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TABLE 5.13  Correlation coefficients for activity measures.

Correlation coefficients computed for the different intraday analyses for the USD against
DEM, JPY, CHF, and GBP and XAU (gold) against USD. Sampling period: from January 1,
1987, to December 31, 1993.

DEM PY GBP CHF XAU
E(|r))-ticks +0.540 +0.421 +0.779 +0.755 +0.885
E(|r|)-spread —0.220 ~0.485 —0.570 —0.704 —0.287
Ticks-spread —0.693 —0.018 —0.881 —~0.707 —0.450

coefficients between the intradaily histograms of Figure 5.12 are also positive, as
explicitly shown in the first line of Table 5.13. We conjecture that both variables
are positively correlated to a third one, the worldwide intraday transaction volume,
which is not known for the FX market. Transaction volume figures are, however,
available for the stock market; their positive correlation to squared returns (and
hence the volatility) has been found by Harris (1987) and other authors. Recently,
Hasbrouck (1999) examined the data of the New York Stock Exchange and found
similar correlations as in Table 5.13 for his transaction data, but the correlations
did not uniformly increase when the data were aggregated.

The statistics show that an analysis of return distributions that neglects the large
differences between the hours of a day and the days of the week is inappropriate.
In Chapter 6, we will introduce a new time scale to solve this problem.

5.6.3 Seasonal Volatility: U-Shaped for Exchange Traded
Instruments

Intradaily seasonalities were also found in the stock markets by Ghysels and Jasiak
(1995), Andersen and Bollerslev (1997b) and Hasbrouck (1999). Unlike the FX
market, stock exchanges and money market exchanges are active less than 24 hra
day. Thus the shape of the seasonality is different. It is called the U-shape because
the high volatility of the opening is followed by a decrease, which is in turn
followed by an increase of volatility just before closing. Ballocchi e al. (1999b)
study the Eurofutures markets and find the expected intraday seasonality. For all
contracts traded on LIFFE the hourly tick activity displays the U-shape with its
minimum around 11 a.m. to 1 p.m. (GMT) and a clustering of activity around the
beginning and the end of the trading day. There are differences among Eurofutures
between the levels and widths of the peaks and the level of the minimum. The
Eurodollar (a contract type traded on CME, see section 2.4.1) displays similar
behavior but the activity in the first half of the working day, which takes place
when the European markets are still open, is higher than during the second half of
the day, when European markets have already closed and Asian markets are not
yet open.
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FIGURE 5.13 intraday analysis of Short Sterling in position two. The intraday tick
activity (left histogram) displays the average number of ticks occurring in each hour of
the day whereas the intraday volatility (right histogram) shows the mean absolute return.
Both plots display similar U-shapes, the only difference being that the minimum appears
one hour later for intraday returns. The time scale is GMT (not UKT, the local time used
by LIFFE in London). The sampling period starts on January 1, 1994, and ends on Aprii 15,
1997. The total number of ticks I1s 184,360.

Intraday returns follow a pattern similar to that presented by intraday tick
activity. In general, opening hours show the highest price variation (the difference
with respect to the average of the other hours is around one basis point); only in
some cases does the largest return occur toward closing time (usually in the last
positions). Differences occur in some positions?® for Short Sterling, Eurolira, and
Three-Month Ecu,?® which display the minimum of the U-curve 1 hour later than
in the tick-activity case. This can be seen in Figure 5.13, which displays intraday
tick activity and intraday returns for Short Sterling in position two. Note that the
U-shapes in this figure are blurred by the fact that Greenwich Mean Time (GMT) is
used. The observations do not only cover winter months but also summers where
the time scale used by LIFFE in London is shifted by 1 hour (daylight saving time).
If the time scale was local time (UKT) instead of GMT, the U-shapes would be
more pronounced with clearer peaks at opening and closing.

The first two positions of the Euromark display less regularity in the intraday
return behavior. This behavior is confirmed also by correlation results: on the
whole, the correlation between hourly tick activity and hourly returns is above
0.96; only Euromark for the first two positions and Three Month-Ecu for the
fourth position show a lower correlation around 0.90. In general, for Eurodollar,
Euromark and Short Sterling, hourly returns tend to increase from position 1

28 For an explanation of the word “position,” see Section 2.1.2.
29 Short Sterling, Eurolira, Three Month-Ecu, and Euromark are names of LIFFE contracts, all with
an underlying 3-month deposit. Ecu is the European Currency Unit that preceded the Euro.
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FIGURE 5.14 \Volatility as a function of time to expiry. The volatility values are daily
averages over 36 contracts (9 for Eurodollar, 9 for Euromark, 9 for Short Sterling, and 9 for
Eurolira). The abscissa corresponds to the time to expiry: the farther on the right-hand
side, the farther away from expiry.

to position 4; Burodollar and Short Sterling display a decrease for some hours
in position 4.

Looking at intraweek tick activity, there is evidence of a day-of-the-week
effect. In general, the level of activity displays a minimum on Monday and a
maximum on the last two working days of the week, usually on Thursday for
LIFFE contracts and on Friday for CME contracts. The difference is definitely
significant for the Eurodollar; in fact, for positions 1 and 2 the tick activity on
Friday is almost double that on Monday and it becomes more than double for
positions 3 and 4. In general, there is a gradual increase from Monday to Friday.

5.6.4 Deterministic Volatility in Eurofutures Contracts

Ballocchi ef al. (2001) provide evidence that the volatility of futures prices sys-
tematically depends on the time interval left until contract expiry. We call these
systematic volatility patterns deterministic, as opposed to the also existing stochas-
tic fluctuations of volatility. In order to probe the existence of a seasonality related
to contract expiry, a sample consisting of many futures contracts is needed. For
several Eurofutures contact type (Eurodollar, Euromark, Short Sterling, and Eu-
rolira) and for each contract expiry, we build a series of hourly returns using linear
interpolation. Then we compute daily volatilities taking the mean absolute value
of hourly returns from 00:00 to 24:00 (GMT) of each working day (weekends and
holidays are excluded). These daily volatilities are plotted against time to expiry.
The result is shown in Figure 5.14. The vertical axis represents the mean volatility
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computed from all Eurofutures and all contracts together. The horizontal axis
represents the time left to expiry, as we move towards the left the number of days
to expiry decreases.

Figure 5.14 spans a period of about 360 days because only within that period
we are able to compute our mean volatility based on a full set of contracts. Some
contracts have bad data coverage for times to expiry exceeding 360 days. The
results obtained are quite interesting. There is a downward trend in volatility as the
time to expiry decreases (moving from right to left in Figure 5.14). This downward
trend is weak between about 300 and 180 days before expiry but becomes strong as
we move toward the expiry date. There is also an unexpected behavior consisting
of oscillatory movements with peaks every 90 days corresponding to rollover
activities near the ending of contracts. These results are confirmed also by a
deterministic volatility study on each single Eurofutures type—except Eurolira,
which displays an increment in volatility as we move toward expiry. Eurodollar,
Euromark, and Short Sterling show a decreasing volatility at least for the last 300
days before expiry. All Eurofutures display oscillatory movements with peaks
around expiry dates (this appears particularly evident for Short Sterling).

A possible explanation for this effect is that these markets are all “cash settled”
and therefore have no “delivery risk”; this means there is no risk of holding these
futures on expiry day. Due to transaction costs, it is cheaper to take the cash at
expiry than to close the position and realize the cash the day before. In other
future markets such as the Deutsche Termin-Borse or the commodity markets,
people who hold long positions to expiry actually take physical delivery of the
underlying commodity or bond. There is a risk as expiry approaches as to which
bond or type of commodity will be delivered. This may cause an increase in
volatility as expiry approaches—a behavior opposite to that of Figure 5.14.

5.6.5 Bid-Ask Spreads

The bid-ask spread reflects many factors such as transaction costs, the market
maker’s profit, and the compensation against risk for the market maker, see (Glass-
man, 1987; Glosten, 1987). The subject of the intraday and intraweek analysis is
the relative spread s; (Equation 3.12). It is usually below or around 0.1%, and
its distribution is not symmetric. Negative changes are bounded as spreads are
always positive, but the spread can exceed 0.5% in times of low market activity.
The arithmetic mean of s; weights these low-activity spreads too strongly and
therefore we choose the geometric mean as a more appropriate measure:

1

n n
5= |]]s (5.39)
j=1

Theindex i indicates the hour ofa day (or a week) or the day of the week, depending
on the analysis. The total number of ticks that belong to the it® interval is n;. j is
the index and s;, j the spread of these ticks.
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TABLE 5.14 Average spreads.

Geometric average of the relative spread for each day of the week (including weekends) for
the USD against DEM, JPY, CHF, and GBP and XAU (gold) against USD; for the period from
January 1, 1987, to December 31, 1993. The relative spread figures have to be multiplied

by 10~4.

DEM JPY GBP CHF XAU
Monday 4.57 5.72 4.82 6.32 12.58
Tuesday 452 5.64 4.77 6.28 12.51
Wednesday 4.57 5.71 4.81 6.32 12.49
Thursday 4.64 5.77 4.84 6.38 12.62
Friday 4.79 6.00 4.99 6.49 12.59
Saturday 7.69 17.91 17.32 18.02 13.26
Sunday 5.28 6.78 9.60 10.99 14.04

Miiller and Sgier (1992) analyze in detail the statistical behavior of the quoted
spread. Here we shall present their main conclusions. First, it is important to
remember that all the statistical analyses are dominated by one property of quoted
FX spreads, which is the discontinuity of quoted values (see Section 5.2.2). This
data set contains price quotes rather than traded prices. The banks that issue these
price quotes are facing the following constraints:

®» Granularity: FX prices are usually quoted with five digits—that is, 1.6755
(USD-DEM) or 105.21 (USD-JPY). The lowest digit sets the granularity
and thus the unit basis points.

» Quoted spreads are wider than traded spreads as they include “safety mar-
gins” on both sides of the real spread negotiated in simultaneous real
transactions. These margins allow the FX dealers, when called by a cus-
tomer during the lifetime of the quote, to make a fine adjustment of the
bid and ask prices within the range given by the wide quoted spread. They
can thus react to the most recent market developments.

» FX dealers often have biased intentions: while one of the prices, bid or
ask, is carefully chosen to attract a deal in the desired direction, the other
price is made unattractive by increasing the spread.

» Because quoted spreads are wider than traded spreads, they do not need
the high precision required in the direct negotiation with the customer on
the phone. Hence, there is a tendency to publish formal, “even” values of
quoted spreads as discussed in Section 5.2.2.

The strong preference for a few formal spread values, mainly 5 and 10 basis points,
clearly affects every statistical analysis.

The results are shown in the middle histograms of Figure 5.12 and in
Table 5.14. The general behavior of spreads is opposite to those of volatility
and tick frequency. Spreads are high when activity is low, as already noticed by
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FIGURE 5.15 Cumulative distributions of relative spreads (left) and logarithm of the
relative spread (right) shown against the Gaussian probability on the y-axis. The distribu-
tion I1s computed from a time series of linearly interpolated spread sampled every 10 min
for USD-DEM. The sample runs from March 1, 1986, to March 1, 1991.

Glassman (1987). FX spreads on Saturdays and Sundays can have double and
more the size of those on weekdays and, as in Table 5.12, Sundays differ slightly
less from working days than Saturdays. Sunday in GMT also covers the early
morning of Monday in East Asian time zones. Unlike the volatilities, the average
FX spreads exhibit a clear weekend effect in the sense that the Friday figures are
higher, though still much lower than those of Saturday and Sunday. The spreads of
gold vary less strongly, but they have double the size of the FX spreads on working
days. The FX rate with the smallest spreads, USD-DEM, was the most traded one
according to all the BIS studies (until it was replaced by EUR-USD in 1999). The
histograms in Figure 5.12 have intraday patterns that are less distinct than those
of volatility, but still characteristic. We analyze their correlations with both the
volatilities and the numbers of quoted ticks. All the correlation coefficients on the
second line of Table 5.13 and most of them on the third line are negative, as one
would expect. The FX rates have different spread patterns. For USD-CHF, for
instance, there is a general spread increase during the European afternoon when
the center of market activity shifts from Europe to America, while the USD-JPY
spreads decrease on average at the same daytime. This indicates that American
traders are less interested in Swiss Francs and more in Japanese Yens than other
traders. Hartmann (1998) uses the spreads to study the role of the German Mark
and the Japanese Yen as “vehicle currencies,” as compared to the USD.

An analysis of the empirical cumulative distribution function of the relative
spread s is shown in the left graph of Figure 5.15 for USD-DEM and for In s in the
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right graph of Figure 5.15. The resulting cumulative distribution functions have
the following properties:

1. They are not Gaussian, but convex (s strongly, In s slightly), indicating a
positive skewness and leptokurticity (of the tail on the positive side).

2. They look like a staircase with smooth corners. For the nominal spread
in basis point, spom, We Would expect a staircase with sharp corners, the
vertical parts of the staircase function indicating the preferred “even” val-
ues such as 10 basis points. Although s is a relative spread (% Snom/ Pbid),
where the bid price ppig fluctuates over the 5-year sample, and although we
use linear interpolation in the time series construction (see Section 3.2. D),
the preferred “even” syom Vvalues are still visible.
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6

MODELING SEASONAL
VOLATILITY

6.1 INTRODUCTION

The intradaily and intraweekly seasonality of volatility is a dominant effect that
overshadows many further stylized facts of high-frequency data. In order to con-
tinue the research for stylized facts, we need a powerful treatment of this season-
ality.

Many researchers who study daily time series implicitly use, as a solution,
a business time scale that differs from the physical scale in its omission of Sat-
urdays, Sundays, and holidays. With the #-scale we extend this concept to the
intraday domain, thereby allowing us to tackle a fundamental source of seasonality
originating from the cyclical nature of the 24-hr hour trading around the globe in
different geographical locations.

There are, therefore, three main motivations for our model:

= To provide a tool for the analysis of market prices by extending the concept
of business time scale to intraday prices

® To make a first step toward formulating a model of market prices that also
covers the intraday movements

m To gain insight into the interactions of the main market centers around the
world and their relevance to each particular foreign exchange (FX) rate

174
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A number of papers such as Andersen and Bollerslev (1997b, 1998b), Taylor
and Xu (1997), and Beltratti and Morana (1999) propose alternative approaches
for dealing with volatility seasonalities. They are based on a factorization of
the volatility into an essentially deterministic seasonal part and a stochastic part,
which is (more or less) free of seasonalities. The former is then modeled by a set
of smooth functions. Cutting out the inactive periods of the time series and gluing
together the active parts, Andersen and Bollerslev (1997b) succeeded in applying
their method also to the S&P 500 index. This procedure is not fully satisfactory for
a number of reasons: time series have to be preprocessed, there is no treatment of
public holidays and other special days, the model fails when the opening or closing
time of the market changes, and it is not adequate for instruments with a complex,
hybrid volatility pattern. Gengay ef al. (2001a) use the wavelet multiresolution
methods for dealing with volatility seasonalities which is studied in Section 6.4.

6.2 A MODEL OF MARKET ACTIVITY

6.2.1 Seasonal Patterns of the Volatility and Presence of Markets

The behavior of a time series is called seasonal if it exhibits a periodic pattern
in addition to less regular movements. In Chapter 5 we demonstrated daily and
weekly seasonal heteroskedasticity of FX prices. This seasonality of volatility has
been found in intradaily and intraweekly frequencies. In the presence of seasonal
heteroskedasticity, autocorrelation coefficients are significantly higher for time
lags that are integer multiples of the seasonal period than for other lags. An
extended autocorrelation analysis is studied in Chapter 7.

As studied in Chapter 5, the intraweek analysis indicates that the mean absolute
returns are much higher over working days than over Saturdays and Sundays, when
the market agents are hardly present. The intraday analysis also demonstrates that
the mean absolute hourly returns have distinct seasonal patterns. These patterns are
clearly correlated to the changing presence of main market places of the worldwide
FX market. The lowest market presence outside the weekend happens during the
lunch hour in Japan (noon break in Japan, night in America and Europe). It is at
this time when the minimum of mean absolute hourly returns is found.

Chapter 5 also presents evidence of a strong correlation between market pres-
ence and volatility such that the intraday price quotes are positively correlated to
volatility when measured with mean absolute hourly returns. Market presence is
related to worldwide transaction volume which cannot be observed directly. In the
literature, 2 number of papers present substantial evidence in favor of a positive
correlation between returns and volume in financial markets, see the survey of
(Karpoff, 1987).

The correlation of market presence and volatility requires us to model and
explain the empirically found seasonal volatility patterns with the help of funda-
mental information on the presence of the main markets around the world. We
know the main market centers (e.g., New York, London, Tokyo), their time zones,
and their usual business hours. When business hours of these market centers
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overlap, market activity must be attributed to their cumulative presence; it is im-
possible to assign the market activity to only one financial center at these times.
The typical opening and closing times of different markets can be determined from
a high-frequency database (such as the O&A database), which also contains the
originating locations of the quoted prices.

In many of the approaches cited in the introduction, in particular in Baillie
and Bollerslev (1990) where the seasonality of volatility is modeled by dummy
variables, no further explanation of this seasonal pattern is given. We consider
it advantageous to try to identify at every moment of the day which markets are
responsible for the current volatility.

6.2.2 Modeling the Volatility Patterns with an Alternative Time
Scale and an Activity Variable

Before relating the empirically observed volatility to the market presence, we
introduce a model of the price process, which will be used for describing and
analyzing the seasonal volatility patterns. A return process with strong intraday
and intraweek volatility patterns may not be stationary. Our model for the seasonal
volatility fluctuations introduces a new fime scale such that the transformed data
in this new time scale do not possess intraday seasonalities.

The construction of this time scale utilizes two components: the directing pro-
cess, ¥ (¢), and a subordinated price process generated from the directing process.
Let x(¢) be the tick-by-tick financial time series that inherits intraday seasonal-
ities. The directing process, #(f) : R — R, is a mapping from physical time
to another predetermined time scale. Here, it is defined such that it contains the
intraday seasonal variations.! ©(z), when used with the subordinated price gen-
erating process x(¢) = x*[#(r)], leads to the x* process, which has no intraday
seasonalities. Although this is not the only possible model to treat the observed
seasonality, other traditional deseasonalization techniques are not applicable as
the volatility is seasonal, not the raw time series.

In the literature, a variety of alternative time scales have been proposed, in
different contexts. In the early 1960s, Allais (see, for instance, Allais, 1974) had
proposed the concept of psychological time to formulate the quantity theory of
money. Mandelbrot and Taylor (1967) suggested to cumulate the fransaction vol-
ume to obtain a new time scale which they call the transaction clock. Clark (1973)
suggested a similar approach. Stock (1988) studied the postwar U.S. GNP and
interest rates and proposed a new time scale to model the conditional heteroskedas-
ticity exhibited by these time series. Here we propose to use a new time scale to
account for the seasonality.

I The 9 () process can assume different roles in different filtering environments. If, for instance, the
interest {s to simply filter out certain holiday effects from the data, then @ (#) can be defined accordingly.
Under such a definition, the transformation will only eliminate the specified holiday effects from the
underlying x (¢) process. The ¢ type time transformations are not limited to seasonality filtering. They
can also be used within other contexts such as the modeling of intrinsic time or transaction clock.
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Because the #-scale fully accounts for the seasonality of x, x* has no seasonal
volatility patterns. The process x* may however have nonseasonal volatility pat-
terns; it may be conditionally heteroskedastic. No attempt is made in this chapter
to determine its exact nature. The time scale ¥ (¢) is a strictly monotonic function
of physical time . Any time interval from #; to (> t;) corresponds to a ¥-time
interval of the positive size ¥ — #1. The new activity variable a is defined as the
ratio of the interval sizes on the different scales,

Py —th
= 6.1
a2 P— 6.1)

This activity reflects the seasonal volatility patterns. Its relation to other “activ-
ity” variables such as market presence or transaction volume was mentioned in
Section 6.2.1 and is discussed below.?

6.2.3 Market Activity and Scaling Law

The volatility-based activity defined by Equation 6.1 can be computed with the
empirical scaling law (see Chapter 5) for returns, which relates (for p = 1)
{|{Ax|), the mean absolute returns over a time interval to the size of this inter-
val, At,

Elrl] = cad® 6.2)

where E is the expectation operator, ¢ is a constant depending of the specific
time series. D is the drift exponent, which determines the scaling properties of
the underlying process across different data frequencies. The drift exponent D
is about 0.6 for major FX rates, whereas the pure Gaussian random walk model
would imply D = 0.5. The scaling law expressed in Equation 6.2 holds for all
time series studied and for a wide variety of time intervals ranging from 10 min to
more than a year.

The scaling law is applied to subsamples in a so-called intraweek analysis
that allows us to study the daily seasonality (open periods of the main markets
around the world) as well as the weekly seasonality (working days — weekend).
Here, we choose a sampling granularity of Az = 1 hr. The week is subdivided
into 168 hr from Monday 0:00 — 1:00 to Sunday 23:00 - 24:00 (Greenwich Mean
Time, GMT) with index i. Each observation of the analyzed variable is made in
one of these hourly intervals and is assigned to the corresponding subsample with
index i. The 168 subsamples together constitute the full 4-year sample. The sam-
ple pattern is independent of bank holidays and daylight saving time. A typical
intraday and intraweek pattern across the 168 hr of a typical week is shown in
Figure 6.1.

2 In skipping Saturdays and Sundays, other researchers use an implicit activity model with zero
activity on the weekends.
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Intraweek Hourly Index

FIGURE 6.1 Histogram of the average hourly activity (as defined in Equation 6.4 for
a statistical week (over 4 years) for the USD-DEM rate.

The scaling law, Equation 6.2, is applied to the i" hourly subsample instead
of the full sample and mathematically transformed to

N 1/D

C*

From Chapter 5, we know that 7; can strongly vary for the different hours of a
week. The time interval At = 1 hr (for the hourly sampling) is nevertheless
constant. Therefore, it is replaced by the interval A%; on the new time scale .
The size of A®; is no longer constant, but reflects the typical volatility of the ith
hour. The constant c* is essentially the ¢ of Equation 6.2, but can differ slightly
as it is calibrated by a normalization condition presented later.

The activity of the i** hourly subsample directly follows from Equation 6.1,

1 (EQnHI Y2
Ogtat,i = ( [lrll]) , At = lhr 64

At c*

This is the volatility-based activity definition used in the following analysis. The
constant ¢* is calibrated to satisfy the following, straightforward normalization
condition:
168

asati = 1 (6.5)

i=1

1
168

6.2.4 Geographical Components of Market Activity

In Figure 6.1, the histogram of the average hourly activity defined by Equation 6.4
is plotted for the USD-DEM rate. Although the activity definition is based only
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on return statistics, the histogram exhibits clear structures where there is very low
activity over the weekends and strongly oscillating activity patterns on normal
business days. The most active period is the afternoon (GMT) when the European
and American markets are open simultaneously. We have varied the A¢ granularity
of this analysis from 15 min to 4 hr and found no systematic deviations of the
resulting activity patterns from the hourly ones. Furthermore, the activity patterns
are remarkably stable for each of the 4 years of the total sample. The strong
relation between return activity and market presence leads to the explanation of
activity as the sum of geographical components. Although the FX market is
worldwide, the actual transactions are executed and entered in the bookkeeping
of particular market centers, the main ones being London, New York, and Tokyo.
These centers contribute to the total activity of the market during different market
hours that sometimes overlap.

Goodhart and Figliuoli (1992) have explored the geographical nature of the FX
market to look for what they call the island hypothesis. They studied the possibil-
ity that the price bounces back and forth from different centers when special news
occurs before finally adjusting to it. Along the same idea, Engle et al. (1990), ina
study with daily opening and closing USD-JPY prices in the New York and Tokyo
markets and a market-specific GARCH model, investigate the interaction between
markets. They use the terms heat wave hypothesis for a purely market-dependent
interaction and meteor shower hypothesis for a market-independent autocorrela-
tion. They find empirical evidence in favor of the latter hypothesis. Both studies
have not found peculiar behavior for different markets. This encourages us to
model the activity with geographical components exhibiting similar behavior.

The activity patterns shown in Figure 6.1 and the results reported in Chapter 5
suggest that the worldwide market can be divided into #hree continental compo-
nents: East Asia, Europe, and America. The grouping of the countries appearing
on the Reuters pages in our three components can be found in Table 6.1. This divi-
sion into three components is quite natural and some empirical evidence supporting
it will be presented in Chapter 7.

The model activity of a particular geographical component k is called ax(z);
the sum of the three additive component activities is a(¢):

3
at)y = Y &) (6.6)
k=1

This total activity should model the intraweekly pattern of the stafistical activity
astar,; as closely as possible. Unlike agtat, which has relatively complex behavior
(see Figure 6.1), the components a; (t) should have a simple form, in line with
known opening and closing hours and activity peaks of the market centers.

6.2.5 A Model of Intraweek Market Activity

Each of the three markets has its activity function ax (¢). For modeling this, we use
quantitative information on market presence. A statistical analysis of the number
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TABLE 6.1 Definition of the three generic markets.

Grouping of the different countries appearing in the muiticontributor pages or record from
Reuters according to the three components of the worldwide market.

Index ¥ Component  Countries

1  East Asia Australia, Hong Kong, India, Indonesia, Japan, South Korea,
Malaysia, New Zealand, Singapore

2 Europe Austria, Bahrain, Belgium, Germany, Denmark, Finland,
France, Great Britain, Greece, Ireland, Italy, Israel, Jordan,
Kuwait, Luxembourg, Netherlands, Norway, Saudi Arabia,
South Africa, Spain, Sweden, Switzerland, Turkey, United Arab
Emirates

3  America Argentina, Brazil, Canada, Mexico, United States

of price quotes originating from each of the three markets defined by Table 6.1
reveals two aspects on market presence:

m A market has opening times that are longer than those of a particular
submarket (e.g., an individual bank in one financial center such as Tokyo,
Paris, or Chicago). The market opening time is the union of the opening
times of all relevant institutions of the market.

» Two markets (East Asia and Europe) have a local price quote frequency
minimum in the middle of their working day, corresponding to a noon
break. This local minimum is very pronounced in East Asia and moderate
in Europe. In America, there is no minimum around noon. These differ-
ences reflect the well-known, different business habits concerning lunch
breaks.

Each of the three markets is modeled to have two basic states, either open or
closed. The activity does not completely go to zero when the market is closed
because it is defined in terms of returns. The activity during the closing hours is
modeled to stay on a small constant base level ag x. During the opening hours, a
much stronger, varying, positive activity a1 x adds to the base level,

3 3
at) = Y laox +ar®)] = ap+ ) ark) > 0 (6.7)

k=1 k=1

The joint base level ag is regarded as one model parameter. There is no need to
analyze components ag,.

The activity during opening hours, a1k, is modeled with a polynomial with
smooth transition to the constant behavior of the closing hours. This choice is
mathematically convenient because such functions are easily differentiable and
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analytically integrable. For parsimony, the number of parameters of this polyno-
mial is kept at a minimum to model the smooth transitions, the lunch break, and
the skewness to account for the relative weights of morning and afternoon hours.

In the subsequent analysis, the statistical week is considered from z = 0 on
Monday 00:00 to ¢ = 168 hr on Sunday 24:00 (GMT), as shown in Figure 6.1.
In order to define the opening and closing conditions of the markets in a con-
venient form, an auxiliary time scale T is introduced. Essentially, it is GMT
time; the following market-dependent transformations are only done for technical
convenience:

Tr = [(t + Atx) modulo (24 hr)] — Ak (6.8)

where Az has the value of 9 hr for East Asia, 0 for Europe, and —5 hr for America.
(The result of the modulo operator is the left-hand side argument minus the nearest
lower integer multiple of the right-hand side argument.) The weekend condition
(WEC) also depends on the market:3

(t + Aty) modulo (168 hr) > 120 hr 6.9)
Now the model for an individual market component can be formulated by

0 if Ty < op or Ty > ¢ or (WEC)

aopen k() if o < Ty < ¢ and not (WEC) (6.10)

a1e(t) = {

where oy, and cy, are the parameters for the opening and closing hours, respectively.
The polynomial function is

@
Aopen k(1) = —-+"—Sk (T — 00)* (T — ) (Tie — ) [(Tie — my)? + ¢
ata _
6.11)

where wy represents the scale factor of the k™ market, s; the skewness of the
activity curve, my, fixes the place of the relative minimum around the noon break,
and d determines the depth of this minimum. The special form of the first factor
is chosen to avoid too strong a dependence of the scale factor on sg.

In Figure 6.2, the panel on the left illustrates the shape of the geographical
seasonality in the European market. The opening and closing times are where
the activity level is zero. These parameters are illustrated with “o” and “c” signs.
The seasonality has two peaks with the second peak higher than the former. The
relative minimum between the two peaks is the lunch break effect. The location
and depth of this relative minimum are controlled by the parameters “m” and “d”
of the last term of Equation 6.11. The activity starts to peak with the opening

3 The ] apanese markets were open on some Saturday mornings according to certamn rules in earlier
years. These Saturdays, which are noticeable in Figure 6.1, are neglected here, but discussed in
Section 6.3.2.
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FIGURE 6.2 The geographical seasonality patterns. The panel on the left illustrates
the shape of the geographical seasonality in the European market. The seasonality has two
peaks with the second peak higher than the former. The relative minimum between the
two peaks is the lunch break effect. In the right panel, the North American geographical
seasonality is plotted. [t has no lunch break effect.

of the market in the morning, slows down during the lunch break and it peaks in
the afternoon again. As the market closing time approaches, the level of activity
gradually goes down and reaches zero. In the right panel of Figure 6.2, the North
American geographical seasonality is plotted, which has no lunch break effect.
The parameter s controls the asymmetry of the peaks for the European market,
whereas in the case of the North American market, it controls the skewness of the
overall pattern.

This polynomial model applies to all markets. The European and Asian mar-
kets (k = 1, 2) have finite d values in the fitting process, but for the American one,
the parameter d3 always diverges to very high values. This reflects the missing
noon break in this market, which has already been found in the tick frequency
statistics.

The Equation 6.11 for America thus degenerates to a simpler form with no
local activity minimum

w
aopen3(1) = g —— (B =0’ (=)’ (B = s3) (6.12)
B

Some of the model parameters, the opening and closing times, are already known
from the quote frequency statistics. For the other parameters, there are constraints.
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To ensure positive activities, ag and wy, must be positive and s outside the opening
hours,

ag > 0, wg > 0, sp < o Or 5x = Ck (6.13)

The parameter my in Equation 6.11 should be within the opening hours as it
models the noon break:

o < mp < ¢k (6.14)

The functions aj x(¢) must be fitted to the results of the statistics, agat(?), by
minimizing the integral of the weighted square deviation of a() from asae(r). A
continuous function a (7) is not available but rather the hourly series agtat ; from
Equation 6.4. Therefore, the sum over the intraweekly sample is used instead of
the integral:

2
168 [astat,i —ao — Zi:l al,k(li)] ) 1
3 = min, 4 =(0{— 5) hr (6.15)

i=1 aemr,i

The hourly intervals are represented by their middle points in this approximation.
The least square model has 11 parameters, three ey ’s, three si ’s, two my ’s, twody’s,
and the base activity ag. The values of opening, ok, and closing, ¢, are subject to
random measurement error originating from the price quote frequency statistics.
Therefore, these values are allowed to vary slightly for adjusting the fit. The
minimization problem of Equation 6.15 is nonlinear in some of the parameters.
It can be solved by the Levenberg-Marquardt method (see Press et al., 1986,
Section 14.4), but in complex cases a simple genetic search algorithm provides the
optimum parameters much more efficiently.

The main American and European markets observe daylight saving time dur-
ing summer, whereas the main East Asian markets do not. This fact is ignored
for the fitting. Only the GMT scale is used. A posterior daylight saving time
correction is proposed in Section 6.3.2.

The resulting parameter estimates for four major FX rates and gold (XAU-
USD) are presented in Table 6.2 together with the relative weights of the different
markets (to be defined in Section 6.3.1). In the top panel of Figure 6.3, the result-
ing activity model together with the statistical activity for the USD-JPY is shown,
and the bottom panel of Figure 6.3 shows the same’ quantity for the USD-CHF.
Figure 6.4 displays the activity model over 48 hr (outside the weekend) with its
different components for the same rates.

6.2.6 Interpretation of the Activity Modeling Resuits

The resulting parameters of the activity model and Figures 6.3 and 6.4 confirm the
close relation between market presence and intraweekly volatility patterns. The
market-specific tick frequency analysis and the activity fitting results compare fa-
vorably taking into account the Reuters coverage and the limitations of our model.
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TABLE 6.2 The parameter estimates for the three generic markets.

The parameter estimates for the major FX rates and gold (XAU-USD) with the corre-
sponding market weights. The sum of the market weights is less than 100 percent. The
rest is accounted for by the basic activity ag. The residual activity ag. the scale factor
w, and the parameter d, which determines the depth of the minimum at lunch time, are
dimensionless numbers. The o values are a factor of 1074,

Rate a k Market Weight 1) 4 ¢ m d s

USD-DEM 0.03 1 East Asian 24.1% 1.69 -3:32 8:24 3:33 097 -3:33
2 European 38.5% 1.07 5:54 18:39 11:07  2.06 20:21
3 American 34.1% 12.46 11:24 23:25 - —_ 40:44

USD-JPY 0.03 1 East Asian 354% 1.40 -4:14 8:43 3:35 1.01 -4.17
2 European 27 6% 537 6:55 16:40 11:02 1.51 17:23
3 American 33.4% 18.73 11:48 22:50 — — 34:55

GBP-USD 0.02 1 East Asian 24.3% 1.05 -3:148 8:59 3:40 1.08 -4:02
2 European 39.1% 0.98 6:00 18:19 11:13 285  20:05
3 American 34.0% 13.88 11:24  23:11 — — 31:43
USD-CHF 0.01 1 East Asian 22.0% 112 -4:00 9:00 3:40 1.06 -4:00
2 European 45.1% 1.04 5:00 18:00 11:23 245 -4:45
3 American 31.6% 13.71 12:00  24:00 — — 24:00
XAU-USD  0.02 1 East Asian 9.7% 0.14 -3:43 9:36 4:05 317 -4:15
2 European 54.8% 298 5:36 17:19 11:10 1.54 2:42
3 American 33.8% 354.9 15:21 21:30 — — 21:32

In both cases and for all FX rates, the local minima around noon have the following
properties: they are pronounced in East Asia, moderate in Europe, and do not exist
in America.

The USD-DEM and the USD-CHF have close parameter values as would be
expected with a larger weight for Europe in the case of the USD-CHF, whereas the
USD-DEM shows a higher weight for the American market. Gold (XAU-USD)
has a very small East Asian market, which extends late because it is mainly traded
with Europe. In general, its active trading periods in the individual markets seem
to be less extended than for the FX rates. A similar effect is detected with silver.
The USD-JPY has a strong East Asian component with a strong overlap with the
American market. It is for this rate that the earliest opening of the East Asian
market is found. The first example in Figure 6.4 (USD-JPY) has its main market
in East Asia. The second example in Figure 6.4 (USD-CHF) has it in Europe, in
line with the common sense expectation.

An alternative measure of market activity could also be based on the frequency
of price quotes. According to the study in Chapter 5 (Table 5.13), this variable
is highly correlated to the volatility. Yet we do not recommend it as an activity
measure for two reasons.

1. This number depends on the coverage of the FX market by Reuters and its
policy to publish prices on its FXFX page. For instance, a new price was
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FIGURE 6.3 The histograms of the average hourly activity for a statistical week (over
4 years) for the USD-IPY (above) and USD-CHF (below) rates and the modeled activity.

shown for a particular rate on this page at maximum one price every 6 sec.
Some relevant price revisions were therefore lost because of limitations
of the data supplier. Whereas the price revisions depend directly on the
data supplier’s coverage or policy, the prices are issued by market makers
who closely follow the real market value and have many data sources avail-
able. Thus published prices are conditioned more by other simultaneously
available prices, which do not necessarily appear on this data source.

In order to provide some empirical evidence of this dependence, we com-
pare the hourly shares of the weekly number of price revisions in the 168
hr of the statistical week (see Section 6.2.1) of two different data suppli-
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FIGURE 6.4 The model activity decomposed into the three different continental mar-
kets over a period of 48 hr during normal business days for the same rates as in Figure 6.3.
The top curve is the sum of gy and the three market activities.

ers, Reuters and Knight Ridder,* for the same period. The two resulting
statistical functions differ substantially. Knight Ridder data are about half
as frequent as Reuters data and cover the East Asian markets quite poorly.
We measure the difference of the two curves in terms of the root mean
squared error (RMSE) of all hourly differences.

We then apply the same approach for a comparison of absolute returns be-
tween the two suppliers. We analogously measure the difference between
the two resulting curves in terms of the RMSE of the hourly differences.

4 Since this study was done, Knight Ridder has been integrated with Telerate to Bridge.

0285



Case 3:20-cv-05784-BRM-DEA Document 1-3 Filed 05/11/20 Page 208 of 404 PagelD: 286

6.2 A MODEL OF MARKET ACTIVITY 187

The RMSE ratio Rgasg is defined as follows:

24 o= = -
e [(E° = B[]

?il[(f"ire _ fikr)/f_irelz

Rruse = (6.16)

where f; are the mean hourly number of ticks and ©; are the mean hourly
absolute returns. The RMSE value here is consistently lower than that for
the tick frequency; the ratio is 0.32 for DEM-USD, 0.17 for JPY-USD, 0.20
for USD-GBP, 0.42 for CHF-USD, and 0.52 for XAU-USD. This shows
that the volatility is less dependent than the number of price revisions on
the data supplier.

Another illustration of this is given in Figure 6.5. We show in these graphs
the result of an intraday study of both the tick frequency and the average
hourly returns for USD-JPY computed during the same time period on a
sample coming from the traditional FXFX page of Reuters (left graphs)
and another sample coming from the new method Reuters chose to publish
its data, the Reuters Instrument Codes (RICs). This new method, being
much more suited for computer manipulations, allows the data vendor to
transmit much more information and this is very apparent when examining
the two upper graphs on the hourly number of ticks. On the other hand,
the two lower graphs show little differences because they are computed
directly from the prices, which are not governed by the data vendor policy
but rather by the market. We use a similar RMSE ratio as in Equation 6.16
and find values around 0.12. This example indicates clearly the problem
one is faced with the activity definition. During the same period and for
the same market, the activity should be independent of the data source.
This is only the case for the hourly absolute returns.

2. Returns are less sensitive than the tick frequency to data holes. The fre-
quency goes to zero if the communication line is broken (there is no good
interpolation method for this variable) whereas, with the proper price in-
terpolation, only the variation around the interpolated line for the returns
is lost.

The transaction volume, a potential candidate to describe market activity,
is not available in hourly frequency. Transaction volume data are available for
particular dates through two surveys published by the Federal Reserve Bank of
New York (1986 and 1989). Although these surveys are useful to quantify the
amount of capital involved, they do not give any indication about intradaily, daily,
and weekly changes. We do not propose our activity model as a direct model for
the seasonal patterns of transaction volume, but suggest its usefulness in future
research.

0286



Case 3:20-cv-05784-BRM-DEA Document 1-3 Filed 05/11/20 Page 209 of 404 PagelD: 287

188 CHAPTER 6 MODELING SEASONAL VOLATILITY
150.0 .
e s 5 : .y
| FXFX ! : CRIC -

@ H H H H i
=
© B
: 1000
[}
b
[
2
£
=]
z
&
E 500
g
<

a.0

o

Mean Absolute Return x 10*-4
(¢}

0 6 12 18 24 0 6 12 18 24
Intraday Interval Index Intraday Interval Index

FIGURE 6.5 The comparison of the tick activity (upper graphs) and the hourly absolute
return (lower graphs) for two data sources. The old Reuters FXFX page and the new
Reuters Instrument Code (RIC) data. The comparison is conducted for the USD-JPY
from October 25, 1993 to March 18, 1995.

6.3 A NEW BUSINESS TIME SCALE (#-SCALE)
6.3.1 Definition of the #-Scale

In Section 6.2.2, the time scale ¢ was introduced to model the seasonal, intradaily
and intraweekly aspect of heteroskedasticity. In Equation 6.1, the activity variable
has been defined as the “speed” of ¢ against the physical time ¢. The continuous
activity function a(t) of Equation 6.7, developed in the previous sections, allows
us to define ¥ as its time integral,
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. 3
Y = 9(@) = f a(t)dt’ = ap (t—tg)—i—ZlS‘k(t) (6.17)
1

0 k=1

The starting date #y chosen for the ©#~scale is arbitrary. The activity is always posi-
tive, so its integral #(¢) is a monotonicalily increasing function. The 4 represents
in fact the business time scale of the k** market and is defined as

t
() = / ay k(") d’ (6.18)
o

This quantity is informative in itself and can be used to model intramarket be-
havior. Because of the regular weekly pattern of a, # is predictable according to
Equation 6.17; it may be computed also for the future. Due to normalization (see
Equation 6.5), #-time can be measured in the same units as physical time (e.g.,
hours, days, weeks); one full week in @ -time corresponds to one week in physical
time.

The relative weight, Wy, of each market component can be defined with the
help of the integral ¥ over a full week:

W = Dyt + 1 week) ~ D(r) Pt + 1 week) — 9 (¢)
KT 0+ Lweek) — 0 () 1 week

(6.19)

This is the share of the k' market in the @ interval of one week. In Table 6.2,
the relative weights of each component, as given by Equation 6.19, are presented
together with the fitted parameters. These weights are in fact interesting pieces of
information about the market shares of the components defined in Section 6.2.4
and Table 6.1. They are in line with the results of the market surveys regularly
made by the (Bank for International Settlements, 1990, 1993, 1995).

The #-scale contracts periods of low activity and expands period of high
activity. This is clearly seen on Figure 6.6 where the mapping function between
?-time and physical time is shown for USD-DEM over a week. Because the o-
time is normalized to physical time over 4 years (see the next section), the two
scales almost coincide after a week but not exactly (¥-scale is slightly above 168
hr), because we have chosen the week of September 9 to October 1, 1995, where
there was no market holiday. This figure shows that during the weekend, ¢-time
flows very slowly, compensating for the low activity during this period in physical
time.

6.3.2 Adjustments of the #-Scale Definition

The #-scale defined in Section 6.3.1 reflects a rigid intraweekly pattern of expected
market activity. However, there is more relevant information about the activity due
to information on business holidays, daylight saving times, and scheduled events
in general. In practice, for volatility forecasts, it is desirable to account for this
information in the construction of the ¥#-scale. Such adjustments are carried out
in Equation 6.17 by recalibrating the factor c* over the whole sample.
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FIGURE 6.6 The time mapping function between physical time and ¥ time. The week
chosen to draw this mapping function is a week with no market holidays (September 25
to October 1, 1995). The thin line represents the flow of physical time.

It is difficult to take into account the different kolidays of each market ac-
curately.® In the framework of the three markets of Table 6.1, our approach is an
approximate solution. A holiday is considered if it is common to a large part of
one of the three markets of the model. On such holidays, the activity a x is set to
zero for this market. The holiday is treated like a weekend day in Equation 6.10.

In some countries, there are half-day holidays . Their treatment would require
the splitting of the daily activity functions into morning and afternoon parts. This
splitting could also be used to model the few Saturday mornings in Japan (until
1989) when the banks were open. These modifications have not been made as they
are beyond our objective of modeling the main features of the FX activity patterns.

The daylight saving time observed in two of the markets, Europe and America,
has an influence on the activity pattern and thus on . The presence of local markets
depends on local time rather than on GMT. One way to deal with this is to convert
the time constants of Table 6.2 from GMT to a typical local time scale of the

3 Future holidays are not always known in advance as, for instance, the Islamic holidays. Thus, ¥
might no longer be predictable in those special cases.
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FIGURE 6.7 The hourly returns for USD-DEM from June 3, 1996, 00:00:00 to Septem-
ber 11, 1996, 00:00:00 are plotted using the physical time scale and the ©-time scale. Note
also the extreme events that are clearly visible on both graphs.

market. This conversion yields different results for the local times in summer and
in winter. The time constants are fixed to the mean of the summer and winter
conversion results, reflecting the fact that the sample used in the activity fitting
is composed of approximately half summer and half winter. The computation of
the activity and ¢ is then based on Equation 6.10 with these local time constants.
A better algorithm, which takes into account the difference between summer and
winter local market time and which allows a dynamic adaptation to changes in the
activity pattern indicates substantial improvement (Breymann, 2000).

So far, volatility patterns with periods of more than one week have been
neglected. Yet there may be patterns with longer periods caused by month-end
effects, by the monthly or quarterly releases of certain important figures such as
the American trade or unemployment figures, and by yearly effects. Moreover,
there are long-term changes such as the overall volatility increase over the past 15
years as shown in Chapter 5. None of these effects has been found to be significant
in a 4-year sample we studied.

Figure 6.7 illustrates the effect of the time transformation with the hourly
returns of USD-DEM over 3 months both in physical and in ¢-time. It is easy to
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TABLE 6.3 Quality test of the ¥ -scale.

Test for the quality of the ¥-scale as calculated in Equation 6.21. This ratio illustrates the
reduction of intraweekly volatility fluctuations when using the ¥ -scale.

USD-DEM USD-JPY GBP-USD USD-CHF XAU-USD

Volatility ratio 0.28 0.29 0.25 029 0.25

see that the quiet periods during the weekends are in the upper graph in physical
time. They give the sense of periodicity. In the lower graph, where hourly returns
are computed in ¥-hours, the seasonality is removed and the picture resembles
much more those made with weekly or daily data (omitting weekends). Another
remarkable feature of these graphs is the number of large movements. During this
period, the USD-DEM experienced price changes as high as 1.5% in an hour.

6.3.3 A Ratio Test for the #-Scale Quality

There are various ways to measure the quality of a #-time scale. Because the
goal of such a scale is to remove the daily and weekly seasonality of volatility,
it is natural to test the extent to which this has been achieved. Here we define a
quantitative test that allows discrimination between various possible business time
scales.

The absolute returns on an intraweekly sample as described in Section 6.2.3
are first computed on the physical time scale. We define the size of the weekly
fluctuations of mean volatility:

N N

2m1/2
1 Tl 1 T )l
Fypy = 5 Z (_f_l_m_]__ - Z ;1_1__’_) (6.20)

m
i=1 i=1

where i is the index of the hourly interval in the statistical week and N = 168
the total number of these intervals. Absolute returns are observed and averaged
over m weeks with index j, for each hour of the statistical week. The fluctuations,
which are farge when analyzed in physical time ¢, should be strongly reduced when
analyzed in ¥-time. For analyzing the fluctuations in #-time, the sampling over
one full week is again divided into 168 intervals. Instead of being equally spaced
in physical time, they are now equally spaced in ¢-time. This condition can be
formally written as 9 (f;+1) — ¥ (%) = 1 hr, where the hour is now measured on
the ¥-scale. The sequence ¢; that fulfills this condition is computed by numerical
inversion of the #(z) function on one week. The volatiliy ratio is defined by

Fywy / Fy (6.21)

where Fy () and F,(;) measure the deseasonalized and raw volatility fluctuations.
This ratio measures the quality of the extent to which the ¢ scale successfully
eliminates the seasonal fluctuations of the volatility.

In Table 6.3, the resulting ratio is between 0.25 and 0.29 for all rates indicating
the quality of the ¥-scale. For a perfect ©-scale, the measure tends to zero, and
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for physical time, the measure is one. Any other ©-scale derivation can also be
measured the same way, the one with the lowest ratio being the best intraday
deseasonalization method. In the next chapter, we will utilize the ¥-scale in
analyzing the autocorrelation function of absolute returns.

6.4 FILTERING INTRADAY SEASONALITIES WITH WAVELETS

The previous sections show that the practical estimation and extraction of the in-
traday periodic component of the return volatility is feasible. The literature also
demonstrated that such extraction of the seasonal volatility component is indis-
pensable for meaningful intraday studies. Earlier studies have shown that strong
intraday seasonalities may induce distortions in the estimation of volatility models
and are also the dominant source for the underlying misspecifications as studied
in (Guillaume et al., 1994; Andersen and Bollerslev, 1997b). Besides, Section 7.3
reveals how such a periodic component pulls the calculated autocorrelations down,
giving the impression that there is no persistence other than particular periodicities.

To illustrate the impact of seasonalities, Gengay ef gl. (2001a) consider the
following AR(1) process with a periodic component:

4
y,=a+ﬁy,_1+z3.05i,+e, t=1...T (6.22)

i=1

where Si; = sin(%21) + nvir, @ = 0.0, yo = 1.0, § = 0.99, and T = 1000.
Periodic components are Py = 3, P, =4, P; = 5, and P4 = 6 so that the process
has 3, 4, 5, and 6 period stochastic seasonality. The random variables ¢; and v;;
are identically and independently distributed disturbance terms with zero mean.
The signal-to-noise ratio, 7, in each seasonal component is set to 0.30.

Figure 6.8 presents the autocorrelation of the simulated AR(1) process with
and without the periodic components. The autocorrelation of the AR(1) pro-
cess without seasonality (excluding ) 3.0S;; from the simulated process) starts
from a value of 0.95 and decays hypetbolically as expected. However, the auto-
correlation of the AR(1) process with the seasonality indicates the existence of
a periodic component. The underlying persistence of the AR(1) process in the
absence of the seasonality component is entirely obscured by these periodic com-
ponents. An obvious route is to filter out the underlying seasonalities from the
data. A simple method for extracting intraday seasonality that is free of model
selection parameters is proposed by Gengay et al. (2001a). The proposed method
is based on a wavelet® multiscaling approach which decomposes the data into its
fow and high-frequency components through the application of a nondecimated
discrete wavelet transform. In Figure 6.8, the solid line is the autocorrelation of
the nonseasonal AR(1) dynamics and the dotted line is the autocorrelation of the
deseasonalized series with the method proposed in Gengay ef al. (2001a). As

6 An introduction to wavelets can be found in a book by Gengay et al. (2001b).
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FIGURE 6.8 Sample autocorrelations for the simulated AR(1) process (straight line),
AR(1) plus seasonality process (dot-dashed line), and wavelet transformation of the AR(1)
plus seasonality process (dotted straight line).

Figure 6.8 demonstrates, wavelet methodology successfully uncovers the nonsea-
sonal dynamics without imposing any spurious persistence into the filtered series.

With this method, Gengay et al. (2001a) study two currencies, namely the
5_min Deutschemark — U.S. Dollar (USD-DEM) and Japanese Yen — U.S. Dollar
(USD-JPY) price series for the period from October 1, 1992, to September 29,
1993. This data set is also known as the HFDF-I data set. Figure 6.9 presents
autocorrelations of the 5-min absolute return series. This shows that the intradaily
absolute returns exhibit strong intraday seasonalities. This phenomenon is well-
known and reported extensively in the literature; (see for example, Dacorogna
et al., 1993; Andersen and Bollerslev, 1997a).

For a long memory process (see Hosking, 1996), the autocovariance function
at lag k satisfies y (k) ~ Ak—9 where A is the scaling parameter and « € [0, 1]. A
leading example is the fractionally integrated process for which @ = 1 — 24 and
d is the order of fractional integration. In Andersen and Bollerslev (1997a), the
fractional order of integration is estimated as d = 0.36 for the same USD-DEM
series utilized in this example. Andersen et al. (2001) calculate six d estimates
from various volatility measures for the USD-DEM and USD-JPY series. These
six d estimates vary from 0.346 to 0.448. In this example, the fractional integration
parameter is setd = 0.4 to represent the average of these six estimates. Figure 6.10
presents the autocorrelograms of the filtered 5-min absolute returns along with
the estimated autocorrelogram of a long memory process with d = 0.4. These
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FIGURE 6.9 Sample autocorrelations for the USD-DEM and USD-JPY for the 5-min
absolute returns of (a) USD-DEM absolute returns and (b) USD-JPY absolute returns from
October 1. 1992, throuah Sentember 29. 1993.
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FIGURE 6.10 Sample autocorrelations for the wavelet filtered 5-min absolute returns
of (a) USD-DEM and (b) USD-IPY from October 1, 1992 through September 29, 1993. The
dotted line is the autocorrelogram for the estimated hyperbolic decay rate for d = 0.40—
that is, k=20 where k is the number of lags.
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findings indicate that the wavelet method is more successful in filtering out intraday
seasonalities relative to the method presented in Andersen and Bollerslev (1997a).
The persistence of volatility in further lags is also much smaller in Gengay ef al.
(2001a) relative to the Andersen and Bollerslev (1997a). However, the seasonality
filters of both Gengay ef al. (2001a) and Andersen and Bollerslev (1997a) suffer
from the fact that the decay of the volatility persistence is slow in the immediate
lags relative to the method of Dacorogna et al. (1993).
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REALIZED VOLATILITY DYNAMICS

7.1 INTRODUCTION

High-frequency returns no longer exhibit the seasonal behavior of volatility when
investigated in deseasonalized form. Therefore, well-known stylized facts start to
be visible in the deseasonalized returns and the corresponding absolute returns.
Deseasonalization can be achieved by taking returns regularly spaced in & -time.
Absolute returns are just one form of realized volatility whose general definition
is given by Equation 3.8.

Realized volatility has a considerable statistical error, which can be reduced
by taking returns over short time intervals. Thisleadstoa high number of observa-
tions within a given sample.! Unfortunately, the choice of a small return interval
also leads to a bias caused by microstructure effects. This bias is explained in
Section 5.5.3 as a consequence of biased quoting, which leads to a bouncing effect
of quotes within a range related to the bid-ask spread. In Section 5.5.3, the bias is
treated as a component of the measurement error. In Section 7.2, we study the bias
empirically and propose a simple bias correction method that applies to the bias
caused by any microstructural effect, not only bid-ask bouncing. Bias-corrected
realized volatility has a smaller error than the error attainable without correction.

1 Using overlapping returns is also helpful, as explained m Section 32.8.

197
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After appropriately defining realized volatility, we can analyze its dynamical
behavior through different statistical methods. The fundamental properties of the
volatility dynamics are the conditional heteroskedasticity (also called the volatil-
ity clustering) and the long memory of the autocorrelation of volatility.? In this
chapter, we also examine the asymmetry of information flow between volatilities
computed from returns measured at different frequencies which is a typical prop-
erty to study with high-frequency data. Financial markets are made of traders with
different trading horizons. In the heart of the trading mechanisms are the market
makers. At the next level up are the intraday traders who carry out trades only
within a given trading day but do not carry overnight positions. Then there are
day traders who may carry positions overnight, short-term traders and long-term
traders. Each of these classes of traders may have their own trading tool sets
consistent with their trading horizon and may possess a homogeneous appearance
within their own classes. Overall, it is the sum of the activities of all traders for
all horizons that generates the market prices. Therefore, market activity would
not exhibit homogeneous behavior, but the underlying dynamics would be hetero-
geneous with each trading horizon (trader class) dynamically providing feedback
across all trader classes. Figure 7.1 illustrates such a heterogeneous market where
alow-frequency shock to the system penetrates through all layers reaching the mar-
ket maker in the middle. The impact of these low-frequency shocks penetrates the
entire market. The high-frequency shocks, however, would be short lived and may
have no impact outside their boundaries. We will study this heterogenelty-drlven
asymmetry in this chapter.

This book utilizes the deseasonalization method explained in Chapter 6, and
Dacorogna ef al. (1993), but a flurry of alternative ways of treating the seasonality
have also been proposed: the time-of-day dummy variables, Baillie and Bollerslev
(1990); a renormalization of the returns by the seasonal volatility, Taylor and Xu
(1997); the flexible Fourier framework to model the seasonal pattern, Andersen
and Bollerslev (1997b); time deformation with tick frequency, Pecen ef al. (1995);
Baestaens and Van den Bergh (1995); the use of cubic splines, Engle and Russell
(1997); models that include both systematic components and stochastic seasonal
components, Beltratti and Morana (1998); and the wavelet multiresolution method
of Gengay et al. (2001a) in Section 6.4.

7.2 THE BIAS OF REALIZED VOLATILITY AND ITS
CORRECTION

Realized volatility plays a key role both for the exploration of stylized facts and
for practical applications such as market risk assessment. When computing it,

2 This clustering property was first noted in Mandelbrot (1963) in his study of cotton prices and
the long memory in Mandelbrot (1971). These findings remained dormant until the early 1980s for
the volatility clustering until Engle (1982) and Bollerslev (1986) proposed the ARCH and GARCH
processes. In the early 1990s, a comprehensive study of the long memory properties of the financial
markets had started.
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FIGURE 7.1 Financial markets are made of traders with different trading horizons.
in the heart of the trading mechanisms are the market makers. A next level up are the
intraday traders who carry out trades only within a given trading day. Then there are
day traders who may carry positions overnight, short-term traders and long-term traders.
Each of these classes of traders may have their own trading tool sets and may possess a
homogeneous appearance within their own classes. QOverall, it is the sum of the activities
of all traders for all horizons that generates the market prices. Therefore, market activity
is heterogeneous with each trading horizon dynamically providing feedback across the
distributions of trading classes.

using Equation 3.8, we can take advantage of high-frequency data by choosing a
short time interval Az of the analyzed returns. This leads to a large number of
observations within a given sample and thus a low stochastic error. At the same
time, it leads to a considerable bias in most cases.

Tn the following bias study, Equation 3.8 is considered in the following form:

1/2
n

v(t) = v(ALn2) = %Z[r(At;ti—muj)]2 (7.1)
j=1

The choice of the exponent p = 2 has some advantages here. In Section 5.5, we
found that the empirical drift exponent of v is close to the Gaussian value 0.5 ifv
is defined with an exponent p = 2. Assuming such a scaling behavior and a fixed
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sample of size T = nAt, 2 has an expectation independent of Az:

ER2(An 1,2:6)] = n EWX AL, 20)] = 3 [r(AL tipr )P (72)
j=1

Thus v? can be empirically estimated as the sum of all squared returns within T,
irrespective of the size of Az. Moreover, the time scale can be changed, such as
from 9 -time to physical time, and the return intervals can be of irregular size. This
implies that the estimator is also immune to data gaps within the full sample. If
prices are interpolated, previous-tick interpolation (see Equation 3.1) should be
used here, because linear interpolation leads to an underestimation of volatility.
With all the mentioned modifications, the sum of squared returns remains an es-
timator for v2, as long as all the return intervals exactly cover the full sample T.
These nice properties may have led Andersen et al. (2000) to choose the name
“realized volatility” for the sum of squared returns, as on the right-hand side of
Equation 7.2.

The empirically found bias violates Equation 7.2, especially if At is very
small. The deviation of the empirical behavior from Equation 7.2 provides a
measure of the bias. We choose a large enough time interval Afes = g At as the
bias-free reference case to judge the bias of smaller intervals A¢. In practice, a
good choice of Aty is between few hours and 1 working day. We define the bias
factor B(t;):

JavaLmg, %) | LA limmg+ )P

B(t;) = =
’ (Atret, m, 25 1) S (Dbt limma+ig) T

(7.3)

where m is the number of analyzed reference intervals of size A, and g =
Atres/ At is an integer number. If the scaling assumption of Equation 7.2 is true,
B(z;) converges to 1 for large samples (i.e., large m and q). The bias can be
measured in terms of the deviation of B(#;) from 1.

In Figure 7.2, the bias factor B(#) is plotted versus time, for two different
markets: the FX rate USD-CHF and the equity index Nikkei-225. The time scale
in both cases is a business time: the 49 weekend hr from Friday 8 p.m. GMT
to Sunday 9 p.m. GMT are compressed to the equivalent of only 1 hr outside the
weekend. The results do not strongly depend on this choice. Similar bias behaviors
are obtained when the analysis is done in 9 -time or physical time. The reference
time interval is Afrer = 1 working day. The investigated return intervals At are
much shorter and vary between 2 min (g = 720) and 1 hr (g = 24). The number
m = 260 of reference intervals is chosen high enough to limit the stochastic error
of u(Ateef, m, 2; #;). This means a bias measurement on a moving sample of about
1 year & 260 working days.

The bias factor distinctly deviates from 1 in Figure 7.2, especially for small
values of Af such as 2 min and 5 min. For At = 1 hr, the bias is still visible but
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Bias Factor, Nikkei-225 Index
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FIGURE 7.2 Bias factors plotted versus time, for the FX rate USD-IPY (upper panel)
and the Japanese equity index Nikkei-225 (lower panel). Deviations from 1 indicate a bias
in realized volatility. The bias factor is the ratio of two mean realized volatilities over the
same sample (see Equation 7.3). The investigated return measurement intervals Az are as
follows. Bold curves: At =1 hr; middle curves: At = 5 min; thin curves: Af = 2 min.

can be neglected more easily. Surprisingly, the biases have different signs. The
bias of the foreign exchange (FX) rate is positive, whereas that of the equity index
is negative (B(2,) < 1). The bias can be explained by microstructure effects, but
these are obviously different for different markets. The microstructure effects of
FX rates were discussed in Chapter 5, in particular the negative autocorrelation
due to a bouncing effect within the bid-ask spread (Section 5.2.1). The bias due
to this effect can be modeled as in Section 5.5.3 and in Corsi ef al. (2001), where
the influence of data gaps on the bias is also analyzed. There is ongoing research
aiming at refined versions of this bias model. The negative bias of the equity
index has to be explained differently. An equity index is a weighted average
of some equity prices. Some of the individual equities play a leading role in
price adjustments and establish small trends that the other equities follow. This
mechanism causes a short-term (few minutes) positive autocorrelation of the index
returns and eventually a negative bias of realized volatility when a very short
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interval At is chosen. The bias factors moderately fluctuate over time, but there
are no dramatic shifts. The overall levels are maintained even over the 10-year
sample of Figure 7.2 (upper panel).

The bias can be avoided either by taking large return intervals A¢ (with the
disadvantage of large stochastic errors) or by introducing a bias correction for
small intervals Az. Eliminating the bias seems to be a demanding task requiring a
model of the microstructure effects. Section 5.5.3 has such a model for FX rates,
but other markets such as equity indices need other models.

Instead of developing bias models for each market, we suggest a simple bias
correction method that needs no explicit model and only relies on the assump-
tion that the bias-generating mechanism is much more stable over time than the
volatility itself. The limited size of bias fluctuations in Figure 7.2 justifies this
assumption. The bias correction is simple. Each realized volatility observation is
divided by the bias factor as measured in the past:

v(At,n,2; )

Veorr (AL, 71, 25 ;) B 7.4
where B(t;) is defined by Equation 7.3. This bias correction can be computed
in real time, because it is based on information fully available at time 7;. Some
variations of Equation 7.4 are possible, as suggested by Corsi e al. (2001). The
bias correction factor can be computed by moving average operators as explained
in Section 3.3 instead of the sums of Equation 7.3.

Figure 7.3 probes the success of the simple bias correction. The bias factor
Beorr of the already bias-corrected realized volatility can be measured in the same
way as the bias of the uncorrected volatility (Equation 7.3):

/G Veorr (AL, m g, 2;4;)
V(Alres, m, 2; 1;)

Bcorr(ti) = (7-5)

A perfect bias correction implies Beorr(f;) = 1. However, the bias correction is
not perfect. Both the bias correction and its measurement in Equation 7.5 rely
on a quantity v(Atef, m, 2; 1;), which has a stochastic error. These imperfections
are visible in the form of fluctuations of Beor about 1 in Figure 7.3. Figure 7.2
and Figure 7.3 are based on the same samples and parameters and can directly be
compared. Beorr in Figure 7.3 is much closer to 1 than B in Figure 7.2, in all cases.
This fact demonstrates a successful bias correction for both markets, FX and the
equity index.

In spite of the success of Equation 7.4 as shown in Figure 7.3, the simple bias
correction has some shortcomings, one of them being the multiplicative nature of
the formula. Realized volatility values are corrected by a slowly varying correction
factor, irrespective of the current volatility level. One can argue that an additive
or nonlinear correction of realized volatility would reflect reality better than the
multiplicative correction. (An additive correction may lead to impossible negative
volatility values, though.) A fair judgment may be as follows. Equation 7.4
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FIGURE 7.3 Bias factors plotted versus time, for the FX rate USD-IPY (upper panel)
and the Japanese equity index Nikkei-225 (lower panel), computed by Equation 7.5. The
investigated realized volatility values have already been bias-corrected by Equation 7.4, so
the small deviations from 1 indicate imperfections of the bias correction. The investigated
return measurement intervals Az are as follows. Bold curves: At = 1 hr; middle curves:
At = 5 min; thin curves: A¢ = 2 min. The same scaling as in Figure 7.2 is used.

succeeds in largely reducing the bias and is thus better than no bias correction.
As soon as an appropriate model of the bias-generating process for a particular
market exists, the corresponding bias-correction method will be clearly superior
to Equation 7.4.

Bias correction is a means to compute realized volatility with smaller intervals
At and, for a given sample of size T = nAt, a smaller stochastic error. Unfortu-
nately, the bias correction introduces an additional stochastic error due to the factor
v(Atges, m, 2; ;) in Equation 7.3. Corsi et al. (2001) show that a bias-corrected
volatility with reasonable parameters has a total error that is still distinctly smaller
than the error of uncorrected volatility. The following rough calculation also shows
this. Uncorrected volatility requires a rather large At of about 1 hr (with g = 24)
to keep the bias at bay. The stochastic error is proportional to /1/24, and a bias
of roughly of the same size adds to the error. Bias-corrected volatility can have a
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small At = 5 min (g = 288). The stochastic error is proportional to ./1/288, but
the factor v(Atger, m, 2; #;) with m = 260 leads to another stochastic error com-
ponent proportional to 4/1/260. Both error components together are proportional
to /1/288 + 1/260 = /1/137. This is distinctly smaller than the value without
bias correction, /T/24 (where the bias makes the error even larger).

So far, the bias discussion has been restricted to realized volatility with an
exponent p = 2 in Equation 3.8. When choosing another exponent (such as
p =1, a good choice for many following studies), the bias discussion becomes
more complicated. The scaling behavior deviates from Gaussian scaling, as seen
in Section 5.5, and data gaps have a stronger influence on the bias than in the
case p = 2. For exponents other than 2, a bias correction with a formula such
as Equation 7.4 is less successful, and more research is needed. The technique
of bias correction is rather new and will be improved by ongoing research. The
realized volatility studies of the following sections are older and do not contain
any bias correction. However, the choice of very short return intervals (suchas 5
min) has been avoided, so the size of the bias is limited.

7.3 CONDITIONAL HETEROSKEDASTICITY

7.3.1 Autocorrelation of Volatility in #-Time

This section analyzes the autocorrelations of returns and realized volatility in
physical and ®-time.> The study utilizes a 20-min frequency instead of an hourly
one. We did not take smaller intervals than 20 min in order to avoid a strong bias,
as explained in Section 7.2. The autocorrelation function of the USD-DEM is
shown in Figure 7.4 for up to 720 lags. The confidence intervals in Figure 7.4
refer to 95% confidence for a Gaussian random process around the sample mean.
Because the distributions of returns and volatility are not Gaussian, the confidence
intervals are provided as a reference rather than for exact statistical significance.

In Figure 7.4, the autocorrelation function of volatility has a distinct structure,
which is far beyond the confidence intervals. For lags of any integer number of
days, clear peaks are found. These peaks indicate the daily seasonality. The weekly
seasonality is highly visible in the form of high autocorrelation for lags around
1 week and low autocorrelation for lags of about Aalf'a week (which frequently
means the correlation of working days and weekends). Finally, there is a finer
structure with small but visible peaks at integer multiples of 8 hr, corresponding to
a frequency three times the daily frequency. Our world market model with three
continental markets is confirmed by this observation. Apart from these seasonal
peaks there must be a positive component of the autocorrelation that declines
with increasing lag. In Figure 7.4, this component cannot be observed as it is
overshadowed by seasonality.

The autocorrelations of returns, unlike those of volatility (absolute returns),
are close to zero and within the confidence intervals for most of the lags. The

3 Absolute returns are studied here.
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FIGURE 7.4 The autocorrelation function of USD-DEM returns and volatility (absolute
returns). The data sampling 1s in 20-min frequency in physical time for lags up to 10 days.
The 95% confidence interval is for a Gaussian random process. The sampling period is
from March 3, 1986, to March 3, 1990.

squared returns, instead of absolute returns, may also be used as a proxy for
the underlying volatility. Autocorrelations of square returns also exhibit similar
seasonality peaks as those of absolute returns, but are less pronounced. It is well
known that the theoretical autocorrelation of squared returns is meaningful only
if the kurtosis of the return process is finite, which is not guaranteed for currency
returns.

A similar autocorrelation analysis is also carried out with the ¥-time scale
instead of the physical time ¢, and it is presented in Figure 7.5. There are no
large seasonal peaks in the volatility autocorrelations of the #-time. This is due to
the fact that the 9-scale is constructed to eliminate the intraday seasonality. The
autocorrelation of volatility is significantly positive and declines at an hyperbolic
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FIGURE 7.5 The autocorrelation function of the USD-DEM returns and the absolute
returns at 20-min data frequency in ®-time. The number of lags 1s up to 10 ¢ days. The first
lag is marked by an empty circle. The exponential decay is shown with a dashed line. The
hyperbolically decay fits best to the autocorrelation function of the absolute returns, The
figure on the right is the same autocorrelation function for the absolute returns extended
10 a much larger number of lags with the superimposition of the hyperbolic decay.

rate. This behavior can be explained by the presence of a long memory process
in the underlying data-generating process of returns. The rate of decline in the
autocorrelation is, however, slower than an exponential decline, which would be
expected for a low-order GARCH process, Bollerslev (1986).

The autocorrelation function of volatility (Figure 7.5) is not completely free of
seasonalities. A narrow peak can be identified at a lag of 1 week. This peak might
be due to the day of the week effects. In our framework, the activity is assumed
to be the same for all working days, which may exhibit slight variations across
the working days. A small local maximum at a lag of around 1 average business
day (one-fifth of a week in ¥); a small local maximum at a lag of 2 business days
and maxima at 3 and 4 business days also exist. A plausible reason for these
remaining autocorrelation peaks is a market-dependent persistence of absolute
returns. Autocorrelations with a lag of 1 business day compare with the behaviors
of the same market participants, whereas autocorrelations with lags of one half or
1% business days compare with the behaviors of different market participants (on
opposite sides of the globe). The market-dependent persistence decreases after
2 business days. The predominance of the “meteor shower hypothesis” found
by Engle et al. (1990) is confirmed by the fact that the autocorrelation curve in
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Figure 7.5 does not exhibit strong maxima for each full business day. Yet the
remaining small maxima indicate a certain “heat wave” component.

7.3.2 Short and Long Memory

The autocorrelation function of volatility decays at a Ayperbolic rate rather than
an exponential rate. In studies based on daily FX prices (e.g., Taylor, 1986) or
weekly FX prices (e.g., Diebold, 1988), the number of observations is usually too
small for outright rejection of either a hyperbolic or an exponential decay of the
autocorrelation functions. In studies with longer daily series such as Ding et al.
(1993), evidence of long memory is found with the S&P 500 from January 1928 to
August 1991 (17,055 observations). To illustrate the presence of the long memory,
two curves, one hyperbolic and one exponential, are drawn in Figure 7.5 together
with the empirical autocorrelation functions. The hyperbolic curve approximates
the autocorrelation function much more closely than the exponential curve. This
behavior of volatility is similar to the fractional noise process of Mandelbrot and
Van Ness (1968) and Mandelbrot (1972), which exhibits hyperbolic decay in the
- autocorrelation function and thus the long memory serial dependence.
The hyperbolic ( f,) and exponential ( f;) functions used in the analysis above
have the following form:

(@) = k™" and fo(x) = ke /" (7.6)

where the parameters are k, 4, and . T determines the lag order of the autocorre-
lation function. The exponential function cannot simultaneously capture the short
and long-term persistence, whereas the hyperbolic function is able to capture both
successfully. For the hyperbolic function, k values vary from 0.2 to 0.3 depending
on the FX rate, whereas / is remarkably stable around 0.28 for all the rates.

In Figure 7.4 and the first panel of Figure 7.5, the number of lags are limited
to 720 intervals (i.e., 10 days) at the 20-min data frequency. In the second panel of
Figure 7.5, the number of lags are extended to 4320 (i.e., 60 days) in v-scale. The
decay in the volatility autocorrelations is more rapid after 10 days. This type of
pattern is not specific to USD-DEM, but is also found in longer time intervals and
other FX rates. To explore this behavior further, we compute the autocorrelation
function of daily returns (business days) for up to 200 lags and a sample of 20
years. The result is presented in Figure 7.6 and indicates the persistence of the
hyperbolic behavior even at the daily frequency.

A process that exhibits a hyperbolic decay in its autocorrelation function is
the “fractional noise” of Mandelbrot and Van Ness (1968), which is a purely self-
similar fractal. We test the empirical significance for this theoretical process. In
Mandelbrot (1972), the autocorrelation function of fractional noise processes is
given by

1 12H_212H 1_121-1
o o 1P 207 i o
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FIGURE 7.6 Autocorrelation function of the absolute business day volatilities in the
&-time scale. The data are for the USD-DEM rate from June 1, 1973, to June, 1, 1993. The
hyperbolic (solid curve) and the exponential functions {dotted curve) are superimposed on
the empirical autocorrelation function. The 95% confidence intervals are for an identically
and independently distributed Gaussian process.

where ! is the lag parameter and H the Hurst exponent, which lies between 0.5 and 1
for “persistent” fractional noise. For a large number of lags (/), the autocorrelation
function converges to

a ~ HQH-1)1»D (7.8)

which has a hyperbolic decay. The autocorrelations of absolute returns in Fig-
ures 7.5 and 7.6 also follow a hyperbolic decline. The exponent 2(H — 1) of
Equation 7.8 from the USD-DEM volatilities is H = 0.87 in Figure 75and H =
0.86 in Figure 7.6. From the H values, the factor H(2H — 1) leads to 0.64 and
0.62, respectively. These values are empirically found to be much lower, which
are 0.25 and 0.20, respectively. This indicates that volatility does not follow a
pure fractional noise process. Volatility is positive definite and has a skewed and
fat-tailed distribution, whereas the distribution function of pure fractional noise is
Gaussian.
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In Peters (1989, 1991), the existence of fractional noise in the returns rather
than volatility has been investigated similar to Equation 5.10. These findings claim
that a drift exponent different from 0.5 necessarily indicates fractional noise. This
conclusion holds only if the distribution forms are stable, but Figure 5.6 does not
support this claim. We, therefore, conctude that the return process does not support
the fractional noise hypothesis. Unlike volatility, the returns themselves exhibit
no significant autocorrelation (see the thin curves in Figures 7.4 and 7.5).

7.4 THE HETEROGENEOUS MARKET HYPOTHESIS

In the earlier sections, we analyzed the presence of two stylized facts. Namely,
a hyperbolic decay of the volatility autocorrelations and the “heat wave” effect.
Volatility characterizes the market behavior more deeply than just indicating the
size of current or recent price movements. It is the visible “footprint” of less
observable variables such as market presence and also market volume (for which
information is hardly available in FX markets).

The fact is that, contrary to traditional beliefs, volatility is found to be posi-
tively correlated to market presence, activity, and volume. Karpoff (1987), Baillie
and Bollerslev (1989), and Miiller ef al. (1990), emphasize the key role of volatil-
ity for understanding market structures. The serial correlation studies of LeBaron
(1992b,c) show that subsequent returns are correlated in low-volatility periods and
slightly anti-correlated in high-volatility periods. In continuous samples mixed
from both low-volatility and high-volatility periods, this effect indicates that the
forecastability of return is conditional to volatility. Thus, volatility is also an
indicator for the persistence of trends.

These properties of volatility lead us to the hypothesis of a heterogeneous
market, as opposed to the assumption of a homogeneous market where all partici-
pants interpret news and react to news in the same way. The heterogeneous market
hypothesis is characterized by the following:

1. Different agents of the heterogeneous market have different time horizons
and dealing frequencies. On the side of high dealing frequencies, there
are the FX dealers and market makers (who usually have to close all their
open positions before the evening); on the side of low dealing frequencies,
there are the central banks, commercial organizations, and, for example,
the pension fund investors with their currency hedging. The different deal-
ing frequencies clearly mean different reactions to the same news in the
same market. The market is heterogeneous with a “fractal” structure of
the participants’ time horizons as it consists of short-term, medium-term,
and long-term components. Each such component has its own reaction
time to news, related to its time horizon and characteristic dealing fre-
quency. If we assume the memory of volatility of one component to be
exponentially declining with a certain time constant, as in a GARCH(1,1)
process, the memory of the whole market is composed of many such expo-
nential declines with different time constants. The superposition of many
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exponential declines with widely differing time constants comes close to
a hyperbolic decline.

2. In a homogeneous market, the more agents are present, the faster the price
should converge to the “real market value” on which all agents have “ra-
tional expectations.” Thus, the volatility should by negatively correlated
with market presence and activity. In a heterogeneous market, different
market actors are likely to settle for different prices and decide to execute
their transactions in different market situations. In other words, they create
volatility. This is reflected in the empiricaily found, positive correlation
of volatility and market presence.

3. The market is also heterogeneous in the geographic location of the partici-
pants. This immediately explains the “heat wave” effect. In Section 7.3.1,
we indicated that the memory in the volatility process is relatively weak at
time lags of about % or 1;—_ business days when market actors on opposite
sides of the globe are related to each other and relatively strong at time
lags of about 1 or 2 business days when identical groups of participants
are considered.

The market participants of the heterogeneous market hypothesis differ also in
other aspects beyond the time horizons and the geographical locations. They may
have different degrees of risk aversion, face different institutional constraints, and
transaction costs.

7.4.1 \olatilities of Different Time Resolutions

The heterogeneous market hypothesis presented in the previous section is associ-
ated with fractal phenomena in the empirical behavior of FX markets. A scaling
law relating time horizon and size of price movements (volatility) was identified
in Chapter 5. This relation is used here to explain why the perception of volatility
differs for market agents with different time horizons.

Short-term traders are constantly watching the market to reevaluate their cur-
rent positions and execute transactions at a high frequency. Long-term traders
may look at the market only once a day or less frequently. A quick price increase
of 0.5% followed by a quick decrease of the same size, for example, is a major
event for an FX intraday trader but a nonevent for central banks and long-term
investors.4 Long-term traders are interested only in large price movements and
these normally happen only over long time intervals (see the scaling law of Miiller
et al., 1990). Therefore, long-term traders with open positions have no need to
watch the market every minute.® In other words, they judge the market, its prices,
and also its volatility with a coarse time grid. A coarse time grid reflects the view
of a long-term trader and a fine time grid that of a short-term trader. Bjorn (1994)
follows similar methodologies for building an automatic trading model.

4 Small, short-term price moves may sometimes have a certain influence on the #iming of long-term
traders’ transactions but not on their investment decisions.

5 They have other means to limit the risk of rare large price movements by stop-loss limits or options.
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The time grid in which real traders watch the market is not strictly regular.
In the following lagged correlation study, however, we measure volatilities over
different but regularly spaced grids. These volatilities are defined in terms of
absolute returns. We prefer mean absolute values to roots of mean squares here
because they are statistically less dominated by extreme observations, which are
rather important in FX markets with their fat-tailed unconditional distribution
functions. The convergence of the fourth moment—a requirement for many types
of analysis such as the autocorrelation of squared returns—is not guaranteed for
empirical returns. In Chapter 5, we demonstrated that the autocorrelations of
the returns indicate a stronger signal for powers around one. This argument is
reinforced in Dacorogna et al. (2001a), where the autocorrelation of absolute
returns is also shown to be much more stable under sample size changes than that
of the squared returns. Other studies, such as Ding et al. (1993), also find absolute
returns to be optimal in the autocorrelation studies.

The volatility based on absolute returns has two essential timing parameters
(Guillaume et al., 1997):

m The interval size of the time grid in which returns are observed
w The total size of the sample over which it is computed (the number of grid
intervals considered)

For exploring the behavior of volatilities of different time resolution, we define
two types of volatility. The “coarse” volatility, v, and the “fine” volatility, vy,
are defined by

n n
ve(t)) = | Y P(A fio + A and vp (@) = Y Ir(AL by + AL
j=1 j=1
(7.9)

where At’ = At/n. Figure 7.7 illustrates this definition where at every time point,
4 = t;_1 + 6At’, both quantities are simultaneously defined. In this way, the two
synchronous time series are obtained whose relation can be explored.

7.42 Asymmetric Lead-Lag Correlation of Volatilities

Analyzing the correlation between two time series, such as fine and coarse volatil-
ities, is a standard technique used in empirical finance where the correlation coef-
ficient measures the linear dependence of the two time series. Lagged correlation
is a more powerful tool to investigate the relation between two time series. The
lagged correlation function considers the two series not only simultaneously (at
lag 0) but also with a time shift. The correlation coefficient ¢ of one time series
and another one shifted by a positive or negative time lag  is measured and plotted
against the value of the lag. The lagged correlation study of this section follows
Miiller et al. (1997a).

Lagged correlation reveals causal relations and information flow structures in
the sense of Granger causality. If two time series were generated on the basis of
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FIGURE 7.7 The coarse volatility, vc(¢), captures the view and actions of long-term
traders while the fine volatility, v f(t). captures the view and actions of short-term traders.
The two volatilities are calculated at the same time points and are synchronized.

a synchronous information flow, they would have a symmetric lagged correlation
function, o = @—r. The symmetry would be violated only by insignificantly
small, purely stochastic deviations. As soon as the deviations between g, and
0. become significant, there is asymmetry in the information flow and a causal
relation that requires an explanation.

In a first analysis, we consider a working-daily time series where weekends
are omitted. The variables under study are the “fine volatility” and the “coarse
volatility.” Fine volatility is the mean absolute working-daily returns averaged
over five observations, so covering a full (working) week. Coarse volatility is the
absolute return over a full weekly interval.

The correlation between fine volatility and coarse volatility is a function of the
number of lags. When the number of lags is zero, the fine and coarse volatilities are
completely identical. In the case of first positive or negative lag, the two intervals
do not overlap but follow each other immediately.

The panel on the left hand side of Figure 7.8 shows the lagged correlation
function for the USD-DEM in a sample longer than 21 years. The correlation
maximum is found at lag zero, which is expected. For the nonzero lags, there is
an asymmetry where the coarse volatility predicts fine volatility better than the
other way around. The asymmetry is significant for the first two lags where the
difference o; — @z, represented by the thin curve in Figure 7.8, is distinctly outside
the confidence interval for identically and independently distributed observations.

This result can be explained in terms of the heterogeneous market hypoth-
esis presented earlier in this section. For short-term traders, the level of coarse
volatility matters because it determines the expected size of trends and thus the
scope of trading opportunities. On one hand, short-term traders react to clusters of
coarse volatility by changing their trading behavior and so causing clusters of fine
volatility. On the other hand, the level of fine volatility does not affect the trading
strategies of long-term traders (who often act according to the “fundamentals” of
the market).
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TABLE 7.1 Difference between lagged correlation for FX rates and gold.

The sample period is from June 6, 1973, (August 8, 1980 for gold) to February 1, 1995.
The lags are measured in weeks and 3 hr (in ©-time), respectively. The negative values
indicate the predictability of finely defined volatility from coarse volatility.

Differences USD-DEM USD-JPY GBP-USD CHF-USD DEM-JPY XAU-USD

Weekly
01— 0-1 -0.138 -0.127 -0.130 -0.131 -0.129 -0.122
02— 0-2 -0.105 -0.047 -0.055 -0.076 -0.074 -0.072
3 hourly
01 —0-1 -0.117 -0.136 -0.113 -0.093 -0.100 -0.108
02 —0—  -0.058 -0.057 -0.059 -0.056 -0.055 0.068

Similar behavior of the lagged correlation is observed for other FX rates such
as USD-JPY and GBP-USD, cross rates such as DEM-JPY; and gold (XAU-USD).
Table 7.1 reports the difference o1 —0—1 and g2 ~ g—; for a set of these time series.
The numbers are similar across the different rates (and also all of the investigated
minor FX rates not shown here). The first lag difference is around -0.13 and the
second lag difference is around -0.07.

The results with daily data also prevail in high-frequency and in intraday data.
Every intra-day study requires an appropriate treatment of the strong intradaily
seasonality of volatility. Here we use the predefined business time scale 9 pre-
sented in Chapter 6. A time series with regular intervals in ¢-time is constructed
by selecting the last quote before each point of a regular #-grid. As a basic time
interval in 9-time, we choose 30 min. This means there is only some 7 min
of physical time during the daily volatility peak in the European afternoon and
American morning.® Fine volatility is now the mean absolute half-hourly returns
averaged over six observations, covering a 3-hr time interval. Coarse volatility is
the absolute returns over a full 3-hr interval. All these time intervals are calculated
in ¥-time. An interval of 3 #-hr is clearly smaller than the working day of an FX
dealer. It often covers a time span with quite homogeneous market conditions.

Figure 7.8 (right panel) provides the lagged correlation function for USD-
DEM in 8 years of half-hour returns. Although the half-hour data cover a shorter
time span than the daily series, the number of observations is larger. The findings
from the half-hourly data confirm the results from the daily series such that coarse
volatility predicts fine volatility. We therefore conclude that these findings are
independent of the data frequency.

The intradaily behavior of the lagged correlation is similar for other FX rates
and gold (see Table 7.1). The empirical findings are similar across the different
rates. The first lag difference is around -0.11 and the second lag difference is
around -0.06, which are close to the corresponding values of Table 7.1. In the

6 In fact, a much higher frequency of the series should be avoided due to the fact that price changes
observed over 5 min or less can be overly biased by microstructure effects (see Section 7.2).
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FIGURE 7.8 Asymmetric lagged correlation of fine and coarse volatilities for USD-
DEM. The left figure is for working-daily return in a week. The #ight graph is for high
resolution study with half-hourly returns within 3 hr (in 2-ume). The negative lags indi-
cate that the coarse volatility was lagged compared to the fine volatility. The thin curve
indicates the asymmetry. The 95% confidence intervals are for identically and indepen-
dently distributed observations. The sampling period for the left figure is 271 years and 8
months, from June 6, 1973, to February 1, 1995. The sampling period for the right figure
is 8 years, from January 1, 1987, to January 1, 1995.

right panel of Figure 7.8, there is also a weak, rather wide local maximum around
lag -11, corresponding to -33 hr in #-time. This corresponds to a lag of about 1
working day (because a working day is 1/5 rather than 1/7 of a business week). The
difference g —p—; also has a significant (negative) peak around lag 11. This effect
has been identified in the right panel of Figure 7.8 and discussed in Section 7.3.
Following Engle et al. (1990), we call it a “heat wave” effect where traders have
a better memory of the events approximately 1 working day ago (when they were
active) than a broken number working days ago (when other traders on different
continents, with different time zones, were active).

The peak around lag -11 can be explained by a residual seasonality that the
P¥-scale is unable to capture. However, the #-scale is well able to treat ordinary
seasonality as indicated by the lack of an analogous peak around the positive lag 11.
The heat wave effect is more than just seasonality and it cannot be eliminated by
a simple time scale transformation. This can be interpreted such that volatility
modeling should consider not only volatilities of different time resolutions but
also volatilities with the selective memory of individual geographical markets and
their time zones.
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Assymetric lead-lag correlation is not only present in the FX market but also in
the Burofutures market as shown in Ballocchi e al. (1999a). Figure 7.9 presents the
results of a lead/lag correlation analysis for forward rates implied from Euromark
contracts on the London International Financial Futures Exchange (LIFFE). The
asymmetry is highly significant for the first lag and for all maturities. Atlag I,
again coarse volatility predicts fine volatility significantly better than the other
way around. The study was conducted with a 3-hr grid in #-time where the fine
volatility is the mean absolute return measured every 3 hr over 3 days and the
coarse volatility is the mean absolute return over the whole 3-day interval. The
sample runs from April 1, 1992, to December 30, 1997, which constitutes 700
observations. The effect is rather robust with respect to changes in the definition
of the fine and coarse volatilities. Moreover, it is interesting to note that the size of
the effect seems to increase when increasing the time-to-start of the forward rate.

To explore this effect on a wider set of parameters, Gilles Zumbach suggested
to the following quantities:

C(T,n,n) = Con(o1T, 210, G[T,%](HT)) (7.10)

where T = 4 weeks and n and n’ are the granularities of our volatility estimator.
Then it is possible to compute a quantity / that depends on both n and n’:

I(n,n"y = C(T,n,n"y—C(T,n',n) (7.11)

which means that we look at the first lag difference where the lag is 4 weeks.
This quantity should in principle be symmetric but we know from Figure 7.8 that
it changes sign and is antisymmetric. Figure 7.10 presents the results of a study
conducted by Zumbach (private communication), for the quantity / computed for
values of n going from 2 to 12 over a period T of 4 weeks on the ¥ -time scale. This
means that the returns are measured at frequencies as low as 2 weeks to frequencies
as high as every 10 min in #-time. The FX rate is USD-CHF and the sampling
period runs from June 1, 1987, to August 1, 1997. The asymmetry is striking and
exists for all these different parameters. The maximum of the effect is obtained for
n = 11 for the fine volatility and n” = 7 with differences as high as 0.29 between
the two correlations, about two times more than in Table 7.1. Similar figures were
= also obtained for other FX rates like USD-DEM or USD-IPY.

7.4.3 Conditional Predictability

The conditional correlation studies of LeBaron (1992b,¢) indicate that subsequent
returns are correlated in low-volatility periods and slightly anticorrelated in high-
volatility periods. In continuous samples mixed from both low-volatility and high-
volatility periods, this important effect indicating the forecastability of return does
not exist unconditionally. It exists conditional to volatility. Thus, volatility is also
an indicator for the persistence of trends. The idea is to compute the following
triplet:

(v(@®), r@&), r(t + A1)
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FIGURE 7.9 Lead-lag correlation of fine and coarse volatilities for four different implied
forward rates derived from the Three-Month LIFFE Euromark, with a 3-hr grid in ¢-time.
The sampling period is from April 1, 1992, to December 30, 1997. In the panels, a month
is represented by m.
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Information Flow for the Volatility
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FIGURE 7.10 The correlation difference (Equation 7.11) between coarse and fine
volatilities 1s explored for the USD-CHF FX rate. The asymmetry of the lead-lag corre-
lation (at one lag of 4 weeks) is apparent around the diagonal, which naturally presents a
correlation of 1 (and a difference of 0) because we are correlating a quantity with itself.
The top half of the graph presents a positive difference in the lagged correlation whereas
the bottom half presents the symmetric negative difference. The sampling period 1s from
June 1, 1987, to August 1, 1997. (With permission of Gilles Zumbach.)

where v(¢) is a measure of volatility calculated with the weekly variance of daily
returns.” Then triplets of similar volatility, v(z), are put into the same bin, and the
autocorrelation of returns at lag Az, conditional to v(z), is studied:

p(v) = p(r (), r(t + Ar) | v()) (7.12)

Such an analysis has four parameters, Az for the returns and the three parameters
for the volatility as identified in Section 3.2.4 and in the Equation 3.8: At¢, n,
and p.

7 In principle, any definition of volatility along the lines of Equation 3.8 can be chosen and its
parameters varied until the conditional correlation reaches a maximum.
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FIGURE 7.11 The conditional autocorrelation of weekly returns of USD-DEM as a

function of the average absolute weekly return over 5 days. The sampling period is June
1, 1973, to june 1, 1994.

This function p(v) is presented for the FX rate USD-DEM on Figure 7.11.
It is computed with a Ar of 1 week and a volatility definition that uses the mean
weekly absolute returns over 5 weeks. In summary, the parameters for the graph
are At = 1 week,nAr = 5weeks, and p = 2. The conditional correlation appears
only for data at low frequency. The effect is quite strong for low volatility with a
conditional correlation close to 0.3 at its maximum, decreasing down to negative
values of -0.15 for high volatility. The computation is done with overlapping
bins containing always the same number of observations to avoid changing the
significance of the different results. From this figure, it appears that the “current
state” of the market changes the price process behavior and the volatility plays
an important role beyond its own dynamics. The results shown here for the most
traded FX rates are also present in the other FX rates. It was also reported by
LeBaron (1992b) for stock indices. Varying the parameters cause this effect to
disappear for At smaller than 1 day. In the intraday region, influence of the heat
wave effect becomes important and overshadows the findings.
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VOLATILITY PROCESSES

8.1 INTRODUCTION

One of the many challenges posed by the study of high-frequency data in finance is
to build models that can explain the empirical behavior of the data at any frequency
at which they are measured from minutes to months. We are now going to examine
how conventional models perform when confronted with this problem. In the
previous chapter, we discussed the rich structure of the volatility dynamics. We
need to introduce new types of volatility models to account for this structure,
leading to a higher predictive power.

Many statistical processes proposed in the literature can be described by the
following general formula for equally spaced returns r,:

= O & 8.1

where ¢, is an identically and independently distributed (i.i.d.) random variable!
with zero mean and variance 1. In this chapter, ¢ denotes the index of a homoge-
neous time series rather than time itself. “Homogeneous” means equally spaced
on any chosen time scale. We usually choose #-time as introduced in Chapter 6, so

Iy this chapter, normal and Student-# distributions of &; are studied.

219
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the model appropriately accounts for seasonalities. The volatility o, is the square
root of the variance of the return 7;.

Many models are based on Equation 8.1, but they largely differ in the modeling
of the volatility variable o;. We distinguish three main types of volatility modeling:

1. ARCH-type models. These autoregressive conditional heteroskedastic
models define the variance o7 of the return r; as a function of past returns.
This function can be simple or rather complicated. Inthe GARCH process,
for example, o; also depends on its own past values, but there is always an
equivalent formulation that defines o, as a function of past returns only.
The volatility o; is a model variable that cannot be directly observed, but
it can be computed if a sufficiently long series of past return values up
to ;1 is known. All the statistical processes discussed in the following
sections of this chapter belong to the ARCH type.

2. Stochastic volatility models. In stochastic volatility models, the volatility
variable oy does not depend on past returns. Instead, it depends on its
own past values. The volatility variable o; is neither observable nor di-
rectly computable from past returns. As a consequence, it is more difficult
to estimate the parameters of stochastic volatility models than those of
ARCH-type models. The statistical process of o; has a memory, so an
autoregressive conditional heteroskedastic behavior can be obtained also
with stochastic volatility models. There are different types of stochastic
volatility models as noted in Taylor (1994); Ghysels and Jasiak (1995),
and Ghysels et al. (1996). It is possible to model heterogeneous market
behavior in the framework of stochastic volatility; a modern example is
the cascade mode! of Ghashghaie ef al. (1996) and Breymann ef al. (2000)
where volatility modeling is inspired by turbulence models.

3. Models based on realized volatility. Rather than modeling o;, (Andersen
et al., 2000) propose to define o; as the realized volatility computed at
index 7 — 1. This realized volatility is computed with high-frequency data,
with return intervals of, for example, 30-min, in order to keep stochastic
errors low. The time interval of the main model (i.¢., the interval between
the indices # — 1 and #) is usually much larger (e.g., 1 working day). This
means using realized volatility at # — 1 as a predictor of the volatility
between ¢t — 1 and 7 by relying on the volatility clustering. This model has
the advantage of using empirical data instead of model assumptions that
might be wrong. However, it has some disadvantages:

» Realized volatility is biased if computed at high frequency (see Sec-
tion 7.2). A bias correction method such as Equation 7.4 would
improve the model.

® Realized volatility computed at high frequency (fine volatility) lags
behind coarse volatility in the lead-lag analysis (see Section 7.4.2).
This lag leads to suboptimal forecast quality when predicting the
volatility of the next step of the model.
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m [m general, realized volatility at ¢ — 1 may not be the best predictor
of volatility between ¢ — 1 and ¢. It should be replaced by a more
sophisticated forecast of realized volatility at z.

In most of these statistical processes of (7,2, it is possible to add some terms mod-
eling external (exogeneous) influences. If volume figures at t — 1 are available,
for example, they may be a piece of information to predict the volatility ;. The
processes discussed here are not of this type, they are univariate.

In the remainder of this chapter, we stay within the framework of ARCH-
type modeling and compare different models. The ultimate quality criterion of a
model is its predictive power. Therefore there are some volatility forecast tests
in Section 8.4. Forecasting is further discussed in Chapter 9 where it is the main
subject.

8.2 INTRADAY VOLATILITY AND GARCH MODELS

The Autoregressive Conditional Heteroskedastic (ARCH) model of Engle (1982)
and its generalized version (GARCH) by Bollerslev (1986) are widely used, not
only in the foreign exchange (FX) literature (see, for a review, Bollerslev ef al.,
1992) but also as the basic framework for empirical studies of the market mi-
crostructure such as the impact of news (Goodhart and Figliuoli, 1991; Goodhart
et al., 1993) and central bank interventions (Goodhart and Hesse, 1993; Peiers,
1997), or inter and intramarket relationships in Engle ef al. (1990) and Baillie
and Bollerslev (1990). The main assumption behind this class of models is the
relative homogeneity of the price discovery process among market participants
at the origin of the volatility process. In other words, the conditional density of
one GARCH process is assumed to adequately capture all the information and the
news. In particular, GARCH parameters for the weekly frequency theoretically
derived from daily empirical estimates are usually within the confidence interval
of weekly empirical estimates (Drost and Nijman, 1993).

However, we have already seen in this book that several empirical facts are
at odds with this homogeneous view of the market. First, the long memory of
the volatility (Section 7.3.2) indicates the presence of several market components
corresponding to several time horizons. Note that this property of the volatility has
already been successfully incorporated in the GARCH setting as the fractionally
integrated GARCH (Baillie et al., 1996). Second, at the intradaily frequency,
round-the-clock time series reveal seasonal patterns that reflect, among others, the
geographical dispersion of the traders, concentrated in three main geographical
areas: Asia, Europe, and America. Although the first investigations of the ef-
fect of these different geographical locations seemed to indicate that news would
uniformly spread out around the world (the so-called meteor shower hypothesis
in Engle ef al,, 1990), we saw traces of heat wave effects in the previous chap-
ter. Third, exchange rates movements ate not necessarily related to the arrival
of news when inspected at the intraday frequency, Goodhart (1989), reflecting
the fact that intraday traders may have other constraints and objectives than, for
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example, longer-term traders. Fourth, at extremely high frequencies, FX rates ex-
hibit distinet microstructure effects due to the price formation process as studied
in Chapter 5.

In this section, we investigate the importance of this heterogeneity for the
modeling of the foreign exchange (FX) markets using the GARCH seiting. More
specifically, we show that estimates of a GARCH process with data in physical
time are likely to be spurious, even though estimates for one particular frequency
seem to be reasonable. Estimates are only consistent when the seasonal patterns
are taken into account. However, even when these seasonal patterns are accounted
for, the aggregation properties of the GARCH model break down at the intradaily
frequencies, revealing the presence of traders with different risk profiles. In ad-
dition to the presence of different trader categories, we observe microstructure
effects when analyzing returns over time intervals shorter than about 90 min. At
the other extreme, the instability of coefficient estimates over different subperiods
of 6 months suggests the presence of seemingly random long-term fluctuations.
Finally, these misspecifications of the GARCH process result in its quite poor out-
of-sample predictive power for the volatility as compared to realized volatility.

8.2.1 Parameter Estimation of GARCH Models

The GARCH(1,1) process is defined as follows:

o? = ap + a1l + Pt (8.2)
where o is the conditional variance and &7 is the squared innovation.

To test the effects of the temporal heterogeneity of the markets, this
GARCH(1,1) process is estimated for several frequencies. The lowest analyzed
frequency is daily and the highest frequency is defined by a homogeneous time
series with 10-min intervals. At the higher frequencies (intervals less than 2 hr),
we include a fourth-order autoregressive (AR(4)) term u; = Z?: 1 $irs—; in Equa-
tion 8.1 to account for the statistically significant (negative) autocorrelation of the
returns at these frequencies (see Section 5.2.1). The regression equation for the
return process is

rr = Uy + ¢ (83)

At lower frequencies such a term is not needed, and we use the process of Equa-
tion 8.1.

The parameters of the process are estimated as follows. Let 8 denote the set
of parameters characterizing the process. Assuming that the innovations &, are
normally distributed, the log-likelihood function is

E(G)——zln(Zn)—-l—i in(@?) + 5% 84)
2 2 o2 '

i=] i

where the index ¢ has been substituted by i. The number of observations used for
the estimation is #. An initial fraction of data must be reserved and used for the
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build-up of O‘iz, because of the memory of the volatility process. An estimate § for
the parameters is given by the solution of the maximization problem

maax L)

The log-likelihood procedure has many desirable properties.> The solution is
independent of the coordinate system in which the parameters are defined, such
that the estimation can be done in any parametrization and the results will be
identical, up to the chosen parameter transformation. This property is true for
finite samples and any data set, assuming a non-degenerate maximum. Even if the
process is misspecified (i.e., the data were not generated by the estimated process),
the maximum is identical in any coordinate system. Estimating GARCH processes
by maximum likelihood is difficult because of the presence of a one-dimensional
manifold in the parameter space where the likelihood function is large and almost
constant (for a discussion of this point and a good practical solution using the
property mentioned above, see Zumbach, 2000).

The assumption of conditional normality can be relaxed by assuming a Stu-
dent-z distribution for g; (Baillie and Bollerslev, 1989) or the generalized exponen-
tial distribution (Nelson, 1991). Both of these distributions have fat tails. In the
case of the Student-¢ distribution, the log-likelihood function takes the following
form:

£@) = ~3[inwv-2+2mfx'2r ()]~ (4]
(8.5)

2
—3 X [In(‘fiz) +@+Dln (1 + cf(svl—z))]

where v is the number of degrees of freedom of the Student-¢ distribution and I'
is the usual gamma function. Both forms of the log-likelihood function are valid
for any process following Equation 8.1, not only GARCH but also the process we
shall study in Section 8.3.1.

The maximum of the likelihood function is found by an iterative procedure
that combines two methods: a genetic algorithm (GA) (Goldberg, 1989; Pictet
et al., 1995) and the Berndt, Hall, Hall, and Hausman (BHHH) algorithm (Berndt
et al., 1974) which is a variant of the gradient descent method. The initial solu-
tions are chosen randomly to avoid any a priori bias in the estimation and stored
in “genes,” which form an initial population. Starting from this population, the
genetic algorithm constructs a new population using its selection and reproduction
method (Pictet e al., 1995). The solutions with the highest log-likelihood found
by the genetic algorithm are used as starting points of the BHHH algorithm, which
leads to a further improvement. Once convergence of the BHHH is achieved,
the next generation of the GA is computed on the basis of the previous solutions

2 ee Davidson and MacKinnon (1993) for a general reference.
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obtained with the BHHH algorithm and a set of solutions from the previous gen-
eration. This iterative procedure continues until no improvement of the solution
is found. The BHHH algorithm alone can be trapped in local maxima of the log-
likelihood instead of finding the global maximum. The chosen combination with
a genetic algorithm has the advantage of avoiding local maxima. The method is
rather fast, notwithstanding the very large number of observations (368,000 data
points for the 10-min frequency). Robust standard errors are computed using the
variance-covariance matrix estimation of White (1980).

8.2.2 Temporal Aggregation of GARCH Models

If the empirical data can be described as generated by one GARCH(1,1) process
at one particular data frequency, the behavior of the data sampled at any other fre-
quency is theoretically determined by temporal aggregation (or disaggregation) of
the original process. These theoretically derived processes at different frequencies
can be compared to the empirically estimated processes at the same frequencies.
Significant deviations between empirical and theoretical results lead to the rejec-
tion of the hypothesis of only one GARCH process. We can show then that there
is more than one relevant frequency in the volatility generation, and the market
can be called temporally heterogeneous, as already found in Section 7.4.

There are two approaches for the theoretical aggregation of GARCH models.
The GARCH model can be viewed as either a jump process (Drost and Nijman,
1993) or a diffusion process (Nelson and Foster, 1994). Both approaches lead to
very similar results, so we only report results based on Drost and Nijman (1993).
In both approaches, the sum of @1 and 81 (of Equation 8.2) tends to 1 as the
frequency increases. The autoregressive parameter 8 tends to 1, whereas the
moving average parameter ¢ tends to 0. In other words, the higher the frequency,
the longer the clusters of volatility as measured in numbers of time series intervals.

Because previous results confirmed the adequacy of these theoretical results
at the daily and weekly frequencies (Drost and Nijman, 1993), we use the daily
estimations as a starting point to compute the results for the higher frequencies.
High frequencies also have the advantage of high statistical significance.

Drost and Nijman (1993) show that symmetric weak GARCH(1,1) processes
are closed under temporal aggregation. A process is symmetric if the marginal
distribution of returns is symmetric. The term “weak GARCH(1,1)” is exactly
defined by Drost and Nijman (1993). It encompasses all processes that essentially
follow Equation 8.2 with some weak, nonlinear deviations that are not visible
in the autocorrelation of volatility. More precisely, if &; is a symmetric weak
GARCH(1,1), following the equation 67 = g + ae?_; + B, then the high-
frequency parameters g, &, and 8 and the kurtosis x; = E[e1/(E[¢?21)? determine
the corresponding low-frequency parameters. We obtain the symmetric weak
GARCH(1,1) process &(mysm, With

2 (myim = T(m) + Tm)Emyimm + Bien) 2 (mytm—m (8:6)

0323



Case 3:20-cv-05784-BRM-DEA Document 1-3 Filed 05/11/20 Page 246 of 404 PagelD: 324

82 INTRADAY VOLATILITY AND GARCH MODELS 225

and kurtosis ¥ ;) where

1 — m
oy = m aol—_(fﬁ—%% 87)
Tmy = B+ )" = By (8.8)
Kmys = 34 (ke =3)/m+6(k:—1)
= lomB o)+ GHafie—paBra) oo
m (1~ B —a)2(1 - B2 - 28a) '
|Bmy| < 1is the solution of the quadratic equation
By _ _ alpake,m)B+a)" —b(B,a,m) ®.10)
1478,  @B.a {1+ (B + )] - 26(8, o, m) |
with
a(ﬁ,(l’,ng,m): (811)
2 (=B —a)(l - p* —2w)
e A I R E
Lglm =1 =mB ) + B+ Mo~ polf + o)
1-(B+a)?
_ 1—(B+a)™
b(B,a,m) = fo — pa(B + o)} T-Gra? (8.12)

These formulas are used to determine the parameters of the aggregated GARCH
processes and can also be used for going from low to high-frequency (i.e., for
disaggregation).

When exploring temporal aggregation, we have to choose a time scale. Sea-
sonality is not the subject of an aggregation study, but might disturb it. Eliminating
seasonalities by using the ¥ -scale presented in Chapter 6 is a natural choice. How-
ever, we have additionally tested an alternative time scale which we call a business
time scale in the remainder of this section. This business time simply omits the
weekend periods from Friday 22:30 GMT to Sunday 22:30 GMT, when markets
are virtually closed.

As athird time scale, we have tried physical time. In physical time, weekends
cover two-sevenths of the total sample. This causes a complete breakdown of the
estimation procedure, yielding very large «; estimates. Physical time including
weekends is simply unusable here. The aforementioned business time is a usable
substitute of physical time from which it only differs in its omission of weekends.
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FIGURE 8.1 Aggregation of the GARCH(1,1) for estimated coefficients in business
time (o) and theoretically derived coefficients (A) using the (Drost and Nijman, 1993)
results for USD-DEM, for different aggregation factors (1 = 10 min; 2 = 20 min; 3 = 30
min; 6 =1Thr; 12 =2 hr; 36 = 6 hr; 72 = 12 hr; 144= 24 hr). The labels of the estimated
coefficients () are printed in bold. The diagonal dotted line represents the stationarity limit
for which a7 + B1 = 1. Sampling period: 7 years from lanuary 1, 1987, to December 31,
1993.

8.2.3 Estimates of GARCH(1,1) for Various Frequencies

Time series of USD-DEM have been sampled with frequencies between 10 min
and 1 day. For each series, the GARCH(1,1) coefficients have been estimated
using the procedure of Section 8.2.1. The resulting coefficients oy and B (see
Equation 8.2) are plotted in Figure 8.1 in the form of black circles, which are
labeled by the number of 10-min intervals contained in the time series interval.
The label “144” thus means daily sampling.

For comparison, the theoretical values of oy and 81 are also plotted as triangles.
The reference values at daily frequency (label 144) are estimated from real data, but
the values at all other frequencies are computed from these reference values accord-
ing to Drost and Nijman (1993), as explained in Section 8.2.2.A computation ac-
cording to Nelson and Foster (1994) yields similar results that are not plotted here.
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FIGURE 8.2 Aggregation of the GARCH(1,1) for estimated coefficients in &-time (s)
and theoretically derived coefficients (A) using the (Drost and Nijman, 1993) results for
the USD-DEM for different aggregation factors (1 = 10 min; 2 = 20 min; 3 = 30 min; 6
=1hr;12=2hr; 36 =6 hr; 72 = 12 hr; 144