

Q.-_.:a,

10

15

20

25

30

-5‘, .
%/@se?3

MOTION CONTROL SYSTEMS

TECHNICAL FIELD

The present invention relates to motion

control systems and, more particularly, to

interface software that facilitates the creation

of hardware independent motion control software.

BACKGROUND OF THE INVENTION

The purpose of a motion control device is to

move an object in a desired manner. The basic

components of a motion control device are a

controller and a mechanical system. The

mechanical system translates signals generated by

the controller into movement of an object.

While the mechanical system comonly

comprises a drive and an electrical motor, a

number of other systems, such as hydraulic or

vibrational systems, can be used to cause movement

of an object based on a control signal.

Additionally, it is possible for a motion control

device to comprise a plurality of drives and

motors to allow multi-axis control of the movement

of the object.

The present invention is of particular
importance in the context of a mechanical system

including at least one drive and electrical motor

having a rotating shaft connected in some way to

the object to be moved, and that application will

be described in detail herein. But the principles

of the present invention are generally applicable

to any mechanical system that generates.movement

based on a control signal. The scope of the

8

ROY—G—BIV CORPORATION

EXHIBIT 2010-5

ABB V ROY—G—B|V

TRIAL |PR2013—0O062

walkp
Typewritten Text
1

walkp
Typewritten Text
ROY-G-BIV CORPORATIONEXHIBIT 2010-5ABB v ROY-G-BIVTRIAL IPR2013-00062

10

15

20

25

30

present invention should thus be determined based

on the claims appended hereto and not the

following detailed description.

In a mechanical system comprising a

controller, a drive, and an electrical motor, the

motor is physically connected to the object to be

moved such that rotation of the motor shaft is

translated into movement of the object. The drive

is an electronic power amplifier adapted to

provide power to a motor to rotate the motor shaft

in a controlled manner. Based on control

commands, the controller controls the drive in a

predictable manner such that the object is moved

in the desired manner.

These basic components are normally placed

into a larger system to accomplish a specific

task. For example, one controller may operate in

conjunction with several drives and motors in a

multi-axis system for moving a tool along a

predetermined path relative to a workpiece.

Additionally, the basic components described

above are often used in conjunction with a host

computer or programmable logic controller (PLC).

The host computer or PLC allows the use of a high-

level programming language to generate control

commands that are passed to the controller.

Software running on the host computer is thus

designed to simplify the task of programming the

controller.

Companies that manufacture motion control

devices are, traditionally, hardware oriented

companies that manufacture software dedicated to

the hardware that they manufacture. These

walkp
Typewritten Text
2

10

15

20

25

30

J .

software products may be referred to as low level

programs. Low level programs usually work

directly with the motion control comand language

specific to a given motion control device. While

such low level programs offer the programmer

substantially complete control over the hardware,

these programs are highly hardware dependent.

In contrast to low-level programs, high-level

software programs, referred to sometimes as

factory automation applications, allow a factory

system designer to develop application programs

that combine large numbers of input/output (I/O)

devices, including motion control devices, into a

complex system used to automate a factory floor

environment. These factory automation

applications allow any number of I/O devices to be

used in a given system, as long as these devices

are supported by the high-level program. Custom

applications, developed by other software

developers, cannot be developed to take advantage

of the simple motion control functionality offered

by the factory automation program.

Additionally, these programs do not allow the

programmer a great degree of control over the each

motion control device in the system. Each program

developed with a factory automation application

must run within the context of that application.

PRIOR ART

In the following discussions, a number of

documents are cited that are publicly available as

of the filing date of the present invention. with

many of these documents, the Applicant is not

walkp
Typewritten Text
3

10

15

20

25

30

aware of exact publishing dates. The citation of

these documents should thus not be considered an

admission that they are prior art; the Applicant

will take the steps necessary to establish whether

these documents are prior art if necessary.

As mentioned above, a number of software

programs currently exist for programing

individual motion control devices or for aiding in

the development of systems containing a number of

motion control devices.

The following is a list of documents

disclosing presently commercially available high-

level software programs: (a) Software Products For

Industrial Automation, iconics 1993; (b) The

complete, computer-based automation tool (IGSS),

Seven Technologies A/S; (c) QpenBatch Product

Brief, PID, Inc.; (d) FIX Product Brochure,

Intellution (1994); (e)

Brochure, Intec Controls Corp.;

Paragon TNT Product

(f) WEB 3.0

Product Brochure, Trihedral Engineering Ltd.

(1994); and (g) AIMAX—WIN Product Brochure, TA

Engineering Co., Inc. The following documents

disclose simulation software: (a) ExperTune PID

Tuning Software, Gerry Engineering Software; and

(b) XANALOG Model NL—SIM Product Brochure,

XANALOG.

The following list identifies documents

related to low—level programs: (a) Compumotor

Digiplan 1993-94 catalog, pages 10-11; (h)

Aerotech Motion Control Product Guide, pages 233-

34; (c) PMAC Product Catalog, page 43; (d) PC/DSP-

Series Motion Controller C Programming Guide,

walkp
Typewritten Text

walkp
Typewritten Text
4

10

15

20

25

30

pages 1-3; (e) Oregon Micro Systems Product Guide,

page 17; (f) Precision Microcontrol Product Guide.

The Applicants are also aware of a software

model referred to as WOSA that has been defined by

Microsoft for use in the Windows programing

The WOSA model is discussed in the

WOSA is

environment.

book Inside Windows 95, on pages 348-351.

also discussed in the paper entitled WOSA

Backgrounder: Delivering Enterprise Services to

The WOSA model

isolates application programmers from the

the Windows-based Desktop.

complexities of programing to different service

providers by providing an API layer that is

independent of an underlying hardware or service

and an SPI layer that is hardware independent but

service dependent. The WOSA model has no relation

to motion control devices.

The Applicants are also aware of the comon

programming practice in which drivers are provided

for hardware such as printers or the like; an

application program such as a word processor

allows a user to select a driver associated with a

given printer to allow the application program to

print on that given printer.

while this approach does isolates the

application programmer from the complexities of

programming to each hardware configuration in

existence, this approach does not provide the

application programmer with the ability to control

the hardware in base incremental steps. In the

printer example, an application programmer will

not be able to control each stepper motor in the

printer using the provided printer driver;

walkp
Typewritten Text
5

10

15

20

25

30

instead, the printer driver will control a number

of stepper motors in the printer in a

predetermined sequence as necessary to implement a

group of high level comands.

The software driver model currently used for

printers and the like is thus not applicable to

the development of a sequence of control commands

for motion control devices.

OBJECTS OF THE INVENTION

From the foregoing, it should be clear that

one primary object of the invention is to provide

improved methods and devices for moving objects.

Another more specific object of the present

invention is to obtain methods and apparatus for

designing and deploying motion control devices in

which these methods and apparatus exhibit a

favorable mix of the following characteristics:

_ (a) allow the creation of high—level motion

control programs that are hardware independent,

but offer programmability of base motion

operations;

(b) hide the complexities of programing for

multiple hardware configurations from the high-

level programmer;

(C) can easily be extended to support

additional hardware configurations; and

(c) transparently supports industry standard

high—level programming environments.

SUMMARY OF THE INVENTION

The present invention is, in one form, a

method of moving an object comprising the steps of

walkp
Typewritten Text
6

10

15

20

25

30

developing a high—level motion control application

program comprising a sequence of component

functions that describe a desired object path,

correlating these component functions with driver

functions, selecting a software driver for the

specific hardware configuration being controlled,

generating control commands from the driver

functions and the software driver associated with

the hardware configuration being controlled, and

controlling a motion control device based on the

control data to move the object along the desired

object path.

In another form, the present invention is a

method of generating a sequence of control

commands for controlling a motion control devices

to move an object along a desired path. An

application program comprising a series of

component functions defines a sequence of motion

steps that must be performed by the motion control

device to move the object along the desired path.

The component functions contain code that relates

the component-34-functions to driver functions. _

The driver functions are associated:$;g%£é§:;a::f1a*”‘
software drivers containing driver code for

implementing the motion steps on a given motion

control device. The control commands are

generated based on the application program and the

driver code associated with a given motion control

device.

The use of component functions that are

separate from driver functions isolates the

programmer from the complexities of programing to

a specific motion control device. This

walkp
Typewritten Text
7

10

15

20

25

30

arrangement also allows a given application

program to be used without modification for any

motion control device having a software driver

associated therewith.

The driver functions are grouped into core

driver functions and extended driver functions.

All software drivers must support the core driver

functions; the software drivers may also support

one or more of the extended driver functions,

although this is not required.

Where the software drivers do not support the

extended driver functions, the functionality

associated with the extended driver functions can

normally be simulated using some combination of

core driver functions. In this case, the method

of the present invention comprises the steps of

determining which of the extended driver functions

are not supported by the software driver and,

where possible, substituting a combination of core

driver functions. In some cases, the

functionality of an extended driver function

cannot be emulated using core driver functions,

and this functionality is simply unavailable to

the programmer.

The use of core driver functions to emulate

extended driver functions provides functionality

where none would otherwise exist, but the

preferred approach is to provide a software driver

that supports each of the extended driver

functions. When an extended driver function is

supported and not emulated, the task being

performed will normally be accomplished more

quickly and accurately.

walkp
Typewritten Text
8

10

15

20

25

30

Additionally,

extended driver functions,

to simplify the use of emulated

the method of the

present invention further comprises the steps of

determining which, if any, extended driver

functions are not supported by the software driver

for a given hardware configuration, developing a

function pointer table of both unsupported

extended driver functions and supported extended

driver functions, and consulting the table each

time an extended driver function is called to

determine whether that extended driver function

In this manner, the process ofmust be emulated.

calling the sequence of core driver functions

employed to emulate the unsupported extended

driver functions is optimized. _

As the control commands are generated as

described above, they may be used to control a

motion control device in real time or they may be

the

method of the present invention comprises the step

stored in a file for later use. Preferably,

of providing a number of streams containing stream

code. Each stream is associated with a

destination of control commands, and the stream

code of a given stream dictates how the control

commands are to be transferred to the destination

associated with that given stream. The user is

'thus provided the opportunity to select one or

more streams that dictate the destination of the

control comands.

To help isolate the programer from hardware

specific complexities, the method of the present

invention may comprise the additional

administrative steps such as selecting a driver

walkp
Typewritten Text
9

 //

10

15

20

25

30

-10-

associated with a particular motion control device

and/or translating units required to define the

motion control system into the particular system

of units employed by a given motion control

device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.

motion control system constructed in accordance

1 is a system interaction map of a

with, and embodying, the principles of the present

invention;

FIG.

motion control component of the system shown in

FIG. 1;

FIG.

component shown in FIG. 2;

FIGS. 4;§ggL3E8 are scenario maps of the
component shown in FIG. 2;

FIG.

shown in FIG. 2;

FIG. 10 is a data map showing one exemplary

method of accessing the data necessary to emulate

2 is a module interaction map of a

3 is an object interaction map of the

9 is an interface map of the component

extended driver functions using core driver

functions;

FIG.

driver portion of the system shown in FIG. 1;

FIG.

driver portion sh wn in FIG. a%;H! 1871719’ 1‘laM~

FIGS. l3;£%r%u§h!20‘are scenario maps related
to the driver shown in FIG. 11;

FIG.

shown in FIG. 11;

11 is a module interaction map of the

12 is an object interaction map of the

21 is an interface map for the driver

M

10

/9 7

walkp
Typewritten Text
10

10

15

20

25

30

-11-

FIG. 22 is a module interaction map of the

streams used by the system shown in FIG. 1;

FIG. 23 is an object interaction map of the

streams shownAigdf}§igfi§fi5,,;[and.‘
FIGS. 2% shreuéh~32 are scenario maps of the

streams shown in FIG. 22;

FIG.

comprising the stream shown in FIG. 22;

FIG.

driver stub portion of the system shown in FIG. 1;

FIG.

driver stub show? i FIG. 34;3FIGS. 36}ehrg§§h 38 are scenario maps of the
driver stub shown in FIG. 34;

FIG.

stub portion shown in FIG. 34;

33 is an interface map of the objects

34 is a module interaction map of the

35 is an object interaction map of the

39 is an interface map of the driver

FIG. 40 is a module interaction map of the

driver administrator portion of the system shown

in EIG. 1;

FIG.

driver administrator shown in IG. 40;

FIGS. 42 qa4%4 *Z§%§§:°§%énario maps
relating to the driver administrator shown in
FIG. 40;

FIG.

that comprise the driver administrator shown in

FIG. 40;
FIG.

driver administrator CPL applet portion of the

41 is an object interaction map of the

50 is an interface map of the objects

51 is a module interaction map of the

system shown in FIG. 1;

FIG.

driver administrator CPL applet shown in FIG. 51;

52 is an object interaction map of the

11

‘Z’1/4

walkp
Typewritten Text
11

12

54 amw‘
FIGS. 53fbéreugh~57 are scenario maps related

to the driver administrator CPL applet shown in

FIG. 51.

41’

12

walkp
Typewritten Text
12

10

15

20

25

30

-13-

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawing, depicted

therein at 10 in FIG. 1 is a motion control system

constructed in accordance with, and embodying, the

principles of the present invention. This system

10 comprises a personal computer portion 12 having

a hardware bus 14, a plurality of motion control

hardware controllers 16a, 16b, and 16c, and

mechanical systems 18a, 18b, and 18c that interact

with one or more objects (not shown) to be moved.

The personal computer portion 12 of the

system 10 can be any system capable of being

programmed as described herein, but, in the

preferred embodiment, is a system capable of

running the Microsoft Windows environment. Such a

system will normally comprise a serial port in

addition to the hardware bus 14 shown in FIG. 1.

__ The hardware bus 14 provides the physical

connections necessary for the computer 12 to

communicate with the hardware controllers 16. The

hardware controllers 16 control the mechanical

system 18 to move in a predictable manner. The

mechanical system 18 comprises a motor or the like

the output shaft of which is coupled to the object

to be moved. The combination of the hardware

controllers 16a, 16b, and 16c and the mechanical

systems 18a, 18b, and 18c forms motion control

devices 20a, 20b, and 20c, respectively.

The hardware bus 14] hardware controllers 16,

and mechanical systems 18 are all well-known in

the art and are discussed herein only to the

13

walkp
Typewritten Text
13

 Ql

10

15

20

25

30

-14-

extent necessary to provide a complete

understanding of the present invention.

The personal computer portion 12 contains a

software system 22 that allows an application user

24 to create software applications 26 that control

the motion control devices 20.

More particularly, based on data input by the

user 24 and the contents of the application

program 26, the software system 22 generates

control commands that are transmitted by one or

28b,

28 transmit control

more streams such as those indicated at 28a,

28c, and 28d.

commands incorporating the

The streams

hardware specific

command language necessary to control a given

motion control device to perform in a desired

manner. As will be discussed in more detail

below, the streams 28 implement the comunication

protocol that allows the control commands to reach

the_appropriate motion control device 28 via an

PC bus,

the application program

appropriate channel (i.e., serial port).

Using the system 22,

26 is developed such that it contains no code that

is specific to any one of the exemplary hardware

16. In the normal case, the

application program 26, and thus the user 24 that

is completely isolated

controllers

created the program 26,

from the motion control devices 20. The user 24

thus need know nothing about the hardware specific

command language or communication protocol

associated with each of these devices 20; it may

even be possible that the command language of one

or more of the hardware controllers 16 was not

14

walkp
Typewritten Text
14

10

15

20

25

30

-15-

defined at the time the application program 26 was

created.

The software system 22 comprises a

combination of elements that allow the application

program 26 to be completely isolated from the

hardware controllers 16. In the following

discussion, the framework of the software system

22 will be described in terms of a method of

moving an object and/or a method of generating

control commands. After this general discussion,

each component of the system 22 will be described

in detail in a specific operating environment.

I. Method of Generating Control Comands for

Controlling a Motion Control Device to Move an

Object

Initially, it should be noted that, in most

situations, the method described in this section

will normally but not necessarily involve the

labors of at least two and perhaps three separate

software programmers: a software system designer;

a hardware designer familiar with the intricacies

of the motion control device; and a motion control

system designer. The application user 24

discussed above will normally be the motion

control system designer, and the roles of the -

software system designer and hardware designer

will become apparent from the following

discussion.

The software system designer develops the

software system 22. The software system designer

initially defines a set of motion control

15

walkp
Typewritten Text
15

10

15

20

25

30

-16-

operations that are used to perform motion

control. The motion control operations are not

specifically related to any particular motion

control device hardware configuration, but are

instead abstract operations that all motion

control device hardware configurations must

perform in order to function.

Motion control operations may either be

primitive operations or non—primitive operations.

Primitive operations are operations that are

necessary for motion control and cannot be

simulated using a combination of other motion

control operations. Examples of primitive

operations include GET POSITION and MOVE RELATIVE,

which are necessary for motion control and cannot

be emulated using other motion control operations.

Non-primitive operations are motion control

operations that do not meet the definition of a

primitive operations. Examples of non—primitive

operations include CONTOUR MOVE, which may be

emulated using a combination of primitive motion

control operations.

Given the set of motion control operations as

defined above, the software system designer next

defines a service provider interface (SPI)

comprising a number of driver functions. Driver

functions may be either core driver functions or

extended driver functions. Core driver functions.

are associated with primitive operations, while

extended driver functions are associated with non-

primitive operations. As with motion control

operations, driver functions are not related to a

specific hardware configuration; basically, the

16

walkp
Typewritten Text
16

 /,//’

10

15

20

25

30

-17-

driver functions define parameters necessary to

implement motion control operations in a generic

sense, but do not attach specific values or the

The SPI for the

exemplary software system 22 is attached hereto as

like to these parameters.

Appendix A.

The software system designer next defines an

application programming interface (API) comprising

a set of component functions. For these component

functions, the software system designer writes

component code that associates at least some of

the component functions with at least some of the

driver functions. The relationship between

component functions and driver functions need not

be one to one: for example, certain component

functions are provided for administrative purposes

and do not have a corresponding driver function.

However, most component functions will have an

The API for the

exemplary software system 22 is attached hereto as

associated driver function.

Appendix B.

The overall software model implemented by the

software program 22 thus contains an API

comprising component functions and an SPI

comprising driver functions, with the API being

related to the SPI by component code associated

with the component 34 functions.

In order for the system 22 to generate the

control commands, at least two more components are

needed: the application program 26 and at least

one software driver such as the drivers indicated

at 30a, 30b, and 30c in FIG. 1.

17

walkp
Typewritten Text
17

10

15

20

25

30

-18-

The software drivers 30 are normally

developed by a hardware designer and are each

associated with a single motion control device.

The hardware designer writes driver code that

dictates how to generate control commands for

controlling the motion control device associated

therewith to perform the motion control operations

associated with at least some of the driver"

functions.

In the exemplary software system 22, the

software drivers 30a, 30b, and 30c are associated

with the motion control devices 20a, 20b, and 20c,

respectively. As a software driver exists for

each of the motion control devices 20a, 20b, and

20c, these devices 20a, 20b, and 20c form a group

of supported motion control devices.

A careful review of the framework of the

software system 22 as described above will

illustrate that, of all the components of this

system 22, only the software drivers 30 are

hardware dependent.

The motion control system designer, normally

also the user 24, develops the application program

26. The application program 26 comprises a

sequence of component functions arranged to define

the motion control operations necessary to control

a motion control device to move an object in a

desired manner. The application program 26 is any

application that uses the system 22 by programming

the motion control component 34. Applications may

program the system 22 either through OLE

Automation or by using any of the custom OLE

interfaces making up the API.

18

walkp
Typewritten Text
18

10

15

20

25

30

Q C

-19-

As mentioned above, the component code

associates many of the component functions with

the driver functions, and the driver functions

define the parameters necessary to carry out the

motion control operations. Thus, with

appropriately ordered component functions, the

application program 26 contains the logic

necessary to move the object in the desired
manner.

Once the application program 26 has been

written and the software drivers 30 have been

provided, the user 24 selects at least one motion

control device from the group of supported motion

control devices 20a, 20b, and 20c. Using a driver

administrator module 32, the user 24 then selects

the software driver associated with the selected

motion control device. This driver administrator

module 32 is used to install, uninstall, register,

and_setup each stream.

As currefigly implemented, the driver
administrator&&4—allows only one software driver
to be selected. In future versions of the

software system 22, the driver administrator will

allow the user to select one or more software

drivers.

The software system 22 thus generates control

commands based on the component %4~functions

contained in the application program 26, the

component—%+ code associated with the component 34

functions, and the driver code associated with the

selected software driver 28.

As the control commands are being generated

as described above, they may be directly

19

walkp
Typewritten Text
19

10

15

20

25

30

‘x

-20-

transmitted to a motion control device to control

this device in real time or stored in an output

file for later use. The software system 22

employs the streams 28 to handle the transmission

of the control commands to a desired destination

thereof.

In the exemplary system 22, the destinations

of the control commands may be one or more of an

Other

possible destinations include a debug monitor or

output file 34 and/or the controllers 16.

window or other custom output mechanism defined

for a specific situation. The software system

designer, or in some cases the hardware system

designer, will write transmit stream code for each

stream 28 that determines how the control comands

are to be transferred to a given one of the

control command destinations 16 and 34. Using the

driver administrator 32, the user 24 selects one

or more of the control command destinations 16 and

34, and, later when run, the system 22 transfers

the control commands to the selected control

command destination 16 and/or 34 based on the

transmit stream code in the stream 28 associated

with the selected control comand destination 16

and/or 34.

Many control command destinations such as 16

and 34 are capable of transmitting data back to

the system 22. Data transmitted from a control

command destination back to the system 22 will be

referred to as response data. The software system

designer thus further writes data response stream

code for each of the streams 28a, 28b, and 28c

that determines how response data is transmitted

20

walkp
Typewritten Text
20

P

P

??PE’

«Q52

10

15

20

25

30

-21-

from the controllers 16 to the system 22. The

system 22 thus processes the response data sent by

the controllers 16 based on the data response

stream code contained in the streams 28.

Referring again to FIG. 1, this Figure shows

that the system 22 further comprises a motion
35

control componentN%4-and a driver sépb module 36.
The motion control component module,§t~is the

portion of the software system 22 that relates the

component-$4-functions to the driver functions.

The motion control component moduleigé thus
contains the component 34.code that makes the

association between the component 34.functions

contained in the application program 26 and the

driver functions.

The driver stub module 36 is not required to

implement the basic software model implemented by

the system 22, but provides the system 22 with

significantly greater flexibility to accomodate

diverse motion control hardware configurations

with minimal effort.

More particularly, when the driver stub

module 36 is employed, the hardware designer need

not develop driver code to implement all of the

driver functions; to the contrary, the hardware

designer must write driver code for implementing

the core driver functions but need not write

driver code to implement the extended driver

functions. The software system designer provides

the motion control driver stub 36 with stub code

that identifies the combinations of core driver

functions that are employed to emulate the

functionality of extended driver functions.

21

walkp
Typewritten Text
21

-22-

The motion control component 24 will

determine for the selected software driver 30

which extended functions, i an , the selected

driver 30 supports. Foriggégfiagfgnctions that are
5 not supported, referred to herein as non-supported

extended_§§iver functions, the motion control
componentkkk-refers to the driver stub module 36

to determine the appropriate combination of core

driver functions to emulate the functionality of

10 the non-supported extended driver functions. The

system 22 thus generates the control comands

necessary to implement the non-supported extended

driver functions using the appropriate combination

of core driver functions.

15 The process of determining when extended

driver functions need to be emulated can be

optimized33y'providing the motion control
—componentA24-with a function pointer table that

contains a pointer to each of extended functions.

20 When building the function pointer table, the

motion control componentigé checks the selected
driver module 30 to see if it supports each

extended function. If the selected driver module

30 supports the extendedsgunction, the motion
25 control component module’@4-stores a pointer to

the function, implemented by the selected driver

module 30, in the table location corresponding to

the extended function. In the event that the

selected driver module 30 does not support the

30 extendfig_function, the motion control component
moduleR&& stores a pointer to the extended

function implementation located in the driver stub

module 36. The driver stub module 36

22

walkp
Typewritten Text
22

 9%

10

15

20

25

30

-23-

implementation of the extended function contains

calls to a plurality of core functions implemented

by the selected driver module 30.

Therefore, the driver stub module 36 allows
. S Qflnétzxn _ <v%Hstx,q . _ _ _

the hardware designfir ti use, with minimal time'\ ta.»
and effortfbé working software driv r 28 that
contains driver code to implement only the core
functions. The software driver 28 developed to

implement the core driver functions can then be

improved by developing driver code to implement

extended driver functions as desired.

The use of driver code specifically designed

to implement extended driver functions is, in

general, preferable to relying on the driver stub

module 36 to emulate the extended driver

functions; driver code specifically written to

implement an extended driver function will almost

always obtain a more optimized implementation of
the_driver function than the emulation of that

driver function with a combination of core driver

functions.

Referring again for a moment to FIG. 1, this

Figure illustrates that the system 22 additionally

comprises a driver administrator CPL applet 38 and

a DDE server 40. The driver administration CPL

applet 38 generates the user interface through

which the user 24 communicates with the driver

administrator module 32. The DDE server 40

provides the software interface through which the

application program 26 communicates with the
35‘

motion control component modulegaé.

23

walkp
Typewritten Text
23

10

15

20

25

E 30

-24-

II. MOTION CONTROL COMPONENT

if

The motion control componentA34 will now be

described in further detail with reference to

FIGS. 2-10.

used by every application programing the system

The motion control componentééé-is

22 to perform motion control operations. The

major set of the API is implemented by this

component. When operating, the motion control

componengigé interacts with the driver
administrator 32, to get the current driver, and

the driver 30 and driver stub 36, to carry out

motion control operations. Applications, using

system zgfirpnly interact with the motion control
component A8-4 .

This section describes the design of the
motion control componentK34—in three main parts.

First, aE%5pinary modules that affect the
componentK&+~are described alon%$with their
interactions with the componentN&&. Next, the

module interaction-map is drawn in more detail to

show the interactions between all C++ objggts used
to implement the motion control componentA3+.

Next, the object interaction-map is tested by

displaying the specific interactions that take

place during certain, key process that the

component 34 is requested to perform.

The module interaction-map shown in FIG. 2

displays all binary modules and their interactions
35“

with the motion control component“%¢. As can be

seen from the module interaction-map, applications

Jipnly communicate with the motion control component
Aaé-+€empenea%+.

. 33

From this point, the componentkaé

24

walkp
Typewritten Text
24

10

15

20

25

30

O O

-25-

coordinates all interactions between the driver

administrator 32, driver 30, and driver stub 36

components.

Breaking the module interaction-map and

adding the interactions taking place between all

C++ objeggs used to implement the motion control
componentrgég produces the object interaction-map
shown in FIG. 3.

Each object in the diagram is described as

follows. The CCmpntDisp object is the dispatch

object used to dispatch exposed interface methods.

During the dispatch process, all raw data is

converted into the appropriate C++ form. For

example, collections of data passed between OLE

components is usually packaged in a raw block of

memory. The CCmpntDisp object takes care of

packing outgoing data and unpacking incoming data-

Data packing involves converting the data between

a raw and native C++ format.

The CDriverAdmin object is used to

communicate directly with the driver administrator

All OLE related details are

encapsulated within this class.

component.

The CDriverMgr object is used to control all

unit mapping taking place before calling the

appropriate SPI function. The CUnitMapper object

is used to do the actual mapping between units.

The CUnitMapper object is used to map units

between the Part Coordinate System (PCS) and the

Machine Coordinate System (MCS). Both directions

of unit mapping are done by this object.

The CDriver object is used to build the SPI

table containing both core and extended SPI

25

walkp
Typewritten Text
25

10

15

20

25

30

-26-

functions. Depending on the level of driver

support, the extended functions in the SPI table

may point to functions implemented in either the

driver stub 36 or the driver 30.

The following discussion of FIGS 4-8

describes all main scenarios, or openfigions, that
occur on the motion control componentK%+. Each

scenario-map displays all objects involved, and

the interactions that take place between them in

the sequence that they occur.

As shown in FIG. 4, beforegin application can
use the motion control componentK&4, it must

create an instance of the object, using the

CoCreateInstance OLE function, and then initialize

the instance calling the exposed Initialize custom

interface method implemented by the componentigfi.
FIG. 4 displays the sequence of events that take

place when the Initialize method is called.

During initialization, the following steps

occur. First the application must create an

instance of the motion control component 34 by

calling the standard OLE function

CoCreateInstance. Once épaded, the application3

must call the componenth}4's exposed Initialize5‘

method. when first loaded, the component:&+ loads
any registration data previously stored. Next,

35‘

the componentb§4-directs the CCmpntDisp to

The CCmpntDisp directs the

CDriverAdmin to get the current driver(s) to use.

initialize the system.

The CDriverAdmin, first, loads the driver

administrator 32 using the standard OLE

Cocreatelnstance function. Next, it initializes

the driver administrator. Then, it queries the

26

walkp
Typewritten Text
26

 $28

10

15

20

25

30

-27-

driver administrator for the driver(s) to use and

Finally, the

driver administrator returns the driver(s) and the
, . 35

support information to the component53¢, and

their SPI support information.

releases all interfaces used from the driver

administrator component 32.

Once receiving the active driver(s) 30 and

their supggrt information, the motion control
componentngé passes the driver(s) 30 to the

CDriverMgr and directs it to initialize the

During its initialization, the CDriverMgr

Also while

system.

initializes the CUnitMapper.

initializing, the CDriverMgr initializes a CDriver

for each driver used. After initializing each

CDriver, the support information is used to build

each SPI table inside each CDriver object. When

building the SPI table, all core and supported

extended SPI interfaces are queried from the

Also, when building the SPI table, the

CDriver queries all interfaces, not supported by

driver.

the driver 30, from the driver stub 36.

Referring now to FIG. 5, once the motion

control componenti§;L is initialized, the
application 26 may perform operations on it.

There are two types ofggperations that may take
place on the component&}+: Operations that use

core SPI functions, and operations that use

extended SPI functions. Even though the

difference between the two is completely_invisible
to the application using the componenoigé, the
internal interactions are different between the

two. The following discussion outline these

differences.

27

walkp
Typewritten Text
27

1O

15

20

25

30

-28-

The following interactions take place when

the componentgge performs an operation that uses
core SPI functions only. First the application

must request the operation and pass all pertinentfir

parameters to the componentgse. Next, the

componentig;-directs the CCmpntDisp to carry out
the operation. The CCmpntDisp then directs the

CDriverMgr to perform the operation and passes all

pertinent parameters to it. Before carrying out

the operation, the CDriverMgr uses the CUnitMapper

to convert all units to the Machine Coordinate

System (MCS). Next, the CDriverMgr directs the

CDriver object to carry out the operation and

passes the newly mapped_parameters to it. The

CDriver object uses its internal SPI table to

communicate directly with the core SPI function

implemented by the driver component.

FIG. 6 shows the seqggnce of events that
occurs when the componentfl%$-is directed to carry

out an operation that happens to use extended SPI

not supported by the driver 30. The following

steps occur when the operation is requested.

First the application must request the

operation and pass all pertinent pggameters to the
componentA&&n Next, the component,@4-directs the

CCmpntDisp to carry out the operation. The

CCmpntDisp then directs the CDriverMgr to perform

the operation and passes all pertinent parameters

to it. Before carrying out the operation, the

CDriverMgr uses the CUnitMapper to convert all

units to the Machine_Coordinate System (MCS).

Next, the CDriverMgr directs the CDriver object to

carry out the operation and passes the newly

28

walkp
Typewritten Text
28

 £j\\.-\/\

10

15

20

25

30

-29-

mapped parameters to it. The CDriver object uses

its internal SPI table to comunicate directly

with the core SPI function implemented by the

driver component.

As briefly discussed above, when using the

system 22, there are several types of units and

two different coordinate systems used. The

process of unit mapping involves converting

measurements between the Part and Machine

coordinate systems. FIG. 7 illustrates this

process, and the following steps occur when the

operation is requested.

First the application must request the

égeration and pass all parameters to the component.3 .

Nae. Note, allnparameters are in the PCS. Next,
the component‘§4~directs the CCmpntDisp to carry

The CCmpntDisp directs the

CDriverMgr to carry out the operation and passes

out the operation.

the PCS parameters to it. The CDriverMgr takes

all measurements and uses the CUnitMapper to

convert them to the MCS.

parameters are then passed to the Cdriver. The

The newly mapped

CDriver directs either the driver or the driver

stub component to carry out the operation.

When the applicationyis finished using the
motion coggrol componentdge it directs the
component5§4-to free all of its resources by

calling its exposed Release method. This process

is depicted in FIG. 8. _During the clean-up

process, the following steps occur.

Firsgsthe application must direct the
componentneé-to release all of its resources by

calling its Release method. When invoked, the

29

walkp
Typewritten Text
29

 (Al

10

15

20

-30-

3:‘

componentgeé passes the call on to the CCmpntDisp

object. The CCmpntDisp object directs the

CDriverMgr to release any resources it is using.

The CDriverMgr directs each CDriver object to

release any of its resources, then deletes the

CDriver objects. First, the CDriver object

releases any interfaces it is using from the

driver component. Then, the CDriver object

releases any interfaces it is using from the

driver stub component.

FIG. 9 is an interggge map related to the
motion control componentfigé. FIG. 10 is a data

map showing how data relating to the whether

extended driver functions need to be emulated is

stored. Attached hereto as Appendix C is a

document that describes the actual OLE Interfaces

exposed, the definitions of the data structures

used when passing data around, and the definitions

of_each class used internally by the motion3r~

control componentfiaé.

30

walkp
Typewritten Text
30

K3

d K3

10

15

20

25

30

-31-

III. SOFTWARE DRIVERS

The driver 30_is used by both the driver

administrator 32 and the componentfigéa Its main
purpose is to implement functionality that

generates motion control comands for the specific

hardware supported. the AT6400

driver, used to control the Compumotor AT6400

For example,

motion control hardware, generates AT64OO command

codes. During the initialization phase of the

system 22, the driver administrator 32

communicates with each driver 30, allowing the

or change the configurationuser to add, remove,

of the driver. When an applicatggn, using the
system 22, is run, the component’@4-communicates

with the driver 30 directing it to carry out the

appropriate motion control operations.

This section describes the complete design of

a generic driver 30. All driveis are designed
from the base design described‘?a—this_manua;-
This section is divided into three parts. First,

a module interaction—map that describes all binary

modules that interact with the driver 30 is

discussed. Next,

drawn as an object interaction—map, where all the

In this map,

the module interaction-map is

internals of the driver are exposed.

all C++ objects, making up the driver, and their

Next,

Each scenario-map displays the

interactions are shown. several scenario-

maps are drawn.

interactions taking place between the C++ objects

involved during a certain process. Finally, this

section describes the interfaces exposed by the

31

walkp
Typewritten Text
31

10

15

20

25

30

-32-

driver component, all data structures used, and

the definitions of each C++ class used.’

Referring now to FIG. 11, the module

interaction-map displays all binary modules and

their interactions with the driver 30. There are

two modules that interact directly with the

driver: the motion control componenéfigi, and the
driver administrator 32. The driver administrator

32 querie§§and changes the driver settings and the
component,§4-directs the driver to carry out

motion control operations, such as moving to a

certain location in the system. Shown at 42 in

FIG. 11 is the standard Windows registration

database, referred to herein as the registry.

Breaking the module interaction-map down into

more detail by including the interactions taking

place between all C++ objects used to implement

the driver, produces the object interaction-map.

The object interaction-map for the driver 30 is

shown in FIG. 12.

Each object in the diagram is described as

follows.

CDriverDisp is the dispatch object used to

dispatch exposed interface methods. During the

dispatch process, all raw data is converted into

the appropriate C++ form. For example,

collections of data passed between OLE components

is usually packaged in a raw block of memory. The

CDriverDisp object takes care of packing outgoing

data and unpacking incoming data. Data packing

involves converting the data between a raw and

native C++ format.

32

walkp
Typewritten Text
32

10

15

20

25

30

-33-

The CStreamMgr object is responsible for

managing the set of streams registered with the

driver. Streams, may be added, removed, and

enabled. Only enabled streams are sent data. The

CLSID and enabled status of each stream

registered, is stored in the registration

database. when communicating to streams, the

CStreamMgr is used to send the command string to

all enabled streams.

The CCommandMgr object is used to build

commands sent to the stream, and extracting

responses received from the stream. The

CCommandMgr is the controlling object that manages

the CResponse, CCommandList, and Cstream objects.

The CCommandList object stores the complete

list of commands making up the motion control

command language. Such commands may be stored as

text resources or in a text file.

— The CCommand object builds command strings

that are then sent to the Cstream. Each command

built is a complete motion control command string.

The CResponseList object builds CResponse

objects that are initialized with the parsing

format for the expected response.

The CResponse object converts raw response

strings, returned by the Cstream, and converts

them into C++ data types. For example, a response

string containing position data may be converted

into a set of double values.

The Cstream object is used to communicate

directly with the underlying stream component.

Figures 14-20 contain scenario maps that

describe all main scenarios, or operations, that

33

walkp
Typewritten Text
33

10

15

20

25

30

-34-

occur on the driver 30. Each scenario-map

displays all objects involved, and the

interactions that take place between them in the

sequence that they occur.

There are two types of operations that occur

on the driver 30. First, the driver administrator

32 may initiate operations, such as adding streams

or configuring tggrdriver. Next,
control componentK&+ may initiate operations on

the motion

the driver when an application is actually

running. The following discussion describes each

perspective, starting with the operations directed

by the Driver Administrator; all operations made

on the driver by the driver administrator are

discussed in the order that they may occur when

using the driver.

Before a driver may be used, it must be

registered in the OLE system. In order to

register a driver the driver administrator first

verifies that the module being registered is

actually an driver 30, then it calls the

DLLRegisterServer exported function to register

the driver. Each module of the system 22 exports

a function called DLLGetModuleType.

is used to verify that the module is an driver 30

This function

component. FIG. 13 displays the interactions that

take place when registering a driver.

During the registration process shown in FIG.

13, the following steps occur. First, the driver

administrator must load the DLL, containing the

stream component, verify that the module is an

the driver administratordriver 30. To do so,

calls the DLLGetModuleType function, exported by

34

walkp
Typewritten Text
34

10

15

20

25

30

-35-

the driver. If the function returns a value that

contains the value XMC_DRIVER_MT in the high byte,

then the driver administrator proceeds and

registers the driver by calling its exported

function, DLLRegisterServer. When called, the

implementation of the DLLRegisterServer writes all

OLE 2.0 registration information to the Windows

registration database.

Referring now to Figure 14, after the driver

is registeredésthe driver administrator can load
the component;&+ using the OLE Cocreatelnstance

function. During the initialization process, the

driver loads all registration data and initializes

both the CDriverDisp and CStreamMgr C++ objects.

During initialization, the following steps

occur. ,

Before loading the driver component, the

driver administrator must query the driver module

for_its CLSID.

function, DLLGetCLSID, returns the CLSID.

has-the CLSID, the driver administrator may create

Calling the driver's exported

Once it

an instance of the driver by calling the standard

OLE function Cocreatelnstance. When first loaded,

the driver loads any registration data previously

stored. Next, the driver directs the CDriverDisp

object to initialize the system. When notified,

the CDriverDisp object initializes itself and then

directs the CStreamMgr to initialize itself.

During its initialization, the CStreamMgr loads

all stream settings from the registration

database. For example, the CLSID and enabled

state of all streams previously registered with

the driver, are loaded.

35

walkp
Typewritten Text
35

 {E

10

15

20

25

30

-36-

After initializing the driver, the driver

administrator may perform operations on it. For

the driver administrator may request the

FIG. 15

displays the sequence of events occurring when the

example,

driver to add or remove a stream.

driver is requested to add a new stream. When

adding a stream, the following steps occur.

First the driver administrator directs the

stream to add a new stream and passes CLSID of the

stream, to be added,

then passes the CLSID to the CDriverDisp object

The CDriverDisp

to the driver. The driver

and directs it to add the stream.

object passes the information on to the CStreamMgr

and directs it to add the stream. In the final

step, the CStreamMgr assumes that the module is a

valid stream component 28 and adds the CLSID to

the drivers set of information in the registration

database.

, Another operation requested of the driver,

after initialization, is that of querying it for

Before displaying

like the name of the

its current settings.

information about the driver,

hardware it supports, the driver administrator

must query the driver for the information. For

FIG.

the driver for an enumeration of the streams

example, 16 displays the process of querying

registered with it. When querying the driver for

the following steps occur.

calls the

interface method used to query the driver's stream

Next,

CDriverDisp to create the stream enumeration. The

CDriverDisp object then directs the CStreamMgr toI

information,

First the driver administrator,

enumeration. the driver directs the

36

walkp
Typewritten Text
36

10

15

20

25

30

-37-

The CStreamMgr

checks the registration database and makes sure

prepare the stream enumeration.

its internal state is in sync with the data stored

in the registry. Next, it sets a lock that will

cause all stream management operations, such as

adding or removing streams, to fail. The

CStreamMgr prepares the list of streams and loads

them into memory using the Cstream object. The

Cstream object loads the stream component using

the OLE Cocreatelnstance API.

After the driver administrator is done using

the driver, it must release the driver by calling

its exposed Release method. Calling this method,

directs the driver to release all resources used.

FIG. 17 displays the process of releasing the

driver component. During the clean-up process,

the following steps occur.

First the driver administrator must direct

the driver component to clean itself up by calling

its Release method. When invoked, the driver

component passes the call on to the CDriverDisp

object.

CStreamMgr to save all data.

The CDriverDisp object then directs the

‘The CStreamMgr saves

all data, including the state of each stream, in

the registration database. Finally, the driver

saves all internal data in the registration

database.

After a driver is successfully installed into

the system 22 and configured using the driver

administrator, it is ready for use by the motion
37‘ 3

control componentK3+. The componentA3Z;uses the
driver 30 when performing motion control

operations requested from the application using

37

walkp
Typewritten Text
37

PF

10

15

20

25

30

-33-

33'

the componentflae. The following discussion75‘

describes the component'@4-directed operations

that can take place on the driver.

it must be:-

initialized by the componentgyk.

Before using the driver

This operation

is different from the driver initialization taking

place on the driver when used by the driver

administrator because the system must be prepared

for sending and receiving comands. In order to

prepare for the data communication, the stream

FIG. 18

describes the initialization process. The

must be initialized and then opened.

following steps occur during the initialization

process. 35-

First the componentA§+ must direct the driver
to initialize itself. This is usually a two step35*

In the first step, the componentfiaéprocess.

creates and instance of the driver using the

Next, the

Initialize method, exposed by the driver, is

standard OLE Cocreatelnstance function.

called to prepare the driver for data

transmissions. When the Initialize method is

called, the driver first loads any internal data

stored in the registration database 42. Next, the

driver directs the CDriverDisp to initialize the

internal system. The CDriverDisp then directs the

Next, the

CStreamMgr loads all data from the registration

database, including the set of all CLSID's and

CStreamMgr to initialize the streams.

enabled status’ for all streams registered with

Then the CStreamMgr loads each

enabled stream by creating a new Cstream object

the driver.

for each enabled stream. When creating each

38

walkp
Typewritten Text
38

10

15

20

25

30

-39-

Cstream object, the CLSID for the underlying

stream is passed to the Cstream object. When each

Cstream object is created and atggghed to a stream
component it loads the componentxgé by calling the

Once the

the CDriverDisp directs the

standard OLE Cocreatelnstance function.

CStreamMgr is done,

CCommandMgr to initialize itself.

the CCommandMgr

During its

initialization process,

initializes and loads the CComandList. Also,

when the CCommandMgr is initializing, it loads the

CResponseList corresponding to the CCommandList.

Once the system is initialized, the motion

control component:;4-can direct the driver to
carry out certain command operations. Comand

operations are standard motion control operations

such as moving to a specific location in the

or querying the system for the current

FIG.

comanding the driver to carry out a certain

system,

position. 19 describes the process of

operation. When commanding the driver to perform

a certain operation the fgllowing steps occur.
First, the componentigé-directs the driver to

perform the operation, such as moving to a

position or querying the system for the current

Next,

CDriverDisp object to perform the operation. The

CDriverDisp object then directs the CComandMgr to

position. the driver directs the

build the appropriate command. Any parameters

related to the command are passed to the

CCommandMgr. when directing theFor example,

the position

Next,

the CCommandMgr requests the CResponseList to

driver to move to a certain position,

information is passed to the CCommandMgr.

39

walkp
Typewritten Text
39

10

15

20

25

30

-40-

create a CResponse object. The CResponseList

looks up the response format and uses it to create

a new CResponse object that is returned to the

CCommandMgr. Then, the CComandMgr directs the

CComandList to create the command. Any

parameters related to the command are passed to

the CCommandList.

Ccommand object, looks up the raw comand string,

The CCommandList creates a new

and passes it and the command parameters to the

Ccommand object who then builds the command

string.

The CCommandMgr, then passes the Ccomand

object, returned by the CComandList, and the

previously created CResponse object to the

CStreamMgr object. The CStreamMgr object is

directed to process the objects. The CStreamMgr

passes the Ccommand and CResponse objects to all

enabled Cstream objects. The Cstream object

queries the Ccommand object for the full comand

The raw text command is

Next, the Cstream

object waits for the response, then reads the raw

string in raw text form.

passed to the stream component.

text response into a buffer. The raw text

response is then passed to the CResponse object.

Next the CRETONNE object is returned to the

CStreamMgr, who returns it to the CComandMgr, who

returns it to the CDriverDisp object. Eventually

the CResponse returns to the CDriverDisp object,

who then directs the CResponse to convert the

response into a generic C++ type. The generic

type is rfiéprned to the motion control
component A3-4 .

40

walkp
Typewritten Text
40

 34¢?

10

15

20

-41-

Once the component:;; is finished using the
driver, the driver must be released by calling its

Releasing the driver frees all

FIG.

the process of releasing the driver. The

Release method.

resources used by the driver. 20 describes

following steps occur when cleaning up and freeing

all resources used by the3§river.
First, the componentfifié-must call the

When called,

directs the CDriverDisp object to release any

driver's Release method. the driver

The CDriverDisp then directs the

The

CStreamMgr then frees all active Cstream objects.

resources used.

CStreamMgr to free any resources used.

Each Cstream object releases all stream component

interfaces used. Next the CDriverDisp directs the

CCommandMgr to free all of its resources. During

its clean-up, the CCommandMgr frees the

CComandList object. To complete its clean-up,

the»CCommandMgr frees the CResponseList object.

Attached hereto as Appendix D is a document

that describes the actual OLE Interfaces exposed,

the definitions of the data structures used when

passing data around, and the definitions of each

class used internally by the driver.

41

walkp
Typewritten Text
41

10

15

20

25

30

-42-

IV. STREAMS

This section describes the stream component

28 used as the data transport layer between the

driver 30 component and the destination output

location such as the motion control device 20

and/or the output file 34. For example, when

using motion control hardware that is connected to

the PC Bus,

communicate with the PC Bus stream component 28.

the driver 30 Component will

The design of a stream component 28 will be’

discussed in three parts. a Module

Interaction-Map describes the modules that are

involved, with respect to the stream, and how they

interact with one another. Next, the Object

Interaction-Map breaks the Module Interaction-Map

First,

down into a more detailed view that not only

displays the interactions occurring between

but also the interactions taking place

between the C++ objects within the stream

Then,

"tested" by running it through several Scenario-

modules,

component 28. the Object Interaction-Map_is

Maps. Each Scenario-Map displays the object

interactions taking place during a certain

operation.

The Module Interaction-Map shown in FIG. 22

displays all modules that interact with the stream

component 28. Interactions begin from two

different perspectives. First, the driver

administrator 32 interacts with the stream

component 28 when installing, removing, and

Next,

driver 30 interacts with the stream while sending

configuring the stream. when used, each

42

walkp
Typewritten Text
42

10

15

20

25

30

-43-

and retrieving data to and from the destination.

For example, when a driver writes data to a text

file stream, the stream takes care of writing the

data out to the file. Or,

data from a PC Bus stream,

if the driver reads

the stream does the

actual read from the hardware and passes the data

back to the driver.

Drivers only communicate with streams that

have been specifically connected to the driver.

the stream is used to communicate

like the PC Bus,

text file, or debug

Once connected,

with the destination object,

serial I/O connection,

monitor.

The stream component 28 shown in FIG. 22 is

the object that operates as the data transport

layer for each driver. Each stream has a

different target that defines the type of the

stream. The following are the current stream

targets.

PC Bus/WinNT - This Windows NT stream
uses a Windows NT .SYS device driver to

communicate directly with the motion control

hardware connected to the PC Bus.

PC Bus/Win95 - This Windows 95 stream

uses a Windows 95 VxD to comunicate directly

with the motion control hardware connected to

the PC Bus.

PC Bus/Win 3.1 - This Windows 3.1 stream

communicates directly with the motion control

hardware connected to the PC Bus.

Serial — This stream uses the COM API

to communicate with the motion control

hardware connected to the serial port.

43

walkp
Typewritten Text
43

10

15

20

25

30

«I
u

-44-

Text File - This stream is write—only

and sends all data to a text file.

Debug Monitor - This stream is write

only and sends all data to the debug monitor.

Custom - This is a custom stream that

sends data to an unknown location.

Similar to the Module Interaction-Map, the

Object Interaction-Map displays interactions

between modules. In addition, this map, shows all

interactions taking place between each C++ object

FIG. 23 is the

Object Interaction-Map for the stream component

28.

within the stream component 28.

Each object in the diagram is described as

The CStreamDisp object is the dispatch

object used to dispatch exposed interface methods.

follows.

During the dispatch process, all raw data is

converted into the appropriate C++ form. For

example, collections of data passed between OLEdA.AI._

components is usually packaged in a raw block ofA

The CStreamDisp object takes care ofmemory.

packing outgoing data and unpacking incoming data.

Data packing involves converting the data between

a raw and native C++ format.

The CRegistryMgr object takes care of

managing all data stored in the registration

database. Since many streams of the same type may

exist at the same time, each stream is assigned a

handle.

stream to look up the location it uses to load and

The handle assigned, is used by the

store data in the registration database, much as

an library index is used to locate a library book.

44

walkp
Typewritten Text
44

10

15

20

25

30

-45-

All input and output is funnelled through the

CIOMgr manager. Management of input and output

operations consists of buffering data and

controlling primitives used to transport data to

and from the target location.

The CIOHAL object is the input/output

with in this object

lay all hardware dependent code such as calls to

hardware abstraction layer.

inp and outp. Each different type of stream

contains a different implementation of this

object.

Scenario-Maps are specialized Object

Interaction-Maps that display how each module and

the objects inside the stream component interact

with one another during the operation described by

The Scenario-Maps in FIGS. 24-32 are

broken into two different categories; those that

the map.

are initiated by the driver administrator 32, and

those that are initiated by the driver 30.

Operations directed by the driver

administrator are usually related to initializing,

uninitializing, and configuring the stream. The

following sections describe all operations,

directed by the driver administrator, that take

place on the stream.

Before a stream component can be used by

anyone, it must be registered in the Windows

registration database. Registration is a standard

OLE 2.0 operation required in order to use any OLE

2.0 component, such as the stream component. FIG.

24 describes this process. During the

registration process, the following steps occur.

45

walkp
Typewritten Text
45

10

15

20

25

30

-46-

First, the driver administrator must load the

DLL,

the module is an stream component 28.

containing the stream component, verify that

To do so,

the driver administrator calls the

DLLGetModuleType function,

If the high byte in the return value contains the

value XMC_STREAM_MT,

proceeds and registers the stream by calling its

When

exported by the stream.

then the driver administrator

exported function, DLLRegisterServer.

called,

DLLRegisterServer writes all OLE 2.0 registration

the implementation of the

information to the Windows registration database.

After the stream component is successfully

registered, it is ready for initialization.

During initialization, the stream component not

only initializes itself, but also initializes any

device drivers used by registering the driver with

the Windows NT

stream component registers the Windows NT .SYS

the operating system. For example,

driver with Windows NT and starts the service.

FIG.

initialization,

25 describes this process. During

the following steps occur.

First the driver administrator must direct

the stream to initialize itself.

call,

and the handle of the stream are passed into the

when making this

the name and location of the driver used,

method as arguments.

itself,

and directs it to initialize the system.

Once directed to initialize

the stream component calls the CStreamDisp

The

CStreamDisp object then directs the CRegistryMgr

to load all pertinent data for the stream using

the handle passed to it. The CRegistryMgr loads

all data from the registration database. After

I,

/

46

walkp
Typewritten Text
46

10

15

20

25

30

-47-

all information is loaded from the registry, the

CStreamDisp directs the CIOMgr to register the

appropriate driver with the operating system. The

CIOMgr directs the CIOHAL to register the driver,

if appropriate. If running in Windows NT, the

CIOHAL registers the .SYS driver with the Windows

NT operating system and starts the driver. If

running in Windows 95, the VxD integrity is

verified with a quick, dynamic, load and unload.

After initializing the stream component, it

may be queried for its current settings or

directed to set new settings. Since both

operations are very similar, only changing

settings will be described. Stream settings

include data such as: port addresses, IRQ levels,

file names, etc. Any data needed to communicate

with the output/input target are included in the

stream settings. FIG. 26 describes the process of

changing the streams settings. During the setup

process, the following steps occur.

First the driver administrator directs the

stream to use the data passed to change its

internal data. Once directed, the stream

component passes the interface method invocation

to the CStreamDisp object. The CStreamDisp object

then directs the CRegistryMgr to store the new

settings. The CRegistryMgr stores the new values

in the registration database.

when the driver administrator is done using a

stream component, it must clean up the resources

used. FIG. 27 describes this process. During the

clean—up process, the following steps occur.

First the driver administrator must direct the

47

walkp
Typewritten Text
47

 F~‘\\
2

10

15

20

25

30

-48-

stream component to clean itself up by calling its

Release method. When invoked, the stream

component passes the call on to the CStreamDisp

The CStreamDisp object then directs the

All persistent

object.

CRegistryMgr to save all data.

data is saved to the registration database by the

CRegistryMgr.

Driver directed operations occur when each

driver 30 uses the stream component 28 connected

to it. Remember, each stream component is used as

the data transport layer.

stream to transfer the motion control comand

data, Streams

are also used to transfer data back to the driver

Only certain streams

Each driver uses the

it generates, to the output target.

when read operations occur.

are readable.

Before the driver can perform operations on

the stream must be initialized.

First the OLE

stream component must be loaded, and then once it

the stream,

Initialization occurs in two steps.

is, the stream must be explicitly initialized.

FIG.

initialization process.

28 describes the second portion of the

The following steps occur

during the initialization process.

First the driver must invoke the Initialize

methods exported by one of the stream interfaces.

the driver passes to the

stream, Next,

passes the directive on to the CStreamDisp object

for dispatching. The CStreamDisp object first

directs the CRegistryMgr to load all settings

When calling Initialize,

the stream handle. the stream

stored in the location defined by the stream

handle. The CRegistryMgr reads in the data stored

48

walkp
Typewritten Text
48

10

15

20

25

-49-

in the registry at the handle. After the data is

loaded, the CStreamDisp, directs the CIOMgr to

initialize itself. As part of its initialization,

the CIOMgr initializes the CIOHAL object that it

is using.

Once a stream has been initialized, it must

be opened. Opening a stream places the stream in

a state where it can pass data between the driver

and the target. FIG. 29 describes the process of

opening a stream. When opening a stream, the

following steps occur.

First the driver directs the stream to open

itself, by calling the Open exposed interface

method. Once directed, the stream passes the call

on to the CStreamDisp object. Next, the

CStreamDisp object directs the CIOMgr to open the

stream. At this time, the CIOMgr prepares any

buffers that will later be used when transferring

data through the stream. After the buffers are

ready, the CIOMgr directs the CIOHAL object to

CIOHAL

directly communicates with the target or with a

interact with the target and open it.

device driver and opens the stream. When-

operating with hardware streams, the device

driver, or Serial IO directly comunicates with

the hardware and prepares it for operation.

After opening a stream, it is ready to

perform data transport operations. There are two

main data transport operations available: Reading

data, and writing data.. FIG. 30 describes the

process of writing data to the stream. When

writing to the stream, the following steps occur.

First the driver directs the stream to write data

49

walkp
Typewritten Text
49

10

15

20

25

30

-50-

to the target and passes the data to the stream.

Next, the stream passes the data to the

CStreamDisp object. The CStreamDisp object passes

the block of data to the CIOMgr and directs it to

write it to the target. The CIOMgr object either

passes the complete block of data to the CIOHAL

object, or stores the block in an internal buffer

and then passes pieces of the buffer to the CIOHAL

object until the complete buffer is sent. The

CIOHAL object takes the data passed to it and

either sends it directly to the target, passes it

to a device driver, or calls COM API to send the

data to the Serial IO port.

COMM API sends the data directly to the hardware

The device driver or

controlled.

Certain streams, like the PC Bus and Serial

IO streams, return data after write operations

occur on them. The data returned-may be specific

to_a previous request for data, or status

describing the success or failure of the previous

write operation. FIG. 31 describes the process of

It should be noted

Currently, the

reading data from the stream.

that not all streams are readable.

only readable streams are the PC Bus and Serial

streams. During the operation of reading data

from the target, the following steps occur.

First the driver directs the stream to read

data from the target. The stream passes the call

The CStreamDisp

object directs the CIOMgr to perform the read.

on to the CStreamDisp object.

Depending on how the stream is implemented, the

CIOMgr may either make one call or multiple calls

to the CIOHAL object. If multiple calls are made,

50

walkp
Typewritten Text
50

10

15

20

25

30

-51-

all data read is stored in CIOMgr internal

The CIOHAL object either directly

uses the COMM API,

If a device

buffers.

communicates to the hardware,

or a device driver to read the data.

driver or the COM API are used,

communicate with the hardware to read the data.

they directly

Once the driver is done using the stream, it

must direct the stream to clean—up all resources

the driver calls the standard

FIG.

events taking place after the Release method is

called.

up and freeing all resources used by the stream.

used. To do so,

Release method. 32 displays the sequence of

The following steps occur when cleaning

First the driver must call the stream's

Next,

CStreamDisp object to release all resources used.

The CStreamDisp object then directs the CIOMgr to

I Next ,

Release method. the stream directs the

free any resources used in buffers, etc.

the CIOMgr directs the CIOHAL to free any

During its clean-up and depending

the CIOHAL will delete text

shut—down the

resources used.

on the type of stream,

files used, close the debug monitor,

or direct any device drivers to shut-

If device drivers or the COMM

they direct the hardware to shut-

hardware,

down the hardware.

API are used,

down.

FIG.

stream 28.

33 depicts an interface map for the

Attached hereto in Appendix E is a

document that describes the actual OLE Interfaces

exposed, the definitions of the data structures

used when passing data around, and the definitions

of each class used internally by the stream.

51

walkp
Typewritten Text
51

10

15

20

25

30

-52-

V. DRIVER STUB MODULE

The driver stub module 36 is used to fill in

the extended SPI functions that the driver 30 is

unable to support or implement. By simulating the

extended SPI, applications are able to use a

larger set of motion control functionality than

would be available if the application directly

programmed the motion control hardware. In order

to implement the extended SPI, the driver stub

uses software algorithms that call core SPI

interface methods implemented by the driver 30.

During the initialization of the driver stub, the

driver 30 to use is registered with the driver

stub.

This section describes all aspects of the

The first

part of this section describes all binary modules

driver stub 36 in three basic parts.

affecting the driver stub. Next, a more detailed

view, that includes all C++ objects used inside

the driver stub, is described. Then several

processes that take place on the driver stub are

described.

The module interaction-map displays all

binary modules and their interactions with the

driver stub 36. As can be seen from FIG. 34, theSF‘

driver stub is used by the componentA&+.
More or

less, thesgriver stub acts as a helper to the
componentA34 by filling in all extended SPI

functionality possible.

By taking the module interaction-map in FIG.

34 and displaying all interactions taking place

with all C++ objects implementing the driver stub,

52

walkp
Typewritten Text
52

5

10

15

20

25

30

map.

-53-

we produce what is called the object interaction-

FIG. 35 is the object interaction—map for

the driver stub 36 component.

Each object in the diagram is described as

follows.

The CDriverStubDisp object is the

dispatch object used to dispatch exposed

interface methods. During the dispatch

process, all raw data is converted into the

appropriate C++ form. For example,

collections of data passed between OLE

components is usually packaged in a raw block

of memory. The CDriverStubDisp object takes

care of packing outgoing data and unpacking

incoming data. Data packing involves

converting the data between a raw and native

C++ format.

The CSPIMgr object is responsible for

managing all SPI issues such as managing the

CSimpleDriver by directing it to connect to

the appropriate SPI core interfaces exposed

by the driver.

The CSimpleDriver object is used to

directly communicate with the driver

implementing the SPI core interfaces. The

CSimpleDriver only communicates with the core

SPI interfaces implemented by the driver.

The following discussion describes all main

scenarios, or operations, that occur on the driver

stub 36. Each scenario-map displays all objects

involved, and the interactions that take place

between them in the sequence that they occur. All

53

walkp
Typewritten Text
53

H

<\
R,

10

15

20

25

30

gr

A

-54-

operations on the driverégtub originate from the
motion control component,&+. In addition to the

motion control componentagéq the XMC Setup

Component interacts with the driver stub when

installing the system 22. It should be noted that

all scenarios below assume that the driver stub 36

has already been registered in the OLE system.

Registering this component is the responsibility

of the setup application and setup component.

This discussion describes all operations made

on the driver stub by the motion control component

34. Each section is discussed in the order that

they may occur when using the driver.

As shown in FIG. 36, before usinggthe driver
stub 36, the motion control component”§4 must

initialize it by creating an instance of the

driver stub, and then initializing the instance

created. Calling the standard OLE function

CoCreateInstance completes the first step. After

an instance is created, the componentES4-must call
the driver stub exposed Initialize interface

method. the following

steps OCCLII‘ .

During initialization,

sf‘

The componenthcreates an instance of the
driver stub by calling the standard OLE function

CoCreateInstance. the CLSID of the

driver to use is passed to the driver stub when

Once loaded,

calling its Initialize exposed interface method.

when first loaded, the driver loads any

registratggp data previously stored. Next, the
componentfifié-passes the CLSID, of the driver to

to the CDriverStubDisp object and directs it

The CDriverStubDisp

use,

to initialize the system.

54

walkp
Typewritten Text
54

10

15

20

25

30

-55-

object then directs the CSPIMgr to initialize

itself and passes the driver CLSID to it. The

CSPIMgr passes the CLSID to the CSimpleDriver and

directs it to only query the core SPI interfaces

exposed by the driver. The CSimpleDriver loads an

instance of the driver then queries all core

interfaces exposed by the driver.

Once the driver stub is initialized, it is

ready to perform operations such as performing

extended SPI functions. FIG. 37 describes the

steps that occur when the component??4 directs the
driver stub to perform an extended SPI operation.

The following steps occur when the operation is

requested. 35
First the componentlgé must request the

operation and pass all pertinent parameters to the

driver stub. Next, the driver stub directs the

CDriverStubDisp to handle the operation. The

CDriverStubDisp then directs the CSPIMgr to

perform the SPI extended function and passes the

appropriate XMC_EXT_SPI identifier as a parameter.

The CSPIMgr calls the appropriate function

corresponding to the XMC_EXT_SPI identifier. The

function simulates the extended SPI function and

calls the CSimpleDriver for core operations. When

directed, the CSimpleDriver performs SPI core

functions by directly calling the exposed

interfaces implemented by the driver. 35
When the motion control componentA3&-is

finished using the driver stub 36, it must release

it by calling the exposed Release method. Calling

the Release method causes the driver stub to free

all the resources it uses. FIG. 38 displays this

55

walkp
Typewritten Text
55

10

15

20

-55-

sequence of events. During the clean-up process,

the following steps occur.

First the componen9N3+ must direct the driver
stub to release all of its resources by calling

its Release method. When invoked, the driver

component passes the call on to the

CDriverStubDisp object. The CDriverStubDisp

object then directs the CSPIMgr to release any

resources that it was using. The CSPIMgr releases

all resources including the CSimpleDriver object

used. When freed, the CSimpleDriver releases any

interfaces used from the driver.

FIG. 39 is an interface map of the driver

stub module 36. Attached hereto as Appendix F is

a document that describes the actual OLE

Interfaces exposed, the definitions of the data

structures used when passing data around, and the

definitions of each class used internally by the

driver.

56

walkp
Typewritten Text
56

,4 f?

fix Q
\ ‘

10

15

20

25

30

-57-

VI. DRIVER ADMINISTRATOR MODULE

The driver administrator 32 is used from two

different perspectives. When the driver

administrator Control Panel Applet 38 is used to

configure the system, the applet directs the

driver administrator 32 to carry out the

operations. The applet 38 simplyagrovides the
user-interface, and the component&%$ does the real

work of managing drivers and streams used with the

system 22. Using the driver administrator

component with the control panel applet £5 the
first perspective on using the componentR&¢.

In the second perspective, the motion control
35

component,§#-uses the driver administrator

component to query for the current set of enabled

It should be noted that,

only single driver operation is

the driver 30.

currently,

Clearly, the system 22 may supportallowed.

multiple drivers that are virtualized. For

example, if two, four axis, drivers are installed,

applications using the system could act as though

they were using an eight axis system.

This section describes the driver

all

modules interacting with the driver administrator

administrator 32 in three main parts. First,

component are described along with their
Next,

expanded to display all interactions taking place

interactions. the module interaction-map is

between the C++ objects used to implement the

driver administrator 32 Component. This

description is called the object interaction-map.

Then, the object interaction-map is tested by

57

walkp
Typewritten Text
57

10

15

20

25

30

-53-

running it through several scenarios, or scenario-

maps. Each scenario-map displays the events and

the order in which they occur in a certain process

taking place on the driver administrator

component.

The module interaction-map shown in FIG. 40

displays all binary modules and their interactions

Both

the driver administrator CPL 38 and the motion
35

control componentA&& are the main modules that

with the driver administrator 32 Component.

interact_with the driver administrator 32

Component.

The driver administrator CPL module 38

provides the user-interface that allows the user

to add,

in the system 22.

configure, and remove drivers and streams

The driver administrator 32

handles all driver and stream management. Even

though the control panel applet provides the user-

interface, this module 32 does the actual

management work.

In addition the driver administrator is used
ir

by the componentg$% to access the current

to use when carrying out motion control

if the AT640O driver is

selected as the current driver when the component

driver(s)

operations. For example,

35"

’§4 queries the driver administrator, the driver
administrator returns the CLSID of the AT6400

driver.

Taking the driver administrator 32, displayed

in the module interaction-map, and displaying all

interactions occurring between the C++ objects
. . . 33-

used to implement the administrator 34%
_ A

the object interaction-map therefor. The object

produces

58

walkp
Typewritten Text
58

 $0

10

15

20

25

30

-59-

interaction—map for the driver administrator 32 is

shown in FIG. 41.

Each object in the diagram is described as

follows.

The CDriverAdminDisp object is the dispatch

object used to dispatch exposed interface methods.

During the dispatch process, all raw data is

converted into the appropriate C++ form. For

example, collections of data passed between OLE

components is usually packaged in a raw block of

memory. The CDriverAdminDisp object takes care of

packing outgoing data and unpacking incoming data.

Data packing involves converting the data between

a raw and native C++ format.

The CDriverInfoMap object is used to_build

the information used by the driver administrator

CPL 38 when displaying information about each T

driver or stream.

The CModuleMgr object is responsible for

managing all stream and driver modules in the

system. A list of all drivers registered are

stored persistently in the registration database

by the CModuleMgr.

is accessed the CModuleMgr is used to get the

Each time a driver or stream

module.

‘ The CSimpleDriver object is used to directly
All OLE

specific details are encapsulated within this

communicate with the driver component.

object.

The Csimplestream object is used to directly

All OLE

specific details are encapsulated within this

communicate with the stream component.

object.

59

walkp
Typewritten Text
59

-50-

FIGS. 42-49 describe all main scenarios, or

operations, that occur on the driver administrator

32. Each scenario-map displays all objects

involved, and_the interactions that take place

5 between them in the sequence that they occur.

Referring now to FIG. 42, before using the

driver administrator component, it must be

initialized. FIG. 42 describes the process of

initializing the driver administrator component

10 from either the driver administrator control panel

applet or the motion control component. During

initialization, the following steps occur.

First, either the control panel applet or the

motion control component must create an instance

15 of the driver administrator component by calling

the standard OLE function CoCreateInstance. Next,

the exposed Initialize interface method must be

called. When the Initialize method is called, the

driver administrator component directs the

20 CDriverAdminDisp to initialize the system. Next,

the CDriverAdminDisp directs the CModuleMgr to

initialize itself and any modules that it is

managing. The CModuleMgr, first, loads all

information from the registration database. Then

25 for each driver registered, the CModuleMgr creates

an instance of the driver by calling the standard

OLE function Cocreatelnstance. Next, the

CModuleMgr calls each drivers Initialize method,

passing to the method the CLSID of the driver

30 component to attach. The CSimpleDriver attaches

to the driver component by calling the standard

OLE function CoCreateInstance.'

60

éé) / ' 7'¥xre

walkp
Typewritten Text
60

10

15

20

25

30

-51-

The driver administrator 32 can register both

drivers and streams. Registering drivers is very

direct, since the driver administrator manages the

drivers registered in the system. Registering

streams, on the other hand, is more complex, since

each stream must be registered with a driver and

the driver manages the streams registered with it,

not the driver administrator. The following

discussion describes the process of registering

both drivers and streams.

Registering a driver entails verifying that

the module is actually a driver, verifying that

the driver can be loaded, and storing the driver

FIG. 43

When registering a

information in a persistent location.

describes this process.

driver, the following steps occur.

First, the driver administrator CPL passes

the name of the driver and directs the driver

Next, the

driver administrator component passes the driver

administrator component to register it.

name to the CDriverAdminDisp and directs it to

register the module. The CDriverAdminDisp directs

the CModuleMgr to register the new driver. The

CModuleMgr creates a new CSimpleDriver and

First the

CSimpleDriver verifies that the driver is valid by

calling its DLLGetModuleType exported function.

If the function returns XMC_DRIVER_MT the

CSimpleDriver then calls the driver's exported

requests it to register the driver.

function DLLRegisterServer to register the module

in the OLE system. Next the CLSID is queried from

the module by calling its exported DLLGetCLSID

function. The CLSTD returned is then used to load

61

walkp
Typewritten Text
61

10

15

20

25

30

-52-

the driver by calling the standard OLE function

CoCreateInstance. If the CSimpleDriver is

successful, the CModuleMgr stores the driver CLSID

in the registration database.

Registering a stream is similar to

registering a driver, but a little more complex,

since each stream must be registered with a

specific driver. FIG. 44 displays the process of

registering a stream. When registering a stream,

the following steps occur.

First, the driver administrator CPL passes

the CLSID of the driver and the filename of the

stream to register with the driver, to the driver

administrator component. The driver administrator

component directs the CDriverAdminDisp to register

the stream. The CDriverAdminDisp object directs

the CModuleMgr to register the stream and passes

the CLSID of the driver and the name of the stream

along to it. First, the CModuleMgr verifies that

the CLSID of the driver one of the registered

drivers. If it is not, the driver is registered

as discussed above.

Next, the CModuleMgr creates a new

Csimplestream object and directs it to verify and

load the stream component. The Csimplestream

first verifies that the module is actually an

stream component 28 by calling its exported

DLLGetModuleType function. If the function

returns XMC_STREAM_MT, the Csimplestream continues

and registers the stream component by calling its

Finally, the

Csimplestream object queries the new module for

its CLSID by calling the module's exported

DLLRegisterServer exported function.

62

walkp
Typewritten Text
62

l0

15

20

25

30

-63..

DLLGetCLSID function. The new CLSID is used, by

the Csimplestream, to load the stream component

using the standard OLE function Cocreatelnstance.

If the Csimplestream succeeds, the CLSID of the

stream is passed along to the CSimpleDriver who is
The

CSimpleDriver passes the CLSID to the driver

directed to register the stream.

component and directs it to register the stream.

The following discussion describes setting

information in either a driver or stream. When

the user edits information in the driver

administrator control panel applet 38, the applet

38 directs the driver administrator 32 to edit the

settings for the stream or driver being edited.

The following discussion describes how this

configuration process works.

Editing the settings of a driver takes place

when the user changes the driver settings

displayed in the driver administrator CPL.

Changing these settings causes the process
described in FIG.

administrator component.

45 to occur within the driver

The

occur when setting the driver configuration.

changed in the CPL

the driver administrator CPL directs the-

following steps

When driver settings are

38,

driver administrator component to make the

appropriate changes to the driver corresponding to

A XMC_DRIVER_INFO structure is

passed to the componenti§;, describing the new

the driver handle.

values for the driver. The driver administrator

component takes the XMC_DRIVER_INFO structure and

the handle to the driver and passes the

information to the CDriverAdminDisp object,

63

walkp
Typewritten Text
63

10

15

20

25

30

-54-

directing it to change the settings in the driver.

The CDriverAdminDisp object directs the CModuleMgr

to edit the driver corresponding to the driver

handle.

with the handle and directs it to change its

settings to those stored in the XMC_DRIVER_INFO

The CModuleMgr locates the CSimpleDriver

structure. The CSimpleDriver passes the

XMC_DRIVER_INFO structure to the driver component

and directs it to change its settings.

As shown in FIG. 46, when the user edits

stream settings in the driver administrator CPL

38, the following steps occur.

After the user changes settings for the

stream in the CPL, the driver administrator CPL

directs the driver administrator component to

change the stream's settings and passes a handle

to the driver containing the stream, a handle to

the stream, and a XMC_STREAM_INFO structure

describing the new values. The driver

administrator component directs the

CDriverAdminDisp object to change the streams

The CDriverAdminDisp object directs the

CModuleMgr to change the settings of the stream

settings.

‘corresponding to the handle.

First, the CModuleMgr locates the driver

corresponding to the driver handle. Next, it

requests the CSimpleDriver to change the settings

for the stream corresponding to the stream handle.

The CSimpleDriver searches for the stream

corresponding to the stream handle and directs it

to change its settings to those stored in the

XMC_STREAM;INFO structure.

directly comunicates with the stream component

The Csimplestream

64

walkp
Typewritten Text
64

63¢“

10

15

20

25

30

-65-

and directs it to change its settings to those in

the XMC_STREAM;INFO structure.

There are two different types of information

that may be queried from the driver administrator

32: the enumeration of all drivers registered, and

the driver information map. The motion control

componentig;~uses the driver enumeration when
selecting the set of drivers to use and control

during motion control operations. The driver

information map, on the other hand, is used by the

driver administrator CPL 38 to update the user-

interface display describing all drivers and

streams registered in the system. The following

discussion describes the process of querying for

both the driver enumeration and the driver

information map. Querying for the driver

enumeration occurs during thgrinitialization of
the motion control component 34a When

initializing, the componen€:§4-must know what
drivers to use when performing motion control

operations. The driver administrator 32 Component

is used for that very purpose. Querying the

driver enumeration just returns a pointer to the

IXMC_EnumDriver interface exposed by the driver

administrator 32 Component. FIG. 47 displays the

events that occur when using the interface to get

each driver in the enumeration. Using the

interface causes, the following steps ocggr.
First, the motion control componentN34

queries the driver administrator 32 Component for

the next driver. Next, the driver administrator

32 Component directs the CDriverAdminDisp to get

the next driver supported. The CDriverAdminDisp

65

walkp
Typewritten Text
65

 <97’

10

15

20

25

30

-55-

directs the CModu1eMgr to get the next driver.

The CModu1eMgr then directs the CSimpleDriver to

either return the CLSID or a pointer to the

IUnknown interface for the driver, depending on

If the

CSimpleDriver is requested to return a pointer to

the parameters of the enumeration.

the IUnknown interface, the interface is queried

from the driver component.

Another set of information that may be

queried from the driver administrator 32 consists

of the driver information map. This data is used

by the driver administrator CPL 38 when displaying

information describing the drivers and streams

As shown in FIG. 48,

when querying the system for the driver interface

registered in the system.

map, the following steps occur.

First, the driver administrator CPL 38

queries the driver administrator 32 Component for

the current driver information map. when queried,

the driver administrator component directs the

CDriverAdminDisp to create and load a

The CDriverAdminDisp

Next, the

CDriverAdminDisp passes the CDriverInfoMap to the

CDriverInfoMap class.

creates the CDriverInfoMap.

CModu1eMgr and directs it to load the information

map. The CModu1eMgr queries each driver

Each

CSimpleDriver communicates directly with the

registered for its internal information.

driver component and queries it for all pertinent

driver information. Next, the CModu1eMgr queries

each driver for a list of all streams registered

with the driver. Using the stream enumeration,

each'CSimpleDriver creates an array of

66

walkp
Typewritten Text
66

10

15

20

25

30

-57-

Csimplestream objects and returns the array to the

CModuleMgr.

array, the CModuleMgr queries for all pertinent

For each Csimplestream object in each

stream information. Each Csimplestream

communicates directly with the stream component

and queries it for all information describing the

stream.

After the driver adggnistrator CPL 38 or the
motion control component,%4-are finished using the

driver adggnistrator 32, they must release the
component5%+ to free any resources it was using.

FIG. 49 describes this process. when cleaning up

after a call to the Release method, the following

steps occur.

First, either the driver agministrator CPL 38
or the motion control componenth&4 must direct the

driver administrator 32-emponent to release

itself by calling its Release method. Next, the

driver administrator component directs the

CDriverAdminDisp object to free all resources used

The CDriverAdminDisp then directs

the CModuleMgr to free any resources that it is

in the system.

using. First, the CModuleMgr traces through all

CSimpleDriver objects, querying each for their

CLSID and enabled state.

is freed.

Next, each CSimpleDriver

Each CSimpleDriver object freed, frees

all arrays of Csimplestream objects registered

with it. When freed, each Csimplestream object

releases all interfaces that it was using from the

stream component. In its final clean-up, each

CSimpleDriver releases all interfaces that it was

using from the driver component. All CLSID and

67

walkp
Typewritten Text
67

-58-

enabled state information is stored persistently

in the registration database.

FIG. 50 depicts an interface map for the

driver administrator 32. Also, attached hereto as

Appendix G is a document that describes the actual

OLE Interfaces exposed, the definitions of the

data structures used when passing data around, and

the definitions of each class used internally by

the driver administrator 32 component.

68

walkp
Typewritten Text
68

10

15

20

25

30

-69-

VII. DRIVER ADMINISTRATOR CPL APPLET

This document describes the design of(E2fU"3?
driver administrator control panel appletA§8—+€P£+
that is used by the user to add, configure, and

remove both drivers 30 andagtream components 28
later used by the componenthaé-when directed to

carry out motion control operations. With regard

to design, there are three main types of "views"

used to look at how the control panel applet

works.

First, a module interaction map shown in FIG.

displays all main executable and user-interactable

items, or modules, that the CPL uses and interacts

with. For example, when a dialog is displayed by

the CPL executable, both the dialog and the CPL

modules are considered to interact with one

another. Technically, the dialog is not a module

since it is a figment displayed on the screen, but

none the less, module interaction maps classify

them as such since they are key destination points

for user-input.

Second, an object interaction map shown in

FIG. 52 displays all main objects making up the

modules described in the module interaction map.

Objects consist of the actual instances of C++

classes defining each object. All interactions

between the objects are drawn out in this

interaction map.

Finally, FIGS. 53-57 display a set of

scenario maps are drawn out using the object

interaction map as a basis. Scenario interaction-

maps describe the interactions taking place during

69

walkp
Typewritten Text
69

10

15

20

25

30

-70-

a specific operation. Initialization, Adding a

driver to the system, and Viewing the support

offered by a driver, are all examples of a

scenario interaction—map.

The design goals for the driver administrator

32 are the following:

1. User-Interface separation - Implement

all user—interface elements used to control

the driver administrator 32 Component.

2. Upgradable to OCX Client —

each driver and stream may implement all UI

elements with an OCX that then passes all

Eventually

input to the corresponding driver or stream.

The driver administrator CPL 38 must be

designed in a way that is easy to upgrade to

become an OCX client.

3. Provide Stream Independence - drivers 30

should not be required to use streams 28 in

order to operate. The design of the driver

administrator 32 must make amends to ensure

that it is not dependent on stream component

28 operations to operate.

4. Use Windows 95 UI — When ever possible,

Windows 95 UI elements should be used. For

example, Treeviews, ImageLists, Button Bars,

Tab Dialogs and any other UI elements should

be put to use to ensure a Windows 95 look-

and-feel.

The following discussion describes the module

interaction map for the control panel applet 38.
A module is defined as either an executable

binary, an external data file, or a main user-

70

walkp
Typewritten Text
70

10

15

20

25

30

752,

-71-

interface element used when interacting with the

user. FIG. 51 is a drawing of all modules that

interact with each other when running the driver

administrator control panel applet. _

The driver administrator CPL 38 is a control

panel applet. And, a control panel applet is a

special DLL that exports several functions

allowing the Windows Control Panel to communicate

with the applet.

The Driver Administrator Dialog is the main

dialog that appears when selecting the control

panel applet icon from the Windows Control Panel.

The Browse Dialog is used to query the user

for a filename. For example when adding a new

stream or driver, the driver administrator uses

this dialog to ask the user for the location of

the new driver or stream to add.

The View Support Dialog displays the support

provided by the selected driver 30. Each driver

may support a different set of extended

functionality. This dialog shows the user exactly

how much support is provided by each driver

allowing them to determine which functions within

their application may not operate when using the

driver.

Unlike the Module Interaction-Map described

above, the Object Interaction-Map shown in FIG. 52

describes how the actual instances of C++ objects

interact with one another within each module.

Other than showing that each dialog is

managed by the object, whose name is displayed in

the dialog, the main difference from the module

71

walkp
Typewritten Text
71

10

15

20

25

30

-72-

IA-map are both the CComCPL and CDriverAdmin C++

objects. Both objects are described below.

As the description of each dialog class is

fairly straight forward and very similar to the

dialog description above they will not be

described in this section. This section will

describe all other C++ objects.

The CComCPL is a C++ object that is generated

by the COMBuilder application from a template. It

is used to handle all Windows messages sent from

the Control Panel Application.

The CDriverAdmin object is used to drive,

control, and manage the use of the driver

administrator 32 Component. all OLE

2.0 interface management and data translation is

handled by this object.

translating data from a standard C++ format to a

raw format that is handled easily with the OLE 2.0

For example,

Data translation involves

data transfer mechanisms.

Scenario Interaction-Maps are almost

identical to object interaction-maps but they only

display the objects and interactions taking part

in a specific operation. Also,

is numbered by the sequence in which they occur

The following

each interaction

while the operation is running.

discussion describes several key operations that

occur while running the driver administrator CPL

38 Applet.

Initialization occurs when the user first

runs the CPL Applet.

other objects are initialized and several modules

During this process all

There are two steps that take place

First the

are loaded.

during the initialization process:

72

walkp
Typewritten Text
72

f7*_x‘

/

10

15

20

25

30

-73-

application is initialized, and second the dialog

is initialized with values queried from the driver

administrator 32 Gempenent.

sections describe each.

Initializing the application,

in FIG. 53,

run and the main dialog has not yet been

The following

which is shown

occurs when the application is first

displayed. when initializing the application, the

following steps occur.

Through a Windows message, Windows notifies

the CComCPL object that the Control Panel Applet

has just been loaded. CComCPL then loads the

CDriverAdminDialog and tells it to do any dialog

prepping before going modal. Next,

CDriverAdminDialog loads any settings stored in

the Registration Database. For example, the

current window position and active tab may be

stored in the database. CDriverAdminDialog then

Loads the CDriverAdmin class and directs it to

initialize itself. During initialization,

CDriverAdminDialog creates an instance of the

driver administrator 32 and queries all interfaces

that will be used.

Once the application is initialized, the

default settings to be displayed in the dialog

These values are set when the dialog

FIG.

During the process of

must be set.

is initialized, just before displaying it.

54 describes this process.

initializing the dialog, the following steps
occur.

During the dialog preparation that occurs

before the DoModal call, CDriverAdminDialog

queries the CDriverAdmin object for the driver

73

walkp
Typewritten Text
73

10

15

20

25

30

’74

enumeration to be used when setting initial values

to be displayed in the dialog box. CDriverAdmin

uses the driver administrator 32 Gempenent to

query for the driver information map, which is

then passed back to the CDriverAdminDialog. Once

receiving the driver information map, the

CDriverAdminDialog uses the information to update

all user-interface items related to either drivers

or streams.

Adding a driver to the system 22 can be

First, the module

Next, the

driver administrator 32 main dialog must update

broken down into two steps.

name must be added to the system.

itself to reflect the new driver just added.

Adding a driver occurs when the user presses

the "Add..." button on the driver administrator

32's main dialog. FIG. 55 describes this process.

When adding a new driver, the following steps

occur.

when adding a driver, first the user must

press the "Add..." button.

button, CDriverAdminDialog opens up the common

After pressing the

open file dialog. The user must enter in the

filename of the driver to add and close the

dialog. CDriverAdminDialog then passes the

filename to the CDriverAdmin object and calls the

RegisterDriver method passing in the name of the

CDriverAdmin then

passes the driver filename to the driver

administrator 32 Gempgment and directs it to

register the driver in the system 22.

module to register as a driver.

74

walkp
Typewritten Text
74

10

15

20

25

30

-75-

The process of updating the main dialog is

identical to the process of initializing the

dialog discussed above.

Similar to the process of adding a new

driver, removing a driver involves both removing

the driver from the system and then updating the

main dialog. Pressing the "Remove" button removes

a driver from the XMC software system. FIG. 56

describes this process. The following steps occur

when removing a driver.

To remove a driver, the user must first

select the "Remove" button. After pressing the

button, the selected driver or parent driver to

the selected stream will be removed.

CDriverAdminDialog passes the XMC_HDRIVER of the

driver to the CDriverAdmin and directs it to

remove the driver by calling its UnRegister

method. CDriverAdmin passes the XMC_HDRIVER to

the_driver administrator 32 Gbmpenene-and directs

it to UnRegister the driver.

The process of updating the main dialog is

identical to the process of initializing the

dialog discussed above.

Viewing Support involves viewing the level of

support implemented by the selected driver. FIG.

57 describes the process of providing this

information to the user via the View Support

Dialog. The following steps occur when viewing

the support provided by the driver.

First the user must select the "View Support"

button on the driver administrator main dialog.

When selected, CDriverAdminDialog queries

CDriverAdmin for the driver support information.

75

walkp
Typewritten Text
75

 7'7

10

-76-

CDriverAdmin passes the query on to the driver

administrator 32 component who actually fills out

the information. Once the queried information is

returned, the CDriverAdminDialog passes it on to

CViewSupportDialog. CViewSupportDialog

initializes itself using the driver support

information.

Attached hereto as Appendix H is a document

that describes the actual OLE Interfaces exposed,

the definitions of the data structures used when

passing data around, and the definitions of each

class used internally by the driver

administrator 32.

76

walkp
Typewritten Text
76

 78

10

15

20

25

30

-77-

VIII. DRIVER ADMINISTRATOR CPL APPLET

This section contains a description of the

driver administrator control panel applet 38.

When using the driver administrator 32 to

configure the motion control system, there are two

main items that the user will work with: drivers

and streams. Each driver 30 generates the

hardware specific, control codes that are then

sent to the selected stream component 28. Streams

facilitate the data transport layer between the

driver and the control-code destination.

Depending on the current hardware setup,

different streams may be used. For example, if

the hardware is connected to the PC Bus, a PC Bus

On the

other hand, if the hardware is connected through a

stream will be used to communicate to it.

serial cable to a serial I/O Port, the serial

stream will be used. Finally, all hardware

configurations may use the file stream. When

using the file stream, all control-codes are sent

to the specified file that can be downloaded to

the hardware at a later time.

This section describes both drivers and

streams, and how each is configured. This section

initially describes the driver items and all

property pages used to edit them. This section

also contains a description of the streams and

their property pages. Finally, this section

describes the about box containing details on the
Software.

The main purpose of each driver is to

generate the hardware—specific control-codes

77

walkp
Typewritten Text
77

4

KW

10

15

20

25

30

-78-

directing the hardware to carry out specific

motion control actions. For example, such actions

may include querying the hardware for the current

position or directing the hardware to move to a

predetermined location in the system. The

following discussion describes the property pages

used to configure each driver.

There are two types of properties affecting

each driver. First, a set of defaults may be set

that are used by the motion control component 34

as recommended values. The scaling and units used

are several example default values. In addition

to setting default values, if the driver supports

more advanced configuration, pressing the

Advanced... button will display a dialog box used

to set the driver configuration. For example, if

a driver does not support streams, the advanced

configuration dialog, provided by the driver, will

allow the user to set the I/O Port and IRQ

settings.

The properties affecting drivers 30 are as

follows.

Scaling - Setting the scaling property

affects the default scaling used on all axes

-within the motion control system. The range

(0.0, 1.0]. Default

setting may be overridden when programming

XMC by using the IXMC_StaticState interface.

for scaling values is

Units — Setting the units property

affects all coordinates used when programing

the system 22.

78

walkp
Typewritten Text
78

 80

10

15

20

25

30

-79-

The unit descriptions are as follows:

M_ENGLISH - Inches are used as the base

unit for all coordinates

MM;METRIC — Millimeters are used as the base

unit for all coordinates.

M_NATIVE - The native coordinates defined by

the hardware system are used. Coordinates

used to program XMC are mapped 1:1 to the

hardware coordinates.

Advanced... - Pressing this button will

display a dialog used to edit any advanced

properties for the driver that may be edited

by the user.

In addition to allowing the user to set

properties, each driver property page displays the

full names of both the hardware supported and the

hardware vendor who makes the hardware.

The buttons along the bottom of the windows

work with the selected driver or stream. The

following discussion describes each button and

what it does.

Pressing the Make Default button selects the

current driver to be the default. If a stream is

selected, its parent driver becomes the default

The default driggg is later used by the
motion control componentAaA_

button, displays the AddSelecting the Add...

Module dialog. This dialog is used to add new

driver.

drivers and streams to the system 22. Once

selected, the new driver or stream will be

displayed in the Driver tree view. When adding a

stream, the stream is added under the currently

selected driver. To enable the stream, you must

79

walkp
Typewritten Text
79

10

15

20

25

30

-30-

select the enable check box located in the streams

property page.

Selecting the Remove button, removes the

current driver or stream selected. If a driver is

removed all of its streams are also removed.

Selecting the View Support... button displays

a dialog used to view the level of XMC support

implemented by the driver. For example, all API

interfaces and subsequent methods are displayed.

If a lack of implementation within the driver

prohibits an API interface from operating, the

driver stub 36 is used. If the lack of

implementation within the driver 30 cannot be

replaced by operations within the driver stub 36,

the interface or method is disabled.

The following are descriptions of each

graphic found in the XMC Support View Dialog.

D — This graphic means that the interface or

_ method is implemented by the driver 30.

S — This graphic means that the interface or

method is implemented within the driver stub

36.

X - This graphic means that the interface or

method is disabled because of a lack of

implementation within the driver 30.

Like the properties page, a debug page is

also provided to set all debugging settings for

the driver. Each driver may specify that all API

calls used to control the driver are logged. The

logging settings only affect the current driver

selected. The Output field allows you to select

the output stream where all debug information is

80

walkp
Typewritten Text
80

10

15

20

25

30

-81..

when Streams is enabled, debug information

when Debug

Monitor is enabled, debug information is sent to

sent .

is sent to the specified text file.

the debug monitor if it is running. Using Enable

to enable a stream turns it on causing all debug

information generated to be sent to the stream.

More than one stream may be enabled at one time.

Stream Settings are available for each debug

stream supported. Text File allows the name of

the text file may be set. The Debug Monitor can

only be enabled and disabled.

A stream is the transport layer used by the

driver to pass data to the destination location.

The destination location may be the actual motion

Usually the

control language used by a hardware vendor is

control hardware or even a text file.

supported by several different flavors of their

motion control hardware. For example, some

vendors have both PC Bus based and Serial I/O

based motion control hardware that understand the

same control language. In such a case, the same

driver would be used for each hardware setup but

it would communicate with different streams

depending on the specific hardware setup.

Graphically, each stream is listed below each

driver that uses the stream.

This section describes the streams supported

by the system 22 and how they are configured.

The PC Bus stream sends all data directly to

a PC Bus based motion control hardware system by

writing to the specified I/O Ports and IRQ's

defined by the hardware. This section describes

81

walkp
Typewritten Text
81

10

15

20

25

30

-82-

both the properties and debug settings available

for the PC Bus Stream.

Stream properties only affect the currently

The user is required to select

such as the I/O Port and IRQ.

the PC Bus Stream

will not be able to communicate with the hardware.

selected stream.

certain settings,

Without setting these values,

The properties affecting PC Bus Streams are

described below.

The I/O Port is the base port used to

communicate with the motion control hardware that

the stream is to send data to.

The IRQ is the interrupt request level used

by the hardware.

Pressing the Advanced... button will display

a dialog allowing the user to edit more advanced

stream options. For example, if the stream

supports a Port I/O map that the user can edit,

the port map would be displayed in this dialog.

This button is only enabled for streams supporting

advanced features that the user may edit.

When debugging an application program it may

be useful to see what codes are actually sent to

the hardware. The Debug Settings page for streams

allows the user to enable and disable both the Cmd

The Cmd Stream is used to log

all command-codes sent to the hardware. If this

level of detail does not provide yeusw§§§.enough

When

enabled, the Bit Stream logs all values sent

and Bit Streams.

information, the Bit Stream may be used.

through each hardware port. All values read from

and written to each port used by the hardware are

logged. Note, when enabled, both streams may

82

/

walkp
Typewritten Text
82

 . L

/.

10

15

20

25

30

‘but less compatible,

-33-

significantly slow down the application

programming the motion control system.

Serial RS-232 Streams are used to send data

from the driver to motion control hardware

connected to the computer through the serial I/O

port. Both property and debug settings only

affect the selected Serial RS-232 Stream. The

following discussion describes the available

settings in each in detail.

All Serial RS-232 property settings must be

set by the user for they let the stream know what

I/O port and communication protocol to use when

communicating with the hardware. The properties

affecting Serial RS-232 Streams are as described

below.

The Port is the serial port that the hardware

is connected to. COM1 - COM4 are valid ports that

can be used.

The Baud Rate is the speed of data

transmission supported by the hardware.

when Hardware is selected a more efficient,

communication protocol is

used to communicate to the hardware. If errors

occur when this protocol is selected, use the

XON/XOFF communication protocol.

When the XON/XOFF comunication protocol is

selected a simple and more compatible

communication protocol is used.

Debug settings for the Serial RS-232 Stream

are very similar to those supported by the PC Bus

Stream. Serial RS~232 Streams only support

comand logging through the Cmd Stream and do not

support bit logging.

83

walkp
Typewritten Text
83

10

15

20

25

30

-84-

The Text File Stream is used to build

control-code programs for later use. Using this

stream facilitates running the XMC software in

code—generation—mode. No motion control actions

take place when running in this mode. Instead,

control-code programs may be built and stored to

file.

they may be downloaded to the motion control

Later, after programs are built and saved,

hardware and run. The following discussion

describes the property and debug settings for the

Text File Stream.

The main property set, when configuring a

Text File Stream, is the actual name and location

of the file to use. the stream is readyOnce set,

for use.

The following properties may be configured

for the Text File Stream:

Filename is the filename and location of the

file used to store all controlrcodes generated by

the driver 30 selected. Pressing the Browse...

button displays a dialog allowing you to

graphically select the location and filename to
use.

No debug settings are available for the Text

File Stream.

It should be clear from the foregoing that

the present invention may be embodied in other

specific forms without departing from the

essential characteristics thereof. The present

embodiments are therefore to be considered in all

respects as illustrative and not restrictive, the

scope of the invention being indicated by the

appended claims rather than by the foregoing

84

walkp
Typewritten Text
84

‘ ‘

-35-

description; all changes which come within the

meaning and range of equivalency of the claims are

therefore intended to be embraced therein.

85

walkp
Typewritten Text
85

..w

3......:.r'-‘' ’ . -' .. nu Pu r""‘¢”=n,r_"
‘:JIx-::':'.:“. =" '3

 XMC Motion control - System Interaction-Map

Paternal Computer Safiware 3 % 'g~=-" 3 L 2Z

24’ WE :_ sr-mm 01.5 mnmm 2

Driver Admln E_o cum" OLE N
4

I Excel Ap plxca

0

a ‘H

i

I , V'sual Basic App N CE * \ _

CH Appliation CC’ Motion Control *1 :
5 coco coooamn Iuuruu C°m:pE°"°::;,,_ D :—§" :-nu: .
. ,,,,,,,,,,,,,,,,,,,,,,, ,, ,, , '. , , . _. ,

. / 34' ;Iurnnawn 1
Q !

Srnndini OLE Inn-amen Cm ' '
Enooond Irnorfncu 01‘

Efltlldtd Ul llivflxo: C,__:

Motion Control ’

Driver Stub I

human Driver 3 9 ,’\\ ‘
, /

' / Iummown
V .3 V O

snnauu OLE mrnm - sr-no-ru 01.5 mrumu \ srnndolu OLE Inroma: C -.

Can mun»; ,. _ Motlon Control con /nzutuuii Motlon Control Eon Inmruuoj Moflon Control
Enomoaunonacu , Driver EmnooaInmraco:O_.' Driver EA1ondodIInI1on.rO_,: Driver '

Ezshnood Ullalonbcos , A Enondod Ul Inmracu OJ B ' Extondod u: tnrulhcu O__J c
cod: Gammon Inruhcu . D-Influx! A Language coda Gonor-‘on Inrun:no_l Naruu-are El lzronar E coda oonoraon Ilnnuu OJ H-we-2 C Ian:-vIu= '

°'°‘''’'"' : Vonoor spun: uunncu O_*‘ °°""""" Vondor spocnc lrttovbcu C ‘ °'"""'“ /

 ,_

Motion Con! rel
Text Flle
stream 30;

lunlrnovn lunknovm

V ‘P O
lSaumO_/MT‘ ISIIII V

Motion Control \' Motion Control 3PC Bus E Hardware c E
k

Motlon Control
PC Bus
Stream

 Z34 S*::::: "\—2,:’_k. "°E.::*.?.:';:”Cunmmulal Pmtncr-1 ‘ Cornrrunzalflc Mutual .
(‘NJ-L) for Miami: CIHAI.) I

 Controller B

Mechanical
System A = 5 1

I IMafion Control blofion Control

V DzviczA DzvictB

-Figure? XMC System Interaction-Map I g la

. .

i I
Man‘ on Control
Device C

F\G..l

86

ROY-G-BIV Corporation Confidential 5/30/95

walkp
Typewritten Text
86

Applications 2,’"“"°”’"

w °"°‘- ’j"'“'\“ "9" Driver

“Cw °°°‘ °”°’ I Administrator ;

lunknown

IXMC_UDnxSPI 5 I \

' Drivev Stub

Figure 1 Module Interaction-Map.

ROY-G-BIV Corporation Confidential 5/23/95

87

walkp
Typewritten Text
87

Figure} Object Interaction-Map.

F\C.

ROY-G-BN Corporation Confidential

3

5/23/95

88

walkp
Typewritten Text
88

XMC Motion Control - Motion Control Component Design Drawings

 ’

Ccmpntnisp

Figure-8 Scenario-Map - Initialization.

FL-:. 4.

ROY-G-BIV corporation Confidential 4

C222.‘ cu:

5/23/95

89

walkp
Typewritten Text
89

XMC Motion Control - Motion Control Component Design Drawings

.w.............“.\..............\.o..(.~“..\.“~.u...w..u~»

CCmpntDisp

~4 CDnverMgr

‘mm

. CDr erwith XMCSPI Ylble

ROY-G-BIV corporation Confidential 5

CUnItMapper

C23 C41) &

5/23/95

L3)

90

walkp
Typewritten Text
90

XMC Motion Control - Motion Control Component Design Drawings

ROY-G-BN corporation Confidential 5

CUnItMapper

5/23/95

91

walkp
Typewritten Text
91

XMC Motion control - Motion Control Component Design Drawings

CCmpntDisp

Figam-6* Scenario-Map — Unit Mapping.

F\C‘.. 7-

ROY-G-BIV Corporation Confidential 7

CUnItMapper

5/23/95

92

walkp
Typewritten Text
92

 XMC Motion Control - Motion Control Component Design Drawings

Ccmpntbisp

ROY-G-BIV Corporation Confidential 3

¥

5/23/95

93

walkp
Typewritten Text
93

XMC Motion Control - Motion Control component Design Drawings

[Unknown

0
CComponentObject _:\.~:~:~:<-:<:~:<»wc ‘

ICIassFactory

IDispatch .

IXMC_API_1 C

XMCAPI Intaface # 1

‘ . ' ..

. XMCAPI Inta1aoe #2
gym‘ '-

lXMC_APl_2

'verSPlTabl

' Methodlnfo 1

- Methodlnfo 2 Ttruct DRVECT_)mE'HOD_IN’PO
XMC_S UPPORTTYP E m_s t;
Cstring m_scz-Name;
LPFNDRVEXT m_pfnMethod;

Mothodlnfo n

F1"g‘ll'fB'9* Data—Map — CDriver class with X1/[CSPI table.

F\‘~~ '0

94

ROY-G-BIV Corporation confidential 9 5/23/95

walkp
Typewritten Text
94

XMC Motion Control - Driver Design

lunlmown

Component

_Eigu.ze.1- A/[odule Interaction-Azlap.

F16.

ROY-G-BW Corporation Confidential

I I

Driver

5/30/95

95

walkp
Typewritten Text
95

XMC Motion Control - Driver Design '

‘F-i'gu'rE'2 Object Interaction-Map.

FIG.

ROY-G-BIV Corporation Confidential

I2,

5/30/95

96

walkp
Typewritten Text
96

 XMC Motion Control - Driver Design 095

4Fig'tITE'3’ Scenario-Map — Registration.

(3\e.I3

CDriverDisp . CstreamMgr

-Figufe~4_Scenario-1\/lap - Initialization by DriverAdministrator.

‘[:\C. 14.

ROY-G-BIV Corporation Confidential 4

5/30/95

97

walkp
Typewritten Text
97

Cstreain Mgr CDriverDisp

<'FiguI'e'5 Scenario-Map - Adding a Stream.

Fléz. IS’

ROY-G-BN Corporation Confidential 5 5/30/95

98

walkp
Typewritten Text
98

XMC Motion Control - Driver Design

IXMC_xxxSPI

CDriverDisp CStrearnMgr

r‘FTg'l:l'I'E‘6 Scenario-Map - Query Operation.

LP.1G.. :@

ROY-G-BIV Corporation confidential 5

5/30/95

99

walkp
Typewritten Text
99

XMC Motion Control - Driver Design

CDIiverDlsp CStreainMgr E

.Figm'e-7 Scenario-Map - Clean-up by Driver Administrator.

FIG. z?

ROY-G-BW Corporation Confidential 7
5/30/95

100

walkp
Typewritten Text
100

XMC Motion Control - Driver Design

CDriverl?isp Cstream Mgr ;

CResponselJst

ROY-G-BW Corporation Confidential 3 5/30/95

101

walkp
Typewritten Text
101

 XMC Motion Control - Driver Design‘gs I Z l '4

F-ig-Hie-9-Scenario-Map - Command Operation;

F141‘?

ROY-G-BN Corporation Confidential 9

C’.I C1'3

5/30/95

55121

102

walkp
Typewritten Text
102

XMC Motion Control - Driver Design gs

Cstream Mg{

4Figu're-1-O'Scez1ario-Map — Clean-up by Component.

Fla. 2.0

ROY-G.-BIV Corporation ConfidentiaI 10 5/30/95

‘I03

walkp
Typewritten Text
103

XMC Motion Control - Driver Design

IUnknown

 . Sta

rxMc_nrvcore_szam:staze . 1 ‘ mmw-mama‘
- - - - - - -

[I-maize ‘nloflnrnnvodsunxpcflcmmodyr-nknzhafiwhnwahiu_ nth mdinneorual.
IXMC_DrvCore_DynamicSBte .

. - - - . ~»'rr.\-:9'vv.-a.wvo-:¢:>>:-:-:ocx~:-

IXMC_DrvCore_SPI_3 ;W,Csp, ,,,,moe ,3

 :-‘ea-:-:~'.-3.‘-c-:-:-:~:~>.x~>:ov.-.~¢:.*¢-:-2-. ~.~.~:-:-o:-:-:->o-:'.v.- -'e:"."3¢’."N“(.".‘."?‘N0¢r2€1.“".\ >-

. -. -.-.-.«.«.~.-.~.»..~a- -. -.-a. r .~.-.-. .~.~.-. --.~..-.-.-. -. %9§.'&! W&1flfiW:flR 1W&?K'

 /xMc_Drvcore‘_sPI_4 . wcsp, ,,,,e,me,,47‘

IXMC_DrvCore_$PI_n .

SH - Ertanlai Iricrfaca».

Enumstream
Lock
Enable- W»:-:¢ocov:¢c¢:-xvvxmwooom«-oowo«¢oxV-w:¢:ocra:<-:c<-:o«~:<<-:

)OMCSPI Intmhm #2:sv»o:o:cr . .19'3€-K'.\‘.9\?'.'390('\h. x-ex .

' XMCSPIln!a'faoe#3

IXMC_DrvExt_StreamMgmt .

IXMC_DrvExt_$PI_2 .

IXMC_DrvExt_SPI_3 .

 IXMC_DrvExt_SPI_n . - Csp, ,,,,,,e,,,
£9521 ' '\?.Q<!2¢%e<’J.<’t‘!>5‘,’«9.\‘>’x€:5y€99.¢:€$-.\‘c>&.

E39-I-IP94-1’ Interface-Map.

paazu

ROY-G-BN Corporation Confidential 11 5l30/95

‘I04

walkp
Typewritten Text
104

r. J . “S/<iw»:73e3“r 15%AH

XMC Motion Control - Stream Design Drawings

lunxnown
Q ./T‘

IXMC_uxAFlQ_J Driver \EAdministrator

\

_\ \

IxMc_uxsPr .

IXMc_xxxUDSPI .

105

ROY-G-BIV corporation Confidential 2 5/22/95

walkp
Typewritten Text
105

C21 C11)\ rib \4Jpn a£>a

XMC Motion Control - stream Design Drawings

IXMC_xxxUDSPI

Hafiwz
s-u.s\~.w.~.-.av.-As‘<1.v.-.-.s-.-.sxxx-.-.\~.~.-.-.-.~v.-.-.s.~.~.-.-.-.-.u.~.ss-.-.-s-.-.\-.-.-.sj!-Ms-.-x-n~.~.-.-v.-. -.-sxx-.-s~.-.s-sx~.-.x-.-nus.“-.s~.~.»-.-.-.~.~.-.~.s~.~.\~.s .~.-\.-.~.-.-.-.-‘J V V

Hgure'2-Object IA —Map.

F1423

‘I06.

ROY-G-BN Corporation Confidential 3 5/22/95

walkp
Typewritten Text
106

C ' . as/4:5‘9&7‘: “xx38

XMC Motion Control - Stream Design Drawings

Illlffifi

IXND_xxx UDSPI

-Figure-4 Scenario-Map — Initialization

Flc. 2> 107

 ROY-G-BIV Corporation Confidential 5/22/95

walkp
Typewritten Text
107

\ . .

XMC Motion Control - Stream Design Drawings .7

IXMC_xuUDSP!

CReg1stfyMgrCStreamDIsp :

Figure-9 Scenario-Map - Setup

7-‘ (CL. LL»

rfigure-6 Scenario-Map - CIean—up

FIG. 27- 108

ROY-G-BN Corporation Confidential 5 5/22/95

walkp
Typewritten Text
108

c::9 CID\
'r
5':‘.-.-J1 .91":' N; it t

XMC Motion Control - Stream Design Drawings

IXMC_xxxUDSPI

.Eigu-rev? Scenario-Map - Initialization

FIG. 2?

‘I09
 T?_j

ROY-G-BN Corporation Confidential 6 5/22/95

walkp
Typewritten Text
109

XMC Motion Control - Stream Design Drawings

IXMC_xxxUDSPl .

jig»-re-8 Scenario-Map - Opening the Stream

|:10..Z‘i

ROY-G-BW corporation confidential

5/22/95
110

walkp
Typewritten Text
110

%/@5@73%.-.v 4-

 XMC Motion Control - Stream Design Drawings

IXMC_.uxUDSPI

.-Figures Scenario-Map - Writing Data.

FIG. 30

111

ROY-G-BIV Corporation Confidential 8 5/22/95

walkp
Typewritten Text
111

XMC Motion Control - stream Design Drawings

jiguleflfl Scenario-Map - Reading Data.

FIG, 31

112
_

ROY-G-BIV Corporation Confidential 9 5/22/95

walkp
Typewritten Text
112

C‘.:3 Cf.)\ Erfl 9?: T53t, Gr’?

 XMC Motion control - Stream Design Drawings

«Figured-+ Scenario-Map - Clean-up.

Fm. 31

 1 13
ROY-G-BN Corporation Confidential 10 5/22/95

walkp
Typewritten Text
113

E9./€:5s’§§?3sS

 XMC Motion Control - Stream Design Drawings

IUnknown

O

CStreamObject

ICIassFactory

I SP1 - Un.Doalma1t¢d,, -.-. . . .

’ R d I E bl d
IXMC_$tream . M2,-‘:9 $.31“ e

1‘ Enable

. Initialize Createstrearfi

IXMC_StreamInIt O_{ open 3,3,
_ Close Setup 5

.EigHIfl—1-2 Interface-Map.

Fla. 33

11 5/22/95ROY-G-BIV Corporation Confidential

114

walkp
Typewritten Text
114

 XMC Motion control - Driver stub Design Drawings

I)G4C_.uxAF'i

u
\

\ Iunknown
J’ OIXMC_xxxSFI I \-A
C1 Driver Stub _________________________ _A

/‘*‘

‘Figure? Module Interaction-Map.

FIG. 34

Iunknown
O

.IXMC_D'vExi_xxx$Pl
Driver Stub

C rIver§lubDis

4%

- csi pleDnver

Figure-2 Object Interaction-Map.

F161. 35'

ROY-G-BIV Corporation Confidential 2

5/23/95

‘I15

walkp
Typewritten Text
115

V

XMC Motion Control - Driver Stub Design Drawings

Fig-u-re-3 Scenario-Map — Initialization.

FIG- 36

ROY-G-BN Corporation Confidential

5/23/95

116

walkp
Typewritten Text
116

XMC Motion Control - Driver Stub Design Drawings

5-ig.ur£.6 Scenario-Map - Operations.

r:1c:..';?—

ROY-G-BIV Corporation Confidential 5/23/95
 117

walkp
Typewritten Text
117

XMC Motion Controi - Driver Stub Design Drawings

omc_ow£x:_uxsr=:.
Dliver Stub

lCIassFactory .

Stub Specific Interface:.-.-. ..-.-.. '

§ RegisterDriverUnRegisterDrrverIxMc_Drvsrub .

SP1 - Enzndzd lnla'fa::z.\'
5 ..-. ..«....-. Av.-

’xMC_D’VE*'7_5P’_7 I XMCSPI Interface #1zegcazzeez-£922 .-

XMCSPI Inteface #2lXMC_DrvExt_SPI_2 .
'2:

’xMC_D’VE’“..$P’_" O . XSPlInterface#n‘

Figure? Interface-Map.

FIG. 39

‘I18

ROY-G-BN Corporation Confidential 5 5/23/95

walkp
Typewritten Text
118

.> .\

 XMC Motion Control - Driver Administrator Design Drawings

ImC_UDxxxSPI ' _ -----------------------__

Administrator

'mc-mm ‘ Component

-Fig'u1‘E‘l"Module Interaction-Map. '

P16. 40

119

ROY-G-BIV Corporation Confidential 2 5/23/95

walkp
Typewritten Text
119

XMC Motion Control - Driver Administrator Design Drawings

CMod eMgr

 ~‘ H = as’

cSimpleDrIver ‘ gA

 §
D - " §:.@~z!-

A

Figure? Object Interaction-Map.

FIG. 4:

‘I20

ROY-G-BN Corporation Confidential 3 5/23/95

walkp
Typewritten Text
120

 XMC Motion control - Driver Administrator Design Drawings

Dtiver
Administrator

CModu1eMgr

CSimpIeDriver

4 CSi_mpIeDriver ''
CSimp|eDriver "

‘Fig-m-e-3» Scenario-Map - Initialization.

F[C.4-L

ROY-G-BN Corporation Confidential 4

5/23/95
121

walkp
Typewritten Text
121

WW Wt: ';‘\.YL23 CI‘?. FIQ/~ uu

Driver

Administrator

DriverA minDisp ‘

‘ CModuIeMgr

CSimp|eDriver

EJ913731!’ Scenario-Map - Registering a Driver.

Fm. %
43

122

ROY-G-BIV Corporation Confidential 5 5/23/95

walkp
Typewritten Text
122

0 flqé5?3§5

CMoguIeMgr

 Csimpl - StreamCSimpIeDriver

«F-ig'u'I'e"5 Scenan'o—Map — Registering a Stream.

Fm. 44

‘I23

ROY-G-BIV Corporation Confidential 5 5/23/95

walkp
Typewritten Text
123

. “'“‘/UU

 XMC Motion control - Driver Administrator Design Drawings

I riverAdmin CPL

mum !

PD"_"bW V \ IunknownIXMC_xxxAPl

Driver
Administrator

CModuIeMgr

Csimplebriver ‘

Hgu'l'e"O‘Scenario-Map - Setting Driver Information.

F1049

‘I24

ROY-G-BIV Corporation Confidential 7 5/23/95

walkp
Typewritten Text
124

C » Q

XMC Motion Control - Driver Administrator Design Drawings

 Driver
Administrator

CModuIeMgr

Figure‘! Scenario-Map - Setting Stream Information.

FICM4-4»

125

ROY-G-BN Corporation Confidential 3 5/23/95

walkp
Typewritten Text
125

. . uu ‘,«,;t;f"

XMC Motion Control - Driver Administrator Design Drawings

Driver

Administrator

CMorluleMgr

; CSImpleDr|ver

CSimpleDriver

CSimp|eDriver "

Figuio-3 Scenario-Map - Querying the Driver Enumeration.

P(c;.4a&

47»

‘I26

ROY-G-BIV Corporation Confidential 9 5/23/95

walkp
Typewritten Text
126

c::3 :10 N *3:-7J‘ . LL51 ’1. -«.2

XMC Motion Control - Driver Administrator Design Drawings

Driver
Administrator 2;

Figure? Scenario-Map - Querying the Driver Info A/lap.

FM. 48

127

ROY-G-BIV Corporation Confidential 1° 5/23/95

walkp
Typewritten Text
127

usr, _,.r“‘:. ..\. ._...I é. -~ .-_ ,5 ' . ‘‘U5 +'.“.'}"*.; 6' V.a*‘s~.'d

XMC Motion Control - Driver Administrator Design Drawings

 IUn|mown

<2
Driver

Administrator

csimplestram
Csimplebriver ‘ = csimplestr/eamz
CSimpieDriver

Sign!-ed-O Scenario-Map - Clean-up. F I C 49
IUnknown

CDriverAdministrator0bjecI:32-
ICIassFactory .

IDispatch .

Spedfic Standard InIerface:
3‘-. :- . ~ +.-:-.~‘r--

D9"C_E"UmD’7V°’ O . StandaIr1IEnumXOLE2.0In!eIface

' pnrunnnn act-uni-to whdhor abjaa nuriwbtad is a Strum or Dnvar.

ln"c_DriVerAdmi” C UnRegister EnumDriverSetup Enumlmerfacesupport GetDn'verlnfoMapw«wu«-uu:«mm;:-:¢¢wm«mmwmMmm mm. - - -

- . .->_\:<~v.\:«oauyxccx-oa:eoo>c¢u-x<uaooe<\\a:.o:~A~3xoa<aa.4~oox2»w-xwot

. . - EnableLogging EnableDiagnosticTesting ‘ E""°”-999""9- 5“‘°W"W- ""7 L“-°W"V°" “'°'* °" ""- °_"°- ‘"4
IXMC_DnverAdm1nDebug . Se,,_o9gi,,9S,,ea,,, lsniagnosfiflesxmgon 5.4;:13‘-Ia. A n-mn-n-rmcno-s rm rm enoconu on much no

. isLogging0n

_Eig.uro-1.1- Interface-Map.

128

ROY-G-BIV Corporation Confidential 11 5/23/95

walkp
Typewritten Text
128

/ Q Q as/&5@*73fi

XMC Motion control - Driver Administrator Design 5.0 Reference

Administrator

4F'ig'uf'e'1'ModuIe IA-Map.

F|c_ S"!

Jgmiamzzffi.

AD v(r,pDrn-tr o
lmzmm..- . IUr*--

 Z,

zgn vrr, ;‘z‘l;r-rvrrlziwo

Pig'u're'2*0bjec1 L4-Map.

FIG. fl

129

ROY-G-BN Corporation Confidential 2 5/23/95

walkp
Typewritten Text
129

 XMC Motion Control - Driver Administratot Design 5.0 Reference

Windows
4Plg'lJ'I'E'3 Im'tiaIizing the Application.

F‘\G.$-3

559000-6 Adding a Driver.

F|4.SS"

 ejROY-G—BN Corporation Confidential 5/23/95

130

walkp
Typewritten Text
130

0

XMC Motion Control - Driver Administrator Design

ROY-G-BN Corporation Confidential

 5.0 Reference

5/23/95

131

walkp
Typewritten Text
131

,gLfiad w/E><¢i;bI’IE*> Irma;

HUGHES, MULTER 8: SCHACHT. P.s.

fig

PATENT APPLICATION

 'ON'IVlH3S lNVOI'IddV

DOCKET NO.

UTILITY y COUNTRY DIVISION

CLIENT CIP

REISSUE D PCT CONTINUATION

APPLICANT I%\’0 BV<9V‘I‘/I 5
5

TITLE ,M£7I'\'0I/\ 5l39JC‘:!AA 3

SERIAL No. Q¢Q_Y,Z2é_ ART uNIT _____._ EXAMINER FlLED~§é D ,19 25’PRIORITY

FOREIGN FILINGS <5[50[q (3 (D315@
ORIGIN $ 03/‘£59’, 736

OFFICE AcTIoNs RESPONSES rE:
J’/WPAQ aéailzl 5

éiE/VLF’? dag.

 ‘ON.I.N3.LVd

ISSUE FEE DUE I/[I Xi’? ISSUE FEE PAID ‘ill :93’
ALLOWED ;‘7£,A./.[9_z:'; PATENTNo DATE I ,19 9 Z EXPIRES
I ASSIGNMENT u.s. ANNuITIEs

DATED (Q1222/E
ASSIGNOR (I Iflfizm :1: I 4TH YEAR ‘I #:?A3|fiD/0/
ASSIGNEE Kw - G ' C950
ADDRESS V v 8TH YEAR 5 ILI‘ Q5
INTEREST

RECORDED REEL ZEZQ FRAME Qzfifi TZTHYEAR
L J. COWIE CO‘ INC HOCKVILLE. MARvLANr)——(3oI) 424 A950 1

5*’/f/80(WdMw
W.‘W755

walkp
Typewritten Text
132

PLEASE DATE STAMP AND RETURN TO ACKNOWLEDGE RECEIPT
IN THE U.S. PATENT & TRADEMARK OFFICE IN RE:

NEW INCOMPLETE PATENT APPLICATION

Applicants: DAVID W. BROWN and JAY 8»
Docket No. P2966

Title: MOTION CONTROL SYSTEMS izf ¥
Enc: Specification and Claims (97 p %s£fm

Appendices A—H) ,
Forty—six (46) sheets informal df %$n;§
Unsigned Declaration and Power of Kftorney
Unsigned Small Entity Status Form

——Indep. Inventor

Letter requesting treatment pder 37 CFR 1.53
Transmittal Letter in duplicate
Letter of Express Mail No. EG15@680122US
Check #4132 for $409 filing fee

MRS:gjn Mailed: gayflgghjlsgé
- W "if «°"{"«i‘“;:%UU/ » "’

2~§‘;.§G§~~iE€5,, MULTER & :’3€3§~§.£%f§§rE"”E

‘é’2‘;?;fl lows

Beéiingham, WA ?38§%26,/ »S

133

walkp
Typewritten Text
133

ROBERT B. HUGHES
RICHARD D. MULTER

LAW OFFICES OF

HUGHES, MULTER &: SCHACHT, P.S.
A PROFESSIONAL SERVICE CORPORATION

l47|I N.E. 29TH PLACE I720 IOWA STREET PATENT, TRADEMARK,

WCHAEL R. SCHACHT SUITE 245 BELI.INGHA.M. WA QB226»4702 c2PL‘::'g:1T";:wBELLEVUE. WA 98007-7666 (360) 647-I 296 (BHM.)

- 453-570: (360) 958-206! (SUMAS) REPLY To

8|-5878 (206) 447-9172 (SEAJ BELLINGHAM
FAX: (360) 67l-2489 Qpmcg

May 30, 1995 7 PATENT

Commissioner of Patents and Trademarks
U.S. Patent & Trademark Office

Washington, D.C. 20231

SUBJECT: New U.S. Patent Application
Inventors: DAVID W. BROWN and JAY S. CLARK

Docket No.: P2966

Title: MOTION CONTROL SYSTEMS

Express Mail Label EG150680122US

Date of Deposit: May 30, 1995

Dear Sir:

The captioned application, a copy of which is attached, is being
filed pursuant to the provisions of 37 CFR 1.53(b), (d); the

nature of the incompletion being the unavailability of the
inventors to execute the accompanying declaration. In accordance

with the revisions of 37 CFR 1.10, we ask that this application
be accorded an effective filing date of even date herewith

notwithstanding the fact. We look forward to return receipt, in
due course, of the Patent Office notification of incompletion, at

which time we will submit the completed declaration of the
inventors.

Respectfully submitted,

gzr Z49] .
Michael R. Schacht, Reg. No. 33,550

Hughes, Multer & Schacht, P.S.
1720 Iowa Street

Bellingham, WA 98226
(360) 647-1296

Fax: (360) 671-2489

134

walkp
Typewritten Text
134

Q‘
LAW OFFICES OF

HUGHES, MULTER & SCHACHT, P.S.
A PROFESSIONAL SERVICE CORPORATION

ROBERT B. HUGHES
RICHARD D. MULTER

MICHAEL R. SCFIIACHT _, . *'~ 'V " ‘,

I47I| N.E. 291':-4 PLACE
SUITE 245

1;LLEvUrr. WA 98007-7666

I720 IOWA STREET

BELI.INGKAM. WA 98226-4702
(360) 647-! 296 (BHM.)

‘ ,_. £206) 453-570: (360) 988-206| (SUMAS)

o

’FA7$Z (206) 33I‘5378 (206) 447-9|72 (SEAJ
i FAX1(360) 67I-2489

30 ,5
19» = * ’\-- C

May 30, i9 ’..

Commissioner of Patents and Trademarks

U.S. Patent and Trademark Office

Washington, D.C. 20231

Sir:

Transmitted herewith for filing is the incomplete patent
application in re:

Inventors: DAVID W. BROWN and JAY S. CLARK

For: MOTION CONTROL SYSTEMS

Attorneys’ Docket No.: P2966

Date of Deposit: May 30, 1995

“Express Mail" mailing label number: EG150680122US

I hereby certify that this application is being deposite
United States Postal Service "Express Mail Post Office t
Addressee" service under 37 CFR 1.10 on the date indicat

and is addressed to the Commissioner of Patents and Trad

United States Patent and Trademark Office, Washington, D

Gloria J. N ms

Secretary

PLEASE GIVE THIS APPLICATION THE FILING DATE OF MAY 30,

PATENT, TRADEMARK,
COPYRIGHT LAW

5- LITIGATION

REPLY TO

BEEUNGHAMOFFICE

PATENT

d with the
0

ed above

emarks,
.C. 20231.

1995.

135

walkp
Typewritten Text
135

.

, Jv . . ~ .\
V ;-\ 1 '

., » , M/QEQVBS
\ ‘ . 1 -

Commissioner of Pa§ents and Trademarks \ , ‘May 30, 1995
U.S. Patent and Trademarhwaffice Attorneys’ Docket No. P2966

Washington, D.C. 2O2%%A»RC%%9 Express Mail Label No. EG150680122US§

on: K

Transmitted herewith%for“f”l£§g is an in omplete patent application in
re‘ ¢.7I?;‘.DEf_3‘V‘$/_0’0' '
Applicants: DAVID W. BROWN and JAY S. CLARK

Title: MOTION CONTROL SYSTEMS

1. Enclosed are:

a) Specification, claims, abstract, and appendices (85 pgs. of
description, 11 pgs. of claims, 1 pg. abstract, and
Appendices A—H;

b) Forty—six (46) sheets of informal drawings;

c) Unexecuted combined Declaration and Power of Attorney;

d) Unexecuted declaration claiming Small Entity
Status——Independent Inventor;

e) Letter requesting treatment under 37 CFR 1.10, Express Mail
Filing Date, Label No. EG150680122US; ‘

f) Letter requesting treatment under 37 CFR 1.53(b), (d);

g) A check in the amount of $fiQz?for Filing Fee; and

h) A stamped return receipt postcard.

2. The filing fee has been calculated as shown below:

Col. 1 Col. 2 SMALL ENTITY
Number Number
Filed Extra’ Rate Fee

Basic
Fee 365

Total

Claims 24 — 20 = 4 X 11= 44

Indep.
Claims 3 — 3 = 0 X 38=

Multiple Dependent
Claim Presented +120=

TOTAL $409

3. The Commissioner is hereby authorized to charge payment of the
following fees associated with this communication and during the
pendency of this application, or credit any overpayment to Account
No. 08-3260. A duplicate copy of this sheet is enclosed.

X Any additional filing fees under 37 CFR 1.16 for the
. presentation of extra claims.

X Any patent application processing fees under 37 CFR 1.17.

bgchael 3,. Schacht, Reg. No. 33 550
HUGHES MUL & SCHACHT, P; .

1720 Iowa St., Bellingham, WA 98226
(360) 647-1296
Fax: (360) 671-2489

136

walkp
Typewritten Text
136

fr‘; . Page 1 of 2

UNITED STATES PATENT AND 'l._-AIDEMARI»: OFFICE COMMISSIONER FOR F'ATEN'i'5
UNITED STATES PATENT AND TRADEMARK OFFICE

' -,,,ms|_‘,,.~-‘ wasnuuc-rou. D.(:. 202.3:

10/021,559 12/10/2001 2121 370 P213975 64 10 1

CONFIRMATION N0. 5760

FILING RECEIPT

Michaei R. Schacht

2,0, ,,e,,,.m S,” We 2,2 IlllllllllllllllllllllIlllllllfltllllIllllIlllllllllllllllllllllllIllllIlllllllllll
Bellingham, WA 98225-2412

Date Mailed: 01/11/2002

Receipt is acknowledged of this nonprovisional Patent Application. It will be considered in its order and you will be
notified as to the results of the examination. Be sure to provide the U.S. APPLICATION NUMBER, FILING DATE,

NAME OF APPLICANT, and TITLE OF INVENTION when inquiring about this application. Fees transmitted by
check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an
error is noted on this Filing Receipt, please write to the Office of Initial Patent Examination's Customer

Service Center. Please provide a copy of this Filing Receipt with the changes noted thereon. If you

received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing
Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will

generate another Filing Receipt incorporating the requested corrections (if appropriate).

Applicant(s)

David W. Brown, Bingen, WA;
Jay S. Clark, Bingen, WA;

Domestic Priority data as claimed by applicant

THIS APPLICATION IS A CON OF O9/191,981 It/13/1998

WHICH IS A CON OF D8/656,421 U5/30/1996 PAT 5,867,385

WHICH IS A ClP- OF 08/454,736 05/30/1995 PAT 5,691,897

Foreign Applications

If Required, Foreign Filing License Granted 0‘I/‘I ‘I/2002

Projected Publication Date: Request for Non-Publication Acknowledged

Non-Publication Request: Yes

Early Publication Request: No

** SMALL ENTITY **

Titie

Motion control systems
Preliminary Class

walkp
Typewritten Text
137

T X" I I A Page2of2

700

w pmm«¢q¢¢¢mm¢mgmmmmm;.mnmmmwWMwwmm,.m,m.. m~.m«q.w,gq.u.u,.~mmmm-«-,,~y«mm«»mm~—————wuu—znm--1-yaw-%@ —~—~mm—em..»m«m

LICENSE I=c;:,._ FOREIGN FILING UNDER

Title 35, United States Code, Section 184

, Title 37, Cod_e of Federal Regulations, 5.11‘ a 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184," ifthe phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless of whether or not a license may be required as

set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted
under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof
unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR

1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject
matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the
national security or the export of technical data. Licensees should apprise themselves of current regulations
especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls,
Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Office of
Export Administration, Department of Commerce (15 CFR 370.10 0)); the Office of Foreign Assets Control,
Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "lF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR
5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months

has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy
order under 35 U.S.C. 181, the licensee may foreign tile the application pursuant to 37' CFR 5.15(b).

‘I38

walkp
Typewritten Text
138

'970/

. . Patent and Trademark Office

 Address: GJMMISSIONER OF PATHWS AND THAEEMAR‘gm. 6'I VV_ashingt:Dn. DC. 20231 , _

as/30/95 Il<Rx_wlli! I) 1" '

El .1".-? /‘ I’: 7‘.
MICHAEL R- SDHACHT
HUGHES MULTER m SEHAEHT
r72u TUNA syn
BELLINGHAM we 3 I'_r I] u I‘)one MAILED:

NOTICE TO FILE MISSING PARTS OF APPLICATION :1: '7 z 1 r -‘,~_I.
~ FILING DATE GRANTED

An Application Number and Filing Date have been assigned to this application. However, the items indicated
below are The required items and fees identified below must be timely submitted ALONG WITH
THE , PAYMENT OF A SURCHARGE for items 1 and 3-6 only of for large entities or
$L_'_J__'_(lL)_ for small entities who have filed a verified statement claiming such status. The surcharge is set forth in
37 CFR l.16(e). ,

If all required items on this form are filed within the period set below, the amount owed by applicant as a-Myentity, Cl small entity (verified statement filed), is 7 1‘ v 7 . .

Applicant is given ONE MONTE FROM THE DATE OF THIS LE'l'l'ER, OR TWO MONTHS FROM THE
FILING DATE ofthis application, WBICIIEVER [S LATER, within which to file all required items and pay any fees
required above to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the
extension fee under the provisions of 37 CFR 1.136(3).

1. CI The statutory basic filing fee is: D missing D insuficient. Applicant as a Cl large entity [3 small
entity, must submit $ to complete the basic filing fee.

2. E] Additional claim.(ees of $ as a D large entity, El small entity, including any
required mul '3 e dependent claim fee, are required. Applicant must submit the additional claim
fees or the additional claims for which fees are due.

3. CI The oath or declaration:
C] is
C] does not cover the newly submitted items.

An oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above
Application Number and Filing Date is required.

4. El The oath or declaration does not identify the application to which it applies. An oath or declaration
in compliance with 37 CFR 1.63, identifying the application by the above Application Number and
Filing Date, is required.

 esignature(s) to the oath or dxlaration is/are: ' sing; D by a person other than the inventoror a person qualified under 37 CFR 1.42, 1.43, or 1.47. A properly signed oath or declaration in
compliance with 37 CFR 1.63, identifying the application by the above Application Number and
Filing Date, is required.

6. El The signature of the following joint inventor(s) is missing from the oath or declaration:

An oath or declaration listing the names of all inventors and signed by
the omitted inventor(s), identifying this application by the above Application Number and Filing
Date, is required.

7. CI The application was filed in a language other than English. Applicant must file a verified English
translation of the application and a fee of $ under 37 CFR 1.17(k), unless this fee has
already been paid.

8. C] A $
(37 CFR 1.21(m)).

processing fee is required since your check was returned without payment.

9. C] Your filing receipt was mailed in error because your check was returned without payment.

10. D The application does not comply with the Sequence RM CofiPl¥ with
Sequéiee Rules 3'7 CFR 1-821-1-325 ' 320 rm os/14/95 OB-SSW}:

l 205 65.00 CII !
11.U Other.

Direct the response to liox Missing Part and refer any questions Erthe Customer Service Center
at (703) 308-1202. ‘

A copy ofthis notice -MUST be returned with the response.

,

___ If Ul\ll'I'ED STAT! _ ...EPARTMEI\lT OF COMMERC%

‘I39

walkp
Typewritten Text
139

4/

Applicant: BROWN ET AL.) Docket No.:

) P2966

Serial No.: 08/454,736)

) Application

Filed: 05/30/95) Branch
)

Title: MOTION CONTROL SYSTEMS)

SUBMISSION OF LATE DECLARATION AND SURCHARGE

Commissioner of Patents and Trademarks

U.S. Patent And Trademark Office

Washington, D.C. 20231

APPLICATION PROCESSING DIVISION ‘
SPECIAL PROCESSING & CORRESPONDENCE BRANCH

ATTENTION:

Sir:

In response to the "NOTICE TO FILE MISSING PARTS OF

APPLICATION - FILING DATE GRANTED" mailed July 12, 1995,

and stating that the Oath or Declaration to the

(Copy

enclosed)

above—identified application was missing, enclosed herewith is

a Combined Declaration and Power of Attorney, Verified

Statements Claiming Small Entity Status —— Independent

A check for the $65.00

It is believed that no other fee

Inventor and Small Business Concern.

surcharge fee is enclosed.

is due at this time to maintain this application in full force

and effect, however, if any such fee is due, please charge it

to Deposit Account No. 08-3260.

#3

140

walkp
Typewritten Text
140

“ ' ‘ ' .

Signed at Bellingham, County of Whatcom, State of

Washington, this 25th day of July, 1995.

Respectfully submitted,

BROWN ET AL.

By: Zzflgaégggg 41g f;;¢:¢*f4Z$"
Michael R. Schacht, Reg. No. 33,550
HUGHES, MULTER & SCHACHT, P.S.
1720 Iowa Street

Bellingham, WA 98226
(360) 647-1296

CERTIFICATE OF IIAILIHG (37 CH! 1.83}

|lnerabyoafifyflsatfl1is_papa(alongmaaaypapemfenndmnhd1mfladcédu
mmmbuwmmmmmumuummmamanmmwmmumuwmmmh

3::mmmgruuammwmmmhmmummmwmmmmmnunamn

141

walkp
Typewritten Text
141

PA TENT

Attorney's Docket No. P29 6 6

‘mam or Patemee. DAVID w. BROWN and JAY s . CLARK
Serial or Patent No.: 08 / 4 54 7 3 6

l‘-’iIedorlssued: Ma 30 1995

For MOTION CONTROL SYSTEMS

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR l.9(f) and l.27(b))—INDEPENDENT INVENTOR

As a below named inventor. I hereby declare that I qualify as an independem inventor as
defined in 37 CFR 1.9(c) for purposes of paying reduced fees under Section 41(a) and (b)
of Title 35. United States Code. to the Patent and Trademark Office with regard to the in-
yenfion gnfifled MOTION CONTROL SYSTEMS

described in

Q the specification filed herewith.

Q application serial no. 0 3/ 47 3 6 . filed _L_;___Ma30 199 5 .
. issued

D patent no.

I have not assigned. granted. conveyed or licensed and am under no obligation under cpn—
tract or law to assign, grant. convey or license. any rights in the invention to any person
who could not be classified as an independent inventor under 37 CFFI 1.9(c) it that person
had made the invention. or to any concern which would not qualify as a small business con-
cern under 37 CFFI 1.9(d) or a nonprofit organization under 37 CPR 1 .9(e).

Each person. concern or organization to which I have assigned. granted. conveyed. or ii-
censed or am under an obligation under contract or law to assign, grant. convey. or license

any rights in the invention is listed below:

no such person. concern. or organization
I._..

ffi persons. concerns or organizations listed below‘
"NOTE: Senarara verified smrements are reduced from eam named person. concern or organzapon navvng

rights to the invention evening to meir status as small enmes. (37 CFR 1.27).

FULL NAME ROY—G—BIV Corgoration

ADDRESS 150 East Jewett Blvd.
White Salmon WA 98672

_ INDIVIDUAL X SMALL BUSINESS CONCERN : NONPROFIT ORGANIZATION

FULL NAME _?::

ADDRESS

: NONPROFIT ORGANIZATION-'. INDIVIDUAL _' SMALL BUSINESS CONCERN

FULL NAME __?___

ADDRESS?

‘ INDIVIDUAL : SMALL BUSINESS CONCERN NONPFIOFIT ORGANIZATION
__

I acxnpwledge the duty to file. in this application or patent. notification of any cnange in sta-
tus resulting in loss of entitlement to small entity status onor to paying. or at the time of pay-

(SmalI Entity—lndependent Inventor [7-1]—page 1 of 2)

142

walkp
Typewritten Text
142

application. any patent issuing thereon. or any patent to which this verified statement is di-

. .

‘Hi. .,.»

mg. the earliest of the issue fee or any maintenance fee due after the date on which status
as a small entity IS no longer appropriate. (37 CPR 1.28(b))_

I hereby declare that all statements made herein of my own knowledge are true and that all
statements made on inion-nation and belief are oelieved to be true: and further that these
statements were made with the knowledge that willful false statements and the like so
made are punishable by fine or imprisonment. or both. under Section 1001 of Title 18 of the
United States Code. and that such willful talse statements may jeopardize the validity of the

rected. .
DAVID W. BROWN

Name oi lfiV8fll&/7// Date é/Z5’
Signature of Inventor

JAY S. CLARK

Name 01 ll'lVel'IlOl

Date '4 Z3
Name of inventor

Date__j_:____

Signature of Inventor

(Small Entity-Independent Inventor [7-1]—page 2 of 2)

‘I43

walkp
Typewritten Text
143

PATENT

P2966

Attorney's Docket No.

COMBINED DECLARATION AND POWER OF ATTORNEY

(ORIGINAL DESIGN. NATIONAL STAGE OF PCT. SUPPLEMENTAL DIVISIONAL.
CONTINUATION OH CIP) .

As a below named inventor. I hereby declare that:

TYPE OF DECLARATION

This declaration is of the following- type: (check one applicable item below)

original

design

supplemental

NOTE: If the aeclamuon is for an lntemaaonal Abe/icanon being filed as a arvlsional. conttnuauon or continua-
tion-m-pert application do r£t cnecit next item: check anoroonate one of last mree items.

IIIElE1
national stage of PCT

NOTE: If one of the following 3 items abply men complete and also attach ADDED FA
CONTINUA TION OH CIP. '

i divisional

continuation

continuation-in-part (CIP)

INVENTOFISHIP IDENTIFICATION

El GES FOR DIVISIONAL.

I

E][flI"

WARNING: If the inventors are each not the inventors at all the claims an eadatananon of the lacs. inclmting
the OIVDOISIIID of all the claims at the ante the last claimed invention was made. should be submit-
ted.

My residence. post office address and citizenship are as stated below next to my name. I
beiieve I am the original. first and sole inventor (if only one name is listed below I or an orig-
inal. first and joint inventor (if plural names are listed below) of the subject matter which is
claimed and for which a patent is sought on the invention entitled:

TITLE OF INVENTION

??.
MOTION CONTROL SYSTEMS

SPECIFICATION IDENTIFICATION

the specification of which: (complete la). (b) or (c))

(a) is attached hereto. '

(b) @ was filed on M3 3 0 19 9 5 as E Serial No. 0 3 / 4_A._7.3.6__5
or i: Express Mail No.. as Serial No. not yet known ____j____
and was amended on E_____________ (if applicable).

NOTE: Arnenarnens filea alter the ongmal papers are aenosrtea Will? the PTO uvnaai conmm new matter are
not accorded a filing date by being rerenea to in the aectaranan. Awotutngly. me amendments in-
volved are those filed with the application papers or. in the case of a supplemental declaration. are
those amendments claiming matter not encompassed In the engine! statement of invention or claims.
See 37 cm 1.67.

(Declaration and Power of Attorney [1-1]-—page 1 of 4)

144

walkp
Typewritten Text
144

PCT lntemational Application No.
and as

-1-

(c) I was described and claimed in
filed on

amended under PCT Article 19 on

ACKNOWLEDGEMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

(if any).

I hereby state that I have reviewed and understand the contents of the above identified
specification. including the claims. as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of
this application in accordance with fitle 37. Code of Federal Regulations. § 1.56(a).

{:1 In compliance with this duty there is attached an information disclosure state-
ment. 37 CFR 1.97.

PRIORITY CLAIM

I hereby claim foreign priority benefits under Title 35. United States Code. § 119 of any .
foreign applicationlsl for patent or Inventor's certificate or of any PCT international applica-
tionis) designating at least one country other than the United States of America listed below
and have also identified below any foreign application(s) for patent or Inventor's certificate

or any PCT international applicationls) designating at least one country other than the
United States of America filed by me on the same subject matter having a filing date before

that of the applicationis) of which priority is claimed.

(complete (d) or (e))

(d) 1}] no such applications have been filed.

(e) D such applications have been filed as follows.
NOTE: Where nern (c) is entered above and the Inrernanonal Apolrwuon wnicn awégzated me U.S. daaned

priomy mack Item (e). enter me details below and make the nnorrry claim.

EARLIEST FOREIGN APPLICATIONISI. IF ANY FILED WITHIN 12 MONTHS
(6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

APPLICATION NUMBER DATE OF FILING PRIORITY CLAIMED

(day. month. year) UNDER 37 USC 119

COUNTRY

ALL FOREIGN APPLICATIONS), IF ANY FILED MORE THAN 12 IIONTHS
(6 IIONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

(Declaration and Power of Attorney [1-1]-—page 2 of 4)

‘I45

walkp
Typewritten Text
145

POWER OF ATTORNEY

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) to prose-

cute this application and transact all business in the Patent and Trademark Office con-
nected therewith. (List name and registrafion number)

-' Robert B. Hughes £19,304); Richard D. Multer (20,661);
and Michael R. Schacht, Reg. No. 33,550. "“'

- ___.{——T _

(check the following item, if applicable)

[j Attached as part of this declaration and power of attorney is the authorization of
the above-named attomey(s) to accept and follow instructions from my re-

presentativeis).

SENDCORfl To DIRECT TELEPHONE CALLS 7%
' (Name ‘and tewaene name)

MICHAEL R. SCHACHT

. HUGHES, MULTER & SCHACHT P.S. MICHAEL R‘ SCHACHT
‘f‘3733-f5-——‘-j;----4- (206) 647-1296

BELLINGHAM, WA 98226 FAX‘ (206) 571'2439

bEcLAeA11oN

I hereby declare that all statements made herein ot my own knowledge are true and that
all statements made on information and belief are believed to be true: and further that
these statements were made with the knowledge that willful false statements and the like
so made are punishable by line or imprisonment. or both. under Section 1001 of Title 18 of
the United States Code. and that such willful false statements may jeopardize the validity of

the application or any patent issued thereon.

Inventors signature

Date __42Z__:___‘7/7 5 Country of Citizenship U - 5 - A -
Residence /
postoffioeygddress P.O. BOX 1278 150 East Jewett Blvd.

White Salmon, WA 98672

Full name of second lolnt lnvento if

lnventorssignatue

Date Country of Citizenship U S A

Residence Seattle, Washington
p°aoffi°°Add,esa 557 R02 Street, Suite 175

Seattle, WA 98109

(Declaration and Power at Attorney [1-1}—pe9e 3 of 4)

‘I46

walkp
Typewritten Text
146

CHECK PHOPEF? BOX(E5) FOR ANY OF THE FOLLOWING ADDED PAGEIS) WHICH
FORM A PAFIT OF THIS DECLARA TION

Signature for third and subsequent joint inventors. Number of pages addedI]

Signature by administratorltrix). executorltrixl or legal representative for de-
ceased or incapacitated inventor. Number of pages added

Signature for inventor who refuses to sign or cannot be reached by person au-
thorized under 37 CFR 1.47. Number ofpages added

COO

I]

Cl

[3 Added pages to combined declaration and power of attorney for divisional. con-
tinuation. or continuation-in-part (CIP) application.

2 Number of pages added

too

[:3 Authorization of attomey(s) to accept and follow instructions from representative

If no further page: form a part of this Declaration then end this Dedarao
tlon with this page and check the following item

R This declaration ends with this page

(Declaration and Power of Attorney [1-1]—page 4 of 4)

147

walkp
Typewritten Text
147

PA TENT

Attomey'sDocltetNo. P2966
DAVID .W. BROWN and JAY S. CLARK

Applicant or Patentee:

Serial or Patent No.: 0 8/ 454 7 3 6

Filed orlssuedz Ma 30 1995

F.-,.—_ MOTION CONTROL SYSTEMS

VERIFIED STATEMENT (DECLARQATION) CLAINIING SMALL ENTITY
STATUS (37 CFR l.9(f) and l.27(c))——SMALL BUSINESS CONCERN

I hereby declare that I am

[Z] the owner of the small business concern identified below:

@ an official of the small business concern empowered to act on behalf of the con-
cern identified below:

NAME 0;: CONCERN ROY—G—BIV Corporation ’

East Jewett BlVd.
White Salmon, WA 98672

I hereby declare that the above identified small business concemqualifies as a small busi-
ness concern as defined in 13 CFFI 1213-18. and reproduced in 37 CFR 1.9(d), for pur-

poses of paying reduced fees under Section 431(3) and (b) of Title 35. United States Code,
in that the number of employees of the ccncem. including those of its affiliates, does not
exceed 500 persons. For purposes of this statement, (1) the number of employees of the
business concern is the average over the previous fiscal year of the concern of the persons
employed on a full-time. part-time or temporary basis during each of the pay periods of the
fiscal year. and (2) concerns are affiliates of each other when either. directly or indirectly.
one ccncem controls or has the power to control the other, or a third-party or parties con-
trols or has the power to control both.

I hereby declare that rights under contract or law have been conveyed. to and remain with
the small business ccncem identified above with regard to the invention. entitled

MOTION CONTROL SYSTEMS

byinvemms) DAVID w. BROWN and JAY S. CLARK

described in

[:1 the specification filed herewith.

Q application serial no. 0 3 Ii . filed Ma 3 0 I 19 9 5 .
Q patent no. , issued

If the rights held by the above identified small business ccncem are not exclusive. each in-
dividual. ccncem or organization having rights in the invention is listed below‘ and no rights
to the invention are held by any person. other than the inventor. who would not qualify as
an independent inventor under 37 CFR 1 .9(c) if that person made the invention. or by any
concern which would not qualify as a small business ccncem under 37 CFR 1.9(d) or a

nonprofit organization under 37 CFR 1.9(e).

‘NOTE: Separate verified statements are requfled from each named pason, concern or oryanimtion having
fights to the invention evening to theirsmlus as small entities. (37 CH? 1.27).

(Small Entity-Small Business [7-41-page 1 of 2)

148

walkp
Typewritten Text
148

0 6

NAME

ADDRESS

D INDNIDUAL D SMALL BUSINESS CONCERN D NONPROFIT ORGANIZATION

NAME

ADDRESS

[3 INDIVIDUAL D SMALL BUSINESS CONCERN D NONPROFIT ORGANIZATION

I acknowledge the duty to file. in this application or patent. notification of any change in sta-

tus resulting in loss of entitlement to small entity status prior to paying, or at the time of pay- ‘
ing. the earliest of the issue fee or any maintenance fee due after the date on which status
as a small business entity is no longer appropriate. (37 CFR 1.28(b)).

I hereby declare that all statements made herein of my own knowledge are true and that all
statements made on information and belief are believed to be true: and further that these

statements were made with the knowledge that willful false statements and the like so
made are punishable by fine or imprisonment, or both, under Section 1001 of Title 1 8 of the

United States Code, and that such willful false statements may jeopardize the validity of the
application, any patent issuing thereon, or any patent to which this verified statement is di-
rectecl.

NAME OF PERSON SIGNING

TITLE OF PERSON OTHER THAN OWNER Pres ident and CEO

ADDRESS OF PERSON SIGNING 15 0 East Jewett B lvd .
White Salmon WA 98672

David W. Brown

'/:/‘L; .
SIGNATURE /-om _.___&/3 ?>”LL_?' .__._ _

(Small Entity—Small Business [7-4}—page 2 of 2)

149

walkp
Typewritten Text
149

D

‘ IJNITED STATES DEPARTMENT OF COMMERCE. . Patent and Trademark Office

 l Address: CDMMISSIONER OF PATENTS AND TRADEMARKS‘hp 9 \N'ashington. D.C. 21231

Iliiflfliiiififllllifliflilll F""“”"*““m Illllfiifiiififlfliflfilll

os/454,735 as/an/95 aanwm n P2955

0252/0712
MICHAEL R. SCHACHT
HUGHES MULTER & SCHACHT
1720 Iowa STREET

BELL INGHAM wA 98226 DATE “LED: -3 no :3

NOTICE TO FILE NIISSING PARTS OF APPLICATION 07/ 12/ ‘:75FILING DATE GRANTED

An Application Number and Filing Date have been assigned to this application. However, the items indicated
below are The required items and fees identified below must be ti ely sub _'tted ALONG WITH

3 2 3; I 45') lIE PgYMENT OF A SURCHARGE for items 1 and 3-6 only of . for large entities or-$ 5' 0 for small entities who have filed a verified statement claiming such slams. The surcharge is set forth in37 CFR l.16(e).

If all required items on this form are filed within the period set below, the total amount owed by applicant as aflggcentity, El small entity (verified statement filed). is 4- 7D .

Applicant is given ONE MONTH FROM THE DATE OF THIS LE'l'I'ER, OR TWO MONTHS FROM THE
FILING DATE ofthis application, WIIICHEVER IS LATER, within which to file all required items and pay any fees
required above to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the
extension fee under the provisions of 37 CFR l.l36(a).

1. D The statutory basic filing fee is: El missing El insuflicient. Applicant as a El large entity Cl small

entity, must submit S to complete the basic filing fee.

2. E] Additional claim fees of $ as a [3 large entity, [1 small entity, including any
required multiple dependent claim fee, are required. Applicant must submit the additional claim
fees or cancel the additional claims for which fees are due.

3. D The oath or declaration:
D is
C! does not cover the newly submitted items.

An oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above
Application Number and Filing Date is required.

4. U ‘The oath or declaration does not identify the application to which it applies. An oath or declaration
in compliance with 37 CFR 1.63, identifying the application by the above Application Number and
Filing Date, is required.

Sflfie aignature(s) to the oath or declaration is/are: ‘ sing; D by a person other than the inventoror a person qualified under 37 CFR 1.42, 1.43, or 1.47. pmperly signed oath or declaration in
compliance with 37 CFR 1.63, identifying the application by the above Application Number and
Filing Date, is required.

6. III The signature of the following joint inventor(s) is missing from the oath or declaration:

An oath or declaration listing the names of all inventors and signed by
the omitted inventor(s), identifying this application by the above Application Number and Filing
Date, is required.

7. CI The application was filed in a language other than English. Applicant must file a verified English
translation of the application and a fee of $ under 37 CFR 1.17(k~), unless this fee has
already been paid.

8.DA$

(37 ?§21(m)).
9. C] Your filin.g)'eceipt was mailed in error because your check was returned without payment.

processing fee is required since your check was returned without payment.

10. D The application does not comply with the Sequence Rules. See attached Notice to Comply with
Sequence Rules 37 CFR 1.821-1.825.

11. Cl Other.

Direct the response to Box Missing Part and refer any questions to the Customer Service Center
at (703) 308-1202.

A copy ofthis notice MUST be returned with the response.nn-u-- .-a.....

150

walkp
Typewritten Text
150

surf.--‘-I91.1.. ..._,

I Preliminary Class

Page 1 of 2

UNITED STATESZOATENT AND TRADEMARK OFFICE- '4'" A‘ . .
3 -.."s_’:-5'

.1 r_ be COMMISSIONER r-‘on PATEr~rrs
UNITED STATEs PATENT AND TRADEMARK OFFICE

VVASHINGTDN, D.C. 2023:

www.uspto.gov

APPLICATION NUMBER one ART UNIT FIL FEE REC'D IND cLAiMs‘.
435 110/021 ,ee9 12/10/2001 2121 10P213976 64

CONFIRMATION NO. 5760
UPDATED FILING RECEIPT

WWWWWWWWWWWWWWWWWWW
"OCOD000O0O75437U6"

Michael R. Schacht

2801 Meridian St., Suite 202

Bellingham, WA 98225-2412

Date Mailed: 02/27/2002

Receipt is acknowledged of this nonprovisional Patent Application. It will be considered in its order and you will be
notified as to the results of the examination. Be sure to provide the U.S. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION when inquiring about this application. Fees transmitted by
check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an
error is noted on this Filing Receipt, please write to the Office of Initial Patent Examination's Customer

Service Center. Please provide a copy of this Filing Receipt with the changes noted thereon. If you
received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing
Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will
generate another Filing Receipt incorporating the requested corrections (if appropriate).

App|icant(s)

David W. Brown, Bingen, WA;

Jay S. Clark, Bingen, WA;

Domestic Priority data as claimed by applicant

THIS APPLICATION IS A CON OF 09I“l9‘l .981 11/13/‘I 998

WHICH IS A CON OF 08l656,421 05/30/1996 PAT 5,867,385

WHICH IS A CIP OF 08/454,736 05/30/1995 PAT 5,691,897

Foreign Applications

it Required, Foreign Filing License Granted 01!‘: 112002

Projected Publication Date: Request for Non-Publication Acknowledged

Non-Publication Request: Yes

Early Publication Request: No

** SMALL ENTITY **

Title

Motion control systems DDCKETED

151

walkp
Typewritten Text
151

Page 2 of 2

700

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184
Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "lF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless ofwhether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set'f_orth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted
under 37 CFR 5.13 or 5.14.

This license is to be retained by the iiccnsee and may be used at any time on or alter the effective date thereof
unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR
1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject
matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the
national security or the export of technical data. Licensees should apprise themselves of current regulations
especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls,
Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Office of
Export Administration, Department of Commerce (15 CFR 370.10 0)); the Otfice of Foreign Assets Control,
Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "|F REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR

5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months

has lapsed from the filing date ofthis application and the licensee has not received any indication of a secrecy
order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

152

walkp
Typewritten Text
152

