot 17\end{array}$	acknowledgments 58:18 59.2	163:24 164:3,11,13
$\begin{array}{lll}7-1 & 118: 20 & 124: 3,5 \\ \mathbf{7 - 1 1} & 166: 10\end{array}$	$\begin{array}{lll}800 & 167: 17 \\ 82 & 3: 15,16\end{array}$	58:18 $59: 2$ act $96: 17$	164:17,23 170:20
7-18 $166: 10$	$\begin{array}{lll}83 & 3: 18\end{array}$	active 29:5 54:13,20	171:7 178:9 179:4
7-2 118:20 124:3,6	8a 110:23 130:10,14	$\begin{aligned} & \text { 57:14 75:25 176:17 } \\ & 176: 21 \end{aligned}$	180:7,8 182:8,9,10
7-21 168:8 169:1	130:17,21,23,25		admit 98:13 advantage 59:9,10
7-24 168:9 169:1	131:20 134:24	$\begin{aligned} & \text { actual } 18: 1359: 22 \\ & 70: 9 \quad 140: 10 \\ & \text { add } 26: 11,14 \end{aligned}$	93:14 94:9,21 95:11
$\begin{array}{ll}724 & 41: 3 \\ 731 & 41: 3 \\ 71717\end{array}$	151:10		$\begin{aligned} & 95: 22,23 \text { 96:5 } \\ & 125: 17 \end{aligned}$
$\begin{array}{lll}731 & 31: 17,17 & 70: 3 \\ 734 & 31: 17\end{array}$	9		
$\begin{array}{ll}734 & 31: 17 \\ 735 & 32: 1,2\end{array}$	9 3:19 94:8,10,20	addition 6:20 41:2 58:21 92.15 148:16	advantageous 59:8
738 31:18 32:1,2	108:19 110:13	150:18	$95: 8,1997: 20,25$
740 78:10			
741 68:17,18,25	111:9 112:6,16	additional 41:7,15	98:2,4 125:21
69:11,15,21 70:11	$130: 19,20,24131: 1$	88:1,8,17 109:11	affect 145:11 affix 191:14
70:13,15,22 71:5,12	131:15,19 134:5,8	126:11,16,20,22	affix 191:14
71:24 72:2,16,22,25	134:16,19,23 135:1		aforementioned
73:6,7 78:2,3,4,12	139:8,10,21 142:8	$\begin{aligned} & 127: 5,14,17,22 \\ & 128: 16131: 8 \end{aligned}$	36:6
78:18 80:2 172:23		135:10 177:16	aforesaid 191:11 192:13
172:25:173:7	147:21 150:9,15	183:19 189:25	$\begin{array}{lc} \text { agent } & 52: 1 \\ \text { ago } & 164: 17 \end{array}$
745 78:18	155:1,5	addressing 106:14	
$\begin{array}{ll}748 & 80: 2 \\ 751 & 70: 3\end{array}$	$\begin{array}{lll} \mathbf{9 0 0} & 167: 18 \\ \mathbf{9 2 6 1 4} & 2: 4 \\ \mathbf{9 4 9} & 2: 4,4 \\ \mathbf{9 : 4 9} & 1: 17 & 4: 4 \quad 192: 6 \end{array}$	adds 151:6adhere $74: 23$adhesion 145:19146:3 149:2 178:14180:13,22 184:5,15	agree 20:7 21:1,323:23 24:4 27:19
$\begin{array}{lll}751 & 70: 3 \\ 76 & 24: 10\end{array}$			
$\begin{array}{ll}76 & 24: 10 \\ 7 \mathrm{a} & 110: 16115: 9,1\end{array}$			30:25 32:5 35:18
116:2 125:4,13			36:22 38:3 45:23
126:14 129:4,8,17			46:16 51:12,14 54:1
132:22 134:5,7,18			54:24 56:3,7,15
			57:20 61:19 71:19

71:21 73:13,15	annotations 190:2	appreciate 38:2	151:17 155:1,23
74:25 75:4,14,16	answer 12:6 42:21	167:21	161:9 162:1 165:13
76:20 77:14,19	52:13 54:2 62:11	approach 59:12	176:9 188:2,19
81:19 86:9,13 94:19	89:9,15,21,24 90:17	appropriate 47:24	189:2,11
100:18 101:18	110:10 113:5	136:23	article 57:2,19
103:12 106:13	114:19 133:14	approximately 4:4	58:19
107:5 110:8,11	144:19 169:7 174:4	132:20 139:13	articulate 8:17
111:6 112:10	181:24	area 75:2,3 117:23	artisan 8:20
115:12 116:3,5	answer's 114:1	118:3 140:5,9,10	artwork 155:9
121:2 129:1 130:14	answered 110:9	141:10,21,22	aside 8:6 50:14
130:18,20 132:5	answers 52:15	142:10,11,16,18,23	111:25
133:17 139:14	anticipate 20:24	143:9,12,19,25	asked 47:13 81:18
141:22 143:11,14	apart 146:8	145:16 152:13	124:24 185:18
143:18,22 146:11	apologize 92:7	154:15 166:5	asking 10:5,14,15
146:13,14 147:7,11	106:11 182:16	168:17	11:20 15:17 21:1
154:1,6,8 156:4	apparatus 156:20	areas 170:16	22:20 30:13 32:20
157:18 163:14	apparent 101:1	argument 94:17	52:3 67:21 87:25
165:17,19,24	appeal 1:1 4:12	arranged 167:5	92:1 120:17 137:6,8
168:11,14 170:10	191:1	arrangement 16:24	aspect 15:1 94:14
170:13,20 171:8	appear 6:7 7:23 8:8	arrangements	aspects 56:19 60:6
172:2,18,19 174:5	11:1 34:18 52:12,25	192:22	assembly $25: 6$
187:25 189:9	64:13 98:23 192:21	array 49:4,22 174:5	asserts 83:15 95:7
agreed 132:24	192:25	174:6,12,16 175:8	assume 23:1,1 26:2
ahead 40:8 62:12	appearances 2:1	175:23 176:2,10,12	64:17,20,23 65:9,25
99:22 147:25	appeared 2:6,17	arrow 135:10	112:5,9,13 118:11
air 112:20	91:9 192:8	art 11:5,23 20:11	122:3,4,11,12,14
albeit 8:6	appears 7:23 33:14	21:18 23:5 33:11	143:7,10,15 188:12
allowing 184:23	69:18 72:25 73:7	40:16 44:4 45:24	assumed 136:22
alternate 36:9	74:8 140:25 159:23	46:2,17 47:2 56:23	assuming 66:24
169:13	159:25 191:15,16	62:2 63:4 66:3 85:3	assumption 65:9,16
alternative 95:24	appendices 6:8	86:10,24 87:6,20	143:13
alternatively 36:19	appendix 6:10	88:1 92:19 93:2	assumptions 66:24
66:15	applicable 1:14	95:19 96:8,25 97:15	67:25 68:7 143:23
aluminum 55:13	applications 58:6	97:19,23 99:15	attached 7:218:4
amount 125:22	applied 10:21 12:20	100:24 101:19,22	attempt 82:17
analogous 168:15	14:1 15:16 22:6	106:24 109:19	attorney 193:4
analyze 103:8,21	43:5 64:4 66:12,16	112:3 114:7,8,16,20	attorneys 4:14
analyzed 97:13	82:24 163:7	114:20 116:12,24	authors 53:20
103:15	applies 10:24 75:25	117:22 120:6	auxiliary $12: 16,17$
angle 29:25	76:18 175:25 177:5	121:20 123:4,10	27:17,21,25 170:24
anisotropic 118:21	188:17	128:16 129:2,21	171:4 178:21,22
139:4,11,19 141:6	apply 15:13 45:9	135:15 137:19	179:6 181:25
142:14	175:8 176:20	138:4 144:2,14	available 140:4
ann 2:214:2	applying 30:11	148:11,24,25 150:5	141:21 142:23
	32:18 131:9 175:23	150:16,22 151:2,13	143:9 144:3

Veritext Chicago Reporting Company

average $33: 14,16$ avoid 127:5 avoided 131:14 avoiding $126: 22$ aware 129:2,6	154:10 165:9 beneath 114:23 benefit 46:13 best 40:8 90:20 178:12	$\begin{aligned} & \text { boundary } 72: 22 \\ & \text { box } 70: 14168: 2 \\ & \text { break } 60: 15103: 24 \\ & 105: 18 \quad 153: 14 \end{aligned}$	$\begin{array}{ll} \text { capacitive } & 84: 7 \\ \text { capacitor } & 86: 12 \\ \text { capacitors } & 84: 4,6,7 \\ 84: 16,23 & 86: 7 \\ 88: 3,16 \end{array}$
	better 61:21,22	77:7	pti
b 3:16 6:10 64:25	89:2	breaks 105:12,15brief 106:2	carefully 61:14
$\begin{aligned} & 65: 4,15 \quad 66: 19,20,23 \\ & 67: 2,5,8,14,16,19 \\ & 68: 3,6,995: 5 \quad 159: 2 \\ & 159: 22,23 \end{aligned}$	beyond 51:5 52:8 85:22 86:1 89:20		carrier 138:12,16,22
		briefly 167:16	140:19 143:4
	$\begin{aligned} & 85: 22 \text { 86:1 89:20 } \\ & 97: 23 \text { 113:11,21,21 } \end{aligned}$	bring 46:17	$\begin{array}{\|r} \text { case } 4: 8,916: 1,3 \\ 22: 540: 1643: 14 \end{array}$
	$\begin{aligned} & 97: 23 ~ 113: 11,21,21 \\ & 114: 21,24 \quad 118: 25 \end{aligned}$	broke 153.2	
back 60:20 79:19	119:2 179:13	broken 115:3	4:24 52:3 59:13
88:25 90:4 91:11	bias 33:13 big 63:20 140:8 168:8	brothers 173:	62:22 74:2 96:11
105:8 153:19		brought 64:7	:24 103:7 11
162:12 170:19		$\begin{array}{\|l\|} \hline \text { build 19:24 } \\ \text { building } 16: 4 \quad 20: 24 \end{array}$	123:16 128:21
2:21 177:12	bigger 85:2,8 bit 37:5 98:10 113:3		64:9 179:10
185:15 186:20		$\begin{aligned} & \text { building } 16: 4 \quad 20: 24 \\ & \text { built } 15: 9 \\ & \text { butler } 2: 2 \end{aligned}$	cases 42:18 156:2 catastrophic 131:13
background 5:12	black 31:7 79:1285:9 87:9		
			$\begin{array}{lr} \text { cause } & 104: 4 \\ \text { causing } \quad 86: 7 \end{array}$
4,20 56:3,8 57	kwell $2: 1$	$\begin{aligned} & \text { c } 5: 1065: 2466: 10 \\ & 66: 19,20,2367: 1,2 \\ & 67: 3,4,5,8,14,16,19 \\ & 68: 8 \end{aligned}$	
	blowup 25:17		centimeter 145:3 centimeters 144:25
backplanes 57:7	$\begin{gathered} \text { blue } 58: 17 \text { 78:25 } \\ 80: 24,2581: 285: 8 \end{gathered}$		
backwards 19:24		$\begin{array}{ll} \text { c3 } & 134: 4 \\ \text { ca } & 2: 4 \end{array}$	$\begin{array}{cc} \text { central } & 108: 2 \\ 148: 17 & 151: 25 \end{array}$
based 23:3 29:24	$\begin{aligned} & 80: 24,2581: 285: 8 \\ & 86: 18,20,21,2287: 8 \end{aligned}$		
60:1 71:12	87:9 88:12 100:13	$\text { call } 47: 24 \text { 55:16 }$	certain 10:9 139:25
72:14 107:19	board 1:1 4:12	62:9 64:21 65:23	certainly 7:6 8:9
12 143:3	166:24 167:2,4,10 191:1	69:11,21 78:2	
154:12 176:3	191:1	23:24 125:12	$\begin{aligned} & 9: 17,18 \quad 14: 16,25 \\ & 15: 13 \quad 17: 1420: 25 \end{aligned}$
ing 72:12 150:7	boards 167:17,17	140:17 165:20	
aring 100:21	188:21 189:2	169:12	$\begin{aligned} & 15: 1317: 1420: 24 \\ & 23: 1825: 433: 9 \end{aligned}$
began 91:9	189:11		34:14 36:16 39:16
beginning 8:23	border 43:6		$\begin{aligned} & 39: 2241: 25 ~ 44: 10 \\ & 46: 5,2047: 450: 10 \end{aligned}$
45:11 60:21 105:3	47:16 70:13 71:18	58:20 73:9,24 74:12	
117:19,21 153:20		8:2 166:5 174	$53: 7 \text { 61:8,8,12,15 }$
172:9	71:21 73:12,15		63:8,12 71:4 76:7
begins 29:11 80:10	81:20,22 98:16$122: 2,7,10,12,2$	calling 121:14 calls 43:19 44:1	$\begin{aligned} & 77: 890: 692: 8 \\ & 99: 12108: 15 \end{aligned}$
8:6			
behalf 2	145:15 151:24	$45: 1747: 2249: 22$	$\begin{aligned} & 114: 11,24116: 14 \\ & 121: 5,16122: 18 \end{aligned}$
23	$153: 9166: 15167: 3$$167: 5,10,10,19,23$	$70: 2479: 25 \text { 121:19 }$	
avior		122:23 130:16 157:11 170:21	132:18 133:11
belief 72:1	168:21 169:3		$\begin{aligned} & \text { 137:15 141:19 } \\ & \text { 145:13 161:20 } \end{aligned}$
believe 9:4 31:6	boulder 57:5,21	capabilities 59:25	
71:24 78:21 112:14			$\begin{aligned} & \text { 167:7 176:19 178:3 } \\ & \text { 180:7 186:11 } \end{aligned}$
	58:1,21		

[certainty - conductive]
Page 6

certainty 91:8	24:5,6,6,10,10 25:7	151:24 164:8 166:2	common 14:25
certificate 192:1,24	25:8,15,23 26:18	clock 89:5	31:15 58:16 62:14
certified 192:1,3	27:1,8,22,24 28:1,2	close 145:2	62:18 120:14
certify 192:4	28:5,6,10,15 50:11	clumsy 76:16	128:16 137:15
cetera 119:25	75:20,24,25 76:6,10	collimate 59:7	138:5,8 155:21
chance 9:15	76:17,18,20 77:14	collimated 59:15	167:9
change 153:13	94:9,12,16,17 99:8	collimation 59:17	commonly 49:23
changing 152:24	99:11 100:19,21	color 26:12 79:1	116:8 130:11 154:8
characterization	101:17,17 102:3,6	82:17 142:3	company 57:5 58:20
75:5 78:14	102:10,13,18 103:3	colorized 9:10	58:22,25 59:4 60:1
characterize 56:23	126:11 158:20,21	column 29:5 31:14	60:2,3,4
82:19 126:17	158:22 160:11,12	31:14 32:3 35:21	compared 42:10,12
characterized	160:16,17,25 161:2	36:5 38:9 39:10,11	95:22,23 127:1,2
116:17 136:25	161:12 162:3 174:9	68:23 73:25 93:12	148:11,24 150:4,9
169:10	174:11 175:2,4,7,11	93:18,24 94:7,8,20	151:1,16
charge 96:17	176:16,23,25 177:4	162:22 165:11	comparing 96:4
check 25:17 177:7	177:5 178:18,21,22	166:25 172:8	154:25
chicago 1:16 2:10,15	179:16 180:5,11,21	174:19 175:8	comparison 150:15
4:7 192:6	181:10,20 182:5,15	176:20	154:21,22
choice 95:14,	182:15,21,22 183:7	columns 90:16	compensate 149:6
chosen 143:5	183:16 184:3,11	94:10,11	149:17
circuit 97:2 138:17	185:2,25 186:1,2,9	combination 39:15	complement 145:14
138:21 139:16,25	186:9,13,14 187:2,6	72:21	complete 7:20
141:20 142:22	187:8,13,17	come 15:1117:4,13	completed 102:5
143:16 167:17,17	claims 10:10 20:13	18:6 44:11 54:22	completely 81:10
171:25 181:2,15	25:2 50:11 76:9,13	90:10,13 91:1 99:16	163:12
185:8	94:12 99:8 186:3	125:14	complicated 30:20
circuits 54:14 92:12	clarify 62:11 90:1	comes 10:11 36:17	32:19 127:23 128:3
116:16	106:16 126:12	45:1 50:15 80:16	compound 186:21
circumsta	172:1	108:4,5 109:12	comprehensive
76:19	clean 110:10	112:20 173:9,10	11:21
civil 192:20	clear 9:10 16:15	coming 9:2 19:15	compromise 145:18
cj 86:12	38:19 53:10 69:19	45:3 51:16 80:5	concept 92:4
claim 9:14,16,21,24	71:1 77:6,20 85:14	147:16	concise 111:11
9:25,25 10:4,6,12	87:3 88:5 96:3 98:5	comment 42:14 43:7	concluded 190:11
10:17,19,21,23,24	99:18 107:13,25	62:10 96:5 98:8	concludes 189:17
11:2,5,14,17,19,22	109:1 112:18,23	99:19	conclusion 44:12
12:1,3,4,14 13:6,10	117:22 118:18	commenting 15:20	153:2
13:16,24,24 14:10	134:10 135:24,25	42:25 45:17 85:24	conduct 160:13
14:16 15:2,3,9,13	137:1 173:22 174:2	97:5	conducting 71:2
15:21 16:21 18:14	184:21 187:17	comments 105:19	73:10 96:14 102:16
18:19 19:2,8 20:4,6	clearly 12:7 20:17	154:19	118:21 139:4,11,19
20:7,20 21:2,3,16	38:12 72:17 110:17	commercial 58:2	141:6 142:14
21:22,24 22:13,25	113:15 135:19	60:8 97:9,12	conductive 14:2,2,5
23:4,12,14,20,25	140:21 145:4 151:3		14:11,15 15:6,11,14

Veritext Chicago Reporting Company

15:19,24 16:4,9,14	184:21,23 188:20	considering 83:17	contrast 162:21
16:17 17:3,5,7,8,12	connected 12:10	consistent 66:14	contributions 58:24
17:18,21,25 18:3,5	31:18 34:7 39:3	67:2 70:6	convenience 149:25
18:7,9,20,21,23,25	43:25 44:5,20,21	consisting 191:13	conventional 56:8
19:5,13,15,16,18,20	45:10 73:7 84:11,14	constant 151:11	56:16
20:1,2 21:6,23 22:1	84:16,16 118:7	constitutes 192:12	conversations
22:5 23:6,9,11	124:4 132:21	constituting 36:13	105:25
24:13,17,18,22	168:25 186:3	constraints 143:4	convey 92:3 155:16
25:24 26:3,9 27:2	connecting 46:6	145:23 147:2 189:7	copies 7:24 8:2,7
27:17,21 28:1,8,11	68:25 70:24 72:13	contact 44:9,17	100:2,4
34:8 45:22 47:9	76:23 80:1,2 136:22	46:11 47:8 50:22	copper 140:20
69:12,25 73:8 95:9	137:3,8 138:6 141:6	69:2,9 71:14,19,25	copy 6:4 26:631:7
96:2,12 102:15	142:17 172:25	73:1,13,16,22 77:24	78:23 99:25
139:15 140:22	connection 12:16	78:6,21 79:6,7,13	copying 8:5
158:16,20,24,25	21:8 24:17 28:9	79:17 81:21,23 85:1	corner 31:1,3
159:6,8,16 160:14	34:1 40:24 41:16,22	102:14,16 106:15	corp 4:8
160:18,25 162:3	45:1 72:7,8,14 85:8	106:22 124:6	corporation 1:3
180:25 181:4,5,18	124:13,14 129:4,12	125:11,24 126:14	191:3
183:1,1,10,13,17,18	137:2 157:19,21,25	127:20,24 128:17	correct 9:3 14:8
183:20,21,24	158:3,12 159:10	128:18 129:3,11,18	24:24 25:12 29:9,24
184:19,20 185:7,9	160:2 161:5,14	139:20 140:5,9,10	30:16 31:4,9 35:2
189:3	164:7,11,15,22	140:10 141:10,21	39:4 45:16 46:19,23
conductor 37:11	178:16,25 179:2,7	142:9,10,11,19,20	48:15 56:10,12
43:12,21,22 50:13	179:11,19,20 181:3	143:17 180:17	63:13 71:6,20 72:9
74:16 95:13 107:14	181:12,17 182:1	181:1,3,16 182:2	78:3,4,13 80:14
108:5 124:8 130:11	185:3 186:6	183:3 184:8 185:9	82:13 83:14 84:1
136:10,14 161:4	connections 34:8	contacting 73:4,6	91:20 93:15 95:4
conductors 40:13	45:3 72:6 97:21	87:9 173:4	96:22 101:25
45:11 46:9 84:21	160:2 166:11	contacts 76:1	102:24 103:4,6,19
96:18 141:7 160:1,4	188:10	102:11 125:18,23	106:6 111:14,15
186:3	connectors 70:23	173:8	114:21,25 115:10
confidence 90:12	connects 32:4 121:3	contain 61:8	116:10 117:7,12
configuration	166:19	context 13:5 15:1	118:3 119:22 120:3
137:16,20 138:5	consequence 107:6	49:19 90:8 116:18	120:4 121:3 126:6
configured 133:11	125:22 151:8	126:10 141:15	126:22 129:13
confirm 6:5	conserve 125:18	contexts 131:12	130:24 134:24
conforms 100:18	consider 7:5,9,13,18	continue 60:23	135:2,5 138:13
confused 48:12	9:20 49:5,13,20	81:13 105:5 107:10	140:1 141:12
connect 31:15 41:7	50:1 63:15,18 90:3	112:6,15 153:22	142:24 153:11
42:2 46:7 76:4 97:1	93:1 94:7 108:12	177:13 185:16	156:16,25 158:8
123:18 124:20,25	121:10	continued 112:5	160:18 166:16
125:6 126:3,4,5	considerations	continues 81:14	167:15 168:22
136:24 137:7,12	146:10	continuous 133:3,6	169:2 170:17
139:17 141:3	considered 106:5	133:12 135:20	171:13,23 172:1,24
161:16 167:8	144:15		173:5 174:1 175:9

Veritext Chicago Reporting Company
[correct - deposition]
Page 8

175:11,15,18,24	125:3 130:7 138:13	csr 1:15 193:12,12	decreasing 149:4,15
176:5 188:10 189:4	140:2 142:7 144:4,5	curious 53:25	152:5
189:13	148:22,25 154:16	cv 7:21,22 8:6	define 30:19,22
corrections 191:16	156:2 157:21 159:2	d	32:10 42:13 72:22
correspond 27:21	160:19 169:21	d 2:13 3:1 66:15,25	108:9 146:24 147:2
28:6 66:25 67:16	170:4 175:19	$67: 7,14,15$	defined 66:24
70:5 75:10,15,23	court 4:16	darker 142:4,6,7	defining 146:19
171:15 174:16	cover 10:7 62:20	dashed $70: 16,21$	definition 37:15
corresponding	64:9 107:19 113:24	78:16	delay 92:7
20:25 75:12 132:19	169:24	data 35:20,24 3	depend 11:13
correspondingly	coverage 108:3,7,18		114:17 149:10
107:19	109:3,12 112:19	37:21 38:6,11,23	depending 36:6
corresponds 28:4,14	113:2	39:13 41:21 43:3	depends 21:9 49:9
74:10 79:22 80:10	coverages 108:4		49:12,16,19 63:19
121:6,12 184:22	covered 103:3 111:8		72:21 85:4 88:18
corrosion 106:24	115:8,9,11 131:1	$125 \cdot 3,4,25132 \cdot 25$	90:7 108:9 116:18
107:12 112:15,19	186:9 187:2,6 188:7	125.3,4,25	128:3,11 131:7
112:20 113:15,16	covering 107:15,23	137:4,7,9 165:10,13	144:24 146:18
113:20 115:13,24	110:12,25 111:2,3,8	$165: 20,24166: 7,11$	depicted 129:3
counsel 7:13,18	covers 10:10 170:2	$166: 12,17,20$	deponent 191:10
193:2,4	create 62:14 63:1,6	167:13,22 169:8	192:7,20
counter 12:11,13	68:4 85:4,7 87:13		deposit 13:8 14:7
31:20 34:2,12 69:3	129:15 148:23	date $4: 310$	21:19 102:8,24
69:5,6 70:18 71:14	160:6	day 1:16 181:23	deposited 11:8
71:15 72:4,18,23	created 61:25 64:19		14:21 16:20 19:16
73:24,25 74:2,3	66:13	192.5	19:22 21:6,7 22:2
76:2,6 78:15 109:13	creating 20:18		23:7,8,9 24:14,15
172:24 173:1,4,13	critical 35:5		24:19,20,23 41:18
173:15,21,23	cross 47:21 53:4	dealing 5:22 57.18	41:21 48:5,17 51:19
174:19,24 175:2,14	77:5,10,19 85:24		62:16 63:5 64:14,18
176:11,18 177:3	100:9,10 101:2		65:10 66:11,17
couple 133:21	108:20 113:9 115	decided 7:	103:9 121:24 159:9
147:15 187:21	115:4 159:22,22		depositing 11:25
189:24	168:19		62:21 63:25
course 10:21 17:22	crossed 100:17,18	$5: 236: 6,7,$	deposition 1:11 3:9
41:23 42:21 47:21	100:21		4:5 5:13,18 11:18
51:3,23 52:8,18	crr 1:15 193:12		14:15 19:20 22:15
53:5 55:12 62:23	crystal 3:13 12:7,12	25:11 28:23 31:5	22:24 23:12,15,24
64:12 70:13 76:3	33:14 53:18 55:21	61:1,6 65:18 81:25	24:2 35:24 37:10
81:15 94:11 95:14	55:25 56:9,16,23	82:11,16 83:13	47:23 60:22 62:24
97:16 98:24 101:16	58:3 74:9,20 81:3	89:20 100:3,5 106:6	64:8,11 70:4 82:5
102:3 108:22	131:6,10,18 156:19		83:10 96:19 99:16
109:24 110:17,18	163:6 175:13,17,20		101:9 103:4 104:3
110:22 112:10	crystalline 55:756:1		105:4,15,16,20
118:10 121:18			153:21 189:18

Veritext Chicago Reporting Company
[deposition - dr]
Page 9

191:11,13 192:14	different 10:25	124:18 125:1	108:21 109:13
192:15,18,18,21,23	20:19 21:15 40:23	134:11 135:19	110:11,16 111:9,13
describe 13:15 20:9	52:15 66:2 67:2	138:23 148:11	111:22,25 113:23
24:5 39:16 52:20	69:22 70:1,5,9,9,11	152:11 154:16	113:25 114:4,10,18
80:4 84:23 155:10	77:10 79:24 81:10	167:6 172:20	116:1 117:18,23
188:9	89:4 146:8 159:4	173:18 185:21	118:3 121:3 124:11
described 23:17	differently 16:13	discloses 31:13 34:5	125:10 129:16
39:19 57:10 75:23	82:24 137:25	36:22 38:4 48:6	131:25 132:1,3,7,12
76:8 126:13 172:3	difficult 38:1 140:12	93:14 97:20 98:6,7	132:17 133:3,3,13
177:24,25	dimension 29:22	109:21 152:9	134:8 136:6,9,12,16
describes 13:1 29:4	30:4,14 32:22 88:19	170:20,22	136:18 143:20
111:22	88:20,23 139:25	disclosing 38:17	144:24 146:7
describing 17:19	dimensional 88:22	disclosure 35:16	156:19 159:24
40:7	dimensions 29:23	38:8 51:21 72:2	161:15,17 162:8,20
description 35:16	88:21 140:3 153:5,5	83:5 93:11 107:6,7	162:21,23 163:4,15
43:17 74:8 94:22	153:11 154:12,14	107:13,20 111:24	163:16,19 166:4,5
138:1	155:2	112:17 113:6	166:14 168:12,17
descriptions 13:14	direct 15:5 23:14	119:16 121:25	173:11 175:21
design 35:4 114:18	44:9 47:8 50:22	125:5 136:1 137:23	176:4 178:5
143:1,1 149:11	73:1,21 78:6 102:14	148:18 150:9	displays 14:24 33:13
designated 107:24	139:20 142:19	disclosures 98:3	54:14 58:6 88:25
designed 33:13	180:16 184:8	discuss 82:23	90:19 145:1 146:4
57:11 143:5 155:	directed 13:77	105:17,22	154:17
designs 171:10	76:21 77:15 106:18	discussed 39:9 57:2	distance 32:6,11,13
desired 34:11	107:3	61:4 83:25 105:11	distinctive 155:11
determine 100:24	directing 15:3 23:12	105:14 109:18	156:5
101:9 102:19	direction 11:24 15:8	125:17 154:20	distortion 35:10,11
114:16 186:8,13	40:5 46:13 92:25	156:24 157:1	divide 41:25
187:2,12,16	130:8 131:12	discusses 108:1	divided 45:12
determined 143:3	135:11	172:10 188:19	document 6:19:5
development 60:7	directly 81:3 173:24	discussing 61:17	28:19 53:14 83:21
device 12:8 112:22	184:23 193:5	67:18 95:3 107:22	106:8 144:11
174:16 175:21	directs 23:15	189:23	documents 82:5
diagonal 32:7,17,22	disagree 71:9 72:11	discussion 47:11	doing 45:24 148:22
diagonally 30:8	136:12	54:7 97:25 98:13	151:18
173:10	disclose 35:22 37:19	152:14 185:23	domestically 60:8
dictates 181:7	74:11 92:22 109:16	188:23,24 189:7	dopings 55:13
dielectric 48:22 50:2	disclosed 21:4 23:6	display 12:7 29:13	double 37:20 38:4
50:16 51:17	24:11 25:2,6,14	32:8,17 34:6 45:2	39:8 42:8,12 47:18
difference 19:8	29:3 30:21 37:13	53:6 59:12 64:7	108:3,7,18 109:2
103:9,16,19 120:1	38:13 41:1 43:4	69:10 70:17 72:24	112:18 113:2
121:14 157:15	52:20 71:4,8 82:25	75:6 77:8 81:15,17	115:23
160:5 168:18	93:5 107:1,18	89:5,13,14 90:4,7	dr 4:13 60:22 83:5
179:24	109:15 112:11	90:15,22 97:9,12,14	105:4 153:21
	114:12 122:19	103:7,14,18 108:16	189:18

Veritext Chicago Reporting Company

drain 125:2 130:9	170:24 171:17,19	158:10 159:13	102:24
draw 79:8,13 80:23	171:21,24 183:20	166:10 183:4,7,21	etched 62:17,17
82:17 99:18 118:9	electrode 31:21 34:2	184:11,18	63:6 85:6 86:19
drawing 82:10	34:12 69:5,6,8,18	eliminate 87:21 88:2	88:13 98:2
155:17	69:18 70:18 71:14	88:15	etching 65:14
drawn 154:2,6,11	71:15 72:5,23 73:24	emblematic 163:2	evenness 153:9
154:13 155:5,8	74:1,2,3 76:5,6	embodiment $10: 3,7$	vent 143:25
driver 166:21,24	78:15 84:10,11,13	29:6 36:9 150:21	evidence 192:25
167:2,4,10,16,17	84:13 85:1,2,18,19	156:20 172:13,14	exactly 24:4 35:22
168:7	110:24 122:24,25	embodiments	40:17 54:17 55:1
drivers 169:1	123:17 130:2,4,10	150:19	69:1 112:18 143:6
driving 54:14 92:12	130:15,17,19 131:9	embody 9:21	150:1
duly 5:2 191:10	131:21 132:19	employee 193:4	examination 1:13
192:10	134:23 137:12	employees 60:5	5:4 105:6 177:18
dye 59:23	electrodes 12:9	enable 21:724:16	187:23
e	96:11 130:10 132:6	129:4	examined 3:3 5:2
3:1 5:10 105:1	12 174:15	enabling 129:12	example 6:23 10:18
192:19	176:4	ends 45:10 61:15	11:17 14:23 21:21
earlier 42:771:11	electron 103:20	74:21 79:23 119:9	22:4 23:18 31:17
136:13 185:18	electronically 68:21	energy 1:64:9 191:6	34:22 40:25 41:3,9
easier 68:21 88:11	electronics 176:18	engineering 155:17	41:17,19,23 42:24
easiest 42:23 100:6	element 12:23 14:6	enters 114:10	42:25 43:5 44:25
edge 64:6 120:14	16:7,13 17:6,24	entire 78:16 111:1	45:2,9 47:10 51:9
$133: 8,9 \quad 163: 15,19$	19:4,5,6,12 26:13	134:9 144:5 170:14	52:22 56:5,10 63:9
edward 2:13 4:22	28:7,14 32:19 41:3	entirely 14:20	64:3 65:14,23 66:10
edward.manzo 2:16	45:3 48:21 49:3	entitled 104:4	70:2 77:22 83:14
effect 131:18 153:8	51:4,25 52:1,2,7,8	enumerate 53:9	86:15 90:19,20
efficiently 59:15	52:25,25 70:5 72:18	environment 109:4	94:19 95:3,5 102:12
effort 145:14	73:8,19 75:6,10,22	equal 148:23,25	107:2,9 108:12
eight 34:7 70:20	76:22,23 77:7,20,24	162:19	114:2,22 115:18
72:5 75:8 78:18	78:7,19 81:10	equally 146:2	119:3 122:20 125:4
either 8:5 15:5 22:7	101:10 103:10	equivalent 27:17,19	126:3,8 138:24
33:18 40:17 49:18	111:2,3 113:10,10	error 7:25,25	140:6 141:5 145:14
68:8 85:14 105:12	114:24 117:6 119:6	escuti 1:12 3:2,15,16	147:5 149:1 154:24
$118: 1119: 23120: 3$	121:6 136:10,24,24	3:21 4:13 5:1,11	154:25 161:20
$\text { lectric } 131:$	137:24 138:1	60:22 105:4 153:21	163:1,16 165:11
electrical 21:8 24:16	139:10 140:18	189:18 191:9,18	166:25 169:18
46:10 92:8 94:13	141:1,8 157:15	192:7,9	70:13 185:1
106:21 124:6	174:3,7	especially 99:8	188:6 189:8
126:14 142:20	elements 12:23 13:2	essentially 165:16	examples 40:16 42:8
179:20 181:3,16	18:2,19 20:5 50:20	established 146:16	53:2 90:18 98:2
182:2 183:3 185:8	62:21 109:12	estimate 144:23	150:1
electrically $12: 9$	119:24 120:10	et 119:25	exclude 43:18 45:15
84:10 133:20,23	130:8 155:17,20,22	etch $86: 10,14,25$	excluded 43:17
84.10 133.20,23	155:24 157:1	87:6 99:1 101:14,24	
Veritext Chicago Reporting Company			
312-442-9087	800-24	-3290	847-406-3200

excuse 83:2	162:7 164:4,5,19	factor 148:13	108:14,20,22 109:9
exhibit 3:9 6:1,8 9:5	168:15 169:9 180:9	factors 146:4	109:24 110:2,15,20
28:19 53:14,17 82:3	extended 112:24	failure 192:25	110:22 111:1,18,25
82:6 83:1,21,24	113:1,21 135:8	fair 9:19 35:15	114:2,12,22,23
100:8 106:8 144:11	extending 41:2	fairly 59:1590:21	115:1,25 117:5,9,15
190:3,6	73:19 113:23	163:2	118:1,2,9,10,12,16
exhibits 3:76:9	114:21 134:17,19	familiar 97:19 123:9	118:17,18,20 119:8
189:24	135:9 182:11	far 34:23 52:8 80:22	119:10,12,25 120:1
existing 41:15	extends 29:12 52:8	103:5 113:1 119:8	120:3,21 121:6
exists 66:4	69:3 74:19 75:2	136:21 147:18	122:19,21 124:1,2
exotic 62:5	77:7,9,21 78:8 81:6	fashion 135:20	127:21 129:3 134:4
expanded 70:14	114:23 134:7	fax 2:4,10,15	134:6,15,22,25
expansion 168:1	135:13 139:4	feasible 99:5	135:4,7 136:11,22
expect 14:13 19:24	extensive 54:7	features 10:1 155:11	136:23 137:7,13,20
118:19,24 119:1	extent 59:21,23	155:11 156:5	138:6,6,14,21,25
134:18 137:18	94:23 151:23	fed 166:14 168:12	139:3,9,12,15,18,22
155:5 168:24	external 12:16 $28: 9$	field 46:23 47:3	141:5 147:21,21,22
experience 62:7	65:11 97:21 157:19	131:7	147:23 148:7,12
expert 127:19	157:21,25 158:3,12	fifth 24:21	149:3 150:7,9,9,15
expires 193:13	158:14 159:10	fig 3:14,16,18 9:4,11	150:15 151:1,2,2,6
explain 36:10	160:1,2,3 164:6,11	10:1,3,10 24:14,15	151:10,10,10
explained 84:3	164:15,22 178:24	24:19,20,22 25:16	154:24,24,25 155:1
151:19,22,23	179:2,7 181:3,17	26:2,6 27:4,12,20	155:3,5 156:4,14,18
explaining 61:7	182:1	28:7 29:1,4,11	159:2 160:15
explicit 76:5,17	extra 87:18 110:5	31:10,10,11 40:25	161:13 162:13
94:22 95:10 134:14	125:18,23 127:6,6	45:2 47:6,9 48:4	163:1,12,21 164:9
188:24	128:9	49:13,20 50:9,14,21	165:3,4 166:2,6,7
explicitly 68:1 69:5	eye 58:6	52:4,6,12,24 59:1	166:15 167:3,5,11
82:21 83:15 92:20	f	66:10,25 67:1,3,4,7	167:12,14,19,23,25
94:14 99:9		67:14,15 68:12	168:1,2,3,3,5,13,15
explored 15:1	fabricate 20:12,13	69:15,19,19,25	169:4,4,15 170:9,13
exposed 106:14		70:10,12,12,13,14	170:16 171:14,18
109:4 142:9	fabricated 8.22	71:1,8,8,13,16,17,18	172:23 173:19,22
express 19:9 34:20	19:11 20:10 57:1,12	72:2,15,17,20,25	figs 119:3,7 129:24
169:14	fabricating $58: 15$	73:4,12,13,15,20,23	159:21 185:19
expressed 6:19	59:22	74:18 75:5,11,12,13	figure 30:15 47:15
expressing 25:5	cation 9.1	75:14,17,18 76:22	47:17,19,20 71:18
expressly 123:1	$18: 1320: 1821: 13$	77:1,5,7,12,16,18,20	73:20 85:5,12 99:20
124:18,22 180:25		77:21,22 78:3,4,9	99:21 101:2,7,8
extend 41:4 74:17		78:16,20 79:24,24	102:23 103:1,5,11
79:25 80:22 107:10	facing $12.1176 \cdot 2$	81:19,22,24 82:17	103:13 115:15
113:14,16 118:25	facing $12: 11$ $174: 20177: 3$	82:21 91:14,17	153:8 155:20,21
119:1,8 131:20	fact $92: 23$ 93:18	92:12 95:2,3,5 98:9	156:1,22
$\begin{aligned} & 132: 7,13 \quad 133: 15 \\ & 135: 15,20 \quad 136: 15 \end{aligned}$	176:3 189:1	$\begin{aligned} & 99: 25 \text { 100:3,4,7 } \\ & 102: 22 ~ 107: 2.9 \end{aligned}$	figure's 9:2

figures 30:21 35:22	fine $50: 166: 179: 2$	flip $33: 18$	37:15 38:10,22,25
40:19 48:7 61:3,17	98:14 158:22	focus $9: 18$	39:12,13 47:22 51:9
61:19,23 65:17,21	190:10	focused 107:8	51:22 52:10 61:20
67:13 92:22 118:13	finished 22:17 62:12	foil $140: 20$	61:21 70:4 71:3
129:24 147:15,17	first $5: 210: 11,18,20$	follow 18:1 23:19,24	74:14 100:25
148:15 151:15	11:1,6,24 12:1,2,17	127:10 175:7	102:12 130:10
153:10,25 154:1,3,5	12:19,19,21,25 13:4	187:22	139:7 143:17
154:9,21,23 155:8	13:6,13,17,21,25	followed 23:9,10	179:19
155:15 158:17,18	14:1,3,5,11,14 15:6	following 172:10	forming 6:18,24
159:18,21 163:1,13	15:11,14,14,19,19	189:21	20:6 35:20 36:2,8
fill $80: 23$	15:23,24 16:4,9,13	follows 5:3 21:5	36:12 38:22 40:13
filled 163:7	16:14,17,19,19,24	24:12 25:3,7,11,14	52:11 62:3 63:24
film 12:2,3,8,10,18	$17: 3,5,6,6,12,13,17$	forced 149:6,18	64:24 65:2,24
12:20 14:3,3 15:23	17:18,20,21 18:3,4	foregoing 191:12	110:23
16:14 17:6,7,17,20	18:4,6,11,17,19,20	192:11	forms 159:9
18:4,8,21,24 19:7	18:21,24,25 19:5,6	form 10:8 11:9 13:9	forth 11:19 61:11
19:14,19,21 $20: 2$	19:10,13,16,19,21	17:9 22:19 26:4	foundation 8:23
21:7 23:7,10,11	20:2 21:5,22,23	29:16 30:1,17 32:9	11:12 33:4 35:14
24:15,20,22 26:19	22:1,5 23:6 24:13	33:2 35:13 37:1	66:691:3 97:3
26:22 27:9 28:3,5	24:13,14,17 25:24	41:22 42:3 55:22	115:14 127:9 128:1
28:12,13,15 45:16	26:2,9,19,21 27:16	57:13 62:2 64:2	128:19 146:17
45:22 46:1,10 50:3	27:21 28:1,3,5	65:13 76:25 77:17	155:12 171:2 172:7
50:5,6,10,15 56:21	35:19 40:12,20	79:25 81:7 84:18	four 170:3
66:16 74:10,23	41:17 44:18,25	85:10,20 87:10 88:4	fourth $24: 19$
103:10 110:13	47:22 50:2,4,6,8,10	91:2 101:3,4,12,13	fpe 97:22 106:15,21
118:21 139:4,8,11	50:12,25 51:1 62:16	102:9 112:8 117:13	118:16,20 119:6,24
139:16,19 141:6,8	65:9 66:10,16 99:16	118:14 120:9,20	178:16 181:12
142:15 157:11,17	101:3,13 123:9	124:16 125:10,19	184:21 185:4
168:16 174:14	125:13 146:5	127:8,25 130:5	frame $32: 2533: 5,11$
176:17 177:2	148:10 157:23	132:10 133:4 135:3	33:12,20,20,22,24
180:17,25 181:4,6	158:3,15,19,23,25	137:10 141:1,13	33:25 34:17 35:2
181:18 184:9,24	159:7,16 160:13,17	143:21 153:2	88:24 89:8
186:4,5	160:24 161:4 162:2	155:13 156:7,17	frequency $88: 25$
films 10:23 13:18	164:23 172:14	159:7 161:11 162:4	89:8
45:22 86:15 87:14	174:12 175:10,20	163:17 170:25	frequently 154:2,6
final $20: 421: 17$	176:25 177:3	172:4,6 183:15	front $25: 2182: 12$
$22: 1123: 16,1624: 7$	182:25 184:20	186:10,17 187:3,14	full $5: 10183: 16$
25:6 109:8	186:4,4 191:9	format $89: 13,16$	fully $24: 2552: 20$
find 47:10 49:25	flat 78:5	90:1,4,7 96:11	192:23
87:5 92:18 115:17	flexible 14:23 97:1	formation 62:9	function 13:16
138:7 140:21 147:1	138:16,20 139:16	64:21	14:22 34:4 70:25
159:25 166:23	139:24 140:6,18,23	formats 89:14,18	76:12 133:20
182:17	141:1,11,20 142:22	formed $14: 2122: 1$	further 3:5 87:24
finding 69:2 74:7,12	143:5,8,15 171:25	35:19,23 36:2,7,11	112:16 177:14
76:14	181:2,15 185:8	36:18,19,20,24 37:9	187:19,23 189:15

Veritext Chicago Reporting Company

189:16	97:6 101:11 102:20	180:9 181:15	happen 19:21 22:25
g	103:23 105:7	182:11	111:25 114:13
gallium 58:8,14	106:10 112:12	going 5:13 6:4 9:8	133:25
${ }_{\text {59:20 }}$	115:20 117:16	13:8 14:7 15:8 17:4	happened 7:25
gap 117:6,11,14	118:23 120:16	18:6,7,8,22 21:5,19	happening 62:22
118:7 148:23,25	121:1 124:19 126:1	22:11 23:5 29:21	hard 40:5 91:4 96
149:5,11,16,21	127:13 128:6,22	44:4,5 60:16 80:17	harder 80:4
151:3 156:6,15,21	130:13 132:15	82:2 91:4	hatalis 83:5
160:7 162:6,15,18	133:7 135:6 137:17	93:19 103:25 111:7	hatch 100:9,10
162:19 163:10	141:17 143:24	113:11 117:18	hear 165:16
170:21,23 171:6	144:13 146:20	118:3,6,6,24 119:1	heard 20:8 33:8
172:2,12 178:8	147:4 148:3,5	119:8 120:7,19	height 160:5 179:24
180:6 182:7 183:8	153:13,23 155:18	121:21 124:12,14	179:25
183:14	156:10,23 161:18	124:25 126:21	held 4:5
gate 48:22 50:2,16	162:9 163:20 171:5	127:20 132:5,7,8,11	hereof 193:6
51:16 121:12 122:2	172:17 177:6,14	132:13,16 134:8	hereto 193:5
122:7,8,12,21,23,24	179:8,22 180:14,23	135:7 136:5,7,8	hereunto 193:7
123:6,8,10,13,17	181:13,22 182:24	137:9 138:21	hertz 89:11
130:1,2,3 137:12	183:15 184:6,13,17	139:25 141:3,10	high 34:16,19 56:19
general 34:10 56:25	185:5,10 186:10,17	153:15 166:3	74:4 90:21 145:8
128:8 133:24	186:20 187:3,14,21	167:22 168:11	higher 131:11
138:18 143:23	187:24 189:15,23	169:5 174:24 175:2	highest 98:18
146:12,13 147:7,11	190:9	175:16 177:9	highlight 31:9
151:9 154:5,7 188:5	give 11:21 29:23	185:12 190:2,5	highlighted 147:20
189:5,14	52:15 90:18 101:8	goldeneye 58:20,23	highlighting 79:15
generally 8:22 11:20	144:23 146:14	59:4,19	hold 96:17 166:10
33:12 125:24	given 135:16 146:15	good 5:6,9 35:8	holding 176:13
131:10,13 143:1	179:25 192:12	68:20 69:24 74:22	hole 126:5 127:20
166:16 172:11	glass 49:21,24 55:11	116:7,12,17,19	127:24
getting 59:23 62:23	56:4,6,21 57:13	32:3 147:10 18	oles 128:17 129
68:18 165:15	ge $12.534 \cdot 940 \cdot 8$	gotten 20:2	
gibson 2:3 3:4,5	go 12:5 34:9 40:8	gray 142:4	horizontal 98:18
4:19,19 5:5 6:3 9:7	61:14 62:12 68:5	great 80:2	130:7 170:14
10:13 11:10,16	124:11,12 136:8,11	green 31:6,8 5 ground 12:6	hour 1:177:11 hours $7: 10 \quad 165 \cdot 22$
13:19 17:23 22:22	$124: 11,12136: 8,11$ $136: 17,21$ $147: 24$	ground 12:6 guess 20:16 52:17	$\begin{array}{ll}\text { hours } & 7: 10 \text { 165:22 } \\ \text { husch } 2: 13 & 4: 22\end{array}$
26:7 28:21 29:20	$167: 13,24168: 16$	166:5	huschblackwell.co
35:17 37:4 53:12,16	168:25 185:10	h	2:16
56:2 60:24 64:16	goes 13:17 36:10	halfway 79:23	hypotenuse 29:22
66:7 77:3 78:1 79:2	37:19 39:2 45:5	139:13	30:6,11,12
79:9 81:11 82:2,8	69:15 74:5 75:6	hand 6:4 9:8 79:19	hypotheses 87:15
83:19,23 84:24	80:11 103:5 112:4	- 6.4	hypothesis 83:5,6,7
85:16,20 86:2 87:17	112:16 139:11		85:13,23 87:23 88:8
88:10 90:2 91:10	143:2 145:14		88:17 143:14

Veritext Chicago Reporting Company

i	imagined 154:18	indicates 31:10	101
ea 31:23 53:11	immediately 74:9	indicating 26:16,23	107:4 110:13
109:16 115:16	74:21 130:6 166:11	27:6,13 81:1 100:12	116:15 130:24
identical 136:12	impact 32:24 33:23	142:8	134:5 139:8 180:17
identification 53:15	implement 19:2	indirectly 180:24	184:9,24 186:5
82:7 83:22	39:21 40:5,11,23	193:6	189:3,12
identified 12:23	53:11 93:23	indium 113:10	insulation 19:13
42:19 51:9 54:9	implementatio	idual	64:1,18
54:12 57:5 70:1,15	:13 44:22	industry 116:9	insulator 43:21 46:6
92:9,17 118:22	implementation	117:1 122:16,18	108:19 112:6,16
137:25 156:22	39:18 55:2	123:10	125:10 126:15
165:6 167:16	implicit 76:7,10,15	information 30:22	130:7 131:1
172:23 180:8	94:23 185:20	0:13 97:13 101:8	insulators 46:7
identifies 36:9 78:17	imply 12:24	28:4,24 135:16	131:8
117:22 183:23	importance 107:22	infringement	intention 8:9
identify $4: 1513: 17$	108:1	87:17	inter 28:13 186:4
29:18 54:2 79:5,6	important 35:1,4,6	infringes 187:7,	interchangeably
91:5 108:10 121:5	58:17 59:16 146:4	initial 146:8	138:19 165:18
139:22 159:2	168:18	initially 57:12	interested 193:
il $2: 10,15$	improve 162:20	innolux 1:3 4:8	interface 79:5,10,
illinois 1:16 4:7	improved 93:25	191:3	interfaces 103:22
192:2,7	improvement 92:19	inside 41:14 108:2	interposed 12:18
illustrate 31:5 36:4	93:2	110:15 113:17	interpret 11:18
37:8	improves 149:2	116:1,1 125:9	33:11
illustrated 29:19	include 108:14	129:16 161:16	interrupt 109:7
40:18 48:4 49:2	118:17 158:9	170:4	invention 29:7
50:9,20 52:6 53:1	176:16	instance 12:19	108:2 151:25 153:8
61:24 65:22 73:23	included 32:2	111:16,17	156:21 177:24
81:15 84:14 136:11	119:13	instructing 89:23	inventions 152:4
138:23 144:7	includes 61:16	insulating 10:22	177:25
148:14 155:3,4	78:15 125:2 176:25	12:2,3,18,20 13:18	inverse 14:17,19
161:13 164:3,14,24	including 58:6	14:3,3 15:23 16:13	15:22,25 16:3
166:2,9 167:1,20	109:13 130:9	17:6,7,17,20 18:4,8	inversion 33:1,6,1
168:10	inclusive 191:14	18:21,24 19:6,19,21	33:12,22,24 34:1,17
illustrates 113:9	inconclusive 103:1	20:2 21:6 23:7,10	35:2
illustrating 149:24	103:14	24:15,20 26:19,22	invert 33:19
149:25 152:19	incorporated 58:23	27:9 28:3,5,12,15	inverted 20:10,14
illustration 135:10	incorrect 124:22	43:15 45:15,21 46:1	123:12
illustrations 113:7	incorrectly 124:24	46:10,12 48:23,24	involve 125:3
152:10 153:7	increase 144:2	49:7 50:2,4,6,10,15	involved 59:19
image 35:11 162:20	independent 3:13	51:10,13,14,17,23	181:6
162:21	3:18 60:3	62:14,24 63:1,4,15	involves 39:17 62:19
imagine 35:8 40:25	indicate 86:19	64:13 66:16 74:13	106:19 178:7
41:12,25	indicated 27:16	74:15,15 84:21 86:15 87:13 97:17	involving 54:20

Veritext Chicago Reporting Company

ipr 4:10	kind 15:4 33:20	laboratory 1:6	107:21,22,23 108:1
ipr2013-00068 1:5	36:6 40:17 49:23	191:6	108:2,18 109:3,10
191:5	58:4 64:5 65:11	language 10:17	110:1,13,17,22
irvine 2	85:17 96:1 99:	18:14 20:6 22:13	112:1,7,24,25 114:9
isolated 133:18,20	128:4 131:11	23:25 34:13 73:25	114:9 115:22,23
33:23 134:1	138:24 155:16	99:11 158:24 176:6	116:2,2,7,13,25
70:24 171:17,19	kinds 170:22	176:12,14	118:6,10,12 119:1
171:21,24 183:20	knew 29:22 30:6,14	large 131:24 145:2	121:13,13,16,19,24
issue 12:15 88:3,16	102:7 103:3	largely 54:21 96:15	122:9 123:24,25
$72: 10$	know 8:14 14:23	111:15 118:20	124:2,7 125:11
item 172:	40:3,8 46:21 49:15	119:25 169:20	126:14 127:21
ito 55:11 65:19,22	57:16 58:1 59:19	larger 143:16 144:5	129:3,17,18 130:19
65:24 66:10 68:14	79:16 82:22 86:10	145:1 152:18 155:3	130:20,24 131:7,18
68:15 69:4,6,12,20	86:14,24 87:12,13	lasalle 1:15 2:9 4:7	134:5,16,23 135:1
71:3,6,12,12,14,20	87:20 88:24 89:12	192:6	139:21 142:8 157:9
71:24 72:8,13 73:4	90:15 93:7 95:7,19	lastly 6	157:13,16,23,24
73:14,16 74:4,24	97:24 99:4,15 102:6	late 3:12 53:17	159:6,9 160:18
77:24 81:21,23	102:22,23 103:2	lay $12: 5$	163:24 164:11
82:23 95:8,11,13,19	110:6,7 120:5,6,19	layer 14:8,21 22:12	170:20,22,23
95:25 96:5,9,13,25	126:10 127:11	28:13 33:15 36:14	171:14 173:4,9,9,20
97:8,15,20 98:9,15	128:23,24 131:2	36:23 37:3,7,10,14	174:1 180:8,8 182:8
98:19,22 99:14	135:17 136:7 142:2	37:20,20,21 38:4,5	182:10,10 183:10
101:3,12,14,23,25	144:17 174:18	38:6,12,18,21,24	183:13,17,18,20,24
103:9 110:22 111:2	175:16 186:7,12,25	39:8,9,12,13 42:6,8	184:19 185:9 186:4
112:6115:22	187:11,16,18	42:11,12 43:4 46:3	189:3,4,12,12
139:20 142:9 1	knowledge 46:18	46:12 47:9,18,19,23	layered 36:21 39:20
173:9,16,20,23	97:8,11	47:24 48:15,19,21	40:11,14 43:15,19
174:1,6 184:24	known 45:24 46:2,5	48:23,25 49:2,5,7	43:23 44:1,13,14,15
189:12	46:7 90:6 96:13,20	49:11,14 50:2,8,23	44:23 45:15,18
ito's 66:17	96:22,23 116:11,14	51:1,13,15,17,23	93:19
j	,22 188:1,5	$52: 2,662: 15,16,24$	layering 11
	189:1,6,10	63:1,5,16 64:1,13	layers 8:24 11:7,25
	knows 86:14 120:	64:18 65:10,19,19	13:8,11 20:15,18,22
	1	65:22,24 68:1,4,14	21:4 23:6,16 24:11
	$\begin{aligned} & \text { I } 1: 1498: 11,12,16 \\ & 99: 2,10,14 \quad 192: 2 \\ & 193: 12 \\ & \text { lab } 4: 960: 4 \\ & \text { label } 26: 5,1227: 20 \\ & \text { labeled } 70: 14,17,22 \\ & 78: 799: 23 \quad 160: 1 \\ & 168: 2 \quad 173: 11 \\ & \text { labels } 29: 10 \end{aligned}$	68:17 69:4,12,15,25	25:3,6,14 39:1,3
		71:2,6,24 72:3,8,14	44:20 45:20,21,25
		73:4,14 74:9,13	49:7,8 50:24 55:12
		78:9 79:15,16 80:7	65:20 68:15 83:16
		80:10 81:21,23	97:8 100:24 103:21
		82:24 95:9 96:2	148:19,19,20 149:5
k		97:17,20 98:1	149:12,17,22
```keep 47:25 67:9 152:16 keeping 41:1```		101:3,4,13,13,14,15	150:20 151:3,6
		101:23,24,25,25	156:22 157:10,20
		102:16 106:21	158:7,16,20 159:3,8
		107:4,14,15,17,18	159:11,16 160:4,8

Veritext Chicago Reporting Company
[layers - look]

160:14,22,23,25	175:18,19 178:23	121:18,21 122:3,13	74:9,20 81:3 131:6
161:10 162:3,15,19	178:24 180:5,16,20	122:13,22 123:1,5,7	131:10,18 156:19
163:10 164:3,13,17	181:1,6,14,20 182:9	123:15,18,19	163:6 175:13,16,20
164:23 171:7,11,18	183:3,12,17,19,22	124:21,21 125:25	list 6:21 7:19 25:8
172:3,12 178:9	185:7	132:25 133:2,11	32:3 66:2 90:11,25
Icd 29:6 76:11	limitations 12:5,15	134:7 135:7 136:5	listed 91:16,18
143:19 144:18	15:9 19:2,8 24:11	136:13,20 137:1,4,7	183:21
162:23 174:15	102:11 141:15	137:9,13,14 138:5	listen 45:19
176:4	159:1 160:16,19	157:25 158:3,25	lists 53:19
Icds 96:10	175:5,7 176:20	160:2 165:11	literally 64:5
lead 148:21 151:4	177:1 178:20 179:1	170:24 171:4 172:9	little 37:5 70:20
171:19	179:15 180:11,21	174:19 178:21,22	98:10 100:20
learn 161:9	181:10 182:5,22	178:25 179:2,6,7	142:15 145:16
leave 165:4	184:3 185:2,24	181:4,17,25 182:1	151:12
leds 58:11,15 59:2,7	186:1	183:1,1 184:20	Ilp 2:2,8,13
59:14,20,22	limited 10:12 23:20	185:7 188:4	local 42:19
left 29:11,12 31:1	23:20,21 57:9 61:12	lines 10:21 24:18	located 4:6 29:19
43:8 69:7,15 70:13	76:14 140:5,11	27:18,21 28:1,9	157:18 162:24
73:19 74:18 78:5	141:11 173:6 184:8	34:21 35:20,23,25	164:2,18 165:25
79:20 80:11,18	limiting 143:12,19	36:3,5,7,8,11,12,13	long 87:1 96:13
81:14 82:21 85:7	144:1	36:19,24 37:6,11,13	109:3 165:22,22
98:23,23 110:23	limits 20:20 21:2	37:16,16,17,21,22	181:23 182:19
118:2,25 119:5,5,8	24:6	38:7,11, 11,22,23	longer 32:7,15,21
119:14 125:9 130:3	line 12:16,17,17	39:13,14 41:3,16,21	86:12,23 109:10
130:6 131:22	14:2,2,5,12,16 15:6	41:21 45:12,13,13	113:3
136:15 157:23	15:12,14,19,24 16:4	48:1,18 52:11,23	look 6:5,10,22 8:10
length 29:14,18 30:6	16:9,14,17,19 17:3	74:1 90:16,20 93:8	9:13,15 13:24 15:23
30:16,19,23 134:9	17:5,7,8,12,18,21,25	93:8,16,17,24 94:2	17:24 18:2,19 20:12
level 89:7	18:3,5,7,9,20,21,23	121:14,25 125:1,3,4	24:8 25:16 27:14
leverage 60:5	18:25 19:5,13,15,16	133:12,17,19,22,23	28:16 29:1 43:21
license 192:3 193:12	19:18,21 20:1,2	134:1 138:2 157:19	46:25 47:2,6,14,14
licensed 192:3	21:6,23 22:1,5 23:7	157:21 158:12	60:25 61:18 63:11
lifetime 146:5,7	23:9 24:13,18 $25: 24$	159:10 164:7,12,15	68:12 69:24 75:20
lift 68:2	26:3,9 27:2,17,22	164:22 165:6,9,10	91:11,14 92:5
light 58:3 59:2,7,13	28:1,8,11 29:5 30:7	165:14,20,24 166:7	103:17,21 107:9
59:14,17	34:19,22 35:19	166:8,11,13,17,20	115:6 117:3,9
likewise 90:17	36:18 38:6,10,24	167:13,22 168:6,9	119:21 121:8
limit 10:14 20:21	39:1 40:12,14,23	168:11,23,24 169:5	123:21 124:9
42:21 121:25 144:7	41:14,20,24 42:16	169:8,9,16,24 170:3	129:23 136:3 138:9
limitation 12:25	42:16 43:1,4,5,6	170:4,12 171:16	139:3,9 144:9
14:11 15:18,21	48:2,3,6,15,16 53:5	172:5,16 179:18	147:13 149:1 157:3
16:18,21 17:2,17	68:23,24 70:3,16,21	188:2	157:4,4 158:4
21:22,25 27:24 28:2	78:16 79:11,12,13	linked 13:12	162:12 163:21
28:6,10 101:17	86:12 93:12 102:15	liquid 3:13 12:7,11	165:1 166:6,23
102:12 175:10,12	112:5 121:11,15,17	33:14 53:18 58:3	169:15 172:21

Veritext Chicago Reporting Company
[look - mitchell]

173:19 174:8,9,12 186:20	manzo $2: 13$ 4:22 79:1 190:7	mean 9:23 14:18 18:10 19:23 21:9,11	$166: 24 ~ 180: 2,4$ $183: 2$
looked 7:2,4,14,15	mark 78:20 82:2,4	24:1 29:22 30:3,19	mentions 38:9 39:5
93:13,18 94:5	83:19 86:17 87:8	32:11 33:3,5 34:12	39:14 76:2 183:17
164:16	88:6,11 99:19,21,24	35:7 37:3 44:7 50:4	met 28:7,12 99:11
looking 7:8 15:2	189:25 190:2,5	50:17 51:18 53:4	102:6
18:14 21:14 22:11	marked 6:19:5	55:5,24,25 60:12	metal 14:20 24:13
22:17 49:20 58:8	28:19 53:12,14	68:22 72:4 77:1	24:18 41:18 43:5
63:2 65:17 68:23	80:12,17 81:2 82:5	79:10 88:6,7 90:1	48:5,16,17 64:5
75:19 102:21	83:21 88:12 99:22	92:23 95:21,25	110:16 121:12,13
108:11 111:18	106:8 144:11	105:17 106:16	121:16,19,24 123:6
112:2 125:15	189:24	109:7 118:8 125:21	123:13,24,25 124:2
126:19 129:23	marking 86:18,20	125:23 127:11,17	124:7 125:12
137:20 139:15	86:21	133:5 135:18	126:15 129:18
151:15 153:24	markings 190:5	137:18 140:8 148:7	135:19 159:3
164:9 169:3 170:19	mary 2:21 4:2	148:17 153:3 156:8	metals 38:25 96:17
lot 9:17 82:22 85:12	mask 62:19 63:17	156:11 159:18	michael 1:113:2
165:4	63:23,25 64:4,18	165:21 166:19	4:13 5:1,10 60:22
lots 132:2 135:18	65:11,12	187:7 188:12	105:4 153:21
low 34:25 35:3,7,9	masked 68:2	meaning 40:12	189:18 191:9,18
35:12 91:18 94:8	matched 136:19	148:10	192:7,9
lower 19:4 42:9	matches 118:18	means 10:12 33:17	microdisplay 55:15
55:11 79:18 121:19	material 12:12	57:9 178:8	microdisplays 3:13
123:23,24 124:6	14:21 15:15 22:6	meant 51:1 155:16	53:19
126:15 129:18	36:24 37:21,22 38:5	157:4 181:16	microelectronics
131:18 159:6	38:7 41:20 43:15	184:21	116:8 117:1
178:14 188:3	48:24 51:11 55:5	measurements	microscope 103:20
lowered 43:7,10,11	58:14 64:14 73:9	153:1,4	middle 30:8 42:3
lowering 179:16	74:15 79:22 84:21	media 60:17,21	163:16
181:21	96:13 107:11	104:1 105:3 153:14	millimeters 144:22
lying 44:5,7	116:16 145:11,25	153:16,20 189:19	144:25 145:8,9
m	146:15 147:6	medium 90:22	mind 10:11 47:25
	149:10 172:4,11,14	meet 39:18 40:6	67:9 86:6 90:10,13
magnification 82:14	172:16 175:13,17	99:8 101:17 102:3	91:1 125:14
majority $73: 22$	materials 6:13	02:17 117:20	minimizing 149:4
making 59:20	102:8 145:17 146:2	143:5	149:15
154:22	150:4	meets 28:10 42:4	minute 92:5 164:16
mangels 2:2	matrix 29:6 54:13	160:16 186:13	missed 37:25
manner 168:1	54:20 57:14 75:25	memory 91:24	missing 98:22
manufactured	176:17,21		misspoke 129:8
14:14	matter 5:23 18:17	mention 7:1 95:10	misstates 101:5
manufacturing 60:9	21:16 28:17,24 61:1	16:6 174:23 175:1	misunderstand
127:7	61:6 77:10 82:3	mentioned 41:16	18:10 101:20
	83:13 109:25	42:7,11 53:24 58:7	mitchell $2: 2$
	138:18 189:5,14	76:692:10,11 98:3	

Veritext Chicago Reporting Company

modes 76:11	111:13 112:15	nuanced 151:12	187:3,14
modification 9:11	132:2 147:6,10	number 3:8 4:10 6:2	objective 178:8,15
57:6,22 83:4,24	152:18 169:8	7:10 9:6 28:20	179:3,5,9,16,20,21
84:4 147:18	187:11,16,18	39:21 53:14 60:17	180:6,10,12,18,22
modified 3:17 57:24	needed 8:25 59:14	60:21 83:21 89:2	181:11,21 182:3,6
81:25 83:2 101:7	109:11 115:23	104:1 105:3 106:9	182:12,23 183:5,14
102:21,25 107:17	143:6	132:6 144:12	184:4,12
107:19	needs 33:15,15 35:7	153:16,20 189:19	objectives 177:23
modulators 58:3	35:8,9 59:13 107:11	numbered 167:1,20	178:3,10,12 180:2
moment 8:13 49:18	113:15 133:25	numbering 137:25	observe 93:22
74:7 172:22	150:2 163:4 182:1	numberings 78:18	observing 84:19,22
morning 5:6,9	negative 131:12	numbers 31:17	94:15 148:10,16
105:20,22,25	neither 138:1	68:16 70:2,5,22	151:14 153:7
motivated 96:25	146:21	189:25 190:8	obtained 193:1
motivation 97:5	never 43:20 64:14	0	obvious 66:19 83:16
$\begin{array}{\|c} \text { move } 47: 1257: 16 \\ 71: 17116: 22 \end{array}$	87:14 97:13   nevertheless 40:22	o 105:1,1,1	85:14 87:15   obviously
multi 46:3	44:24 99:7	oath 105:9 191:10	$96: 21$
multiple 10:10 34:8	new 3:17	object 64:7 76:25	occurs 79:17
34:21 47:25 60:4	news 3:12 53:17		offered 43:14 44:25
92:9 93:7 129:22	night 105:13,18	objected $186 \cdot 17$	126:24
145:3 157:10 159:7	nine 154:15,17	objection 10:8 11:9	office 1:1 4:6,11
162:25 171:6 178:2	nitrate 116:4		60:3 191:1 193:8
n	ni	26:4 29:16 30:1,17	offset 120:
n 3:1 105:1,1	59:20 116:4	32:9 33:2 35:13	oh 10:22 26:14 47:7
naas 2:214:	6:24	37:1 55:22 64:2	99:12 147:19 165:3
nakamoto 97:17	nominally 123	66:6 77:17 81:7	okay 4:1 8:3 9:19
98:1,6	nonfunctioning	84:18 85:10,20	10:14 15:2 19:12
name $4: 2,135: 7,7,9$	124:23	87:10 88:4 91:2	26:16,17 28:16
	nonlinear 57:6,21	97:3 101:5 102:9	33:10 48:14 54:5
row	58:1,22		56:13 61:18 62:6,9
near 58:6 102:12	nonresponsive	117:13 118:	62:13 63:11 64:17
$167: 5,10 \quad 171: 15$	47:12 57:17 116:22	120:9,20 124:16	65:1,23 66:18 71:16
nearly 176:19	normal 20:23		81:12 86:3 87:18
necessarily $21: 4$	normally 14:13	128:19 130:5	88:24 89:25 92:5,6
23:24 24:12 25:3,7	16:16 30:10,12	132:10 133:4 135:3	93:1,4 100:13
25:11,14 35:7 77:8	nos 82:6	$141: 13146: 17,23$	103:23 119:21
121:23 187:18	notary	155:12 156:7,17	122:6 123:3 127:16
necessary $65: 3$	:1897	161:11 162:4	140:14 143:25
109:3 113:17	34:15 150:10	$\text { 170:25 172:6 } 179$	157:24 158:24
124:20 137:15	notes 177:7	179:22 180:14,23	159:5 167:21
186:7,25	notice 1:13 35:21	181:13,22 182:24	177:17 182:21
need 5:17 30:19	7:7 61:14	$183: 15184: 6,13,17$	once 5:6 112:3 114:9
33:18 96:12 102:18	noticed 182:13	185:5 186:10,16	ones 90:12
Veritext Chicago Reporting Company			
312-442-9087	800-2	-3290	847-406-3200


ongoing 105:15	33:10 38:15,16 40:2	overlaps 130:21	123:4,6,19 130:22
open 101:14 106:20	40:10,21 43:20 44:3	138:23	130:22,23 138:23
106:25 107:23	44:10 45:19 46:17	overlays 142:15	139:12 140:23
126:4 127:20	47:1,4 52:21 53:11	owner 1:7 2:17 4:23	165:2 173:7 182:10
128:17	56:22 62:1 63:3	191:7	183:24
opening 20:14 24:21	66:3 85:3 86:9,13	oxide 96:14 113:11	partial 40:24 186:5
46:6 61:20,24 62:2	86:24 87:6,11,16,19	p	partially 39:3 43:24
62:17 63:20,20,24	88:1 94:25 95:18	p.m. 104:5 190:12	44:4,19,20 45:7
64:1,13,24 65:3,13	96:8,24 99:15	p.m. 192.16	52:7 67:1 74:19
66:13,16 68:4	100:23 101:18,22		92:24 130:21
102:14,17 106:20	102:2 103:15	package 138:12,16   $138.22140 \cdot 19$	163:13 173:24
125:10,11 126:15	109:19,22 112:2	$\begin{aligned} & 38: 22 \\ & 43: 4 \end{aligned}$	179:12
127:23 129:2,10,16	114:6,8,8,15 116:12	pad 32:170:2 72	particular 20:14
129:17,19 139:7,10	116:15,23 120:6,12	pat:9	53:24 56:14 57:3,15
139:21 142:8,20,21	120:22 121:20	97.9	57:18,19 67:24
163:4,5	122:4 123:3 125:15		103:17 109:25
openings 46:11	128:15 129:2,21	$\begin{aligned} & 32: 53 \\ & 115: 4 \end{aligned}$	143:2 150:24
62:14 63:1,6 64:19	135:14 136:16		particularly 12:15
86:14 87:13 163:6	137:19,21 138:3,7	82:10 88:23 141:24	94:8 96:7 155:23
opinion 10:5 45:18	144:2,4 146:25	147:13,17,24 148:1	parties 4:15 193:3,5
opinions 6:18,25	161:8,25 165:13,17	148:3	partner 60:9
opposed 58:11	176:8 187:15 188:1		partnership 57:4
95:11 96:1	189:10	panel 29:6	parts 41:17 118:15
opposing 133:9	orientation 74:10		124:3
opposite 22:4	78:9	$53: 25 \text { 54:2,13,24 }$	pat 1:5 3:10,11,19
optical 131:17	original 8:4 142:2	papers 54:1,10	3:20,21 191:5
optimum 146:15,19	orthogonal 164:25	paragraph 8:10	patent 1:1,1,7 2:17
147:1	169:10		4:9,10, 11,12,23
option 36:25 39:8,9	outcome 193:6	61:10 172:10	5:22 8:21 9:3,8,14
39:15,16 116:5	outside 109:4	paragraphs 61:7,14	9:17,22 10:2,11
129:14,14,15 144:3	113:18 142:19	paragraphs 61.7,14	25:20 28:17 46:9,22
options 39:7,12	overall 29:14 30:16	parallel 48 .	46:25 50:11 63:3,7
129:22	overcoat 51:8 61:20	$164: 11,14,21,24$	63:9,11 69:21 75:1
order 11:7,18 13:7	61:23,25 62:2,3		75:20 91:12,22
13:10,22 17:18	64:22,25 66:12 85:7		93:20 94:5,17 95:7
21:20 22:24 66:23	86:11,16,19,21,23		95:12 100:8 106:5,6
82:4 100:24 170:1	87:7,19,25 88:2,13		154:4,9 158:5,16
186:8 187:1,12	overlap 111:17	62:25 68:19 72:3	161:9 162:2,25
190:1	138:21 139:17	62.25 68.1972 .3	163:22 165:20
ordering 67:22	159:12 163:10,12		174:8 177:21,24
ordinarily 8:20	163:13 182:1		178:1,2 179:3,5
ordinary 11:4,4,14	183:23	106:14 $107: 6$	184:4 185:19,21
11:23 14:13 16:2,16	overlapping 12:17	108:12 110:7 111:3	188:17,19 190:1,3,4
17:11 19:17 20:11	45:5,6,8 111:22	$114: 3,3,12122: 25$	191:1,1,7

Veritext Chicago Reporting Company

patents 6:22 7:4	pg 3:14,16	polarization 3:12	79:4 86:16 95:14
28:22 40:19 46:4,18	ph.d. 1:12 3:2 5:1	53:18	99:3 101:12
46:22 47:2 154:5	191:9,18 192:7,9	polymer 74:14,23	possibly $83: 18$
155:10,15 188:16	phrase 17:11 126:9	portion 41:662:20	potential $72: 5$
path 20:17	physical 60:6 140:2	69:4,7,8 74:21	112:20 113:20
paths 20:19	pictured 170:9	75:13,15 77:6,14,19	131:10
pattern 30:20,23	piece 55:18 56:14	79:15 80:11 81:2	potentially 179:13
32:20 34:9 98:15	100:20	84:12 85:1 97:16	power 31:15,25
patterned 16:20	pieces 70:6 97:15	98:17,18 100:11	practically 99:5
21:7 22:2,2 23:8	144:15	106:20 108:8,10,13	precise 29:23 30:4
24:16,21,23 66:11	pixel 12:9 33:18	108:15,17,21	48:18 89:2 99:5
66:17 98:21 159:4,9	54:25 69:17,18	110:11,16 114:4	117:21 124:1
patterning 19:20	81:16 84:10,13 85:1	116:20 117:18	170:21
35:24 42:1 47:23	85:18 110:23	118:16 119:4,15	precisely 117:24
peaks 149:2	124:23 130:10,14	120:23 121:3,3,15	118:17
pen 78:20,25	130:17,18 131:21	122:24 124:11	predominantly
peninsulas 70:19	131:25 132:6,12,19	125:6,7 129:16,17	55:11
people 189:10	134:16,23 174:15	130:12,25 131:22	prefer 19:3
perform 34:4	176:4	131:24 132:7,8,13	preferable 17:14
performance 143:19	pixels 132:3,17,18	132:14,17 134:18	preference 128:21
performing 66:4	154:16,17	135:8,11 136:1,6,9	preferred 14:25
periodically 33:19	place 120:14 134:22	136:12,16,18	63:8
peripheral $54: 14$	placed 64:6	138:24 139:1,5,18	prepare 6:14
92:12	places 15:792:9	140:9,22 141:4,7	prepared 14:15
periphery 163:3,19	169:25	143:6 144:5 151:4	15:15 16:19 22:6
permitted 47:2,5	plan 29:5 156:19	161:15 162:8 164:8	preparing 6:17,19
person 11:4,4,14,23	159:24	166:4 168:4 170:2	6:25 28:23
14:12 16:2,16 17:11	plaza 2:3,14	170:14 178:4,5,17	prescribed 22:14
19:17 23:4,18 38:15	please $4: 1426: 8,14$	179:12	presence 148:18
38:16 40:20 43:20	60:23 78:24 91:25	portions 75:11 77:9	149:5,16 156:11
44:10 45:19 46:17	105:5 153:22	77:21,23 110:2	present 2:20 13:12
47:4 53:11 56:22	177:13,20 178:18	121:4 124:5 125:9	29:7 156:21 179:24
62:1 63:3 66:3	185:16	135:18 148:21	presented 3:8 6:2
87:11,16 95:18 96:7	plenty 140:4	169:21 170:11	9:6 28:20 106:9
99:15 100:23	plurality $132: 16,18$	171:20	144:12
116:14 120:5,12,22	point 54:23 63:21,24	position 109:24	presumed 46:21
122:4,18 125:14	90:6,9 94:1 109:8	positioned 122:8	prevent 115:13
128:15 129:1	109:11 114:9 118:9	169:5	preventing 180:6
135:14 146:25	135:21,22 166:23	possibilities 53:9	182:6 183:8,14
165:17 187:15	177:15	122:17	previous 16:7
personally 192:8	pointed 133:21	possibility 14:24	147:24
pertain 184:4,12	169:1	82:23 102:2 137:22	previously 6:19:5
pertains 183:13	pointing 16:22	142:24 161:13	28:19 106:8 144:11
$\begin{aligned} & \text { petitioner 1:4,12 2:6 } \\ & \text { 4:20 191:4 } \end{aligned}$	27:20	possible 14:20 36:25 $42: 544: 2168: 7$	174:4

[prime - recall]
Page 21

prime 159:23	products 57:23 58:2	provides 58:2	questions 54:3
principally $13: 12,17$	60:9 97:10,12	providing 180:12	177:15,16,16
113:17	project 57:9,23	181:11 184:5,15	182:14 187:20,22
principle 133:24	59:13	185:3	quite 10:9 33:19
147:7,11 150:11	projection 68:25	public 60:13 191:23	82:22 116:21
152:15 188:5 189:5	69:6	publication 54:19	136:21 139:6 146:8
printed 97:1 138:16	projections 70:24	publish 57:8	155:21
138:21 139:16,24	80:2	purpose 6:24 31:12	r
141:20 142:22	projector 59:3,18	31:13 34:20 39:1	r 105:1
143:16 171:25	projects 58:8	61:5,8,11 115:18	raise $88: 3$
181:2,15 185:8	properties 145:10	159:16 160:6,9,11	raised 88:16
printing 8:1	145:15 146:3,9	160:12,21 161:2,7	range 89:10 144:2
printout 79:12	proportions 151:15	161:10,19 162:2,5	$152: 12$
prior 40:16 92:19	proprietary 97:13	162:10,17,18	rate 88:24 89:6,8
93:2 97:15,19,23	protect 107:12	183:11	$\begin{aligned} & \text { rate } 88: 2489: 6,8 \\ & \text { rates } 89: 5 \end{aligned}$
106:24 114:20,20	115:23 116:16	purposes 159:4	reach 34:11
117:22 144:14	protecting 107:3	161:21	reached 19:10
148:11,24,25 150:4	108:1 113:12	pursuant 1:13,13	reaches $45: 7$
150:15,22 151:2,13	protection 110:5	192:19	read 8:14,16 1
151:16 155:1	113:15,16 116:7,13	put $20: 1,1,2,331: 6,7$	17:2,11 19:18 40:11
188:19	116:25	37:6 68:1,4 80:14	147:25 181:7,14
probably 48:18	protective 51:8	86:18 100:22	191:12 192:21
68:24 88:11,18 99:6	61:19,23 64:22,25	101:23,23 120:22	reading 9:18 11:15
100:2 116:18	66:12 85:7 86:11,15	167:7	45:14 161:9 162:1
155:25 177:8	86:18,20,23 87:7,19	putting 8:6 50:14	192:17,22
probing 109:25	87:25 88:2,13	61:5	reads 11:5 183:17
problem 34:24	prototype 57:10	q	185:7
	protrude 79:25	quality 35:11	real 103:7
$\begin{array}{ll} \text { problems } & \text { 106:23 } \\ \text { procedure } & 192: 20 \end{array}$	protrusion 172:25	162:21	reality 103:14
proceed 4:18 5:19	172:25 protrusions $70: 20$	quantitative 153:1,3	really 12:15 52:20
proceedings 189:21	72:4 75:8,8 $78: 17$	question 23:2 $30: 3$	58:11 99:5
190:11 192:13	80:1	32:19 37:23,25	reason 5:18,20
process 19:1 20:7,18	provide 41:7 46:13	$2480: 2087.1$	$4: 2284: 25151$
22:9 24:6 64:9,10	58:5 59:16 108:3	89:22 97:14 100:15	$192: 25$
68:3 99:16 101:19	110:5 113:2 117:24	101:20 103:11	reasons 34:22
143:1 186:7,12,25	162:19 178:3,13,15	109:9 111:10	recall 7:4,6,19 54:6
187:11	179:25 183:24	112:18 116:21	54:16,17 59:21 63:9
processing 8:25	provided 7:13,17	137:6 140:7,13	95:10 98:6 105:23
59:25 62:4 68:6	12:12 13:14 33:25	156:13 161:23	$105: 24152: 8$
produce 59:7 60:8	42:9 44:13 57:20	$169: 7174: 4 \quad 186: 21$	166:22 177:23
produced 59:14	153:12 154:9	186:21,24 187:10	$178: 11,13,15$
131:8	175:13 178:9	$188: 11$	$185: 22,23$
$\underset{60: 7}{\text { product } 22: 1758: 4}$	$\begin{aligned} & \text { 181:25 182:9 } \\ & \text { 183:11 } \end{aligned}$		185.22,23

Veritext Chicago Reporting Company

recess 60:19 153:18	references 68:22	regions 42:19 70:1	rephrase 30:2 87:1
177:11 185:14	171:4	75:18 111:4 154:14	111:10 140:7 156:9
recessed 104:4	referred 93:23	156:6,16 161:6	161:23 169:8
reciting 24:10	137:14 156:18	166:20 173:12	reporter 4:16 192:1
recognition 34:14	165:10 175:25	relate 102:11 179:16	192:3
recognize 65:18	188:11	180:12,22 181:11	represent $4: 16$
66:4 116:24 138:4	referring 11:718:11	182:22 183:8 185:3	82:20 88:6
recognizes 34:24	37:7 80:9 89:6 93:7	185:25	representative 9:21
recognizing 7:3	93:9 98:17 105:21	related 92:23 193:2	9:24 10:16
92:13,21 94:25	117:15 139:2 148:2	relates 180:5	represented 75:17
150:8 153:8	150:24,25 154:3	relating 181:21	reproductions
recollect 91:23	158:20 160:23,24	182:6183:12	147:18
record 4:1 5:8 60:16	175:12	relationship $12: 22$	require 12:22 14:16
60:20 103:25 105:2	refers 16:24,25 20:4	13:1 17:20 22:8	16:21 19:14 21:16
153:15,19 177:9,12	25:23 26:19 27:1,8	81:9 112:1 155:16	44:19 125:17 152:2
185:11,13,15	38:11 68:24,25 95:5	161:4	186:2
189:20,22 192:12	176:15 177:1	relationships 20:5	required 8:24 15:18
recorded 192:11	reflective 58:2	20:21	17:15,19 19:7 21:8
rectangle $30: 10,15$	refresh 159:20	relative $20: 5,21$	24:16 126:21
32:7,21 42:17,17	regard 7:20 103:1	21:16 22:8,10 23:21	152:13 186:12
75:7 167:18 168:21	128:5 152:9	154:20 155:1 161:3	187:4
rectangles 115:4	regarding 105:25	169:6 193:3	requirement $76: 14$
rectangular 132:20	147:22,23 156:15	relatively $74: 4$	requires 15:21 17:7
red $79: 2,1380: 14,17$	regardless 140:8	reliability 146:6	20:8 49:24 63:8,10
142:4	region 31:16 41:5	reliable 178:16	71:3 131:10 145:21
reduce 162:6	$46: 1550: 2164: 9$	181:12 185:3	146:12
reduced 92:8 151:7	70:21 75:9 78:16	relying 113:4	requiring 17:13
178:4	81:4 96:15 97:9	remember 54:3,8	19:19 137:24
reducing 92:15	106:25 107:23	84:5 90:21 91:19	research 60:7
94:13 151:24 178:8	108:22,24 111:9,14	98:13	reserve 177:15
179:10 182:23	111:23,25 113:24	remind 100:14	resin 28:13 73:8,10
reduction 183:25	113:25 114:10	reminded 92:6	101:4,13,14
redundancy 91:18	133:3 134:8,16	removal $87: 24$	resist 65:12 68:3
91:22 92:2,10,15	136:6 139:6,22	remove $100: 11$	resistance $32: 24$
93:5,15,25 94:3,10	144:18,21 145:7,12	131:15	34:16,19 35:1,3
94:14,21 185:20,25	145:18 148:13,21	removed 64:12	42:9,14 43:774:4
186:6	149:7,9,18,21,24	86:11,20 87:18 88:1	91:18 92:9,16 94:9
redundant 93:8,21	150:2,12,21,22	131:3,19 150:1	94:13 143:12,16
refer 91:22 94:13	151:8,11,13,16	152:17	144:1 178:4 179:11
154:20 160:17	152:18 155:1	removing $149: 4,15$	179:17 181:21
177:20 178:18	165:25 166:1,4	reorder 66:21	182:23 188:3
184:18	167:13,24 169:24	reorganize 83:16	resolution 90:5,21
reference $31: 19,21$	170:2,4,11 179:25	repeat $5: 13,15$	90:22
$\begin{aligned} & 41: 858: 19,2171: 11 \\ & 158: 18 \end{aligned}$	180:1 184:20,22	repeating $49: 15$	resources 60:6


respect 17:1 76:22	162:11 166:21	scale 145:3 153:12	180:3,19 181:9,19
92:11 179:4,6	167:19 168:12,20	154:2,6,8,11,13	182:4 183:6 184:2
182:21 186:18,19	168:25 169:4	155:6,8	184:10,14 185:1,17
respectively 36:13	174:18 175:22	scan 36:19 41:2	186:15,18,23 187:5
167:19 171:16	177:6,15 188:18	52:11 121:11,13,15	187:19 189:16
response 131:6	189:9	121:17,18,21,25	190:10
rest 15:9 22:9 53:6	rightmost 139:5	122:3,13,22,25	scope 89:19 91:6
80:7 98:22 125:4	riverside 2:14	123:5,7,14,18,19	179:8,22 180:14,23
restate 101:21	rmr 193:12	124:21 125:25	181:13,22 182:24
156:12 186:24	rocca 1:15 4:17	133:12,17,19,22	184:6,13,17 185:5
results 147:10	192:2 193:12	136:5,13,20 137:	screen 89:6
resumed 105:6	rough 89:1,3	137:14 138:2,5	seal 31:16 108:22
reveal 101:25	roughly 75:7172	168:5,11,24 169:9	109:4 113:13
verse 22:211	round 182:14	171:16	144:17 145:7,10,12
reversed 22:16	rpr 193:12	scanning 36:2,8,12	145:18 146:1,15
review 6:16,20	rule 152:22 192:19	37:13,16,17,22 38:7	148:12 149:10
reviewed 6:14 9:16	rules 1:14 5:12	38:10,22 39:14	150:2,3,12,21,22
28:23 148:4	192:20	41:16,21 43:4 45:13	151:8,10,13 152:16
right 5:21 9:13 11:3	running	48:3	152:18 154:14
12:6 13:3 15:4,10	runs 30:7,731	schematic 3:14,	155:1,3 163:7 170:2
19:23 25:5 27:14	52:2 70:16	3:17	170:4,14 179:24
29:13,24 30:11,25	s	chlitter	181:8 193:8
31:2,7 34:25 35:9		4:21,21 10:8 11:9	sealant 12:12 41
41:2,18 43:8 44:21	sandra 1:14 4:16	11:12 13:9 17:9	45:6 47:8 71:10,11
45:2,14 47:16 48:19		22:19 26:4 28:18	71:15,19,25 72:13
50:19 52:18 56:6		29:16 30:1,17 32:9	72:16,17 73:4,5,11
59:1,5,17 60:15,25	saves 126:25 127:1	33:2,4 35:13 37:1	73:14,16,18,22
63:2 65:9 67:4 68:2		55:22 64:2 66:6	74:21 75:3 76:1,3
69:16,17 70:10,23	$1017 \cdot 4$	76:25 77:17 81:7	77:24 78:22 79:7,21
72:8,24 73:12,21		84:18 85:10 87:10	79:23 80:6 81:20,23
74:18,19 78:7,8		88:4 89:19,23 91:2	98:24 108:24
80:13,16,16,20 83:1		91:6 97:3 101:5	109:14,15,20,21
86:19 88:9,21 94:4		102:9 112:8 115:14	110:4 112:24 113:2
99:2 106:23 109:5	151:4 $173 \cdot 6$	117:13 118:14	113:18,22 119:14
110:25 111:21	173:20	120:9,20 124:16	119:19 120:7,13,18
115:21,24 116:9	$\text { says } 8: 19,1915: 6$	125:19 127:8,25	120:22,23 147:6
118:11 119:25	$\text { says 8:19, } 19 \text { 15:0 }$	128:19 130:5	149:7,18,24 151:5
120:2 121:22 124:9	:20	132:10 133:4 135:3	152:2,7,20,23
127:7 130:23 132:2		137:10 141:13	159:12,14 160:3
132:22 134:7	$12102 \cdot 13111.7$	143:21 146:17,23	161:15 162:7,24
138:24 139:1,12	$2: 8162: 21$	148:1 155:12 156:7	163:11,15 164:2,18
146:11 147:6 148:6		156:17 161:11	164:20 166:3
148:14,20 149:8	180:16 181:2 182:9	162:4 163:17	167:13,24 168:16
150:13 151:21		170:25 171:2 172:6	169:6,9,11,19,21,25
156:14 157:8		177:17,19 179:14	170:11,17 173:3,8

Veritext Chicago Reporting Company

173:16,19,24,25	91:15 93:6 94:22	65:7 66:8,19 67:18	118:16 119:3
174:6 178:14	96:16 98:12 103:18	68:6 84:20 101:9	120:21 155:11,19
179:12 180:9,13,16	115:3,7 117:4,10	series 84:9,17,23	155:20,22,25 156:5
181:1,7 182:11	118:1,12 119:17	serve 14:22 160:4	156:14 158:7 163:1
183:23 184:1,5,8,16	121:9 122:16	161:15 179:20,21	showing 84:20
184:23 188:9,20	123:23 125:21	183:4	85:22 135:11
189:2,11	129:25 132:22	serving 180:1	149:23 150:23
sealant's 120:2	135:1,1 136:4 137:5	set 11:19 145:17	156:19 157:9
sealants 146:9	137:23 138:10	177:1 193:7	shown 48:25 72:10
152:25	139:3,10 140:14,14	sets 61:10	84:8 88:8 91:17
sealing 52:1 148:21	140:20 142:6 151:8	sgibson 2:5	110:20,21 115:18
149:9,20 151:16	158:6 160:15	shade 142:4,6,7	117:11 118:10,19
152:12,13 165:25	162:16 163:23,24	shaded 143:11,18,25	119:10,13,18,19,20
searching 68:20	164:1 166:6,8 168:5	shape 132:20	119:22,23 120:2,8
second 10:18,20	168:7,9 169:16,17	shapes 103:21	120:11,18,24
11:1,6,24 12:2 13:6	169:23 170:16	share 54:23	124:13 125:7
13:13,17,21,25 14:2	173:7 174:21	shiba 3:18 28:16	134:10,21 137:2
14:3 16:25 17:25	178:20,22	29:1,4 30:21 31:10	138:14,25 139:10
19:13,15,18,20,25	seeing 164:10	31:13 33:24 34:5,23	139:21 141:5 142:3
23:9,10 24:14,17,18	seen 7:3 87:14 100:5	35:16,18,21,22 36:4	151:16 157:25
24:19 27:1,8 28:8	sees 122:18	36:22 37:8,13 38:3	158:2 159:7 167:14
28:11,12,14 42:24	semiconducting	38:8,13,17 39:9	167:25
42:25 75:5 97:17	122:9	40:3 44:18 45:17,23	shows 66:10 69:15
101:4 102:15	semiconductor 1:6	47:6,21 49:10,22,24	71:13 72:2,17,20,20
107:15 156:20	4:9 62:4 191:6	50:9 51:22 52:18,18	75:6,11 78:3,4
157:22 158:15,19	sense 49:6 62:13	68:10,11,25 70:6,24	107:2 108:20,22
159:8,11,16 160:13	94:16	71:3 72:2 74:11	114:2,21 123:21,23
160:18,24 161:4	sentence 25:1 38:9	75:22 77:2,5,18	123:24 124:1 135:7
162:3 180:17	38:12 39:5 44:22	78:17,21 79:25	135:9 148:7 152:3
182:14 183:1 184:9	52:19 148:6	82:18,21,25 83:3,17	157:10 164:13
184:20,24 185:7	sentences 39:18	83:25 93:4,6 145:13	188:6 189:8
section 47:21 53:4	40:4 42:5 44:12	149:1,1 150:11	shrink 145:17
61:17 77:5,10,19	93:24	165:1 166:5,18	sic 31:10 134:4
85:24 101:2 108:20	separate 13:18	169:16 172:21	186:13 188:8
113:9 115:1,4	separated 45:25	173:18 174:17	side 19:4 29:12,12
159:22,22	separation 115:5	176:13 188:6 189:8	29:13 30:15 33:18
see 6:12 8:12 10:1	september 1:16 4:3	190:3	41:2 45:2 69:7,16
13:6 16:3 25:17	191:11 192:5	shiba's 69:10 83:4	69:17 72:25 73:20
29:10 36:15 47:15	sequence 12:4,22,24	shooting 70:19	73:21 78:5,7 80:11
47:16 51:6 53:21	13:11 14:7 15:18	short 60:19 153:18	98:23 133:15,15
59:1 67:12 68:13,14	18:11,12 21:4,10,13	168:22 177:11	135:12 139:12
68:15 69:17 70:12	21:14,17 22:10,14	185:14	158:14 164:4,19
70:15,15 74:20 76:5	22:16 23:5,12,14,15	shorthand 192:1,3	167:8,19 168:13,25
76:21 79:14 80:3	23:17,21 24:1,11	show 80:4 110:15	169:3,4 173:14,15
85:23 87:8 88:14	25:2,5,13 51:22	114:14 115:23	173:17

Veritext Chicago Reporting Company
[sides - strength]

sides 30:9 32:7,14	19:17 20:11,24	source $59: 3,18$	standard 46:4 56:20
32:15,21 34:6 42:17	21:18 23:4,19 33:10	84:11,12 85:2 125:2	57:7,23,25 62:4,6,8
75:9 113:12 148:9	38:15,17 40:2,10,21	130:9	63:16,19,22 89:16
sign 192:21	43:20 44:3,11 45:19	south 1:15 2:9,14	89:17 90:5 95:15
signal 35:10,11	$46: 1747: 1,452: 21$	4:6192:6	96:19
165:6,14 166:18	53:11 56:22 62:1	space 60:4 125:18	stanley 2:3,9
172:5,16	63:3 66:3 85:3	125:22 126:25	start 19:25 42:2,22
signals 89:5	86:10,13,24 87:6,11	127:1,6 128:10	71:16 117:24 133:8
signature 191:14	87:16,19 88:1 94:25	152:2,3,6	159:19
192:19 193:1	95:18 96:8,25 99:15	spacial $58: 3$	started 182:14
signed 192:24	100:23 101:19,22	speak 152:24	starts 45:4
signing 192:17,23	102:2 103:16	speaking 14:9	state 5:724:9 192:2
silent 109:17 110:3	109:19,22 112:3	speaks 115:16 161:3	stated 82:15
110:19 111:6,12	114:6,8,15 116:12	spec 176:14	statement 8:19 14:4
152:25 175:4	116:15,23 120:6,12	specific 10:6 29:21	94:18,20 128:4
silicon 51:10 54	120:22 121:20	54:9 64:4 97:4,11	147:23 148:8 150:6
55:4,8,12,17,19,20	122:4 123:3 125:15	97:24 113:8 161:24	150:17
55:21,24,25 56:1,8	128:15 129:2,21	specifically 11:22	states 1:1 4:11 11:5
56:9,17,23 57:1,7	135:14 136:16	18:12 50:11 54:3	95:8 150:10 191:1
57:12 116:4,24	137:19,21 138:3,7	81:16 92:1 93:5	stays 74:20
similar 24:10 93:20	144:2,4 147:1 161:8	120:17 186:15	steady 31:19,21,22
96:17 154:15	162:1 165:13,17	specification $68: 19$	stenographically
168:15 177:1	176:9 187:15 188:2	69:14,20 71:7 91:21	192:11
similarly 78:8	189:10	92:20,22 109:2	step 15:4 35:20,24
simpler 126:7	skilled 8:20	$113: 6123: 2152: 15$	36:2,7, $1237: 10$
simply $15: 5,20$	slightly 119:5	156:25 159:21	38:22 48:6 52:11
16:22 79:5,13 92:15	small 7:10,10 34:12	176:7 188:15,23,25	64:22,25 65:4,13,15
94:24 176:13,15	34:22 73:10 84:12	specifications 40:18	65:15,24 67:5,5,5
single $36: 2337: 3,10$	146:22 169:22	143:17	68:3,5 70:4 127:7
37:10,14 39:8,12,13	smaller 131:16	specified $25: 8$	steps 11:19 22:15,24
41:3 42:6,11 43:13	141:21 142:23	speculate 40:685:25	23:13,15,24 24:2
47:18,23,24 54:13	143:8 155:2	speculation $99: 7$	42:1 51:24 65:3,7
55:20,25 56:9,16,23	sorry 6:8 10:22	110:7	66:5,19,22,25 67:4
69:25 114:19	37:16,25 43:3 48:10	spell $5: 7$	67:7,10,19 102:7,23
131:25 136:14	48:13 55:24 60:11	spelled 5:9	103:4
sisters 173:1	62:11 69:4 74:3	spend 7:2,8	steptoe 2:8 4:6,22
situation 99:13	78:11 80:1 113:18	spent $9: 17$	steptoe.com 2:11
123:11 138:8	119:12 127:3	split 34:20,23 94:2,2	stop 114:9
six 41:24 45:1251:3	167:15 182:13,19	124:2	stopped 114:25
52:23 93:8 94:2	188:13	spread 34:6	storage 85:19
size 140:5,11 141:11	sort 188:9	sschlitter 2:1	strange 132:1
143:2 144:2 145:7	sound 88:7	stan 4:19,21	street 1:15 2:9 4:7
sized 145:1	sounded 15:17	stand 8:20 24:25	192:6
skill 11:5,14,23	sounds 65:8 131:23	25:1,15 79:2	strength 150:3
14:13 16:2,16 17:11			152:17

Veritext Chicago Reporting Company

strictly 14:9	substantial 106:3	successful 85:14	135:22 140:8
strike 13:22 47:12	170:2	6:21	143:10 159:24
57:16 86:7 95:2	substantially 148:12	sufficient 26:15	surety 90:14
112:4 116:22	154:15 155:2	115:13,17	surface 79:12
124:10 128:12	substrate 8:23 11:11	suggest 134:12	145:15,16 149:3
174:24 175:6 179:4	12:8,11,11,13,13	suggested 126:21	151:5
strong 146:2 178:13	14:5,10,12,14,23	127:18	surrounding 113:11
180:12 184:5,15	15:7,8,11,15,19	suggesting 42:5	suspect 74:11 155:7
stronger 145:20	16:10,17,18 17:3,12	87:22,24	svga 90:8
146:1,12 152:20,22	17:13,22 18:4,6,20	suggestion 126:24	swear 4:17
180:22	18:23,24 19:3,10	suggests 134:14	switch 131:11
structure 19:7,9	20:3 21:23,25 22:6	suite 2:3,14	sworn 5:2 191:10,20
20:20 21:15,17,20	22:12,13 49:3,4,10	sukegawa 46:14	192:10
22:11 23:16 $24: 7$	49:14,21,22 50:7	66:14 67:3 97:16	system 143:18
30:9,11 36:14,21	54:15 55:3,9 56:4,6	98:1,5 106:4,13	systems 57:6,21
38:12,18,21 39:20	62:20,23 64:6,8	107:1,3,7,13,20,22	58:1,22
40:11,14 42:4,7,12	65:10 69:3,5,9	107:25 108:17	t
43:15,20,23 44:2,13	71:15,21,23 72:18	109:2,21 110:1,7,12	t 5:10 105:1
44:14,16,17,23	73:2 76:1,2,3,24	111:5,12 112:17,23	take 6:5 20:19 27:14
45:15,18 46:9 52:23	78:6,8 81:5,13,22	113:4,14,24 115:17	$32: 13,1642: 23$
70:12 76:21 84:20	109:13,23 119:13	116:6,18 117:23	60:15 71:10 92:5
85:17,22,24 87:14	119:18,20,22,23	121:18 122:19,23	94:4 103:23 128:9
88:22 92:14 93:19	120:7,11 121:5	124:18 125:5,15	144:9 153:14 177:7
93:21 100:16,22	140:6,19,24 141:2	130:16 136:2	taken 1:14 102:23
102:5 103:3 115:23	141:12 142:23	137:23 138:9,11	191:11
122:15 123:12	143:5,8 151:25	summarize 61:9	takes 34:11 127:6
125:16 160:16	153:9 156:6,15	supplied 31:20	talk 19:3 21:14 37:9
185:21 186:8,14	158:25 163:10	34:10	3:24 46:4 49:7
187:1,12	166:12 172:12,24	supply 31:15,25	1:1 92:21 94:8
structures 42:8 70:9	173:2,5,13,15,17,21	supplying 31:25	106:4
84:8 91:17 94:23	173:23 174:1,3,5,7	support 32:25 33:25	talked 37:5 40:18
106:22	174:12,13,14,17,20	34:9,17 35:2,4 41:8	54:1 65:20 78:14
structuring 145:15	174:20,24 175:3,6,9	150:17	94:24 98:9 99:9
studied 96:20	175:14,14,23 176:1	suppose 29:23 85:11	20:15 136:13
study 49:25	176:3,10,11,12,16	114:17	65:3 177:4 188:
subject 145:22	176:18,20 177:2,3,3	sure 7:24 8:3 18:15	$\begin{aligned} & 185: 5 \\ & 189: 6 \end{aligned}$
189:7	178:14 183:11,18	29:17 30:3,13 49:24	talking 21:12,22
sublines 41:24 51:4	188:21,21	55:23 60:11,13 63:7	34:15 40:3 53:24
submitted 5:23	substrate's 17:4	63:21 66:9 67:15	6:13 62:15 63:23
83:13 192:19	substrates 54:2	68:17 79:4 82:19	
subscribed 191:20	55:10 108:23	86:16 91:8,23 98:5	.2 77.11,12 96.10
subsequent 61:13	148:23 162:20	100:4,16 107:5	107:21 122:2
subset 78:19 142:11	163:8 175:17	110:10 111:12	$129: 10,11 \quad 151: 1$
142:13	176:15 182:7 183:9	$\begin{aligned} & 114: 19 ~ 118: 8 ~ 123: 1 \\ & 125: 20,23 ~ 126: 9 \end{aligned}$	154:23 174:3,11
Veritext Chicago Reporting Company			
312-442-9087	80	3290	847-406-3200


176:10	terminals 15:14	125:14 165:16	165:15 166:25
talks 93:12	97:21 144:6 164:5	things 7:1,9,12,14	167:6,8 169:13
tape 138:12,15,22	166:3	7:15,17 16:25 17:1	171:3 172:11
140:19 143:4	terminate 133:9	40:6 67:22,23,24	175:10 177:4
teach 110:12 116:19	terminated 192:15	82:22 91:7 106:19	181:24
teaches 110:14	terminates 81:6	108:6 114:18 122:1	third 24:18 39:15,16
teaching 109:1	terminology 157:16	140:17	41:23 45:9 57:4
112:25	157:17	think 10:7,24 14:12	88:23 126:3,7,9,17
technical 151:19,21	terms 11:24 12:2	16:1,15 17:10 19:7	127:2,3,11
technique 59:16	42:6 49:10 67:17	19:8,17 20:7,8,19	thought 41:11 99:25
62:18	76:16 98:10 103:11	20:23 21:1 22:3,15	147:23
techniques 63:18	103:13 112:15	23:3,18 28:17 30:10	thoughts 40:9
technology 59:6	114:20 138:19	30:22 31:22 32:22	three 13:1 30:9 32:6
tell 9:23 18:6,22	158:19,21 188:7	34:13,23 35:15 37:5	32:14,15,20 39:12
37:2 39:25 60:12	testified 5:3 111:19	37:8 38:15 39:17,23	39:23,25 42:17
86:3,5 95:21 103:8	testify 192:10	40:1,2,10,20 43:16	43:15 44:14 45:12
103:16,18 119:7,11	testimony $83: 10$	46:2 47:24 49:23	45:13 66:4,18,22
119:11 127:16	101:6 105:11,14	51:21 52:13,22 53:2	67:22,23,24 84:20
147:19	106:1 149:8,13	53:8,23 54:5,12	84:22 88:22
telling 14:6	192:12	55:23 57:19 58:7,18	time 4:3,14 7:2,8,11
temperature 146:6	testing 106:15	61:13 62:19 65:6	9:18 16:24 34:11
tens 145:8,8	text 69:13,14 92:18	68:24 69:13,19 71:3	44:17 45:23 51:19
term 33:8 123:1	111:7,22 152:12	73:9,17 75:4 78:13	59:5 60:17,22 91:5
126:11 127:3	156:24 157:2	78:14 83:15 85:25	96:14 104:1 105:4
138:11 148:20	tft 56:24 60:1 81:16	87:15 88:17 89:2,9	133:10,14 153:16
terminal 8:21 23:17	108:20 115:25	89:10 90:11,19	153:21 177:10,13
24:7 25:6 34:8 41:3	122:3,7,8,10,12,21	91:16,18 92:6,12	185:13,16 189:19
41:5,15 45:1,5	123:8 129:7 130:1,2	93:17 94:25 95:12	times 133:22
46:15 70:3 75:9,10	130:9 132:21,22	96:18 98:5 99:3	tin 113:10
75:13,15 77:6,9,14	133:25 176:3	100:6 102:1 103:6	tired 165:15
77:19,21,23 97:1,9	tfts 36:6 54:6,8,20	103:15 105:21	titled 53:17
97:16 106:20 108:8	57:13 58:9,12 89:7	106:3 107:7,11,13	today 5:19 71:11
108:10,13,14 110:2	123:10 171:22	107:25 109:1	105:12 185:18
115:2 116:20	thank 26:25 27:15	110:14 112:17,23	190:9
118:16 119:12,15	28:18 69:2 100:14	114:1 117:24	today's 4:2
120:23 121:2 125:5	141:9 144:10	124:22 128:7,9,12	top 16:4,20 20:3
125:7,9,24 130:12	thicker 43:12	131:4,23 132:11,24	22:2,6,9 29:12 31:1
131:21 132:8,13	thin 12:8,10 56:21	133:21 136:16,22	40:13 41:18,22
134:17 135:8,11,18	74:23 174:14	136:23 137:3,23	42:20 43:5,8 44:5,7
136:1,6 137:6,11	176:17 177:2	138:3,7,11 139:23	51:5 72:15 73:17
139:6 140:9 141:4,7	thing 8:2 19:11 20:9	142:3,25,25 144:21	75:11 76:24 81:5,12
143:3,6 144:5	21:14 33:20 38:19	145:1,6 147:13,19	85:18 115:2 123:8,9
161:16 166:20	42:23 43:16 54:22	147:22 150:10	130:24 135:2
178:4,16 179:11	$57: 25 \quad 62: 569: 23$	157:15 158:23	topic 177:17
	99:4 100:6 119:11	162:11 163:2 165:3	

Veritext Chicago Reporting Company

touches 173:11	31:9 38:1 72:12	ultimately $162: 20$	189:19
touching $72: 15,18$	82:20 87:5 127:10	unbiased 33:16	united 1:14:11
73:18 79:21 173:16	140:12 148:22	unclear 38:14,16	191:1
173:20,24 174:1,6	149:19 156:5,14	uncommon 62:19	university 60:5
rack 182:16	turn 40:21,25	unconventional	unpublished 54:22
trademark 1:1 4:1	141:24	56:18	56:11
91:1	two $7: 248: 1,713: 18$	underneath 50:13	update $89: 6$
transcript 191:12	16:25 17:1 18:2,19	98:24 118:20 122:9	upper 41:20 55:10
transfer 73:9	21:24 22:8 29:10	151:5 159:14	71:23 78:6 98:17
transistor 56:24	36:14,21 38:12,18	164:20 168:16	107:16 123:13,25
transistors 12:9,10	38:21,24,25 39:1,7	183:25	124:2 125:11 145:6
55:14 56:7,9,15,17	39:15,18,20 40:4,11	understand 11:6,23	upside 98:11,12,16
56:21 174:15	40:13,14 41:10 42:5	13:5,20 14:6 15:3	99:1,10,14
176:17 177:2	42:19 43:19,23 44:1	16:18 18:16,16,18	use 12:21 13:12,13
transparent 23:11	$44: 13,15,23$ 45:15	19:14 22:23,25 23:5	16:23,25 17:1 25:18
24:22 47:8 69:11	45:18,20,20,22,25	27:23,25 28:4 31:24	25:19 34:21 42:24
95:9,13 96:1,12,15	46:7,9 55:10 61:3	36:1 43:22 44:4	55:20 95:25 96:9,25
102:15 107:14	61:18 65:7,17 67:13	45:20 49:11 60:14	97:12 101:19
108:4 124:7 130:11	67:20 68:5,7,15	63:4,12 66:9 69:7	103:20 112:22
139:15 180:25	75:9 82:4 84:4,6,7,7	80:9 85:21 93:4	113:19 126:3,9
181:4,5,18 184:19	84:23 86:7 87:21	105:8 109:19,22	127:3,22 128:16
185:9189:3	88:3,15,21 91:16	112:3 118:5 121:21	131:16 145:17
transverse 169:12	92:23 93:19,19,23	123:4 135:15	147:5,9 158:22
169:18	97:15 108:23 115:4	136:17,20 137:5,19	165:13 174:12
traveling 32:6	115:5 124:3,5	137:22 138:15,20	uses 10:1731:22
traverse $32: 15,16,16$	140:17 146:2,9	140:13 149:19	34:13 138:11
traverses 42:16	148:9 158:10 159:3	155:9 156:1,13	150:12 152:20
trend 151:9	160:1 161:10	157:12,14 159:15	usual $22: 3$
trial 1:1 4:12 191:1	162:19 163:7	160:10 162:1 163:9	usually 132:4
triangle 29:25 32:14	164:17 170:3 17	165:12,23 167:2,12	155:19
triangles 30:12	171:10 175:17	167:23 176:2,8,9	v
tried 79:8 155:24	176:15 178:12	$187: 7$	vague 186:22
$\begin{aligned} & \text { trouble } 32: 1899: 6 \\ & 188: 20 \end{aligned}$	$179: 18186: 2188: 2$ type $76: 21103: 2$	understanding 29:2 89:1,3 122:6 155:15	$\text { vaguely } 185: 23$
true $32: 2354: 18$	typical $89: 12,15,18$	160:21 187:9	valleys 149:2
92:13 94:15 102:19	138:8 144:17,20,21	understands 8:21	
102:22 126:23	162:23	understood 83:7,9	$85: 12146: 6$
131:1 134:25 145:5	typically 33:21	uneven 149:3 151:4	varies $51: 5$
150:8 151:9 152:15	74:14,16 89:10	unevenness 150:	$\text { various } 55: 1358: 5$
154:7 156:2,3 168:2	154:18 163:3,14,18	151:7,24 152:6,17	verify $176 \cdot 24$
168:3 169:22	u	162:6 178:8 180:4,6	veritext $4: 2,17$
192:12		182:6 183:8,14,25	version $83: 2$
try 169:7	u.s. $1: 53: 10,11,19$	uniform 160:6	versus $4: 9188: 4$
trying 8:17 18:18	$3: 20,21 \text { 191:5 }$	unit $60: 17,21104: 1$	versus 4.9188 .4
19:9 20:17 22:23		105:3 153:16,20	
Veritext Chicago Reporting Company			
312-442-9087	800-24	-3290	847-406-3200


vga 90:3,8	way $8: 410: 2515: 5$	151:11 152:18	79:4 81:8 84:19
video 90:5 189:22	17:14 20:10,14,23	wind 22:7124:23	85:11,21 87:11 88:5
videographer 2:21	22:7 25:9,9,10	wire 29:24 30:16	89:21,25 91:4,7
4:1 60:16,20 103:25	41:12 48:18 49:18	37:14 107:4 110:12	97:4 101:7 102:10
105:2 153:15,19	59:8 61:21,22 62:15	111:7,8 124:15,15	112:9 115:15
177:9,12 185:12,15	62:25 63:12,16	wires 42:19 92:24	117:14 118:15
189:17	66:24 69:16 73:20	170:17	120:10,21 124:17
videotaped 1:11	77:15 80:11 82:20	wiring 16:19 29:8	125:20 127:10
189:18	82:23 84:23 86:3,5	29:11,15,18 30:20	128:2,20 130:6
view 29:5 70:14	86:21 87:8 97:7	30:25 31:12,14,25	132:11 133:5 135:4
72:13 73:3,5 75:12	100:17 103:8	32:3,5,11,25 33:23	137:11 141:14
96:24 114:7 115:2	110:14 113:13	34:5,25 35:1,5,19	143:22 146:18,24
128:14 156:19	125:8 126:21	35:23 36:7,11,23,23	148:4 155:14 156:8
159:24	128:23,25 131:21	37:3,6,9,20 38:4,10	156:18 161:12
virtual 60:3	133:10 134:20	38:24 39:1 40:11,14	162:5 163:18 171:1
visible 96:15	135:15,17,20 136:8	40:17,23 41:1,14,24	171:3 172:8 179:9
voltage 31:19,21,25	136:9 139:7,12	42:25 43:6,8,12,13	179:23 180:15,24
33:14 34:9,11 41:8	141:23 143:1	45:4,25 46:3,14	181:14,23 182:25
56:19 131:16,17	146:24 162:7 167:8	47:15,16,22,25 49:7	183:16 184:7,18
voltages 33:18	167:9,14,24 169:9	52:10 53:5 70:2	185:6 186:11 187:4
131:11	169:13	93:7 106:14 107:10	187:15 190:1,4
vs $1: 5191: 5$	ways 21:24 39:21	107:16,16 110:5,25	193:7
w	40:23 60:2 62:5	112:3,5,19 113:11	word 12:19,21,24
afer 5	66:2,21 67:17,19	114:23,25 115:3	13:4,13,13,16 15:7
$55: 25$	93:22 125:6 167:6	118:19 119:4,15	16:5,6,12,23 31:22
waived 192:18	we've 49:6 62:15	121:10,19 122:13	49:6 68:20 92:1
want 11:20 18:15	67:18 115:21	123:22,22,25,25	127:14 174:13
23:1 25:17 26:5	120:15 165:3	124:2,4,5,7 125:7	words 10:19,20,25
42:14 43:7 79:1	weight 145:11	125:12 126:3,8,10	11:1,24 13:6,21,25
80:23 96:8 100:11	welcome 105:8	126:15,16,20,22	18:17 19:25 24:24
125:12 126:17	went 5:12 8:7	127:2,4,6,12,14,17	26:11,14 33:15 92:3
127:3 147:2,5,9	whereof 193:7	127:22 128:16	131:15
$165: 4177: 7$	white 31:7	129:5,5,19 140:6,18	work 12:6 54:5,8,20
wanted 99:2	wholly 65:10	141:2,11 168:16,19	54:21 56:11 129:7
wants 112:18	wide 144:17 146:21	168:20 169:16,20	133:25
$152: 16$	167:18	169:24 170:3,11,15	working 55:2
watanabe 144:9	widen 149:7,18	wirings 55:13	worse 74:23
147:16,21 148:12	widening 149:20	126:18 140:20	worth 99:6
148:18 149:3,9,14	150:1	168:8	wrap 177:8
151:3,22 153:25	wider 148:12 149:25	witness 3:1 4:13,17	write 26:1,21 27:4
154:4 162:12,12	150:3,20,22 151:9	10:9 11:13 13:10	27:11
163:11 170:19,20	151:12 152:2,3,6,12	17:10 22:20 26:5	wvga $90: 8$
171:4,9,12 172:3,2	152:13	29:17 30:2,18 32:10	
	width 145:11,17,21	33:3,5 35:15 37:2	
	146:12,15,21 149:9	55:23 64:3 77:1,18	
Veritext Chicago Reporting Company			
312-442-9087	800-248-3290		847-406-3200



