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Abstract: This paper describes the CHIMERA II programming environ­
ment and operating system, which was developedfor implementing real-time 
robotic systems. Sensor-based robotic systems contain both general and spe­
cial purpose hardware, and thus the development of applications tends to 
be a velY tedious and time consuming task. The CHIMERA II environ­
ment is designed to reduce the development time by providing a convenient 
software inleiface between the hardware and the user. CHIMERA II sup­
ports flexible hardware configurations which are based on one or more 
VME-backplanes. All communication across mUltiple processors is trans­
parent to the user through an extensive set of inter processor communication 
primitives. CHIMERA II also provides a high-peiformance real-time ker­
nel which supports bolh deadline and highest-priority-first scheduling. The 
flexibility of CHIMERA II allows hierarchical models for robot control, 
such as NASREM, to be implemented with minimal programming time and 
effort. CHIMERA II is currently being used with a variety of robotic sys­
tems, including the CMU Direct Drive Arm II and the CMU Reconfigurable 
Modular Manipulator System. 

Keywords: Real-Time Operating System, Robot Control, Sensor Integra­
tion, Telerobotics, Standardization, NASREM. 

1 Introduction 

Sensor-based control applications, such as robotics, process control, and 
manufacturing systems, present problems to conventional operating systems 
because of their need for several different hierarchical levels of control, 
which typically fall into three broad categories: servo levels, supervisory 
levels, and planning levels. The servo levels involve reading data from sen­
sors, analyzing the data, and controlling electro-mechanical devices, such 
as robots and machines. The timing of these levels is critical, and often in­
volves periodic processes ranging from 100 Hz to 1000 Hz. The supervisory 
levels are higher level actions, such as specifying a task, issuing commands 
like turn on motor 3 or move to position B, and selecting different modes 
of control based on data received from sensors at the servo level. Time at 
these levels is a factor, but not as critical as for the servo levels. In the 
planning levels time is usually not a critical factor. Examples of processes 
in this level include generating accounting or performance logs of the real­
time system, simulating a task, and programming new tasks for the system 
to take on. 

In order to satisfy the needs of sensor-based control applications, a flexible 
real-time, multitasking and parallel programming environment is needed. 
For the servo levels, it must provide a high performance real-time kernel, 
low-overhead communication, fast context switching and interrupt latency 
times, and support for special purpose CPUs and I/O devices. For the 
supervisory levels, a message passing mechanism, access to a file system, 
and scheduling flexibility are desired. The real-time environment must be 
compatible with a software development workstation that provides tools 
for programming, debugging, and off-line analysis, which are required by 
the planning levels. A popular high level language must be available to 
minimize the learning time of the system. The details of the hardware should 
be isolated from the user, providing the user with a common software base 
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regardless of hardware configuration. Finally, the real-time operating system 
should be designed so that programs running in simulation under a time­
sharing environment can be incorporated into the real-time environment with 
minimal effort. CHIMERA II provides such an environment that is capable 
of supporting all levels of real-time sensor-based robot control applications 
on a multiprocessor computer system. 

Although the motivation for developing CHIMERA II is similar to the ide­
ology behind its predecessor CHIMERA[I), its implementation is radically 
different and includes significant improvements, mostly in the areas of sup­
port for multiple processors and VME backplanes, and a higher perfor­
mance kemel with improved real-time scheduling. A previous paper [2] 
provides background into the motivation and issues considered in redesign­
ing CHIMERA. 

CHIMERA II is not the only system designed to address real-time control 
applications. Several real-time operating systems currently exist for such ap­
plications. These include the commercial operating systems such as VRTX, 
by Ready Systems [3); iRMX II, by Intel [4]; and VxWorks. by Wind 
River Systems[5); and research operating systems, such as CONDOR[6]; 
SAGE[?]; and Harmony[8). In general, these systems suffer from one or 
more of the following: lack of multiprocessing capabilities, poor or insuf­
ficient interprocessor communication and synchronization mechanisms, no 
provisions for joining the simulation and real-time environment, both in 
terms of UNIX compatibility and communication primitives, or a lack of 
support for easily incorporating I/O devices and special purpose processors 
into the environment. The above systems require users to spend a large 
amount of their time developing features that should be in the operating 
system. CHIMERA II was designed especially for robotics systems; it pro­
vides the necessary features for reducing development time and increa~ing 
performance of real-time robotic applications. 

One of the more elaborate hierarchical control architectures proposed is the 
NASA/NBS Standard Reference Model for Telerobot Control System Archi­
tecture (NASREM) [9], which heavily influenced many of the CHIMERA II 
design decisions. The NASREM architecture is described in more detail 
in the next section. Section 2 describes the hardware required to support 
CHIMERA II; while the software is described in Section 3. The perfor­
mance of CHIMERA II is outlined in Section 4. CHIMERA II is then 
summarized in Section 5 as the recommended underlying system for devel­
oping real-time robotic systems. 

1.1 Overview of the NASREM Model 

Figure I shows a block diagram of NASREM. It consists of a hierarchy of 
several levels (nominally six levels). Each level is implemented as sets of 
three distinct modules, called sensory processing, world modeling, and task 
decomposition. The sensory processing modules are responsible for obtain­
ing and integrating information from the system. At the lowest levels. this 
involves reading the data from different sensors in a system, while for the 
upper levels sensory information is more general and hardware indepen­
dent. The world modeling modules control access to information within the 
global database, and provide the necessary synchronization for other mod­
ules which must update the world model. Models are application specific, 
and can be in the form of algorithms. data sets (typicaUy for lower levels) 
and knowledge bases (for the upper levels). The task decomposition mod­
ules initiate actions based on user input and information within the world 
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model. The upper-level commands would typically be of the form move to 
point B, while the servo-levels produce low-level commands such as apply 
torque X to joint Y. 

A major goal of NASREM is to provide a standard architecture for in­
corporating multiple sensors and robots into a single application. Using a 
standard architectural model allows efforts in various research organizations 
to be leveraged and new technologies to be brought together quickly. Other 
advantages of standardization include portability and expandability of real­
time code, ease of code development, and the provision of guidelines for 
system integration. CIDMERA II has the ability to hide the details of the 
hardware from the user, thus allowing the implementation of hardware in­
dependent code, which is a first and necessary step towards standardization. 
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Figure 1: NASA/NBS Standard Reference Model for Telerobot Control System 

Architecture (NASREM) (from [9]). 

2 Hardware Configurations 

A typical hardware configuration for applications supporting hierarchical 
robot control would consist of multiple general purpose processors, pos­
sibly on multiple backplanes. The system may contain special processing 
units, such as floating point accelerators, digital signal processors, and im­
age processing systems. The system will also contain several sensory and 
control devices, such as force sensors, cameras, tactile sensors, and range 
finders to gather data about the environment, and a variety of actuators, 
switches, and amplifiers to control robotic equipment. 

Figure 2 shows one of many possible hardware configurations, and is based 
on the hardware architecture recommended by NASREM[9]. The hardware 
for each level of the hierarchy is on a separate VME bus, separated by 
gateways. In larger systems, there may be multiple VME buses dedicated 
to the same level, possibly connected in a star configuration. In a very 
simple system, there may be only one VME bus for the entire system. 

Tasks at the same level will typically have high volume communication. 
A dedicated VME bus for that level reduces the memory bandwidth for 
intertask communication, since different levels need not compete for the 
same VME bus. In smaller applications where memory bandwidth is not 
a problem, multiple levels can share the same VME bus. In addition to 
the VME buses for each level, other high speed data buses can be used 
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Figure 2: Generalized hardware configuration supported by CIDMERA IT 

either for fast local communication between neighboring processors, or as 
dedicated data paths for sensor and actuator signals. 

The highest level of the hierarchical control consists of the non-real-time 
environment. One or more workstations can be connected via ethernet, with 
at least one of them connected via a gateway to the real-time environment. 
which we call the host workstation. Various utilities such as simulators, 
debuggers, graphical interfaces, and fIle systems are located at this level. 

2.1 A Sample Application 

CIDMERA II is currently implemented to run with a Sun host workstation, 
running SunOS 4.0.3. The effort required for porting the code to a different 
host should be minimal if the operating system on the new host supports 
System V interprocess communication and the enhanced mmap() facility 
that Sun provides. The Real-Time Processing Units (RTPUs) are VME­
based single-board computers. Thus far, supported RTPUs are the Ironies 
IV32XX series with M68020 processors, and Heurikon M68030 processors. 
Porting to other M68020 or M68030 processors would require minimal 
effort. Porting to an entirely different processor family, such as the SPARe 
or 80X86 would require substantial effort. The VME to VME gateways are 
typically VME-VME adaptors, with the BIT3 Models 411 and 412 currently 
supported. These adaptors operate only in master/slave mode, where the 
address space of the slave VME bus is mapped into a part of the address 
space of the master VME bus through an address window. CIDMERA II 
has been designed to use these master/slave adaptors since they are the most 
popular type of adaptor on the market. Adaptors that use DMA to transfer 
data can be used, but the code required to support them has not yet been 
implemented. 

The hardware currently supported is based on the needs of the Advanced 
Manipulators Laboratory at Carnegie Mellon University (CMU). Within our 
own labs, three very different systems are currently using CIDMERA II. 
These are the CMU Direct Drive Arm II (DDArm 11)[101, The CMU 
Reconfigurable Modular Manipulator System[111. and the Flexible Arm 
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Manipulator[12]. The diverse requirements of these systems have proven 
the flexibility of CIllMERA II to support a wide variety of actuators and 

sensors. 

The CMU DDArm II is an example of a multi·sensor robotic system. Its 
current hardware configuration is shown in Figure 3. The system consists 
of three VME backplanes, separated by BIT3 adaptors, and a Multibus 
backplane separated by a YME-Multibus adaptor. No RTPUs reside on 
the Multibus; all processors on that bus are treated as devices. A Sun 
3/260 is used as the host woxkstation, with one Heurikon M68030 and two 
Ironies M68020 processors as the RTPUs. Also included in the system is a 
Mercury 3200 floating point accelerator with 20 MfIop peak performance, 
an Imaging Technology vision system, and six Texas Instrument TMS320 
digital signal processors. Several serial and parallel I/O ports are used 
to connect to position, force, and tactile sensors, while an analog input 
connects to a camera on the end effector. A six·degree·of·freedom joystick, 
a terminal, and the Sun keyboard and mouse provide the interfaces for 
human interaction with the system. 
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Figure 3: eMU Direct Drive Arm II hardware configuration 

3 Software Architecture 

The concept of a layered hardware platform eases system planning and 
integration, and provides convenient guidelines for developing large sys· 
tems. Such layered hardware with multiple processors, however, presents 
nightmares to system programmers who must worry about the multitude of 
different addresses, address spaces, specialized devices, and hardware de· 
pendencies. It becomes extremely difficult to write standardized software 
when the hardware is very diverse. 

CHIMERA II was designed to remove these problems from the user. First it 
provides a communications layer that makes all the interprocessor commu· 
nication complexities transparent to the user. Second, it provides a kernel 
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with device drivers that makes the very different hardware look similar. 

3.1 Overview of CHIMERA II Software 

Control processes running at the servo levels involve reading data from 
sensors, analyzing the data, and controlling electro-mechanical devices, such 
as robots or machines. The timing of thes~ levels is critical, also known as 
hard real·time, and often involves periodic processes ranging from 100 Hz 
to 1000 Hz. CHIMERA II provides both minimum·laxity·first and highest. 
priority-jirst schedulers for programming in real·time. The minimum· laxity· 
first scheduler allows the user to specify tasks with execution deadlines. A 
failure handler is called whenever a task fails to meet its deadline as a result 
of a system overload. 

In most robotic systems, the CPU bandwidth provided by a single processor 
is insufficient, thus creating the need for multiple processors. If the cost 
or complexity of communication between multiple processors is too high, 
however, it may nullify the effect of parallelism. CHIMERA II addresses 
this problem by exploiting the fact that all processors are on the VME 
bus, and uses direct block copies for all communication, instead of using 
time·consuming network protocols such as TCP/IP. The interface to these 
communication primitives is transparent across multiple processors, thus 
simplifying the programming of multiprocessor applications. 

The planning levels do not necessarily require a real·time scheduler. In many 
cases, the non·real·time environment offered by a typical UNIX workstation 
is desirable to provide both a graphies terminal and a development envi· 
ronment. Traditional methods of linking non·real·time to real·time systems 
via ethernet and using network protocols is both difficult to program and 
requires a huge amount of overhead. Ideally, from the user's point of view, 
there is no difference between the real·time and non·real·time systems. Our 
design of CHIMERA II allows processes on the host UNIX workstation to 
communicate directly with the processors in the real· time environment, us· 
ing the same synchronization primitives. There is no need for any complex 
network protocol to establish such communication. 

Applications for CIllMERA II are programmed using the C language. Using 
languages other than C should be possible; however no consideration was 
given to this aspect during the development of CHIMERA II. Assembly 
language can also be used for specialized applications, but it is usually not 
necessary, since CHIMERA II provides the necessary features for writing 
exception handlers and device drivers in C. 

Many standard C library calls are available, such as the stdio, strings, and 
math libraries, and also various utilities such as quicksort, binary search, 
and an optimized block copy. With the exception of the stdio library, these 
libraries provide identical functionality to their UNIX counterparts. The 
stdio library has been enhanced to run within a shared memory environment. 
Files can be shared among multiple tasks on the same processor. The stdio 
library incorporates the appropriate mutual exclusion to ensure the integrity 
of the file buffers. In addition to the standard library routines, CHIMERA II 
emulates many of the UNIX system calls, such as open(), read(), write() , 
and mmap(). These routines all generate remote procedure calls when the 
needed resource belongs to a different processor within the system. 

3.2 Real-Time Kernel 

A copy of the CHIMERA II real· time kernel executes on each RTPU. The 
kernel provides all the scheduling and task control primitives through a C 
library. The low·level details such as the model or manufacturer of the 
RTPU are built·in to CHIMERA II and are hidden from the user. 

One of the major goals when developing the kernel was to provide the 
required functionality at the highest performance possible, by sacrificing 
traditional operating system features which are hardly used. Our basis for 
measuring performance is the amount of CPU time during normal execu· 
tion which must be dedicated to the operating system functions, such as 
scheduling, task switching, and communication overhead. Some of the ma­
jor design decisions made in developing a kernel especially for real· time 
sensory control are described below. For the sake of brevity, we have left 
out many details of the software. These are available in [15]. 

Tasks: A task in CIllMERA II is also known as a thread or lightweight 
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process in other operating systems. A user program which is downloaded 
into an RTPU consists of a single executable file. The kernel is supplied 
as a C library and is linked into the executable image. When a program 
is downloaded to an RTPU and executed, some kernel initialization is per­
formed, following which the user's main() routine is spawned as a task. 
Any other task can then be started from mainO. 

Task communication: There is no parent/child relationship among tasks. 
Any task can communicate with any other task either through local shared 
memory or local semaphores. Within a single executable file, all global 
variables are automatically shared among all tasks. Local semaphores are 
available and can be used either to provide mutual exclusion during crit­
ical sections (binary semaphores), or to provide synchronization among 
tasks (general or counting semaphores). Global shared memory, remote 
semaphores, and message passing are also available to tasks when commu­
nication across multiple processors is required. The global communication 
is described in Section 3.4. 

Intertask security: In general, all of the tasks running on a given RTPU 
(or set of RTPUs) are written and invoked by a single user. It is reasonable 
to assume that these tasks are designed to cooperate. We have thus sacrificed 
the intertask protection, allowing one task to access the address space of 
any other task. This has resulted in the elimination of a lot of overhead 
incurred in performing system calls or their equivalents. 

Memory management: The total address space used by all tasks on 
one system is limited by the physical memory available on the RTPU. 
CHIMERA II does not provide any virtual memory, as the memory man­
agement and swapping overhead not only decreases the performance of a 
system drastically, but it also causes the system to become unpredictable, 
thus violating one of the major rules of real-time systems. CHIMERA II 
provides its own version of the malloc() family of routines to allocate real­
memory. 

Special purpose processors and devices: The ClllMERA II kernel uses 
a UNIX-like approach of using device drivers to isolate the user from the 
details of special hardware. The kernel supports the open, close, read, write, 
ioetl, and nunap drivers. These drivers are usually much simpler to write 
than their UNIX counterparts because of the lack of intertask security, as 
described above. Special purpose processors usually have memory which 
can be memory mapped, thus making the entire address space of the pro­
cessor available to the tasks using it. AcceSSing special purpose processors 
is strictly via master/slave relationships, where tasks on the RTPUs control 
the execution of code on the special processor. 

Exception and interrupt handlers: User-defined exception and interrupt 
handlers can be defined either on a per-task or per-RTPU basis. This allows 
users to alter the default action of various exceptions, which is to halt 
the task. For example, a bus error exception can be trapped so that a 
task that tries to access unavailable memory on the VME bus does not 
die. Similarly, a task can catch a division-by-zero exception and modify 
its computation accordingly, instead of having to check for zero on every 
calculation. ClllMERA II provides the facilities to write these handlers in C. 
The C routine is declared with a special header, and installed dynamically by 
a subroutine call. Routines are also provided to enable or disable interrupts, 
or to lock the CPU for short periods. 

3.2.1 Real-Time Task Scheduler 

One of the main components of any real-time kernel is its scheduler. 
CHIMERA II provides a policy/mechanism separation scheme[13] which 
allows the user to replace the standard schedulers with application specific 
algorithms. The ClllMERA II default scheduler algorithm was developed 
by incorporating various standard algorithms with extensive experimenta­
tion and tuning to obtain the best performance for typical job mixes. The 
scheduler is based on a combination of minimum-laxity-first[14J, highest­
priority-first, and round-robin scheduler techniques. 

The heart of the scheduler is the minimum-laxity-first deadline scheduler. A 
task can specify its timing requirements in terms of a deadline time, and 
an estimate of the execution time as a range from minimum execution time 
required to maximum execution time required. The scheduler will then 
choose tasks to run based on which task has the smallest laxity. Laxity is 
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calculated as follows: 

laxity = deadline_time - presentJime - epuJime..stilLneeded 

When more CPU power is requested from all tasks than is available, one or 
more tasks may fail to meet their deadline, in which case the ClllMERA II 
kernel automatically calls a failure handler. The failure handler is specified 
by the user on a per-task basis. Typical uses of the failure handler include 
the following: aborting the task and preparing it to restart the next period; 
sending a message to some other part of the system to handler the error; 
performing emergency handling, such as a graceful shutdown of the system 
or sounding an alarm; maintaining statistics on failure frequency to aid in 
tuning the system; or in the case of iterative algorithms, returning the current 
approximate value regardless of precision. 

One important criterion with a deadline scheduler in an overload situation 
is selecting which tasks to run and which to let fail. The user not only 
specifies the failure handler, but also a failure handler priority. The failure 
handler can thus run at higher or lower priority than all other tasks in the 
system. 

The ClllMERA II scheduler will use a highest-priority-first to distinguish 
between multiple tasks with equal laxity, and when there are no ready-to-run 
tasks with deadlines. Equal priority tasks are scheduled in a round-robin 
manner. There may be times when a non-deadline high priority task is 
extremely important and must execute ahead of any other task, even if the 
other tasks have deadline. The kernel allows tasks to set their criticalness 
to a value higher than the default value, which will then allow that task to 
run ahead of any task with a deadline. 

Use of the deadline scheduler is optional. Some applications are better 
programmed just using a highest-priority-first scheduler as is available in 
commercial real-time operating systems. By not specifying any task dead­
lines within the system, the ClllMERA II scheduler behaves as a highest­
priority-first preemptive scheduler. In such cases, however, there is no way 
to specify a failure handler since the tasks do not have deadlines. 

3.3 System-Level Communication 

One of the major strengths of ClllMERA II is that all the details of the 
hardware environment are transparent to the user. For example, to perform 
work with a file system, such as opening the file, reading it, then closing 
it, the user uses the standard UNIX syntax of open(), read(), and close(), or 
optionally using the C standard I/O (stdio) library. The ClllMERA II system 
determines which processor owns the me, sends the appropriate message, 
performs the operation, then returns the result. The user is thus unaware 
that any me operation is remote. 

Every processor, including the host workstation, has a server task and an 
express mail mailbox which are used to provide transparent access to the 
remote devices and the host me system from any other RTPU. The server 
is capable of translating symbolic names into pointers, performing any nec­
essary address calculations to account for the various address spaces and 
offsets within the multiple-VME-bus system, and performing system caUs 
on behalf of remote tasks. 

A low-overhead message passing mechanism, which we call express mail, 
is used to send system messages to the servers. System messages are mes­
sages sent only by built-in kernel routines, as opposed to user messages as 
described in Section 3.4. Any task can (indirectly) send a system message; 
however, only the servers can read these messages. 

Many UNIX system calls, including open(), close(), read(), write(), mmap(). 
and ioctl() have been emulated as C procedures, with the ability to send mes­
sages when the required resource belongs to a remote processor. Whenever 
these calls have to access a remote processor, a message is sent to the re­
mote processor's express mailbox. Each RTPU has at least one mailbox, 
which is in a part of memory known to all other processors. A server task 
on the remote process handles all incoming messages by performing the 
system call on behalf of the originator's task. Pointers to the data blocks 
to be read or written are passed as part of the message, as opposed to in­
cluding the entire data in the message. This guarantees short messages and 
no additional buffering, which is especially important in calls such as read 
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