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TABLE 5.13 Correlation coefficients for activity measures. 

Correlation coefficients computed for the different intraday analyses for the USO against 
DEM, JPY, CHF, and GBP and XAU (gold) against USO. Sampling period: from January 1, 
1987, to December 31, 1993. 

E(lrl)-ticks 
E(lrl)-spread 
Ticks-spread 

DEM 

+0.540 
-0.220 
-0.693 

JPY 

+0.421 
-0.485 
-0.018 

GBP 

+0.779 
-0.570 
-0.881 

CHF 

+0.755 
-0.704 
-0.707 

XAU 

+0.885 
-0.287 
-0.450 

coefficients between the intradaily histograms of Figure 5.12 are also positive, as 
explicitly shown in the first line of Table 5.13. We conjecture that both variables 
are positively correlated to a third one, the worldwide intraday transaction volume, 
which is not known for the FX market. Transaction volume figures are, however, 
available for the stock market; their positive correlation to squared returns (and 
hence the volatility) has been found by Harris (1987) and other authors. Recently, 
Hasbrouck (1999) examined the data of the New York Stock Exchange and found 
similar correlations as in Table 5.13 for his transaction data, but the correlations 
did not uniformly increase when the data were aggregated. 

The statistics show that an analysis of return distributions that neglects the large 
differences between the hours of a day and the days of the week is inappropriate. 
In Chapter 6, we will introduce a new time scale to solve this problem. 

5.6.3 Seasonal Volatility: U-Shaped for Exchange Traded 
Instruments 

Intradaily seasonalities were also found in the stock markets by Ghysels and Jasiak 
(1995), Andersen and Bollerslev (1997b) and Hasbrouck (1999). Unlike the FX 
market, stock exchanges and money market exchanges are active less than 24 hr a 
day. Thus the shape of the seasonality is different. It is called the U-shape because 
the high volatility of the opening is followed by a decrease, which is in tum 
followed by an increase of volatility just before closing. Ballocchi et al. (1999b) 
study the Eurofutures markets and find the expected intraday seasonality. For all 
contracts traded on LIFFE the hourly tick activity displays the U-shape with its 
minimum around 11 a.m. to 1 p.m. (GMT) and a clustering of activity around the 
beginning and the end of the trading day. There are differences among Eurofutures 
between the levels and widths of the peaks and the level of the minimum. The 
Eurodollar (a contract type traded on CME, see section 2.4.1) displays similar 
behavior but the activity in the first half of the working day, which takes place 
when the European markets are still open, is higher than during the second half of 
the day, when European markets have already closed and Asian markets are not 
yet open. 
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FIGURE 5.13 lntraday analysis of Short Sterling in position two. The intraday tick 
activity (left histogram) displays the average number of ticks occurring in each hour of 
the day whereas the intraday volatility (right histogram) shows the mean absolute return. 
Both plots display similar U-shapes, the only difference being that the minimum appears 
one hour later for intraday returns. The time scale is GMT (not UKT, the local time used 
by LIFFE in London). The sampling period starts on January 1, 1994, and ends on April 15, 
1997. The total number of ticks 1s 184,360. 

Intraday returns follow a pattern similar to that presented by intraday tick 
activity. In general, opening hours show the highest price variation (the difference 
with respect to the average of the other hours is around one basis point); only in 
some cases does the largest return occur toward closing time (usually in the last 
positions). Differences occur in some positions28 for Short Sterling, Eurolira, and 
Three-Month Ecu,29 which display the minimum of the U-curve 1 hour later than 
in the tick-activity case. This can be seen in Figure 5.13, which displays intraday 
tick activity and intraday returns for Short Sterling in position two. Note that the 
U-shapes in this figure are blurred by the fact that Greenwich Mean Time (GMT) is 
used. The observations do not only cover winter months but also summers where 
the time scale used by LIFFE in London is shifted by 1 hour ( daylight saving time). 
If the time scale was local time (UKT) instead of GMT, the U-shapes would be 
more pronounced with clearer peaks at opening and closing. 

The first two positions of the Euromark display less regularity in the intraday 
return behavior. This behavior is confirmed also by correlation results: on the 
whole, the correlation between hourly tick activity and hourly returns is above 
0.96; only Euromark for the first two positions and Three Month-Ecu for the 
fourth position show a lower correlation around 0.90. In general, for Eurodollar, 
Euromark and Short Sterling, hourly returns tend to increase from position 1 

28 For an explanation of the word "position," see Section 2.1.2. 
29 Short Sterling, Eurolira, Three Month-Ecu, and Euromark are names ofLIFFE contracts, all with 

an underlying 3-month deposit. Ecu is the European Currency Unit that preceded the Euro. 
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FIGURE 5.14 Volatility as a function of time to expiry. The volatility values are daily 

averages over 36 contracts (9 for Eurodollar, 9 for Euromark, 9 for Short Sterling, and 9 for 

Eurolira). The abscissa corresponds to the time to expiry: the farther on the right-hand 

side, the farther away from expiry. 

to position 4; Eurodollar and Short Sterling display a decrease for some hours 

in position 4. 
Looking at intraweek tick activity, there is evidence of a day-of-the-week 

effect. In general, the level of activity displays a minimum on Monday and a 

maximum on the last two working days of the week, usually on Thursday for 

LIFFE contracts and on Friday for CME contracts. The difference is definitely 

significant for the Eurodollar; in fact, for positions 1 and 2 the tick activity on 

Friday is almost double that on Monday and it becomes more than double for 

positions 3 and 4. In general, there is a gradual increase from Monday to Friday. 

5.6.4 Deterministic Volatility in Eurofutures Contracts 

Ballocchi et al. (2001) provide evidence that the volatility of futures prices sys­

tematically depends on the time interval left until contract expiry. We call these 

systematic volatility patterns deterministic, as opposed to the also existing stochas­

tic :fluctuations of volatility. In order to probe the existence of a seasonality related 

to contract expiry, a sample consisting of many futures contracts is needed. For 

several Eurofutures contact type (Eurodollar, Euromark, Short Sterling, and Eu­

rolira) and for each contract expiry, we build a series of hourly returns using linear 

interpolation. Then we compute daily volatilities taking the mean absolute value 

of hourly returns from 00:00 to 24:00 (GMT) of each working day (weekends and 

holidays are excluded). These daily volatilities are plotted against time to expiry. 

The result is shown in Figure 5 .14. The vertical axis represents the mean volatility 

Case 3:20-cv-05784-BRM-DEA   Document 1-3   Filed 05/11/20   Page 190 of 404 PageID: 268

0268



170 CHAPTER 5 BASIC STYLIZED FACTS 

computed from all Eurofutures and all contracts together. The horizontal axis 

represents the time left to expiry, as we move towards the left the number of days 

to expiry decreases. 
Figure 5.14 spans a period of about 360 days because only within that period 

we are able to compute our mean volatility based on a full set of contracts. Some 

contracts have bad data coverage for times to expiry exceeding 360 days. The 

results obtained are quite interesting. There is a downward trend in volatility as the 

time to expiry decreases ( moving from right to left in Figure 5 .I 4). This downward 

trend is weak between about 300 and 180 days before expiry but becomes strong as 

we move toward the expiry date. There is also an unexpected behavior consisting 

of oscillatory movements with peaks every 90 days corresponding to rollover 

activities near the ending of contracts. These results are confirmed also by a 

deterministic volatility study on each single Eurofutures type-except Eurolira, 

which displays an increment in volatility as we move toward expiry. Eurodollar, 

Euromark, and Short Sterling show a decreasing volatility at least for the last 300 

days before expiry. All Eurofutures display oscillatory movements with peaks 

around expiry dates (this appears particularly evident for Short Sterling). 

A possible explanation for this effect is that these markets are all "cash settled" 

and therefore have no "delivery risk"; this means there is no risk of holding these 

futures on expiry day. Due to transaction costs, it is cheaper to take the cash at 

expiry than to close the position and realize the cash the day before. In other 

future markets such as the Deutsche Termin-Borse or the commodity markets, 

people who hold long positions to expiry actually take physical delivery of the 

underlying commodity or bond. There is a risk as expiry approaches as to which 

bond or type of commodity will be delivered. This may cause an increase in 

volatility as expiry approaches-a behavior opposite to that of Figure 5.14. 

5.6.5 Bid-Ask Spreads 

The bid-ask spread reflects many factors such as transaction costs, the market 

maker's profit, and the compensation against risk for the market maker, see ( Glass­

man, 1987; Glosten, 1987). The subject of the intraday and intraweek analysis is 

the relative spreads i (Equation 3.12). It is usually below or around 0.1 %, and 

its distribution is not symmetric. Negative changes are bounded as spreads are 

always positive, but the spread can exceed 0.5% in times oflow market activity. 

The arithmetic mean of s i weights these low-activity spreads too strongly and 

therefore we choose the geometric mean as a more appropriate measure: 

( 

n, ) t; 
Si= n Si,j 

1=1 

(5.39) 

The index i indicates the hour ofa day ( or a week) or the day of the week, depending 

on the analysis. The total number of ticks that belong to the i th interval is ni. j is 

the index and s;,J the spread of these ticks. 
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5.6 AUTOCORRELATION AND SEASONALITY 171 

TABLE 5.14 Average spreads. 

Geometric average of the relative spread for each day of the week (including weekends) for 

the USD against DEM, JPY, CHF, and GBP and XAU (gold) against USD; for the period from 

January 1, 1987, to December 31, 1993. The relative spread figures have to be multiplied 

by 10-4. 

DEM JPY GBP CHF XAU 

Monday 4.57 5.72 4.82 6.32 12.58 

Tuesday 4.52 5.64 4.77 6.28 12.51 

Wednesday 4.57 5.71 4.81 6.32 12.49 

Thursday 4.64 5.77 4.84 6.38 12.62 

Friday 4.79 6.00 4.99 6.49 12.59 

Saturday 7.69 17.91 17.32 18.02 13.26 

Sunday 5.28 6.78 9.60 10.99 14.04 

Mi.ill er and Sgier (1992) analyze in detail the statistical behavior of the quoted 

spread. Here we shall present their main conclusions. First, it is important to 

remember that all the statistical analyses are dominated by one property of quoted 

FX spreads, which is the discontinuity of quoted values (see Section 5.2.2). This 

data set contains price quotes rather than traded prices. The banks that issue these 

price quotes are facing the following constraints: 

• Granularity: FX prices are usua1ly quoted with five digits-that is, 1.6755 

(USD-DEM) or 105.21 (USD-JPY). The lowest digit sets the granularity 

and thus the unit basis points. 
• Quoted spreads are wider than traded spreads as they include "safety mar­

gins" on both sides of the real spread negotiated in simultaneous real 

transactions. These margins allow the FX dealers, when called by a cus­

tomer during the lifetime of the quote, to make a fine adjustment of the 

bid and ask prices within the range given by the wide quoted spread. They 

can thus react to the most recent market developments. 

• FX dealers often have biased intentions: while one of the prices, bid or 

ask, is carefully chosen to attract a deal in the desired direction, the other 

price is made unattractive by increasing the spread. 

• Because quoted spreads are wider than traded spreads, they do not need 

the high precision required in the direct negotiation with the customer on 

the phone. Hence, there is a tendency to publish formal, "even" values of 

quoted spreads as discussed in Section 5.2.2. 

The strong preference for a few formal spread values, mainly 5 and IO basis points, 

clearly affects every statistical analysis. 

The results are shown in the middle histograms of Figure 5.12 and in 

Table 5.14. The general behavior of spreads is opposite to those of volatility 

and tick frequency. Spreads are high when activity is low, as already noticed by 
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FIGURE 5.15 Cumulative distributions of relative spreads (left) and logarithm of the 

relative spread (right) shown against the Gaussian probability on the y-axis. The distribu­

tion 1s computed from a time series of linearly interpolated spread sampled every 10 min 

for USO-DEM. The sample runs from March 1, 1986, to March 1, 1991. 

Glassman (1987). FX spreads on Saturdays and Sundays can have double and 

more the size of those on weekdays and, as in Table 5.12, Sundays differ slightly 

less from working days than Saturdays. Sunday in GMT also covers the early 

morning of Monday in East Asian time zones. Unlike the volatilities, the average 

FX spreads exhibit a clear weekend effect in the sense that the Friday figures are 

higher, though still much lower than those of Saturday and Sunday. The spreads of 

gold vary less strongly, but they have double the size of the FX spreads on working 

days. The FX rate with the smallest spreads, USD-DEM, was the most traded one 

according to all the BIS studies (until it was replaced by EUR-USD in 1999). The 

histograms in Figure 5.12 have intraday patterns that are less distinct than those 

of volatility, but still characteristic. We analyze their correlations with both the 

volatilities and the numbers of quoted ticks. All the correlation coefficients on the 

second line of Table 5.13 and most of them on the third line are negative, as one 

would expect. The FX rates have different spread patterns. For USD-CHF, for 

instance, there is a general spread increase during the European afternoon when 

the center of market activity shifts from Europe to America, while the USD-JPY 

spreads decrease on average at the same daytime. This indicates that American 

traders are less interested in Swiss Francs and more in Japanese Yens than other 

traders. Hartmann (1998) uses the spreads to study the role of the German Mark 

and the Japanese Yen as "vehicle currencies," as compared to the USD. 

An analysis of the empirical cumulative distribution function of the relative 

spreads is shown in the left graph of Figure 5.15 forUSD-DEM and forlns in the 
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5.6 AUTOCORRELATION AND SEASONALITY 173 

right graph of Figure 5 .15. The resulting cumulative distribution functions have 

the following properties: 

1. They are not Gaussian, but convex (s strongly, Ins slightly), indicating a 

positive skewness and leptokurticity (of the tail on the positive side). 

2. They look like a staircase with smooth comers. For the nominal spread 

in basis point, Snom, we would expect a staircase with sharp comers, the 

vertical parts of the staircase function indicating the preferred "even" val­

ues such as 10 basis points. Although sis a relative spread c~ Snom/ Pbid), 

where the bid price Pbid fluctuates over the 5-year sample, and although we 

use linear interpolation in the time series construction (see Section 3.2.l), 

the preferred "even" Snom values are still visible. 
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6 
MODELING SEASONAL 

VOLATILITY 

6.1 INTRODUCTION 

The intradaily and intraweekly seasonality of volatility is a dominant effect that 

overshadows many further stylized facts of high-frequency data. In order to con­

tinue the research for stylized facts, we need a powerful treatment of this season­

ality. 
Many researchers who study daily time series implicitly use, as a solution, 

a business time scale that differs from the physical scale in its omission of Sat­

urdays, Sundays, and holidays. With the t-scale we extend this concept to the 

intraday domain, thereby allowing us to tackle a fundamental source of seasonality 

originating from the cyclical nature of the 24-hr hour trading around the globe in 

different geographical locations. 
There are, therefore, three main motivations for our model: 

• To provide a tool for the analysis of market prices by extending the concept 

of business time scale to intraday prices 

• To make a first step toward formulating a model of market prices that also 

covers the intraday movements 

• To gain insight into the interactions of the main market centers around the 

world and their relevance to each particular foreign exchange (FX) rate 

174 
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6.2 A MODEL OF MARKET ACTIVITY 175 

A number of papers such as Andersen and Bollerslev (1997b, 1998b), Taylor 

and Xu (1997), and Beltratti and Morana (1999) propose alternative approaches 

for dealing with volatility seasonalities. They are based on a factorization of 

the volatility into an essentially deterministic seasonal part and a stochastic part, 

which is (more or less) free of seasonalities. The former is then modeled by a set 

of smooth functions. Cutting out the inactive periods of the time series and gluing 

together the active parts, Andersen and Bollerslev (1997b) succeeded in applying 

their method also to the S&P 500 index. This procedure is not fully satisfactory for 

a number of reasons: time series have to be preprocessed, there is no treatment of 

public holidays and other special days, the model fails when the opening or closing 

time of the market changes, and it is not adequate for instruments with a complex, 

hybrid volatility pattern. Gen~ay et al. (2001a) use the wavelet multiresolution 

methods for dealing with volatility seasonalities which is studied in Section 6.4. 

6.2 A MODEL OF MARKET ACTIVITY 

6.2.1 Seasonal Patterns of the Volatility and Presence of Markets 

The behavior of a time series is called seasonal if it exhibits a periodic pattern 

in addition to less regular movements. In Chapter 5 we demonstrated daily and 

weekly seasonal heteroskedasticity ofFX prices. This seasonality of volatility has 

been found in intradaily and intra weekly frequencies. In the presence of seasonal 

heteroskedasticity, autocorrelation coefficients are significantly higher for time 

lags that are integer multiples of the seasonal period than for other lags. An 

extended autocorrelation analysis is studied in Chapter 7. 

As studied in Chapter 5, the intra week analysis indicates that the mean absolute 

returns are much higher over working days than over Saturdays and Sundays, when 

the market agents are hardly present. The intraday analysis also demonstrates that 

the mean absolute hourly returns have distinct seasonal patterns. These patterns are 

clearly correlated to the changing presence of main market places of the worldwide 

FX market. The lowest market presence outside the weekend happens during the 

lunch hour in Japan (noon break in Japan, night in America and Europe). It is at 

this time when the minimum of mean absolute hourly returns is found. 

Chapter 5 also presents evidence of a strong correlation between market pres­

ence and volatility such that the intraday price quotes are positively correlated to 

volatility when measured with mean absolute hourly returns. Market presence is 

related to worldwide transaction volume which cannot be observed directly. In the 

literature, a number of papers present substantial evidence in favor of a positive 

correlation between returns and volume in financial markets, see the survey of 

(Karpoff, 1987). 
The correlation of market presence and volatility requires us to model and 

explain the empirically found seasonal volatility patterns with the help of funda­

mental information on the presence of the main markets around the world. We 

know the main market centers ( e.g., New York, London, Tokyo), their time zones, 

and their usual business hours. When business hours of these market centers 
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176 CHAPTER 6 MODELING SEASONAL VOLATILITY 

overlap, market activity must be attributed to their cumulative presence; it is im­

possible to assign the market activity to only one financial center at these times. 

The typical opening and closing times of different markets can be determined from 

a high-frequency database (such as the O&A database), which also contains the 

originating locations of the quoted prices. 
In many of the approaches cited in the introduction, in particular in Baillie 

and Bollerslev (1990) where the seasonality of volatility is modeled by dummy 

variables, no further explanation of this seasonal pattern is given. We consider 

it advantageous to try to identify at every moment of the day which markets are 

responsible for the current volatility. 

6.2.2 Modeling the Volatility Patterns with an Alternative Time 

Scale and an Activity Variable 

Before relating the empirically observed volatility to the market presence, we 

introduce a model of the price process, which will be used for describing and 

analyzing the seasonal volatility patterns. A return process with strong intraday 

and intraweek volatility patterns may not be stationary. Our model for the seasonal 

volatility fluctuations introduces a new time scale such that the transformed data 

in this new time scale do not possess intraday seasonalities. 

The construction of this time scale utilizes two components: the directing pro­

cess, {} (t ), and a subordinated price process generated from the directing process. 

Let x(t) be the tick-by-tick financial time series that inherits intraday seasonal­

ities. The directing process, {}(t) : R -+ R, is a mapping from physical time 

to another predetermined time scale. Here, it is defined such that it contains the 

intraday seasonal variations. 1 iJ(t), when used with the subordinated price gen­

erating process x(t) = x*[{}(t)], leads to the x* process, which has no intraday 

seasonalities. Although this is not the only possible model to treat the observed 

seasonality, other traditional deseasonalization techniques are not applicable as 

the volatility is seasonal, not the raw time series. 

In the literature, a variety of alternative time scales have been proposed, in 

different contexts. In the early 1960s, Allais (see, for instance, Allais, 1974) had 

proposed the concept of psychological time to formulate the quantity theory of 

money. Mandelbrot and Taylor (1967) suggested to cumulate the transaction vol­

ume to obtain a new time scale which they call the transaction clock. Clark (1973) 

suggested a similar approach. Stock (1988) studied the postwar U.S. GNP and 

interest rates and proposed a new time scale to model the conditional heteroskedas­

ticity exhibited by these time series. Here we propose to use a new time scale to 

account for the seasonality. 

1 The{} (t) process can assume different roles in different filtering environments. If, for instance, the 

interest is to simply filter out certain holiday effects from the data, then {} (t) can be defined accordingly. 

Under such a definition, the transformation will only eliminate the specified holiday effects from the 

underlying x (t) process. The {} type time transformations are not limited to seasonality filtering. They 

can also be used within other contexts such as the modeling of intrinsic time or transaction clock. 
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6.2 A MODEL OF MARKET ACTIVITY 177 

Because the iJ-scale fully accounts for the seasonality of x, x* has no seasonal 

volatility patterns. The process x* may however have nonseasonal volatility pat­

terns; it may be conditionally heteroskedastic. No attempt is made in this chapter 

to determine its exact nature. The time scale iJ(t) is a strictly monotonic :function 

of physical time t. Any time interval from t1 to t2(> t1) corresponds to a iJ-time 

interval of the positive size iJ2 - iJ1. The new activity variable a is defined as the 

ratio of the interval sizes on the different scales, 

(6.1) 

This activity reflects the seasonal volatility patterns. Its relation to other "activ­

ity" variables such as market presence or transaction volume was mentioned in 

Section 6.2.1 and is discussed below.2 

6.2.3 Market Activity and Scaling Law 

The volatility-based activity defined by Equation 6.1 can be computed with the 

empirical scaling law (see Chapter 5) for returns, which relates (for p = l) 

(\L'lx\), the mean absolute returns over a time interval to the size of this inter­

val, 1',.t, 

(6.2) 

where E is the expectation operator, c is a constant depending of the specific 

time series. D is the drift exponent, which determines the scaling properties of 

the underlying process across different data frequencies. The drift exponent D 

is about 0.6 for major FX rates, whereas the pure Gaussian random walk model 

would imply D = 0.5. The scaling law expressed in Equation 6.2 holds for all 

time series studied and for a wide variety of time intervals ranging from 10 min to 

more than a year. 
The scaling law is applied to subsamples in a so-called intraweek analysis 

that allows us to study the daily seasonality ( open periods of the main markets 

around the world) as well as the weekly seasonality (working days - weekend). 

Here, we choose a sampling granularity of !::,.t = l hr. The week is subdivided 

into 168 hr from Monday 0:00-1:00 to Sunday 23:00 - 24:00 (Greenwich Mean 

Time, GMT) with index i. Each observation of the analyzed variable is made in 

one of these hourly intervals and is assigned to the corresponding subsample with 

index i. The 168 subsamples together constitute the full 4-year sample. The sam­

ple pattern is independent of bank holidays and daylight saving time. A typical 

intraday and intraweek pattern across the 168 hr of a typical week is shown in 

Figure 6.1. 

2 In skipping Saturdays and Sundays, other researchers use an implicit activity model with zero 

activity on the weekends. 
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FIGURE 6.1 Histogram of the average hourly activity (as defined in Equation 6.4 for 
a statistical week (over 4 years) for the USO-DEM rate. 

The scaling law, Equation 6.2, is applied to the i th hourly subsample instead 

of the full sample and mathematically transformed to 

'6.ih ::::: ( E~:;I]) 1/D (6.3) 

From Chapter 5, we know that r; can strongly vary for the different hours of a 

week. The time interval b.t 1 hr (for the hourly sampling) is nevertheless 

constant. Therefore, it is replaced by the interval ,6. if; on the new time scale if. 

The size of M}; is no longer constant, but reflects the typical volatility of the i th 

hour. The constant c* is essentially the c of Equation 6.2, but can differ slightly 

as it is calibrated by a normalization condition presented later. 

The activity of the i th hourly subsample directly follows from Equation 6.1, 

1 (E[lr;l]) 1
/D 

astat i = - -- , !::.t ::::: 1 hr 
' flt c* 

(6.4) 

This is the volatility-based activity definition used in the following analysis. The 

constant c* is calibrated to satisfy the following, straightforward normalization 

condition: 

168 

168 
L Gstat, i 
i=l 

6.2.4 Geographical Components of Market Activity 

(6.5) 

In Figure 6.1, the histogram of the average hourly activity defined by Equation 6.4 

is plotted for the USD-DEM rate. Although the activity definition is based only 
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6.2 A MODEL OF MARKET ACTIVITY 179 

on return statistics, the histogram exhibits clear structures where there is very low 

activity over the weekends and strongly oscillating activity patterns on normal 

business days. The most active period is the afternoon (GMT) when the European 

and American markets are open simultaneously. We have varied the f:..t granularity 

of this analysis from 15 min to 4 hr and found no systematic deviations of the 

resulting activity patterns from the hourly ones. Furthermore, the activity patterns 

are remarkably stable for each of the 4 years of the total sample. The strong 

relation between return activity and market presence leads to the explanation of 

activity as the sum of geographical components. Although the FX market is 

worldwide, the actual transactions are executed and entered in the bookkeeping 

of particular market centers, the main ones being London, New York, and Tokyo. 

These centers contribute to the total activity of the market during different market 

hours that sometimes overlap. 
Goodhart andFigliuoli (1992) have explored the geographical nature of the FX 

market to look for what they call the island hypothesis. They studied the possibil­

ity that the price bounces back and forth from different centers when special news 

occurs before finally adjusting to it. Along the same idea, Engle et al. (1990), in a 

study with daily opening and closing USD-JPY prices in the New York and Tokyo 

markets and a market-specific GAR CH model, investigate the interaction between 

markets. They use the terms heat wave hypothesis for a purely market-dependent 

interaction and meteor shower hypothesis for a market-independent autocorrela­

tion. They find empirical evidence in favor of the latter hypothesis. Both studies 

have not found peculiar behavior for different markets. This encourages us to 

model the activity with geographical components exhibiting similar behavior. 

The activity patterns shown in Figure 6.1 and the results reported in Chapter 5 

suggest that the worldwide market can be divided into three continental compo­

nents: East Asia, Europe, and America. The grouping of the countries appearing 

on the Reuters pages in our three components can be found in Table 6.1. This divi­

sion into three components is quite natural and some empirical evidence supporting 

it will be presented in Chapter 7. 
The model activity of a particular geographical component k is called ak(t); 

the sum of the three additive component activities is a(t): 

3 

a(t) = Lak(t) (6.6) 

k=l 

This total activity should model the intraweekly pattern of the statistical activity 

astat,i as closely as possible. Unlike astat, which has relatively complex behavior 

(see Figure 6.1), the components ak(t) should have a simple form, in line with 

known opening and closing hours and activity peaks of the market centers. 

6.2.5 A Model of lntraweek Market Activity 

Each of the three markets has its activity functionak(t). For modeling this, we use 

quantitative information on market presence. A statistical analysis of the number 
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180 CHAPTER 6 MODELING SEASONAL VOLATILITY 

TABLE 6.1 Definition of the three generic markets. 

Grouping of the different countries appearing in the multicontributor pages or record from 

Reuters according to the three components of the worldwide market. 

Index k Component Countries 

East Asia 

2 Europe 

3 America 

Australia, Hong Kong, India, Indonesia, Japan, South Korea, 

Malaysia, New Zealand, Singapore 

Austria, Bahrain, Belgium, Germany, Denmark, Finland, 

France, Great Britain, Greece, Ireland, Italy, Israel, Jordan, 

Kuwait, Lmembourg, Netherlands, Norway, Saudi Arabia, 

South Africa, Spain, Sweden, Switzerland, Turkey, United Arab 

Emirates 

Argentina, Brazil, Canada, Mexico, United States 

of price quotes originating from each of the three markets defined by Table 6.1 

reveals two aspects on market presence: 

■ A market has opening times that are longer than those of a particular 

submarket (e.g., an individual bank in one :financial center such as Tokyo, 

Paris, or Chicago). The market opening time is the union of the opening 

times of all relevant institutions of the market. 

■ Two markets (East Asia and Europe) have a local price quote frequency 

minimum in the middle of their working day, corresponding to a noon 

break. This local minimum is very pronounced in East Asia and moderate 

in Europe. In America, there is no minimum around noon. These differ­

ences reflect the well-known, different business habits concerning lunch 

breaks. 

Each of the three markets is modeled to have two basic states, either open or 

closed. The activity does not completely go to zero when the market is closed 

because it is defined in terms of returns. The activity during the closing hours is 

modeled to stay on a small constant base level ao,k- During the opening hours, a 

much stronger, varying, positive activity a1,k adds to the base level, 

3 3 

a(t) == I)ao,k + a1,k(t)] == ao + I:>1,k(t) > 0 (6.7) 

k=l k=I 

The joint base level ao is regarded as one model parameter. There is no need to 

analyze components ao,k• 

The activity during opening hours, ai,k, is modeled with a polynomial with 

smooth transition to the constant behavior of the closing hours. This choice is 

mathematically convenient because such functions are easily differentiable and 
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6.2 A MODEL OF MARKET ACTIVITY 181 

analytically integrable. For parsimony, the number of parameters of this polyno­

mial is kept at a minimum to model the smooth transitions, the lunch break, and 

the skewness to account for the relative weights of morning and afternoon hours. 

In the subsequent analysis, the statistical week is considered from t = 0 on 

Monday 00:00 tot = 168 hr on Sunday 24:00 (GMT), as shown in Figure 6.1. 

In order to define the opening and closing conditions of the markets in a con­

venient form, an auxiliary time scale Tk is introduced. Essentially, it is GMT 

time; the following market-dependent transformations are only done for technical 

convenience: 

n = [(t + D.tk) modulo (24 hr)] - l:,.tk (6.8) 

where l:,.tk has the value of9 hr for East Asia, 0 for Europe, and-5 hr for America. 

(The result of the modulo operator is the left-hand side argument minus the nearest 

lower integer multiple of the right-hand side argument.) The weekend condition 

(WEC) also depends on the market: 3 

(t + 6.tk) modulo (168 hr) 2::: 120 hr (6.9) 

Now the model for an individual market component can be formulated by 

a1,k(t) = { aQ (t) 
open,k 

if Tk < Ok or I'k > Ck or (WEC) 
if Ok < Tk < Ck and not (WEC) 

(6.10) 

where Ok and ck are the parameters for the opening and closing hours, respectively. 

The polynomial function is 

aopen,k(t) 

where Wk represents the scale factor of the kth market, Sk the skewness of the 

activity curve, mk fixes the place of the relative minimum around the noon break, 

and dk determines the depth of this minimum. The special form of the first factor 

is chosen to avoid too strong a dependence of the scale factor on Sk, 

In Figure 6.2, the panel on the left illustrates the shape of the geographical 

seasonality in the European market. The opening and closing times are where 

the activity level is zero. These parameters are illustrated with "o" and "c" signs. 

The seasonality has two peaks with the second peak higher than the former. The 

relative minimum between the two peaks is the lunch break effect. The location 

and depth of this relative minimum are controlled by the parameters "m" and "d" 

of the last term of Equation 6.11. The activity starts to peak with the opening 

3 The Japanese markets were open on some Saturday mornings according to certam rules in earlier 

years. These Saturdays, which ate noticeable in Figure 6.1, are neglected here, but discussed in 

Section 6.3.2. 

Case 3:20-cv-05784-BRM-DEA   Document 1-3   Filed 05/11/20   Page 202 of 404 PageID: 280

0280



182 CHAPTER 6 MODELING SEASONAL VOLATILITY 

1 0 1 a 

12 15 18 12 15 18 21 24 

Hour of the Day (in GMT) Hour of the Day (in GMT) 

FIGURE 6.2 The geographical seasonality patterns. The panel on the left illustrates 

the shape of the geographical seasonality in the European market. The seasonality has two 

peaks with the second peak higher than the former. The relative minimum between the 

two peaks is the lunch break effect. In the right panel, the North American geographical 

seasonality is plotted. It has no lunch break effect. 

of the market in the morning, slows down during the lunch break and it peaks in 

the afternoon again. As the market closing time approaches, the level of activity 

gradually goes down and reaches zero. In the right panel of Figure 6.2, the North 

American geographical seasonality is plotted, which has no lunch break effect. 

The parameter s controls the asymmetry of the peaks for the European market, 

whereas in the case of the North American market, it controls the skewness of the 

overall pattern. 
This polynomial model applies to all markets. The European and Asian mar­

kets (k = 1, 2) have finite dk values in the fitting process, but for the American one, 

the parameter d3 always diverges to very high values. This reflects the missing 

noon break in this market, which has already been found in the tick frequency 

statistics. 
The Equation 6.11 for America thus degenerates to a simpler form with no 

local activity minimum 

W3 2 2 
Gopen,3 (t) = 

0 
+c (T3 - 03) (T3 - c3) (T3 - s3) 

--½;-2-s3 
(6.12) 

Some of the model parameters, the opening and closing times, are already known 

from the quote frequency statistics. For the other parameters, there are constraints. 
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6.2 A MODEL OF MARKET ACTIVITY 183 

To ensure positive activities, ao and Wk must be positive and sk outside the opening 

hours, 

(6.13) 

The parameter mk in Equation 6.11 should be within the opening hours as it 

models the noon break: 

(6.14) 

The functions a1,k(t) must be fitted to the results of the statistics, astat(t), by 

minimizing the integral of the weighted square deviation of a(t) from astatCt). A 

continuous function astat(t) is not available but rather the hourly series astat,i from 

Equation 6.4. Therefore, the sum over the intraweekly sample is used instead of 

the integral: 

~ [as1at,i - ao - Li=1 al,k(ti)r = 
~ (J'2 
i=l error,i 

min, 
1 

ti= (i - -) hr 
2 

(6.15) 

The hourly intervals are represented by their middle points in this approximation. 

The least square model has 11 parameters, three cvk's, threesk 's, twomk 's, twodk 's, 

and the base activity ao. The values of opening, ok, and closing, ck, are subject to 

random measurement error originating from the price quote frequency statistics. 

Therefore, these values are allowed to vary slightly for adjusting the fit. The 

minimization problem of Equation 6.15 is nonlinear in some of the parameters. 

It can be solved by the Levenberg-Marquardt method (see Press et al., 1986, 

Section 14.4), but in complex cases a simple genetic search algorithm provides the 

optimum parameters much more efficiently. 

The main American and European markets observe daylight saving time dur­

ing summer, whereas the main East Asian markets do not. This fact is ignored 

for the fitting. Only the GMT scale is used. A posterior daylight saving time 

correction is proposed in Section 6.3.2. 

The resulting parameter estimates for four major FX rates and gold (XAU­

USD) are presented in Table 6.2 together with the relative weights of the different 

markets (to be defined in Section 6.3.1). In the top panel of Figure 6.3, the result­

ing activity model together with the statistical activity for the USD-JPY is shown, 

and the bottom panel of Figure 6.3 shows the same quantity for the USD-CHF. 

Figure 6.4 displays the activity model over 48 hr (outside the weekend) with its 

different components for the same rates. 

6.2.6 Interpretation of the Activity Modeling Results 

The resulting parameters of the activity model and Figures 6.3 and 6.4 confirm the 

close relation betwe~n market presence and intraweekly volatility patterns. The 

market-specific tick frequency analysis and the activity fitting results compare fa­

vorably taking into account the Reuters coverage and the limitations of our model. 
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184 CHAPTER 6 MODELING SEASONAL VOLATILITY 

TABLE 6.2 The parameter estimates for the three generic markets. 

The parameter estimates for the maJor FX rates and gold (XAU-USD) with the corre-

sponding market weights. The sum of the market weights is less than 100 percent. The 

rest is accounted for by the basic activity ao, The residual activity ao, the scale factor 

w, and the parameter d, which determines the depth of the minimum at lunch time, are 

dimensionless numbers. Thew values are a factor of 10-4. 

Rate ao k Market Weight w 0 C m d 

USD-DEM 0.03 1 East Asian 24.1% 1.69 -3:32 8:24 3:33 0.97 -3:33 

2 European 38.5% 1.07 5:54 18·39 11:07 2.06 20:21 

3 American 34.1% 12.46 11:24 23:25 40:44 

USD-JPY O.o3 I East Asian 35.4% 1.40 -4:14 8:43 3:35 1.01 -4.17 

2 European 27 6% 5.37 6:55 16:40 11:02 1.51 17:23 

3 American 33.4% 18.73 11:48 22:50 34:55 

GBP-USD 0,02 I East Asian 24.3% 1.05 -3:48 8:59 3:40 1.08 -4:02 

2 European 39.1% 0.98 6:00 18:19 11:13 2.85 20:05 

3 Amencan 34.0% 13.88 11:24 23:11 31:43 

USD-CHF 0.01 I East Asian 22.0% 1.12 -4:00 9:00 3:40 1.06 -4:00 

2 European 45.1% 1.04 5:00 18:00 11:23 2.45 -4:45 

3 American 31.6% 13.71 12:00 24:00 24:00 

XAU-USD 0.02 1 East Asian 9.7% 0.14 -3:43 9:36 4:05 3 17 -4:15 

2 European 54.8% 2 98 5:36 17:19 11:10 1.54 2:42 

3 American 33.8% 354.9 15:21 21:30 21:32 

In both cases and for all FX rates, the local minima around noon have the following 

properties: they are pronounced in East Asia, moderate in Europe, and do not exist 

in America. 
The USD-DEM and the USD-CHF have close parameter values as would be 

expected with a larger weight for Europe in the case of the USD-CHF, whereas the 

USD-DEM shows a higher weight for the American market. Gold (XAU-USD) 

has a very small East Asian market, which extends late because it is mainly traded 

with Europe. In general, its active trading periods in the individual markets seem 

to be less extended than for the FX rates. A similar effect is detected with silver. 

The USD-JPY has a strong East Asian component with a strong overlap with the 

American market. It is for this rate that the earliest opening of the East Asian 

market is found. The first example in Figure 6.4 (USD-JPY) has its main market 

in East Asia. The second example in Figure 6.4 (USD-CHF) has it in Europe, in 

line with the common sense expectation. 
An alternative measure of market activity could also be based on the frequency 

of price quotes. According to the study in Chapter 5 (Table 5.13), this variable 

is highly correlated to the volatility. Yet we do not recommend it as an activity 

measure for two reasons. 

1. This number depends on the coverage of the FX market by Reuters and its 

policy to publish prices on its FXFX page. For instance, a new price was 
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0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 

lntraweek Hourly Index 

FIGURE 6.3 The histograms of the average hourly activity for a statistical week (over 

4 years) for the USD-JPY (above) and USD-CHF (below) rates and the modeled activity. 

shown for a particular rate on this page at maximum one price every 6 sec. 

Some relevant price revisions were therefore lost because of limitations 

of the data supplier. Whereas the price revisions depend directly on the 

data supplier's coverage or policy, the prices are issued by market makers 

who closely follow the real market value and have many data sources avail­

able. Thus published prices are conditioned more by other simultaneously 

available prices, which do not necessarily appear on this data source. 

In order to provide some empirical evidence of this dependence, we com­

pare the hourly shares of the weekly number of price revisions in the 168 

hr of the statistical week (see Section 6.2.1) of two different data suppli-
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FIGURE 6.4 The model activity decomposed into the three different continental mar­
kets over a period of 48 hr during normal business days for the same rates as in Figure 6.3. 
The top curve is the sum of ao and the three market activities. 

ers, Reuters and Knight Ridder, 4 for the same period. The two resulting 
statistical functions differ substantially. Knight Ridder data are about half 
as frequent as Reuters data and cover the East Asian markets quite poorly. 
We measure the difference of the two curves in terms of the root mean 
squared error (RMSE) of all hourly differences. 

We then apply the same approach for a comparison of absolute returns be­
tween the two suppliers. We analogously measure the difference between 
the two resulting curves in terms of the RMSE of the hourly differences. 

4 Since this study was done, Knight Ridder has been integrated with Telerate to Bridge. 
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6.2 A MODEL OF MARKET ACTIVITY 187 

The Rl\.1SE ratio RRMSE is defined as follows: 

RRMSE - (6.16) 

where fi are the mean hourly number of ticks and Vi are the mean hourly 

absolute returns. The Rl\.1SE value here is consistently lower than that for 

the tick frequency; the ratio is 0.32 for DEM-USD, 0.17 for JPY-USD, 0.20 

for USD-GBP, 0.42 for CHF-USD, and 0.52 for XAU-USD. This shows 

that the volatility is less dependent than the number of price revisions on 

the data supplier. 

Another illustration of this is given in Figure 6.5. We show in these graphs 

the result of an intraday study of both the tick frequency and the average 

hourly returns for USD-JPY computed during the same time period on a 

sample coming from the traditional FXFX page of Reuters (left graphs) 

and another sample coming from the new method Reuters chose to publish 

its data, the Reuters Instrument Codes (RICs). This new method, being 

much more suited for computer manipulations, allows the data vendor to 

transmit much more information and this is very apparent when examining 

the two upper graphs on the hourly number of ticks. On the other hand, 

the two lower graphs show little differences because they are computed 

directly from the prices, which are not governed by the data vendor policy 

but rather by the market. We use a similar Rl\.1SE ratio as in Equation 6.16 

and find values around 0.12. This example indicates clearly the problem 

one is faced with the activity definition. During the same period and for 

the same market, the activity should be independent of the data source. 

This is only the case for the hourly absolute returns. 

2. Returns are less sensitive than the tick frequency to data holes. The fre­

quency goes to zero if the communication line is broken (there is no good 

interpolation method for this variable) whereas, with the proper price in­

terpolation, only the variation around the interpolated line for the returns 

is lost. 

The transaction volume, a potential candidate to describe market activity, 

is not available in hourly frequency. Transaction volume data are available for 

particular dates through two surveys published by the Federal Reserve Bank of 

New York (1986 and 1989). Although these surveys are useful to quantify the 

amount of capital involved, they do not give any indication about intradaily, daily, 

and weekly changes. We do not propose our activity model as a direct model for 

the seasonal patterns of transaction volume, but suggest its usefulness in future 

research. 
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FIGURE 6.5 The comparison of the tick activity (upper graphs) and the hourly absolute 
return (lower graphs) for two data sources. The old Reuters FXFX page and the new 
Reuters Instrument Code (RIC) data. The comparison is conducted for the USD-JPY 
from October 25, 1993 to March 18, 1995. 

6.3 A NEW BUSINESS TIME SCALE (ff-SCALE) 

6.3.1 Definition of the ff-Scale 

In Section 6.2.2, the time scale iJ was introduced to model the seasonal, intradaily 
and intraweekly aspect ofheteroskedasticity. In Equation 6.1, the activity variable 
has been defined as the "speed" of iJ against the physical time t. The continuous 
activity function a(t) of Equation 6.7, developed in the previous sections, allows 
us to define iJ as its time integral, 
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iJ iJ(t) (1 a(t') dt' 
110 

3 

ao (t - to)+ L ih(t) 
k=l 

189 

(6.17) 

The starting date to chosen for the tJ-scale is arbitrary. The activity is always posi­
tive, so its integral tJ(t) is a monotonically increasing function. The {fk represents 
in fact the business time scale of the kth market and is defined as 

{1 a1,k(t1) dt' 
110 

(6.18) 

This quantity is informative in itself and can be used to model intramarket be­
havior. Because of the regular weekly pattern of a, i} is predictable according to 
Equation 6.17; it may be computed also for the future. Due to normalization (see 
Equation 6.5), JJ-time can be measured in the same units as physical time (e.g., 
hours, days, weeks); one full week in iJ-time corresponds to one week in physical 
time. 

The relative weight, Wk, of each market component can be defined with the 
help of the integral ih over a full week: 

fh(t + 1 week) - tJk(t) iJk(t + 1 week) - iJk(t) 
Wk=-------= 

iJ(t + 1 week) - tJ(t) 1 week 
(6.19) 

This is the share of the kth market in the 1'} interval of one week. In Table 6.2, 
the relative weights of each component, as given by Equation 6.19, are presented 
together with the fitted parameters. These weights are in fact interesting pieces of 
information about the market shares of the components defined in Section 6.2.4 
and Table 6.1. They are in line with the results of the market surveys regularly 
made by the (Bank for International Settlements, 1990, 1993, 1995). 

The iJ-scale contracts periods of low activity and expands period of high 
activity. This is clearly seen on Figure 6.6 where the mapping function between 
it-time and physical time is shown for USD-DEM over a week. Because the JJ­
time is normalized to physical time over 4 years (see the next section), the two 
scales almost coincide after a week but not exactly (it-scale is slightly above 168 
hr), because we have chosen the week of September 9 to October 1, 1995, where 
there was no market holiday. This figure shows that during the weekend, JJ-time 
flows very slowly, compensating for the low activity during this period in physical 
time. 

6.3.2 Adjustments of the U-Scale Definition 

The tJ-scale defined in Section 6.3 .1 reflects a rigid intraweekly pattern of expected 
market activity. However, there is more relevant infonnation about the activity due 
to information on business holidays, daylight saving times, and scheduled events. 
in general. In practice, for volatility forecasts, it is desirable to account for this 
information in the construction of the JJ-scale. Such adjustments are carried out 
in Equation 6.17 by recalibrating the factor c* over the whole sample. 
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FIGURE 6.6 The time mapping function between physical time and O' time. The week 
chosen to draw this mapping function is a week with no market holidays (September 25 
to October 1, 1995). The thin line represents the flow of physical time. 

It is difficult to take into account the different holidays of each market ac­
curately. 5 In the framework of the three markets of Table 6.1, our approach is an 
approximate solution. A holiday is considered if it is common to a large part of 
one of the three markets of the model. On such holidays, the activity a1,k is set to 
zero for this market. The holiday is treated like a weekend day in Equation 6.10. 

In some countries, there are half-day holidays. Their treatment would require 
the splitting of the daily activity functions into morning and afternoon parts. This 
splitting could also be used to model the few Saturday mornings in Japan (until 
1989) when the banks were open. These modifications have not been made as they 
are beyond our objective of modeling the main features of the FX activity patterns. 

The daylight saving time observed in two of the markets, Europe and America, 
has an influence on the activity pattern and thus on tJ. The presence oflocal markets 
depends on local time rather than on GMT. One way to deal with this is to convert 
the time constants of Table 6.2 from GMT to a typical local time scale of the 

5 Future holidays are not always known in advance as, for instance, the Islamic holidays. Thus, iJ 
might no longer be predictable in those special cases. 
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FIGURE 6.7 The hourly returns for USD-DEM from June 3, 1996, 00:00:00 to Septern· 
ber 11, 1996, 00:00:00 are plotted using the physical time scale and the ff-time scale. Note 
also the extreme events that are clearly visible on both graphs. 

market. This conversion yields different results for the local times in summer and 
in winter. The time constants are fixed to the mean of the summer and winter 
conversion results, reflecting the fact that the sample used in the activity fitting 
is composed of approximately half summer and half winter. The computation of 
the activity and 1J is then based on Equation 6.10 with these local time constants. 
A better algorithm, which takes into account the difference between summer and 
winter local market time and which allows a dynamic adaptation to changes in the 
activity pattern indicates substantial improvement (Breymann, 2000). 

So far, volatility patterns with periods of more than one week have been 
neglected. Yet there may be patterns with longer periods caused by month-end 
effects, by the monthly or quarterly releases of certain important figures such as 
the American trade or unemployment figures, and by yearly effects. Moreover, 
there are long-term changes such as the overall volatility increase over the past 15 
years as shown in Chapter 5. None of these effects has been found to be significant 
in a 4-year sample we studied. 

Figure 6.7 illustrates the effect of the time transformation with the hourly 
returns ofUSD-DEM over 3 months both in physical and in !J-time. It is easy to 
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192 CHAPTER 6 MODELING SEASONAL VOLATILITY 

TABLE 6.3 Quality test of the '{}-scale. 

Test for the quality of the '{}-scale as calculated in Equation 6.21. This ratio illustrates the 
reduction of intraweekly volatility fluctuations when using the '{}-scale. 

USD-DEM USD-JPY GBP-USD USD-CHF XAU-USD 

Volatility ratio 0.28 0.29 0.25 0.29 0.25 

see that the quiet periods during the weekends are in the upper graph in physical 
time. They give the sense of periodicity. In the lower graph, where hourly returns 
are computed in ff-hours, the seasonality is removed and the picture resembles 
much more those made with weekly or daily data (omitting weekends). Another 
remarkable feature of these graphs is the numberoflarge movements. During this 
period, the USD-DEM experienced price changes as high as 1.5% in an hour. 

6.3.3 A Ratio Test for the U-Scale Quality 

There are various ways to measure the quality of a !J-time scale. Because the 
goal of such a scale is to remove the daily and weekly seasonality of volatility, 
it is natural to test the extent to which this has been achieved. Here we define a 
quantitative test that allows discrimination between various possible business time 
scales. 

The absolute returns on an intraweekly sample as described in Section 6.2.3 
are first computed on the physical time scale. We define the size of the weekly 
fluctuations of mean volatility: 

_ 1 "'"' L...j=l lrj(ti)! 1 "'"'L...j=l /rj(fi)I 

[ 

N ('°'m N ._.m )2] 1/2 
Fv(t) - N L., m - N L., m 

~I ~I 

(6.20) 

where i is the index of the hourly interval in the statistical week and N 168 
the total number of these intervals. Absolute returns are observed and averaged 
over m weeks with index j, for each hour of the statistical week. The fluctuations, 
which are large when analyzed in physical time t, should be strongly reduced when 
analyzed in iJ-time. For analyzing the fluctuations in ff-time, the sampling over 
one full week is again divided into 168 intervals. Instead of being equally spaced 
in physical time, they are now equally spaced in ff-time. This condition can be 
formally written as ff(t;+1) - iJ(t;) = 1 hr, where the hour is now measured on 
the ff-scale. The sequence ti that fulfills this condition is computed by numerical 
inversion of the tJ(t) function on one week. The volatiliy ratio is defined by 

Fv(if) / Fv(t) (6.21) 

where Fv(rJ) and Fv(t) measure the deseasonalized and raw volatility fluctuations. 
This ratio measures the quality of the extent to which the iJ scale successfully 
eliminates the seasonal fluctuations of the volatility. 

In Table 6.3, the resulting ratio is between 0.25 and 0.29 for all rates indicating 
the quality of the tJ-scale. For a perfect J-scale, the measure tends to zero, and 
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6.4 FILTERING INTRADAY SEASONALITIES WITH WAVELETS 193 

for physical time, the measure is one. Any other JJ-scale derivation can also be 
measured the same way, the one with the lowest ratio being the best intraday 
deseasonalization method. In the next chapter, we will utilize the ff-scale in 
analyzing the autocorrelation function of absolute returns. 

6.4 FILTERING INTRADAY SEASONALITIES WITH WAVELETS 

The previous sections show that the practical estimation and extraction of the in­
traday periodic component of the return volatility is feasible. The literature also 
demonstrated that such extraction of the seasonal volatility component is indis­
pensable for meaningful intraday studies. Earlier studies have shown that strong 
intraday seasonalities may induce distortions in the estimation of volatility models 
and are also the dominant source for the underlying misspecifications as studied 
in (Guillaume et al., 1994; Andersen and Bollerslev, 1997b ). Besides, Section 7 .3 
reveals how such a periodic component pulls the calculated autocorrelations down, 
giving the impression that there is no persistence other than particular periodicities. 

To illustrate the impact of seasonalities, Genyay et al. (2001a) consider the 
following AR(l) process with a periodic component: 

4 

Yt et+/3Y1-1+I:3,0Sit+Et t=l ... T (6.22) 
i=l 

where S;1 = sin(2;~ t) + rJVit, a = 0.0, Yo = 1.0, f3 = 0.99, and T = 1000. 
Periodic components are P1 = 3, P2 = 4, f'3 = 5, and P4 = 6 so that the process 
has 3, 4, 5, and 6 period stochastic seasonality. The random variables Et and Vit . 

are identically and independently distributed disturbance terms with zero mean. 
The signal-to-noise ratio, r,, in each seasonal component is set to 0.30. 

Figure 6.8 presents the autocorrelation of the simulated AR(l) process with 
and without the periodic components. The autocorrelation of the AR(l) pro­
cess without seasonality (excluding I:3.0Sii from the simulated process) starts 
from a value of 0.95 and decays hyperbolically as expected. However, the auto­
correlation of the AR(l) process with the seasonality indicates the existence of 
a periodic component. The underlying persistence of the AR(l) process in the 
absence of the seasonality component is entirely obscured by these periodic com­
ponents. An obvious route is to filter out the underlying seasonalities from the 
data. A simple method for extracting intraday seasonality that is free of model 
selection parameters is proposed by Gen9ay et al. (2001a). The proposed method 
is based on a wavelet6 multiscaling approach which decomposes the data into its 
low and high-frequency components through the application of a nondecimated 
discrete wavelet transform. In Figure 6.8, the solid line is the autocorrelation of 
the nonseasonal AR(l) dynamics and the dotted line is the autocorrelation of the 
deseasonalized series with the method proposed in Gen9ay et al. (2001a). As 

6 An introduction to wavelets can be found in a book by Gen~ay et al. (200 I b ). 
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FIGURE 6.8 Sample autocorrelations for the simulated AR(1) process (straight line), 

AR(1) plus seasonality process (dot-dashed line), and wavelet transformation of the AR(1) 

plus seasonality process (dotted straight line). 

Figure 6.8 demonstrates, wavelet methodology successfully uncovers the nonsea­

sonal dynamics without imposing any spurious persistence into the filtered series. 

With this method, Gern;ay et al. (2001a) study two currencies, namely the 

5-min Deutschemark U.S. Dollar (USD-DEM) and Japanese Yen U.S. Dollar 

(USD-JPY) price series for the period from October 1, 1992, to September 29, 

1993. This data set is also known as the HFDF-I data set. Figure 6.9 presents 

autocorrelations of the 5-min absolute return series. This shows that the intradaily 

absolute returns exhibit strong intraday seasonalities. This phenomenon is well­

known and reported extensively in the literature; (see for example, Dacorogna 

et al., 1993; Andersen and Bollerslev, 1997a). 

For a long memory process (see Hosking, 1996), the autocovariance function 

at lag k satisfies y (k) ~ Ak-a where). is the scaling parameter and a E [O, l]. A 

leading example is the fractionally integrated process for which a l - 2d and 

d is the order of fractional integration. In Andersen and Bollerslev (1997a), the 

fractional order of integration is estimated as d = 0.36 for the same USD-DEM 

series utilized in this example. Andersen et al. (2001) calculate six d estimates 

from various volatility measures for the USD-DEM and USD-JPY series. These 

six d estimates vary from 0.346 to 0.448. In this example, the fractional integration 

parameter is setd = 0.4to represent the average of these six estimates. Figure 6.10 

presents the autocorrelograms of the filtered 5-min absolute returns along with 

the estimated autocorrelogram of a long memory process with d = 0.4. These 
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FIGURE 6.9 Sample autocorrelations for the USO-DEM and USD-JPY for the 5-min 
absolute returns of (a) USO-DEM absolute returns and (b) USD-JPY absolute returns from 
October 1. 1992. throuoh Seotember 29. 1993. 
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FIGURE 6.10 Sample autocorrelations for the wavelet filtered 5-min absolute returns 
of(a) USO-DEM and (b) USD-JPY from October 1, 1992 through September 29, 1993. The 
dotted line is the autacarrelogram far the estimated hyperbolic decay rate ford = 0.40-
that is, k-.zo where k is the number of lags. 
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196 CHAPTER 6 MODELING SEASONAL VOLATILITY 

findings indicate that the wavelet method is more successful in filtering out intraday 
seasonalities relative to the method presented in Andersen and Bollerslev (1997a). 
The persistence of volatility in further lags is also much smaller in Gen<;ay et al. 
(2001 a) relative to the Andersen and Bollerslev (1997a). However, the seasonality 
filters of both Gen9ay et al. (2001a) and Andersen and Bollerslev (1997a) suffer 
from the fact that the decay of the volatility persistence is slow in the immediate 
lags relative to the method ofDacorogna et al. (1993). 
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7 
REALIZED VOLATILITY DYNAMICS 

7.1 INTRODUCTION 

High-frequency returns no longer exhibit the seasonal behavior of volatility when 

investigated in deseasonalized fonn. Therefore, well-known stylized facts start to 

be visible in the deseasonalized returns and the corresponding absolute returns. 

Deseasonalization can be achieved by taking returns regularly spaced in ~-time. 

Absolute returns are just one form ofrealized volatility whose general definition 

is given by Equation 3.8. 
Realized volatility has a considerable statistical error, which can be reduced 

by taking returns over short time intervals. This leads to a high number of observa­

tions within a given sample.1 Unfortunately, the choice of a small return interval 

also leads to a bias caused by microstructure effects. This bias is explained in 

Section 5.5.3 as a consequence ofbiased quoting, which leads to a bouncing effect 

of quotes within a range related to the bid-ask spread. In Section 5.5.3, the bias is 

treated as a component of the measurement error. In Section 7 .2, we study the bias 

empirically and propose a simple bias correction method that applies to the bias 

caused by any microstructural effect, not only bid-ask bouncing. Bias-corrected 

realized volatility has a smaller error than the error attainable without correction. 

1 Using overlapping retums is also helpful, as explained m Sect10n 3.2.8. 
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198 CHAPTER 7 REALIZED VOLATILITY DYNAMICS 

After appropriately defining realized volatility, we can analyze its dynamical 
behavior through different statistical methods. The fundamental properties of the 
volatility dynamics are the conditional heteroskedasticity (also called the volatil­
ity clustering) and the long memory of the autocorrelation of volatility.2 In this 
chapter, we also examine the asymmetry of infonnation flow between volatilities 
computed from returns measured at different frequencies which is a typical prop­
erty to study with high-frequency data. Financial markets are made of traders with 
different trading horizons. In the heart of the trading mechanisms are the market 
makers. At the next level up are the intraday traders who carry out trades only 
within a given trading day but do not carry overnight positions. Then there are 
day traders who may carry positions overnight, short-term traders and long-term 
traders. Each of these classes of traders may have their own trading tool sets 
consistent with their trading horizon and may possess a homogeneous appearance 
within their own classes. Overall, it is the sum of the activities of all traders for 
all horizons that generates the market prices. Therefore, market activity would 
not exhibit homogeneous behavior, but the underlying dynamics would be hetero­
geneous with each trading horizon (trader class) dynamically providing feedback 
across all trader classes. Figure 7 .1 illustrates such a heterogeneous market where 
a low-frequency shock to the system penetrates through all layers reaching the mar­
ket maker in the middle. The impact of these low-frequency shocks penetrates the 
entire market. The high-frequency shocks, however, would be short lived and may 
have no impact outside their boundaries. We will study this heterogeneity-driven 
asymmetry in this chapter. 

This book utilizes the deseasonalization method explained in Chapter 6, and 
Dacorogna et al. (1993), but a flurry of alternative ways of treating the seasonality 
have also been proposed: the time-of-day dummy variables, Baillie and Bollerslev 
(1990); a renormalization of the returns by the seasonal volatility, Taylor and Xu 
(1997); the flexible Fourier framework to model the seasonal pattern, Andersen 
and Bollerslev (1997b ); time deformation with tick frequency, Pecen et al. (1995); 
Baestaens and Van den Bergh (1995); the use of cubic splines, Engle and Russell 
(1997); models that include both systematic components and stochastic seasonal 
components, Beltratti and Morana (1998); and the wavelet multiresolution method 
ofGen<;;ay et al. (2001a) in Section 6.4. 

7.2 THE BIAS OF REALIZED VOLATILITY AND ITS 
CORRECTION 

Realized volatility plays a key role both for the exploration of stylized facts and 
for practical applications such as market risk assessment. When computing it, 

2 This clustering property was first noted in Mandelbrot (1963) in his study of cotton prices and 
the long memory in Mandelbrot (I 971 ). These findings remained donnant until the early l 980s for 
the volatility clustering until Engle (1982) and Bollerslev (1986) proposed the ARCH and GARCH 
processes. In the early l 990s, a comprehensive study of the long memory properties of the financial 
markets had started. 
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7.2 THE BIAS OF REALIZED VOLATILITY AND ITS CORRECTION 

Time Horizons 
(price changes) 

199 

FIGURE 7.1 Financial markets are made of traders with different trading horizons. 

In the heart of the trading mechanisms are the market makers. A next level up are the 

intraday traders who carry out trades only within a given trading day. Then there are 

day traders who may carry positions overnight, short-term traders and long-term traders. 

Each of these classes of traders may have their own trading tool sets and may possess a 

homogeneous appearance within their own classes. Overall, it is the sum of the activities 

of all traders for all horizons that generates the market prices. Therefore, market activity 

is heterogeneous with each trading horizon dynamically providing feedback across the 

distributions of trading classes. 

using Equation 3.8, we can take advantage of high-frequency data by choosing a 

short time interval !:::,..t of the analyzed returns. This leads to a large number of 

observations within a given sample and thus a low stochastic error. At the same 

time, it leads to a considerable bias in most cases. 
In the following bias study, Equation 3.8 is considered in the following form: 

v(t;) (7.1) 

The choice of the exponent p = 2 has some advantages here. In Section 5.5, we 

found that the empirical drift exponent of v is close to the Gaussian value 0.5 if v 

is defined with an exponent p = 2. Assuming such a scaling behavior and a fixed 
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200 CHAPTER 7 REALIZED VOLATILITY DYNAMICS 

sample of size T = n.6.t, v2 has an expectation independent of .6.t: 

n 

E[v 2(n.6.t, 1, 2; ti)] = n E[v 2(1"..t, n, 2; ti)] = I)r(-6.t; ti-n+j)]2 (7.2) 

j=l 

Thus v2 can be empirically estimated as the sum of all squared returns within T, 

irrespective of the size of 1"..t. Moreover, the time scale can be changed, such as 

from iJ-time to physical time, and the return intervals can be ofirregular size. This 

implies that the estimator is also immune to data gaps within the full sample. If 

prices are interpolated, previous-tick interpolation (see Equation 3.1) should be 

used here, because linear interpolation leads to an underestimation of volatility. 

With all the mentioned modifications, the sum of squared returns remains an es­

timator for v2 , as long as all the return intervals exactly cover the full sample T. 

These nice properties may have led Andersen et al. (2000) to choose the name 

"realized volatility" for the sum of squared returns, as on the right-hand side of 

Equation 7.2. 
The empirically found bias violates Equation 7.2, especially if 1"..t is very 

small. The deviation of the empirical behavior from Equation 7.2 provides a 

measure of the bias. We choose a large enough time interval .6.tref = q .6.t as the 

bias-free reference case to judge the bias of smaller intervals .6.t. In practice, a 

good choice of .6.tref is between few hours and 1 working day. We define the bias 

factor B(t;): 

,Jq v(-6.t, mq, 2; ti) 

v(D.tref, m, 2; t;) 

I:j!1[r(.6.t; ti-mq+j)]2 

Li 1 [r ( D.tref; li-mq + j q) ]2 
(7.3) 

where m is the number of analyzed reference intervals of size .6.tref, and q = 
D.trerl .6.t is an integer number. If the scaling assumption of Equation 7.2 is true, 

B(t;) converges to 1 for large samples (i.e., large m and q). The bias can be 

measured in terms of the deviation of B(t;) from 1. 

In Figure 7.2, the bias factor B(t;) is plotted versus time, for two different 

markets: the FX rate USD-CHF and the equity index Nikkei-225. The time scale 

in both cases is a business time: the 49 weekend hr from Friday 8 p.m. GMT 

to Sunday 9 p.m. GMT are compressed to the equivalent of only 1 hr outside the 

weekend. The results do not strongly depend on this choice. Similar bias behaviors 

are obtained when the analysis is done in iJ-time or physical time. The reference 

time interval is .6.tref = 1 working day. The investigated return intervals 1"..t are 

much shorter and vary between 2 min (q = 720) and 1 hr (q = 24). The number 

m = 260 ofreference intervals is chosen high enough to limit the stochastic error 

ofv(1"..tref, m, 2; t;). This means a bias measurement on a moving sample of about 

1 year ~ 260 working days. 

The bias factor distinctly deviates from 1 in Figure 7 .2, especially for small 

values of .6.t such as 2 min and 5 min. For .6.t = 1 hr, the bias is still visible but 
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FIGURE 7.2 Bias factors plotted versus time, for the FX rate USD-JPY (upper panel) 
and the Japanese equity index Nikkei-225 (lower panel). Deviations from 1 indicate a bias 
in realized volatility, The bias factor is the ratio of two mean realized volatilities over the 
same sample (see Equation 7.3). The investigated return measurement intervals f:..t are as 
follows. Bold curves: 11t = 1 hr; middle curves: f:..t = 5 min; thin curves: f:..t == 2 min. 

can be neglected more easily. Surprisingly, the biases have different signs. The 
bias of the foreign exchange (FX) rate is positive, whereas that of the equity index 
is negative (B(t 1) < 1). The bias can be explained by microstructure effects, but 
these are obviously different for different markets. The microstructure effects of 
FX rates were discussed in Chapter 5, in particular the negative autocorrelation 
due to a bouncing effect within the bid-ask spread (Section 5.2.1). The bias due 
to this effect can be modeled as in Section 5.5.3 and in Corsi et al. (2001), where 
the influence of data gaps on the bias is also analyzed. There is ongoing research 
aiming at refined versions of this bias model. The negative bias of the equity 
index has to be explained differently. An equity index is a weighted average 
of some equity prices. Some of the individual equities play a leading role in 
price adjustments and establish small trends that the other equities follow. This 
mechanism causes a short-term (few minutes) positive autocorrelation of the index 
returns and eventually a negative bias of realized volatility when a very short 
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202 CHAPTER 7 REALIZED VOLATILITY DYNAMICS 

interval !!,.t is chosen. The bias factors moderately fluctuate over time, but there 

are no dramatic shifts. The overall levels are maintained even over the 10-year 

sample of Figure 7.2 (upper panel). 
The bias can be avoided either by taking large return intervals !!,.t (with the 

disadvantage of large stochastic errors) or by introducing a bias correction for 

small intervals !!,.t. Eliminating the bias seems to be a demanding task requiring a 

model of the microstructure effects. Section 5.5.3 has such a model for FX rates, 

but other markets such as equity indices need other models. 
Instead of developing bias models for each market, we suggest a simple bias 

correction method that needs no explicit model and only relies on the assump­

tion that the bias-generating mechanism is much more stable over time than the 

volatility itself. The limited size of bias fluctuations in Figure 7.2 justifies this 

assumption. The bias correction is simple. Each realized volatility observation is 

divided by the bias factor as measured in the past: 

Vcorr(!!,.t, n, 2; ti) 
v(!!,.t, n, 2; ti) 

B(ti) 
(7.4) 

where B(ti) is defined by Equation 7.3. This bias correction can be computed 

in real time, because it is based on information fully available at time ti. Some 

variations of Equation 7.4 are possible, as suggested by Corsi et al. (2001). The 

bias correction factor can be computed by moving average operators as explained 

in Section 3.3 instead of the sums of Equation 7.3. 
Figure 7.3 probes the success of the simple bias correction. The bias factor 

Bcorr of the already bias-corrected realized volatility can be measured in the same 

way as the bias of the uncorrected volatility (Equation 7.3): 

,.jq Vcorr(!!,.t, m q, 2; ti) 
Bcorr(t;) = 

v(l!,.tref, m, 2; ti) 
(7.5) 

A perfect bias correction implies BcorrCti) = 1. However, the bias correction is 

not perfect. Both the bias correction and its measurement in Equation 7.5 rely 

on a quantity v(!!,.trer, m, 2; ti), which has a stochastic error. These imperfections 

are visible in the form of fluctuations of Bcorr about 1 in Figure 7.3. Figure 7.2 

and Figure 7.3 are based on the same samples and parameters and can directly be 

compared. Bcorr in Figure 7 .3 is much closer to 1 than B in Figure 7 .2, in all cases. 

This fact demonstrates a successful bias correction for both markets, FX and the 

equity index. 
In spite of the success of Equation 7.4 as shown in Figure 7.3, the simple bias 

correction has some shortcomings, one of them being the multiplicative nature of 

the formula. Realized volatility values are corrected by a slowly varying correction 

factor, irrespective of the current volatility level. One can argue that an additive 

or nonlinear correction of realized volatility would reflect reality better than the 

multiplicative correction. (An additive correction may lead to impossible negative 

volatility values, though.) A fair judgment may be as follows. Equation 7.4 

Case 3:20-cv-05784-BRM-DEA   Document 1-3   Filed 05/11/20   Page 223 of 404 PageID: 301

0301



7 .2 THE BIAS OF REALIZED VOLATILITY AND ITS CORRECTION 203 

> 
II. 1.6 
? 
C 
II) 
::::, 1.4 
-ci 
(I) 

tl 
! 1.2 
5 
i 
(II l. 0 iii 

0. 8 
91 92 93 94 95 96 97 98 99 00 

1.2 

1998 1999 2000 

FIGURE 7.3 Bias factors plotted versus time, for the FX rate USD-JPY (upper panel) 

and the Japanese equity index Nikkei-225 (lower panel), computed by Equation 7.5. The 

investigated realized volatility values have already been bias-corrected by Equation 7.4, so 

the small deviations from 1 indicate imperfections of the bias correction. The investigated 

return measurement intervals !1t are as follows. Bold curves: !1t = 1 hr; middle curves: 

!1t = 5 min; thin curves: !1t 2 min. The same scaling as in Figure 7.2 is used. 

succeeds in largely reducing the bias and is thus better than no bias correction. 

As soon as an appropriate model of the bias-generating process for a particular 

market exists, the corresponding bias-correction method will be clearly superior 

to Equation 7.4. 
Bias correction is a means to compute realized volatility with smaller intervals 

6.t and, for a given sample of size T = n6.t, a smaller stochastic error. Unfortu­

nately, the bias correction introduces an additional stochastic error due to the factor 

v(.6.tref, m, 2; t;) in Equation 7.3. Corsi et al. (2001) show that a bias-corrected 

volatility with reasonable parameters has a total error that is still distinctly smaller 

than the error of uncorrected volatility. The following rough calculation also shows 

this. Uncorrected volatility requires a rather large 6.t of about 1 hr (with q = 24) 

to keep the bias at bay. The stochastic error is proportional to ,JT724, and a bias 

of roughly of the same size adds to the error. Bias-corrected volatility can have a 
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204 CHAPTER 7 REALIZED VOLATILITY DYNAMICS 

small l:lt = 5 min (q = 288). The stochastic error is proportional to ,JI72"88, but 

the factor v(Atref, m, 2; ti) with m = 260 leads to another stochastic error com­

ponent proportional to ..jl/260. Both error components together are proportional 

to ..jl/288 + 1/260 ~ ..jl/137. This is distinctly smaller than the value without 

bias correction, JI724 (where the bias makes the error even larger). 

So far, the bias discussion has been restricted to realized volatility with an 

exponent p = 2 in Equation 3.8. When choosing another exponent (such as 

p = 1, a good choice for many following studies), the bias discussion becomes 

more complicated. The scaling behavior deviates from Gaussian scaling, as seen 

in Section 5.5, and data gaps have a stronger influence on the bias than in the 

case p = 2. For exponents other than 2, a bias correction with a formula such 

as Equation 7.4 is less successful, and more research is needed. The technique 

of bias correction is rather new and will be improved by ongoing research. The 

realized volatility studies of the following sections are older and do not contain 

any bias correction. However, the choice of very short return intervals (such as 5 

min) has been avoided, so the size of the bias is limited. 

7.3 CONDITIONAL HETEROSKEDASTICITV 

7.3.1 Autocorrelation of Volatility in U--Time 

This section analyzes the autocorrelations of returns and realized volatility in 

physical and ff-time. 3 The study utilizes a 20-min frequency instead of an hourly 

one. We did not take smaller intervals than 20 min in order to avoid a strong bias, 

as explained in Section 7.2. The autocorrelation function of the USD-DEM is 

shown in Figure 7.4 for up to 720 lags. The confidence intervals in Figure 7.4 

refer to 95% confidence for a Gaussian random process around the sample mean. 

Because the distributions of returns and volatility are not Gaussian, the confidence 

intervals are provided as a reference rather than for exact statistical significance. 

In Figure 7 .4, the autocorrelation function of volatility has a distinct structure, 

which is far beyond the confidence intervals. For lags of any integer number of 

days, clear peaks are found. These peaks indicate the daily seasonality. The weekly 

seasonality is highly visible in the form of high autocorrelation for lags around 

1 week and low autocorrelation for lags of about half a week (which frequently 

means the correlation of working days and weekends). Finally, there is a finer 

structure with small but visible peaks at integer multiples of 8 hr, corresponding to 

a frequency three times the daily frequency. Our world market model with three 

continental markets is confirmed by this observation. Apart from these seasonal 

peaks there must be a positive component of the autocorrelation that declines 

with increasing lag. In Figure 7 .4, this component cannot be observed as it is 

overshadowed by seasonality. 

The autocorrelations of returns, unlike those of volatility ( absolute returns), 

are close to zero and within the confidence intervals for most of the lags. The 

3 Absolute returns are studied here. 
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FIGURE 7 .4 The autocorrelation function of USD-DEM returns and volatility (absolute 

returns). The data sampling 1s in 20-min frequency in physical time for lags up to 10 days. 

The 95% confidence interval is for a Gaussian random process. The sampling period is 

from March 3, 1986, to March 3, 1990. 

squared returns, instead of absolute returns, may also be used as a proxy for 

the underlying volatility. Autocorrelations of square returns also exhibit similar 

seasonality peaks as those of absolute returns, but are less pronounced. It is well 

known that the theoretical autocorrelation of squared returns is meaningful only 

if the kurtosis of the return process is finite, which is not guaranteed for currency 

returns. 
A similar autocorrelation analysis is also carried out with the 0--time scale 

instead of the physical time t, and it is presented in Figure 7.5. There are no 

large seasonal peaks in the volatility autocorrelations of the 0--time. This is due to 

the fact that the iJ-scale is constructed to eliminate the intraday seasonality. The 

autocorrelation of volatility is significantly positive and declines at an hyperbolic 
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FIGURE 7.5 The autocorrelation function of the USO-DEM returns and the absolute 

returns at 20-min data frequency in iJ-time. The number of lags Is up to 10 i} days. The first 

lag is marked by an empty circle. The exponential decay is shown with a dashed line. The 

hyperbolically decay fits best to the autocorrelation function of the absolute returns. The 

figure on the right is the same autocorrelation function for the absolute returns extended 

to a much larger number of lags with the superimposition of the hyperbolic decay. 

rate. This behavior can be explained by the presence of a long memory process 

in the underlying data-generating process of returns. The rate of decline in the 

autocorrelation is, however, slower than an exponential decline, which would be 

expected for a low-order GARCH process, Bollerslev (1986). 

The autocorrelation function of volatility (Figure 7.5) is not completely free of 

seasonalities. A narrow peak can be identified at a lag of 1 week. This peak might 

be due to the day of the week effects. In our framework, the activity is assumed 

to be the same for all working days, which may exhibit slight variations across 

the working days. A small local maximum at a lag of around 1 average business 

day (one-fifth ofa week in~); a small local maximum at a lag of2 business days 

and maxima at 3 and 4 business days also exist. A plausible reason for these 

remaining autocorrelation peaks is a market-dependent persistence of absolute 

returns. Autocorrelations with a lag of 1 business day compare with the behaviors 

of the same market participants, whereas autocorrelations with lags of one half or 

1 ½ business days compare with the behaviors of different market participants ( on 

opposite sides of the globe). The market-dependent persistence decreases after 

2 business days. The predominance of the "meteor shower hypothesis" found 

by Engle et al. (1990) is confmned by the fact that the autocorrelation curve in 
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7.3 CONDITIONAL HETEROSK.EDASTICITY 207 

Figure 7.5 does not exhibit strong maxima for each full business day. Yet the 

remaining small maxima indicate a certain "heat wave" component. 

7 .3.2 Short and Long Memory 

The autocorrelation function of volatility decays at a hyperbolic rate rather than 

an exponential rate. In studies based on daily FX prices (e.g., Taylor, 1986) or 

weekly FX prices (e.g., Diebold, 1988), the number of observations is usually too 

small for outright rejection of either a hyperbolic or an exponential decay of the 

autocorrelation functions. In studies with longer daily series such as Ding et al. 

(1993), evidence oflongmemory is found with the S&P 500 from January 1928 to 

August 1991 (17,055 observations). To illustrate the presence of the long memory, 

two curves, one hyperbolic and one exponential, are drawn in Figure 7.5 together 

with the empirical autocorrelation functions. The hyperbolic curve approximates 

the autocorrelation function much more closely than the exponential curve. This 

behavior of volatility is similar to the fractional noise process of Mandelbrot and 

Van Ness (1968) and Mandelbrot (1972), which exhibits hyperbolic decay in the 

autocorrelation function and thus the long memory serial dependence. 

The hyperbolic Uh) and exponential Ue) functions used in the analysis above 

have the following form: 

(7.6) 

where the parameters are k, h, and t". t" determines the lag order of the autocorre­

lation function. The exponential function cannot simultaneously capture the short 

and long-term persistence, whereas the hyperbolic function is able to capture both 

successfully. For the hyperbolic function, k values vary from 0.2 to 0.3 depending 

on the FX rate, whereas h is remarkably stable around 0.28 for all the rates. 

In Figure 7.4 and the first panel of Figure 7.5, the number oflags are limited 

to 720 intervals (i.e., 10 days) at the 20-min data frequency. In the second panel of 

Figure 7.5, the number oflags are extended to 4320 (i.e., 60 days) in ff-scale. The 

decay in the volatility autocorrelations is more rapid after 10 days. This type of 

pattern is not specific to USD-DEM, but is also found in longer time intervals and 

other FX rates. To explore this behavior further, we compute the autocorrelation 

function of daily returns (business days) for up to 200 lags and a sample of 20 

years. The result is presented in Figure 7 .6 and indicates the persistence of the 

hyperbolic behavior even at the daily frequency. 
A process that exhibits a hyperbolic decay in its autocorrelation function is 

the "fractional noise" of Mandelbrot and Van Ness (1968), which is a purely self­

similar fractal. We test the empirical significance for this theoretical process. In 

Mandelbrot (1972), the autocorrelation function of fractional noise processes is 

given by 

a = 
iz + 112H - 2 z2H + 11 - 112H 

2 
(7.7) 
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FIGURE 7.6 Autocorrelation function of the absolute business day volatilities in the 

iJ-time scale. The data are for the USD-DEM rate from June 1, 1973, to June, 1, 1993. The 

hyperbolic (solid curve) and the exponential functions (dotted curve) are superimposed on 

the empirical autocorrelation function. The 95% confidence intervals are for an identically 

and independently distributed Gaussian process. 

where l is the lag parameter and H the Hurst exponent, which lies between 0.5 and 1 

for ''persistent" fractional noise. For a large number oflags (!), the autocorrelation 

function converges to 

a ~ H (2 H - 1) zl(H-l) (7.8) 

which has a hyperbolic decay. The autocorrelations of absolute returns in Fig­

ures 7.5 and 7.6 also follow a hyperbolic decline. The exponent 2(H - 1) of 

Equation 7.8 from the USD-DEM volatilities is H = 0.87 in Figure 7.5 and H = 
0.86 in Figure 7.6. From the H values, the factor H(2H - 1) leads to 0.64 and 

0.62, respectively. These values are empirically found to be much lower, which 

are 0.25 and 0.20, respectively. This indicates that volatility does not follow a 

pure fractional noise process. Volatility is positive definite and has a skewed and 

fat-tailed distribution, whereas the distribution function of pure fractional noise is 

Gaussian. 
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7.4 THE HETEROGENEOUS MARKET HYPOTHESIS 209 

In Peters (1989, 1991 ), the existence of fractional noise in the returns rather 

than volatility has been investigated similar to Equation 5.10. These findings claim 

that a drift exponent different from 0.5 necessarily indicates fractional noise. This 

conclusion holds only if the distribution forms are stable, but Figure 5.6 does not 

support this claim. We, therefore, conclude that the return process does not support 

the fractional noise hypothesis. Unlike volatility, the returns themselves exhibit 

no significant autocorrelation (see the thin curves in Figures 7 .4 and 7 .5). 

7.4 THE HETEROGENEOUS MARKET HYPOTHESIS 

In the earlier sections, we analyzed the presence of two stylized facts. Namely, 

a hyperbolic decay of the volatility autocorrelations and the "heat wave" effect. 

Volatility characterizes the market behavior more deeply than just indicating the 

size of current or recent price movements. It is the visible "footprint" of less 

observable variables such as market presence and also market volume (for which 

information is hardly available in FX markets). 

The fact is that, contrary to traditional beliefs, volatility is found to be posi­

tively correlated to market presence, activity, and volume. Karpoff (1987), Baillie 

and Bollerslev (1989), and Miiller et al. (1990), emphasize the key role of volatil­

ity for understanding market structures. The serial correlation studies ofLeBaron 

( l 992b,c) show that subsequent returns are correlated in low-volatility periods and 

slightly anti-correlated in high-volatility periods. In continuous samples mixed 

from both low-volatility and high-volatility periods, this effect indicates that the 

forecastability of return is conditional to volatility. Thus, volatility is also an 

indicator for the persistence of trends. 

These properties of volatility lead us to the hypothesis of a heterogeneous 

market, as opposed to the assumption of a homogeneous market where all partici­

pants interpret news and react to news in the same way. The heterogeneous market 

hypothesis is characterized by the following: 

1. Different agents of the heterogeneous market have different time horizons 

and dealing frequencies. On the side of high dealing frequencies, there 

are the FX dealers and market makers (who usually have to close all their 

open positions before the evening); on the side oflow dealing frequencies, 

there are the central banks, commercial organizations, and, for example, 

the pension fund investors with their currency hedging. The different deal­

ing frequencies clearly mean different reactions to the same news in the 

same market. The market is heterogeneous with a "fractal" structure of 

the participants' time horizons as it consists of short-term, medium-term, 

and long-term components. Each such component has its own reaction 

time to news, related to its time horizon and characteristic dealing fre­

quency. If we assume the memory of volatility of one component to be 

exponentially declining with a certain time constant, as in a GARCH(l,l) 

process, the memory of the whole market is composed of many such expo­

nential declines with different time constants. The superposition of many 
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210 CHAPTER 7 REALIZED VOLATILITY DYNAMICS 

exponential declines with widely differing time constants comes close to 

a hyperbolic decline. 

2. In a homogeneous market, the more agents are present, the faster the price 

should converge to the "real market value" on which all agents have "ra­

tional expectations." Thus, the volatility should by negatively correlated 

with market presence and activity. In a heterogeneous market, different 

market actors are likely to settle for different prices and decide to execute 

their transactions in different market situations. In other words, they create 

volatility. This is reflected in the empirically found, positive correlation 

of volatility and market presence. 

3. The market is also heterogeneous in the geographic location of the partici­

pants. This immediately explains the "heat wave" effect. In Section 7.3 .1, 

we indicated that the memory in the volatility process is relatively weak at 

time lags of about ½ or 1 ½ business days when market actors on opposite 

sides of the globe are related to each other and relatively strong at time 

lags of about 1 or 2 business days when identical groups of participants 

are considered. 

The market participants of the heterogeneous market hypothesis differ also in 

other aspects beyond the time horizons and the geographical locations. They may 

have different degrees of risk aversion, face different institutional constraints, and 

transaction costs. 

7 .4.1 Volatilities of Different Time Resolutions 

The heterogeneous market hypothesis presented in the previous section is associ­

ated with fractal phenomena in the empirical behavior of FX markets. A scaling 

law relating time horizon and size of price movements (volatility) was identified 

in Chapter 5. This relation is used here to explain why the perception of volatility 

differs for market agents with different time horizons. 

Short-term traders are constantly watching the market to reevaluate their cur­

rent positions and execute transactions at a high frequency. Long-term traders 

may look at the market only once a day or less frequently. A quick price increase 

of 0.5% followed by a quick decrease of the same size, for example, is a major 

event for an FX intraday trader but a nonevent for central banks and long-term 

investors.4 Long-term traders are interested only in large price movements and 

these normally happen only over long time intervals (see the scaling law ofMiiller 

et al., 1990). Therefore, long-term traders with open positions have no need to 

watch the market every minute.5 In other words, they judge the market, its prices, 

and also its volatility with a coarse time grid. A coarse time grid reflects the view 

of a long-term trader and a fine time grid that of a short-term trader. Bjorn (1994) 

follows similar methodologies for building an automatic trading model. 

4 Small, short-term price moves may sometimes have a certain influence on the timing oflong-term 

traders' transactions but not on their investment decisions. 
5 They have other means to limit the risk of rare large price movements by stop-loss limits or options. 
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7.4 THE HETEROGENEOUS MARKET HYPOTHESIS 211 

The time grid in which real traders watch the market is not strictly regular. 

In the following lagged correlation study, however, we measure volatilities over 

different but regularly spaced grids. These volatilities are defined in terms of 

absolute returns. We prefer mean absolute values to roots of mean squares here 

because they are statistically less dominated by extreme observations, which are 

rather important in FX markets with their fat-tailed unconditional distribution 

functions. The convergence of the fourth moment-a requirement for many types 

of analysis such as the autocorrelation of squared returns-is not guaranteed for 

empirical returns. In Chapter 5, we demonstrated that the autocorrelations of 

the returns indicate a stronger signal for powers around one. This argument is 

reinforced in Dacorogna et al. (2001a), where the autocorrelation of absolute 

returns is also shown to be much more stable under sample size changes than that 

of the squared returns. Other studies, such as Ding et al. (1993), also find absolute 

returns to be optimal in the autocorrelation studies. 

The volatility based on absolute returns has two essential timing parameters 

(Guillaume et al., 1997): 

■ The interval size of the time grid in which returns are observed 

■ The total size of the sample over which it is computed (the number of grid 

intervals considered) 

For exploring the behavior of volatilities of different time resolution, we define 

two types of volatility. The "coarse" volatility, Ve, and the "fine" volatility, v f, 

are defined by 

n 

I I:r(t:.t', li-J + jt.t')I and v1(t;) 

j=I 

n 

L lr(t.t', ti-I+ j t.t')I 
j=! 

(7.9) 

where t.t' = t.t /n. Figure 7.7 illustrates this definition where at every time point, 

ti ti-I + 6t:.t', both quantities are simultaneously defined. In this way, the two 

synchronous time series are obtained whose relation can be explored. 

7 .4.2 Asymmetric Lead-Lag Correlation of Volatilities 

Analyzing the correlation between two time series, such as fine and coarse volatil­

ities, is a standard technique used in empirical finance where the correlation coef­

ficient measures the linear dependence of the two time series. Lagged correlation 

is a more powerful tool to investigate the relation between two time series. The 

lagged correlation function considers the two series not only simultaneously (at 

lag 0) but also with a time shift. The correlation coefficient (h: of one time series 

and another one shifted by a positive or negative time lag r is measured and plotted 

against the value of the lag. The lagged correlation study of this section follows 

Muller et al. (1997a). 
Lagged correlation reveals causal relations and information flow structures in 

the sense of Granger causality. If two time series were generated on the basis of 
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FIGURE 7.7 The coarse volatility, vc(t), captures the view and actions of long-term 

traders while the fine volatility, v 1(t), captures the view and actions of short-term traders. 

The two volatilities are calculated at the same time points and are synchronized. 

a synchronous information flow, they would have a symmetric lagged correlation 

function, Q, = Q-,· The symmetry would be violated only by insignificantly 

small, purely stochastic deviations. As soon as the deviations between Qr and 

Q-, become significant, there is asymmetry in the information flow and a causal 

relation that requires an explanation. 

In a first analysis, we consider a working-daily time series where weekends 

are omitted. The variables under study are the "fine volatility" and the "coarse 

volatility." Fine volatility is the mean absolute working-daily returns averaged 

over five observations, so covering a full (working) week. Coarse volatility is the 

absolute return over a full weekly interval. 

The correlation between fine volatility and coarse volatility is a function of the 

number oflags. When the number oflags is zero, the fine and coarse volatilities are 

completely identical. In the case of first positive or negative lag, the two intervals 

do not overlap but follow each other immediately. 

The panel on the left hand side of Figure 7.8 shows the lagged correlation 

function for the USD-DEM in a sample longer than 21 years. The correlation 

maximum is found at lag zero, which is expected. For the nonzero lags, there is 

an asymmetry where the coarse volatility predicts fine volatility better than the 

other way around. The asymmetry is significant for the first two lags where the 

difference Qr -Q-,, represented by the thin curve in Figure 7 .8, is distinctly outside 

the confidence interval for identically and independently distributed observations. 

This result can be explained in terms of the heterogeneous market hypoth­

esis presented earlier in this section. For short-term traders, the level of coarse 

volatility matters because it determines the expected size of trends and thus the 

scope of trading opportunities. On one hand, short-term traders react to clusters of 

coarse volatility by changing their trading behavior and so causing clusters of fine 

volatility. On the other hand, the level offine volatility does not affect the trading 

strategies oflong-term traders (who often act according to the "fundamentals" of 

the market). 
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7.4 THE HETEROGENEOUS MARKET HYPOTHESIS 213 

TABLE 7.1 Difference between lagged correlation for FX rates and gold. 

The sample period is from June 6, 1973, (August 8, 1980 for gold) to February 1, 1995. 
The lags are measured in weeks and 3 hr (in !?--time), respectively. The negative values 
indicate the predictability of finely defined volatility from coarse volatility. 

Differences USD-DEM USD-JPY GBP-USD CHF-USD DEM-JPY XAU-USD 

Weekly 

£>1 - a-1 -0.138 -0.127 -0.130 -0.13 I -0.129 -0.122 
'12 -Q-2 -0.105 -0.047 -0.055 -0.076 -0.074 -0.072 

3 hourly 
QJ l'-1 -0.1 I 7 -0.136 -0.J 13 -0.093 -0.100 -0.108 
a2 -a-2 -0.058 -0.057 -0.059 -0.056 -0.055 -0.068 

Similar behavior of the lagged correlation is observed for other FX rates such 
as USD-JPY and GBP-USD, cross rates such as DEM-JPY, and gold (XAU-USD). 
Table 7.1 reports the difference Q1 -Q-1 and Q2 -Q-2 for a set of these time series. 
The numbers are similar across the different rates ( and also all of the investigated 
minor FX rates not shown here). The first lag difference is around -0.13 and the 
second lag difference is around -0.07. 

The results with daily data also prevail in high-frequency and in intraday data. 
Every intra-day study requires an appropriate treatment of the strong intradaily 
seasonality of volatility. Here we use the predefined business time scale iJ pre­
sented in Chapter 6. A time series with regular intervals in iJ-time is constructed 
by selecting the last quote before each point of a regular 0-grid. As a basic time 
interval in it-time, we choose 30 min. This means there is only some 7 min 
of physical time during the daily volatility peak in the European afternoon and 
American moming. 6 Fine volatility is now the mean absolute half-hourly returns 
averaged over six observations, covering a 3-hr time interval. Coarse volatility is 
the absolute returns over a full 3-hr interval. All these time intervals are calculated 
in b-time. An interval of 3 iJ-hr is clearly smaller than the working day of an FX 
dealer. It often covers a time span with quite homogeneous market conditions. 

Figure 7.8 (right panel) provides the lagged correlation function for USD­
DEM in 8 years of half-hour returns. Although the half-hour data cover a shorter 
time span than the daily series, the number of observations is larger. The findings 
from the half-hourly data confirm the results from the daily series such that coarse 
volatility predicts fine volatility. We therefore conclude that these findings are 
independent of the data frequency. 

The intradaily behavior of the lagged correlation is similar for other FX rates 
and gold (see Table 7.1). The empirical findings are similar across the different 
rates. The first lag difference is around -0.11 and the second lag difference is 
around -0.06, which are close to the corresponding values of Table 7.1. In the 

6 In fact, a much higher frequency of the series should be avoided due to the fact that price changes 
observed over 5 min or less can be overly biased by mlcrostructure effects (see Section 7 .2). 
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FIGURE 7.8 Asymmetric lagged correlation of fine and coarse volatilities for USD­
DEM. The left figure is for working-daily return in a week. The right graph is for high 
resolution study with half-hourly returns within 3 hr (in ~-time). The negative lags ind1• 
cate that the coarse volatility was lagged compared to the fine volatility. The thin curve 
indicates the asymmetry. The 95% confidence intervals are for identically and indepen• 
dently distributed observations. The sampling period for the left figure is 21 years and 8 
months, from June 6, 1973, to February 1, 1995. The sampling period for the right figure 
is 8 years, from January 1, 1987, to January 1, 1995. 

right panel of Figure 7.8, there is also a weak, rather wide local maximum around 
lag -11, corresponding to -33 hr in ~-time. This corresponds to a lag of about I 
working day (because a working day is 1/5 rather than 1/7 ofa business week). The 
difference Qr -Q-r also has a significant (negative) peak around lag 11. This effect 
has been identified in the right panel of Figure 7.8 and discussed in Section 7.3. 
Following Engle et al. (1990), we call it a "heat wave" effect where traders have 
a better memory of the events approximately 1 working day ago (when they were 
active) than a broken number working days ago (when other traders on different 
continents, with different time zones, were active). 

The peak around lag -11 can be explained by a residual seasonality that the 
0-scale is unable to capture. However, the 0-scale is well able to treat ordina,y 
seasonality as indicated by the lack of an analogous peak around the positive lag 11. 
The heat wave effect is more than just seasonality and it cannot be eliminated by 
a simple time scale transformation. This can be interpreted such that volatility 
modeling should consider not only volatilities of different time resolutions but 
also volatilities with the selective memory of individual geographical markets and 
their time zones. 
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7.4 THE HETEROGENEOUS MARKET HYPOTHESIS 215 

Assymetric lead-lag correlation is not only present in the FX market but also in 
the Euro futures market as shown in Ballocchi et al. (1999a ). Figure 7 .9 presents the 
results of a lead/lag correlation analysis for fmward rates implied from Euromark 
contracts on the London International Financial Futures Exchange (LIFFE). The 
asymmetry is highly significant for the first lag and for all maturities. At lag 1, 
again coarse volatility predicts fine volatility significantly better than the other 
way around. The study was conducted with a 3-hr grid in !?--time where the fine 
volatility is the mean absolute return measured every 3 hr over 3 days and the 
coarse volatility is the mean absolute return over the whole 3-day interval. The 
sample runs from April 1, 1992, to December 30, 1997, which constitutes 700 
observations. The effect is rather robust with respect to changes in the definition 
of the fine and coarse volatilities. Moreover, it is interesting to note that the size of 
the effect seems to increase when increasing the time-to-start of the forward rate. 

To explore this effect on a wider set of parameters, Gilles Zumbach suggested 
to the following quantities: 

I T T 
C(T, n, n) = Corr( a[T, -

2 
](t), a[T,--, ](t + T)) (7.10) 

n 2n 

where T = 4 weeks and n and n' are the granularities of our volatility estimator. 
Then it is possible to compute a quantity I that depends on both n and n': 

l(n,n') = C(T,n,n')-C(T,n',n) (7.11) 

which means that we look at the first lag difference where the lag is 4 weeks. 
This quantity should in principle be symmetric but we know from Figure 7.8 that 
it changes sign and is antisymmetric. Figure 7.10 presents the results of a study 
conducted by Zumbach (private communication), for the quantity I computed for 
values ofn going from 2 to 12 over a period T of 4 weeks on the !?--time scale. This 
means that the returns are measured at frequencies as low as 2 weeks to frequencies 
as high as every IO min in !?'-time. The FX rate is USD-CHF and the sampling 
period runs from June 1, 1987, to August 1, 1997. The asymmetry is striking and 
exists for all these different parameters. The maximum of the effect is obtained for 
n = 11 for the fine volatility and n1 = 7 with differences as high as 0.29 between 
the two correlations, about two times more than in Table 7 .1. Similar figures were 
also obtained for other FX rates like USD-DEM or USD-JPY. 

7 .4.3 Conditional Predictability 

The conditional correlation studies ofLeBaron (1992b,c) indicate that subsequent 
returns are correlated in low-volatility periods and slightly anticorrelated in high­
volatility periods. In continuous samples mixed from both low-volatility and high­
volatility periods, this important effect indicating the forecastability of return does 
not exist unconditionally. It exists conditional to volatility. Thus, volatility is also 
an indicator for the persistence of trends. The idea is to compute the following 
triplet: 

( v(t), r(t), r(t + ~t)) 
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FIGURE 7.9 Lead-lag correlation of fine and coarse volatilities for four different implied 
forward rates derived from the Three-Month LIFFE Euromark, with a 3-hr grid in iJ-time. 
The sampling period is from April 1, 1992, to December 30, 1997. In the panels, a month 
is represented by m. 
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Information Flow for the Volatility 
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FIGURE 7.10 The correlation difference (Equation 7.11) between coarse and fine 
volatilities 1s explored for the USD-CHF FX rate. The asymmetry of the lead-lag corre­
lation (at one lag of 4 weeks) is apparent around the diagonal, which naturally presents a 
correlation of 1 (and a difference of 0) because we are correlating a quantity with itself. 
The top half of the graph presents a positive difference in the lagged correlation whereas 
the bottom half presents the symmetric negative difference. The sampling period 1s from 
June 1, 1987, to August 1, 1997. (With permission of Gilles Zumbach.) 

where v(t) is a measure of volatility calculated with the weekly variance of daily 
retums. 7 Then triplets of similar volatility, v(t), are put into the same bin, and the 
autocorrelation ofretums at lag ,6.t, conditional to v(t), is studied: 

p(v) = p(r(t), r(t + fi.t) I v(t)) (7.12) 

Such an analysis has four parameters, fi.t for the returns and the three parameters 
for the volatility as identified in Section 3.2.4 and in the Equation 3.8: b,.t, n, 
andp. 

7 In principle, any definition of volatility along the lines of Equation 3.8 can be chosen and its 
parameters varied until the conditional correlation reaches a maxunum. 
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218 CHAPTER 7 REALIZED VOLATILITY DYNAMICS 

Volatility 

FIGURE 7.11 The conditional autocorrelation of weekly returns of USO-DEM as a 
function of the average absolute weekly return over 5 days. The sampling period is June 
1, 1973, to June 1, 1994. 

This function p(v) is presented for the FX rate USD-DEM on Figure 7.11. 
It is computed with a l::!.t of 1 week and a volatility definition that uses the mean 
weekly absolute returns over 5 weeks. In summary, the parameters for the graph 
are LH = I week, n~t = 5 weeks, and p = 2. The conditional correlation appears 
only for data at low frequency. The effect is quite strong for low volatility with a 
conditional correlation close to 0.3 at its maximum, decreasing down to negative 
values of -0.15 for high volatility. The computation is done with overlapping 
bins containing always the same number of observations to avoid changing the 
significance of the different results. From this figure, it appears that the "current 
state" of the market changes the price process behavior and the volatility plays 
an important role beyond its own dynamics. The results shown here for the most 
traded FX rates are also present in the other FX rates. It was also reported by 
LeBaron (1992b) for stock indices. Varying the parameters cause this effect to 
disappear for l::!.t smaller than 1 day. In the intraday region, influence of the heat 
wave effect becomes important and overshadows the findings. 
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8 
VOLATILITY PROCESSES 

8.1 INTRODUCTION 

One of the many challenges posed by the study of high-frequency data in finance is 
to build models that can explain the empirical behavior of the data at any frequency 
at which they are measured from minutes to months. We are now going to examine 
how conventional models perform when confronted with this problem. In the 
previous chapter, we discussed the rich structure of the volatility dynamics. We 
need to introduce new types of volatility models to account for this structure, 
leading to a higher predictive power. 

Many statistical processes proposed in the literature can be described by the 
following general formula for equally spaced returns ri: 

(8.1) 

where e1 is an identically and independently distributed (i.i.d.) random variable1 

with zero mean and variance 1. In this chapter, t denotes the index of a homoge­
neous time series rather than time itself. "Homogeneous" means equally spaced 
on any chosen time scale. We usually choose iJ-time as introduced in Chapter 6, so 

1 In this chapter, normal and Student-/ distnbutions of s1 are studied. 
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220 CHAPTER 8 VOLATILITY PROCESSES 

the model appropriately accounts for seasonalities. The volatility O-t is the square 
root of the variance of the return r1• 

Many models are based on Equation 8.1, but they largely differ in the modeling 
of the volatility variable at, We distinguish three main types of volatility modeling: 

l. ARCH-type models. These autoregressive conditional heteroskedastic 
models define the variance <Y? of the return r1 as a function of past returns. 
This function can be simple or rather complicated. In the GARCH process, 
for example, Gt also depends on its own past values, but there is always an 
equivalent fonnulation that defines O't as a function of past returns only. 
The volatility at is a model variable that cannot be directly observed, but 
it can be computed if a sufficiently long series of past return values up 
to ri-1 is known. All the statistical processes discussed in the following 
sections of this chapter belong to the ARCH type. 

2. Stochastic volatility models. In stochastic volatility models, the volatility 
variable Gt does not depend on past returns. Instead, it depends on its 
own past values. The volatility variable O-t is neither observable nor di­
rectly computable from past returns. As a consequence, it is more difficult 
to estimate the parameters of stochastic volatility models than those of 
ARCH-type models. The statistical process of at has a memory, so an 
autoregressive conditional heteroskedastic behavior can be obtained also 
with stochastic volatility models. There are different types of stochastic 
volatility models as noted in Taylor (1994); Ghysels and Jasiak (1995), 
and Ghysels et al. (1996). It is possible to model heterogeneous market 
behavior in the framework of stochastic volatility; a modern example is 
the cascade model of Ghashghaie et al. ( 1996) and Breymann et al. (2000) 
where volatility modeling is inspired by turbulence models. 

3. Models based on realized volatility. Rather than modeling er,, (Andersen 
et al., 2000) propose to define a1 as the realized volatility computed at 
index t -1. This realized volatility is computed with high-frequency data, 
with return intervals of, for example, 30-min, in order to keep stochastic 
errors low. The time interval of the main model (i.e., the interval between 
the indices t - land t) is usually much larger (e.g., 1 working day). This 
means using realized volatility at t I as a predictor of the volatility 
between t l and t by relying on the volatility clustering. This model has 
the advantage of using empirical data instead of model assumptions that 
might be wrong. However, it has some disadvantages: 

• Realized volatility is biased if computed at high frequency ( see Sec­
tion 7.2). A bias correction method such as Equation 7.4 would 
improve the model. 

■ Realized volatility computed at high frequency (fine volatility) lags 
behind coarse volatility in the lead-lag analysis (see Section 7.4.2). 
This lag leads to suboptimal forecast quality when predicting the 
volatility of the next step of the model. 
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8.2 lNTRADAY VOLATILITY AND GARCH MODELS 221 

■ Im general, realized volatility at t - 1 may not be the best predictor 
of volatility between t - 1 and t. It should be replaced by a more 
sophisticated forecast of realized volatility at t. 

In most of these statistical processes of a?, it is possible to add some terms mod­
eling external ( exogeneous) influences. If volume figures at t - 1 are available, 
for example, they may be a piece of information to predict the volatility O't. The 
processes discussed here are not of this type, they are univariate. 

In the remainder of this chapter, we stay within the framework of ARCH­
type modeling and compare different models. The ultimate quality criterion of a 
model is its predictive power. Therefore there are some volatility forecast tests 
in Section 8.4. Forecasting is further discussed in Chapter 9 where it is the main 
subject. 

8.2 INTRADAY VOLATILITY AND GARCH MODELS 

The Autoregressive Conditional Heteroskedastic (ARCH) model ofEngle (1982) 
and its generalized version (GARCH) by Bollerslev (1986) are widely used, not 
only in the foreign exchange (FX) literature (see, for a review, Bollerslev et al., 
1992) but also as the basic framework for empirical studies of the market mi­
crostructure such as the impact of news (Goodhart and Figliuoli, 1991; Goodhart 
et al., 1993) and central bank interventions (Goodhart and Hesse, 1993; Peiers, 
1997), or inter and intramarket relationships in Engle et al. (1990) and Baillie 
and Bollerslev (1990). The main assumption behind this class of models is the 
relative homogeneity of the price discovery process among market participants 
at the origin of the volatility process. In other words, the conditional density of 
one GARCH process is assumed to adequately capture all the information and the 
news. In particular, GARCH parameters for the weekly frequency theoretically 
derived from daily empirical estimates are usually within the confidence interval 
of weekly empirical estimates (Drost and Nijman, 1993). 

However, we have already seen in this book that several empirical facts are 
at odds with this homogeneous view of the market. First, the long memory of 
the volatility (Section 7.3.2) indicates the presence of several market components 
corresponding to several time horizons. Note that this property of the volatility has 
already been successfully incorporated in the GARCH setting as the fractionally 
integrated GARCH (Baillie et al., 1996). Second, at the intradaily frequency, 
round-the-clock time series reveal seasonal patterns that reflect, among others, the 
geographical dispersion of the traders, concentrated in three main geographical 
areas: Asia, Europe, and America. Although the first investigations of the ef­
fect of these different geographical locations seemed to indicate that news would 
uniformly spread out around the world (the so-called meteor shower hypothesis 
in Engle et al., 1990), we saw traces of heat wave effects in the previous chap­
ter. Third, exchange rates movements are not necessarily related to the arrival 
of news when inspected at the intraday frequency, Goodhart (1989), reflecting 
the fact that intraday traders may have other constraints and objectives than, for 
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222 CHAPTER 8 VOLATILITY PROCESSES 

example, longer-term traders. Fourth, at extremely high frequencies, FX rates ex­
hibit distinct microstructure effects due to the price fonnation process as studied 
in Chapter 5. 

In this section, we investigate the importance of this heterogeneity for the 
modeling of the foreign exchange (FX) markets using the GARCH setting. More 
specifically, we show that estimates of a GARCH process with data in physical 
time are likely to be spurious, even though estimates for one particular frequency 
seem to be reasonable. Estimates are only consistent when the seasonal patterns 
are taken into account. However, even when these seasonal patterns are accounted 
for, the aggregation properties of the GARCH model break down at the intradaily 
frequencies, revealing the presence of traders with different risk profiles. In ad­
dition to the presence of different trader categories, we observe microstructure 
effects when analyzing returns over time intervals shorter than about 90 min. At 
the other extreme, the instability of coefficient estimates over different subperiods 
of 6 months suggests the presence of seemingly random long-term fluctuations. 
Finally, these misspecifications of the GARCH process result in its quite poor out­
of-sample predictive power for the volatility as compared to realized volatility. 

8.2.1 Parameter Estimation of GARCH Models 

The GARCH(l,l) process is defined as follows: 

2 2 /3 2 a1 = ao + cqe1_ 1 + 1a1_ 1 

where a/ is the conditional variance and sf is the squared innovation. 

(8.2) 

To test the effects of the temporal heterogeneity of the markets, this 
GARCH(l,l) process is estimated for several frequencies. The lowest analyzed 
frequency is daily and the highest frequency is defined by a homogeneous time 
series with 10-min intervals. At the higher frequencies (intervals less than 2 hr), 
we include a fourth-order autoregressive (AR( 4)) term /Lt = I:t 1 r/Jirr-i in Equa­
tion 8.1 to account for the statistically significant (negative) autocorrelation of the 
returns at these frequencies (see Section 5.2.1). The regression equation for the 
return process is 

(8.3) 

At lower frequencies such a term is not needed, and we use the process of Equa­
tion 8.1. 

The parameters of the process are estimated as follows. Let e denote the set 
of parameters characterizing the process. Assuming that the innovations 1:1 are 
normally distributed, the log-likelihood function is 

.C(0) n ( 2) n I 2 ~ 
-- ln(2:rr) - - ~ ln(a.) + -

2 2 L.t i a2 
t=1 l 

(8.4) 

where the index t has been substituted by i. The number of observations used for 
the estimation is n. An initial fraction of data must be reserved and used for the 
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8.2 INTRADAY VOLATILITY AND GARCH MODELS 223 

build-up of a}, because of the memory of the volatility process. An estimate 0 for 
the parameters is given by the solution of the maximization problem 

max £(0) 
0 

The log-likelihood procedure has many desirable properties.2 The solution is 
independent of the coordinate system in which the parameters are defined, such 
that the estimation can be done in any parametrization and the results will be 
identical, up to the chosen parameter transformation. This property is true for 
finite samples and any data set, assuming a non-degenerate maximum. Even if the 
process is misspecified (i.e., the data were not generated by the estimated process), 
the maximum is identical in any coordinate system. Estimating GARCH processes 
by maximum likelihood is difficult because of the presence of a one-dimensional 
manifold in the parameter space where the likelihood function is large and almost 
constant (for a discussion of this point and a good practical solution using the 
property mentioned above, see Zumbach, 2000). 

The assumption of conditional normality can be relaxed by assuming a Stu­
dent-t distribution for e1 (Baillie and Bollerslev, 1989) or the generalized exponen­
tial distribution (Nelson, 1991). Both of these distributions have fat tails. In the 
case of the Student-t distribution, the log-likelihood function takes the following 
fonn: 

£(0) = [1n(v - 2) + 2 In (rr112r (¥)] - lnr (v!I)] 

-½ I:?""1 [ln(o}) + (v + 1) In ( 1 + a,2(1-2))] 

(8.5) 

where v is the number of degrees of freedom of the Student-t distribution and r 
is the usual gamma function. Both forms of the log-likelihood function are valid 
for any process following Equation 8.1, not only GARCH but also the process we 
shall study in Section 8.3 .1. 

The maximum of the likelihood function is found by an iterative procedure 
that combines two methods: a genetic algorithm (GA) (Goldberg, 1989; Pictet 
et al., 1995) and the Berndt, Hall, Hall, and Hausman (BHHH) algorithm (Berndt 
et al., 1974) which is a variant of the gradient descent method. The initial solu­
tions are chosen randomly to avoid any a priori bias in the estimation and stored 
in "genes," which form an initial population. Starting from this population, the 
genetic algorithm constructs a new population using its selection and reproduction 
method (Pictet et al., 1995). The solutions with the highest log-likelihood found 
by the genetic algorithm are used as starting points of the BHHH algorithm, which 
leads to a further improvement. Once convergence of the BHHH is achieved, 
the next generation of the GA is computed on the basis of the previous solutions 

2 See Davidson and MaclGnnon (1993) for a general reference. 
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224 CHAPTER 8 VOLATILITY PROCESSES 

obtained with the BHHH algorithm and a set of solutions from the previous gen­
eration. This iterative procedure continues until no improvement of the solution 
is found. The BHHH algorithm alone can be trapped in local maxima of the log­
likelihood instead of finding the global maximum. The chosen combination with 
a genetic algorithm has the advantage of avoiding local maxima. The method is 
rather fast, notwithstanding the very large number of observations (368,000 data 
points for the 10-min frequency). Robust standard errors are computed using the 
variance-covariance matrix estimation of White (1980). 

8.2.2 Temporal Aggregation of GARCH Models 

If the empirical data can be described as generated by one GARCH(l, 1) process 
at one particular data frequency, the behavior of the data sampled at any other fre­
quency is theoretically determined by temporal aggregation ( or disaggregation) of 
the original process. These theoretically derived processes at different frequencies 
can be compared to the empirically estimated processes at the same frequencies. 
Significant deviations between empirical and theoretical results lead to the rejec­
tion of the hypothesis of only one GAR CH process. We can show then that there 
is more than one relevant frequency in the volatility generation, and the market 
can be called temporally heterogeneous, as already found in Section 7.4. 

There are two approaches for the theoretical aggregation of GAR CH models. 
The GAR CH model can be viewed as either a jump process (Drost and Nijman, 
1993) or a diffusion process (Nelson and Foster, 1994). Both approaches lead to 
very similar results, so we only report results based on Drost and Nijman (1993). 
In both approaches, the sum of <XJ and fh (of Equation 8.2) tends to I as the 
frequency increases. The autoregressive parameter f31 tends to 1, whereas the 
moving average parameter a1 tends to 0. In other words, the higher the frequency, 
the longer the clusters of volatility as measured in numbers of time series intervals. 

Because previous results confirmed the adequacy of these theoretical results 
at the daily and weekly frequencies (Drost and Nijman, 1993), we use the daily 
estimations as a starting point to compute the results for the higher frequencies. 
High frequencies also have the advantage of high statistical significance. 

Drost and Nijman (1993) show that symmetric weak GARCH(l,1) processes 
are closed under temporal aggregation. A process is symmetric if the marginal 
distribution of returns is symmetric. The term "weak GARCH(l,l)" is exactly 
defined by Drost and Nijman (1993 ). It encompasses all processes that essentially 
follow Equation 8.2 with some weak, nonlinear deviations that are not visible 
in the autocorrelation of volatility. More precisely, if s1 is a symmetric weak 
GARCH(l,1), following the equation al = ao + asf-i + f3a/_i, then the high­

frequencyparametersao, a, and,B andthek:urtosistc8 = E[ef]/(E[e;]) 2 determine 
the corresponding low-frequency parameters. We obtain the symmetric weak 
GARCH(l,l) process B(m)tm, with 

2 - +- . -2 -/J 2 
<7 (m)tm = c'.l!O(m) a(m)S(m)tm-m + (m)a (m)tm-m (8.6) 
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and kurtosis K(m)s where 

_ 1-(,B+ar 
ao(m) = m ao 1 _ (fJ + a) 

3 + (Ks - 3)/m + 6(Ks - l) 

{m - 1 -m(fJ +a)+ ({3 + ar}{a - /3a(f3 + a)} x-----------------
m2(1 - /3 - a) 2(1 - {32 - 2j3a) 

ri(m) I < 1 is the solution of the quadratic equation 

a(/3, a, Ks, m)(/3 + ar - b(/3, a, m) 

a(/3, a, Ks, m){I + (/3 + a) 2m} - 2b(fJ, a, m) 

with 

a(/3, o:, Ks, m) 

225 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

m(l /3)2 + 2m(m 1 (1 - /3 - a)2(1 - 132 - 2{3a) 
) (K8 - l){l - (/J + a)2} 

b(/3, a, m) = 

+4 {m - 1 m(/3 +a)+ (,B + ar}{a f3a(f3 + a)} 

1- (/3 +o:)2 

1- (/3 +a)2m 
{a-f3a(fJ+a)} 1-(/3+a)2 (8.12) 

These formulas are used to determine the parameters of the aggregated GAR CH 
processes and can also be used for going from low to high-frequency (i.e., for 
disaggregation). 

When exploring temporal aggregation, we have to choose a time scale. Sea­
sonality is not the subject of an aggregation study, but might disturb it. Eliminating 
seasonalities by using the ff-scale presented in Chapter 6 is a natural choice. How­
ever, we have additionally tested an alternative time scale which we call a business 
time scale in the remainder of this section. This business time simply omits the 
weekend periods from Friday 22:30 GMT to Sunday 22:30 GMT, when markets 
are virtually closed. 

As a third time scale, we have tried physical time. In physical time, weekends 
cover two-sevenths of the total sample. This causes a complete breakdown of the 
estimation procedure, yielding very large a1 estimates. Physical time including 
weekends is simply unusable here. The aforementioned business time is a usable 
substitute of physical time from which it only differs in its omission of weekends. 
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FIGURE 8.1 Aggregation of the GARCH(1,1) for estimated coefficients in business 
time (•) and theoretically derived coefficients (L) using the (Drost and Numan, 1993) 
results for USO-DEM, for different aggregation factors (1 = 10 min; 2 = 20 min; 3 = 30 
min; 6 "' 1 hr; 12 = 2 hr; 36 = 6 hr; 72 = 12 hr; 144= 24 hr). The labels of the estimated 
coefficients ( •) are printed in bold. The diagonal dotted line represents the stationarity limit 
for which a1 + fh = 1. Sampling period: 7 years from January 1, 1987, to December 31, 
1993. 

8.2.3 Estimates of GARCH(1,1) for Various Frequencies 

Time series ofUSD-DEM have been sampled with frequencies between 10 min 
and 1 day. For each series, the GARCH(l,l) coefficients have been estimated 
using the procedure of Section 8.2.1. The resulting coefficients a1 and /Ji (see 
Equation 8.2) are plotted in Figure 8.1 in the form of black circles, which are 
labeled by the number of IO-min intervals contained in the time series interval. 
The label "144" thus means daily sampling. 

For comparison, the theoretical values ofo1 and ,81 are also plotted as triangles. 
The reference values at daily frequency (label 144) are estimated from real data, but 
the values at all other frequencies are computed from these reference values accord­
ing to Drost and Nijman (1993), as explained in Section 8.2.2.A computation ac­
cording to Nelson and Foster (1994) yields similar results that are not plotted here. 
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FIGURE 8.2 Aggregation of the GARCH(1,1) for estimated coefficients in ~-time(•) 
and theoretically derived coefficients (t:.) using the (Drost and Nijman, 1993) results for 
the USD-DEM for different aggregation factors (1 10 min; 2 = 20 min; 3 30 min; 6 
= 1 hr; 12 = 2 hr; 36 = 6 hr; 72 = 12 hr; 144= 24 hr). The labels of the estimated 
coefficients(•) are printed in bold. The diagonal dashed line represents the limit for which 
cq + /31 1. Sampling period: 7 years from January 1, 1987, to December 31, 1993. 

Although the coefficient estimates may look quite reasonable for some lower 
frequencies, the global picture for all frequencies appears quite odd. In particular, 
the f3i estimates for frequencies higher than 2 hr decrease down to values close to 
0. 7 5, whereas the theory, represented by the triangles in Figure 8. I, suggests that /31 
should tend to one. The triangles are very far from the corresponding black circles. 
The hypothesis of volatility being generated by only one GARCH(l,1) process is 
clearly rejected with the high significance of high-frequency data analyzed over 
7 years. 

The results ofFigure 8.1 are computed on the basis of the business time intro­
duced at the end of Section 8.2.2. Figure 8.2 shows the corresponding results 
based on 0-time. The time scale iJ is in fact a better choice because of its 
better deseasonalization. However, the results of Figure 8.2 are similar to those 
ofFigure 8.1. The strong deviation between theoretical and empirically estimated 
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TABLE 8.1 Results of the GARCH(1,1) estimation in business time. 

GARCH(1,1) parameter estimates for USO-DEM, using the business time scale, for differ­

ent frequencies. Robust standard errors are given in parentheses. The coefficients with a 
prime are computed from the (dis)aggregation formulas for the jump hypothesis of Drost 
and Nijman (1993). The daily interval serves as a reference basis. 

Interval ao Cl] f3i Ct\ +f3i a' I .s; a; + ,a; 

l0min 2.15, 10- 8 0.227 0.752 0.979 0.001 0.999 1.000 
(0.17 • 10- 8) (0.0013) (0.0012) 

20min 2.66 · 10- 8 0.179 0.816 0.995 0,002 0.997 0.999 
(0.15 · 10- 8) (0.0037) (0.0051) 

30min 2.65 · 10- 8 0.143 0.853 0.996 0.003 0.996 0.999 

(0.18 · 10- 8) (0.0062) (0.0101) 
I hr 1.79 · 10- 7 0.142 0.784 0.926 0.006 0.992 0.999 

(0.42 · 10- 7) (0.0066) (0.0114) 

2 hr 3.11 · 10- 8 0.023 0.970 0.993 0.011 0.986 0.997 

(0.13 · 10- 8) (0.0020) (0.0015) 

6 hr 2.43 · 10- 1 0.041 0.941 0.982 0.029 0.962 0.991 

(0.22 · 10- 7) (0.0039) (0.0061) 

12 hr 1.07, 10- 6 0.054 0.905 0.959 0.046 0.936 0.982 

(0.17 · 10- 6) (0.0061) (0.0102) 

24hr 1.91 · 10- 6 0.068 0.897 0.965 
(0.67 , I o-6) (0.0095) (0.0153) 

coefficients already starts with the 6-hr frequency. The conclusions on temporal 
aggregation ofGARCH are the same. The choice of the time scale has no strong 
impact on a temporal aggregation study, as long as physical time with its high 
weight of weekends is avoided. 

Detailed results for the two time scales are also listed in Tables 8.1 and 8.2. 
Table 8.1 presents the results obtained for USD-DEM in the business time scale 
and Table 8.2 for the same rate but in the ~-time scale. The error estimates of the 
results provide more evidence against the hypothesis of only one GARCH(l,l) 
process generating the data. Even the theoretically computed coefficients at low 
frequency, which seem quite close to the estimated coefficients, are often outside 
the confidence intervals. Only the coefficients for the GARCH process are pro­
vided in Tables 8 .1 and 8.2, even when an AR( 4) term was included in Equation 8 .1 
for frequencies higher than 2 hr ( as discussed atthe beginning of Section 8.2.1 ). We 
have observed that the inclusion of this autoregressive term in the return equation 
does not significantly change the values of the GARCH coefficients. 

The coefficient estimates are quite similar across different PX rates.3 The 
hypothesis of only one GARCH(l,l) process is rejected for all the FX rates we 
tested, not only USD-DEM. The volatility clusters have about the same size-if 
measured in numbers of time series intervals-for all levels of aggregation. In 

3 See Andersen and Bollerslev ( 1997b) for similar results. 
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8.2 INTRADAY VOLATILITY AND GARCH MODELS 229 

TABLE 8.2 Results of the GARCH(1,1) estimation in ti-time. 

GARCH(1,1) parameter estimates for USD-DEM, using ti-time, for different frequencies. 

Robust standard errors are given in parentheses. The coefficients with a prime are com-

puted from the (dis)aggregation formulas for the jump hypothesis of Drost and Numan 

(1993). The daily interval serves as a reference basis. 

Interval ao CXJ /31 Cij + /31 a' 1 p; a;+ /3( 

!Omin 4.09 · 10- 9 0.153 0.839 0.992 0.001 0.999 1.000 

(0.27 · 10- 9) (0.0047) (0.0049) 

20min 1.24 • 10- 8 0.149 0.830 0.979 0.001 0.998 0.999 

(0.84 · 10- 8) (0.0057) (0.0063) 

30min 2.56 · 10- 8 0.153 0.815 0.968 0.002 0.997 0.999 
(0.21 · 10- 8) (0.0077) (0.0091) 

1 hr 1.36 • 10- 8 0.047 0.942 0.988 0.004 0.995 0.999 

(0.46 · 10- 8) (0.0094) (0.0129) 

2 hr 1.65 · 10- 8 0.031 0.962 0.993 0.008 0.989 0.997 

(0.28 · 10- 8) (0.0014) (0.0022) 

6 hr 5.93 · 10- 8 0.029 0.963 0.992 0.023 0.971 0.994 

(0.40 · 10- 8) (0.0011) (0.0013) 
12 hr 1.91 · 10- 7 0.039 0.948 0.987 0.038 0.949 0.988 

(0.45 · 10- 7) (0.0013) (0.0047) 
24hr 8.08 • 10- 7 0.061 0.915 0.975 

(2.74 · 10- 7) (0.0119) (0.0155) 

other words, the volatility memory seems quite short-lived when measured with 
high-frequency data and long-lived when measured with data of daily or lower 
frequency. The infonnation content of the volatility variable Ut is not the same for 
different frequencies. Different volatilities are relevant at different frequencies. 
We attribute this, along with other authors (Andersen and Bollerslev, 1997a), to 
the presence of many independent volatility components in the data. This is again 
the signature of market heterogeneity. The GAR CH model does not capture the 
heterogeneity of traders acting at different time horizons. 

This is a plausible explanation of the abnormal results we obtain at high 
frequencies from the estimation of the GARCH model using a Student-t distribu­
tion instead of the normal distribution such as in Baillie and Bollerslev (1989).4 

GAR CH is misspecified, no matter which fonn of the conditional distribution of 
returns is chosen. 

To further assess the behavior of the volatility as estimated by GARCH(l,1) 
processes, we have investigated the temporal stability of the coefficient estimates 
for several subsamples. Figure 8.3 provides the estimations of the GARCH pa­
rameters for USD-DEM at the 2-hr time interval, using 0--time, for subsamples 
of6 months, with about 2,190 observations per subsample. As can be seen, the 

4 Although the algorithm converges, the sum of the a 1 and f3i mcreasingly exceeds 1 as the frequency 
becomes higher. One also finds excess residual skewness and kurtosis. Since these results are robust 
to the size of the sample, they cannot be attnbuted to a larger number of tail observations. 
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FIGURE 8.3 Temporal stability of the GARCH(1,1) coefficients for subperiods of 6 
months for the USO-DEM at the 2-hr frequency. The time scale 1s fr-time. In the parameter 
space, the coefficients are represented by black circles(•) and connected by lines indicating 
the temporal sequence. Sampling period: 7 years from January 1, 1987, to December 31, 
1993. 

coefficients are not stable over time. Some of them are in the left half of Fig­
ure 8.3, quite far from the others. Moreover, these aberrant coefficients are not 
directly connected in the temporal sequence. The shifts in coefficient values have 
an irregular sequence in time, as shown by the lines connecting the points in Fig­
ure 8.3. The hypothesis of all parameters being equal across the subsamples can 
be rejected by using a likelihood-ratio test (see e.g., Hamilton, 1994) with very 
high significance. This is again a sign of misspecification of the model, but it may 
also indicate changes in market behavior. 

The forecasting quality of GARCH models will be tested in Section 8.4.2. 
There we shall see that an increasing sample size does not improve the volatility 
forecasts from GAR CH models. The forecasting quality saturates when increasing 
the sample size after a certain threshold value. The subsamples used for Figure 8.3 
are large enough, so the erratic behavior of GARCH coefficients in that figure 
cannot be attributed to small sample sizes. 
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8.3 MODELING HETEROGENEOUS VOLATILITIES 

In Chapter 7 we showed that there is asymmetry in the interaction between volatil­
ities measured at different frequencies. A coarsely defined volatility predicts a fine 
volatility better than the other way around. This effect is not present in a simple 
GARCH model. More complex types of ARCH models have to be developed to 
account for the heterogeneity found in high-frequency data, such as the HARCH 
(Heterogeneous Autoregressive Conditional Heteroskedasticity) model. 

The HARCH process proposed in this section has a variance equation based 
on returns over intervals of different sizes. The empirical behavior oflagged cor­
relation can be reproduced well with this new process. At the same time, HAR CH 
is able to reproduce the long memory of volatility,5 as found in Section 7.3.2, 
Dacorogna et al. (1993), and Ding et al. (1993). Moreover, the terms of the con­
ditional variance of HARCH reflect the component structure of the market in a 
natural way. 

As with most processes from the ARCH family, HARCH is based on squared 
returns, 6 with their good analytical tractability. Whereas the convergence problem 
of the fourth moment of the return distribution forced us to define volatility in 
terms of absolute returns in the correlation analysis of Section 7.4.1, there is no 
such constraint for the volatility equation of the HARCH process. 

8.3.1 The HARCH Model 

In this section, we present the HARCH model as it was :first presented by Muller 
et al. (1997a). This should facilitate the understanding of the approach but this 
initial formulation as the initial ARCH formulation is cumbersome to compute. 
In the next sections, we shall see a formulation with a much faster and simpler 
computation and estimation. As in Equation 8.2, the returns rt of a HARCH(n) 
process are defined with the random variable Bt, which is identically and indepen­
dently distributed (i.i.d.) and follows a distribution function with zero expectation 
and unit variance: 7 

rt = Clt E:t 

n 

U>-,Y (12 co + LCj t 
j=l r=l 

(8.13) 

where 

co > 0, Cn > 0, Cj ::: 0 for j = l ... n - 1 (8.14) 

5 The FIGARCH process, Baillie et al. (1996), has been designed to model the long memory but 
cannot reproduce the lead-lag correlation of Section 7.4.2 as it is still based on returns observed over 
intervals of constant size. 

6 Except for a process class proposed by Ding et al. (1993), which models volatility in terms of 
different powers of absolute returns 

7 Here, we utilize a nonnal distribution and alternatively explore Student-t distributions. 
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232 CHAPTER 8 VOLATILITY PROCESSES 

The equation for the variance a? is a linear combination of the squares of aggre­
gated returns. Aggregated returns may extend over some long intervals from a 
time point in the distant past up to time t - 1. The heterogeneous set of relevant 
interval sizes leads to the process named HARCH for "Heterogeneous Autore­
gressive Conditional Heteroskedasticity." The first "H" may also stand for the 
heterogeneous market ifwe follow that hypothesis as proposed in Section 7.4. 

The HARCH process belongs to the wide ARCH family but differs from all 
other ARCH-type processes in the unique property of considering the volatilities 
ofreturns measured over different interval sizes. The Quadratic ARCH (QARCH) 
process (see Sentana, 1991) is an exception. Although QARCH was not developed 
for treating different interval sizes, it can be regarded as a generalized form of 
HARCH as explained in Section 8.3.3. 

The coefficients c1 .•. en should not be regarded as free parameters of the 
model. The heterogeneous market approach leads to a low number of free model 
parameters, which determine a much higher number n of coefficients modeling 
the long memory of volatility. 

The explicit formulation ofHARCH(2) may help to illustrate the special prop­
erties of the HAR CH process. 8 The variance equation ofHARCH(2) can be written 
in two forms: 

(8.15) 

The second form of this HARCH(2) process can be identified as an ordinary 
ARCH(2) process, except for its last tenn which contains the mixed product 
r1-1rt-2· In other ARCH-type processes, the absolute values of returns matter 
where in HARCH, also their signs matter. Two subsequent returns of the same 
size and in the same direction will cause a higher contribution to the variance 
process than two subsequent returns that cancel out each other. 

The variance, the unconditional expectation of squared returns, can be derived 
from Equation 8.13: 

(8.16) 

The cross products, such as Tt-\Tt-2 in Equation 8.15, have no influence here 
as their expectation is zero. A necessary condition of stationarity is constant 
unconditional variance: 

E(r;) (8.17) 

8 Whereas HARCH(l) is identical to ARCH(!). 
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8.3 MODELING HETEROGENEOUS VOLATILITIES 233 

Inserting this in Equation 8.16, we obtain the variance 

(8.18) 

which must be finite and positive 

(8.19) 

This necessary stationarity condition is also a sufficient condition for both the 
stationarity of the process and the existence of the variance, the second moment. 
Proving this is not trivial and we do not follow here the path chosen by Engle 
( 1982) and Bollerslev ( 1986) because the mixed products, such as rr-1 ri-2, make 
the matrix formulation of the problem difficult. The HARCH process can be seen 
as a Markov chain. Meyn and Tweedie (1993) have obtained some results for 
the ergodicity and recurrence of Markov chains that can be used for proving the 
stationarity and the moment condition. The complete proof is given by Dacorogna 
et al. (1996). 

The conditions for the existence and constant unconditional expectation of 
higher moments can be obtained through steps analogous to Equations 8.16 through 
8 .19, but the computation becomes increasingly tedious for higher moments and 
larger n values. The expectation of the 2mth moment is 

(8.20) 

Equation 8.13 of the variance is inserted in E(o}111
) and all the terms are explicitly 

computed. Some products of powers of returns have nonzero expectations, leading 
to an equation system for these expectations and E(o/ 111

). The equation system 
has the dimension m for n = 2 and higher for larger n values. In the relatively 
simple case of the fourth moment (m = 2) ofHARCH(2) (n = 2), the expectation 
E(r;rf_ 1) has to be computed and solved together with the equation for E(rt). In 
the standard case of s1 following a normal distribution, N(O, 1), E(c:1) = 3 and 
the following necessary condition is obtained to keep the fourth moment finite 

(8.21) 

The sufficiency of this necessary fourth moment condition is also proven in Da­
corogna et al. (1996). In Figure 8.4, the second and fourth moment conditions 
according to Equations 8.19 and 8.21, plus the sixth moment condition following 
an analogously derived equation, are plotted for a HARCH(2) process. Processes 
with a finite second and a diverging fourth moment exist in a large part of the 
ci ·c2-plane. This is remarkable because half-hourly FX returns have an empiri­
cal distribution with a tail index between 2 and 4, as found in Section 5.4.2 and 
Dacorogna et al. (2001a). 
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FIGURE 8.4 Moment conditions for the coefficients c1 and cz of a HARCH(2) process 
with a normally distributed s1• The straight line on the right represents the boundary for 
the stationarity and the existence of the second moment. The curves in the middle and 
on the left represent the boundaries for the existence of the 4th and 6th moments. 

8.3.2 HARCH and Market Components 

The memory in the volatility is known to be long, as discussed in Section 7.3.2. 
Therefore, we need a high order of HARCH, a large n, to model the behavior of 
empirical time series. This implies a high number of coefficients c j, which should 
not be free parameters of HARCH. We need a parsimonious parametrization. In 
the case of ARCH, some high-order processes can be formulated as low-order 
GARCH processes (Bollerslev, 1986), but no analogous method is at hand to 
reduce the number ofHARCH parameters. 

Our approach of parsimonious parametrization allows for the exploration of 
the component structure of the market. The coefficients c i reflect the relative im­
pact of different market components with different relevant time intervals. There­
fore, we select m market components corresponding to m free parameters, each 
associated to some coefficients c j in a limited range of j. The j ranges are sep­
arated by powers of a natural number p, so the typical time interval size of a 
component differs from that of the neighbor component by a factor of p. All Cj 

values within one component are assumed to be the same: 

ci = Ci = ciCil 

i (j) = max ( k I k E N A k < ::: ; + 2) , j = ... p m-1 

(8.22) 

Only m different coefficients Ci have to be estimated to determine the whole set 
of n = pm-I coefficients c j. 
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8.3 MODELING HETEROGENEOUS VOLATILITIES 235 

Table 8.3 presents such a component scheme for a time series in ~-time with 
a basic grid of 30 min, p = 4, and 7 components (m = 7). An interval of 30-
min in ~-time means only some 7 min during the daily volatility peaks around 
14:00 GMT, some 80 min during the Far Eastern lunch break, and even more 
during weekends and holidays with their very low volatility. Table 8.3 shows the 
minimum relevant time intervals of a component rather than the total size of the 
volatility memory. In fact, the memory of the volatility can greatly exceed the 
indicated interval. The medium-term traders of component 5, for example, are 
not interested in the volatility of hourly returns, are most interested in volatilities 
observed over 1 to 3 ½ days, and are also interested in volatilities observed over 
longer intervals. 

The choice of the number of components, m = 7, and the factor between the 
typical time resolutions of the components, p = 4, is reasonable but somewhat 
arbitrary. The essential results of this chapter do not strongly depend on this 
choice and can be found also with other m and p values. The model should cover 
the variety of relevant time resolutions of the market.9 A too small choice of 
m misses the chance of revealing the component structure; a too large m (with 
a small p) leads to too many parameters to be estimated and an unrealistically 
narrow definition of market components. 

A quantity more suitable for the intuitive understanding than a coefficient Ci 
is the impact Ii of a market component. The expected variance formula, Equa­
tion 8.18, strongly suggests a definition of the impact of the j1h coefficient as jc i· 
The impact Ii of the f h component is defined as the sum of the impacts of all its 
coefficients c j. By inserting the coefficient definitions of Equation 8.22, we obtain 

p<-l 

Ii = I: j Cj 

j=p•-Z+J 

Pi-I+ pi-2 + 1 
(p - 1) p'- 2 

2 
Ci for i > l 

(8.23) 

The impact of the long-term components may be considerable even when the 
coefficients appear to be small. The impact of the fifth component, for example, 
is I5 = 30816C5, where pis assumed to be 4 as in Table 8.3. 

The stationarity condition (Equation 8.19) can now be formulated in terms of 
the impacts. Their sum is smaller than 1: 

m 

(8.24) 

9 The choice of Table 8.3 ism = 7. An even higher value, m 8, has also been tested, leading 
to a low, insignificant impact of the eighth component and a rejection in a likelihood ratio test. We 
conclude that the seventh component is the last relevant one on the long-tenn side. 
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TABLE 8.3 Definition of the HARCH components. 

A HARCH model with seven market components, each with a range of indices j. All 

coefficients c j of a component are identical and only seven parameters need to be esti­
mated. The time intervals are the relevant intervals for the volatility perception of the 
time components (not the total duration of their memory). These basic intervals are given 
in iJ-time and also in physical time. Two columns show the minimum and maximum size of 
the interval that can occur for a time component, depending also on the daytime. These 
time component descriptions may contribute to a better understanding of the model. 

Range of j 

2 2 4 

5 16 

4 17 64 

Approximate 
range of time 
intervals m 
t>-ttme 

30min 

1-2hr 

Shortest 
mterval (at 
daily or 
weekly 
volatility 
peaks) in 
physical time 

7min 

16min 

SO min 

4 hr 

5 65 - 256 1 ½ - 5 days 1 day 

6 257 - 1024 5 ½ - 21 3 ½ days 
days 

7 1025 - 4096 3 -12 3 weeks 
weeks 

Longest 
interval (but 
avoiding 
weekends 
and 
holidays) in 
physical time 

80min 

9 hr 

1 day 

21 days 
(weekends 
always 
contained) 

12 weeks 
(weekends 
always 
contained) 

Description of the time 
component 

Short-term, intraday deal­
ers (arbitrage opportuni­
ties), market makers 

Intraday dealers with few 
transactions per day 

Dealers with overnight po­
sitions and occas1onal in­
traday transactions 

Few traders concerned 
(time intervals often be­
yond local business hours 
but less than a business 
day) 

Medium-term traders, no 
intraday trading 

Long-term traders 

Long-term mvestors, cen­
tral banks 
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8.3.3 Generalization of the Process Equation 

In Equation 8.13, all the returns considered by the variance equation are observed 
over "recent" intervals ending at time t - 1. This strong limitation will be justified 
by its empirical success, but we can also formulate a more general process equation 
with observation intervals ending in the past, before t - 1, 

rt :;:::: ar St 

(8.25) 

where 

co > 0, Cjk 2: 0 for j = 1 ... n, k 1 ... j; 
bi ?:. 0 for i = l ... q 

(8.26) 

This generalized process equation considers all returns between any pair of two 
time points in the period between t - n and t - I. It covers the case of HAR CH 
(all Cjk :;:::: 0 except some c11) as well as that of ARCH and GARCH (all CJk = 
0 except some c11). The last term of the variance equation is a "GARCH term," 
which may contribute to a parsimonious model formulation. Such a GAR CH term 
may partially model the fading volatility memory of several market components 
together, but therefore miss the chance of clearly indicating the actual component 
structure. The main idea of HAR CH, taking intervals of different sizes, may also 
be combined with other ideas from the recent literature about GARCH variations. 
HAR CH can also be regarded as a special case of the Quadratic ARCH model 
suggested by Sentana (1991). The results obtained for QARCH also apply to 
HARCH. However, QARCH has been developed in a very different context. Sen­
tana (1991) gives neither a concept of volatilities observed over long intervals nor 
the stationarity and moment conditions as in Section 8.3.1. 

For HARCH, the simple form of Equation 8.13 is preferred. This HARCH 
is successful in empirical studies, but its computation and estimation is tedious 
because of the large number of coefficients c j . This can be strongly improved 
by introducing the EMA-HARCH process with its partial volatility concept in the 
next section. 

8.3.4 EMA-HARCH Model 

In HARCH, the coefficients c1 •.. en are not regarded as free parameters of the 
model. The heterogeneous market approach leads to a low number of free model 
parameters, which determine a much higher number n of dependent coefficients 
modeling the long memory of volatility. 

The approach is to keep in the equation only a handful ofrepresentative interval 
sizes instead of keeping all of them, and replace the influence of the neighboring 
interval sizes by an exponential moving average (EMA) of the returns measured 
on each interval. This also has the advantage of including a memory of the past 
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intervals. Let us now introduce the concept of partial volatility o-J, which can be 

regarded as the contribution of the /h component to the total market volatility a 2. 
Here the volatility er] is defined as the volatility observed over an interval of size 
k i. We can refonnulate the HAR CH equation in tenns of cr1 as follows: 

cr2 
t 

n 

co + L, C j uj,i 
i=I 

(8.27) 

where n is now the number of time components in the model. The notation is 
slightly changed to Ci instead of c j used in the old fonnulation to reflect the 
different meaning of the coefficients. Unlike the standard HARCH, the partial 
volatility uJ has a memory of the volatility of past intervals of size kj. The formal 

definition of uj is 

a-J, = µ 1 a-J,t-1 + (1 - JJ.,j) (t ri-i)
2 

z=l 

(8.28) 

where k i is the aggregation factor of the returns and takes n possible values, 
following the relation 

kj = pi- 2 + I for j > I with k1 (8.29) 

When p:::;; 4, kJ can only take the values I, 2, 5, 17, 65,257, 1025, • • • , 4n- 2 + 1. 
For a 5-min data series, this would mean that the horizons would correspond to 5 
min, 10 min, 25 min and so on. The construction of Equation 8.29 ensures that the 
time components (k i's) are economically meaningful. Equation 8 .28 is the iterative 
formula for an exponentially weighted moving average, a special application of 
Equation 3.51. The volatility memory is defined as a moving average of recent 
volatility. The depth of the volatility memory is detennined by the constant µ j: 

I 
µ,j = e - M(k1) (8.30) 

where the memory decay time constant of the component is given as the function 
M of the component's volatility interval k j. Without introducing new parameters, 
M (k j) can be defined as 

(8.31) 

This definition is based on the start and the end point of the component interval 
k j and makes sure that that the EMA kernel is centered at the characteristic time 
horizon of the component. 

Case 3:20-cv-05784-BRM-DEA   Document 1-3   Filed 05/11/20   Page 259 of 404 PageID: 337

0337



8.3 MODELING HETEROGENEOUS VOLATILITIES 239 

It is easy to prove that a necessary stationarity condition for the new fornm­
lation is 

(8.32) 

The proofrelies on the fact that the expectation of the exponential moving average 
is the same as the expectation of the underlying time series and that the expectation 
of cross terms is zero. A similar proof as in Dacorogna et al. (1998a) can be given 
for the sufficiency of this condition. 

We can now define the impact lj of each component, 

(8.33) 

Every component with a coefficient Ci has an impact Ii on the conditional volatility 
process. The stationarity condition, Equation 8.32, can be re-formulated using the 
sum of impacts: 

n 

_Lli < 1 
j=I 

(8.34) 

An iterative formula needs an initial value for a-J at the beginning of the 
time series. A reasonable assumption of that initial value is the unconditional 
expectation of aJ,1• Here the first value is computed from a data sample prior to 
the model estimation sample. We term this sample the "build-up" sample. 

8.3.5 Estimating HARCH and EMA-HARCH Models 

HARCH and EMA-HARCH models are applied to and estimated for empirical 
FX data here. The time series are homogeneous in lJ-time, which removes the 
seasonal pattern of intraday volatility. The time interval is 30 min and the sample 
includes 10 years of data from January 1, 1987, to December 31, 1996. 

For the computation and estimation of both HARCH and EMA-HARCH, we 
use seven components. For HAR CH, the components of Table 8.3 are used. For 
EMA-BARCH, one component is built from only one time interval but includes, 
according to Equation 8.28, a moving average that extends over a certain range, 
which should account for the neighboring time intervals. In fact, there are now two 
parameters controlling the component definition. The time interval size over which 
retums are computed, kj, and the range of the moving average, M(kj), Both of 
them are fixed and the optimization is carried out to solve the C j parameters. The 
optimization is implemented by searching for the maximum of the log-likelihood 
function. The procedure we follow to find the maximum is described at the end of 
Section 8.2.1. It combines two methods: a genetic algorithm (GA) search (Pictet 
et al., 1995) and the Berndt, Hall, Hall, and Hausman (BHHH) algorithm (Berndt 
et al., 1974). 
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240 CHAPTER 8 VOLATILITY PROCESSES 

TABLE 8.4 HARCH coefficients for USO-DEM. 

Comparison between the coefficients and impacts of the two HARCH processes from 

a half-hourly USO-DEM series, which is equally spaced in it-time over 10 years. Instead 
of the coefficients Ci, the impacts Ii are given. These provide a direct measure of the 
impacts of the market components on the HAR CH variance. The market components are 
those of Table 8.3 for HARCH and as in Equations 8.28 and 8.30 for EMA-HARCH. The 
distribution of the random variable s(t) is normal with zero mean and a unit variance. 

USD-DEM HARCH EMA-HARCH 

Coefficient Estimate Standard error I-statistics Estimate Standard error I-statistics 

co l.276x w-1 0.03994x 10- 7 31.94 0.529x10-7 0.04399x10-7 21.01 

/1 0 1309 0.007151 18.30 0.1476 0.008295 17.80 

12 0.1930 0.010010 19.28 0 1875 0.012297 15.25 

/3 0.1618 0.009179 17.62 0.1829 0.012545 14.58 

/4 0.0703 0.007363 9.55 0.0507 0,010324 4.91 

[5 0.1003 0.006774 14.81 0.1434 0.010952 13.10 

16 0.1014 0.006892 1471 0.1120 0.0ll835 947 

h 0.0990 0.006118 16.18 0.1145 0.010540 l0.86 

Log- 5.7947 5.8014 

likelihood 

The result of the optimization procedure is a set of c1 coefficients from which 
the component impacts are calculated using Equation 8.23 (for HAR CH) or Equa­
tion 8.33 (for EMA-BARCH). The sum of impacts IJ must be below one for 
stationarity of the process (Equations 8.24 and 8.34). In Table 8.4, the coefficients 
for both the BARCH and EMA-HARCH are shown with their t-statistics for USD­
DEM. They are obtained on exactly the same data set. The log-likelihoods can be 
compared because both models have the same number of independent coefficients. 
Clearly, the log-likelihood is improved by going to EMA-HARCH. In both cases, 
all coefficients are highly significant according to the t-statistics and contribute 
to the variance equation. The stationarity property is fulfilled in both cases. The 
HARCH andEMA-HARCHhave total impacts of0.8567 and 0.9386, respectively. 
The impacts of the different components are remarkably similar. Two small dif­
ferences are worth noticing. The relative importance of the long-term components 
is slightly higher for EMA-HARCH (37% instead of35%) and the minimum for 
the fourth component is more pronounced in EMA-HARCH. The t-statistics are 
also consistently smaller for EMA-HARCH than for HARCH but still highly sig­
nificant in all cases. The residuals in both fonnulations still present an excess 
kurtosis, as was noticed in Muller et al. (1997a) for HARCH. 

These results show that we have achieved the goal of redesigning the HAR CH 
process in terms of moving averages. We are able to keep and even improve on the 
properties of the original HAR CH and to considerably reduce the computational 
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FIGURE 8.5 Impacts of market components of HAR CH processes with components as 
defined in Table 8.3. Each HARCH model has been made for a particular FX rate by fitting 
a half-hourly time series equally spaced in ~-time over 7 years. The differences between 
the impacts, in particular the low values of the fourth component, are highly significant (see 
the error values of Table 8.4). The values for USO-DEM are those presented in Table 8.4 
and they are not fundamentally different from those of other FX rates. 

time to optimize the model. The EMA formulation of the process equation reduces 
this time by a factor of 1000, making the computation of HAR CH volatility much 
more tractable even with limited computational power. In the next section, we will 
explore the forecasting ability of these models and compare it to a more traditional 
approach to volatility. 

The impacts Ii are also plotted in a histogram (Figure 8.5) where it is possible 
to compare the results for different FX rates. The impact of the fourth component 
is the weakest among all impacts. This is not only for USD-DEM but also many 
other rates and also for other sampling periods. 10 The fourth component has a 

IO When a 7-year sample is split into two parts of3 1/2 years, the estimated coefficients on both of 
these subsamples are quite stable. 
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242 CHAPTER 8 VOLATILITY PROCESSES 

TABLE 8.5 Results of the EMA-HARCH for the LIFFE Three-Month Euromark. 

Results of the EMA-HARCH process estimate for 3-hr iJ-time intervals for the different 
forward rates for the LIFFE Three-Month Euromark. The underlying data are from the 

LIFFE Three-Month Euromark. Standard errors are given. Instead of the coefficients Ci 
(for i > 0), the corresponding impacts Ii are given. Data sample: from April 6, 1992, 

to December 30, 1997, representing 16,774 observations. The forward rates are labeled 
according to the market conventions for forward rate agreements, as explained in the text. 

The 3x6 forward interest rate, for example, applies to the interval starting in 3 months 

and ending in 6 months. 

3x6 6x9 9x12 12xl5 15x18 

Ko 2.90 ± 0.15 4.54 ± 0.24 4.29 ± 0.24 6.45 ± 0.39 4.22 ± 0.37 

Ii 0.20 ± 0.01 0.17 ± 0.01 0.19 ± o.oi 0.18 ± 0.01 0.12 ± 0.01 

Ii 0.01 ± 0.01 0.00 ± 0.02 0.00 ± 0.02 0.01 ± 0.01 0.00 ± 0.02 

h 0.17 ± 0.02 0.16 ± 0.02 0.16 ± 0.02 0.15 ± 0.02 0.15 ± 0.02 

!4 0.08 ± 0.02 0.11 ± 0.02 0.13 ± 0.02 0.14 ± 0.02 0.12 ± 0.02 

I5 0.11 ± 0.02 0.15 ± 0.02 0.16 ± 0.02 0.15 ± 0.02 0.19 ± 0.02 

15 0.23 ± 0.02 0.22±0.02 0.19 ± 0.02 0.08 ± 0.02 0.11±0.02 

I7 0.00±0.ol 0.03±0.ol 0.04 ±0,01 0.02 ± 0,01 0.03±0,01 

L 7.753 7.478 7.345 7.320 7.307 

typical time horizon of around 12 hr-too long for intraday dealers and too short 
for other traders. This naturally explains the weakness of that component. 

When comparing the impacts of Figure 8.5 with the component definition of 
Table 8.3, we see further interesting features captured by HARCH models. First, 
the short-term components have, in all cases, the largest impacts. These short­
term components model essentially the intraday dealers and the market makers 
who are known to dominate the market. Second, the similarity in the impacts of 
the USD-CHF and USD-DEM are plausible as it is well known that the Swiss 
National Bank policy was tightly tied to the USD-CHF to the USD-DEM rates. 
The relative weakness of the longer-term components for the GBP-USD is another 
relevant piece of information that can be gathered from this parametrization and 
has been confirmed to us by market participants. Since the 1992 crisis, the long­
term investors have been reluctant to invest in this market and have been more 
concentrated on the cross rate GBP-DEM. The relative impact of the fifth and the 
sixth components are in the same order for USD-CHF and USD-DEM but inverted 
in the case of both USD-JPY and GBP-USD. 

8.3.6 HARCH in Interest Rate Modeling 

As described in Chapter 7, we haved performed a lead-lag correlation analysis and 
established the HARCH effect for forward interest rates implied by interest rate 
futures, constructed according to Section 2.4.2 (see Figure 7.9). In this section, 
we use the HARCH parametrization in terms of market components to investigate 
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8.4 FORECASTING SHORT-TERM VOLATILITY 243 

whether we obtain similar features as in the case of foreign exchange rates. To avoid 
a systematic, deterministic decrease of volatility as explained by Section 5.6.4, we 
use forward rates for fixed time intervals. The forward rates are labeled according 
to the market conventions for forward rate agreements. The / xl forward rate ( e.g., 
the 3x6 forward rate) is the forward rate quoted at time t and applicable for the 
interval starting at time (t + I) and ending at time (t + J) (I and J are expressed in 
months). The corresponding time-to-start is I months and the maturity is ( J - I) 

months. 
The results of the EMA-HARCH process estimation for 3-hr ff-time intervals 

for the different forward rates for the LIFFE Three-Month Euromark are given 
in Table 8.5. The EMA-HARCH process is estimated for each forward rate by 
maximizing the log-likelihood and use data from April 6, 1992, to December 30, 
1997, with about 16,800 observations. The distribution of the random variable 
e1 is normal with zero mean and a unit variance. The market components (with 
p = 4) are similar to the ones described in the previous section. Like in the case of 
FX rates, the impact coefficient for the interval range from 6 hr to 1 days (second 
component) is very small. These results also indicate a decreasing impact of the 
longer-term components ( corresponding to the market actors with the longest time­
horizon) going from the first forward rate (i.e., whose time-to-start is closest in the 
future) to the last one (i.e., whose time-to-start is farthest in the future), reflecting 
the decrease in the volatility autocorrelation. The sum of the impacts is smaller 
than one in all cases, meaning that the estimated processes are stationary according 
to Equation 8.34. 

8.4 FORECASTING SHORT-TERM VOLATILITY 

The true test of the veracity of a volatility model is its ability to forecast the future 
behavior of volatility. This means that the data used to test the model are distinct 
from the data used to find the model parameters. All of the analyses described in 
this section are performed in an out-of-sample setting. 

There is some added complexity in the case of volatility models where there 
is no unique definition of volatility. Andersen and Bollerslev (1998a) showed that, 
if the wrong estimators of volatility are taken, it is not possible to really test the 
forecasting quality of a model. That is why it is important to set a framework in 
which a forecasting performance analysis can be performed. 

8.4.1 A Framework to Measure the Forecasting Performance 

We choose here a path similar to that proposed in Taylor and Xu (1997). We 
construct a time series ofrealized hourly volatility, Vh(t), from our time series of 
returns as follows: 

ah 

Vh,t = L r;-_i 
i=l 

(8.35) 
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244 CHAPTER 8 VOLATILITY PROCESSES 

where ah is the aggregation factor. In this case, we use data points every 10 min 

in iJ-time, so the aggregation factor is ah = 6. 
Forecasts of different models are compared to the realized volatility of Equa­

tion 8.35. The one-step ahead forecasts are based on hourly returns in r>-time. 
The advantage of using hourly returns instead of30-min returns as in the previous 
section is that hourly forecasts are compatible with the historical hourly volatility 

defined in Equation 8.35. Four models are studied here. 

■ The first model is used as a benchmark and is a naive historical model 
inspired by the effect described in Section 7.4.2 and Muller et al. (1997a) 

where low-frequency volatility predicts high-frequency volatility. The 
historical volatility is computed over a given day measured from the hourly 
returns. This quantity, properly normalized, is used as a predictor for the 
next hour volatility, v(t + 1), as defined in Equation 8.35. Formally the 
forecasting model Vb is 

l 24 ( 6j )
2 

Vb,t = 
24 

L L rr-i 
j=l i=6(j-1)+1 

(8.36) 

where the factor in front of the summation is here to normalize Vb to hourly 
volatility. 

■ GARCH(l,l) is 

Vgarch,t = hr = ao + a1s;_1 + fhht-1 (8.37) 

where St is Li.d. and follows a normal distribution function with zero mean 
and unit variance. 

■ The HARCH model in Equation 8.13 and the seven components of Ta­
ble 8.3, introduced by Miiller et al. (1997a). 

■ The EMA-HARCH model in Equation 8.27 and 8.28 with seven compo-

nents. 

The three parameter models are optimized over a sample of 5 years of hourly 
data using the estimation procedure described in Section 9.3.5. The forecasts 
are then analyzed over the 5 remaining years. We term this procedure the static 
optimization. To account for possible changes in the model parameters, we also 
recompute them every year using a moving sample of 5 years. We term this 
procedure dynamic optimization. In this case, the performance is always tested 
outside of the gliding sample to ensure that the test is fully out-of-sample. In both 

cases, we use an out-of-sample period of 5 years of hourly data, which represents 
more than 43,000 observations. 

We compare the accuracy of the four forecasting models to the realized hourly 
volatility of Equation 8.35. The quantities of interest are the forecasting signal, 

Sf Vf,t Vh,t (8.38) 
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8.4 FORECASTING SHORT-TERM VOLATILITY 

where v f is any of the forecasting models, and the realized signal, 

Sr = Vh,t+l - Vh,t 

245 

(8.39) 

The quantity v f,t is taken in the estimation sample either directly or rescaled by 

the ratio of the averages Vh and ~ f. This makes the forecast values on average 

closer to the historical volatility. In the rest of this chapter, we call the quantity, 

(vh · Vf,1)/~t, the rescaled forecast. 
In this formulation, performance measures proposed in Dacorogna et al. 

(1996) can be applied because the quantities defined in Equations 8.38 and 8.39 

can take positive and negative values contrary to the volatilities, which are positive 

definite quantities. One of these measures is the direction quality, 

N({v1\s1•sr>0}) 

N({Vj \ Sf ·Sr=/= O}) 
(8.40) 

where N is a function that gives the number of elements of a particular set of 

variables. It should be noted that this definition does not test the cases where 

either the forecast is the same as the current volatility or the volatility at time t + I 
is the same as the current one. This is, of course, unlikely to occur in our particular 

case. A detailed statistical discussion of this measure can be found in Pesaran and 

Timmerman (1992). 
In addition to this measure, we use a measure that combines the size of the 

movements and the direction quality. It is often called the realized potential, 

Q I:sign(s1•s,)lsrl (S.4l) 

r = L \sr\ 

In fact, the measures Qr and Qd are not independent and Qr is a weighted average 

of sign(s f • sr) whereas 2Qd - I is the corresponding unweighted average. It is 

easy to show that if 

(8.42) 

the forecast of the sign of Sr for large \srl values is better than average. 

A more traditional measure such as the comparison of the absolute error of a 

model to a benchmark model can also be used. This benchmark model is chosen 

to be the historical volatility as defined in Equation 8.36, Vb, The quantity 

\sr - sjodel \ 
(8.43) 

is a quality measure, which increases with an increasing performance of the model. 

If Q f > 0, the model outperforms the benchmark. If Q f < 0, the benchmark 

outperforms the model. The second part of Equation 8.43 is similar to the known 

Theil's U-statistic, Makridakis et al. (1983), except that we use the absolute value 

instead of the squared errors. 
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TABLE 8.6 Forecasting performance for USD-DEM. 

Forecasting accuracy of various models in predicting short-term market volatility. The 

performance is measured every hour over 5 years, from January 1, 1992, to December 

31, 1996, with 43,230 observations. In parentheses, the accuracy of rescaled forecasts 1s 

shown. 

USD-DEM 

Benchmark 

GARCH(l,1) 

HARCH(7c) 

EMA-HARCH(7) 

Benchmark 

GARCH(l,1) 

HARCH(7c) 

EMA-HARCH(7) 

Qd Qr 

Static Optimization 

67.7% (67.6%) 54.2% (54.3%) 

67.8% (67.3%) 58.5% (59.7%) 

69.2% (68.7%) 58.3% (59.2%) 

69.4% (68.8%) 60.7% (62.5%) 

Dynamic Optimization 

67.7% (67.4%) 54.2% (54.6%) 

67.0% (66.0%) 59.5% (59.8%) 

67.7% (66.8%) 60.1% (60.8%) 

68.8% (67.7%) 62.4% (62.9%) 

Qf 

0.000 

0.085 (0.072) 

0.134 (0.129) 

0.140 (0.128) 

0.000 

0.074 (0.057) 

0.113 (0.102) 

0.133 (0.117) 

The summations (including .N) in Equations 8.40, 8.41, and 8.43 are over all 

hours in the out-of-sample period. The number of independent observations is 

large so that the degrees of freedom of the calculated tests are sufficiently large. 

Performance measures based on squares such as the signal correlation or squared 

errors are not used because our interest is in squared returns and the fourth moment 

of the distribution of returns may not be finite, as discussed in Section 5 .4.2. 

8.4.2 Performance of ARCH-Type Models 

In Table 8.6, the results for the different performance measures are presented for 

the most traded FX rate, USD-DEM, for the static and dynamic optimizations. In 

parentheses, the results for the scaled forecasts are presented. For all measures, 

three parameter models perform better than the benchmark and the EMA-HAR CH 

performs the best. The forecast accuracy is remarkable for all ARCH-type models. 

In more than two-thirds of the cases, the forecast direction is correctly predicted 

and the mean absolute errors are smaller than the benchmark errors for all models. 

The realized potential measure shows that the forecast of volatility change is ac­

curate not only for small lsr I but also for large ones. The condition expressed in 

Equation 8.42 is always satisfied for all models. Neither the scaled forecast nor 

the dynamic optimization seems to significantly improve the forecasting accuracy. 

The realized potential Qr is the only measure that consistently improves with 
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8.4 FORECASTING SHORT-TERM VOLATILITY 247 

dynamic optimization. Examining the model coefficients computed in moving 

samples shows that they oscillate around mean values. No structural changes in 

the coefficients were detected. The accuracy improvement in Qr together with 

the loss in Q f in the case of dynamic optimization indicates that the prediction 

oflarge movements is improved at the cost of the prediction of direction of small 

real movements. From the point of view of forecasting short-term volatility, the 

EMA-HARCH is the best of the models considered here and compares favorably 

to HARCH. Similar conclusions can be drawn from the results for four other FX 

rates. 11 The cross rate JPY-DEM presents results slightly less accurate than the 

other currencies, but it should be noted that the early half of the sample has been 

synthetically computed from USD-DEM and USD-JPY. This may lead to noise in 

the computation of hourly volatility and affect the forecast quality. 

11 The interested reader will find them m Dacorogna et al. ( 1998b ), where similar tables are listed 

for USD-JPY, GBP-USD, USD-CHF, and DE~-JPY. 
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9 
FORECASTING RISK AND RETURN 

9.1 INTRODUCTION TO FORECASTING 

This section examines forecasting models for different variables. The predicted 

variable should be observable, so the forecasts and the true variable values can be 

compared in the future to allow for statistical forecast quality tests. The following 

variables can be predicted: 

• The absolute size of future returns. This can be done in different mathemat­

ical forms, one of them using realized volatility as defined in Section 3.2.4. 

We ignore the direction of the future price returns here and assume their 

probability distribution function to be symmetric by default. Under this 

assumption, the chosen forecast variable also measures the risk of holding 

a position in the financial asset. 

• The future return over the forecast period, including its sign. This also 

implies a price forecast because the future price is the price now plus the 

future return. 

• A full probability distribution function of future returns. This is the most 

comprehensive goal. Given the natural uncertainty of forecasting, we are 

rarely able or willing to forecast details of the distribution function, and 

we are more than happy to have good forecasts of its center and its width. 

248 
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There are basically two approaches for constructing forecasting models. The 

foreign exchange market again serves as our main example. The first approach 

builds upon structural economic models testing various fonns of market efficiency1 

or the study of the issues such as the purchasing power parity model and the 

modeling ofriskpremia (see Baillie and McMahon, 1989; MacDonald and Taylor, 

1992). Meese and Rogoff (1983) carried out the first comprehensive out-of-sample 

tests of these models, which they call structural models. 
Models following the second approach are often called time series models 

and are based on infonnation extracted from the past of the time series through 

various forms of linear and nonlinear statistical operators and prefiltering tech­

niques. These types of models can be univariate or multivariate.2 In this chapter, 

we adopt the second approach and study univariate time series models by utilizing 

only past prices to forecast a given series. There are two main motivations for 

this approach. First, the absence of any theory for the short-term movements of 

the foreign exchange (FX) rates makes the structural models irrelevant for these 

horizons. Second, the availability of high-frequency data can capture many of the 

market effects that are relevant to the short-term movements, (e.g., the behavior 

of different market participants). 
The forecasting models presented in this chapter are univariate where only 

one time series is predicted. They are univariate not only in the predicted target 

variable but also in the information set used. Multivariate forecasting as an impor­

tant but complex subject is not discussed here, but Chapter 10 has some relevant 

discussions. 
The models work with high-frequency data as described by Chapter 2 and 

take into account every tick in the market. The predicted quantity (e.g., the price 

or future realized volatility) is related to a time horizon, (e.g., the return of the 

next hour or the volatility of one full business day from now.) The use of high­

frequency data allows us to make short-tenn forecasts for time intervals less than 

a day. This leads to a large number of observed forecast intervals and thus high 

statistical significance. 
In principle, the knowledge of the "true" data-generating process in the sense 

of Chapter 8 should also lead to the "true" forecasting model. We have indeed 

used statistical processes to generate forecasts and measured the success of these 

statistical processes in terms of their forecasting quality in Chapter 8. In practice, 

the way from a statistical process to a good forecasting model is not as straight­

forward. Many otherwise popular statistical processes have serious shortcomings 

when looking at the intradaily and temporally aggregated behavior, as shown in 

Section 8.2. Moreover, the statitical processes of that section are volatility models. 

The price aspect of these models is trivial by having the current price as expecta­

tion value for future prices. When moving to forecasting models, we can be more 

ambitious by also constructing nontrivial price forecasts. We also introduce new 

1 The reader may refer to Fama(! 970, 1991 ). 
2 Granger and Newbold (1977) and Priestley (1989) are introductions to these types of models. 
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250 CHAPTER 9 FORECASTING RISK AND RETURN 

testing methods for forecasts. Thus the two topics, data-generating processes and 

forecasting, are only loosely related. 
Forecasting models can be tested by comparing the forecasts to the actual 

values of the predicted variable. A possible test criterion is the standard deviation 

of the forecasts from the actual values. Different test criteria can be computed 

by statistical means, using a test data sample as discussed in Section 9.4. The 

test result consists of not only a quantitative quality measure but also a statistical 

significance measure of this quality. The test sample can also be used to optimize 

the forecasting model and its parameters. In that case, the resulting optimized 

model should be tested in another sample (i.e., out-of-sample). The test results of 

the original sample (in-sample) cannot be used as an unbiased measure; they only 

give an upper limit of the otherwise unknown forecasting model quality. 

Two examples of univariate time series models are given: volatility forecast­

ing models used for risk assessment in Section 9.2 and a large real-time price 

forecasting system with live data feeds in Sections 9.3 and 9.4.3.3 

9.2 FORECASTING VOLATILITY FOR VALUE-AT-RISK 

Risk can be measured by different means, for example, through an extreme value 

analysis as in Sections 5.4.2 and 5.4.3. Here we follow a simpler approach by 

regarding volatility as the variable that determines the risk. This is also the view 

of popular risk assessment methods. In these methods, the volatility value is 

inserted in a standard model to compute the Value-at-Risk (VaR): the expected loss 

of a portfolio after one business day corresponding to the 1 % quantile, 4 (i.e., in a 

scenario that is worse than 99% of the expected cases and better than the remaining 

1%). Inserting a volatility figure (computed from variances and covariances of 

returns of the portfolio assets) may not be enough to compute a reliable VaR. This 

is discussed by Dave and Stahl (1998), but is not the focus of interest here. 

The required volatility value is in fact a volatility forecast for the period from 

"now" to "now plus one business day." In this section, we discuss univariate 

volatility forecasting models. Multivariate volatility models need separate treat­

ment because they depend on the intradaily covariance or correlation between 

assets. This poses some problems as discussed in Chapter 10. 

9.2.1 Three Simple Volatility Forecasting Models 

Muller (2000) has a discussion of volatility forecasts based on time series operators 

as presented in Section 3.3. Following that paper, we consider three operator­

based volatility forecasting methods of increasing sophistication and quality: ( 1) 

the volatility forecasts of RiskMetrics ™ developed by J. P. Morgan (1996) as a 

3 This forecasting model is running in real time as a part of the Olsen & Associates Information 
System (OIS). 

4 Our scientific interest also extends to forecast intervals other than one business day and quantiles 
other than 1 %, of course. 
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well-known example, (2) an improved version based on tick-by-tick data, and (3) 

a further improved multi-horizon version. 

All of these volatility models can be seen as observations of volatility in the 

past (i.e., realized volatility measurements as Equations 3.8 or 3.68, for exam­

ple). However, the models are intended to be applied to the future. The computed 

volatility values, although measured in the past, are estimates of the future volatil­

ity and thus measures of risk. Autoregressive heteroskedasticity as discussed in 

Section 5.6.1 is the stylized fact that justifies using a certain past volatility as an 

estimate of future volatility. Section 9 .3 has another approach where the volatility 

forecast is no longer a realized volatility of the past, and Section 8.4.2 considers 

volatility forecasts directly derived from statistical processes. 

The RiskMetrics methodology uses a well-known example of a simple volatil­

ity forecast based on an IGARCH process with the following conditional expec­

tation of the squared return: 

with µ, = 0.94. This formula is evaluated only once per business day, at a given 

daytime; the resulting volatility value is valid until it is replaced by a new one, 

one business day later. The time scale t is thus a business time scale omitting 

weekends, with !::,,t = 1 business day. Equation 9.1 is an exponential moving 

average (EMA) iteration as explained in Section 3.3.5 and can be written as such, 

using the notation of Equation 3 .51, 

(9.2) 

evaluated at discrete time points separated by !::,,t = 1 business day, with an EMA 

range ofr = µ,/ (1- µ,) = 15.67 business days. The EMA operator is explained in 

Section 3.3.5, but Equation 3.52 has to be replaced here by a version for discrete, 

homogeneous time series, 

1 r 
µ,=v= = 

l+a r+l 
(9.3) 

as explained by Muller (1991). The only parameter,µ, = 0.94, has been chosen 

to optimize the volatility forecasting quality of Equation 9.1 over a wide range of 

financial assets and test periods according to J. P. Morgan (1996). 

In Figure 9 .1, two volatilities are presented. The difference between the two 

curves solely originates from the choice of daytime when the price x is sampled 

and the volatility is computed by Equation 9.1 or 9.2. One curve is sampled at 

7 a.m. (Greenwich Mean Time) GMT which is a time in the late afternoon of East 

Asian time zones or a suitable daytime for the daily risk calculations of an East 

Asian risk manager. The other curve is sampled at 5 p.m. GMT, a suitable daytime 

for a risk manager in London. 
The differences between the two curves are surprisingly large: up to 25%, an 

alarming uncertainty for risk managers. In our case, two risk managers measure 
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FIGURE 9.1 Top panel: Daily standard R1skMetrics USD-JPY volatility for January, 

1999 to February 1999. Circles: Data sampled at 7 a.m. GMT. Diamonds: Data sampled 

at 5 p.m. GMT. Bottom panel: The USD-JPY price plotted against time. 

very different volatility and thus risk levels for the same financial instrument, just 
because they live in different time zones. A difference can persist over weeks, as 

shown in Figure 9 .1. This figure is just an example. The same surprisingly strong 
effect can also be found for other financial instruments, sampling periods, choices 

of daytime, and process equations. 
Both deviating volatility values cannot be right at the same time; there must 

be an error in these values. This error is of stochastic nature; there is no systematic 

bias dependent on the daytime. In Figure 9.1, the difference between the two 

curves is neither always positive nor negative; it changes its sign. 
Figure 9.1 demonstrates the large stochastic error of the RiskMetrics method. 

The large size of this error has two main reasons: 

1. The rather small range of the kernel ofabout 16 business days. The number 
of independent observations is limited. We cannot essentially change this 
fact, because the choice of a short range is also motivated by the goal of 
fast adaptivity to new market events. 
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9.2 FORECASTING VOLATILITY FOR VALUE-AT-RISK 253 

2. The results depend on only one observation per day, taken at a certain 

daytime. All the other information on prices of the day is thrown away. 

The value at that daytime may have little representation for the full day: 

it may be located on top of a short-lived local peak of the price curve. 

The second investigated volatility forecasting model was introduced by Muller 

(2000). It follows RiskMetrics as closely as possible. There are only two innova­

tive modifications: 

■ The squared volatility a 2(t) is computed at every available tick, not only 

once per business day. 

■ Simple returns are replaced by operator-based, smoothed returns. 

Nothing is changed otherwise; the sampling range of 15.67 business days and the 

business-daily nature of ( smoothed) returns are preserved. The formula is again 

written with the help of time series operators: 

a 2 = cEMA[-r; (x EMA[LH, 4; x])2] (9.4) 

again with t!,.t I business day and -r = 15.67 business days. Equation 9.4 is 

iteratively evaluated tick by tick. The iterated operator EMA[ -r, 4; x] is defined 

by Equation 3.53. As the simple EMA operator, it can be efficiently computed by 

using the iterative Equation 3 .51. 
The constant c compensates for the fact that we use smoothed returns, x -

EMA[t!,.t, 4; x], instead of the simple returns, x(t) x(t t!,.t). In the case 

of x following a Gaussian random walk, the theoretically correct value is c = 
128/93. Using this factor eliminates a systematic bias of the tick-by-tick volatility 

as compared to the RiskMetrics volatility. 
Equation 9.4 is computed on a special business time scale defined as fol­

lows. The 49 weekend hours from Friday 8 p.m. GMT to Sunday 9 p.m. GMT 

are compressed to the equivalent of only 1 hr outside the weekend. This fully 

corresponds to the time scale of RiskMetrics, which omits the weekend days. A 

more sophisticated and appropriate choice of the business time scale would be the 

ff-time of Chapter 6, but this is avoided here in order to keep the approach as close 

to RiskMetrics as possible. 
The advantages of the tick-by-tick volatility forecast are demonstrated in Fig­

ure 1.3. The volatility as a function of time appears as one continuous, consistent 

curve. We obtain volatility values at any daytime now, not just once or twice a day. 

A risk manager in London measures the risk of the instrument on the same basis as 

a risk manager in East Asia, as should be expected. The variations of the volatility 

level over time are more moderate in Figure 1.3 than the corresponding variations 

of the RiskMetrics volatility, although the kernel range of 15.67 business days is 

the same. 
The tick-by-tick volatility forecast is based on (almost) continuously over­

lapping returns. Overlapping returns lead to reduced stochastic noise of volatility 

measurements, as shown in Section 3.2.8. In addition to this, the tick-by-tick 
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volatility is based on smoothed rather than simple returns, which also leads to a 

reduction of stochastic noise. 
The third volatility model is a multiple-horizon version of the second model: 

'°'n-1 fk 2 
0"2 = Lk=O · w O"k (9.5) 

'°'n-1 fk 
L.k=O w 

with 

af = c EMA [ ro J;; (x - EMA[L\to f1t, 4; x]) 
2

] (9.6) 

where the partial volatility forecasts of Equation 9.6 are like the volatility forecasts 

of Equation 9.4. The weights J! of the partial volatility forecasts, their return 

intervals L\to f1t, and their sampling ranges ro ff are in geometric sequences and 

can be flexibly chosen and optimized by setting the parameters n (the number of 

partial forecasts), fw, L\to, f M, ro, and f,. 
The third volatility model (Equation 9.5) shares the advantages of the second 

one (Equation 9.4) and has the additional multiple-horizon property, which leads 

to superior volatility forecast quality. This is in analogy to the multiple-horizon 

EMA-HARCH process shown in Section 8.3.4, which is also superior to single­

horizon processes such as GARCH. 

9.2.2 Choosing the Best Volatility Forecasting Model 

The quality of volatility forecasting models has to be measured in statistical tests, 

comparing the forecasts to the actual values of the target variable, which is a form 

ofrealized volatility here. 
In out-of-sample tests of the three volatility forecasting models presented in 

Section 9.2.1, the tick-by-tick model of Equation 9.4 has distinctly better volatility 

forecasts than the RiskMetrics model of Equation 9.1 or 9.2. Equation 9.5 leads 

to even better volatility forecasts. 
Testing the quality of volatility forecasts implies some technical difficulties. 

First, there are several quality measures to choose from. This is discussed in Sec­

tions 9.4.1 and 8.4.1, where volatility forecasts are derived from process equations 

and tested by several criteria. 
A second difficulty lies in the bias of both realized volatility (the target vari­

able) and volatility forecasts which appears if the return intervals chosen are too 

small. This bias is discussed in Section 3.2.4 and in Andersen et al. (2000). 

Volatility forecast tests are affected by this bias. A treatment of the bias is almost 

inevitable when designing volatility forecasting models and tests based on high­

frequency returns over intervals ofless than an hour. Corsi et al. (2001) propose 

a suitable bias correction method. 
Due to these technical difficulties, there is no comprehensive study of high­

frequency volatility forecasts and their qualities yet. The final goal is the develop­

ment of a consistent methodology of risk analysis based on high-frequency data 

with superior forecasting quality: real-time risk assessment. 
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This section examines the forecasting model of Dacorogna et al. (1996). This 

model supports several forecast intervals. Hourly returns are predicted as well as 

daily, weekly, monthly, and quarterly returns. The forecasting model of returns 

relies on an underlying volatility forecast. Both the volatility and return forecasts 

use the same methodology. Volatility is treated with the help of an alternative time 

scale, the intrinsic time of the time series. 

9.3.1 Intrinsic Time 

The foreign exchange returns exhibit conditional heteroskedasticity which can be 

treated through a change of time scale. This is the second layer of our forecasting 

model on top of the business time 0--scale. Some literature followed a similar 

approach to treat the conditional heteroskedasticity, such as Stock (1988), who 

uses two types of time deformation, one based on the time series itself and one 

on business cycle variables. 5 In our approach, we also use the underlying time 

series to construct a time deformation. It is based on the scaling law defined in 

Equation 6.2 and on the price volatility: 

k 
fJ(tc) - fJ(tc-1) l.6.xlE 

r(tc) = r(tc-1) + I:!,.{} -c- (9.7) 

where t0 is the current time, the price difference is taken on the same interval as 

I:!. f}, and E and c are the scaling law inverse exponent and factor, respectively. The 

constant k is a calibration factor dependent on the particular time series. Its role 

is to keep r in line with physical time in the long run. This relationship is in fact 

the reverse of the scaling law for a particular return taken on a constant 0--time 

interval size. 
This second new time scale, the r -scale, does not directly use the physical 

time t, and does not need to have fundamental information about the behavior of 

the series. The only information needed to define the scale are the values of the 

time series themselves. Thus we have chosen to call this time scale intrinsic time. 

The consequence of using such a scale is to expand periods of high volatility and 

contract those of low volatility, thus better capturing the relative importance of 

events to the market. Any moving average based on the intrinsic time r dynam­

ically adapts its range to market events. Therefore a forecasting model based on 

the r-scale has a dynamic memory of the price history. 

There is, however, a problem when using such a time scale. The intrinsic time 

r is only known for the past, contrary to the business time scale {}, which is known 

also for the future, because it is based on average behavior. Thus a forecasting 

model for the price actually needs to be composed of two forecasting models, one 

for the intrinsic time and one for the price. The first requires forecasting of the 

size (not the direction) as time cannot flow backward. 

5 In the same paper Stock ( 1988) indicates how this approach can be compared to the ARCH models. 
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9.3.2 Model Structure 

The price generating process is far from stationary in physical time. In Sec­

tion 9 .3 .1, the geographic seasonality and conditional heteroskedasticity are mod­

eled through successive changes of the underlying time scales. After these trans­

formations, the remaining structure and the dynamics of the transformed series can 

be analyzed. The model presented in this section captures the dynamics through 

the computation of nonlinear indicators. Because the model is on the business­

time scale iJ, all equations are written in terms of this new scale. The relation to 

the physical time scale is given by Equation 6.17. 

9.3.3 A Linear Combination of Nonlinear Indicators 

The model equations are based on nonlinear indicators, which are modeled with 

moving averages. Indicators for market prices come conceptually from simple 

trading systems used in practice by market participants.6 Those trading systems 

yield buy and sell signals by evaluating an indicator function. The crossing of a 

certain threshold by the indicator on the positive side is regarded as a buy signal, 

on the negative side as a sell signal. An indicator is thus used as a predictor of a 

variable or its change, for instance, a price change (i.e., a return). 
Finding an ideal indicator, if it exists at all, would be enough to make a 

good price forecast. We, however, have no ideal indicators. Therefore there is 

need to combine different indicators appropriately to optimize their respective 

influence. Partly, the forecasting models presented here are based on a linear 

combination of price indicators zx where the relative weights are estimated by 

multiple linear regression. For a fixed forecasting horizon D. if f ( corresponding to 

a D.t f in physical time), the price forecast x f is computed with 

it 

m 

Xe + L:Cx,j(D.ifj) Zx,j(Nit, re) 

j=l 

(9.8) 

where Xe is the current price, and m is the number of indicators used in the model 

(from two to five per horizon). All the indicators are estimated in intrinsic time 

scale (r-scale). The coefficients cx,1 (D.iJJ) are estimated with a multiple linear 

regression model. 
D.it in Equation 9.8, the forecasting horizon expressed in intrinsic time, is 

not yet defined. This quantity must be computed from its own forecasting model, 

which is similar to that in Equation 9.8. The forecasting horizon, D.if, can be 

written as an intrinsic time forecast, 

m 

D.if = it - re = LC,,j(iliff) z,,1 (D.iff, ifc) (9.9) 
j=l 

6 See for instance Dunis and Feeny (1989); Murphy (1986). 
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where the forecasting model is computed in ff-scale. The coefficients Cr,j(l:..fft) 

are estimated through a multiple linear regression and z,,j (!:,.ff f, De) are the in­

trinsic time indicators. 
Contrary to most traditional forecasting models, this model does not rely on 

a fixed basic time interval but is designed with a concept of continuous time. In 

fact, the time when a price is recorded in the database is unequally spaced in 

time. Moreover, the use of the r-scale implies that our forecasting models must 

be computed simultaneously over several fixed time horizons I:.. t} f. 
Given a forecasting horizon in physical time l:..t f and the price history until 

Xe, one can compute l:..fft with Equation 6.17 and re with Equation 9.7. With a 

sufficiently large set of indicators, Zr:,j (1:..r>t, r>e), Zx,j(I:.. if, -re), and coefficients, 

c,,j(l:..fft) and Cx,j(l:..iJ1), the price forecast can be computed by choosing the 

appropriate I). f: f with Equation 9. 9 and substituting it into Equation 9 .8. In the next 

two sections, we define the indicators and study how to compute the coefficients 

Cx,j• 

9.3.4 Moving Averages, Momenta, and Indicators 

In Equations 9 .8 and 9 .9, the indicators are based on momenta, which are based on 

moving averages. In particular, we work with exponential moving averages (EMA) 

because they may be conveniently expressed in terms of recursion formulae (see 

Chapter 3). 
The momentum indicator is 

(9.10) 

which compares the most recent price to its own exponential moving average 

(EMA), using the notation in Section 3.3.5 and computed by the recursion formula 

of Equation 3.51. This is done by using intrinsic time as the time scale. It is 

also possible to define the first and the second momenta. The first momentum, 

mi1\ is the difference of two exponential moving averages (or momenta) with 

different ranges. This can be considered as the first derivative of x ( r). The second 

momentum, mfl, is the linear combination of three exponential moving averages 

(or momenta) with different ranges, which provide information on the curvature 

of the series over a certain past history. 

In section 9 .3 .3 we introduce the concept of indicators. Here we want to define 

those that are used in our forecasting models. 

There are a large number of technical indicators (Murphy, 1986; Dunis and 

Feeny, 1989) and momenta indicators are widely used in technical trading systems. 

We limit our focus on momenta type indicators. Following Equation 9.8, let an 

indicator for returns with a range 1:..-rr, zx(l:..-rr, "l"c) be defined as follows: 

(9.11) 
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0 
Momentum 

10 

FIGURE 9.2 The nonlinear function for computing the momentum indicator. This 

function is presented for different values of the parameter p. 

where mi0 \D.r,, re) are nonnalized momenta of order o ofreturns, m!ax is the 

maximum value the indicator can take, and the power p is the accentuator of the 

indicator movements. In the case of price indicators, p must be an odd number 

to keep the sign of the moving average. The shape of the nonlinear function 
is illustrated in Figure 9.2 for different powers p and for a mmax of one. This 

functional shape illustrates how the indicator plays the role of a primitive trading 

system. If the momentum has a high positive or negative value, the indicator Zx 

saturates, which is when the indicator is fully exposed in a long or short position. 

The power p both plays the role of a threshold (no threshold if p = 1) and 

influences how the model approaches its full long or short position. The m!ax 

value plays the role of the quantity of capital invested and also influences the shape 

of the indicator function. 
The definition given in Equation 9 .11 can easily be extended to other types of 

problems. For instance, the same definition can be used for constructing indicators 
for the intrinsic time in the rt-scale, z, (llifr, rte) where the parameters are now 

defined as functions of re computed using Equation 9.7 on the rt-scale. The 

function r ( -6) is a monotonic positive definite function so that all of its momenta 
are positive. 7 When the function is raised to an even power, only the upper right 

quadrant of Figure 9.2 becomes relevant. The primitive trading system analogy 

does not work in this case but the emphasis on large movements can be avoided 

by leveling off the indicator. 
In the implementation of this algorithm, the indicators are continuously up­

dated. Every new price received from the market makers causes the model to 

7 Time never flows backward. 
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recompute all its indicators for all the horizons. It then updates the forecasts for 
each time horizon. 

9.3.5 Continuous Coefficient Update 

The forecasting model environment is such that the indicators and the correspond­
ing coefficients are continuously updated. Each coefficient (cx,j, cr,j) is updated 
by estimating the model in the most recent past history. The length of the past 
history is a function of the forecasting horizon. 8 The motivation for horizon­
dependent finite samples for optimization is motivated from the fact that there are 
different regimes in the market and short-term horizons are particularly sensitive 
to them. Furthermore, short-term traders are not influenced by a past much older 
than 3 months. The use of samples extending into the far past to optimize short 
forecasting horizons will make the model less adaptive to regime changes. 

Adaptation to long-term regime or structural changes is enabled by re-eva­
luation of the optimization as soon as enough new infonnation becomes available. 
The optimization sample size is kept fixed (in t';f-time), rolled forward, and then 
linear regression is reapplied to the new sample. This technique is similar to that 
used in Schinasi and Swamy (1989) and Swamy and Schinasi (1989) except that 
we use a fixed sample size while they add on the new data to their sample. The 
model is optimized through the usual generalized least-square method, except for 
two modifications. 

Our forecasting models run in real time and the continuous reoptimization can 
generate instabilities ( rapid jump from positive to negative forecast) when standard 
linear regression techniques are used. The instabilities originate from both the 
indicators and their coefficients in the linear combination (Equations 9 .8 and 9 .9). 
The indicators are moderately volatile and we avoid indicators that are too volatile 
by limiting the power of the exponents in the indicator construction to 3 for simple 
momenta and 7 for higher momenta. Moderately volatile indicators can cause 
instabilities only if their coefficients are large. The coefficients are less volatile 
than the indicators ( due to the large optimization samples), but they may have high 
values if the regression by which they are optimized is near-singular because ofhigh 
correlation between the indicators. Within a particular sample, the high positive 
and negative coefficients typical in the solution of a near-singular regression matrix 
would balance each other out. However, as soon as these coefficients are used with 
changing indicator values outside this sample, the equilibrium is lost and the high 
coefficients may boost the forecast signal. We have already eliminated one source 
ofnear-singularity by avoiding indicators that are too similar in the same forecast. 

The standard regression technique is applied under the assumption of precise 
regressors and a dependent variable with a Gaussian error. Our regressors (indi­
cators), however, originate from the same database as the dependent variable (the 
return); thus, they are prone to database errors (missing data, badly filtered data, 
and so on) and to errors in the construction of the t';f and -z: time scales. Taking into 

8 A few months for hourly forecasts, up to a few years for 3-mon1h forecasts. 
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account the regressor errors allows a solution to the problem of near-singularities 

in a natural way. Instead of considering the /h regressor Zj,i at the i th observation 

(where we have dropped the variable index and the horizon for ease of notation), 

we consider the imprecise regressors Zj,i = ZJ,i + e J,i where e j,i is the random 

error with variance of rl times that of z 1 . We call the small parameter g the typical 

relative error of the indicators and we assume it is roughly the same for all indica­

tors of the type we defined in Section 9.3.4. Without going into the details of the 

calculation, such a change modifies the final version of the system of k equations. 

The kth equation can be written as follows: 

m N 

Z::>j (1 + e2 Djk) LWi Zj,i Zk,i 

J=I i=I 

N 

= LW; Y; Zk,i 

i=I 

(9.12) 

where N is the number of observations used in the regression, m is the number 

of indicators (same as in Equation 9.8), wi is a weighting function depending 

on the type of moving averages used (here it is an exponential), and 8 jk is the 

usual Kronecker symbol: 1 for j = k and 0 for j -=fa k. The quantity Yi is the 

usual response term of the regression: x(iJ; + J',,.iJJ) - x(iJ,). There is only one 

addition to the original regression: the diagonal elements of the system matrix are 

multiplied by a constant factor 1 + {/, slightly greater than 1. 

The effect of increasing diagonal values of the original matrix by the factor 

g2 is to guarantee a minimum regularity of the modified matrix even if the original 

one is near-singular or even singular. The variable rl can be interpreted as the 

parameter of this minimum regularity. This desired effect is also accompanied 

by a slight decrease of the absolute values of the coefficients c J, because the 

right-hand side of the equation system remains unaffected by the modification. 

The decreases are insignificant, the only exceptions being for coefficients inflated 

by near-singularity in the original regression: there, the absolute values decrease 

substantially, which is what we want anyway. 
The other departure from the usual regression technique is a modification of 

the regression response Yi necessitated by the leptokurtic behavior of returns. The 

forecast signals are much less leptokurtic than the returns, hence the optimization 

is dominated by exceptionally large real price movements rather than the "normal" 

price movements. This is also accentuated by the fact that it is squared returns 

that enter into the computation of the least square fit. Furthermore, the users of 

our forecasting models are more interested in the correct direction of the forecast 

than in the absolute size of a return forecast. A pure linear regression is thus 

inappropriate. 
The minimization of the sum of squared deviations, however, has an important 

advantage: it can be reached by solving a system oflinear equations. Theoretically 

though, the least sum of squares could be replaced by any utility function. Our 

problem is thus to find, within the framework of the regression technique, a more 

appropriate optimization ( or utility) function. The best way to achieve this goal 
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is through a mapping function of the returns: the forecast should fit the mapped 

returns Yi rather than the real returns Yi . 
A suitable mapping function makes the mapped returns less leptokurtic than 

the original ones. The rest of the regression problem remains unchanged. The 

desired effects can be obtained with an underproportional mapping function pre­

senting the following properties: 

■ Small returns should be amplified when considered in the regression, in 

order to establish a sufficient penalty against forecasts of the wrong direc­

tion. 

■ Large returns should be reduced when considered in the regression, so the 

distribution function of mapped returns is no longer leptokurtic. 

■ The mapping effects should decrease with the increasing time horizon size. 

The choice of such a mapping function M is arbitrary provided it has the above 

properties. The one function used in our model is 

(9.13) 

with the parameters A, B, and a depending on the time horizon b.tft· The same 

parameters are used for all different FX rates. They have been calibrated by trial 

and error in order to keep the full sample variance of the mapped returns on the same 

level as that of the original returns. The parameter a must follow the condition 

0 s a < 0. 5 because the mapping function must be an underproportional bijection. 

9.4 MEASURING FORECAST QUALITY 

Two questions are relevant for testing any forecasting model of foreign exchange 

(FX) rates: 

■ What data should be used for testing? 

■ What is a good measure of forecasting accuracy? 

Since the classical paper by Meese and Rogoff (1983), researchers in this field have 

been aware of the need for out-of-sample tests to truly check the forecast validity. 

Because of the statistical nature of FX rates, there would be little significance in 

the forecast accuracy measured on the same data that were used for optimizing the 

models. The real test comes when the model is run on data that were not used in 

constructing the model. In our case, our model being run in real-time, we have 

a continuous out-of-sample test. Besides the question of in and out-of-sample, 

there is a question as to what constitutes the relevant quantity for measuring the 

accuracy of forecasting methods. In Makridakis et al. (1983) the main measures 

are reviewed. We limit ourselves here to presenting the reasons as to why we chose 

certain types of measures and how we compute the uncertainty of these measures. 
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9.4.1 Appropriate Measures of Forecast Accuracy 

Most standard measures rely on the mean square error (MSE) and the mean ab­

solute error (MAE) for each time horizon. These errors are then compared to the 

similar ones produced by a naive forecasting model serving as a benchmark. One 

naive model may be the random walk forecast where expected returns are zero 

and the best forecast for the future is the current price. These accuracy measures 

are, however, all parametric in the sense that they rely on the desirable proper­

ties of means and variances, which occur when the underlying distributions are 

normal. The selection of the random walk model to derive the benchmark MSE 

or MAE is inherently inappropriate. It is in effect comparing the price volatility 

(MSE or MAE) with the forecasting error. There is no reason to expect that the 

heteroskedasticity and the leptokurticity of returns would not affect their MSE 

or MAE for a particular horizon. Thus the significance of their comparison with 

the forecast MSE or MAE is unclear. It might only reflect the properties of price 

volatility. 
Such considerations have led us to formulate here nonparametric methods of 

analyzing forecast accuracy. These are generally "distribution free" measures in 

that they do not assume a normally distributed population and so can be used when 

this assumption is not valid. One measure that has this desirable property is the 

percentage of forecasts in the right direction. To a trader, for instance, it is more 

important to correctly forecast the direction (up or down) of any trend than its 

magnitude. We term this measure the direction quality, also known as the sign 

test: 

N({Xf I (Xf-Xe)(XJ-Xe) > O}) 

N({Xf I (Xf -Xc)(Xf -Xe)# 0}) 
(9.14) 

where N is a function that gives the number of elements of a particular set of 

variables {x }, and Xe and .x f have the same definition as in Equation 9.8. We give 

the forecasting horizon in physical time l::i.t f because the quality must be measured 

in the time scale in which people look at the forecasts. It should be clarified here 

that this definition does not test the cases where either the forecast is the same as 

the current price or when the price at time lJc + l::i.iJ I is the same as the current 

one. To illustrate this problem, let us note that the random walk forecast cannot 

be measured by this definition. Other definitions could be used, like counting the 

case when the direction is zero as half right and half wrong. Excluding the cases 

where one of the two variables is zero would be a problem if this would occur very 

often. Our results show that it only occurs quite seldom and for the real signal 

(x f - Xe) (few percent of the observations on the very short horizons) and almost 

never for the forecast signal (it - x0 ). 

Unlike more conventional forecasts, for instance, a weather forecast, an FX 

rate forecast is valuable even when its direction quality is slightly above 50% and 

statistically significant. No trader expects to be right all the time. In practice we 

assume that a D significantly higher than 50% means that the forecasting model is 

better than the random walk. The problem lies in defining the word "significant." 
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9.4 MEASURING FORECAST QUALITY 263 

As much as one would like to be independent of the random walk assumption, we 

are still forced to go back to it in one way or the other, as here, when we want 
to define the significance level of the direction quality. As a first approximation, 
we define the significance level as the 95% confidence level of the random walk: 

1.96 
O'D ~ --

2 ./ii 
(9.15) 

where n is the number of tests. The factor 2 comes from the assumption of an 
equal probability of having positive or negative signals. It is a similar problem to 

the one of tossing a coin. 
Another measure we use in conjunction with the previous one is the signal 

correlation between the forecasting signal and the real price signal: 

(9.16) 

where n' is the number of possible measures in the full sample, n the number 

of full forecasting horizons in the full sample, and i 1 is n - n1
• Here again the 

forecasting horizon is given in physical time, flt f. We estimate the significance 

of this quantity using 1.96/N. 
Both the direction quality and the signal correlation unfortunately have a slight 

drawback. They do not provide a measure of the forecast effectiveness. Neverthe­
less, we believe that they are superior to standard measures due to the nonnormality 
of the return distributions. The direction quality, which for all practical purposes 
is the most relevant indication of the forecast, and the signal correlation must be 
highly significant before we accept a model as being "satisfactory." 

9.4.2 Empirical Results for the Multi-Horizon Model 

Optimization consists of two distinct, but interrelated operations, corresponding 
to the two main types of parameters in the models. The linear model coefficients 
C-r,j and cx,J are optimized through least squares (see Section 9.3.5), and under 
the control of this process, always fulfill the strict out-of-sample condition when 
applied to a forecast. On the other hand, the nonlinear parameters of the indicators 
described in Section 9.3.4 must be optimized by trial and error to meet the above 
criteria: the direction quality and the signal correlation. The data set used in 
selecting the best combination of indicators is termed the in-sample period where 
the model parameters are fully optimized. 

In Table 9.1 we indicate how our sample is divided to satisfy the different 
requirements of model initialization, in-sample optimization, and out-of-sample 
tests. The initialization period is needed for both initializing the different EMAs 
(seethe discussion in Section 3.3 .3) and computing the first set oflinear coefficients 
C-r,j and cx,j• The results presented in the next section are computed over two 
specific periods using our database of intraday market makers' quotes. The first 
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264 CHAPTER 9 FORECASTING RISK AND RETURN 

TABLE 9.1 The sampling periods of the forecast study. 

The data samples used for initialization, model training (in-sample), and testing (out-of­

sample). 

Data range Data types Data size Usage 

June I, 1973, to Feb. 2, 1986 Daily data 152 months Model initialization 

Feb. 3, 1986, to Dec. 1, 1986 Intraday 10 months Model mitialization 

Dec, I, 1986, to Sep. I, 1990 Intraday 46 months In-sample period 

Sep. 3, 1990, to Nov. 3, 1992 Intraday 25 months Out-of-sample tests 

runs from December 1, 1986, to September 1, 1990 (46 months), and is our in­

sample period. The second runs from September 3, 1990, to October 3, 1992 (25 

months). This second period is pure post ex-ante testing-that is, data from this 

period were not used at all for building the model. These 25 months constitute our 

out-of-sample test. 

9.4.3 Forecast Effectiveness in lntraday Horizons 

The forecast horizons here are for 2, 4, and 8 hr. This choice was made for two 

reasons. First, there is almost no literature to study models for such short horizons. 

Second, the statistical significance of the findings can be enhanced due to a large 

number of observations within a few years at the intraday frequency. 

The quality measures are computed for each time horizon at an interval of 1/12 

of the horizon. As mentioned earlier, the forecast accuracy is always measured 

in the physical time scale because it is in this scale that the different forecasts 

are useful. The number of relevant points in the statistical computation varies 

depending on the horizon and on the number of missing data for the different 

currencies. For the 2 hr horizon it varies from around 70,000 tests to 140,000, 

for 4 hr from 35,000 to 70,000, and for 8 hr 24,000 to 37,000. These very large 

numbers ensure that our statistical results are highly significant. We currently 

have 41 currencies running on the Olsen Information System (OIS), but in order 

not to overwhelm this study with numbers, we only show results for the 10 most 

important FX rates against the USD and 10 of the most traded cross rates. For the 

other currencies the results are very similar. The direction quality and the signal 

correlation are given in percentage for the in and out-of-sample testing periods 

in Table 9.2 for the USD rates and in Table 9.3 for the cross rates. Juxtaposing 

both results show clearly that, except for the 2 hr in the USD rates and for GBP­

USD, the quality achieved in-sample is in most cases maintained out-of-sample 

and sometimes even slightly improved. 
In Table 9.4 we summarize the significance of these results. For each horizon 

and for each currency we write a"+" sign if both the direction quality and the 

signal correlation are above the significance levels computed using Equation 9. 15 

for the direction quality and 1. 96 / .J';, for the signal correlation. If one of the two 
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9.4 MEASURING FORECAST QUALITY 265 

TABLE 9.2 Direction quality and signal correlation for 10 USD rates. 

Direction quality and signal correlation, in-sample and out-of-sample, for 9 FX rates and 

gold price against the USO. The numbers are expressed in percentage. 

FX Hor. Direction Correlation FX Hor. Direction Correlation 

USD-DEM 2hr 52.1 / 51.6 +2.8 / +0.7 USD-NLG 2hr 51.5 / 50.8 +2.01-0.0 

4hr 52.6 / 52.1 +4.9/+3.0 4hr 51.5/51.8 +1.9 / +1.2 

8hr 52.0 I 52.5 +2.8 / +2.0 8hr 50.5 / 51.8 +0.1 / +3.2 

USD-JPY 2hr 51.5 I 52.2 +1.8 / +3.2 USD-ITL 2hr 51.5 / 50.8 +1.6/-1.3 

4hr 51.7 I 52.9 +2.1 I +6.0 4hr 51.8/ 51.8 +2.4 / +1.4 

8hr 51.8 / 52.1 +4.0 I +5.4 8hr 51.7/52.4 + 1.9 / +4.3 

GBP-USD 2hr 51.8 / 50.5 +1.1 /-1.9 USD-CAD 2hr 51.8 / 52.6 +3.0 I +3.5 

4hr 51.5/51.7 +1.6 I +0.9 4hr 51.9/52.9 +4.8 / +5.2 

8hr 50.6 I 51.3 +1.9 I +2.1 8hr 52.4 I 53.6 +2.9 I +6.0 

USD-CHF 2hr 51.5 I 51.2 +!.7 I -0.7 AUD-USD 2hr 51.8/ 53.4 +0.8 / +3.5 

4hr 52.2 I 52.1 +2.7 / +1.9 4hr 51.7 I 54.2 +2.7 I +6.5 

8hr 52.5 / 51.5 +2.4 / -0.4 8hr 51.4 / 53.7 +4.0 I +6.1 

USD-FRF 2hr 51.0 I 50.8 +I.I /-0.4 XAU-USD 2hr 52.5153.0 +3.5 / +2.3 

4hr 52.2 / 51.6 +3.1/+2.2 4hr 53.5/53.1 +4.3 / +3.8 

8hr 50.7 I 51.5 +0.1 I +o.4 8hr 53.5 I 52.9 +3.9 / +2.9 

measures or both are below the significance level we write a"-" sign. Except for 

two USD rates (GBP-USD and USD-FRF), two cross rates (CAD-CHF and XAU­

CHF), and the 2 hr horizon for the USD rates, which do not sustain conclusively 

the out-of-sample test, the other cases confirm the success of the model. The 2 hr 

cross-rates pass the out-of-sample test for 80% of the cases (only 40% of the cases 

for the USD rates) and the 4 hr for 80% and 8 hr for 90% of the cases. The USD 

rates for the 4 hr pass the test in 90% of the cases and for 8 hr in 80% of the cases. 

In this chapter, we have shown that with the help of high-frequency data 

the statistical properties of FX rates can be better understood and that specifying 

forecasting models for very short-term horizons is possible. These models contain 

ingredients all designed to better capture the dynamics at work in the FX market. 

The most important characteristics of the models are as follows: 

■ Univariate time analysis type of model but based on intraday nonhomo­

geneous data, 

■ Variable time scales to capture both the seasonal heteroskedasticity (JJ­

scale) and the autoregressive conditional heteroskedasticity ( r-scale) 

■ Linear combination of nonlinear indicators 

■ Multiple linearregression with two modifications to avoid instabilities and 

to correct for the leptokurtic behavior of the returns 
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266 CHAPTER 9 FORECASTING RJSK AND RETURN 

TABLE 9.3 Direction quality and signal correlation for 10 cross rates. 

Direction quality and signal correlation, in-sample and out-of-sample, for 9 FX cross rates 

and gold price. The numbers are expressed in percentage. 

FX Hor. Direction Correlation FX Hor. Direction Correlation 

JPY-DEM 2hr 52.5 / 51.7 +2.3 /+l.0 GBP-CHF 2hr 54.4 I 55.1 +7.4/ +6.5 

4hr 51.8 / 51.0 +3.0 I +2.5 4hr 53.5 / 54.1 +6.2 / +5.0 

8hr 52.0 / 51.0 +4.0 I +1.3 8hr 53.8 / 54.2 +6.4 I +8.0 

GBP-DEM 2hr 54.0 I 55.2 +6.1 I +5.6 JPY-CHF 2hr 52.6/51.7 +3.1 /+o.9 

4hr 53.3 I 54.5 +5.3 I +4.4 4hr 52.2 / 50.8 +3.5 / +2.1 

8hr 53.3 I 54.2 +4.7 /+8.7 8hr 54.1 / 51.4 +9.1/+!.5 

CHF-DEM 2hr 57.1 I 55.5 +12.5 / +8.1 GBP-JPY 2hr 52.8 / 53.3 +4.5 I +4.0 

4hr 54.9 I 54.6 +9.7 I +6.2 4hr 52.3 I 53.0 +4.6 I +4.8 

8hr 55.2 I 54.4 +10.0 I +6.7 8hr 52.8 / 52.8 +6.5 I +6.2 

FRF-DEM 2hr 62.0 I 62.7 +20.4 / +22.0 CAD-CHF 2hr 51.1 I 51.2 + 1.9 I -0.4 

4hr 59.7 I 59.5 +15.0/+16.1 4hr 52.0 / 51.7 +2.6 I +0.4 

8hr 57.6 / 56.3 +14.3/+13.2 8hr 52.3/51.8 +4.3 I +1.6 

DEM-AUD 2hr 51.4/51.1 +2.5 / +1.2 XAU-CHF 2hr 51.0 / 50.6 +1,0 / -0.8 

4hr 51.2/51.1 +3.1 /+2.1 4hr 52.1 / 51.0 +3.2 I -0.2 

8hr 50.5 I 51.2 +4.0 I +3.2 8hr 52.0 I 52.4 +3.0 I +5.1 

■ Continuous optimization of the model coefficients in a finite size, fore­

casting horizon-dependent sample. 

The forecast quality of these models is evaluated on a very large sample with 

two different measures that avoid statistical problems arising from the nature of 

the FX rate time series. The rigorous separation of in and out-of-sample measures, 

the large number of observations, and the stringent significance levels mean that 

the statistical results of the forecast evaluation are convincing evidence for our 

models having beat the random walk for most of the 20 studied currencies and for 

the very short-term forecasting horizons. These results are also corroborated by 

those we obtain on the other 21 rates that run on the Olsen Information System 

(OIS). 
What are the consequences of such results on the economic theory of market 

efficiency? We believe that they point to the extension and improvement of meth­

ods and tools for defining and analyzing market efficiency. The accepted theory 

was probably never conceived for such short horizons, and even more important, it 

takes an unrealistic view of market response to new information. Being developed 

only in a statistical framework, the theory assumes that economic actors integrate 

new price information instantaneously, and very little attention is paid to the time 

needed for a piece of information to be available to all market participants and to 

the diverse interpretation of that information. In the context of very short time 

horizons these factors play critical roles in market adjustments. It is reasonable 
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9.4 MEASURING FORECAST QUALITY 267 

TABLE9.4 Significance of the forecast quality for 20 exchange rates. 

The in-sample and out-of-sample forecast significance for 10 USD rates and 10 cross rates. 

The "+" sign indicates a forecast quality above the significance limits of all test criteria, 

otherwise the"." sign is used. Example: "+/-" means a significant in-sample quality and an 

insignificant out-of-sample quality. 

2 hr USD-DEM +!- USD-NLG +!- JPY-DEM +/+ GBP-CHF +!+ 

USD-JPY +!+ USD-ITL +/. GBP-DEM +I+ JPY-CHF +/+ 

GBP-USD +/- USD-CAD +/+ CHF-DEM +/+ GBP-JPY +/+ 

USD-CHF +/. AUD-USD +/+ FRF-DEM +/+ CAD-CHF +/. 

USD-FRF +/- XAU-USD +/+ DEM-AUD +/+ XAU-CHF +/-

4hr USD-DEM +/+ USD-NLG +/+ JPY-DEM +!+ GBP-CHF +!+ 

USD-JPY +/+ USD-ITL +/+ GBP-DEM +!+ JPY-CHF +/+ 

GBP-USD +!- USD-CAD +!+ CHF-DEM +/+ GBP-JPY +/+ 

USD-CHF +!+ AUD-USD +/+ FRF-DEM +/+ CAD-CHF +/-

USD-FRF +/+ XAU-USD +/+ DEM-AUD +/+ XAU-CHF +/-

8 hr USD-DEM +/+ USD-NLG -/+ JPY-DEM +/- GBP-CHF +/+ 

USD-JPY +!+ USD-ITL +!+ GBP-DEM +/+ JPY-CHF +/+ 

GBP-USD +/+ USD-CAD +/+ CHF-DEM +/+ GBP-JPY +/+ 

USD-CHF ./. AUD-USD +/+ FRF-DEM +!+ CAD-CHF +/+ 

USD-FRF -/- XAU-USD +/+ DEM-AUD ./+ XAU-CHF +/+ 

to assume that the markets need a finite time to adjust to any information and that 

this time depends on the nature of the information. 

We think that these adjustments can be modeled and hence that a certain 

predictability of price movements exists. Our forecasting models, while a positive 

step in this direction, are nevertheless only a first one and there is still room for 
improvement through a better understanding and definition of intrinsic time and 

through the search for better indicators. 
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10 
CORRELATION AND 
MULTIVARIATE RISK 

10.1 INTRODUCTION 

Correlations and covariances between returns of different financial assets play an 

important role in fields such as risk management and portfolio allocation. This 

chapter addresses three problematic issues concerning linear correlation coeffi­

cients ofretums, computed from high-frequency data: 

1. The correlation of intraday, equally spaced time series derived from un­

evenly spaced tick-by-tick data deserves careful treatment if a bias result­

ing from the classical missing value problem is to be avoided. We propose 

a simple and easy-to-use method, which corrects for different data frequen­

cies and gaps by updating the linear correlation coefficient calculation with 

the aid of covolatility weights. This is a bivariate alternative to time scale 

transformations which treat heteroskedasticity by expanding periods of 

higher volatility while contracting periods oflower volatility. 

2. It is generally recognized that correlations between financial time series 

vary over time. We probe the stability of correlation as a function of 

time for 7 years ofhigh-frequency foreign exchange rate, implied forward 

interest rate, and stock index data. Correlations as functions of time in 

268 
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10.2 ESTIMATING THE DEPENDENCE OF FINANCIAL TIME SERIES 269 

tum allow for estimations of the memory that correlations have for their 

past values. 

3. It has been demonstrated that there is a dramatic decrease in correlation, 

as data frequency enters the intrahour level (the "Epps effect" 1 ). We 

characterize the Epps effect for correlations between a number of financial 

time series and suggest its possible relation to tick frequency. 

10.2 ESTIMATING THE DEPENDENCE OF FINANCIAL TIME 
SERIES 

Measuring the dependence or independence of financial time series is of increas­

ing interest to those concerned with multivariate decision formation ( e.g., in risk 

assessment or portfolio allocation). Often this is estimated quantitatively using the 

linear correlation coefficient, 2 which is a basic measurement of the dependence 

between variables. Zumbach (1997) reviews many interesting measures of asso­

ciations besides the linear correlation. The popularity of this measure stems from 

its simple definition, practical ease of use, and its straightforward results, which 

are easily interpreted, scale free, and directly comparable. Although the calcula­

tion of the correlation coefficient is well defined and rather simple, a number of 

unresolved issues exist with respect to application of the rule and interpretation of 

results in the high- frequency data domain. 

■ The data input for the correlation coefficient calculation are two time series 

with equal (i.e., homogeneous) spacing between ticks. This necessity is 

easily satisfied for low frequency (:::: one tick per week) data. However, 

the intraday case deserves more careful treatment if a resulting data bias 

is to be avoided. A problem arises when the two time series of unevenly 

spaced tick-by-tick data have different frequencies or active hours within 

a day, which may or may not overlap. We propose a simple and easy-to­

use normalization method, which corrects for frequency differentials and 

data gaps. This alternative formulation updates the correlation calculation 

only where data exists, ensuring that there is no measurement bias resulting 

from the classical missing value problem (see Krzanowski and Marriott, 

1994, 1995) or from differences in the active hours of the financial time 

series. In addition, this formulation remains scale free and straightforward 

to understand and implement. 

■ The linear correlation coefficient calculation largely discards the time vari­

able. The variances of two time series and their covariance are constructed 

I Epps (1979). 
2 The use of the linear correlation coefficient is appropriate not only for multivariate normal joint 

distributions but also for multivariate elliptical joint distributions. Many financial joint return dis­

tributions have been observed to fall into or close to tlus latter category. Also for fat-tailed return 

distributions, the linear correlation coefficient remains a useful and relevant measure of association; 

only the interpretation of results and, more specifically, the determination of accurate confidence limits 

is problematic. Correlations of squared returns from fat-tailed distributions are even more problematic. 
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either with the assumption of being constant or as a type of average value 

if value changes are recognized. It is generally accepted that correlations 

in financial time series vary over time (Longin and Solnik, 1995) and are 

even subject to correlation "breakdown" or large changes in correlation in 

critical periods. In the discussion that follows, we probe the stability of 

correlation as a function of time, for a number of financial instruments, in 

order to detetmine the relevance ofusing high-frequency data. We go on 

to investigate the manner in which present correlation values are in turn 

correlated to their past values ( autocorrelation of correlations). A model of 

the self-memory of correlation is proposed as the basis for the formulation 

of a long-tenn correlation forecast. 

• The impact of time series data frequency on correlations should also be 

clearly established. This is especially relevant as higher frequency data 

becomes more widely available and more often used in order to improve 

statistics. Previous authors have demonstrated a dramatic decrease in 

correlation as data frequency enters the intra-hour level, for both stock 

(Epps, 1979) and foreign exchange returns (see Guillaume et al., 1997; 

Low et al., 1996). This discussion attempts to characterize and investigate 

more deeply the Epps effect in a number of financial time series through 

the examination of7 years of high-frequency data. 

10.3 COVOLATILITY WEIGHTING 

The calculation of correlation coefficients is straightforward but some inconve­

nience is introduced via its simple definition. The correlation calculation requires 

two equally spaced (i.e., homogeneous) time series as input. This necessity is easily 

satisfied where low-frequency one tick per week) data are concerned. However, 

the problem requires more careful treatment at higher data frequencies where one 

cannot dictate the time or number of observations. One often faces two main prob­

lems when estimating correlation between two high-frequency time series. The 

first involves correlating two time series of inherently different frequencies. If the 

two time series are both regular with respect to data arrival intervals but of different 

frequencies, one might create from them two equally spaced, homogeneous time 

series, which both have frequencies equal to the lesser frequent of the two. This 

easy situation does not occur very often, though. It is more common to be faced 

with time series such as foreign exchange (FX) rates, where data frequency can 

vary from very few quotes to hundreds of quotes per hour. What is the best way to 

measure the dependence between an FX rate and another one that is perhaps less 

active or has activity peaks and valleys at completely different daytimes? Ideally, 

one would prefer the correlation calculation to be updated more often when more 

information exists and less often when it does not exist. A way to do this is to 

introduce a time scale that compresses physical time if there is no information 

and to expand it when it exists. This is similar to the idea presented in Chapter 6, 

where iJ-time was introduced to model volatility patterns. This method has been 
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10.3 COVOLATILITY WEIGHTING 271 

found useful for a number of applications, but is time-consuming to implement in 

practice. Moreover, we have the multivariate problem of two time series for which 

we would need a common time scale. 
A second problem arising when estimating correlation between two high­

frequency financial time series is that of missing values or data gaps. Large data 

gaps are actually an extreme case of the first problem (varying and nonmatching 

data arrival frequencies), but there is no harm in discussing the two problems sep­

arately. Despite one's best efforts, data gaps sometimes occur due to failures in the 

data acquisition chain. One can only make an educated guess about the correlation 

between two time series when such a gap occurs; it cannot be measured. More 

commonly, there are financial instruments whose time series have regular and large 

data gaps as part of their inherent character. Consider, for example, attempting to 

correlate a stock index ( e.g., the Dow Jones Industrial Average,) which exists for 8 

hr per day, 5 days per week (except holidays), with another stock index that exists 

for a similar amount of time each day but with a relatively large time shift ( e.g., the 

Financial Times I 00 index). There are a number of different schools of thought 

regarding the correlation between two financial instruments when one or both are 

not actually active. These sometimes consider derivatives of the instruments rather 

than the underlying instruments themselves. Other arguments confuse time-lagged 

correlation with direct correlation, but these are entirely different issues. When 

faced with varying activity rates and data gaps, it would be convenient to use some 

form of data interpolation to solve these problems. Unfortunately, the experience 

of many practitioners has not been reassuring (see Press et al., 1992). 

Some methods for approximating a homogeneous time series from unevenly 

spaced, tick-by-tick data involve some form of data imputation. Methods of im­

puting data vary in complexity and effectiveness and most have been found to be 

beneficial under at least some set of conditions and assumptions. However, all 

forms of imputation rely on a model, and a standard supposition is that critical 

characteristics of the data do not change between in-sample and out-of-sample pe­

riods. There is always the possibility that imputation will introduce a false bias into 

variance and covariance calculations, but nevertheless it is difficult to avoid some 

fonn of it in cases where data is not of an infinitely high frequency. Some useful 

attempts have been made to circumvent imputation all together. One interesting 

and recent example is described in de Jong and Nijman (1997). This work builds 

on efforts described in Cohen et al. (1983) and Lo and MacKinlay (1990a,b). 

The authors develop a covariance estimator, which uses irregularly spaced data 

whenever and wherever it exists in either of two time series. However, methods 

such as this one rest on the assumption that the processes generating transaction 

times and the prices themselves are independent. This assumption may be quite 

reasonable, depending on the instruments involved, but proving so is rarely trivial 

and we prefer to avoid it altogether. 

In this discussion, we propose and illustrate a simple measure of correlation 

that avoids imputation based on data models or assumptions on distributional 

characteristics. Although the inputs for this alternative measure are homogeneous 
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272 CHAPTER 10 CORRELATION AND MULTIVARIATE RISK 

time series derived through simple linear interpolation, the method filters out any 

underestimation of variances and covariances caused by lack of sampling variation. 
In addition, rather than making the strong assumption that price and transaction 
time are independent, this method makes use of the arrival time variable in order 

to compensate for the sometimes large differences that can exist in financial time 
series frequencies. Data gaps of varying size are common and we ignore any 

discussion of whether correlation actually exists during this period, because in 
any case we cannot measure it directly. Our goal is rather to develop a measure 

of correlation where infonnation exists and to avoid updating our measure where 

data do not exist, a fact that should be recalled when results are interpreted. This 
implies that a lower data frequency or data gaps in one time series may limit the 

use of another one, and the unavoidable price to pay is a certain loss of statistical 
significance. However, the method is specifically meant to measure correlations 

at high data frequencies where statistical significance is high by nature. 

10.3.1 Formulation of an Adjusted Correlation Measure 

The standard linear correlation coefficient is a measure of correlation between two 
time series bi.xi and ilYi and is defined as follows: 

with the sample means, 

t bi.Xi 

i=l n 

n 

and (t..y) = L 
n 

i=l 

(10.l) 

(10.2) 

The sample is of size T with n = T / t..t homogeneously spaced observations. 
Correlation values are unitless and may range from - 1 ( completely anti correlated) 

to 1 (completely correlated). A value of zero indicates two uncorrelated series. 
The two variables bi.x; and bi.yi are usually returns of two financial assets. In 

risk assessment (but not in portfolio allocation), the deviation ofretums from the 

zero level is often considered instead of the deviation from the sample means (bi.x) 

and (t..y). In this special case, we can insert (Llx) = (fly) 0 in Equation 10.1. 
An estimate of the local covolatility for each of these observations is defined 

by further dividing each time span (t..t) over which bi.xi and bi.Yi are calculated 
into m equal subintervals from which subretum values, Llxj and t..yj, can be ob­

tained. This redefined time series now consists of n T / t..t equally spaced return 
observations where D,.t = m6.t. The return definitions conform to Equation 3.7, 
based on logarithmic middle prices as in Equation 3.6. To obtain a homogeneous 

series, we need linear interpolation as introduced in Equation 3.2. The choice of 
linear interpolation method is essential. 

For each of the previous coarse returns, L'.lxi (as for bi.yi), there exists a corre­
sponding estimation of covolatility between the two homogeneous time series of 
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10.3 COVOLATILITY WEIGHTING 273 

returns 

m 

Wi(.6.Xj; L'lyj; M) = L (j.6.Xi-m-j - (.6.Xi-m)j · j.6.Yi•m-j - (.6.Yi-m)j)'1 

J=I 
(10.3) 

where 

m ,.-
- ""'uXi-m-j 

(.6.x;.m) = 0 
j=I m 

and (10.4) 

The most obvious choice for a is 0.5, though this can be investigated as a way to 

magnify or demagnify the weight given to farther outlying return values. A value 

of0.5 is used in all cases described in this discussion. 
Equation 10.3 formulates covolatility around the mean rather than around 

zero and it therefore follows that Wi = 0 for the case of returns derived from two 

linearly interpolated prices existing outside of our region of interest, flt. These 

covolatility estimates can be inserted as weights in all the sums computed to obtain 

the variances and covariance of the correlation calculation: 

(10.5) 

Note that .6.x; and .6.y; from Equation 10.5 are the same values as used in 

Equation 10.1, as they are logarithmic returns taken over the same time period, 

.6.t. These coarse return values can then be defined as the sum of the fine return 

values 

m 

L'lXi = L llhm- j 
j=I 

(10.6) 

The sample means (.6.x) and (.6.y) have to be reconsidered in Equation 10.5. 

In the special case of risk assessment, we can still replace them by zero. Otherwise, 

we prefer that they are calculated again in a weighted fashion so that returns are 

considered only when observations over intervals of size .6.t exist. Rather than 

keeping Equation 10.2, we define covolatility weighted mean values for both time 

series: 

'°T/.6.t 

(
.6. ) = L...,i=l (.6.x; . W;) 

X - '°T/l'lt 
L...,i=l W; 

and 
'°T/l'lt .6. .. w· 

(,6. ) = L...,i=l ( Y, ,) 
y - '°T/1:;.t . 

L...,i=I W, 

(10.7) 
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274 CHAPTER 10 CORRELATION AND MULTIVARIATE RISK 

In this way, the means are calculated over the identically weighted data sample 

also used for the rest of the correlation calculation. The weights adjust for periods 

of lower or higher activity. 
Equation 10.3 is formulated in such a way that wi = 0 for the case ofretums 

interpolated over a data gap-that is, a tick interval that fully contains the analyzed 

interval of size b.t. Data gaps have no influence on the means, and the sums of 

Equations 10.5 and 10.7 are not updated there. The covolatility adjusted measure 

of correlation described by Equation 10.5 also retains the desirable characteris­

tics of the original, standard linear correlation coefficient; it is scale free, and 

completely different measurements are directly comparable. In addition, this al­

ternative method is only slightly more complicated to implement than the standard 

linear correlation coefficient and can easily be implemented on a computer. 
As will be applied later, this correlation measure easily fits into the frame­

work of autocorrelation analysis. Given a time series of correlations [2t, it can be 

correlated with a copy of itself but with different time lags ( r) between the two, 

as shown in Equation 10.8: 

(10.8) 

for -r > 0, where 

n 

and (02) = L Ot--c (10.9) 
n -T t=,+1 

For the discussions that follow, we measure correlation using the covolatility ad­
justed method described by Equation 10.5, unless otherwise stated, and always 

with m 6 and a 0.5 (see Equation 10.3). Any subsequent use of the com­

monly recognized linear correlation coefficient (Equation 10.1) will be referred to 

as the "standard" method. 

10.3.2 Monte Carlo and Empirical Tests 

Various tests were performed on the covolatility adjusted correlation measure in 

order to test its behavior when applied to time series with differing frequencies 

and data gaps. 
A first test used synthetic Monte Carlo data to illustrate the effectiveness 

of the method. Two separate, uncorrelated, normally distributed, i.i.d. random 

time series, Ai and Bi, were produced, each with zero mean, standard deviation 

a = 0.01 and size m = IO, 000. A third series, Ci, can then be formed as a linear 
combination of the previous two: 

(10.10) 
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10.3 COVOLATILITY WEIGHTING 275 

TABLE 10.1 Results of a Monte Carlo simulation of correlations. 

Comparing the covolat11ity adjusted linear correlation fl to the standard linear correlation 

/2, both applied to synthetic time series. The series D; is like Ci, but regularly spaced 

sections of the data are replaced by linearly interpolated data. Details are described in the 

text. Note the similarity of the g(A;, Ci) and g(A;, Di) columns. 

Multiplier k 12(A;, C;) g(A;, D;) g(A;, D;) 

Equation 10.10 Equation 10.1 Equation 10.1 Equation 10.5 

0.0 0.00 0.00 0.00 

0.1 0.12 0.10 0.12 

0.2 0.23 0.15 0.22 

0.3 0.38 0.28 0.38 

0.4 0.52 0.40 0.51 

0.5 0.69 0.51 0.69 

0.6 0.83 0.62 0.82 

0.7 0.92 0.67 0.91 

0.8 0.97 0.72 0.95 

0.9 0.99 0.74 0.97 

1.0 1.00 0.74 0.99 

where the constant k is selected such that O :;, k ::, I. In this way, the new series 

C; has a controllable correlation to the original data series A;. 
The synthetic returns C; were then cumulated to synthetic prices P;, with 

starting value P1 = 10 and sample size m + 1 = 10,001: 

Pm+I = eln(P,-1)+C,-1 
i=2 - (10.11) 

The pure cumulation of C, leads to synthetic logarithmic prices that are transformed 

to synthetic nonlogarithmic prices by the exponential function. 

Repeated data sections, each consisting of 50 price observations, were then 

deleted in the time series P; and replaced by prices linearly interpolated from the 

prices bracketing the deleted sections. The distance between these artificial data 

gaps also consisted of 50 observations, creating an alternating series of original 

data patches followed by data gaps filled with linearly interpolated prices. Finally, 

the first differences of this altered price series were taken to build a new series of 

returns, D;. 
Equation 10.5 was then used to measure the correlation between one of the 

original return distributions, A;, and the manipulated return distribution, D;, given 

various values of the constant multiplier k. Results are shown in comparison to 

the standard linear correlation calculation in Table 10.1. 

A comparison of columns two (Q(A, C)) and four (Q(A, D)) shows that the 

covolatility adjusted correlation measure described by Equation 10.5 successfully 

approximates the original standard linear correlation between distributions A and 

C before some data patches were replaced by linearly interpolated values. Any 
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small deviations that exist are due to the statistical error ( ~ 2%) of these tests. The 

third column of Table 10.1, by contrast, shows standard correlation values severely 

affected by the interpolation-filled data gaps. This simple example illustrates one 

of the original design goals of the covolatility adjusted linear correlation measure: 

correlation is measured where data exist, and the calculation is not updated where 

data do not exist. 
Tests with foreign exchange data were performed to exemplify the effect 

of the covolatility adjusted correlation measure on time series with fluctuating 

data frequency and volatility. Homogeneous time series of USD-DEM prices 

were generated according to Section 3 .2.2, equally spaced by 3-min intervals, 

once in physical time, once in t?-time as explained in Chapter 6. USD-DEM 

has a high data frequency (see Table 2.2), but is also characterized by large in­

traday and intraweek fluctuations of both data frequency and volatility as shown 

in Section 5.6.2 and Figure 5.12. Absolute value of USD-DEM returns were 

used because they are known to have autocorrelations of greater magnitude than 

actual returns. Three autocorrelation functions are investigated: (1) standard au­

tocorrelation (Equation 10.8) of 18-min returns in physical time, (2) standard 

autocorrelation of 18-min returns in fr-time (see Chapter 6), and (3) autocorrela­

tion measured by the covolatility adjusted correlation coefficients (Equation 10.5), 

analyzing 18-min in physical time. The covolatility computation was done in 3-

min intervals and with m = 6 (Equation 10.3), resulting in a covolatility value 

every 18 min. Results of these measurements are shown in Figure 10 .1. A to­

tal data period of 6 months was used, ranging from January I, 1996, to July 1, 

1996. 
The covolatility adjusted autocorrelation values (bullets in Figure 10.1) are 

significantly lower than the corresponding standard autocorrelation values, but 

close to the standard autocorrelation of the series equally spaced in fr-time. We 

ascribe the high level of standard autocorrelation in physical time to the weekly 

seasonality of the data. The high absolute returns during working days and the 

low values on weekends are responsible for part of the high standard autocor­

relation at lags up to about 1 day. As described in Chapter 6, it-time elimi­

nates seasonality and thus the part of the autocorrelation caused by seasonality. 

The covolatility behaves similarly in the following respect. Weekends with their 

data gaps have extremely low covolatility values, so they are practically elim­

inated from the statistics. Weekly seasonality no longer affects the statistics. 

At lags around 24 hr, the picture is different. The covolatility adjusted auto­

correlation approaches the value of the standard autocorrelation in a clear peak 

which indicates daily seasonality. Unlike fr-time, which deforms time to elim­

inate seasonality, the covolatility adjusted correlation measure was designed to 

give a high weight to the most active periods, with no intention to hide all the 

seasonalities. Removing seasonality is not always desirable, so we find the co­

volatility adjusted correlation estimation to be a suitable method for many ap­

plications. In addition, the simplicity of this methodology lends itself to wider 

use. 
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FIGURE 10.1 Autocorrelation of the absolute values of USO-DEM returns as a function 

of the time lag. The triangles (.6) refer to standard autocorrelation of absolute returns, 

equally spaced in physical time. Bullets (•) refer to the covolatility adjusted autocorrelation 

of the same absolute returns. Crosses(+) refer to standard autocorrelation of absolute 

returns, equally spaced in ?J·time. Sampling period: January 1, 1996, to July 1, 1996. 

10.4 STABILITY OF RETURN CORRELATIONS 

When correlation is calculated between two time series, the assumption is that this 

quantity does not vary over time. For the case of :financial time series this is seldom 

occurs, although time variance of the correlation coefficient over time can some­

times be small. This issue is critical for portfolio pricing and risk management 

where hedging techniques can become worthless when they are most needed, dur­

ing periods known as correlation "breakdown," or relatively rapid change. Boyer 

et al. ( 1997) have also demonstrated that a detection of correlation breakdown or 

other structural breaks by splitting a return distribution into a number of quan­

tiles can yield misleading results. We use high-frequency data to estimate cor­

relations literally as a function of time for a number of different financial time 

series in an effort to better understand the level of change that can occur. High­

frequency correlation estimations are contrasted with lower-frequency estimates 

for the same sample periods. The "memory" that correlation coefficients have 

for their past values is also estimated for a number of examples using a simple 
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TABLE 10.2 Data sampling for correlation as function of time. 

Four different sampling schemes are selected to divide the total sampling period of size T 

from January 7, 1990, to January 5, 1997, 

Correlation Data frequency Number of returns 95% confidence 

calculation (number ofreturns per correlation band 

period per day) calculation 1.96/ .fa 
T/N f nN/T n 

365 days 1 365 0.10 

128 days 3 384 0.10 

32 days 12 384 0.10 

7 days 72 504 0.09 

and appropriate parameterization. Such estimations can be applied to long-term 

correlation forecasting, which is required, for example, to price or hedge financial 

options involving multiple assets, Gibson and Boyer (1997). 

10.4.1 Correlation Variations over Time 

The general stability of correlation coefficients was examined using various corre­

lation calculation intervals and data frequencies. This involved examination of a 

fixed historical time series over a time period T, from January 7, 1990, to January 

5, 1997. The time series of returns (r (ti)) was then divided into N subsets of equal 

duration (T / N) from which correlation coefficients were computed according to 

Equation 10.1. Four values of N were selected, while the total period T always 

remained constant. A homogeneous series of n returns was then chosen inside 

each period of size T / N via linear interpolation, so each correlation coefficient is 

based on n observations. Similar numbers n were selected for all the four values 

of N in order to maintain nearly uniform statistics, as shown in Table 10.2. In this 

table, the number of return observations per day, f = n N / T, is also given. 

Results from these calculations are shown in Figures 10.2 to 10.7, where 

correlations versus time are displayed, and dashed lines above and below zero 

correlation are 95% confidence ranges assuming normally distributed random dis­

tributions. The confidence limits are slightly nonuniform due to small variations 

in statistics. Some correlations were computed with fewer observations than n 

because of missing observations. Whenever a weight (J)i from Equation 10.3 was 

equal to zero, the corresponding observation was ignored. The weights (J)i were not 

used for any other purpose, and the correlations remain standard linear correlations 

defined by Equation 10 .1 . 
Correlation coefficient mean values and variances are given for each pair of fi­

nancial instruments and for each of the four calculation frequencies in Table 10.3. 

Having virtually the same statistical significance for all correlation calculations 

shown in Figures 10.2 through 10.7, we can make a number ofobservations about 
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10.4 STABILITY OF RETURN CORRELATIONS 279 

TABLE 10.3 Means, variances, maxima and minima of correlation. 

Means, variances, maxima and minima of the linear correlation coefficients as shown in 

Figures 10.2 through 10.7. For each pair of financial instruments, four correlation intervals 

T / N of decreasing size are investigated. The total sampling period T is from January 7, 

1990, to January 5, 1997. 

Instrument Correlation Mean Variance Max Min. 

pair period value (a2) 

USD-DEM - USD-NLG I year 0.99 0.000026 0.99 0.98 

USD-DEM - USD-NLG 128 day 0.99 0.00012 1.00 0.95 

USD-DEM - USD-NLG 32 day 0.96 0.0029 1.00 0.54 

USD-DEM - USD-NLG 7 day 0.88 0.0067 0.98 0.41 

USO-DEM - USD-GBP 1 year 0.76 0.029 0.96 0.42 

USD-DEM- USD-GBP 128 day 0.79 a.ors 0.98 0.57 

USD-DEM - USD-GBP 32day 0.76 0.031 0.98 0.09 

USD-DEM - USD-GBP 7 day 0.69 0.030 0.97 0.20 

USD-DEM - USD-ITL 1 year 0.76 0.040 0.99 0.41 

USD-DEM- USD-ITL 128 day 0.75 0.057 0.99 0.18 

USD-DEM - USD-ITL 32 day 0.76 0.044 0.99 0.07 

USD-DEM - USD-ITL 7 day 0.68 0.044 0.97 0.07 

DJIA AMEX 1 year 0.73 0.0083 0.84 0.60 

DJIA-AMEX 128 day 0.70 0.0087 0.85 0.57 

DJIA-AMEX 32day 0.41 0.041 0.78 -0.29 

DJIA-AMEX 7 day -0.01 0.030 0.62 -0.50 

DEM 3-6m - DEM 9-12m 1 year 0.84 0.00074 0.88 0.81 

DEM 3-6m - DEM 9-12m 128 day 0.78 0.0084 0.90 0.57 

DEM 3-6m - DEM 9-12m 32 day 0.71 0.025 0.96 0.13 

DEM 3-6m-DEM 9-12m 7 day 0.54 0.074 1.00 -1.00 

USD 3-6m DEM3-6m I year 0.33 0.024 0.51 0.13 

USD 3-6m - DEM 3-6m 128 day 0.30 0.028 0.59 -0.10 

USD 3-6m - DEM 3-6m 32 day 0.30 0.051 0.85 -0.34 

USD 3-6m - DEM 3-6m 7 day 0.28 0.066 1.00 -0.52 
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FIGURE 10.2 Linear correlation coefficients calculated using increasingly small sub­

intervals, T / N = (365 days, 128 days, 32 days, and 7 days}, for the FX return pair USO­

DEM - USD-NLG. The dashed lines above and below zero correlation are 95% confidence 

ranges assuming normally distributed returns. 

correlation stability. The highly correlated USD-DEM - USD-NLG returns shown 

in Figure 10.2 appear largely constant over the total sample period of7 years. As 

the subperiod width for correlation calculation decreases ( and the number of cor­

relation calculations inside the total period increases), more structure becomes 

apparent. This additional structure is reflected by an increasing variance in Ta­

ble 10.3. Correlations calculated with lower data frequency are not simply an 

average of those calculated with higher quotation frequencies; Table 10.3 shows 

the mean value for USD-DEM - USD-NLG correlations moving steadily down­

ward with increasing correlation resolution ( an -11 % change between yearly data 

resolution and weekly resolution). This can be partially explained by considering 

that error distributions for empirically computed correlations are not symmetric 

when coefficients differ from zero. However, such drops in correlation with higher 

data frequency as can be observed with the DITA-Amex pair point to a stronger 

effect which will be addressed in more detail in Section 10.5. 
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FIGURE 10.3 Linear correlation coefficients calculated using increasingly small sub• 

intervals, T / N = (365 days, 128 days, 32 days, and 7 days), for the FX return pair US D­
DEM - USD-GBP. The dashed lines above and below zero correlation are 95% confidence 

ranges assuming normally distributed returns. 

Figures 10.3 and 10.4 show correlations for the FX rate pairs USD-DEM -

USD-GBP and USD-DEM- USD-ITL. Note that the inverse rate USD-GBP was 

used instead of the more usual GBP-USD, in order to be in line with other currencies 

and to obtain positive correlation. Both figures exhibit fast and large drops in 

correlations during the second and third weeks of September 1992. Presumably, 

this directly reflects the turmoil of the European Monetary System (EMS) at that 

time, when GBP and ITL left the system. This appears to be a clear example of 

correlation breakdown. 
Recapitulating the major points of Section 10.4, correlation was examined as a 

function of time for a number of different financial instruments. The time frame of 

7 years was divided in four different ways, using subperiods of 365, 128, 32, and 7 

days. The numberofsubperiods over the total 7 year period was then 7, 19, 79, and 

365, respectively. The subperiods of different size were divided into n intervals 

for return observations. This number n had roughly the same size in all cases, 
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FIGURE 10.4 Linear correlation coefficients calculated using increasingly small sub• 

intervals, T / N = (365 days, 128 days, 32 days, and 7 days), for the FX return pair USO­

DEM - USD-ITL. The dashed lines above and below zero correlation are 95% confidence 

ranges assuming normally distributed returns. 

between 365 and 504, so the statistical significance of correlation values was always 

comparable. The correlation between some financial instruments can be described 

as reasonably stable. However, briefbut large breaks can be observed in almost all 

cases, and the additional statistics provided by time series of higher frequency are 

essential to detect such occurrences. In addition, we observed decreasing absolute 

values all the correlations we examined when going to higher data frequencies. 

This will be further discussed further in Section 10.5. 

10.4.2 The Exponential Memory of Return Correlations 

The linear correlation values shown in Figures 10.2 through 10.7 can be seen 

as time series in their own right. A certain stability of correlation levels seems 

to indicate that markets have a memory for these levels. This memory can be 

investigated by considering the autocorrelation of the correlation time series. We 
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FIGURE 10.5 Linear correlation coefficients calculated using increasingly small sub­

intervals, T / N = (365 days, 128 days, 32 days, and 7 days), for the stock index pair DJIA -

AMEX (both expressed in USO). The dashed lines above and below zero correlation are 

95% confidence ranges assuming normally distributed returns. 

focus on the weekly correlation measurements displayed in the lower right plots of 

Figures 10.2 through 10.7. These weekly correlations are computed from 20-min 

returns. The autocorrelation analysis was performed for different lags ( r ), using 

Equation 10.8. 
Results of these calculations are shown in Figure 10.8. Shown along with 

each autocorrelation curve are the 95% confidence limits for a normally distributed 

random process. The differences in the behaviors of the six correlation pairs are 

striking. For foreign exchange rate correlations, we observe a significantly positive 

autocorrelation extending to long lags up to 50 to 100 weeks. Correlation structures 

have a long memory. For correlations between implied forward interest rates, we 

find a positive autocorrelation above the significance limit for lags up to 3 or 4 

months, which means a reduced but still long memory. The correlation of the stock 

index pair (Down Jones and AMEX Stock Index) behaves differently as it dives 

below significance already at the first lag of 1 week. The market has no consistent 
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FIGURE 10.6 Linear correlation coefficients calculated using increasingly small sub• 

intervals, T / N = (365 days, 128 days, 32 days, and 7 days}, for the implied forward 

interest rate pair USO 3-6 months - DEM 3-6 months. The dashed lines above and below 

zero correlation are 95% confidence intervals assuming Linear correlation coefficients 

calculated using increasingly small subintervals, T /N = (365 days, 128 days, 32 days, and 

7 days), for the implied forward interest rate pair USO 3-6 months - DEM 3-6 months. 

The dashed lines above and below zero correlation are 95% confidence ranges assuming 

normally distributed returns. 

memory of the level, but this may be due to the strong Epps effect of the 20-min 

returns, explained in Section 10.5. Figure 10.8 also shows that autocorrelation 

values for each of the six instrument pairs decline roughly exponentially but with 

markedly different attenuation rates. 
To better gauge the difference in autocorrelation attenuation for these corre­

lation pairs, the autocorrelations shown in Figure 10.8 were modeled by a simple 

exponential function: 

(10.12) 
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FIGURE 10.7 Linear correlation coefficients calculated using increasingly small sub­

intervals, T / N = (365 days, 128 days, 32 days, and 7 days), for the implied forward 

interest rate pair DEM 3-6 months - DEM 9-12 months. The dashed lines above and 

below zero correlation are 95% confidence ranges assuming normally distributed returns. 

where A is an exponential attenuation length and A is a simple weight. These pa­

rameters were fitted to the data in Figure 10.8, starting with the first lag (neglecting 

the zeroth lag, which is equal to one by definition) and only to the point where 

autocorrelation data fell below the 68% of the upper confidence limit, thus focus­

ing on the initial decay of autocorrelation. The autocorrelations of USD-DEM -

USD-GBP correlations are shown in Figure 10.9. The results for the autocorrela­

tions of correlation data shown in Figure 10.8 are also reported in Table 10.4. The 

DllA-AMEX pair is excluded here due to the lack of correlation in the 20-minute 

returns, as mentioned above. 
The goodness of fit can be judged by the x2 value, divided by the degree of 

freedom m in fitting. This is also shown in Table I 0.4. Each autocorrelation value 

was assumed to have a stochastic error of 1 /-/N, where N is the total number 

of correlation observations considered when calculating an individual autocorre­

lation value. All x2 /m values are below 1 or just slightly above 1, indicating 
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FIGURE 10.8 Autocorrelations of weekly correlation coefficients of returns, as plotted 

in Figures 10.2 through 10.7. The 95% confidence ranges corresponding to normally 

distributed random distributions are shown as dotted curves, where the curvature is 

caused by the decreasing size of the sample with growing lags. The total sampling period 

T is from January 7, 1990, to January 5, 1997. 
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FIGURE 10.9 Fit of an exponential function to the autocorrelation of USO-DEM -

USD-GBP weekly correlation coefficients. 

that Equation 10.12 describes the data rather well. Adding a second exponential 

function to Equation 10.12 did not significantly improve the goodness of fit in all 

cases unless the data point at zero lag ( defined as being equal to one) was added 

to the data set. 
Table 10.4 shows considerable values of the amplitude A (which cannot ex­

ceed 1) and a long memory of the correlation level. The pair USD-DEM USD­

NLG has the longest memory with an exponential attenuation length of more than 

80 weeks, which is just over one and a half years. The autocorrelation model of 

Equation 10.12 with the parameters of Table 10.4 can be the basis of a correlation 

forecast. This forecast could be remarkably long-term due to the long memory in 

correlation, depending on the instrument pair. 

10.5 CORRELATION BEHAVIOR AT HIGH DATA FREQUENCIES 

Previous authors have observed a dramatic decrease in correlation as the time 

intervals of the returns enter the intrahour level, for both stock (Epps, 1979) and 

FX returns (Guillaume etal., 1997; Low et al., 1996). We follow the suggestion of 

Low et al. (1996) by referring to this phenomenon as the Epps (1979) effect after 

the first identifiable author to thoroughly document it. In this discussion, the Epps 
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288 CHAPTER 10 CORRELATION AND MULTIVARIATE RISK 

TABLE 10.4 Autocorrelation study. 

The autocorrelations of weekly correlation data shown in Figure 10.8 are fitted to the 

parametrization given in Equation 10.12, for five financial instrument pairs. A large value 

of A indicates a long, exponentially decaying memory of the correlation level. The variable 

x2 / m indicates the goodness of fit (good fits have a value around 1 or preferably below); 

m is the degree of freedom of fitting. 

Instrument A A x2/m 
(weeks) 

USD-DEM - USD-NLG 0.35 ± 0.01 80.9 ± 7.1 0.65 

USD-DEM - USD-GBP 0.62 ± 0.02 31.5 ± 1.8 0.15 
USD-DEM - USD-ITL 0.61 ± 0.02 59.8 ± 3.0 0.34 

DEM 3-6m-DEM 9-12m 0.27 ± 0.04 10.0 ± 2.6 1.30 

USD 3-6m - DEM 3-6m 0.23 ± 0.03 21.8 ± 5.4 0.41 

effect is characterized and investigated for a number of foreign exchange rates, 

stock indices, and implied forward interest rate pairs through the examination of 

the same 7 years of high-frequency return values as used in the previous sections. 

The basis of our exploration was a set of homogeneous time series ofreturns, 

equally spaced by 5-min intervals, for several financial instruments. Linear inter­

polation was used in the sense of Equtions 3.2 and 3.6. For each time series of 

5-min returns, we obtained 499 additional time series through aggregation: 10-min 

returns, 15-min returns, ... , 2500-min returns. To cover longer time intervals, 877 

more time series were obtained by further aggregation in coarser steps: 2530-min 

returns, 2560-min returns, ... , 28810-min returns, where a 28810-min interval 

roughly corresponds to 20 days. Various calculations were performed with these 

many times series. The most interesting results are the correlation coefficients for 

returns of different financial instruments, using the same time interval size. This 

can be done for all interval sizes of the aggregated time series. 

The resulting correlation coefficients are plotted as a function of the time 

interval size in Figure 10.10. When returns are computed with high frequency, 

over intervals distinctly shorter than 1 day, the correlation levels diminish in Fig­

ure 10.10. The same effect is better viewed in Figure 10.11, where the same data 

are shown with a logarithmic scale of interval sizes and where the data point far­

thest to the left (highest data frequency) corresponds to the correlation calculated 

using linearly interpolated, homogeneous time series of 5-min returns. 

Table 10.5 gives the minimum and maximum values for the linear correlation 

coefficient data shown in Figure 10.10. Also given are the time intervals at which 

maxima occurred. We noted several problems when taking the maximum of cor­

relation as a function of the time interval. The correlation graphs reach a more or 

less stable maximum level at time intervals exceeding one day, but this stability 

is not perfect for any correlation graph. Moreover, the maximum of correlation 

is affected by increasing stochastic noise for large time intervals. In an attempt 
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FIGURE 10.10 Linear correlation coefficients calculated for six pairs of financial in­

struments as a function of the size of the time interval of returns. For all calculations 

the total sampling period remained constant (from January 9, 1990, to January 7, 1997,) 

causing the 95% confidence ranges to be narrow at high data frequencies and wider as 

the time interval increases. Rapid declines in correlation at very high data frequencies are 

noted in all cases. 
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FIGURE 10.11 Linear correlation coefficients calculated for six pairs of financial in­

struments as a function of the size of the time interval of returns, The same data as in 

Figure 10.10 are shown with a logarithmic horizontal axis. Rapid declines in correlation at 

very high, intraday data frequencies are noted in all cases. 

Case 3:20-cv-05784-BRM-DEA   Document 1-3   Filed 05/11/20   Page 311 of 404 PageID: 389

0389
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TABLE 10.5 Correlation results characterizing the Epps effect. 

Minima, maxima, and mean values (averaged over time intervals between 1 and 2 days) of 

correlation coefficients. These correlations are functions of the time interval of return 

measurement, as plotted in Figures 10.10 and 10.11. Also given are the time intervals 

at which the maxima occurred and the time intervals where the coefficient reaches 90% 

of the mean value. This latter time interval in the last column is called the stabilization 

interval-the threshold after which the Epps effect no longer affects correlation results. 

The sampling period was from January 9, 1990, to January 7, 1997. 

Instrument Min. Max. Interval Mean 90% Stabiliz. 

pair corr. corr. of max. corr. of interval 

( days) (1-2 days) mean (min) 

USD-DEM - USD-GBP 0.55 0.86 7.2 0.79 0.71 10 

USD-DEM- USD-NLG 0.78 1.00 14.0 0.99 0.89 15 

USD-FRF - USD-ITL 0.49 0.86 12.0 0.79 0.71 25 

USD-NLG - USD-FRF 0.69 0.99 16.9 0.97 0.87 25 

USD-FRF - USD-GBP 0.48 0.86 7.2 0.80 0.72 30 

USD-JPY - DEM-JPY 0.34 0.62 19.4 0.48 0.43 30 

DEM-GBP - USD-GBP 0.23 075 17.0 0.45 0.41 170 

DJIA-AMEX 0.00 0.86 13.3 0.77 0.69 320 

DEM 3-6M - DEM 9-12M 0.40 0.90 19.2 0.82 0.74 340 

to give a more accurate reference level of the correlation drop due to the Epps 

effect, Table 10.5 also reports the arithmetic mean of all correlation values based 

on time intervals between 1 and 2 days. A total of224 correlation values (i.e., 224 

aggregated time series) belong to this range of time intervals. Although there is 

no best choice of time interval for the general case, this mean value is considered 

as a reasonable reference level of correlation in its stable region. When moving 

to shorter time intervals, the Epps effect makes the correlation values decline. As 

a threshold value of the Epps effect, Table 10.5 also shows the time interval at 

which correlations drop to 90% of the reference level. This estimation of the Epps 

threshold or, seen from the other side, the correlation stabilization interval has 

the advantage that it can be uniformly applied to all cases, and it does not deliver 

obviously misleading results based on the maximum value of correlation. 

We find that even currency pairs that are highly correlated in the long term 

become much less correlated in the intrahour data frequency range. Muller et al. 

(1997a) propose a hypothesis of heterogeneous markets where the market agents 

differ in their perception of the market, have differing risk profiles, and operate 

under different institutional constraints (see also Section 7.4). If the financial mar­

kets are indeed composed of heterogeneous agents with different time horizons of 

interest, then the Epps effect in correlation estimations can be interpreted as a cut­

off between groups of agents. Short-term traders focus on the rapid movements of 

individual rates rather than multivariate sets of assets. For these short-term agents, 

correlations between instruments play a secondary role. Other, less rapid agents 

reestablish "correct" correlations after market shocks, but this takes some time. 
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Stabilization vs. Tick Activity 
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FIGURE 10.12 Correlation stabilization intervals (= stabilization points, in min) as a 

function of the inverse square root of the product of the tick frequencies. The same 

instrument pairs and stabilization intervals as in Table 10.5 are plotted. 

When considering the stabilization interval in the last column of Table 10.5, 

we find that the Epps effect already vanishes at return measurement intervals of 

10 min for the cotTelation of the most frequently quoted financial instruments. For 

pairs of less frequently quoted instruments, the Epps effect may last for hours, 

up to 6 hr in Table 10.5. This indicates a relationship between tick frequencies 

(and perhaps liquidity) of instruments and the duration of the Epps effect. Two 

correlation studies were made to probe this relationship: (1) standard correlation 

between the stabilization interval and the tick frequency of the more frequently 

quoted instrument of the pair and (2) standard cotTelation between the stabilization 

interval and the tick frequency of the less frequently quoted instrument. Mean tick 

frequencies per business day were taken, as listed in Table 2.2. 

The greater of the two tick frequencies is estimated to have a standard cotTela­

tion of -0.59 to the stabilization interval. The cotTesponding standard cotTelation 

of the lower tick frequency is -0.65. These values are significant to 92% and 95% 

confidence levels, respectively, assuming a normal random distribution. Therefore 

we conclude that, to a reasonable level of confidence, both of the tick frequencies 

substantially affect the stabilization interval after which the Epps effect of corre­

lations vanishes. Tick frequency and stabilization interval are inversely related. 

This can be seen graphically in Figure 10.12 where the stabilization interval is 

plotted versus the inverse geometric mean of the two tick frequencies. When two 

tick frequencies are very high, as on the left-hand side of Figure 10.12, the stabi­

lization interval becomes small. On the other side, at very low data frequencies, a 

plateau in the correlation stabilization interval appears to exist at a data interval of 

3 00 to 400 min. This would indicate that the Epps effect does not play a substantial 

role in attenuating correlation values beyond 6-hr return measurement intervals, 
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10.6 CONCLUSIONS 293 

even if the instruments involved are very inactive ( < 100 data updates per business 

day). It should be stated that these are indicative and preliminary results and an 

enhanced study with more instruments and statistics is called for. 

10.6 CONCLUSIONS 

The problems associated with estimation of correlation at higher data frequencies 

have been discussed and illustrated using examples. An easy-to-use covolatility 

adjusted correlation estimator, which correctly accounts for missing or nonexis­

tent data, has been proposed. The effect of this new formulation is to estimate 

correlation when data exist, and to make no update to the correlation calculation 

when data do not exist. The input of the method is homogeneous time series lin­

early interpolated between the ticks. At times when tick intervals are longer than 

the return measurement intervals, the weight of the return observations tends to 

zero. Because the estimator is adjusted by covolatility, some of the information 

from the more frequent of the two time series involved will not be fully utilized, 

and statistical significance can be degraded. With growing data frequency, this 

degradation is inevitable but tolerable because the statistical significance based on 

high-frequency sampling is high by nature. Covolatility adjusted correlation is an 

estimator complementary to other estimators. Its fluctuating weighting of obser­

vations is an alternative to time scale transformations such as the !?--time discussed 

in Chapter 6. 
Empirically estimated linear correlation coefficients of returns vary over time. 

The return correlations of some financial instrument pairs widely fluctuate from 

week to week, whereas other correlations are very stable over periods of many 

years. It was observed that long-term historical stability is not a guarantee of future 

correlation stability. This was evidenced through the examination ofUSD-ITL and 

USD-GBP return correlations with the USD-DEM rate. The crisis of 1992, when 

the involvement of ITL and GBP in the European Monetary System (EMS) was 

suspended, was reflected by a dramatic and rapid change in their correlations with 

other currencies thereafter. Correlation calculated over a long data sample (years) 

has an averaging effect, and increased structure in correlations is observed when 

correlations are calculated over smaller periods (weeks). Depending on the time 

horizon of interest, there is pertinent information to be gained when calculations 

are performed over smaller periods using high-frequency data. The self-memories 

ofreturn correlations have been modeled as exponential attenuations through esti­

mation of the autocorrelation oflinear correlation coefficients. Correlation values 

have memories for their past values that differ between instument pairs and often 

extend over years rather than only weeks. The understanding of this correlation 

memory is a first step toward correlation forecasting. 

The behavior of the correlation coefficient as a function of the time interval 

of return measurement has been investigated. Nonzero correlations of returns 

are dramatically attenuated when this interval decreases and enters the intrahour 

region. This behavior is called the Epps effect and depends on the pair of investi-
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gated financial instruments. When the measurement interval exceeds a threshold 

value called the stabilization interval, the Epps effect gives way to a rather stable 

behavior of the correlation. There is some preliminary evidence of an inverse 

relationship between the stabilization interval and the mean tick frequency of the 

instruments involved. If financial markets are composed of heterogeneous agents 

as suggested in Section 7 .4, the stabilization interval can be interpreted as a thresh­
old between groups of agents. For extremely short-term traders focusing on time 

horizons below the stabilization interval, correlations between instruments may be 

less of an issue than for other agents. 
In applications such as asset allocation or risk assessment, the return measure­

ment intervals should preferably be chosen longer than the stabilization interval. 
However, there is no general "best" time interval for measuring correlation. It is 
important to choose the most relevant interval size for a specific application. 
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11 
TRADING MODELS 

11.1 INTRODUCTION 

Recently, the skepticism among academics to the possibility of developing prof­
itable trading models has decreased with the publication of many papers that docu­
ment profitable trading strategies in financial markets, even when including trans­
action costs. 

In the earlier literature, simple technical indicators for the securities mar­
ket have been tested by Brock et al. (1992). Their study indicates that patterns 
uncovered by technical rules cannot be explained by simple linear processes or 
by changes in the behavior ofvolatility.1 LeBaron (1992a), LeBaron (1997) and 
Levich and Thomas (1993b) follow the methodology ofBrock et al. (1992) and use 
bootstrap simulations to demonstrate the statistical significance of the technical 

1 In Gen9ay (1998b ), the DTIA data set of Brock et al. (1992) is studied with simple moving average 
indicators within the nonparametric conditional mean models. The results indicate that nonparametric 
models with buy-sell signals of the moving average models provide more accurate sign and mean 
squared prediction errors (MSPE) relative to random walk and GARCH models. Gem;:ay (1999) shows 
that past buy-sell signals of simple moving average rules provide statistically significant sign predictions 
for modehng the conditional mean of the returns for the foreign exchange rates. The results in Gencay 
(1999) also indicate that past buy-sell signals of the simple moving average rules are more powerful 
for modeling the conditional mean dynamics in the nonparametric models. 

295 
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296 CHAPTER 11 TRADING MODELS 

trading rules against well-known parametric null models of exchange rates. Sul­

livan et al. (1999) examine the trading rule performance by extending the Brock 

et al. (1992) data for the period of 1987-1996. They show that the trading rule 

performance remains superior for the time period that Brock et al. ( 1992) studied; 

however, these gains disappear in the last 10 years of the Dow Jones Industrial 

Average (DilA) series. Lo et al. (2000) have proposed an approach to evaluate the 

efficacy of technical analysis based on technical pattern recognition using nonpara­

metric kernel regression. They apply their method to a large number ofU .S. stocks 

and they report that several technical indicators provide incremental information 

of practical value. Overall, the scope of the most recent literature supports the 

technical analysis, but it is generally limited to simple univariate technical rules. 

One particular exception is the study by Dacorogna et al. (1995), which exam­

ines real-time trading models of foreign exchanges under heterogeneous trading 

strategies. They conclude that it is the identification of the heterogeneous market 

microstructure in a trading model which leads to an excess return after adjusting 

for market risk. 
Trading models are investment tools that provide explicit buy and sell trading 

recommendations. A clear distinction should be made between a price change 

forecast (presented in Chapter 9) and an actual trading recommendation. A trad­

ing recommendation naturally includes a type of price change forecast, but must 

also account for the specific risk profile of the dealer or user of the respective 

trading model. Another distinction is that a trading model must take into account 

its past trading history. This decision might be biased by the position it is currently 

holding and the price paid for entering in this position, whereas a price forecast is 

not submitted to such asymmetries. A trading model thus goes beyond predicting 

a return. It must decide if a certain action is to be taken. This decision is subject 

to the specific risk profile, the trading history, and institutional constraints such as 

opening hours or business holidays. 
The purpose of this chapter is not to provide ready-to-use trading strategies, 

but to give a description of the main ingredients needed in order for any real­

time trading model to be usable for actual trading on financial markets. Any 

reasonable trading strategy is composed of a set of tools that provides trading 

recommendations within a capital management system. In this book we shall 

not discuss the capital management part, but we wish to show that with a rea­

soned approach and high-quality data, it is possible to design practical and prof­

itable trading models. Indeed, we have developed our own trading models and 

this presentation builds on this experience. Our models anticipate price move­

ments in the foreign exchange (FX) market sufficiently well to be profitable for 

many years yet with acceptable risk behavior, and, they have been used by many 

banks. 
Market investors mainly use trading models as decision tools, but in this chap­

ter we will also illustrate that profitable trading models with robust performance 

measures can be employed as a statistical tool to study the market structure and to 

test the adequacy of price-generation processes. 
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11.2 REAL-TIME TRADING STRATEGIES 297 

A robust perfonnance measure of trading strategies is one of the most im­

portant ingredients in the development of new models and also in their use. In 

Section 11.3, we discuss different possible perfonnance measures and we derive 

two risk-adjusted ones for investors with risk-averse preferences. Maximizing 

these measures is equivalent to maximizing the expected utility of an investor. 

To construct successful trading strategies is not an easy task and many possible 

mistakes must be avoided during the different development phases of new models. 

We shall describe here some of the main traps in which new system designers 

generally fall and provide some ideas as to how to construct more robust trading 

strategies. In the following sections we will also give a short description of the 

various components needed in trading models and a specific approach using genetic 

algorithms to obtain more robust optimization results. 

11.2 REAL-TIME TRADING STRATEGIES 

In the assumption of a heterogeneous market, there is no trading strategy that is 

absolutely better than other ones. Which strategy to choose will depend on the 

trading and risk profile of the investor. This is confirmed by the existence of many 

different types of portfolio and investment strategies in the financial markets. It is 

also why we use in this study different trading model algorithms. We believe that 

these new investment strategies will simply contribute to, and not fundamentally 

change, the heterogeneous composition of financial markets. 

To be useful, real-time trading models must provide realistic trading recom­

mendations that the user can follow. This means that the models should do the 

following: 

■ Give a warning a few minutes in advance of a deal. 

■ Not change recommendations too rapidly. 

■ Not give recommendations outside business hours. 

■ Take into account market holidays. 

■ Support stop-loss (around the clock). 

In this section, we present the basic system architecture that we use in our 

real-time trading models and discuss the main components needed to transfonn 

available price quotes into actual trading recommendations. The model is divided 

in three main parts, that is, 

■ Generation of the trading model recommendations. 

■ Receipt of the simulated positions by the simulated trader. 

■ Generation of the model statistics by the performance calculator. 

Figure 11.1 depicts the overall structure and data flow ofa simple real-time trading 

model. The next subsections describe these different components. 
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FIGURE 11.1 Data flow of prices and deal recommendations within a real-time trading 

model. 
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11.2 REAL-TIME TRADING STRATEGIES 299 

TABLE 11.1 Market constraints. 

FX market business time constraints for the trading models running for different geo­

graphical markets. The markets are listed roughly in the order of their opening times 1n 

GMT. 

Market Timezone Opening time Closing time Holidays 
(local time) (local time) (per year) 

Tokyo JPT 09:00:00 18:00:00 15 Days 

Singapore PRC 09:00:00 18:00:00 11 Days 
Frankfurt MET 08:30:00 17:00:00 12 Days 

Vienna MET 08:00:00 17:30:00 15 Days 
Zurich MET 08:00:00 17:30:00 10 Days 
London UKT 07:30:00 17:00:00 IO Days 

New York EST 08:00:00 14:00:00 12 Days 

11.2.1 The Trading Model and Its Data-Processing Environment 

As in forecasting or other applications, trading models depend heavily on the 

quality of the financial data that are fed to the program. Problems related to bad or 

invalid data can play an important role at different stages of the decision process. 

For instance, bad data can disturb the computation of the model indicators and 

then imply a partial or complete loss of the prediction power related to these 

indicators. One other sensitive part is the computation of the current return of the 

open positions. The current return is often used to trigger stop-profit algorithms, 

or exit specific positions. Any invalid price that passes through the filter incorrectly 

can produce a long-term perturbation effect on the trading abilities of the system, 

especially if it is used as a transaction price. To avoid data-related problems, a good 

trading system must include a special filter to cancel or postpone recommendations 

until a realistic transaction price is selected. 

Trading Hours and Market Holidays Although some markets like the FX market 

operate continuously, individual traders or institutions generally partake of this 

market only for a portion of each day. Our models accommodate such users by 

incorporating the notion of business hours and holidays. Every trading model is 

associated with a local market that is identified with a corresponding geographical 

region. In tum, this is associated with generally accepted office hours and public 

holidays. The local market is defined to be open at any time during office hours 

provided that the trading model does not operate on a weekend or a public holiday. 

Typical opening hours for a model are between 9:00 and 17:00 local time, the exact 

times depending on the particular local market and traded instruments. In the case 

ofFX, Table 11.1 presents typical opening hours of different geographical markets. 

Except for closing an open position if the price hits a stop loss limit ( described in 

section 11.2.1), a model may not deal outside of the market's opening hours. 
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Current Return Calculations In the trading room, people seldom take a full exposure 

at once. The traders like to build their positions in steps (gearing steps). In such 

cases, it is useful to introduce an auxiliaiy variable, the average price p paid for 

achieving the current exposure (gearing). This variable simplifies the computation 

of the return of a position built in steps. After a new deal with index i, the average 

price depends on the type of transaction as follows: 

Pi-1 if \gi\ < \gi-11 and gigi-1 > 0 

gi [g,-&-1 +~-IJ-1 if \gi I > \gi-1 I and gigi-I > O 
P, P,-1 

Pi -
Pi if gigi-1 < 0 or gi-1 = 0 

undefined if g; =0 
(11.1) 

where 8i-1 and 8i are the previous and current gearings, respectively, Pi is the 

current transaction price, and Pi-I is the average price before the deal. In the initial 

case, when the current gearing is neutral, the average price p is not yet defined. 

Ifwe start from a neutral position g;-1 = 0 or reverse a position gigi-I < 0, the 

price to build the position is simply the current price Pi. If the new position is 

built on top of a previous position, then we need to compute the average price paid 

from the price paid for each fraction of the full position. If the new position is just 

unfolding part of the previous position, then the average price paid for the position 

does not change. It is simply either profit taking or stop loss. 

The average price pis needed to compute a quantity central to a trading model, 

the return of a deal, 

(11.2) 

where the gearing g'. is equal to O if the model takes an opposite position (g;g;-1 < 

0) and gi otherwise. There are deals with no return: those starting from a neu­

tral gearing, 8i-l = 0, and those increasing the absolute value of the gearing 

while keeping its sign.2 In these cases, Equation 11.2 does not apply (whereas 

Equation 11.1 applies to all deals). 

The current return, r c, is the unrealized return of a transaction when the current 

position is off the equilibrium (g; =/:-0). If Pc is the current market price required 

2 The example below demonstrates the accounting of a trading model of USD-CHF, where CHF 

is the home (numeraire) currency and USD is the foreign exchanged currency. The trading model is 

played with a limit of I 00 CHF. The usual practice for the capital flow in foreign exchange trading 1s 

that it is started from a capital of zero with credit limit. This is what is assumed here. All of our return 

calculations are expressed in terms of the home currency. In other words, the returns are calculated m 

terms of DEM for USD-DEM, CHF for USD-CHF, FRF for USD-FRF, and JPY for DEM-JFY. 
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11.2 REAL-TIME TRADING STRATEGIES 301 

for going back to neutral, generalizing Equation 11.2 yields the current return, 

(11.3) 

Gearing Calculation A gearing calculator lies at the heart of a trading model. The 

gearing calculator provides the trading model with its intelligence and the ability to 

capitalize on movements in the markets. The gearing calculator also provides the 

trading model with particular properties. These include the frequency of dealing 

and the circumstances under which positions may be entered. 

In other words, the gearing calculator is the real model. In contrast, the other 

trading model components form a shell around the gearing calculator, providing it 

with price data, detecting if the stop-loss is hit, and examining the trading recom­

mendations made by the gearing calculator. The gearing calculator reevaluates its 

position every time a new price quote is received from the data-vendors. (As pre­

viously noted, a filter validates each price beforehand in order to eliminate outliers 

and other implausible data.) 
The gearing calculator employs two kinds of ingredients: a set of indicators, 

which are produced from the input price data, and trading rules, which are functions 

of the past dealing history, the current position, and other quantities such as the 

current unrealized return of an open position. 
The models described here give a recommendation not only for the direction 

but also for the amount of the exposure. In our models, the possible exposures 

(gearings) are±½, ±1 (full exposure) or O (no exposure). 

Recommendation Maker The fact that the gearing calculator's indicators and rules 

suggest entering a new position does not necessarily mean that the model will make 

such a recommendation. Whether it does or not depends on various secondary rules 

that then take effect. 
These rules constitute the deal acceptor. This determines whether the deal pro­

posed by the indicators is allowed to be made. The prime constraint is the timing 

of the proposed deal. First, no deal other than a stop-loss deal (see Section 11.2.1) 

may take place within a few minutes of a deal already having occurred. This is to 

prevent overloading a human dealer who may be following the models. Second, 

Time Gearing Current position m CHF Current position in USD FX 

0 0 0 0 Don't care 

1 0.5 -50 35.71 1.4 

2 1 -100 69.04 (33.33 more) 1.5 

3 0 10.46 (69.04*1.6 more) 0 1.6 

In the example above, the trading lots in CHF are always 50 (half gearing step) or 100 (full gearing 

step) when increasing the (long or short) position, whereas decreasing the position means sellmg the 

full current USD amount (when gomg to neutral) or half the current USD amount (when going from 

gearing 1 to 1/2). There can be other accounting conventions, but they hardly differ numerically. 
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302 CHAPTER 11 TRADING MODELS 

the gearing calculator may make a recommendation to enter a new trading position 

but this recommendation can be followed only if the local market is open. 

The quality of the most recent price imposes another constraint. A stringent 

filter determines if a given price is suitable for dealing. This is to ensure that 

recommended deals are made only with genuine prices rather than extraneous data. 

The deal acceptor permits a new deal only with a price passing the deal-filter. 

If the gearing calculator suggests entering a new position but the deal acceptor 

decrees otherwise, the suggestion is simply ignored. Eventually, when timing and 

other factors are right, the gearing calculator will suggest entering a new position 

and the deal acceptor will approve. 

Stop-Loss Detection Besides being passed on to the gearing calculator, the filtered 

price quotes are also sent to the stop-loss detector. The stop-loss detector is 

triggered if the market moves in an unexpected direction. That is, if the model 

enters a trading position because it anticipates the market to move in a certain 

direction but in fact the market then moves the other way, the stop-loss may be 

hit. The trading model defines a stop-loss price when a position is entered. If the 

current price - that is, the most recent price - moves below the stop-loss price ( for 

a long position) or above the stop-loss price (for a short position), the stop-loss is 

said to be hit. Hitting the stop-loss causes a deal to close the current open position 

(i.e., return to the neutral position). In effect, the stop-loss prevents excessive loss 

of capital when the market moves in an unexpected direction. The stop-loss price 

may change when a new position is entered or as the current price changes (see 

Section 11.2.1 ). The current stop-loss price is displayed on the user-agent. 

For 24-hr markets like FX, a stop-loss deal may occur at any time, even outside 

local market hours. In this case, the assumption is that a position that is kept open 

outside market hours is handled by a colleague present in another market-place 

who will deal appropriately if the stop-loss is hit. Should this happen, no further 

change in position occurs until the local market opens once again. 

Stop-Profit Control The concept of stop-profit is associated with that of stop-loss. 

The stop-loss price starts to move in parallel with the current price once a trading 

model has achieved a potential profit (3% or slightly less in FX market) since 

entering the latest position. In other words, being in a situation whereby the model 

could realize such a gain by immediately entering a neutral position causes the 

stop-loss price to start moving. The difference between the stop-loss and current 

prices is kept constant as long as the current price continues moving in a direction 

that increases the potential profit of the open position. That is, the stop-loss price 

moves as a ratchet in parallel with the current price. The stop price is allowed to 

move only during opening hours. It is never adjusted when the market is closed. 

The model then enters a neutral position if it detects prices slipping backward. 

This allows a model to save any profit it has generated rather than lose it when 

the market abruptly turns. This one-directional movement of the stop-loss price 

allows the model to capitalize on a price trend. 
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11.2.2 Simulated Trader 

The simulated trader allows the system to control continuously its performance by 

simulating a trade every time the trading model gives a recommandation. In the 

following, we shall describe the different part that composes the simulated trader. 

Opportunity Catcher The trading model may make a deal recommendation in two 

distinct ways. One, the gearing calculator may make a recommendation that is 

then authorized by the deal acceptor. Two, hitting the stop-loss price activates the 

stop-loss detector. 
Whichever way a deal comes about, the opportunity catcher is activated. The 

opportunity catcher manifests itself on the user-agent as an eye-catching signal for 

the FX dealer to buy or sell according to the recommendation. 

While he or she is actively dealing, the opportunity catcher in the trading 

model collects the transaction price with which to deal, either the median bid price 

if going from a longer position to a shorter one or the median ask price if going 

from a shorter position to a longer one. This search for the transaction price lasts 

for 2 or 3 min depending on the currency, the assumption being that a quoted price 

has a life-time of about 2 or 3 min even if it is superseded by later quotes. 

After the 2 or 3 min search period, a second signal appears on the user-agent 

signifying that the trading model has made a simulated deal using the transaction 

price found by the opportunity catcher. The FX dealer then concludes his or 

her deal-making activities and waits until the trading model produces another 

recommendation. 3 

Bookkeeper The bookkeeper executes simulated deals on behalf of the trading 

model. It keeps track of all deals that have been made and evaluates statistics 

demonstrating the performance of the trading model. The bookkeeper computes a 

set of quantities that are important for the different trading rules like the following: 

■ The maximum return when open, which is the maximum value of r c from 

a transaction i to a transaction i + 1 reached during opening hours, 

■ The minimum return when open, which is the minimum value of re from 

a transaction i to a transaction i + 1 reached during opening hours. 

In this section we describe some of the important variables that need to be watched 

for deciding on the quality of a specific model. These are the following: 

■ The total return, Rr, is a measure of the overall success of a trading 

strategy over a period T, and is defined by 

n 

(11.4) 

3 As a point of detail, the opportunity catcher is not activated for a stop-loss deal occurring outside 

market hours. In this case the trading model deals directly. A human trader following the model should 

then make a correspondmg deal for himself as quickly as possible. 
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304 CHAPTER 11 TRADING MODELS 

where n is the total number of transactions during the period T, j is the /h 
transaction and r j is the return from the ph transaction. The total return 

expresses the amount of profit (or loss) made by a trader always investing 

up to his/her initial capital or credit limit in his/her home currency. 

■ The cumulated return, Cr, is another measure of the overall success of 
a trading model wherein the trader always reinvests up to his/her current 
capital, including gains or losses 

Cr 

n 

TI o + rj) - 1 . 
j=l 

This quantity is slightly more erratic than the total return. 

(11.5) 

■ The maximum drawdown, Dr, over a certain period T = t E -to, is defined 

by 

(11.6) 

where Rta and Rtb are the total returns of the periods from to to ta and fb, 

respectively. 

• The profit over loss ratio provides information on the type of strategy used 

by the model. Its definition is 

Pr 

Lr 

Nr(rj I rj > 0) 

Nr(rj I rj < 0) 
(11.7) 

where Nr is a function that gives the number of elements of a particular 

set of variables under certain conditions during a period T. Here the 
numerator corresponds to the number of profitable deals over the period T 

and the denominator is the number oflosing deals over the same period. 

11.3 RISK SENSITIVE PERFORMANCE MEASURES 

Evaluating the performance of an investment strategy generally gives rise to many 
debates. This is due to the fact that the performance of any financial asset cannot 

be measured only by the increase of capital but also by the risk incurred during the 

time required to reach this increase. Returns and risk must be evaluated together 
to assess the quality of an investment. In this section we describe the various 

performance measures used to evaluate trading models. 

The annualized return, Rr,A, is calculated by multiplying the total return 

(Equation 11 .4) with the ratio of the number of days in a year to the total number 

of days in the entire period. 4 In order to achieve a high performance and good 

4 If it is the annualization of one particular return (for one trade going from neutral to neutral), one 
simply needs to multiply the return by the ratio of I year in days to the time interval from neutral to 
neutral. Usually, the annualization of the total return is calculated for all the trades during a whole 
year. This is simply the sum of all trade returns not annualized during the whole year. If at the end of 

the year there is an open pos1t1on, the current return of your open position is added to the total return. 
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11.3 RISK SENSITIVE PERFORMANCE MEASURES 305 

acceptance among investors, investment strategies or trading model performance 

should provide high annualized total return, a smooth increase of the equity curve 

over time, and a small clustering of losses. The fulfilment of these conditions 

would account for a high return and low risk. In addition to favoring this type 

ofbehavior, a performance measure should present no bias toward low-frequency 

models by including always the unrealized return of the open position and not only 

the net result after closing the position. 
Already in 1966, Sharpe (1966) introduced a measure of mutual funds perfor­

mance, which he called at that time a reward-to-variability ratio. This performance 

measure was to later become the industry standard in the portfolio management 

community under the name of the Sharpe ratio, Sharpe (1994). Practitioners fre­

quently use the Sharpe Ratio to evaluate portfolio models. The definition of the 

Sharpe ratio is 

Sr - AM 
r 

(11.8) 

where r is the average return and a} is the variance of the return around its mean and 

AL'.t is an annualization factor, 5 depending on the frequency at which the returns are 

measured Sharpe (1994).6 Unfortunately, the Sharpe ratio is numerically unstable 

for small variances of returns and cannot consider the clustering of profit and loss 

trades. 
There are many aspects to the trading model performance; therefore, different 

quantities have to be computed to assess the quality of a model. In the section on 

the bookkeeper, we already described some of the important variables that need to 

be watched for deciding on the quality of a specific model. Here we introduce the 

two risk-sensitive measures that are the basic quantities used in further sections to 

analyze the behavior of trading models. 

11.3.1 Xe.ff: A Symmetric Effective Returns Measure 

As the basis of a risk-sensitive performance measure, we define a cumulative 

variable i'?.i, at time t, as the sum of the total return Rr of Equation 11.4 and the 

unrealized current return re (Equation 11.3) of the open position. This quantity 

reflects the current value of the investment and includes not only the results of 

previously closed transactions but also the value of the open position (mark-to­

market). This means that R1 is measuring the risk independently of the actual 

trading frequency of the model. Similar to the difference between price and returns, 

the variable of relevance for the utility function is the change of R over a time 

5 AL!.t Jl2 for monthly frequency. 
6 Here the Sharpe ratio refers to the calculation of the returns in the expressed currency and the 

variance is computed with monthly returns. The monthly returns are the total return achieved to the 

end of the month (sum of all returns up to now, including the current return of the open position) minus 

the total return achieved at the end of the previous month. 
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interval Dot, 

(11.9) 

where t expresses the time of the measurement. Generally Dot is allowed to vary 

from 7 days to 301 days. A risk-sensitive measure of trading model performance 

can be derived from the utility function framework (Keeney and Raiffa, 197 6). Let 

us assume that the variable X1it follows a Gaussian random walk with mean X ilt 
and the risk aversion parameter a is constant with respect to X1i 1. The resulting 

utility u(Xllt) of an observation is - exp(-aX1i 1), with an expectation value of 

ii= u(XAt) exp(a 2o"lr/2), whereoL is the variance of XL;.1 , The expected utility 

can be transformed back to the effective return, Xeff - Iog(-u)/a where 

Xeff 

2 
aailt 

2 
(11.10) 

The risk term a c, L /2 can be regarded as a risk premium deducted from the original 

return where uit is computed by 

2 
(f ilt 

n (-2 -2 ) 
-- X1i1 - X1i1 
n-1 

(11.11) 

Unlike the Sharpe ratio, this measure is numerically stable and can differentiate 

between two trading models with a straight-line behavior (o-ii 0) by choosing 

the one with the better average return. 7 The measure Xeff still depends on the size 

of the time interval Dot. It is hard to compare Xeff values for different intervals. 

The usual way to enable such a comparison is through the annualization factor, 

A1it, where A1it is the ratio of the number of Dot in a year divided by the number 

of l!i.t's in the full sample 

Xeff,ann,flt 
- a 2 

= A1it Xeff = X - 2 A1i1 uilt (11.12) 

where X is the annualized return and it is no longer dependent on Dot. The factor 

Afliait has a constant expectation, independent of Dot. This annualized measure 

still has a risk term associated with Dot and is insensitive to changes occurring with 

much longer or much shorter horizons. To achieve a measure that simultaneously 

considers a wide range of horizons, a weighted average of several Xeff,ann is 

computed with n different time horizons Dot;, and thus takes advantage of the fact 

that annualized Xeff,ann can be directly compared, 

(11.13) 

7 An example for the limitation of the Sharpe ratio is its inability to distingmsh between two straight 

line equity curves with different slopes. 
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11.3 RISK SENSITIVE PERFORMANCE MEASURES 307 

where the weights w are chosen according to the relative importance of the time 

horizons !::.ti and may differ for trading models with different trading frequencies. 

Generally, a is set to a = 0.1 when the returns are expressed as a percentage. If 

they are expressed in numbers, a would be equal 10. The risk term of Xeff is based 

on the volatility of the total return curve against time, where a steady, linear growth 

of the total return represents the zero volatility case. This volatility measure of the 

total return curve treats positive and negative deviations symmetrically, whereas 

foreign exchange dealers become more risk averse in the loss zone and hardly care 

about the clustering of positive profits. 

11.3.2 Reff: An Asymmetric Effective Returns Measure 

A measure that treats the negative and positive zones asymmetrically is defined 

to be Reff, (Muller et al., 1993b; Dacorogna et al., 2001b) where Reff has a high 

risk aversion in the zone of negative returns and a low one in the zone of profits, 

whereas Xeff assumes constant risk aversion. A high risk aversion in the zone of 

negative returns means that the perfonnance measure is dominated by the large 

drawdowns. The Reff has two risk aversion levels: a low one, ct+, for positive 

t:.R1 (profit intervals) and a high one, a_, for negative t:.R1 (drawdowns), 

for l::.Rr 2: 0 
J or /J.R.1 < 0 

(11.14) 

where a+ < a_. The high value of a_ reflects the high risk aversion of typical 

market participants in the loss zone. Trading models may have some losses but, if 

the loss observations strongly vary in size, the risk of very large losses becomes un­

acceptably high. On the side of the positive profit observations, a certain regularity 

of profits is also better than a strong variation in size. However, this distribution 

of positive returns is never as vital for the future of market participants as the dis­

tribution oflosses (drawdowns). Therefore, ct+ is smaller than a_ and we assume 

that a+= a_/4 and a_ = 0.20. These values are under the assumption of the 

return measured as percentage. They have to be multiplied by 100 if the returns 

are not expressed as percentage figures. 
The risk aversion a associated with the utility function u(t:;.R) is defined in 

Keeney and Raiffa (1976) as follows: 

d2u 
[d(Ll.R)] 2 

--du--Ci (11.15) 

d(Ll.R) 

The utility function is obtained by inserting Equation 11.14 in Equation 11.15 and 

integrating twice over t:;.R: 

• - u(L>.ii) - I for t:;.R. 2: 0 

for t:;.R < o 
(11.16) 
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The utility function u(flR) is monotonically increasing and reaches its maximum 

0 in the case flR --+ oo (infinite profit). All other utility values are negative. (The 
absolute level of u is not relevant; we could add and/or multiply all u values with 

the same constant factor(s) without affecting the essence of the method.) 

The inverse formula computes a return value from its utility: 

{ 
log(-ct+ul 

ct+ 

ct-

for u 2:: 

for u < - ..l.. 
ct+ 

(11.17) 

The more complicated nature of the new utility definition, Equation 11.16, makes 
deriving a formula for the mean utility quite difficult and offers no analytical 
solution. Moreover, the Reff is dominated by the drawdowns that are in the tail 

of the distribution, not in the center. The assumption of a Gaussian distribution, 

which may be acceptable for the distribution as a whole, is insufficient in the tails 
of the distribution, where the stop-loss, the leptokurtic nature of price changes, and 

the clustering of market conditions such as volatility cause very particular forms 
of the distribution. 

Therefore, the use of explicit utilities is suggested in the Reff algorithm. The 

end results, Reff and the effective returns for the individual horizons, will however, 

be transfonned back with the help of Equation 11.17 to a return figure directly 
comparable with the annualized return and Xeff• The utility of the /h observation 
for a given time interval flt is 

Uf:::.t,j (11.18) 

The total utility is the sum of the utility for each observation 

(11.19) 

In this formula, Nj is the number of observed intervals of size flt that overlaps 
with the total sampling period of size T and the weight v j is the ratio of the 
amount oftime during which the /h interval coincides with the sampling period 

over its interval size flt. This weight is generally equal to one except for the first 
observation(s), which can start before the sample starts, and the last one(s), which 

can end after the sample ends. To obtain a lower error in the evaluation of the mean 
utility, different regular series of overlapping intervals of size flt can be used. The 

use of overlapping intervals is especially important when the interval size b.t is 
large compared to the full sample size T. Another argument for overlapping is 

the high, overproportional impact of drawdowns on Reff· The higher the overlap 
factor, the higher the precision in the coverage of the worst drawdowns. 
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The mean utility u t,.t can be transformed back to an effective return value by 

applying Equation 11.17: 

(11.20) 

This AReff,!:;.t is the typical, effective return for the horizon At, but it is not yet 

annualized. As in the case of the Xe.ff, an annualization is necessary for a compar­
ison between Reff values for different intervals. The annualization factor, A1:;.1, is 

the ratio of the number of lit in a year divided by the number of nonoverlapping 
At's in the full sample of size T. We have 

Rejf,ann,M (11.21) 

To achieve a measure that simultaneously considers a wide range of horizons, 

we define Reff as a weighted mean over all the n horizons, 

(11.22) 

where the weights Wi are chosen according to the relative importance of the time 

horizons Ati and may differ for trading models with different trading frequen­
cies. In the case of the trading models described in this book, we have choosen a 
weighting function 

w(Ati) = 
( 

t,,.t, )
2 

2 + log 90 days 

(11.23) 

with the maximum for a At of 90 days. 
Both Xe.ff and Reff are quite natural measures. They treat risk as a discount 

factor to the value of the investment. In other words, the performance of the model 
is discounted by the amount of risk that was taken to achieve it. In the X eff case 

the risk is treated similarly both for positive or negative outcome, whereas in the 

case of Reff negative performance is more penalized. 

11.4 TRADING MODEL ALGORITHMS 

We tum now to the description of the techniques used to build the real-time trading 

models. Trading models have been developed for many decades by a large number 
of people and applied in all types of financial markets. These models have been 
designed from a broad class of indicators ranging from classical technical analysis 

up to chaotic theory. It is just not possible to provide a comprehensive list of the 
various approaches used in trading system design and the literature in this field is 

so large that we will leave this exercise to other authors. As in the case of technical 
analysis, hundreds of articles and books have been written. 
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Generally, trading systems are built from a few classes of indicators providing 

specific types of information on the underlying financial time series. For instance, 
we have these: 

■ The trend following indicators, which allow to detect and follow major 
market trends. 

■ The overbought and oversold indicators, which allow to detect important 
market turning points. 

• The cycle indicators, which try to emphasize periodic market fluctuations. 

• The timing indicators, which provide optimum exit conditions. 

As an example we will describe one model that we have developed for the 

FX market and that many large banks have actively used for a decade. As we 
have pointed out earlier, a trading strategy is built from some indicators and a set 

of decision rules. Indicators are variables of the trading system algorithm whose 
values, together with the system rules, determine the trading decision process. In 

Chapter 3.3 we gave different descriptions of indicators that have been used in 
conjunction with trading models. 

11.4.1 An Example of a Trading Model 

The real-time trading model (RTT) studied in this section is classified as a one­

horizon, high-risk/high-return model. The RTT is a trend-following model and 
takes positions when an indicator crosses a threshold. The indicator is momen­

tum based, calculated through specially weighted moving averages with repeated 
application of the exponential moving average operator (see Section 3.3.6). In the 

case of extreme foreign exchange movements, however, the model adopts an over­
bought/oversold (contrarian) behavior and recommends taking a position against 

the current trend. The contrarian strategy is governed by rules that take the recent 
trading history of the model into account. The RTT model goes neutral only to 
save profits or when a stop-loss is reached. Its profit objective is typically at 3%. 

When this objective is reached, a gliding stop-loss prevents the model from losing 

a large part of the profit already made by triggering it to go neutral when the market 

reverses. 
At any point in time t, the gearing function for the RTT is 

gtUx) sign(/x(t)) f(\lx(t)\) c(l(t)) 

where 

lx(t) =x 1 MA(-r =20days,4;x) 

where x1 is the logarithmic price at time t and the moving average (MA) of x 
follows the definition and notation of Equation 3.56 (where the last argument x of 
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MA indicates the time series to which the MA operator is applied), 

and 

! if llx(t)I > b l 

f(llxU)I) = if a< llx(t)I < b 0.5 

{ 
+1 
-1 

if 
if 

if llx(t)I < a o 

llxU)I < d 
llx(t)I > d and &-1 · sign(/x(t)) > 0 and rz > P 
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where a < b < d and rz is the return of the last deal and P the profit objective. 

The function, f(l/x(t)I), measures the size of the signal at time t and the function, 

c (I/ x I), acts as a contrarian strategy. The model will enter a contrarian position 

only if it has reached its profit objective with a trend following position. In a 

typical year, the model will play against the trend two to three times while it deals 
roughly 60 to 70 times. The hit rate of the contrarian strategy is of about 7 5%. 

The parameters a and b depend on the position of the model, 

a(t) = 

and b = 2a. The thresholds are also changed if the model is in a position g1 =f= 0 

and the volatility of the price has been low, in the following way: 

a(t) = { 
a if 

10a if 
lxe -xtl > v 
lxe -xii< V 

where Xe is the logarithmic entry price of the last transaction and v is a threshold, 

generally quite low < 0.5%. This means that the model is only allowed to change 
position if the price has significantly moved from the entry point of the deal. 

Because X eff and Reff are implicit functions of the gearing, the optimization of 
the RTT model is based on the Xe.ff and Reff performance. The parameters subject 

to optimization are; r, a, d, and v. There are two other auxiliary parameters, 
which are the stop loss, S, at which an open position is automatically closed and 
the profit objective, P. These parameters are only optimized at the end once the 
others have been found and they are also not allowed to vary all the way because 

maximum stop-loss and maximum gain limits are set by the environment. 8 The 
model is subject to the open-close and holiday closing hours of the Zurich market. 

11.4.2 Model Design with Genetic Programming 

The major problem with trading models is the large amount of time needed to 
develop and optimize new trading strategies. As we said before, a trading strategy 

is a small computer program composed of some indicators to forecast price trends 
combined with a set of rules to determine the trading decision process. 

8 For more details on the optimization procedure, see Pictet et al. (1992). 
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One very promising approach in the search of new trading strategies is pro­
vided by genetic programming (GP) method (Koza, 1992; Banzhaf et al., 1998). 

This is an evolutionary algorithm that allows to automatically discover computer 
programs that solve a given problem. Evolutionary algorithms tend to find glob­
ally satisfactory solutions to the problem and, much in the same way as in nature, 
populations of organisms tend to adapt to their surrounding environment. Such 
an approach has been applied to stock indices, as noted in Allen and Karjalainen 

(1999), and to exchange rates, as noted in Oussaidene et al. (1997); Neely et al. 
(1997); Bhattacharyya et al. (1998). 

Individual programs in GP are represented as parse trees with ordered bran­
ches in which the internal nodes are functions (with subtree branches as function 
arguments) and the leaves or terminal nodes are variables. The functions are chosen 

from a user-defined/unction set, those that are a priori believed to be useful for 
the problem at hand, and the leaves are selected from a terminal set containing the 
principal variables or constants of the problem. 

Once an initial population has been created, the genetic algorithm enters a 
loop. At the end of each iteration (or generation), a new population has been 
created by applying a certain number of stochastic operators to the members of 
the previous population. A selection operator is first applied in order to extract 
some above-average individuals for reproduction. When a population of parents 
has been extracted, two reproduction operators are used: crossover and mutation. 
As shown on Figure 11.2, the crossover operator starts by selecting a random 
crossover point in each parent tree (a and b) and then exchanging the subtrees, 
giving rise to two offspring trees (c and d). The crossover sites, cl and c2, are 
usually chosen with nonuniform probability, in order to favor internal nodes with 
respect to leaves. In the same figure we can observe that from two parents trees, 
which are not interesting, the crossover is able to generate the offspring ( c ), which 
correspond to a well-known simple trading strategy using the difference between 
two moving averages. After crossover, a certain proportion of the offspring are 
subject to mutation. The mutation operator is implemented by randomly removing 
a subtree at a selected point and replacing it with a randomly generated subtree. 

In the basic genetic programming approach, it is generally required that all 
elements of a tree return the same data type, so as to allow arbitrary subtrees to be 
recombined by the crossover and mutation operators. This closure property (Koza, 
1992) can be a potential limitation in some applications like the trading strategies 
search process. In earlier studies, on the use of GP for searching new trading 
strategies (Oussaidene et al., 1997), a large proportion of the population members 
were noted to be irrelevant and resulted in a wasteful search. For instance, if you 
carefully study the different GP trees in Figure 11.2, you can easily conclude that 
only the offspring ( c) corresponds to a reasonable indicator. 

As mentioned, trading models are a function of the price history. In the case 
of the FX market, it is common to consider the logarithmic middle price x, which 
possesses an exact symmetry x ➔ -x, corresponding to the interchange of the 
expressed and exchanged currencies. Consider the U.S. Dollar to German Mark 
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FIGURE 11.2 Crossover operator. 
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(USD-DEM) exchange rate. A trading model that is optimum for the USD-DEM 
rate is also expected to be optimum for the inverted DEM-USD rate. For this to 
hold, the model for the inverted DEM-USD rate should provide a signal, at any time 
t, that has exactly the reverse sign than the one for the USD-DEM rate. It means 
the output signal g1 (x) of a consistent trading model must be an antisymmetric 
function of the return. Enforcing the symmetry condition on the trading model 
thus requires that g1 (x) - gi(-x) = -g 1(x). Maintaining this property in a GP 
tree requires tracking the symmetry property at individual nodes in the tree, and 
fonns the basis for defining syntactic restrictions. To enforce the symmetry, three 
possible types are defined: 

■ Antisymmetric type A ( e.g., a moving average of x ): 
A(-x) = -A(-x) 

■ Symmetric type S (e.g., a volatility): S(-x) = S(x) 

■ Constant type C (numerical constants) 

Constants are in essence of symmetric type; however, there are many advantages 
to considering the constant type separately. In specifying a GP trading model, 
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+ - A s C * I A s C 

A A - - A s A A 

s - s s s A s s 
C - s - C A s -

FIGURE 11.3 Syntactic restrictions for basic arithmetic operators. 

every node evaluation is considered to return both a value and a type (A, S, or 
C as defined above). The typing mechanism is used to categorize the symme­
try properties. A variety of functions may be considered for formulating trading 
models. Each function must be specified in terms of syntactic restrictions relating 

to symmetry, and guiding their combination with terminals and other functions. 
As an example, the syntactic restrictions for the basic arithmetic operators are 
provided in Figure 11.3. In these tables, the first row and column correspond to 
the type of the two arguments, with the intersection cells showing the type of the 
result. The symbol "-" represents a combination of arguments that is disabled. 
Operation on two constants is generally disabled to avoid wasteful computation 
of constants through the regular crossover and mutation operators (Evett and Fer­
nandez, 1998). The constants are generally mutated using specific non-uniform 
mutation operators (Michalewicz, 1994). 

Other classes of functions are useful in the construction of the trading strate­
gies. The important one is the class of the time series convolution operators 

described in Section 3.3. For instance, in Figure 11.2, we see exponential moving 
averages of the middle logarithmic price x for the two ranges of 20 and 40 days. 
Such operators can be used as function nodes if their syntactic restrictions are 
provided. They can also be used directly as input variables of the antisymmetric 
or symmetric type, depending on their symmetry properties when x is replaced by 
-x. In the case ofa moving average operator, syntactic restrictions are forced to 
have the same symmetry type for the input and output signals. 

Other operators often used in trading strategies are the classes of: 

• Logic operators: AND, OR, 

■ Comparison operators: greater than, smaller than, 

■ Conditional operators: IF-then, IF-then-else. 

As we expect an asymmetric output trading signal, it is suitable to use for these 

operators a ternary Boolean logic, Oussaidene et al. (1997). 
In using such trading strategies, like in Bhattacharyya et al. ( 1998), we clearly 

depart from the closure property. In fact, we consider here a strongly typed GP 
approach (see Montana, 1995), where the evolution procedure needs to define a 
random tree initialization routine, and crossover and mutation operators respecting 
the defined restrictions. 

As an example, we describe a study by Chopard et al. (2000) who analyze five 
exchange rates (USD-DEM, USD-JPY, USD-CHF, GBP-USD, and USD-FRF), 
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where each time series contains 9 years of hourly data from January, 1, 1987, 
to December, 31, 1995. The data are divided into alternate training (in-sample) 
and test (out-of-sample) periods of I½ year each. We have used the four arith­
metic functions (+,-,*,/),the basic comparison ( <,>),and the logical operators 
(AND,OR,IF), which were defined in Bhattacharyya et al. (1998). Both compar­
ison and logical operators are defined for a ternary logic {-1,0,+I}, which corre­
sponds to the signal returned by a trading model. As in the case of the arithmetic 
functions, these operators are used with syntactic restrictions to preserve the over­
all symmetry properties of the generated GP trees. Indicators reported in earlier 
studies (Oussaidene et al., 1997; Bhattacharyya et al., 1998) are also used for this 
application. The terminals used are as follows: 

■ Antisymmetric indicators: M11 that represent the momentum of price x 
over n days. Here we consider three different ranges: Ms and M16, M32. 

■ Symmetric indicators: VII that are volatility indicators over n days: Vs 
and V16-

■ Constant values in the range [-2, +2]. 

As a last step, the output value of the GP tree is mapped to a gearing value in the 
range [-1, + 1] to obtain a gearing signal. For the purpose ofreducing overfitting, 
each trading model is tested on many exchange rate time series. The fitness 
measure, Xe.ff, ofa GP-tree is then defined as the average fitness over each exchange 
rate, decreased by a penalty proportional to the standard deviation of these values. 

Five independent optimization runs are performed. In each run, we evolve 
four subpopulations of I 00 individuals each. All subpopulations are created ran­
domly using the ramped half-half approach (Koza, 1992) with a maximum depth 
of 4. In the reproduction phase, we use the tournament selection. The muta­
tion and crossover operators are used with corresponding probabilities of 20% 
and 80% and the maximum depth allowed for generated trees is fixed to 6. Each 
subpopulation sends periodically 5% of its best individuals to another, randomly 
selected, subpopulation. A given subpopulation includes its local buffer of re­
ceived migrants when the difference between the best and the average scores of 
the current population is smaller than half the standard deviation of the scores. 
The new individuals replace an equal number oflow-fitness ones in the receiving 
population. The evolution is stopped when a maximum number of 10,000 indi­
viduals have been evaluated. The selected solution is the best solution found by 
the four subpopulations. 

Table 11.2 presents the performance results of the different runs. The first 
entry gives the average quality of the basic antisymmetric momentum indicators 
M8, Ml 6, and M32. The results of the optimization runs are given in decreasing 
order of their out-of-sample performance. The results of this table indicate that 
on average the performance of the solutions provided by the genetic algorithm are 
significantly higher than the performance of the basic momentum indicators. 
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TABLE 11.2 Trading model results versus tree complexity. 

Tree complexity, yearly return R, and fitness value Xeff (in percent) corresponding to the 

in-sample and out-of-sample periods. The results are given for preoptim1zed indicators 

and for the best solution of each optimization run. 

Run Tree In-sample Out-of-sample 
complexity i< Xeff i< Xeff 

Indicators 4.23% -1.84% 3.61% -3.77% 
Run l 21 8.12% 3.86% 6.29% 1.09% 
Run2 17 9.49% 4.16% 5.80% 0.47% 

Run3 19 7.45% 2.82% 5.06% -2.34% 

Run4 24 7.71% 3.55% 4.87% -3.28% 
Run5 28 6.84% 2.63% 3.10% -5.85% 

For instance, the solution selected in the second run that provides the best 

in-sample result is given by the GP-tree: 

(IF(> V8 0.027) 
(IF(> V16 0.108) 

(+ M16 M32) 
( * M32 1. 957) 

(* MS 1. 542) 

The use of syntatic restrictions allows the discovery trees of lower complexity on 

average, compared with the previous study of Oussaidene et al. (1997), and all 

the generated GP trees are valid. However, there may exist some solutions that do 

not generate any trades, because some conditions always evaluate the same value. 

These solutions are quickly eliminated in the selection process. On average the 

solutions seem to be more robust and to provide higher out-of-sample performance. 

One limiting problem in these optimizations was implied by the use of"hard" 

logical and basic comparison operators that give rise to undesirable discontinuities 

due to the jumps of the Boolean variables that can occur for tiny changes of the 

basic indicators. One better way ofimplementing these operators would be through 

the use of fuzzy-logic. A smoother transition between different logical states can 

probably provide better performances. 
All these optimization runs are done using hourly data, for obvious efficiency 

reasons. Then, when such optimization is completed, the final selected solu­

tion( s) must be tested in the complete real-time trading model environment with 

tick-by-tick data to check its behavior and to do some fine-tuning needed for the 

understanding of the final users. 
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11.5 OPTIMIZATION AND TESTING PROCEDURES 

When the main trading strategy has been selected, one of the most difficult tasks is 

to optimize the parameters present in the model and to test the different solutions 

in order to select the most robust trading model to be used in the real time data. 

The goal is to select robust solutions that have desirable generalization properties 

to provide satisfactory perfonnance in the future. 
In the optimization process we expect the selection of a trading model that 

realizes large profits from the price moves present in the time series. We assume 

that these profits will be maximized when the trading model catches the dynamics 

of the price-generation process. Unfortunately, during the optimization phase the 

trading model repeatedly sees the same data set and discovers how to profit from 

some specific price moves that could be due to some random fluctuation of the 

prices. This will lead a trading model to provide poor results on real-time data. 

Such a model is called an "overfitted" model. To minimize overfitting during 

optimization, a few important elements are to be present: 

• A good measure of the trading model perfonnance 

• Indicator evaluation for different time series 

• Large data samples 

• A robust optimization technique 

• Strict testing procedures 

An optimization algorithm will always try to find the best solution in the pa­

rameter space. In the case of trading models, optimization of such properties is 

not suitable, because a solution corresponding to the best possible parameters gen­

erally corresponds to an overfitted solution. As we argued earlier, such solutions 

will often generate poor generalizations in a real-time trading setting. In the next 

section, we shall concentrate on one robust optimization technique based on the 

genetic algorithm approach. This method allows the selection of a group of so­

lutions that correspond to broad regions of the parameter space where the trading 

perfonnance is higher on average, rather than the highest. 

11.5.1 Robust Optimization with Genetic Algorithms 

The new element we want to present in this section is a way to automatize the search 

for improved trading models. Genetic algorithms offer a promising approach for 

addressing such problems (Allen and Karjalainen, 1999). Genetic algorithms con­

sider a population of possible solutions to a given problem and evolve it according 

to mechanisms borrowed from natural genetic evolution: reproduction and se­

lection. The criterion for selecting an individual is based on its fitness to the 

environment, or more precisely to the quality of the solution it bears. A possible 

solution is coded as a chromosome (gene), which is formally the data structure 

containing the values of the quantities characterizing the solutions. 
In the framework of the present optimization, a gene will contain the indicator 

parameters, a time horizon, a weighting function of the past, and the type of 
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operations used to combine them. Contrary to GP, the gene does not offer the 

flexibility to the algorithm but only to the parameters. The fitness function will be 
based on the return obtained from the recommendations of a given trading model. 

Sharing Scheme For Multi-Modal Functions A major problem in trading model op­
timization is to obtain models that are robust against market changes and random 

noise in data collection. In such optimization problems, sharp peaks of high fit­
ness are usually not representative of a general solution, but rather they indicate 

accidental fluctuations. Such fluctuations may arise out of inherent noise in the 

time series or due to threshold effects in the trading model performance. Peaks in 
such a discontinuous, noisy and multimodal fitness space generally correspond to 
trading models that will not perform well in out-of-sample tests. 

In the context of genetic algorithms, optimizing multimodal functions has 

been investigated using methods inspired from the natural notions of niche and 

species, as noted by Goldberg and Richardson (1987); Deb and Goldberg (1989), 
and Yin and Germay (1993). The general goal is to be able to create and maintain 
several subpopulations, ideally one per major peak of the fitness function, instead 

of having the whole population converging to one global optimum. 
One of the best methods was proposed by Goldberg and Richardson (1987). 

The idea is that the GA perception of the fitness function is changed in such a 
way that when individuals tend to concentrate around a high peak, the fitness is 

reduced by a factor proportional to the number of individuals in the region. This 
has the effect of diminishing the attractiveness of the peak and allowing parts of the 

population to concentrate on other regions. This effective fitness of an individual 

i, called shared fitness sf, is given by 

SJ(i) 
f (i) 

m(i) 
(11.24) 

where f (i) is the original fitness and m(i) is called the niche count. For an 
individual i, the quantity m(i) is calculated by summing up the sharing function 

values contributed by all N individuals of the population, 

N 

m(i) = :Esh(dij) 
j=I 

where dij is the distance between two individuals i and j and 

sh(dij) = [ I - (~ r ifdij < O's 

0 otherwise 

(11.25) 

(11.26) 

The quantities a and O's are constants. A difficulty of this method is in choosing 

the value of Us. This requires prior knowledge about the number of peaks in 
the solution space. In our economical application as well as in many realistic 
problems, this information is not readily available. 

A method is proposed in Yin and Germay ( 1993) based on a different sharing 

scheme and using an adaptive cluster methodology. The authors show that this 
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method is effective in revealing unknown multimodal function structures and is 
able to maintain sub-population diversity. This method establishes analogies be­
tween clusters and niches in the following way. The GA population is divided by 
the adaptive MacQueen's KMEAN clustering algorithm, in K clusters ofindividu­
als that correspond to K niches, The shared fitness calculation is the same as in the 
classical sharing method, but the niche count m(i) is no longer associated with as. 
In this case, the number of individuals within the cluster to which the individual 
i belongs plays a central role in the niche count calculation. As the number of 
clusters is associated with the number of niches (peaks), the individuals are put 
into a single partition of K clusters, where K is not fixed a priori but is determined 
by the algorithm itself. Therefore no a priori knowledge about the numbers of 
peaks of the fitness function is required as in the classical sharing method. The 
niche count m(i) is computed as 

( d;c )a 
m(i) = Ne - Ne* ---

2 Dmax 
(11.27) 

where Ne is the number of individuals in the cluster c, a is a constant, and die is 
the distance between the individual i and the centroid of its niche. The algorithm 
requires a distance metric in order to compute the distance between two clusters 
and the distance between one individual and one cluster. Two clusters are merged 
if the distance between their centroids is smaller than a threshold parameter Dmin. 

Moreover, when an individual is further away than a maximum distance Dmax 

from all existing cluster centroids, a new cluster is formed with this individual as 
a member. The efficiency of the algorithm is improved by sorting the population 
in descending order according to the individual's fitness before the application of 
the clustering. 

Such genetic algorithm with sharing and clustering has been applied to stan­
dard multimodal and continuous fitness functions by Yin and Germay (1993) and 
Chopard et al. (1995) with promising results. One example of a more complex 
application was the determination of the optimum parameters of the business time 
scale,9 which is used for analyzing price history and computing indicators. In this 
example, the optimization is quite difficult because we have to optimize simulta­
neously 17 parameters and the function is nonlinear in some of its parameters. To 
solve such a problem, it was necessary to add a normalization of the parameter 
space in the genetic algorithm-that is, each parameter is only allowed to vary in 
the range [O, I]. In simple problems, the two clustering parameters are generally set 
to Dmin = 0.05 and Dmax = 0.15. But here, because of the large dimensionality of 
the parameter space, the value of the clustering parameters Dmin and Dmax must be 
much larger. In this case, the two parameters are multiplied by .jn where n is the 
number of parameters to be optimized. The results obtained with this genetic algo­
rithm are very promising and the sharing and clustering approach clearly increases 

9 This is a time scale that contracts and expands time based on seasonal activity or volatility of the 
time senes (see Chapter 6). 
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the speed of convergence compared to the simple genetic algorithm described in 

the previous section. 
When applied to the indicator optimization problem, the genetic algorithm 

with sharing and clustering runs into difficulties. If the fitness landscape contains 
too many sharp peaks of high fitness, all the selected clusters concentrate around 

these peaks and the genetic algorithm is unable to find robust solutions. In the next 

section, we propose some modifications to the genetic algorithm to detect clusters 
in the parameter space that correspond to more general and robust solutions. 

Modified Sharing Function for Robust Optimizations We need to find a new genetic 
algorithm that avoids the concentration of many individuals around sharp peaks of 

high fitness but detects broad regions of the parameter space containing a group of 
individuals with a high average fitness level and a small variance of the individual 

fitness values. 
To solve this problem, we propose a new sharing function that penalizes 

clusters with large variance of the individual :fitness values and also penalizes 
clusters with too many solutions concentrated inside too small a region. The 
distance metric considered here is the Euclidean distance computed in the real 
parameter space (phenotypic sharing). In the proposed sharing scheme, all the 
individuals that belong to a given cluster c will share the same fitness value, 

le (11.28) 

where Ne is the number of genes in the cluster c, fc is the average fitness value, 
and the standard deviation of the individual fitness values o-(fe) is defined by 

l Ne _ 

N - 1 L)f (i) - fc)2 
C i=l 

and o-(fc) = 

(11.29) 

As the method is based on the distribution of gene fitness inside each cluster, we 
keep only the clusters that contain at least a minimum number of members. We 
use a minimum cluster size of two individuals. As we also need to keep enough 
clusters of reasonable size, we have to limit the size of the largest clusters. The 
term Ne/Navin Equation 11.28 is used to control the number of genes inside each 
cluster. If Ne is smaller than the expected average number of genes inside each 
cluster Nav, the correction is reduced, otherwise it is increased. Here, the constant 
Nav is chosen such that the population size is divided by the (preconfigured) 
expected number of clusters. 

The second term (1 - rd)/ rd in Equation 11.28 is used to penalize clusters 
with too high a concentration of genes around their centroid. The value rd is 
defined as 
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where die is the distance of the gene i to the centroid of the corresponding cluster 
c. Here the square root is used to avoid too large a correction for an average 
concentration of genes, as is often the case. 

To keep the cluster's space as large as possible, we also have to minimize the 
overlap between different clusters. To reduce this overlap, the clustering parameter 
Dmin must be quite large and here we use Dmin = Dmax. In order to have a 
reasonable clustering parameter for large dimensionality of the parameter space, 
the values of the two clustering parameters Dmin and Dmax are multiplied by .Jn 
where n is the number of parameters to be optimized. 

With this new sharing scheme, the selection pressure is no more specific to 
each individual, as in a standard GA, but is the same for all genes present in a given 
cluster. This allows us to get a selection mechanism that looks for subpopulations 
of solutions with an average high quality instead of the best individual solution. 
Of course, the overall convergence speed is slightly reduced. 

The selection pressure toward robust solutions is still present through the 
adaptive cluster methodology that tends to create clusters around a group of good 
individuals and through the reproduction technique, which uses elitism and mating 
restriction inside each cluster. Moreover, to keep a larger variety in the population, 
all the individuals who do not really belong to any clusters (i.e., who are further 
than the maximum distance Dmax from all existing cluster centroids) will have 
an unmodified fitness value. During the reproduction phase these individuals will 
have no mating restriction and generally a slightly higher selection probability. 

To speed up the full process, the result of each different gene is stored and 
not recomputed when this gene appears again in the next generations. Moreover, 
the information of all the previously computed solutions can be used at the end to 
assess the reasonableness of the optimum solution. 

Eventually, the algorithm selects, for each cluster, the best solution that is not 
farther than the distance Dmax/2 from the cluster centroid. The final solution is 
the solution selected for the cluster that has the maximum average fitness corrected 
by the variance--that is, for the maximum value of fc - a Uc). 

The success of this type of genetic algorithm is still quite sensitive to the 
quality of the fitness measure but also to the normalization of the parameter space 
(i.e., to the quality of the metric used in the cluster construction). If the parameters 
do not have all the same sensitivity, this should also be reflected in the clustering 
algorithm. That is why we introduce the possibility of modifying the normalization 
of the parameter space, but in many applications this is not enough and some 
parameter mapping functions are needed. These functions depend on the specific 
problem to solve. 

11.5.2 Testing Procedures 

Strict optimization and testing procedures are a necessary condition to obtain robust 
trading strategies. The three main phases in the development of new trading models 
are as follows: 
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■ The development and optimization of new trading strategies 

■ The historical performance tests to select the strategies from data that were 

not used to optimize the models 

■ Real-time tests to confirm the performance of the selected models 

The amount of historical data available for both the development ( optimiza­
tion) and the testing of a new trading model is always of finite size. On one side, 

to obtain meaningful and robust optimization results, a data sample as large as 

possible is requested. On the other side, the same is true for the statistical tests of 

the performance of a new model. Of course, the same data cannot be used for both 
the optimization and for the test of a trading strategy. The available historical data 

must be split into a minimum of two different sample periods. One period, named 
the in-sample, is used for the optimization and the other one, named the out-of­
sample, for the performance tests. Such splitting must never be modified during 
the optimization or the testing phase, otherwise the risk of overfitting the historical 

data becomes very large and the statistical tests on the model performance are 

unreliable. 
Another problem to take into account with financial data is the long-term het­

eroskedasticity (i.e., the presence of clusters which correspond to periods where the 

average price volatility is higher and other ones where the average price volatility 
is lower). As many trading models can react quite differently according to the aver­
age volatility of the market prices, it is not very convenient if the two selected data 

sets for optimization and testing present significative differences in their statistical 
properties. 

A rule that provides reasonable results is to use two-thirds of the historical data 

for the optimization and one-third for the tests. The first part of the optimization 
data must be kept for the indicator initialization. The size of this initialization 

period, also named the build-up period, depends on the type of the indicators. 
In the case of exponential moving averages, the size of the initialization must be 
approximately 12 times larger than the range of the slower moving average. 

At the end of the optimization process, the performance tests are executed 
once. If these performance tests do not provide good results, then the new trading 

model must be rejected. 
It is strongly recommended to avoid tiny modifications of the initial model 

until good perfonnance tests are obtained, because such procedure implies that the 
out-of-sample data period is, in fact, used indirectly for the optimization process 
itself, and again opens the door to overfitting problems. 

When a new model is selected and passes the historical performance tests, the 
final phase is to check it in real-time for a few months. These last tests, named 

ex-ante tests, are useful to confirm the historical performance of the model and to 

check its reaction to real-time data flow. At Olsen & Associates (O&A), only the 
models that pass with success, both the historical test and the real-time ex-ante 
period, are used for real trading. 
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11.6 STATISTICAL STUDY OF A TRADING MODEL 

11.6.1 Heterogeneous Real-Time Trading Strategies 

323 

The idea of this section is to use some trading models developed at Olsen & Asso­
ciates as a tool to study the market structure (work presented in Dacorogna et al., 

1995). These models act like filters that concentrate on typical price movements 
and give us information about the market itself. The hypothesis of a heterogeneous 

market leads to three conjectures: 

1. In a heterogeneous market, no particular trading strategy is systematically 
better than all the others. Excess return can be gained for different trading 

profiles, so various ways of assessing the risk and return of trading models 

are needed. 

2. The different geographical components of the FX market have different 

business hours according to different time zones and, on the assumption of 

the heterogeneous market hypothesis, different strategies. Therefore, there 
are disruptions in the market behaviors from one geographical component 
to the next. Trading models that do not explicitly analyze the geographical 

components can avoid these disruptions only by restricting their active 

hours to the normal business hours of one geographical market. For such 
models, trading 24 hr a day does not pay. 

3. The most profitable models actively trade when many agents are active in 

the market (liquid periods) and do not trade at other times of the day and 
on weekends. The heterogeneous market hypothesis attributes the prof­

itability of trading models to the simultaneous presence of heterogeneous 

agents, whereas the classical efficient market hypothesis relates this prof­
itability to inefficiencies. (This would imply that the illiquid periods of 
the market are the most favorable for excess returns.) If our conjecture is 

right, the optimal daily trading time interval should depend on the traded 
FX rate rather than the model type. Trading will be most profitable when 

the main markets for a particular rate are active. 

Two trading models based on different algorithms are used in this study. The 
performance of these models is analyzed against changing market conditions, 

trading intervals, opening and closing times, and market holidays. The first trading 

model (RTT) is the one described in Section 11 .4.1. Whereas the RTT model relies 
on one indicator with one time horizon, the second type of trading model (named 

here RTM) uses three different time horizons simultaneously to incorporate the 
views of three different market components. Like the RTT model, the RTM models 

have a profit objective of3%, but the stop-loss value and profit objective are much 
smaller. The dealing frequencies of the RTM models are often higher than those 
of the RTT models, and they are also neutral more often. 

The study presented here does not try to optimize the models in any way, 
so the distinction between in and out-of-sample is of little relevance. All the 

tests were conducted in a 7-year period from March 1986 to March 1993 for 
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TABLE 11.3 Performance comparison between models. 

Performance comparison between the O&A class RTT. RTM trading models, and a (bench-

mark) 20-day moving average model. The displayed performance measures are the annual-

1zed total return R, the risk-sensitive performance measure Xeff·, the maximum drawdown 

D, the profit-loss ratio P/L and the dealing frequency F. These performance measures are 

explained in Sections 11.2.2 and 11.3.1. 

FX rate Model R x,ff D P/L F 

USD-DEM MA(20) 5.5% -0.9% 21.1% 0.57 1.0 
RTT 16.9% 11.2% 9.6% 0.41 1.7 
RTM 11.3% 8.6% 8.4% 0.68 2.0 

USD-JPY MA(20) 6.6% 0.6% 21.3% 0.53 0.9 
RTT 9.6% 4.2% 10.9% 0.59 1.5 
RTM 6.0% 3.5% 9.6% 0.45 1.9 

GBP-USD MA(20) 10.7% 5.5% 14.0% 0.58 1.0 
RTT 11.9% 7.1% 14.6% 0.40 1.6 
RTM 10.6% 8.2% 7.9% 0.66 2.1 

USD-CHF MA(20) 8.0% 0.9% 19.2% 0.59 1.1 

RTT 11.6% 6.1% 14.5% 0.55 1.3 

RTM 14.0% 10.1% 16.9% 0.65 1.9 

USD-FRF MA(20) 7.1% 4.0% 15.8% 0.56 1.0 
RTT 15.5% 11.2% 7.5% 0.75 1.1 

1:11 RTM 10.7% 8.6% 5.3% 0.60 2.1 

USD-NLG MA(20) 7.5% 3.3% 16.6% 0.55 1.0 
RTT 16.4% 10.9% 8.7% 0.50 1.7 
RTM 14.0% 11.2% 7.4% 0.69 2.1 

USD-ITL MA(20) 8.5% 1.7% 21.7% 0.57 1.0 
RTT 14.6% 7.2% 10.5% 0.42 1.6 
RTM 9.4% 6.1% 9.3% 0.65 1.9 

DEM-JPY MA(20) 1.4% 0.8% 4.9% 2.00 0.1 
RTT 10.9% 8.7% 6.5% 0.66 1.9 
RTM 10.1% 8.6% 5.9% 0.73 1.6 

Average MA(20) 7.7% 2.2% 18.5% 0.56 1.0 
RTT 13.4% 8.3% 10.4% 0.54 1.6 
RTM 10.8% 8.1% 8.8% 0.64 2.0 
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TABLE 11.4 Performance comparison between markets. 

The average risk-adjusted return Xe.ff for the different markets is shown as a percentage 

the average dealing frequency F is given in number of deals per week. The markets are 

listed in the order of their opening times in GMT. 

Market Xe.ff Dealing frequency (F) 
RTT RTM RTT RTM 

Tokyo -0.8 1.6 1.3 1.4 
Singapore -0.4 2.3 1.4 1.4 
Frankfurt 7.5 6.7 1.5 1.8 
Vienna 8.3 7.8 1.5 2.0 
Zurich 8.3 8.1 1.6 2.0 
London 8.6 8.2 1.6 2.0 
New York 6.3 6.7 1.5 1.9 

USD-DEM, USD-JPY, GBP-USD, USD-CHF and DEM-JPY, and a 6½ year period 
from December 1986 to March 1993 for USD-FRF, USD-NLG, and USD-ITL. 

Table 11.3 shows the comparative performance of the two types of models 

(RTT and RTM) together with the performance of a simple 20-day moving average 
model tested with the same high frequency data and the same environment. All 

models produce a significant profit even when transaction costs are fully accounted 
for. However, they differ both in the size of the average profit and in the risk of 

temporary losses. This was formulated as the first conjecture in the introduction. 
These results are a good illustration of the possibility ofhaving diversified strategies 
that are all profitable but correspond to different risk profiles. 

Realistic trading models should be configured for traders located in particular 
geographical locations. Our high-frequency data give us the flexibility of config­

uring different opening hours for different markets. In Table 11.3, the models were 
computed within the market constraints of Zurich. Now we want to show how the 

effective return varies if the market constraints are changed. Six other markets are 
tested: Frankfurt, London, New York, Singapore, Tokyo, and Vienna. Table 11.4 

shows the different parameters related to the active times of these markets. 
The same eight FX rates used for the performance comparison in Table 11.3 

were tested here. In Table 11 .4, we present the average of Xe.ff over the eight FX 
rates for the seven markets and the corresponding mean dealing frequency. The 

bad results for Tokyo and Singapore are not surprising because these markets are 
the least liquid. Good results in these markets are only obtained for USD-JPY and 
DEM-JPY. For the other five markets, Xe.ff generally does not vary much (within 
1 to 2% ), but it clearly peaks on the most active market (London) although the 
models were optimized for the Zurich market. This presents the first empirical 

evidence for our third conjecture that within the active times, the performance is 

not very sensitive to certain changing conditions. 
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TABLE 11.5 The best Xeff as a function of opening hours. 

The best Xeff• in percent, as a function of the number of daily business hours and the 
opening and closing times in MET. The sixth column shows the Xeff reached when the 
models are allowed to trade 24 hr. The last column shows the hour that produces the 
best Xeff when only 1 hour per day is allowed for trading. 

FX rate Model Best Interval Daytime Xejf(24hr) Best I-hr 

Xe.ff size 24hrtrading trading 

USD-DEM RTT 9.7 12hr 7:00 19:00 6.7 16:30- 17:30 
RTM 9.0 11hr 8:30-19:30 2.8 12:00 - 13:00 

USD-JPY RTT 4.3 9hr 8:30-17:30 -4.2 10:00-11:00 
RTM 7.6 9hr 3:00 12:00 0.5 17:00 - 18:00 

GBP-USD RTT 13.4 !Ohr 9:00 19:00 6.9 16:30 - 17:30 
RTM 9.0 8hr 6:00-14:00 5.8 13:00 - 14:00 

USD-CHF RTT 7.4 1hr 16:30- 17:30 -5.8 16:30-17:30 
RTM 5.1 8hr 9:30-17:30 -0.6 18:30 - 19:30 

USD-FRF RTT 11.2 8hr 11 :00 - 19:00 0.5 17:00 18:00 
RTM 9.4 9hr 8:00 17:00 1.6 16:00-17:00 

USD-NLG RTT 12.3 8hr 12:00 - 20:00 6.9 16:00-17:00 
RTM 8.8 !Ohr 8:30-18:30 4.6 15:30 - 16:30 

USD-ITL RTT 9.2 9hr 12:00-21:00 0.3 16:30- 17:30 
RTM 6.6 8hr 11 :00 - 19:00 1.3 13:00 14:00 

At the beginning of this Section 11.6.1, we introduced two conjectures as 
subjects ofresearch: it is not favorable to extend the dealing period to more than 
the normal business hours or even to 24-hr trading for our model types ( conjecture 
2); and the most profitable dealing periods should be the most active and liquid 
ones (conjecture 3). To test these conjectures, two main questions were asked: Is 
there an optimal daily business interval and do these optimal opening and closing 
hours differ for different rates? We present here the results of a study where we 
vary both the length and the starting point of the daily opening period. The two 
real-time model classes were tested with daily working intervals of 1, 8, 9, 10, 11, 
12, 13, and 24 hr, shifting the opening time in 30-min steps from 0:00 to 24:00. 

Table I 1.5 shows the best X eff values together with their corresponding work­
ing hours in Middle European Time (MET) for all rates and trading models used in 
this study. The models were optimized in-sample on 9½ hours from 8:00 to 17:30. 
Some first remarks can be made by looking at the results: shorter time intervals 
(8-10 hr) are generally preferred to longer ones (11-13 hr), thus confirming con­
jecture 2. There is not much profit in long working time intervals; these only tend 
to increase the number of bad deals because the indicators are more sensitive to 

Case 3:20-cv-05784-BRM-DEA   Document 1-3   Filed 05/11/20   Page 347 of 404 PageID: 425

0425



11.6 STATISTICAL STUDY OF A TRADING MODEL 327 

noise. Yet, because longer time intervals cover a larger period, the Xeff values of 

longer time intervals are more stable against changing opening and closing hours, 

that is, their variance is clearly smaller than that of shorter intervals. One exception 

is model RTT for USD-CHF where the 1-hr time interval is best, but the models 

still have significant peaks at the 9-hr interval (from 8:30 to 17:30, 4.9% ). 

Further evidence in support of conjecture 2 is given by the sixth column in 

Table 11.5, listing the Xeff values for 24-hr trading for comparison with the best 

Xeff values attained for shorter trading intervals. The Xeff(24-hr) values are much 

lower than the best Xe.ff values for almost all rates and models. This failure of 

24-hr trading can be interpreted as an insufficiency of the models to deal with 

short-tenn price movements, in particular the disruptive market behaviors arising 

when the main dealing activity shifts from one geographical location to another 

(with a different time zone). A 24-hr trading interval leads to a dealing frequency 

higher than that of a 12-hr interval. Contrary to the 24-hr trading interval, the 

best 1-hr intervals that coincide with the most active times of the day are seldom 

significantly worse than the rest of the intervals tested. 

In Table 11.5, there are also indications that conjecture 3 is valid. The USD­

JPY models show a strong tendency toward favoring opening hours early in the 

European morning (or closing times early in the afternoon), whereas GBP-USD 

and USD-ITL prefer opening times in the late morning. These results are in line 

with the time zones of the home markets of the currencies and must be related to 

market liquidity. For JPY, better results are obtained when its main market (Far 

East) is active, for GBP and ITL, when London (I-hr behind the Zurich market) 

is active (ITL is traded more in London than in Milan). The results of the RTT 

model for USD-NLG seem to contradict this conjecture, but it should be qualified. 

There is, in fact, another peak with an Xeff of 11.3% at a 12-hr trading interval 

from 7:30 to 19:30. 
In conclusion, the systematic analysis of the influence of the trading hours on 

these models reveals some important facts. First of all, if we regard our model 

classes as representing medium-term components in the market, we see that it is 

not useful to stay active 24-hr a day. Without a much more sophisticated treatment 

of the intraday movements, it does not pay for a medium-term trader to be active 

all the time. Second, it shows that, contrary to assumptions based on the classical 

efficient market hypothesis, a trading model is profitable when its active hours 

correspond to the most active hours of one of the main geographical components 

of the market. It is essential that the models execute their deals when the market 

is most liquid. This fact is illustrated by three empirical findings: 

■ The maxima of performance are clustered around opening hours when the 

main markets are active. 

■ The best active times are shifted for certain currencies to accommodate 

their main markets (Japan for JPY, London for GBP). 

■ If the models are only allowed to trade for 1 hour, the best choice of this 

hour is usually around the peaks in the daily activity of the market. 
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The systematic variation of the business hours of the trading models again reveals 

the geographical structure of the FX market and its daily seasonality by the most 

profitable trading times being concentrated where the market is most liquid. 

11.6.2 Price-Generation Processes and Trading Models 

Instead of feeding the trading models with real data, we can use simulated data from 

different price-generation processes. The results indicate that the perfonnance of 

the trading models with real FX data is much higher relative to the simulated 

price processes. This demonstrates that the trading models successfully exploit a 

certain predictability of returns that exists beyond the scope of the studied price­

generation processes. The results also provide opportunity to compare different 

statistical price processes with each other. In the case of the RTT model described 

in Section 11.4.1, the out-of-sample test period is 7 years of high-frequency data 

on three major foreign exchange rates against the U.S. Dollar and one cross rate. 

From its launch in 1989 until the end of 1996, the model had not been reoptimized 

and was running on the original set of parameters estimated with data prior to 

1989. This allows us a unique advantage that there is no socially detennined 

coevolutionary relationship between our data set and the technical strategies used 

in implementing our specification tests. 

The trading model yields positive annualized returns (net of transaction costs) 

in all cases. Performance is measured by the annualized return, Xe.ff, Reff, deal 

frequency and maximum drawdown. Their simulated probability distributions are 

calculated with the three traditional processes, the random walk, GARCH, and 

AR-GARCH, but also with an AR-HARCH. The null hypothesis of whether the 

real-time performances of the foreign exchange series are consistent with these 

traditional processes is tested under the probability distributions of the perfor­

mance measures. As expected from the discussions of the previous chapters, the 

results from the real-time trading model are not consistent with the random walk, 

GARCH(l,1) and AR-GARCH(l,l) as the data-generating processes. It is also 

the case with the AR-HARCH processes. 

Simulation Methodology The distributions of the performance measures under vari­

ous null processes are calculated by using a simulation methodology. In our trading 

model simulations, we use a 5-min interval sampling of the prices in order to keep 

the computation within manageable bounds. It is a good compromise between ef­

ficient computation and realistic behavior when compared to the real-time trading 

model results generated from all ticks. The main information used by a trading 

model to update its indicators is the returns. The return between two consecutive 

selected ticks at time tj-1 and tj is defined as 

rj = Xj -Xj-1 

and the corresponding elapsed ~-time (described in Section 6.2) between these 

two ticks is 
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By construction, in the sampled time series, the average elapsed 1'.1'-time between 

two ticks, A0, is nearly 5 min. 
Multiple time series from a given theoretical price generation process need to 

be generated. To keep the impact of special events like the data holes in the model 

behavior, we decided to replace the different bid-ask price values but always keep 

the recorded time values. As the different ticks are not exactly regularly spaced, 

even in 1'.l'-time, the average return corresponding to a 5-min interval needs to be 

calculated. This is calculated by rescaling the observed return values 

(-)1/E 
r* = r. A0 
1 1 A0 · J 

where the exponent 1/ Eis called the drift exponent and it is set to 0.5 under the 

random walk process. 
To obtain meaningful results, a simulated time series should have the same 

average drift ex and average variance IJ'2 as the observed returns. This is done by 

generating returns, Pj, corresponding to a 5-min interval in ff-time. In the case of 

a random walk process, the returns rj are computed with 

F'j = ct. + Ej 

where EJ ~ N(O, IJ'
2). 10 When the effective elapsed time between two ticks, A0j, 

is not exactly 5-min, we scale again the generated return using the same scaling 

formula 

where A0 is 5 min. If there is a data hole, the sum of the generated return ri is 

computed until the sum of the added 5-min intervals is larger than the size of the 

data hole measured in 1'.l'-time. The sum of the returns is scaled with the same 

technique as individual returns. 
The simulated logarithmic prices, x1, are computed by adding the generated 

returns r1 to the first real logarithmic price value xo. The bid-ask prices are 

computed by subtracting or adding half the average spread, that is, 

I ( / S) 
Pask,j = exp xj + 2 

and 

I ( / S) 
Pbid,j = exp xi - 2 

IO In the simulations, E is specified to be nonnally distributed. We also explored bootstrapping the 

residuals of the studied models. The main findmgs of the study remain unchanged between these two 

approaches. 
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The parameters and the normalized residuals of the GARCH(l,1) process 

are estimated using the maximum likelihood procedure presented in Chapter 8. 

The simulated returns are generated from the simulated normalized residuals and 

the estimated parameters. The estimated parameters of the AR(p )-GAR CH( 1, 1) 

processes together with the simulated residuals are used to generate the simulated 

returns for this process. As before, half of the average spread is subtracted ( added) 

from the simulated price process to obtain the simulated bid (ask) prices. 

For each replication we start by generating the simulated data a year before the 

model is tested. This year is 1989 and it is used to create the history dependency 

in returns and to initialize the different trading model indicators. 

Empirical Results The simulated data are the 5-min !?--time series, 11 from January 

1, 1990, to December 31, 1996, for three major foreign exchange rates, USD-DEM, 

USD-CHF (Swiss Franc), USD-FRF (French Franc), and the most liquid cross­

rate DEM-JPY (Deutsche Mark - Japanese Yen). From Chapter 6, we know that 

high-frequency data inherits intraday seasonalities and require deseasonalization. 

We use for this study the deseasonalization methodology presented in Chapter 6. 

Our data set contains 671,040 observations per currency. The simulations for each 

currency and process are done for 1000 replications. 

Before discussing the details of different studies, we present in Table 11.6 

results that substantiate the claims made at the beginning of this section. We give 

a summary of the p-values of the main performance measures for the USD-DEM, 

USD-CHF, USD-FRF, and DEM-JPY. The p-value 12 represents the fraction of 

simulations generating a performance measure larger than the original. 

The methodology of this study places a historical realization in the simulated 

distribution of the performance measure under the assumed process and calculates 

its one-sided p-value. 13 This indicates whether the historical realization is likely to 

be generated from this particular distribution or not. More important, it indicates 

11 The real-time system uses tick-by-tick data for its trading recommendations. The simulations in 

this study are carried out with 5-min data as it is computationally expensive to use the tick-by-tick 

data for the simulations. The historical performance of the currency pairs from the 5-min series are 

within a few tenths of a percent for all performance measures with the performance of the real-time 

trading models utilizing the tick-by-tick data. Therefore, there is no loss of generality from the use of 

the 5-min frequency for the simulations instead of the tick-by-tick feed. 
12 The p-value represents a decreasing index of the reliability of a result. The higher the p-value, the 

less we can believe that the observed relation between variables in the samples is a reliable indicator of 

the relation between the respective variables in the population. Specifically, the p-value represents the 

probability of error that is mvolved in accepting our observed result as valid, that is, as representative of 

the population. For example, a p-value of0.05 mdicates that there is a 5% probability that the relation 

between the variables found in our sample is purely coincidental. In other words, assuming that in the 

population there was no relation between those vanables whatsoever, and by repeating the experiment, 

we could expect that in approximately every 20 replications of the expenment there would be one in 

which the relation between the variables in question would be equal or stronger than ours. In many 

areas of research, the p-value of 5% is treated as a borderline acceptable level. 
13 p-value calculations reported in this study are the simulated p-values obtained from the distribu­

tion of 1000 replications of a given performance measure. For brevity, we simply refer to it as p-value 

in the text. 
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TABLE 11.6 p-value Comparisons. 

p-value comparisons with random walk (RW), GARCH(1, 1), and AR(4)-GARCH(1, 1). The 

p-values are expressed in percentage. The definitions of the three performance measures 

are presented in Section 11.3. 

Currency RW GARCH(l,l) AR(4)-GARCH(l,1) 

Annual return 
USD-DEM 0.3 0.4 0.1 

USD-CHF 8.9 8.4 3.7 

USD-FRF 1.2 0.9 0.3 

DEM-JPY 2.1 1.2 0.5 

Xejfective 
USD-DEM 0.0 0.1 0.1 

USD-CHF 0.7 1.4 1.9 

USD-FRF 0.2 0.1 0.2 

DEM-JPY 0.2 0.4 0.1 

Reffective 
USD-DEM 0.0 0.0 0.0 

USD-CHF 0.6 0.9 2.3 

USD-FRF 0.1 0.1 0.1 

DEM-JPY 0.1 0.4 0.1 

whether the historical performance is likely to occur in the future. A small p­

value (less than 5%) indicates that the historical performance lies in the tail of the 

distribution and the studied performance distribution is not representative of the 

data-generating process, given that the trading model is a good one. If the process 

that generates the performance distribution is close to the data-generating process 

of the foreign exchange returns, the historical performance would lie within two 

standard deviations of the performance distribution, indicating that the studied 

process may be retained as representative of the data-generating process. 

Random Walk Process The results for the random walk process for USD-DEM 

time series are reported in Table 11.7. The first and the second columns are the 

historical realization and the p-value of the corresponding performance measures. 

The remaining columns report the 5th and the 95th percentiles, mean, standard 

deviation, skewness, and the kurtosis of the simulations. 

After the transaction costs, actual data with the USD-DEM, USD-CHF, USD­

FRF and DEM-JPY yield an annualized total return of9.63, 3.66, 8.20, and 6.43%, 

respectively. The USD-CHF has the weakest performance relative to the other 

three currencies. The Xeff and Reff performance of the USD-DEM, USD-FRF, 

and DEM-JPY are all positive and range between 3 and 4%. For the USD-CHF, 

the X eff and Reff are -1.68 and -4 .23%, reflecting the weakness ofits performance. 
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TABLE 11.7 Random Walk Simulations for USD-DEM. 

The second column presents the performance of the trading model with the actual data. 

The results under columns p·value, percentile, mean, standard deviation, skewness, and 

kurtosis present the values of these statistics from 1000 replications with the random 

walk process computed every 5-min for a period from 1990 to 1996. The p-values are 

reported in percentage terms (e.g., 0.3 refers to 0.3%). The definitions of the performance 

measures are presented in Sections 11.2.2 and 11.3. 

Description Historical p-value Percentile Mean St.Dev Skew. Kurt. 

realization (in¾) (5%, 95%) 

Annual return 9.63 0.3 -11.38, 4.03 -3.44 4.74 0.09 -0.13 

Xeffective 3.78 0.0 -20.25, -4.14 -12.11 5.09 0.13 -0.23 

Reffective 4.43 0.0 -26.42, -7.70 -16.80 5.90 0.03 -0.20 

Max drawdown 11.02 100.0 25.26, 94.86 53.79 21.36 -0.71 0.21 

Deal frequency 1.68 100.0 2.20, 2.71 2.46 0.16 -0.10 -0.19 

Horizon: 7 days 
Xeffectlve 3.47 0.0 -19.65, -4.24 -11 83 4.76 0.08 -0.15 

Reffective 1.80 0.0 -24.14, -7.21 -15.51 5.20 0.05 -0.15 

Honzon: 29 days 
Xeffective 3.27 0.0 -20.21, -4.36 -12.10 4.95 0.o? -0.23 

Reffective 2.16 0.0 -27.05, -8.07 -17.45 5.91 0.02 -0.28 

Horizon: 117 days 

Xeffective 4.07 0.0 -20.85, -3.42 -12.21 5.44 0.10 -0.32 

Reffective 5.10 0.0 -31.01, -6.53 -18. JO 7.49 0.26 0.25 

Horizon: 301 days 
Xeffective 4.62 0.0 -23.37, -2.42 -11.89 6.32 0.39 0.02 

Reffective 6.83 0.0 -27.85, -3.25 -14.56 7.49 0.35 0.16 

The p-values of the annualized return for the USD-DEM, USD-CHF, USD­

FRF, and DEM-JPY are 0.3, 8.9, 1.2, and 2.1 %, respectively. For the USD­

DEM and USD-FRF, as reported in Table 11.6, the p-values are less than the 

2% level and it is about 2% for the USD-CHF. In the case of the USD-CHF, 

the p-value for the annualized return is 8.9, which is well above the 5% level. 

As indicated in Section 11.3, the annualized return only utilizes two points of 

the equity curve leaving a large degrees of freedom to infinitely many paths that 

would be compatible with a given total return. Xeff and Reff are more stringent 

performance measures, which utilize the entire equity curve in their calculations. 

The p-values of Xeff and Reff are0.0, 0.0%forUSD-DEM, 0.7 and0.6%forUSD­

CHF, 0.2 and 0.1 % for USD-FRF, and 0.2 and 0.1 % for DEM-JPY The p-values 

for the X eff and Reff are all less than 1 %, rejecting the null hypothesis that the 

random walk process is consistent with the data-generating process of exchange 

rate returns. 
The maximum drawdowns for the USD-DEM, USD-CHF, USD-FRF and 

DEM-JPY are 11.02, 16.08, 11.36, and 12.03%. The mean maximum drawdowns 
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from the simulated random walk processes are 53.79, 63.68, 47.68, and 53.49 for 

the USD-DEM, USD-CHF, USD-FRF, and DEM-JPY, respectively. The mean of 

the simulated maximum drawdowns are three or four times larger than the actual 

maximum drawdowns. The deal frequencies are 1.68, 1.29, 1.05, and 2.14 per 

week for the four currency pairs from the actual data. The deal frequencies indicate 

that the RTT model trades on average no more than two trades per week although 

the data feed is at the 5-min frequency. The mean simulated deal frequencies are 

2.46, 1.98, 1.65, and 3.08, which are significantly larger than the actual ones. 

The values for the maximum drawdown and the deal frequency indicate that 

the random walk simulation will yield larger maximum drawdown and deal fre­

quency values relative to the values of these statistics from the actual data. In 

other words, the random walk simulations deal more frequently and result in more 

volatile equity curves on average relative to the equity curve from the actual data. 

Correspondingly, the p-values indicate that the random walk process cannot be 

representative of the actual foreign exchange series under these two performance 

measures. The summary statistics of the simulated performance measures have 

negligible skewness and statistically insignificant excess kurtosis. This indicates 

that the distributions of the performance measures are symmetric and do not exhibit 

fat tails. 
The simulation results with the random walk process demonstrate that the 

real-time trading model is a consistent model. In other words, a process with no 

mean and a homoskedastic variance should only perform to generate an average 

return that would match the mean transaction costs. This consistency property is 

an essential ingredient of a trading model and the real-time trading model passes 

this consistency test. The means of the simulations indicate that the distributions 

are correctly centered at the average transaction costs, which is expected under 

the random walk process. For instance, the mean simulated deal frequency of the 

USD-DEM is 2.46 deals per week or 127 .92 (2.46 x 52) deals per year. The relative 

spread for the USD-D EM is O .00025, which in tum indicates an average transaction 

cost of-3.20% per year. Given that the mean of the simulated annualized return is -

3 .44, we can conclude that the mean of the simulated annualized return distribution 

is centered around the mean transaction cost. 
The behavior of the performance measures across 7-day, 29-day, 117-day and 

301-day horizons is also investigated with Xe.ff and Reff· The importance of the 

performance analysis at various horizons is that it permits a more detailed analysis 

of the equity curve at the predetermined points in time. These horizons correspond 

approximately to a week, a month, 4 months and a year's performance. The Xe.ff 

and Reff values indicate that the RTT model performance improves over longer 

time horizons. This is in accordance with the low dealing frequency of the RTT 

model. In all horizons, the p-values for the Xe.ff and Reff are less than a half a 

percent for USD-DEM, USD-FRF, and DEM-JPY. For USD-CHF, the p-values 

are less than 2.4% for all horizons. Overall, the multihorizon analysis indicates 

that the random walk process is not consistent with the data-generating process of 

the foreign exchange returns. 
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TABLE 11.8 GARCH(1,1) parameter estimates. 

The sample is 5-min returns from 1990-1996. 

USD-DEM USD-CHF USD-FRF DEM-JPY 

ao 4.95 (4.23) 0.11 (0.12) 9.38 (7.09) 2.97 (4.03) 

O:'J 0.1111 (0.0005) 0.1032 (0.0007) 0.1572 (0.0007) 0.0910 (0.0005) 

th 0.8622 (0.0007) 0.8578 (0.0009) 0.813 7 (0.0009) 0.8988 (0.0006) 

LL 6.45 6.17 6.29 6.34 

Q(l2) 4810 4201 4256 3089 

Eu2 1.04 1.03 1.07 1.05 

Esk -0.07 -0.03 -0.05 0.16 

Eku 11.73 7.28 22.93 27.73 

GARCH(1, 1) Process A more realistic process for the foreign exchange returns is 

the GARCH(l,l) process, which allows for conditional heteroskedasticity. The 

GARCH(l,l) estimation results are presented in Table 11.8. The numbers in 

parentheses are the robust standard errors and the GARCH(l,1) parameters are 

statistically significant at the 5% level for all currency pairs. The Ljung-Box 

statistic is calculated up to 12 lags for the standardized residuals and it is distributed 

with x2 with 12 degrees of freedom. The Ljung-Box statistics indicate serial 

correlation for the USD-DEM. The variances of the normalized residuals are near 

one. There is no evidence of skewness but the excess kurtosis remains large for 

the residuals. 
In Table 11.9, the simulation results with the GARCH(l,1) process are pre­

sented for the USD-DEM rate. Because GARCH(l,1) allows for conditional het­

eroskedasticity, it is expected that the simulated performance of the RTT model 

would yield higher p-values and retain the null hypothesis that GARCH(l,l) is 

consistent with the data-generating process of the foreign exchange returns. The 

results, however, indicate smaller p-values, which is in favor of a stronger rejection 

of this process relative to the random walk process. 

One important reason for the rejection of the GARCH(l, 1) process as well 

as the random walk model is that these are pure volatility processes without pre­

dictability of the direction of returns, which matters for trading models. Another 

reason is the aggregation property of the GARCH(l, 1) process. The GARCH(l, 1) 

process behaves more like a homoskedastic process as the frequency is reduced 

from high to low frequency. Because the RTT model trading frequency is less 

than two deals per week, the trading model does not pick up the 5-min level 

heteroskedastic structure at the weekly frequency. Rather, the heteroskedastic 

structure behaves as if it is measurement noise where the model takes positions, 

and this leads to the stronger rejection of the GARCH(l,1) as a candidate for the 

foreign exchange data-generating process. 
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TABLE 11.9 GARCH(1,1) simulations for USD-DEM. 

Description Historical p-value Percentile Mean St.Dev Skew. Kurt. 

realization (in%) (%, 95%) 

Annual return 9.63 0.4 -11.14, 5.12 -3.27 4.90 -0.08 -0.01 

Xeffective 3.78 0.1 -20.40, -3.16 -11.88 5.18 -0.07 -0.11 

Reffective 4.43 0.0 -26.60, -6.37 -16.50 6.10 -0.14 -0.05 

Max drawdown 11.02 100.0 24.17, 93.96 53.33 21.50 -0.73 0.30 

Deal frequency 1.68 100.0 2.14,2.64 2.39 0.15 -0.02 -0.15 

Horizon: 7 days 
Xeffective 3.47 0.2 -19.56, -3.49 -11.64 4.90 -0.06 -0.03 

Reffective 1.80 0.0 -24.19, -6.58 -15.37 5.38 -0.08 -0.05 

Horizon: 29 days 
Xeffective 3.27 0.2 -19.95, -3.29 -11.86 5.00 -0.12 -0.04 

Reffective 2.16 0.1 -26.92, -6.75 -17.20 6.04 -0.20 -0.03 

Horizon: 117 days 
Xeffective 4.07 0.1 -21.24, -2.77 -11.91 5.56 0.03 -0.28 

Reffective 5.10 0.1 -30.17, -5.44 -17.57 7.60 0.29 0.31 

Horizon: 301 days 
Xeffect1ve 4.62 0.2 -22. 73, -1.48 -11.73 6.42 0.28 0.16 

Reffective 6.83 0.3 -27 .64, -2.01 -14.28 7.72 0.26 0.38 

In a GARCH process, the conditional heteroskedasticity is captured at the 

frequency that the data have been generated. As it is moved away from this 

frequency to lower frequencies, the heteroskedastic structure slowly dies away 

leaving itself to a more homogeneous structure in time. More elaborate processes, 

such as the multiple horizon ARCH models (as in the HARCH process of Muller 

et al. (1997a)), possess conditionally heteroskedastic structure at all frequencies in 

general. The existence of a multiple frequency heteroskedastic structure seems to 

be more in line with the heterogeneous structure of the foreign exchange markets. 

Table 11.6 we presented a summary of the p-values of the annualized re­

turn for the USD-DEM, USD-CHF, USD-FRF and DEM-JPY. In the case of the 

GARCH(l,l) simulation, they are 0.4, 8.4, 0.9, and 1.2%, respectively. All four 

currency pairs except USD-CHF yield p-values, which are smaller than 1.3 %. The 

Xeff and Reff are 0.1 and 0.0% for USD-DEM, 1.4 and 0.9 percent for USD-CHF, 

0.1 and 0.1% forUSD-FRF, and 0.4 and 0.4 percent for DEM-JPY. 

The historical maximum drawdown and deal frequency of the RTT model is 

smaller than those generated from the simulated data. The maximum drawdowns 

for the USD-DEM, USD-CHF, USD-FRF, and DEM-JPY are 11.02, 16.08, 11.36, 

and 12.03 for the four currencies. The mean simulated drawdowns are 53.33, 

60.58, 46.00, and 48.77 for the four currencies. The mean simulated maximum 

drawdowns are three to four times larger than the historical ones. The historical 

deal frequencies are 1.68, 1.29, 1.05, and 2.14. The mean simulated deal frequen­

cies are 2.39, 1.87, 1.59, and 2.66 for the four currencies. The differences between 
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the historical deal frequencies and the mean simulated deal frequencies remain 

large. Therefore, the examination of the GARCH(l, 1) process with the maximum 

drawdown and the deal frequency indicates that the historical realizations of these 

two measures stay outside of the 5% level of simulated distributions of these two 

performance measures. 
The mean simulated deal frequency for the USD-DEM is 2.39 trades per week. 

In annual terms, this is approximately 124.28 deals per year. The half spread for the 

USD-DEM series is about 0.00025 and this yields 3.11 % when multiplied with the 

number of deals per year. The -3.11 % return would be the annual transaction cost 

of the model. For the model to be profitable, it should yield more than 3 .11 % per 

year. Table 11. 9 indicates that the RTT model generates an excess annual return of 

9.63%, whereas the mean of the annualized return from the GARCH(l,1) process 

stays at the -3.27% level. 
The multi-horizon examination of the equity curve with the Xeff and Reff 

performance measures indicates that the GARCH(l,1) process as a candidate for 

the data generation mechanism is strongly rejected at all horizons from a 7-day 

horizon to a horizon as long as 301 days. The overall picture coming out of the test 

is not very different for the GARCH(l,l) than that of the random walk process. 

AR(4)-GARCH(1, 1) Process A further direction is to investigate whether a condi­

tional mean dynamics with GARCH(l,l) innovations would be a more successful 

characterization of the dynamics of the high-frequency foreign exchange returns. 

The conditional means of the foreign exchange returns are estimated with four 

lags of these returns. The additional lags did not lead to substantial increases in 

the likelihood value. 
The results of the AR(4)-GARCH(l,l) optimization are presented in Ta­

ble 11.10. The numbers in parentheses are the robust standard errors and all 

four lags are statistically significant at the 5% level. The negative autocorrelation 

is large and highly significant for the first lag of the returns. This is consistent with 

the high-frequency behavior of the foreign exchange returns and is also observed in 

Dacorogna et al. (1993). The Ljung-Box statistics still indicate serial correlation 

in the normalized residuals. The variances of the normalized residuals are near 

one. There is no evidence of skewness but the excess kurtosis remains large for 

the residuals. 
The p-values of the annualized returns are presented in Table 11.6. They are 

0.1, 3.7, 0.3, and 0.5% for the USD-DEM, USD-CHF, USD-FRF, and DEM-JPY. 

The results indicate that the AR(4)-GARCH(l, 1) process is also rejected under the 

RTT model as a representative data generating process of foreign exchange returns. 

Here again, a possible explanation of this failure is the relationship between the 

dealing frequency of the model and the frequency of the simulated data. The 

AR(4)-GARCH(l,1) process is generated at the 5-min frequency but the model 

dealing frequency is between one or two deals per week. Therefore, the model 

picks up the high-frequency serial correlation as noise and this serial correlation 

works against the process. This cannot be treated as a failure of the RTT model. 
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TABLE 11.10 AR(4)-GARCH(1,1) parameter estimates. 

The sample is 5-min return from 1990-1996. ao values are 10- 9. The numbers in 

parentheses are the standard errors. The standard errors of ao are 10-ll. LL is the 

average log likelihood value. Q(l2) refer to the LJung-Box portmanteau test for serial 

correlation and it is distributed x2 with 12 degrees of freedom. The xl05(12) is 21.03. 

E,,.2, Esk and Eku are the variance, skewness, and the excess kurtosis of the residuals. 

USD-DEM USD-CHF USD-FRF DEM-JPY 

ao 3.90 (3.40) 8.19 (9.03) 7.28 (5.80) 2.92 (3.93) 

a1 0.099 (0.0005) 0.0874 (0.0006) 0.1349 (0.0007) 0.088 (0.0005) 

!>1 0.8796 (0.0006) 0.8833 (0.0007) 0.8411 (0.0008) 0.9008 (0.0006) 

YI -0.176 (0.001) -0.208 (0.001) -0.200 (0.002) -0.130 (0.002) 

Y2 -0.011 (0.001) -0.031 (0.002) -0.025 (0.002) -0.090 (0.002) 

Y3 0.003 (0.001) -0.001 (0.002) -0.005 (0.002) -0.005 (0.002) 

Y4 -0.004(0.001) -0.002 (0.001) -0.008 (0.002) -0.010 (0.002) 

L-L 6.46 6.19 6.30 6.35 

Q(12) 623 531 492 374 

E{)'2 1.04 1.03 1.07 1.05 

Esk -0.07 -0.04 -0.05 0.15 

Eku 12.29 7.86 21.84 27.98 

Rather, this strong rejection is evidence of the failure of the temporal aggregation 

properties of the AR(4)-GARCH(l,l) process at lower frequencies. 

The rejection of the AR( 4)-GARCH(l, 1) process with the Xe.ff and Reff is 

even stronger and very much in line with the results for the random walk and the 

GARCH(l,l). The p-values of the Xe.ff and Reff are 0.1, 0.0 percent for USD­

DEM, 1.9, 2.3% forUSD-CHF, 0.2, 0.1 % forUSD-FRF, and0.l, 0.1% for DEM­

JPY. The p-values remain low at all horizons for the Xeff and Reff• The p-values 

of the maximum drawdown and the deal frequency also indicate that in almost all 

replications the AR(4)-GARCH(l,l) generates higher maximum drawdowns and 

deal frequencies. 

Conclusions This extensive analysis of real-time trading models with high-fre­

quency data suggests two main conclusions. First, technical trading models can 

generate excess returns, which are explained neither by traditional theoretical pro­

cesses nor by luck. Second, the foreign exchange rates contain conditional mean 

dynamics that are neither present in the random walk nor GARCH(l, 1 ), and AR­

GARCH(l, 1) processes. 
The dealing frequency of the model is approximately between one and two 

per week although the data feed is at the 5-min frequency. Because the model's 

trading frequency is less than two deals per week, it does not pick up the 5-min level 

heteroskedastic structure at the weekly frequency. Overall, the results presented in 

this section have a general message to the standard paradigm in econometrics. It is 
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TABLE 11.11 AR(4)-GARCH(1,1) simulations for USO-DEM. 

Description Historical p-value Percentile Mean St.Dev Skew. Kurt. 

realization (in%) (5%, 95%) 

Annual return 9.63 0.1 -I 0.46, 3.13 -3.68 4.13 -0.01 -0.16 

Xeffective 3.78 0.1 -16.72, -3.16 -9.95 4.27 -0.02 -0.18 

Reffective 4.43 0.0 -21.37, -5.28 -13.37 4.93 -0.07 -0.15 

Max drawdown 11.02 100.0 21.73, 84.55 49.07 19.16 -0.59 0.03 

Deal frequency 1.68 100.0 1.89, 2.35 2.12 0.14 -0.04 -0.26 

Horizon: 7 days 
Xeffective 3.47 0.1 -16.53, -2.86 -9.72 4.13 0.01 -0.18 

Reflective 1.80 0.2 -19.63, -4.95 -12.33 4.45 -0.01 -0.17 

Horizon: 29 days 
Xeffective 3.27 0.1 -16.90, -3.24 -9.94 4.21 0.00 -0.11 

Reffective 2.16 0.1 -21.54, -5.87 -13.67 4.87 -0.02 -0.02 

-Horizon: 117 days 
Xeffective 4.07 0.1 -17.37, -2.83 -9.97 4.50 0.00 -0.26 

Reffective 5.10 0.0 -24.10, -4.75 -14.17 5.98 0.23 0.21 

Horizon: 301 days 
Xeffective 4.62 0.1 -18.19, -2.01 -9.83 4.95 0.19 0.16 

Reffective 6.83 0.1 -22.90, -2.91 -12.15 6.15 0.34 0.53 

not sufficient to develop sophisticated statistical processes and choose an arbitrary 

data frequency (e.g., 1 week, 1 month, annual) claiming afterward that this partic­

ular process does a "good job" of capturing the dynamics of the data-generating 

process. In financial markets, the data generating process is a complex network of 

layers where each layer corresponds to a particular frequency. A successful char­

acterization of such data generating processes should be estimated with models 

whose parameters are functions of intra and inter-frequency dynamics. In other 

fields, such as in signal processing, paradigms of this sort are already in place. 

Our understanding of financial markets would be increased with the incorporation 

of such paradigms into financial econometrics. Our trading model, within this 

perspective, helps us to observe this subtle structure as a diagnostic tool. 

11.7 TRADING MODEL PORTFOLIOS 

In the previous sections we have described what trading models are and how we 

can optimize and test them. In this section we will briefly study the combination 

of different trading model strategies into portfolios and discuss the particular case 

of currency risk hedging. 
Any trading strategy is based on some specific indicators and decision rules 

and then will perform better in some market conditions. To reduce the risk im­

plied by the use of such trading models, it is common to combine various trad­

ing strategies, which provide different trading signals for the same asset, in a 
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portfolio of models. As these models generally do not have the same cluster­

ing of good and bad periods, the overall risk is then reduced. But this is true 

only if the composition of the trading model portfolio is not changed too often. 

Dynamic modifications of the trading model portfolio, which keep a reasonable 

risk profile, are very hard to obtain and at O&A we advocate choosing static 

portfolio strategies where the dynamic behavior is left to the trading models them­

selves. 
The optimal trading model portfolio strategy depends on certain decisions of 

the investor such as the choice of the investment assets, frequency of changes, 

and limits of risk and exposure. One of the main problems is the selection of 

the trading models to be used in such a portfolio. It is easy to test many differ­

ent combinations and to select the best one, but such a procedure can produce 

undesirable results. In fact, during this selection procedure, the risk of over­

fitting particular historical data may again occur from the back door. To over­

come these types of problems, it is often desirable to use an equally weighted 

portfolio-that is, a portfolio where the same proportion of capital or credit limit 

is invested in each trading model. Another possibility is to select the optimal 

trading model portfolio using a robust optimization procedure, like in trading 

model optimization (Section 11.5.1), but we will not discuss such an approach 

here. 
Table 11.12 compares the performance obtained for a trading model portfolio, 

which corresponds to an equally weighted portfolio strategy, to the performance 

of the individual trading models on the same period. The analysis period is from 

January 1993 to December 1997. During this period, all these trading models 

were running in the real-time O&A information system with no reoptimizations. 

On this table we observe very well that for the same annualized total return the 

risk of the portfolio is considerably lower than the average risk on the individual 

models. The maximum drawdown of the portfolio is about half of the average 

maximum drawdown of the models and the annualized Xeff is one of the largest. 

The variation of the total return of the portfolio over the years is plotted on Fig­

ure 11.4. 
Portfolios of trading models can be used as dynamic investment strategies in 

many financial markets, but the complexity of the optimization of such portfolios 

based on a very large number of trading models (needed for a good diversification) 

would be extremely hard to control. As we observed in the previous sections, the 

optimization of the different trading strategies is in itself a complicated process 

that needs to be done at regular intervals to take into account the nonstationarity 

of the underlying time series. 
In the case of foreign exchange, an interesting application of portfolio trading 

models is the dynamic hedging of currency risk. In this case, the number of models 

to optimize is reduced and it is reasonable to consider a dynamic hedging strategy 

based on the trading recommendations. In the next section we will provide a brief 

description of this approach. 
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340 CHAPTER 11 TRADING MODELS 

TABLE 11.12 Portfolio performance of O&A trading models. 

Performance comparison between 10 O&A class RTT, RTM trading models, and an equally 

weighted portfolio of the same models. The different performance measures displayed are 

the annualized total return R, the risk-sensitive performance measure Xe.ff, the maximum 

drawdown D, and the annualized Sharpe ratio S. 

FX rate Model R Xeif D s 

USD-DEM RTT 6.8% 2.3% 10.2% 0.73 

RTM 3.4% 1.3% 9.8% 0.51 

DEM-JPY RTT 1.7% -2.6% 16.1% 0.19 

RTM 9.3% 6.4% 8.9% 1.32 

USD-CHF RTT 3.7% -1.2% 10.9% 0.38 

RTM 2.5% -0.3% 13.7% 0.36 

USD-FRF RTT 9.2% 4.7% 9.9% 1.03 

RTM 5.6% 2.5% 10.0% 0.71 

GBP-DEM RTT 5.6% 2.2% 14.3% 0.69 

RTM 5.0% 2.8% 8.1% 0.79 

Average values 5.2% 1.8% 11.2% 0.71 

Portfolio 5.2% 4.1% 5.5% l.09 

11.8 CURRENCY RISK HEDGING 

Hedging problems arise whenever an investor, for example, a fund manager or a 

commercial organization, is holding foreign assets such as foreign securities over 

a period of time. The foreign assets are denominated in a foreign currency. The 

investor measures the performance of his/her investment in terms of the investor's 

home currency. The foreign assets have a degree of volatility in terms of their own 

currency. Due to the foreign exchange rate movements the volatility is, however, 

higher when expressed in terms of the investor's home currency. This implies 

additional risk. By additionally taking a short position in the foreign currency, 

this implicit foreign currency exposure can be compensated and the risk can be 

reduced; this is the basic idea of hedging. Whereas a constant short position is 

referred to as static hedging, this section deals with dynamic hedging where the 

foreign currency positions vary over time. 
In this section, a strategy of hedging the foreign exchange (FX) risk associated 

with foreign investment is specified. As an innovative element of this strategy, real­

time trading models are used. The whole strategy can then be called a dynamic 

overlay. To be successful, we need profitable trading models that are only weakly 
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FIGURE 11.4 Total return of a portfolio of 10 O&A trading models over 5 years. 

correlated or anticorrelated to the usual primary investments, because positive 

correlation would imply an increased risk. 

An investor's risk/return decisions must be matched to the set of all possible 

investments (including dynamic allocation of capital to the foreign currencies), the 

feasible set. Figure 11.5 shows this feasible set as a shadowed region. The upper­

left border of this set is termed the efficient frontier; those investment portfolios 

lying along this frontier deliver the maximum possible return for the minimum 

possible risk or the minimum risk for the set of best possible returns. The point 

at which an investor's indifference curve has a common tangent with the efficient 

frontier represents the best possible match between the investor's preferences and 

the possible investment portfolios. The right, dashed vertical line in Figure 11.5 

indicates the expectation for the risk of a primary investment, which is left com­

pletely unhedged. A circle is drawn where this vertical line intersects with the 

horizontal line indicating the expected return of the primary investment. 

The dashed vertical line to the left in Figure 11.5 indicates the reduction of 

risk achieved through an optimal static hedge of the primary investment, which 

usually implies short positions in all foreign currencies in which the foreign assets 
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FIGURE 11.5 Set of feasible portfolios available to an investor when he/she implements 

a currency hedging strategy. The efficient frontier lies on the upper-left edge of the set 

(gray area), or along the darkened edge in the figure. 

of the primary investment are denominated. In practice, this reduction in risk may 

be purchased at the price of slightly reduced returns due to transactions costs, thus 

the circle that intersects this risk line is lowered to slightly below the expected 

return of the primary investment in this example. 14 This optimal static hedge has 

succeeded in reducing risk. However, note that there may still be some distance 

between the static point and the efficient frontier of the feasible set, which is defined 

by the use of dynamic allocation to foreign currencies through trading models. The 

distance between the statically hedged portfolios and the efficient frontier marks 

the improvement that can be attained through a dynamic currency overlay using 

trading models. 
The subject of currency hedging has been discussed in the literature for some 

time. In Froot (1993), full hedging is recommended for minimizing the risk due to 

short-term FX volatility. On the other hand, it is also shown that a lower amount 

of hedging or even no hedging is better for minimizing the risk of long-term value 

14 Whereas the transactions costs of a one-time, static FX transaction are minimal, the short positions 

in the foreign currencies may imply considerable costs of carry due to interest rate differential between 

the two currencies. These costs, which are sometimes also in favor of the investor, may lead to a 

distinct return difference between statically hedged and unhedged portfolios. 
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fluctuations of the investment. Depending on the time horizon, there is thus a 

certain range, a scope within which the hedging ratio can be chosen. 

Levich and Thomas (1993a) go one step further. They hedge a position dy­

namically by varying the hedge ratios over time. They show that this is profitable 

as compared to no hedging or static hedging. In their most successful strategy, a 

"currency overlay" with many currencies involved, they change the hedge ratios 

by following simple "technical trading signals." 
In the overlay strategy described here, the allowed ranges of static hedging 

and the exposure due to dynamic hedging are limited. 15 Thus the main purpose 

of hedging, which is reducing the risk due to FX rate volatility, is maintained. On 

the other hand, we have a well-founded additional profit expectation, based on the 

profitability of the trading models and trading model portfolios. 

11.8.1 The Hedging Ratio and the "Neutral Point" 

Currency hedging means, for an investor who has bought a foreign asset such as 

equity of value s, holding a short position of size -sh in the foreign currency in 

order to minimize the volatility of the value of his/her total position due to FX rate 

fluctuations. The hedging ratio h is defined as 

h = Sh 
s 

(11.31) 

The study by Froot (1993) shows that choosing the best h, the one that minimizes 

the total volatility, is not trivial and depends on the time horizon of the investor. 

For short-term investors, the best h is 1 or slightly less; for long-term investors, 

who hold their position over many years, the best choice of h is about 0.35. In 

Froot (1993), the hedging ratio his assumed to be constant over time. 

In our dynamic hedging approach (we follow here the method suggested in 

Muller et al., 1997b), we want to vary h over time, following some real-time 

trading models to reach an additional profit or to reduce the risk of the primary 

investment expressed in the home currency. This requirement will, when used 

during optimization, automatically set limits to the type of hedging strategy to 

use. In the lack of a clear criterion like reducing the risk, some rules could be 

introduced to achieve desirable features like, for instance, h would not depart too 

much from the best value--that is, in most cases, between 0.35 and 1 according to 

Froot (1993). Each of the individual foreign currencies has its own hedging ratio 

hi, but there is also the option of taking only one global hedging ratio h for all 

currencies. The following discussion applies to both the individual hi and h. 

In lack of an objective risk criterion, most investors set some limits hmin 

and hmax on the choice of the hedging ratio, often to satisfy some institutional 

constraints or to limit the risk if they have no other quantitative criterion to do this. 

A typical choice might be hmin O (no hedging) and hmax 1 (full hedging). 

15 Interested readers are referred to our internal paper where the methodology is described in detail, 

Muller et al. (1997b). 
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In the middle between the extreme h values, we define the neutral point, h, of the 
hedging strategy to be 

hmid 
hmin + hrnax 

2 

and the total possible range flh of dynamic hedging is 

(11.32) 

(11.33) 

We have seen that the O&A real-time trading models vary their gearings be­
tween two limits called "gearing-I" and "gearing 1" as explained in Section 11.2.1. 
If the neutral point hmxd is chosen for static hedging and ifthere is only one foreign 
currency and one trading model (for the FX rate between that foreign currency and 
the home currency), these trading limits directly correspond to the limits hrnin and 
hmax• However, the investor may decide to allow wider exposure limits for the 
dynamic positions than those of the static positions. The situation becomes more 
complicated in the presence of many currencies and many trading models. 

11.8.2 Risk/Return of an Overlay with Static and Dynamic Positions 

To solve the allocation problem, a basis of portfolio theory has to be applied to 
our particular overlay problem. 

A portfolio IT can be written in terms of the sum of the primary investment 
(PI), a static foreign exchange position placed in order to hedge foreign exchange 
risk (SH) and a series of variable positions placed to dynamically hedge foreign 
exchange risk (DH) 

IT= PI+ SH+ DH (11.34) 

In what follows, we refer to a portfolio diversified in i = 1 to n currencies and 
dynamically hedged by j 1 tom trading models: 

n n m 

IT= La;/;+ Lh;aiR[X + LwiRJM (11.35) 

i==l i=l j==l 

Expectation of portfolio returns, or changes in value, can then be written as E[n IT], 

or as a sum of the expectation values of its comprising parts: 

(11.36) 

that is, 

n n m 

E[nIT] = I:a;E[nl;] + Lh;a;E[t.R{x] + LwiE[nR[M] (11.37) 
i=I i=I j=l 
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where 

t:ili = the fractional return of the ith underlying foreign investment component 

at a given time, t, and over a time horizon, t:it; !::,.Ji = t:,.Ji(t:it, t) = 
(/, It-At)! Ii-M, where Ii are in units of the home currency, 

a; = the amount of the portfolio allocated to the i th currency in units of the home 

currency, 

h; = the unitless static hedging ratio for the ith foreign currency, 

!iR[X = the portfolio returns due to fluctuations in the static hedge positions, 

w; the weights given to each trading model (in units of the home currency), 

and 

!iR J M = the trading model return values. 

The risk of the portfolio is characterized by the variance of the portfolio returns 
(T2 . 

t,.n· 

(11.38) 

11.8.3 Dynamic Hedging with Exposure Constraints 

To compute the efficient frontier of the dynamic hedging strategy, we need to 

optimize the return given the risk or conversely optimize the risk given the return. 

Such an optimization is suitably done using the Lagrange multiplier technique. 

We can maximize the quantity 16 E[ t:i IT] - )..' ai_0 or, more conveniently, minimize 

crin - AE[/iTI]. The parameter).. is the Lagrange multiplier and can be varied 

from O (considering risk only) to high positive values (considering mainly return 

while keeping risk under some control) to get the whole efficient frontier. Each 

value of}., corresponds to a point on the efficient frontier. Let us call U the target 

function to be minimized, 

2 u = CT All - A E[/iTI] (11.39) 

where E[/iTI] and crin have been defined and expressed in Equations 11.37 

and 11.38. 
Some components of the total portfolio have free coefficients, which can be 

determined with the goal of minimizing the target function U: the hedging ratios 

h; and the amounts of money (maximum exposures) O>j allocated to the trading 

models. These coefficients are generally subject to constraints: 

1. The trading model sizes Wj must not be negative: Wj :::: 0. In fact, such 

negative Wj would mean doing the opposite of the trading recommenda­

tions. In these cases, this will lead to new transaction costs, which make 

the actual returns much worse than the formal results suggest. Therefore, 

we exclude negative trading model coefficients. 

16 This first quantity is very similar to X~fJ, the risk-corrected return derived in Section 11.3.1. The 

optimization problem comes back to optimizing Xeff for different risk aversion constants. 
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2. The static hedging ratios hi are limited to an allowed range between hmin,i 

and hmax,i. Generally there are regulations or risk management rules that 
do not allow the investors to take too extreme positions, therefore hedging 

ratios that are above h=,i or below hmin,i are generally excluded. 

The constraints make a direct solution of the allocation problem impossible. 
The minimization of U (a quadratic function of the coefficients) under linear 

constraints on the coefficients is a special case of quadratic programming. A 
technique developed by Markowitz (1959), based on the simplex method, can 
solve this problem; we follow Markowitz (1987). There is no local minimum of 
U in the space of the coefficients; this can be proven. The solution, once found, 
always represents the global minimum. 

Currency-wise exposure limits may be less rigid than those on the hedging 
ratios. But exposure limits on foreign currencies are not simple, as they involve 
several assets together. The exposure constraints are linear in (J) J and hi. As 

the simpler constraints, they can be fully accounted for in the framework of the 
solution method presented by Markowitz (1987). 

The whole efficient frontier can be obtained by minimizing U for different 
choices of the Lagrange multiplier A. The left-hand side of the efficient frontier 
obviously starts at)._ = 0 where the return of the portfolio has no influence and only 

risk counts. The right-hand side limitation of the efficient frontier is less evident. 
For unconstrained dynamic strategies, the efficient frontier normally extends to 
infinity (when more and more money is allocated to trading models). A hedging 
strategy should obviously not deal with infinite risks. There should be a risk 
limit beyond which the strategies are considered unacceptable even if the formal 
exposure limits are not yet reached. But in the case of constraints, the efficient 
frontier generally has a genuine end on the right-hand side. Therefore, we use a 
"shooting" strategy for determining the )._ value that approximately leads to the 
desired maximum risk at the right end of the efficient frontier. The method by 
Markowitz (1987) helps us to find this value. 

11.8.4 Concluding Remarks 

This problem turns out to be rather difficult and requires many different inputs and 
programs to solve it in a practical way. The algorithm needs the following main 
ingredients: 

■ The user-defined investment goals such as primary investment and expo­
sure limits. 

■ Time series of returns of all assets in the portfolio: FX rates, interest 
rates ( or their differentials), and typical primary investments such as stock 
indices and bond indices of many currencies. 

• Time series of returns of the trading models used for dynamic hedging 
(including transaction costs). 

■ The computation of mean returns and the covariance matrix of all relevant 
assets. 
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■ A target function to be optimized, measuring risk and return, with a La­
grange multiplier that sets the balance between risk and return. This func­
tion depends on two types of parameters, which are static hedging ratios 
and trading model allocation sizes. 

■ A method to solve the quadratic programming problem with linear con­
straints ( exposure limits). 

In conclusion, we are able to solve the dynamic overlay problem under expo­
sure constraints with a quite complex but well-understood algorithm. The result is 
the efficient frontier of feasible solutions, each with a particular risk/return profile. 
It is the choice of the investor to decide which portfolio on the efficient frontier 
he/she wants to follow. 
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12 
TOWARD A THEORY OF 

HETEROGENEOUS MARKETS 

At the end of this in-depth review of some of the techniques and models used 
with high-frequency data, there is clear evidence that price movements of foreign 
exchange rates and other financial assets for short to medium-term horizons are 
predictable to some extent. This is substantiated by a positive forecast quality and 
high real-time trading model returns (e.g. Dacorogna et al., 1992; Pictet et al., 
1992; Gern;:ay et al., 2001c, 2002). More generally, financial returns of whatever 
asset substantially depart from the random walk model and are being predicted 
with some success by market participants. 

Where does this sustained predictability originate? Are the real-time trading 
models, for instance, successful in capturing the inefficiencies of the foreign ex­
change (FX) market? Because this market is widely held to be the most efficient 
of the financial markets, does this success conflict with the theory of efficient mar­
kets, which precludes the ability to forecast and denies the existence of profitable 
trading models? Should we conclude from this evidence that markets are ineffi­
cient? We believe that we should rather adapt our theory of the financial market 
to the reality of the stylized facts and of markets that are very efficient in a newly 
defined way. 

The motivation of this chapter is to explain why and how markets can be at 
the same time highly efficient and to some extent predictable. There are a number 

348 
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12.1 DEFINITION OF EFFICIENT MARKETS 349 

ofreasons for this that are all associated with market dynamics. We want to put in 

perspective the current theory of efficiency and suggest to move beyond it. This 
is one of the big challenges ahead in the theory of finance. Many researchers are 
working in this special field, such as the whole movement of"behavioral finance" 
around Robert Shiller, 1 or parts of the econophysics group and many others who 

see the need to find ways of moving from a rather static definition to a more 
dynamic one. 

12.1 DEFINITION OF EFFICIENT MARKETS 

In conventional economics, markets are assumed to be efficient if all available 
information is reflected in current market prices (Fama, 1970, 1991). Economists 

have embarked on weak, semi-strong, and strong-form efficiency tests. The weak­
form tests investigate whether market prices actually reflect all available infor­
mation. The semi-strong tests are based on so-called event studies, where the 
degree of market reaction to "news announcements" is analyzed. The strong-form 
tests, finally, analyze whether specific investors or groups have private informa­
tion from which to take advantage. By and large, most studies conclude that the 
major financial markets are efficient and that all information is reflected in cur­
rent prices. However, the conclusions of such studies have been bogged down by 

methodological questions: in particular, whether any observed departures from 
market efficiency are due to any genuine market inefficiency or whether a defi­
ciency of the market pricing model is being used as a yardstick to compare actual 
with theoretical prices. 

The inference that in an efficient market no excess return can be generated 
with trading models is based on the assumption that all investors act according 
to the rational expectation model (Shiller, 1989; Fama, 1970). If this assump­
tion is wrong, the conclusion that forecasting is impossible is also questionable. 
The assumption of rational expectations has been called into question on various 
platforms and the idea of heterogeneous expectations has become of increasing 
interest to specialists. Shiller (1989), for example, argues that most participants 

in the stock market are not "smart investors" (following the rational expectation 
model) but rather follow trends and fashions. The modeling of"noise trader" has 
become a central subject of research in market microstructure models. On the FX 
market, there is much investigation of "speculative bubbles" and the influence of 

technical analysis on the dealer's strategy (see, for example, Frankel and Froot, 
1990). Some attention has also been caught by the possibility of time-varying 
expectations, which better reflect to our view of the market (Bekaert and Hodrick, 
1992). Variation over time in expected returns poses a challenge for asset pricing 
theory because it requires an explicit dynamic theory in contrast to the traditional 
static capital asset pricing model (CAPM). 

1 See, for mstance, Shiller (2000) where the author claims that the market agents are essentially 
acting irrationally. 
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In summary, the conclusion that financial asset prices are not predictable is 
based on three assumptions: market prices reflect all the information available, 
news and events that hit the market are normally distributed, and the market is 
composed of homogeneous agents. The two first assumptions are reasonable 
starting points for the definition. The third assumption poses a real problem. It 
is clear that all market agents have in fact bounded rationality. They cannot be 
omniscient and do not all enjoy the same freedom of action and access to the 
markets. Recent works by Kurz (1994) and Gouree and Hemmes (2000) present 
new theoretical models to tackle this problem. Introducing the heterogeneity of 
agents can give rise to very interesting nonlinear effects in the models. They 
show that many of the price fluctuations can be explained by endogenous effects. 
Similar conclusions are reached by Farmer and Lo (1999) in their discussion of 
market efficiency. They base their analysis on a comparison with the evolution of 
ecological systems. Farmer (1998) develops a market model inspired by ecological 
systems that contains agents with various trading strategies. 

12.2 DYNAMIC MARKETS AND RELATIVISTIC EFFECTS 

We just saw that conventional economics makes its inferences on efficient markets 
on the basis of a model in which economic agents are entities that act according to 
the rational expectation strategy. Any differences in planning horizons, frequency 
of trading, or institutional constraints are neglected. However, there is substantial 
empirical evidence that investors have heterogeneous expectations, as noted in 
Muller et al. (1993a) and Muller et al. (1997a). Surveys on the forecasts of 
participants in the FX market reflect the wide dispersion of expectation at any 
point in time. The huge volume of FX trading is another indication reinforcing 
this idea because it takes differences in expectation among market participants to 
explain why they trade.2 In Chapter 7, we presented the heterogeneous market 
hypothesis; at the end of this book the need for such a view becomes clear. It is 
the most elegant way to reconcile market efficiency with the stylized facts. Lux 
and Marchesi (1999) have developed simulation models of financial markets that 
include agents with different strategies (fundamentalists and chartists). They were 
able to show (Lux and Marchesi, 2000) that this model can reproduce most of the 
empirical regularities (fat tails, long memory, and scaling law) even though they 
use normally distributed news in their simulations. 

The theoretical work on financial markets with heterogeneous agents has also 
gained momentum in the literature. Among this literature, Brock (1993), Brock 
and Kleidon ( 1992), Brock and LeBaron (1996), Brock and Hommes (1997), and 
Hommes (2000) investigate the underlying source for the structural heterogeneity 
of financial markets. Brock (1993) studies the interacting particles system the­
ory to build structural asset pricing models. Brock and Hommes (1997) build a 
general theory of expectation formation, which nests rational expectations in an 

2 Over $1500 billion US is traded every day in the different centers like Tokyo, London, and New 
York according to a survey taken every 3 years by the Bank for International Settlements (1999). 
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econometrically tractable system. Brock and Kleidon (1992) show how bid-ask 
spreads fluctuate over the day by firm size categories as a measure of"thickness" 
of the market. Brock and Le Baron (1996) stress not only the standard asymmetric 
information theory in matching key stylized facts, but also the importance of the 
role of multiple time scales. Hommes (2000) provides a review ofrecent work on 
heterogeneous agent financial theory. 

There are many ways to describe heterogeneous expectations. We believe 
that the most promising approach is to differentiate the expectations according to 
their time dimension because we consider the different time scales of the market 
participants the key characteristic of the market. Some are short-term traders, 
others have long-term horizons with market makers at the short-term end of the 
scale and central banks at the long-term end. Contrary to the usual assumption, 
there is no privileged time scale in the market. The interaction of components 
with different time scales gives rise to characteristically relativistic effects3 such 
as certain properties of volatility clusters, trend persistence, lag between interest 
rate adjustment, and FX rate adjustment. The latter is a good example of what 
conventional theory considers an inefficiency whereas we see it as an effect arising 
from the different time scales involved in the market. To take advantage of the lag 
in adjustment between interest rate and exchange rate moves, an investor needs to 
tie up his/her money for months or even years. This is a very long time for an FX 
trader. Some investors will thus tend to ignore these profit opportunities whereas 
others invest in them, as is testified by the development of managed currency funds 
based on this property. The combination of all of these effects ultimately enables 
the construction of successful forecasting and trading models. 

In long time intervals, market price changes are "flatter" and have fewer rel­
evant movements (trend changes) than in short-term intervals. The higher the 
resolution and the smaller the intervals, the larger the number of relevant price 
movements. The long and the short-term traders thus have different trading op­
portunities: the shorter the trading horizon, the greater the opportunity set. A 
market participant's response to outside events should always be viewed as rela­
tive to one's intrinsic opportunity set. A short-term trader does not react in the 
same way as a long-term trader. Economic decision makers, such as traders, 
treasurers, and central bankers, interpret the same information differently. The 
variation in perspective has the effect that specific price movements cannot lead to 
a uniform reaction; rather, they result in individual reactions of different compo­
nents. In tum, these reactions give rise to secondary reactions, with the different 
components reacting to their respective initial response. Watching the intraday 
price movements, one clearly sees the sequences of secondary reactions triggered 
by the initial events. See, for example, Goodhart and Curcio (1991); Almeida 
et al. (1998) on news effect on the FX market or Franke and Hess (1997) on the 

3 We use here the term "relativistic" to express the dynamic interaction between different market 
components relative to each other rather than relative to the news that has impacted the market. These 
effects are sometimes called endogenous effects in the literature, Kurz (1994). 
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Deutsche Termin-Borse. The existence of different trading strategies in the mar­
ket was also put forward in Chapter 7 to explain the HARCH effect of asymmetry 
in the information flow at different frequencies. LeBaron (2000) shows that in­
troducing agents with different time horizons in his market model gives rise to 
heteroskedasticity effects in the resulting price volatility. 

The delay with which the secondary reactions unfold is called the relaxation 
time. If diverse components with different time scales interact in the market, there 
is typically a mixture of long and short relaxation times following the impact of 
outside events. If different relaxation times are combined, the resulting autocorre­
lation decays hyperbolically or almost hyperbolically. This is a natural explanation 
of the long memory effects detected in financial markets. Dacorogna et al. (1993) 
studied the autocorrelation function for short-term absolute returns, confirmed the 
hyperbolic decay, and revealed that volatility clusters tend to have a longer mem­
ory than assumed by other studies of the subject. We saw in Chapter 7 that many 
studies confirm this effect. 

There is yet another phenomenon, which originates from the fact that financial 
markets are spread worldwide. Economic and political news and trading activity 
are not stationary. They have a clear-cut pattern of moving around the world in 
a 24-hr cycle. The price data of foreign exchange rates reflect this in terms of 
a 24-hr seasonality in market volatility, Muller et al. (1990). This seasonality 
can be accounted for by introducing a business time scale such as in Dacorogna 
et al. (1993). The 24-hr cycle implies that market reactions to an event cannot 
be simultaneous and that there are distinct relaxation times following the event. 
Geographical components related to the business hours of the different trading 
centers must be added to the time components. The interaction of geographical 
components leads to behaviors such as the "heat wave" effect proposed by Engle 
et al. (1990). 

12.3 IMPACT OF THE NEW TECHNOLOGY 

The realization that there is value in the data to define an investment strategy has 
brought to life many new firms that specialize in modeling financial markets and 
in providing trading advices on the basis of technical models. The question is, 
of course, will the impact of the new technology be a passing phenomenon or 
will it have a long-term effect? As the relativistic phenomenon arises from the 
interaction of components with different time scales, it will remain appropriate as 
long as heterogeneous expectations continue to exist in the market. The interaction 
process may become more complex, but it cannot disappear. 

News technologies enable users to identify additional trading opportunities 
to increase their profits. This quickens their pace of trading and contributes to 
higher market volume and liquidity. The improved liquidity lowers the spreads 
between bid and ask prices. Lower spreads imply lower transaction costs, which in 
tum increase the opportunity horizon for profitable trading. The new technology 
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introduces a shift in perspective, with components starting to focus on more nu­
merous short-term time intervals. 

As components become increasingly short-term in their focus, the spectrum 
of short-term components increases. This has the effect that relative differences 
among components become more significant and the relativistic effects more pro­
nounced. Contrary to accepted notions, which assume that sufficient buying power 
can "trade away" any phenomenon, the increased buying power will have the over­
all effect of enhancing the relativistic effects. Thus the very basis of our ability 
to forecast and build profitable trading models will be enhanced. This statement 
must be qualified in the sense that the reaction patterns will become increasingly 
diversified, and therefore more complex, and the speed of adjustment will increase 
requiring more and more sophisticated models. 

12.4 ZERO-SUM GAME OR PERPETUUM MOBILE? 

Conventional thought has it that financial markets must be a zero-sum game. This 
is true if we take a static view. In reality, the financial markets are dynamic and 
they are highly complex. 

Markets are a platform for components to take advantage of the diversity of 
interests. They are able to match their opposing objectives when one component 
buys and another component sells. The lower the friction, the easier a counterpart 
for a particular transaction is found and the larger, therefore, is the particular com­
ponent's opportunity set. By being able to go ahead with a particular transaction, 
the flexibility of the respective components is increased and their profit potential 
improved. 

The new technology fosters the ability of the market to provide an environ­
ment for the generation of wealth. As explained, interaction within the market 
gives rise to relativistic effects and relaxation times. To the extent that these rela­
tivistic effects are understood and incorporated into forecasting and trading model 
technology, market participants have the opportunity to generate additional profit 
or limit their losses. In our terminology, the profit that is generated is energy 
extracted from the market. Improved efficacy of component interaction gener­
ates additional energy and reduces the friction associated with buying and selling 
within the market. The process may be compared to the search for more efficient 
engines in the automobile industry where everybody gains from it in the long term. 

Have we achieved a perpetuum mobile? The answer is clearly no. Like 
any other technological innovation, the new technology does not generate energy 
from nothing, but it does take advantage of the energy potential existing in the 
financial markets. By offering a service to the economic agents, financial markets 
are not closed systems but do get a permanent input of money. This makes them 
highly open systems in terms of energy. Besides, a lot of resources have been 
put into the new technology in the form of extensive research, development work, 
and hardware to treat the information. Numerous studies have shown that simple 
trading rules do not work in efficient markets. Only elaborated treatment of the 
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data allows the identification of profitable trading rules. This treatment is not free, 
it has a price. Moreover, as the relativistic reaction patterns become increasingly 
diversified, research and development efforts will have to increase in the future to 
keep up with the ever-changing nonlinear patterns. 

12.5 DISCUSSION OF THE CONVENTIONAL DEFINITION 

As the markets consist of a diversity of components, different relaxation times 
occur because of the underlying relativistic effects between different components. 
It follows that the weak form of efficiency coupled with the rational expectation 
model cannot be attained. Because of the presence of different time components 
with heterogeneous expectations, current market prices cannot reflect all available 
information. The price discovery mechanism follows rather a dynamic "error 
correction model" where the successive reactions to an event unfold in the price. 
Why, then, did this not show up more clearly in previous scientific investigations? 
Some of the several reasons include the following: 

■ High-frequency data are a prerequisite for the empirical investigation of 
relativistic phenomena. 

■ Extensive computing power is needed to show the predictability in finan­
cial markets. Access to reasonably priced computing power has become 
available only recently. 

■ It is in the past few decades that an increasing awareness for dynamic and 
nonlinear processes has been gained. Such an awareness is crucial for the 
study of relativistic effects. 

The presumption of conventional economics that forecasting is impossible 
per definition has had a powerful impact on the research on market efficiency. 
Economists have focused on structural studies that were hamstrung by a lack of 
high-frequency data and theoretical shortcomings. Little academic research has 
been invested in actually trying to predict shorter-term price movements and build 
successful trading models. 

12.6 AN IMPROVED DEFINITION OF "EFFICIENT MARKETS" 

Although the current definition of efficient markets has shortcomings, we do not 
think that this concept should be abandoned; rather, it should be adapted to the new 
findings. It is important to find a good measure of how well a market operates. 

From a dynamic perspective, the notion of reduced friction should be central 
to the notion of efficiency. We consider an efficient market to be a market where 
all market information must be available to the decision makers and there must 
be participants with different time scales and heterogeneous expectations trading 
with each other to ensure a minimum of friction in the transaction costs. 

A quantitative measure of efficiency might be derived from the bid-ask spreads 
(those between real bid and ask prices being more appropriate for such a measure 
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than the nominal spreads quoted in information systems). Spreads are not only a 
measure of "friction," they also contain a risk component. The volatility or, more 
precisely, the probability of extreme returns within short time intervals should be 
considered together with the spread in the quantitative measure of market efficiency 
to be proposed. We are sure that in the years to come this definition will prevail 
and we shall find precise measures of efficiency as it is the case in thennodynarnics 
and engineering. 
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A 

activity 
activity variable, see variable 
market activity, 175, 177, 183 

approach 
macroeconomic, 5 
microstructure, 2 
time series, 2 

arbitrage 
formula, 29 
opportunities, 28 
riskfree, 22 
triangular arbitrage, 118, 127 

ARCH, see model 

B 

Bank for International Settlements, 137 
basis point, 23,125, 171 
BHHH algorithm, 223 
bias, 44 

bias of realized volatility, see volatility 
market maker bias, 154 

bid-ask bounce, 124 
Black and Scholes, 43 
Brownian motion, 49 
build-up, 52, 87, 223, 263 

error, 56 
time interval, 56 

376 

business-time scale, see time scale 

C 

call for margm, 12 
capital management system, 296 
cash mterest rates, 21 
cheapest-to-deliver, 29, 31 
conditional heteroskedast1city, 204 
conditional predictability, 215 
convergence, I 63, 320 

model estimation, 223 
correlation, 268 

adjusted correlation measure, 272 
breakdown, 270, 277 
covolatility weighting, 268, 270 
Epps effect, 269,288 
linear correlation coefficient, 272 
memory, 293 
variations, 278 

counterparty default risk, 11 
covariance, 268 

cross-covariance, 124 
matrix, 116, 346 
realized, 50 

credit ratings, 28 
credit risk, 128 
credit spread, 21 
cross rate, I 6, 19 
cross-covariance, 124 
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cumulative distribution function, 173 

D 

dally time series, 174 
data 

ask, 12, 15 
bid, 12, 15 
bid-ask price, see pnce 
bid-ask spread, see spread 
daily, 14 
data cleaning, see filter 
data filter, see filter 
dependent quote, 95 
effective price, see price 
effective spread, see spread 
empirical, 132 
high-frequency, 1, 10, 32, 33 
historical, 16 
homogeneous, 35 
inhomogeneous, 35 
interest rate, 21 
intraday, 14 
irregularly spaced, 1 
low-frequency, 14 
quote, I 
quoted spread, see spread 
quotes, 15 
regularly spaced, 1 
sparse, 3 
synthetic regular, 54 
tick, see tick, 3 8 
tick-by-tick, 1, 4, 6, 51 
time stamp, 15 
traded spread, see spread 
transaction price, 1, 15 
weekly, 14 

data cleaning, 82 
data error, 85 

decimal error, 85 
human error, 85 

intentional error, 85 
unintentional error, 85 

repeated ticks, 86 
scaling problem, 86 
system error, 85 
test, 85 

early morning test, 86 
monotonic series, 86 

tick copying, 86 
data providers, 11 

Bloomberg, 11, 15 
Bridge, 11, 46, 186 
Knight Ridder, 15, 186 
Reuters, 11, 15, 46, 186 

377 

Telerate, 15, 128, 186 
data-generating process, 122, 328, 338, see 

model 
day-of-the-week effect, 169 
daylight saving time, 164, 190 
delivery risk, 170 
deseasonahzed returns, 197 
directing process, 176 
direction change indicator, 4 7 
direction quality, 262 
distribution, see probability distribution 

nonstable, 142 
Dow Jones Industrials, 8 
dynamic memory, 255 
dynamic optimization, 246 
dynamic overlay, see hedging 

E 

economic forecast, 129 
economic news announcement, 130 
econophysicist, 9 
effective news, 130 
effective number of observations, 50 
efficient frontier, 341 
efficient markets, 349, 354 
electronic order-matching system, 15 

Electronic Brokmg Services (EBS), 15 
Reuters Dealing 2000, 15 

EMA-HARCH, see model 
Epps effect, see co1Telation, 293 
equity indices, 32 
EUREX,24 
EURIBOR,25 
Euro,24 
Eurodeposits, 21 
Eurofutures contracts, 121 
Eurolira, see market, Eurofutures 
European Monetary System (EMS), 127 
Euroyen, see market, Eurofutures 
expiry, 12, 29, 31 

quarterly expiry, 24 
time-to-expiry, 31 

exponential attenuation, 293 
exponential decline, 209 
exponential memory, 282 
exposure, 339 
extreme events, 6 
extreme risks, 144 
extreme value theory, 138 

F 

fat-tailedness, 132 
FIGARCH, see model 
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filter 
adaptive method, 98 
after-jump algorithm, I 05 
artificial quote method, 118 
ask quote, 110 
bid quote, 110 
bid-ask quote, I IO 
bid-ask spread, 110 
build-up period, 87 
credibility, 93, 114 
data cleaning, 82 
data filter, 82 
decimal error, 113 
domain error, 111 
filter configuration, 113 
filter parameters, 116 
filtering algorithm, 89 

credibility, 89 
full-tick filtering window, 89 
scalar filtering window, 89 
univariate filter, 89 

filtering hypothesis, 113 
error hypothesis, 113 
winning hypothesis, 113 

forward premiums/discounts, 111 
full-quote filtering window, 109 

quote splitting, 110 
high-quality data, 100 
htstoncal mode, 115 
historical operation, 87 
interest rate, 111 
level filter, 88, 91 
level quote, 1 JO 
multivariate filtering, 100, 116 

filte1ing sparse data, 116 
next point interpolation, 96 
pair filtering, 88, 93, 98 
price, 111 
real-time mode, 115 
real-time operation, 87 
repeated quotes, 100 
scalar filtering window, 103 

filter test, 104 
the normal update, I 04 

scalar quote, 110 
scalar window 

dismissing scalar quotes, I 07 
scaling factor, J 13 
second scalar wmdow, 108 
sensitivity analysis, 120 
short-term interest-rate futures, 111 
spread filter, 98 
spread quoting, 98 
strong filter, 116 
time scale, I 00 

INDEX 

timing, 87 
trust capital, 90, 104 
univariate filtering, 113, 116 
validity test, 110 
weak (tolerant) filter, I 16 

finite variance, 132 
first position, 30 
forecasting, 248 

forecast accuracy, 246, 262 
forecast effectiveness, 264 
forecast horizon, 264 
forecast quality, 261 
forecasting model, 249 
multivariate forecasting, 249 
real-time price forecasting system, 250 
signal correlation, 263 

forecasting signal, 263 
real signal, 263 

volatility forecast, 250 
forecasting performance, 243 

benchmark comparison, 245 
direction quality, 245 
realized potential, 245 

foreign exchange (FX) market, see market 
forward discount, 23 
forward interest rate, 25 
forward points, 23 
forward premium, 23 
forward rate, 22, 25 
fractal behavior, 8, 209 
fractional noise process, 207 
FXFX page, 16 

G 

GARCH, see model 
Gaussian distribution, 135, 155 
genetic algorithm, 223,317 

adaptive clustering, 3 I 9 
multi-modal function, 318 
sharing scheme, 319 

genetic programming, 311 
closure property, 312 
function nodes, 312 
syntactic restrictions, 313 
terminal nodes, 312 
tournament selection, 315 

geographical components, I 79 
geometric mean, 170 
goodness-of-fit, 285 
granularity, 171 

H 

HARCH, see model 
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heat-wave component, 207 
heat-wave effect, 209,214, 352 
hedge funds, 17 
hedging, 31 

currency overlay, 343 
currency risk, 209,340 
dynamic hedging, 340, 345 
mstruments, 24 
neutral pomt, 343 
ratio, 343 

heterogeneity, 44 

INDEX 

heterogeneous market hypothesis, see hypoth­
esis 

heteroskedasticity, 35, 162 
autoregressive conditional, 265 

Hill estimator, 145 
holiday 

half-day, 190 
holidays, see market 
hyperbolic decline, 210 
hypothesis 

heat wave hypothesis, I 79 
heterogeneous market hypothesis, 209, 2 IO, 

224 
island hypothesis, 179 
meteor shower hypothesis, 179, 206 

IGARCH, see model 
implied mterest rate, 25 
implied volatility, see volatility 
index 

AMEX Stock Index, 283 
Down Jones Index, 283 

indicator, 257 
antisymmetric, 315 
cycle, 310 
overbought and oversold, 310 
symmetric, 315 
timing, 310 
trend followmg, 310 
volatile indicator, 259 

information set, 82, 249 
instability, 259 
institutional constraints, 14, 128 
institutional framework, 127 
institutional investors, 17 
interbank interest rates, 21 
interbank money market rates, 121 
interpolation, see method 
intervention, 129 

official, 129 
intraday 

analysis, 127 

movements, 174 
pnces, 174 
statistics, 163 
volatility, 17 4 

mtraweek 
analysis, 177 
statistics, 163 
volatility, 174 

intrinsic time, see time scale, ,-scale 
investment assets, 339 

J.P. Morgan, 6 

K 

kernels, 52 
Kronecker symbol, 260 
kurtosis, 134, 205 

operator, 71 

L 

lagged correlation, 211 
lead-lag, 20 
lead-lag correlation, 211 
leptokurticity, 173 
LIBOR,25 
LIFFE, 24, 31 
likelihood 

likelihood-ratio test, 230 
log-likelihood, 222 
maximum likelihood, 223, 330 

Ljung-Box, 334 
long memory, 8, 198, 207 
long-term regime, 259 

M 

mapping function, 261 
mark-to-market, 305 
market 

Asian stock, 52 
bond,28 
centralized, 11 
decentralized (OTC), 11 
derivative, 11 
equity, 32 
Eurofutures, 169 

Eurodollar, 169 
Eurolira, 24, 169 
Euromark, 169 
Euroyen, 24 

379 
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Short Sterlmg, 169 
foreign exchange (FX), 11, 13, 13 

FX forward, I 5 
FX forwards, 14 
FX futures, 14 
FX spot, 13, 15 

futures, 11, 12 
bond futures, 28 
commodity futures, 31 
Eurofutures, 24 
individual equity futures, 33 

geographical market, 214 
German bond market, 131 
heterogeneous market, 210 
holidays, 190 
homogeneous market, 210 
interest rate futures, 23, 25 
liquid, I 
market microstructure, 5 
openmg hours, 176 
option, 11, 13, 33 
over-the-counter (OTC), 2, 12, 19, 21, 24 
over-the-counter interest rate, 23 
participants, 10 

anonymity, 10 
spot, 11, 12 
spot interest rate, 24 
U.S. treasury bond market, 13 I 

market activity, 175,177,183 
market efficiency, 14, 45, 156, 249, see effi-

cient markets 
market expectation, 130 
market makers, 19 
market microstructure effect, 197,201 
market risk, 15 8 
market-dependent persistence, 206 
Markov chain, 233 
matunty, 22 
maximum likelihood, see likelihood 
mean absolute error (MAE), 262 
mean square error (MSE), 262 
mean squared prediction errors (MSPE), 295 
measure 

asymmetric effective returns, 307 
reward-to-variability ratio, 305 
risk-sensitive performance, 304 
symmetric effective returns, 305 

method 
distribution free measure, 262 
interpolation, 37 

linear, 54 
previous-tick, 37 

nonparametric method, 262 
overlapping, 44 
panel regression, 47 

INDEX 

polynomial, 25 
polynomial interpolation, 26 

microstructure, 2, 5, 14 
Middle European Time (MET), 326 
middle price, 122 
misspecification, 222 
mixture of distributions, 131 
model 

ARCH,221 
capital asset pricing model (CAPM), 349 
EMA-HARCH, 237,254 
FIGARCH, 221,231 
GARCH, 44,146,221,222,224,328 

AR-GARCH, 328 
diffusion process, 224 
estimation problems, 226 
jump process, 224 
temporal aggregation, 224 

HARCH, 146,231,335 
AR-HARCH, 328 
HARCH components, 236 

IGARCH,251 
in-sample optimization, 263 
intraweek market activity, 179 
lagged adjustment model, 124 
macroeconomic, 5 
market activity, 175, 183 
market maker bias, 154 
market rmcrostructure, 14 
model initialization, 263 
model structure, 256 
moving average model, 295 
multi-horizon, 263 
multicascade model, 148 
multifractal model, 148 
multivariate volatility model, 250 
nonparametric conditional mean models, 

295 
Normal Inverse Gaussian (NIG) Levy pro-

cess, 151 
out-of-sample test, 263 
purchasing power parity model, 249 
QARCH,232 
random walk, 54, 147, 150, 152,253, 331 
risk premia, 249 
structural model, 249 
time series model, 249 
trading, see trading model 
trading model, 295 
volatility, 6 

moment, 55, 132, 135, 137 
finite second moment, 142 
nonconverging fourth moment, 142 

momenta, 257 
Monte Carlo simulations, 145 
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multifractal model, 8 
multifractality, 148 
multiple assets, 278 

N 

near-singularity, 259 
neutral point, see hedging 
noise trader, 349 
nonstable distribution, 142 
notional deposit, 26 

0 

official intervention, 129 
Olsen & Associates (O&A), 4, 11, 18 
open position (mark-to-market), 305 
opening hours, see trading hours 
operator, 35 

average, 55 
backward shift, 77 
causal, 54 
comparison, 314 
complex moving average, 75 
conditional, 314 
convolution, 51 
crossover, 312 
derivative, 55, 66 
difference, 78 
differential, 64 

INDEX 

exponential movmg average (EMA), 59 
iterated, 5 9 

homogeneous, 58 
linear operator and kernels, 54 
logic, 314 
microscopic, 36, 76 
movmg average (MA), 61 
moving correlation, 71 
moving kurtosis, 71 
moving norm, 63 
moving skewness, 71 
moving standard deviation, 63 
moving variance, 63 
mutation, 312 
nonlinear, 58 
regular time series, 77 
tick frequency, 79 
time translation, 77 
time-translation invanant, 54 
volatility, 68, 79 
windowed Fourier transform, 74 

optimization 
robust optimization, 317 

option pricing, 3 
out-of-sample, 222 

outright forward rate, 22 
outright forward transactions, 23 
overlap 

method,44 
overlap-free, 50 
overlapping returns, see return 

overshooting, 27 

p 

performance index, 32 
periodicity, 160, see seasonality 
permanence hypothesis, 5 
perpetuum mobile, 353 
physical delivery, 31 
portfolio 

pricing, 277 
trading model portfolio, 338 

post ex-ante testing, 264 
prefiltering technique, 249 
price, 37, 38 

bid-ask, 17 
effective price, 40, 125 
middle, 122 
price formation, 3, 123 
synthetic, 275 
transaction, 1, 15 

probability density function (pdt), 54 
probability distribution, 54, 132 
process, see model 
psychological time, 176 

Q 

quadratic programming, 346 
quote, see data 

R 

random walk, see model 
rational expectations, 210 
real market value, 210 
realized volatility, see volatility 
regime shifts, 8 
relaxation time, 352 
return, 37, 40 

deseasonalized, 197 
mean,48 
nonoverlapping, 50 
overlappmg, 47 
synthetic, 275 

Reuters, 1,21 
Reuters Instrument Code (RIC), 15 
risk management, 3, 14, 52, 277 

381 
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382 

risk profiles, 14 
risk-sensitive measures, 305 
RiskMetrics, 251 

methodology, 251 
volatility, 253 

robustness, 58 
rolling over, 13 
rollover scheme, 29 
root mean squared error (RMSE), 186 

s 
safety margins, 171 
scaling laws, see stylized facts 

empirical, 177 
scaling properties, 8 

significance, 9 
seasonality, 35, 44, 175 

daily seasonality, 204 
geographical seasonality, 181 
ordinary seasonality, 214 
seasonal heteroskedasticity, 175, 265 
seasonal volatility, 174 
weekly seasonality, 204 

second position, 30 
segmentation, 128 
serial expiry contracts, 24 
settlement rules, 12 
Sharpe ratio, 305 
short memory, 207 
signal processing, 338 
Singapore International Monetary Exchange, 

24 I 

skewness, 173 
operator, 71 
realized, 46 

sl!ppage, 32 
speculative bubbles, 349 
spot 

interest rates, 21 
market, see market 
trading, 11 
transaction, 23 

spread 
average, 46, 172 
bid-ask, 17, 19, 23, 40, 45, 91, 124, 125, 

154, 170, 354 
credit spread, 21 
effective, 126 
log,45 
quoted, 171 
relative, 45 
traded, 171 

spurious persistence, 194 
stability, 143 

INDEX 

standard limit theory, 15 3 
stochastic process, see mdel 147 
stock indices, 32 
stock splits, 32 
stop-loss deal, 301 
stop-profit algorithm, 299 
stringent filter, 302 
structural change, 259 
styl!zed facts, 2, 14, 121, 127 

autocorrelation ofreturn, 121 
autocorrelation study, 161 
bid-ask bounce, 124 
bid-ask spread, 170 
daily and weekly patterns, 122 
deterministic volatility, 169 
discreteness, 125 
distribution ofreturns, 122 

fat-tailed, 122 
distributional issues, 121 
distributional properties, 132 

bounded distributions, 135 
fat-tailed distributions, 135 
thin-tailed distributions, 135 

negative first-order autocorrelation of re­
turns, 123 

scaling laws, 122, 147 
apparent scaling, 152 
fat tails, 142 
interquartile range, 150 
limitations, 15 8 

scaling properties, 121 
seasonal heteroskedasticity, 122, 163 
seasonal volatility, 163, 167 

U-shaped, 167 
seasonality, 121 

subordinated process, 176 
swap, 23 

FX swap rates, 23 
symmetry, 132 
synthetic price, see pnce 
synthetic return, see return 

T 

tail 
index, 6, 132, 135 
statistics, 6 

Taylor expansion, 62 
technical analysis, 3, 14, 129 
technological change, 8 
temporal aggregation, 224 
test 

ex-ante test, 3 22 
likelihood ratio, 7 
Monte Carlo, 274 
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out-of-sample test, 249 
ratio test, 192 

tick, 1, 10 
tick frequency, 37, 46 

log,46 
tick time, 124 

tick-by-tick, see data 
time horizon, 209,210,249,307,309 
time scale, 8, 176 

,-scale, 255 
rt-scale, see time scale, t>-time 
t>-time, 174, 176, J 88 
business, 174, 188, 225 
tick time, 124 
variety of time scales, 8 

time stamp, 10, 15 
trading horizon (trader class), 198 

day trader, 199 
intraday trader, 199 
long-tenn trader, 199 
market maker, 199 
short-term trader, 199 

trading hours, 174,299, 327 
trading model, 295 

current pnce, 302 
current return, 300 
gearing calculator, 301 
market constraints, 299 
performance calculator, 297 
performance measures, 304 

Reff, 307 
Xeff, 305 
Sharpe ratio, 305 

portfolios, 338 

INDEX 

real-time trading models, 296, 310, 323 
real-time trading strategies, 297 
recommendation maker, 301 
simulated trader, 297, 303 

bookkeeper, 303 
opportunity catcher, 303 

stop-loss deal, 301 
stop-loss detector, 302 
stop-loss price, 302 
stop-profit algorithm, 299 
stop-profit control, 302 
symmetry properties, 315 
testing procedures, 317 
trading hours, see trading hours 
transaction costs, see transaction 

transaction 
clock, 176 
costs, 170, 295, 325, 331, 333 
price, 1, 15 
volume, 46, 17 6 

trust capital, see filter 

u 
uncertainty, 154 
undershooting, 28 

V 

Value-at-Risk (VaR), 6, 250 
variable 

activity, 176 
direction change indicator, 4 7 
price, see price 
realized covariance, see covariance 
realized skewness, see skewness 
return, see return 
spread, see spread 
tick frequency, see tick 
volatility, see volatility 

vehicle currency, 19, 172 
volatility 

annualized, 41 
coarse volatility, 211 
conditional heteroskedasticity, 198 
daily volatility, 158 
deterministic volatility, 170 
expected volatility, 96 
fine volatility, 211 
historical, 41 
implted,43 
model,43 
patterns, 17 6 
realized volatility, 3 7, 41, 197, 248 

bias, 154,159,198 
bias correction, 202 

383 

volatility clustering, 122, 161,198,228 
volatility ratio, 47, 192 

w 
wavelet, 193 

multisca!ing approach, 193 
signal-to-noise ratio, 193 
wavelet transform, 159 
wavelet variance, 160 

weekend effect, 172 
White's variance-covariance matrix estimation 

224 , 

y 

yield curve, 25 

z 
zero-sum game, 353 
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U.S. Patent 7,146,336 

Claim Language Gain Systems 

Claim 1  

1. A system for trading currencies over a 
computer network, comprising: 

Defendants’ systems practice this claim.  The infringing “systems” include the web-based 
platform and back end servers, desktop clients, and mobile apps.  See Forex.com: 
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(a) a server front-end in communication 
with said computer network; 

See preamble and other screenshots.  See also: 
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(b) a database; See: 
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(c) a transaction server in 
communication with said server front-
end and with said database; 

See preamble and other screenshots.  See also: 
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(d) a rate server in communication with 
said server front-end; and 

See preamble and other screenshots.  See also: 
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(e) a pricing engine in communication 
with said rate server; and further 
comprising an interest rate manager in 
communication with said transaction 
server and said database, wherein said 
interest rate manager is operative to 
calculate, pay out, and collect interest on 
a tick-by-tick basis. 

See preamble and other screenshots.  
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Claim 2  

2. A system for trading currencies over a 
computer network, comprising: 

See preamble to Claim 1. 

(a) a server front-end in communication 
with said computer network; 

See Claim 1(a). 

(b) a database; See Claim 1(b). 

(c) a transaction server in 
communication with said server front-
end and with said database; 

See Claim 1(c). 

(d) a rate server in communication with 
said server front-end; and 

See Claim 1(d). 

 (e) a pricing engine in communication 
with said rate server; and further 
comprising a trade manager in 
communication with said transaction 
server and said database, wherein said 
trade manager comprises a stop-loss 
daemon that (a) continuously checks 

See Claim 1(e).  See also: 
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whether stop-loss orders should be 
executed, and (b) if a stop-loss order 
should be executed, executes it through 
said transaction server. 

 

Claim 3  

3. A system for trading currencies over a 
computer network, comprising: 

See preamble to Claim 1. 

(a) a server front-end in communication 
with said computer network; 

See Claim 1(a). 

(b) a database; See Claim 1(b). 

(c) a transaction server in 
communication with said server front-
end and with said database 

See Claim 1(c). 

(d) a rate server in communication with 
said server front-end; and 

See Claim 1(d). 

(e) a pricing engine in communication 
with said rate server; and further 
comprising a trade manager in 
communication with said transaction 
server and said database, wherein said 
trade manager comprises a take-profit 

See Claim 1(e).  See also: 

Case 3:20-cv-05784-BRM-DEA   Document 1-4   Filed 05/11/20   Page 9 of 23 PageID: 491

0491



Exhibit D 

  

Oanda Corp. v. GAIN Capital Holdings, Inc.; 
GAIN Capital Group, LLC. PAGE 

10 

daemon that (a) continuously checks 
whether take-profit orders should be 
executed, and (b) if a take-profit order 
should be executed, executes it through 
said transaction server. 

 

Claim 4  

4. A system for trading currencies over a 
computer network, comprising: 

See preamble to Claim 1. 

(a) a server front-end in communication 
with said computer network; 

See Claim 1(a). 

(b) a database; See Claim 1(b). 

(c) a transaction server in 
communication with said server front-
end and with said database; 

See Claim 1(c). 

(d) a rate server in communication with 
said server front-end; and 

See Claim 1(d). 

(e) a pricing engine in communication 
with said rate server; and further 
comprising a trade manager in 
communication with said transaction 
server and said database, wherein said 
trade manager comprises a limit-order 
daemon that (a) continuously checks 

See Claim 1(e).  See also: 
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whether limit orders should be executed, 
and (b) if a limit order should be 
executed, executes it through said 
transaction server. 

 

 

 

Claim 5  

5. A system for trading currencies over a 
computer network, comprising: 

See preamble to Claim 1. 

(a) a server front-end in communication 
with said computer network; 

See Claim 1(a). 
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(b) a database; See Claim 1(b). 

(c) a transaction server in 
communication with said server front-
end and with said database; 

See Claim 1(c). 

(d) a rate server in communication with 
said server front-end; and 

See Claim 1(d). 

(e) a pricing engine in communication 
with said rate server, wherein said 
pricing engine is operable to compute 
currency exchange rates based on: (a) 
data obtained from external rate 
sources; and (b) market directional 
movement and volatility. 

See Claim 1(e).  See also: 
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Claim 6  

6. A system as in claim 5, wherein said 
pricing engine is further operable to 
compute currency exchange rates based 
on positions held by said system. 

See Claim 5.  See also: 
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Claim 7  

7. A system for trading currencies over a 
computer network, comprising 

See preamble to Claim 1. 
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(a) a server front-end in communication 
with said computer network; 

See Claim 1(a). 

(b) a database; See Claim 1(b). 

(c) a transaction server in 
communication with said server front-
end and with said database; 

See Claim 1(c). 

(d) a rate server in communication with 
said server front-end; and 

See Claim 1(d). 

(e) a pricing engine in communication 
with said rate server; further comprising 
a hedging engine in communication with 
said transaction server, wherein said 
hedging engine is operable to perform at 
least two of the following calculations: 
(a) calculate a total amount of home 
currency appearing in all open positions; 
(b) calculate an out-of-equilibrium 
exposure; (c) calculate a new potential 
net exposure; (d) calculate an 
equilibrium position; (e) calculate 
boundaries of possible exposures; (f) 
calculate values for a pair of quoting 
functions; and (g) calculate an average 
price and an average spread. 

See Claim 5.  See also: 
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Claim 8  

8. A system as in claim 6, wherein said 
positions are managed based on one or 
more trading models. 

See Claim 6.  See also: 
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Claim 9  

9. A system as in claim 8, wherein at 
least one of said one or more trading 
models comprises: (a) a price collector 
component; (b) a price filter component; 
(c) a price database component; (d) a 
gearing calculator component; (e) a deal 

See Claim 8.  See also: 
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acceptor component; and (f) a book-
keeper component. 

 
 

https://www.forex.com/en-us/education/education-themes/technical-analysis/abcd-pattern/ 

(accessed May 8, 2020).  

 

Claim 10  
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10. A system as in claim 8, wherein at 
least one of said one or more trading 
models comprises: (a) a price collector 
component; (b) a price filter component; 
(c) a price database component; (d) a 
gearing calculator component; (e) a deal 
acceptor component; (f) an opportunity 
catcher component; and (g) a book-
keeper component 

See Claim 9.  See also: 
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Claim 11  

11. A system for trading currencies over 
a computer network, comprising: 

See Claim 1. 

(a) a server front-end in communication 
with said computer network; 

See Claim 1(a). 

(b) a database; See Claim 1(b). 

(c) a transaction server in 
communication with said server front-
end and with said database; 

See Claim 1(c). 

(d) a rate server in communication with 
said server front-end; and 

See Claim 1(d). 

(e) a pricing engine in communication 
with said rate server; further comprising 
a margin control manager in 
communication with said transaction 
server and said database, wherein said 
margin control manager is operable to 
monitor on a tick-by-tick basis margin 
requirements of accounts and on said 
tick-by-tick basis liquidate holdings as 
needed to maintain specified margins. 

See Claim 1(e). See also: 
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U.S. Patent 8,392,311 

Claim Language Gain Systems 

Claim 1  

1. A method of trading currencies over a 
computer network connecting a trading 
system server and at least one trading 
client system, comprising the steps of: 

Defendants’ currency trading systems practice this claim.  See Forex.com: 
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(i) at the trading system server, 
determining and dynamically maintaining 
a plurality of current exchange rates, 
each current exchange rate relating to a 
pair of currencies and including a first 
price to buy a first currency of the pair 
with respect to a second currency of the 
pair and a second price to sell the first 
currency of the pair with respect to the 
second currency of the pair; 

See: 
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(ii) transmitting data from the trading 
system server to a trading client system, 
the transmitted data representing at 
least one current exchange rate at the 
time of the transmission; 

See:  
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(iii) at the trading client system, 
displaying the first and second prices for 
each received current exchange rate to a 
user; 

See Claim 1(ii). 

(iv) at the trading client system, 
accepting input from the user identifying 
a pair of currencies the user desires to 
trade, an amount of at least one 
currency of the pair desired to be traded 
and a requested trade price at which it is 
desired to effect the trade; 

See:  
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(v) transmitting the accepted input from 
the trading client system to the trading 
system server; 

See:  
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(vi) at the trading system server, 
comparing the requested trade price to 
the respective first price or second price 
of the corresponding current exchange 
rate at that time and, if the respective 
first price or second price of the 
corresponding current exchange rate at 
that time is equal to or better than the 
requested trade price, effecting the 
trade at the corresponding respective 
current exchange rate first price or 
second price and if the corresponding 
current exchange rate is worse than the 
requested trade price, refusing the trade; 
and 
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(vii) transmitting from the trading system 
server to the trading client system an 
indication of whether the trade was 
refused or transacted and, if transacted, 
an indication of the price the trade was 
transacted at. 

See above claim elements. 
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Claim 2  

2. The method of claim 1 wherein the 
requested trade price is derived from a 
respective one of the first price or 
second price of the received current 
exchange rate and a user input limit 
value defining a maximum acceptable 
difference between the respective one of 
the first price or second price of the 
received current exchange rate received 
at the trading client system and the 
respective one of the first price or 
second price of the corresponding 
current exchange rate determined at the 
trading client system at which the trade 
can be effected. 

See Claim 1.  See also: 
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See also: https://www.forex.com/en-us/education/education-themes/forex-platform-
tutorials/us-advanced-trading-platform-customization/ (accessed May 8, 2020) 
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Claim 3  

3. The method of claim 2 wherein the 
user can input a first limit value to define 
a maximum acceptable difference 
between the first price of the current 
exchange rate received at the trading 
client system and the first price of the 
corresponding current exchange rate 
determined at the trading client system 
and can input a second limit value to 
define a maximum acceptable difference 
between the second price of the current 
exchange rate received at the trading 
system and the second price of the 
corresponding current exchange rate 
determined at the trading client system 
and the requested trade price is derived 
from the first price or second price of the 
current exchange rate received at the 
trading client system and the 
corresponding one of the first limit value 
and second limit value. 

See Claim 2.   

 

Claim 4  

4. The method of claim 2 wherein step 
(iv) comprises the steps of: 

See Claim 2. 

(a) the user selecting one of the first 
price and second price of the current 

See Claim 2. 
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exchange rate displayed at the trading 
client system; 

(b) displaying to the user a set of input 
fields to define a desired trade, the input 
fields including an identification of the 
pair of currencies the user desires to 
trade, the amount of the currencies 
desired to be traded, the selected first 
price or second price of the current 
exchange rate received at the trading 
client system and a limit value, and 
where the input fields to identify the pair 
of currencies and the first price or 
second price are populated with 
appropriate values determined from the 
user's selection of the one of the first 
price or second price; 

See:  
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(c) receiving from the user input to the 
input field defining the desired amount 
of currency to be traded; and 

See above.  See also: 
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(d) determining the requested trade 
price from the selected one of the first 
price and second price and the limit 
value. 

See above. See also: 

 

Claim 5  

5. The method of claim 4 wherein in step 
(b) the displayed set of input fields 
includes: a first limit value to define a 
maximum acceptable difference 
between the first price of the current 
exchange rate received at the trading 
client system and the first price of the 

See above.  See also: 
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corresponding current exchange rate 
determined at the trading client system; 
and a second limit value to define a 
maximum acceptable difference 
between the second price of the current 
exchange rate received at the trading 
system and the second price of the 
corresponding current exchange rate 
determined at the trading client system 
and in step (d) the requested trade price 
is derived from the selected first price or 
second price and the corresponding one 
of the first limit value and second limit 
value. 
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Claim 6  

6. The method of claim 2 wherein, when 
the limit value is zero, the requested 
trade price is the current corresponding 
first price or second price of the current 
exchange rate at the trading server. 

 

See generally, Claim 1. 

 

Claim 7  

7. A method of trading currencies over a 
computer network connecting a trading 
system server and at least one trading 
client system, comprising the steps of: 

See Claim 1. 

(i) at the trading system server, 
determining and dynamically maintaining 
a plurality of current exchange rates, 
each current exchange rate relating to a 

See Claim 1(i). 
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pair of currencies and including a first 
price to buy a first currency of the pair 
with respect to a second currency of the 
pair and a second price to sell the first 
currency of the pair with respect to the 
second currency of the pair; 

(ii) transmitting data from the trading 
system server to a trading client system, 
the transmitted data representing at 
least one current exchange rate at the 
time of the transmission; 

See Claim 1(ii). 

(iii) receiving at the trading system server 
input from a user of the trading client 
system identifying a pair of currencies 
the user desires to trade, an amount of 
at least one currency of the pair desired 
to be traded and a requested trade price 
at which it is desired to effect the trade; 

See Claim 1(iii-iv).  See also: 
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(iv) at the trading system server, 
comparing the requested trade price to 
the respective first price or second price 
of the corresponding current exchange 
rate at that time and, if the respective 
first price or second price of the 
corresponding current exchange rate at 
that time is equal to or better than the 
requested trade price, effecting the 
trade at the corresponding respective 
current exchange rate first price or 
second price and if the corresponding 
current exchange rate is worse than the 
requested trade price, refusing the trade; 
and 

See above. See also Claim 1(iv-v). 

(v) transmitting from the trading system 
server to the trading client system an 
indication of whether the trade was 
refused or transacted and, if transacted, 
an indication of the price the trade was 
transacted at. 

See above. See also Claim 1(v-vii). 
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