

Iam-Choon Khoo

Pennsylvánia State Univ.

Shin-Tson Wu

Hùghes Research Lab.

Find authenticated court documents without watermarks at docketalarm.com.

Published by

World Scientific Publishing Co. Pte. Ltd.
P O Box 128, Farrer Road, Singapore 9128
USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 73 Lynton Mead, Totteridge, London N20 8DH

OPTICS AND NONLINEAR OPTICS OF LIQUID CRYSTALS

Copyright © 1993 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

ISBN 981-02-0934-7 981-02-0935-5 (pbk)

For copying of articles in this volume, please pay a copying fee through the Copyright Clearance Centre, Inc., 27 Congress Street, Salem, MA 01970.

Printed in Singapore by Utopia Press.

CONTENTS

Preface

DOCKET

CHAPTER 1. OPTICAL PROPERTIES OF LIQUID CRYSTALS

v

1.1.	Introduction		
1.2.	Thermotropic Liquid Crystals		
	1.2.1. Nematic phase	3	
	1.2.2. Cholesteric phase	4	
	1.2.3. Smectic phases	4	
1.3.	Building Blocks of Liquid Crystals		
	1.3.1. Basic molecular structures	6	
	1.3.2. Phase transition temperatures	10	
1.4.	Eutectic Mixtures		
	1.4.1. Schroder–Van Laar equation	12	
	1.4.2. Example	13	
1.5.	Electronic Structures		
	1.5.1. $\sigma \rightarrow \sigma^*$ transitions	14	
	1.5.2. $n \rightarrow \pi^*$ transitions	16	
	1.5.3. $\pi \to \pi^*$ transitions	17	
1.6.	Experimental Methods for UV Measurement		
	1.6.1. Solvent method	18	
	1.6.2. Guest-host method	20	
1.7.	Polarized Absorption Spectrum	22	
	171 Single nhanyl ring	22	

A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

	1.7.2.	Biphenyls	28
	1.7.3.	Terphenyls	31
	1.7.4.	Tolanes	36
	1.7.5.	Diphenyl-diacetylenes	42
	1.7.6.	Other highly conjugated LCs	48
1.8.	Off-Resonance Absorption and Light Scattering		
	1.8.1.	Impact of absorption	51
	1.8.2.	Principles of measurement	52
	1.8.3.	Experimental method	55
	1.8.4.	Results	56
1.9.	IR Absorption		
	1.9.1.	Experimental method	61
	1.9.2.	Vibrational absorption spectra	62
	1.9.3.	Order parameter determination	66
	1.9.4.	Microwave region	70
1.10.	Refractive Index Dispersions		
	1.10.1.	Generalized Lorentz–Lorenz formula	72
	1.10.2.	Semi-empirical models	73
	1.10.3.	Experimental methods for refractive indices	78
	1.10.4.	Comparison of model with experiment	80
	1.10.5.	Temperature dependence	87
	1.10.6.	Birefringence	90

CHAPTER 2. ELECTRO-OPTICAL PROPERTIES OF LIQUID CRYSTALS

2.1.	Introduction		100
	2.1.1.	Dynamic scattering	100
	2.1.2.	Guest-host effect	101
	2.1.3.	Field-induced nematic-cholestric phase change	102
	2.1.4.	Field-induced director-axis reorientation	103
	2.1.5.	Laser-induced phase change	105
	2.1.6.	Light scattering by micron-sized droplets	105
Part 1	. Elect	ro-Optics of Nematics	
2.2. Liquid Crystal Alignment			

DOCKET

2.2.1. Perpendicular (or homeotropic) alignment 113 2.2.2. Perpendicular (or homeotropic) alignment 116 2.3.3. Twist alignment 116 2.3.1. Generalized geometrical-optics approximation (GGOA) 125 2.3.1. Generalized geometrical-optics approximation (GGOA) 128 2.3.2. 4 × 4 matrix method 128 2.3.3. Extended Jones matrix 131 2.4 Phase Compensation Methods for Widening 138 Viewing Angle 138 2.4.1. Double parallel-aligned cells 139 2.4.2. Double perpendicular-aligned (or ECB) cells 145 2.4.3. Double TN cells 146 2.5.1. Directors distribution 149 2.5.2. Erickson-Leslie equation 159 2.5.3. Measurement of response times 163 2.6.4.1. Dielectric constant 176 2.6.2. Elastic constant 176 2.6.3. Viscosities 179 2.7.4. Transient nematic effect 193 2.7.5. Fabry-Pérot effect 197 <th></th> <th>091</th> <th>Parallel alignment</th> <th>106</th>		091	Parallel alignment	106
2.2.3. Twist alignment 116 2.2.3. Twist alignment 116 2.3. Optical Transmission of Liquid Crystal Cells 125 2.3.1. Generalized geometrical-optics approximation (GGOA) 125 2.3.2. 4 × 4 matrix method 128 2.3.3. Extended Jones matrix 131 2.4. Phase Compensation Methods for Widening 138 2.4.1. Double parallel-aligned cells 139 2.4.2. Double perpendicular-aligned (or ECB) cells 145 2.4.3. Double TN cells 146 2.5. Dynamic Response 148 2.5.1. Directors distribution 149 2.5.2. Erickson-Leslie equation 159 2.5.3. Measurement of response times 163 2.6.1. Dielectric constant 168 2.6.2. Elastic constant 176 2.6.3. Viscosities 179 2.7. Methods for Improving Response Times 193 2.7.1. Dual frequency effect 197 2.7.3. Bias voltage effect 207 2.7.4. Transient nematic effect (undershoot effect) 201 2.7.5. Fabry-Pérot effect 208 2.7.6. Temperature effect 208 2.7.7. Molecular engineering		2.2.1. 0.0.0	Perpendicular (or homeotropic) alignment	113
 2.2.3. Twist animiston of Liquid Crystal Cells 2.3. Optical Transmission of Liquid Crystal Cells 2.3.1. Generalized geometrical-optics approximation (GGOA) 2.3.2. 4 × 4 matrix method 2.3.3. Extended Jones matrix 2.4. Phase Compensation Methods for Widening Viewing Angle 2.4.1. Double parallel-aligned cells 2.4.2. Double perpendicular-aligned (or ECB) cells 2.4.3. Double TN cells 2.5.1. Directors distribution 2.6.3. Measurement of response times 2.6.4. Viscosities 2.6.5. Viscosities 2.6.6. Viscosities 2.7.1. Dual frequency effect 2.7.2. Crossed electric field effect 2.7.3. Bias voltage effect 2.7.4. Transient nematic effect (undershoot effect) 2.7.5. Fabry-Pérot effect 2.7.6. Temperature effect 2.7.7. Molecular engineering 2.7.8. Diver-Dispersed Liquid Crystals 2.8. Polymer-Dispersed LC (PDLC) 2.8.1. Material preparation 2.8.2. Theories on light scattering 2.8.2. Theories on light scattering 2.8.4. Dynamic response 2.8.4. Dynamic response 		2.2.2.	Twist alignment	116
2.3. Optical Haministic of or Let Potic 2 approximation (GGOA) 125 2.3.1. Generalized geometrical-optics approximation (GGOA) 128 2.3.2. 4 × 4 matrix method 128 2.3.3. Extended Jones matrix 131 2.4. Phase Compensation Methods for Widening Viewing Angle 138 2.4.1. Double parallel-aligned cells 139 2.4.2. Double perpendicular-aligned (or ECB) cells 145 2.4.3. Double TN cells 146 2.5. Dynamic Response 148 2.5.1. Directors distribution 149 2.5.2. Erickson-Leslie equation 159 2.5.3. Measurement of response times 163 2.6. Material Parameters for Electro-Optics 168 2.6.1. Dielectric constant 179 2.7. Methods for Improving Response Times 193 2.7.1. Dual frequency effect 197 2.7.3. Bias voltage effect 197 2.7.4. Transient nematic effect (undershoot effect) 201 2.7.5. Fabry-Pérot effect 208 2.7.7.	0.0	2.2.3.	I Wist angument	125
2.3.1. GeGOA 125 (GGOA) 128 2.3.2. 4 × 4 matrix method 128 2.3.3. Extended Jones matrix 131 2.4. Phase Compensation Methods for Widening 138 Viewing Angle 138 2.4.1. Double parallel-aligned cells 139 2.4.2. Double perpendicular-aligned (or ECB) cells 145 2.4.3. Double TN cells 146 2.5. Dynamic Response 148 2.5.1. Directors distribution 149 2.5.2. Erickson-Leslie equation 159 2.5.3. Measurement of response times 163 2.6.1. Dielectric constant 168 2.6.2. Elastic constant 179 2.6.3. Viscosities 179 2.7. Methods for Improving Response Times 193 2.7.1. Dual frequency effect 197 2.7.2. Crossed electric field effect 197 2.7.3. Bias voltage effect 207 2.7.4. Transient nematic effect (undershoot effect) 201	2.3.	Optice	Constalized geometrical-optics approximation	
2.3.2. 4 × 4 matrix method1282.3.3. Extended Jones matrix1312.4. Phase Compensation Methods for Widening1382.4. Double parallel-aligned cells1392.4.2. Double perpendicular-aligned (or ECB) cells1452.4.3. Double TN cells1462.5. Dynamic Response1482.5.1. Directors distribution1492.5.2. Erickson-Leslie equation1592.5.3. Measurement of response times1632.6.1. Dielectric constant1682.6.2. Elastic constant1762.6.3. Viscosities1792.7.4. Methods for Improving Response Times1932.7.5. Fabry-Pérot effect1972.7.6. Temperature effect2072.7.7. Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8. Polymer-Dispersed LC (PDLC)2122.8.1. Material preparation2132.8.2. Theories on light scattering2142.8.3. Optical transmission2192.8.4. Dynamic response2262.8.5. Reverse-mode PDLC229		2.3.1.	(CCOA)	125
2.3.2. 4 X 4 matrix memory1312.3.3. Extended Jones matrix1312.4. Phase Compensation Methods for Widening1382.4.1. Double parallel-aligned cells1392.4.2. Double perpendicular-aligned (or ECB) cells1452.4.3. Double TN cells1462.5. Dynamic Response1482.5.1. Directors distribution1492.5.2. Erickson-Leslie equation1592.5.3. Measurement of response times1632.6. Material Parameters for Electro-Optics1682.6.1. Dielectric constant1682.6.2. Elastic constant1762.6.3. Viscosities1932.7.1. Dual frequency effect1942.7.2. Crossed electric field effect1972.7.3. Bias voltage effect2072.7.4. Transient nematic effect (undershoot effect)2012.7.5. Fabry-Pérot effect2082.7.7. Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8. Polymer-Dispersed LC (PDLC)2122.8.1. Material preparation2132.8.2. Theories on light scattering2142.8.3. Optical transmission2192.8.4. Dynamic response2262.8.5. Represe-mode PDLC229		099	(GOOA)	128
2.3. Extended solid matrix 138 2.4. Phase Compensation Methods for Widening 138 2.4.1. Double parallel-aligned cells 139 2.4.2. Double perpendicular-aligned (or ECB) cells 145 2.4.3. Double TN cells 146 2.5. Dynamic Response 148 2.5.1. Directors distribution 149 2.5.2. Erickson-Leslie equation 159 2.5.3. Measurement of response times 163 2.6. Material Parameters for Electro-Optics 168 2.6.1. Dielectric constant 168 2.6.2. Elastic constant 176 2.6.3. Viscosities 179 2.7.1. Dual frequency effect 194 2.7.2. Crossed electric field effect 197 2.7.3. Bias voltage effect 197 2.7.4. Transient nematic effect (undershoot effect) 201 2.7.5. Fabry-Pérot effect 208 2.7.7. Molecular engineering 210 Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals 2.8. Polymer-Dispersed LC (PDLC) 212 2.8.1. Material preparation 213 2.8.2. Theories on light scattering 214 2.8.3. Optical transmission <		2.J.4. 0.2.2	Fytonded lones matrix	131
2.4.Frase compension means138Viewing Angle1382.4.1.Double parallel-aligned cells1392.4.2.Double perpendicular-aligned (or ECB) cells1452.4.3.Double TN cells1462.5.Dynamic Response1482.5.1.Directors distribution1492.5.2.Erickson-Leslie equation1592.5.3.Measurement of response times1632.6.Material Parameters for Electro-Optics1682.6.1.Dielectric constant1682.6.2.Elastic constant1762.6.3.Viscosities1792.7.Methods for Improving Response Times1932.7.1.Dual frequency effect1942.7.2.Crossed electric field effect1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2072.7.5.Fabry-Pérot effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Reverse-mode PDLC2262.8.5.Reverse-mode PDLC229	0.4	2.3.3. Dhaco	Compensation Methods for Widening	
Viewing Fingle1392.4.1.Double parallel-aligned cells1392.4.2.Double perpendicular-aligned (or ECB) cells1452.4.3.Double TN cells1462.4.3.Double TN cells1462.5.Dynamic Response1482.5.1.Directors distribution1492.5.2.Erickson-Leslie equation1592.5.3.Measurement of response times1632.6.Material Parameters for Electro-Optics1682.6.1.Dielectric constant1682.6.2.Elastic constant1762.6.3.Viscosities1792.7.Methods for Improving Response Times1932.7.1.Dual frequency effect1942.7.2.Crossed electric field effect1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2082.7.7.Molecular engineering210Part 2.Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Rearese-mode PDLC229	2.4.	Viewi	ng Angle	138
2.4.1. Double partner organization organization 145 2.4.2. Double TN cells 146 2.4.3. Double TN cells 146 2.5. Dynamic Response 148 2.5.1. Directors distribution 149 2.5.2. Erickson-Leslie equation 159 2.5.3. Measurement of response times 163 2.6. Material Parameters for Electro-Optics 168 2.6.1. Dielectric constant 168 2.6.2. Elastic constant 176 2.6.3. Viscosities 179 2.7. Methods for Improving Response Times 193 2.7.1. Dual frequency effect 194 2.7.2. Crossed electric field effect 197 2.7.3. Bias voltage effect 201 2.7.4. Transient nematic effect (undershoot effect) 201 2.7.5. Fabry-Pérot effect 208 2.7.7. Molecular engineering 210 2.8.1. Material preparation 213 2.8.2. Theories on light scattering 214 2.8.3. Optical transmission 219 2.8.4. Dynamic response 226 2.8.5. Rearge-mode PDLC 229			Double narallel-aligned cells	139
2.4.2.Double TN cells1462.4.3.Double TN cells1482.5.1.Directors distribution1492.5.2.Erickson-Leslie equation1592.5.3.Measurement of response times1632.6.Material Parameters for Electro-Optics1682.6.1.Dielectric constant1762.6.2.Elastic constant1792.6.3.Viscosities1792.7.Methods for Improving Response Times1932.7.1.Dual frequency effect1942.7.2.Crossed electric field effect1972.7.3.Bias voltage effect2012.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Royerse-mode PDLC229		2.4.1.	Double perpendicular-aligned (or ECB) cells	145
2.4.3.Dome Trivens1482.5.Dynamic Response1492.5.1.Directors distribution1492.5.2.Erickson-Leslie equation1592.5.3.Measurement of response times1632.6.Material Parameters for Electro-Optics1682.6.1.Dielectric constant1762.6.2.Elastic constant1792.6.3.Viscosities1792.7.Methods for Improving Response Times1932.7.1.Dual frequency effect1942.7.2.Crossed electric field effect1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Rowerse-mode PDLC229		2.4.2.	Double TN cells	146
2.5.Dynamic response1492.5.1.Directors distribution1592.5.2.Erickson-Leslie equation1592.5.3.Measurement of response times1632.6.Material Parameters for Electro-Optics1682.6.1.Dielectric constant1682.6.2.Elastic constant1762.6.3.Viscosities1792.7.Methods for Improving Response Times1932.7.1.Dual frequency effect1942.7.2.Crossed electric field effect1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Reverse-mode PDLC229	0 4	2.4.3. Drum av		148
2.5.1.Diffectors distribution2.5.2.Erickson-Leslie equation2.5.3.Measurement of response times1632.6.Material Parameters for Electro-Optics2.6.Material Parameters for Electro-Optics2.6.Dielectric constant2.6.1.Dielectric constant2.6.2.Elastic constant2.6.3.Viscosities2.6.3.Viscosities2.6.3.Viscosities2.7.Methods for Improving Response Times2.7.Methods for Improving Response Times2.7.1.Dual frequency effect2.7.2.Crossed electric field effect2.7.3.Bias voltage effect2.7.4.Transient nematic effect (undershoot effect)2.7.5.Fabry-Pérot effect2.7.6.Temperature effect2.7.7.Molecular engineering2.8.1.Material preparation2.8.2.Theories on light scattering2.8.3.Optical transmission2.8.4.Dynamic response2.8.5.Pawerse-mode PDLC2.8.5.Pawerse-mode PDLC	2.5.	Dyna:	Directors distribution	149
2.5.2. Effection freshe equation1632.5.3. Measurement of response times1632.6. Material Parameters for Electro-Optics1682.6.1. Dielectric constant1682.6.2. Elastic constant1762.6.3. Viscosities1792.7. Methods for Improving Response Times1932.7.1. Dual frequency effect1942.7.2. Crossed electric field effect1972.7.3. Bias voltage effect1972.7.4. Transient nematic effect (undershoot effect)2012.7.5. Fabry-Pérot effect2082.7.7. Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1. Material preparation2132.8.2. Theories on light scattering2142.8.3. Optical transmission2192.8.4. Dynamic response2262.8.5. Reverse-mode PDLC229		2.3.1.	Frickson-Leslie equation	159
2.6.Material Parameters for Electro-Optics1682.6.1.Dielectric constant1682.6.2.Elastic constant1762.6.3.Viscosities1792.7.Methods for Improving Response Times1932.7.1.Dual frequency effect1942.7.2.Crossed electric field effect1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2082.7.7.Molecular engineering210Part 2.Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Raverse-mode PDLC229		2.3.2.	Management of response times	163
2.6.Material Talanctors for Encode 11682.6.1.Dielectric constant1762.6.2.Elastic constant1792.6.3.Viscosities1792.7.Methods for Improving Response Times1932.7.1.Dual frequency effect1942.7.2.Crossed electric field effect1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2072.7.6.Temperature effect2082.7.7.Molecular engineering210Part 2.Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Reverse-mode PDLC229		2.0.3.	measurement of response characteristics	168
2.0.1. Dielectric constant1762.6.2. Elastic constant1792.6.3. Viscosities1792.6.3. Viscosities1932.7.1. Dual frequency effect1942.7.2. Crossed electric field effect1972.7.3. Bias voltage effect1972.7.4. Transient nematic effect (undershoot effect)2012.7.5. Fabry-Pérot effect2072.7.6. Temperature effect2082.7.7. Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8. Polymer-Dispersed LC (PDLC)2122.8.1. Material preparation2132.8.2. Theories on light scattering2142.8.3. Optical transmission2192.8.4. Dynamic response2262.9.5Bayarse-mode PDLC229	2.6.	Mate	Dielectric constant	168
2.6.2. Existic constant1792.6.3. Viscosities1792.7. Methods for Improving Response Times1932.7.1. Dual frequency effect1942.7.2. Crossed electric field effect1972.7.3. Bias voltage effect1972.7.4. Transient nematic effect (undershoot effect)2012.7.5. Fabry-Pérot effect2072.7.6. Temperature effect2082.7.7. Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8. Polymer-Dispersed LC (PDLC)2122.8.1. Material preparation2132.8.2. Theories on light scattering2142.8.3. Optical transmission2192.8.4. Dynamic response2262.8.5 Bayeree-mode PDLC229		2.0.1.	Electric constant	176
2.0.3. Visconics1932.7. Methods for Improving Response Times1942.7.1. Dual frequency effect1972.7.2. Crossed electric field effect1972.7.3. Bias voltage effect1972.7.4. Transient nematic effect (undershoot effect)2012.7.5. Fabry-Pérot effect2072.7.6. Temperature effect2082.7.7. Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8. Polymer-Dispersed LC (PDLC)2122.8.1. Material preparation2132.8.2. Theories on light scattering2142.8.3. Optical transmission2192.8.4. Dynamic response2262.8.5Bayerse-mode PDLC229		2.0.2.		179
2.7.Methods for improving reception1942.7.1.Dual frequency effect1972.7.2.Crossed electric field effect1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2072.7.6.Temperature effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2192.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5Bayerse-mode PDLC229		2.0.3. Baal	viscosities	193
2.7.1.Dual inequency enter1972.7.2.Crossed electric field effect1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2072.7.6.Temperature effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5Reverse-mode PDLC229	2.7.		Dual frequency effect	194
2.7.2.Crossed creation and entry1972.7.3.Bias voltage effect1972.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2072.7.6.Temperature effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Bayerse-mode PDLC229		2.(.1.	Crossed electric field effect	197
2.7.3.Blas voltage circlet2012.7.4.Transient nematic effect (undershoot effect)2012.7.5.Fabry-Pérot effect2072.7.6.Temperature effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Bayerse-mode PDLC229		2.(.2.	Diog voltage effect	197
2.7.4.Iransient nemute on our (matrix of each of (matrix))2072.7.5.Fabry-Pérot effect2082.7.6.Temperature effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5Bayerse-mode PDLC229		2.(.3.	Transient nematic effect (undershoot effect)	201
2.7.3.Fabry Ferror encode2082.7.6.Temperature effect2082.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Reverse-mode PDLC229		2.1.4.	Fobry-Pérot effect	207
2.7.0.Temperature entropy2102.7.7.Molecular engineering210Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8.Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Reverse-mode PDLC229		2.1.0	Tomperature effect	208
Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals 2.8. Polymer-Dispersed LC (PDLC) 212 2.8.1. Material preparation 213 2.8.2. Theories on light scattering 214 2.8.3. Optical transmission 219 2.8.4. Dynamic response 226 2.8.5 Beverse-mode PDLC 229		2.1.0	Molecular engineering	210
Part 2. Electro-Optics of Polymer-Dispersed Liquid Crystals2.8. Polymer-Dispersed LC (PDLC)2122.8.1. Material preparation2132.8.2. Theories on light scattering2142.8.3. Optical transmission2192.8.4. Dynamic response2262.8.5Bayerse-mode PDLC229		2.1.1	. Molecular engineering	
2.8. Polymer-Dispersed LC (PDLC)2122.8.1.Material preparation2132.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Beverse-mode PDLC229	Part	; 2. Ele c	tro-Optics of Polymer-Dispersed Liquid Cry	vstals
2.8.1.Material preparation2132.8.1.Material preparation2142.8.2.Theories on light scattering2142.8.3.Optical transmission2192.8.4.Dynamic response2262.8.5.Bayerse-mode PDLC229	28	Polv	mer-Dispersed LC (PDLC)	212
2.8.2.Theories on light scattering2142.8.2.Optical transmission2192.8.3.Optical transmission2262.8.4.Dynamic response2262.8.5.Beverse-mode PDLC229	4.0.	2.8.1	Material preparation	213
2.8.3.Optical transmission2192.8.3.Dynamic response2262.8.4.Dynamic response2292.8.5.Beverse-mode PDLC229		<u>2</u> .0.1 <u>2</u> .8 9	Theories on light scattering	214
2.8.4.Dynamic response2262.8.5.Beverse-mode PDLC229		2.8.3	Optical transmission	219
2.9 5 Beverse-mode PDLC 229		2.8.4	Dynamic response	226
		2.8.F	6. Reverse-mode PDLC	229

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

