

Exhibit

2004

Exhibit

2004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Implementing Real-Time Robotic Systems Using CHIMERA II

David B. Stewart' Donald E. Schmitz Pradeep K. Khosla t

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract: This paper describes the CHIMERA II programming environ­
ment and operating system, which was developedfor implementing real-time
robotic systems. Sensor-based robotic systems contain both general and spe­
cial purpose hardware, and thus the development of applications tends to
be a velY tedious and time consuming task. The CHIMERA II environ­
ment is designed to reduce the development time by providing a convenient
software inleiface between the hardware and the user. CHIMERA II sup­
ports flexible hardware configurations which are based on one or more
VME-backplanes. All communication across mUltiple processors is trans­
parent to the user through an extensive set of inter processor communication
primitives. CHIMERA II also provides a high-peiformance real-time ker­
nel which supports bolh deadline and highest-priority-first scheduling. The
flexibility of CHIMERA II allows hierarchical models for robot control,
such as NASREM, to be implemented with minimal programming time and
effort. CHIMERA II is currently being used with a variety of robotic sys­
tems, including the CMU Direct Drive Arm II and the CMU Reconfigurable
Modular Manipulator System.

Keywords: Real-Time Operating System, Robot Control, Sensor Integra­
tion, Telerobotics, Standardization, NASREM.

1 Introduction

Sensor-based control applications, such as robotics, process control, and
manufacturing systems, present problems to conventional operating systems
because of their need for several different hierarchical levels of control,
which typically fall into three broad categories: servo levels, supervisory
levels, and planning levels. The servo levels involve reading data from sen­
sors, analyzing the data, and controlling electro-mechanical devices, such
as robots and machines. The timing of these levels is critical, and often in­
volves periodic processes ranging from 100 Hz to 1000 Hz. The supervisory
levels are higher level actions, such as specifying a task, issuing commands
like turn on motor 3 or move to position B, and selecting different modes
of control based on data received from sensors at the servo level. Time at
these levels is a factor, but not as critical as for the servo levels. In the
planning levels time is usually not a critical factor. Examples of processes
in this level include generating accounting or performance logs of the real­
time system, simulating a task, and programming new tasks for the system
to take on.

In order to satisfy the needs of sensor-based control applications, a flexible
real-time, multitasking and parallel programming environment is needed.
For the servo levels, it must provide a high performance real-time kernel,
low-overhead communication, fast context switching and interrupt latency
times, and support for special purpose CPUs and I/O devices. For the
supervisory levels, a message passing mechanism, access to a file system,
and scheduling flexibility are desired. The real-time environment must be
compatible with a software development workstation that provides tools
for programming, debugging, and off-line analysis, which are required by
the planning levels. A popular high level language must be available to
minimize the learning time of the system. The details of the hardware should
be isolated from the user, providing the user with a common software base

"'Dept. of Electrical and Computer Engineering

t Assistant Professor, Dept. of Electrical and Computer Engineering

CH2872-0/90/0000-0252 © $1.001990 IEEE

252

regardless of hardware configuration. Finally, the real-time operating system
should be designed so that programs running in simulation under a time­
sharing environment can be incorporated into the real-time environment with
minimal effort. CHIMERA II provides such an environment that is capable
of supporting all levels of real-time sensor-based robot control applications
on a multiprocessor computer system.

Although the motivation for developing CHIMERA II is similar to the ide­
ology behind its predecessor CHIMERA[I), its implementation is radically
different and includes significant improvements, mostly in the areas of sup­
port for multiple processors and VME backplanes, and a higher perfor­
mance kemel with improved real-time scheduling. A previous paper [2]
provides background into the motivation and issues considered in redesign­
ing CHIMERA.

CHIMERA II is not the only system designed to address real-time control
applications. Several real-time operating systems currently exist for such ap­
plications. These include the commercial operating systems such as VRTX,
by Ready Systems [3); iRMX II, by Intel [4]; and VxWorks. by Wind
River Systems[5); and research operating systems, such as CONDOR[6];
SAGE[?]; and Harmony[8). In general, these systems suffer from one or
more of the following: lack of multiprocessing capabilities, poor or insuf­
ficient interprocessor communication and synchronization mechanisms, no
provisions for joining the simulation and real-time environment, both in
terms of UNIX compatibility and communication primitives, or a lack of
support for easily incorporating I/O devices and special purpose processors
into the environment. The above systems require users to spend a large
amount of their time developing features that should be in the operating
system. CHIMERA II was designed especially for robotics systems; it pro­
vides the necessary features for reducing development time and increa~ing
performance of real-time robotic applications.

One of the more elaborate hierarchical control architectures proposed is the
NASA/NBS Standard Reference Model for Telerobot Control System Archi­
tecture (NASREM) [9], which heavily influenced many of the CHIMERA II
design decisions. The NASREM architecture is described in more detail
in the next section. Section 2 describes the hardware required to support
CHIMERA II; while the software is described in Section 3. The perfor­
mance of CHIMERA II is outlined in Section 4. CHIMERA II is then
summarized in Section 5 as the recommended underlying system for devel­
oping real-time robotic systems.

1.1 Overview of the NASREM Model

Figure I shows a block diagram of NASREM. It consists of a hierarchy of
several levels (nominally six levels). Each level is implemented as sets of
three distinct modules, called sensory processing, world modeling, and task
decomposition. The sensory processing modules are responsible for obtain­
ing and integrating information from the system. At the lowest levels. this
involves reading the data from different sensors in a system, while for the
upper levels sensory information is more general and hardware indepen­
dent. The world modeling modules control access to information within the
global database, and provide the necessary synchronization for other mod­
ules which must update the world model. Models are application specific,
and can be in the form of algorithms. data sets (typicaUy for lower levels)
and knowledge bases (for the upper levels). The task decomposition mod­
ules initiate actions based on user input and information within the world

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

model. The upper-level commands would typically be of the form move to
point B, while the servo-levels produce low-level commands such as apply
torque X to joint Y.

A major goal of NASREM is to provide a standard architecture for in­
corporating multiple sensors and robots into a single application. Using a
standard architectural model allows efforts in various research organizations
to be leveraged and new technologies to be brought together quickly. Other
advantages of standardization include portability and expandability of real­
time code, ease of code development, and the provision of guidelines for
system integration. CIDMERA II has the ability to hide the details of the
hardware from the user, thus allowing the implementation of hardware in­
dependent code, which is a first and necessary step towards standardization.

Global
Memory

Maps

Object
lists

State
Variables

Evaluation
Functions

Sensory
Processing

Detect
Integrate

Sense

World
Modeling

Model
Evaluate

Task
Decomposition

Plan
Execute

GoeJ

Action

Service
Mission

Service
Bay

Task 0
!l
OJ

~

E·Move ~
~

Primitive

Coordinate
Transform

Servo

Figure 1: NASA/NBS Standard Reference Model for Telerobot Control System

Architecture (NASREM) (from [9]).

2 Hardware Configurations

A typical hardware configuration for applications supporting hierarchical
robot control would consist of multiple general purpose processors, pos­
sibly on multiple backplanes. The system may contain special processing
units, such as floating point accelerators, digital signal processors, and im­
age processing systems. The system will also contain several sensory and
control devices, such as force sensors, cameras, tactile sensors, and range
finders to gather data about the environment, and a variety of actuators,
switches, and amplifiers to control robotic equipment.

Figure 2 shows one of many possible hardware configurations, and is based
on the hardware architecture recommended by NASREM[9]. The hardware
for each level of the hierarchy is on a separate VME bus, separated by
gateways. In larger systems, there may be multiple VME buses dedicated
to the same level, possibly connected in a star configuration. In a very
simple system, there may be only one VME bus for the entire system.

Tasks at the same level will typically have high volume communication.
A dedicated VME bus for that level reduces the memory bandwidth for
intertask communication, since different levels need not compete for the
same VME bus. In smaller applications where memory bandwidth is not
a problem, multiple levels can share the same VME bus. In addition to
the VME buses for each level, other high speed data buses can be used

253

Soltware Development and Simulation (Non·Real·11me)

From From To
Carrera Sensors Actuators

Planning
Levels

Supervisory
Levels

(May consist 01
more than one

VME bus)

Servo Levels
(May consist of
more than one

VME bus)

Figure 2: Generalized hardware configuration supported by CIDMERA IT

either for fast local communication between neighboring processors, or as
dedicated data paths for sensor and actuator signals.

The highest level of the hierarchical control consists of the non-real-time
environment. One or more workstations can be connected via ethernet, with
at least one of them connected via a gateway to the real-time environment.
which we call the host workstation. Various utilities such as simulators,
debuggers, graphical interfaces, and fIle systems are located at this level.

2.1 A Sample Application

CIDMERA II is currently implemented to run with a Sun host workstation,
running SunOS 4.0.3. The effort required for porting the code to a different
host should be minimal if the operating system on the new host supports
System V interprocess communication and the enhanced mmap() facility
that Sun provides. The Real-Time Processing Units (RTPUs) are VME­
based single-board computers. Thus far, supported RTPUs are the Ironies
IV32XX series with M68020 processors, and Heurikon M68030 processors.
Porting to other M68020 or M68030 processors would require minimal
effort. Porting to an entirely different processor family, such as the SPARe
or 80X86 would require substantial effort. The VME to VME gateways are
typically VME-VME adaptors, with the BIT3 Models 411 and 412 currently
supported. These adaptors operate only in master/slave mode, where the
address space of the slave VME bus is mapped into a part of the address
space of the master VME bus through an address window. CIDMERA II
has been designed to use these master/slave adaptors since they are the most
popular type of adaptor on the market. Adaptors that use DMA to transfer
data can be used, but the code required to support them has not yet been
implemented.

The hardware currently supported is based on the needs of the Advanced
Manipulators Laboratory at Carnegie Mellon University (CMU). Within our
own labs, three very different systems are currently using CIDMERA II.
These are the CMU Direct Drive Arm II (DDArm 11)[101, The CMU
Reconfigurable Modular Manipulator System[111. and the Flexible Arm

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Manipulator[12]. The diverse requirements of these systems have proven
the flexibility of CIllMERA II to support a wide variety of actuators and

sensors.

The CMU DDArm II is an example of a multi·sensor robotic system. Its
current hardware configuration is shown in Figure 3. The system consists
of three VME backplanes, separated by BIT3 adaptors, and a Multibus
backplane separated by a YME-Multibus adaptor. No RTPUs reside on
the Multibus; all processors on that bus are treated as devices. A Sun
3/260 is used as the host woxkstation, with one Heurikon M68030 and two
Ironies M68020 processors as the RTPUs. Also included in the system is a
Mercury 3200 floating point accelerator with 20 MfIop peak performance,
an Imaging Technology vision system, and six Texas Instrument TMS320
digital signal processors. Several serial and parallel I/O ports are used
to connect to position, force, and tactile sensors, while an analog input
connects to a camera on the end effector. A six·degree·of·freedom joystick,
a terminal, and the Sun keyboard and mouse provide the interfaces for
human interaction with the system.

Ethernet

NFS

Joint
Controller

1

T olfrom Robot
Joint 1

IRIS
Graphics

Workstation
(for vision
simulation)

Multibus

••

6 DOF

TMS 320
Joint

Controller
#6

Tolfrom Robot
Joint 6

Figure 3: eMU Direct Drive Arm II hardware configuration

3 Software Architecture

The concept of a layered hardware platform eases system planning and
integration, and provides convenient guidelines for developing large sys·
tems. Such layered hardware with multiple processors, however, presents
nightmares to system programmers who must worry about the multitude of
different addresses, address spaces, specialized devices, and hardware de·
pendencies. It becomes extremely difficult to write standardized software
when the hardware is very diverse.

CHIMERA II was designed to remove these problems from the user. First it
provides a communications layer that makes all the interprocessor commu·
nication complexities transparent to the user. Second, it provides a kernel

254

with device drivers that makes the very different hardware look similar.

3.1 Overview of CHIMERA II Software

Control processes running at the servo levels involve reading data from
sensors, analyzing the data, and controlling electro-mechanical devices, such
as robots or machines. The timing of thes~ levels is critical, also known as
hard real·time, and often involves periodic processes ranging from 100 Hz
to 1000 Hz. CHIMERA II provides both minimum·laxity·first and highest.
priority-jirst schedulers for programming in real·time. The minimum· laxity·
first scheduler allows the user to specify tasks with execution deadlines. A
failure handler is called whenever a task fails to meet its deadline as a result
of a system overload.

In most robotic systems, the CPU bandwidth provided by a single processor
is insufficient, thus creating the need for multiple processors. If the cost
or complexity of communication between multiple processors is too high,
however, it may nullify the effect of parallelism. CHIMERA II addresses
this problem by exploiting the fact that all processors are on the VME
bus, and uses direct block copies for all communication, instead of using
time·consuming network protocols such as TCP/IP. The interface to these
communication primitives is transparent across multiple processors, thus
simplifying the programming of multiprocessor applications.

The planning levels do not necessarily require a real·time scheduler. In many
cases, the non·real·time environment offered by a typical UNIX workstation
is desirable to provide both a graphies terminal and a development envi·
ronment. Traditional methods of linking non·real·time to real·time systems
via ethernet and using network protocols is both difficult to program and
requires a huge amount of overhead. Ideally, from the user's point of view,
there is no difference between the real·time and non·real·time systems. Our
design of CHIMERA II allows processes on the host UNIX workstation to
communicate directly with the processors in the real· time environment, us·
ing the same synchronization primitives. There is no need for any complex
network protocol to establish such communication.

Applications for CIllMERA II are programmed using the C language. Using
languages other than C should be possible; however no consideration was
given to this aspect during the development of CHIMERA II. Assembly
language can also be used for specialized applications, but it is usually not
necessary, since CHIMERA II provides the necessary features for writing
exception handlers and device drivers in C.

Many standard C library calls are available, such as the stdio, strings, and
math libraries, and also various utilities such as quicksort, binary search,
and an optimized block copy. With the exception of the stdio library, these
libraries provide identical functionality to their UNIX counterparts. The
stdio library has been enhanced to run within a shared memory environment.
Files can be shared among multiple tasks on the same processor. The stdio
library incorporates the appropriate mutual exclusion to ensure the integrity
of the file buffers. In addition to the standard library routines, CHIMERA II
emulates many of the UNIX system calls, such as open(), read(), write() ,
and mmap(). These routines all generate remote procedure calls when the
needed resource belongs to a different processor within the system.

3.2 Real-Time Kernel

A copy of the CHIMERA II real· time kernel executes on each RTPU. The
kernel provides all the scheduling and task control primitives through a C
library. The low·level details such as the model or manufacturer of the
RTPU are built·in to CHIMERA II and are hidden from the user.

One of the major goals when developing the kernel was to provide the
required functionality at the highest performance possible, by sacrificing
traditional operating system features which are hardly used. Our basis for
measuring performance is the amount of CPU time during normal execu·
tion which must be dedicated to the operating system functions, such as
scheduling, task switching, and communication overhead. Some of the ma­
jor design decisions made in developing a kernel especially for real· time
sensory control are described below. For the sake of brevity, we have left
out many details of the software. These are available in [15].

Tasks: A task in CIllMERA II is also known as a thread or lightweight

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

process in other operating systems. A user program which is downloaded
into an RTPU consists of a single executable file. The kernel is supplied
as a C library and is linked into the executable image. When a program
is downloaded to an RTPU and executed, some kernel initialization is per­
formed, following which the user's main() routine is spawned as a task.
Any other task can then be started from mainO.

Task communication: There is no parent/child relationship among tasks.
Any task can communicate with any other task either through local shared
memory or local semaphores. Within a single executable file, all global
variables are automatically shared among all tasks. Local semaphores are
available and can be used either to provide mutual exclusion during crit­
ical sections (binary semaphores), or to provide synchronization among
tasks (general or counting semaphores). Global shared memory, remote
semaphores, and message passing are also available to tasks when commu­
nication across multiple processors is required. The global communication
is described in Section 3.4.

Intertask security: In general, all of the tasks running on a given RTPU
(or set of RTPUs) are written and invoked by a single user. It is reasonable
to assume that these tasks are designed to cooperate. We have thus sacrificed
the intertask protection, allowing one task to access the address space of
any other task. This has resulted in the elimination of a lot of overhead
incurred in performing system calls or their equivalents.

Memory management: The total address space used by all tasks on
one system is limited by the physical memory available on the RTPU.
CHIMERA II does not provide any virtual memory, as the memory man­
agement and swapping overhead not only decreases the performance of a
system drastically, but it also causes the system to become unpredictable,
thus violating one of the major rules of real-time systems. CHIMERA II
provides its own version of the malloc() family of routines to allocate real­
memory.

Special purpose processors and devices: The ClllMERA II kernel uses
a UNIX-like approach of using device drivers to isolate the user from the
details of special hardware. The kernel supports the open, close, read, write,
ioetl, and nunap drivers. These drivers are usually much simpler to write
than their UNIX counterparts because of the lack of intertask security, as
described above. Special purpose processors usually have memory which
can be memory mapped, thus making the entire address space of the pro­
cessor available to the tasks using it. AcceSSing special purpose processors
is strictly via master/slave relationships, where tasks on the RTPUs control
the execution of code on the special processor.

Exception and interrupt handlers: User-defined exception and interrupt
handlers can be defined either on a per-task or per-RTPU basis. This allows
users to alter the default action of various exceptions, which is to halt
the task. For example, a bus error exception can be trapped so that a
task that tries to access unavailable memory on the VME bus does not
die. Similarly, a task can catch a division-by-zero exception and modify
its computation accordingly, instead of having to check for zero on every
calculation. ClllMERA II provides the facilities to write these handlers in C.
The C routine is declared with a special header, and installed dynamically by
a subroutine call. Routines are also provided to enable or disable interrupts,
or to lock the CPU for short periods.

3.2.1 Real-Time Task Scheduler

One of the main components of any real-time kernel is its scheduler.
CHIMERA II provides a policy/mechanism separation scheme[13] which
allows the user to replace the standard schedulers with application specific
algorithms. The ClllMERA II default scheduler algorithm was developed
by incorporating various standard algorithms with extensive experimenta­
tion and tuning to obtain the best performance for typical job mixes. The
scheduler is based on a combination of minimum-laxity-first[14J, highest­
priority-first, and round-robin scheduler techniques.

The heart of the scheduler is the minimum-laxity-first deadline scheduler. A
task can specify its timing requirements in terms of a deadline time, and
an estimate of the execution time as a range from minimum execution time
required to maximum execution time required. The scheduler will then
choose tasks to run based on which task has the smallest laxity. Laxity is

255

calculated as follows:

laxity = deadline_time - presentJime - epuJime..stilLneeded

When more CPU power is requested from all tasks than is available, one or
more tasks may fail to meet their deadline, in which case the ClllMERA II
kernel automatically calls a failure handler. The failure handler is specified
by the user on a per-task basis. Typical uses of the failure handler include
the following: aborting the task and preparing it to restart the next period;
sending a message to some other part of the system to handler the error;
performing emergency handling, such as a graceful shutdown of the system
or sounding an alarm; maintaining statistics on failure frequency to aid in
tuning the system; or in the case of iterative algorithms, returning the current
approximate value regardless of precision.

One important criterion with a deadline scheduler in an overload situation
is selecting which tasks to run and which to let fail. The user not only
specifies the failure handler, but also a failure handler priority. The failure
handler can thus run at higher or lower priority than all other tasks in the
system.

The ClllMERA II scheduler will use a highest-priority-first to distinguish
between multiple tasks with equal laxity, and when there are no ready-to-run
tasks with deadlines. Equal priority tasks are scheduled in a round-robin
manner. There may be times when a non-deadline high priority task is
extremely important and must execute ahead of any other task, even if the
other tasks have deadline. The kernel allows tasks to set their criticalness
to a value higher than the default value, which will then allow that task to
run ahead of any task with a deadline.

Use of the deadline scheduler is optional. Some applications are better
programmed just using a highest-priority-first scheduler as is available in
commercial real-time operating systems. By not specifying any task dead­
lines within the system, the ClllMERA II scheduler behaves as a highest­
priority-first preemptive scheduler. In such cases, however, there is no way
to specify a failure handler since the tasks do not have deadlines.

3.3 System-Level Communication

One of the major strengths of ClllMERA II is that all the details of the
hardware environment are transparent to the user. For example, to perform
work with a file system, such as opening the file, reading it, then closing
it, the user uses the standard UNIX syntax of open(), read(), and close(), or
optionally using the C standard I/O (stdio) library. The ClllMERA II system
determines which processor owns the me, sends the appropriate message,
performs the operation, then returns the result. The user is thus unaware
that any me operation is remote.

Every processor, including the host workstation, has a server task and an
express mail mailbox which are used to provide transparent access to the
remote devices and the host me system from any other RTPU. The server
is capable of translating symbolic names into pointers, performing any nec­
essary address calculations to account for the various address spaces and
offsets within the multiple-VME-bus system, and performing system caUs
on behalf of remote tasks.

A low-overhead message passing mechanism, which we call express mail,
is used to send system messages to the servers. System messages are mes­
sages sent only by built-in kernel routines, as opposed to user messages as
described in Section 3.4. Any task can (indirectly) send a system message;
however, only the servers can read these messages.

Many UNIX system calls, including open(), close(), read(), write(), mmap().
and ioctl() have been emulated as C procedures, with the ability to send mes­
sages when the required resource belongs to a remote processor. Whenever
these calls have to access a remote processor, a message is sent to the re­
mote processor's express mailbox. Each RTPU has at least one mailbox,
which is in a part of memory known to all other processors. A server task
on the remote process handles all incoming messages by performing the
system call on behalf of the originator's task. Pointers to the data blocks
to be read or written are passed as part of the message, as opposed to in­
cluding the entire data in the message. This guarantees short messages and
no additional buffering, which is especially important in calls such as read

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

