e,

.« e

;'}f‘ ,‘r-_r_’:hjqﬁ

0/ Siadie £e5F

MOTION CONTROL SYSTEMS

TECHNICAL FIELD
The present invention relates to motion
s control systems and, more particularly, to
interface software that facilitates the creation
of hardware independent motion control software.

BACKGROUND OF THE INVENTION

10 The purpose of a motion control device is to
move an object in a desired manner. The basic
components of a motion control device are a
controller and a mechanical system. The
mechanical system translates signals generated by

15 the controller into movement of an object.

Wﬂile the mechanical system commonly
comprises a drive and an electrical motor, a
number of other systems, such as hydraulic or
vibrational systems, can be used to cause movement

20 of an object based on a control signal.
Additionally, it is possible for a motion control
device to comprise a plurality of drives and
motors to allow multi-axis control of the movement
of the object.

25 The present invention is of‘particular
impéftance in the context of a mechanical system
including at least one drive and electrical motor
having a rotating shaft connected in some way to
the object to be moved, and that application will

30 be described in detail herein. But the principles
of the present invention are generally applicable
to any mechanical system that generates movement
based on a control signal. The scope of the

ROY-G-BIV CORPORATION

CQ) EXHIBIT 2010-5
ABB v ROY-G-BIV

TRIAL IPR2013-00062


walkp
Typewritten Text
1

walkp
Typewritten Text
ROY-G-BIV CORPORATION
EXHIBIT 2010-5
ABB v ROY-G-BIV
TRIAL IPR2013-00062



10

15

20

25

30

present invention should thus be determined based
on the claims appended hereto and not the
following detailed description.

In a mechanical system comprising a
controller, a drive, and an electrical motor, the
motor is physically connected to the object to be
moved such that rotation of the motor shaft is
translated into movement of the object. The drive
is an electronic power amplifier adapted to
provide power to a motor to rotate the motor shaft
in a controlled manner. Based on control
commands, the controller controls the drive in a
predictable manner such that the object is moved
in the desired manner.

These basic components are normally placed
into a larger system to accomplish a specific
task. For example, one controller may operate in
conjunction with several drives and motors in a
multi-axis system for moving a tool along a
predetermined path relative to a workpiece.

Additionally, the basic components described
above are often used in conjunction with a host
computer or programmable logic controller (PLC).
The host computer or PLC allows the use of a high-
level programming language to generate control
commands that are passed to the controller.
Software running on the host computer is thus
designed to simplify the task of programming the
controller.

Companies that manufacture motion control
devices are, traditionally, hardware oriented
companies that manufacture software dedicated to

the hardware that they manufacture. These


walkp
Typewritten Text
2


10

15

20

25

30

" .

software products may be referred to as low level
programs. Low level programs usually work
directly with the motion control command language
specific to a given motion control device. While
such low level programs offer the programmer
substantially complete control over the hardware,
these programs are highly hardware dependent.

In contrast to low-level programs, high-level
software programs, referred to sometimes as
factory automation applications, allow a factory
system designer to develop application programs
that combine large numbers of input/output (I/0)
devices, including motion control devices, into a
complex system used to automate a factory floor
environment. These factory automation
applications allow any number of I/O devices to be
used in a given system, as long as these devices
are supported by the high-level program. Custom
applications, developed by other software
developers, cannot be developed to take advantage
of the simple motion control functionality offered
by the factory automation program.

Additionally, these programs do not allow the
programmer a great degree of control over the each
motion control device in the system. Each program
developed with a factory automation application

must run within the context of that application.

PRIOR ART
In the following discussions, a number of
documents are cited that are publicly available as
of the filing date of the present invention. With
many of these documents, the Applicant is not


walkp
Typewritten Text
3


10

15

20

25

30

aware of exact publishing dates. The citation of
these documents should thus not be considered an
admission that they are prior art; the Applicant
will take the steps necessary to establish whether
these documents are prior art if necessary.

As mentioned above, a number of software
programs currently exist for programming
individual motion control devices or for aiding in
the development of systems containing a number of
motion control devices.

The following is a list of documents
disclosing presently commercially available high-
level software programs: (a) Software Products For
Industrial Automation, iconics 1993; (b) The
complete, computer-based automation tool (IGSS),
Seven Technologies A/S; (c¢) OpenBatch Product
Brief, PID, Inc.; (d) FIX Product Brochure,
Intellution (1994); (e) Paragon TNT Product
Brochure, Intec Controls Corp.; (f) WEB 3.0
Product Brochure, Trihedral Engineering Ltd.
(1994); and (g) AIMAX-WIN Product Brochure, TA
Engineering Co., Inc. The following documents
disclose simulation software: (a) ExperTune PID
Tuning Software, Gerry Engineering Software; and
(b} XANAIL.OG Model NL-SIM Product Brochure,
XANALOG.

The following list identifies documents
related to low-level programs: {(a) Compumotor
Digiplan 1993-94 catalog, pages 10-11; (b)
Aerotech Motion Control Product Guide, pages 233-
34; (c) PMAC Product Catalog, page 43; (d) PC/DSP-

Series Motion Controller C Programming Guide,


walkp
Typewritten Text

walkp
Typewritten Text
4


10

15

20

25

30

pages 1-3; (e) Oregon Micro Systems Product Guide,
page 17; (f) Precision Microcontrol Product Guide.

The Applicants are also aware of a software
model referred to as WOSA that has been defined by
Microsoft for use in the Windows programming
environment. The WOSA model is discussed in the
book Inside Windows 95, on pages 348-351. WOSA is
also discussed in the paper entitled WOSA
Backgrounder: Delivering Enterprise Services to
the Windows-based Desktop. The WOSA model
isolates application programmers from the
complexities of programming to different service
providers by providing an API layer that is
independent of an underlying hardware or service
and an SPI layer that is hardware independent but
service dependent. The WOSA model has no relation
to motion control devices.

The Applicants are also aware of the common
programming practice in which drivers are provided
for hardware such as printers or the like; an
application program such as a word processor
allows a user to select a driver associated with a
given printer to allow the application program to
print on that given printer.

While this approach does isolates the
application programmer from the complexities of
programming to each hardware configuration in
existence, this approach does not provide the
application programmer with the ability to control
the hardware in base incremental steps. In the
printer example, an application programmer will
not be able to control each stepper motor in the
printer using the provided printer driver;


walkp
Typewritten Text
5


10

15

20

25

30

instead, the printer driver will control a number
of stepper motors in the printer in a
predetermined sequence as necessary to implement a
group of high level commands.

The software driver model currently used for
printers and the like is thus not applicable to
the development of a sequence of control commands

for motion control devices.

OBJECTS OF THE INVENTION

From the foregoing, it should be clear that
one primary object of the invention is to provide
improved methods and devices for moving objects.

Another more specific object of the present
invention is to obtain methods and apparatus for
designing and deploying motion control devices in
which these methods and apparatus exhibit a
favorable mix of the following characteristics:

(a) allow the creation of high-level motion
control programs that are hardware independent,
but offer programmability of base motion
operations;

(b) hide the complexities of programming for
multiple hardware configurations from the high-
level programmer;

(c) can easily be extended to support
additional hardware configurations; and

(c) transparently supports industry standard
high-level programming environments.

SUMMARY OF THE INVENTION
The present invention is, in one form, a
method of moving an object comprising the steps of


walkp
Typewritten Text
6


p o

10

15

20

25

30

developing a high-level motion control application
program comprising a sequence of component
functions that describe a desired object path,
correlating these component functions with driver
functions, selecting a software driver for the
specific hardware configuration being controlled,
generating control commands from the driver
functions and the software driver associated with
the hardware configuration being controlled, and
controlling a motion control device based on the
control data to move the object along the desired
object path.

In another form, the present invention is a
method of generating a sequence of control
commands for controlling a motion control devices
to move an object along a desired path. An
application program comprising a series of
component functions defines a sequence of motion
steps that must be performed by the motion control
device to move the object along the desired path.
The component functions contain code that relates

the component -34- functions to driver functions. b -

. . ) bu e A 3t C
The driver functions are assoc1atedAer&~§ma§£H}

software drivers containing driver code for
implementing the motion steps on a given motion
control device. The control commands are
generated based on the application program and the
driver code associated with a given motion control
device.

The use of component functions that are
separate from driver functions isolates the
programmer from the complexities of programming to
a specific motion control device. This


walkp
Typewritten Text
7


10

15

20

25

30

arrangement also allows a given application
program to be used without modification for any
motion control device having a software driver
associated therewith.

The driver functions are grouped into core
driver functions and extended driver functions.
All software drivers must support the core driver
functions; the software drivers may also support
one or more of the extended driver functions,
although this is not required.

Where the software drivers do not support the
extended driver functions, the functionality
associated with the extended driver functions can
normally be simulated using some combination of
core driver functions. In this case, the method
of the present invention comprises the steps of
determining which of the extended driver functions
are not supported by the software driver andg,
where possible, substituting a combination of core
driver functions. In some cases, the
functionality of an extended driver function
cannot be emulated using core driver functions,
and this functionality is simply unavailable to
the programmer.

The use of core driver functions to emulate
extended driver functions provides functionality
where none would otherwise exist, but the
preferred approach is to provide a software driver
that supports each of the extended driver
functions. When an extended driver function is
suppeorted and not emulated, the task being
performed will normally be accomplished more
quickly and accurately.


walkp
Typewritten Text
8


10

15

20

25

30

Additionally, to simplify the use of emulated
extended driver functions, the method of the
present invention further comprises the steps of
determining which, if any, extended driver
functions are not supported by the software driver
for a given hardware configuration, developing a
function pointer table of both unsupported
extended driver functions and supported extended
driver functions, and consulting the table each
time an extended driver function is called to
determine whether that extended driver function
muét be emulated. In this manner, the process of
calling the sequence of core driver functions
émployed to emulate the unsupported extended
driver functions is optimized. _

As the control commands are generated as
described above, they may be used to control a
motion control device in real time or they may be
stored in a file for later use. Preferably, the
method of the present invention comprises the step
of providing a number of streams containing stream
code. Each stream is associated with a
destination of control commands, and the stream
code of a given stream dictates how the control
commands are to be transferred to the destination

associated with that given stream. The user is

‘thus provided the opportunity to select one or

more streams that dictate the destination of the
control commands.

To help isolate the programmer from hardware
specific complexities, the method of the present
invention may comprise the additional
administrative steps such as selecting a driver


walkp
Typewritten Text
9


//

10

15

20

25

30

-10-

associated with a particular motion control device
and/or translating units required to define the
motion control system into the particular system
of units employed by a given motion control

device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system interaction map of a
motion control system constructed in accordance
with, and embodying, the principles of the present
invention;

FIG. 2 is a module interaction map of a
motion control component of the system shown in
FIG. 1;

FIG. 3 is an object interaction map of the
component shown in FIG. 2;

FIGS. 4A§A§5L$3E8 are scenario maps of the
component shown in FIG. 2;

FIG. 9 is an interface map of the component
shown in FIG. 2;

FIG. 10 is a data map showing one exemplary
method of accessing the data necessary to emulate
extended driver functions using core driver
functions;

FIG. 11 is a module interaction map of the
driver portion of the system shown in FIG. 1;

FIG. 12 is an object interaction map of the

driver portion s%pwn in FIG. 11;
1Yy

Bt ,19 119 ands
FIGS. 13;£%f6n§h!20 are scenario maps related

to the driver shown in FIG. 11;
FIG. 21 is an interface map for the driver
shown in FIG. 11;

S

10

7


walkp
Typewritten Text
10


/L

10

i5

20

25

30

-11-

FIG. 22 is a module interaction map of the
streams used by the system shown in FIG. 1;

FIG. 23 is an object interaction map of the
streams ShownAigdfggigi%ﬂ5°)3'““J"

FIGS. 2% ghreuéh~32 are scenario maps of the
streams shown in FIG. 22;

FIG. 33 is an interface map of the objects
comprising the stream shown in FIG. 22;

FIG. 34 is a module interaction map of the
driver stub portion of the system shown in FIG. 1;

FIG. 35 is an object interaction map of the

driver stub shoq? in FIG. 34;
3
FIGS. BG}Ghrgggh 38 are scenario maps of the

driver stub shown in FIG. 34;

FIG. 39 is an interface map of the driver
stub portion shown in FIG. 34;

FIG. 40 is a module interaction map of the
driver administrator portion of the system shown
in FIG. 1;

FIG. 41 is an object interaction map of the
driver administrator shown in EIG. 40;

FIGS. 42&%‘ﬂaﬁg%aﬁm§%enario maps
relating to fge driver administrator shown in
FIG. 40;

FIG. 50 is an interface map of the objects
that comprise the driver administrator shown in
FIG. 40;

FIG. 51 is a module interaction map of the
driver administrator CPL applet portion of the
system shown in FIG. 1;

FIG. 52 is an object interaction map of the
driver administrator CPL applet shown in FIG. 51;

11

‘{’ 1/4


walkp
Typewritten Text
11


/5

,/J’
-12-
FIGS. 53;\&14-2@11’9’1‘1—*57 are scenario maps related
to the driver administrator CPL applet shown in
FIG. 51.
12


walkp
Typewritten Text
12


/F

10

15

20

25

30

13-

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawing, depicted
therein at 10 in FIG. 1 is a motion control system
constructed in accordance with, and embodying, the
principles of the present invention. This system
10 comprises a personal computer portion 12 having
a hardware bus 14, a plurality of motion control
hardware controllers 1l6a, 16b, and 16c, and
mechanical systems 18a, 18b, and 18c that interact
with one or more objects (not shown) to be moved.

The personal computer portion 12 of the
system iO can be any system capable of being
programmed as described herein, but, in the
preferred embodiment, is a system capable of
running the Microsoft Windows environment. Such a
system will normally comprise a serial port in
addition to the hardware bus 14 shown in FIG. 1.

— The hardware bus 14 provides the physical
connections necessary for the computer 12 to
communicate with the hardware controllers 16. The
hardware controllers 16 control the mechanical
system 18 to move in a predictable manner. The
mechanical system 18 comprises a motor or the like
the output shaft of which is coupled to the object
to be moved. The combination of the hardware
controllers 16a, 16b, and 16c¢ and the mechanical
systems 18a, 18b, and 18c forms motion control
devices 20a, 20b, and 20c, respectively.

The hardware bus 14[ hardware controllers 16,
and mechanical systems 18 are all well-known in

the art and are discussed herein only to the

13


walkp
Typewritten Text
13


)
A

10

15

20

25

30

-14-

extent necessary to provide a complete
understanding of the present invention.

The personal computer portion 12 contains a
software system 22 that allows an application user
24 to create software applications 26 that control
the motion control devices 20.

More particularly, based on data input by the
user 24 and the contents of the application
program 26, the software system 22 generates
control commands that are transmitted by one or
more streams such as those indicated at 28a, 28b,
28c, and 28d. The streams 28 transmit control
commands incorporating the hardware specific
command language necessary to control a given
motion control device to perform in a desired
manner. As will be discussed in more detail
below, the streams 28 implement the communication
protocol that allows the control commands to reach
the_appropriate motion control device 28 via an
appropriate channel (i.e., PC bus, serial port).

Using the system 22, the application program
26 is developed such that it contains no code that
is specific to any one of the exemplary hardware
controllers 16. In the normal case, the
application program 26, and thus the user 24 that
created the program 26, is completely isolated
from the motion control devices 20. The user 24
thus need know nothing about the hardware specific
command language or communication protocol
associated with each of these devices 20; it may
even be possible that the command language of one
or more of the hardware controllers 16 was not

14


walkp
Typewritten Text
14


10

15

20

25

30

-15-

defined at the time the application program 26 was
created.

The software system 22 comprises a
combination of elements that allow the application
program 26 to be completely isolated from the
hardware controllers 16. In the following
discussion, the framework of the software system
22 will be described in terms of a method of
moving an object and/or a method of generating
control commands. After this general discussion,
each component of the system 22 will be described
in detail in a specific operating environment.

I. Method of Generating Control Commands for
Controlling a Motion Control Device to Move an
Object

Initially, it should be noted that, in most
situations, the method described in this section
will normally but not necessarily involve the
labors of at least two and perhaps three separate
software programmers: a software system designer;
a hardware designer familiar with the intricacies
of the motion control device; and a motion control
system designer. The application user 24
discussed above will normally be the motion
control system designer, and the roles of the .
software system designer and hardware designer
will become apparent from the following
discussion.

The software system designer develops the
software system 22. The software system designer

initially defines a set of motion control

15


walkp
Typewritten Text
15


/

10

15

20

25

30

-16-

operations that are used to perform motion
control. The motion control operations are not
specifically related to any particular motion
control device hardware configuration, but are
instead abstract operations that all motion
control device hardware configurations must
perform in order to function.

Motion control operations may either be
primitive operations or non-primitive operations.
Primitive operations are operations that are
necessary for motion controcl and cannot be
simulated using a combination of other motion
control operations. Examples of primitive
operations include GET POSITION and MOVE RELATIVE,
which are necessary for motion control and cannot
be emulated using other motion control operations.
Non-primitive operations are motion control
operations that do not meet the definition of a
primitive operations. Examples of non-primitive
operations include CONTOUR MOVE, which may be
emulated using a combination of primitive motion
control operations.

Given the set of motion control operations as
defined above, the software system designer next
defineé a service provider interface (SPI)
cbmprising a number of driver functions. Driver
functions may be either core driver functions or
extended driver functions. Core driver functions
are associated with primitive operations, while
extended driver functions are associated with non-
primitive operations. As with motion control
operations, driver functions are not related to a

specific hardware configuration; basically, the

16


walkp
Typewritten Text
16


/s

10

15

20

25

30

~-17-

driver functions define parameters necessary to
implement motion control operations in a generic
sense, but do not attach specific values or the
like to these parameters. The SPI for the
exemplary software system 22 is attached hereto as
Appendix A.

The software system designer next defines an
application programming interface (API) comprising
a set of component functions. For these component
functions, the software system designer writes
component code that associates at least some of
the component functions with at least some of the
driver functions. The relationship between
component functions and driver functions need not
be one to one: for example, certain component
functions are provided for administrative purposes
and do not have a corresponding driver function.
However, most component functions will have an
associated driver function. The API for the
exemplary software system 22 is attached hereto as
Appendix B.

The overall software model implemented by the
software program 22 thus contains an API
comprising component functions and an SPI
comprising driver functions, with the API being
related to the SPI by component code associated
with the component 34 functions.

In order for the system 22 to generate the
control commands, at least two more components are
needed: the application program 26 and at least
one software driver such as the drivers indicated
at 30a, 30b, and 30c in FIG. 1.

17


walkp
Typewritten Text
17


/-

10

15

20

25

30

-18-

The software drivers 30 are normally
developed by a hardware designer and are each
associated with a single motion control device.
The hardware designer writes driver code that
dictates how to generate control commands for
controlling the motion control device associated
therewith to perform the motion control operations
associated with at least some of the driver
functions.

In the exemplary software system 22, the
software drivers 30a, 30b, and 30c are associated
with the motion control devices 20a, 20b, and 20c,
respectively. As a software driver exists for
each of the motion control devices 20a, 20b, and
20c, these devices 20a, 20b, and 20c form a group
of supported motion control devices.

A careful review of the framework of the
software system 22 as described above will
illustrate that, of all the components of this
system 22, only the software drivers 30 are
hardware dependent.

The motion control system designer, normally
also the user 24, develops the application program
26. The application program 26 comprises a
sequence of component functions arranged to define
the motion control operations necessary to control
a motion control device to move an object in a
desired manner. The application program 26 is any
application that uses the system 22 by programming
the motion control component 34. Applications may
program the system 22 either through OLE
Automation or by using any of the custom OLE
interfaces making up the API.

18


walkp
Typewritten Text
18


&

10

15

20

25

30

® ®

-19-

As mentioned above, the component code
associates many of the component functions with
the driver functions, and the driver functions
define the parameters necessary to carry out the
motion control operations. Thus, with
appropriately ordered component functions, the
application program 26 contains the logic
necessary to move the object in the desired
manner.

Once the application program 26 has been
written and the software drivers 30 have been
provided, the user 24 selects at least one motion
control device from the group of supported motion
control devices 20a, 20b, and 20c. Using a driver
administrator module 32, the user 24 then selects
the software driver associated with the selected
motion control device. This driver administrator
module 32 is used to install, uninstall, register,
and setup each stream.

As curriﬁgly implemented, the driver
administrator&&4-allows only one software driver
to be selected. In future versions of the
software system 22, the driver administrator will
allow the user to select one or more software
drivers.

The software system 22 thus generates control
commands based on the component 3<4-functions
contained in the application program 26, the
component —34- code associated with the component 34
functibns, and the driver code associated with the
selected software driver 28.

As the control commands are being generated
as described above, they may be directly

19


walkp
Typewritten Text
19


-y

10

15

20

25

30

‘\ ‘I

-20-

transmitted to a motion control device to control
this device in real time or stored in an output
file for later use. The software system 22
employs the streams 28 to handle the transmission
of the control commands to a desired destination
thereof.

In the exemplary system 22, the destinations
of the control commands may be one or more of an
output file 34 and/or the controllers 16. Other
possible destinations include a debug monitor oxr
window or other custom output mechanism defined
for a specific situation. The software system
designer, or in some cases the hardware system
designer, will write transmit stream code for each
stream 28 that determines how the control commands
are to be transferred to a given one of the
control command destinations 16 and 34. Using the
driver administrator 32, the user 24 selects one
or more of the control command destinations 16 and
34, and, later when run, the system 22 transfers
the control commands to the selected control
command destination 16 and/or 34 based on the
transmit stream code in the stream 28 associated
with the selected control command destination 16
and/or 34.

Many control command destinations such as 16
and 34 are capable of transmitting data back to
the syStem 22. Data transmitted from a control

command destination back to the system 22 will be

referred to as response data. The software system

designer thus further writes data response stream
code for each of the streams 28a, 28b, and 28c

that determines how response data is transmitted

20


walkp
Typewritten Text
20


b

$

P tee

A

10

15

20

25

30

-21-

from the controllers 16 to the system 22. The
system 22 thus processes the response data sent by
the controllers 16 based on the data response
stream code contained in the streams 28.

Referring again to FIG. 1, this Figure shows
that the system 22 further comprises a motion
control component:g;-and a driver s&gb module 36.
The motion control component module,§4~is the
portion of the software system 22 that relates the
component 34 functions to the driver functions.
The motion control component modulézgé thus
contains the component 34- code that makes the
association between the component 324- functions
contained in the application program 26 and the
driver functions.

The driver stub module 36 is not required to
implement the basic software model implemented by
the system 22, but provides the system 22 with
significantly greater flexibility to accommodate
diverse motion control hardware configurations
with minimal effort.

More particularly, when the driver stub
module 36 is employed, the hardware designer need
not develop driver code to implement all of the
driver functions; to the contrary, the hardware
designer must write driver code for implementing
the core driver functions but need not write
driver code to implement the extended driver
functions. The software system designer provides
the motion control driver stub 36 with stub code
that identifies the combinations of core driver
functions that are employed to emulate the
functionality of extended driver functions.

21


walkp
Typewritten Text
21


-22-

The motion control component 24 will
determine for the selected software driver 30
which extended functions, if any, the selected
driver 30 supports. Fofzggégaag%gnctions that are

5 not supported, referred to herein as non-supported
extended driver functions, the motion control
componentﬂg4-refers to the driver stub module 36
to determine the appropriate combination of core
driver functions to emulate the functionality of

10 the non-supported extended driver functions. The
system 22 thus generates the control commands
necessary to implement the non-supported extended
driver functions using the appropriate combination
of core driver functions.

15 The process of determining when extended
driver functions need to be emulated can be
optimized.gy providing the motion control

- component ,24 with a function pointer table that
contains a pointer to each of extended functions.

20 When building the function pointer table, the
motion control componentigé checks the selected
driver module 30 to see if it supports each
extended function. If the selected driver module
30 supports the extendedsggnction, the motion

25 control component module’@4-stores a pointer to
the function, implemented by the selected driver
module 30, in the table location corresponding to
the extended function. In the event that the
selected driver module 30 does not support the

30 extenqig_function, the motion control component
moduleg&& stores a pointer to the extended
function implementation located in the driver stub
module 36. The driver stub module 36


walkp
Typewritten Text
22


¢ P

24

10

15

20

25

30

-23-

implementation of the extended function contains
calls to a plurality of core functions implemented
by the selected driver module 30.

Therefore, the driver stub module 36 allows

thg“ﬁziéﬁa;e desigﬁ°;&€2L3§E’ with minimal time

N S ol UGS it s -

and efforféjé working software drivér 28 that
contains é}iver code to implement only the core
functions. The software driver 28 developed to
implement the core driver functions can then be
improved by developing driver code to implement
extended driver functions as desired.

The use of driver code specifically designed
to implement extended driver functions is, in
general, preferable to relying on the driver stub
module 36 to emulate the extended driver
functions; driver code specifically written to
implement an extended driver function will almost
always obtain a more optimized implementation of
the driver function than the emulation of that
driver function with a combination of core driver
functions.

Referring again for a moment to FIG. 1, this
Figure illustrates that the system 22 additionally
comprises a driver administrator CPL applet 38 and
a DDE server 40. The driver administration CPL
applet 38 generates the user interface through
which the user 24 communicates with the driver
administrator module 32. The DDE sexrver 40
provides the software interface through which the
application program 26 communicgggs with the
motion control component module&%&.

23


walkp
Typewritten Text
23


AL
<@ 5
=2 10
L 15
=
Q.
< 20
<.
25
P 30
A

P

_24-

IT. MOTION CONTROL COMPONENT
35

The motion control component,3% will now be
described in further detail with reference to
FIGS. 2-10. The motion control component§§4-is
used by every application programming the system
22 to perform motion control operations. The
major set of the API is implemented by this
componengg_ When operating, the motion control
component 34 interacts with the driver
administrator 32, to get the current driver, and
the driver 30 and driver stub 36, to carry out
motion control operations. Applications, using
system 221 only interact with the motion control
component ,§-_4 . '

This section descriggs the design of the
motion control component 3<4-in three main parts.
First, allsbinary modules that affect the
component ,34- are described along with their
interactions with the component&%Q. Next, the
module interaction-map is drawn in more detail to
show the interactions between all C++ objects used
to implement the motion control componentfgé.
Next, the object interaction-map is tested by
displaying the specific interactions that take
place during certain, key process that the
component 34 is requested to perform.

The module interaction-map shown in FIG. 2
displays all binary modules and %%gir interactions
with the motion control component 34. As can be
seen from the module interaction-map, applications

Jspnly communicate with the motion control compongg;
Aaé-+€empeﬁeae+. From this point, the componentA%4

24


walkp
Typewritten Text
24


Ao

10

15

20

25

30

-25-

coordinates all interactions between the driver
administrator 32, driver 30, and driver stub 36
components.

Breaking the module interaction-map and
adding the interactions taking place between all
C++ objeg&; used to implement the motion control
component 34, produces the object interaction-map
shown in FIG. 3.

Each object in the diagram is described as
follows. The CCmpntDisp object is the dispatch
object used to dispatch exposed interface methods.
During the dispatch process, all raw data is
converted into the appropriaté C++ form. For
example, collections of data passed between OLE
components is usually packaged in a raw block of
memory. The CCmpntDisp object takes care of
packing outgoing data and unpacking incoming data.
Data packing involves converting the data between
a raw and native C++ format.

The CDriverAdmin object is used to
communicate directly with the driver administrator
component. All OLE related details are
encapsulated within this class.

The CDriverMgr object is used to control all
unit mapping taking place before calling the
appropriate SPI function. The CUnitMapper object
is used to do the actual mapping between units.

The CUnitMapper object is used to map units
between the Part Coordinate System (PCS) and the
Machine Coordinate System (MCS). Both directions
of unit mapping are done by this object.

The CDriver object is used to build the SPI
table containing both core and extended SPI

25


walkp
Typewritten Text
25


b

b

L/

10

15

20

25

30

-26-

functions. Depending on the level of driver
support, the extended functions in the SPI table
may point to functions implemented in either the
driver stub 36 or the driver 30.

The following discussion of FIGS 4-8
describes all main scenarios, or coperations, that
occur on the motion control component£3+. Each
scenario-map displays all objects involved, and
the interactions that take place between them in
the sequence that. they occur.

As shown in FIG. 4, before an application can
use the motion control componentf&&, it must
create an instance of the object, using the
CoCreateInstance OLE function, and then initialize
the instance calling the exposed Initialize custom
interface method implemented by the componenti%é.
FIG. 4 displays the sequence of events that take
place when the Initialiée method is called.

During initialization, the following steps
occur. First the application must create an
instance of the motion control component 34 by
calling the standard OLE function
CoCreateInstance. Onceiépaded, the application
must call the component 34’'s exposed Initgg}ize
method. When first loaded, the component 34 loads
any registratigp data previously stored. Next,
the componentb§4-directs the CCmpntDisp to
initialize the system. The CCmpntDisp directs the
CDhriverAdmin to get the current driver(s) to use.
The CDriverAdmin, first, loads the driver
administrator 32 using the standard OLE
CoCreatelInstance function. Next, it initializes
the driver administrator. Then, it queries the

26


walkp
Typewritten Text
26


246

10

15

20

25

30

-27-

driver administrator for the driver(s) to use and
their SPI support information. Finally, the
driver administrator returns the driver(s) and the
support information to the componenﬁf%#, and
releases all interfaces used from the driver
administrator component 32.

Once receiving the active driver(s) 30 and
their supgg;t information, the motion control
component .34 passes the driver(s) 30 to the
CDriverMgr and directs it to initialize the
system. During its initialization, the CDriverMgr
initjalizes the CUnitMapper. Also while
initializing, the CDriverMgr initializes a CDriver
for each driver used. After initializing each
CDriver, the support information is used to build
each SPI table inside each CDriver object. When
building the SPI table, all core and supported
extended SPI interfaces are queried from the
driver. Also, when building the SPI table, the
CDriver queries all interfaces, not supported by
the driver 30, from the driver stub 36.

Referring now to FIG. 5, once the motion
control componentié;b is initialized, the
application 26 may perform operations on it.

There are two types ofggperations that may take
place on the component~}+: Operations that use
core SPI functions, and operations that use
extended SPI functions. Even though the
difference between the two is completg%g_invisible
to the application using the componentaaé, the
internal interactions are different between the
two. The following discussion outline these
differences.

27


walkp
Typewritten Text
27


Q.
. 5
=%
10
15
<
20
< 25
30

-28-

The following interactions take place when
the componenéﬁg; performs an operation that uses
core SPI functions only. First the application
must request the operation.ggd pass all pertinent
parametefirpo the component 3%. Next, the
component;?&-directs the CCmpntDisp to carry out
the operation. The CCmpntDisp then directs the
CDhriverMgr to perform the operation and passes all
pertinent parameters to it. Before carrying out
the operation, the CDriverMgr uses the CUnitMapper
to convert all units to the Machine Coordinate
System (MCS). Next, the CDriverMgr directs the
CDriver object to carry out the operation and
passes the newly mapped parameters to it. The
CDriver object uses its internal SPI table to
communicate directly with the core SPI function
implemented by the driver component.

FIG. 6 shows the squgpce of events that
occurs when the component 34- is directed to carry
out an operation that happens to use extended SPI
not supported by the driver 30. The following
steps occur when the operation is requested.

First the application must request the
operation ?Qd pass all pertinent p;ggmeters to the
component ,34. Next, the component 34 directs the
CCmpntDisp to carry out the operation. The
CCmpntDisp then directs the CDriverMgr to perform
the operation and passes all pertinent parameters
to it. Before carrying out the operation, the
CDriverMgr uses the CUnitMapper to convert all
units to the Machine Coordinate System (MCS).
Next, the CDriverMgr directs the CDriver object to
carry out the operation and passes the newly

28


walkp
Typewritten Text
28


b o

P

3
{)\\)

10

15

20

25

30

-29.

mapped parameters to it. The CDriver object uses
its internal SPI table to communicate directly
with the core SPI function implemented by the
driver component.

As briefly discussed above, when using the
system 22, there are several types of units and
two different coordinate systems used. The
process of unit mapping involves converting
measurements between the Part and Machine
coordinate systems. FIG. 7 illustrates this
process, and the following steps occur when the
operation is requested.

First the application must request the
operation and pass all parameters to the component

;&%&. Note, al%ngarameters are in the PCS. Next,

the component£§4~directs the CCmpntDisp to carry
out the operation. The CCmpntDisp directs the
CDriverMgr to carry out the operation and passes
the PCS parameters to it. The CDriverMgr takes
all measurements and uses the CUnitMapper to
convert them to the MCS. The newly mapped
parameters are then passed to the Cdriver. The
CDriver directs either the driver or the driver
stub component to carry out the operation.

When the applicatiogr}s finished using the
motion coqg;ol component ,34- it directs the
component£§4—to free all of its resources by
calling its exposed Release method. This process
is depicted in FIG. 8. During the clean-up
process, the following steps occur.

First the application must direct the
componentné4-to release all of its resources by
calling its Release method. When invoked, the

29


walkp
Typewritten Text
29


(

10

15

20

-30-

3s—
component, 3% passes the call on to the CCmpntDisp

object. The CCmpntDisp object directs the
CDhDriverMgr to release any resources it is using.
The CDriverMgr directs each CDriver object to
release any of its resources, then deletes the
CDriver cobjects. First, the CDriver object
releases any interfaces it is using from the
driver component. Then, the CDriver object
releases any interfaces it is using from the
driver stub component.

FIG. 9 is an interface map related to the
motion control component . 2<4. FIG. 10 is a data
map showing how data relating to the whether
extended driver functions need to be emulated is
stored. Attached hereto as Appendix C is a
document that describes the actual OLE Interfaces
exposed, the definitions of the data structures
used when passing data around, and the definitions
of —each class used internally by the motion

I~
control componentﬁaé.

30


walkp
Typewritten Text
30


10

15

20

25

30

-31-

ITT. SOFTWARE DRIVERS

The driver 30 is used by both the driver
administrator 32 and the componentigéu Its main
purpose is to implement functionality that
generates motion control commands for the specific
hardware supported. For example, the AT6400
driver, used to control the Compumotor AT6400
motion control hardware, generates AT6400 command
codes. During the initialization phase of the
system 22, the driver administrator 32
communicates with each driver 30, allowing the
uger to add, remove, or change the configuration
of the driver. When an applicaq%?n, using the
system 22, is run, the component,§4-communicates
with the driver 30 directing it to carry out the
appropriate motion control operations.

This section describes the complete design of
a generic driver 30. All driveis are designed
from the base design describedﬁ?ﬂ—shis_manuai.
This section is divided into three parts. First,
a module interaction-map that describes all binary
modules that interact with the driver 30 is
discussed. Next, the module interaction-map is
drawn as an object interaction-map, where all the
internals of the driver are exposed. In this map,
all C++ objects, making up the driver, and their
interactions are shown. Next, several scenario-
maps are drawn. Each scenario-map displays the
interactions taking place between the C++ objects
involved during a certain process. Finally, this

section describes the interfaces exposed by the

31


walkp
Typewritten Text
31


10

15

20

25

30

-32-

driver component, all data structures used, and
the definitions of each C++ class used.

Referring now to FIG. 11, the module
interaction-map displays all binary modules and
their interactions with the driver 30. There are
two modules that interact directly with the
driver: the motion control componengf;;, and the
driver administrator 32. The driver administrator
32 queriegggnd changes the driver settings and the
component 34 directs the driver to carry out
motion control operations, such as moving to a
certain location in the system. Shown at 42 in
FIG. 11 is the standard Windows registration
database, referred to herein as the registry.

Breaking the module interaction-map down into
more detail by including the interactions taking
place between all C++ objects used to implement
the driver, produces the object interaction-map.
The object interaction-map for the driver 30 is
shown in FIG. 12.

Bach object in the diagram is described as
follows.

CDriverDisp is the dispatch object used to
dispatch exposed interface methods. During the
dispatch process, all raw data is converted into
the appropriate C++ form. For example,
collections of data passed between OLE components
is usually packaged in a raw block of memory. The
CDriverDisp object takes care of packing outgoing
data and unpacking incoming data. Data packing
involves converting the data between a raw and

native C++ format.

32


walkp
Typewritten Text
32


10

15

20

25

30

-33-

The CStreamMgr object is responsible for
managing the set of streams registered with the
driver. Streams, may be added, removed, and
enabled. Only enabled streams are sent data. The
CLSID and enabled status of each stream
registered, is stored in the registration
database. When communicating to streams, the
CStreamMgr is used to send the command string to
all enabled streams.

The CCommandMgr object is used to build
commands sent to the stream, and extracting
responses received from the stream. The
CCommandMgr is the controlling object that manages
the CResponse, CCommandList, and CStream objects.

The CCommandList object stores the complete
list of commands making up the motion control
command language. Such commands may be stored as
text resources or in a text file.

— The CCommand object builds command strings
that are then sent to the CStream. Each command
built is a complete motion control command string.

The CResponselist object builds CResponse
objects that are initialized with the parsing
format for the expected response.

The CResponse object converts raw response
strings, returned by the CStream, and converts
them into C++ data types. For example, a response
string containing position data may be converted
into a set of double values.

The CStream object is used to communicate
directly with the underlying stream component.

Figures 14-20 contain scenario maps that

describe all main scenarios, or operations, that

33


walkp
Typewritten Text
33


10

15

20

25

30

-34 -

occur on the driver 30. Each scenario-map
displays all objects involved, and the
interactions that take place between them in the
sequence that they occur.

There are two types of operations that occur
on the driver 30. First, the driver administrator
32 may initiate operations, such as adding streams
or configuring t%grdriver. Next, the motion
control component 34 may initiate operations on
the driver when an application is actually
running. The following discussion describes each
perspective, starting with the operations directed
by the Driver Administrator; all operations made
on the driver by the driver administrator are
discussed in the order that they may occur when
using the driver.

Before a driver may be used, it must be
registered in the OLE system. In order to
register a driver the driver administrator first
verifies that the module being registered is
actually an driver 30, then it calls the
DLLRegisterServer exported function to register
the driver. Each module of the system 22 exports
a function called DLLGetModuleType. This function
is used to verify that the module is an driver 30
component. FIG. 13 displays the interactions that
take place when registering a driver.

During the registration process shown in FIG.
13, the following steps occur. First, the driver
administrator must load the DLL, containing the
stream component, verify that the module is an
driver 30. To do so, the driver administrator
calls the DLLGetModuleType function, exported by

34


walkp
Typewritten Text
34


10

15

20

25

30

-35-

the driver. If the function returns a value that
contains the value XMC_DRIVER _MT in the high byte,
then the driver administrator proceeds and
registers the driver by calling its exported
function, DLLRegisterSexrver. When called, the
implementation of the DLLRegisterServer writes all
OLE 2.0 registration information to the Windows
registration database.

Referring now to Figure 14, after the driver
is registered, the driver administrator can load
the component;i;'using the OLE CoCreateInstance
function. During the initialization process, the
driver loads all registration data and initializes
both the CDriverDisp and CStreamMgr C++ objects.

During initjalization, the following steps
occur. )

Before loading the driver component, the
driver administrator must query the driver module
for its CLSID. Calling the driver’'s exported
function, DLLGetCLSID, returns the CLSID. Once it
has the CLSID, the driver administrator may create
an instance of the driver by calling the standard
OLE function CoCreateInstance. When first loaded,
the driver loads any registration data previously
stored. Next, the driver directs the CDriverDisp
object to initialize the system. When notified,
the CDriverDisp object initializes itself and then
directs the CStreamMgr to initialize itself.
During its initialization, the CStreamMgr loads
all stream settings from the registration
database. For example, the CLSID and enabled
state of all streams previocusly registered with

the driver, are loaded.

35


walkp
Typewritten Text
35


SN

10

15

20

25

30

-36-

After initializing the driver, the driver
administrator may perform operations on it. For
example, the driver administrator may request the
driver to add or remove a stream. FIG. 15
displays the sequence of events occurring when the
driver is requested to add a new stream. When
adding a stream, the following steps occur.

First the driver administrator directs the
stream to add a new stream and passes CLSID of the
stream, to be added, to the driver. The driver
then passes the CLSID to the CDriverDisp object
and directs it to add the stream. The CDriverDisp
object passes the information on to the CStreamMgr
and directs it to add the stream. In the final
step, the CStreamMgr assumes that the module is a
valid stream component 28 and adds the CLSID to
the drivers set of information in the registration
database.

_ Another operation requested of the driver,
after initialization, is that of querying it for
its current settings. Before displaying
information about the driver, like the name of the
hardware it supports, the driver administrator
must query the driver for the information. For
example, FIG. 16 displays the process of querying
the driver for an enumeration of the streams
registered with it. When querying the driver for
information, the following steps occur.

First the driver administrator, calls the
interface method used to query the driver’s stream
enumeration. Next, the driver directs the
CDriverDisp to create the stream enumeration. The
CDriverDisp object then directs the CStreamMgr to

J

36


walkp
Typewritten Text
36


35

10

15

20

25

30

-37-

prepare the stream enumeration. The CStreamMgr
checks the registration database and makes sure
its internal state is in sync with the data stored
in the registry. Next, it sets a lock that will
cause all stream management operations, such as
adding or removing streams, to fail. The
CStreamMgr prepares the list of streams and loads
them into memory using the CStream object. The
CStream object loads the stream component using
the OLE CoCreatelInstance API.

After the driver administrator is done using
the driver, it must release the driver by calling
its exposed Release method. Calling this method,
directs the driver to release all resources used.
FIG. 17 displays the process of releasing the
driver component. During the clean-up process,
the following steps occur.

First the driver administrator must direct
the driver component to clean itself up by calling
its Release method. When invoked, the driver
component passes the call on to the CDriverDisp
object. The CDriverDisp object then directs the
CStreamMgr to save all data. vThe CStreamMgr saves
all data, including the state of each stream, in
the registration database. Finally, the driver
saves all internal data in the registration
database.

After a driver is successfully installed into
the system 22 and configured using the driver
administrator, it is ready for use by the motion
control componenﬁig;. The componen%jgz uses the
driver 30 when performing motion control
operations requested from the application using

37


walkp
Typewritten Text
37


pe

10

15

20

25

30

-38-

35—
the component B<%. The ggilowing discussion

describes the component 34- directed operations
that can take place on the driver.

Before using the driverit}t must be
initialized by the component ,34. This operation
is different from the driver initialization taking
place on the driver when used by the driver
administrator because the system must be prepared
for sending and receiving commands. In order to
prepare for the data communication, the stream
must be initialized and then opened. FIG. 18
describes the initialization process. The
following steps occur during the initialization
process. 35

First the component 34 must direct the driver
to initialize itself. This is usually a ;gg_step
process. In the first step, the component,34
creates and instance of the driver using the
standard OLE CoCreateInstance function. Next, the
Initialize method, exposed by the driver, is
called to prepare the driver for data
transmissions. When the Initialize method is
called, the driver first loads any internal data
stored in the registration database 42. Next, the
driver directs the CDriverDisp to initialize the
internal system. The CDriverDisp then directs the
CStreamMgr to initialize the streams. Next, the
CStreamMgr loads all data from the registration
database, including the set of all CLSID’s and
enabled status’ for all streams registered with
the driver. Then the CStreamMgr loads each
enabled stream by creating a new CStream object

for each enabled stream. When creating each

38


walkp
Typewritten Text
38


7O

10

15

20

25

30

-39-

CStream object, the CLSID for the underlying
stream is passed to the CStream object. When each
CStream object is created and a%;;ghed to a stream
component it loads the componentx%4 by calling the
standard OLE CoCreateInstance function. Once the
CStreamMgr is done, the CDriverDisp directs the
CCommandMgr to initialize itself. During its
initialization process, the CCommandMgr
initializes and loads the CCommandList. Also,
when the CCommandMgr is initializing, it loads the
CResponselList corresponding to the CCommandList.

Once the sys;gm is initialized, the motion
control componeng\%4—can direct the driver to
carry out certain command operations. Command
operations are standard motion control operations
such as moving to a specific location in the
system, or querying the system for the current
position. FIG. 19 describes the process of
commanding the driver to carry out a certain
operation. When commanding the driver to perform
a certain operation the following steps occur.

First, the component,?é—directs the driver to
perform the operation, such as moving to a
position or querying the system for the current
position. Next, the driver directs the
CDriverDisp object to perform the operation. The
CDriverDisp object then directs the CCommandMgr to
build the appropriate command. Any parameters
related to the command are passed to the
CCommandMgr. For example, when directing the
driver to move to a certain position, the position
information is passed to the CCommandMgr. Next,
the CCommandMgr requests the CResponseList to

39


walkp
Typewritten Text
39


AL/

10

15

20

25

30

-40-

create a CResponse object. The CResponselist
looks up the response format and uses it to create
a new CResponse object that is returned to the
CCommandMgr. Then, the CCommandMgr directs the
CCommandList to create the command. Any
parameters related to the command are passed to
the CCommandList. The CCommandList creates a new
CCommand object, looks up the raw command string,
and passes it and the command parameters to the
CCommand object who then builds the command
string.

The CCommandMgr, then passes the CCommand
object, returned by the CCommandList, and the
previously created CResponse object to the
CStreamMgr object. The CStreamMgr object is
directed to process the objects. The CStreamMgr
passes the CCommand and CResponse objects to all
enabled CStream objects. The CStream object
queries the CCommand object for the full command
string in raw text form. The raw text command is
passed to the stream component. Next, the CStream
object waits for the response, then reads the raw
text response into a buffer. The raw text
response is then passed to the CResponse object.
Next the CRETONNE ocbject is returned to the
CStreamMgr, who returns it to the CCommandMgr, who
returns it to the CDriverDisp object. Eventually
the CResponse returns to the CDriverDisp object,
who then directs the CResponse to convert the
response into a generic C++ type. The generic
type is ﬁﬁgprned to the motion control

componentg%4.

40


walkp
Typewritten Text
40


Fel

10

15

20

-41-

7S
Once the component 3% is finished using the

driver, the driver must be released by calling its
Release method. Releasing the driver frees all
resources used by the driver. FIG. 20 describes
the process of releasing the driver. The
following steps occur when cleaning up and freeing
all resources used by thesgriver.

First, the componentﬁ?4-must call the
driver’s Release method. When called, the driver
directs the CDriverDisp object to release any
resources used. The CDriverDisp then directs the
CStreamMgr to free any resources used. The
CStreamMgr then frees all active CStream objects.
Each CStream object releases all stream component
interfaces used. Next the CDriverDisp directs the
CCommandMgr to free all of its resources. During
its clean-up, the CCommandMgr frees the
CCommandList object. To complete its clean-up,
the CCommandMgr frees the CResponselist object.

Attached hereto as Appendix D is a document
that describes the actual OLE Interfaces exposed,
the definitions of the data structures used when
passing data around, and the definitions of each
class used internally by the driver.

41


walkp
Typewritten Text
41


10

15

20

25

30

-42-

Iv. STREAMS

This section describes the stream component
28 used as the data transport layer between the
driver 30 component and the destination output
location such as the motion control device 20
and/or the output file 34. For example, when
using motion control hardware that is connected to
the PC Bus, the driver 30 Component will
communicate with the PC Bus stream component 28.

The design of a stream component 28 will be’
discussed in three parts. First, a Module
Interaction-Map describes the modules that are
involved, with respect to the stream, and how they
interact with one another. Next, the Object
Interaction-Map breaks the Module Interaction-Map
down into a more detailed view that not only
displays the interactions occurring between
modules, but also the interactions taking place
between the C++ objects within the stream
component 28. Then, the Object Interaction-Map is
"tested" by running it through several Scenario-
Maps. Each Scenario-Map displays the object
interactions taking place during a certain
operation.

The Module Interaction-Map shown in FIG. 22
displays all modules that interact with the stream
component 28. Interactions begin from two
different perspectives. First, the driver
administrator 32 interacts with the stream
component 28 when installing, removing, and
configuring the stream. Next, when used, each
driver 30 interacts with the stream while sending

42


walkp
Typewritten Text
42


10

15

20

25

30

-43-

and retrieving data to and from the destination.
For example, when a driver writes data to a text
file stream, the stream takes care of writing the
déta out to the file. Or, if the driver reads
data from a PC Bus stream, the stream does the
actual read from the hardware and passes the data
back to the driver.

Drivers only communicate with streams that
have been specifically connected to the driver.
Once connected, the stream is used to communicate
with the destination object, like the PC Bus,
serial I/0O connection, text file, or debug
monitor.

The stream component 28 shown in FIG. 22 is
the object that operates as the data transport
layer fof each driver. Each stream has a
different target that defines the type of the
stream. The following are the current stream
targets.

PC Bus/WinNT - This Windows NT stream
uses é Windows NT .SYS device driver to
communicate directly with the motion control
hardware connected to the PC Bus.

PC Bus/Win95 - This Windows 95 stream
uses a Windows 95 VxD to communicate directly
with the motion control hardware connected to
the PC Bus.

PC Bus/Win 3.1 - This Windows 3.1 stream
communicates directly with the motion control
hardware connected to the PC Bus.

Serial - This stream uses the COMM API
to communicate with the motion control
hardware connected to the serial port.

43


walkp
Typewritten Text
43


/gw

10

15

20

25

30

-
B

-44 -

Text File - This stream is write-only
and sends all data to a text file.

Debug Monitor - This stream is write
only and sends all data to the debug monitor.

Custom - This is a custom stream that

sends data to an unknown location.

Similar to the Mcdule Interaction-Map, the
Object Interaction-Map displays interactions
between modules. In addition, this map, shows all
interactions taking place between each C++ object
within the stream component 28. FIG. 23 is the
Object Interaction-Map for the stream component
28.

Each object in the diagram is described as
follows. The CStreambisp object is the dispatch
object used to dispatch exposed interface methods.
During the dispatch process, all raw data is
converted into the appropriate C++ form. For
example, cg&is;tions of data passed between OLE
componentsﬁis usually packaged in a raw block of
memory. The CStreamDisp object takes care of
packing outgoing data and unpacking incoming data.
Data packing involves converting the data between
a raw and native C++ format.

The CRegistryMgr object takes care of
managing all data stored in the registration
database. Since many streams of the same type may
exist at the same time, each stream is assigned a
handle. The handle assigned, is used by the
stream to look up the location it uses to load and
store data in the registration database, much as
an library index is used to locate a library book.

44


walkp
Typewritten Text
44


2z

10

15

20

25

30

-45-

All input and output is funnelled through the
CIOMgr manager. Management of input and output
operations consists of buffering data and
controlling primitives used to transport data to
and from the target location.

The CIOHAL object is the input/output
hardware abstraction layer. With in this object
lay all hardware dependent code such as calls to
inp and outp. Each different type of stream
contains a different implementation of this
object.

Scenario-Maps are specialized Object
Interaction-Maps that display how each module and
the objects inside the stream component interact
with one another during the operation described by
the map. The Scenario-Maps in FIGS. 24-32 are
broken into two different categories; those that
are initiated by the driver administrator 32, and
those that are initiated by the driver 30.

Operations directed by the driver
administrator are usually related to initializing,
uninitializing, and configuring the stream. The
following sections describe all operations,
directed by the driver administrator, that take
place on the stream.

Before a stream component can be used by
anyone, it must be registered in the Windows
registration database. Registration is a standard
OLE 2.0 operation required in order to use any OLE
2.0 component, such as the stream component. FIG.
24 describes this process. During the

registration process, the following steps occur.

45


walkp
Typewritten Text
45


Y

gl
R

10

15

20

25

30

-46-

First, the driver administrator must load the
DLL, containing the stream component, verify that
the module is an stream component 28. To do so,
the driver administrator calls the
DLLGetModuleType function, exported by the stream.
If the high byte in the return value contains the
value XMC_STREAM MT, then the driver administrator
proceeds and registers the stream by calling its
exported function, DLLRegisterServer. When
called, the implementation of the
DLLRegisterServer writes all OLE 2.0 registration
information to the Windows registration database.

After the stream component is successfully
registered, it is ready for initialization.

During initialization, the stream component not
only initializes itself, but also initializes any
device drivers used by registering the driver with
the operating system. For example, the Windows NT
stream component registers the Windows NT .SYS
driver with Windows NT and starts the service.
FIG. 25 describes this process. During
initijialization, the following steps occur.

First the driver administrator must direct
the stream to initialize itself. When making this
call, the name and location of the driver used,
and the handle of the stream are passed into the
method as arguments. Once directed to initialize
itself, the stream component calls the CStreamDisp
and directs it to initialize the system. The
CStreamDisp object then directs the CRegistryMgr
to load all pertinent data for the stream using
the handle passed to it. The CRegistryMgr loads
all data from the registration database. After

p
/

46


walkp
Typewritten Text
46


10

15

20

25

30

-47-

all information is loaded from the registry, the
CStreamDisp directs the CIOMgr to register the
appropriate driver with the operating system. The
CIOMgr directs the CIOHAL to register the driver,
if appropriate. If running in Windows NT, the
CIOHAL registers the .SYS driver with the Windows
NT operating system and starts the driver. If
running in Windows 95, the VD integrity is
verified with a quick, dynamic, load and unload.

After initializing the stream component, it
may be queried for its current settings or
directed to set new settings. Since both
operations are very similar, only changing
settings will be described. Stream settings
include data such as: port addresses, IRQ levels,
file names, etc. Any data needed to communicate
with the output/input target are included in the
stream settings. FIG. 26 describes the process of
changing the streams settings. During the setup
process, the following steps occur.

First the driver administrator directs the
stream to use the data passed to change its
internal data. Once directed, the stream
component passes the interface method invocation
to the CStreamDisp object. The CStreamDisp object
then directs the CRegistryMgr to store the new
settings. The CRegistryMgr stores the new values
in the registration database.

When the driver administrator is done using a
stream component, it must clean up the resources
used. FIG. 27 describes this process. During the
clean-up process, the following steps occur.

First the driver administrator must direct the

47


walkp
Typewritten Text
47


~ N

s

10

15

20

25

30

-48-

stream component to clean itself up by calling its
Release method. When invoked, the stream
component passes the call on to the CStreamDisp
object. The CStreamDisp object then directs the
CRegistryMgr to save all data. All persistent
data is saved to the registration database by the
CRegistryMgr.

Driver directed operations occur when each
driver 30 uses the stream component 28 connected
to it. Remember, each stream component is used as
the data transport layer. Each driver uses the
stream to transfer the motion control command
data, it generates, to the output target. Streams
are also used to transfer data back to the driver
when read operations occur. Only certain streams
are readable.

Before the driver can perform operations on
the stream, the stream must be initialized.
Initialization occurs in two steps. First the OLE
stream component must be loaded, and then once it
is, the stream must be explicitly initialized.
FIG. 28 describes the second portion of the
initialization process. The following steps occur
during the initialization process.

First the driver must invoke the Initialize
methods exported by one of the stream interfaces.
When calling Initialize, the driver passes to the
stream, the stream handle. Next, the stream
passes the directive on to the CStreamDisp object
for dispatching. The CStreamDisp object first
directs the CRegistryMgr to load all settings
stored in the location defined by the stream
handle. The CRegistryMgr reads in the data stored

48


walkp
Typewritten Text
48


10

15

20

25

-49-

in the registry at the handle. After the data is
loaded, the CStreamDisp, directs the CIOMgr to
initialize itself. As part of its initialization,
the CIOMgr initializes the CIOHAL object that it
is using.

Once a stream has been initialized, it must
be opened. Opening a stream places the stream in
a state where it can pass data between the driver
and the target. FIG. 29 describes the process of
opening a stream. When opening a stream, the
following steps occur.

First the driver directs the stream to open
itself, by calling the Open exposed interface
method. Once directed, the stream passes the call
on to the CStreamDisp object. Next, the
CStreamDisp object directs the CIOMgr to open the
stream. At this time, the CIOMgr prepares any
buffers that will later be used when transferring
data through the stream. After the buffers are
ready, the CIOMgr directs the CIOHAL object to
interact with the target and open it. CIOHAL
directly communicates with the target or with a
device driver and opens the stream. When:
operating with hardware streams, the device
driver, or Serial IO diréctly communicates with
the hardware and prepares it for operation.

After opening a stream, it is ready to
perform data transport operations. There are two
main data transport operations available: Reading
data, and writing data.. FIG. 30 describes the
process of writing data to the stream. When
writing to the stream, the following steps occur.
First the driver directs the stream to write data

49


walkp
Typewritten Text
49


10

15

20

25

30

-50-

to the target and passes the data to the stream.
Next, the stream passes the data to the
CStreamDisp object. The CStreamDisp object passes
the block of data to the CIOMgr and directs it to
write it to the target. The CIOMgr object either
passes the complete block of data to the CIOHAL
object, or stores the block in an internal buffer
and then passes pieces of the buffer to the CIOHAL
object until the complete buffer is sent. The
CIOHAL object takes the data passed to it and
either sends it directly to the target, passes it
to a device driver, or calls COMM API to send the
data to the Serial IO port. The device driver or
COMM APT sends the data directly to the hardware
controlled.

Certain streams, like the PC Bus and Serial
I0 streams, return data after write operations
occur on them. The data returned may be specific
to a previous request for data, or status
describing the success or failure of the previous
write operation. FIG. 31 describes the process of
reading data from the stream. It should be noted
that not all streams are readable. Currently, the
only readable streams are the PC Bus and Serial
streams. During the operation of reading data
from the target, the following steps occur.

First the driver directs the stream to read
data from the target. The stream passes the call
on to the CStreambisp object. The CStreamDisp
object directs the CIOMgr to perform the read.
Depending on how the stream is implemented, the
CIOMgr may either make one call or multiple calls
to the CIOHAL object. If multiple calls are made,

50


walkp
Typewritten Text
50


O

10

15

20

25

30

-51 -

all data read is stored in CIOMgr internal
buffers. The CIOHAL object either directly
communicates to the hardware, uses the COMM API,
or a device driver to read the data. If a device
driver or the COMM API are used, they directly
communicate with the hardware to read the data.

Once the driver is done using the stream, it
must direct the stream to clean-up all resources
used. To do so, the driver calls the standard
Release method. FIG. 32 displays the sequence of
events taking place after the Release method is
called. The following steps occur when cleaning
up and freeing all resources used by the stream.

First the driver must call the stream’s
Release method. Next, the stream directs the
CStreamDisp object to release all resources used.
The CStreamDisp object then directs the CIOMgr to
free any resourées used in buffers, etc. Next,
the CIOMgr directs the CIOHAL to free any
resources used. During its clean-up and depending
on the type of stream, the CIOHAL will delete text
files used, close the debug monitor, shut-down the
hardware, or direct any device drivers to shut-
down the hardware. If device drivers or the COMM
APT are used, they direct the hardware to shut-
down.

FIG. 33 depicts an interface map for the
stream 28. Attached hereto in Appendix E is a
document that describes the actual OLE Interfaces
exposed, the definitions of the data structures
used when passing data around, and the definitions
of each class used internally by the stream.

51


walkp
Typewritten Text
51


(O

FR)

10

15

20

25

30

-52-

V. DRIVER STUB MODULE

The driver stub module 36 is used to f£ill in
the extended SPI functions that the driver 30 is
unable to support or implement. By simulating the
extended SPI, applications are able to use a
larger set of motion control functionality than
would be available if the application directly
programmed the motion control hardware. In order
to implement the extended SPI, the driver stub
uses software algorithms that call core SPI
interface methods implemented by the driver 30.
During the initialization of the driver stub, the
driver 30 to use is registered with the driver
stub.

This section describes all aspects of the
driver stub 36 in three basic parts. The first
part of this section describes all binary modules
affecting the driver stub. Next, a more detailed
view, that includes all C++ objects used inside
the driver stub, is described. Then several
processes that take place on the driver stub are
described.

The module interaction-map displays alil
binary modules and their interactions with the
driver stub 36. As can be seen fromsggG.334, the
driver stub is used by the component,34. More or
less, the g;iver stub acts as a helper to the
component, 34 by filling in all extended SPI
functionality possible.

By taking the module interaction-map in FIG.
34 and displaying all interactions taking place
with all C++ objects implementing the driver stub,

52


walkp
Typewritten Text
52


10

15

20

25

30

-53-

we produce what is called the object interaction-
map. FIG. 35 is the object interaction-map for
the driver stub 36 component.

Each object in the diagram is described as
follows.

The CDriverStubDisp object is the
dispatch object used to dispatch exposed
interface methods. During the dispatch
process, all raw data is converted into the
appropriate C++ form. For example,
collections of data passed between OLE
components is usually packaged in a raw block
of memory. The CDriverStubDisp object takes
care of packing outgoing data and unpacking
incoming data. Data packing involves
converting the data between a raw and native
C++ format.

The CSPIMgr object ig responsible for
managing all SPI issues such as managing the
CSimpleDriver by directing it to connect to
the appropriate SPI core interfaces exposed
by the driver.

The CSimpleDriver object is used to
directly communicate with the driver
implementing the SPI core interfaces. The
CSimpleDriver only communicates with the core

SPI interfaces implemented by the driver.

The following discussion describes all main
scenarios, or operations, that occur on the driver
stub 36. Each scenario-map displays all objects
involved, and the interactions that take place
between them in the sequence that they occur. All

53


walkp
Typewritten Text
53


PP

&\ R

§
A

L

10

15

20

25

30

-54-

operations on the drivexéys_tub originate from the
motion control componenta34. In addition to the
motion control componentiﬁAw the XMC Setup
Component interacts with the driver stub when
installing the system 22. It should be noted that
all scenarios below assume that the driver stub 36
has already been registered in the OLE system.
Registering this component is the responsibility
of the setup application and setup component.

This discussion describes all operations made

on the driver stub by the motion control component

S . Each section is discussed in the order that

they may occur when using the driver.

As shown in FIG. 36, before usingrphe driver
stub 36, the motion control component 34 must
initjialize it by creating an instance of the
driver stub, and then initializing the instance
created. Calling the standard OLE function
CoCreateInstance completes the first step. After
an instance is created, the componenti?A—must call
the driver stub exposed Initialize interface
method. During initialization, the following
steps occur. =5

The componentAcreates an instance of the
driver stub by calling the standard OLE function
CoCreatelInstance. Once loaded, the CLSID of the
driver to use is passed to the driver stub when
calling its Initialize exposed interface method.
When first loaded, the driver loads any
registratégp data previously stored. Next, the
componenth?4-passes the CLSID, of the driver to
use, to the CDriverStubDisp object and directs it
to initialize the system. The CDriverStubDisp

54


walkp
Typewritten Text
54


oYl

10

15

20

25

30

-§55-

object then directs the CSPIMgr to initialize
itself and passes the driver CLSID to it. The
CSPIMgr passes the CLSID to the CSimpleDriver and
directs it to only query the core SPI interfaces
exposed by the driver. The CSimpleDriver loads an
instance of the driver then queries all core
interfaces exposed by the driver.

Once the driver stub is initialized, it is
ready to perform operations such as performing
extended SPI functions. FIG. 37 describes the
steps that occur when the component??4 directs the
driver stub to perform an extended SPI operation.
The following steps occur when the operation is
requested. 25

4 must request the

N
operation and pass all pertinent parameters to the

First the component

driver stub. Next, the driver stub directs the
CDriverStubDisp to handle the operation. The
CDriverStubDisp then directs the CSPIMgr to
perform the SPI extended function and passes the
appropriate XMC_EXT_SPI identifier as a parameter.
The CSPIMgr calls the appropriate function
corresponding to the XMC EXT SPI identifier. The
function simulates the extended SPI function and
calls the CSimpleDriver for core operations. When
directed, the CSimpleDriver performs SPI core
functions by directly calling the exposed
interfaces implemented by the driver.

When the motion control componentA§4-is
finished using the driver stub 36, it must release
it by calling the exposed Release method. Calling
the Release method causes the driver stub to free
all the resources it uses. FIG. 38 displays this

95


walkp
Typewritten Text
55


10

15

20

-56-

sequence of events. During the clean-up process,

the following steps occur.

First the componen9N34_must direct the driver
stub to release all of its resources by calling
its Release method. When invoked, the driver
component passes the call on to the
CDriverStubDisp object. The CDriverStubDisp
object then directs the CSPIMgr to release any
resources that it was using. The CSPIMgr releases
all resources including the CSimpleDriver object
used. When freed, the CSimpleDriver releases any
interfaces used from the driver.

FIG. 39 is an interface map of the driver
stub module 36. Attached hereto as Appendix F is
a document that describes the actual OLE
Interfaces exposed, the definitions of the data
structures used when passing data around, and the
definitions of each class used internally by the

driver.

56


walkp
Typewritten Text
56


=
-t

¢
\ v

10

15

20

25

30

-57-

VI. DRIVER ADMINISTRATOR MODULE

The driver administrator 32 is used from two
different perspectives. When the driver
administrator Control Panel Applet 38 is used to
configure the system, the applet directs the
driver administrator 32 to carry out the
operations. The applet 38 simply provides the
user-interface, and the componentég4-does the real
work of managing drivers and streams used with the
system 22. Using the driver administrator
component with the control panel applet ;; the
first perspective on using the componentﬂ&é.

In tshse second perspective, the motion control
component 3% uses the driver administrator
component to query for the current set of enabled
the driver 30. It should be noted that,
currently, only single driver operation is
allowed. Clearly, the system 22 may support
multiple drivers that are virtualized. For
example, if two, four axis, drivers are installed,
applications using the system could act as though
they were using an eight axis system.

This section describes the driver
administrator 32 in three main parts. First, all
modules interacting with the driver administrator
component are described along with their
interactions. Next, the module interaction-map is
expanded to display all interactions taking place
between the C++ objects used to implement the
driver administrator 32 Component. This
description is called the object interaction-map.

Then, the object interaction-map is tested by

57


walkp
Typewritten Text
57


10

15

20

25

30

-58-

running it through several scenarios, or scenario-
maps. Each scenario-map displays the events and
the order in which they occur in a certain process
taking place on the driver administrator
component.

The module interaction-map shown in FIG. 40
displays all binary modules and their interactions
with the driver administrator 32 Component. Both
the driver administrator CPL 38 and the motion
control componentfgé are the main modules that
interact with the driver administrator 32
Component.

The driver administrator CPL module 38
provides the user-interface that allows the user
to add, configure, and remove drivers and streams
in the system 22. The driver administrator 32
handles all driver and stream management. Even
though the control panel applet provides the user-
interface, this module 32 does the actual
management work.

In additiog}rﬁhe driver administrator is used
by the component 3% to access the current
driver(s) to use when carrying out motion control
operations. For example, if the AT6400 driver is
selected as the current driver when the component

35

P4 queries the driver administrator, the driver
administrator returns the CLSID of the ATE400
driver.

Taking the driver administrator 32, displayed
in the module interaction-map, and displaying all
interactions occurring between the C++ objects

?gl, produces

_ A
the object interaction-map therefor. The object

used to implement the administrator

58


walkp
Typewritten Text
58


0O

10

15

20

25

30

-59-

interaction-map for the driver administrator 32 is
shown in FIG. 41.

Each object in the diagram is described as
follows.

The CDriverAdminDisp object is the dispatch
object used to dispatch exposed interface methods.
During the dispatch process, all raw data is
converted into the appropriate C++ form. For
example, collections of data passed between OLE
components is usually packaged in a raw block of
memory. The CDriverAdminDisp object takes care of
packing outgoing data and unpacking incoming data.
Data packing involves converting the data between
a raw and native C++ format.

The CDriverInfoMap object is used to build
the information used by the driver administrator
CPL 38 when displaying information about each »
driver or stream.

The CModuleMgr object is responsible for
managing all stream and driver modules in the
system. A list of all drivers registered are
stored persistently in the registration database
by the CModuleMgr. Each time a driver or stream
is accessed the CModuleMgr is used to get the
module.

' The CSimpleDriver object is used to directly
communicate with the driver component. All OLE
specific details are encapsulated within this
object.

The CSimpleStream object is used to directly
communicate with the stream component. All OLE
specific details are encapsulated within this

object.

59


walkp
Typewritten Text
59


10

15

20

25

30

o

-60-

FIGS. 42-49 describe all main scenarios, or
operations, that occur on the driver administrator
32. Each scenario-map displays all objects
involved, and _the interactions that take place
between them in the sequence that they occur.

Referring now to FIG. 42, before using the
driver administrator component, it must be
initialized. FIG. 42 describes the process of
initializing the driver administrator component
from either the driver administrator control panel
applet or the motion control component. During
initialization, the following steps occur.

First, either the control panel applet or the
motion control component must create an instance
of the driver administrator component by calling
the standard OLE function CoCreateInstance. Next,
the exposed Initialize interface method must be
called. When the Initialize method is called, the
driver administrator component directs the
CDriverAdminDisp to initialize the system. Next,
the CDriverAdminDisp directs the CModuleMgr to
injtialize itself and any modules that it is
managing. The CModuleMgr, first, loads all
information from the registration database. Then
for each driver registered, the CModuleMgr creates
an instance of the driver by calling the standard
OLE function CoCreatelnstance. Next, the
CModuleMgr calls each drivers Initialize method,
passing to the method the CLSID of the driver
component to attach. The CSimpleDriver attaches
to the driver component by calling the standard
OLE function CoCreateInstance.

60


walkp
Typewritten Text
60


10

15

20

25

30

-61-

The driver administrator 32 can register both
drivers and streams. Registering drivers is very
direct, since the driver administrator manages the
drivers registered in the system. Registering
streams, on the other hand, is more complex, since
each stream must be registered with a driver and
the driver manages the streams registered with it,
not the driver administrator. The following
discussion describes the process of registering
both drivers and streams.

Registering a driver entails verifying that
the module is actually a driver, verifying that
the driver can be loaded, and storing the driver
information in a persistent location. FIG. 43
describes this process. When registering a
driver, the following steps occur.

First, the driver administrator CPL passes
the name of the driver and directs the driver
administrator component to register it. Next, the
driver administrator component passes the driver
name to the CDriverAdminDisp and directs it to
register the module. The CDriverAdminDisp directs
the CModuleMgr to register the new driver. The
CMcduleMgr creates a new CSimpleDriver and
requests it to register the driver. First the
CSimpleDriver verifies that the driver is valid by
calling its DLLGetModuleType exported function.

If the function returns XMC_DRIVER_MT the
CSimpleDriver then calls the driver’s exported
function DLLRegisterServer to register the module
in the OLE system. Next the CLSID is queried from
the module by calling its exported DLLGetCLSID
function. The CLSID returned is then used to load

61


walkp
Typewritten Text
61


10

15

20

25

30

-62-

the driver by calling the standard OLE function
CoCreateInstance. If the CSimpleDriver is
successful, the CModuleMgr stores the driver CLSID
in the registration database.

Registering a stream is similar to
registering a driver, but a little more complex,
since each stream must be registered with a
specific driver. FIG. 44 displays the process of
registering a stream. When registering a stream,
the following steps occur.

First, the driver administrator CPL passes
the CLSID of the driver and the filename of the
Stream to register with the driver, to the driver
administrator component. The driver administrator
component directs the CDriverAdminDisp to register
the stream. The CDriverAdminDisp object directs
the CModuleMgr to register the stream and passes
the CLSID of the driver and the name of the stream
along to it. First, the CModuleMgr verifies that
the CLSID of the driver one of the registered
drivers. If it is not, the driver is registered
as discussed above.

Next, the CModuleMgr creates a new
CSimpleStream object and directs it to verify and
load the stream component. The CSimpleStream
first verifies that the module is actually an
stream component 28 by calling its exported
DLLGetModuleType function. If the function
returns XMC_STREAM MT, the CSimpleStream continues
and registers the stream component by calling its
DLLRegisterServer exported function. Finally, the
CSimpleStream object queries the new module for
its CLSID by calling the module’s exported

62


walkp
Typewritten Text
62


S’

10

15

20

25

30

-63-

DLLGetCLSID function. The new CLSID is used, by
the CSimpleStream, to load the stream component
using the standard OLE function CoCreateInstance.
If the CSimpleStream succeeds, the CLSID of the
stream is passed along to the CSimpleDfiver who is
directed to register the stream. The
CSimpleDriver passes the CLSID to the driver
component and directs it to register the stream.

The following discussion describes setting
information in either a driver or stream. When
the user edits information in the driver
administrator control panel applet 38, the applet
38 directs the driver administrator 32 to edit the
settings for the stream or driver being edited.
The-following discussion describes how this
configuration process works.

Editing the settings of a driver takes place
when the user changes the driver settings
displayed in the driver administrator CPL.
Changing tﬂese settings causes the process
described in FIG. 45 to occur within the driver
administrator component. The following steps
occur when setting the driver configuration.

When driver settings are changed in the CPL
38, the driver administrator CPL directs the -
driver administrator component to make the
appropriate changes to the driver corresponding to
the driver handle. A XMC DRIVER_INFO structure is
passed to the componentig;, describing the new
values for the driver. The driver administrator
component takes the XMC_DRIVER_INFO structure and
the handle to the driver and passes the
information to the CDriverAdminDisp object,

63


walkp
Typewritten Text
63


-64 -

directing it to change the settings in the driver.
The CDriverAdminDisp object directs the CModuleMgr
to edit the driver corresponding to the driver
handle. The CModuleMgr locates the CSimpleDriver
with the handle and directs it to change its
settings to those stored in the XMC_DRIVER_INFO
structure. The CSimpleDriver passes the
XMC_DRIVER_INFO structure to the driver component
and directs it to change its settings.

As shown in FIG. 46, when the user edits
stream settings in the driver administrator CPL
38, the following steps occur.

After the user changes settings for the
stream in the CPL, the driver administrator CPL
directs the driver administrator component to
change the stream’s settings and passes a handle
to the driver containing the stream, a handle to
the stream, and a XMC_STREAM INFO structure
describing the new values. The driver
administrator component directs the
CDriverAdminDisp object to change the streams
settings. The CDriverAdminDisp object directs the
CModuleMgr to change the settings of the stream
-corresponding to the handle.

First, the CModuleMgr locates the driver
corresponding to the driver handle. Next, it
requests the CSimpleDriver to change the settings
for the stream corresponding to the stream handle.
The CSimpleDriver searches for the stream
corresponding to the stream handle and directs it
to change its settings to those stored in the
XMC_STREAM_INFO structure. The CSimpleStream
directly communicates with the stream component


walkp
Typewritten Text
64


e p

oo

10

15

20

25

30

-65-

and directs it to change its settings to those in
the XMC_STREAM INFO structure.

There are two different types of information
that may be queried from the driver administrator
32: the enumeration of all drivers registered, and
the drivegg;nformation map. The motion control
componentha4-uses the driver enumeration when
gselecting the set of drivers to use and control
during motion control operations. The driver
information map, on the other hand, is used by the
driver administrator CPL 38 to update the user-
interface display describing all drivers and
streams registered in the system. The following
discussion describes the process of querying for
both the driver enumeration and the driver
information map. Querying for the driver
enumeration occurs during the initialization of
the motion control compone2£§§4u When
initializing, the component 34 must know what
drivers to use when performing motion control
operations. The driver administrator 32 Component
is used for that very purpose. Querying the
driver enumeration just returns a pointer to the
IXMC_EnumDriver interface exposed by the driver
administrator 32 Component. FIG. 47 displays the
events that occur when using the interface to get
each driver in the enumeration. Using the
interface causes, the following steps ocggr.

First, the motion control component,34
queries the driver administrator 32 Component for
the next driver. Next, the driver administrator
32 Component directs the CDriverAdminDisp to get
the next driver supported. The CDriverAdminDisp

65


walkp
Typewritten Text
65


(o]

10

15

20

25

30

-66-

directs the CModuleMgr to get the next driver.
The CModuleMgr then directs the CSimpleDriver to
either return the CLSID or a pointer to the
IUnknown interface for the driver, depending on
the parameters of the enumeration. If the
CSimpleDriver is requested to return a pointer to
the IUnknown interface, the interface is queried
from the driver component.

Another set of information that may be
queried from the driver administrator 32 consists
of the driver information map. This data is used
by the driver administrator CPL 38 when displaying
information describing the drivers and streams
registered in the system. As shown in FIG. 48,
when querying the system for the driver interface
map, the following steps occur.

First, the driver administrator CPL 38
queries the driver administrator 32 Component for
the current driver information map. When queried,
the driver administrator component directs the
CDriverAdminDisp to create and load a
CDriverInfoMap class. The CDriverAdminDisp
creates the CDriverInfoMap. Next, the
CDriverAdminDisp passes the CDriverInfoMap to the
CModuleMgr and directs it to load the information
map. The CModuleMgr queries each driver
registered for its internal information. Each
CSimpleDriver communicates directly with the
driver component and queries it for all pertinent
driver information. Next, the CModuleMgr queries
each driver for a list of all streams registered
with the driver. Using the stream enumeration,
each‘CSimpleDriver Ccreates an array of

66


walkp
Typewritten Text
66


10

15

20

25

30

-67-

CSimpleStream objects and returns the array to the
CModuleMgr. For each CSimpleStream object in each
array, the CModuleMgr queries for all pertinent
stream information. Each CSimpleStream
communicates directly with the stream component
and queries it for all information describing the
stream.

After the driver aqggnistrator CPL 38 or the
motion control component,34 are finished using the
driver aég}nistrator 32, they must release the
component 34 to free any resources it was using.
FIG. 49 describes this process. When cleaning up
after a call to the Release method, the following
steps occur.

First, either the driver ag?;nistrator CPL 38
or the motion control component,34 must direct the
driver administrator 32 -€ompomert to release
itself by calling its Release method. Next, the
driver administrator component directs the
CDriverAdminDisp object to free all resources used
in the system. The CDriverAdminDisp then directs
the CModuleMgr to free any resources that it is
using. First, the CModuleMgr traces through all
CSimpleDriver objects, querying each for their
CLSID and enabled state. Next, each CSimpleDriver
is freed. Each CSimpleDriver object freed, frees
all arrays of CSimpleStream objects registered
with it. When freed, each CSimpleStream object
releases all interfaces that it was using from the
Stream component. In its final clean-up, each
CSimpleDriver releases all interfaces that it was
using from the driver component. All CLSID and

67


walkp
Typewritten Text
67


-68-

enabled state information is stored persistently
in the registration database.

FIG. 50 depicts an interface map for the
driver administrator 32. Also, attached hereto as
Appendix G is a document that describes the actual
OLE Interfaces exposed, the definitions of the
data structures used when passing data around, and
the definitions of each class used internally by
the driver administrator 32 component.

68


walkp
Typewritten Text
68


10

15

20

25

30

-69-

VII. DRIVER ADMINISTRATOR CPL APPLET

This document describes the design Of(%2f9”38
driver administrator control panel appleth§8—+GPL+
that is used by the user to add, configure, and
remove both drivers 30 and stream components 28
later used by the component,34 when directed to
carry out motion control operations. With regard
to design, there are three main types of "views"
used to look at how the control panel applet
works.

First, a module interaction map shown in FIG.
displays all main executable and user-interactable
items, or modules, that the CPL uses and interacts
with. For example, when a dialog is displayed by
the CPL executable, both the dialog and the CPL
modules are considered to interact with one
another. Technically, the dialog is not a module
since it is a figment displayed on the screen, but
none the less, module interaction maps classify
them as such since they are key destination points
for user-input.

Second, an object interaction map shown in
FIG. 52 displays all main objects making up the
modules described in the module interaction map.
Objects consist of the actual instances of C++
classes defining each object. All interactions
between the objects are drawn out in this
interaction map.

Finally, FIGS. 53-57 display a set of
scenario maps are drawn out using the object
interaction map as a basis. Scenario interaction-
maps describe the interactions taking place during

69


walkp
Typewritten Text
69


-70-

a specific operation. Initialization, Adding a
driver to the system, and Viewing the support
offered by a driver, are all examples of a
scenario interaction-map.

The design goals for the driver administrator
32 are the following:
1. User-Interface separation - Implement
all user-interface elements used to control
the driver administrator 32 Component.
2. Upgradable to OCX Client - Eventually
each driver and stream may implement all UI
elements with an OCX that then passes all
input to the corresponding driver or stream.
The driver administrator CPL 38 must be
designed in a way that is easy to upgrade to
become an OCX client.
3. Provide Stream Independence - drivers 30
should not be required to use streams 28 in
order to operate. The design of the driver
administrator 32 must make amends to ensure
that it is not dependent on stream component
28 operations to operate.
4, Use Windows 95 UI - When ever possible,
Windows 95 UI elements should be used. For
example, TreeViews, ImageLists, Button Bars,
Tab Dialogs and any other UI elements should
be put to use to ensure a Windows 95 look-
and-feel.

The following discussion describes the module
interaction map for the control panel applet 38.
A module is defined as either an executable

binary, an external data file, or a main user-


walkp
Typewritten Text
70


1

10

15

20

25

30

-71-

interface element used when interacting with the
user. FIG. 51 is a drawing of all modules that
interact with each other when running the driver
administrator control panel applet. _

The driver administrator CPL 38 is a control
panel applet. And, a control panel applet is a
special DLL that exports several functions
allowing the Windows Control Panel to communicate
with the applet.

The Driver Administrator Dialog is the main
dialog that appears when selecting the control
panel applet icon from the Windows Control Panel.

The Browse Dialog is used to query the user
for a filename. For example when adding a new
stream or driver, the driver administrator uses
this dialcg to ask the user for the location of
the new driver or stream to add.

The View Support Dialog displays the support
provided by the selected driver 30. Each driver
may support a different set of extended
functionality. This dialog shows the user exactly
how much support is provided by each driver
allowing them to determine which functions within
their application may not operate when using the
driver.

Unlike the Module Interaction-Map described
above, the Object Interaction-Map shown in FIG. 52
describes how the actual instances of C++ objects
interact with one another within each module.

Other than showing that each dialog is
managed by the object, whose name is displayed in
the dialog, the main difference from the module

71


walkp
Typewritten Text
71


S,

10

15

20

25

30

-72-

IA-map are both the CComCPL and CDriverAdmin C++
objects. Both objects are described below.

As the description of each dialog class is
fairly straight forward and very similar to the
dialog description above they will not be
described in this section. This section will
describe all other C++ objects.

The CComCPL is a C++ object that is generated
by the COMBuilder application from a template. It
is used to handle all Windows messages sent from
the Control Panel Application.

The CDriverAdmin object is used to drive,
control, and manage the use of the driver
administrator 32 Component. For example, all OLE
2.0 interface management and data translation is
handled by this object. Data translation involves
translating data from a standard C++ format to a
raw format that is handled easily with the OLE 2.0
data transfer mechanisms.

Scenario Interaction-Maps are almost
identical to object interaction-maps but they only
display the objects and interactions taking part
in a specific operation. Also, each interaction
is numbered by the sequence in which they occur
while the operation is running. The following
discussion describes several key operations that
occur while running the driver administrator CPL
38 Applet.

Initialization occurs when the user first
runs the CPL Applet. During this process all
other objects are initialized and several modules
are loaded. There are two steps that take place
during the initialization process: First the

72


walkp
Typewritten Text
72


T

10

15

20

25

30

-73-

application is initialized, and second the dialog
is initialized with values queried from the driver
administrator 32 Cempeonent. The following
sections describe each.

Initializing the application, which is shown
in FIG. 53, occurs when the application is first
run and the main dialog has not yet been
displayed. When initializing the application, the
following steps occur.

Through a Windows message, Windows notifies
the CComCPL object that the Control Panel Applet
has just been loaded. CComCPL then loads the
CDriverAdminDialog and tells it to do any dialog
prepping before going modal. Next,
CDriverAdminDialog loads any settings stored in
the Registration Database. For example, the
current window position and active tab may be
stored in the database. CDriverAdminDialog then
Loads the CDriverAdmin class and directs it to
initialize itself. During initialization,
CDriverAdminDialog creates an instance of the
driver administrator 32 and queries all interfaces
that will be used.

Once the application is initialized, the
default settings to be displayed in the dialog
must be set. These values are set when the dialog
is initialized, just before displaying it. FIG.
54 describes this process. During the process of
initializing the dialog, the following steps
occur.

During the dialog preparation that occurs
before the DoModal call, CDriverAdminDialog
queries the CDriverAdmin object for the driver

73


walkp
Typewritten Text
73


/77 {j’

10

15

20

25

30

-74 -

enumeration to be used when setting initial wvalues
to be displayed in the dialog box. CDriverAdmin
uses the driver administrator 32 Cempenent LO
query for the driver information map, which is
then passed back to the CDriverAdminDialog. Once
receiving the driver information map, the
CDriverAdminDialog uses the information to update
all user-interface items related to either drivers
or streams.

Adding a driver to the system 22 can be
broken down into two steps. First, the module
name must be added to the system. Next, the
driver administrator 32 main dialog must update
itself to reflect the new driver just added.

Adding a driver occurs when the user presses
the "Add..." button on the driver administrator
32's main dialog. FIG. 55 describes this process.
When adding a new driver, the following steps
occur.

When adding a driver, first the user must
press the "Add..." button. After pressing the
button, CDriverAdminDialog opens up the common
open file dialog. The user must enter in the
filename of the driver to add and close the
dialog. CDriverAdminDialog then passes the
filename to the CDriverAdmin object and calls the
RegisterDriver method passing in the name of the
module to register as a driver. CDriverAdmin then
passes the driver filename to the driver
administrator 32 Sempomemt and directs it to
register the driver in the system 22.

74


walkp
Typewritten Text
74


e

10

15

20

25

30

-75-

The process of updating the main dialog is
identical to the process of initializing the
dialog discussed above.

Similar to the process of adding a new
driver, removing a driver involves both removing
the driver from the system and then updating the
main dialog. Pressing the "Remove" button removes
a driver from the XMC software system. FIG. 56
describes this process. The following steps occur
when removing a driver.

To remove a driver, the user must first
select the "Remove" button. After pressing the
button, the selected driver or parent driver to
the selected stream will be removed.
CDriverAdminDialog passes the XMC_HDRIVER of the
driver to the CDriverAdmin and directs it to
remove the driver by calling its UnRegister
method. CDriverAdmin passes the XMC_HDRIVER to
the driver administrator 32 Eempemest- and directs
it to UnRegister the driver.

The process of updating the main dialog is
identical to the process of initializing the
dialog discussed above.

Viewing Support involves viewing the level of
support implemented by the selected driver. FIG.
57 describes the process of providing this
information to the user via the View Support
Dialog. The following steps occur when viewing
the support provided by the driver.

First the user must select the "View Support"
button on the driver administrator main dialog.
When selected, CDriverAdminDialog queries
CDriverAdmin for the driver support information.

75


walkp
Typewritten Text
75


7'/

10

-76-

CDriverAdmin passes the query on to the driver
administrator 32 component who actually fills out
the information. Once the queried information is
returned, the CDriverAdminDialog passes it on to
CViewSupportDialog. CViewSupportDialog
initializes itself using the driver support
information.

Attached hereto as Appendix H is a document
that describes the actual OLE Interfaces exposed,
the definitions of the data structures used when
passing data around, and the definitions of each
class used internally by the driver
administrator 32.

76


walkp
Typewritten Text
76


78

10

15

20

25

30

-77-

VIII. DRIVER ADMINISTRATOR CPL APPLET

This section contains a description of the
driver administrator control panel applet 38.

When using the driver administrator 32 to
configure the motion control system, there are two
main items that the user will work with: drivers
and streams. Each driver 30 generates the
hardware specific, control codes that are then
sent to the selected stream component 28. Streams
facilitate the data transport layer between the
driver and the control-code destination.

Depending on the current hardware setup,
different streams may be used. For example, if
the hardware is connected to the PC Bus, a PC Bus
stream will be used to communicate to it. On the
other hand, if the hardware is connected through a
serial cable to a serial I/O Port, the serial
stream will be used. Finally, all hardware
configurations may use the file stream. When
using the file stream, all control-codes are sent
to the specified file that can be downloaded to
the hardware at a later time.

This section describes both drivers and
streams, and how each is configured. This section
initially describes the driver items and all
property pages used to edit them. This section
also contains a description of the streams and
their property pages. Finally, this section
describes the about box containing details on the
Software.

The main purpose of each driver is to
generate the hardware-specific control-codes

7


walkp
Typewritten Text
77


10

15

20

25

30

-78-

directing the hardware to carry out specific
motion control actions. For example, such actions
may include querying the hardware for the current
position or directing the hardware to move to a
predetermined location in the system. The
following discussion describes the property pages
used to configure each driver.

There are two types of properties affecting
each driver. First, a set of defaults may be set
that are used by the motion control component 34
as recommended values. The scaling and units used
are several example default values. In addition
to setting default values, if the driver supports
more advanced configuration, pressing the
Advanced... button will display a dialog box used
to set the driver configuration. For example, if
a driver does not support streams, the advanced
configuration dialog, provided by the driver, will
allow the user to set the I/O Port and IRQ
settings.

The properties affecting drivers 30 are as
follows.

Scaling - Setting the scaling property
affects the default scaling used on all axes
‘within the motion control system. The range
for scaling values is (0.0, 1.0]. Default
setting may be overridden when programming

XMC by using the IXMC_StaticState interface.

Units - Setting the units property
affects all coordinates used when programming

the system 22.

78


walkp
Typewritten Text
78


80

10

15

20

25

30

-79-

The unit descriptions are as follows:

MM _ENGLISH - Inches are used as the base
unit for all coordinates

MM METRIC - Millimeters are used as the base

unit for all coordinates.

MM NATIVE - The native coordinates defined by

the hardware system are used. Coordinates

used to program XMC are mapped 1:1 to the
hardware coordinates.

Advanced... - Pressing this button will

display a dialog used to edit any advanced

properties for the driver that may be edited
by the user.
In addition to allowing the user to set
properties, each driver property page displays the
full names of both the hardware supported and the
hardware vendor who makes the hardware.

The buttons along the bottom of the windows
work with the selected driver or stream. The
following discussion describes each button and
what it does.

Pressing the Make Default button selects the
current driver to be the default. If a stream is
selected, its parent driver becomes the default
driver. The default driver is later used by the
motion control componentﬂézp

Selecting the Add... button, displays the Add
Module dialog. This dialog is used to add new
drivers and streams to the system 22. Once
selected, the new driver or stream will be
displayed in the Driver tree view. When adding a
stream, the stream is added under the currently

selected driver. To enable the stream, you must

79


walkp
Typewritten Text
79


10

15

20

25

30

-80-

select the enable check box located in the streams
property page.

Selecting the Remove button, removes the
current driver or stream selected. If a driver is
removed all of its streams are also removed.

Selecting the View Support... button displays
a dialog used to view the level of XMC support
implemented by the driver. For example, all API
interfaces and subsequent methods are displayed.
If a lack of implementation within the driver
prohibits an API interface from operating, the
driver stub 36 is used. If the lack of
implementation within the driver 30 cannot be
replaced by operations within the driver stub 36,
the interface or method is disabled.

The following are descriptions of each
graphic found in the XMC Support View Dialog.

D - This graphic means that the interface or

_ method is implemented by the driver 30.

S - This graphic means that the interface or

method is implemented within the driver stub

36.

X - This graphic means that the interface or

method is disabled because of a lack of

implementation within the driver 30.

Like the properties page, a debug page is
also provided to set all debugging settings for
the driver. Each driver may specify that all API
calls used to control the driver are logged. The
logging settings only affect the current driver
selected. The Output field allows you to select
the output stream where all debug information is

80


walkp
Typewritten Text
80


10

15

20

25

30

-81-

sent. When Streams is enabled, debug information
is sent to the specified text file. When Debug
Monitor is enabled, debug information is sent to
the debug monitor if it is running. Using Enable
to enable a stream turns it on causing all debug
information generated to be sent to the stream.
More than one stream may be enabled at one time.

Stream Settings are available for each debug
stream supported. Text File allows the name of
the text file may be set. The Debug Monitor can
only be enabled and disabled.

A stream is the transport layer used by the
driver to pass data to the destination location.
The destination location may be the actual motion
control hardware or even a text file. Usually the
control language used by a hardware vendor is
supported by several different flavors of their
motion control hardware. For example, some
vendors have both PC Bus based and Serial I/O
based motion control hardware that understand the
same control language. In such a case, the same
driver would be used for each hardware setup but
it would communicate with different streams
depending on the specific hardware setup.
Graphically, each stream is listed below each
driver that uses the stream.

This section describes the streams supported
by the system 22 and how they are configured.

The PC Bus stream sends all data directly to
a PC Bus based motion control hardware system by
writing to the specified I/0O Ports and IRQ’s
defined by the hardware. This section describes

81


walkp
Typewritten Text
81


10

15

20

25

30

-82-

both the properties and debug settings available
for the PC Bus Stream.

Stream properties only affect the currently
selected stream. The user is required to select
certain settings, such as the I/0 Port and IRQ.
Without setting these values, the PC Bus Stream
will not be able to communicate with the hardware.
The properties affecting PC Bus Streams are
described below.

The I/0 Port is the base port used to
communicate with the motion control hardware that
the stream is to send data to.

The IRQ is the interrupt request level used
by the hardware.

Pressing the Advanced... button will display
a dialog allowing the user to edit more advanced
sStream options. For example, if the stream
supports a Port I/0 map that the user can edit,
the port map would be displayed in this dialog.
This button is only enabled for streams sﬁpporting
advanced features that the user may edit.

When debugging an application program it may
be useful to see what codes are actually sent to
the hardware. The Debug Settings page for streams
allows the user to enable and disable both the Cmd
and Bit Streams. The Cmd Stream is used to log
all command-codes sent to the hardware. If this
level of detail does not provide uew=with enough
information, the Bit Stream may be used. When
enabled, the Bit Stream logs all values sent
through each hardware port. All values read from
and written to each port used by the hardware are
logged. Note, when enabled, both streams may

82


walkp
Typewritten Text
82


10

15

20

25

30

.83-

significantly slow down the application
programming the motion control system.

Serial RS-232 Streams are used to send data
from the driver to motion control hardware
connected to the computer through the serial I/O
port. Both property and debug settings only
affect the selected Serial RS-232 Stream. The
following discussion describes the available
settings in each in detail.

All Serial RS-232 property settings must be
set by the user for they let the stream know what
I/0 port and communication protocol to use when
communicating with the hardware. The properties
affecting Serial RS-232 Streams are as described
below.

The Port is the serial port that the hardware
is connected to. COM1l - COM4 are valid ports that
can be used.

The Baud Rate is the speed of data
transmission supported by the hardware.

When Hardware is selected a more efficient,

‘but less compatible, communication protocol is

used to communicate to the hardware. If errors
occur when this protocol is selected, use the
XON/XOFF communication protocol.

When the XON/XOFF communication protocol is
selected a simple and more compatible
communication protocol is used.

Debug settings for the Serial RS-232 Stream
are very similar to those supported by the PC Bus
Stream. Serial RS-232 Stfeams only support
command logging through the Cmd Stream and do not
support bit logging.

83


walkp
Typewritten Text
83


10

15

20

25

30

-84 -

The Text File Stream is used to build
control-code programs for later use. Using this
stream facilitates running the XMC software in
code-generation-mode. No motion control actions
take place when running in this mode. Instead,
control-code programs may be built and stored to
file. Later, after programs are built and saved,
they may be downloaded to the motion control
hardware and run. The following discussion
describes the property and debug settings for the
Text File Stream.

The main property set, when configuring a
Text File Stream, is the actual name and location
of the file to use. Once set, the stream is ready
for use. '

The following properties may be configured
for the Text File Stream:

Filename is the filename and location of the
file used to store all control-codes generated by
the driver 30 selected. Pressing the Browse...
button displays a dialog allowing you to
graphically select the location and filename to
use.

No debug settings are available for the Text
File Stream.

It should be clear from the foregoing that
the present invention may be embodied in other
specific forms without departing from the
essential characteristics thereof. The present
embodiments are therefore to be considered in all
respects as illustrative and not restrictive, the
scope of the invention being indicated by the
appended claims rather than by the foregoing

84


walkp
Typewritten Text
84


-85-

description; all changes which come within the
meaning and range of equivalency of the claims are
therefore intended to be embraced therein.

85


walkp
Typewritten Text
85


P
el

XMC Motion Control - System Interaction-Map

Personal Computer Software 3 %

@ { Ume#gmmlmwr ]
M \.2\) cPL

(568 Gerver,

| Exceinp phm:,

"gm 13L

Driver Admin

-0 Stancard OLE intertaces
. —O Custom OLE intertaces

d

Code Generstion itestaces

Sranaard OLE interfaces

H DE Serverl;
H o | ounatrre
i : >N, Wmnown |y R
Visual Basic App N7 2 X
S Eihhiueutiautthi. \
C++ Application s " OLE Inferfaces Motion Control
Genral interfaces 3

C= Component

Al

1Unicyawn

} Motion Control

Code Generation interfaces

Hardware A Language
Vendor Spechk: interteces (| Oeoendent

3
Code Generston Immcno__l Hardware B Language % Code Generstion IlIoﬂuuo_J Harsware C Language
E Vendor Spechic intertaces ¢, Devemaert i

Vendor Specic tutertaces -\

Extenced interfaces
Extenced Ut intesaces g_‘_: Driver Stub R I 2_
~. 3 / /
: !
/ tunmown ) 7~ Wnimown
v oD A 2N}
OLE Standsrd OLE intertaces \ OLE o— .
Com intertaces Motion Control Com m..m..gj Motion Control ' Com lnmruuoj Motion Control ‘
Extended interiaces Driver Extended lnmraco.:o__' Driver i Extended intertaces ¢, ) Driver
Extonded Ul intwrisces A Exrenced Ul intertaces ¢ | B Extenced Ul interfaces ¢, | Cc 13

Degenoent

IStee.

Motlon Control

Text File
Stream

Motion Control
PC Bus

Motlon Control \'

PC Bus 3

| 2 T
Bus :

Communcaten Protocet £
HAL)

7 C
/ 30b / §0c_

Uninown

(o]

istrow
Motion Contro!

Hardware C B
PC Bus Stream #~,
Speas PC Bus £ 2 &
3

for Hardwace C{HAL}

(HE—

o
Wardwart \_
Controller A™

Controller B

Controllerc\ﬁ

i
\ \ i
\ i \
| \. b i
v oal [723 v
420& Mechanical Mechanlcal Mechanical
System A System A System A
T - T~ [8c
™\ :
1 : H ' HEY !
[ Cu | i
I | !
Motion Control Motion Control Motion Control
Device A Device B Device C

20

Figuret XMC System Interaction-Map

F16
o

[§b

-

20¢c

"< o

86

ROY-G-BIV Corporation Confidential

5/30/95


walkp
Typewritten Text
86


’ i A 7
. ' ﬁ%/ég‘* 'Bb

Applications rknown

(VB epps, F—

VC++ apps, lXMC_xxxAPIQ_/ Driver

BOW apps. etc) ! Administrator E 3

K) IUnknown
Q
2—& IXMC, xxxAPlfv [ E/
- Component

3+

IXMC_UDxxxSP!

Figure 1 Module Interaction-Map.

Fi& 2

87

ROY-G-BIV Corporation Confidential 2 5/23/95


walkp
Typewritten Text
87


Uninown
Q

WC_mAPIQ_.{ Driver
| administstcr

CUnitMapper

~CDriver

Tunknown {Unknown

Figure—2 Object Interaction-Map.

=ivc, S

88

ROY-G-BIV Corporation Confidential 3 5/23/85


walkp
Typewritten Text
88


XMC Motion Control - Motion Control Component Design Drawings

frpesen]
Cat

Driver
Administratsr

CCmpntDisp

+igure8 Scenario-Map - Initialization.

-\ <.

4.

ROY-G-BIV Corporation Confidential

S/23/95

89


walkp
Typewritten Text
89


XMC Motion Control - Motion Control Component Design Drawings

CUnitMapper

N CDriverMgr

Rigured—Scenario-Map - Core SPI Operation.

Sy

=

ROY-G-BIV Corporation Confidential

5/23/95

90


walkp
Typewritten Text
90


C /ALt
XMC Motion Control - Motion Control Component Design Drawings
Y WUnknown
G
Component
CUmthIapper
Fwa. G
ROY-G-BIV Corporation Confidential 6 S/23/95

91


walkp
Typewritten Text
91


S
e

G

XMC Motion Control - Motion Control Component Design Drawings

Applications
(VB epps,

CCmpntDisp

MCS Measuremenis

migure6- Scenario-Map - Unit Mapping.

=la. +

ROY-G-BIV Corporation Confidential 7 5/23/95


walkp
Typewritten Text
92


XMC Motion Control - Motion Control Component Design Drawings g

[ St

D

Applications
(VB epps,
VC++ apps.
BCW apps, otc)

CCmpntDusp\

ROY-G-BIV Corporation Confidential 8

5/23/95

93


walkp
Typewritten Text
93


XMC Motion Control - Motion Control Component Design Drawings q /# é

IUnknown

IClassFactory

IDispatch

IXMC_API_1 (' sxmcapi interface #1
AR e 2

, XMCAPI Interface #2

RIS 5

IXMC_API_2

Methodinfo 1
Methodinfo 2 g struct DRVEXT METHOD_INFO
{

XMC_SUPPORTTYPE m_st;
CString m_strName;
LPFNDRVEXT m_panethod;

Methodinfo n

Fegare~9® Data-Map - CDriver class with XMCSPI table.

Fia 10

94

ROY-G-BIV Corporation Confidential 9 5/23/95


walkp
Typewritten Text
94


XMC Motion Control - Driver Design .gs In#b .

-

¢

¢ ]
0/‘3‘5 {e 6

IUnknown

fUnknown
IXMC_xxxAF1 .
= Component IXMC_xxxAFY, Driver i
’ Administrator : ‘g 2
7t
iUnknown

Q
MG ‘ Driver E 5
5 )

IXMC_xxxUDSP!
Stream

_Eigure1- Module Interaction-Map.

Elc. 1l

ROY-G-BIV Corporation Confidential 2 5/30/95

95


walkp
Typewritten Text
95


~Frgure2 Object Interaction-Map.

Flc.

[2

ROY-G-BIV Corporation Confidential

5/30/95

96


walkp
Typewritten Text
96


XMC Motion Controtl - Driver Design .gs l ‘7

B/ 454735

IXMC_xxxSF1.
Driver

+gure® 3 Scenario-Map - Registration.

F16.173

CDriverDisp CStreamMgr

~Figure4_Scenario-Map - Initialization by Driver Administrator.

. 14

ROY-G-BIV Corporation Confidential 4 5/30/95

97


walkp
Typewritten Text
97


XMC Motion Control - Driver Design ..gs l .

/454730

CStreamMgr

CDOriverDisp _i

igures Scenario-Map - Adding a Stream.

Cla IS

ROY-G-BIV Corporation Confidential 5 5/30/95

98


walkp
Typewritten Text
98


XMC Motion Control - Driver Design gs

Driver

CDriverDisp CStreami

CStream

Atgure$ Scenario-Map - Query Operation.

Fla. A

ROY-G-BIV Corporation Confidential 6

5/30/85

99


walkp
Typewritten Text
99


XMC Motion Control - Driver Des@‘ngs I ‘

l3/ &547730

CDriverDisp

HigureF Scenario-Map - Clean-up by Driver Administrator.

Fla |7

ROY-G-BIV Corporation Confidential 7 5/30/95

100


walkp
Typewritten Text
100


XMC Motion Control - Driver Design &s I

\3 EUniown

IXMC_xxxSA

Figure 8 Scenario-Map - Initialization by Component.

Fia. 18

ROY-G-BIV Corporation Confidential 8

5/30/85

101


walkp
Typewritten Text
101


XMC Motion Control - Driver Design gs ‘

ﬂf.‘/ S 4 *
o/ Go&7 3G

CDriverDisp CStreamMgr

CommandMgr

Fegusa-9-Scenario-Map - Command Operations.

Fic. 19

ROY-G-BIV Corporation Confidential 9 5/30/95

102


walkp
Typewritten Text
102


XMC Motion Control - Driver Design .ﬁ w ‘

{Urenoem

IUninown
Q

IXMC_xxxSA 3
Driver

IXM0_xxLIOSPY

+4goure40- Scenario-Map - Clean-up by Component.

Flc. 20

ROY-G-BIV Corporation Confidential 10 5/30/95

103


walkp
Typewritten Text
103


XMC Motion Control - Driver Design US I 9 /¢& ;
[ 4

IUnknown

IClassFactory (

IXMC_DrvCore_StaticState ()

* Al other mathods sm spaciic to the dynamic state usad when working
with mation cortrol,

IXMC_DrvCore_DynamicState (O

R O B TR N R O 0 DR R N e P P P A PR D0

IXMC_DrvCore_SPI_3 SMCSPY Intertace #3

SRR ARSI LRSS

R RS S S R S R R R R R RIS,

XMCSH Inte‘faw #4

R REEES

IXMC_DrvCore_SPI_4

IXMC_DrvCore_SPI_n (O

IXMC_DrvExt_StreamMgmt ()

IXMC_DrvExt_SPI_2 ("

QOO QRO R AR XA

XMCSP Interface #3

IXMC_DrvExt_SPI_3 ()
IXMC_DrvExt_SPI_n ()

Eigurett Interface-Map.

FlC 21

ROY-G-BIV Corporation Confidential 1 5/30/95

104


walkp
Typewritten Text
104


® @ g

S8

XMC Motion Control - Stream Design Drawings M‘

Unxnowr.

IXMC_xxxAP1 o { Driver

Administrator

~

N

FIPUTE T Module IA-Map.

Fla. 22

105

ROY-G-BIV Corporation Confidential 2 5/22/95


walkp
Typewritten Text
105


XMC Motion Control - Streamn Design Drawings

IXMC_xxxUDSPI

CStreamDisp CRegistryMgr

Fgure2~ Object IA-Map.

Fiwa. 273

ROY-G-BIV Corporation Confidential 3

5/22/95

106


walkp
Typewritten Text
106


XMC Motion Control - Stream Design Drawings

Rirknogrn

IXMC_xxxUDSP?

IXMC_xextUDSPE NF

CStrearqDlsp

ClOMgr

~igure-d Scenario-Map - Initialization

Flc. 25

ROY-G-BIV Corporation Confidential

5/22/95

107


walkp
Typewritten Text
107


XMC Motion Control - Stream Design Drawings ;

CStreamDisp

Faured Scenario-Map - Setup

FlG. 26

CStreamDisp

~Figure6 Scenario-Map - Clean-up

Fic. 27 ‘08

ROY-G-BIV Corporation Confidential 5 5/22/95


walkp
Typewritten Text
108


XMC Motion Control - Stream Design Drawings

Eigure-? Scenario-Map - Initialization

Flc. 2%

109

ROY-G-BIV Corporation Confidentiat 6 5/22/95


walkp
Typewritten Text
109


[ odnan }
Crl
~
-3
(|
o
=X
C
&3

XMC Motion Control - Stream Design Drawings

IXMC_xxxtIDSP!

CStrearqusp

Elgure8 Scenario-Map - Opening the Stream

FiG. 29

110

ROY-G-BIV Corporation Confidential 7 : 5/22/95


walkp
Typewritten Text
110


oD

dU/ 35&:?3%

bl

XMC Motion Control - Stream Design Drawings

IXMC_xxxUDSPI

CStreamDisp

~igured Scenario-Map - Writing Data.

Fla. %0

111

ROY-G-BIV Corporation Confidential 8 5/22/95


walkp
Typewritten Text
111


XMC Motion Control - Stream Design Drawings

£
IXMC_uxxUDSPL o

Yo7
|
AR

CStrearqDlsp

Eigure10 Scenario-Map - Reading Dara.

Fla. 5

112

ROY-G-BIV Corporation Confidential J 5/22/95


walkp
Typewritten Text
112


XMC Motion Control - Stream Design Drawings &w

IXMC_xxxUDSP!

Fgure-+4 Scenario-Map - Clean-up.

El1G. 32

113

ROY-G-BIV Corporation Confidential 10 5/22/95


walkp
Typewritten Text
113


R

n 4
Ui.) @L’;

XMC Motion Control - Stream Design Drawings

IUnknown

| SPI - UnDocu.

mented
PRSI ROIDOIODOOTO =

¥ Read isEnabled
IXMC_Stream O Write Stat
i Enable

. Initialize CreateStream
IXMC_Streamlnit (| open Stat
4 Close Setup

Eigusa-d2 Interface-Map.

Fla. 33

ROY-G-BIV Corporation Confidential ki 5/22/95

&'73b

114


walkp
Typewritten Text
114


® ®

25}
~ R
Cad
&

XMC Motion Control - Driver Stub Design Drawings o

{Unknown
2

\

\ 1Unknown
i 2

Y/ N

o_] Driver Stub L AAAAAAAAAAAAAAAAAAAAAAAAAA

IXMC_xxxSF1

~gere=t Module Interaction-Map.

Fi1c. 34

junknown

1XMC_DrvEXt xxx SPY

Driver Stub

Figore~2 Object Interaction-Map.

Fw. 35

115

ROY-G-BIV Corporation Confidential 2 5/23/95


walkp
Typewritten Text
115


0/ e
‘ o/ £
XMC Motion Control - Driver Stub Design Drawings
CDriverStubDis
csin
rigure=8 Scenario-Map - Initialization.
ROY-G-BIV Corporation Confidential 3 5/23/95

AC?}
haY¢
Ga)
&

116


walkp
Typewritten Text
116


/454736

XMC Motion Control - Driver Stub Design Drawings

DAMC_x00 AP | Componen: v

CDriverStubDis

CSPiMgr

CSimpleDriver

&igure # Scenario-Map - Operations.

Fle 4+

117

ROY-G-BIV Corporation Confidential 4 5/23/95


walkp
Typewritten Text
117


XMC Motion Controf - Driver Stub Design Drawings

1XMC_DrvExt_.

<gureS Scenario-Map -

IUnknown

\2
xxxSF,
Driver Stub

Clean-up.

IUnknown

g2 20020

IClassFactory ()

IXMC_DrvStub (O

IXMC_DrvExt_SPI_1 (O

IXMC_DrvExt_SPI_2 ()

IXMC_DrvExt_SPI_n (O

FHguTe® Interface-Map.

CDriverStubObject

Stub Specific Int.
? RegisterDriver
UnRegisterDriver

terface #1

XMCSPI Interface #2

%

L XMCSP! Interface #n

R R AR R R R RRR R R IR 2 = RRRIARRS = SRR

Fla. 39

118

ROY-G-BIV Corporation Confidential

5 5/23/95


walkp
Typewritten Text
118


I,|

Fateard
3 £ e
XMC Motion Control - Driver Administrator Design Drawings 3 q 4 é
I 4
IXMC_ UDxxx5P1 )
iUnknown
Driver
Administrator
Unknown
IXMC_xxAPI G Component }
“Ftgare T Module Interaction-Map. .
ROY-G-BIV Corporation Confidential 2 5/23/95

119


walkp
Typewritten Text
119


. ‘ ﬁc/[f‘r; PRAT T e S

XMC Motion Control - Driver Administrator Design Drawings

hDriver, pDriverinfo
\ hStreqen. pSreamingo”

Driver
Administrator

CModuieMgr

CSimpleDriver b E#mpleStrga
CSimpleDriver . §]Simple5tf/ea
CsimpleDriver

Figure-2- Object Interaction-Map.

Fla. 4 |

120

ROY-G-BIV Corporation Confidential 3 5/23/95


walkp
Typewritten Text
120


XMC Motion Control - Driver Administrator Design Drawings

IPﬁVer Admin CPi

Driver
Administrator

CModuleMgr

CSimpleDriver

CSimpleDriver

CSimpleDriver

“Fgure-8- Scenario-Map - Initialization.

YA 2

121

ROY-G-BIV Corporation Confidentia} 4 5/23/95


walkp
Typewritten Text
121


® ® v

BminDisp

CModu

Eigure® Scenario-Map - Registering a Driver.

Flg. 42
43

122

ROY-G-BIV Corporation Confidential 5 5/23/95


walkp
Typewritten Text
122


N )
{\:b GG 4
XMC Motion Control - Driver Administrator Design Drawings 3 Y
Driver
Administrator
DriverAUminDisp
CSimpleDriver
Fgere5 Scenario-Map - Registering a Stream.
ROY-G-BIV Corporation Confidential 6 5123195

123


walkp
Typewritten Text
123


g ® s

XMC Motion Control - Driver Administrator Design Drawings

UminDisp

CModuleMgr
)

CSimpleDriver

CSimpleDriver

CSimpleDriver

Pyeerre~6~Scenario-Map - Setting Driver Information.

Fic. 45

124

ROY-G-BIV Corporation Confidential 7 5123195


walkp
Typewritten Text
124


_. - @ uans

XMC Motion Control - Driver Administrator Design Drawings 4 0 / M
/

Driver
Administrator

CSimpleDriver

CSimpleDriver

CSimpleDriver

Figare™? Scenario-Map - Setting Stream Information.

cla. 46

125

ROY-G-BIV Corporation Confidential 8 5/23/95


walkp
Typewritten Text
125


XMC Motion Contro! - Driver Administrator Design Drawings 4/ m
4

unknown
hd

Driver
Administrator

Riguse-8 Scenario-Map - Querying the Driver Enumeration.

Flc. 44
az

ROY-G-BIV Corporation Confidential 9

5/23/95

126


walkp
Typewritten Text
126


- @ Q@ u/ians

XMC Motion Control - Driver Administrator Design Drawings

Driver
Administrator

:

CMaoduleMgr

FHinfoMap

CSimpleDriver

CSimpleDriver

CSimpleDriver

igure9® Scenario-Map - Querying the Driver Info Map.

Ft¢. 458

127

ROY-G-BIV Corporation Confidential 10 5/23/95


walkp
Typewritten Text
127


XMC Motion Control - Driver Administrator Design Drawings 4 ’

![Tnver ‘Admin CP

) gnlmcwn

IXMC_xuAPY

Driver
Administrator

CModuleMgr

pigure-48 Scenario-Map - Clean-up. F
1¢. 49

{Unknown

CDnverAdministmtorObject

IClassFactory ()

IDispatch ()

IXMC_EnumbDriver (O

Enable * paramatars detarmine whether abject manipuisted is a Stream or Drver.

IXMC_DriverAdmin (! i EnumDriver
EnumlmerfaceSupport GetDnverlnfoMap
. . i EnableLogging EnableDagnosthstmg * EnstieL ogging, SetLogying, and isLoggingOn work on API, CMD, and
- BT A metar de scribas th of hich t
IXMC_DriverAdminDebug SetloggingStream  IsDiagnosticTestingOn m;a:m parsmatar dese e type of logging on which to

A (sLogglngOn

LEigure-13 Interface-Map.

128

ROY-G-BIV Corporation Confidential 1 5/23/95


walkp
Typewritten Text
128


/@ @  asaus

XMC Motion Control - Driver Administrator Design 5.0 Reference

Driver Admii

Administrator

igure~ Module IA-Map.
Eic. S

CStreaminfo

ind o w s

pDrwerinfoMes

CDriv!

w

CComCPL

—_—
hDriver, pDreveringe
RSreom prembis

Prgure®Object IA-Map.

Flc. s2

129

ROY-G-BIV Corporation Confidential 2 5/23/95


walkp
Typewritten Text
129


XMC Motion Control - Driver Administrator Design M‘L 5.0 Reference

Unknown

indo w s

3 ComCPL

w

Ptogurers Initializing the Application.

F\16.S5

Driver
Administrater

higwere-d Adding a Driver.

Fi1c. SS

ROY-G-BIV Corporation Confidential 3 5/23/95

130


walkp
Typewritten Text
130


e

/454735

5.0 Reference

XMC Motion Control - Driver Administrator Design 4%

CDriverAdmi

~Eigurab Removing a Driver.

Poae_brvarmvTERPACRSUPPORT INFO

igure—+ View Support.

Fla. S 3

131

ROY-G-BIV Corpaoration Confidential 4

5/23/95


walkp
Typewritten Text
131


Alod wiEXH bits Fr i}
HUGHES, MULTER & SCHACHT, P.S.

PATENT APPLICATION

‘ONTVIy3s
INVOINddy

DOCKET NO.
UTILITY y COUNTRY. DIVISION
DESIGN =) CLIENT cip

REISSUE ] PCT

CONTINUATION

appLIcanT _ Ve Brown

B

mme_Motionn Contvel < Me-’rew\

AINHOLLY

ADDRESS

8TH YEAR 5///0'{?// ps

SERIAL No.m&é_ ARTUNIT ____ EXAMINER FILED§ZiQ,19% 5 ,,
PRIORITY - _ N S
FOREIGN FILINGSWML@@ Clvmina, W S( -
ORIGIN o 08/454 736 g&_lﬂg J/g/‘ﬁ 73 :
OFFICE ACTIONS RESPONSES ::: = |
FIMPA  datrd 2r2/95 M#_M 2/ /97 3 L g
FmMPO  dus Slafs| pid a ciP st | 3
FI28 lgns 24254 " (Po5%) : =
IDS  don, /LM Jas .
w2 IDS dae 9@5/94, |
0.4 /0/-2/%
leww agju // &/ 27
i J/? Z X
1) loroed 4/5/ / 97 PN |
/ 7/ i /9;1 C’g :
Murpo At (a,/ao/%2 g
ISSUE FEE DUE 7/ Y/ / 77 ISSUE FEE PAID 7/ / / 9% g § g
ALLOWEDM&‘PATENT No.\}j’, lé?é, §772 oate leég 5 1992 expires g g %
ASSIGNMENT U.S. ANNUITIES =<
DATED b a”z?/ 75  pUE PAID t
ASSIGNOR J,B,H}m»/ b sl (fou,%, 4TH YEAR ¥5/%>?\5j/;9/ ’5’/073 0/ (’l :
ASSIGNEE @9&4 - G- 6/14) /\,950 &

54|05

INTEREST

12TH YEAR d‘%’é/@?

RECORDED 2/3[,[15REEL 2580 rrame 0Z35 |

L. COWIE CO., INC. ROCKVILLE, MARYLAND -- (301) 424-4950

4

o —

132



walkp
Typewritten Text
132


PLEASE DATE STAMP AND RETURN TO ACKNOWLEDGE RECEIPT
IN THE U.S. PATENT & TRADEMARK OFFICE IN RE:

NEW INCOMPLETE PATENT APPLICATION
Applicants: DAVID W. BROWN and JAY &S,
Docket No. P29%66
Title: MOTION CONTROL SYSTEMS E DA
Enc: Specification and Claims (97 pages,/ 2
Appendices A-H) .
Forty-six (46) sheets informal dr wings
Unsigned Declaration and Power of Kffg}ney
Unsigned Small Entity Status Form
--Indep. Inventor
Letter requesting treatment nder 37 CFR 1.53
Transmittal Letter in duplicate
Letter of Express Mail No. EG150680122Us8
Check #4132 for $409 filing fee

MRS:gjn Mailed: ﬁ??ﬁégﬁﬁ%3ﬁ§
i GO/ Fhogr desnd

LFS,A‘\2‘O‘

» MULYER & SCHACHT, pg

AUGHES, MULTER & SCHACHT
1720 lowa Skos
Bellingham, WA 98228

fhos” A1 e 2

?/50/%/ ,/IQ{L L1979 : 9?/2?/‘?(-; W()?QO./ ) M
;;K}S‘Eiifziiitii%':%iiiii‘ii51?5“

%ss%s%eﬁaa'%;si?sssgﬁzs{{:ﬁefssia?ilsss!;siti
¢ /507% )/-&, 8222 02

133



walkp
Typewritten Text
133


. 2 o & 8/454738

LAW OFFICES OF

HUGHES, MULTER & SCHACGHT, P.S.

A PROFESSIONAL SERVICE CORPORATION

ROBERT B. HUGHES 14711 N.E. 29TH PLACE 1720 IOWA STREET PATENT, TRADEMARK,
:'é::’;? RD" :::,I(E;: . SUITE 245 BELLINGHAM, WA 08226-4702 Cgﬁ'_‘:?:g‘:‘; é:w
BeELLEVUE. WA 88007-7666 (360) 647-1296 (BHM.)
(360) 988-2061 (SUMAS) REPLY 7O
(206) 447-9172 (SEA.) BELLINGHAM
FAX: (360) 671-2489 OFFICE

May 30, 1995 \& PATENT

Commissioner of Patents and Trademarks
U.S. Patent & Trademark Office
Washington, D.C. 20231

SUBJECT: New U.S. Patent Application
Inventors: DAVID W. BROWN and JAY S. CLARK
Docket No.: P2966
Title: MOTION CONTROL SYSTEMS
Express Mail Label EG150680122US
Date of Deposit: May 30, 1995

Dear Sir:

The captioned application, a copy of which is attached, is being
filed pursuant to the provisions of 37 CFR 1.53(b), (d); the
nature of the incompletion being the unavailability of the
inventors to execute the accompanying declaration. In accordance
with the revisions of 37 CFR 1.10, we ask that this application
be accorded an effective filing date of even date herewith
notwithstanding the fact. We look forward to return receipt, in
due course, of the Patent Office notification of incompletion, at
which time we will submit the completed declaration of the
inventors.

Respectfully submitted,

W pleil 2. Sitieads™
Michael R. Schacht, Reg. No. 33,550
Hughes, Multer & Schacht, P.S.

1720 Iowa Street
Bellingham, WA 98226
(360) 647-1296
Fax: (360) 671-2489

134



walkp
Typewritten Text
134


ROBERT B. HUGHES
RICHARD D. MULTER

LAW OFFICES OF

HUGHES, MULTER & SCHACGHT, P.S.

A PROFESSIONAL SERVICE CORPORATION

14711 N.E. 29TH PLACE
SUITE 245
BeLLEVUE. WA ©8007-7866

1720 1OWA STREET
BELLINGHAM, WA 98226-4702
(360) 647-1296 (BHM.)

PATENT, TRADEMARK,
COPYRIGHT LAW
& LITIGATION

’,:_; ;" (206) 453-5701 (360) 988-2061 (SUMAS) REPLY TO
FAX: (206) 881-5878 (206) 447-9172 (SEA)) BEILINGMM
FAX: (360) 671-2489 OFFICE
:
&
<.
N (‘«'.. s
Lo, i
b, { Ran \\ .
May 30, 1995~JRACEL-
A
PATENT

Commissioner of Patents and Trademarks
U.S. Patent and Trademark Office
Washington, D.C. 20231

Sir:

Transmitted herewith for filing is the incomplete patent
application in re:

Inventors: DAVID W. BROWN and JAY S. CLARK

For: MOTION CONTROL SYSTEMS

Attorneys’ Docket No.: P2966

Date of Deposit: May 30, 1995

"Express Mail" mailing label number: EG150680122US

I hereby certify that this application is being deposited with the
United States Postal Service "Express Mail Post Office to
Addressee" service under 37 CFR 1.10 on the date indicated above

and is addressed to the Commissioner of Patents and Trademarks,
United States Patent and Trademark Office, Washington, D.C. 20231.

Secretary

PLEASE GIVE THIS APPLICATION THE FILING DATE OF MAY 30, 1995.

135


walkp
Typewritten Text
135


) S \
Commissioner of Pa%ents and Trademarks

Lb/% N1 S

Dgcket No.
EG150680122US

U.S. Patent and Trudemarkwafflce Attorney“'

Washington, D.C. 20261&- Op Express Mail Label No.
. = may

Six: ‘ 51 &)

1045

Transmitted herew1th¢for flllng is an ingomplete patent appllcatlon in

Applicants: DAVID W. BROWN and JAY S. CLARK

Title: MOTION CONTROL SYSTEMS

Enclosed are:

a) Specification, claims, abstract, and appendices

description, 11 pgs. of claims, abstract,
Appendices A-H;
b) Forty-six (46) sheets of informal drawings;
c) Unexecuted combined Declaration and Power of Attorney;
d) TUnexecuted declaration claiming Small Entity

Status--Independent Inventor;

Express

e) Letter requesting treatment undexr 37 CFR 1.10,
Filing Date, Label No. EG150680122US;

£) Letter requesting treatment under 37 CFR 1.53(b),

g) A check in the amount of $4)§ for Filing Fee; and

h) A stamped return receipt postcard.

The filing fee has been calculated as shown below:

Col. 1 Col. 2 SMALL ENTITY
Numbexr Number
Filed Extra Rate
Basic
Fee
Total
Claims 24 - 20 = 4 X 11=
Indep.
Claimsg 3 - 3=_10 X 38=
Multiple Dependent
Claim Presented +120=

TOTAL

The Commissioner is hereby authorized

to charge payment of the

following fees associated with this communication and during the
prendency of this application, or credit any overpayment to Account
No. 08-3260. A duplicate copy of this sheet is enclosed.

X Any additional filing fees under 37 CFR 1.16 for the

presentation of extra claims.

X Any patent application processing fees undexr 37 CFR 1.17.

/ //M/z Sp L

HUGHES

Schacht, Reg. No.

& SCHACHT

1720 Iowa St.,

Bellingham, WA 98226

(360)
Fax:

647-1296
671-2489


walkp
Typewritten Text
136


Y Page 1 of 2

UNITED STATES PATENT AND 1; -ADEMARK OFFIGE

COMMISSICNER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D.C. 20241

www.uspto.gov
[ _appucamionnumBER | FILING DATE | GRPARTUNIT | FIL FEE RECD [ATTY.DOCKETNO], DRAWINGS | TOT CLAIMS | IND CLAMS |
10/021,66¢ 12/10/2001 2121 370 P213876 64 10 1

CONFIRMATION NO. 5760
FILING RECEIPT

Michasl R Schacht IR

*0C000000007301057*
Bellingham, WA 98225-2412

Date Mailed: 01/11/2002

Receipt is acknowledged of this nonprovisional Patent Application. It will be considered in its order and you will be
notified as to the results of the examination. Be sure to provide the U.S. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION when inquiring about this application. Fees transmitted by
check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an
error is noted on this Filing Receipt, please write to the Office of Initial Patent Examination's Customer
Service Center. Please provide a copy of this Filing Receipt with the changes noted thereon. If you
received a "Notice to File Missing Parts” for this application, please submit any corrections to this Filing
Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will
generate another Filing Receipt incorporating the requested corrections (if appropriate).

Applicant(s)
David W. Brown, Bingen, WA,
Jay 8. Clark, Bingen, WA,

Domestic Priority data as claimed by applicant

THIS APPLICATICON |8 A CON OF 09/191,981 11/13/1998
WHICH 1S A CON OF 08/656,421 05/30/1996 PAT 5,867,385
WHICH IS A CIP OF 08/454,736 05/30/1995 PAT 5,691,897

Foreign Applications
If Required, Foreign Filing License Granted 01/11/2002

Projected Publication Date: Request for Non-Publication Acknowledged

Non-Publication Request: Yes

Early Publication R t: No | E ™ = n -
arly Publication Reques D E s Ej rﬂy E D
* SMALL ENTITY ** R
JAD oy |
Title N 15 200 (L
Motion control systems
SCHACHT LAW OFFICE, INC.

Preliminary Class

137


walkp
Typewritten Text
137


(— . s / Page 2 of 2

700

LICENSE FC . FOREIGN FILING UNDER
Title 35, United States Code, Section 184
Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written nofification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted
under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof
undess it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR
1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject
matter as imposed by any Government contract or the provisions of ex15t|ng laws relating to espionage and the
national security or the export of technical data. Licensees should apprise themselves of current regulations
espedially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls,
Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Office of
Export Administration, Department of Commerce (15 CFR 370.10 ())); the Office of Foreign Assets Control,
Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this fime, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR
5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months
has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy
order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

138


walkp
Typewritten Text
138


T arer
f y\ UNITED STATE  _EPARTMENT OF COMMERCB//

~ > | Patent and Trademark Office

‘% Address: COMMISSIONER OF PATENTS AND TRADEMARKS
> Washington, D.C. 20231 .

S

] JRRST NAMED APPLICANT "] ATTY. DOCKET NO/TITLE ]

N/ ang, 7:a8 G5/ 30 /3 LR ] B,
Iy . 5

N2/ 0712
MICHARL R. SCHACHT
HUGHES MULTER & SCHALHY
1720 I0OMA STREET
RELL ITNCGHAS wﬁ

DT

DATE MAILED:
NOTICE TO FILE MISSING PARTS OF APPLICATION WP
FILING DATE GRANTED

An Apphcatwn Number and Filing Date have been assigned to this application. However, the items indicated
below are missing. The required items and fees identified below must be timely submitted ALONG WITH
THE PAYMENT OF A SURCHARGE for items 1 and 3-6 only of M_(_l__for large entities or
$L O {50 for small entities who have filed a verified statement claiming such status. The surcharge is set forth in
37 CFR 1.16(e). -

If all required items on this form are filed within the penod set below, the total amount owed by applicant as a&ge
entity, 0] small entity (verified filed), is & £ 20000 .

Applicant is given ONE MONTH FROM THE DATE OF THIS LETTER, OR TWO MONTHS FROM THE
FILING DATE of this application, WHICHEVER IS LATER, within which to file all required items and pay any fees
required above to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the
extension fee under the provisions of 37 CFR 1.136(a).

1. O The statutory basic filing fee is: O missing [J insufficient. Applicant as a O large entity {J small
entity, must submit $ to plete the basic filing fee.

2. 0 Additional claimfees of $ asa O large entity, [J small entity, including any
required multigle dependent claim fee, are required. Applicant must submit the additional claim
fees or the additional claims for which fees are due.

3. O The oath or declaration:
0 is missing.
[J does not cover the newly submitted items.

An oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above
Application Number and Filing Date is required.

4. [1 The oath or declaration does not identify the application to which it applies. An oath or declaration
in compliance with 37 CFR 1.63, identifying the application by the above Application Number and
Filing Date, is required.

5. e signature(s) to the oath or declaration ig/are: issing; [0 by a person other than the inventor
of a person qualified under 37 CFR 1.42, 1.43, or 1.47.~A properly signed oath or declaration in
compliance with 37 CFR 1.63, identifying the application by the above Application Number and
Filing Date, is required.

6. O1 The signature of the following joint inventor(s) is missing from the oath or declaration:

An oath or declaration listing the names of all inventors and signed by
the omitted inventor(s), identifying this application by the above Application Number and Filing
Date, is required.

7. O The application was filed in a language other than English. Applicant must file a verified English

translation of the application and a fee of $. under 37 CFR 1.17(k), unless this fee has
already been paid.

8.0AS$ processing fee is required since your check was returned without payment.
(37 CFR 1.21(m)).

9. 01 Your filing receipt was mailed in error because your check was returned without payment.

10. 0 The application does not comply with the Sequence Rules._See attached Notice to-Comply with
Sequénce Rules 37 CFR 1.821-1.825. © 320 Mt 0B/14/95 0BASET3e
1 205 45,00 CX :
11. 3 Other.

Direct the response to Box Missing Part and refer any questions & the Customer Service Center 1 39
at (703) 308-1202. :

A copy ofthzs notice M UST be retumed with the response.


walkp
Typewritten Text
139


-

Applicant: BROWN ET AL. ) Docket No.:
) P2966
Serial No.: 08/454,736 )
) Application
Filed: 05/30/95 ) Branch
)
Title: MOTION CONTROL SYSTEMS )

SUBMISSION OF LATE DECLARATION AND SURCHARGE

Commissioner of Patents and Trademarks
U.S. Patent And Trademark Office
Washington, D.C. 20231

ATTENTION: APPLICATION PROCESSING DIVISION .
SPECIAL PROCESSING & CORRESPONDENCE BRANCH

Sir:

In response to the "NOTICE TO FILE MISSING PARTS OF
APPLICATION - FILING DATE GRANTED" mailed July 12, 1995, (copy
enclosed) and stating that the Oath or Declaration to the
above-identified application was missing, enclosed herewith is
a Combined Declaration and Power of Attorney, Verified
Statements Claiming Small Entity Status -- Independent
Inventor and Small Business Concern. A check for the $65.00
surcharge fee is enclosed. It is believed that no other fee
is due at this time to maintain this application in full force
and effect, however, if any such fee is due, please charge it
to Deposit Account No. 08-3260.

#>

140


walkp
Typewritten Text
140


‘ ' ' .

Signed at Bellingham, County of Whatcom, State of
Washington, this 25th day of July, 1995.

Respectfully submitted,

BROWN ET AL.

sy:_ Wchael X. Sploetot

Michael R. Schacht, Reg. No. 33,550
HUGHES, MULTER & SCHACHT, P.S.

1720 Iowa Street

Bellingham, WA 98226

(360) 647-1296

CERTIFICATE OF MAILING (37 CFR 1.83)

mwmwmmkm(mm:wmwmmnmmmdu
enclosed) is being deposited with the United States Postal Service 2 first class mail in
anmfmpeaddwu mmwmramamrmwmmm 20231,
on date shown

141


walkp
Typewritten Text
141


¢ »

Attorney's Dockst NoO. P2966
DAVID W. BROWN and JAY S. CLARK

plicant or Patentee:
Serial or Patent No.: 08 / 454,736

Filed or issued: _May 30, 1995
For MOTION CONTROL SYSTEMS

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR 1.9(f) and 1.27(b)>—INDEPENDENT INVENTOR

As a below named inventor. | hereby declare that | qualify as an independent inventor as
detined in 37 CFR 1.9(c) for purposes of paying reduced tees unaer Section 41(a) and (b)
of Title 35. United States Code. to the Patent and Tragemark Office with regard to the in-
vention entitled MOTION CONTROL SYSTEMS

described in
[ the specification filed herewith.
08/ 454,736 fileg May 30, 1995

¥ appiication senal no.

—_

] patent no. . issued

| have not assigned, granted, conveyed or licensed ana am unager no obligation under con-
tract or law to assign, grant, convey or license. any nghts in the invention to any person
who could not be ciassifiea as an indepenaent inventor unaer 37 CFR 1.9(c) if that person
hag made the invention. or to any concermn which would not gualify as a smail business con-
cern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

Each person, concern or organization to which | have assigned. granted, conveyed. Of li-
censed or am under an obligation under contract or law to assign, grant. convey, or license

any rights in the invention is iisted below:
—] no such person. concemn, or organization

|
XI persons. concerns or organizatons listed below*
“NOTE: Separate venfied statements are required from eacn named person. concem or orgarnzanon havmng
ngnts o Me Nvennon avermng (o New SIAMUS as SMmat enuoes. (37 CFR 1.27).

ROY-G-BIV Corporation

FULL NAME
ADDRESS 150 East Jewett Blvd.
White Salmon, WA 98672

T INDIVIDUAL X SMALL BUSINESS CONCERN — NONPROFIT ORGANIZATION
FULL NAME
ADDRESS

— INDIVIDUAL T SMALL BUSINESS CONCERN — NONPROFIT ORGANIZATION
FULL NAME
ADDRESS

— INDIVIDUAL T SMALL BUSINESS CONCERN — NONPROFIT ORGANIZATION

| acxnowledge the duty to file. in this apoptication or patent. notificaton ot any change in sta-
tus resuiting in loss of enutlement to small ennty status pnor to paying, or at the ume of pay-

(Smalll Entity-independent inventor (7-1}—page 1 of 2)

142


walkp
Typewritten Text
142


.l |

‘

ing. the earliest of the issue fee or any maintenance fee due after the date on which status

as a small entity 1s no longer appropnate. (37 CFR 1.28(b)).

| hereby declare that all statements made herein of my own knowieage are true and that all
statements made on information and belief are peileved to be true: and further that these
statements were made with the knowiedge that wiilful false statements and the iike sO
made are punishable by fine or imprisonment. or both. unger Section 1001 of Title 18 of the
United States Code. and that such willful false statements may jeopardize the validity of the
‘application, any patent issuing thereon, or any patent 10 which this verified statement is di-

rected. .
DAVID W. BROWN

Name of inventor -~ .
(/ M Date

Signature of inventor

JAY S. CLARK

Name of inventor / /ZL N
{ Date

i
Signature ?4 or

Name of inventor

Date

Signature of inventor

&25795

Yes/15

(Small Entity-independent inventor [7-1}—page 2 of 2)

143


walkp
Typewritten Text
143


PATENT #3

P2966

Attorney’s Docket No.

COMBINED DECLARATION AND POWER OF ATTORNEY

(ORIGINAL. DESIGN. NATIONAL STAGE OF PCT, SUPPLEMENTAL. DIVISIONAL.
CONTINUATION OR CIP) .

As a below named inventor, | hereby deciare that:
TYPE OF DECLARATION

This declaration is of the following type: (check one applicable itern beiow )
oniginal
design

supplemental
11 the geclarason is for an internavonatl Aoplicaoon being fileg as a avisional, congnuagon or congnua-

|1kl

[

NOTE: gon-in-part appucason ag IE! cneck next item: cnNeck appropnate one of last three items.
T national stage of PCT
NOTE: If one of the following 3 items apply then comoiete ana also antach ADDED PAGES FOR DIVISIONAL.
CONTINUATION OR CIP.
[ divisional
[ continuation
[ continuation-in-part (CIP)

INVENTORSHIP IDENTIFICATION

WARNING: If the nventors are each not the inventors of all the claims an expianavon of the facts. including
the ownersnp of all the clraims at the tme the /ast claimea inventon was maae. snoutd be subrmit-

ted.
My residence, post office address and citizenship are as stated below next to my name, |
beiieve | am the original. first and sole inventor (if only one name is listed below ) or an ong-
inal, first and joint inventor (if plural names are listed below ) of the subject matter which is
claimed and for which a patent is sought on the invention entitied:

TITLE OF INVENTION

MOTION CONTROL SYSTEMS

SPECIFICATION IDENTIFICATION

the specification of which: (compiete (a), (b} or (c))

(a)  is attached hereto.

(b) X wasfiledon _May 30, 1995  asix;SeraiNo.08/454,736 .

or ] Express Mail No., as Senial No. not yet known
and was amended on

NOTE: Amenaments filed after the ongnal papers are aeposned with the PTO wiuch comtamn new martter are
not accorged a filing date by bemng referred o in the dectarabon. Accoramngly. the amenaments in-
volved are those filed with the appucagon papers or, 1n the case of a suppiemental deciarabon. ara
those amencments claming mater not encompassed in the onginal starement of iNvenbon or ciaims.

Sea 37 CFR 1.67.

(if appticable ).

(Dectaration ang Power of Attomey [(1-1}—page 1 ot 4)

144


walkp
Typewritten Text
144


(c) ] was described and clamed in PCT International Application No.
filed on and as
amended under PCT Articie 19 on (if any).

ACKNOWLEDGEMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

| hereby state that | have reviewed and understand the contents of the above identified
specification, including the claims. as amended by any amenament referred to above.

i acknowledge the duty to disclose information which is materiai to the examination of
this application in accordance with Title 37. Code of Federal Regulations. § 1.56(a).

] In compliance with this duty there is attached an information disclosure state-
ment. 37 CFR 1.97.

PRIORITY CLAIM

| hereby claim foreign priority benefits under Title 35. United States Code, § 119 of any .

foreign application(s) for patent or inventor's certificate or ot any PCT international applica-
tion(s) designating at least one country other than the United States of America listed below
and have aiso identified below any foreign application(s) for patent or inventor's certificate
or any PCT international application(s) designating at least one country other than the
United States of America filed by me on the same subject matter having a filing date oetore

that of the application(s) of which pniority is claimed.
(compiete (d) or (e))

(d) @ no such appiications have been filed.

(e) [J such appiications have been filed as foliows.

NOTE: Where rtem (c) is entered above and the internatonal Appicabon wnich designated the U.S. claimed
prionty check rtem (e), enter the details below and maxe the prionty clam.

EARLIEST FOREIGN APPLICATION(S), IF ANY FILED WITHIN 12 MONTHS
(6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

COUNTRY APPLICATION NUMBER DATE OF FILING |PRIORITY CLAIMED
(day, month, year) |UNDER 37 USC 119

CJYES NOT

[JYES NO

[JYES NOT—

JYES NOT

[JYES NO

ALL FOREIGN APPLICATION(S), IF ANY FILED MORE THAN 12 MONTHS
(6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

(Declaration and Power of Attorney [1-1}—page 2 of 4)

145


walkp
Typewritten Text
145


POWER OF ATTORNEY

As a named inventor, | hereby appoint the following attomey(s) and/or agent(s) to prose-
cute this application and transact all business in the Patent and Trademark Office con-

nected therewith. (List name and registration number )

2 Robert B. Hughes (19,304); Richard D. Multer (20,661);
and Michael R. Schacht, Reg. No. 33,550. -
oo

(check the following item, if applicable)

[ Attached as part of this declaration and power of attorney is the authorization of
the above-named attorney(s) to accept and follow instructions from my re-

presentative(s).
SEND CORRESPONDENCE TO DIRECT TELEPHONE CALLS TO:
' (Name and teiaphone number )
MICHAEL R. SCHACHT
HUGHES, MULTER & SCHACHT, P.S. MICHAEL R. SCHACHT
1720 IOWA STREET (206) 647-1296
BELLINGHAM, WA 98226 FAX: (206) 671-2489
DECLARATION

| hereby declare that ail statements made herein of my own knowiedge are true and that
all statements made on information and belief are believed to be true: and further that
these statements were made with the knowiedge that willful false statements and the like
so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of
the United States Code, and that such willful false statements may jeopardize the validity of
the application or any patent issued thereon.

SIGNATURE‘;? -UD

Full name of sole or first WW DAVID W. EMJ

Inventor's signature Zitee /, T ——

Date __ ¢/t%/15 Country of Citizenship _ U-S-A.

Residence White Salmon, Washington (/J[\/

Post Office Address _P-0O. Box 1278, 150 East Jewett Blvd.
White Salmon, WA 98672

Fullnameofsecondlolntlnv%ifjny g gBY S/ CLARK 9’70

inventor's signature 11// M [

Date 5/%,/ 75~ [ OCoumry of Citizenship U.S.Aa,

Residence Seattle, Washington Loa_

Post Office Address 557 Roy Street, Suite 175
Seattle, WA 98109

(Declaration and Power of Attorney [1-1}—page 3 of 4)



walkp
Typewritten Text
146


CHECK PROPER BOX(ES) FOR ANY OF THE FOLLOWING ADDED PAGE(S) WHICH

I

O

O

(]

FORM A PART OF THIS DECLARATION
Signature for thira and subseguent joint inventors. Number of pages added

Signature by administrator(trix), executor(trix) or legal representative for de-
ceased or incapacitated inventor. Numoer of pages added

Signature for inventor who refuses to sign or cannot be reached by person au-
thorized under 37 CFR 1.47. Number of pages added

* o @

Added pages to combined declaration and power of attorney for divisional, con-
tinuation, or continuation-in-part (CIP) application.
T Number of pages added

e o e

Authorization of attormey(s) to accept and follow instructions from representative

If no further pages form a part of this Deciaration then end this Deciara-

tion with this page and check the following item
X This declaration ends with this page

(Deciaration and Power of Attorney [1-1}—page 4 of 4)

147


walkp
Typewritten Text
147


® °

PATENT

Attomey’'s Docket No. P2966
ee: DAVID W. BROWN and JAY S. CLARK

Applicant or Patent
Serial or Patent No.: 08/ 454,736

Filed or Issued: __May 30, 1995
For: MOTION CONTROL SYSTEMS

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR 1.9(f) and 1.27(c)-SMALL BUSINESS CONCERN

| hereby declare that | am
[] the owner of the small business concern identified below:
[X an official of the small business concermn empowered to act on behalf of the con-

cern identified below:
NAME OF CONCERN ROY-G-BIV Corporation

ADDRESS OF CONCERN 150 East Jewett Blvd.
White Salmon, WA 98672

| hereby declare that the above identified small business concermn qualifies as a small busi-
ness concern as defined in 13 CFR 121.3-18, and reproduced in 37 CFR 1.9(d), for pur-
poses of paying reduced fees under Section 41(a) and (b) of Title 35, United States Code,
in that the number of employees of the concern, including those of its affiliates, does not
exceed 500 persons. For purposes of this statement, (1) the number of employees of the
business concem is the average over the previous fiscal year of the concern of the persons
employed on a full-time, part-time or temporary basis during each of the pay periods of the
fiscal year, and (2) concerns are affiliates of each other when either, directly or indirectly,
one concern controls or has the power to control the other, or a third-party or parties con-
trois or has the power to control both. )

| hereby declare that rights under contract or law have been conveyed, to and remain with
the small business concern identified above with regard to the invention, entitted
MOTION CONTROL SYSTEMS

DAVID W. BROWN and JAY S. CLARK

by inventor(s)

described in
O the specification filed herewith.
[X] application serial no. 0 8/ 454,736 ,filed May 30, 1995
[0 patent no. , issued
If the rights held by the above identified small business concern are not exclusive, each in- .

dividual, concern or organization having rights in the invention is listed below* and no rights
to the invention are held by any person, other than the inventor, who would not qualify as
an independent inventor under 37 CFR 1.9(c) if that person made the invention, or by any
concern which would not qualify as a small business concemn under 37 CFR 1.9(d) or a
nonprofit organization under 37 CFR 1.9(e).

*NOTE: Separate vernfied statements are required from each named person, concem or organization having
nights to the invention averring to their status as smali entities. (37 CFR 1.27).

(Small Entity-Smali Business [7-4}—page 1 of 2)

148


walkp
Typewritten Text
148


° ®

NAME
ADDRESS

O [INDIVIDUAL [0 SMALL BUSINESS CONCERN O NONPROFIT ORGANIZATION

NAME
ADDRESS

O INDIVIDUAL (O SMALL BUSINESS CONCERN [0 NONPROFIT ORGANIZATION

| acknowiedge the duty to file, in this application or patent, notification of any change in sta-
tus resuiting in loss of entittement to small entity status prior to paying, or at the time of pay- ‘
ing, the earliest of the issue fee or any maintenance fee due after the date on which status
as a small business entity is no longer appropriate. (37 CFR 1.28(b)).

| hereby declare that all statements made herein of my own knowiedge are true and that all
statements made on information and belief are believed to be true; and further that these
statements were made with the knowledge that willful faise statements and the like so
made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the
United States Code, and that such wiilful false statements may jeopardize the validity of the
application, any patent issuing thereon, or any patent to which this verified statement is di-
rected.

NAME OF PERSON SIGNING
TITLE OF PERSON OTHER THAN OWNER _President and CEO

ADDRESS OF PERSON SIGNING 150 East Jewett Blvd.
White Salmon, WA 98672

,,/j/}'
SIGNATURE / M//%V\- oate . G5 TS

David W. Brown

{Small Entity-Small Business [7-4}—page 2 of 2)

149


walkp
Typewritten Text
149


~ f;{\ UNITED STATE:S DEPARTMENT OF COMMERCE

Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS
Washington, D.C. 20231

L arucamonranmer | Fumaoate | FIRST NAMED APPLICANT [ ATTY. DOCKET NOAFTILE |

08/454. 736 05/730/95 BROWN D F2366

0252/0712
MICHAEL R. SCHACHT
HUGHES MULTER % SCHACHT
1720 10WA STREET

BELLINGHAM WA 95226 DATE MAILED: 0000
NOTICE TO FILE MISSING PARTS OF APPLICATION 07/12/35
FILING DATE GRANTED

An Apphcatlon Number and Filing Date have been assigned to this application. However, the items indicated
below are missing. The required items and fees identified below must be ti ely submitted ALONG WITH
I'E PﬁYMENT OF A SURCHARGE for items 1 and 3-6 only of $ z 30« Z > for large entities or-
$65.¢ for small entities who have filed a verified statement claiming such status. The surcharge is set forth in
37 CFR 1.16(¢).

If all required items on this form are filed within the period set below, the total amount owed by applicant as a&ge
entity, [} small entity (verified filed), is $_/ 30O (3

Applicant is given ONE MONTH FROM THE DATE OF THIS LETTER, OR TWO MONTHS FROM THE
FILING DATE of this application, WHICHEVER IS LATER, within which to file all required items and pay any fees
required above to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the
extension fee under the provisions of 37 CFR 1.136(a).

1. O The statutory basic filing fee is: Omissing O insufficient. Applicant as a [J large entity {J small
entity, must submit $ to complete the basic filing fee.

2. O Additional claim fees of § asa (J large entity, [J small entxty, including any
required multiple dependent claim fee, are requi Applicant must submit the additional claim
fees or cancel the additional claims for which fees are due.

3. O The oath or declaration:
0] is missing.
O does not cover the newly submitted items.

An oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above
Application Number and Filing Date is required.

4. O The oath or declaration does not identify the application to which it applies. An oath or declaration
in compliance with 37 CFR 1.63, identifying the application by the above Application Number and
Filing Date, is required.

5.%'\&e signature(a) to the oath or declaration is/are: issing; [J by a person other than the inventor
ora person qualified under 37 CFR 1.42, 1.43, or 1.47. ™A properly signed oath or declaration in
compliance with 37 CFR 1.63, identifying the application by the above Application Number and
Filing Date, is required.

6. O The signature of the following joint inventor(s) is missing from the oath or declaration:

An oath or declaration listing the names of all inventors and signed by
the omitted inventor(s), identifying this application by the above Application Number and Filing
Date, is required.

7. O The application was filed in a Ianguage other than English. Applicant must file a verified English
translation of the application and a fee of $ under 37 CFR 1.17(k), unless this fee has
already been paid.

8.0AS$ pr ing fee is required since your check was returned without payment.
37 1.21(m)).

9.0 Your ﬁ.lin_g)eeeipt was mailed in error because your check was returned without payment.

10. £ The application does not comply with the Sequence Rules. See attached Notice to Comply with
Sequence Rules 37 CFR 1.821-1.825.

11.0 Other. 1 50

Direct the response to Box Missing Part and refer any questions to the Customer Service Center
at (703) 308-1202.

A copy of this notice MUST be returned with the response.

ACCinr


walkp
Typewritten Text
150


rp el ' ( B _ o Page 1 of 2

UNITED STATESHETENT AND TRADEMARK OFFICE

ETn

R COMMISSIONER FOR PATENTS
<% UNITED STATES PATENT AND TRACEMARK OFFICE
WasringTon, D.C, 20231

www.uspto.goy
[ ApPLicATION NuMBER | FILING DATE | GRP ART UNIT [ FIL FEE REC'D |ATTY.DOCKET.NO] DRAWINGS | TOT GLAIMS [ nDcLamvs: |
10/021,669 12/10/2001 2121 435 P213976 64 10 1

CONFIRMATION NO. 5760
UPDATED FILING RECEIPT

MO NN G

*0C000000007543706*

Michael R. Schacht
2801 Meridian St., Suite 202
Bellingham, WA 98225-2412

Date Mailed: 02/27/2002

Receipt is acknowledged of this nonprovisional Patent Application. It will be considered in its order and you will be
notified as to the results of the examination. Be sure to provide the U.S. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION when inquiring about this application. Fees transmitted by
check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an
error is noted on this Filing Receipt, please write to the Office of Initial Patent Examination's Customer
Service Center. Please provide a copy of this Filing Receipt with the changes noted thereon. If you
received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing
Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will
generate another Filing Receipt incorporating the requested corrections (if appropriate).

Applicant(s)

David W. Brown, Bingen, WA;
Jay S. Clark, Bingen, WA,

{
Domestic Priority data as claimed by applicant “ II; MAR -4 2000 ,I_!J

THIS APPLICATION IS A CON OF 09/191,981 11/13/1998 |
WHICH IS A CON OF 08/656,421 05/30/1996 PAT 5,867,385
WRICH IS A CIP OF 08/454,736 05/30/1995 PAT 5,691,897 SCHACHT LAW OFFICE, ING

Foreign Applications

if Required, Foreign Filing License Granted 01/11/2002

Projected Publication Date: Request fdr Non-Publication Acknowledged
Non-Publication Request: Yes

Early Publication Request: No

** SMALL ENTITY **

Title

Motion control systems D O CKETED

Preliminary Class

151



walkp
Typewritten Text
151


( Page 2 of 2

700

LICENSE FOR FOREIIGN FILING UNDER
Title 35, United States Code, Section 184
Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(2) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted
under 37 CFR 5.13 or 5.14,

This license is to be retained by the liccnsee and may be used at any time on or after the effective date thereof
unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR
1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject
matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the
national security or the export of technical data. Licensees should apprise themselves of current regulations
especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls,
Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Office of
Export Administration, Department of Commerce (15 CFR 370.10 (j)); the Office of Foreign Assets Control,
Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.5.C. 184 has heen granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR
5.12, if a license is desired before the expiration of 8 months from the filing date of the application. If 6 months
has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy
order under 35 U.5.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).



walkp
Typewritten Text
152


