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Abstract

The development of real—time software for control systems is an expensive process,

accounting for a significant portion of total application costs. This expense can be reduced

by automating the software development procedure; for instance, by providing a software

framework in which coded routines are small, portable, and reusable. However, to make

the integration and control of these routines accessible to programmers of various exper-

tise, and thus further reduce the amount of required resources, a user-friendly high-level

programming environment designed for the creation of reusable real-time software is

required. A programming interface of this type would not only allow for the rapid devel-

opment of software, but would also considerably ease the process of debugging real-time

code.

Much of the expense and tedium of software development is caused by the limitations of

textual code. To use a textual language properly, the programmer must undergo expensive

training. The deciphering, debugging, and use of real-time textual code is particularly

time-consuming, especially when the code is cryptic, non—portable, and uncommented.

The sequential nature of text can cause confusion when tracing a program flow through

subroutines, recursion, and processes spawned in parallel. These “coding complexities”

inevitably consume many resources, adding to the mounting costs associated with the sys-

tem. This limits the amount of applications which may be developed for the system and, in

mm, limits the system’s usefulness.

In the past, researchers have created visual programming languages to address the prob-

lems of textual coding. However, these interfaces have been, in general, either very high-

level and narrow in scope, or low-level and cryptic. Furthermore, these interfaces have not

been designed with the specific requirements of real—time programming in mind. These

requirements include the need to switch from one job to the next with minimal time loss,

the need to modify the code of a job while it is executing, and the need to coordinate many

Page 21 of 198

Abstract xvu

ABBlNCH0125777



jobs running in parallel.

In this dissertation, we present a multilevel/iconieally-programmed visual programming

environment called Onika. Its multiple interfaces directly connect with the underlying

real-time operating system to coordinate the activities of several routines running in paral-

lel. Each task on the real-time operating system is represented by an icon, which is manip-

ulated by a mouse. These tasks are combined in a logical way to create jobs for the system

to execute. The interface is able to switch from one job to the next quickly, in real-time,

with minimal system delays. The user is also able to monitor and modify each routine run-

ning on the real-time operating system. Furthermore. a combination of routines created at

one level can be saved as a reusable higher—level routine for others to use. Thus, routines

at the higher levels become more specific, making programming accessible for naive

users, without diminishing the programming scope for more knowledgeable users working

at the lower levels. Both levels of users are presented with an interface appropriate for

their programming abilities and application requirements. We show that the grammar and

syntax of the language supported by the interface is complete with respect to traditional

programming languages, and we demonstrate via standardized user testing that this new

method of programming is much faster and less error-prone than traditional methods.

Onika has been demonstrated at the NASA Langley Research Center and in several joint

Sandia National Laboratory and Carnegie Mellon University distributed laboratory dem-

onstrations, and is in regular use at several outside laboratory sites, including Wright

Patterson Air Force Base and NIST.
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1. Introduction

1.1 Overview

This dissertation addresses the usability of real-time control systems with respect to reduc-

tion of resources required. Specifically, we address two issues: reduction of the time

required for technology transfer, and reduction of the time and expenses required for train-

ing an individual to control a real-time control system. We present a visual programming

environment, Onika, which can be used as a graphical front-end for a real-time operating

system. The Onika interface includes different (but cooperative) levels of graphical pro-

gramming for users of differing abilities, as well as an environment in which the user can

completely control the executions of programs by the control system. Onika includes sup-

port for traditional programming structures such as loops, ease statements, and break-

points, while including new structures such as syn ehronization tags and aliases, as well as

support for parallel subsystems running in a multiprocessor real-time environment. Addi-

tionally, programs designed for one manipulator can be executed in simulation or on

another manipulator without changing the code of the program, keeping all details hidden

from the user. User test results of Onika were analyzed to determine ways to enhance the

system, and are presented in this dissertation to demonstrate the potential usability of this

Visual programming environment.

Our motivations for our research are presented in Section 1.2 of this chapter. The goals

and contributions of this research are listed in Section 1.3. Finally, the organization of this

dissertation is outlined in Section 1.4.

1.2 Motivation

The creation of code for real-time control systems (such as robotic manipulators)1 is gen-

erally considered a difficult and time-consuming process, involving many hours of train-
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ing, coding, and maintenance. Some of the specific problems associated with traditional

coding methods include:

- Expertise required: Workers must be highly trained in programming,

real—ti1ne operating systems, a11d control systems.

- Programmers are not end-users: Typically, the workers who create the

code for machine systems are not the same as those who actually control

the equipment, leading to the creation of code which might not be ideally

suited for floor operations.

- Textual nature of code: Textual code is cryptic by nature, and can be

poorly commented, leading to confusion on the part ofanothcr programmer

irrespective of that person’s expertise. Furthermore, the sequential nature

of code is not at all suited for the coding of parallel subsystems. Textual

code can also be quite diflicult to debug, especially when parallel flows of

control are involved.

- Simulations: Often, code for a physical control system must be rewrit-

ten entirely in order to execute it on a simulator, allowing more errors to be

introduced into the code. If new code is then added to the simulator to

make it operate in a new way, this code must then be ported back to the

physical system code, potentially adding more errors.

- Technology transfer: Transfer and reuse of real—time application soft-

ware is diflicult and often seemingly impossible due to the incompatibility

between hardware and systems software at different sites. This has meant

that new technology developed at one site must be “reinvented” at other

sites, if in fact it can be incorporated at all. Technology transfer, therefore,

has been a very expensive endeavor.

The problems associated with traditional programming methods can create a serious dra.in

on human resources; anecdotal evidence suggests that the creation of moderately complex

real-time applications for control systems can take days or even weeks, with more over-

head added if a new system needs to be brought on—line. To reclaim these lost and wasted

resources, the nature of the programming process must be significantly altered. A system

1. Throughout this dissertatioii, we will use robotic manipulators as convenient examples of real-

time systems. Neveitheless, the research presented in this dissertation is applicable to a wide vari-
ety of state variable-based real-time control systems.
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more conducive to ease-of-programming and technology transfer would have the follow-

ing attributes:

- Programmable by end-users: The end-user has the greatest knowledge

as to how an application should proceed, and therefore should become

involved in the programming process. Furthermore, he or she should be

able to make modifications to the program as required without needing to

send the problem back to the low-level programmers.

° Wsually programmed: Unlike traditional textual languages, visual pro-

gramming could allow the user to see exactly what an application does,

even when parallel flows are involved. Typos and spelling errors would be

eliminated as well, and the construction of code could be done in a more

intuitive manner, with much less training involved.

- Transparent simulation: The systems simulator should use the same

code as the physical system, eliminating errors introduced by porting code.

- Reusable code: With the exception of the code which directly commu-

nicates to the physical system, all other code primitives would be generic

and usable with any system, thus aiding both technology transfer and sys-

tem set-up.

In the past, visual languages have been created to address specific points on this list; how-

ever, these languages have suffered from the narrowness of their scope, and have not been

at all useful for complex systems such as real-time control systems. In the next section, we

discuss the goal of this dissertation, which is to provide an environment capable of

addressing all of the considerations given above. We also include a list of our contribu-

tions stemming from this dissertation.

1.3 Goals and Contributions

The goal of this dissertation is to provide a visual programming environment (VPE) in

which software from various sites can quickly be assembled and used to control both local

and remote hardware. This VPE is targeted towards both the control-level programmer

and the application-level programmer; specifically, the code generated by the control-level

programmer is used as the building-blocks of the language used by the application-level

programmer. The VPE is defined as having the following characteristics:

- Code is created, simulated, and executed all within the same program-
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ming environment.

The creation of code is done visually, with appropriate cues enabling

the user to assemble code more quickly than possible with traditional tex-

tual methods.

Code is modular, reusable, and can be shared with other sites.

The execution of code can be fully monitored and controlled from

within the environment, and adequate visual feedback is provided.

Different programming interfaces are presented to users of differing

expertise. The code generated by “lower-level" interfaces serves as the

building blocks for “higher-level” code. Thus, the scope of high-level

applications generated in the VPE are not limited, as is the case with other

high—level programming interfaces, since the available “lexicon” of code is

not static nor hard-coded into the VPE.

The programming interfaces are customizable to the individual user.

Communication with the control system is done over a network, and

thus can be performed remotely.

Any code written by conventional methods can be duplicated in the

VPE (i.e., the available languages structures are complete).

We intend that the use of this VPE should significantly reduce the time involved in tech-

nology transfer and programming by several orders of magnitude, and should make the

programming of real-time control systems accessible to persons who otherwise would not

have the knowledge or training required to control such a system. Ultimately, this research

will lead to the development of distributed laboratories, wherein users will be able to

freely access real—time software available on the network, as well as be able to control sys-

tems remotely from their physical location, without needing to rewrite or modify any of

the code involved.

In the course of the research leading to this dissertation. we have made several contribu-

tions to the field. First, we have developed Onika, an iconically—programmed VPE, which

provides different (but cooperative) interfaces for both knowledgeable (lower-level) and

inexperienced (upper-level) users. Onika is currently the only iconic interface for control

systems which supports reusable and reconfigurable software [l6][20]. Additionally, by

using the Internet to communicate to the real-time operating system (RTOS) and to auto-
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matically download software for linking, an Onika user can control both local and remote

hardware using both local and remote software, unlike other GU15 (graphical user inter-

faces).

To interact with reconfigurable software modules at the lower level, Onika uses a novel

program visualization mechanism, in which the modules available in the libraries are dis-

played on—the-fly as icons having the appropriate input and output ports according to their

underlying real-time port-based obj eets model. If the naming conventions of downloaded

software differ from the user’s convention, Onika provides a novel method for renaming

state variables graphically, so that the software can be used immediately without needing

to recompile code. Icons used in a configuration of modules are automatically connected,

removing the need to manually connect I/O ports as is the rule in other GU15.

While the upper level supports all of the language structures of typical textual languages,

Onika’s “language” and “syntax” can be further expanded by the user as required[2l],

which removes the “limited scope” problem found in other GUIS (which tend to be

domain-specific). A background syntax checker ensures that all applications are complete

and syntactically correct. As is the case with the lower level, Onika can control and syn-

chronize parallel subsystems executing on multiple CPUs at the upper level. Furthermore,

Onika—code generated for one real-time control system can also be run on another system

(barring gross physical dissimilarities) or on a simulator with a single mouse—click. This

unique functionality is made possible by the use a clever built-in aliasing mechanism. This

cross-system ability to run code eliminates en‘ors which might be introduced when porting

code between (for instance) a simulator and a manipulator. Additionally, the subjects we

tested were able learn to use Onika to program a robot in less than 20 minutes, regardless

of any lack of experience with programming or robotics.

We have also performed subject tests on Onika to determine its effectiveness as a pro-

gramming environment. This has provided us with first-ever benchmarks for rating the

performance of a subject programming a manipulator, which are measured in seconds.

(Using traditional textual coding, programming a manipulator would take many hours or

days, and in any event would have been beyond the knowledge of most of our subjects).

Furthermore, subjects which had no special tra.ining in programming and robotics were

able to create simple programs to control the manipulator within minutes, something

which would have otherwise been impossible for them to accomplish.

1.4 Organization of Thesis

We now present our outline for the remainder of this dissertation. In Chapter 2, we discuss
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previous work related to visual programming languages, graphical user interfaces, and

user testing. In Chapter 3, we introduce the terminology associated with the reconfigurable

software framework developed at Carnegie Mellon University, under which Onika oper-

ates. In Chapter4. we give an overview of Onika’s functionality, and demonstrate how

Onika can be used to support a distributed laboratory. In Chapter 5, we discuss the specif-

ies of the mechanisms developed to support the Onika visual programming environment.

In Chapter 6, we present the results from our user testing of Onika. Finally, in Chapter 7,

we summarize this dlSSC1'l.3.l.lO11, as well as list our contributions and suggest directions for

future work in this area.
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2. Related Work

2.1 Introduction

Our research into visual programming environments has been driven by the need to a.llow

both na'1've and knowledgeable users to create reusable and reconfigurable real-time code

using port-based objects, as well as by the need to facilitate technology transfer. These

goals led us to explore many research areas related to interface design and software

assembly for control systems, including high-level and low-level visual programming

environments, program visualization techniques, use of colors and other visual cues,

reconfigurable and reusable software, user testing, and hypermedia techniques. This chap-

ter discusses the previous work in these areas related to the research presented in this dis-

sertation.

2.2 Textual Languages

Ilnitially, the programming of robots was performed using textual languages such as Pascal

and C. The code required to drive robots was very low-level, and very hard to create and

maintain, requiring skills in both advanced programming and control theory. Textual

robotic languages such as VAL II [63] or AL [46] were among the first languages devel-

oped specifically to address the problems associated with programming robots. These lan-

guages introduced “built—in” commands to operate the robot, eliminating (for instance) the

need to develop code for motion primitives. While they were highly instrumental in mak-

ing robots more productive, these textual languages suffer from several flaws. First, pro-

grams written in textual languages are difficult to read, not only due to the cryptic nature

of textual code, but because code can be poorly commented, and also because parallel-

running applications must be mapped serially. There is no convenient means (beyond low-

level semaphores) for synchronizing two flows of code except by the multiple use of

“cobegin-coend” blocks. The languages furthermore have no facility for using multiple
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CP Us running under a real—ti1ne system, and any code generated for them is robot—specific.

Additionally, their support for simulators is extremely limited, and in fact much code must

be rewritten in order to be executed on a simulator. Most limiting, however, is the fact that

their grammar is not easily expandable. New actions can only be used via external proce-

dure calls, and thus there is a confusing lexical difference between using “built in” func-

tions and “homemade” functions. The usable domain of these languages is limited to

single-controller robots performing basic “pick—and—place” operations, and they are not

general enough in scope for real-time control system applications. An expandable lan-

guage is required, wherein all functions can be addressed in the same fashion, programs

are portable a.nd can be run seamlessly on other types of real—time control systems, and

programs can be simulated without changing a single line of code.

Because of these inherent limitations in textual coding. languages have begun to be intro-

duced which use icons as a way to program systems. The evolution of programming lan-

guages from textual languages to visual languages and the rationale for this change are

presented in [8].

2.3 Visual Programming and Program Visualization

Much of the work in the field of visual language environments has been in the area of

data—processing, database retrieval, and vision processing [5][6][50][47]. Visual language

interfaces have also been used in AI[8], low—level C coding [36], animation [62] and, of

course, operating systems [3 9], Additionally, there are interfaces whose sole purpose is to

design other interfaces [1 l][55].

Graphical interfaces which use some sort of visual language fall within one of two catego-

ries: visual programming (VP) or program visualization (PV), both of which are sub-

classes of visual languages [50]. The former category is comprised of interfaces which

allow the user to create programs graphically, whereas the latter category is comprised of

interfaces which convert previously-written conventional code to a viewable form. In the

past, the domains of these two categories have not intersected; VP interfaces allow for the

creation of programs from graphical elements representing specific static—code- proce-

dures, whereas PV interfaces permit graphical viewing of arbitrary (though finite in range)

procedures within a program without any capability to change the program (as in ROB-

SIM [14]). However, in a visual programming environment which involves reusable soft-

ware, the user must be able to manipulate pre-existing and dynamic arbitrary procedures

in order to create programs. Thus, traditional visual languages, VP and PV, are not useful

for a reconfigurable system when taken separately; the system in fact requires both. In
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[50], Myers states:

...It is more accura.te to use the term Visual Programming for systems that

allow the program to be created using graphics, and Program Visualization

for systems that use graphics only for il1ustra.ting programs after they have

been created.

By such a definition, the system which we have described would technically be referred to

as a VP system, since the “only” qualifier in the PV definition eliminates any other possi-

bility. That is, a VP system can have some PV aspects, such as graphical debugging, an.d

yet still be considered VP. However, it is unclear in our minds that such definitions were

meant to apply to a system with extensive use of both PV and VP techniques, as would be

needed in the ideal set-up for real-time control systems. We therefore anticipate a need for

a new class of visual language which extensively incorporates both PV and VP tech-

niques. Such a hybrid visual programming language would permit the graphical creation

of programs (as in VP) from visualized pre-existing conventional code (as in PV). The

pre-existing conventional code could be adjusted external to the system, and subsequent

system sessions would then reflect these changes using PV techniques. The code could

then be configured interactively using VP techniques.

2.4 Presentation of Graphics

Only a limited area. of space is available on a graphic display, so that it becomes difficult to

present abstract information in a graphical user interface; the designer must be careful to

determine where abstraction is useful and where more information is required. Frey er al

investigated this “big graphic—little screens” problem in [12], wherein they showed that

the acceptable level of abstraction for given user tasks varies according to whether the task

is a “thinking task” or a “doing task.” “Thinking tasks” benefit from a higher level of

abstraction, whereas “doing” tasks are likely to require much less abstraction. HI-

VISUAL ‘89 [32] is an example of a highly abstract paradigm applied to the “thinking

task” programming process. The user selects a variety of tools, such as calculators, files,

pens. etc., from a “workspace environment” (which resembles a typical office). These ele-

ments are combined in flow graph notation to generate a program, which is then submitted

to the “secretary” sitting at another desk on the screen to be executed. This clever interface

is well-suited for an ofiice environment, but would be unsuitable for (for instance) a labo-

ratory environment. ISI-leE [49] is an example of another very specific “thinking task”

user interface (designed in this case for programming simulations ofhepatic cell behavior)

which would not be adaptable to the general control of real-time systems, although their
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method of specilying syntax via the shapes ofthc icons is excellent. In general, interfaces

which are designed specifically for a certain set of circumstances are difficult to adapt to

other circumstances, and in our research we have tried to keep our interfaces as general as

possible. Thus, less thought and abstraction are required when building Onika programs,

making the presentation of graphics in our interface “doing—task” oriented. We have also

avoided the traditional “flow-chart” presentation of graphics, which is highly wasteful of

SCFCGH SPBCC.

Beretta er a1 [2] point out that the designer is responsible for clarifying the meaning of an

icon, defining an appropriate symbol, designing the internal representation, and testing the

icon. If a visual programming interface is to be widely used, the icons and the environ-

ment must be meaningful to all potential users [61], otherwise, the performance of the

interface may be worse than that of textual systems [54]. However. people with different

cultural backgrounds will react to colors, shapes, and pictures in vastly different ways.

Icons appropriate for a person from (for in stance) the Western Hemisphere may be Viewed

as comic, obscene, or even insulting to a person from (for instance) the Middle East

[3 8][66]. We have eliminated the “guesswor ” from the design of icons by making all of

the features of the Onika icons user-definable. Colors and shapes of edges may be tailored

to suit the user’s tastes without affecting portability, and each ieon’s picture can be

replaced by a user’s preferred picture using a built-in painting program. Thus, the meaning

of the icon and its symbol are designed by the user as best suits him or her, eliminating the

need for testing the icon. This leaves the designer to worry about supporting a “universal”

internal model for any given icon, which in any event is transparent to the user, an.d 11ot

have to worry about such things as misuse or poor juxtaposition of colors [3][33][48]. We

have also added the capability for the user to display brief textual descriptions near each

icon, which has added to the usability of the interface; this agrees with similar findings in

[66].

MacLean et al propose user-definable bufions (essentially “maeros”) as a way of achiev-

ing “tailorable interfaces” which can suit the needs of “workers,” “tinkerers,” and “pro-

grammers,” all of whom have different goals when using the system (and all of whom

interact via a “handyman”). However, for real-time control systems, the type of program-

ming Varies greatly between the goal—oriented “workers” and the control—oriented “pro-

grammers,” neeessitating a different type of interface entirely for either level.

Nevertheless, user—definable buttons are available at all levels of Onika to further custom-

ize the interface.

Page 36 of 198

I 0 Chapter 2, Related Work

ABB|NC_O125792



2.5 Modeling Visual Programming

Chang [5] has developed an algebra for Visual languages relating the logical and physical

characteristics of a data object with the processes that transform it. This algebra is ade-

quate for data processing tasks (such as visualizing textual code), but is not applicable for

high-level goal-oriented application for rea.l-time control systems, where the “output” is

generally not a desired transformation of a data object, but instead is a transitory physical

action. In this case, a new “complete” high—level visual grammar is required which can

fully replace typical textual languages such as VAL 11 [63] while still hiding the details

from the user. Brown has shown in [4] that models for visual programming environments

can be created that are “complete.”

The pros and cons of using task models (i .e. goal-oriented) vs. engineering models (i.e.

control oriented) when building user interfaces are discussed in [13]. Where high-level

users are con.cerned, the task model is more appropriate; on the other hand, low-level users

generally find an engineering model more functional. We have resolved this problem

within Onika by providing both types of interface, with the programs developed in the

lower-level used as the building blocks for the upper-level code.

2.6 Syntax and Grammar

Data input can be a tedious and repetitive chore. For instance, when moving a robot to a

joint position, the user may have to enter several lengthy numbers to indicate joint posi-

tions, speed limitations, trajectory duration, etc. If the user is moving the robot to a partic-

ular point often, the entry of data for that point becomes particular annoying. To alleviate

this, many VP interfaces introduce the concept of “targets”, which contain frequently-used

information needed by procedures. For instance, a Cartesian procedure requires a Carte-

sian target in order to run, and a joint procedure likewise requires a joint target. The set of

procedure and target types is finite, and is generally hard-coded into the VP interface. If a

new job/target combination is required, the VP interfa.ce itself must be rewritten. Such

rewrites are expensive and can lead to poorly-written code. To solve this problem, Onika

uses a mechanism by which new target and procedure types can be added to the VP inter-

face without needed to rewrite the code. This mechanism allows for the modification of

target information as well.

In order to be useful, the syntax of a visual language should be made readily apparent to

the user. Many ways of defining the syntax of a language have been proposed

[25][32][42]. “Natural language” (NL) is often touted as a mechanism for defining gram-
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mar and syntax, but it is not clear that the natural means of communication between

humans is necessarily the best method for communicating between humans and machines

[28].l Most methods proposed for defining grammar and syntax were primarily designed

for data-processing and not real—time control; nevertheless, many of their elements which

involve icon presentation were adapted for use in Onika. The icons in the BLOX Method-

ology proposed by Glinert [23] can reference lower-level structures, and their use can be

constrained by color and edge information. His mechanism for presenting data is similar

to that of the Onika application-level interface. except that we have incorporated proper-

ties such as aliasing, synchronization. and How control to the icon elements in order to

operate more than one control system at a time.

DACRON [41] used flowcharts for defining actions in its goal—orie11ted visual interface for

direct knowledge acquisition. Each “icon” had exactly the same appearance as any other,

no matter whether it is a functional element or a structural element. Large amounts of tex-

tual information were essential to this interface in order to make any program readable,

and each icon with its accompanying text took up a premium of screen space. Programs

created using DACRON would not be easily understood by persons who did not speak

English, as the icons themselves do not provide any clues to their meanings. Nevertheless,

their ISD design philosophy [42] of analysis, theory formation, system design and imple-

mentation, and usability testing is sound, and we have used such an approach when devel-

oping Onika.

Lingraphicam, a Robot Progrannning Language which uses the DeVAR environment,

divides its iconic lexicon into six categories: actors. actions, placements, modifiers,

t/"tings. and other. Its icons h_ave both a visual component a.nd a textual component. These

icons are assembled in a storyboard format in order to create a program [37]. While excel-

lent in its domain, this package lacks several features necessary for truly reusable code for

reconfigurable systems. There are no clear visual clues in this system as to the syntax of

the icons, and success in assembling a program relies largely on the user’s knowledge of

English syntax. There is no function mentioned which can turn a newly-created program

into a “macro” for repeated use, and programs are limited to single-flow threads. All com-

mands are very high—level, and there is no graphical means for defining low—level details

of actions. At the other extreme, Robotica, a good example of a well—received robot inter-

face, is math—oriented and tailored to be of most use to engineers, making it too low—level

1. ln any event, “natural” is defined by the language and culture of the user, since the structures of

human languages can vary greatly, and therefore NL would not be suitable for any programming
environment that might have to span more than one culture.
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for non-technically-oriented users [56]. We have avoided these scope problems in Onika

by providing interfaces tailored to different types of users.

Negative feedback (wherein the user is not only told that two icons are incorrectly con-

nected, b11t the reason why such a connection is incorrect) is put forth in [34] as a mecha-

nism for eliminating errors when connecting icons in a multiple flow configuration. The

engineering level of Onika takes this one step further by doing all of the connections itself

automatically as icons are inserted into the configuration, thus eliminating the possibility

that the ports of different icons will be connected incorrectly.

2.7 Usability

One of the first graphical programming environments developed for general systems was

Glinert and Tanimoto’s PICT [24], a flow—oriented interface for lower-level programming.

One ofPICT’s main novelties lay in the fact that its designers were concerned that the user

should enjoy using the interface; i.e. not looking at programming as some tedious chore.1

Malone [43] has shown that users respond more positively to interfaces (and learning situ-

ations in general) if the task is perceived to be “fian,” and we have endeavoured to incor-

porate these ideas into our own Onika interface.

Glinert and Tanimoto also recognized differences in cognitive style, noting that users who,

by their description, were field—dependent were more likely to benefit from PICT [24].

(Field-dependent persons tend to rely on examples and external referents to solve prob-

lems, whereas field-independent persons tend to adopt a more experimental approach

[7][65].) Our own research and development environment is much more oriented to the

field-independent cognitive style, and we show later in this dissertation that Onika is more

intuitive to persons with this type of cognitive style.

2.8 Modularity and Hypermedia

Structured decomposition of higher-level tasks into lower-level tasks has recently been

heavily researched issue, resulting in architectures such as NASREM [1] and the Recon-

figurable Software Framework for Sensor-Based Systems [57]. Onika resides at the top

level of the latter of these architectures, which has an advantage over NASREM in being

more general for all sensor-based systems.

Truly modular software should be generic enough to be shared among various laborato-

l. The user-testing questionnaire for this interface included such questions as “In general, how

much fun did you find it to use PICT?" and “How thrilled would you be ifyou were asked to partic-

ipate in another PICT session?”
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ries. All previous interfaces designed for control-systems have been limited in that code is

generally not portable between systems, and must be rewritten during technology transfer.

The ideal interface would be able to “go out” across a network and retrieve code from

other sites, perhaps using the well-known Dexter Hypertext Reference Model [26][27],

and seamlessly incorporate this code into the system. The actual physical location of the

code would be hidden from the user, though retrievable if needed. The model could be

expanded to access remote hardware as well as software. allowing users access to equip-

ment otherwise out of their means of reach. Onika currently implements the Dexter Model

to a degree, and initial work has been perfoimed to expand Onika’s capabilities to perform

remote software access “on—thc-fly” during a programming session.

2.9 Environmental Interfaces

Environmental interfaces are those in which the visual presentation of information exactly

matches that of the workcell, and programs are specified “virtually.” An example of this is

Sandia National Laboratory’s excellent GISC interface [29]. GISC is a “program-by-

example” environmental interface wherein the user indicates the desired end-state of the

system, and the planning algorithms handle the generation of the necessary ‘robot motions.

Direct operator control is rarely allowed except when circumstances dictate, and then only

by highly skilled operators. GISC is an extremely effective strategy for worksite robotics,

but is not appropriate for use in a research environment, where the user needs to have

complete control over the manipulator’s actions down to the lowest level, and where many

“canned” applications might need to be used sequentially. GISC excels in detecting error

conditions (e.g. the manipulator crashing into an obstacle) by simulation of the plan before

run-time. We have incorporated a similar mechanism which allows us to simulate code

before running it, and work is proceeding on an environmental interface which will gener-

ate Onika code.

2.10 Summary

In this chapter, we reviewed the previous work in the area of visual programming environ-

ments, starting with the transition from traditional textual languages to graphical program-

ming. We discussed the relationship between visual programming and program

visualization techniques, the presentation of graphics, and previously used models for

visual programming computation, grammar, and syntax. We also discussed interface

usability, program modularity, technology transfer, and environmental interfaces.
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3. Terminology

3.1 Introduction

The Onika Visual Programming Environment operates within the context of a reconfig-

urable software framework (shown in Figure 1) developed at Carnegie Mellon University.

In this chapter, we review the terminology a.ssocia.ted with our framework as it pertains to

Onika. Those wishing for a more detailed description of the software framework for

reconfigurable multisensor systems and of the real-time operating system which supports

its lower levels should refer to [57] and [60].

In Section 3.2, we discuss the terminology relevant to Onika and its place within the

reconfigurable software framework. We then summarize this chapter in Section 3.3.

3.2 Framework Terminology

3.2.1 Control Modules

The lowest level of code which Onika Works with in the reconfigurable software frame-

work is the control module. A control module is an instance of a class of port-based

objects, having zero or more inputs and zero or more outputs. (Details of port-based

objects are given in [60].) Each control module is coded textually in a conventional man-

ner (i.e. using C). The control modules have a fixed format, which allows one control

module to be easily swapped for another without worry of violating intermodule commu-

nication protocol. These formats include procedures which the module executes when

changing states (i.e. from inactive to active, from cycling to inactive, etc.).

Besides being responsible for updating system state variables, the control module must

also be able to signal the graphical user interface Whenever appropriate. For instance, if a

module is designed to generate a trajectory over a certain duration for a certain job (as

defined in Section 3.2.5), then it must signal the configuration controller before turning
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itself off. In this way, the configuration controller will know to proceed to any subsequent

job, and will be able to differentiate between the case where a module turns itself because

the job is finished versus the cases where a module’s deactivation is passive or where the

module has gone into an error state. Control modules which signal the end of a job by their

deactivation are referred to as trigger modules. Control modules for which the deactiva-

tion does not affect the job in any way are referred to as passive modules. Both types of

modules are non-intersecting subsets of the general class of control modules. Modules

which are neither passive modules nor trigger modules do not, as a rule, deactivate them-

selves.

Certain modules require user input (e.g. a trajectory-generating module which requires the

endpoint of the desired trajectory), or communicate with other external subsystems (e.g. a

module which sends data to an external real-time data display). User input can be received

via the configuration controller, but external subsystem communication is done directly

from the module to the appropriate subsystem without going through Onika.

While modules can and do directly communicate to the configuration controller via the

connection between the RTOS and Onika, the configuration controller itself communi-

cates to the modules via. their control tasks. The next section discusses the relationship

between modules and tasks.

3.2.2 Control Tasks

A control task is formed from the union of exactly one control module and a file conta.in-

ing various task parameters, such as task frequency, names of inputs and outputs, and

other task-specific infomiation. The relationship between the set of tasks and set of mod-

ules is not one-to-one; a module may be referenced by several tasks, as shown in

Figure 2. By changing the parameters in the task file, the user can change the operation of

the task without needing to recompile or relink code. Certain parameters can even be

changed while the task is operating. Because each task refers to exactly one module, the

terms task and module tend to be used interchangeably. Within Onika, a task is represented

as a box with inputs on one side, outputs on the other, and its name, rate (if periodic or

synchronous), and state displayed in the middle.

Since a module may not have more than one instantiation at any one time within a given

control subsystem on the RTOS (as defined in Section 3.2.9), only one task which refers to

a specific module may be included in a subsystem. Consequently, the terms module and

task become interchangeable within the context of a subsystem. A trigger task is a task

associated with a trigger module, ‘wind a passive task is a task associated with a passive
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Task X1 Task Y

Module: X _ ' Module: X Module: Y

Frequency: 5 _ _- Frequency: 8 CTF Frequency: 2
lnputsz A, B ' Inputs: A, B ' - Inputs: P
Outputs: C Outputs: C Outputs: Q, 1

Module X Modme Y

101110000010 101110000010

100000001010 100000001010

101010101000 101010101000

100011111101 100011111101

010100101000 010100101000

Figure 2: The relationship between tasks and modules. Note that the task can “alias’

the names of the internal variables of the modules to more preferred names.

module. As before, these classes are non-intersecting and are subsets of the genera.l class

of control tasks.

Tasks are stored as object files and parameter files on a filesystem. The next section dis-

cusses these collections of available tasks in more deta.i1.

3.2.3 Task Libraries

A task library is simply a. di.rectory which contains task files and the control module object

code. The directory may be on the same filesystem as Onika, or may be on a remote file-

system (in such a case, Onika retrieves the remote files automatically usingftp). There can

be multiple task libraries opened for concurrent use within Onika. Onika uses an environ-

mental variable set by the user to determine the location of the desired task libraries. The

tasks within these libraries are parsed, and icons are generated “on the fly” for each valid

task. The icons of the tasks are then displayed in an appropriate window, as shown in

Figure 3 on page 28. By interacting with these icons using a mouse, the user can modify

task parameters, View the module code, or can spawn them on the RTOS. This latter abil-
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ity is discussed further in the next section.

3.2.4 Configurations

A configuration is a. set of tasks taken from a from a library which, when assembled

together and activated, will perform a specific job, such as “move to x.” This assembly is

performed simply by selecting the appropriate tasks from the library and inserting them

into a configuration workspace. For instance, a robot ta.sk, gravity compensation task, dif-

ferentiator task, and trajectory task might be assembled to form a joint motion configura-

tion, as shown in Figure 5 on page 29. In Onika, the common I/O ports shared between

tasks are automatically connected graphically. This is done by comparing the names of the

I/O ports as the icons are placed into configurations. These configurations can be saved for

future use.

If Onika is connected to the RTOS, then the configuration controller will command the

RTOS to spawn a task on a user-specified RTPU as it is placed into the configuration. The

tasks in the configuration can then be completely controlled by the user via the configura-

tion eontroller. Additionally, their parameters can be changed as is done in the task library.

Certain configurations are invalid; for example, a configuration that has two tasks which

generate the same output variable would be liable to race conditions, and hence is illegal.

Onika’s syntax procedures prohibit such illegal configurations from being created.

Each configuration can be viewed as a single object which performs somejob. These jobs

are discussed further in the next section.

3.2.5 Jobs

Ajob is a high-level port—based object, which refers to a specific confi guration of control

tasks. Whereas lower-level objects have definite input a.nd output ports based on state vari-

ables, these high-level port-based objects merely have ports to receive user-specified

input. For example, a job which performs motion in joint space requires data specifying

the endpoint of the trajectory. The instantiation of this target data within the software

framework is discussed in Section 3.2.6. Certain jobs may not require any such target

input, but may be self-contained.

In Onika, jobs are rendered as mnemonic pictures. Edges of a particular shape and color

which indicate the type ofjob are appended and prepended to each picture. When assem-

bling a subsystem (as discussed in Section 3.2.9) from these jobs, these edges dictate the

syntax of the high—level language, indicating which pictures can follow any given picture
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in the subsystem.

Jobs have only three major properties: a link to the configuration which they represent, a

description, and a class which specifies which edges are assigned to it, and hence the type

ofjob (e.g. complete job, Cartesian job requiring a target, joint job requiring a target. etc.)

Those jobs which do not belong to the “complete” class require some additional inforn1a—

tion to perform their operations. The type of additional information (if any) that a job

requires is generally determined from the target task within the configuration which the

job represents. For instance, if the configuration’s trigger task is a Cartesian trajectory

generator which requires a Cartesian endpoint, then the job linked to that configuration

will be in the “Cartesian job requiring a target” class. In the next section, we discuss how

these targets are implemented.

3.2.6 Targets

A target] is also a high-level port-based object, which supplies the data required by a job

(or, more accurately, the data required by the trigger task of the configuration linked to the

job). The graphical aspects of a target are similar to those of a job, with which they are

combined to form a complete action. The name “target” is perhaps misleading; targets

need not be (for example) locations in space, but can be as varied as a numeric index to

use in an internal case statement, or a filename to which data can be written.

In Onika, targets are represented as mnemonic pictures which have edges a11d classes

which are complimentary to those of job pictures. For instance, the right edge of a Carte-

sian job’s picture i.s the same color as the left edge of a Cartesian target’s picture, and the

edges interlock in j igsaw—puzzle fashion. When ajob is joined with an appropriate target,

the resulting combination is a completely-defined action (as defined in Section 3.2.8).

Graphically, both jobs and targets are referred to as onikonsz, and are stored in job dictio-

naries, which are discussed in the next section.

3.2.7 Job Dictionaries

Job dictionaries are similar to the task libraries presented in Section 3.2.3, except that the

store the relevant files for jobs and targets (referred to collectively as onikons) rather than

for control tasks. As with task libraries, the directory of the job dictionary may be on the

same filesystem as Onika, or may be on a remote filesystem. There can be multiple job

1. Also referred to as an object i11 our previous papers; we use the term target in this thesis to avoid

confusion with the term port-based object.
2. onikon = ”Onika icon.”
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dictionaries opened for concurrent use within Onika. Onika. uses the same environmental

variable set by the user to determine the location of the desired task libraries to also deter-

mine the location of the job dictionaries. The jobs and targets within these dictionaries are

parsed, and previously-stored mnemonic pictures are loaded in for each “onikon.” The

“onikons” are then displayed in an appropriate window, as shown in Figure 12 on page 36.

By interacting with these icons using a mouse, the user can assemble the job and target

“onikons” into actions which can be executed on a real-time control system. These actions

are further defined in the next section.

3.2.8 Actions

An action is the syntactically-correct combination of a job and a target. Certain jobs are

self-contained, requiring no target, and therefore are defacto actions themselves. For

instance, a job which causes a robot to move to the specifications of a 6 DOF trackball

does not require a target (as the “endpoint” of the trajectory is continually being updated

by the trackball rather than from some fixed data scrap), and hence is a complete action in

and of itself. A job which causes the robot to move to some specific location in joint space,

however, is not a complete action unless joined with a target which specifies the location

to where the robot should be moved.

Actions can be viewed as “steps” towards achieving some goal; e.g., “move to the peg,”

close the gripper,” “follow the input of the joystick,” etc. Actions are assembled in

sequential order in order to create goal-oriented control subsystems, as discussed in the

next section.

3.2.9 Control Subsystems

A control subsystem is a. collection of actions which are executed one at a time, and can be

assembled by a user. It has a definite beginning and end (represented in Onika by start-

and stop—light pictures, respectively). The subsystem can be thought of as a goal-oriented

program flow specific to a single real-time control system; for instance, “place all of the

pegs in the appropriate holes,” or “retrieve and place all of the parts necessary for assem-

bly of machine part P-2341.”

Subsystems may be “iconified” and stored as an “onikon” in job dictionaries for use in

other subsystems, allowing for the creation of routines of even higher levels. These iconi-

fied subsystems have graphical attributes identical to those of a job, so that an Onika user

may not even be aware that the “job” he or she is adding to a subsystem in lact represents

a collection of actions rather than a single ob; such differences are transparent to the user

Page 47 of 198

3.2 Framework Terminologv 21

ABB|NC_0125803



unless the user requests otherwise. If the subsystem is missing 21 target, then the resulting

iconified subsystem is implemented and displayed as a “job requiring a target.” Otherwise,

the “iconificd” subsystem is treated as a “complete job” (and hence a complete action).

Within Onika, the flow of a subsystem can be completely controlled through the use of

breakpoints, top— and bottom—test loops. and case statements. Vlfhen one or more sub-

systems operate in parallel, the resulting construct is referred to as an application, as dis-

cussed in the next section.

3.2.10 Applications

An application is one or more Subsystems executing in parallel towards some common

goal. For instance. one subsystem might cause a robot to place parts in certain locations

for another robot to pick up, while a second subsystem might cause the second robot to

pick these parts and assemble them in a certain order. Onika has a mechanism whereby

actions in two different subsystems can be synchronized’; that is, guaranteed to begin exe-

cution at the same time, freeing the user from needing to “tweak” action durations or add

“pauses” in an attempt to cause to both actions to be reached at a certain time.

In the next section, we summarize the terminology presented in this section.

3.3 Summary

In this chapter, we reviewed the terminology associated with the reconfigurable real-time

control software framework as it pertains to Onika, and discussed how Onika implements

this ‘framework.

The lowest level of the framework with which Onika interacts is the control module,

which is simply a real-time port-based object. The association of a control module with a

parameters file results in the creation of a control task, which performs some operation

such as “read data from trackball” or “perform forward kinematics.”

Control tasks are stored in task libraries, which Onika accesses to create icons on-the-fly

for each task. It then displays the icons in an appropriate window. The control tasks, which

execute in parallel, are combined (using their icons) to form configurations, which per-

fonn some real-time control function (such as “move to x”). A picture can be assigned to a

configuration, allowing it to be used at a higher-level as ajob.

Certain jobs require targets (for instance, the x in “move to x"). These targets also have

pictures assigned to them. The target and job pictures are referred to collectively as oni-

kons. Each “onikon” has color— and shape-coded edges to indicate syntax. “Onikons” are

Page 48 of 198

22 Chapter 3. Terminology

ABB|NC_0125804



stored in ajob dictionary, from which jobs and targets can be combined into actions.

An action is made up of either a job which does not require a target, or from a syntacti-

cally-valid job-target combination. Actions are assembled sequentially to form a control

subsystem (also called a.flow). Subsystems perfomi some goal-oriented function, and can

themselves can be assigned “onikons” so that they can be used in other subsystems trans-

parently. When one or more subsystems are operating in parallel towards some common

goal, the resulting structure is referred to as an application.
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4. Overview of Onika

4.1 Introduction

We now describe our visual programming environment (VPE), Onika, from the user’s

viewpoint. In this chapter, we present the various interfaces presented to the user, and

show that the language is “complete” with respect to conventional textual robotic lan-

guages. We also describe a complete Onika session for both levels of the interface, as well

as introduce the concept of distributed laboratories, which Onika supports in order to

access both hardware and software resources remotely. Our intention is to give a high-

level overview of Onika’s functionality and uses. Specific details as to the implementation

of any Onika capability are given in Chapter 5.

The Onika. visual programming environment has proceeded through several stages of

development during the course of this research. The original concept for a high-level

iconic programming language (IPL) evolved during the summer of 1991, in response to

the large amount of training required to operate laboratory manipulators. We developed a

prototype upper-level interface of this type, called “Bookwomi,” on a Macintosh Ilfx dur-

ing an internship at NASA Langley’s Automation Technology Branch in the fall of 1991.

Bookworm was able to generate AL code for NASA’s ROBSIM simulator’s use in operat-

ing a simulated Laboratoiy Telerobotic Manipulator. However, except for target icons, all

“jobs” in Bookwomi were hard-coded, with no easy way to expand them. Essentially,

BO0kWOl‘I11 was a fron.t—end interface for AL.

Development of the Onika lower-level interface began in January 1992. This work was

done on both the SunView and Macintosh platforms. It was decided that this level would

be developed simultaneously with both the evolving Reconfigurable Software Framework

and Chimera 3.0. Prototype work was completed in the summer of 1992, at which time the

SunView platform was abandoned in favor of the X platform (using XView library rou-
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tines to facilitate coding). Onika 1.0. comprising only the lower-level functionality of the

present—day Onika, was interfaced with the Chimera 3.0 Real-Time Operating System in

November of 1992 using a generic socket library we developed for this purpose. During

Onika 1.0’s development, the upper-level interface was designed on a Macintosh llci. This

level was ported to X in the spring of 1993, and made functional in Onika 1.1 in the fall of

1993. Error handling was added to this version as well.

Support for conclitionals and parallel structures was added to version 1.2 (released October

1993). Onika 1.2 also took full advantage of the Chimera c_'fig0 libraries to support ASCII

parameter files, rather than binary files. Version 1.2 was considered alpha-test, and was

demonstrated at various sites around the country.

Version 1.3, the beta-test version, was released in November 1993, and included a mecha-

nism for backwards-compatibility of code generated by Onika 1.2 or later. Version 1.3

went through many changes through May 1994 (version 1.38), including the addition of

synchronization tags, top-test a.nd bottom—test loops, breakpoints, as well as a much faster

execution loop. The current version, Onika 1.41, was released September 6, and includes

changes suggested by our user-testing.

We begin the overview presented in this chapter in Section 4.2 by introducing the lower

(or engineer is) level of Onika, wherein reconfigurable modules are combined to form

upper-level jobs. We then demonstrate the use of these jobs (along with their accompany-

ing rczrgets) to create applications in the upper-level of Onika in Section 4.3. In

Section 4.4, we show that the grammar and syntax of the upper level interface is complete

with respect to the textual robotic language Extended AL described in [46]. Demonstra-

tions of Onika’s use in hardware and software technology transfer to support a distribufed

laboratory are given in Section 4.5. Finally, in Section 4.6, we summarize the Onika inter-

face and its uses.

4.2 Lower Level Interface

In the lower level interface of Onika, upper level jobs may be created by combining cer-

tain modified port—based objects called “tasks” into a format resembling that of control-

block diagrams. Knowledge of textual coding is not required, but merely a good working

knowledge of control theory. These configurations of tasks can be executed and fully con-

trolled from the lower level interface. In this section, we give an overview of the lower

level interface.
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MODULE rvel_gen

DESC reference velocity generator

SVARALIAS Z_Y=Q_REF

SVARALIAS Z"_Y=Q"___REF

INCONST NDOF

OUTCONST none

INVAR

OUTVAR

TASKTYPE periodic

FREQ 2 5 0

Code 1: An example parameter file for a task. Onika uses these files to create icons “on

the fly” for each task.

 
4.2.1 Combining task routines

The basic unit of combination at the lower level is the task. As mentioned in Section 3.2.2,

a task is a modified control module. The module code by which the tasks process with

their input va.lues is written entirely in text. The tasks themselves, however, are repre-

sented by a single block-form icon having a certain number of input and output pins. The

mechanism by which the task performs its function is hidden from the lower level user.

A parameter file is associated with each task’s module (shown in Code 1). This parameter

file completely describes the task. When Onika is executed, it loads in all available task

parameter files on the system. These tasks may be located on the local file system, or may

be on remote file systems, in which case Onika will useftp to retrieve and link the mod-

ules. It then creates icons on the fly for each task from information in the file. These icons

are presented to the user in an area known as the task library, shown in Figure 3. To create

a job by combining tasks, desired tasks are selected on the lexicon, and a copy is then be

placed in the combination area. This combination area is called the job canvas. The spe-

cific rules for placing tasks on the canvas are discussed in Section 4.2.2.

When a task is placed on the canvas, it is rendered at the point where the user lets up on

the mouse button (as shown in Figure 4). Onika then checks the pins of the new tasks and

detennines whether each has a similar variable name to other pins on the canvas. If so,
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Figure 3: Clockwise from the top lelt: The Onika configuration canvas, the Onika

task library, and the Onika control panel. Tasks are presented to the user in the

library; a pop-up menu helps the user locate tasks in libraries containing many tasks.

There is no limit on the number of open libraries within Onika.

 
Figure 4: The user has placed a PUMA sirnulator task onto the canvas. Tasks

which would conflict with its operations are “greyed—out"’ in the library, to

prevent the user from placing them.

then these pins are graphically connected to each other, to illustrate to the user that these

tasks are now connected in the supporting real—time operating system (Figure 5).

Onika can be actively connected with the real-time operating system. In such a case, as

each task is dragged to the job canvas, it is spawned on the supporting RTOS. The user can

toggle the state of activity of the task, can move the tasks icon around on the canvas with-

out affecting the system otherwise, and can delete (and replace) the task. Furthermore, a
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Figure 5: Tasks are automatically connected together as they are placed into

the confi guration.

combination of tasks on the canvas can be saved at any point for later recall. Multiple eon-

figurations may be open and executing simultaneously during an Onika session.

If Onika is connected to a RTOS. tasks are automatically spawned on this system when

placed on the canvas. (If the connection to the RTOS is performed mid-session, then

Onika will instruct the RTOS to spawn any existing tasks on the canvas if they are not

already spawned within the RTOS.) Ifmultiple CPUs exist, the user will be prompted as to

the CPU upon which the task should be spawned. Once a task has been spawned, it can be

“cycled” (i.e. turned on) by a simple mouse-click upon the task’s icon. A task may be

deactivated in the same manner, or cleared if it goes into eiror. Selected tasks may be

deleted from the canvas using the “delete” key. Deleted tasks are “killed” on the a.ssoci-

a.ted RTOS.

Certain tasks (in general, trigger tasks) require additional input before they can cycle. For

instance, a trajectoiy task requires an endpoint and a duration. These tasks are written to

send a request to the user when the latter tries to activate them. Onika intercepts these

requests, formats them, and presents them to the user in a window, as shown in Figure 6.

The user enters the necessaiy information and sends it off to the RTOS. Onika will check

to make certain that the entered values are within established boundaries before sending

the information back: to the RTOS, and will prompt the user to re—enter the information if it

is outside the boundaries.

A variety of feedback is available to the user while connected to the RTOS. The status
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and requires an endpoint and a duration to begin execution.

he final task is a trajectory task.

 
Figure 8: The Onika state variable display window.

window allows the user to View the pcrfomiance statistics of the tasks, as well as the CPU

usage (Figure 7). The user can also ask the RTOS to check the CPUS for memory corrup-

tion (an invaluable tool for debugging modules), save the current readings to a log file, or

switch to Viewing another subsystem. This information is not updated in rcal-time, but
41.2.

instead Wl‘1€1‘t€‘v'61‘ sorieunr ‘ " " “‘ " '4 "c"y ~ .A. -9. «I1A.A ~-I\ lb spaw LL.-u, nu Lu, e_y

l\ 4.,A /I _
3 Ur. a L'd.

H--. .4 Fkd ...

pO1ta. ‘ice OCC‘u
ti 1

U}g or

deactivated, etc.) or whenever the user pushes tie “Retrieve” button. Similarly. the state

variable readout window displays the Values of selected state variables at appropriate

times or whenever the user specifies (Figure 8). Real—time display ofvariables is also sup-

ported within our reconfigurable software framework, but is implemented externally to

Onika, to decrease the bandwidth which Onika must process. This is discussed further in

Section 5.8.3,

The user may bring up a. panel within which he or she may change the modili er values

specifi ed in the parameter file, both in the lexicon and on the canvas, as shown in Figure 5.
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Figure 7: The Onika status window.

Besides being able to change the frequency of the task, the user. is also able to change the

names of the state variables associated with the tasks. This is especially useful when the

programmer is using code developed at another site, where the naming conventions may

11ot match his or her own laboratory’s conventions. The user can enter the “desired” name

of the variable beneath the “hard-coded” name of the variable. The modified task can then

be used immediately without needing to recompile. or reload the code,

4.2.2 Task combination rules

Within a task, any state variable can be declared as any of the following types: in-const,

0ut—c0/1st, in—var, out-var, in-both, 01' 0ut—b0th. Those of the cons! form are constants

which are read or written at the initialization of a task, and never again accessed by that

task. Those of the var form are read every task. execution cycle, and so the values are

assumed to change. Those of the both form read or write some initial value from the state
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Figure 9: Tasks parameters can be changed easily within Onika. The names

in the 1/0 ports ca11 be aliased without needing to recompile code.

Variable table, but the values are assumed to change thereafter. It is possible that one task

may declare a state variable to be constant, while another might declare it to be a variable.

This might lead to certain problems. It would not make sense to have a task that expects,

for example, a constant input to be connected to a variable output. To avoid such a possi-

bility, a series of connection rules have been devised. These include: all types of inputs

may connect with each other (that is, share the same state variable); no type of output may

connect with another, to avoid race conditions; and inputs requiring initial values (in-

const) may not connect to outputs which do not supply them (out-var).

Although a task might be considered connectable in the state variable sense, it still may be

“unplaceable” due to conflict of modules or names. This is because the task names are

used for task identification. Furthermore, running a module twice concurrently would be

redundant and a waste of system resources. Tasks within the lexicon which cannot be

legally placed on the canvas due to name or module conflicts are dimmed and made unse-

lectable.
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4.2.3 Creation of higher level routines

Before the combination of tasks can have be saved as a job, there must be exactly one out-

put instance of each state variable used in the configuration. As mentioned in section

Section 4.2.2, this is to ensure that each module can receive meaningful input.

When the user saves a configuration as a job for high-level users, Onika must determine

whether or not the job routine to be created will require modifiers or not. In order to do

this, Onika checks the configurations for tasks which require user input (typically a trigger

task, such as the end location of a trajectory). If a task requiring user input is found, then

any values it will need in the future as an upper-level job will be determined from the

modifier icon which follows its icon. A job which requires a modifier is referred to as an

action requiring a target, whereas a job which requires no modifiers is simply an action.

The modifier of a job is refeired to as a target.

Users can create (and modify) the images ofj obs and targets using the icon definition win-

dow (shown in Figure 10). The visual cues indicating the syntax of the icon are added

automatically by Onika. Once a job routine or target has been created, it is available for

use in the upper level interface. The use ofjob routines and targets in the upper level is the

subject of the next section.

4.3 Upper Level Interface

Similar to the lower level interface, the routines which may be used to create upper level

applications are displayed to a user in one window, and assembled for later execution in

another. Modifying icons (targets) are displayed in the same window as the available rou-

tines. This provides an easy mechanism for modifying any given routine. Jobs and targets

are combined into a serial goa1—oriented application at this level. The application can be

saved at any time for later recall or modification. During execution, the task configurations

associated with the jobs in the application are loaded into Onika and Chimera. The tasks

are all spawned at the beginning of the application, and activated or deactivated as needed.

As each job is completed, the system reconfigures into the next job.

Programmers at this level need not know anything about textual programming, controls,

or how the controlled machinery operates.

4.3.1 Combining job routines

The basic unit of combination at the upper level interface is ajob. A job is created at the

lower level by combining tasks together (see Section 4.2.2). This functionality is hidden
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Figure l0: The user is saving the configuration of Figure 5 as a job, creating a

picture for it. Onika has determined that this will be a “joint space job.”

from the uppe1'—leVel user, however. A job may or may not require a target, depending on

how it was defined at the lower level. Jobs which require targets are referred to as actions

requiring a target, whereas jobs which do not require targets are referred to simply as

acrions. An action /‘eqzm-ing a target icon must be followed by exactly one target icon.

A target icon could be created for any state variable from the global state Variable table. A

preference file defines the types of targets which Onika will recognize. Targets can be cre-

ated at both the lower and upper levels. The user supplies both the target type and its

Value(s) (Figure ll). These VE1l11CS are used by Onika when t.hejob’s trigger task is cycled,

so that the user need not enter the input during the execution of the application (unlike the

lower level, Where information is entered by hand each time the task is cycled).

All icons are presented to the user in a job a'fcti0m.zry, shown in Figure 12, Each icon’s

picture is framed in a structure which has left and right edges of a certain shape and color.

These edges are indicators as to which type oficon can sit next to another. Onika will not
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Figure ll: Entering the information for a joint target.

allow non—interlocl<ing icons to be placed next to each other. The icons may be drawn

from the local file system, or automatically retrieved by Onika from remote filesystems.

Multiple dictionaries may be open simultaneously during a session.

All targets have certain Values associated with them, which can be changed by the pro-

grammer. These can be viewed and changed, both in the dictionary and in the application

workspace.

4.3.2 Icon combination rules

Applications are assembled from the icons displayed in the job dictionary. This assembly

is done within an application workspace. Icons are inserted from the dictionary into the

application. If its edges match those of its potential neighbors, a new icon can be inserted

between two icons. If the icon matches its left neighbor but not its right, a space is inserted

between it and its right neighbor. The proper bridging icon can be inserted later into this
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Figure 12: The Onikajob dictionary (inset: the Onika control panel). Job and

target icons are sorted according to type, and presented to the user with a

description of their function.

gap (Figure 13). This process continues until the application is completed to the uscr’s sat-

isfaction. Icons may be inserted anywhere into an application, provided that they interlock

properly with their potential left neighbor. Icons can also be deleted, or their information,

descriptions, and images modified. An application will wrap—around at a certain length.

Multiple applications can be opened at any time.

At n1n—timc, applications can be completely controlled from within Onika, using a sub-

system signaling mechanism discussed in Section 5.9. Onika will create any needed con-

nections to the RTOS, and allows the user to pause applications, recover from errors, jump
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Figure 13: An application in the process of being built. The “go light” and “stop light”

icons indicate the beginning and ending of the application, respectively. The job created

in Figure 10 has been inserted into the application; since i.ts right edge doesn’t match

the left edge of the icon which follows it, a hole was inserted. The hole must be filled by

ajoint target icon which starts out yellow and ends up red.

over jobs, assign breakpoints, or abort applications. Additionally, RTOS status and state

variable feedback is displayed to the user.

Parallel applications are those applications which have two or more flows that can exc-

cute concurrently. The user declares an application to be a parallel application having 21

flows when creating a new application. Icons are placed within the Various flows as nor-

mal. At run-time, Onika makes certain. that enough connections to the RTOS exist to exe-

cute concurrent subsystems. Jobs within different applications can be synchronized so that

they are guaranteed to begin execution together (Figure 14). This is a feature not found in

any other real-time control system programming language, both visual or textual.

Applications created by combining jobs and targets can have icons assigned to them and

can be used in other higher-level applications. Whereas “incomplete” applications (i.e.

those with some target gaps unfilled) cannot be executed on a system, they can be iconi-

fied and used in other applications. “Incomplete" applications can be implemented as

actions requiring a target, provided that any gaps within the incomplete application refer

to the same type of target consistently.

Conditional branches are the least developed structural elements in Onika. They are

implemented in the following way: when the user creates a new application, he or she
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Figure 14: A complete parallel application. The two jobs marked “b” are synchro-

nized so that they will begin execution at the same time, as are those marked “a."

indicates that the application will be a conditional application having 17 branches. The user

is then presented with /7 application flows in the application window. into which he or she

can place appropriate icons for case 0, case 1, ..., case n—l. The entire application is then

“iconificd” and stored in the job dictionary. When used in another application, the flow

taken in the nested conditional application depends on the return value of the job which

executed before it. Future work on Onika will address a better means for presenting and

implementing conditionals graphically.

Onika also includes support for both top-zest and bottom-test loops. Two icons are

“marked” as the starting and ending points for the loop, and exactly one of these icons is

additionally marked as the test icon. When that icon’s job completes itself, Onika analyzes

its return signal to determine whether or not control should be passed to the other icon in

the loop, Figure 15 shows an application with a loop and several breakpoints.

No—0pera1.‘ion [cons (“no-ops”) are built into Onika as well. When encountered in an appli-

cation, Onika treats them as complete jobs having a duration of zero. No—ops always

return a “LOOP TRUE” signal if used as the test icon in a loop structure (allowing the

easy creation of repetitive motion loops) and a “GOTO FLOW 0” signal if used before a

conditional application icon. They are also Very useful for spacing out icons to make a

program more readable, and function like normal icons in all respects.

4.4 Completeness of the Upper Level Language

In this section, we compare the extended AL robot language developed for NASA’s ROB-

SIM (Robot Simulator) program [46] to the syntax and grammar of Onil<a’s upper level,
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Figure 15: This application has a. bottom-test loop tagged “assemble.” It also has

three breakpoints within the loop so that the user can step through the jobs included

in the loop.

and show how all of AL’s constructs would map into Onika’s job—target visual language]

We have chosen AL as being representative of textual robotic languages in general. Its

program commands are nearly identical to those of VAL ll [63], for instance, except that

the names of the AL commands are slightly more intuitive, and hence are used here. It

should be noted that Onika’s grammar is expandable beyond the commands listed here,

whereas textual languages are, for all intents and purposes, static constructs. There are

many other advantages to using Onika, including multiple subsystem control and real—time

control.

4.4.1 Block statements

4.4.1.1 BEGIN-END

This is equivalent to the Start and Stop icons in Onika, which act as delimiters for applica-

tions, as well as for “case” blocks.

4.4.1.2 COBEGlN—COEND

This functionality is also covered by the Start and Stop icons. In AL, the first commands

are guaranteed to start together, but no other synchronicity is possible beyond counting up

job durations and adding appropriate pauses to certain arms while other arms finish up

prerequisite tasks. With the synchronization markers available in Onika, we eliminate this

guesswork, so that any two jobs in parallel flows can be guaranteed to execute simulta-

l. Certain extended AL constructs are not. included in this comparison, since they have no parallels

within our system. (for instance, arm initialization is never done from Within a program, since it

needs only to be done once after the robots are powered up). Numeric constructs are not compared,

since all Onika numeric constructs are targets, the types of which are defined in a preference file
and are not hard-coded.

Page 65 of 198

4.4 Completeness ofthe Upper Level Language 39

ABBlNC_0125821



neously.

4.4.2 Joint control statements

4.4.2.1 DRIVE JOINT <i> ofARI\/I <a> TO <theta> WITH DURATION=<d>

This is a simple action/target combination, where “DRIVE JOINT <i> of ARM <a>" is

the action1 and “TO <theta> WITH DURATlON=<duration>” is the target. The target can

easily be redefined to include force/torque limits, which is sometimes done in AL as part

of the DURATION vector. The joint command of Section 4.4.2.2 is preferable, since it is

more general.

4.4.2.2 DRIVE JOINT <i> of ARM <a> USING <p> TO <theta> WITH DURA-

TION=<d>

This is a variation on Section 4.4.2.1, where <p> is a polynomial to use during transit. At

first, we included the “USING <p>” as part of the target, but truly modular code demands

that this be part of the action instead (we cannot assume that the writer of the trajectory

module has include cases for each type of polynomial). Of course, the user can redefine

both the target and j ob to make <p> part of the target.

4.4.3 End effector control (Cartesian control)

4.4.3.1 MOVE ARM <a> TO <X> WITH DURATION=<d>

This is a simple action/target combination, with “MOVE ARM <a>” the action, and “TO

<x> WITH DURATION=<d>” the target (with the same notes as to force/torque as

Section 4.4.2.1). In AL, <x> is simply a position Vector. We use normal, approach, and

position vectors in our Cartesian targets, making our interpretation a little more general,

and removing the need for Section 4.4.3.2.

4.4.3.2 MOVE ARM <a> TO <X> WITH YVECTOR=<y>, DURATION=<d>

This was a response on NASA’s part to the command of Section 4.4.3.1 being unable to

orient the Wrist. Since we use normal, approach, and position vectors in our Cartesian tar-

gets, Section 4.4.3.l is functionally equivalent to Section 4.4.3.2 with regard to our

defined targets (other users may choose to define their target differently). In any event,

“MOVE ARM <a>” is an action, and “TO <x> WITH YVECTOR=<y>, DURA-

TION=<d>” is the target.

1. Note that the arm identifier is always included as part of the job in Onika, and is not a “parame-

ter.” An aliasing mechanism allows the user to select (with one mouse-click) the arm to be used if
the default arm described in the job’s configuration is inappropriate.
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4.4.3.3 MOVE ARM <a> TO <X> USING SENSOR AT </00> WITH VELOC~

ITY=<V>, DURATlON=<d>

A specialized NASA command, based on a. simulated camera (the “sensor”) mounted on

the arm a. distance of <loe> along the x—a.xis from the end-effector. We can postulate a

more general case where <loe> is a Cartesian 6-element Vector. “MOVE ARM <a> TO

<x> USING SENSOR AT <loe>” is the action, “WITH VELOCITY=<v>, DURA-

TION=<d>” is the target. The sensor may be part of the job’s internal subsystem, or may

be part of external subsystem; however, neither interpretation changes the action/target

interpretation. This command is somewhat obsolete. In ou.r system, we have defined ajob-

target combination that, if written in AL, would possibly be defined as “TRACK TAR-

GET=<x> WITH ARM <a>_,” with “TRACK WITH ARM <a>” being the action, and

“TARGET=<x>” being the target (perhaps a the name of a file having a description of the

item to be tracked).

4.4.3.4 MOVE ARM <a> USING <Xp> WITH DURATION=<d>

The Cartesian endpoint for the trajectory is defined by analyzing the six polynomials in

<xp> (for x,y,z,I:p,y) and the duration; i.e. “Follow this path. for <d> seconds.” The action

is “(PATH)MOVE ARM <a>” and the target is “USING <xp> WITH DURATION=<d>.”

4.4.4 Base control

This extended AL command has been omitted from our library, since a base is simply

treated as more degrees-of-freedom in our system, or is simply treated as another robot.

NASA included these base commands so that they would not be limited by the 10-DOF

constra.int in their ROBSIM system. Onika (and Chimera, the real-time operating system

which Onika uses) have no such limitations.

4.4.5 Hand control

4.4.5.1 CLOSE HAND <a>

This is a. simple self-contained job requiring no target. In fact, the job has only one task,

which closes a particular gripper.

4.4.5.2 OPEN HAND <a>

This is a simple sell‘-contained job requiring no target. As with Section 4.4.5.1, the job has

only one task, which opens a particular gripper.
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4.4.6 Pause control

4.4.6.1 PAUSE ARM <a> WITH DURATlON=<d>

This is another actio1L’target tandem, with “PAUSE ARM <a>” the action and “WITH

DURA'I‘lON=<d>” the target. Note that are in fact many ways to pause in Onika. For

instance, one arm may pause by reaching a synch tag, waiting for the other arm to reach its

synch tag in its flow. Pausing can also be enforced by breakpoints, or by pressing a

“pause” button during execution.

4.4.7 Flow Control Constructs

4.4.7.1 GOTO </abe/>

Not strictly implemented in Onika. The user can always skip the current step by pressing a

button, and go to the next step. In a future version of Onika, we may add a “skip to” button

to the execution control panel, which could be used during run-time. Actual GOTO fune-

tionality can be and should be achieved using conditionals. GOTO commands are cryptic,

and their use even within textual programs is generally discouraged. We have avoided

adding them to Onika so far, since their functionality is fully reproducible with the proper

use of eonditionals.

4.4.7.2 IFfl'HEN/ELSE

Onika fully supports this; in fact, in Onika conditionals are implemented as “case” state-

ments, making them more general. When a conditional application icon is encountered

within a higher-level application, the return value from the previous action is used to

choose which “case” is followed at run—time. Future work on Onika will enhance the

implementation and presentation of eonditionals.

4.4.7.3 WH/LE-DO

In Onika. the user marks two icons within an application flow with a unique tag, and

chooses whether to make this a top-test or bottom-test loop. When the test icon is reached,

its “finished” signal is analyzed for a “keep looping” or “continue” element, and execution

How is updated appropriately. Note that the trigger module in the end job must be pro-

grammed to return this signal when appropriate.

It should be noted that the ROBSIM extended AL has only top-test loops, not bottom-test

loops, whereas Onika has both top— and bottom-test loops.

In the next section, we demonstrate how Onika has been used to research and develop the
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concept of a distributed laboratory.

4.5 Distributed Laboratories and Technology Transfer

4.5.1 Overview

The Onika visual programming environment has been used to research the concept of dis-

tributed lab0rat0ries[57][20], wherein both software and hardware resources can be

shared across a network without needing to rewrite codel. Since Onika fully supports the

Chimera methodology given in [16], differences in systems and code can be eliminated,

leading to greater code compatibility between sites. However, a lack of hardware

resources at a site can still lead to an inability to incorporate new ideas and technologies.

To alleviate these problems, we propose the development of distributed laboratories to

make both software and hardware readily accessible to researchers across networks such

as the lntemet or the World—Wide Web. Resources for use in distributed laboratories

would be accessed by using hypermedia mechanisms.

We define the distributed laboratory as having the following qualities:

- Distributed soflware libraries: Reconfigurable real-time software mod-

ules are stored in object databases at Various sites on the network. By using

hyperlinlcs, retrieval of the soflware is transparent to the user regardless of

its physical location.

° Distributed hardware resources: Various real-time control systems are

accessible via the network on a time-share basis, so that a multitude of sites

have access to equipment otherwise unavailable.

The advantages of a distributed laboratory include:

- Increased technology transfer: Software developed and debugged at

one site can be stored in a software library, making it immediately available

to other sites.

- Zero logical distance: The interface to a distributed laboratory need not

be running on the same machine, nor even on the same filesystem, as their

communications are all via hyperlinks across a network. The interface may

be running on a machine across the room, or on another continent, without

diminishing its ability to control a real-time system. Programmers inti-

l. Also referred to as virtual laboratories in previous publications.
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mately familiar with their interface need not modify it to control any

remote systems.

- Expandabz'lz'ty: New hardware (remote or local) can be integrated into

the system and controlled quickly. This can be done by replacing or adding

a software module to an existing application, and leaving the rest of the

modules in the application untouched.

- Transparent simulation: Using reconfigurable software modules, any

real-time program can be simulated without changing any of the real-time

code, as each hardware module has its simulated equivalent readily avail-

able in a software library.

° Reduced costs: If a participating site wishes to expand on the research

of another site, but lacks the proper equipment, they can make use of the

hardware resources ava.ilable at a cost substantially lower than purchasing

the equipment themselves. Furthermore, the site need not waste valuable

time and money redeveloping code, since it would be available in one of

the software libraries.

In the next two subsections, we show how Onika has been used to demonstrate the useful-

ness ol‘ distributed laboratories with respect to both hardware resources and software
resources.

4.5.2 Shared Hardware Resources

Onika has been used several times to control a manipulator located hundreds of kilometers

from the user, most recently in several demonstrations to top—level administrators and sci-

entists at Sandia Nationa.l Laboratories. A Sun 4 workstation running X1 1R5 with Internet

access was made available to us at Sandia, on which Onika could be launched. The manip-

ulator to be controlled (a PUMA 560 running in a Chimera environment) was located

2,600 kilometers away at Carnegie Mellon University.

Onika can either be run on the same file system as Chimera, or on a remote filesystem. In

the latter case, Onika runs faster, but must upload any executables it compiles to the Chi-

mera file system. In the former case, the executable is created on the same file system as

Chimera, but the entire Onika display must be transmitted over the network to the host

workstation (in this case located at Sandia). Both schemes have been used i11 re-mote

demos in the past.
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Figure 16: The distributed laboratory setup demonstrating control across a network.

Upon launching, Onika searched the user preferences and found two hyperlink anchors to

libraries which the programmer used, one located “locally” at Carnegie Mellon, the other

at Sandia. Using these hyperlinks, Onika downloaded both libraries from the network. For

security reasons, the programmer was prompted for a password before being able to

access the Sandia library. Once downloaded, Onika linked the required modules into a

Chimera executable, which was stored in a Chimera-accessible location. Iconic hyperlinks

to the modules were created and displayed in the libraiy window.

The programmer then launched Chimera, and Onika connected to it with the click of a

button. Using modules from both Sandia and Carnegie Mellon. the programmer created a

joint motion job and activated all of its modules in less than a minute. Cameras located

around the manipulator at Carnegie Mellon gave the programmer several different views

of the manipulator, as l28xl28 greyscale images were transmitted over the Internet at a

rate of 10 Hz. The setup is shown in Figure 16.

Subsequently, the programmer used Onika to successfully demonstrate reconfiguration

into (and the execution 00 a pre-saved Cartesian motion job, and execution of an applica-

tion which assembled a small DC motor. A demonstration of error recovery was also

given, during which the “panic button” of the manipulator was pressed, interrupting a joint

trajectory. Chimera successfully trapped the error, and notified Onika. Onika then auto-
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matically cleared the error, and the robot was reactivated and completed its trajectory.

Simulation of an application was successfully demonstrated by replacing the PUMA mod-

ules in an application with a simulation module and re-executing the same code. A syn-

chronous module within the configurations passed the current joint values of the simulated

robot to an external package which displayed graphical representation of the robot.

Semi-autonomous visual servoing was also demonstrated. The user clicked on a poi11t in

the window showing the camera View of the laboratory, dynamically creating a target con-

taining the location of that point in the vision plane. The manipulator then immediately

moved to the point specified by that target.

Throughout the demonstration, complete control was assumed at Sandia. Researchers on

location at Carnegie Mellon were available to “power up” the robot when needed (a neces-

sary safety precaution during these experimental demonstrations) and to intercede if the

robot showed signs of instability in this experimental set-up, but otherwise did not inter-

fere with the demo in any maimer.

4.5.3 Shared Software Resources

The nature of the generic software modules in our laboratory’s libraries is such that most

of the code required t.o get new systems operating is already available to us. Using Onika

and Chimera to assemble and control these modules, a previously-unused mobile robot

(left over from a graduate student’s project several years previous) was brought on line

and visual servoing programs executed on it in less than two days. The only module which

needed to be created for the mobile manipulator was the one that actually communicated

with the robot’s hardware; other modules, such as trajectory, kinematics, and visual servo-

ing modules, were already available. A Utah-MIT hand located in our laboratory has also

been brought on line in the same fashion, and no less than six other systems (including

two Adept robots, two American robots, a Stewart platform, and the Reconfigurable Mod-

ular Manipulator System) either have been or will be brought on line over the next several

months, bringing a total of eleven systems under shared software control in our laboratory.

The software libraries at Carnegie Mellon were recently used to launch new robotic sys-

tems at the Air Force Logistics Center (AFLC) in Texas. AFLC obtained the Chimera and

Onika software and, using the software libraries, was able to get its systems up and run-

ning in less then two days. As enhancements to the Chimera real-time operating system

and to the task modules have been made, AFLC has been able to download and immedi-

ately use these upgrades. Other laboratories are currently in the process of obtaining the
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Chimera and Onika packages as well. As these sites do research using the reconfigurable

software framework for reusable software modules, the task libraries available throughout

the user community continues to grow.

4.6 Summary

The Onika visual programming environment presents interfaces suitable to both engineers

and non-technically-oriented persons, without a loss of scope in the language. In the

lower-level interface, programmers combine icons representing reconfigurable generic

tasks into ob configurations. These job configurations can be fully controlled from within

Onika, and feedback from the supporting RTOS is displayed to the user. A background

syntax checker prevents certain impossible configurations from being created. The jobs

created at this lower-level can be represented as high-level icons, with Onika automati-

cally determined the syntax of the newly-created icon. These job icons can be combined

with target icons to create goal-oriented applications in the upper level. Both the syntax

and grammar of the upper level language are expandable, and the fiinctionality of general

robotic textual languages can be completely supported within Onika. The syntax of the

upper level icons is made clear from visual cues, and a. background syntax checker elimi-

nates the possibility of creating syntactically-incorrect applications. Applications can be

executed and completely controlled within Onika, and the user is given appropriate feed-

back during execution. Applications can be “iconified” and used in higher-level applica-

tions. Conditionals, parallel branches, top- and bottom—test loops, and breakpoints are all

supported within Onika. Additionally, jobs in parallel—executing applications flows can be

synchronized, so that explicit pause commands are not needed to synchronize a parallel

application. Onika supports both shared hardware a.nd software resources within the con-

text of a distributed laboratory. The software libraries developed by our laboratoiy are

currently in use at various other sites around North America. Onika fully supports, and is

fully supported by, the Chimera 3.2 Real—Time Operating System.
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5. Implementation of Onika

5.1 Introduction

In this chapter, we discuss the specifics of the mechanisms which implement the function-

ality of Onika ].4l, as well as pointing out possible directions for future work. For real-

time control of tasks, Onika fully supports, and is fully supported by, the Chimera 3.2

Real-Time Operating System [59]. Both systems were developed concurrently under the

same reconfigurable soltware architecture, ensuring proper interaction between the RTOS

and the interface [5 7].

In Section 5.2, we describe how control tasks are retrieved and represented within Onika,

as well as how allowances are made for different naming conventions between different

laboratories. In Section 5.3, we describe how configurations can be built and cycled on the

RTOS. The upper level dictionary is presented in Section 5.4, and the creation of applica-

tions is discussed in Section 5.5. Icon creation is discussed in Section 5.6, whereas user

preference handling for both the upper and lower level is presented in Section 5 .7.

Section 5 .8 introduces the various communication mechanisms developed for Onika. The

execution loop is discussed in Section 5.9, in which we also discuss how the simulation of

applications is achieved in Onika, while error handling is discussed in Section 5 .10. We

discuss the portability of the Onika algorithms to other systems in Section 5.11. Finally, in

Section 5.12, we summarize this chapter. We regret that the source code for Onika cannot

be included in the appendices to this dissertation, as is normally done for code developed

during the course of research, since Onika exceeds 25,000 lines of code, and therefore

would require nearly a thousand pages to print out.

5.2 Task Representation

In this section, we discuss how tasks represented, implemented, and used within Onika.
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We also resent our “aliasinv” mechanism which allows code eneratcd at sites with dif-D 9

ferent namina conventions to be used immediatel without needino to recom ile or relinkC y D

coded

5.2.1 Loading tasks

Onika may be launched in such a way as to automatically search for a Chimera connec-

tion, or the user may choose to run an Onika session without any Chimera connections. In

the prior case, Onika asks Chimera for the locations of desired task software libraries; in

the latter case, Onika gets this information from t.he UNIX environmental variable

$ONIKA_LOCAL. These locations may refer to directories on the local file system, or may

refer to directories on remote file systems on the network (as discussed in Section 5.8.4).

Given the locations of these libraries, Onika searches them for files with the suffix .rm0d.

These files contain all of the information necessary to create an icon “on-the-fly” for a

given task. An example of such a file is given in Code 1 on page 27. Starting with the first

.rm0d file in the first library, Onika loads the information in this file into a 7?/{SK node

(shown in Code 2). The size of the icon is then determined by assigning it a base size and

iteratively increasing this size by steps until the distances between the I/O pins on either

side of the task’s icon are tolerably far apart when the icon is drawn. (The base size, step

size, and minimum pin separation are all user—defined, as discussed in Section 5.7,

whereas the width of any icon is the same for each icon and is hard—coded into Onika.)

This height infonnation is also stored in the TASK node. "Hie node is added to a double-

linked list of TASK nodes for a given library, and assigned an (x,y) location to the right of

the previous icon (wrapping around as required). Each software library opened has its own

linked list ofnodes. The library information, in turn, is stored in a node and entered into a

double-linked list of library nodes. (Library nodes are the same as CONFIG nodes,

described in Section 5.3.) Thus, node traversal from a task in one library to a task in

another library is fast and simple.

Task icons must have unique names. If the name of a task matches that of another task

already loaded i11to any 1ibrary—list, the task will not be added to the current library-list.

When all tasks have been loaded, Onika refreshes the library window, thereby causing the

icons to be drawn. Only one library can be seen in the window at a time; this is the library

pointed to by the global variable CHl‘f‘eI1fL€XiC0l7.2 The user can view different libraries at

l. The Chimera implementation of this “aliasing mechanism” was discussed in [V5 7]; the two were
developed simultaneously and cooperatively.
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will by selecting the appropriate library button at the top of the window; this has the effect

of changing the value of CurrentLexic0n. To present a library visually, Onika traverses the

library’s linked list of task nodes, starting at the first node. Given the height and width,

Onika draws the icon’s rectangle and adds 3D detail. Next, it draws the I/O pins with the

proper colors. The color of the I/O pins is dependent on the type of state variable they rep-

resent. INCONST and OUTCONST state variables (which have some initial value, but are

not periodically Variable) are orange, INVAR and OUTV/IR state variables (which have no

meaningful initial value but are updated periodically) are colored yellow, and those state

variables listed as both INVAR and INCONST or both OUTCONST or OUTVAR for the

task are considered by Onika to be INBOTH or OUTBOTH respectively, and are assigned

only one pin (instead of two, which would graphically confusing) which is colored blue.

Finally, Onika draws the name of the task in the center of the icon, an arrow indicating of

direction of data flow (input to output) beneath the name, and its frequency or period in

the left lower corner of the icon. On a Spare 10, the refresh rate is roughly 0.025 see/icon,

making even large libraries renderable in an acceptable amount of time. The refresh rou-

tine also redraws the icons in the currently displayed library every time an icon is selected

or deselected.

An “infinite” event loop assigned to the library window catches all mouse events gener-

ated by the user. These events are evaluated, and those found meaningful are processed

appropriately (for instance, clicking an icon with the left mouse button “selects” that

icon). Appendix B.l describes which mouse events have meaning within the library win-

(low.

A pop-up menu is provided at the top of the library window so that the user can select

tasks by name if he or she does not care to search the icons visually for a particular task.

The menu includes all tasks in all libraries, and is generated automatically using node tra-

versal after all libraries have been loaded. When a task is selected from the menu, the

library window is automatically scrolled to display that ta.sk’s icon, which will be rendered

as having been “selected.” If the task is not in the currently displayed library, the library is

identified by a traversal search routine, the value of CurrentLexic0n is updated, the library

window is scrolled to the appropriate task and refreshed with the task rendered as

“selected.”

2. The variable is called C‘urrentLex2'con for historical reasons, since “libraries” were originally
called “lexicons” in Onika.
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typedef struct tnode {

struct tnode *prev,*next;

NAME_STRING name;

DIR_STRING dir;

NAME STRING module;

char desc[MAXLINELEN];

int lx,ly;

int show;

int inleft;

int jobtype;

int spawned;

int stask;

NAMELSTRING rtpu;

float freq;

int type,

active;

For use in linked lists */

Name of the task (no .rmod) */

Directory of the task */

The actual object file (no .0) */

The description —— I don't use */

it, but I need to save it */

Preferred icon location */

Can it be selected */

Are inputs on the left */

Will it need UI? */

Is the task spawned? */

What is its RTOS task number? */

What rtpu is it on? */

The frequency of the task */

Periodic or aperiodic */

Is the node on or off on RTOS? */

Height of the icon */

Number of INCONSTS & INBOTHS */

Number of INVARS */

Number of OUTCONSTS & OUTBOTHS */

Number of OUTVARS */

What svar types are the inputs?*/

int size;

int num_inconsts,

num_invars,

num_outconsts,

num_outvars;

int input_types[MAX_IN_L3];

NAB/lE_STRING

input_svars[MAX_IN_L3]; /* What are their names? */

int output_types[MAX_OUT_L3];

/* What svar types are the outputs? */

NAME___STRING

output_svars[MAX_OUT_L3l;/* What are their names? */

int num_svaraliases; /* Number of SVARALIASES */

NAME_STRING coded [MAX_IN_L3+1VlAX__OUT_L3] ,-
/* Name in C—code */

NAME_STRING svaralias [MAX_IN_L3+MAX_oUT_L3] ;

/* Name to use instead */

} TASK;

Code 2: The structure of an Onika TASK node. The field Show is only used when

the task is in a library; the fields inleft, spawned, stask, and rtpu are used only

when the task is in a configuration.
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5.2.2 Manipulating tasks

Tasks can be manipulated in many ways. They can be selected, dragged, and modified,

and their files can be viewed and edited.

To select a task icon, the user moves the mouse cursor over the icon, and presses the left

mouse button. The user then releases the mouse button or, if the icon is to be dragged,

moves the mouse cursor to some other location in the window and then releases the mouse

button. If an icon is dragged, a rectangular outline follows the cursor around until the

mouse button is released to indicate to the user where the icon will be repositioned. The

window is refreshed after an icon is selected or dragged.

To modify an icon, the user moves the mouse cursor over the icon, and presses and

releases the middle mouse button. A window will appear with an enlarged picture of the

icon, allowing the user to change the frequency of an icon or change its SVAR aliases (dis-

cussed in Section 5.2.3). The user can save these changes to the .rm0d file (necessary if

SVAR alias changes are made, since the underlying RTOS requires any SVAR changes to

be saved to the file), or accept changes without saving them (if only the frequency was

changed).

By using the Shift key or Control key with the middle mouse button, the user can view the

module source code or .rm0d file respectively. This is done by issuing an xterm system

command which runs the program $0N]KA_VIEWER (which, by default, is the program

more but could be, for instance, emacs) with the appropriate file name as an argument. If

the module source code is unavailable, attempts to View/edit it are ignored.

5.2.3 Aliasing to local conventions

As mentioned in Section 5.2.1 and Section 5.8.4, Ouika. can retrieve and integrate (at

launch time) tasks created and ma.de available at other sites on the Internet. However, dif-

ferent sites often have different naming conventions. For instance, one site may call the

global state variable which stores the degrees-of-freedom of a robot NDOF, whereas

another site may simply call this variable N. This is a problem, because the task in ques-

tion will not properly connect, either graphically or functionally, with other modules using

the degrees-of-freedom of the robot as an input or output. As another example, the user

may wish to have a generic differentiator, and use it with a wide Variety of state variables,

rather than having to build a differentiator task for each type of state variable. Normally,

because the names of state variables are hard-coded into a task’s module object code, the

user would be forced to obtain the source code of the software, make the necessary nam-
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ing changes within it, recompile the code, and relink the code into the RTOS executable,

all of which is tedious and error—prone.

To address this problem, Onika supports state variable (SVAR) aliasing,l wherein the

names of the input and output SVAR ports of a task can be assigned a new name without

needing to recompile or relink any code. By clicking on a tasl<’s icon with the middle

mouse button, the user can bring up a window containing an enlarged View of the icon,

with the hard-coded names and any “assigned” names of each state variable shown at each

of the corresponding “pins” on the icon (shown in Figure 5 on page 29). The user can

modify the assigned names as needed and “save” any changes made to the task’s .rm0d

file. The changes are reflected immediately within the libraiy window, and Onika informs

the RTOS that the SVAR hitherto referred to as a certain name in this task will now be

referred to by a new name. The task is thus usable immediately, without needing to alter

the object code of the task at all.

The arrays coded and svaralias in the TASK node contain the hard-coded names and

“new” names of the SVARS of task, respectively. When the tasks are initially loaded in,

the list of operational aliases for the task (if any) are loaded into these fields first, in the

order in which they appear in the file. Later in the tasks loading procedure, when the

SVAR names for the inputs and outputs are loaded, the names are checked against the

coded array to determine if they are to be referred t.o by an alias. If so, the alias is written

to either the array inpu!_svars or 0utput_svars (as appropriate); if not, then the coded

name is written instead. The arrays input_svars and 0-utp-ut_svars are then used when

determining connectivity and when drawing the names of the SVARs above the icon’s

pins. This eliminates the need to check within the icon rendering subroutine as to whether

the SVAR name should be drawn as “coded” or “aliased,” speeding up the rendering pro-
CBSS.

When the icon is “expanded” to modify the aliases of the input and output pins of an icon,

the names in input_svars and oz/rp1.tr_svars are checked individually to see if they are

aliases or the actual “coded” names using a list search. If a name is the actual “coded”

name. then it is presented as such, and the space for the variables alias is left blank. If not,

then the name is written in the alias’s space, and the alias’s hard-coded counterpart is pre-

sented as the coded name. The user can modify the alias’s space for each SVAR. When

saved, the arrays coded and sva/‘alias are updated as necessary, and the values of the

l. Not to be confused with 0nika’s built-in “task aliasing mechanism," which allows high—level

applications to be run in simulation or on different real-time control systems without changing an

application. This mechanism is discussed in Section 5.9.1.
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arrays inpm‘_svars and 0urput_s vars are updated from the alias ’s space for the appropriate

pin if non-blank, or from the “coded” name if no alias is specified. Using this mechanism,

it is perfectly possible (and potentially useful) to create a situation where the name A is

alia.sed to B, and B is aliased to A, without "fear of looping infinitely during alias analysis,

as the aliases are resolved only once at any time.

Modifications to aliases can be performed on tasks in both the library and the configura-

tion workspace (discussed in the following section).

5.3 Configurations

The tasks loaded into the task li.braries can be modified and manipulated to an extent, but

in order to actually control a task, it must be spawned within the configuration workspace.

To do this, the user selects a. task within the library using the left mouse button, moves the

mouse cursor to a desired spot within the configuration window, and presses the right

mouse button. The icon is rendered at the desired spot, connections to other icons are auto-

matically made, and the user is prompted for “spawning” infomiation as needed. In this

section, We present the algorithms which govern the building and control of configura-

tions.

5.3.1 Configuration formats

The format for configuration nodes (CONFIG nodes) is given in Code 2. The CONFIG

node is also used for library nodes, but in the latter case many of the fields are unused. The

configuration nodes are contained in a double-linked list, with only one configuration in

View at any given time (pointed to by CurremfC0nfig). As with the library window, the

user can select the desired configuration for Viewing from a row ofbuttons at the top of the

window, changing the value of CurreniC0nfig and causing the configuration window to be

refreshed. At least one configuration must be open at any given time. The user may create

new configurations, or can load in pre-saved configurations (the file format for configura-

tions is shown in Appendix A.2).

5.3.2 The starting configuration

At the beginning of the session, the user starts out with a blank configuration labeled

“Untitled-1.” If a connection with the real-time operating system is attempted when

launching Onika, then the RTOS will be queried as to its current state, and the blank con-

figuration will be updated to show any tasks which might be already spawned on the sys-

tem. If the RTOS connection is made after tasks have already been placed into the

configuration window, Onika will juxtapose the current configuration in the con.figuration
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_%e<i<a?trFct ‘going’ {' " "
struct config *prev,*next;

CANV__STRING name,-

DIR___STRING dir;

TASK *task_header;

TASK *task_tailer;

TASK *selected;

LOCUS *locus_header;

LOCUS *locus_tailer;

Panel_item button;

int dirty;

int cdirty;

int elements;

char sbsname[128];

ENET *socket;

ENET *sigsocket;

int sockmode;

char *rtpu_list;

Frame rtpu_frame;

For use in linked lists */

Name of the configuration */

Directory of the configuration */

Header of task linked list */

Tailer of task linked list */

Selected icon within config */

Header of locus linked list */

Tailer of locus linked list */

Button used to select config */

Have task changes been made? */

Have cosmetic changes been made? */

Number of tasks in config */

Its RTOS subsystem name */

Its RTOS socket */

Its signal socket */

Active or inactive sockets? */

List of available RTPUs */

How they are displayed */

Panel_item choice_list;

} CONFIG;

Code 3: The stiucture of an Onika CONFIG node. When used as a library node,

only the fields prev, next, name, dir, task_header, task_railer, selected, and but-

ton are used; the rest are useful only for configurations.

window with those tasks already cycling on the RTOS, so that the resultant configurations

is given by the equation:

Tf = <T,,u T,) —S<T(,, T,> (1)

where is the final set of tasks which will be in both the configuration window and the

RTOS subsystem, To is the set of tasks initially placed within the configuration window, T,.

is the set of tasks initially spawned on the RTOS subsystem, and S(T0,Tfl is a subset of

tasks within To which conflict with tasks in T,, as discussed in Section 5.3.3. To integrate

to two sets of tasks, Onika first requests the set Tf from the RTOS, and uses this to deter-

mine S(T0, T The tasks To 0 S ( T0, f) are removed from the configuration’s linked list
of TASK nodesl, and the tasks Tf- T0 are added to the window, with their RTOS data stored

in their respective new TASK nodes. Next, the tasks T0 — Tf- S(To, )3 are spawned on the
RTOS, with the user being prompted for target RTPUS as required. The remaining tasks,

To r\ Tf, are already present in both the configuration window and on the RTOS sub-
system, so that their TASK nodes on the Onika side need only be updated with their RTOS
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data. Finally, the screen is refreshed, and the icons are redrawn.

5.3.3 Laws governing the placement of tasks

Tasks may not simply be placed into a particular configuration without regard to the tasks

already present, as certain tasks may interfere with the operations of other tasks. In partic-

ular, tasks which share output state variables may not co-exist within the same configura-

tion, since a race condition would result in which the value of the shared state variable

would no longer be predictable. (Sharing input state variables is inconsequential, since

these are “read-only”.) To avoid this possibility, tasks which cannot be placed in the cur-

rent configuration are “greyed out” in the current library (or drawn with dotted lines if a

monochrome monitor is used). This is done by setting the value of the field Show in the

appropriate TASK node to zero, and refreshing the library window. The tasks which are

“greyed out” comprise a set given by the equation:

G(.T0, Tl) = {V16 T1] (Else T0) ((O(t) flO(s) ¢®) V (S = t) vM(s,t))} (2)

where:

M(s,t) =(‘V’te r,| (Else T0) ((0,.(r) r\IC(s) :20) n (0,,(t) flIC(s) ¢®)))(3)

and where To is the set of tasks in the current configuration, T1 is the set of tasks in the

library, t and s are tasks in TI and To respectively, the function 0V(x) returns the set of

OUTVARS of a task x not part of an OUTBOTH tandem, IC(x) returns the set of INCONSTS

for 3: not part of an INBOTH tandem, and the function 00;) returns the set of all output

SVARS associated with x (any aliases for the outputs are used in place of the “hard-coded”

names where applicable whenever this equation is considered). The set of greyed—out tasks

for each library is updated whenever the current configuration is changed so thatna differ-

ent configuration is viewed, whenever a task is added to the current configuration, or

whenever reconfiguration is performed (Section 5.3.4).

Two tasks are considered equivalent if they have the same name (and thus the same sets of

I/O SVAR pins, since Onika will only load in one task for any given name during the

library build at the beginning of the session). Note that, by default, if s=t in Equation (2),

then t would seem to be an element of G(T0,Tfi by the (0 (t) 0 O (5) ¢ Q) clause, and

1. We could just as easily remove the tasks from the RTOS subsystem which conflict with the tasks

in the Onika configuration window, giving preference to the Onika tasks over the RTOS tasks,

instead of the other way around. However, the presumption is that the tasks already on the RTOS

may be involved in critical work which should not be interfered with, and thus preference is given

to them rather than the hitheito non-operative tasks placed into the Onika configuration Window.
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thus having the (.s'=r) clause would at first appear to be redundant. However, since it is per-

fectly possible that a task might have no SVAR outputs (for instance, a task which simply

logs input data to a file), there may arise instances where the “intersection of outputs”

clause is insufficient to keep tasks of the same name from being duplicated within a con-

figuration. Since both Onika and its supporting RTOS Chimera relying on task names to

identify and control processes, this is a problem. We therefore supplement Equation (2) by

including the (Ft) clause to catch those rare instances where a task has no outputs.

Equation (3) is true when, if the a library task has one or more state variables declared as

variable outputs (OUTVARS), the exists a task in the current configuration which has those

same state variables declared as constant inputs (INCONSYTV), or vice-versa. This is con-

sidered an illegal connection within our software framework.

For the merging of configurations described in Section 5.3.2, we need to determine

whether conflicts exist between tasks on the Onika side and tasks on the Chimera side, and

remove tasks on the Onika side which do confiict (given in Equation (1) as S(‘T0, T1)). How-

ever, it would in this case be wrong to destroy identical tasks present on either side, since

the poi.nt is to have a graphical instance on the Onika side and a spawned instance on the

RTOS side for each task. If G(T0, T = S_(T0, T} and task t existed in both Onika and Chi-

mera at start-up, then the graphical instance of the task in Onika would be destroyed, and a

new one would have to be created. We could modify Equation (1) to do this, but it is sim-

pler (and less expensive computationally) to simply define S(T0, T}; to be:

S(T0, 7}) = {Vie T,| (3.96 To) (((O(t) ri0(.s) ¢®) vM(s,r)) A (s¢t))} (4)

The Onika user also has the option to have the interface give warnings whenever question-

able situations arise; for instance, if a task is loaded in which has an SVAR listed as both

an output and an input, if a configuration is being saved as a high-level job while still hav-

ing hanging inputs, and so on. These “strange” situations are not prevented, as feedback

from our engineers indicates that sometimes “normal” conditions must be violated during

testing to determine the safety of modules. The following situations are flagged if the

environmental variable $ONIKA_WARNINGS is set:

W = (ere 7,) (an mm -62») (5)

W = (Elpe Z|((pe ](3re Tl) ) /\ (pez CEISE Tl) ))) (6)

where the value of Wis TRUE when a waming should be given, p is a state variable, and Z

is the set of all state variables in the system.
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Equation (5) if true when a task has one or more inputs wh.ich are also declared as outputs

in the same task. This equation is evaluated when tasks are loaded into Onika at the begin-

ning of a. session, so that the user can be alerted to tasks which generate their own inputsl

Equation (6) is true when, given the set of tasks that constitute a configura.tion, there exists

at least one input SVAR in at least one task which does not have a corresponding output

SVAR in any of the tasks in the configuration. This is known as the “hanging input” condi-

tion. This equation is calculated whenever the user attempts to save the confi guration as a

higher-level job (discussed in Section 5.6.1).

5.3.4 Reconfiguration

Reconfiguration describes the process wherein one configuration is changed for another.

There are two types of reconfiguration: static reconfiguration, wherein the user builds a

configuration by selecting modules for placement into a. blank configuration, and dynamic

reconfiguration, wherein modules in an existent configuration are deactivated or deleted

when not needed in the next configuration, and modules required in the new configuration

are spawned or activated as needed [60].

Within Onika, static reconfiguration is performed by selecting tasks in the library and

placing them into the configuration window; assuming that a RTOS session is in progress,

the task is spawned on the underlying RTOS in an inactive (i.e. non-cycling) state. Static

reconfiguration is performed manually by the user, or automatically by Onika when previ-

ously-saved configurations are opened, from within Onika’s lower level interface.

Dynamic reconfiguration is performed in Onika in two ways: Subset ofiznamic reconfigura-

tion, and superset afvnamic reconfiguration. Both types can be performed manually by the

user, or automatically by Onika, although manual subset dynamic configuration is limited

to the lower level interface of Onika.

Subset dynamic reconfiguration is pictured in Figure l7.It is used primarily when recon-

figuration is no knowledge of future configurations is available; for instance, when an

engineer is interactively designing configurations within Onika’s lower level. Given a

starting configuration T2 and a desired configuration T2, Onika performs automatic subset

dynamic configuration as follows: first, the configuration T2 is loaded from a pre-saved

file, and set of tasks T2 - TI are spawned on the RTOS. Next, the set of tasks T1 — T2 are

1. There is no logical reason to create such a task, since task modules are capable of storing previ-

ous values inteinally, thereby eliminating the overhead required to access the global state variable
table for the appropriate value every cycle.
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 Figure 17: An example of subset dynamic reconfiguration from a joint position

control configuration to a Cartesian control configuration. The shaded tasks are

common to both configurations, and thus were not removed during reconfiguration.
 

deactivated on the RTOS and killed.‘ After this, the TASK nodes in T2 which are elements

of the union of T1 and T2 are updated with their current status on the RTOS, making their

instances in T1 superfluous. Next, the CONFIG node for T1 is removed from the linked list

of configurations and is replaced by that of T2, and all nodes associated with T1 are freed.

Finally, the configuration window and library window are refreshed, with Currem‘Config

being set to T2 and with the proper tasks in the library “greyed out” in accordance with

l. The task set T2 - Tl could also be activated (i.e. cycled) between the deactivation and killing of

T1 - T2; however. this section ofcode in Onika is currently cornmented out pending future work in

the Chimera RTOS aimed at ensuring the proper activation order of tasks within a configuration.
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Equation (2). It is important to note that the tasks which are elements of the union of T1

and T2 are generally not affected on the RTOS during this process in any way, except that

they are now represented by TASK nodes in T2 rather than T]. An exception is the case

when a task which has one or more OUTCONST SVAR is exchanged for another during

reconfiguration. In this case, tasks with the corresponding INCONST SVARS are reinitial-

ized automatically by Onika to get the new value(s), the process of which forcefiilly deac-

tivatcs them. Onika subsequently reactivatcs these tasks automatically, so that all of this

procedure is transparent to the user.

Superset dynamic reconfiguration requires foreknowledge of all configurations which will

be used sequentially, such as occurs within a high-level Onika application. Within Onika,

automatic superset reconfiguration is performed as follows: the union of the sets of tasks

for each configuration is spawned at the beginning of the execution of the application, and

the application is traversed by activating or deactivating tasks as required until the end of

the application is reached, at which time all tasks are killed. Since the spawning of tasks

only occurs at the beginning of the execution of the application, and are killed only at its

termination, the overhead required during reconfiguration from one job to the next is min-

imal compared to that of subset dynamic configuration. The major drawback of superset

dynamic configuration is that different tasks which require exclusive access to the same

hardware cannot exist within the same application, since access to the hardware is typi-

cally attempted when the task is spawned, and therefore the two tasks would be in conflict.

Superset dynamic reconfiguration is discussed further in Section 5.9.

5.3.5 Rendering of tasks and connections

The rendering of tasks in a configuration is identical to that of tasks within the library,

except that visual feedback relevant to the task on the RTOS is given as well. This

includes its state (ON, OFF, or ERROR) and the name of the RTPU on which it was

spawned. This information is printed within the icon beneath its name. Additionally, if

Onika is run on a system with a color monitor, then tasks which are ON (those either

cycling or in synchronization) are colored green and tasks in ERROR are colored red. If

Onika is not connected to the RTOS, then RTPU and state information are suppressed.

Connections between tasks within the configuration are performed automatically, reliev-

ing the user from the tedious and error-prone burden of manually connecting a pin on one

task with those on other tasks. Each configuration’s CONFIG node is associated with a

linked list of LOCUS nodes, the structure of which is shown in Code 4. Each state vari-

able referenced in the tasks of the configuration has one LOCUS node, which contains
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typedef struct clocus {

struct clocus *neXt,*preV; /* For use in linked lists */

NAME STRING var name; /* The svar name of this locus */

int amount, /* The number of tasks using it */

locus_x,locus_y; /* Its location on screen */

int ic, /* Number of INCONSTS */

oc, /* Number of OUTCONSTS */

iv, /* Number Of INVARS */

ov, /* Number of OUTVARS */

din; /* Number of double inputs */

int locus_active; /* Is a task supplying a value now? */

int locus show; /* Should the Conn be shown? */

int locus_list; /* Should the value be shown? */

} LOCUS;

Code 4: The structure ofa LOCUS node, used for automatic connectiucfisflbetween tasks.

fields listing the total number of tasks which reference this state variable, the manner in

which they are references (as INCONST, OUTVAR, etc.), and so forth. There is also an

(.\‘,y) coordinate pair associated with each connection locus which serves two purposes.

First, it gives the user a place in the window to click in order to get information about a

particular state variable. Second, it is used as a central location for all task pins referencing

that SVAR to draw to. Therefore, tasks with SVARs in common do not literally connect

graphically from one to the other; rather, the comiection is made by routing a connection

from either pin towards the central “locus,” where the two meet. A built—in "route-around”

algorithm keeps the connection lines from running across icons which might be located

between a pin and its target locus.

When a task is added to a configuration, each of its pins are checked to determine whether

or not they references SVARs which are do not already have nodes in the locus list. Ifnone

existed previously, a node is created, initialized, and inserted into the list, and the locus is

assigned coordinates a few pixels horizontally outwards from the pin. When another task

is added which references the same SVAR, the locus node is updated to reflect this infor-

mation, and the locus position is moved to a location half-way between the two pins. If a

locus is ever assigned a coordinate which would place it on top of any icon, the coordi-

nates of the locus are updated 10 pixels horizontally and Vertically until the locus is no

longer atop an icon. Additional references to that SVAR by other tasks update the LOCUS

node information, put do not change the location of the locus. If enough tasks are deleted

so that only one task remains, the locus is assigned coordinates a few pixels outwards

from the remaining referential pin. When the last task referencing the locus is deleted,
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then the LOCUS node is removed and freed.

Loci are “sticky;” tha.t is, ifa task is moved, the loci to which it is connected do not change

position. The user can graphically drag the loci to different locations as desired.

Loci are rendered as filled-in circles of a user-defined size (the defa.ult is 3 pixels in

radius). The configuration event loop checks for mouse events occurring to these loci, so

that the user can use a mouse to get information as to the current value and task distribu-

tion of an SVAR, to toggle whether or not the connection is seen (the field l0cus_s/vow is

used as a flag for this purpose), and to drag the locus to a new location. Appendix B.2

details how mouse commands affect connection loci.

Connections are rendered in the following manner: starting with the first pin in the first

task in the configuration linked list, Onika perfomis a list search to find the corresponding

locus entry. When found, Onika. checks to see whether the connection should be shown

and, if so, Wha.t color it should be. SVARS for which an active task is generating output are

drawn red (or solid for a. monochrome monitor), whereas SVARS which are referenced

only by input pins or inactive output pins are drawn blue (or dotted for a monochrome

monitor). Finally, Onika plots a path from the pin to the locus which avoids any icon

which might get in the way, using a simple “look ahead” condition which takes advantage

of the fact that all icons are of the same width. Similar routing algorithms are currently

existent in CAD software packages (such as those designed for PCB layout), but, to our

knowledge, have never been used previously within a modular programming environ-

ment. The algorithm for our routing algorithm is given in Code 5. We do not mean to sug-

gest that this algorithm is foolproof, as one can contrive situations where a connection

would be forced to pass over an icon using this mechanism (for instance, when two icons

are placed side by side with no space between them). Instead, we offer it as a “proof of

concept,” wherein we demonstrate that a human-machine interface can automatically con-

nect icons graphically without human intervention given a reasonable algorithm to do so.

A better algorithm (perhaps adapted from techniques used for PCB layout) would involve

recursion to make certain that the “bypasses” themselves do not pass over icons, but this

must be weighed against the overhead incurred by recursion in an environment where

screen refreshes can be already be perceptibly measured in time.

Connections and loci are redrawn every time a task is placed, repositioned, moved, acti-

vated, or deactivated, or whenever a new configuration is viewed. Connections which the

user has toggled to be “invisible” are not drawn; instead, the loci alone is drawn at its

coordinates, with the name of the SVAR it represents printed beside it.
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connect_to_locus(pin,icon,locus)

{

if (pin is not on same side of icon as locus) {

draw() out from pin horizontally;

if (locus’s y coordinate is above or below icon) {

draw() to locus’s y coordinate;

draw() to locus’s x coordinate;

} else {

draw() up a level a few pixels above icon’s height;

draw() to locus’s x coordinate;

draw() down to locus’s y coordinate;

}

}

else if (pin is on same side of icon as locus) {

draw() to locus’s x coordinate;

draw() to locus’s y coordinate;

draw(x1,yl,x2,y2) /* line will be horizontal or vertical */

{

if (yl==y2) { /* line is horizontal */

rearrange points so that point 1's x is smaller than point 2's;

xc=x1; step=ICONWIDTH/2;

while (xc != x2) {

if (xc+step > x2) line_to(xc=x2,y2);/* done */

else if (no icon at (xc+step,y2))

line_to(xc=xc+step,y2); /* continue */

else { /* route around icon */

1ine_to(xc,above icon);

1ine_to(xc=xc+step,above icon);

line_to(xC,y2);

}

}

else if (x1==x2) { /* line will be vertical */

{

/* etc... */

}

}

Code 5: The algorithms (in pseudocode) used for autoconnecting a pin on a task with

the appropriate connection locus.

64
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Pins on tasks within a configuration are connected on the basis on whether the names of

the pins match or not. The assumption ma.de, therefore, is that the user will want pins with

identical names connected. Of course, one can postulate a case wherein two pins are erro-

neously connected; for instance, if a user forgets to alias a. generic differentiator modu1e’s

pins from (for example) measured joint positions to referenced joint positions. However,

the convenience of not having to manually route a large number of connections far out-

weighs any problems encountered by the “autoconnection” routine (for instance, a simple

joint motion configuration having only four tasks contains seventeen I/O pins referencing

seven different state variables, all of which need to be interconnected).

5.3.6 Task manipulation and control

Tasks are manipulated in the configuration window in the same manner as those in the

library window, with a few added features. Tasks are placed into a configuration by select-

ing them in the library window, moving the cursor to the configuration wi:n dow, and press-

ing and releasing the right mouse button at the desired spot. If the configuration is

connected to an RTOS, the user will be prompted for the RTPU upon which the task

should be spawned (if more than one is available) before the task is rendered. Tasks are

spawned on the RTOS in an inactive state. Placing a task causes a refreshing of the library

and configuration windows.

The user can “flip” an icon so that the input pins are on the right side and outputs are on

the left by selecting it and pressing the “R” key, as this may make a configuration more

graphically pleasing to the user. When this is done, the arrow indicating input flow direc-

tion is reversed. Single-instance loci associated with the icon will also be moved appropri-

ately. The configuration window is refreshed after an icon is reversed in this manner.

Tasks may be deleted and replaced in the configuration. To delete a task, the user selects it

and presses the “Delete” key. This causes (after the user is asked “Are you sure?”) the

associated task on the RTOS to be deactivated and deleted, and excises the TASK node for

the icon from the li11ked list. Connections are updated appropriately, and the library and

configuration windows are refreshed. The icon is held in a buffer, and a copy may be

pasted back into the program (subject to the normal rules regarding task interference) at

the point from where it was deleted by pressing the “V” key, again refreshing and updating

all windows. The icon need not be pasted back into the same configuration, but can also be

pasted into a different configurations as well. The key command “C” causes a copy of the

currently selected icon to be placed into the buffer without removing it from the current

configuration. Only one icon may exist in the buffer at a time; an icon in the buffer is freed
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if another icon is deleted or copied.

The activation state of a task may be toggled if an RTOS session is in progress by select-

ing the task with the shift key down. If a task is ON. it is set of OFF; if OFF, it is set to

ON; and, if in ERROR, Onika will ask the RTOS to clear the error and set the task to OFF

if possible. Ifnot possible, the task will remain in the ERROR state, but can still be deleted

and replaced by the user. In all cases where toggling is successful, the configuration win-

dow is refreshed.

Certain tasks (generally trigger tasks) require additional user input before they can be act.i-

vated. When the user attempts to turn these on, the RTOS will inform Onika that more

information is needed. Onika formats this request and presents it to the user within another

window. The user enters the information, and Onika detemiines whether or not it lies

within the establish boundaries for acceptable answers. If so, the information is sent to the

RTOS, and the task begins cycling; otherwise, the user is asked to re—enter the informa-

tion.

If an RTOS session is underway, the RTOS will inform Onika when major events occur to

the tasks; e.g., the task has turned itself off, the task has finished, the task encountered an

error. Onika refreshes the screen to show the current state of the tasks whenever such a

message is received.

Once a configuration of tasks has been tested thoroughly on the RTOS, the user may wish

to save it as a high-level job. In the following sections, we discuss the creation and use of

high-level icons.

5.4 Job Dictionaries

High-level job and target icons are stored in job dictionaries. Unlike task icons, the job

and target icons are not created on the fly from a description file, but are in fact loaded in

from files relating exactly how the icon should appear. Outside of that point, the process

loading of icons into the dictionary is very similar to that of loading tasks into the task

library.

Because the upper level of Onika is highly dependent on the use of color to identify icons,

monochrome monitors are incapable of presenting the upper level in any aspect.

5.4.1 Loading jobs and targets

As mentioned in Section 5.2.1,0nika may be launched in such a way as to automatically

search for a Chimera connection, or the user may choose to run an Onika session without
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typedef struct onikon {

struct onikon *prev,

*next;

NAME_STRING name; /* name of onikon */

char desc [MAXLINELEN] ;

int type; /* object, icon, etc. */

UI *ui; /* object data, branch data, etc. */

int x,y; /* location on workspace */

byte pict [ONIKONHEIGHT] [ONIKONWIDTH] ;

/* the icon’s picture */

int line; /* what line is it in */

MARKER marker;

char synchtag[MAXNAMELEN];

char whi1etag[MAXNAMELEN];

int whiletest;

strnct oniflow {

struct oniflow *prev,*next

struct onikon *info;

byte hole;

} *flow,-

} ONIKON;

 

Code 7: The structure of an Onika ONIKONnode. The fields after and including line are

used only when the icon is in an application.
 

any Chimera connections. In the prior case, Onika asks Chimera for the locations of

desired task software dictionaries; in the latter case, Onika gets this information from the

UNIX environmental variable $0NIKA_LOCAL. These locations may refer to directories

on the local file system, or may refer to directories on remote file systems on the network

(again, as discussed in Section 5.8.4).

Given the locations of these dictionaries, Onika searches them for files with the suffix

.onk. These files contain all of the infonnation necessary to draw a high-level icon, and

also include default information for target icons. An example of such a file is given in

Code 6. Starting with the first .0rzk file in the first dictionary, Onika loads the information

in this file into a. ONIKON node (shown in Code 2). The node is added to a double-linked

list of ONIKON nodes for a given dictionary, which is then sorted (using a selection-sort)

so that icons of the same type are grouped together. Each software dictionary opened has
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VERSION 1.38

ONIKON Joint object

DESC above Square's origin
UI -0.17 -0.453 2.92 —0.0371 0.717 1.29

UI 7

8B888888888888888888888888888888

87777777777777777777777777777778

87777887788877788778778788887778

87778778787787877878778787777778

87778888788877877878778788877778

87778778787787877877878787777778

87778778788877788777787788887778

87777777777777777777777777777778

87777777777777777777777777777778

87777777777777777777777777777778

B7777777777777777777777777777778

87777777777222222222277777777778

87777777772222222222227777777778

87777777772222222222227777777778

87777777772222222222227777777778

87777777772222222222227777777778

87777777772222222222227777777778

87777777772222222222227777777778

87777777772222222222227777777778

87777777777887777778877777777778

87777777777777777777777777777778

87777777777777777777777777777778

88888888888888888888888888888888

88888888888888888888888888888888

88888888888881lllll8888888888888

888888888888818888l8B88888B88888

8888888888888l8888l8888888888888

8888888888888l8888l8888888888888

88888888888881888818888888888888

88888888888881111118888888888888

8888888888888888888B888888888888

88888888888888888888888888888888

Code 6: An example target icon’s .0nk file.

its own linked list of nodes. The dictionary information, in turn, is stored in a node and

entered into a double-linked list of dictionary nodes. (Dictionary nodes are the same as

APPL nodes, described in Section 5.5.")

All target and job icons must have unique names. If the name of an icon matches that of
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another icon already loaded into any dictionary list, the icon will not be added to the cur-

rent dictionary list.

When all icons have been loaded, Onika refreshes the dictionary window, thereby causing

the icons to be drawn. Only one dictionary can be seen in the window at a time; this is the

dictionary pointed to by the global variable CurrentDicz‘ionarjy. The user can View differ-

ent dictionaries at will by selecting the appropriate dictionary button at the top of the win-

dow; this has the effect of changing the value of CurrentDicrionary. To present a

dictionary visually, Onika traverses the dictionary’s linked list of task nodes, starting at the

first node. First, the appropriate edges are drawn for the icon and filled with the appropri-

ate colors, based on its type field. Note that the edges and colors of an upper level icon are

not specified in the i con’s .onk file directly, but are implied by the icon’s type as specified

in the ONIKON field of the file. This makes icons portable to other sites even if other

edge/color combinations are used to specify icon syntax.

After the edges have been drawn, the picture itself is drawn pixel by pixel, framed

between its already-drawn edges. All lines for the edge are drawn thickly if the icon is

“selected.” Finally, the icon’s description is drawn centered beneath the icon. The average

drawing time per icon is approximately 0.125 seconds on a Spare 10. The refresh routine

redraws the icons in the currently displayed dictionary every time an icon is selected or

deselected.

As with the library and configuration windows, an “infinite” event loop assigned to the

dictionary window catches all mouse events generated by the user. These events are eval-

uated, and those found meaningful are processed appropriately (for instance, clicking an

icon with the left mouse button “selects” that icon). Appendix B.3 describes which mouse

events have meaning within the dictionary window.

5.4.2 Manipulating icons

Icons can be manipulated in many ways. They can be selected, dragged, and modified, and

their files can be viewed and edited. The selecting and dragging of icons is done precisely

as in the case of task icons (Section 5.2.2). Additionally, by selecting a job icon with the

Shift key depressed, the user can automatically load in the configuration it represents

(unless the icon is in fact a nested application, in which case the appropriate application is

loaded in instead). This is referred to as expanding an icon.

There are two ways to modify an icon. Both use the middle mouse button, with either no

key or the Shift key depressed. In the first case, the user is presented with a window in
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typedef struct appl {
struct appl *prev,

CANV_STRING name;

DIR__STRING dir;

ONIFLOW *flow header[MAXFLOW];
ONIFLOW *flOw_tailer[MAXFLOW];
ONIKON *iCOn header[MAXFLOw];

ONIKON *icon tailer[MAXFLOW];
ONIKON *selected;

Panel item button;
int numflow;

int parallel;
byte dirty;
char *alias[MAXFLOW];
int aliasnum[MAXFLOW];

int lines[MAXFLOW];

} APPL;

Code 8: The structure of application nodes. When used as a dictionary node, the

*next;

The currently selected icon */
Selects this application */
Number of flow lines */
Parallel or conditional? */

Has application changed? */
List of module substitutions */

Number of substitutions */

Flow positions (wrap—around?) */

fields flowjzeader,fl0w_railer, parallel, dirty, alias, aliasnum, and lines are unused,

and numflow is always 1. 

which the description of the icon (and, in the case of target icons, the data of the icon) can

be changed. In the latter case, the user can modify the appearance of an icon by bringing

up the icon creation window of Section 5.6.1. Modifications to icons affect only the icon

itself and any instance of the icon created from it since it was changed. Icons already

existing in applications are not affected.

5.5 Applications

In order to use the icons in the dictionary to control the real-time control system, the icons

must first be placed into an application. This is done by selecting an icon in the job dictio-

nary, moving the mouse over the icon after which the new icon is supposed to follow, and

pressing the right mouse button. Unlike the placement of task icons into a configuration,

the location of the newl uplaced icon is directly relevant to its performance during execu-

tion of the application. This is because high—level applications are goal—oriented, and their

component icons form a “story” which is executed in a certain order, one job after another.

This is unlike the lower-level case, in which icons represent parallel-executing tasks all

simultaneously cycling. In this section, we filrther describe the higher-level applications.

5.5.1 Application formats

The format for application nodes is given in Code 8. Application nodes are maintained in

a double-linked list. They are also used as dictionary nodes, but in such cases many of the

fields are unused. Only one application is viewed at any given time (pointed to by Curren-
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typedef struct oniflow {

struct oniflow *prev,*next;

ONIKON *infO;

byte hole; /* Flags a gap between icons */

} ONIFLOW;

Code 9: The structure of an ONJFLOW node.

 
 

 
t/Ippl). Similar to that of the library, configuration, and dictionary windows, the user can

select the desired application for viewing from a row of buttons at the top of the window,

changing the Value of Currem‘Appl and causing the application window to be refreshed.

Unlike the lower—level configuration window, no application window needs to be open at

any given time; applications do not represent the “status quo” of the RTOS, but rather a

desired series of steps and changes to be performed on one or more subsystems at run-

time. The user may create new applications, or can load in pre-saved applications (the file

format for applications is shown in Appendix A.4). Applications may have multiple flows,

which may represent parallel lines of execution, or different conditional branches (the

exact nature of the application is shown in the information section of the application win-

dow). All application flows have a minimum of two icons in them, signifying the start and

end of the flow. The existence of multiple flows requires special application traversal

methods when creating and executing an application; this is dealt with in the next section.

5.5.2 Application traversal

The ONIKON nodes of an application are simply appended to the application’s linked list

as they are inserted into the application, and their ordering in that list does not reflect their

position in the application itself. Instead, a linked list of ONIFLOW nodes (shown in

Code 9) contain the correct ordering for the application. Each ONIFLOW node has a

pointer field which can reference an ONIKON node, and vice-versa (shown in Figure 18).

The 0NIFLOWnodes are very small, and can easily be swapped around as needed, requir-

ing much less time to do so than the much larger ONIKON nodes. Nevertheless, the ONI-

FLOW nodes would seem to be superfluous, since we could easily have eliminated them

and simply caused ONIKON nodes to be inserted into the proper place in a linked list

rather than appended to the list. Why, then, should there be a separate list relating the

ordering of the icons?

The answer to this question lies with future expansion of Onika to support conditional

applications in a more robust manner. Currently, a conditional application is supported by

creating an application with more than one flow (thus having several separate linked lists
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Figure 18: The ONIKON nodes for an application are linked in the order in which

they were placed into the application, regardless of their location in the application.

The ONIFLOW nodes are smaller and kept in the order in which they will be exe-

cuted (i.e. the order that the user sees pictured in the application), and include blank

nodes (such as the shaded one in this figure) to indicate places where “holes” occur.

 

of ONIKON nodes), iconifying this application, and placing it into a higher-level applica-

tion (pictured in Figure 19). The return value of the job executing before the iconified

application determines which flow of the iconified application will be followed. This is a

brute force implementation of conditionals, inconvenient in that the entire conditional

block must be viewed as a single icon in the higher-level application. Future developments

of Onika will address this shortcoming by permitting graphical branching within an appli-

cation. Application flows will therefore not be linear, but will be complex graph constructs

wherein icons will continuously need to be moved, resized, sh'ufl"led, and so on

(Figure 20). The use of ONIFLOW n.odes anticipates this development by providing a sim-

ple and elegant way to traverse applications without major modifications to the ONIKON

nodes and the procedures which manipulate them; only minor modifications to the ONI-

FLOW nodes and the procedures which use them will be required.

5.5.3 Laws governing the placement of icons

The rules governing the placement of high-level icons into applications are much less

complicated than those which govern the placement of tasks into a configuration. Basi-

cally, an icon I) may be inserted after an icon a if and only if:

L(T(/3)) = R(T(a)) (7)

where the function T(x) returns the type of icon 3: (eg. Jointjob, etc.) and filnctions L(r)
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“Super” application made up of other applications

 
  

 

 

Incomplete application -- _

 “hole” \-
y/--1'

Complete Application/_.

 
Figure 19: Two applications have been included in a “super” application. One is

incomplete, and requires that the “super” application complete it with an object when it 
 is used. The other application is complete, and requires no object when used.

Figure 20: The use of ONIFLOW nodes anticipates the future development of

graphically representing eonditionals as a graph, wherein fast, concise routines will

be needed to traverse and manipulate icons Within a flow.

 
and R(t) return the left edge information and right edge information of an icon of type 1‘,

respectively. If Equation (7) is true, then an ONIKON node for b is created and appended

to the list of ONIKONS for the flow, an 0NIFL0WI1ode is created for b and inserted in the

proper place in the flow list, and the two nodes are set to point at each other. The coordi-

Page 99 of 198

5.5 Applications 73

ABB|NC_0125855



nates of!) and all icons which follow it are updated, and the application window is then

refreshed to display the newly placed icon. The implementation ol‘ Equation (7) is made

obvious to the user by color- and sliape—coding the edges of the icons; if Equation (7) is

true, then the edges of the icons in question will be seen to fit together like puzzle pieces.

As multiple instances ol‘ high-level icons are permitted in an application and the accept-

ability of an icon within an application depends solely on where it is placed, there is no

“greying out” ol" icons in the dictionary as is done in the task library.

Equation (7) states that the left edge of a selected icon must match the right edge of the

icon it is to follow if it is to be inserted into the application. lcons can be inscited any-

where in the application, subject to that rule. However, it may happen that it would be syn-

tactically incorrect for the new icon to precede the icon which follows it. If Equation (7)

fails when a is the new icon and b is the icon which would follow it when a was inserted,

then a “hole” is inserted between a and 1) indicating that another icon (or icons) will be

required to bridge the gap between them Figure 13 on page 37. This involves the addi-

tional creation and insertion of an ONIFLOW node between the ONIFLOW nodes of a and

b. This new node will not point at an ONIKON node, and its hole field will be set to TRUE.

The coordinates of b and all icons which follow it in the flow are updated to make room

for this “hole.”1 If an attempt is subsequently made to place an icon C after a, then if

Equation (7) succeeds for both (a,c) and (c,b), the “hole” will be made to point at an ON]-

KON node for c: newly appended to the ONIKON list, its hole field will be set to FALSE,

and the “hole” will be filled. Otherwise, if Equation (7) succeeds for (a,c) but not (c,b), the

insertion of c will cause the “hole” to remain between c and b. with the insertion of c: oth-

G1'WlSC proceeding as normal.

5.5.4 Icon manipulation within an application

As in the dictionary, upper level icons can be selected, modified, or expanded. with any

modification affecting only the currently selected icon instance (Section 5.4.2). Unlike the

dictionary, icons cannot be dragged, since they exist within a highly—structured goal-ori-

entcd application; however, they can be deleted, copied, and pasted. Deleting a selected

icon (using the Delete key) removes it from the list of ONIKONS and ONIFLOWS for the

application flow (using Equation (7) and the creation or deletion of “holes” to reposition

l. We could as easily insert a hole between a new icon and the icon after which it should follow if

Equation (7) fails, rather than forbidding the insertion; in fact, the code to do this has existed in
Onika since the early upper-level prototypes, but is currently not activated. This was to prevent the

gratuitous creation of holes when the user accidentally tried to place (for instance) a Cartesian tar-
get icon after a joint job icon.

Page 100 of 198

74 Chapter 5. Implementation of Onika

ABBlNC_0125856



the remaining icons as necessary), and causes its ONIKON node to be stored in a buffer. A

copy of the currently selected icon can also be stored in this buffer without actually delet-

ing the icon by pressing the “C” key. Only one icon can be stored in the buffer; an existent

node in the buffer is destroyed in favor of newly copied or deleted nodes. A node in the

buffer may be pasted after the currently selected icon (subject to Equation (7)) by pressing

the “V” key. Icons in the buffer may be pasted multiple times, within the same application

or into a different application.

Additionally, an icon may be marked as being part of a structural command. There are

three such structural commands within Onika; breakpoints, synchronization points, and

loop delimiters.

If a job icon is marked as a breakpoint (toggled by selecting the icon and pressing the “M”

key), the execution of the application will pause after the j ob is executed. If the icon is part

of a j ob-target tandem, then it is unimportant which icon in the pair is selected and

marked; toggling either will be effective, and only one “mark” is held for the entire action.

By selecting an icon and pressing the “S” key, the user can assign a synchronization label

to the icon (or action, if the icon is part of a job-target tandem). Synchronization tags are

used only for parallel applications. If an action in one parallel flow has a certain synchro-

nization tag, then Onika will not cause it to execute until the same synchronization tag is

encountered in a different flow. This guarantees that two jobs on different subsystems will

begin execution simultaneously (inasmuch as this is possible using a single-threaded inter-

face and controller). This feature which, to our knowledge, has never been implemented in

any other real-time control interface, eliminates the need for bracketing sets of instructions

with “cobegins-coends” or the need to calculate pause times in an attempt to get the start-

ing times of jobs to be the “same,” all without requiring any communication between the

parallel subsystems.

Pressing the “W” key allows the user to assign a. loop label to the currently selected icon.

This is similar to the assigning of synchronization labels to icons, except that both

instance of the label must be within the same flow of the application. One instance of the

loop is designated the “test” icon, whereas the other is the “anchor” icon. If the retum

value of the test icon’s job indicates that looping should occur, then execution continues at

the anchor icon, regardless of whether it is to be found before or after the test icon. Thus,

both bottom-test loops and top—test loops are supported.

Icons which are part of a programming structure have special rendering requirements. The

rendering of icons in applications is the subject of the next section.
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5.5.5 Rendering of icons in applications

Icons in an application are rendered in much the same manner as those in the dictionary,

with a few exceptions. First, the descriptions of the icons are not printed underneath the

icons, since the available space prohibits this. Next, certain icons will have been marked

as breakpoints, synchronization points, or as part of a top— or bottom-test loop. Finally,

there may be wrap-around in flows which are very long.

Icons which are marked as breakpoints have a small blue triangle drawn point—down

above the upper right comer of the icon (or, if part ol‘ a j ob-target tandem, above the upper

right corner of the target icon). Synchronized icons have their labels written above them

(above the job icon in a job-target tandem). Icons which define the starting and ending

point of a loop have the loop label drawn beneath them, with an arrow drawn from the

“test” icon to the “anchor” icon indicating the flow of execution if the loop is taken.

The array lines within an APPL node reports how many “lines” a particular llow within an

application requires due to wrap-around. This supports a positional updating routine

within Onika which causes (for instance) the second flow of an application to automati-

cally be drawn slightly lower within a window if the first flow line wraps around one or

more times. An arrow is drawn to illustrate the flow of code if wraparound occurs.

In the next section, we discuss how the icons used in the upper level of Onika are created

from lower—level software and included in the software dictionaries.

5.6 Creating and Representing Icons

In order to create jobs from configurations, to create targets for these jobs, and to use pre-

viously created applications within other application, we have developed an icon creator

and modifier for Onika. An important and unique feature of this icon creator is the ability

to automatically determine and assign the syntax of a newly created job or application

icon. In this section, we discuss the icon creator and its functionality in more detail.

5.6.1 Icon creation and modification

The icon creator and modifier developed for Onika is a simple pixelmap editor which pre-

sents a grid of the size ON[KON_WIDT1-I X 0N]KON__HE1GHT to the user into which a

representative icon can be drawn. Each grid element is 10 X 10 pixels, and can be any one

of nine colors (black, white, grey, red, green, blue, yellow. green, and orange), with the

exception of the elements on the border, which are always black. Onika reserves only nine

colors for icons to minimize color table usage and the “flash” one experiences when shift-
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ing between programs with different color tables; however, this is an arbitrary number

chosen to give a wide-enough choice to icon designers while simultaneously demonstrat-

ing icon creation, and could certainly be modified in future releases.

The icon creator window is made visible when the user attempts to save a configuration as

a job, when the user wishes to create a new target, or when the user wishes to modify the

image of some pre—existing icon in an application or in the job dictionary. The icon creator

Window is non-blocking and does not interfere with the flow of events in other Onika win-

dows.

The icon creator window is divided into three sections: the grid, the View panel, and the

control panel. The grid, described in the previous paragraph, is manipulated in much the

same manner as are images in any painting package; the color of the pen is selected from a

palette, and the user can draw lines, rectangles, or circles, can draw freehand, or can fill in

areas with a certain color. Only the interior of the icon is designed by the user; the eolored/

shaped edges of the icon are automatically determined and assigned by Onika, based on

the type of icon being created. The view panel shows an “actual size” image of the current

icon under development, and the control panel contains the palette, the drawing mode

(pen, line, circle, etc.), the Save/Cancel buttons, the Clear button, and the Undo button, as

Well as information about the name of the icon and its type.

Onika keeps two copies of the grid in its memory: the current picture, and the picture

before the last event. When a drawing event occurs, the resulting picture is copied to the

non-current buffer, which is then declared to be “current.” Using the Undo button causes

Onika to make the alternate picture buffer “current.” This allows for a speedy “undo” a:nd

“redo” of any picture event, since there is no swapping of memory involved, but instead

only the reassignment of a pointer to the alternate buffer.

When the user decides that the picture is completed, then the Save button can be pressed to

write the picture to the appropriate window and file.

5.6.2 Job representation

Several steps are involved in creating a job icon from a configuration of tasks. In this sec-

tion, we detail the iconification process.

When a user requests that a configuration of tasks should be saved as a high-level icon,

Onika first ensures that the configuration has been saved since any changes were made to

it, and then analyzes the configuration to see if it contains any hanging inputs, using

Equation (6). If hanging inputs exist, and if the user has specified that Onika should issue
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warnings whenever suspicious configurations occur. then the user is informed as to which

inputs are hanging, and is given a chance to gracefully cancel the icorrifieatiorr process.

Next, the configuration is scanned to dcternrine whether or not it contains any trigger tasks

(Section 3.2.2). If the configuration contains a trigger task (for example, a joint trajectory

generator), then the icenified job will be assigned the type listed in the OBJECT field of

the trigger task’s .rm0d file (for instance, Joint job) to indicate that this will be a job

requiring a target object. Currently, Onika only checks for the existence of a single target

task; if, for some reason, multiple trigger tasks existed within the configuration, the first

such task encountered in the linked list of tasks would define the job type, with the

remainder being ignored. If no trigger task is encountered, then the default job type is

Complerejob; i.e. a job which requires no target icon to follow it in an application.

After the job type has been determined, and the job name has been assigned (the name ofa

job icon is the same as that of the configuration which it represents), then the user is pre-

sented with the icon creator window discussed in Section 5.6.1. The user creates a suitable

image for the icon, and presses the Save button (or Cancel to abort the entire process

gracefully). The job icon is then saved in a .0nk file (the format for this file is given in

Appendix A.3).

Finally, an ONIKON node is generated for the job, which is then appended to a dictionary

linked list. The exact destination dictionary is determined as follows: if the configuration

the job represents is (for instance) /usr/mwgertz/base/c0nj7m}j0b.con/, then the resulting

job file will be /usr/mwgertz/base/dict/mjjob.onk, and the icon will be added to the dictio-

nary representing the /z4sr/mwgerfz/hase/dict directory. If the affected dictionary is the cur-

rent dictionary, then the dictionary window will be refreshed to display this icon.

5.6.3 Target representation

When the user wishes to create a target, he or she is presented with a listed of object types

from which to choose. This list is generated from the 0m'kaUpperSetUp.dta preference

file, which specifies the types of icons that Onika recognizes. (This will be discussed fur-

ther in Section 5.7.) The user selects the desired type ofieon from this list ofbuttons, after

which the icon creation window of Section 5.6.1. is displayed. Alter creating a picture for

the icon, the user is prompted for default values relevant to the specific target type. Finally,

the user saves the new icon to a .onk file (the format for this file is given in Appendix A.3).

lf the location of the target’s file lies in the province of an open dictionary, then an ON!-

KON node is created for it, and the dictionary window is refreshed to show the new icon if

the appropriate dictionary is currently displayed.
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5.6.4 Application representation

Applications themselves can be iconified and stored back into a dictionary, for use in

higher-level application. The application need not be complete, as the resulting icon can

be considered as an “application requiring an object”. This section describes how applica-

tion icons are created.

When the user requests that an application be iconified, Onika first ensures that the appli-

cation has been saved, as the icon will need to refer to the application file during execution

(the format for an application file, suffixed .appl, is given in Appendix A.4). Next, Onika

checks the application to determine what kind of icon it will become. If the application is

complete (that is, if it has no “holes” in it), it is considered a “Complete application”

which will not require an object when used in an another application. If, however, the

application has any target “hole” or “holes” in it, Onika will check to see if these holes

will all accept the same type of target. If so, the new icon will be saved as an “application

requiring an xxx target,” where xxx specifies the type of target. When this icon is later used

in an application, the target icon which follows it will be used to fill up all holes in the

application (and any subapplications) represented by this icon.

If the application has a hole where a job should be, or if more than one type of target hole

exists in the application, then it cannot be saved as an icon, and the process aborts grace-

fully.

Once the icon type has been determined by Onika, the remainder of the process involving

the creation of a picture, saving the .on.k file, and insertion into a dictionary proceeds

exactly as in the case where a job icon is created from a configuration (Section 5.6.2). Par-

allel applications cannot be iconified, to eliminate the possibility of nested parallel sub-

systems within other parallel subsystems (currently unsupportable in the Chimera. RTOS);

conditional applications must be in order to function correctly. A conditional application

which is run separately at the uppermost level (i.e. not as a part of another application)

will follow the first conditional flow by default during execution.

5.7 User Preferences

User interfaces are often designed with a particular type of user or a particular scope of

application in mind. Once the use of the interface occurs outside of these boundaries, how-

ever, the user performance may become severely impeded. To make the scope of the

Onika VLE less susceptible to such failings, we designed it to present different (but inter-

acting) interfaces for the different levels of users. Nevertheless, a users performance may
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be affected by seemingly innocuous variables such as the color of icons and the types of

unit measurements used. In this section, we discuss how user preferences are implemented

within Onika.

5.7.1 Syntax preferences

In the course of this dissertation, we have alluded to various types of high-level icons,

such as “Cartesian job,” “Joint target," “Complete application,” and so forth. These icon

types are not hard-coded into Onika, but are read from a preference file called 0nikaUp-

perSetUp.dta, located in the Onika home directoiy. The structure of this file is given in

Appendix A.7. Icon types are specified by a name, a left edge index, and a right edge

index, as well as listing of data types, sizes, and descriptions if the icon is a target icon.

Edge types (which the icon type indices reference) contain the index number, the color of

the edge (in RGB notation), and information which describes the shape of the edge (a

series of (x,y) coordinate pairs indicating cumulatively relative offsets from the top of the

outer boundary of the edge). The ordering of the different types and edges are unimportant

within their respective groups.

Several icon types have special meaning within Onika, and should not be removed from

the preference file (although it is perfectly acceptable to alter the colors and shapes of the

edges which they reference). These include Application start, Application end, Complete

job, Complete application, and Complete NOP. Application start and Application end are

the icon types for the first and final icons in an application. which are nonfunctional; if the

type field of an icon matches the index value of Application end, for instance, Onika

“knows” that the icon cannot be expanded, executed, or deleted, and will not attempt to do

so. An icon of the type Complete job, when encountered during execution, will be

expanded to the configuration it represents; when the job is finished, execution will con-

tinue with the icon immediately following it. Icons of type Complete application are simi-

lar, except that they are expanded to the applica.t.ion they represent; when this sub-

application finishes, execution continues with the icon immediately following it in the

superapplication. For Complete NOP icons, no executory operation is performed on the

icon, but control immediately proceeds to the icon following it. (Complete NOP icons are

used to “space apa ” icons in an application to make the application more readable. When

relevant, they always “return” a TRUE signal for looping and a G0*T0_FLOW_(0) signal

for conditional applications which may follow it.) In general, if the icon type contains the

word “Complete,” then Onika assumes that it will never be used in a job-target tandem,

and will update the “current job” pointer appropriately after the ieon’s routine completes

its execution. Since upper level routines in Onika are either jobs or applications exclu-
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sively, there should be no need to add to the number of “Complete” icon types.

If an icon type contains the word “job” or “application,” but not the word “Complete,”

then Onika will assume that the icon type represents an action which requires a target.

Similarly, if the icon type contains the word “object,” then Onika will assume that the icon

type represents a target. During execution of an application, Onika uses these assumptions

to correctly navigate through an application. There is no limit to the number ofjob types

or target types that can be created. Generally speaking, if the icon type Xxxjob is added to

the preference file, then Xxx application should be added as well, and should be otherwise

identical in all respects to Xvcxjob in its parameters. (The only difference between the two

types is that Onika will try to expand Xxx application into an application rather than ajob

configuration during execution.) The icon type Xxx object should be added as well, with

its left edge and right edge defined to be the reverse ofXxxjob/application. The names are

used for parsing when determining the type ofj ob or application an icon should be (i.e. if

an icon of the type Joint object is missing from an application. then the application will be

saved, if iconified, as a Joint application), but Equation (7) uses the edge indices of the

icon types when checking syntax, not the names, so that an icon of type Xxxjob could be

followed by an target icon of type YYY object if the left edge of the latter was the same

index value as the right edge of the former. All of this, of course, is transparent to the typi-

cal Onika user, who simply matches colors and edges i11 puzzle-fashion, so care must be

taken by the Onika maintainer not to create situations where incompatible jobs and targets

are assigned edge indices allowing them to erroneously satisfy Equation (7).

The user has the option of creating his or her own preference file. If the file ~/. 0nikaUp-

perSetUp.dI.‘a exists, then Onika will use it in instead of the main preference file. This

allows individual users to create their own icon types. However, there is no mechanism in

Onika to address cases where an icon in a dictionaiy is of a type not recognized by the cur-

rently used preference file. Job and application icons otherwise not listed in the preference

file are treated and displayed as Complete job or Complete application, whereas unrecog-

nizable targets are simply ignored and not included in the dictionary}

5.7.2 Basic preferences

Each individual user has the ability to specify certain preferences to be in effect for his or

1. This does not mean that the job or application icon is totally unusable. Instead of getting the tar-

get information required from some following target icon, the user is prompted for the information

when needed by Onika, assuming the underlying tasks have been created according to established

guidelines. This is true for all job configurations where a task requires input but is not a recognized
“target task.”
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Figure 21: The user can define frequently—used system calls as buttons to be used

from within Onika.

her session. These preferences do not affect the recall or storage of routines in any way,

thereby not impeding the sharing of software. Included in this list of prel‘e1'enees are the

size ottask icons, the length ofl/O pins, the number of characters per line for the names of

icons, the amount of separation between connections in pixels, whether connections of

Various types are displayed or not, whether periods should be shown instead of frequen-

cies, and so forth. These are all stored (along with the preferred locations and sizes of all

Onika windows) in the file ~/.onika.

There also exists a window in Onika in which the user can create buttons and associate

them with system calls, which will be executed in the background when their buttons are

pressed (Figure 21). The user’s preferred buttons are stored in a file called ~/.0m'ka.bui-

tons.

5.7.3 Additional preferences

The “Start of application” and “End of application“ pictures can be changed from their

normal start/stoplight images by editing the files OnikaStart.di.‘a and Om'kaSro_p.a’ta. in the

Onika home directory. This is useful .for cultures where the normal images would be

meaningless. Changing these images will not affect the portability nor exccutability of any

application in which they are a part.

All text statements in Onika are defined in the file Om"/caSrrings.h. To create a Version of

Onika in which all of the textual statements were in some other language (for example,

Spanish), only that. one file would need to be changed before recompilation of Onika. This

functionality was inspired by the Apple User Interface and Compatibility Guidelines,

which have been shown to be Very effective when used for porting code between different

cultures [35].
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5.8 Communication

Onika communicates with its supporting real-time operating system via the Internet, and

also uses the I11ternet to retrieve software not found loca.1ly. Furthermore, external sub-

systems required by tasks (such as real-time displays and path planners) are also supported

Via Internet sockets, although not directly through Onika. In this section, we present the

Various communication mechanisms through which Onika interacts with its environment.

5.8.1 The ENET socket package

To facilitate Internet communication between Onika and its supporting real-time operating

system, we have developed a socket package (called the ENET socket package) designed

for ease of use by programmers. This socket libraiy includes the following commands:

enetCreate(), enetAttach(), enetSend(), ene1tReceive(), enetDetach(), and enez‘De..s‘17'0y().

These commands were incorporated into the Chimera RTOS principally for communica-

tion with Onika, but they are also useful for any general communication between two pro-
CGSSCS.

The procedure enetCreate(), used by the server process, takes as input the name of the

socket connection, which is an arbitrary string of characters (except that the character ‘@’

may not be used, for reasons discussed below). This string is separated into 4-byte pieces

(padding the final piece if necessary), which are added together to create a 32-bit integer

which is subsequently used as a socket file descriptor (SFD). A socket is created using this

SFD, and the process blocks on a connection to that socket. A structure containing the

SFD is returned if the procedure is successful.

The procedure enefAz‘tach(), used by the client process, also takes as input the name of the

socket connection, but this name may include a machine IP address or name appended to

it as Well, separated by an ‘@,’ character. For example, if the server on machine A created

a socket using the call enetCreate(mys0cket), then a client process on machine B would

connect to it by issuing the command enetAttach(mysocket@/I). The argument to enetAt-

tach() is separated into the socket name and the machine name. (If there is no machine

name given, then the assumption is made that the client process is executing on the same

machine as the server.) The socket name is parsed in the same manner as enez‘Creafe() to

return the SFD of a socket, and then standard TCP/IP socket calls are used to connect the

client to the socket SFD on the remote machine specified by the machine name. If the con-

nection cannot be made, the procedure aborts gracefully. A structure containing the SFD is

returned if the procedure is successful.
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The functions enetSena’(SFD,Iype,size,bzfler) and enetReceive(SFD,&t_ype,&size,bu/few

are similar to (and in fact use) the standard Unix wrire() and read() commands. However,

data transmitted by enetSend() is broken up into 1 Kb sections and sent sequentially. This

minimizes data loss when large amounts of information need to be sent across a network.

The size of the entire data package is sent in the second byte of the first section, so that the

enetReceive_() will continue to read socket data for a single transmission until all sections

of the message have been received. The first byte of the message contains an index to the

type of message being sent (e.g. error notification, acknowledgment. etc.), so that the

receiving process can use this value to process the message properly. The function enetRe-

ceive(), when called, blocks the process until a message is received.

The functions enetDetach() and enerDestr0y() halt communication and cause the socket to

be destroyed by the client and the server, respectively. (Processes should first send a mes-

sage indicating that communication is to be terminated before issuing these commands, so

that the other process can eliminate its own socket gracefully.) If a new connection is

desired, enetAttach() and enetCreare() commands must be reissued. A server generally

issues an enetCreate0 command after an enetDestr0y() command, in order to await

3.1'10th€1' connection.

The ENET socket package is used for communication between Onika and the RTOS as

well as between tasks and external subsystems. In the next section we discuss how this

package is used to implement communication between Onika and the Chimera RTOS.

5.8.2 Onika-Chimera RTOS communication

To connect Onika to a Chimera RTOS session, the user must first execute a Chimera pro-

gram containing a sbsNetw0rk(socket_name) call. This call causes Chimera to issue the

command enetCreate(s0cket_name), and informs Chimera that further commands will be

issued via socket until the socket becomes inactive.

Onika issues an enet/1ttach() command either at start—up (if launched with a -chim flag), or

when the user presses the “RTOS” key on the Onika control panel. In either event, the user

is prompted for the name of the socket as well as the machine name of the RTOS

(Figure 22).

When communication has been established, Onika assigns the new socket to the current

configuration by pointing the CONFIG field element enet to the new SFD node. This

socket is referred to as the Session socket for the configuration. (Each configuration has the

ability to have its own RTOS session, allowing the user to control more than one sub-
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Figure 22: Connecting to the real-time operating system.

system.) Onika. then asks Chimera to create another socket for the configuration, called the

signal socket, to which it will attach. The session socket is used for Onika-initiated corn-

munications, whcreas the signal socket is used for Chimera-initiated communication. The

latter generally takes the form of error messages, warnings, and notifications from Chi-

mera; follow up on messages received from the signal socket are done Via the session

socket.

Onika—i.nitiated communications have the following format: Onika sends a message which

asks for information or which issues a command. It then blocks on receiving a return

reply. The return reply may be data which Onika requested, an acknowledgment that a.

command was issued, an error message, or a request for more data before completing a

comm and. Onika. checks the message type an.d reacts appropriately, by aborting its current

activity (and informing the user) if the return message was an error indicator, issuing

another data transmission if Chimera requested more data, or continuing its current activ-

ity if an acknowledgment or other form of conversation termination was sent. In any

event, Onika always is the first to initiate a conversation on the session socket, and always

receives the last reply.

Chimera—initiated communications always occur on the signal socket, and are always one-

way, Onika continually polls this socket, waiting for notifications from Chimera (such as

“task has completed successfully and turned itself off” or “the robot has lost power”). Fur-

ther corninunication (if necessary‘) is thereafter performed using the session socket, freeing

the signal socket to used for any further notifications. By routing Chimera-initiated warn-
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ings to a separate socket. currently ongoing communications on the session socket are not

intermixed with out-ollcontext messages, and allow notifications to be stored separately

when the session socket is otherwise busy or blocking. This also allows warning signals to

be processed quickly, with little parsing necessary, This is especially important when

applications are being executed, as discussed in Section 5.9.

5.8.3 Task-to-subsystem communication

End-users of programmed applications require a variety of types of feedback and input

capabilities for quantitative testing and operation. For instance, a user may require a real-

time data logger, or require that target trajectory endpoints be taken from a mouse-click

location in a virtual reality display. As technology changes, capabilities such as these

which are hard—coded into a visual programming interface may be rendered obsolete in a

relatively short period of time. Subsequent support for additional types of I/O must be

hard-coded within the visual programming interface; the interface designer must either

program around existing constraints in his/her interface code (resulting in increasingly

“hacked” update versions), or completely rewrite major portions of the interface (expen-

sive in both money and man-hours).

To alleviate the problems associated with changing l/O requirements, it would seem

essential to make I/O handling as modular as possible. Indeed, it would be best to move as

much of the l/O handling as possible from the visual programming interface into other

(external) subsystems. To date, this has not been possible with respect to real-time operat-

ing system frameworks. However, with the advent ofport—based objects, we can new con-

fi11e any I/O communication to the specific objects which require them. A port-based

object can communicate directly with an external subsystem to receive input and send out-

put, in a manner completely transparent to the interface. Since the port-based objects

themselves are coded external to the interface, subsequent changes in [/0 requirements for

an object require changing only the code of the port-based object itself, leaving the inter-

face unchanged (see Figure 23). This development significantly reduces the time required

to support new types of displays and sensory inputs. Furthermore, the programming inter-

face does not need to stop monitoring the job execution to deal with the nuances of the

external subsystem. This is an important consideration, since an iconic user interface

already devotes a significant amount of time to the maintenance of screen graphics. A sim-

ilar mechanism is employed by hypermedia interfaces such as Mosaic, but has not, to our

knowledge, ever been used with a real-time control interface before.

In our framework, we assume that any communication between a job and a specific exter-
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completely controlled by the visual programming interface. If the path planner I/O

protocol is changed, then the visual programming interface itself must be changed. In

(b), the pa.th planner 1/0 is handled by the trajectory generator (a port-based object).

If the path planner fl/O is changed, then only the trajectory generator must be

changed.

nal subsystem can be perfomied by one task wit.hin the job; either the task generates/uses

the data which the external subsystem uses/generates, or can retrieve/pass the information

from/to the table of system state variables. The task with which an external subsystem

communicates is synchronous, rather than periodic; instead of operating at a fixed fre-

quency, it sends a message via the Internet to the subsystem, and blocks on a responsel

When the response is received, its data (if any) is analyzed and acted upon. The task then

cycles, and the entire procedure is repeated until the task is deactivated (either manually,

1. One could also create a periodic task, designed to only output data, to simply send the cuirent

information without blocking. However, if the task is cycling faster than the external subsystem can

process the data, then the socket will rapidly fill up, perhaps causing data loss, and at the Very least

ensuring that the external subsystem will be lagging the job, possibly rendering the data useless.

For this reason. our convention is to always block on responses, to keep jobs and external sub-
systems synchronized.
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through error. or by the controller atjob completion). Because the ENET socket package

is used for communication between the subsystem and the task, the external interface can

be located anywhere on the Internet. A common setup in our laboratory is to have (‘hi-

mera tasks running on the VME backplane ofa Sun3, Onika running on a Spare 10, and a

PUMA CAD display (showing a CAD image of the PUMA either being controlled or sim-

ulated) iunning as an external subsystem on a SGl workstation.

Obviously, the external subsystem must be able to receive, process, and send the messages

back to the task via sockets. This means that existing external subsystems (c. g. path plan-

ners, CAD displays) must be either modified or rebuilt from scratch. New subsystems can

be designed with this mechanism in mind.

Using the above external subsystem convention, any particular job can interact with a

number of external subsystems. If any programming interface (including Onika) were to

attempt to do this, it would almost certainly be slowed to a crawl in its efforts to maintain

all of the subsystems, seriously in1pairi11g its reliability. By eliminating the interface as a

“middle—man,” communication between tasks and displays becomes faster and more reli-

able.

5.8.4 Hypermedia communication

As mentioned in Section 5.2.1 and Section 5.4.1, Onika has the ability to retrieve tasks,

jobs, and targets from remote file systems. Since the remote file system may not have a

sewer which uses the ENET socket protoco1s.ftp is instead the method of communication

used to retrieve files. Given a base directory on a remote file system, Onika creates a script

file designed to retrieve all task, configuration, job, target, and applica.tion files from the

various subdirectories. (Onika assumes a standard directory structure will be used; this is

given in [22]). The script is then executed via a system conmiand, and the files are copied

to a local directory which is given the same name as the machine from which the files are

being retrieved. Further system commands are then issued to automatically link any new

modules into a Chimera executable, so that the modules can immediately be run by Onika

and Chimera. Currently, the user is prompted for a login name and password before files

are retrieved, but anonymous ftp could just as easily be supported.

The only drawback with this method for getting remote files is that they must be retrieved

a priori; while Onika would have no problem loading in new libraries on the fly during the

session, the Chimera RTOS is incapable of dynamically adding new modules to its librar-

ies during a session. In anticipation of developments to Chimera which would support the

dynamic addition of modules during a session, we have developed a true hypermedia
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interface for interacting with remote files during an Onika session. The functions we have

created will allow the user to treat all files as “local” regardless of their location, and to be

able to add new modules to a library during the session. To accomplish this, Onika will

maintain an internal list of files aside their “true” locations, all transparently to the user. A

remote file which is accessed by the user will be copied to a temporary file; subsequent

eferences to the file will access the local “temporary” copy instead, as is done currently

with other hypermedia packages such as Mosaic [51]. Changes made to the “local” copy

can then be written back to the remote “real” copy, provided that the user has the proper

permissions. Files which are already local will be accessed directly. The same high-level

programming commands in Onika’s source code, however, will be used to read from or

write to any file regardless of Whether it is “remote” or “local,” with Onika figuring out

exactly how this is to be done in the different cases. The code to support this “true” hyper-

media interface is given in Appendix D. To our knowledge, the ability to access both local

and remote resources in this manner has not hitherto been available in any other real-time

control system interface.

5.9 Execution of Applications

Onika executes applications in a non-blocking fashion, allowing the user to fully monitor

and control the outcome of applications. This is by using the signal sockets to poll for noti-

fications, rather than blocking on the session sockets. Parallel applications may be exe-

cuted on the RTOS, where each flow of the application will update its own configuration

subsystem, which in turn will have its own pair of sockets. Furthermore, each task in an

application may be conveniently aliased to another task, which means that (for example)

any application can be run on any manipulator or on a simulator without any changes

being made to the application. This functionality is unique to Onika. In this section, we

describe the execution loop which allows this extremely flexible control of applications.

5.9.1 Simulation and redirection of applications

By clicking on the “start icon” of an application flow in a certain manner, Onika scans the

application and displays all of the tasks which will be used by the flow during execution,

including tasks to be used in nested subapplications. These tasks are displayed to the user

in a pop-up window. Beside each task is a pop-up menu containing all tasks known to

Onika which could conceivably replace that task (i.e. those which generate the same out-

puts). The value of the menu is originally set to be the task itself, but the user can select a

different task to take its place. For instance, if the joint motion actions in the application

flow all used a polynomial trajectory generator task, this task could be aliased instead to a
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cyclical trajectory generator task. When the application was subsequently run, the latter

would be used whenever the former was encountered iii the application How. Each How in

the application has its own set of aliases, so that this “aliasing” can be localized.

The implications of this ability are Very profound. Since, within our fiamework, actual

control of the specific real—time control system hardware is localized to one task. and all

other tasks are generic. we can alias this hardware task to another, and run the application

on an entirely different system. For instance, if the application was created using actions

designed for a PUMA robot, the user could alias the puma task to an adept task instead,

and run the same application on an ADEPT robot. The generic nature of the other tasks

within the applications means that they will automatically be updated with the information

required to handle differing degrees—of—freedom (DOF) and DenaVit—Hartenberg (D-H)

parameters. The user can also alias the hardware task to a simulated Version of the same

task, thereby giving himself or herself the ability to simulate any application before. actu-

ally running it on the real hardware. No changes in code need to be made; no porting of

code from a real—ti1ne system to a simulator need be performed. Thus, errors incurred

when porting code are eliminated. as is the (typically Very large) amount of time necessary

to actually port the code.

There are limitations on this ability, of course; applications cannot be aliased to run on

system with gross physical dissimilarities (such as running a vision application on a sys-

tem without a camera, or running a motion application on a stationary system. Such dis-

tinctions should be intuitive, but future developments on Onika (and its supporting RTOS)

may include methods for determining the redirectability of applications a priori.

5.9.2 The execution loop

When a user requests that an application be executed on the RTOS system, Onika first

checks the application to ensure that each flow in it contains no “holes,” and that all pro-

gramming structures are correct (for instance, ensuring that all loops have a beginning and

an end icon). If any conditions are not met, the procedure executes gracefully. with the

user being informed of the exact nature of the error.

Next, certain flags are initialized for each flow in the application. These include whether

or not the flow is paused, in a loop, or in synchronization mode, and which default condi-

tional path is to be taken for the How if one is encountered. Additionally, pointers to the

current sets of task aliases for each flow are stored in a global array. Finally, an 0]\/EX

node (the structure of which is shown in Code 10) is created for each flow. The ONEX

node Contains information about the application flow and about the configuration in which
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typedef struct onex {
struct onex *prev,*next;

APPL *appl; /* The application */
ONIKON *icon; /* The icon currently looked at */

UI *ui; /* The input passed to all holes in that application */
CONFIG *conf;

int applnames; /* number of diff. applications recursed into */

NAME_STRING applname[MAXRECAPPL];
int confnames; /* number of diff. configurations recursed into */

NAME_STRING confname[MAXRECCONF];

} ONEX;

extern ONEX *OnikaEXecuting[MAXFLOW]; /* one list for each flow */

Code 10: The ONEX node, used for holding the current status of an executing appli-

cation (and subapplications, via a linked list) within a flow.

 
changes are being made to traverse it. As each flow recurses into more deeply nested

application, more ONEXnodes are added to the flow’s linked list. These nodes are deleted

as the relevant subapplications are completed. When the final ONEX node for a flow is

deleted, then the Onika. “knows” that the flow has completed its execution. When all flows

have completed their execution, then the application teiminates successfillly, and the exe-

cution process ends.

Next, Onika clears all current configurations and assigns one to each flow in the applica-

tion, creating new empty configurations as needed. If any of the configurations are not cur-

rently attached to the RTOS, Onika prompts the user for the information necessary to do

so for each unattached configuration. (The assumption here is that the RTOS has been set

up initially to accommodate the appropriate number of subsystems, which is a trivial thing

to do.)

Once all flows have a configuration subsystem space in which to work, they are com-

pletely scanned (including all nested subapplications, if any) to determine the union of

tasks required to completely execute each flow. These task sets are then spawned for each

flow — if any tasks within a subsystem conflict with each other, the user is so informed,

and the procedure exits gracefully. Tasks which are marked as having aliases (as men-

tioned in Section 5.9.1) have their counterpart tasks spawned in their place.

Traversal of each application flow is done by superset dynamic reconfiguration (described

in Section 5.34). As each action] is finished, its trigger task flags Onika via the signal

socket for its particular configuration. Onika analyzes the return value sent in this signal to

determine whether looping should occur or which flow of a conditional application should
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be taken (as relevant). Onika then deactivates tasks no longer needed, and activates those

tasks which are need by the next action (again, using aliased tasks as appropriate). For job-

target tandems, any user input needed by trigger tasks in the job’s configuration is auto-

matically supplied by the target icon which follows the job icon (or application icon, as the

case may be); if this input is invalid, the user is prompted to enter correct values. The user

is also prompted for any other user input required which is not related to the trigger task,

such as “power up the robot” and so forth.

At any time, the user can abort the application, pause any flow (after the flow’s current

action completes execution), or jump to the next action in a flow (convenient if the current

action, for whatever reason; has no trigger task to signal its completion, or if continued

execution ofa paused flow is desired.) When errors occur. Onika allows the user to either

abort the application or to “clear and continue.” If the latter is chosen, Onika clears the

appropriate task (if possible), dcaetivates the trigger task (if any), and reactivates both

tasks, giving the trigger task the same input which it was given during the previous

attempt, thus repeating the step. If successful this time, the application proceeds apace.

If the current action in the sequence of the flow is marked with a breakpoint after it, then

execution in that flow is paused after the action is completed. Execution may be resumed

with a single mouse-click.

If, at any time, the next action is marked as a synchronization point, the How is again

paused, until a synchronization point having the same label is encountered in another flow,

at which time the previous How will be allowed to continue its execution. The flow may

also be forced to continue by the user despite the existence of the synchronization tag if

the user so desires.

If an action is marked as the test condition of a loop. its return signal is analyzed to deter-

mine if looping should occur. If so, the “current icon” pointer is repositioned to the other

icon having the same label, and execution continues. If not, the action which follows the

test action is taken, with execution continuing from there. Infinite loops may be executed

by aborting the application or by forcing the flow to proceed to the next action in the

sequence regardless of the value returned by the current action.

When the application has completed its execution, or whenever the application is aborted,

all tasks in the various subsystems are killed, and the user is informed as to the nature of

1. We use the tenn ‘‘action‘‘ to refer to both complete jobs and job-target tandems in this section.

When either type finishes, Onika updates the “current icon pointer''’ for the flow by either one or
two icons, whichever is appropriate.

Page 118 of 198

92 Chapter 5. Implementation 0f0m'ka

ABB|NC_0125874



the outcome (successful or aborted).

5.10 Error Handling

There are three kinds of error handling within Onika.. The first is error prevention,

enforced by the syntax rules given in Section 5.3.3 and Section 5.5.3, as well as the pre-

seanning given to potential task aliases and to applications prior to execution as discussed

in Section 5 .9. The second is situational error handling, such as dealing with tasks and

applications which go into error, or tasks which are given incorrect user input, as dis-

cussed in Section 5.3.6 and Section 5.9.2 The final type of error handling, which has not

hitherto been discussed, is communication error handling, which deals with errors in load-

ing files and in ethernet communication. Onika uses the err() error package developed for

Chimera 3.2 to ha.ndle these sorts of errors (the reader is directed to [57] for a full descrip-

tion of this package). In this section, we briefly discuss error handling of this type as is rel-

evant to Onika solely for the sake of completion, while noting that the research and

development for the detection of this class of error was actually pioneered in [57].

5.10.1 File errors

The files used by Onika have definite structures, all of which are given in Appendix A.

There is a certain amount of flexibility built into Onika regarding these structures (for

instance, Onika fully supports — and updates with defaults —fi1es generated by previous

versions of Onika which may lack fields found in the current file formats), but, in general,

files must confirm to a rigid format. All Onika files are loaded in using the cfig0 library

routines developed for Chimera 3.2, Onika specifies the format of the file type, as well as

the name of the file to be loaded, in the arguments to the cjig_{) call. If qfig() encounters an

error while loading the file (for instance, corrupted data, missing lines, of other format

violations), cfig() invokes an appropriate error handler in Onika, which will informs the

user of the error and the steps which Onika will take to recover from it. For example, if a

task’s .rm0a’ file is found to be in error when the task libraries are being loaded, the task

will not be made available in the library, or if the user preference file is corrupt, Onika will

assign “default” preferences for the session, which the user can modify if desired. The

error handler procedure then gracefully aborts the current procedure, and allows subse-

quent actions (for instance, the continued loading of other tasks) to proceed as normal.

5.10.2 Network errors

All sockets within Onika. a.re constantly polled to determine if they are active. If communi-

cation with the RTOS is lost at any time (even when Onika is blocking on a response from
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the RTOS), an error handler is invoked which informs the user that communication has

been lost for one or more configuration subsystems. Any currently running applications

affected by the loss of communications are marked and reported as “aborted,” with their

tasks deleted from their subsystems. If no application is running, but tasks were cycling

within some configuration, these tasks are marked as “inactive.” The socket information

for all affected configurations is reset, and control is gracefully returned to the user. If the

user subsequently reconnccts a configuration to the RTOS, the Onika configuration will

update itself with the current status of the tasks on the RTOS, resolving any differences by

spawning new tasks as necessary, as discussed in Section 5.3.2.

5.11 Portability of the Onika Algorithms to Other Systems

Onika was designed with real-time control systems in mind; in particular, it is designed to

work primarily with the Chimera real-time operating system. The algorithms presented

and implemented within this research may be ported to other domains of computer science

and engineering; however, within Onika, the following assumptions are made about the

system for which it is a front end:

- Lower level programming is state-variable based: the current state of

the system can be completely defined by the values is its state variables.

° Upper level programming is goal-oriented: Applications have one or

more definitive endings, modified by loops and conditionals.

- Any routine can be defined by (or decomposed into) a collection of

common lower level routines: The software at any level of the system is

reusable, modular, and generic, and can be combined logically with other

such software to create higher level routines.

It is possible that a system might not meet all of the above assumptions, and yet still be

able to use exclusively either the upper level or lower level algorithms, since the syntax

and grammar of either is separate (the execution routines within Onika provide the sole

interface between the two).

5.12 Summary

In this chapter, we have discussed the implementation of tasks within Onika, and shown

the rules by which they can be combined into configurations which perform some action.

These actions can be “iconified” and included with icons representing targets in high-level

dictionaries, from which goal-oriented applications can be developed. Task libraries, con-

figurations, dictionaries, and applications may be retrieved from the local filesystem or

remotely on the Internet; future versions of Onika will allow retrieval during a session
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(currently, the supporting RTOS only allows retrieval before the session begins). User

preferences allow the user to customize his or her version of Onika, increasing the effi-

ciency of the interface. Several novel communication systems have been developed to

support Onika’s communication with the RTOS, with other sites around the Internet, and

between tasks and external subsystems such as real-time displays and path planners. These

communication methods led to the development of a. very fast execution control loop,

which pre-scans all applications for errors, and allows for the redirection of any applica-

tion to a different system or even to a simulator. Built-in error handling and prevention

ensure that the Onika session will be “stable” despite any errors encountered in communi-

cation or in file loading.
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6. User Testing

6.1 Introduction

In this chapter, we present the results from our user tests of Onika. These tests were per-

formed i11 order to determine the efiiciency of Onika as a programming environment. In

particular, we wished to test whether programs in Onika could be created more quickly

than programs created by conventional methods, regardless of the user’s programming

expertise. We also wished to discover wha.t factors in Onika’s presentation of information

affected its efficiency. In the tests presented in this chapter, the subjects were divided into

three groups, with each group using a slightly different version of Onika to determine

which Onika characteristics most atfected a subject’s performance. The first group used a

version in which the upper-level icons were presented graphically only. The second group

used a Version wherein the icons had an additional textual description centered beneath

each icon. The final group used a version where the icons were display as featureless rect-

angles (i.e. no visual cues) with the textual descriptions centered beneath them.

The subjects were given a fifteen-minute tutorial in Onika‘s use and in basic robotic the-

ory. After a wami-up test, the subjects were asked to program the robot to assemble a

small structure using Onika within a time-limit of one hour. All users were able to cor-

rectly create the application, demonstrating that, using Onika and its support for iconic

programming, end-users can successfiilly create and control wide-scope applications for

robots without advanced knowledge of controls or computer programming. This is highly

significant, since non-expert users would otherwise be unable to create code for rea.l-time

control systems using conventional methods.

As mentioned above, we tried to determine the importance of the Various Visual cues

available i11 Onika. by comparing the statistics compiled from the three different subject

groups. Although we were unable to show 5% statistical significance with our limited sub-
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ject pool, the comparison results were close enough (7%) that we feel that further testing

is indicated to determine the importance of graphical and textual descriptions i11 Onika.

This chapter also introduces tl1e first benchmarks for programming robotic applications

from job primitives. Such benchmarks were never possible in the past, since the process of

creating programs using textual methods tends to be too lengthy and monolithic.

6.2 Method

To determine Onika's efficiency as a programming interface, the subjects were asked to

create a program using Onika that would cause the robot to assemble a simple four—piece

structure. When assembled correctly, a light on the structure would light up, indicating

success. To create the application, a minimum of 43 icons would be needed, incorporating

24 successive robotic actions. This simple task was chosen because it would be easy to

compare the subjects’ result times with the time required to generate the same application

textually (using allegorical data in the latter case), and yet would involve using a large

cross-section of Onika’s abilities. This section details our methodology in iunning this

experiment.

6.2.1 Subject demographics

For the testing, we chose subjects who met the following criteria:

- Windows-literate: all subjects had some experience using window-

based interfaces, and could operate a mouse properly.

- College education: all subjects were completing or had previously

received a Bachelor of Science degree.

Experience with computer programming and robotics varied within the subject group, and

both men and women were included.

Twenty—four male and female subjects with varied experience in robotics and program-

ming were tested in total, and were divided into three groups. The first group, subjects pl

through p9, used a version of Onika during the test in which individual icons in the job

dictionary were differentiated from one another solely on their visual characteristics. The

second group, subjects ptl through pt10, used a version ofOnika in which the icons were

spaced farther apart, and were labeled with descriptions centered beneath them. The third

group, subjects tl through t5, used a version of Onika in which the icons were mere rect-

angles having textual descriptions centered beneath them, but having no other visual cues.
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Figure 24: A depiction of the four boxes which the user programmed the robot to

assemble in the user tests. Note that each box is labelled with a different symbol for

the purposes of identification, and that the top box has a light in its center which illu-

minates when the structure is assembled correctly. In this figure, the boxes are shown

stacked in the correct order.

6.2.2 Apparatus

6. 2.2. 1 Onika

All subjects participating in the experiment programmed the robot using Onika 1.38.

Onika was run on a Spare 10 operating as a peer on an NFS network. Connection between

Onika and the supporting multi-thread real-time operating system, Chimera 3.2, was

achieved using sockets which linked the interface to the OS across the NFS network. Chi-

mera 3.2 was run on a peer Sun3 with a VME backplane supporting three RTPUs (real-

time processing units). The arm controlled by Chimera 3.2 via the subject's programs

assembled on Onika was a 6 DOF (degrees-of-freedom) PUMA 560 outfitted with a pneu-

matic two-fmgered gripper. Onika’s icon displaying procedure was modified as necessary

to determine whether or not descriptions and visual cues were offered to the subject.

6. 2.2.2 Structural hardware

The structure to be assembled consisted of four blue plastic boxes (electronics “hobbyist”

boxes, 3 inches by 5 inches). Each box had a unique identifier painted on its “face” (wavy

lines, triangle, square, cross, as depicted in Figure 24). Additionally, each box had metal

contacts on the top and bottom, connected internally by wires. When placed on top of each

other in the correct order, a complete circuit would be formed and an LED on the upper-

most box would light up (the battery for which was stored in the bottommost box). Only
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the correct assembly of the boxes would cause the light to illuminate. The boxes were

placed at specific locations within the workspace of the robot; these locations were the

same for each subject.

6.2.2.3 /cons

The job icons available for the subject (Cartesian move to x,joint move to q, open gripper,

and close gripper) were already available in the laboratory's user libraries, and had origi-

nally been assembled from reconfigurable software tasks within minutes using Onika's

engineering-level interface. The approach points for the robot were determined by teleop-

erating the robot in joint space to a location above each part of the structure to be assem-

bled, and recording the resulting position in a joint target icon. An Onika application was

then created to move to each approach position and then switch to Cartesian teleoperation

(in turn) so that we could easily move the hand to each target poi11t and record the result-

ing location in a Cartesian target icon. Using both collections of target icons, it. was then

possible to quickly create a program to grab each part and move it above the assembly

point of the structure, then switch to Cartesian teleoperation to lower each part to the

structure to determine its “end point,” which would also be stored in a Cartesian target

icon. Using Onika, the creation of the approach and target point icons for the experiment

took somewhat less than thirty minutes. The mnemonic pictures (9 colors available, 32

pixels on a side) were added afterwards, using a painting subroutine built into Onika.

6.2.2.4 Analysis Software and Criteria

To collect data, a background event logger was added to Onika's code. The event logger

transparently generated a time-stamped entry for every action that the user performed

using the mouse or keyboard (except moving or dragging of the mouse). The events were

written to the log in a format which ensured that we would be able to completely recon-

struct the user's session as required. The format included six data items: the absolute time53

(in seconds, from the system clock), the event (e. g., “select_icon, “insert_icon,” etc.), the

primary data structure alfected by the event (e. g., a “move to x” icon), the primary mem-

ory pointer to the primary data structure (to pinpoint which instance of a primary data

structure was affected), the secondary data structure affected (if any), its secondaiy mem-

ory pointer, and, finally, the window in which the event took place. As an example, the fol-

lowing data was generated when one subject selected icons in the dictionary and placed

them into the application:

time. e_ve_n_t glgjit @:'i_e.:A::.s__I.D assoc .. obj, assoc. ID .w_i.n_d.o_w
7 7 0 9 0 9 6 8 3 t: ry_new_app 1 none 0 none 0 app 1
770909685 new_app1 Untit1ed—2 3577432 none 0 appl
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770909690 select_icon opengripc 3496920 none 0 dict
770909692 insert_icon opengripc 3652992 Start 3684304 appl
770909696 select_icon jmovec 3494072 none 0 dict
770909698 insert_icon jmovec 3762528 opengripC 3652992 appl
770909703 select_icon box2_aj 3509360 none 0 dict
770909704 insert_icon box2_aj 3782232 jmovec 3762528 appl

The log file contained a listing of every OS (operating system) event which was generated

by the user; however, the example data given above is clearly not in a readable fonnat.

Therefore, the raw data was parsed after any given test in two ways. First, the raw data

was parsed to determine how long a subject spent performing any particular function in

Onika. Since the number of events which a subject could generate was limited to creating

new applications, selecting, placing, and deleting icons, and running their applications,

this parsing program was able to provide a clear View of where most of a subjcct’s time

was spent. An example of this parsed statistical. data from the same subject as in the previ-

ous example follows:

2 seconds
673 seconds
242 seconds

Time required to request new application:
Elapsed time from NEW to success:
Total selection time:

Number of meaningful selectionsl: 43
Average time per selection: 5.62791 seconds
Total number of selections: 43

Total number of insertions without selection?: 0

Time required for insertions without selection: 0
Total number of all insertions: 43

Total insertion time (all): 124 seconds

Average insertion time:
Number of deletions:

2.88372 seconds
0

Total check time: 9 seconds

Attempts to run the application:
Applications which could not be run:
Applications which were aborted:
Applications which were successfully completed: 1
Total time used by successful applications: 246 seconds
Average time used by successful applications: 246 seconds

OOl-‘U1

By analyzing this statistical data, it became clear after a minimal number of tests that the

average icon selection time was the major criterion in quantifying a subject’s overall per-

formance — insertion time for icons, for instance, was always within a half-second range.

This statistical data. was therefore quite useful in locating the major source of resource

consumption; however, it was not at all useful for determining the reason why excessive

time resources were being consumed. Without these reasons, effective enhancements to

Onika’s visual presentation could not be made. Therefore, a timeline was generated from

1. Selections which led to an insertion event. as opposed to selections which were followed imme-

diately by another selection event.

2. An icon which is cuirently selected in the dictionaiy can be inserted multiple times in the appli-

cation without needing to “reselect” the icon in between inseition events.
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Figure 25: A graphical representation of a section of timeline data taken from a subject

test.

the raw data, essentia.lly rewriting it into a more legible format:

2 seconds later (at t=1483), the event new_appl occurred to item Untitled-
2 (id 3577432).

5 seconds later (at t=1488), the event select_icon occurred to item
opengripc (id = 3496920).

2 seconds later (at t=1490), the event insert_icon occurred to item
opengripc (id = 3652992) which followed/follows item Start (id =
3684304).

4 seconds later (at t=1494), the event select_icon occurred to item
jmoveC (id = 3494072).

2 seconds later (at t=1496), the event insert_icon occurred to item
jmovec (id = 3762528) which followed/follows item opengripc (id =
3652992).

5 seconds later (at t=1501), the event select_icon occurred to item
box2_aj (id = 3509360).

1 seconds later (at t=l502), the event insert_icon occurred to item
box2_aj (id = 3782232) which followed/follows item jmovec (id =
3762528).

A visual depiction of this data is given in Figure 25. Using this timeline format, we could

pinpoint (for instance) out-of-the-ordinary selection times for specific icons, allowing us

to determine which icons were harder to find than others (i.e. too abstract). We were then

able to effect changes to the Onika interface to provide more information to the user (such

as adding textual descriptions, sorting icons, etc).

6.2.3 Procedure

6. 2.3.1 Preparation

Testing took place in the Advanced Manipulators Laboratory. Before each subject arrived,
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both Onika and Chimera were launched, and were connected to each other. The robot was

calibrated and moved to the upright position with the gripper in the “closed” position. The

visible Onika windows included the main control panel, the job dictionary, and the appli-

cation workspace.

6.2.3.2 Administration of tutorial

Each subject first filled out a demographics sheet which indicated their relative expertise

in the areas of programming and robotics, as well as their level of education. Next, the

subject was given a 15-minute oral and demonstrative tutorial which included:

- what the finished structure would look like if assembled correctly

(using a wooden mock-up of the parts of the structure)

- how to create a new application within Onika

- what each icon would do when encountered within an Onika applica-
tion

- the reason for using j oint-space approach points when causing a robot

to move, and the difference between them and Cartesian-space target

points

' how to place icons from the job dictionary into the application work-
space

- how to use the scroll bar to work with portions of the application which

might have moved oil“-window

A checklist was used to ensure that each subject was given the same tutorial and the same

set of instructions. Additionally, each subject was given a “help” sheet whi.ch reiterated

(textually) how to place icons from the dictionary into the application, and which also

showed a picture of the finished structure (the sketch in Figure 24 was used for this pur-

pose).

6.2.3.3 Warm-up

Next, the subject was shown how to make an application which would cause the robot to

pick up the first part of the structure. Atter this application was run, and the robot was

reset, the application was removed, and the subject was asked to re-create the application.

If a subject's warm—up program failed during execution, the subject was told why (eg,

“the program has failed, because the robot failed to grab the box before picking it up”), the

robot and structure parts were reset, and the subject was asked to repair the program. The

subject was allowed three attempts to correctly assemble the warm-up program.
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6.2.3.4 Assembly of structure

Having succeeded in creating the warm—up a.pplication, that application was deleted. and

the robot and stmcturc parts reset. The subject was then told to create an application to

assemble the entire structure within a one-hour time limit. If execution of the application

failed, the subject was told why (as in the warrn-up), the robot and pieces of the structure

would be reset, and the subject was then free to revise the application within the one-hour

constraint.

6.2.4 Results

All subjects in the first group (pl through p9) succeeded in recreating the warm—up appli-

cation. Additionally, with one exception, all subjects were able to successfully assemble

the structure using their Onika program on the first attempt. The exception, subject p8, left

out an icon pair. Subject p8 was able to locate and correct his error in a minimal amount of

time (165 seconds), and subsequently succeeded on the next attempt to run his application.

Originally, we had not planned on varying Onika’s functionality during the user tests; all

subjects would be tested using the laboratory version of Onika, in which icons did not

have textual descriptions. However, by analyzing the data generated from the tests of sub-

jects pl through p9, we had been able to determine that the majority of a subject's time

was devoted to selecting an icon. Based on this information, we added textual descriptions

centered beneath each icon in the job dictionary, and we spaced the icons farther apart, all

to determine whether the selection time could be reduced. The resulting version of Onika

was tested on subjects ptl through ptl0.

The performance of subjects ptl through ptl0 was well within the range of those of the

first group (subject pt4 required three warm-up attempts, and subject pt2 forgot an icon

pair, as subject p8 had — the correction was made in 43 seconds). A major exception was

subject pt9, who failed the warm-up three times and was therefore eliminated from taking

the full test. Despite the fact that, by our initial testing criteria, the subject's full test results

could not be used when tabulating results, we explicitly walked the subject through the

warm-up a fourth time, after which the subject was able to complete the warm-up. We

then allowed the subject to take the full test, which was completed successfully on the first

attempt, albeit slowly when compared to the others in the same (i.e. icons with descrip-

tions) test group (average time of 13.2 seconds per icon selected, as opposed to a group

average time of 6.1 seconds per selection).

When comparing the group which used icons only to the group which used icons that had
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textual descriptions, we found that the mean performance increase of the latter group with

respect to selecting icons for placement into the application was 22% (6.1 seconds versus

7.8 seconds).Although this difference did not prove to be significant, as discussed later in

Section 6.2.5, the probability of significance was close enough that further testing is indi-

cated.

The completion times for the subjects using the icons with textual descriptions ranged

from 257 to 868 seconds, whereas for the subjects using just the icons, the completion

times ranged from 338 to 1038 seconds. The tabu1a.ted results for the “no descriptions”

group and the “descriptions” group are given in Table 1 and Table 2, respectively. We then

determined to test how much on an asset the visual cues were in and of themselves. To do

this, we created a Versi on of Onika i.n which all icons were presented as blank rectangles

having no pictures, edge colors, or edge shapes, but only textual descriptions.

Table 1: Performances when no descriptions were given

number of

icons

deleted

number of elapsed time

attempts to (not including

run program run times) (see)

avg.
selection

time (sec)

subj ect
number

655

16.0652

3.89

3.96

number of

attempts to

number of

icons

deleted

elapsed time

(not includingselection

time (see)
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Table 2: Performance when descriptions were given

avg. number of number of elapsed time

selection icons attempts to (not including

time (sec) deleted run program run times) (see)

 
a. Note that icons are selectable even when they haven’t all been “drawn” yet during a

refresh. This accounts for subject pt7’s seemingly-impossible low selection time (all

other subjects waited until all icons were redrawn before trying to select one).

Table 3: Performance when no graphics were given

elapsed

avg. adjusted number of number of time (not

selection selection icons attempts to including

time (see) time (sec)“ deleted run program run times)

(see)

subj ect
number

20.653

8.500

8.635

10.393

9.000

 
a. Provided for comparison with Tables 1 and 2, since screen redraws for this Version of Onika were

less by 2.25 seconds per refresh event. The screen refreshes after icons are selected, dragged, etc.,
and subjects typically waited for the screen to refresh before performing any action (see footnote

for Table 2). Hence, a 2.25 second penalty has been added to produce an adjusted selection time

suitable for comparisons with other versions of Onika. (Note that, iirespective of refreshing delays,

the performance of these subjects is clearly more error—p1'one than that the other groups.) The
quicker refresh times should not be considered an advantage of using a “text-only” presentation,

since, 011 a faster graphics workstation, the screen refresh rates would be negligible for Onika in
any event.
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The modified Onika, having no detailed graphics to draw, was freed from the 2.25 seconds

(on average) of screen refreshing time always encountered when an icon was selected,

giving these new subjects an advantage in time over the previous subjects. Nevertheless,

the new subjects performed more slowly than the previous subjects on average, and they

encountered more problems. In particular, the average number of incorrect icons placed

into an application, and then subsequently deleted, per subject tested rose from 0.33 icons/

subject for the pictures/descriptions case and 0.89 for the pictures/no descriptions ease to

1.8 icons/subject, a highly significant change for the worse. The average selection time

rose to 9.18 seconds even with the 2.25 second advantage, giving the “best case” scenario

of both pictures and descriptions a 5.3 second advantage over the “text only” case -- a

47% time savings, not including the time penalty accrued by placing incorrect icons which

were subsequently deleted. Again, although the difference between the different groups

was subsequently not shown to be of statistical importance (Section 6.2.5), the statistical

difference was found to be small enough that further testing was indicated. The tabulated

results for this text-only group are shown in Table 3.

The two least proficient subjects (t1 and t4) both had to run their applications twice, with

the least proficient subject (tl) succeeding only marginally on the second attempt (several

icons pairs representing robot approach points were omitted; however, these points were

non—eritical, unbeknownst to the subject). The number of deletions and the selection times

also reflected the need for proficiency in computers when using this version of the inter-

face, as the most errors and the worst times directly reflected the user's experience with

programming (a sophomore CS student performed best, two freshmen with high school

programming experience performed less well, and the two non-programming subjects per-

formed significantly worse than the others). This is unlike the cases where pictures were

provided for each icon, in which proficiency seemed to matter very little to performance.

(Of the nine subjects in the graphics-only group, four were “proficient” in programming,

whereas in the graphics/text group, five of the eight were “proficient.” The resulting scores

could not be correlated to experience.)

6.2.5 Significance of the statistical data

In order to determine the significance of the data collected from the user test, an “analysis

of variance” test (ANOVA) was performed on the data, with the outliers (subjects p2 and

t1) removed. It was determined from our limited data set that the probability of signifi-

cance of the data (using a sum-of-squares method) was 6.99%, and is therefore not signif-

icant with respect to a 5% probability criterion. Nevertheless, the results are close enough

to being significant that further testing with a larger and more balanced subject pool may
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very well verify the perceived differences in the various versions of Onika; further testing

is indicated. The results of a Tukey’s Studentized Range (HSD) test on the data are shown

in Table 4.: The versions of Onika in which graphics are used do not show a significant

Table 4: Subject group comparisons (HSD test)“

 
 

 
 
 

  

 
 

  

 

 
 

 

 

 
 

 

   

Simultaneous . Simultaneous
Difference

Group Lower Upper
. Between 7

comparison Confidence Confidence. . Means . .
Limit Limit

 -3 .2796 1.8058  Graphics and text

to graphics-only

 
 

  

Graphics and text -6.1984

to text-only

 F-Graphics-only to -5.5214
text—only

a. Adjusted text-only scores. as defined previously. were used in this testing.

difference, but the comparison of either to the text-only group is much more interesting,

particularly graphics and text vs. text-only case, where the confidence range barely strad-

dles the zero mark. Again, fuither testing is indicated.

In the next section, we investigate the subj ccts’ performances further as we discuss the test

results within the contexts of cognitive style and perfoirnancc motivation.

6.3 Discussion

The main conclusion we derived from the test results was that Onika, in combination with

its support for iconic programming, allowed users of all levels of expertise to program and

control real—time control systems, even in cases where the subject clearly would have been

unable (due to lack of training) to do the same usual conventional textual methods. In this

section, we discuss reasons why using Onika is significantly less—resouree intensive than

using more conventional real-time programming options.

6.3.1 Usability of Onika by non-programmers

As mentioned previously, the control and programming of real—tinie control systems is by-

and-large unachievable using conventional programming methods. The subject testing in

this chapter, however, shows that even users who have never used a computer for other

than word processing can successfully create programs for a robot. Fuithermore, since
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new upper level icons can always be created from lower level icons, the scope of the end-

users’ programs is never limited, unlike interfaces in which the language elements are

hard-coded.

It is easy to argue that the visual presentation of the icons assists in creation of the code.

Subject pt4 commented that he narrowed down the field ofpotential icons using the color/

shape information, and used the textual descriptions to make certain that he picked the

correct icon of the set. Subjects pl, p2, and p3, who used the icons without descriptions,

suggested that descriptions should be included to make it easier to find icons. The impor-

tance of these results and comments cannot be understa.ted, as many human-machine inter-

faces offer only one or the other sort of cue, which may therefore provide insullicient

guidance to the user and may minimize system effectiveness.

6.3.2 Reduced set-up time

Figure 26 shows a comparison of the time required to build an Onika real-time pick—and-

place application from scratch. as opposed to building the same application using conven-

tional methods.1 The time required to create and assemble all of the software for the sub-

jects’ tests is compared to the creation of similar code for VAL 11 from scratch. As can be

seen, there is a significant difference in the time required to generate end-user code, since

Onika already supports real-time code, and Onika code need not be rewritten in order to

be simulated. The stratified architecture which was created for Onika allows for a smooth

decomposition of tasks in a manner which nnnimizes the amount of code which must be

created for an application.

Besides basic issues such as the presentation of icons and information as well as the mod-

ularity of the architecture, there are other factors involved which may have played a part

i11 determining a subject’s results. In this following sections, we investigate two of these:

cognitive style differences and performance motivation.

6.3.3 Effects of cognitive style upon performance

All subjects (subject pt9 excepted) succeeded in learning to create a robotics application

1. Anecdotal evidence from several robotics labs was collected to produce a time-line for conven-

tional programming; as mentioned previously, no quantitative benchmarks are available for textual

programming. The assumption i11 both cases is that device drivers are available to use i11 program-
ming. The graphic would be even more skewed in Onika’s favor if we account for the fact that the

generic software already available in ()nika libraries is sufficient for all robotic motions, without
needing to rewrite it for different robots. Furthermore, tutorial times for the system are omitted;

these would be negligible in Onika compared with the days of training required for the textual sys-
tern.
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Legend

l - Create high-level simulation
2 - Create new modules

3 - Create configurations/job primitives

4 - Create/get target information

5 — Create application

6 — Port between simulator and physical system

7 - Create real—time wrapper/controller for new primitives

8 - Debug  

Figure 26: A comparison example of creating an Onika real—time pick-and-place

application versus creating a similar application using traditional methods. No simu-

lation port is required for Onika, since physical code can be simulated without

changes. Furthermore, unlike the textual case, the Onika code can, after completion,

also be executed on another manipulator without changes. As noted previously, train-

ing times are omitted from this figure; this would be negligible in Onika compared to

[the days of training required for textual systems.
within a time frame typically unachievable by even expert programmers when using tradi~

tional textual languages. We speculate that subject pt9 was not able to adopt a strategy

consistent with his cognitive style. The cognitive style of a person is eitheijfield-indepen-

dent orfield-dependent, depending on the methods he or she typically uses to solve prob-

lems[7][65]. Field-independent persons generally use a strategy based on analysis,

hypothesis, and experimentation, all very important elements in a test environment where

the test administrators were not permitted to volunteer information or advice to the subject

beyond the initial reading of the test script. Persons with a field-dependent cognitive style

tend to use strategies which rely on external referents, which were not available in this test

except in a very limited fashion. The tutorial which we gave the subjects prior to the test

(and, indeed, Onika itsell) are well-suited to a field—independent cognitive style. The

“help” sheet given to the subjects, for instance, was deliberately vague, containing only a

picture of the completely-assembled structure and a reminder of how to drag icons from
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the library to the application. Subject pt9 consistently tried to use the test administrator as

an external referent, and made it clear that he was trying to remember what the test admin-

istrator ha.d done while demonstrating Onika before the warm—up, all of which are charac-

teristic of a person having a field-dependent cognitive style. This behavior was not

observed in any of the other test subjects.

To appeal to the field-dependent types, the help sheet should have been more detailed,

with perhaps the example ofpicking up the box included on it for future referencing. This

idea of creating dilferent training environments for persons of differing cognitive style is

supported in [31]. A field—dependent person who could not switch to a field-independent

cognitive style would indeed be left with no other alternative but to try to reconstruct from

memory what we had demonstrated earlier, or wait for further cues. The use of computers

and robots can certainly be intimidating and stressful, making it difficult to adopt a more

suitable cognitive style strategy[7]. The subject might also have been “fixed” rather than

“mobile” with regard to cognitive style; proper training on Onika would likely have

helped the subject to become able to access the qualities of the foreign cognitive style[65].

We do not mean to imply by this that cognitive style is associated with cognitive ability;

previous research such as in [31] shows that the two seem to be independent.

6.3.4 Performance motivation

During the recruitment process for the testing, many potential subjects of varying profi-

ciency indicated that they were highly motivated to participate in the test, and that the

monetary compensation was not a factor in their volunteering to run the robot. After the

test was given, however, the feedback from the subjects varied greatly according to group.

The “non-picture” group of subjects was highly vocal in their criticism of the interface,

with most of the criticism being negative. Four of the five subjects complained that the

syntax was difficult to understand, and it was suggested that more visual cues be presented

to the user. The more-proficient subjects in that group still called Onika “fun,” but the non-

proficient subjects were discouraged, and stated plainly that the interface was “not fun.”

All suggested adding features which, unknown to them, were already incorporated into the

“norma ” version of Onika. This is in direct contrast to the comments from the subjects in

the other groups; subjects ptl, pt8, pt9, p5, p6, and p9 indicated after the test was complete

that the interface was “fun” to use, regardless of their proficiency, with no negative com-

ments received at all.

The idea of users having “fun” while performing complex tasks on a computer is an aspect

ofprogramming which we feel tends to be overlooked. A user who enjoys programming is
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invariably more productive than a user who looks upon it as a chore. Ten subjects had

never written a program before, and thus were able to achieve something otherwise

unavailable to them, i.e., write a program to directly control a robot. To these persons,

Onika (and the test) might have appeared as a sort of game (which might have made it eas-

ier for certain subjects to adopt an appropriate cognitive strategy). The Onika test, for

them, would contain many of the features found in the most popular games [43]. These

include:

- an explicit goal (assembling the structure)

- a scoring system (implicit in the test itself)

- audio and visual feedback (built into Onika, plus the satisfaction of see-

ing and hearing the robot move)

- reliance on speed (the arbitrary one-hour time limit imposed on the test

subjects).

Malone er a] point out in [43] that explicit goals produce more enjoyment if the goal is

interesting; all of our subjects responded to our initial request for testers that they were

highly interested in robots and computers, even if they lacked previous experience with

them. Several subjects offered to take the test for free. The subjects were highly motivated

to achieve the goal of using a robot correctly, and the task was clearly intrinsically moti-

vating in the following areas, defined in [43]:

- Challenge: “Can I make the robot work?”

Curiosity: “I wonder how they programs robots.”

Control: ‘‘I have power over this hitherto inaccessible device!”

- Fantasy (both the fantasy of using a robot, and having the material

assembled in a storyboard fashion): “I'm writing a story for a real robot to

read, using pictures!”

For the users in the “text.—only” group, this motivation clearly waned (especially in the

area of ‘‘fantasy’’) as the subjects felt they were forced to use an interface which they could

see was inherently flawed (based upon their suggestions for possible changes). We feel

that it is clear, therefore, that attention to performance motivation factors is essentially to

providing a useful human machine interface.

6.4 Summary

Based on the results of our user testing, we have shown that Onika is an effective tool for

creating goal-oriented programs for robots, even with a minimal amount of training. In the

past, the creation of real—time goal-oriented programs for robots has been measured in
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days, weeks, and even months, and has always been limited to specialists in the robotics

and computer programming fields. For example, the real-time textual program required to

assemble the structure used in this experiment took one roboticist in our laboratory several

weeks to create and debug, and the code thus generated had a length of eighteen pages on

paper. Programming of robotics by non-specialists, where even possible, has been

extremely limited in scope due to the amount of training required. Nevertheless, in our

subject tests, non-specialists were able to create an assembly application in less than 18

minutes. The supporting architecture for Onika assists in reducing set-up time, while the

graphical interface is easy to understand and imposes little training time. Future work in

this area should be directed towards using testing to determine how to make the presenta-

tion of higher-level programming structures (such as loops, macroing, synchronicity, and

conditionals) more intuitive to non-specialist operators of robotic manipulators, as well as

towards determining whether the vi sual presentation of icons in Onika truly varies accord-

ing to whether graphical and/or textual information is presented.

Page 139 of 198

6.4 Summary 113

ABB|NC_0125895



I14

Page 140 of 198

Chapter 6. User Testing

ABBlNC_0125896



7. Summary, Contributions, and Future Work

In this dissertation, we have presented a visual proyamming environment called Onika,

which is designed to both significantly decrease the time and resources required to pro-

gram and control complex real-time control systems. As a result of the research and devel-

opment of the system presented in this dissertation, we have made the following

significant contributions to the fields of real-time control systems and human-"machine

interfaces:

- A significant decrease in the time required to program real-time control

systems has been achieved, with the time required to create high level

applications measured in minutes and seconds rather than in hours and

days, as shown by event-level user testing.

- Wide—scope programming of real-time control systems, such as robots,

has been made accessible to a group of persons who lack the prerequisite

training to perform such operations using traditional programming meth-

ods. This programming is done with the context of a well-defined system
architecture.

- Resources and code for real-time systems can be shared transparently

across a network, allowing a much faster transfer of technology. Approxi-

mately 100 generic software modules are already accessible by Onika

users, covering a wide range of tasks.

Onika is already in daily use at Carnegie Mellon University, as well as at other sites

around the continent, and has been instrumental in getting new systems up and running in

hours rather than weeks.

Although the work presented in this thesis is a strong, positive step towards better pro-

gramming and control of real-time systems, there are still many issues related to vi.sual

programming environments which need to be addressed in future research. These issues

include, but are not limited to, the following:
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' Onika currently recognizes at most one trigger‘ task per job. thereby

allowing each job to have only one target assigned to it. A mechanism

needs to be devised which will allow a job to have more than one target

icon modifying it. This will have the added benefit of making nested appli-

cations rnore useful, as more than one “argument” will be able to be passed

to them (i.e. the programmer could leave more than one type of hole in an

application, and “iconify” it for other applications to use, passing more

than one target icon to it). To achieve this, the visual presentation of the

upper level of Onika will need to be substantially modified.

' Tasks which require external subsystems currently rely on the user to

start these subsystems a priori. A mechanism should be devised by which a

hyperlink to an external subsystem could be assigned to any given task, so

that when the task is activated, the subsystem is automatically spawned

with the proper arguments.

- As mentioned in Section 5.8.4, Onika only retrieves software from

across the Internet at start—up, due to limitations in the RTOS which prevent

the dynamic loading of object code. When this limitation is overcome, the

interface should be modified to present a true on-the—fly mechanism for

interacting with software and hardware on the Internet. Code for this mech-

anism has already been developed (and is listed in Appendix D), but has

not yet been included into the system.

- Currently, environmental variables are used to specify software loca-
tions. As more and more modules become available via networks, an inter-

active hypermedia browser will be required to determine which libraries

should be opened.

- Onika, while object-oriented, is nevertheless written in C , and uses

large, inefficient standard library routines to present graphics to the user. A

logical development would be to rewrite Onika to use an object-oriented

language (such as C++) and to custom-design fast graphics routines to

reduce refresh rates. Currently, screen refreshes take 0.125 seconds per

icon on the screen in the upper level; with 50 or more icons in a dictionary.

the refresh time is longer than the time it takes the typical user to actually
select an icon.

- A mechanism needs to be devised by which Oni.ka can automatically

launch the RTOS. even if the latter is on a different frlesystem. Currently,

the Chimera RTOS does not support remote launches, but this limitation

will be addressed in future research, and Onika will need to support it when
available.

- Automatic transfer of current SVAR values (such as the current joint

position) to new target icons would significantly enhance perforrnance.

This mechanism would have to account for differences between the target

syntax and the SVAR (for instance, joint targets require a trajectory dura-

tion as well as an endpoint).
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° Onika currently assumes that the size of a given SVAR structure is con-

stant. With the introduction of reconfigurable modular manipulators, this is

no longer the case; as change in the value ol’NDOF will requiring resizing

other arrays such as DH and measured joint positions. Task modules can

already be written to compensate for this, but target icons currently cannot

(for instance, a joint target as defined in our own preferences has exactly

six joint values plus a duration Value, and hence is unusable for any manip-

ulator with more than six joints). Further investigation is required to pro-

duce target definitions which can automatically resize their arrays based on

the current control system in use.

- Certain tasks are often used together (for instance, in our laboratory,

robot tasks are always used with a gravity compensation task and a differ-

entiator). These tasks could be grouped together in a “supeimodule” which

the user could manipulate as a whole. Supermodules would include rules as

to the order of spawning, order of activation, etc. If and when imple-

mented, Onika will need a way to group the component modules together,

add the various interaction rules, and save, recall, and “expand” the super-

modules as necessary. Ideally, this research and development would be per-

formed in parallel with RTOS developments supporting supemiodules at a
lower level.

° Conditional support in Onika is fully functional, but only in a “proof-

of-concept” fomr. More research and development needs to be done to

devise a method to present con ditionals intuitively in a way which does not

waste large amounts of screen space (of which traditionally—touted flow

charts are particularly guilty).

- Through user testing, we have discovered that minimal changes in the

features of icons affect performance. More user testing needs to be per-

formed to pinpoint the features of icons within a Visual programming envi-

ronment which most affect the usability of the interface.

° Currently, interactive debugging is limited to checking for memory cor-

ruption by tasks, siniulation of applications and jobs, clearing tasks in

error, display of feedback from the RTOS, and stepping through applica-

tions using breakpoints. A mechanism for tracking down specific errors in

module code (and repairing them from within Onika) would greatly

enhance Onika’s use as a debugging tool.

- Real-time robotics has very specific state variables, which are well-

characterized after years of testing. Onika.’s interfaces are therefore geared

towards a state variable-oriented system. Nevertheless, both the lower level

and upper level algorithms may be usefiil in other (non-real time) domains.

Further research into the applicability of Onika’s interfaces to other
domains is indicated.

The introduction of reusable software for real-time control systems can significantly

increase the usability of such systems and the rate of technology transfer, but only if the
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control and programming of such is made accessible to a wider cross—section of the popu-

lation. A visual programming environment designed to ease the chore of creating code for

these systems, such as the one presented in this dissertation, will not only conserve

resources devoted to technology transfer, but will reduce the costs associated with training

and the research and development of new applications in academia, manufacturing, and

industry.
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Appendix A: File Formats

This appendix lists out the various file formats used by Onika. All file formats are compat-

ible with Chimera 3.2 library routines.

Note that all files (except the task parameter file) contain a VERSION field. If this field is

not found within a file, then Onika will assume that the file was created by a Version of

Onika that was less than 1.3, and react accordingly (updating the file when re-saved, for

instance).

In the following file formats, italics indicate that the italicized phrase is replaced by appro-

priate Values within the file. Non—italicized words appear exactly as they do within the file.

A.1 Task Parameter (.rmod) file

This is the format for the task parameter file (base__directorjy/modulelxxx.rmod):

##### Comment line

MODULE name of task’s module

DESC description of task.
SVARALIAS coded_name_1 = svar_1
SVARALIAS coded_name_2 = svar;2
L..)
INCONST list of Coded INCONSTS
OUTCONST list of coded OUTCONSTS
INVAR list of coded INVARS
OUTVAR list of coded OUTVARS

TASKTYPE periodic,synchronous, or aperiodic

FREQ frequency
(or)

PERIOD period

ONIKA

OBJECT type of job this task inplies

LOCAL

CODED_PARAMETER parameter Values
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EOF

# denotes a comment. Blank lines are treated as comment lines. Combinations of tabs and

spaces are treated as one space.

MODULE contains the name of the object file (minus the .0 extension), and is used by

Onika 1.3 to inform the RTOS as to which objects should be loaded. It must be the first

non-commented item in the parameter file. The name ofthe object need not be the same

as the name of the parameter file; for instance, the first item of a different parameter

file, her_tas/rmmod might have MODULE‘ a_ras/r also, thus allowing the user to easily

set up different tasks which use the same module by setting up different parameter files

for that module. The module name should never be changed in this file.

DESC is largely irrelevant to Onika 1.3, and is only used to inform the user as to what the

module in question does. Nevertheless, this item must be the second item in the param-
eter file.

SVARALIAS is an optional parameter. It allows the user to assign new names to internal

variables. For example, the code for the module a_task.o might use the variables

JOINTS to describe degrees-of—freedom and DH to describe Denavit—Hartenberg

parameters. However, we might prefer to refer to these variables as NDOF and

DHPARAMS instead. SVARALIAS allows us to do this. Subsequent references to these

variables in this parameter file use the new definition rather than the old. SVARALIAS

is especially useful when porting tasks from other worksites, where their standard vari-

able names are different than yours. It’s important to change names to match you own

standards, so that Onika 1.3 will know when two variables refer to the same data. There

may be several S VARALIAS lines in a parameter file, or there may be none. If there are

any, they must follow the DESC parameter line.

INCONST, OUTCONST, INVAR, and OUTVAR: These refer to the inputs and outputs

to and from the module.. They must respectively follow any SVARALIAS parameter

lines; if there are no S VARALIAS parameter lines, then they must follow the DESC

parameter line instead. If any one of them have no values, then the word “none" must

follow it. These values represented the coded names of the variables; if there are

SVARALIAS entries which refer to them, then Onika will automatically replace the

affected variables with the aliased name when displaying and controlling the task.

TASKTYPE is one of the following: periodic, synchronous, or aperiodic. This line is not

optional, and it follows OUTVAR parameter line.

FREQ or PERIOD is the default frequency or period of the task. Exactly one of these lines

is included if and only if a task is periodic or synchronous. The use of one line over the

other is based on user preference. When included, this line follows the TASKTYPE

parameter line.

ONIKA signals that the next block of data is useful only to Onika 1.3. lt need not exist in

the .rm0d file, but if it does, it follows FREQ/PERIOD parameter line (or the T/1SK—

IYPE parameter line, if FREQ/PERIOD is omitted). ()N[KA is always followed by the

OBJECT parameter.

OBJECT specifies the type ofjob this task defines. That is, if this task is part of a config-

uration, then that configuration should be considered as a job of the type listed on this
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line. Generally, if a task requires user input, this means that the job it is in is should be

considered an action requiring an certain type of object. This type of action is listed in

the OBJECT parameter (e.g. Jointjob). Onika l.3 uses this field to determine an upper

level job’s type, and to determine what kind of icons may follow i.t at the upper level.

If a task requires user input, but this is not mentioned in the .mod file, then, instead of

Onika 1.3 getting the data from the icon following the job which includes this task, the

user will be prompted for the data. OBJECT always follows ONIKA, and precedes
LOCAL if the latter exists.

LOCAL signals that the final block of data is useful only to this task’s module. LOCAL fol-

lows ONIKA and OBJECT if they exist; otherwise, it follows FREQ or PERIOD (or

TASKTYPE if they are omitted). Following LOCAL come lines of data for the task’s

module. These vary from task to task. DEVICEFILE is an example of module data.

The use of LOCAL allows the user to easily change the gains, devices, etc., associated

with a module without having to recompile the module.

EOF must be the last line in the parameters file.

A.2 Task Configuration (.conf) file

Unlike the .rm0d file, the .c0nffile is primarily used only by Onika itself. This is the for-

mat for the task configuration file (base_direct0rjy/conflrxx.cortf):

VERSION Version number of Onika in which this file was saved

RMODFILE task parameter file of task_1
COORDS X y
INLEFT yes or no
FREQ frequency
RTPU processor

RMODFILE task parameter file of task_2
COORDS X y
INLEFT yes or no
FREQ frequency
RTPU processor

(. . .)

LOCUS sVar_name__1
COORDS x y
CONNS conns

NUMINCONST number_of_inconsts
NU'MOUTCONST number__of_out cons t s
NUMINVAR number_of_inVars
NUMOUTVAR number_of__outVarss
NUMDOUBLEIN number_of_doub1e_inputs
SHOW yes or no

LOCUS svar_name__2
COORDS x y
CONNS corms

NUMINCONST number__of__inconst s
NUMOUTCONST number__of__out cons ts
NUMINVAR number_of_invars
NUMOUTVAR number_ of_o u t: va rs
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NUMDOUBLEIN number_of_doub1e_inputs
SHOW yes or no

(——.)

EOF

VERSION is the version number of Onika under which this file was saved. This parameter

is used by Onika to automatically update old files.

RMODFILE is the name of the task parameter file of a given task in the configuration

(defined in Appendix A.l). RMODFILE is the start of the “block" of lines needed to

describe a task in a configuration. There is one “block” of these lines for each task in

the configuration.

COORDS is the (x, )2) location of the upper left corner of the task on the canvas. and is the
second line in the “block.”

INLEFT, the third line in the “block,” determines the directionality of the task‘s icon. If its

value is “yes,” then inputs are to be displayed on the left side of the icon. Otherwise,

inputs are to be displayed on the right side of the icon.

FREQ gives the frequency of the task, and is the fourth line in the “block.” This value over-

rides any value given in the task’s parameter file, and is ignored if the task is aperiodic

(though the line must still exist). Unlike the task parameter file, this line cannot be

replaced with PERIOD instead.

RTPU is the last line in the “block.” It lists the name of the RTPU on which the task should

run. If the task was never spawned on an RTPU before saving the configuration, the
value of this line will be “unknown.”

LOCUS signifies the start of a connection locus information “block.” All locus blocks
follow the last task block. There is one “block” for each state variable used in the con-

figuration. The value of the locus line is the name of the state variable.

COORDS is the (x, y) location of the upper left corner of the locus on the canvas, and is
the second line in the “block.”

CONNS is the third line in the block, and tells how many tasks are connected to the locus.

NUMINCONST, NUMOUTCONST, NUMINVAR, NUMOUTVAR, NUMDOU-

BLEIN: Lines four through eight deal with number of INCONSTS, OUTCONSTS,

INVARS, OUTVARS, and INBOTHS related to the locus. These lines (along with

CONNS) may be removed from fiiture versions of Onika.

SHOW is the last line in the block., and tells whether the locus should have its connections
drawn or not.

EOF should be the last line in the file.

A.3 Upper-level Icon (.onk) file

The upper-level icon file (base_direcfo1jy/dict/xxx.onk, where “onk” is short for onikon,

the internal name of an upper-level icon in Onika) holds all of the infomiation needed for

an icon.
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Th.e format of an icon file is as follows:

VERSION version number of Onika in which the file was saved

ONIKON icontype
DESC description
UI list of ui element values for ui item i or none
UI list of ui element values for ui item 2

L. )

PICT first row of icon picture definition characters

L. )

PICT thirty—second row of icon picture definition characters

EOF

VERSION is the version number of Onika under which this file was saved. This parameter

is used by Onika to automatically update old files.

ONIKON describes the type of icon; e.g., “Complete job,” “Cartesian object,” “Joint

Application,” etc. This name must exactly match one of the types defined in $HOME/

.0nikaUpperSez‘Up.dta (or $ONIKA_DIR/pre_f[s'/Om’kaUpperSetUp.dta, if the former

does not exist).

DESC gives a description of what the icon does. Currently, Onika does not use this field,

although it has to be in the file.

UI is either “none" (for non-object icons) or is a list of values for the object. In the latter

case, the number of UI lines is equal to the number of data items defined for this type

of ONIKON. The number of elements on each line is equivalent to the number defined

for this particular data item in $HO]\lE/. OnikaUpperSezUp.dta (or $0NIKA_D1R/

pref?/OnikaUpperSetUp.dta, if the former does not exist).

PICT lines define the picture centered in the icon. There are exactly 32 of these lines, and

each line has 32 characters. The characters range from ‘O’ to ‘9.’ When converted to

integers, these characters represent offsets into a color table defined internally to Onika.

Currently, 0=rea', l=green, 2=blue, 3=yell0w, 4=0range, Sxpurple, 6=grey, 7=white,
and 8=black.

EOF must be the last line in the file.

A.4 Application (.appI) file

The application file (base_direct0ijy/applfltxx.appl) holds all of the information that Onika

needs to recreate an application. Its format is as follows:

VERSION Version number of Onika in which the file was saved

APPLTYPE conditional or parallel

FLOW

Page 149 of 198

A.4 Application (.appl)file 123

ABB|NC_0125905



I24

ROUTINE name of icon

MARKER yes or no
SYNCHTAG tagname
WHILETAG tagname
WHILETEST yes or no
ONIKON icontype
DESC description
UI list of ui element Values for ui item i or none
UI list of ui element values for ui item 2

L )

PICT first row of icon picture definition characters

L--)

PICT thirtysecond row of icon picture definition characters

L. )

I CONHOLE

L--)

ENDFLOW

FLOW

L.-)

ENDFLOW

L..)

EOF‘

VERSION is the version number of Onika under which this file was saved. This parameter

is used by Onika to automatically update old files.

APPLTYPE tells whether the application is conditional 01' parallel. Although the distinc-

tion is meaningless ifonly one flow is involved, the line must nevertheless be in the file.

FLOW marks the beginning of one of the application flows. The first FLOW follows

APPLTYPE, whereas subsequent FLOWmarkers follow the ENDFLOW marker of the

preceding flow. All icons and “holes” encountered between a FLOW and its END-

FLOW are considered part of that flow

ROUTINE gives the name of the icon and marks the beginning of lines of code which
define an icon. For instance, if the value is xxx, then the .onk file for this icon is in

some_a’ir/dict/xx.x.onk, and (if an action icon) the routine to be run when this icon is

encountered during execution is either s0me_dir/Cory‘/xxx.conf or some_dir/appl/

xxx.appI.

MARKER tells whether or not a breakpoint is set after the icon.

SYNCHTAG is optional and gives the name of the synchronicity tag of the icon.

WHILETAG is optional and gives the name of the while—loop tag of the icon..
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WHILETEST is compulsory if WHILETAG is included, and must follow WHILETA G in

such a case. It tells whtether or not the icon’s job’s return Value should be analyzed to

test loop conditions.

ONIKON describes the type of icon; e.g., “Complete job,” “Cartesian object,” “Joint

Application,” etc. This name must exactly match one of the types defined in $HOME/

.0nikaD]DperSetUp.dta (or $0NIKA_DIR/prcffs/OnikaUpperSetUp.dta, if the former

does not exist).

DESC gives a description of what the icon does. Currently, Onika does not use this field,

although it has to be in the file.

UI is either “none” (for non—object icons) or is a list of values for the object. In the latter

case, the number of U1 lines is equal to the number of data items defined for this type

of ONIKON. The number of elements on each line is equivalent to the number defined

for this particular data item in $HOME/. Om‘/ca UpperSetUp.dta (or $0NIKA_DIR/

prejfs/Oni/caUpper.S‘etUp.dta, if the former does not exist).

PICT lines define the picture centered in the icon. There are exactly 32 of these lines, and

each line has 32 characters. The characters range from ‘O’ to ‘9.’ When converted to

integers, these characters represent offsets into a color table defined internally to Onika.

Currently, 0=red, l=green, 2=blue, 3=_1/ellow, 4=0r‘ange, 5=purp/e, 6=grey, 7=w/rite,

and 8:black. The thiity»second PICT line marks the end of the lines of code which

define a single icon in the application.

ICONHOLE means that, at this point in the flow, there is a “hole” rather than an icon, and

no icon data should be loaded for this position. The next icon encountered will be

loaded into the next position in the application.

ENDFLOW signals the end ofa flow within an application. It is either followed by another

FLOWintroduction or EOF. There is exactly one ENDFLOWmarker for each FLOW.

EOF must be the final line in the file.

A.5 Preference file ($HOME/.onika)

This file is optional. If it exists, then Onika will use the preferences stored within it. (If

only the upper level is used, then a preference file will automatically be created when the

user exits Onika.) The format of the file is as follows:

VERSION Version number of Onika in which the file was saved

LINELEN length of task names before wraparound
MINSIZE minimum height of a task icon
MINPINSEP minimum distnce between task icon pins
STEPSIZE step size used if icon needs to increase to next size
PINLENGTH length of pins
CONNSEP separation between connections leaving a task
INCONST yes or no
OUTCONST yes or no
INVAR yes or no
OUTVAR yes or no
LOCISIZE visual size of loci on screen
HITTOL the hit: tolerance within Onika’s middle level

Page 151 of 198

A.5 Preferencefile ($HOME/. onika) I25

ABB|NC_0125907



I26

RATE frequency or period
LEXI X y b w
CONF X y n w
STAT x y
LOCUS X y
DICT X y 11 w
APPL X y n w
MAIN x y
BUTTON x y
STATINFO list of status information names

EOF

VERSION is the version number of Onika under which this file was saved. This parameter

is used by Onika to automatically update old files.

LINELEN is the number of characters of a tasks name that will be displayed in the icon

before wraparound occurs.

MINSIZE is the minimum height of an icon in pixels.

MINPINSEP is the minimum distance between two pins on the side of an icon. If this dis-

tance cannot be maintained between pins, the Onika will increase the size of the icon

by the value of the STEPSIZE field. This process continues until the all pin distances
are at least the value of the MINPINSEP field.

STEPSIZE is used to determine how much larger an icon should be made to try to fulfill
the MINPINSEP criteria.

PINLENGTH is the length of the pins. Note that, as the pins get longer, the “box” portion

of the icon gets skinnier, since icons can only take up a certain amount of width (this

value is hard—coded into Onika).

CONNSEP is used to keep connections from running into each other as they go around

their source icon. All connections leaving the same icon side will be separated by the
distance in the CONNSEP field.

INCONS’I‘, OUTCONST, INVAR, OUTVAR: These fields describe whether or not loci

having these characteristics have their connection drawn. “Yes" takes preference over
“no;” for instance, ifINCONSTs are not to be shown, but INVARS are. then a loci having
both an INCONST and an INVAR will have its connection shown.

LOCISIZE is simply the size of the radius of loci on the canvas.

HITTOL describes how close you have to come to a pin or locus to actually have it register

as being touched. This can be as high as 10 if the user would otherwise have difficulty

pinpointing something so small with a mouse.

RATE is used to determine whether the user prefers to view rates as frequencies or periods.

LEXI, CONF, STAT, LOCUS, DICT, APPL, MAIN, BUTTON: these fields give the

absolute x and y positions of the task library, configuration canvas, RTOS status win-

dow, RTOS state variable values window, job dictionary, application workspace, Onika

Command Window, and Onika Default Functions window. respectively. For the library,

canvas, workspace, and dictionary, h and w give the dimensions of the serollable por-
tion of the window.
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STATINFO contains a list of the names of the types of status information which the user

wants presented to him or her. The information which can be displayed include rmod

(module name), rqm (rtpu name), tid (task ID), S (type of task: “P” for periodic,

for synchronous, “A” for aperiodic), crii (criticality), state (“off,” “cycle,” “synch,”

“error,” etc.), cycle (number of cycles sine the last status retrieval command was issued

from Onika), niiss (number of missed cycles), rgf—F (desired frequency), ref-T(desired

period), mez-F (average cycles/second executed), mez-T (measured period as detected

by automatic profiling), piime (profiling time), t0f—C (total execution time used by task

within profiling time), tick (clock tick of the RTPU on which the task is on), min-U

(minimum RTPU utilization/cycle), max-U(maxim11m RTPU utilization/cycle), avg—U

(average RTPU utilization/cycle), min-C (minimum RTPU time/cycle), max-C (maxi-

mum RTPU time/cycle), avg-C (average RTPU time/cycle), and warn (number of

warnings issued since last status retrieval command was issued by Onika).

EOF must be the last line in the file.

A.6 Onika Default Functions File ($HOME/.onika.buttons)

This file is optional. If it exists, then, at start-up, Onika creates system call buttons based

on the information in this file. The amount of buttons that can be created in this fashion is

limited only by memory. The format is as follows:

VERSION Version number of Onika in which the file was saved

BUTTON button name
FUCTION command to be issued

SPAWNTTY yes or no

BUTTON button name
FUCTION command to be issued

SPAWNTTY yes or no

( - - -J

EOF

VERSION is the versi on number of Onika under which this file was saved. This parameter

is used by Onika to automatically update old files.

BUTTON is the name that will appear on the button. The first button defined follows VER-

SION; other BUTTONS follow the SPA WNTTY line of the previous button “block.”

FUNCTION is the command that will be issued when the button is pressed. It does not

need an ampersand at the end, as Onika will supply that itself if one is missing.

SPAWNTTY indicates that this command should be run through a newly-generated xterm

rather than on the default shell (the one in which Onika was launched). When the com-

mand finishes exccution, the xterm is automatically killed.

EOF must be the last line in the file.

A.7 The Syntax Definition File (.OnikaUpperSetUp.dta)

Onika looks for this file in the directory $HOME. If it is not found, Onika uses
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$0/VIKA _D]R/prefs/Onika UpperSetUp.a’ta instead.

This file sets up the syntax of the upper level of Onika. The user should not change the

names or definitions of “A lieation start,” “A lication end.” “Com lete 'ob,” or “Com-PP PP P J

plete application.” For new actions requiring objects, make certain that the word “job” or

“application” appears as part of the ONIKON field, preceded by the name of the object

required. If “Xxx job” exists, then “Xxx application” should also be specified. and vice-

versa, unless thcre’s some overwhelming reason why one or the other should not be per-

mitted. In general, the fields of “Xxx job” and “Xxx application” should always be the

same, except for the information in the ONIKON field itself.

The format of the file is as follows:

VERSION

ONIKON
LEFTEDGE
RIGHTEDGE

ONIKON
LEFTEDGE
RIGHTEDGE
VARNAME
DATATYPE
NELEMS
VARNAME
DATATYPE
NELEMS

(---)

EDGENUM
RGB
NUMVERTS
VERTICES

EDGENUM
RGB
NUMVERTS
VERTICES

(---)

EOF

version number of Onika in which the file was saved

typename
edge number
edge nunmer

typename
edge number
edge number
name of this data item

int, double, or float,
number of elements for
name of this data item

int, double, or float,
number of elements for

O

r g b
number of Vertices

etc...
this data item

etc...
this data item

list of relative x/y movements

1

r g b
number of vertices

list of relative X/y movements

VERSION is the version number of Onika under which this file was initially used. This

parameter is used by Onika to compensate for older files.

ONIKON is the name given to the type of icon being defined.

LEFTEGDE defines which edge information is used on the left side of the icon. The
number refers to an EDGENUM block defined later in the file.

RIGHTEDGE is similar to LEFTEDGE but defines the right edge of this type of icon.
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VARNAME, DATATYPE, NELEMS: VARN/ME‘ is used only when the type is an

object, i.n which case DA TA TYPE and NELEMS must follow it (in that order). These,

in turn, may be followed by another VARNAME—DA TA TYPE—NELEMS block, since an

object is not limited in the number of data items it can have. VARNA ME indicates the

name of this data item (used when the user is prompted during the session for values),

DATATYPE indicates the type of information defined (string, Zine, char, byte, float,

double, long, int, or sI7.0rt)_, and NELEA/IS indicates how many elements are in the array.

EDGENUM is the identification number assigned to an edge. This number must be unique

with respect to other defined edges. The numbering need not be sequential nor contig-
uous.

RGB is the color of the edge given as a red—green-blue vector. r, g, and Z; range from 0 to
255.

NUMVERTS can loosely be described as the number of “zigs” or “zags” the edge of an
icon makes.

VERTICES gives a NUMT/ERTS—long list of x/y pairs which tell Onika how to draw the

icon’s edge. Each pair is a relative offset from the previous position of the pen. The

starting position is 16 pixels away from the closest edge of the main icon picture, at a

height level equivalent to the top ofthe icon. A line will connect the last offset to a point

16 pixels away from the closest edge of the main icon picture, at a height level equiv-

alent to the bottom of the icon. So, the line VERTICES -5 5 5 5 would cause a line to

be drawn from the starting position to a point five pixels to the left and five pixels down.

The next line would be five pixels to the right and five pixels down from that new posi-

tion, and finally that last position would be connected with the ending point automati-

cally.

EOF must be the last line of the file.

A.8 Start and Stop Icon Files

The files $ONIKA_DIR/prejiv/Ont'kaStarI.dta and Om'kaStop.dta are not like the other files

listed in this appendix. They do not have a Version number, nor are they based on the Chi-

mera library file—fom1ats. These files define the appearance of the “start” and “stop” icons

of the upper level of Onika.

Both files consist of 32 lines having 32 characters each. These characters range from ‘O’ to

‘9,’ which, when interpreted as integers represent offsets into a color table. Currently,

0=red, l=green, 2=blue, 3=yell0w, 4=0range, 5=purple, 6=grey, 7=white, and 8=black.

Thus, the definition of the icon pictures is similar to that found in the PICT fields of the

.0111: files (Appendix A.3), but the keyword PICT does not precede the lines, nor are there

any other lines in the files.
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This appendix gives the user tables ofwhat the various mouse and key combinations mean

in the configuration canvas, task library, job dictionary, and application workspace. Note

Appendix B: Mouse Clicks

that the “mouse button” is pressed with the “key” already down.

B.1 The Task Library
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Table 5: The Task Library
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B.2 The Configuration Canvas

Table 6: The Configuration Canvas
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mouse

button
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Table 6: The Configuration Canvas

“Delete” or

“Back

Space”

location of
mouse

anywhere

anywhere

cuts the cur-

rently
selected icon

copies the

currently
selected icon

anywhere pastes an
icon from the
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0 direction
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rently
selected icon

B.3 The Job Dictionary

mouse

button

Table 7: The Job Dictionary
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B.4 The Application Workspace

134

Table 7: The Job Dictionary

mouse

button

location of
mouse

action

left over job
icon

swaps job

configura-

tion repre-

sented by
the icon into

current con-

figuration if
middle
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gramming
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“Shift”
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over appli-
cation icon

over action

icon

over object
icon

over icon
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cation rep-

resented by
the icon

shows icon
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object val-
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edited

opens icon

picture edi-
tor

Table 8: The Application Workspace
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Table 8: The Application Workspace
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Table 8: The Application Workspace
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Appendix C: How to Create Tasks

Onika requires certain modules to act in certain ways. Of particular note are modules

which signal the end of a job. This section describes the signals which Onika expects trom

the modules, as well as user input specifications for modules. It is intended for users who

write the code for modules, and who are experienced with signal handling in the real-time

operating system. Readers of this section are assumed to be familiar with the Chimera 3.1

User’s Manual.

C.1 Trigger Modules

In Onika, we define a trigger module as a module which signals the end of a job. For

instance, in a joint motion job, the trajectory module is the trigger module, since it is the

module which decides whether or not the destination has been reached, and the job is fin-

ished. There should only be one trigger module per configuration or job.

Typically, the trigger module is the module which defines the type of j ob a configuration

would make. For instance, the presence of ajoint trajectory module indicates that the con-

figuration is a joint job requiring a joint object (i.e. the trajectory endpoint in joint coordi-

nates), whereas the presence of a Cartesian trajectory module indicates that the

configuration should be regarded as a Cartesian job, requiring a Cartesian object (i.e. the

trajectory endpoint in Cartesian coordinates). Of course, some trigger modules do not

require any object to run; gripper modules and trackball modules are a good example of

these. Trigger modules which do require an object should have the ONIKA fields in their

.rm0a’ files reflect this (see Appendix A. 1).

Trigger modules should not turn themselves off by returning SBS_OFE Instead, they

should use SBS_FlNISHJOB(x), which sends a signal that they are finished before imple-

menting the xxx0_}§’() routine. The actual signal sent using this command is

SBS_SIG_F.INISH x, where x generally gives some indication as to which flow path in an
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application should be taken next, or whether looping should be performed. Here is an

example from a periodic trigger n1od'ule’s C code:

#define GO___TO_ FLOW(i) SBS_ SIG(SBS SIG END+i+2)
#define WHILECONTINUE SBS_ _SIG (SBS___SIG__END+1)

/* ... */

typedef struct {
/* normal local variables here */
/* */

} trajectLoca1_t;

/* ... */

trajectOn(stask,1oca1)

trajectLoca1_t *1oca1;
sbsTask_t *task;

{
/* Do normal “on” number-crunching */

}

trajectCycle(stask, local)

trajectLoca1‘t *1oca1;
sbsTask_t *task;

{
/* do normal cycle number-crunching */
/* ... */

if trajectory_is_finished()

{
return SBS__FINISHJOB (GO_TO_FLOW (0) ) ;

/* ... */

return I OK;

}

/* ... */

Once the trigger module reaches the end of the trajectory, it returns

SBS_FINISHJOB(G0_T0_FLOW(())). The module is deactivated by Chimera (as if

SBS_OFF had been returned, but the signal SIG_FINISH | G0_T0_FLOW_(0) is sent to

Onika as well. Onika will receive the signal and, if the module is operating within the con-

text ol" an application, will route the application onto flow 0. If the value passed to

G0_T0_FLO W0 had been i, where i was unequal to 0, Onika will route the application

onto flow i if more than one choice of flows exists in the next high-level icon in the appli-

cation. (If only flow 0 is available, that flow will be taken regardless of the Value of i.)

Flows are numbered from 0 to MAXFLOW-1. (Currently, MAXFLOW is defined as 3 in

Onika.) By convention, flow 0 indicates that the modules finished in a typical state, and
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the default flow should therefore be taken. If WHILECONTINUE had been sent as well

(i.e. SBS_FIN]SH./‘OB(GO_TO_FLOW(0) | WHILECONTINUE), any loops for which this

was the test configuration would have continued looping.

Non-trigger modules should not use SBS_FINISHJOB(x). Passive modules (i.e. modules

for whom their deactivation would not affect the rest of the system and does not indicate

the end of a job’s execution) should instead return SBS_OFF if they must turn themselves.

C.2 SBS_OFF vs. errlnvoke()

Programmers may be tempted to have their xxxCycle() or xxxSync() routines return

SBS_OFF rather than returning SBS_FINISI-IJOB(x), or to return SBS_OFF to deal with

errors noticed in the xxxCycle() routine. Such a design philosophy can lead to bad conse-

quences when software is shared amongst various users.

If an error is encountered (for instance, “Joints exceeding limits”), then the proper way to

deal with this is to call an errlnvoke(). This will send the task into the xxxError{) routine,

allowing the condition to be dealt with as appropriate. IfxxxError() cannot deal with the

error, and returns SBS_ERROR, then an error signal will be sent to Onika automatically. If

SBS_CONTINUE is returned by the xxxError() routine instead (indicating the problem has

been fixed), then execution will continue as normal, and On.ika will not be signalled. This

allows the Onika user to remain informed about unrecoverable errors, but to be unbur-

dened with those that can be automatically fixed.

If a stopping condition is encountered (for instance, “Endpoint reached”), then Onika

should be signalled with the SBS_FINISHJOB(x) return option, where x contains the

appropriate flow information signal. This allows Onika to move on to the next job at the

upper level. The stopping task will be turned off automatically by Chimera regardless of

whether it is in an application or not, removing the need for the task to return SBS_OFF.

Trigger modules are the only modules which should return SBtS’_FI./VLS'}’4IJOB(x). When

non-trigger modules need to turn off, they should be considered as being in error, and

appropriate measures should be taken.

There is one case, however, when a task can turn itself off by returning SBS_0FF with no

problems. This is when the task is passive; that is, it does not affect the operation of the

other modules in its configuration, nor the outcome of the job. A good example would be a

display task which sent current joint variable values in a robot motion job to an external

robot CAD—display viewer. If, for some reason, a user running an application containing

this job decides to save time and not run the robot viewer, then the display task can and
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should turn itself off (i.e. return SBS_OFF) when it fails to connect to the external robot

viewer. It is true that this action will cause a signal to be sent to Onika; however, Onika

will ignore SBS_SIG_()FF when an application is running. This removes the need for the

programmer to remove the offending task from the job or rewrite the entire application,

and will not cause a robot motion application to come to a halt just because a viewer used

in one of its jobs isn’t running. Note that passive tasks are never trigger tasks.

C.3 Signal Response

The following table illustrates how Onika responds to signals coming from a task on the

real-time operating system.

Table 9: Signal Response in Onika

Signal sent

SBS_SIG_OFF

No application is

executing
An application is executing

Onika updates sta-

tus. In general,
tasks should not

turn themselves

off, but invoke an

error instead,

unless the task is

passive.

SBS_SIG__F]Nf[SH Onika deactivates

the task and

updates the status
information.

Ignored (though this will

probably change). In gen-

eral, tasks should not turn

themselves off; they should

invoke an error instead,

unless the task is passive.

Onika deactivates the task,

then moves to next job in

application. Ifno flow
information is sent with the

signal, flow 0 will be

assumed. If no loop infor-

mation is included, any

while loops will be exited.

SBS_SIG_ERROR

SBS_SIG_WARNlN
G

140

Onika updates sta-

tus, reporting
error.

Onika reports error. User

has option oftrying to clear
error and continue, or abort.

I gnored. Ignored. Note that errors
which are converted into

warnings in the xxxError()
routine therefore do not

affect a.pplication execu-
tion.
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Table 9: Signal Response in Onika

 

 Signal sent
No application is

executing  
 

An application is executing
 

 
 

 

SBS_SIG_SHUTDO
WN

 sBs___s1G____1LLEGAL

SBS___SIG___LEGAL

The user is

informed. If com-

munication with

the RTOS fails,

Onika goes into
non-RTOS mode.

The user is

informed.

Ignored.

 

Application aboits.

  Application aborts.

.Ignored. 
 
 

 
 
 

 
 
 
 

 

 
 
 
 

 
 

SBS_SIG(x) Ignored

C.4 User Input (the UI packet)

If next job has multiple

flows, flow 9:-

SBS_SIG_END+2 will be

followed; otherwise, flow 0
will be followed. If the

whi1e—loop tag ofthe icon is

the testing instance, then if

SBS_SIG_END+1 is set,
execution will commence

at or after the other instance

(depending on whether it is

a top or bottom test); other-

wise, the loop is exited and
execution continues from

the icon following the cur-
rent icon.

Occasionally, when a module is controlled in certain ways (for example, when it is acti-

vated), it will require user input. For instance, a trajectory module might require the end-

point of the traj ectoiy, or a gripper module might require the amount of force to be applied

when gripping. To get this information, the module creator should allow for two possible

routes. First, the command line should be checked for the values. If the value list is incom-

plete, or if the Values supplied are not within appropriate bounds, then a U1 structure

should be created, initialized with the proper Values, and a U] request should be sent. An

example follows:

int my__modu1eOn(1ocal, stask)

C4 User Input (the U1 packet)
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my_modu1eLoca1At *1ocal;
sbsTask t *stask;

{
char *head,*tai1;

int good_args=FALSE, *ptr_int, the_int, defau1t_int = 2,
some_int max = 5, some_int min = 0;

float *ptr_f1oat, the_f1oat, defau1t_f1oat = 1.5708,
some_f1oat_max = 3.14159, some float min = 0.0;

UI *ui;

/* This module requires an int and a float to cycle*/
if (str1en(stask->argptr) > 0) /* There are arguments */

{
good_args = TRUE;
head = stask->argptr;

the_int = cmdiArgInt(&head, &tai1, NULL, MAXINT);
head = tail;

if (the_int < some_int_min || the_int > some_int_max)
good_args = FALSE;

else if (*head)

{
the_f1oat = cdmiArgF1oat(&head,&tai1,

NULL y MAXFLOAT) ;
head=tai1;

if (the_f1oat < some_f1oat_min ||
the_f1oat > some_f1oat_max)

good_args = FALSE;

}
else good_args = FALSE;

}

if (*head) /* Too many arguments */

good_args = FALSE;

if (!good_args) /* If args were bad in any way*/

{
ui = uiCreate(2,512);

ptr_int = (int *) uiInt(ui,”The integer",
default_int, some_int_min, some_int_max);

ptr_f1oat = (float *) uiF1oat(ui,”The float”,

default_f1oat, somewf1oat_min, some_f1oat_max);
sbsUserInput(stask,ui);

the_int = *ptr_int;
the_f1oat = *ptr_float;
uiFree(ui);

}
/* ... now do the number-crunching here ...*/

return I_OK;

}

When turned on, the module rm/_moduZe looks for the values it requires in the arguments

passed to it. If these arguments are in any way improper, then the module sends a U1

request to Onika. The user supplies the values, and the execution can commence.
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If user input is required for any task at the middle level, a U1 request should be sent to

Onika. Onika will parse the UI packet, and present it to the user in a readable format in a

pop-up window. The user supplies values as appropriate and presses the “Send to RTOS”

button. Onika checks the values the user has entered against the minimums and maxi-

mums specified (if any) for each data item requested. If the values are out of range, Onika

will request that the user try again, and will redisplay the pop-up window in which the va.l-

ues can be entered. Onika does not send user input in the argument line of task control

packets when used at the middle level, because the data values are not yet known.

If user input is required for a task in an executing application, and if the task is a trigger

module, then the da.ta will be passed from the appropriate object icon to the task in the

argument line of the task control packet used to activate the task. In fact, the presence of

the object icon is what indicates to Onika that there is information that can go into the

command line arguments of the trigger task. If the argument line contains faulty data, or if

the task is not a trigger module, then the task should send a U1 request, which will be pro-

cessed as is done in the middle level. Onika only sends user input in the argument line of

trigger module task control packets, and then only when the task is being activated. Other-

wise, user input is handled as in the 1niddle—level case.

Note that Onika expects that task modules which requi.re user input will try to parse their

argument lines and, if this fails, will send out a U1 request. Tasks which do not follow this

format will not work properly under Onika. The types of user input which Onika under-

stands and can process are string, line, char, byte, float, double, long, int, and short. Both

scalars and vectors are supported.
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Appendix D: Future Hypermedia Engine Code

/* Copyright (c)1994 by Carnegie Mellon University */

static char _onika_id[] = "@(#)File <filename>, Onika 2.0, CMU 25-Feb-
9411;

/'k*-A--k-k*****-k***'k**-k~k-Jr*-k-k**dr* *-k-k~k*5\‘~k~k*-k~k**'i--.\-*-k4r-k7\‘*~k-k-k*-k-)r-k/

/* 25-Feb-94: Matthew W. Gertz (mwgertz) at CMU*/
/* Created for Onika 2.0*
/

/*-k-k‘k*****-k*****9:-k**'k~k*-k*-k~k**'k**'k**~k***'k***'A‘**k*************k'k*****l

typedef struct hlink {
struct hlink *prev,*next;
char resource[MAXFNAMELEN];

char cached[MAXFNAMELEN];

} HLINK;

#define HLINK_NULL (HLINK *)O

HLINK *Hlink_header=HLINK_NULL,*Hlink_tailer=HLINK_NULL;
char OnikaTempDirectory[255];

char *getcacheHlink(resource)
char *resource;

{
HLINK *hp=Hlink_header;

while (hp)

{
if (strcmp(hp->resource,resource))

hp=hp->next;
else break;

}
if (hp) return hp—>cache;
else return (char *)0;

}

char *getresourceHlink(cache)
char *cache;

{
HLINK *hp=Hlink_header;

while (hp)

{
if (strcmp(hp—>cache,caChe))
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hp=hp—>next;
else break;

}
if (hp) return hp—>cache;
else return (char *)O;

}

/* Given a resource, this procedure creates a cache version and */
/* opens it. */

/* Resource are in the form path@address */

FILE *openHlink(resource,arg)
char *resource;

char *arg;
char *rcache;

{
char *cache,*address,fname[MAXFNAMELEN],

nfname[MAXFNAMELEN],command[2*MAXFNAMELEN];

FILE *fp,-
char *user,*host;

cache=getcacheH1ink(resource);
if (cache)

{
fp=fopen(cache,arg);
return;

}

strcpy(fname,resourCe);
address = strchr(fname,'@');
if (laddress)

{
if ((fp=fopen(resource,arg))l=(FILE *)O)

addentryHlink(resource,resource);
return fp;

}

address[O]='\0';
address++;

user=getenv("USER");

host=getenv("HOST");

sprintf(nfname,"%s/onikaftp",OnikaTempDirectory);

fp:fopen(nfname,"w");
fprintf(fp,"user anonymous\n");

fprintf(fp,"password %s@%s\n",user,host);

fprintf(fp,"bin\n");
fprintf(fp,"lCd %s\n",OnikaTempDirectory);

fprintf(fp,"get %s\n",resource);

fprintf(fp,"quit\n");
fc1ose(fp);

sprintf(command,"ftp —n -i %s < %s > /dev/null”,address,nfname);
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system(command);

sprintf(command,"rm —f %s",nfname);

system(command);

sprintf(command,"/tmp/onika/%s",fname);
if ((fp=fopen(command,arg))1=(FILE *)0)

addentryH1ink(resource,command);
else

DoAlert("ONIKA_STR_BADHLINK",resource);
return fp;

}

void addentryH1ink(resource,cache)
char *resource,*cache;

{
HLINK *node;

MALLOC_ERROR(node=(HLINK *)siZeOf(HLINK));
strcpy(node—>resource,resource);
strcpy(node->cache,cache);

if (!H1ink_header)

{
H1ink_header = node;

H1ink_tai1er = node;
node—>next=(HLINK_NULL);

node—>prev=(HLINK_NULL);

}
else

{

node->next:Hlink_tailer—>next;
node—>prev=Hlink_tailer;

Hlink_tai1er—>next=node;
H1ink_tai1er=node;

}

int initializeHlink()

{
char command[2*MAXFNAMELEN];

sprintf(OnikaTempDirectory,"/tmp/onika%d",getpid());
sprintf(command,“mkdir OnikaTempDirectory");

system(command);

}

int flushcacheHlink(resource) /* flushes changes to buffer */
char *resource;

{
char *cache,*address,nfname[MAXFNAMELEN],

fname[MAXFNAMELEN],COmmand[2*MAXFNAMELEN];

FILE *fp;
char *user,*host;

cache=getcacheHlink(resource);
if (lcache) return 0;
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strcpy(fname,resource);
address = strchr(fname,'@‘);
if (laddress)

{

}

address[O]:‘\O';
address++;

return 1; /* 'twas on the local filesystem */

user=getenv("USER“);

host=getenv("HOST");

sprintf(nfname,"%s/onikaftp",OnikaTempDirectory);
fp=fopen(nfname,"w");

fprintf(fp,"user anonymous\n");

fprintf(fp,"password %s@%s\n",user,host);
fprintf(fp,"bin\n”);

fprintf(fp,"lcd %s\n",OnikaTempDirectory);

fprintf(fp,"put %s\n",cache);
fprintf(fp,”quit\n");
fclose(fp);

sprintf(command,"ftp —n —i %s < %s > /dev/null”,address,nfname);
system(command);

sprintf(command,"rm -f %s",nfname);
system(command);

}

FILE *getlistHlink(resourcesite) /* returns a filelist from a
resource site */

/* by putting it in
a file */
char *resourcesite;

{
char *address,command[2*MAXFNAMELEN],

nfname[MAXFNAMELEN],fname[MAXNAMELEN];

FILE *fp;
char *user,*host;

address = strchr(resource,'@');

if (laddress) /* local file */

{
sprintf(command,"/usr/bin/ls %s/%s > %s/lstemp",

resourcesite,OnikaTempDirectory);

system(command);

}
else

{
address[0]='\0';

address++;

user=getenv("USER");
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host=getenv(“HOST");

sprintf(nfname,"%s/onikaftp",OnikaTempDirectory);
fp=fopen(nfname,"w");

fprintf(fp,"user anonymous\n");
fprintf(fp,"password %s@%s\n",user,host);

fprintf(fp,"cd resourcesite\n");

fprintf(fp,"1s\n",cache);

fprintf(fp,"quit\n");
fc1ose(fp);

sprintf(fname,"%s/lstemp",OnikaTempDirectory);
sprintf(command,"ftp —n -i %s < %s > %s",

address,nfname,fname);

system(command);

sprintf(command,"rm —f %s",nfname);

system(command);

}

fp=fopen(fname,"r");
return fp;
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Appendix E: User Testing

E.1 Checklist

This is the checklist used for the user testing (modified slightly when, for instance, the

non-pictures version of Onika was used):

Name:

Gender:

Subject Number:

Date:

Time:

Naming scheme:

D Make certain this name has not been used before!

Last grade completed: HS FR 80 JU SE MS PhD

Job description:

What kind of computers/OS has subject used in the past?

Has subject ever written a program before? ................... ..Yes/No

Does subject consider self a programming expert? ........ ..Yes/No

Has subject used a robot before? ................................... ..Yes/No

Does subject consider self a robotics expert? ................. ..Yes/No

Before the subject enters the laboratory:

D Clean up the workspace and the screen

Page 177 of 198
E.1 Checklist 151

ABB|NC_0125933



W Make sure subject will have view of PUMA C

E] Set up mock-up

U Turn on the air supply to the gripper

From yow.ius.cs.cmu.edu:

Run “otest” in all of the windows.

Log in to e5.ius.cs.cmu.edu

Run “otest” in the e5 window

3 On e5: % cd base/bin

Ij On e5: % chim

[:| On e5: ex calibrate C (if necessary)

I:| On e5: ex calibrate B (if necessary)

I:| On e5: <Go_cst

On e5: go all

Move PUMA B to (0, -pi/2, pi/2, 0, 0, 0) if not already there

j Move PUMA c to (00114, -0.226, 2.35, —o.o371, 1.06,

1.61):

<power_up; <tri_above; off

|:| Open the gripper on PUMA C:

on gripC; off

I:] Calibrate on the point (-0.0417, —0.0328, -0.999, 0.0829,

0.999, —0.0332, 0.781, 0.159, -0.21):

<tri_to; off; off fwdkin; off invkin

1:] Move PUMA C to (0, -pi/2, pi/2, O, O, 0):

<tri_above; off; <home; off

|:l Close gripper:
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on gripC; off

D Restart Chimera: quit, quit, chim, <Go_cst, go all

B Set up Chimera network connection (network)

C] On yow: % cd base

C] On yow: % Onika -up -chim -log or % ndOnika -up -chim -
log

D Enter log filename according to convention given above
(*.raw)

|:| Close and hide all windows except for controls and dictio-

nary

I:J Move “Move to” picture to be next to “move above”

|:l Make sure all dictionary icons can be seen

D Open “go_home.appl”

E] Make sure all three windows are positioned properly

D Put out “how to” sheet

D Move joystick and buttons to within reach

After subject enters the laboratory and sits at yow:

lj Briefly describe experiment and ask subject to sign consent
sheet

E Record demographics

I: “I am going read some background information and instruc-
tions for this test to you. From this point on, I am not allowed to

answer any questions until the test has concluded.

I: “We are studying how a person would go about designing a pro-
gram to assemble a small structure using a robot. These are the four

boxes that make up the structure. These boxes which you will have

the robot assemble are sitting on that table there (point to it), but,

for the purposes of demonstration, 1 will use this mock-up of the
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boxes when explaining this study to you. The box with the wavy

lines will remain in place the entire time, and you will program the

robot to place the other boxes on top of it in the correct order. When

stacked in the correct order, they will make a structure that looks

like this (indicates stacked demo boxes andpaper), and the light on

the topmost box will light up when the box is touched.

[:I “This program, called Onika, allows you to create programs for

a robot by combining pictures of that robot with pictures of the

objects manipulated by the robot in order to make a story which
can be run on the robot. You can think of these pictures as pieces of

a jigsaw puzzle, where each piece can be used in the puzzle more

than once, and all of the pieces go one after the other. We want you

to use Onika to create a program from these pictures that the robot

can read in order to assemble the structure. The robot you will use

is the one with the ribbon tied to it. It is a PUMA 560, which has six

joints, as well as a hand -- also called a ‘gripper’ -- which can open
and close.

I: “The pictures available for your use in creating this story pro-

gram are located in this dictionary (point to the dictionary). I’ll

describe what each one does, using this small mock-up of the boxes

to demonstrate: (The test administrator willpoint to the appropriate

icon as each one is mentioned, andpantomime, using the mock-up, as

necessary.)

E “First, you should note that the edges of all of the pictures have
certain colors and shapes. These edges are designed to help you

determine which pictures can be placed next to each other. The

actual colors and shapes of the edges are otherwise irrelevent. For

instance, we might have made all of these red edges purple instead,

or made all of these yellow edges blue.

I:l “The colors and shapes don’t matter, except that the color of the

right edge of a picture must match the left edge of the picture which

you want to follow it, and their shapes must fit together like pieces

of a jigsaw puzzle. For instance, since this picture ends up with a

yellow triangular edge, it can be followed by any picture which start

out with a yellow triangular edge. Red attaches to red, yellow

attaches to yellow, and green attaches to green. You should not
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attach any other meaning to the colors.

E] “This picture causes the robot to move to a box’s original posi-
tion or destination position. You’ll use it when you are moving down

to pick up a box from its original position, or when placing a box in

its destination position. The original position of a box is the place

where it sits at the beginning of the task, and the destination posi-

tion is the place where it is supposed to sit in the structure.

D “This picture causes the robot to move to a location above or

near a box. You’ll use this picture whenever you need to move to a

spot above any box or above the structure. It’s very important to

move to a spot above a box or structure before moving to or from a

box’s original or destination position. If you don’t, you might hit the

box or the structure sideways, potentially damaging the boxes. I will
demonstrate.

l:I “Pretend my hand is the hand of the robot. If the robot moves

directly to this box, it will hit it sideways. To eliminate this possibil-

ity, the robot should first move above the box using the ‘move

above/near’ picture, before moving down to the box using the ‘move

to’ picture. When the box is grasped, the robot should then move

back above where the box used to be, again using the ‘move abovel

near’ picture, in case there are other boxes nearby which might be

hit accidentally.

El “Similarly, if you then moved the robot directly to the destina-
tion point of the box, you would hit the structure sideways. To avoid

this, the robot should first move above the structure, using the

‘move above’ picture, and then ‘move to’ the destination point of

the box. After releasing the box, you then cause the robot to ‘move

above’ the structure again before going to get the next box; other-

wise, you might knock the newly-placed box off the structure.

I:I “Therefore, the proper motions involved in placing a box on the
structure are as follows: move above, move to, move above, move

above, move to, move above.

I:] “Of course, the robot must open and close its hand at the proper
times, too. Whenever you run the program, the robot’s hand will

start out closed, as it is now. This ‘open gripper’ picture opens the
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robot’s hand. Remember that the robot’s hand must be open before

moving down to pick up any of the boxes, allowing the hand to slide
around the box; otherwise, the hand will hit the box, and may dam-

age it.

D “Once the hand is around the box, you should use this ‘close

gripper’ picture to cause the robot to close its hand on the box. You

can then place the box on the structure. When the box has reached

its destination on the structure, you should then use the ‘open grip-

per’ picture again to release the box.

C] “When we combine the gripper pictures with the motion pic-

tures, the resulting commands to place a box on the structure are as

follows: open gripper, move above, move to, close gripper, move

above, move above, move to, open gripper, move above. Program-

ming the robot in this way greatly reduces the chances of the robot

hitting any boxes accidentally.

I:I “All of the pictures mentioned so far are actions; that is, they
cause the robot to do something. All actions in this dictionary start

out red, but not all of them end up red. (Again, let me remind you

that the actual color doesn’t matter; the edges could just as well

have been blue, so long as it was consistent.) Those that start out

and end up red are completely defined actions, such as ‘open the

gripper.’ The action pictures which don’t end up red, however, need

another picture to make them complete. For instance, to move the
robot above a certain box, you need to specify which box to move

above, since there are several boxes available. To specify which box

to move above or to move to, we use these pictures which represent

the locations of the boxes. These pictures store locations where the

robot will move to or move above.

E] “This line of pictures specifies the original and destination posi-
tions of the boxes which will be moved. Again, I will remind you

that the original position of a box is the place where it sits at the

beginning of the task, and the destination position is the place where

it is supposed to sit in the structure. These pictures refer to the box

with a triangle, these to the box with a square, and these to the box
with a cross. Notice that their left edge is green, and fits like a puzzle

piece with the ‘Move to’ picture. This shows you that these pictures
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of the boxes are always used with the ‘Move to’ picture in order to

make the robot move to the original or destination position for the

specified box. It’s important to note that, even when a box has been
moved to some new location, the picture which refers to its original

position still refers to where that box used to be, and the picture

which refers to its destination position still refers to its designated
location in the structure.

D “This next line of pictures specifies points above the original
positions of each box. They interlock with the ‘Move above/near’

picture, which means that if you combine the ‘Move above/near’

picture with one of these pictures, you will move the robot to a point

above the original position of the specified box. You should note two

things. First, if a box is moved, its ‘above’ picture still refers to a

spot above the box’s original position. Second, since the box with

the wavy lines Wfll stay in place the entire time, and since the struc-

ture wfll be built on top of it, you can use its ‘above waves’ picture

to mean ‘above the structure.’ This will allow you to move the robot

to a spot above the structure before placing any box on it, keeping

you from crashing sideways into it. ‘Above waves’ is exactly the
same as ‘above the structure.’

D “This last picture represents a ‘no operation’ action. It doesn’t

make the robot do anything. When the robot gets to this picture in

your story, it will just skip over it and go to the next picture. You

can use it to make certain sections of your program more readable

by spacing them farther apart. For instance, you might insert one of

these between the section of code which gets the box with a triangle,

a11d the section of code which places it on the structure, just so it

will be clearer to you later on where one begins and the other ends.

However, you do not have to use this picture if you do not want to,

as it will not affect the operation of the robot at all.

(*WARM’-UP*:)

1:} “I will now demonstrate how to make a program. The program I
will make will cause the robot to pick up the box with the triangle.

When I am finished, I will ask you to try to make the same program

so that you can practice making a program. First, I press the

‘NEW’ button. This gives me space on the computer to make a new
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program. Just press ‘OK’ when you are asked what kind of pro-

gram you want to make; the default is the proper answer. Here is

the new program. It has a picture to tell you where it starts, and

where it ends. It is otherwise empty.

D “To place a picture into the program, you select it with the left
mouse button in the dictionary, move the mouse cursor over the pic-

ture you want it to follow, and then press the right mouse button. To

illustrate this, I will place the ‘Move above/near’ picture into the

program. I select it with the left mouse button. I now move my cur-

sor over the picture I want it to follow, and press the right mouse

button. Because these two edges matched, I am allowed to place the

picture, and it is inserted. Because these two edges didn’t match, a

hole was inserted. I will now fill up this hole. I select the ‘above tri-

angle’s origin’ picture with my left mouse. I now move my cursor

over the ‘move above/near’ picture which I want it to follow. I press

my right mouse button, and the hole is filled. This program now

says, ‘Move above the origin of the box with the triangle.’ Note that

the object follows the action, and that the action-obj ect pair starts

out and ends up red. This paper will remind you how to place a pic-

ture into the program if you need to be reminded.

D “After running this much of the program, the robot would be

positioned above the triangle box. To pick it up, the robot now must

move down to the box. I will therefore insert the ‘Move to’ picture

(does so), followed by the original position of the ‘triangle’ box.

El “If I want the robot to move to the box, though, I need to tell the

robot to open its hand first, to avoid damaging the box. If I put the

‘open gripper’ picture here (puts it at the end), then the hand would

open after the robot had already crashed into the box. This is a mis-

take. To fix my mistake, I make sure that the faulty picture is

selected by checking to see if it’s highlighted -- a selected picture is

highlighted with these dark edges and this bar across the top. If it

Wasn’t highlighted, then clicking it with the left mouse button would
select it as normal.

E] “Once selected, I can then press the ‘delete’ key to remove it

from the program. I can then insert the ‘open gripper’ picture in

the proper place by making certain that it is selected in the dictio-
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nary, and then placing in the proper position by moving the cursor

to the picture after which it should follow, and pressing the right

mouse button. Notice that even though I made a mistake by leaving

out the ‘open gripper’ picture at the beginning of the program, I

didn’t need to restart my work; I simply inserted the proper picture

where it belonged. You can insert any needed picture anywhere in

the program, provided that its left edge matches up properly with

the picture it is to follow. You can also delete any picture from the

program, and replace it with another picture if necessary, subject to

the same rules about the edges matching up properly.

El “Now I will insert the picture that closes the gripper. Notice that
gripper picture starts and ends with a red edge, so that it needs no

object picture to follow it. Finally, I will insert the required pictures

to move back to the ‘above triangle box’ position.

D “Note how I can use the scroll bar to Work with portions of the
program which might not fit in the story program’s Window. To use

the scroll bar, I move my cursor over this square, then hold down

the left mouse button and move the mouse until the view is what I

want. Please try this now (lets user try the scroll bar).

[:1 “Now I will run the program to see what it does. (Runs thepro-
gram.) The program will execute in order from left to right. This

program says, ‘Open the hand, move above the original position of

the box with the triangle, then move to that box, then close the

hand, then move above the original position again.’ In executing

this story, the robot has picked up the box with the triangle painted

on it, without running into the box from the side or making any
other mistakes.

D “I will now remove the pictures. Again, notice that I can remove

the pictures by selecting them with my left mouse button and press-

ing the ‘Delete’ key. Now, :1’ will make the robot let go of the box, and

cause it to move back to its ‘starting’ position with the hand closed.

(Does so.)

i: Move triangle box back to original position.

I: “Now, I would like you to rewrite the same program I just
wrote; that is, just insert the pictures which cause the robot to pick
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up the box with the triangle. You don’t have to create a new pro-

gram this time, since there’s already an empty one here for you to
use. Please tell me when you are finished inserting the pictures you

think are necessary, and then we will run the program to see if it
works.

E Record time: __

If subject fails:

[H D I:] Explain why the failure occured.

“I will reset the robot, and you can fix your program and

try again.”

[:| 1:] [3 Run ‘go_home.app|.’

|:| Cl l:| Move boxes back to original positions, and tell subject

to proceed.

If subject succeeds:

E Record time:

D “Now, I will remove this program, reset the robot, and let you

create the entire program to assemble the structure. (Does so.)

I:] Move box back to original position.

[1 “Your program should cause the robot to first assemble the

structure, and then move to a point above the finished structure

before ending. You have one hour from the time you press the

“NEW” button to do so successfully. Any time you wish to try to run

your story program, please let me know. You may modify and run

your story as many times as it takes to get it right within the one

hour limitation. I remind you that I am not permitted to answer any

questions during the session, unless an error message appears. If an
error message appears, please inform me immediately. This sheet
summarizes what the mouse buttons do, and how to place pictures

from the dictionary into the story program.
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D “You may use these blocks in the mock-up to help you determine
which actions you want the robot to take in order to assemble the

structure. You may begin.”

E Record time:

If subject fails:

D |:l E] E] E E] E] l:l Explain why the failure occured.

I:I D I:I D [:l E El CI “I will reset the robot, and you can fix
your program and try again.”

I_I I I I I I I I TI H Run ‘g0_h0me-appl.’

l:J [:1 :I __ D D D Reset boxes, and tell subject to proceed.

When test concludes (either due to success or end of time

limit):

|:l Record time:

C] Save the current application (*.appI)

I:l “Thank you very much for participating in our study. Here is
your promised compensation. If you wish, we will be pleased to

send you a summary of the results, including a discussion and anal-

ysis of the study.” (Get address ifappropriate.)

D Shut down everything.

D In yow, % proc <raw data fi/e> to process, move, and back up
data.

E.2 Raw Data

Here is a section of the raw data collected from one subject. It is abridged, as the entire

data set for the subject would fill many pages:

Time Event Primary PID Secondary SID
Window

770908202 Start_Onika none 0 none 0
root

770909683 try_new_applnone 0 none 0
appl
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770909685

770909690

770909692

770909696

770909698

770909703

770909704

770909708

770909712

770909714

770909716

770909731

770909732

770909737

770909737

770909739

770909743

770909745

770909749

770909759

770909763

770909764

770909774

770909776

770909782

770909784

770909789

162

new_app1
appl

select_icon
dict

insert_icon
appl

select_icon
dict

insert_icon
appl

se1ect_icon
dict

insert_icon
appl

se1eot_icon
dict

insert_icon
appl

se1ect_icon
dict

insert_icon
appl

select_icon
dict

insert_icon
appl

se1ect_icon
dict

Untit1ed—2

opengripc

opengripc

jmoveC

jmoveC

box2_aj

box2_aj

cmoveC

cmoveC

box2_bx

box2_bx

c1osegripC

closegripc

jmoveC

stopdrag_iconjmoveC
dict

insert_icon
appl

select_icon
dict

insert_icon
appl

se1ect_icon
dict

insert_icon
appl

select_icon
dict

insert_icon
appl

se1ect_icon
dict

insert_icon
appl

selectmicon
dict

insert_icon
appl

select_icon
dict

jmoveC

box2_aj

box2_aj

jmoveC

jmoveC

box1_aj

box1_aj

cmoveC

cmoveC

box2_ex

box2_ex

opengripc

3577432

3496920

3652992

3494072

3762528

3509360

3782232

3492592

3785096

3498344

3768784

3495496

3773632

3494072

3494072

3778480

3509360

3741504

3494072

3748624

3506776

3759856

3492592

3813608

3499720

3823440

3496920

none

none

Start

none

opengripc

1'10].'1€

jmoveC

none

box2_aj

none

cmoveC

none

box2_bx

none

none

c1osegripC

none

jmoveC

none

box2_aj

none

jmoveC

none

boxl_aj

none

cmoveC

HOIIE
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3684304

3652992

3762528

3782232

3785096

3768784

3773632

3778480

3741504

3748624

3759856

3813608

Page 188 of 198

ABB|NC_0125944



770909794 insert_icon opengripc 3832448 box2_ex 3823440
appl

770910110 try_run_applnone 0 none 0
none

770910110 run_appl Untitled-2 3577432 none 0
none

770910356 succeed_applUntitled—2 3577432 none 0
none

E.3 Processed Data

Here is the processed data for the same subj ect:

Time required to request new application: 2 seconds
Elapsed time from NEW to success:
Total selection time:

Number of meaningful selections:
Average time per selection:
Total number of selections:

673 seconds
242 seconds

43

5.62791 seconds
43

Total number of insertions without selection: 0

Time required for insertions without selection: 0
Total number of all insertions:

Total insertion time

Average insertion time:

43

(all): 124 seconds
2.88372 seconds

Number of deletions: 0

Total check time: 59 seconds

There were 1 attempts to run the application.
0

0
1

Total time used by successful applications:

applications could not be run.

applications were aborted.

applications were successfully completed.
246 seconds

Average time used by successful applications: 246 seconds

E.4 Timelined Data

The same subject’s data is timelined to determine the duration of specific instances of

events. Again, only an abridged example is oflered.

Onika was started up at time t=O.

2

5

2

E. 3 Processed Data

seconds later (at t=1483), the event new_appl occurred to item
Untitled—2 (id = 3577432).

seconds later (at t:1488), the event select_icon occurred to
item opengripc (id = 3496920).

seconds later (at t=1490), the event insertnicon occurred to
item opengripc (id = 3652992) which followed/follows item
Start (id = 3684304).

seconds later (at t=1494), the event select_icon occurred to
item jmoveC (id = 3494072).

seconds later (at t=1496), the event insert_icon occurred to
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I64

item jmoveC (id = 3762528) which followed/follows item
opengripc (id = 3652992).

5 seconds later (at t=1501), the event select_icon occurred to

item box2 aj (id = 3509360).
1 seconds later (at t=l502), the event insert_icon occurred to

item boX2_aj (id = 3782232) which followed/follows item
jmoveC (id = 3762528).

4 seconds later (at t=1506), the event select_icon occurred to
item cmoveC (id : 3492592).

4 seconds later (at t=15lO), the event insert_icon occurred to
item cmoveC (id 2 3785096)

box2_aj (id = 3782232).
2 seconds later (at t=1512), the event select_icon occurred to

item box2_bX (id = 3498344).
2 seconds later (at t=1514), the event insert_icon occurred to

item box2_bx (id = 3768784) which followed/follows item
cmoveC (id = 3785096).

15 seconds later (at t=1529), the event select icon occurred to

item closegripc (id = 3495496).

1 seconds later (at t=1530), the event insert_icon occurred to

item closegripC (id = 3773632) which followed/follows item

box2_bx (id = 3768784).
5 seconds later (at t=l535), the event select_icon occurred to

item jmoveC (id = 3494072).
0 seconds later (at t=1535), the event stopdrag_icon occurred to

item jmovec (id : 3494072).

2 seconds later (at t:1537), the event insert_icon occurred to

item jmovec (id = 3778480) which followed/follows item
closegripc (id = 3773632).

which followed/follows item

4 seconds later (at t=l541), the event select_icon occurred to

item box2_aj (id = 3509360).
2 seconds later (at t=1543), the event insert_icon occurred to

item box2_aj (id = 3741504)
jmoveC (id = 3778480).

4 seconds later (at t=l547), the event select_icon occurred to

item jmovec (id = 3494072).
10 seconds later (at t=1557), the event insert_icon occurred to

item jmoveC (id = 3748624) which followed/follows item

box2_aj (id = 3741504).
4 seconds later (at t=l561), the event se1ect_icon occurred to

item box1_aj (id = 3506776).
1 seconds later (at t=1562), the event insert_icon occurred to

item boxl_aj (id = 3759856) which followed/follows item
jmoveC (id = 3748624).

10 seconds later (at t=1572), the event select_icon occurred to
item cmoveC (id = 3492592).

2 seconds later (at t=l574), the event insert_icon occurred to
item cmoveC (id = 3813608) which followed/follows item

bOxl_aj (id = 3759856).
6 seconds later (at t=l580), the event select_icon occurred to

item boX2_ex (id = 3499720).
2 seconds later (at t=l582), the event insert_icon occurred to

item box2wex (id = 3823440) which followed/follows item
cmoveC (id = 3813608).

which followed/follows item
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5 seconds later (at t=1587), the event select_icon occurred to
item opengripc (id = 3496920).

5 seconds later (at t=l592), the event insert_icon occurred to
item opengripc (id = 3832448) which followed/follows item

box2_ex (id = 3823440).

59 seconds later (at t=1908), the event try_run_app1 occurred.

0 seconds later (at t=1908), the event run__appl occurred to item
Untitled-2 (id = 3577432).

246 seconds later (at t=2154) , the event succeed_appl occurred
to item Untitled-2 (id = 3577432).
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