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PREFACE 

This book presents a unified view of high-frequency time series methods 
with a particular emphasis on foreign exchange markets as well as interest 
rate spot and futures markets. The scope of this book is also applicable 

to other markets, such as equity and commodity markets. 
As the archetype of financial markets, the foreign exchange market is the 

largest financial market worldwide. It involves dealers in different geographic loca-
tions, time zones, and working hours who have different time horizons, home cur-
rencies, information access, transaction costs, and other institutional constraints. 
The time horizons vary from intraday dealers, who close their positions every 
evening, to long-term investors and central banks. In this highly complex and 
heterogeneous market structure, the market participants are faced with different 
constraints and use different strategies to reach their financial goals, such as by 
maximizing their profits or maximizing their utility function after adjusting for 
market risk. 

This book provides a framework to the analysis, modeling, and inference of 
high-frequency financial time series. It begins with the elementary foundations 
and definitions needed for studying the fundamental properties of high-frequency 
financial time series. It extends into the adaptive data-cleaning issues, treatment 
of seasonal volatility, and modeling of intraday volatility. Fractal properties of the 
high-frequency financial time series are found and explored, and an intrinsic time 
is used to construct forecasting models. The book provides a detailed study of how 
the adopted framework can be effectively utilized to build econometric models of 

xxi 
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XXii PREFACE 

the price-formation process. Going beyond the price-formation process, the book 
presents the techniques to construct real-time trading models for financial assets. 

It is designed for those who might be starting research in the area as well as for 
those who are interested in appreciating the statistical and econometric theory that 
underlies high-frequency financial time series modeling. The targeted audience 
includes finance professionals, including risk managers and research profession-
als in the public and private sectors; those taking graduate courses in finance, 
economics, econometrics, statistics, and time series analysis; and advanced MBA 
students. Because the high-frequency finance field is relatively new and the lit-
erature is scattered in a wide range of academic and nonacademic platforms, this 
book aims to provide a uniform treatment of the field and an easily accessible 
platform to high-frequency financial time series analysis — an exciting new field 
of research. 

With the development of this field, a huge new area of research has been 
initiated, where work has hardly started. This work could not be more fascinating, 
and a number of discoveries are waiting to be made. We expect research to increase 
in this field, as people start to understand how these insights can dramatically 
improve risk-adjusted performances in asset management, market making, and 
treasury functions and be the foundation for other applications, such as an early 
warning system of financial markets. 

Michel M. Dacorogna 

Ramazan Gengay 

Ulrich A. Muller 

Richard B. Olsen 

Olivier V Pictet 
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1 
INTRODUCTION 

1.1 MARKETS: THE SOURCE OF HIGH-FREQUENCY DATA 

A famous climber, when asked why he was willing to put his life in danger to climb 
dangerous summits, answered: "Because they are there." We would be tempted 
to give the same answer when people ask us why we take so much pain in dealing 
with high-frequency data. The reason is simple: financial markets are the source 
of high-frequency data. The original form of market prices is tick-by-tick data: 
each "tick" is one logical unit of information, like a quote or a transaction price 
(see Section 2.1). By nature these data are irregularly spaced in time. Liquid 

markets generate hundreds or thousands of ticks per business day. Data vendors 
like Reuters transmit more than 275,000 prices per day for foreign exchange spot 
rates alone. 

Thus high-frequency data should be the primary object of research for those 
who are interested in understanding financial markets. Especially so, because 
practitioners determine their trading decisions by observing high-frequency or 
tick-by-tick data. Yet most of the studies published in the financial literature 
deal with low-frequency, regularly spaced data. There are two main reasons for 
this. First, it is still rather costly and time-consuming to collect, collate, store, 
retrieve, and manipulate high-frequency data. That is why most of the available 

1 
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financial data are at daily or lower frequency. The second reason is somehow 
more subtle but still quite important: most of the statistical apparatus has been 
developed and thought for homogeneous (i.e., equally spaced in time) time series. 
There is little work done to adapt the methods to data that arrive at random time 
intervals. Unfortunately in finance, regularly spaced data are not original data but 
artifacts derived from the original market prices. Nowadays with the development 
of computer technology, data availability is becoming less and less of a problem. 
For instance, most of the exchanges and especially those that trade electronically 
would gladly provide tick-by-tick data to interested parties. Data vendors have 
themselves improved their data structures and provide their users with tools to 
collect data for over-the-counter (OTC) markets. Slowly, high-frequency data are 
becoming a fantastic experimental bench for understanding market microstructure 
and more generally for analyzing financial markets. 

That leaves the researcher with the problems of dealing with such vast amounts 
of data using the right mathematical tools and models. This is precisely the subject 
of this book. 

1.2 METHODOLOGY OF HIGH-FREQUENCY RESEARCH 

From the beginning, our approach has been to apply the experimental method 
which has been highly successful in "hard" sciences.1 It consists of three steps, 
the fist one being to explore the data in order to discover the fundamental sta-
tistical properties they exhibit with a minimum set of assumptions. This is often 
called finding the "stylized facts" in the econometric or finance literature. This first 
step was in fact not so important in the economic literature, because the sparse-
ness of data made it either relatively simple or uninteresting due to the statistical 
uncertainty. 

The second step is to use all of these empirical facts to formulate adequate 
models. By adequate models, we do not mean models that come from hand-waving 
arguments about the markets, but rather models that are directly inspired by the 
empirical regularities encountered in the data. It is the point where our under-
standing of market behavior and reality of the data properties should meet. There 
have been many debates between the time series approach and microstructure 
approach. The first one relying more on modeling the statistical properties of the 
data and the latter concentrating on modeling market behavior. Both approaches 
have their value and high-frequency data might be able to reconcile them by en-
abling us to actually test the microstructure models, Hasbrouck (1998); Rydberg 
and Shephard (1998). 

The third step, of course, is to verify whether these models satisfactorily 
reproduce the stylized facts found in the data. The ultimate goal is not only a 
good descriptive model but the ability to produce reasonable predictions of future 
movements or risks and to integrate these tools into practical applications, such 

1 We refer here to experimental sciences such as physics, chemistry, or biology. 
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1.3 DATA FREQUENCY AND MARKET INFORMATION 3 

as risk management tools or option pricing algorithms. For decades, practitioners 
have been developing so-called technical analysis, which is a kind of empirical 
time series analysis based on rudimentary analytical tools. Although some new 
academic research has analyzed these trading rules,2 they remain controversial and 
are looked down upon. We hope that this book will put on a new footing many 
ideas that have been developed in technical analysis. 

We have organized this book along the same lines, we first present the empiri-
cal regularities, then we construct models, and lastly we test their power to predict 
market outcomes. 

The novelty of high-frequency data demands to take such an approach. This 
was not usual in econometrics because so little data were available until the late 
1980s. It was quite natural that the researcher's emphasis was to make sure that 
the methodology was correct in order to obtain the most information out of the 
sparse data that were available. Only recently the research community in this field 
has recognized the importance of the first step: finding empirical facts. This step 
can already be good research in its own right. A good example is the recent paper 
by Andersen et al. (2001), where the authors explore in detail the distributional 
properties of volatility computed from high-frequency data. 

Thanks to the development of electronic trading and the existence of various 
data providers also on the Internet, it is now possible to follow the price formation 
in real-time. Ideally, the analysis and modeling of the price-generation process 
should, in real-time, produce results that add value to the raw data. There is strong 
demand from the market to have, next to the current price, a good assessment of 
the current risk of the financial asset as well as a reasonable prediction of its future 
movement. This means that the models should be made amenable to real-time 
computations and updates. Techniques for doing so will be presented in the re-
mainder of the book. It is possible to develop methods that allow for the easy 
computation of models and can thus provide almost instantaneous reaction to mar-
ket events. Although quite popular among practitioners who want to analyze the 
past developments of prices, those techniques have had little echo, until now, in the 
academic world. Very few research papers have studied the statistical foundations 
and properties of those "technical indicators." In this book (Chapter 3) we provide 
a unified platform for these methods. 

1.3 DATA FREQUENCY AND MARKET INFORMATION 

Relating the type of data available for researchers, the effects and the models that 
are discovered and developed with these different samples, provides insight into 
the development ofresearch in finance. Figure 1.1 illustrates the sample size versus 
the measurement frequency of some well-known data sets used in finance. The 

2 Among others, here is a list of interesting papers on the issue of technical trading models. Neftci 
(1991), Brock et al. (1992), Taylor and Allen (1992), Levich and Thomas (1993b), Gengay and Stengos 
(1998), Gencay (1998a,b), Frances and van Griensven (1998), Allen and Karjalainen (1999), Gengay 
(1999), LeBaron (1999a), Sullivan et al. (1999), and Gengay et al. (2001c, 2002). 
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FIGURE 1.1 Available data samples with their typical sizes and frequency. The sample 
size and the frequency are plotted on a logarithmic scale. The first point corresponds to 
the O&A database, the last one to the 700 years of yearly data analyzed by Froot et al. 
(1995), the second to its left to the cotton price data of Mandelbrot (1963), and the daily 
data are computed from the sample used in Ding et al. (1993) to show long memory in the 
S&P 500. The text refers to the effects discovered and analyzed in the different segments 
of these samples. 

double logarithmic scale makes the points lie almost on a straight line. The data 
sample with the lowest frequency is the one used by Froot et al. (1995) of 700 
years of annual commodity price data from England and Holland. Beyond 700 
years, one is unlikely to find reliable economic or financial data.3 The data with the 
highest frequency is the Olsen & Associates (O&A) dataset of more than 14 years 
of high-frequency foreign exchange data. The tick-by-tick data are the highest 
frequency available. Between those two extremes, one finds the daily series of 
the Standard & Poors 500 from 1928 to 1991 used by Ding et al. (1993) or the 
monthly cotton prices used by Mandelbrot (1963) from 1880 to 1940. On this 
graph, we superimpose those effects that have been identified at these different 
time scales. One of the questions with data collected over very long periods is 
whether they really refer to the same phenomenon. Stock indices, for example, 
change their composition through time due to mergers or the demise of companies. 
When analyzing the price history of stock indices, the impact of these changes in 

3 Data can be found in natural sciences such as weather data up to a few hundred thousand years. 
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FIGURE 1.2 Available data samples with their typical sizes and frequency. The sample 
size and the frequency are plotted on a logarithmic scale. The text refers to the models 
developed and tested in the different segments of these samples, 

composition is not obvious. We call this phenomenon the "breakdown of the 
permanence hypothesis." It is difficult to assess the quality of any inference as the 
underlying process is not stationary over decades or centuries. At the other end 
of the frequency spectrum (i.e. with high-frequency data), we are confronted with 
the details of the price generation process, where other effects, such as how the 
data are transmitted and recorded in the data-base (see Chapter 4) have an impact. 
With data at frequencies of the order of one hour, a new problem arises, due to 
the fact that the earth turns and the impact of time zones, where the seasonality of 
volatility becomes very important (as we shall see in Chapter 5) and overshadows 
all other effects. 

Figure 1.2 relates the data to the models that are typically developed and 
tested with them. The high-frequency data have opened great possibilities to test 
market microstructure models, while traditionally low-frequency data are used 
for testing macroeconomic models. In between lies the whole area of financial 
and time series modeling, which is typically studied with daily or monthly data as, 
for instance, option pricing or GARCH models. It is clear from this figure that we 
have a continuum of both samples and models. The antagonism that is sometimes 
encountered between time series and market microstructure approaches should 
slowly vanish with more and more studies combining both with high-frequency 
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6 CHAPTER 1 INTRODUCTION 

data. Yet the challenge is still open to build models that are simple to implement 
and describe to a reasonable degree the empirical behavior of the data at all time 
scales. 

1.4 NEW LEVELS OF SIGNIFICANCE 

High-frequency data means a very large amount of data. The number of observa-
tions in one single day of a liquid market is equivalent to the number of daily data 
within 30 years. Statistically, the higher the number of independently measured 
observations, the higher is the degrees of freedom, which implies more precise 
estimators. The large amount of data allows us to distinguish between differ-
ent models (model validation) with a higher statistical precision. New statistical 
methods become possible, for example, tail statistics to examine the probability of 
extreme events. Almost by definition, extreme events are rare and doing statistics 
on such extreme events is a challenge. With high-frequency data one can have 
samples with as many as 400,000 independent observations4 to study the 0.25% 
percentile and still have 1,000 observations with which to work. We shall see how 
important this is when we present the estimation of tail indices for return distri-
butions. Similarly, when different models have to be ranked, the availability of a 
few hundred thousand observations allows us to find beyond a doubt which model 
provides the best description of the data-generating process (Muller et al., 1997a). 

Figure 1.3 demonstrates the importance of high-frequency data in model se-
lection and inference within the context of Value-at-Risk (VaR) calculations. We 
report three different calculations all of which use the J. P. Morgan (1996) volatility 
model, which is in fact a 1-day volatility forecast as further discussed in Section 9.2. 
The three calculations differ in terms of the sampling and the data frequency. The 
Japanese volatility calculations are based on prices observed daily at 7 a.m. GMT, 
which corresponds to the afternoon Japanese time. The U.K. volatility calculations 
are based on prices measured daily at 5 p.m. GMT, which is the afternoon in the 
U. K. The high-frequency volatility calculations are based on the high-frequency 
tick-by-tick data recorded continuously on a 24-hour cycle. The top panel in Fig-
ure 1.3 reports the annualized volatility calculations and the bottom panel shows 
the underlying prices for January and February 1999. The top panel demonstrates 
that volatility can be extremely different depending on the time of the day at which 
it is measured with daily data. If observations are picked randomly once a day, 
the underlying volatility can be as small as 15% or as large as 22% for a given 
day and for the same currency. In mid-January 1999, the U.S. Dollar - Japanese 
Yen (USD-JPY) investors in the U.K. are assumed to be facing the risk of losing 
56,676,400 USD in a portfolio of a hundred million USD with a 1% probability. 
In Japan, this risk would be reduced to 38,643,000 USD for the same day and for 
the same currency, a difference of approximately 18,000,000 USD between the 
two geographical locations! The utilization of high frequency leads to more robust 

4 This approximately corresponds to 10 years of returns measured over 10 minutes. 
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FIGURE 1.3 Top panel: Annualized USD-JPY volatility computed with daily prices 
observed at 7 a.m. GMT (afternoon Japan, circles), 5 p.m. GMT (afternoon U.K., diamonds) 
and with high-frequency data (solid line). The data period is from January 1999 to February 
1999. Bottom panel: The USD-JPY high-frequency price series from January 1999 to 
February 1999. 

annualized volatility estimations by minimizing the influence of the random noise 
in the market. 

Another aspect of this is the choice of model. With few data, one tends to 
favor the simpler models because they contain few parameters and because tests 
like the likelihood ratio test would strongly penalize the increase of parameters. 
Of course, simplicity is a desirable feature of theoretical models, but one should 
not seek simplicity at the cost of missing important features of the data-generating 
process. Sometimes, it is useful to explore more complicated (nonlinear) mod-
els, which may contain more parameters. This increasing complexity is strongly 
penalized when explored with low-frequency data because of the loss of degrees 
of freedom. In the case of high-frequency data, however, the penalty is relatively 
small because the abundance of the independently measured observations approx-
imates an asymptotic environment. 
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8 CHAPTER I INTRODUCTION 

Researchers who want to use many observations with low-frequency data are 
using, for instance, daily observations of the Dow Jones Industrials from January 
1897 like Ding et al. (1993) or LeBaron (1999a). In such a case, one is enti-
tled to ask if the authors are actually analyzing the same market over the years. 
The huge technological changes that we experienced during this century have cer-
tainly affected the New York Stock Exchange and one is never sure, how this and 
any reconfiguration of the index has affected the results. To the contrary, high-
frequency studies can be done for limited sampling periods with reasonably large 
samples. The market properties within such periods are nearly unchanged. The 
results are less affected by structural breaks or shifts in the overall economy than 
low-frequency studies with samples of many years. This is clearly an advantage 
when determining microstructure effects but also when examining the stability of 
some properties over time. 

1.5 INTERRELATING DIFFERENT TIME SCALES 

High-frequency data open the way for studying financial markets at very different 
time scales, from minutes to years. This represents an aggregation factor of four 
to five orders of magnitude.5 Some empirical properties are similar at different 
scales, leading to fractal behaviors. Stylized facts observed for daily or weekly 
data gain additional weight when also observed with high significance for intraday 
data. An example of this is the long memory effect in 20-minute absolute returns 
studied by Dacorogna et al. (1993). At the time, similar hyperbolic decay of the 
autocorrelation function was observed on daily returns in Ding et al. (1993). It is 
very difficult to distinguish rigorously in the data between long memory effects 
and regime shifts. Many mathematicians are working precisely on this problem 
such as Mansfield et al. (1999) and Mikosch and Starica (1999). Yet the fact that 
hyperbolic decay is empirically found at time scales that differ by two orders of 
magnitude in aggregation is definitely a sign that the process must include some 
long range dependence or that there are regime shifts at all time scales, which is 
equivalent. 

Scaling properties and scaling laws have been new objects of study since the 
early work of Mandelbrot (1963) on cotton prices. In 1990, the research group of 
O&A published empirical studies of scaling properties extending from a few min-
utes to a few years (Muller et al., 1990). These properties have shown remarkable 
stability over time (Guillaume et al., 1997) and were found in other financial in-
struments like interest rates (Piccinato et al., 1997). Mantegna and Stanley (1995) 
also found scaling behavior in the stock indices examined at high frequency. In a 
set of recent papers, Mandelbrot et al. (1997), Fisher et al. (1997) and Calvet et al. 
(1997) have derived a multifractal model based on the empirical scaling laws of 
different moments of the return distributions. Works on the scaling law of return 

5 By order of magnitude we mean the number of times the time horizon must be multiplied by 10 to 
achieve the lower frequency. For instance, a weekly frequency is aggregated three orders of magnitude 
from 10 minutes data (one week is 1008 times 10 minutes). 
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1.5 INTERRELATING DIFFERENT TIME SCALES 9 

volatility have been flourishing in the past few years often coming from physicists 
who started venturing in the field of finance calling themselves "econophysicists." 
It is a sign that the field is moving toward a better understanding of aggregation 
properties. Unfortunately, the mathematical theory behind these empirical studies 
is not yet completely mature and there is still controversy regarding the signifi-
cance of the scaling properties (LeBaron, 1999a; Bouchaud et al., 2000). Thanks 
to high-frequency data, this kind of debate can now take place. The challenge is to 
develop models that simultaneously characterize the short-term and the long-term 
behaviors of a time series. 

FU 
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2 
MARKETS AND DATA 

2.1 GENERAL REMARKS ON MARKETS AND DATA TYPES 

In the discussion of markets and data, we take the point of view of researchers 
studying high-frequency data rather than the view of traders or other practitioners. 
Instead of giving complete descriptions of markets (which are changing over time), 
we focus on those main markets that have produced consistent time series data over 
many years. 

High-frequency data are direct information from markets. One logical unit of 
information is called a tick. This term originated from the language of practitioners 
and originally meant a number on a ticker tape, in a time before computers became 
an omnipresent tool. The term "tick" is more neutral and general than the particular 
terms "price," "interest rate," "quote," and so on. Whatever the quoted quantity, 
there is always a date and a time attached to every tick, a "time stamp." The 
sequence of time stamps is usually irregularly spaced. A large part of Chapter 3 
deals with the consequences of this fact. 

The quoted quantities are often prices, but other information such as trans-
action volume is also available from some markets. Detailed information on par-
ticipants (e.g., the cournerparty of transactions) is, however, rare because market 
participants often prefer anonymity. 

10 
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2.1 GENERAL REMARKS ON MARKETS AND DATA TYPES 11 

Some markets are centralized in the form of exchanges or bourses. Other 
markets are decentralized interbank (over-the-counter) markets, where individual 
participants directly transact with no intermediary. Data from over-the-counter 
(OTC) markets are collected and provided in real time by data providers such as 
Reuters, Bloomberg, or Bridge. Data from centralized markets are available from 
the same sources and sometimes directly from the exchanges. The recent shift 
from floor trading to electronic trading helped to make this data more reliable and 
more easily available. Some data are released to a general audience only after 
a time delay when its direct value for traders has diminished. Exchanges such 
as London International Financial Futures Exchange (LIFFE) and the New York 
Stock Exchange (NYSE) also sell archived historical data, such as data from the 
TAQ database of the NYSE. There are also vendors of historical data such as O&A 
specializing in high-frequency data initially collected in real time from different 
sources. 

The foreign exchange (FX) market has the highest market volume of all finan-
cial markets. A large part of this volume is traded over-the-counter between banks, 
but there is also electronic trading through centralized systems. The coexistence 
of interbank and centralized trading is found also in other markets. This implies 
that volume figures—if available—often refer to a market segment rather than all 
transactions of the whole market. Aside from FX, we discuss interest rate, bond, 
equity, and commodity markets; the latter two are scarcely treated in this book. All 
of these assets are directly traded in spot markets (see Section 2.1.1) and indirectly 
in derivative markets: futures and option markets as discussed in Sections 2.1.2 
and 2.1.3. 

In this book, there is no attempt to list all the changing types and trading 
mechanisms of markets and all the varying formats and availability conditions of 
data from different data suppliers.' Instead, we report stylized properties of time 
series data for markets with sampling periods of several years. 

2.1.1 Spot Markets 

Spot markets are direct markets for primary assets, such as foreign exchange or 
equity. The assets are traded immediately at the time of the transaction.2 Spot 
trading is the most original form of trading, but it has some disadvantages. The 
timing is not flexible, traders have to deal with the physical delivery of the traded 
assets (such as commodities) and the interest rate spot market is affected by the 
counterparty default risk. For these reasons, derivative markets have become more 
important than spot markets in some cases. The FX market is a major example of 
a market where spot trading is still strong. 

A review is provided by Gwilym and Sutcliffe (1999). 
2 Transactions are actually booked at the value date, which is usually two days after the day of 

the spot transaction or, if that is a holiday, the first business day afterward. This fact hardly has an 
influence on prices, it just affects the timing of bookkeeping. Therefore, value dates can be ignored in 
most studies. 
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12 CHAPTER 2 MARKETS AND DATA 

Some important spot markets are over-the-counter markets between individual 
institutions (banks), whereas many derivatives are traded at exchanges. However, 
this is not a general rule. 

2.1.2 Futures Markets 

In some cases such as most interest rates and commodities, futures markets have a 
higher liquidity and volume than the underlying spot markets and produce better 
high-frequency data. The following description of futures markets is quite general, 
and special features of particular futures markets are discussed in other sections. 

Futures contracts are derivatives of an underlying asset, which can be defined 
as an agreement between two parties to buy or sell an asset at a certain time in the 
future for a certain price, Hull (1993). At this expiry time, the underlying asset has 
to be delivered according to settlement rules, after which the contract no longer 
exists. The expiry dates are regularly scheduled, often in a quarterly sequence. The 
contract with the nearest expiry is called the first position, the following contract 
the second position, and so on. 

Most futures are traded at exchanges. Trading is typically geographically 
localized. There is no 24-hour trading, there are rigidly defined opening hours, 
although the trend is to effectively lengthen the active hours (e.g. with after-hours 
sessions). Given that futures contracts are exchange traded and each transaction is 
recorded centrally, futures markets offer a high price transparency. The historical 
data always include tick-by-tick transaction prices and, depending on the data 
source, bid and ask quotes and sometimes information on volumes and the flow of 
orders from the clients of the exchange. 

The structure of many futures markets has changed due to the rapid growth 
of market volumes, some mergers of exchanges, and the shift from floor trading 
(open outcry) to electronic trading. For some researchers, this shift has been an 
object of study in itself. 

All clients buying or selling futures contracts have to put some money in 
a collateral account. This account covers the counterparty default risk of the 
exchange. If the futures prices move to the disfavor of a client, the amount of 
money on the collateral account may no longer cover the risk, and the exchange 
will tell the client to increase it through a "call for margin." If the client fails to 
do this, the futures contract is terminated at its current market value. The flow of 
money to the collateral account (which earns some interest in its own right) makes 
the exact bookkeeping of returns (and risks) rather complicated, but this can be 
ignored in most studies. 

The time series of prices coming from a single futures contract is not suffi-
ciently long for certain statistical studies. Moreover, the behavior of a contract 
changes when approaching expiry and its price volatility systematically grows or 
shrinks according to the nature of the underlying asset. For these reasons, it is 
sometimes necessary to construct long samples joining several contracts together. 
Different empirical prescriptions are used by analysts and traders to join price 
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2.2 FOREIGN EXCHANGE MARKETS 13 

histories of several futures contracts with successive expiries. Such prescriptions 
are typically based on rollover schemes — that is, they attempt to replicate the 
behavior of a trader holding a contract and switching ("rolling over") to the next 
contract before the expiry of the current contract. Section 2.5.2 gives such an 
example. 

The opening hours of futures markets are sometimes modified, as those of 
other centralized markets. Long samples may extend over periods with different 
fixed opening hours. This fact leads to some difficulties in intraday studies, espe-
cially those related to daytime. Researchers should be aware of this and know the 
history of opening hours. 

ci

2.1.3 Option Markets 

Option prices are very volatile and depend on parameters such as the strike price, 
the base spot price, and the expiry date. There are many types of options. The 
options markets are often too volatile for studying consistent time series over long 
samples and are not the subject of this book—except for the implied volatility 
aspect. 

Unlike option prices, implied volatility figures are slowly changing over time. 
They are computed from option prices through the formulas introduced by Black 
and Scholes (1973) and some refined methods introduced later. The implied volatil-
ity figures provided by data vendors usually refer to at-the-money options (where 
the strike price is not far from the base spot price). For some markets, these data 
are available in high frequency with several quotes per day. Implied volatility 
can be interpreted as the market's forecast of the volatility of the underlying asset 
for the time period until expiry. Therefore, time series of implied volatility are 
interesting especially in comparison to historical or realized volatility computed 
from time series of underlying assets. 

2.2 FOREIGN EXCHANGE MARKETS 

The foreign exchange (FX) market is the largest financial market. Already in 
April 1992, its "traditional" part (FX spot and FX forward market, excluding the 
newer derivatives) had a daily net-net3 turnover of 832 billion U.S. Dollar (USD) 
(Bank for International Settlements, 1993) which was more than the total non-
gold reserves (USD 555.6 billion) of all industrial countries in 1992 (International 
Monetary Fund, 1993). Since that time, the FX net-net turnover had grown to 
USD 1190 billion in April 1995 and to USD 1500 billion in April 1998 (Bank for 
International Settlements, 1999). 

The FX spot market produces high-frequency data that played and still play a 
central role in high-frequency finance. Unlike other data, these data are available 
over long sampling periods in high frequency, 24 hours per working day. The 
market is highly liquid and symmetric as both exchanged assets are currencies. 

3 This figure is adjusted for both local and cross-border double-counting. 
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14 CHAPTER 2 MARKETS AND DATA 

Due to these favorable characteristics, new facts have often been found in FX spot 
data, and FX studies have served as a role model for the investigation of other 
high-frequency data with less favorable properties. 

Since the beginning of the 1990s, academic researchers have been gaining 
new insights into the behavior of the FX markets through analyzing intraday data. 
Daily data, which were much used in the 1980s represent only a small subset of 
the information available at intraday frequencies, as they are only the average of 
a few intraday prices quoted by some large banks at a particular daytime. The 
number of data points available for intraday is larger by a factor of 1000. 

On the basis of this information set, there is a rapidly growing body of lit-
erature in the study of the intraday FX markets, which opens new directions for 
understanding of financial markets and widening of concepts such as risk manage-
ment or market efficiency. The analysis of intraday data also leads to insights into 
the market microstructure where it is possible to study the behavior of intraday 
traders, whose operations account for more than 90% of the FX market volume. 

The stylized facts found for intraday FX rates shed some new light on different 
modeling approaches to the FX market.4 Research studies have shown that known 
and well-accepted empirical regularities of daily or weekly data do not always 
hold up in intraday analysis. Looking at intraday data, the homogeneity of market 
agents (which is a working hypothesis for studying daily, weekly, or low-frequency 
data) disappears. A new wealth of structure is uncovered that demonstrates the 
complexity of the FX market at the intraday frequency. This complexity can be 
explained by the interaction of market agents with heterogeneous objectives re-
sulting from different geographical locations, the various forms of institutional 
constraints, and risk profiles. This evidence will be presented in several chapters 
of this book. Indeed, the heterogeneous structure of intraday data may explain 
the fact that practitioners have effectively used methods of "technical analysis" 
over many years now. These intuitively designed methods try to take advantage 
of the interaction of different components of the markets, see Dunis and Feeny 
(1989); Neftci (1991); Surajaras and Sweeney (1992); Taylor and Allen (1992); 
Pictet et al. (1992); Levich and Thomas (1993b); Brock et al. (1992); Gengay and 
Stengos (1998) and Gencay (1998a,b, 1999); Gengay et al. (2001c, 2002). 

The FX spot market is presented in Section 2.2.1. Aside from the spot market, 
there is also the over-the-counter FX forward market treated in Section 2.3.2 and 
the markets for FX futures and FX options. The contracts of these markets refer 
to a time period in the future, therefore they are affected by interest rate levels. 

Exchange-traded FX futures follow the description of Section 2.1.2 and are not 
discussed here; their market volume is much lower than that of the FX spot market 
and the over-the-counter derivative markets, particularly the FX forward market. 

As mentioned in Section 2.1.3, time series of implied volatility are available 
from the FX option markets. These are interesting objects of study, together with 
realized or historical volatility computed from FX spot rates. 

4 For surveys on the FX market at the daily or weekly frequencies, see, for example, the surveys of 
Mussa (1979); Hsieh (1988); Baillie and McMahon (1989), and de Vries (1992). 

0034



2.2 FOREIGN EXCHANGE MARKETS 15 

2.2.1 Structure of the Foreign Exchange Spot Market 

The usual description of the FX markets made by international organizations such 
as the Bank for International Settlements (1999) or the International Monetary 
Fund (1993) emphasizes the presence of different geographical markets and dif-
ferent types of agents. However, these structural characteristics are not apparent 
from the inspection of daily or weekly data and their implications were seldom 
considered in theoretical modeling. 

The FX market consists of two dominating parts, the FX spot and the FX 
forward market, and a smaller but growing market of FX derivatives. In 1992, 
both the FX spot and forward markets had a market share of roughly 50% each. 
In 1998, the FX forward market was moderately larger than the FX spot market, 
by a ratio 60:40% (Bank for International Settlements, 1999). However, the FX 
spot rates are used not only in the FX spot market but also for outright FX forward 
transactions, as explained in Section 2.3.2. 

Nowadays, a growing segment of the FX spot transactions goes through 
automated, electronic order-matching systems,5 such as the Electronic Broking 
Services (EBS) and Reuters Dealing 2000. These markets deliver good high-
frequency data with transaction prices and volumes. These transaction data have 
become available to researchers to a limited amount.6 Results based on these data 
are discussed in a few places in this book. 

Aside from this electronic trading, the over-the-counter FX spot market is 
a direct market between banks (and brokers). The bid and ask offers of major 
financial institutions are conveyed to customers' screens by large data suppliers 
such as Reuters, Bloomberg, and Bridge (formerly Telerate and Knight Ridder) 
with as little time delay as possible and the deals are negotiated over the telephone. 
Many researchers have investigated data in various forms from this interbank mar-
ket; there is no alternative way to obtain large FX samples, especially historical 
samples extending to the 1980s and early 1990s. 

The bid-ask prices from the over-the-counter FX spot market are called quoted 
prices or quotes as opposed to transaction prices. One full tick contains the time 
stamp, a bid and an ask price and often some information on the origin of the tick 
(bank code, city, etc.). Transaction prices or volumes are not available, but some 
additional information such as financial news in text form is available from other 
pages of the data vendors. 

The data suppliers offer a rather easy access to market data nowadays. The 
real-time data for a financial instrument can be obtained from Reuters, for in-
stance, through the Reuters Instrument Code (RIC). The FX rate EUR-USD, for 
instance,7 has the MC "EUR=," the FX rate USD-JPY has the RIC "JPY=." Rates 

5 In April 1998, the share of deals going through such systems was "almost one quarter" in the 
United Kingdom, "almost one third" in the United States, and 36% in Japan, (Bank for International 
Settlements, 1999). 

6 Lyons (1995, 1996a,b); Goodhart et al. (1995), and Goodhart and Payne (1996) could obtain a few 
days of such data. 

7 For the currencies, we use the standard abbreviations of the International Organization for Stan-
dardization (ISO, code 4217). 
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16 CHAPTER 2 MARKETS AND DATA 

TABLE 2.1 The traditional FXFX page of Reuters. 

On this traditional page, the first column gives the time in GMT (for example, for the 
first line, "07:27"), the second column gives the name of a traded currency ("DEM" for 
USD-DEM), the third column the name of the bank subsidiary that publishes the quote as 
a mnemonic ("RABO"), the fourth column the name of the bank ("Rabobank"), the fifth 
column the location of the bank as a mnemonic ("UTR" for Utrecht), the sixth column 
gives the bid price with five digits ("1.6290") and the two last digits of the ask price ("00" 
which means 1.6300), the seventh column repeats the currency ("DEM"), and the last two 
columns give the highest ("1.6365") and the lowest ("1.6270") quoted prices of the day. 

0727 CCY PAGE NAME * REUTER SPOT RATES * CCY HI*EURO*L0 FXFX 

0727 DEM RABO RABOBANK UTR 1.6290/00 * DEM 1.6365 1.6270 

0727 GBP MNBX MOSCOW LDN 1.5237/42 * GBP 1.5245 1.5207 

0727 CHF UBZA U B S ZUR 1.3655/65 * CHF 1.3730 1.3630 

0727 JPY IBJX I.B.J LDN 102.78/83 * JPY 103.02 102.70 

0727 FRF BUEX UE CIC PAR 5.5620/30 * FRF 5.5835 5.5582 

0726 NLG RABO RABOBANK UTR 1.8233/38 * NLG 1.8309 1.8220 

0727 ITL BCIX B.C.I. MIL 1592.00/3.00 * ITL 1596.00 1591.25 

0727 ECU NWNT NATWEST LDN 1.1807/12 * ECU 1.1820 1.1774 

XAU SBZG 387.10/387.60 * ED3 4.43/ 4.56 * FED PREB * GOVA 30Y 

XAG SBCM 5.52/ 5.53 * US30Y YTM 7.39 * 4.31- 4.31 * 86.14-15 

between two currencies other than the U.S. Dollar (USD) are called cross rates (see 
Section 2.2.2) and have both currencies in the RIC (e.g. "EURJPY=" for the rate 
EUR-JPY). There are also RICs serving as "tables of contents," called tiles. These 
contain information on other RICS. Once a real-time feed for a financial instrument 
is established, the data are transmitted in data records, each representing a tick. 
A data record contains several variables such as bid and ask prices and some side 
information. This data organization is used for all financial data, not just for FX. 

Once the instrument codes and the variables of the data records are known, 
data collection is a straightforward operation. However, many results of this book 
are based on historical data collected at a time when data extraction was technically 
difficult. The traditional data feeds of the early 1990s and before were oriented 
to human users looking at full pages of information, such as the FXFX page of 
Reuters. Table 2.1 shows a snapshot of this traditional FXFX page. A quoted 
price of 1.6290/00 for the USD-DEM rate expresses the willingness of the market 
maker to buy USD at 1.6290 DEM and sell USD at 1.6300 DEM. Telerate also 
had a page-based feed at that time. Rather than using today's instrument codes, 
the data collector had to extract the desired information from full pages and from 
the many real-time updating messages associated to these pages. This implied a 
delicate text parsing task and also controlling for unexpected changes in the page 
layout. A large part of the data used in the studies of this book has been extracted 
and collected in this tedious way. 
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2.2 FOREIGN EXCHANGE MARKETS 17 

The FX market has no business-hour limitations. Any market maker can 
submit new bid-ask prices; many larger institutions have branches worldwide 
so that trading is continuous. Nevertheless, the bid-ask prices do emanate from 
particular banks in particular locations and the deals are entered into dealers' books 
in particular institutions. Although the FX market is virtually global through 
its electronic linkages, its activity pattern can be divided into three continental 
components, each with its typical group of time zones: East Asia, Europe, and 
America with Tokyo, London and New York as major trading centers8 (Goodhart 
and Demos, 1990). 

Except for some major currencies against the USD, currencies tend to be 
traded more specifically in their own geographical markets. Major currencies are 
USD, EUR (until 1998: DEM), JPY, GBP, and CHF. Both the global and local 
characteristics of the FX markets are reflected by the statistical properties of the 
data. 

Actual trading prices and volumes are not known from the over-the-counter 
spot market. However, reputation considerations prevent market makers from 
quoting prices at which they would actually not be willing to trade. Therefore, 
real transaction prices tend to be contained within the quoted bid-ask spread 
(Petersen and Fialkowski, 1994). This is also shown by a comparison to simulta-
neous transaction prices of electronic dealing systems (where the bid-ask spread 
is narrower). 

The growing volume of FX transactions has been increasingly made up of 
short-term, intraday transactions and results from the interaction of traders with 
different time-horizons, risk-profiles, or regulatory constraints. Nonfinancial cor-
porations, institutional investors (mutual funds, pension funds, insurance compa-
nies), and hedge funds9 have shifted their FX activities from long-term (buy and 
hold) investment to short-term (profit-making) transactions. This movement is 
both enabled and enhanced by the development of real-time information systems 
and the decrease of transaction costs following the liberalization of cross-border 
financial flows. This flow of short and long-term transactions initiated by nonfi-
nancial institutions on the retail market is the origin of an even larger—by a factor 
of four to five times—flow of intradaily transactions between the dealers (the 50 
largest banks and a few securities houses) on the wholesale market. These dealers, 
who are usually not allowed to take overnight positions, transact with each other to 
reduce the risk arising from their accumulated currency positions (Lyons, 1996a). 

8 In typical historical samples, the data contributors of "East Asia" are located in Australia, Hong 
Kong, India, Indonesia, Japan, South Korea, Malaysia, New Zealand, and Singapore. "Europe" covers 
Austria, Bahrain, Belgium, Germany, Denmark, Finland, France, Great Britain, Greece, Ireland, Italy, 
Israel, Jordan, Kuwait, Luxembourg, the Netherlands, Norway, Saudi Arabia, South Africa, Spain, 
Sweden, Switzerland, Turkey, and United Arab Emirates. "America" comprises Argentina, Canada, 
Mexico, and the United States. 

9 The high leverage and unregulated aspects of hedge funds distinguish their investors from other 
institutional investors. 
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18 CHAPTER 2 MARKETS AND DATA 

TABLE 2.2 Numbers of archived ticks of main FX rates. 

Tick frequencies of main FX rates: (1) main rates against the USD, (2) main cross rates, 
and (3) train rates against historical currencies now replaced by the Euro (EUR). 

FX rate Period Number Frequency per 
of ticks business day 

EUR-USD Jan 1999 —May 2000 4,794,958 13,300 
USD-JPY Jan 1987 —May 2000 9,585,136 2,800 
GBP-USD Jan 1987 —May 2000 7,892,919 2,310 
USD-CHF Jan 1987 —May 2000 8,310,226 2,430 

EUR-JPY Jan 1999— May 2000 1,897,007 5,250 
EUR-GBP Jan 1999 —May 2000 1,740,209 4,820 

USD-DEM Jan 1987 —Dec 1998 18,416,814 6,020 
USD-FRF Jan 1987—Dec 1998 3,655,638 1,190 
DEM-JPY Oct 1992 —Dec 1998 1,316,933 712 

Still on the wholesale market, but in contrast to other players, central banks 
can afford relatively large open positions and can thereby have a significant impact 
on the market in the long run. The different types of traders can of course be found 
within similar types of institutions.1° 

To illustrate the enormous amounts of available FX spot ticks, Table 2.2 dis-
plays the size and frequencies of ticks in the Olsen & Associates (O&A) database. 
The FX rates of this table are between major currencies, the first one of a currency 
pair being the "exchanged" currency whose value is expressed in the second cur-
rency (which can be called the numeraire currency). The analyzed periods have 
been chosen with respect to the transition of some European currencies such as 
DEM and FRF to the Euro (EUR) at the beginning of 1999. On the largest market, 
EUR-USD, more than 10,000 ticks per business day are available; that is an aver-
age of almost 10 ticks per minute which can rise to 30 or more ticks per minute 
during the busiest periods. The daily tick frequencies of Table 2.2 are averages. 
The values of the 1980s and the early 1990s were distinctly smaller than the values 
nowadays. In today's data feeds, some of the ticks contain little information if 
they are copies of ticks from other contributors (as explained in Section 2.2.3) or 
repeatedly posted ticks (see Section 4.2.2). Minor FX rates have fewer ticks than 
the rates in Table 2.2, very few ticks if the liquidity is low. 

In contrast to daily or weekly data, collecting tick-by-tick quotes presents 
a number of practical problems such as transmission delays and breakdowns or 

10 For example, Bank Negara of Malaysia was one of the most aggressive (short-term) speculators 
in the FX market for several years. 
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2.2 FOREIGN EXCHANGE MARKETS 19 

aberrant quotes due to human and technical errors. Therefore, it is important to 
implement a data cleaning filter to eliminate outliers. An extensive discussion of 
data cleaning is presented in Chapter 4. 

2.2.2 Synthetic Cross Rates 

FX rates between two currencies other than the U.S. Dollar (USD) are called cross 
rates. There are quotes for some important cross rates such as those in Table 2.2. 
For many other cross rates, there is little data or no data at all, either because the 
market for that cross rate is neglected by the data suppliers or because there is 
no direct market at all. In the second case, traders would go through a vehicle 
currency such as USD or EUR instead of making a direct transaction. A Canadian 
trader, for example, would obtain Japanese Yen (JPY) by buying USD from the 
USD-CAD market and selling USD on the USD-JPY market. The actual exchange 
rate in this case is 

PUSD/CAD,bid PUSD/CAD, ask 
PJPY/CAD, b id = PJPY/ CAD, ask = 

PUSD/JPY, ask PUSD/JPY,bid 
(2.1) 

These formulas reflect the triangular relation between the three currencies USD, 
JPY, and CAD. If a direct market for JPY-CAD exists and its prices strongly 
deviate from this relation, the deviation can be profitably exploited through a set 
of riskless transactions. Such a strategy is called triangular arbitrage and leads to 
market adjustments that bring the prices back toward the relation of Equation 2.1. 
Traders are usally quick enough to make such arbitrage transactions before the 
prices strongly deviate from Equation 2.1. A trader calling market makers to 
execute an indirect transaction has to pay the bid-ask spreads of two markets, both 
USD-CAD and USD-JPY in our example. Both bid-ask spreads together may be 
higher than the bid-ask spread of a direct transaction. 

In the case of cross rates with a direct market but bad data coverage, we are 
forced to compute synthetic cross rates through formulas such as Equation 2.1 
which serve as proxies for the unknown direct rates. The two ticks used for the 
cross rate computation (a USD-CAD tick and a USD-JPY tick in the example of 
Equation 2.1) should be synchronous such that their time stamps deviate by no 
more than a few seconds or perhaps a minute. Otherwise, the synthetic cross rate 
is distorted by price moves in the time interval between the two ticks. The bid-ask 
spreads of the missing direct quotes can be expected to be lower than the synthetic 
bid-ask spreads. The data coverage for cross rates may only be bad during the 
active market hours of some time zones (e.g., due to the bad coverage of Asian 
markets by some data suppliers). In this case, we may have to mix quoted cross 
rate data with synthetic data (at certain daytimes). 

2.2.3 Multiple Contributor Effects 

The transactions of over-the-counter markets are between many individual insti-
tutions (banks and brokers). The market makers among these institutions publish 
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20 CHAPTER 2 MARKETS AND DATA 

their own price quotes. Data suppliers mix these data with the quotes of other 
contributors, thus creating a multicontributor data feed. Individual quotes are af-
fected by the positions, views, and trading strategies of individual contributors, 
rather than behaving uniformly. Researchers using these data should be aware of 
this fact. 

The FX spot market is the key example of a multicontributor market. The 
following multicontributor effects have been found in FX spot data: 

■ Depending on their inventory position, market makers have preferences 
for either selling or buying. They publish new quotes to attract traders 
to make a deal in the desired direction so that either the bid or the ask 
quote is competitive. The other price of the bid-ask pair is pushed away 
to a less attractive region by adding or subtracting a rather large, nominal 
spread. This leads to high unrealistic quoted bid-ask spreads and a negative 
autocorrelation of returns at lags of around one minute as discussed in 
Section 5.2,1. 

■ There are contributors of low reputation that abuse some quotes in attempts 
to manipulate the market into a desired direction. 

■ FX quotes lag behind the real market prices. This is confirmed by FX 
traders we have interviewed and from comparisons to transaction data 
from electronic trading systems. A closer look shows that some leading 
contributors do not have a considerable delay, whereas many other con-
tributors lag behind by more than a minute. This can be shown through a 
lead-lag correlation analysis of returns of contributor-specific time series. 

■ Some contributors are laggards because they publish prices copied from 
the quotes of other contributors (e.g., moving averages of recent quotes 
with a tiny random modification). The motivation is to advertise the mar-
ket presence of the contributor in the data feed (whereas true prices are 
negotiated over the telephone). These contributors often employ comput-
ers to publish fake quotes at high frequency. The described data-copying 
methods lead to lower data quality in general and lead to data-cleaning 
problems as discussed in Chapter 4. 

Similar multicontributor effects are also found and expected in markets other than 
the FX spot market. 

2.3 OVER-THE-COUNTER INTEREST RATE MARKETS 

Two financial markets related to interest rates are over-the-counter (OTC) markets 
between individual banks." These are the spot interest rate (IR) market and the 
FX forward market. 

11 This is similar to the interbank FX market. 
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2.3.1 Spot Interest Rates 

Interest rate quotes have been directly available from the over-the-counter market 
for many years, for example, through the multicontributor "deposit" pages of 
Reuters. These interest rates are offered by banks to other banks who want to make 
either a deposit (at the bid interest rate) or take a credit (at the ask interest rate). 
The quotes come in bid-ask pairs and are called spot interest rates, cash interest 
rates, or interbank interest rates. Another traditional name, "Eurodeposits," suffers 
from possible confusion with the new currency named Euro. For quite some time, 
the spot interest rate (IR) market is no longer the most liquid IR market. This role 
is now taken by the IR futures market, see Section 2.4. The low liquidity of the 
spot IR market is reflected by the rather large spread between bid and ask quotes. 

The actual rate at which a bank is ready to lend money to another one also 
depends on the credit rating of that bank. A bank with a low credit rating has to 
be ready to pay a higher IR in order to attract a lender; the IR level is increased by 
the credit spread . This fact makes the IR quotes less universally applicable than 
the FX quotes. 

The credit spread can lead to serious data problems, which can lead to spurious 
statistical results. The story of the Japanese interest rates in the second half of the 
1990s is the best illustration. There was a banking crisis in Japan that lowered 
the credit ratings of Japanese banks. In some data sources such as the Reuters 
deposit pages, these banks dominated some daytimes corresponding to the working 
hours of East Asian time zones. All of the IR quotes during these daytimes were 
systematically higher than the quotes at other daytimes. The market was split 
between low-rating banks and high-rating banks, causing two spurious statistical 
effects: (1) too high absolute values of returns (level changes) over time intervals 
of around 12 hr and (2) strong negative autocorrelation of returns at lags of around 
12 hr. These spurious effects are solely due to periodically shifting credit ratings, 
which can be avoided by eliminating all the low-rating (or all high-rating) quotes 
from the sample. For a long time, Japanese Yen (JPY) interest rates were very 
low, below 1% for Japanese banks. The credit spread led to a strange effect around 
1998 by pushing the IR levels for non-Japanese banks (dominating the European 
and American time zones) slightly below zero. Since then, this has been a classical 
example rejecting zero as an absolute minimum of IRs. Slightly negative interest 
rates can be possible and valid under special circumstances. 

Spot interest rates always refer to a deposit of fixed duration, the maturity 
period. The following maturity periods are quoted in the market: overnight (0/N), 
"tomorrow next" (T/N, the next business day after tomorrow), 1 week (S/W), 
1 month (1M), 2 months (2M), 3 months (3M), 6 months (6M), 9 months (9M), 
and 1 year (1Y). Among these maturity periods, the 3-month maturity often has 
the largest market and the best data followed by the 1-month, 2-month, 6-month, 
and 1-year maturities. Spot interest rates are the only IR instruments that always 
inform us on interest rate levels for time intervals starting now and extending over 
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less than 3 months. Therefore, their use is inevitable when constructing yield 
curves; see Section 2.4.2. 

Spot IRs are quoted in annualized form and in percentage terms. A 3-month 
IR of 6%, for example, means that the invested capital is multiplied by 1.015 after 
3 months, because 3 months = 0.25 years and 0.25. 6% = 1.5% = 0.015 . 

2.3.2 Foreign Exchange Forward Rates 

Foreign exchange (FX) forward rates share some characteristics with the spot IRs. 
They also refer to the interbank market and are quoted for the same maturities as 
the spot IRs (see Section 2.3.1). They are quoted on the same traditional Reuters 
deposit pages. 

FX forward transactions are similar to FX spot transactions, except that the 
actual transaction takes effect in the future, at maturity.12 The timing of FX 
forward transactions leads to a difference in interest payments as compared to FX 
transactions. Due to the delayed transaction, the buyer of an FX forward contract 
earns some interest on the base currency of the FX rate (the currency in which 
the FX rate is expressed) instead of the exchanged currency. If the interest rates 
of the two currencies deviate, there is a net interest payment flow from or to the 
buyer during the maturity period. This fact determines the price of the FX forward 
contract, called the outright forward rate. In order to avoid riskfree arbitrage, the 
outright forward rate deviates from the simultaneously quoted FX spot price by an 
amount to offset the deviations in interest payments. The price deviation between 
FX spot prices and outright forward rates thus reflects the interest rate differential 
between the two exchanged currencies rather than the absolute level of those IRs. 

The arbitrage relation between outright FX forward rates f , spot interest rates 
i and FX spot rates p can be formulated as follows: 

1 texpr,bid 
771

I year 
fbid (2.2)

1 
 Pbul , 

+ lexch,ask 1 year 

I + iexpr, ask ; neat
Pask 1 

+ jexch,bid year 

where m is the maturity period (e. g. 0.25 years for a 3-month period). This 
formula can be found in usual textbooks such as Walmsley (1992) but only for a 
middle price, not for bid and ask. It is valid for maturity periods up to one year. 
For longer periods, formulas based on compound interest are needed. The interest 
rates i should not be used in percentage (e.g., 0.05 should be used instead of 5%). 
The index "exch" denotes the exchanged currency of the FX rate; the index "expr" 

defines the (numeraire) currency in which one unit of the exchanged currency is 
expressed. 

fask 

12 The transaction is actually booked at the value date, which is usually two days after the maturity 
date or, if that is a holiday, the first business day afterward. This fact hardly has an influence on prices, 
it just affects the timing of bookkeeping. Therefore, value dates can be ignored in most studies. 
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Instead of outright FX forward prices f , the difference f — p is usually quoted, 
which is the outright forward price minus the simultaneously valid FX spot price. 
This difference is less volatile than the outright forward price and can be positive or 
negative according to the sign of the interest rate differential. A positive difference 
is called forward premium, a negative difference is a forward discount. Both are 
also called "forward points." This formulation relates to the units of "basis points" 
in which they are usually quoted, which is the multiples of the last decimal digit 
of normal FX spot quotes. As an example, assume an FX spot rate of 1.5025/30 

(Pbid = 1.5025, pack = 1.5030) and quoted forward points of -23/-20 . The 
outright forward price is therefore fbid = 1.5002 (= 1.5025 — 0.0023) and f„k = 
1.5010 (= 1.5030 — 0.0020). 

FX forward premiums and discounts are also called FX swap rates , following 
another common view where an FX forward transaction is seen as a spot transaction 
plus a "swap" transaction (swapping two currencies during the maturity period). 
In fact, there is a large market for such FX swap transactions independent from 
spot or outright forward transactions. 

Equation 2.2 can be used to compute synthetic forward rates from an FX 
spot rate and the spot IRs of both underlying currencies. Such synthetic FX 
forward rates are less reliable than direct quotes. They have a distinctly higher 
bid-ask spread. This implies that an FX forward transaction is more efficient than 
a substitute set of transactions, consisting of an FX spot transaction plus a deposit 
in one currency plus a loan in the other one. Direct forward quotes exist for most 
FX rates against the USD, but may not be available for some FX cross rates (see 
Section 2.2.2). For these currency pairs, synthetic forward rates are needed. 

2.4 INTEREST RATE FUTURES 

2.4.1 General Description of Interest Rate Futures 

Short-term interest rate (IR) futures are the most liquid financial instrument for the 
interest rate markets. In particular, the IR futures markets with expiry periods of 
up to one year (or slightly longer) are more liquid than the over-the-counter spot 
IR market, as presented in Section 2.3.1. The transaction costs are lower; a typical 
bid-ask spread is about 10% (or less) of the quoted spread of cash interest rates.13
The mechanism of price formation for futures is faster than for cash contracts 
(Fung and Leung, 1993; Garbade and Silber, 1985). As a consequence, IR futures 
markets yield high-quality intraday data. 

IR futures markets are futures markets in the sense of Section 2.1.2. More 
specifically, an interest rate futures contract is a futures contract on an asset whose 
price is dependent solely on the level of interest rates, (Hull, 1993). 

13 The bid-ask spread on the Chicago Mercantile Exchange (CME) Eurodollar contract, for example, 
can be as small as half a basis point. A basis point corresponds to 1/100 of 1%, and its monetary value 
(in the case of three-month IR futures) is $25. The minimum price movement for the CME Eurodollar 
is half a basis point. 
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IR futures are traded at the Chicago Mercantile Exchange (CME),14 the EU-
REX (formerly the DTB, MATIF, etc.), the London International Financial Futures 
Exchange (LIFFE), the Singapore International Monetary Exchange (SIMEX), 
and other exchanges. In the first three quarters of 1997, the CME Eurodollar 
time deposit had a mean daily volume of 461,098 contracts,15 with each con-
tract corresponding to a notional 1 million dollar 3-month deposit. IR futures 
are exchange-traded contracts and this entails several differences with respect to 
over-the-counter (OTC) instruments, as already explained in Section 2.1.2. IR 
futures are linked to a specific exchange, except when a fungibility agreement is 
in effect.16 Trading is typically limited to opening hours. Most IR futures ex-
changes have replaced or are replacing floor trading (open outcry) with electronic 
trading. In studies of long data samples, we may be forced to use a first half of 
data originating from floor trading and a second half from electronic trading. 

IR futures are traditionally known under the name Eurofutures; the contracts 
were called "Eurolira," "Euroyen," and similar after the underlying currency. In 
statistical studies based on historical samples, these names may still be used, but 
nowadays, they lead to confusion with the new currency named the Euro. 

Information on IR futures is particularly valuable for financial institutions 

vwF and above all for banks. A quick analysis of a typical balance sheet would often 

I w reveal a higher exposure to IR risk than, for example, to foreign exchange risk. IR 
futures can also be used as hedging instruments. From a practical point of view, 
there is widespread need for a better understanding of the empirical behavior of IR 
futures on an intraday basis; nevertheless, in the literature there is little material 
on intraday IR futures markets. The studies by Ballocchi et al. (1999a,b), and 
Ballocchi et al. (2001) offer deep insights. The impact of scheduled news releases 
has been investigated by Ederington and Lee (1993, 1995). 

IR futures refer to an underlying deposit (usually a 3-month deposit). An IR 
future price f (bid, ask, or transaction price) is quoted as a number slightly below 
100 according to the following formulas 

f = 100 (1   , r = (1 — I) 100% (2.3) 
100% 100 

aar

where r is the annualized forward interest rate17 with a forward period of usually 3 
months. There are four main settlement months in a year (March, June, September, 
and December), known as quarterly expiries. Serial expiry contracts (i.e., contracts 
expiring in months that do not correspond to the quarterly sequence) have been 
introduced more recently and typically have lower liquidity. 

Unlike the spot IRs, the futures prices are not affected by the individual credit 
ratings of clients, because the collateral account required by the exchange already 

14 They are traded at the International Monetary Market (IMM) Division of the CME. 
15 All expincs combined, as reported in the January 1, 1998, issue of Futures magazine. 

16 One example of a fungibility agreement is the mutual offset system between CME and SIMEX, 
through which contracts opened in one exchange can be liquidated on the other one. 

17 For instance, a value r = 3% implies a futures price of 97.00. 
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covers the credit risk. The existence of the collateral account can usually be ignored 
in studies of IR futures data. 

Unlike other futures markets contracts, IR futures contracts are settled in 
cash. The notional deliverable asset is a (3-month) deposit starting at expiry, but 
the exchange or the party with the short position does not deliver such a contract at 
expiry. Instead, a cash payment corresponding to the value of the notional deposit 
is made. This value is determined by the short-term offered rate (e.g., EURIBOR 
or LIBOR) at expiry. 

As for futures in general, single contracts have a nonstationary time series of 
limited lifetime (e.g., Fung and Leung (1993)). A typical nonstationary effect of IR 
future contracts is the systematic decrease of mean volatility when moving closer 
to the expiry (which is fixed in calendar time). In order to study long time series, 
we have to connect the data from several contracts. Rollover schemes as suggested 
in Section 2.1.2 are not the most suitable method in the case of IR futures, because 
several contracts with different expiries trade at the same time with comparable 
liquidity, unlike what happens in bond futures and other futures markets, where 
basically only one contract (or at most two) are actively traded at any given time. 

In the case of IR futures, the problem is inherently multivariate such that the 
interplay of several contracts with different expiries but simultaneous high open 
interest levels cannot be neglected. The method followed here is to infer implied 
interest rates from the prices of futures as discussed in the next section. 

2.4.2 Implied Forward Interest Rates and Yield Curves 

Implied interest rates have some advantages over IR futures prices. They can be 
studied in long time series. The behavior of their returns is closer to stationary, 
although more subtle effects such as local volatility peaks before expiry dates may 
still remain in time series of implied rates. Implied interest rates can be studied in 
two different forms: 

■ Forward interest rates: The interest rate for a period of usually 3 months, 
with a starting point always shifted to the future by a fixed time interval; 

■ Yield curve: Spot interest rates for periods starting now. The yield curve 
is the full term structure of interest rates of different maturities. 

Both forms need to be computed as discussed next. Futures prices alone are not 
sufficient to construct implied spot rates (points on the yield curve), because the 
IR futures market does not convey any information about the applicable spot rate 
for the period from the current time to the next futures expiry. The necessity to use 
data from other instruments (spot IRs) can be avoided by studying forward IRs, 
with a minimum starting point of 3 months in the future. 

There are many methods to construct forward interest rates or full yield curves 
from IR futures. Instead of presenting the wide field of methods in the literature, 
we explain the method that was actually used to obtain the results presented in this 
book, the polynomial method. To use the information from IR futures to construct 
a yield curve of forward (or spot) rates, a timing problem needs to be dealt with. 
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Futures are defined in terms of the contract expiry date (a fixed quarterly date, 
every 3 months for the major contracts) and the maturity period of the underlying 
reference rate (a fixed time interval, usually 3 months), whereas the implied forward 
rates are defined in terms of fixed time intervals, not in terms of fixed calendar 
dates. Those time intervals (forward periods) can be written as rtexp, .ex r p • __ Tm -I- A 1 , ,• 
They start at time lexp = t Texp (t is the current time) where Texi, is called the 
time-to-start for the implied forward rate and AT„, is the maturity" period of the 
notional deposit. 

The polynomial method presented here is based on the interpolation of rates 
between points on the expiry time axis. Polynomials of degree 2 are used for the 
interpolation. The choice of polynomial rather than linear interpolation is moti-
vated by the seasonal behavior of returns. Forward IR series generated by linear 
interpolation exhibit some 3-month seasonalities, which are weak but distinctly 
stronger than those of forward IR series generated by polynomial interpolation. 
The seasonality of linearly interpolated data turns out to be an artifact due to 
insufficient modeling within the 3-month interpolation intervals. 

A continuously compounded forward interest rate Q is assumed and modeled 
as a function of the time T where T is the size of the time interval from the time 
when the quote was issued to the time point of interest. The annualized implied 
forward rate r, whose relation to futures prices f is given by Equation 2.3, can be 
expressed by 

1 year 
{exP 

Tend 
Q(T) clT] — 11 100% (2.4) 

Tend — Tstart [fTstart 

where the forward period is from Tstart to Tend. For a futures contract, Tstart 
Texp is the expiry time and Tend = Tmat is the maturity time, which terminates 
at the maturity period, Tmat = Texp ATm, with the forward period A TM (often 
3 months). The inverse formula is 

ln(1 Tmat—Texp r 
1 year 100%1

Tmat — Texp 

which gives the mean value Q of Q(T) within the forward period. The function 
p(T) consists of piecewise, continuously connected, quadratic polynomials 

p(T) = at2 -Ebt+c, with t = 
2 T — Texp — Tmat 

Tmat — Texp 

for Texp < T < Tmat (i.e., —1 < t < 1). The polynomial coefficients should obey 
the requirements of Equation 2.4 and all quoted forward rates are reproduced by 
integration of Equation 2.6. The other requirement is the continuity of p(T) at the 

(2.5) 

(2.6) 

18 We do not use the term "maturity" as a synonym of "expiry," but we reserve it to denote the 
duration of deposits, including the underlying deposits of futures contracts. The maturity period of a 
futures contract thus starts at expiry. 
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edge points Texp and Tmat, where the forward period meets the forward periods of 
the neighbor contracts. The value of Q at the meeting point Texp is determined from 
the four implied forward rates nearest to Texp (in a regular sequence of 3-month 
futures contracts) by polynomial interpolation 

, 9 (02 + 3) — 01 — 04 
Q(Texp) = 

16 
(2.7) 

where -6 is computed by Equation 2.5 and its index (1, 2, 3, 4) indicates the position 
in the series of the four nearest forwards. For instance, 03 refers to the forward 
from Texp to Tmat. Equation 2.7 can be interpreted as the interpolation of a cubic 
polynomial going through the values -01 . . . &, located at the midpoints of the 
corresponding forward periods. The same equation if shifted by one forward 
period leads to Q (Tmat). If a contract at the edge (01 or Q4 in Equation 2.7) is not 
available from the data source, we extrapolate 

= 3 — 6-  (2.8) Q1
2

and analogously for &. The numerical impact of an extrapolation error is small, 
as 01 and -04 have little impact in Equation 2.7. By fulfilling all the mentioned 
requirements, the coefficients of the polynomial g(T) of Equation 2.6 can be 
formulated as 

a = 4 [Q(Texp) + Q(Tmat) — 2 0 

1 
b = —

2 
[Q(Tmat) Q(Texp)1 

c = 
4 

r6 — (Texp, — Q(Tmat)1 — Q 

(2.9) 

where 0 follows from Equation 2.5 (0 = E)3, using the indexing of Equation 2.7). 
Now we can compute the annualized forward rate r for a given forward period 

by substituting Equations 2.5 through 2.9 into Equation 2.4. The integration is 
simple because the integrand, Equation 2.6, is a simple polynomial. The forward 
period to be considered (from Tstart to Tend) may typically extend over many original 
forward periods of the futures contracts. In this case, we need to integrate over 
several piecewise polynomials. 

A consequence of the polynomial interpolation is the potential overshooting 
of the yield curve. If the forward rates implied by a series of IR futures have a 
maximum somewhere around medium-term expiries, an interpolated forward rate 
(for a period close to that maximum) may exceed all the implied forward rates 
corresponding to original futures quotes. The modest overshooting of polynomial 
interpolation is not undesirable as it leads to a strong reduction of the 3-month 
seasonalities obtained for a forward IR series generated by linear interpolation 
(which has no overshooting). We conclude that polynomials with their smooth but 
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sometimes overshooting behavior represent true yield curves better than piecewise 
linear interpolation with hard corners at the nodes. In our method, overshooting 
is a local effect—distant contracts cannot affect the behavior of Q (T). This is 
better than some methods based on spline interpolation, where even very distant 
contracts have an influence on the local behavior. 

A special case of overshooting might be "undershooting" of (forward) interest 
rates. Some parts of Q(T) might have values below zero. The method should 
include an element to avoid strongly negative Q( T), although interest rates can 
move slightly below zero under extreme circumstances. 

The polynomial method relies on a regular quarterly sequence of expiries. It 
can be adapted to include also irregular contracts such as contracts based on serial 
months. The period from the current time to the first expiry cannot be covered 
by IR futures. We need spot IRs to fill that gap, which is a method described by 
Muller (1996). After filling the gap, the described methods to compute implied 
forward interest rates can also be used to compute implied spot rates, simply by 
choosing Tgart = 0, which implies the current time. The yield curve consists of a 
set of implied spot rates with different Tend. 

There is an interesting application for the yield curve of implied interest rates 
C5 by comparing the curve derived from IR futures at any point in time with the curve 

derived from other instruments (such as deposits or over-the-counter forward rate 
agreements), which allows an investigation of arbitrage opportunities. 

Convexity corrections of the yield curve, which represent the difference be-

PF tween futures and forward contracts due to the presence of margining arrangements 
;p for futures (collateral accounts, see Burghardt and Hoskins, 1995), are negligibly • rq 

small in our case, because the futures contracts under consideration are never more 
than 18 months from expiry. 

Time series of forward rates share many properties of FX time series, as 
studied in later chapters of this book. 

2.5 BOND FUTURES MARKETS 

2.5.1 Bonds and Bond Futures 

Bonds are the dominating financial instrument related to long-term interest rates, I9 

There is a wealth of bonds issued by governments or individual companies with 
different credit ratings. Bonds are interest-paying contracts. After a lifetime of 
several years, the capital is paid back to the holder of the contract. Some bonds are 
complicated financial constructions including special option contracts. The world 
of bonds is not simple enough to be studied in the form of few, long, consistent 
time series. 

The bond futures market, on the other hand, is more standardized. Similar 
to the short-term interest rate futures discussed in Section 2.4, bond futures are a 

19 There is also a market for interest rate swap transactions with maturities of few years (with a focus 
on shorter maturities than those of bonds). The IR swap rates of this market constitute yet another 
source of high-frequency IR data. 
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liquid financial instrument in the area of interest rate markets, traded at the same 
exchanges. High-frequency, high-quality intraday data are available in the form 
of transaction prices, sometimes bid and ask prices, and volume figures. Bond 
futures markets supply more accurate and more frequent information on bonds 
than the cash market for bonds. In spite of this, there is little published research 
on the intraday behavior of bond futures, Ballocchi and Hopman (1997). 

Bond futures are futures contracts as discussed in Section 2.1.2. As for most 
short-term IR futures, there are four settlement months in a year (March, June, 
September, and December) known as quarterly expiries. The exact settlement and 
delivery rules can be obtained from the exchanges (or their web sites). A practical 
introduction to the bond futures markets can be found in LIFFE (1995a,b). Active 
trading of bond futures is focused on the first two positions which are the contracts 
with the nearest expiries. 

The underlying instruments of bond futures are often government bonds with 
maturity periods of years, for example the 30-year U.S. Treasury bond futures 
traded at Chicago Board of Trade (CBOT). This long duration is the main dif-
ference from short-term IR futures where the underlying instruments are notional 
3-month deposits. Three-month interest rates are strongly influenced by monop-
olistic players such as the central banks with powers to set short-term rates. In 
this respect, the bond market and thus the bond futures market is "freer" than the 
short-term IR futures market. The underlying instrument of some typical bond 
futures is the cheapest bond(s) available to the exchange under certain conditions, 
the "cheapest-to-deliver." Unfortunately, the choice of the cheapest-to-deliver can 
change sometimes, leading to a disruptive behavior of bond futures prices. 

For studying long samples, we need to create continuous time series.20 A 
theoretically appealing method to construct such a series is to use arbitrage formu-
las such as in Hull (1993), with input from both short-term and long-term interest 
rates, as well as from the underlying deliverable instrument, to find a relationship 
between two successive bond futures contracts. Such an approach, which could 
be seen as an extended variation of the approach of Section 2.4.2 based on for-
ward IRs, would require data input from several sources and imply considerable 
methodological efforts. Instead of this, we suggest using rollover schemes, which 
allow for an analysis based on bond futures data only. 

2.5.2 Rollover Schemes 

As mentioned in Section 2.1.2, a rollover scheme is a general way to create a 
continuous time series from the time series of futures contracts with different 
expiries. The proposed schemes have been mainly applied to bond futures in 
Ballocchi and Hopman (1997). The schemes are recommended to researchers 
but not necessarily to traders or investors who pay transaction costs. Investment 
strategies may also include rollovers, but the different optimization goal leads to 
different schemes. 

20 As before, the word "continuous" means a consistent behavior as close to stationary as possible. 
The series should not suffer shocks unrelated to market movements when crossing the contract expiries. 
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The rollover algorithm must follow an essential economic constraint imposing 
that the value of the portfolio changes only when the market prices of the individual 
bond futures move, with no change arising solely from the rollover procedure. 
When a rollover occurs, the number of new contracts to be bought is calculated 
so that the total amount of capital invested is constant, that is, the number of new 
contracts is given by the number of old contracts being sold multiplied by their 
middle price, divided by the middle price of the new contracts being bought. For 
bid-ask data, middle prices are defined as means of bid and ask prices.21 Middle 
price are used because traders can go long or short; the continuous series should 
not only reflect one of the two directions. 

Two different schemes are presented: 

■ A simple scheme involving a conversion factor to render continuous the 
transition from one contract to the next one, at a fixed date before the first 
contract's expiry. 

■ The construction of bond futures portfolios with "constant mean time-
to-expiry," through a daily partial rollover, whereas the constituent bond 
futures have a fixed calendar date expiry. 

The timing of the rollover determines the character of the obtained continuous 
time series. It is possible to make a "first position series" or a "second position 
series" or something in between. Typically there is not sufficient data in the third 
position to allow for a serious study. 

The proposed simple rollover scheme has just one contract in the reference 
portfolio at once. At a fixed delay DI before the expiry of the contract in the 
portfolio, we roll over the entire holdings to the next expiry. If we start with one 
contract and the price at the rollover time is Fiji —Di we can afford to buy a 
number au of new contracts at a price F2,T1 —D1,22 where 

a12 = 
Ti —Di 

F2,Ti—D1 
(2.10) 

Clearly the number of contracts we hold at any time can be calculated as the product 
of the a factors of all past rollovers. 

The execution of rollover procedures (even if it happens only in theory, not 
in real transactions) requires the approximate simultaneous availability of reliable 
market prices for the two involved contracts. This is not always guaranteed, but 
it is likely if the rollover time is chosen when both contracts are liquid. The a 
factors computed by Equation 2.10 are slowly varying over time, often slower 
than the prices themselves. This fact can be used to take a mean a from those 
daytimes where simultaneous quotes of both contracts are found, rather than an a 
determined at only one fixed daytime. 

21 In the case of transaction data, the transaction prices take the role of middle prices. 
22 In reality, we can only buy an integer number of contracts. This does not matter for our theoretical 

rollover formula: a may be a fraction. 
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In empirical studies, however, few discontinuities of a factors over time are 
detected. Ballocchi and Hopman (1997) explain these discontinuities by asyn-
chronicities in the underlying bonds, the "cheapest-to-deliver." If the underlying 
bonds of two successive contracts do not change exactly at the same time, the a 
factor is affected by the difference. When analyzing a continuous series, the exact 
knowledge of the underlying bonds (cheapest-to-deliver, or benchmark bonds) is 
helpful. 

The second scheme based on a "constant time-to-expiry" is to have a portfolio 
that does not expire at a fixed calendar date, but keeps a constant mean time-to-
expiry as time moves on, by means of an appropriate daily rollover procedure.23
The time-to-expiry (or horizon) h for a portfolio is defined as a weighted average of 
the time-to-expiry of the constituents. We consider a constant time-to-expiry port-
folio consisting at time t of two contract expiries, with a number ,8j,, of contracts 
in the first expiry, corresponding to time Ti and a number yi+i,t of contracts in the 
second expiry, corresponding to time Ti+1. The time-to-expiry of this reference 
portfolio is then 

h =  , 
A  

(Ti 
Yi+i,t 

t) + (Ti+1 t) 
Pia -r Yi+la $i,t + Yi+1,t 

(2.11) 

Each day we arrange a partial rollover procedure, selling a proportion of the hold-
ings in the first expiry and buying the second one, in order to keep h constant. 

Some tools for generating long samples from several contracts through roll-
over schemes are commercially available, such as the Lifestyle program from 
LIFFE, see Gwilym and Sutcliffe (1999). This software also offers volume-
dependent timing of the rollover (e.g., rolling over when the volume of a new 
contract overtakes that of an old contract). 

2.6 COMMODITY FUTURES 

Commodity futures are similar to the futures contracts presented in Section 2.1.2. 
The settlement at expiry means physical delivery of the underlying commodity. 
Commodities such as raw materials or agricultural products often exist in different 
variations and quality levels. Therefore a typical holder of a long position in 
commodity futures does not want to receive the commodity exactly in the form 
delivered at expiry. Most commodity futures traders offset their contracts (or roll 
them over) before expiry, in some markets so early that the second position (the 
contract with the second next expiry) has a higher liquidity than the first position. 

A purpose of commodity futures trading is hedging. A manufacturer con-
fronted with rapidly rising raw material prices is protected by holding some cor-
responding futures of simultaneously increasing value. Some investors use com-
modity futures as a vehicle for portfolio diversification. 

23 The related high transaction costs are irrelevant, since this rollover procedure does not need to be 
executed in practice. 
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Futures of agricultural commodities may have an irregular schedule of expiry 
dates due to the seasonality of agricultural production. The cocoa futures market 
of New York, for example, has five irregularly spaced expiry dates per year, in 
March, May, July, September, and December. 

As in other futures markets, contracts with different expiry dates are not in-
dependent. A contract with distant expiry, for instance, cannot be much more 
expensive than a near contract; otherwise traders would buy the near contract and 
profitably store the commodity afterward in a warehouse. This condition is similar 
to the condition that forward interest rates cannot be far below zero. 

Commodity futures markets are often much smaller than FX or money mar-
kets. They are not liquid enough for huge transactions. Large orders often cause 
considerable slippage with immediate price movements to the unfavorable direc-
tion. 

High-frequency commodity futures data are available from the exchanges and 
from data vendors. Rollover schemes similar to those of Section 2.5.2 are needed 
to build long time series from different contracts. 

2.7 EQUITY MARKETS 

Equity markets are a major source of high-frequency data. The authors of this 
book have only casually investigated time series from equity markets. Therefore, 
only a brief description is given. 

Equities are traded at stock exchanges of different kinds. Also the instruments 
derived from equities are exchange-traded. High-frequency data are mainly pro-
duced during the opening hours of the exchanges. In some main markets, there is 
also some electronic trading outside the normal opening hours, which yields some 
sparse additional data. 

High-frequency data are available from the following markets: 

■ Equity of individual companies as traded by stock exchanges. This data 
type is strongly determined by the specific behavior of an individual firm 
and some general trends of the market and the economy. Stock splits 
(e.g. five new equity units replacing one old unit) and dividend payments 
affect the equity prices, and price series can only be understood with a full 
account of all these events. Only the most traded individual equities have 
a data frequency high enough to be called high-frequency. 

■ Equity indices, also called stock indices. These are weighted sums of 
individual equity prices according to a formula. The basket of equities 
includes important equities of specific countries or industry sectors. The 
basket and the weights are adapted from time to time, according to the 
changing size of the companies. A performance index reflects the value of 
a realistic portfolio of investments according to the basket, including all 
dividend payments and reinvested profits. It is thus possible to replicate the 
behavior of an equity index by a real portfolio (it is a better approximation if 
the index is a performance index). Equity indices represent large segments 
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of an economy rather than individual companies and their behavior is 
less erratic than that of individual equities. High-frequency data for the 
main indices are available and are interesting objects of research. Due to 
their mathematical definition, they often show a positive autocorrelation 
of returns at a lag of up to 15 minutes. This may be a consequence of a 
lag structure between leading main equities and the less liquid equities of 
the basket. 

■ Individual equity futures or equity index futures are liquid instruments 
with high-quality, high-frequency data that have been studied by many 
researchers. 

■ Options also exist for individual equities as well as equity indices. Their 
implied volatility figures can be investigated by time series methods. 

Fir 
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TIME SERIES OF INTEREST 

An adequate analysis of high-frequency data relies on explicit definitions of the 
variables under study. In this chapter, we study the common mathematical frame-
work used to analyze these variables. 

Some aspects of preparing and preprocessing a time series are rather technical. 
Readers interested in economic results may prefer to skip the technical Chapters 3 
and 4 and continue their reading in Chapter 5. 

Researchers conducting their own high-frequency studies may profit from 
Chapters 3 and 4. If they have no access to preprocessed time series (i.e., cleaned 
time series with regular spacing in time), they will need the techniques described 
in these chapters. The literature often ignores technicalities of dealing with irreg-
ularly spaced high-frequency data, so we have a good reason to discuss them in 
two chapters of this book. 

3.1 TIME SERIES AND OPERATORS 

Many types of time series data can be obtained at high frequency, often intraday, 
at market tick-by-tick frequency. For most methods, these raw time series are 
not suitable to work with, because market ticks arrive at random times.1 The 

There are models for the stochastic nature of these times, such as Engle and Russell (1997, 1998). 

34 
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time series operator formalism developed by Zumbach (1996) and Zumbach and 
Miiller (2001) offers a powerful way to deal with irregularly spaced data. Sec-
tion 3.3 is based on this formalism and the notations of Zumbach and Miller 
(2001). 

In time series analysis, a first important classification is done according to the 
spacing of data points in time. Regularly spaced time series are called homoge-
neous, whereas irregularly spaced series are called inhomogeneous. The concept 
of inhomogeneous time series also has to be distinguished from two other con-
cepts, which are the concept of missing observations (where a series is essentially 
homogeneous with few gaps) and the concept of continuous-time finance (which 
belongs to theory rather than data sampling). When considering the spacing of 
data in time, a discussion of the time scale is necessary. Many time series of daily 
data in finance, for example, have only five observations per week; there are no 
observations on Saturdays and Sundays. Such a time series is homogeneous only 
if using a special "business time" scale, which omits weekends (and holidays). 
Even more sophisticated business time scales can be introduced in order to cope 
with some characteristics of intraday data such as the seasonality of volatility, 
(see Chapter 6 and Dacorogna et al., 1993), the heteroskedasticity (Zhou, 1993), 
or both seasonality and heteroskedasticity (Guillaume et al., 1997; Muller et al., 
1993a). Time is denoted by t in Chapter 3, but t may stand for any choice of 
time scale, not only physical time or clock time. The terms "homogeneous" and 
"inhomogeneous" have to be understood in the context of the chosen time scale. 
Inhomogeneous time series by themselves are conceptually simple. The diffi-
culty lies in efficiently extracting and computing information from them. Time 
series operators are a major tool used to transform a raw, inhomogeneous time 
series to the (homogeneous or inhomogeneous) time series of the variable to be 
analyzed. 

In most books on time series analysis, the field of time series is restricted to ho-
mogeneous time series.2 In Section 3.2, we follow this restriction, which induces 
numerous simplifications, both conceptually and computationally. There, we need 
only one time series operator type: an operator to transform an inhomogeneous 
time series to a homogeneous one, type (a) of Figure 3.1. 

In Sections 3.3 and 3.4, we follow Zumbach and Muller (2001) and build 
a computational toolbox for directly and efficiently treating inhomogeneous time 
series. In practice, this toolbox is attractive enough to be applied to any time series, 
including homogeneous ones. Given a time series z, such as an asset price, the 
general point of view is to compute another time series, such as the volatility of 
the asset, by the application of an operator S.2[z] where the resulting series stays 
inhomogeneous with the same time points as the original series. This operator 
type is called type (b) in Figure 3.1. 

2 Classical textbooks on homogeneous time series are Granger and Newbold (1977); Priestley (1989); 
Hamilton (1994). 
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Any time series 
(inhomogeneous) 

(a) 

Regularizing Operator 

Any time series z 
(inhomogeneous) 

(b) 

Operator S2 

Homogeneous time series 
of same variable 

Time series R[z], new 
variable, same time points 

(inhomogeneous) 

FIGURE 3.1 Different operator types to study time series: 

(a) Sampling an inhomogeneous time series at regular time intervals. The result-
ing homogeneous time series can be treated by standard methods of time series analysis. 

(b) Computing a new variable from the initial variable while keeping the initial (in-
homogeneous) time points. Example: computing a series of local volatility values from 
the initial price series. 

An important distinction between operators has to be made. We introduce 
two operator types: 

■ Microscopic operators depend on the actual sampling of the inhomogeneous 
time series. Eliminating some random ticks leads to very different results. 

■ Macroscopic operators extract average behaviors of their time series argu-
ment. They are essentially immune to small variations of the individual 
ticks, including adding or eliminating few ticks. 

A possible technical definition of macroscopic operators is that they have a 
well-defined limit when the price quotes become infinitely dense. Practically, if 
the price quotes are sufficiently dense inside the range of the operator, we are close 
enough to this limit. For inhomogeneous time series, macroscopic operators are 
better behaved and more robust than microscopic operators. For homogeneous 
time series, this distinction is unnecessary because the sampling frequency is fixed 
and there is no reason to take a continuous-time limit or to formally add or remove 
ticks. Moreover, because homogeneous time series analysis is based on the back-
ward shift operator Z3 (which is microscopic), most of the conventional time series 
analysis becomes unusable for inhomogeneous time series. The classification 
between operators is further explored by Zumbach and Muller (2001). 

Macroscopic operators can be represented by convolutions and are discussed 
in Section 3.3. The archetype of a macroscopic operator is the exponential moving 
average (EMA) that computes a moving average with an exponentially decaying 
weight of the past. 

Microscopic operators are presented in Section 3.4. Examples are the time 
difference St between ticks (e.g., in 3ti = ti —ti_ ) and the backward shift operator 
13 defined in Section 3.4.1. 
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3.2 VARIABLES IN HOMOGENEOUS TIME SERIES 

Basic variables such as the price, the return, the realized volatility, and the spread 
are defined in Section 3.2. In order to capture the dynamics of the intraday market, 
some more variables such as the tick frequency are of interest. 

3.2.1 Interpolation 

Before defining different variables, the generation of homogeneous time series has 
to be explained. A homogeneous time series, although taken for granted in time 
series analysis, is an artifact that has to be constructed from the raw data, which is 
an inhomogeneous series with times tj and values z j = z(t3). The index j refers 
to the irregularly spaced sequence of the raw series. By utilizing an interpolation 
method, we construct a homogeneous time series with values at times to + 
regularly spaced by At, rooted at a time to. The index i refers to the homogeneous 
series. 

The time to + i At is bracketed by two times t j of the raw series 

max( j I tj < to + At) t < to + i < ty+1 (3.1) 

l R We interpolate between of and tf4,1. The two most important interpolation meth-
ods are linear interpolation 

oR• 

to+itt—tj
z(to i At) = z + (zy +1 — z3') t j,+1 — tjr

and previous-tick interpolation (taking the most recent value), 

(3.2) 

z(to + = z (3.3) 

which was already proposed by Wasserfallen and Zimmermann (1985). 
Both methods which are illustrated by Figure 3.2 have their merits. Previous-

tick interpolation respects causality as it exclusively uses information already 
known at time to + i At, whereas linear interpolation uses information from time 
tii+ , which lies in the future of time to + iAt. When using previous-tick inter-
polation over a gap (a long period of missing data) in the raw data, a spurious 
jump of z may be observed at the end of the gap, which may spoil a statistical 
analysis of extreme returns of z. In this example, linear interpolation would be the 
appropriate choice. As advocated in Muller et al. (1990), linear interpolation is 
the appropriate method for a random process with identically and independently 
distributed (i.i.d.) increments. Many statistical studies and model estimations can 
be alternatively done with both interpolation methods, in practice. The differ-
ence between the results indicates the sensitivity to the choice of the interpolation 
method. The difference is often small, even negligible thanks to high-frequency 
data. In the empirical studies of the book, the choice of the interpolation method 
is discussed whenever it matters. 
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1 II I 
to 11 

II I II 1 1 
t2 13 

1111 1 

FIGURE 3.2 Interpolation methods to obtain a homogeneous time series: selecting 
values at equally spaced time points ti, indicated by dotted vertical lines. The inhomoge-

4,1 neous time sequence of raw observations is indicated by ticks below the horizontal time 
axis and by dashed vertical lines (only for the observations bracketing the time points ti). 
Two important interpolation methods are illustrated by empty circles: linear interpolation 
(big circles) and previous-tick interpolation (small circles). 

The transformation of an inhomogeneous time series to a homogeneous one 
can also be understood as the result of a special microscopic time series operator 
which is discussed in Sections 3.3.1 and 3.4.2. 

3.2.2 Price 

Prices of assets are the most important variables explored in finance. Depending 
on the market structure and the data supplier, prices are available as quotes in 
different forms: 

■ Bid-ask price pairs: pbid and Pask 

■ Transaction prices (which may or may not be former bid or ask quotes) 
■ Bid, ask, transaction prices in irregular sequence (not in pairs, not syn-

chronous) 
■ Middle prices 

One individual observation at a time ti, also in the case of bid-ask pairs, is called 
a tick. 

Bid-ask price pairs are discussed first. FX prices and other asset prices, as 
well as nonprice variables such as spot interest rates and implied volatility figures 
from option markets, are quoted as bid-ask pairs. The most important variable 
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under study is the logarithmic middle price x. At time tj, it is defined as 

log Aid (ti ) + log Pask(tj) 
x (ti) = = log,/

2  Pbid(t Pask(tj) (3.4) 

where tj is the inhomogeneous sequence of the tick recording times. The variable 
x may simply be called the price in a context where its logarithmic nature is 
obvious and not explicitly relevant. It is based on the (geometric) average of the 
bid and ask price rather than either the bid or the ask price alone; this is a better 
approximation of the true price. The best choice, even better than Equation 3.4, 
might be a so-called effective price as discussed at the end of this Section 3.2.2. 

In the foreign exchange (FX) market, a further advantage of Equation 3.4 is 
obvious. FX prices can be seen from two sides, the value of the U.S. Dollar (USD) 
in Japanese Yen (JPY) and the value of the JPY in USD. Equation 3.4 is perfectly 
antisymmetric: if x is the USD-JPY price, the JPY-USD price is simply —x. 
Statistical results based on absolute differences of x (or volatility) are identical 
for USD-JPY and JPY-USD. This is a desired property because USD-JPY and 
JPY-USD are the same market. If the logarithmic transformation was avoided 
or the logarithm of the arithmetic average of bid and ask was taken instead of 
Equation 3.4, the antisymmetry would be violated and the statistical results of 
USD-JPY and JPY-USD would differ. The logarithmic transformation has the 
additional advantage of making returns (differences of x) dimensionless—that is, 
independent of the original units in which the price is measured. 

In the case of transaction or middle prices, Equation 3.4 is obviously replaced 
by x (ti) = log ptransact(tj ) or log prniddie (t1). For certain data types, the loga-
rithmic transformation is less suitable; it is avoided or made in a mathematically 
different form. For spot interest rates as discussed in Section 2.3.1, the logarithm 
of the capital increase factor can be taken: 

r•k xbid(0) = + ibid(tj)] (3.5) 

F . 
and analogous for the ask quote, where the interest rate i is inserted as a plain 
value, not in percent (e.g., 0.05 instead of 5%). Alternative definitions of x are 
explained whenever they are applied in this book. 

The inhomogeneous series x(ti) can be transformed to a homogeneous time 
series by using an interpolation method as explained in Section 3.2.1, using Equa-
tion 3.2 or 3.3. For the homogeneous series of prices, we use the index i: 

log pbid (4)-1- log pask(ti) 
x(ti) = x(At, = (3.6) 

2 

where ti is the homogeneous sequence of times regularly spaced by time intervals 
of size At. As already mentioned, t and At may refer to any definition of the time 
scale, not only physical time. 

In some markets such as the FX spot market, bid and ask prices are just 
indicative quotes produced by market makers who are often interested primarily 
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in either the bid or the ask price; the other price acts as a noncompetitive dummy 
value. This leads to a small error that affects Equation 3.4. Moreover, the quoted 
spread (ask minus bid price) does not exactly reflect the real spread, which is 
usually smaller as reported in Goodhart et al. (1995).3 Furthermore, because of 
transmission delays, it may be, for example, that market maker B enters a quote 
after market maker A, but that the quote of market maker B is the first to appear on 
a multi-contributor data feed. Data gaps due to transmission breakdowns become 
more significant at high frequencies. 

All these effects can be modeled in the form of an effective price which is 
closer to the transaction price than the price x of Equation 3.4. In the absence 
of real transaction prices, we may define an effective price algorithm by looking 
at the properties of the prices and the market organization. All quotes have a fi-
nite lifetime, which is roughly around two minutes during periods of average FX 
market activity and can strongly vary depending on the market and its state. We 
can define the effective price as consisting of the best bid and ask quotes available 
(or the averages of bid and ask) in a time window of the size of a quote lifetime. 
Another idea for such an algorithm would be to eliminate the negative first-order 
autocorrelation of the returns present at very high frequencies (see Section 5.2.1). 
An example of an algorithm for the computation of effective price is given in 
Bollerslev and Domowitz (1993) where the trade-matching algorithm of the in-
terbank market system "Reuters Dealing 2000" is used. Interestingly, the prices 
generated by this algorithm exhibit a positive rather than negative first-order au-
tocorrelation. In contrast, Goodhart et al. (1995) still obtain a negative first-order 
autocorrelation, though less pronounced, in their analysis of the Dealing 2000-2 
system. In this book, no definition of an effective price is given, but the behavior 
of prices in the very short term (seconds to minutes) is discussed in several aspects 
at several places. 

3.2.3 Return 

The return at time t1, r(ti), is defined as 

r(ti) = r(dt; ti) = x(ti) — x(ti — At) (3.7) 

where x (ii) is a homogeneous sequence of logarithmic prices as defined by Equa-
tion 3.6, and At is a time interval of fixed size. In the normal case, At is the 
interval of the homogeneous series, and r (ti) is the series of the first differences 
of x (ti). If the return interval is chosen to be a multiple of the series interval, we 
obtain overlapping intervals as discussed in Section 3.2.8. Returns are sometimes 
also called price changes. 

The return is usually a more suitable variable of analysis than the price, for 
several reasons. It is the variable of interest for traders who use it as a direct 
measure of the success of an investment. Furthermore, the distribution of returns 

3 In their one-day study of real transaction prices, Goodhart et al. (1995) found that although the 
actual spread is usually within the quoted spread, it could be larger in highly volatile periods. 
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is more symmetric and stable over time than the distribution of prices. The return 
process is close to stationary whereas the price process is not. 

3.2.4 Realized Volatility 

The realized volatility v(ti) at time ti is computed from historical data and it is 
also called historical volatility . It is defined as 

v(ti) = v(At, n, p; ti) = 

[ 1 n 

—n E Ir(At; 4-12-F.t)I P
I=I 

(3.8) 

where the regularly spaced returns r are defined by Equation 3.7, and n is the 
number of return observations. There are two time intervals, which are the return 
interval At, and the size of the total sample, nAt. The exponent p is often set to 
2 so that v2 is the variance of the returns about zero. In many cases, a value of 
p = 1 is preferred, although p may also be a fraction, p > 0. The choice of p is 
further discussed below. 

In order to compute realized volatility, the return interval, At and a sample 
of length nAt need to be chosen. By inserting At = 10 min in Equation 3.8, 
one can compute the volatility of regularly spaced 10-min returns. One important 
issue is that many users want their realized volatility in scaled form. Although 
the volatility may be computed from 10-min returns, the expected volatility over 
another time interval (e.g., 1 hr or 1 year) may also be calculated. Through a 
Gaussian scaling law, v2 a At, the following definition of scaled volatility is 
obtained: 

.1 A tscale 
V scaled = 

At 
(3.9) 

The most popular choice of the scaling reference interval Atscale is Atscaie =1 year. 
If this is chosen, vscaled is called an annualized volatility, vann: 

Vann = \/1 year

At 
(3.10) 

Practitioners often use annualized volatility in percent (multiplying yarn, by 100%). 
Typical annualized volatility values for some FX rates are around 10%. 

In practice, various volatility definitions may lead to confusion. Terms such 
as "one-day historical volatility" should be avoided because they do not express 
whether "one day" refers to the return measurement interval At, the sample size 
nAt or the scaling reference interval Atscaie. In order to clarify this, we give a 
detailed recipe to compute realized volatility in practice: 

• Consider and choose three time intervals: 

— The time interval of return observations, At 
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— The sample size nAt (the number n of return observations) 

— The scaling interval Atscaie, e.g., 1 year if annualized volatility is 
desired 

• Choose the exponent p of Equation 3.8 (often 2 or 1 as discussed below) 
and the basic time scale of the computation. Instead of physical time, a 
business time omitting the weekends may be used. 

• Compute realized volatility according to Equation 3.8. 

• Scale the result by applying Equation 3.9. If Atscale = 1 year, this means 
annualization. 

• If the volatility has to be expressed in percentage, multiply the result by 
100%. 

A traditionally popular choice of realized volatility is the annualized volatility of 
daily returns on a yearly sample (using p = 2): At = 1 working day, n 250, 
sample size ndt = 250 working days 1 year, Atscaie = 1 year. It should be 
noted that a business time scale with approximately 250 working days per year is 
used in this example instead of physical time. 

The following examples illustrate the computation of realized volatility. Sup-
pose we have regularly spaced 10-min returns from January 1, 1998 to Decem-
ber 31, 1999. This two-year sample has a total of n = 105120 return observations. 
From this data, we want to compute realized volatility in three forms: 

1. Volatility of 10-min returns on May 12, 1999, scaled to one day. The 
return interval is At = 10 min, n = 144, and therefore, the sample size 
is nAt = 1440 min = 1 day. v is computed from 144 returns according 
to Equation 3.8. To  obtain the desired scaling, Equation 3.9 is used to 
compute v„aied = day/10 min v = .,521.71 v = 12 v. 

2. Annualized volatility of 10-min returns over the whole sample where At =-
10 min. All return observations, i.e., n = 105120 are used to calculate 
v according to Equation 3.8. The sample size is nAt = 1051200 min = 
2 years. To obtain annualization according to Equation 3.10, yam, = 
0 year/10 min v = N/52596 v 229.3 v is computed. This reflects the 
fact that an average year contains about 365.25 days and thus 52596 10-
min intervals. Note that physical time is used in this particular example 
and weekends are not omitted. 

3. Annualized volatility of 20-min returns over the whole sample. This is 
analogous to the example above, except for the different time interval At = 
20 min. The 20-min returns Ri can be obtained by taking the sum of two 
10-min returns: R1 = ri + r2, R2 = r3 + r4, and so on.4 The number 
of R3 observations is half that of the 10-min returns: n = 52560. The 
sample size is nAt = 52560 x 20 min = 2 years, as above. v is computed 

4 An alternative scheme to obtain 20-min returns from I0-min returns would be as follows: R1 = 
r1 + r2, R2 = r2 + r3, R3 = r3 + r4 and so on. This scheme leads to overlapping 20-min returns and 
will be treated in Section 3.2.8. 
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from Equation 3.8 from the 20-min returns Rj instead of r j. To obtain 

annualization according to Equation 3.10, Vann = ,V1 year/20 min v = 

A/26298 v 2,',  162.2 v is computed. One average year contains 26298 20-
min intervals, hence the annualization factor. 

All of these examples are static and based on calculating realized volatility values 
at a fixed time ti. Of course, we can treat realized volatility as a time series and 
compute it for a sequence of time points: ti, ti+i, 4+27 • • • • For each of these 
realized volatility computations, the sample is shifted by one interval At. 

The concept of historical or realized volatility is rather old. We find it already 
in Taylor (1986)5 and in early high-frequency studies such as Muller et al. (1990). 
We distinguish three main types of volatility: 

• Realized volatility, also called historical volatility: determined by past 
observations by a formula such as Equation 3.8. 

• Model volatility: a virtual variable in a theoretical model such as GARCH 
or stochastic volatility (but there may be means to estimate this variable 
from the data). 

■ Implied volatility: a volatility forecast computed from market prices of 
derivatives such as options (see e.g., Cox and Rubinstein, 1985), based on 
a model of the underlying process such as the log-normal random walk 
assumed by Black and Scholes (1973). 

The term "realized volatility" has recently been popularized by Andersen et al. 
(2000) and others. By exploring realized volatility, Andersen et al. (2000) show 
that this is more than a conveniently measured quantity; it can also be used for 
process modeling. 

An alternative definition of realized volatility is 

vi(ti) = 1 
n — 1 . 

1 n r(At;ti_n+J)__ E r(At; ti—n+k) 

n k=1 

For p = 2, this is the standard deviation of the returns about the sample mean. 
This definition is popular in portfolio analysis where the risk is measured in terms 
of deviations of the return from the average. In most other applications such as 
risk management and in the examples of this book, Equation 3.8 is preferred to 
Equation 3.11. The two definitions essentially differ only in the presence of a 
strong linear drift (i.e., if the returns have an expectation far from zero). 

5 There, absolute values of returns and squared returns were explicitly introduced as proxies of 
volatility in autocorrelation studies. Note that these quantities are special cases of Equation 3.8 with 
n = 1 and p =1 (absolute return) or p = 2 (squared return). 
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Realized volatility v (ti) is based on a homogeneous series of returns as de-
fined by Equation 3.7 and is a homogeneous time series in its own right. As an 
alternative, we can also compute a homogeneous series of realized volatility based 
on overlapping returns (see Section 32.8) or directly compute volatility from an 
inhomogeneous series with the help of convolution operators (see Section 3.3.11). 

The parameters of Equation 3.8 have to be carefully chosen. A large exponent 
p gives more weight to the tails of the distribution. If p is too large, the realized 
volatility may have an asymptotically infinite expectation if returns have a heavy-
tailed density function. In practice, p should stay below the tail index of the 
distribution, which is empirically estimated to be around 3.5 for typical high-
frequency FX data (as explained in Section 5.4). The fourth moment of the return 
distribution often diverges. Moreover, there are studies where realized volatility 
appears in the squared form (as in autocorrelation studies of volatility). There, p 
should be limited to the half of the tail index. The empirical autocorrelation of 
squared returns is of little relevance. Instead, autocorrelation studies can be made 
with absolute values of returns (p = 1), as already done by Taylor (1986), Muller 
et al. (1990) and, Granger and Ding (1995). 

The choice of At and n is also important. Given a constant total sample size 
T nAt, Andersen et al. (2001) recommend choosing At as small as possible. 
This means a large number n of return observations and thus high precision and 
significance. However, realized volatility results become biased if At is chosen 
to be too small, as found by Andersen et al. (2000). Therefore, the best choice 
of At is somewhere between 15 min and 2 hr, depending on the market and the 
data type. The bias has several implications, among them the negative short-term 
autocorrelation found for some financial data (see Section 5.2.1). Corsi et al. 
(2001) propose a bias-corrected realized volatility with At around 5 min, in order 
to maintain the high precision gained due to a large n. Interval overlapping is a 
further method to make realized volatility more precise by a limited amount (see 
Section 3.2.8). 

A more fundamental question has to be discussed. Does a realized volatil-
ity with a constant T = nAt essentially stay the same if the time resolution, 
At, is varied? "Coarse" realized volatility (with large At) predicts the value of 
"fine" volatility (with small At) better than the other way around, as discussed 
in Section 7.4.1. This lead-lag effect indicates that the dynamics of volatility are 
complex, and realized volatility with one choice of At is not a perfect substitute 
for realized volatility with another value of At. 

The relative merits of realized, modeled, and implied volatility are discussed 
at several places in this book. For low-frequency (including daily) data, mod-
els such as GARCH (Bollerslev, 1986) and option markets may yield volatility 
estimates that are as good or better than realized volatility. For high-frequency, 
intraday data, realized volatility is superior. Intraday data cannot be described by 
one homogeneous GARCH model because of the seasonality and heterogeneity 
of the markets, as shown by Guillaume et al. (1994) and Gencay et al. (2001c, 
2002). 
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3.2.5 Bid-Ask Spread 

In bid-ask price pairs, the ask price is higher than the bid price.6 The bid-ask 
spread is their difference. A suitable variable for research studies is the relative 
spread s(tj): 

s(tj) = log pask(tj) — log pbid (tj) (3.12) 

where j is still the index of the original inhomogeneous time series. This definition 
has similar advantages as the definition of the logarithmic price x, Equation 3.4. 
The nominal spread (park — pbid) is in units of the underlying price, whereas 
the relative spread is dimensionless; relative spreads from different markets can 
directly be compared to each other. In the FX market, another advantage is obvious. 
If the relative spread of USD-JPY, for example, is s, the relative spread of JPY-
USD is also s, because the roles of bid and ask are interchanged. Results of 
spread studies are invariant under inversion of the rate. Other spread definitions 
do not have this perfect symmetry. The relative spread is sometimes just called 
the "spread" if its relative nature is obvious from the context. 

For spot interest rates, we can adapt the relative spread definition in the same 
sense as Equation 3.5: 

s(tj) = log[1 iasiatin — log[1 + ibid(ti)] (3.13) 

The relative spread is a positive bounded quantity that has a strongly skewed 
distribution. This can be a problem for certain types of analysis. A further trans-
formation leads to the "log spread," log s (ti). For bid-ask prices, the log spread 
is 

log s (if ) = log[log pask (ti) — log pbid (tj)] (3.14) 

Miller and Sgier (1992) have shown that its distribution is much less skewed and 
closer to symmetric than the distribution of s. 

The bid-ask spread reflects the transaction and inventory costs and the risk of 
the institution that quotes the price. On the side of the traders who buy or sell at 
a quoted price, the spread is the only source of costs as intraday credit lines on 
the foreign exchange markets are free of interest.? The spread can therefore be 
considered as a good measure of the amount of friction between different mar-
ket participants, and thereby as a measure of market efficiency. The relatively 
high efficiency of the major FX spot markets is reflected by the small average 
size of s. 

6 Some data sources have prices of minor markets in the spurious technical form of bid-ask pairs 
with bid = ask, presumably because only one of the two prices is available at a time. These quotes are 
not true bid-ask pairs. 

7 A trader taking a forward position will, of course, have to pay the interest on his or her position 
between the trade and the settlement as well as the additional spread on the forward rate. 
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In markets with indicative quotes from different market makers, individual 
spreads s (t1) are often affected by individual preferences of market makers and 
by habits of the market (see Section 5.6.5). Therefore, a homogeneous time series 
of spreads s (ti) generated by interpolation contains a rather high level of noise. A 
more suitable alternative is to compute average spreads within time windows and 
to build a homogeneous time series of these average spreads. 

3.2.6 Tick Frequency 

The tick frequency at time f (ti), is defined as 

1 
f (ti) = f (At; t1) = —

At 
N {x (t j) I ti — At < ti < tt} (3.15) 

where N {x(t1)} is the counting function and At is the size of the time interval in 
which ticks are counted. 

The "log tick frequency," log f (ti), has been found to be more relevant in 
Demos and Goodhart (1992). We can also define the average time interval between 
ticks, which is simply the inverse tick frequency, f —1 (ti). Tick frequency can also 
be computed by a time series operator as explained in Section 3.4.5. 

The tick frequency is sometimes taken as a proxy for the transaction volume on 
the markets. As the name and location of the quoting banks are also available, the 
tick frequency is also sometimes disaggregated by banks or countries. However, 
equating tick frequency to transaction volume or using it as a proxy for both 
volume and strength of bank presence suffers from the following problems. First, 
although it takes only a few seconds to enter a price quotation in the terminal, if 
two market makers happen to simultaneously enter quotes, only one quote may 
appear on the data collector's screen; second, during periods of high activity, some 
operators may be too busy to enter the quote into the system; third, a bank may 
use an automatic system to publish prices to advertise itself on the market; fourth, 
the representation of the banks depends on the coverage of the market by data 
vendors such as Reuters or Bridge. This coverage is changing and does not 
entirely represent the whole market. For example, Asian market makers are not 
as well covered by Reuters as their European counterparts; they are more inclined 
to contribute to the local financial news agencies such as Minex. Big banks have 
many subsidiaries; they may use one subsidiary to quote prices made by a market 
maker in another subsidiary on another continent. Quotes from differently reliable 
and renowned sources have very different impacts on the market. For all these 
reasons, we should be cautious when drawing conclusions on volume or market 
share from tick frequency. 

3.2.7 Other Variables 

A set of other variables of interest are as follows: 

■ The "realized skewness" of the return distribution. Roy (1952) evaluates 
the extreme downside risk in portfolio optimization in terms of the cubic 
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root of the third moment of returns. The skewness of returns can also be 
measured by a time series operator (see Section 3.3.12). 

■ The volatility ratio, the ratio of two volatilities of different time resolutions: 
yam (m At, n, p)/vann (At, inn, p), based on Equations 3.8 and 3.10, with 
an integer factor m > 1. This is a generalization of the variance ratio 
studied in Lo and MacKinlay (1988), Poterba and Summers (1988) and 
Campbell et al. (1997). The volatility ratio is around I for a Brownian 
motion of x, higher if x follows a trend, lower if x has mean-reverting 
noise. The volatility ratio (or an analogous volatility difference) is thus a 
tool to detect trending behavior. 

■ The direction change indicator, counting the number of essential trend 
reversals within a time interval as defined by Guillaume et al. (1997). 

3.2.8 Overlapping Returns 

Some variables, notably returns, are related to time intervals, not only single time 
points. When statistically investigating these variables, we need many observa-
tions. The number of observations can be increased by choosing overlapping 
intervals. For returns, a modified version of Equation 3.7 is used: 

ri = r (ti ) = x (ti) — x (ti — m At) = xi — xi (3.16) 

where ti is again a regular sequence of time points (for any choice of the time 
scale), separated by intervals of size At. The interval of the return, however, is 
m At, an integer multiple of the basic interval At. If ri is considered for every i, 
we obtain a homogeneous series of overlapping returns with the overlap factor m. 
The corresponding series of nonoverlapping returns would be rm, rem, r3m, • • • 

Figure 3.3 illustrates the concept of overlapping intervals. Does a statistical 
study gain anything from using overlapping as opposed to non-overlapping returns? 
The number of observations can be increased by using overlapping intervals with 
a growing overlap factor m, thereby keeping the return interval mAt constant. At 
the same time, neighboring return observations become increasingly dependent. 
Thus a gain in statistical significance is not obvious. The problem was discussed 
in Hansen and Hodrick (1980), where a method of estimating parameters and their 
significance limits from overlapping observations has been developed and applied. 
In Dunis and Keller (1993), a "panel regression" technique is presented and applied 
where the overlapping observations are grouped in several nonoverlapping series 
with phase-shifted starting points. 

Muller (1993) has investigated this question under the simplifying assumption 
that x is drawn from an identical and independent distribution 

X(ti) - E Ara a 2) (3.17) 
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-* Ati. -4-- m At , 
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FIGURE 3.3 An overlapping scheme of time intervals to compute a homogeneous time 
series of overlapping returns. All returns are measured over a time interval of size mot. 
The intervals on the top time axis alone are not overlapping; an overlapping scheme arises 
when the phase-shifted intervals on the two lower time axes are added. In this example, 
the overlap factor is m = 3. 

where the r: are independent. The investigated returns are sums of small-interval 
returns: 

ri = E t —m+1 
i'=1 

(3.18) 

The conclusion of Muller (1993) is that the method of overlapping leads to a distinct 
but not overwhelming increase of precision and significance in most applications. 
Some main derivations and results of that study are presented here. There is one 
special case where overlapping does not help, which is the empirical mean of 
returns. Assume a large sample with n nonoverlapping intervals, covering the mn 
small intervals of size At with returns from ri to rnil n. The same information can 
be used to compute the m(n — 1) + 1 overlapping returns from rnito rmn. The 
mean of these overlapping returns is 

1 

m (n — 1) +1 

mn 

E Yi = 

I=111 

1 m-1 

1 

m (n —1) +1 

nut 171 

EE 

m (n — +1 Euo-± 4,2" A _ +  
(n —1) + 1 j=1 

The corresponding nonoverlapping mean is 

1 n— Erme 1 

n 

mn 

Yi

(3.19) 

m(n-1)+1 

E r i 

i=nt 

(3.20) 

by using Equation 3.18. A comparison to the last term of Equation 3.19 shows 
that both means are essentially equal for n >> 1; they are based on the sum of 
the small-interval returns r'. The remaining difference vanishes with in the 
large-sample limit, whereas the error of both means is proportional to n-0.5 in the 
same limit.8 Overlapping remains a valid method, but it is unable to reduce the 
error of the empirical mean. 

8 Muller (1993) has more details of this analysis. 
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Applications other than the computation of mean returns are more interesting. 
The most important example is realized volatility. A special version of Equati on 3.8 
is used: 

vP = (ti) = 2— Iri-N+j I P

J=1 
(3.21) 

where the returns ri are defined by Equation 3.16 and the returns are overlapping 
if m > 1. An analytical exploration of this realized volatility is possible under 
the assumption of Equation 3.17 and the special choice p = 2. By substituting 
Equation 3.18, we obtain 

) 
N (m 

2 

vi N E E r i-N-m+j+j , (3.22) 
j=1 j'=1 

The expectation value of v? can be computed by expanding this expression where 
the cross products of r' vanish due to the iid assumption. The result is 

E[q] = m a2 (3.23) 

This is the theoretical expectation of the squared return of the Brownian motion 
over an interval of size rn At . Equation 3.21 is thus an unbiased estimator, at least 
for p = 2. 

The realized volatility v? of Equation 3.21 has an error whose variance is 

Ef[v? — m 6 2]21 = E[4] m2 6 4 

N 
) 2-

Ar2 

E
E E 
j=i f=i 

2 

- m2 6 4 

(3.24) 

where Equations 3.22 and 3.23 have been used. The further computation of this 
expression is somewhat tedious because of the two squares. A long sum is obtained 
where each term is a constant times four factors of the type rl. The expectation 

values of these terms follow from the Gaussian i.i.d. assumption: (1) rl has an 

expectation of 364 (the fourth moment of the Gaussian random variable), (2) raj 11 

has an expectation of 64 (if i j), and (3) each term with a factor xi to an odd 
power has the expectation zero. The resulting variance of the error is 

E{[v? 0.2]2) 
m(m2 -1)  1 _ 

3 N 2 (2 m2 + 1) N 
1 (3.25) 

for N > m. 
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This has to be compared to the corresponding error of an overlap-free compu-
tation from the same sample. There are only n nonoverlapping return observations 
(with N = mn). The variance of the error is 

En
2 4 

r2 _ m 62 

=1 J 12} 

= 
2 m 0. 

 n
 = 

2 m3 a4 E i 
N 

(3.26) ini n 

This has been computed as a special case of Equation 3.25 (case m = 1 with only 
n observations, but with a variance m62 where in is the original overlap factor). 

Equations 3.25 and 3.26 are now compared. The ratio of the two error vari-
ances is 

— m az}2}Eav7 2 1 
, for N>> (3.27) 

Eti=i 
r2in 

— m a2]2} —3 + 3 m2 

This ratio is < 1, so overlapping is indeed a means to reduce the stochastic error of 
realized volatility to a certain extent. In the limit of a very high overlapping factor 
m, the error variance is reduced to a minimum of two-thirds of the value without 
overlapping. An overlap factor of only m = 2 already reduces the error variance 
to 75%. 

This finding can also be formulated by defining the effective number of ob-
servations,neff. This is the number of nonoverlapping observations that would be 
needed to reach the same error variance as that based on overlapping observations. 
From Equations 3.25 and 3.26, we obtain 

3 m N 3 m2 

neff —    n , for n >> 1 (3.28) 
2 m2 -I- 1 2 m2 + 1 

This can be expressed as a rule of thumb. Using the method of overlapping en-
hances the significance of realized volatility like adding up to 50% of independent 
observations to a nonoverlapping sample. 

In Muller (1993), an analogous study was made for "realized covariance," the 
empirically measured covariance between two time series, based on simultaneous 
overlapping returns of both series. The result is similar. The estimator based on 
overlapping returns is unbiased and has a reduced error variance. The effective 
number of observations is again given by Equation 3.28. 

In two cases, we have found an error reduction due to overlapping intervals. 
This provides a motivation for a general use of overlapping returns, also in other 
cases such as realized volatility with another exponent p (see Equation 3.8) and 
in other studies such as the analysis of the distribution of returns. The user has 
to be aware of and to account for the serial dependence due to overlapping and 
its possible effects on the results, as we have done in the derivations presented 
earlier. The increase in significance can roughly be expected to be as given by 
Equation 3.28, with some deviations due to the non-Brownian nature of the raw 
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data. Heavy-tailed distributions, serial dependence, and heteroskedasticity as well 
as the choice of p may affect the behavior of the stochastic error. 

The statistical significance can alternatively be increased by choosing return 
intervals shorter than m At. However, these short-term returns would be a different 
object of study. The technique of overlapping has the advantage of leaving the 
object of study unchanged while increasing the precision. 

3.3 CONVOLUTION OPERATORS 

The original inhomogeneous data can be processed by convolution operators to 
build new inhomogeneous time series. This approach, developed by Zumbach and 
Muller (2001), is fundamentally different from the construction of homogeneous 
time series as discussed in Section 3.2. A set of basic convolution operators 
is defined that can be combined to compute more sophisticated quantities, for 
example, different kinds of volatility or correlation. A few stylized properties 
of these operators are explored, but the main emphasis is to build a sufficient 
vocabulary of operators well suited to high-frequency data analysis. 

In this process, we should keep in mind a few important considerations: 

■ The computations must be efficient. Even if powerful computers are be-
coming cheaper, typical tick-by-tick data in finance are 100 or even 10,000 
times more dense than daily data. Clearly, we cannot afford to compute 
a full convolution for every tick. For this reason, our basic workhorse is 
the exponential moving average (EMA) operator, which can be computed 
very efficiently through an iteration formula. A wealth of complex but 
still efficient operators can be constructed by combining and iterating the 
basic operators. 

■ A stochastic behavior is the dominant characteristic of financial processes. 
For tick-by-tick data, it is not only the values but also the time points of 
the series which are stochastic. In this random world, pointwise values are 
of little significance and we are more interested in average values inside 
intervals. Thus the usual notion of return also has to be changed. With 
daily data, a daily return is computed by Equation 3.7, as a pointwise 
difference between the price today and the price yesterday. With high-
frequency data, a better definition of the daily return may be the difference 
between the average price of the last few hours and an average price from 
one day ago. In this way, it is possible to build smooth variables well 
suited to random processes. The calculus has to be revisited in order to 
replace pointwise values by averages over some time intervals. 

■ Analyzing data typically involves a characteristic time range; a return r[r], 
for example, is computed on a given time interval r. With high-frequency 
data, this characteristic time interval can vary from a few minutes to several 
weeks. This is taken care of by making explicit all of these time range 
dependencies in the formulation of operators. 
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■ We usually want smooth operators with smooth kernels (weighting func-
tions of moving averages). A simple example of a discontinuous operator 
is an average with a rectangular weighting function, say of range r. The 
second discontinuity at "now—r," corresponding to forgetting events, cre-
ates unnecessary noise. Instead, we prefer kernels with a smooth decay to 
zero. Only at t = now, we often prefer a jump in the kernel form. This 
jump gives a positive weight to the last piece of information and thus a 
rapid response in real time. For a discontinuous kernel, the weight at t = 
now is inversely proportional to the range of the operator. Therefore, there 
is a trade-off between a fast reaction, which has more noise, and a smooth 
average behavior with a slow reaction time. Besides this fundamental 
noise created by the advance of events, it is better to have continuous and 
smooth operators. 

The generalization to inhomogeneous time series introduces a number of tech-
nical peculiarities. In this Section 3.3, only macroscopic operators are treated, 
which, because of their time-translation invariance, can be represented by convo-
lutions. A convolution is defined as an integral, therefore the series should have 
representation in continuous time. Actual data is known only at discrete sampling 
times, so some interpolation needs to be used in order to properly define the con-
volution integral. The same problem is present when constructing an artificial 
homogeneous time series from inhomogeneous data as in Section 3.2.1. Another 
technical peculiarity originates from the fact that our macroscopic operators are 
ultimately composed of iterated moving averages. All such EMA operators have 
noncompact kernels where the kernels decay exponentially, but strictly speaking 
they are positive. This implies an infinite memory; a build-up must be done over 
an initialization period before the error of an operator value becomes negligible. 

The examples of Sections 3.3 and 3.4 are from the foreign exchange mar-
ket. The data set is USD-CHF for the week of Sunday, October 26, to Sunday, 
November 2, 1997. This week has been selected because on Tuesday, October 28, 
some Asian stock markets crashed, causing turbulences in many markets around 
the world, including the FX market. Yet the relation between a stock market crash 
originating in Asia and the USD-CHF foreign exchange rate is quite indirect, mak-
ing this example interesting. The prices of USD-CHF for the example week are 
plotted in Figure 3.4. When not specified otherwise, all figures from Figure 3.4 
to 3.17 display quantities for the same example week. All of these figures have 
been computed using high-frequency data. The results have been sampled each 
hour using linear interpolation. The computations have been done in physical 
time, therefore exhibiting the full daily and weekly seasonalities contained in the 
data. 

Finally, we want to emphasize that the techniques presented in this section are 
suitable for application to a wide range of statistical computations in finance such 
as in risk management. An early application can be found in Pictet et al. (1992) 
and a recent application is in Zumbach et al. (2000). 
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FIGURE 3.4 The FX rate USD-CHF for the week of Sunday, October 26, to Sunday, 
November 2, 1997. The high-frequency data are sampled hourly, using linear interpolation 
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3.3.1 Notation Used for Time Series Operators 

For time series operators in Sections 3.3 and 3.4, we use a suitable notation that 
sometimes differs from the conventions used for homogeneous time series. The 
letter z is used to represent a generic time series. The elements or ticks, (ti, zi), 
of a time series z consist of a time t1 and a scalar value z3. As everywhere in 
Chapter 3, t may stand for any (business) time scale, not only physical time. The 
generalization to multivariate inhomogeneous time series is fairly straightforward 
(except for the business time scale aspect) and will not be discussed. The value 
zj = z(tj) and the time point tj constitute the j-th element of the time series z. 
The sequence of sampling (or arrival) times is required to be growing, ti > ri—i • 
The strict inequality is required in a true univariate time series and is theoretically 
always true if the information arrives through one channel. In practice, the arrival 
time is known with finite precision, say of a second, and two ticks may well 
have the same arrival time. Yet for most of the formulae that follow, the strict 
monotonicity of the time process is not required. In the special case where the 
time series is homogeneous, the sampling times are regularly spaced, ti — 4-1 = 
St. If a time series depends on some parameters 6, these are made explicit between 
square brackets, z[0]. 

An operator 12, from the space of time series into itself, is denoted by Q[z], as 
already illustrated by Figure 3.1(b). The operator may depend on some parameters 
12[61; z]. The value of O[z] at time t is C2[z](t). For linear operators, a product 
notation 12z is also used. The average over a whole time series of length T is 
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denoted by E := 11T f dt z(t). For the probability density function (pdf) of 
z, we use p (z) . A synthetic regular (or homogeneous) time series (RTS), spaced 
by St, derived from the irregular time series z, is denoted by RTS[8t; z]. For 
a standardized time series for z, we use the notation 2 = (z - E [z])/o-[z] and 
cr[z]2 = E [(z — E [z])2]. The letter x is used to represent the logarithmic middle 
price as defined by Equation 3.4. 

3.3.2 Linear Operator and Kernels 

We focus on operators with the following useful properties: 

• Linear operators, where S.2[zi c z2] = C2[zi] c cl [z2] 
• Time-translation invariant operators, where S2[z(t — A 0](0 = 

Mz(t)lit — At) 
• Causal operators, where Q[z](t) exclusively depends on information al-

ready know at time t. If S-2 [z] (t) depends on future events after t, it does 
not respect causality at time t and is noncausal. 

An operator with all these three properties can be represented by a convolution 
with a kernel co (t): 

f —co 
S2[z](t) = dt' co(t — 1') z(t') 

STq f 0 dt' co(t i)z(t — t') 

(3.29) 

The causal kernel 6)(0 is defined only on the positive semiaxis t > 0 and should 
decay for t large enough. With this convention for the convolution, the weight 
given to past events corresponds to the value of the kernel for positive argument. 
The value of the kernel w(t — t') is the weight of events in the past, at a time interval 
t — t' from t. In this convolution, z(t') is a continuous function of time. Actual 
time series z are known only at the sampling time ti and should be interpolated 
between sampling points. As in Section 3.2.1, we can define different interpolation 
procedures for the value of z(t) between tj_i and tj. Three are used in practice: 

• Previous value, z(t) = zj-1 
• Next value, z(t) = zj 
• Linear interpolation, z(t) = zj-1 (zj — zj-1)(t — tj-1)/(ti — tj— ) 

The linear interpolation seems preferable as it leads to a continuous interpolated 
function. Moreover, linear interpolation defines the mean path of a random walk, 
given the start and end values. Unfortunately, it is non-causal, because in the 
interval between ti_1 and ti, the value at the end of the interval zi is used. Only 
the previous-value interpolation is causal, as only the information known at ti-1 
is used in the interval between ti_1 and ti. Any interpolation can be used for 
historical computations, but for the real-time situation, only the causal previous-
value interpolation is defined. In practice, the interpolation scheme is almost 
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irrelevant for good macroscopic operators, (i.e., if the kernel has a range longer 
than the typical sampling rate). 

The kernel w(t) can be extended to t E R, with w(t) = 0 for t < 0. This is 
useful for analytical computation, particularly when the order of integral evalua-
tions has to be changed. If the operator Q is linear and time-translation invariant 
but noncausal, the same representation can be used except that the kernel may be 
nonzero on the whole time axis. 

We often use two broad families of operators that share general shapes and 
properties: 

• An average operator has a kernel which is nonnegative, w(t) > 0, and 
normalized to unity, f dt co(t) = 1. This implies that S2[Parameters; 
Const] =Const. 

• Derivative and difference operators have kernels that measure the differ-
ence between a value now and a value in the past (with a typical lag of t). 
Their kernels have a zero average, f dt co(t)= 0, such that S2 [Parameters; 
Const] = 0. 

The integral in Equation 3.29 can also be evaluated in scaled time. In this 
case, the kernel is no more invariant with respect to physical time translation (i.e., 
it depends on t and t'), but it is invariant with respect to translation in business 
time. If the operator is an average or a derivative, the normalization property is 
preserved in scaled time. 

The n-th moment of a causal kernel w is defined as 

00 
(rn)„ := f dt w(t) tn

0 
(3.30) 

The range R and the width w of an operator Q are defined, respectively, by 
the following relations: 

R[Q] = (Ow = dt w(t)t 

w2[Q] ((t — R)2)„ = f dt w(t) (t — R)2

(3.31) 

For most operators Q[r] depending on a time range r, the formula is set up so that 
IR[Q[r]ll = r. 

Linear operators can be applied successively: 

QC [Z] = 22 0 0 1[Z] = 0 2 01 Z 02[°1[Z]1 
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It is easy to show that the kernel of 52c is given by the convolution of the kernels 
of Qi and 522. 

03C = *W2 or (3.32) 

coc (t — t') = f dt" coi(t — t") w2(t" — t') (3.33) 
co 

For causal operators, 

t/2 cot (L
2 

2 

06)20, _t )
fort > 0 (3.34) we(t) = f dt' 

—t/2 

and we (t) = 0 for t < 0. Under convolution, range and width obey the following 
simple laws: 

Rc 
2 

zuC 
(12)c, 

Ri ± R2 

= W? 

= (t2)1 + (t2)2 ± 2r1r2 

(3.35) 

3.3.3 Build-Up Time Interval 

As our basic building blocks are EMA operators, most kernels have an exponential 
tail for large t. This implies that, when starting the evaluation of an operator at time 
T, a build-up time interval must be elapsed before the result of the evaluation is 
accurate enough (i.e., the influence of the initial error at T has sufficiently faded). 
This heuristic statement can be expressed by quantitative definitions. We assume 
that the process z(t) is known since time —T and is modeled before as an unknown 
random walk with no drift. Equation 3.29 for an operator s-2 needs to be modified 
in the following way: 

S-2[—T; z](t) = f dt' co(t — t') z(t') . (3.36) 
—T 

The "infinite" build-up corresponds to 2[—co; z](t). For —T < 0, the average 
build-up error c at t = 0 is given by 

E2 = ERS-2[—T ; z](0) — Q[—cx); z](0))2] = ERI —T dt' co(—t') z(t')) 
—00 

(3.37) 

where E is the expectation operator. For a given build-up error E, this equation 
is the implicit definition of the build-up time interval T. In order to compute the 
expectation, we need to specify the considered space of random processes. We 
assume simple random walks with constant volatility cr, namely 

E[(z(t) — z(t 30)2] = a-6t (3.38) 
1 y 

2] 
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The symbol ly denotes one year, so St/1 y is the length of St expressed in years. 
With this choice of units, a is an annualized volatility, with values roughly from 1% 
(for bonds) to 50% (for stocks), and a typical value of 10% for foreign exchange. 
For t < —T, t' < —T, we have the expectation 

'
E[z(t)z(t')] = z(—T)2 + a min(

—t — T —t — T )

ly 1y 

Having defined the space of processes, a short computation gives 

(3.39) 

62 = z(—T)2 (f
oo dt Q (t))

2 

+ 2o- f co dt co(t) f dt' co(ti) t' — T (3.40) 
7' 7' iy 

The first term is the "error at initialization" corresponding to the decay of the initial 
value [— T] (—T) = 0 in Equation 3.36. A better initialization is Q[—T](—T) 
= z(—T) (0, corresponding to a modified definition for S2 [71(t): 

0[T ; z](t) = z(—T) f dt' co(t — t') f dt' co(t — t')z(?) (3.41) 

Another interpretation for the above formula is that z is approximated by its most 
probable value z(—T) for t < T. With this better definition for Q, the error 
reduces to 

E
2 

= 
26r 2 f dt w(t)  dt' co(O t  T

f' 1 y 
(3.42) 

For a given kernel co, volatility a and error E, Equation 3.42 is an equation for 
T. Most of the kernels introduced in the next section have the scaling form 
w t) = itXtlr)Ir. In this case, the equation for T = T/r reduces to 

co 
€2  2o- 

1 y 
f dt w(t) 

//t
dt' c-o(t') (t' (3.43) 

Because this equation cannot be solved for general operators, the build-up interval 
should be computed numerically. This equation can be solved analytically for the 
simple EMA kernel, and it gives the solution for the build-up time 

—T = 
+2 

2 
ln ( (-7- 

1 y 
(3.44) 

As expected, the build-up time interval is large for a small error tolerance and 
for processes with high volatility. For operators more complicated than the simple 
EMA, Equation 3.43 is in general not solvable analytically. A simple rule of thumb 
can be given such that the heavier the tail of the kernel, the longer the required 
build-up. A simple measure for the tail can be constructed from the first two 
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moments of the kernel as defined by Equation 3.30. The aspect ratio AR [S-2] is 
defined as 

AR[0] = (t2 ) 12 2 1(t),, 

Both (t) and -At2) measure the extension of the kernel and are usually proportional 
to t; thus the aspect ratio is independent of t and dependent only on the shape 
of the kernel, in particular its tail property. Typical values of this aspect ratio are 
2/,/ for a rectangular kernel and ,%/2 for a simple EMA. A low aspect ratio means 
that the kernel of the operator has a short tail and therefore a short build-up time 
interval in terms oft. This is a good rule for nonnegative causal kernels; the aspect 
ratio is less useful for choosing the build-up interval of causal kernels with more 
complicated, partially negative shapes. 

3.3.4 Homogeneous Operators and Robustness 

There are many ways to build nonlinear operators; an example is given in Sec-
tion 3.3.13 for the (moving) correlation. In practice, most nonlinear operators are 
homogeneous of degree p, namely S2[ax] = S2[x] (here the word "homo-
geneous" is used in a sense different from that in the term "homogeneous time 
series"). Translation-invariant homogeneous operators of degree pq take the sim-
ple form of a convolution 

C2[z](r) = [f dt' co(t — t')1z(t')113] 
—oo 

for some exponents p and q. An example is the moving norm (see Section 3.3.8) 
with w corresponding to an average and q = 1/p. 

Nonlinear operators can also be used to build robust estimators. Data errors 
(outliers) should be eliminated by a data filter prior to any computation, as dis-
cussed in Chapter 4. As an alternative or in addition to prior data cleaning, robust 
estimators can reduce the dependency of results on outliers or the choice of the 
data cleaning algorithm. This problem is acute mainly when working with re-
turns, because the difference operator needed to compute returns (r) from prices 
(x) is sensitive to outliers. The following modified operator achieves robustness 
by giving a higher weight to the center of the distribution of returns r than to the 
tails: 

(3.45) 

Q[f ; r] = f -1 { OD' (011 (3.46) 

where f is an odd, monotonic function over R. Possible mapping functions f (x) 
are 

sign(x)1x1Y = xlx1Y-1 (3.47) 

sign(x) when y 0 (3.48) 

tanh(x/xo) (3.49) 
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Robust operator mapping functions defined by Equation 3.47 have an exponent 
0 < y < 1. In some special applications, operators with y > 1, emphasizing the 
tail of the distribution, may also be used. In the context of volatility estimates, 
the usual L2 volatility operator based on squared returns can be made more robust 
by using the mapping function f = sign(x),51 (the signed square root); the 
resulting volatility is then based on absolute returns as in Equation 3.67. More 
generally, the signed power f (x) = sign(x)lx IP transforms an L2 volatility into 
an L2P volatility. This simple power law transformation is often used and there-
fore included in the definition of the moving norm, moving variance or volatility 
operators, Equation 3.60. Yet some more general transformations can also be used. 

3.3.5 Exponential Moving Average (EMA) 

The basic exponential moving average (EMA) is the simplest linear operator, the 
first one in a series of linear operators to be presented. It is an averaging operator 
with an exponentially decaying kernel: 

ema(t) = 
e—tit 

(3.50) 

This EMA operator is our foundation stone, because its computation is very ef-
ficient and other more complex operators can be built with it, such as moving 
averages (MAs), differentials, derivatives, and volatilities. The numerical evalu-
ation is efficient because of the exponential form of the kernel, which leads to a 
simple iterative formula first proposed by Muller (1991): 

EMA[r; z](tn) = (3.51) 

EMA[r; zl(tn-1) + (v — 1-1,) zn—i + (1 — v) Zn

with 
to — tn-1 

p, = 

where v depends on the chosen interpolation scheme, 

1 previous point 
v =  (1 — µ)/a linear interpolation (3.52) 

p, next point 

Due to this iterative formula, the convolution is never computed in practice; only 
few multiplications and additions have to be done for each tick. In Section 3.3.14, 
the EMA operator is extended to the case of complex kernels. 

3.3.6 The Iterated EMA Operator 

The basic EMA operator can be iterated to provide a family of iterated exponential 
moving average operators EMA[r, n]. Practitioners of technical analysis have 
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applied simple and (occasionally) iterated EMA operators to homogeneous time 
series for a long time. Iterated EMA operators for inhomogeneous time series 
were first explored by Muller (1991) and systematically developed and discussed 
by Zumbach and Muller (2001). A simple recursive definition is 

EMA[t, n; z] = EMA[r; EMA[t, n — 1; z]] (3.53) 

with EMA[r, 1; z] = EMA[r; z]. This definition can be efficiently evaluated by 
using the iterative formula in Equation 3.51 for all its basic EMAs. There is one 
subtle point related to the choice of the interpolation scheme in Equation 3.52. The 
EMA of z necessarily has an interpolation scheme different from that used for z. 
The correct form of EMA[r; z] between two points is no longer a straight line but 
a nonlinear (exponential) curve. (Theoretically, it is straightforward to derive the 
corresponding exact interpolation formula.) When using one of the interpolation 
schemes of Equation 3.52 after the first iteration, we are making a small error. Yet 
if the kernel is wide as compared to to — tn_i, this error is indeed very small. As 
a suitable approximation, we recommend using linear interpolation in the second 
and all further EMA iterations, even if the first iteration was based on the next-point 
interpolation. The only exception occurs if z„ is not yet known; then we need a 
causal operator based on the previous-point interpolation. 

The kernel of EMA[r, n] is 

1 ( t n—1 e—t /T
ema[-c, nl(t) =   (3.54) 

(n — 1)! 

This family of functions is related to Laguerre polynomials, which are orthogonal 
with respect to the measure e—t (for t = 1). Through an expansion in Laguerre 
polynomials, any kernel can be expressed as a sum of iterated EMA kernels. 
Therefore, the convolution with an arbitrary kernel can be evaluated by iterated 
exponential moving averages. Yet the convergence of this expansion may be 
slow, namely high-order iterated EMAs may be necessary, possibly with very 
large coefficients. This typically happens if one tries to construct operators that 
have a decay other (faster) than exponential. Therefore, in practice, we construct 
operators empirically from a few low-order EMAs, in a way to minimize the 
build-up time. The set of operators provided by Section 3.3 covers a wide range of 
computations needed in finance. The range, width, and aspect ratio of the iterated 
EMA are 

R = nr 

(t2) = n(n ± 1)r2 

w2 n r2 

AR = (n 1)/n 

(3.55) 

The iterated EMA[r, n] operators with large n have a shorter, more compact kernel 
and require a shorter build-up time interval than a simple EMA of the same range 
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FIGURE 3.5 ma[r, , nl(t) for n = 1, 2, 4, 8, and 16, for r = 1 

nt. This is indicated by the aspect ratio AR, which decreases toward 1 for large 
n. Each basic EMA operator that is part of the iterated EMA has a range r, which 
is much shorter than the range nr of the full kernel. Even if the tail of the kernel 
is still exponential, it decays more quickly due to the small basic EMA range t. 

To further extend our computational toolbox, we build another type of compact 
kernel by combining iterated EMAs, as shown in the next section. As the iterated 
EMAs, these combined iterated EMAs have a shorter build-up time interval than 
a simple EMA of the same range. 

3.3.7 Moving Average (MA) 

A very convenient moving average is provided by 

MA[r, n] = 1  — E EMA[r', 2r  k] with r' =   (3.56) 
n k=1 n + 1 

The parameter r' is chosen so that the range of MA[r, n] is R = r, independently 
of n. This provides a family of more rectangular-shaped kernels, with the relative 
weight of the distant past controlled by n. Kernels for different values of n and 
r = 1 are shown in Figure 3.5. Their analytical form is given by 

ma[r, 12](0 = (3.57) 
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FIGURE 3.6 ma[r, n](t) for n = 1, 2, 4, 8, and 16, for r = 1, on a logarithmic scale. 

For n = oo, the sum corresponds to the Taylor expansion of exp(t/r'), which 
cancels the term exp(—t/r'), making the kernel constant. For finite n, when t/r' 
is small enough, the finite sum will be a good approximation of exp(t/e). Small 
enough means that the largest term in the sum is of order one: (t le)n /n! 1. 
For large n, the condition (tie)n In! — 1 corresponds to t ^ 2r (using Stirling's 
approximation n! ^ nn). Therefore, for t << 2r,the series approximates well the 
Taylor expansion of an exponential 

n-1 k 

E
1 (t 
_ _ l e

n + 1 1 
ma —> — — 

n 2z 
This explains the constant behavior of the kernel fort < 2r. Fort > 2r large, the 
exponential always dominates and the kernel decays to zero. Therefore, for large 
n, this operator tends to a rectangular moving average for which AR = 2/,A For 
n values of n ^ 5 and higher, the kernel is rectangular-like more than EMA-like; 
this can be seen in Figure 3.5. These rectangular-like kernels are preferred to the 
rectangular kernel itself because they fade smoothly rather than abruptly. Abrupt 
"forgetting" of past events leads to superfluous noise in the operator results. 

The decay of MA kernels is also shown in Figure 3.6. The aspect ratio of the 
MA operator is 

4(n + 2) 
AR =  

3(n + 1) 

Clearly, the larger n, the shorter the build-up. 

(3.58) 

0082



3.3 CONVOLUTION OPERATORS 63 

This family of operators can be extended by "peeling off" some EMAs with 
small k: 

with 

1  
nsup 

MA[r ninf, nsup] = E EMA[ri, k] 
nsup — nue + 1 

k=ninf 

— 
2r 

nsup + ninf 

and with 1 < !Tint- < nsup. By choosing such a modified MA with nil > 1, we 
can generate a lagged operator with a kernel whose rectangular-like form starts 
after a lag rather than immediately. At the same time, the kernel loses its abrupt 
behavior at t = 0 and becomes fully continuous, thus reducing noise in the results 
even further. However, the time delay implied by the lag makes such kernels less 
attractive for real-time applications. 

Almost everywhere, a moving average operator can be used instead of a sample 
average. The sample average of z(t) is defined by 

1 to

E [z] =   dt' z(t') (3.59) 
te — is J is

where the dependency on start-time t, and end-time te is implicit on the left-
hand side. This dependency can be made explicit, for example with the notation 
E [te — ts ; z] (te), thus demonstrating the parallelism between the sample average 
and a moving average MA[2r ; z] (t). The conceptual difference is that when using 
a sample average, t, and te are fixed, and the sample average is a number (the sample 
average is a functional from the space of time series to R), whereas the MA operator 
produces another time series. Keeping this difference in mind, we can replace the 
sample average E [.] by a moving average MAN. For example, we can construct 
a standardized time series Zs (as defined in Section 3.3.1), a moving skewness, 
or a moving correlation (see the various definitions below). Yet be aware that 
sample averages and MAs can behave differently, for example E [(z — E [z])2] = 
E [z2] — E [z]2, whereas MA[(z — MA[z])2] MA[z2] — MA[z]2. 

3.3.8 Moving Norm, Variance, and Standard Deviation 

With the efficient moving average operator, we can define the moving norm, mov-
ing variance, and moving standard deviation operators: 

MNorm[r, p; = IzI P]l/P
MVar[r, p; z] = MA[r: lz — MA[r ; z]IP] (3.60) 

MSD[t, p; = MA[t; Iz — MA[r ; z]lP]l iP 

The norm and standard deviation are homogeneous of degree 1 with respect to z. 
The p-moment is related to the norm by tip = MA[IzIP] = MNorm[z]P . Usu-
ally, p = 2 is taken. Lower values for p provide a more robust estimate (see 
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FIGURE 3.7 A schematic differential kernel. 

Section 3.3.4), and p = 1 is another common choice. Yet even lower values can 
be used, for example, p = 1/2. In the formulae for MVar and MSD, there are two 
MA operators with the same range t and the same kernel. This choice is in line 
with common practice for the calculation of empirical means and variances in the 
same sample. Yet other choices can be interesting, for example the sample mean 
can be estimated with a longer time range. 

'1 3.3.9 Differential 

As argued in the introduction, a low-noise differential operator suitable to stochas-
tic processes should compute an "average differential", namely the difference 
between an average around time "now" over a time interval ti and an average 
around time "now — r" on a time interval r2. The kernel may look like that in 
Figure 3.7. Kernels of a similar kind are used for wavelet transforms. This analogy 
also applies to other kernel forms and is further discussed in Section 3.3.14. 

Usually, t, ti and t 2 are related and only the t parameter appears, with ri
r2 ti r / 2. The normalization of the differential A is chosen so that A [r ; c] = 
0 for a constant function c = c(t) = constant, and A [r ; t] = r. Note that our 
point of view is different from that used in continuous-time stochastic analysis. In 
continuous time, the limit t —> 0 is taken, leading to the Ito derivative with its 
subtleties. In our case, we keep the range r finite in order to be able to analyze 
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FIGURE 3.8 An example of a differential operator kernel (full line) for r = 1. The 
dotted curve corresponds to the first two terms of the operator y(EMA[ar, 11 -I-
EMA[ar, 2]), the dashed curve to the last term 2y EMA[afir, 4]. 

a process at different time scales (i.e., for different orders of magnitudes of r). 
Moreover, for financial data, the limit r —> 0 cannot be taken because a process 
is known only on a discrete set of time points (and probably does not exist in 
continuous time). 

The following operator can be selected as a suitable differential operator: 

A[r] = y (EMA[ar, 1] + EMA[ar, 2] — 2 EMA[ai6r, 4]) (3.61) 

with y = 1.22208, )6 = 0.65 and a-1 = y(8,6 — 3). This operator has a well-
behaving kernel that is plotted in Figure 3.8. 

The value of y is fixed so that the integral of the kernel from the origin to the 
first zero is one. The value of a is fixed by the normalization condition and the 
value of )5 is chosen in order to get a short tail. The tail can be seen in Figure 3.9. 
This shows that after t = 3.25r, the kernel is smaller than 10-3, which translates 
into a small required build-up time of about 4r. 

In finance, the main purpose of a 6, operator is computing returns of a time 
series of (logarithmic) prices x with a given time interval r. Returns are normally 
defined as changes of x over r; we prefer the alternative return definition r[r] = 

[r ; x]. This computation requires the evaluation of six EMAs and is therefore 
efficient, time-wise and memory-wise. An example using our standard week is 
plotted in Figure 3.10, demonstrating the low noise level of the differential. The 
conventionally computed return r[r](t) = x(t) — x(t — r) is very inefficient to 
evaluate for inhomogeneous time series. The computation of x(t — r) requires 
a high, unbounded number of old ti, xi values to be kept in memory, and the ti 
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FIGURE 3.9 The absolute value of the kernel of the differential operator (full line), in 
a logarithmic scale. The dotted line shows a simple EMA with range r, demonstrating the 
much faster decay of the differential kernel. 

interval bracketing the time t — r has to be searched for. This return definition 
corresponds to a differential operator kernel made of two S functions (or to the 
limit ri , r2 0 of the kernel in Figure 3.7). The quantity x(t) — x(t — r) can 
be quite noisy, so a further EMA might be taken to smooth it. In this case, the 
resulting effective differential operator kernel has two discontinuities, at 0 and 
at r, and decays exponentially—that is, much slower than the kernel of A [r ; x]. 
Thus it is cleaner and more efficient to compute returns with the A operator of 
Equation 3.61. Another quantity commonly used in finance is x — EMA[r; x], 
often called a momentum or an oscillator. This is also a differential with the kernel 
8(t) — exp(—t/r)/r, with a 8 function at t = 0. A simple drawing shows that the 
kernel of Equation 3.61 produces a much less noisy differential. Other appropriate 
kernels can be designed, depending on the application. In general, there is a trade-
off between the averaging property of the kernel and a short response to shocks of 
the original time series. 

3.3.10 Derivative and y-Derivative 

The derivative operator 

D[r] = O[r] (3.62) 

behaves exactly as the differential operator, except for the normalization D[r; t] 
= 1. This derivative can be iterated in order to construct higher order derivatives: 

D2[r] = D[r; D[r]] (3.63) 
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FIGURE 3.10 A comparison between the differential computed using the formula in 
Equation 3.61 with r = 24hr (full line) and the pointwise return x(t) — x(t — 24h) (dotted 
line). The time lag of approximately 4hr between the curves is essentially due to the 
extent of both the positive part of the kernel (0 < t < 0.5) and the tail of the negative 
part (t > 1.5). 

The range of the second-order derivative operator is 2 t. More generally, the n-th 
order derivative operator EY', constructed by iterating the derivative operator n 
times, has a range nr . As defined, the derivative operator has the dimension of an 
inverse time. It is easier to work with dimensionless operators and this is done by 
measuring t in some units. One year provides a convenient unit, corresponding to 
an annualized return when D[t]x is computed. The choice of unit is denoted by 

/ ly, meaning that r is measured in years, yet other units may also be used. For 
a random diffusion process, a more meaningful normalization for the derivative is 
to take D[r] = [r]fir . For a space of processes as in Section 3.3.3, such 
that Equation 3.38 holds, the basic scaling behavior with r is eliminated, namely 
E [(D[r]z)21 = 62 . More generally, we can define a y-derivative as 

A[r]
D[r, y] = (3.64) 

(r/ly)Y 

In particular 

y = 0 differential 

y = 0.5 stochastic diffusion process (3.65) 

y = 1 the usual derivative 

An empirical probability density function for the derivative is displayed in Fig-
ure 3.11. We clearly see that the main part of the scaling with z is removed when 
using the y-derivative with y = 0.5. 
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FIGURE 3.11 The annualized derivative D[r, y = 0.5; x] for USD-CHF from January 
1, 1988 to November 1, 1998. The shortest time intervals t correspond to the most 
leptokurtic curves. In order to discard the daily and weekly seasonality, the time scale 
used is the business time # as explained in Chapter 6 and in Dacorogna et al. (1993). 
The data were sampled every 2 hr (in #-time) to construct the curves. The Gaussian 
probability density function added for comparison has a standard deviation of o. = 0.07, 
similar to that of the other curves. 

3.3.11 Volatility 

The most common computation of realized or historical volatility is given by 
Equation 3.8 in Section 3.2.4, based on regularly spaced (e.g., daily) observations. 
Realized volatility can also be defined and measured with the help of convolution 
operators. 

Volatility is a measure widely used for random processes, quantifying the 
size and intensity of movements, namely the current "width" of the probability 
distribution P (Az) of the process increment Az, where A is a difference operator 
yet to be chosen. Often the volatility of market prices is computed, but volatility 
is a general operator that can be applied to any time series. There are many ways 
to turn this idea into a definition, and there is no unique, universally accepted 
definition of volatility in finance. In our new context, we can reformulate the 
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realized volatility of Equation 3.8 as an L2 norm, 

n-1 

I

1/2 1

Volatility[r, r'; z] =— E (8 RTS[e; z])?
n 

with r = n r' (3.66) 

69 

i=0 

where the operator 8 computes the difference between successive values (see Sec-
tion 3.4.3), r1 is the return interval, and r is the length of the moving sample. 
RTS[e; z] is an artificial regular time series, spaced by r', constructed from the 
irregular time series Z. The construction of homogeneous time series was dis-
cussed in Sections 3.2.1 and 3.2.2; it is reformulated in Section 3.4.2 in terms of 
the RTS operator. Realized volatility based on artificially regularized data suffers 
from several drawbacks: 

• For inhomogeneous time series, a synthetic regular time series must be 
created, which involves an interpolation scheme. 

• The difference is computed with a pointwise difference. This implies some 
noise in the case of stochastic data. 

• Only some values at regular time points are used. Information from other 
points of the series, between the regular sampling points, is thrown away. 
Resulting from this information loss, the estimator is less accurate than it 
could be. 

• It is based on a rectangular weighting kernel—that is, all points have 
constant weights of either 1/n or 0 as soon as they are excluded from the 
sample. A continuous kernel with declining weights leads to a better, less 
disruptive, and less noisy behavior. 

• By squaring the returns, this definition puts a large weight on large changes 
of z and therefore increases the impact of outliers and the tails of P(z). 
Also, as the fourth moment of the probability distribution of the returns 
might not be finite (Muller et al., 1998), the volatility of the volatility 
might not be finite either. In other words, this estimator is not very robust. 
These are reasons to prefer a realized volatility defined as an L1 norm: 

N-1 

Volatility[r, T1; = — 
N 

E I A [RTS[e; zit I i=0
with r = N r' 

(3.67) 

There are various ways to introduce better definitions for inhomogeneous time 
series. These definitions are variations of the following one: 

Volatility[r, p; z] = MNorm[T/2, p; AV; (3.68) 

where the moving norm MNorm is defined by Equation 3.60. For A, we can take 
the differential operator of Equation 3.61 or a similar operator. Let us emphasize 
that no homogeneous time series is needed, and that this definition can be computed 
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simply and efficiently for high-frequency data because it ultimately involves only 
EMAs. Note the division by 2 in the MNorm of range r /2. This is to attain an 
equivalent of Equation 3.66, which is parametrized by the total sample size rather 
than the range of the (rectangular) kernel, 

The volatility defined by Equation 3.68 is still a realized volatility although 
it is now based on inhomogeneous data and operators. The kernel form of the 
differential operator A has a certain influence on the size of the resulting volatility. 
A "soft" kernel will lead to a lower mean value of volatility than a "hard" kernel 
whose positive and negative parts are close to delta functions. This has to be 
accounted for when applying operator-based volatility. 

The variations of Equation 3.68 mainly include the following: 

■ Replacing the norm MNorm by a moving standard deviation MSD as 
defined by Equation 3.60. By this modification, the empirical sample 
mean is subtracted from all observations of A [e; z]. This leads to a 
formula analogous to Equation 3.11, whereas Equation 3.68 is analogous 
to Equation 3.8. Empirically, for most data in finance such as FX, the 
numerical difference between taking MNorm and MSD is very small. 

■ Replacing the differential A by a y -derivative D [r, y]. The advantage of 
using the gamma derivative is to remove the leading r dependence, for 
example by directly computing the annualized volatility, independent of 
r. An example is given by Figure 3.12. 

Let us emphasize that the realized volatility in Equations 3.66 through 3.68 
depends on the two time ranges r and r' and, to be unambiguous, both time intervals 
must be given. Yet, for example, when talking about a daily volatility, the common 
language is rather ambiguous because only one time interval is specified. Usually, 
the emphasis is put on r'. A daily volatility, for example, measures the average 
size of daily price changes (i.e., r' =1 day). The averaging time range r is chosen 
as a multiple of e, of the order t > r' up to r = 1000r' or more. Larger multiples 
lead to lower stochastic errors as they average over larger samples, but they are less 
local and dampen the time variations in the frequent case of nonconstant volatility. 
In empirical studies, we find that good compromises are in the range from r = 16r' 
to r = 32r'. 

On other occasions, for example in risk management, one is interested in the 
conditional daily volatility. Given the prices up to today, we want to produce an 
estimate or forecast for the size of the price move from today to tomorrow (i.e., the 
volatility within a small sample of only one day). The actual value of this volatility 
can be measured one day later; it has r = 1 day by definition. To measure this 
value with acceptable precision, we may choose a distinctly smaller 2', perhaps 
r' = 1 hr. Clearly, when only one time parameter is given, there is no simple 
convention to remove the ambiguity. 
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FIGURE 3.12 The annualized volatility computed as MNorm[r/2; D[r/32, y = 
0.5; x]] with z = lhr. The norm is computed with p = 2 and n = 8. The plotted 
volatility has five main maxima corresponding to the five working days of the example 
week. The Tuesday maximum is higher than the others, due to the stock market crash 
mentioned in the introductory part of Section 3.3. 

3.3.12 Standardized Time Series, Moving Skewness, and Kurtosis 

From a time series z, we can derive a moving standardized time series: 

z — MA[T; z] 
2[T1 = 

MSD[r ; 
(3.69) 

In finance, z stands for the price or alternatively for another variable such as the 
return. Having defined a standardized time series 2[r], the definitions for the 
moving skewness, and moving kurtosis are straightforward: 

MSkewness [ri , r2; z] = MA [ri ; 2[z-2]3] (3.70) 

MKurtosis[ri r2; z] = MA[ri; 2[r2]4] 

Instead of this kurtosis, the excess kurtosis is often used, whose value for a normal 
distribution is 0. We obtain the excess kurtosis by subtracting 3 from the MKurtosis 
value. The three quantities for our sample week are displayed in Figure 3.13. 

3.3.13 Moving Correlation 

Several definitions of a moving correlation can be constructed for inhomogeneous 
time series. Generalizing from the statistics textbook definition, we can write two 
simple definitions: 
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FIGURE 3.13 The standardized return, moving skewness, and moving kurtosis. The 
returns are computed as r = = 15 min; x] and standardized with vi = T-2 = 24hr. 
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MCorrelationi [z; y, z] = 
MA[ (y — MA[y])(z — MA[z]) 

(3.71) 
MSD[y] MSD[z] 

MCorrelation2[r ; y z] = MA 
[ (y — MA[Y]) — MA[z]) 

= 

MA[ y 

2 MSD[y] MSD[z] 

(3.72) 

where all of the MA and MSD9 operators on the right-hand sides are taken with 
the same decay constant T. These definitions are not equivalent because the MSD 
operators in the denominator are time series that do not commute with the MA 
operators. Yet both definitions have their respective advantages. The first defini-
tion obeys the inequality —1 < MCorrelationi < 1. This can be proven by noting 
that M A[z2](t) for a given t provides a norm on the space of (finite) time series 
up to t. It happens because the MA operator has a strictly positive kernel that acts 
as a metric on the space of time series. In this space, the triangle inequality holds 

MARY+ z)21 < 'IMA[Y2] + ,./MA[z21, and, by a standard argument, the in-
equality on the correlation follows. With the second definition (Equation 3.72), 
the correlation matrix is bilinear for the standardized time series. Therefore, the 
rotation that diagonalizes the correlation matrix acts linearly in the space of stan-
dardized time series. This property is necessary for multivariate analysis, when a 
principal component decomposition is used. In risk management, the correlation 
of two time series of returns, x and y, is usually computed without subtracting the 
sample means of x and y. This implies a variation of Equations 3.71 and 3.72 

MA[ y z I 
MCorrelation'i [z; y, z] = 

MNorm[y] MNorm[z] 
(3.73) 

MCorrelation'Jr; y, z] = MA 
[ mNorm[y 

y z] MNorm[z] 1 (3.74) 

where again the same r is chosen for all MA operators. In general, any reasonable 
definition of a moving correlation must obey 

lim MCorrelation[r ; y, z] ---> p[y, z] (3.75) 
r--*Do 

where p [y, z] is the theoretical correlation of the two stationary processes x and y. 
Generalizing the definition (Equation 3.72), the requirements for the correlation 
kernel are to construct a causal, time translation invariant, and a linear operator 
for 9 and 2. This leads to the most general representation 

roo 
MCorrelation[9, (t) = f: dt" c(t', t") 9(t — t')i(t — t") (3.76) 

9 See Equation 3.60. 
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We also require symmetry between the arguments where MCorrelation[2, 9] = 
MCorrelation[9, 2]. Moreover, the correlation must be a generalized average, 
namely MCorrelation[Const, Const'] = Const Const', or, formulated for the ker-
nel, f f o'D° dt' dt" c(t', t") = 1. There is a large choice of possible kernels that 
obey these requirements. For example, Equation 3.72 is equivalent to the kernel 

c(t', t") = — t")ma(t14). 

3.3.14 Windowed Fourier Transform 

In order to study a time series and its volatility at different time scales, we want to 
have a tool similar to a wavelet transforni,10 which adapts to causal signals. The 
motivation is to reveal structures of price movements related to certain frequen-
cies. Similar to wavelet transforms, we want a double representation in time and 
frequency, but we do not require an invertible transformation because our aim is 
to analyze rather than further process the signal. This gives us more flexibility in 
the choice of the transformations. A simple causal kernel with such properties is 
like ma[r](t) sin(kt/r), where ma[r] (t) is still the MA kernel of Equation 3.57. 
Essentially, the sine part is (locally) analyzing the signal at a frequency kir and the 
MA part is taking a causal window of range r. As we want a couple of oscillations 
in the window 2r, we choose k between k ^ 7 and k 57. Larger k values 
increase the frequency resolution at the cost of the time resolution. The basic idea 
is to compute an EMA with a complex r; this is equivalent to including a sine and 
cosine part in the kernel. The nice computational iterative property of the moving 
average is preserved. The first step is to study complex iterated EMAs. The kernel 
of the complex ema is defined as 

ema[4-] (t) = where 4- = 1 — (1 ik) (3.77) 

where is complex but r is again a real number. The choice of the normalization 
factor lit is somewhat arbitrary (a factor will produce the same normalization 
for the real case k = 0) but leads to a convenient definition of the windowed Fourier 
kernel that follows. By using the convolution formula, one can prove iteratively 
that the kernel of the complex EMA[-, n] is given by 

1 t ) n-1 e -4.t
emaR',111(t) =  

(n  1)! r 
(3.78) 

which is analogous to Equation 3.54. The normalization is such that, for a constant 
function c(t) = c, 

EMA[', n; c] — 
(1 ik)n 

10 An introduction to wavelet methods is studied extensively in Gencay et al. (2001b). 

(3.79) 
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FIGURE 3.14 The kernel wf(t) for the windowed Fourier operator, for n = 8 and 
k = 6. Three aspects of the complex kernel are shown: (1) the envelope (= absolute 
value), (2) the real part (starting on top), and (3) the imaginary part (starting at zero). 

Similar to Equation 3.51, we obtain an iterative computational formula for the 
complex EMA: 

0% 

EMAR; Zl(tn) = 
v — 1 — v 

ti EMAR; Z](tn—i)  zn—I   Zn 
1 -Fik 1-Fik 

with 

a to-1) 

It = 

(3.80) 

where v depends on the chosen interpolation scheme as given by Equation 3.52. 
We define the (complex) kernel wf(t) of the windowed Fourier transform WF as 

k, n](t) = ma[x, n](t) e—ikt I T

1 n 1 t 

1

-1-1

n (j — 1)! r j =1 

—Eemak , jlit) 
j—i 

(3.81) 

The kernel is shown in Figure 3.14. Another appropriate name for this operator 
might be CMA for "complex moving average." The normalization is such that, 
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for a constant function c(t) c, 

NwF = WF[i;, n; c] = E 
n  (1 + ik)j 

j=i 

To provide a more convenient real quantity, with the mean of the signal subtracted, 
we can define a (nonlinear) normed windowed Fourier transform as 

NormedWF[ , n; = n; z] — NwF MA[r, n; 

The normalization is chosen so that 

NormedWF[ , n; c] = 0 

(3.82) 

In Equation 3.82, we are only interested in the amplitude of the measured fre-
quency; by taking the absolute value we have lost information on the phase of the 
oscillations. 

Windowed Fourier transforms can be computed for a set of different r values to 
obtain a full spectrum. However, there is an upper limit in the range of computable 
frequencies. Results are reliable if t clearly exceeds the average time interval 
between ticks. For r values smaller than the average tick interval, results become 
biased and noisy; this sentence applies not only to windowed Fourier transforms 
but also to most other time series operators. 

Figure 3.15 shows an example of the normed windowed Fourier transform for 
the example week. The stock market crash is again nicely spotted as the peak on 
Tuesday, October 28. 

Using our computational toolbox of operators, other quantities of interest can 
be easily derived. For example, we can compute the relative share of a certain fre-
quency in the total volatility. This would mean a volatility correction of the normed 
windowed Fourier transform. A way to achieve this is to divide NormedWF by a 
suitable volatility, or to replace z by the standardized time series 2 in Equation 3.82. 

3.4 MICROSCOPIC OPERATORS 

As discussed in Section 3.1, it is in general better to use macroscopic operators 
because they are well behaved with respect to the sampling frequency. Some mi-
croscopic operators allow the extraction of tick-related information at the highest 
possible frequency. An example of such an operator is the microscopic volatil-
ity defined later. The computation of the tick frequency requires (by definition) 
microscopic operators. We also want to extend to inhomogeneous time series the 
usual operators applied to homogeneous time series, such as the shift operator. 
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FIGURE 3.15 The normed windowed Fourier transform, with z = 1 hr, k = 6 and 
n = 8. 

3.4.1 Backward Shift and Time Translation Operators 

The backward shift operator B shifts the value of the time series by one event 
backward B[z]j = (ti, zi_i), but the time associated to each event is not changed. 
Some authors use the equivalent lag operator L instead. It shifts the time series 
values but leaves the time part untouched. The inverse operator 5 -1 will shift 
the series forward. It is well defined for regular and irregular time series. Only 
for a homogeneous time series spaced by St, this operator is equivalent to a time 
translation by —St (followed by a shift of the time and value series by one event 
with respect to the irrelevant index i). 

The operator T translates the time series by St forward T[St ; z]i = (ti +St , zi); 
namely it shifts the time part but leaves the time series values untouched. Note 
that for an inhomogeneous time series, this operator defines a series with another 
set of time points. 

3.4.2 Regular Time Series Operator 

From the time series z, irregularly spaced in time, the operator RT S[to, St] con-
structs an artificial homogeneous time series at times to + 168 t, regularly spaced 
by St, rooted at to. This involves an interpolation scheme as discussed in Sec-
tion 3.2.1. Depending on this scheme, the RTS operator can be causal or not. The 
regular time series can also be constructed as being regular on a given business 
time scale rather than in physical time. 

The RTS operator allows us to move from inhomogeneous to the homogeneous 
time series as presented in Section 3.2.2. For many computations, it is mandatory to 
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have homogeneous data, for example when modeling financial data with ARMA or 
GARCH processes. Another example is the computation of empirical probability 
distributions. Such computations are done with a smooth version of the formula 

1 
1p(z) = 0 dt 8(z— z'(t)) (3.83) 

with z'(t) the (continuously interpolated) empirical data. In the time integral, a 
measure can be added, or the integral can be evaluated in business time to account 
for the seasonalities. The evaluation of the time integral is computationally heavy, 
and it is much simpler to generate a regular time series and to use the familiar 
binning procedure to obtain a histogram of z. Note also that a moving probability 
distribution can be defined by replacing the time integral by an MA operator (see 
the remark at the end of Section 3.3.7). 

3.4.3 Microscopic Return, Difference, and Derivative 

From the tick-by-tick price time series, the microscopic return for a quote is defined 
as ri = xi — x j_ i . This return can be attributed to one quote, even if, strictly 
speaking, it is related to two subsequent quotes. Note that this is a "microscopic" 
definition that involves neither a time scale nor an interpolation scheme. Using 
the backward shift operator 13, the return time series can be defined as 

r = x — B[x] = (1— B) x = Sx (3.84) 

where the microscopic difference operatorll is S = (1 —13). The lag n difference 
operator is defined by S[n] = (1 —13"). 

The microscopic derivative operator 8 is defined as 

a[sto]xi =  x; — xj_ i 8x 

Sto ti — ti_1 Sto +St 
(3.85) 

The constant 8to regularizes the expression when ti = ti_i. A reasonable value 
of 8t0 must be small; the actual choice depends on the application. Similar to the 
macroscopic y -derivative, a microscopic y-derivative can be defined as 

a[sto, y]x = (sto + sty 
Sx 

(3.86) 

The best parameters should follow a study yet to be done for the random process 
of x. The constant Sto regularizes the expression when ti = ti_i. 

These derivatives are potentially very noisy and can be averaged. In general, 
the macroscopic derivative D (Equation 3.64) seems more relevant for applications 
to random processes. 
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FIGURE 3.16 Microscopic volatility, computed with y = 0.5, SID = 0.001 seconds, the 
time interval expressed in years (annualized), and t = 1hr. 

3.4.4 Microscopic Volatility 

The microscopic volatility is defined as the norm of the microscopic derivative, 

Fk Microscopic volatility[r ; =- MNorm[r/2; az] (3.87) 

which also depends on the implicit parameters (St° and y of az. Let us emphasize 

f9 that this definition does not require a regular time series (and that it is not an MA 
2,7 

of the macroscopic definition of volatility). In a way, this definition uses all of the 
information available on the process z. The constant r controls the range on which 

f9 
the volatility is computed. The microscopic volatility for our standard example 
week is displayed in Figure 3.16. 

3.4.5 Tick Frequency and Activity 

The tick frequency f (t1) counts the number of ticks per time unit. One defini-
tion based on regular time intervals is already given by Equation 3.15 (see also 
Guillaume et al. (1997), for example). In general, the tick frequency at time t1 is 
defined as 

f VW) = 7,N{ti I ti E [t — T, t]} (3.88) 

where N ftil counts the number of elements in a set and where T is the sample 
time interval during which the counting is computed. The tick frequency has 

11 The operator 5 should not be confused with the 5 function used in Chapter 3. 
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FIGURE 3.17 Tick activity A as defined by Equation 3.90, ticks per hour, computed 
with r = lhr. The five working days of the example week can be clearly seen. 

the dimension of an inverse time and is expressed in units such as ticks/minute 
or ticks/day. This simple definition has some properties that may not always be 
desired: 

■ The formula is computationally cumbersome when computed on a moving 
sample, especially for large T. 

■ It is an average over a rectangular window. We often prefer moving av-
erages whose kernel (= weighting function) fades more smoothly in the 
distant past. 

■ If no quotes are in the interval spanned by T, this definition will give 
f = 0. A related problem is the unusable limit T 0 if one wants to 
measure an instantaneous quote rate. 

For these reasons, we prefer the definition in Equation 3.90. The tick rate is defined 
as 

1 
a[oto]j = 

Sto + tj — rj—i 

The tick rate has the same dimension as the tick frequency. This definition has the 
advantage of being related only to the time interval between two subsequent ticks. 
Following Equation 3.89, an activity can be attributed to one tick, analogous to a 
return that is attributed to the jth tick by rj = xj — xj_i = (Sx) j. The activity A 
is the average tick rate during a time interval t: 

(3.89) 

A[r; z] = MA[x/2; a[z]] (3.90) 
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To avoid the spurious singularity when = t1, the MA operator has to be 
evaluated with the next-point interpolation (see Equation 3.52). This makes the 
computation numerically stable even when an extremely small value of no in 
Equation 3.89 is chosen. 

Figure 3.17 shows the behavior of A in our example week. At first glance, 
the activity A looks rather different from the tick frequency f. Yet an interesting 
feature of this definition is to be equivalent to the tick frequency f when the MA 
operator is a rectangular moving average with r = T/2 (this is easy to prove 
by computing the integral of the piecewise constant function a) . However, the 
activity A has some advantages such that it is much simpler to compute on a 
moving window, and the weighting function of the past can be controlled through 
the choice of the MA kernel. 
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4 
ADAPTIVE DATA CLEANING 

4.1 INTRODUCTION: USING A FILTER TO CLEAN THE DATA 

High-frequency data are commercially transmitted as a piece of real-time infor-
mation to human users, usually traders. These data users are professionals who 
know the context (e.g., the market state and the likely level of a quoted price). If 
bad data is transmitted, professional users immediately understand, and implicitly 
clean the data by using information they have in their personal information set. 
They do not need additional human or computerized input to check the correctness 
of the data. 

The situation changes if the data users are different, such as researchers investi-
gating historical high-frequency data or computer algorithms that extract real-time 
information for a given purpose (e.g., a trading algorithm, risk assessment). If bad 
quotes are used, the results are inevitably bad and totally unusable in the case of 
aberrant outliers. In the experience of the authors and many other researchers, 
almost every high-frequency data source contains some bad quotes. Data cleaning 
is a necessity; it has nothing to do with manipulation or cosmetics. 

Data cleaning is a very technical topic. Readers interested in economic results 
rather than methods and researchers enjoying the privilege of possessing cleaned 
high-frequency data may skip the remainder of Chapter 4. 

82 
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A data cleaning methodology requires some criteria to decide on the correct-
ness and possible elimination of quotes. As long as the data set is not too large, 
human judgment may be a sufficient criterion. In this book, however, we focus on 
high-frequency data with thousands and millions of observations. Therefore, the 
criteria have to be formalized through a statistical model that can be implemented 
as a computer algorithm. Such an algorithm is called a data filter. In this chapter, 
the term "filter" is exclusively used within the context of data cleaning and the 
term "filtering" is a synonym of "cleaning." Data cleaning is done as a first, in-
dependent step of analysis, before applying any time series operator as studied in 
Chapter 3 and before statistically analyzing the resulting time series. We choose 
this approach because it is universally applicable, regardless of the type of further 
analysis. There is a less favorable alternative to prior data filtering: robust statis-
tics, where all the data (also outliers) are included in the main statistical analysis. 
The methods of robust statistics depend on the nature of the analysis and are not 
universally applicable. 

Cleaning a high-frequency time series is a demanding, often underestimated 
task. It is complicated for several reasons: 

s+ 
■ The variety of possible errors and their causes 

ru ■ The variety of statistical properties of the filtered variables (distribution 
1/4..4 functions, conditional behavior, structural breaks) 

■ The variety of data sources and contributors of different reliability 

■ The irregularity of time intervals (sparse/dense data, sometimes data gaps 
of long duration) 

■ The complexity and variety of the quoted data as discussed in Chapter 2: 
cr?1 transaction prices, indicative prices, FX forward points (where negative 

values are allowed), interest rates, figures from derivative markets, trans-
^Fr. action volumes, bid-ask quotes versus single-valued quotes 

■ The necessity of real-time filtering (some applications need instant infor-
mation before seeing successor quotes) 

The data cleaning algorithm presented here is adaptive and also presented in 
Milner (1999). The algorithm learns from the data while sequentially cleaning a 
time series. It continuously updates its information base in real time. 

Further guidelines are needed in a filtering methodology: 

■ The cause of data errors is rarely known. Therefore the validity of a quote 
is judged according to its plausibility given the statistical properties of the 
series. I 

1 We have to distinguish true, plausible movements from spurious movements due to erroneous 
quotes. Brock and Kleidon (1992) suggest decomposing observed movements in the data according to 
three causes: (1) erroneous quotes, (2) bid-ask spread dynamics due to the pressure on trading factors, 
and (3) other economic forces. 
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■ A neighborhood of quotes, called the filtering window, is needed to judge 
the credibility of a quote. Such a data window can grow and shrink ac-
cording to data quality. 

■ Quotes with a complex structure (i.e., bid-ask) are split into scalar vari-
ables to be filtered separately. The filtered variables are derived from the 
raw variables (e.g., the logarithm of a bid price or the bid-ask spread). 
Some special error types may also be analyzed for full quotes before data 
splitting. 

■ Numerical methods with convergence problems (such as model estimation 
and nonlinear minimization) are avoided. The chosen algorithm produces 
well-defined results in all situations. 

■ The filter needs to be computationally fast. This requirement excludes 
algorithms starting from scratch for each new incoming tick. The chosen 
algorithm is sequential and iterative. It uses the existing filter information 
base when a new tick arrives, with a minimum amount of updating. 

■ The filter has two modes, which are the real-time and the historical modes. 
Due to the windowing technique, both modes are supported by the same 
filter. In historical filtering, the final validation of a quote is delayed until r▪ u successor quotes have been seen. 

7.1 

4.2 DATA AND DATA ERRORS 

4.2.1 Time Series of Ticks 

The object of data cleaning is a time series of ticks. The term "tick" stands for 
"quote" in a very general sense: any variable that is quoted, from any origin and for 
any financial instrument. The time-ordered sequence of ticks is inhomogeneous in 

4.0 
= the general case where the time intervals between ticks vary in size. Normally, one 

time series is filtered independently from other series. The multivariate cleaning 
of several time series together is discussed in Section 4.8.1. 

The ticks of the series must be of the same type. They may differ in the origins 
of the contributors, but should not differ in important parameters such as the ma-
turity (of interest rates, etc.) or the moneyness (of options or implied volatilities). 
If a data-feed provides bid or ask quotes (or transaction quotes) alternatively in 
random sequence, we advise splitting the data stream into independent bid and 
ask streams. Normal bid-ask pairs, however, are appropriately handled inside the 
filter. 

The following data structure of ticks is assumed: 

1. A time stamp. 

2. The tick level(s) of which the data cleaning algorithm supports two kinds: 

(a) Data with one level (a price or transaction volume, etc.), such as a 
stock index. 
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(b) Data with two levels: bid-ask pairs, such as foreign exchange (FX) 
spot rates. 

3. Information on the origin of the tick, e.g. an identification code of the 
contributor (a bank or broker). For some financial instruments, notably 
those traded at an exchange, this is trivial or not available. 

A data feed may provide some other information which is not utilized by the filter. 

4.2.2 Data Error Types 

A data error is a piece of quoted data that does not conform to the real situation 
of the market. A price quote has to be identified as a data error if it is neither a 
correctly reported transaction price nor a possible transaction price at the reported 
time. We have to tolerate some transmission time delays and small deviations 
especially in the case of indicative prices. 

There are many causes for data errors. The errors can be separated into two 
classes: 

1. Human errors: Errors directly caused by human data contributors, for 
different reasons: 

■ Unintentional errors, such as typing errors 

■ Intentional errors, such as dummy ticks produced just for technical 
testing 

2. System errors: Errors caused by computer systems, their interactions and 
failures 

Human operators have the ultimate responsibility for system errors. However, 
the distance between the data error and the responsible person is much larger for 
system errors than for "human" errors. In many cases, it is impossible to find the 
exact reason for the data error even if a tick is very aberrant. The task of the filter 
is to identify such outliers whatever the reason. Sometimes the cause of the error 
can be guessed from the particular behavior of the bad ticks. This knowledge of 
the error mechanism can help to improve filtering and, in few cases, allow the 
correction of bad ticks. 

The following error types are so particular that they need special treatment. 

1. Decimal errors: Failure to change a "big" decimal digit of the quote. For 
instance, a bid price of 1.3498 is followed by a true quote 1.3505, but the 
published, bad quote is 1.3405. This error is most damaging if the quoting 
software is using a cache memory somewhere. The wrong decimal digit 
may stay in the cache and cause a long series of bad quotes. Around 1988, 
this was a dominant error type. 

2. "Test": Some data contributors sometimes send test ticks to the system, 
usually at times when the market is not liquid. These test ticks can cause a 
lot of damage because they may look plausible to the filter, at least initially. 
Two important examples follow: 
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■ "Early morning test": A contributor sends a bad tick very early in 
the morning to test whether the connection to the data distributor is 
operational. If the market is inactive overnight, no trader would take 
this test tick seriously. For the filter, such a tick may be a major 
challenge. The filter has to be very critical to first ticks after a data 
gap. 

■ Monotonic series: Some contributors test the performance and the 
time delay of their data connection by sending a long series of lin-
early increasing ticks at inactive times such as overnight or during 
a weekend. This is hard for the filter to detect because tick-by-tick 
returns look plausible. Only the monotonic behavior in the long run 
can be used to identify the fake nature of this type of data. 

3. Repeated ticks: Some contributors let their computers repeat the last tick 
in more or less regular time intervals. This is harmless if it happens in 
a moderate way. In some markets with coarse granularity of tick values 
(such as short-term interest rate futures), repeated tick values are quite 
natural. However, some contributors repeat old ticks thousands of times 
with high frequency, thereby obstructing the validation of the few good 
ticks produced by other, more reasonable contributors. 

4. Tick copying: Some contributors employ computers to copy and re-send 
the ticks of other contributors, as explained in Section 2.2.3. If these ticks 
are on a correct level, a filter has no reason to care—with one exception. 
Some contributors run computer programs to produce slightly modified 
ticks by adding small random corrections. Such slightly varying copy 
ticks are damaging because they obstruct the clear identification of fake 
monotonic or repeated series made by other contributors. 

5. Scaling problem: Quoting conventions may differ or be officially redefined 
in some markets. Some contributors may quote the value of 100 units, 
others the value of 1 unit. Scaling factors are often integer powers of 
10, but other values may occur (for stock splits in equity markets). The 
filter will run into this problem "by surprise" unless a human filter user 
anticipates all scale changes and preprocesses the data accordingly. 

A complete data cleaning tool has to include algorithmic elements to deal with 
each of these special error types. 

4.3 GENERAL OVERVIEW OF THE FILTER 

4.3.1 The Functionality of the Filter 

The flowcharts in Figure 4.1 illustrate some typical applications of a data cleaning 
filter in a larger context. Normal users simply want to eliminate "invalid" data 
from the stream, but the chart on the right-hand side shows that the filter can also 
deliver more information on the ticks and their quality. 
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* Filter reports 

Special Data User 

FIGURE 4.1 Data cleaning (filtering): Normal users want to eliminate bad ticks from 
the application (left chart). In special cases, users want to know filtering results such as 
the credibility or the reason for rejecting a tick (right chart). 

A filter has some configuration parameters depending on the type of instru-
ment, as to be shown later. Once it is created, it performs the following operations: 

1. It receives financial ticks in the ordered sequence of their time stamps. 

2. It delivers the same ticks in the same ordered sequence, plus the filter 
results. For each tick, the following results are delivered: 

■ Credibility values of the tick and of its individual elements (such as 
bid, ask, bid-ask spread); the credibility is defined between 0 (totally 
invalid) and 1 (totally valid) 

■ The value(s) of the tick, whose errors can possibly be corrected in 
some cases where the error mechanism is well known 

■ The "filtering reason," which is a formalized piece of text explaining 
why the filter has rejected (or corrected) the tick 

Normal users use only those (possibly corrected) ticks with a credibility exceeding 
a threshold value (which is often chosen to be 0.5). They ignore all invalid ticks and 
all side results of the filter such as the filter report. The timing of the filter operations 
is nontrivial. In real-time operation, the result of a filter is used right after the tick 
has entered the filter. In historical operation, the user takes the corrected result 
after the filter has seen a few newer ticks and adapted the credibility of older ticks. 

The filter needs a build-up period to learn from the data. This is natural for 
an adaptive filter. If the data cleaning operation starts at the first available tick 
(beginning of data series), the build-up means to run the filter for a few weeks 
from this point, storing a set of statistical variables in preparation for restarting the 
filter from the first available tick. The filter will then be well adapted because it can 
use the previously stored statistical variables. If the data cleaning operation starts 
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at some later point in time, the natural build-up period is a period immediately 
preceding the first tick needed. 

The filtering algorithm can be seen as one whole block that can be used several 
times in a data flow such as the following: 

• Mixing already filtered data streams from several sources where the mixing 
result is again filtered. The danger is that the combined filters reject too 
many quotes, especially in the real-time filtering of fast moves (or price 
jumps). 

• Filtering combined with computational blocks: raw data -÷ filter —> com-
putational block filter —> application. Some computational blocks such 
as cross rate or yield curve computations require filtered input and produce 
an output that the user may again want to filter. 

Repeated filtering of the same time series is rather dangerous because it may lead 
to too many rejections of quotes. If it cannot be avoided, only one of the filters in 
the chain should be of the standard type. The other filter(s) should be configured to 
be weak (i.e., they should eliminate not more than the obviously aberrant outliers). 

4.3.2 Overview of the Filtering Algorithm and Its Structure 

The filtering algorithm is structured in a hierarchical scheme of subalgorithms. 
Table 4.1 gives an overview of this structure for a univariate filter for one financial 
instrument. A higher hierarchy level at the top of Table 4.1 can be added for 
multivariate filtering, as discussed in Section 4.8.1. 

Details of the different algorithmic levels are explained in the next sections. 
The sequence of these sections follows Table 4.1, from bottom to top. Some special 
filter elements are not treated there, but are briefly described in Section 4.8. 

4.4 BASIC FILTERING ELEMENTS AND OPERATIONS 

The first element to be discussed in a bottom-to-top specification is the scalar 
filtering window. Its position in the algorithm is shown in Table 4.1. 

The basic filtering operations utilize the quotes in the simplified form of scalar 
quotes consisting of the following: 

1. The time stamp 
2. One scalar variable value to be filtered (e.g., the logarithm of a bid price), 

here denoted by x 
3. The origin of the quote (as in the full quote of Section 4.2.1) 

The basic operations can be divided into two types: 

1. Filtering of single scalar quotes: considering the credibility of one scalar 
quote alone. An important part is the level filter where the level of the 
filtered variable is the criterion. 

2. Pair filtering: comparing two scalar quotes. The most important part is 
the change filter that considers the change of the filtered variable from one 
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TABLE 4.1 Basic structure of the filtering algorithm used for data cleaning. 

The data cleaning algorithm has three main hierarchy levels, each with its specific function-

alities. 

Hierarchy Level 
level name 

Purpose, description 

1 Univariate The complete filtering of one time series: 
filter Passing incoming ticks to the lower hierarchy levels 

Collecting the filter results of the lower hierarchy levels and packaging 
them into the right output format 

Supporting real-time and historical filtering 
Supporting one or more filtering hypotheses, each with its own full-tick 

filtering window 

2 Full-tick A sequence of recent full ticks (bid-ask), some of them possibly corrected 
filtering according to a general filtering hypothesis. The tasks are as follows: 
window Tick splitting: splitting a full tick into scalar quotes to be filtered in their 

own scalar filtering windows 
Basic validity test (e.g., whether prices are positive) 
A possible mathematical transformation (e.g., logarithm) 
All those filtering steps that require full ticks (not just bid or ask ticks alone) 

3 Scalar A sequence of recent scalar quotes whose credibilities are still being mod-
filtering ified. The tasks are as follows: 
window Testing new, incoming scalar quotes 

Comparing a new scalar quote to all older quotes of the window (using a 
business time scale and a dependence analysis of quote origins) 

Computing a first credibility of the new scalar quote; modifying the credi-
bilities of older quotes based on new information 

Dismissing the oldest scalar quotes when their credibility is finally settled 
Updating the statistics with good scalar quotes when they are dismissed 

from the window 

quote to another one. Filtering depends on the time interval between the 
two quotes and the time scale on which this is measured. Pair filtering 
also includes a comparison of quote origins. 

The basic filtering operations and another basic concept of filtering, credibility 
are presented in the following sections. Their actual application in the larger 
algorithm is explained later, starting from Section 4.5. 

4.4.1 Credibility and Trust Capital 

Credibility is a central concept of the filtering algorithm. It is expressed by a vari-
able C taking values between 0 and 1, where 1 indicates validity and 0 invalidity. 
This number can be interpreted as the probability of a quote being valid according 
to a given criterion. For two reasons, we avoid the formal introduction of the term 
"probability." First, the validity of a quote is a fuzzy concept (e.g., slightly deviat-
ing quotes of an over-the-counter spot market can perhaps be termed valid even if 
they are very unlikely to lead to a real transaction). Second, we have no model of 
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TABLE 4.2 Adding independent credibility values. 

The total credibility Ctotal resulting from two independent credibility values C1 and C2. 

The function Ctotal = C[T(Ci) T(C2)] defines an addition operator for credibilities, 
based on Equations 4.1 and 4.2. The values in brackets, (0.5), are in fact indefinite limit 

values where Ctotal may converge to any value between 0 and 1. 

Ctotal Cl = 
0 0.25 0.5 0.75 1 

C2 = 
1 (0.5) 1 1 1 1 

0.75 0 0.5 0.75 0.878 1 
0.5 0 0.25 0.5 0.75 1 
0.25 0 0.122 0.25 0.5 1 

0 0 0 0 0 (0.5) 

probability even if validity could be exactly defined. Credibility can be understood 
as a "possibility" in the sense of fuzzy logic as proposed by Zimmermann (1985), 
for example. 

Credibility is not additive; the credibility of a scalar quote gained from two 
tests is not the sum of the credibilities gained from the individual tests. This follows 
from the definition of credibility between 0 and 1. The sum of two credibilities 
of, say, 0.75 would be outside the allowed domain. 

For internal credibility computations based on different tests, an additive vari-
able is needed to obtain the joint view of all tests. We define the additive trust 
capital T, which is unlimited in value. There is no theoretical limit for gathering 
evidence in favor of accepting or rejecting the validity hypothesis. Full validity 
corresponds to a trust capital of T = oo, full invalidity to T = —oo. We impose 
a fixed, monotonic relation between the credibility C and the trust capital T of a 
certain object 

1 
C(T) = + (4.1) 

2 2 ,./1 + T2

and the inverse relation 

C — 
T (C) (4.2) 

,/C (1 — C) 

There are possible alternatives to this functional relationship. The chosen solution 
has some advantages in the formulation of the algorithm that will be shown later. 

The additivity of trust capitals and Equations 4.1 and 4.2 imply the definition of 
an addition operator for credibilities. Table 4.2 shows the total credibility resulting 
from two independent credibility values. 
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4.4.2 Filtering of Single Scalar Quotes: The Level Filter 

There is only one analysis of a single quote called the level filter. Comparisons 
between quotes (done for a pair of quotes, treated in Section 4.4.3) are often more 
important in filtering than the analysis of a single quote. 

The level filter computes a first credibility of the value of the filtered variable. 
This only applies to those volatile but mean-reverting time series where the levels 
as such have a certain credibility in the absolute sense—not only the level changes. 
Moreover, the timing of the mean reversion should be relatively fast. Interest rates 
or interest rates futures prices, for example, are mean-reverting only after time 
intervals of years; they appear to be freely floating within smaller intervals (see 
Ballocchi, 1996). For those rates and for other prices, level filtering is not suitable. 

The obvious example for fast mean reversion and thus for using a level filter 
is the bid-ask spread, which can be rather volatile from quote to quote but tends 
to stay within a fixed range of values that varies only very slowly over time. For 
spreads, an adaptive level filter is at least as important as a pair filter that considers 
the spread change between two quotes. 

The level filter first puts the filtered variable value x into the perspective 
of its own statistical mean and standard deviation. Following the notation of 
Section 3.3.8, the standardized variable 2 is defined by 

x —  x — 
=   =   

MSD[ 6", 2; x N/EMA[ 19r; (x — X)2

where the mean value of x is also a moving average: 

(4.3) 

= EMA[ At9, ; x ] (4.4) 

The time scale used for this computation is called Taking a business time scale 
as introduced in Section 4.4.6 leads to better data cleaning than taking physical 

time. The variable AO, denotes the configurable range of the kernel of the moving 
averages and should cover the time frame of the mean reversion of the filtered 
variable; a reasonable value for bid-ask spreads has to be chosen. The iterative 
computation of moving averages is explained in Section 3.3.5. Here and for all 
the moving averages of the filtering algorithm, a simple exponentially weighted 
moving average (EMA) is used for efficiency reasons. 

A small 121 value deserves high trust; an extreme 121 value indicates an outlier 
with low credibility and negative trust capital. Before arriving at a formula for 
the trust capital as a function of 2, the distribution of 2 has to be discussed. A 
symmetric form of the distribution is assumed at least in coarse approximation. 
This is ensured by the definition of the filtered variable x, which is a mathematically 
transformed variable. The exact definition of x is deferred to Section 4.6.3 in the 
chosen structure of this chapter. 

The amount of negative trust capital for outliers depends on the tails of the dis-
tribution at extreme (positive and negative) x values. A reasonable assumption is 
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that the credibility of outliers is approximately the probability of exceeding the out-

lier value, given the distribution function. This probability is proportional to 1 —" 
where a is called the tail index. We know that density functions of level-filtered 
variables such as bid-ask spreads are fat-tailed (see Muller and Sgier, 1992). De-
termining the distribution and a in a moving sample would be a considerable task, 
certainly too heavy for filtering software. Therefore, we choose an approximate 
assumption on a that was found acceptable across many rates, filtered variable 
types and financial instruments: a = 4. This value is also used in the analogous 
pair filtering tool (e.g., for price changes, and discussed in Section 4.4.3). 

For extreme events, the relation between credibility and trust capital, Equa-
tion 4.1, can be asymptotically expanded as follows 

1
2C = 4 

T 
for T « — 1 (4.5) 

Terms of order higher than (1/T)2 are neglected here. Defining a credibility 
proportional to /' is thus identical to defining a trust capital proportional to 
.1"/2. Assuming a = 4 , we obtain a trust capital proportional to 1 2. For outliers, 
this trust capital is negative, but for small 1, the trust capital is positive up to a 
maximum value we define to be 1. 

Now, we have the ingredients to come up with a formulation that gives the 
resulting trust capital of the i "1 quote according to the level filter: 

TO = (4.6) 

where the index 0 of Tio indicates that this is a result of the level filter only. The 
variable s is / in a scaled and standardized form: 

= — (4.7) 

with a constant 6. Equation 4.6 together with Equation 4.7 is the simplest possible 
way to obtain the desired maximum and asymptotic behavior. For certain rapidly 
mean-reverting variables such as hourly or daily trading volumes, this may be 
enough. 

However, the actual implementation for bid-ask spreads has some special 
properties. Filter tests have shown that these properties have to be taken into 
account in order to attain satisfactory spread filter results: 

• Quoted bid-ask spreads tend to cluster at "even" values (e.g., 10 basis 
points,) whereas the real spread may be an odd value oscillating in a range 
below the quoted value. A series of formal, constant spreads can there-
fore hide some substantial volatility that is not covered by the statistically 
determined denominator of Equation 4.3. We need an offset Armin to 
account for the typical hidden volatility in that denominator. A suitable 
choice is Axm2 in = [constants + constant2)]2. 
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■ High values of bid-ask spreads are worse in usability than low spreads, by 
nature. Thus the quote deviations from the mean as defined by Equation 4.3 
are judged with bias. Deviations to the high side > 0) are penalized 
by a factor Phigh, whereas no such penalty is applied against low spreads. 

■ For some (minor) financial instruments, many quotes are posted with zero 
spreads (i.e., bid quote = ask quote). This is discussed in Section 4.6.1. In 
some cases, zero spreads have to be accepted, but we set a penalty against 
them as in the case of positive 2i . 

We obtain the following refined definition of Sri 

xi

= Xi 
Phigh - 

if xi < 0 and no zero-spread case 

if > 0 or in a zero-spread case 

where 2, comes from a modified version of Equation 4.3, 

x — 

.\/EMA[ (x — 1-)2 ] Axmin

(4.8) 

(4.9) 

The constant 6 determines the size of an I that is just large enough to neither 
increase nor decrease the credibility. 

Equation 4.8 is general enough for all mean-reverting filterable variables. If 
we introduced mean-reverting variables other than the bid-ask spread, a good value 
for Axm2 in would probably be much smaller or even 0, Phigh around one and 
larger (to tolerate volatility increases in absence of a basic volatility level Axil in). 

4.4.3 Pair Filtering: The Credibility of Returns 

The pairwise comparison of scalar quotes is a central basic filtering operation. The 
algorithm makes pairwise comparisons also for quotes that are not neighbors in 
the series, as explained in Section 4.5. 

Pair filtering contains several ingredients, the most important one being the 
change filter. Its task is to judge the credibility of a variable change (= return if the 
variable is a price). The time difference between the two quotes plays a role, so the 
time scale on which it is measured has to be specified. The criterion is adaptive to 
the statistically expected volatility estimate and therefore uses some results from 
a moving statistical analysis. 

The change of the filtered variable x from the j th to the i th quote is 

Axij = xi — xi (4.10) 

The variable x may be the result of a transformation in the sense of Section 4.6.3. 
The time difference of the quotes is A t9i j, measured on a time scale to be discussed 
in Section 4.4.6. 
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The expected variance V (Ai) of x around zero is determined by the on-line 
statistics as described in Section 4.4.4. The relative change is defined by 

Axii 
--= 

6 ,/v(A? ii) 
with a positive constant 4'0, which has a value of around 5.5 and is further discussed 
later. Low I I values deserve high trust, extreme I I values indicate low credibility 
and negative trust capital; at least one of the two compared quotes must be an 
outlier. 

The remainder of the algorithm is similar to that of the level filter as described 
in Section 4.4.2, using the relative change 4•ij instead of the scaled standardized 
variable 

The amount of negative trust capital for outliers depends on the density func-
tion of changes Ax, especially the tail of the distribution at extreme Ax or r val-
ues. A reasonable assumption is that the credibility of outliers is approximately 
the probability of exceeding the outlier value, given the distribution function. This 
probability is proportional to re', where a is the tail index of a fat-tailed distri-
bution. We know that distributions of high-frequency price changes are indeed 
fat-tailed (see Dacorogna et al., 2001a). Determining the distribution and a in a 
moving sample would be a considerable task beyond the scope of filtering software. 
Therefore, we make a rough assumption on a that is good enough across many 
rates, filtered variable types and financial instruments. For many price changes, a 
good value is around a 3.5, according to Dacorogna et al. (2001a) and Muller 
et al. (1998). As in Section 4.4.2, we generally use a = 4 as a realistic, general 
approximation. 

As in Section 4.4.2 and together with Equation 4.5, we argue that the trust 
capital should asymptotically be proportional to 2 and arrive at a formula that 
gives the trust capital as a function of 

Uii = U (ei) = 1 — 4•7 (4.12) 

which is analogous to Equation 4.6. This trust capital, depending only on is 
called U to distinguish it from the final trust capital T that is based on more 
criteria. At = 1, Equation 4.12 yields a zero trust capital, neither increasing 
nor decreasing the credibility. Intuitively, a variable change of a few standard 
deviations might correspond to this undecided situation; smaller variable changes 
lead to positive trust capital, larger ones to negative trust capital. In fact, the 
parameter o of Equation 4.11 should be configured to a high value, leading to a 
rather tolerant behavior even if the volatility V is slightly underestimated. 

The trust capital Uii from Equation 4.12 is a sufficient concept under the 
best circumstances, independent quotes separated by a small time interval. In the 
general case, a modified formula is needed to solve the following three special pair 
filtering problems. 

1. Filtering should stay a local concept on the time axis. However, a quote has 
few close neighbors and many more distant neighbors. When the additive 

(4.11) 
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trust capital of a quote is determined by pairwise comparisons to other 
quotes as explained in Section 4.5.2, the results from distant quotes must 
not dominate those from the close neighbors; the interaction range should 
be limited. This is achieved by defining the trust capital proportional to 
(A19)-3 (assuming a constant for asymptotically large quote intervals 
AU. 

2. For large AO, even moderately aberrant quotes would be too easily ac-
cepted by Equation 4.12. Therefore, the aforementioned decline of trust 
capital with growing At, is particularly important in the case of positive 
trust capital. Negative trust capital, on the other hand, should stay strongly 
negative even if A U is rather large. The new filter needs a selective decline 
of trust capital with increasing AU: fast for small (positive trust capital), 
slow for large (negative trust capital). This treatment is essential for data 
holes or gaps, where there are no (or few) close neighbor quotes. 

3. Dependent quotes: if two quotes originate from the same source, their 
comparison can hardly increase the credibility (but it can reinforce neg-
ative trust in the case of a large In Section 4.4.5, we introduce an 
independence variable /i j between 0 (totally dependent) and 1 (totally 
independent). 

The two last points imply a certain asymmetry in the trust capital; gathering ev-
idence in favor of accepting a quote is more delicate than evidence in favor of 
rejecting it. 

All of these concerns can be taken into account in an extended version of 
Equation 4.12. This is the final formula for the trust capital from a change filter: 

1 — ti

where 

Tii = T( , AU11, /if ) = I rj
1 + ij + ( " 1 6'J ) 3

1i*j = { 1 if > 1 
e/ii if < 1 

The independence /if is always between 0 and 1 and is computed by Equation 4.23. 
The variable d is a quote density explained in Section 4.4.4. The configurable 
constant v determines a sort of filtering interaction range in units of the typical 
quote interval 1/d). 

Table 4.3 shows the behavior of the trust capital according to Equation 4.13. 
The trust capital converges to zero with an increasing quote interval At, much 
more rapidly for small variable changes I 1 than for large ones. For small At7ij 
and /if = 1, Equation 4.13 converges to Equation 4.12. 

The approach of Equation 4.13 has been tested for almost all available types 
of financial data, not only FX. We find that it works for all data types with the 
same values of the parameters. 

(4.13) 

(4.14) 
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TABLE 4.3 Trust capital as a function of two variables. 

The trust capital T resulting from a comparison of two independent (/* = 1) scalar 

quotes, depending on two variables: the relative variable change and the time interval 
Dag between the quotes. is defined by Equation 4.11, and d and v are explained in the 

text. 

T dA0/v = 
0 0.5 1 2 4 

IC = 
4 -15.0 -14.9 -14.2 -10.2 -3.2 
2 -3.0 -2.9 -2.5 -1.2 -0.22 
1 0 0 0 0 0 

0.5 0.75 0.68 0.42 0.10 0.014 
0 1 0.89 0.50 0.11 0.015 

4.4.4 Computing the Expected Volatility 

The expected volatility is a function of the size of the time interval between the 
quotes and thus requires a larger computational effort than other statistical vari-
ables. Only credible scalar quotes should be used in the computation. The updates 
of all statistics are therefore managed by another part of the algorithm that knows 
about final credibilities as explained in Section 4.5.5. 

Choosing an appropriate business time scale t is important for measuring the 
time intervals between quotes and for all other computations of this section. This 
is explained in Section 4.4.6. 

Although the expected volatility computation can be implemented with var-
ious methods of different degrees of sophistication, we adopt a simple method. 
The first variable needed is the quote density 

d = EMA ; cd (4.15) 

This is a moving average in the notation of Section 3.3.5; 30 is the time interval 
between two "valid" (as defined on a higher level) neighbor quotes on the chosen 
time scale. Ozgr is the configurable range of the kernel of the moving average. The 
variable cd is the weight of the quote, which normally has a value of cd = 1 and 
is lower only in the case of repeated quote values. The iterative computation of 
moving averages is explained in Section 3.3.5. The value 1/80 has to be assumed 
for the whole quote interval, which implies using the "next point" interpolation. 
It can be shown that a zero value of 80 does not lead to a singularity of the EMA. 
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An annualized squared "micro"-volatility is defined as a variance in the form 
of a moving average 

v = EMA 
L

(8x) 
; 

2 1 

_1 
(4.16) 

Szg ± 800 

where the notation follows Sections 3.3.5 and 3.4.3 and the range Ot9r is the same 
as in Equation 4.15. 8x is the change of the filtered variable between (sufficiently 
credible) neighbor quotes. There is a small time interval offset 

3/,0 = max ( 
o 

d 
— , (4.17) 

The small positive term 300 accounts for some known short-term behaviors of 
markets: (1) certain asynchronicities in the quote transmissions, (2) some tempo-
rary market level inconsistencies that need time to be arbitraged out, (3) a negative 
autocorrelation of many market prices over short time lags (see Section 5.2.1). 
However, Sth is not needed to avoid singularities of v; even a zero value of both 
10 and St90 would not lead to a singularity of the EMA. The "next point" interpo-
lation is again appropriate in the EMA computation. 

Strictly speaking, v can be called annualized only if d is measured in years, 
but the choice of this unit does not matter in our algorithm. The exponent of the 
annualization is not too important because the different values of 80 share the 
same order of magnitude. 

Experience shows that the volatility measure of the filter should not rely only 
on one variance v as defined here. It is more stable to use three such volatilities: 
vfast, v and vstew. All of them are computed by Equation 4.16, but they differ in 
their ranges, Adr, where vfast has a short range, v a medium-sized range, and vste, 
a long range. Our expected volatility is defined to be the maximum of the three: 

Vexp = max(vfast , v, vslow) (4.18) 

This is superior to taking only v. In case of a market shock, the rapid growth of 
vfast allows for a quick adaptation of the filter, whereas the inertia of vstow prevents 

the filter from forgetting volatile events too rapidly in a quiet market phase. 
From the annualized vexp, we obtain the expected squared change as a function 

of the time interval Ad between two quotes. At this point, the filter needs a special 
element to prevent the filter from easily accepting price changes over large data 
gaps, time periods with no quotes. Data gaps are characterized by a large value of 
Ad and very few quotes within this interval. In case of data gaps, an upper limit 
of Ad is enforced: 

6.#een. = min [ 2.5 Q  max 
(O. 

d 
Q  Az') 

d 
(4.19) 

where d is taken from Equation 4.15 and Q is the number of valid quotes in the 
interval between the two quotes; this is explained in Section 4.5.2. Equation 4.19 
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also sets a lower limit of A?,e,„T in case of a very high frequency of valid quotes. 
It is important to validate fast trends with many quotes. 

The corrected quote interval AD-con. is now used to compute the expected 
squared change V 

V =- V(A'acorr) = (Ageorr .860) vexp V0 (4.20) 

This function V (6,2,corr) is needed in the trust capital calculation of Section 4.4.3 
and inserted in Equation 4.11. The positive offset V0 is small and could be omitted 
in many cases with no loss of filter quality. However, a small V0 > 0 is desirable. 
Some quotes are quoted in coarse granularity (i.e., the minimum step between two 
possible quote values is rather large as compared to the volatility). This is the 
case in some interest rate futures and also for bid-ask spreads (in FX markets), 
which often have a rounded size of 5, 10, or 20 basis points with rarely a value 
in between. Quotes with coarse granularity have a hidden volatility such that a 
series of identical quotes may hide a movement of a size smaller than the typical 
granule. The term V0 thus represents the hidden volatility: 

Vo = 0.25 g2 + eo (4.21) 

where the granule size g is also determined by adaptive methods. (The granularity 
analysis is also needed in the analysis of repeated ticks, which is not explained 
here.) The extremely small term el; just has the numerical task to keep V0 > 0. 

The term eo, however, plays a special role if the scalar variable to be filtered 
is a bid-ask spread. The spread filter is the least important filter, but leads to 
the highest number of rejections of FX quotes if it is configured similar to the 
filter of other scalars. This fact is not accepted by typical filter users who want a 
more tolerant spread filter. A closer inspection shows that different contributors 
of bid-ask quotes often have different spread quoting policies. They are often 
interested only in the bid or ask side of the quote and tend to push the other side 
off the real market by choosing a spread too large. Thus the spreads of neighbor 
quotes may have different sizes even in quiet markets. In some minor FX markets, 
some contributors even mix retail quotes with very large spreads into the stream 
of interbank quotes. In order not to reject too many quotes for spread reasons, we 
have to raise the tolerance for fast spread changes and reject only extreme jumps in 
spreads. This means raising 4: E0 = constants + constant2), where 5c' is defined 
by Equation 4.4. This choice of so can be inferred from the mapping of the bid-ask 
spread in Equation 4.45. When a filter is initialized, we set Vo = el; and replace 
this by Equation 4.21 as soon as the granule size estimate g is available, based on 
statistics from valid quotes. 

4.4.5 Pair Filtering: Comparing Quote Origins 

Pair filtering results can add some credibility to the two quotes only if these are 
independent. Two identical quotes from the same contributor do not add substantial 
confidence to the quoted level—the fact that an automated quoting system sends the 
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C3 
; 

f;
1-7 

same quote twice does not make this quote more reliable. Two nonidentical quotes 
from the same contributor may imply that the second quote has been produced to 
correct a bad first one. Another interpretation might be that an automated quoting 
system has a random generator to send a sequence of slightly varying quotes to 
mark presence on the information system. Different quotes from entirely different 
contributors are the most reliable case for pair filtering. 

The basic tool is a function to compare the origins of the two quotes, consid-
ering the main source (the information provider), the contributor ID (bank name), 
and the location information. This implies that available information on contrib-
utors has a value in data cleaning and should be collected rather than ignored. An 
"unknown" origin is treated just like another origin name. The resulting indepen-
dence measure I 17. is confined between 0 for identical origins and 1 for clearly 
different origins. In some cases (e.g., same bank but different subsidiary), a value 
between 0 and 1 can be chosen. 

j is not yet the final formulation but has to be put in relation with the general 
origin diversity of the time series. An analysis of data from only one or very few 
origins must be different from that of data with a rich variety of origins. The 
general diversity D can be defined as a moving average of the Ii of valid 
neighbor quotes, 

D = EMA[ tick-time, R; I< i—i] (4.22) 

where R is the range (center of gravity) of the kernel. The "tick-time" is a time 
scale that is incremented by one at each new quote. The "next point" interpolation 
is again appropriate in the EMA computation. Only "valid" quotes are used; this 
is possible on a higher level of the algorithm (see Section 4.5.5). By doing so, 
we prevent D from being lowered by bad mass quotes from a single computerized 
source. Thus we are protected against a difficult filtering problem. The high 
number of bad mass quotes from a single contributor will not force the filter to 
accept the bad level. 

The use of D makes the independence variable /i j adaptive through the fol-
lowing formula: 

with 

lij f (D) (1 — Ili) (4.23) 

f (D) 
0.0005 + (1 — D)8

2.001 
(4.24) 

If the diversity is very low (e.g., in a single-contributor source), this formula 
(reluctantly) raises the independence estimate /if to allow for some positive trust 
capital to build up. For a strictly uniform source (I' D = 0), /ii will reach 0.5, 
which is one half of the /if value of truly independent quotes in a multicontributor 
series. 
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The output variable 11./ resulting from Equation 4.14 is always confined be-
tween 0 and 1 and is generally used in Equation 4.14. Some special cases need a 
special discussion: 

• Repeated quotes. Rarely, the raw data contains long series of repeated 
quotes from the same contributor, and the obtained value of /ii may still 
be too high. A solution would be a special filtering element focused on 
repeated ticks. 

• High-quality data. The collected data may be mixed with old, historical, 
commercially available daily data that were of distinctly higher quality 
than the data from a single, average-quality contributor. When comparing 
two quotes from this historical daily data, we may force I = 1 although 
these quotes come from the same "contributor." This special filtering 
element is necessary only if there are huge, proven quality differences 
between contributors. 

• In multivariate filtering (see Section 4.8.1), artificial quotes that might be 
injected by a multivariate covariance analysis should have l ifj • = 1 when 

En compared to each other or to any other quote. 
P*1 

F 
4er 4.4.6 A Time Scale for Filtering 

Time plays a role in the adaptive elements of the level filter as well as in almost all 
parts of the change filter. Value changes are tolerated more easily when separated 

e, by a large time interval between the time stamps. When using the term "time 
interval," we need to specify the time scale to be used. 

Fffg The algorithm works with any time scale, but some are more suitable than 
others. If our tolerance for quote level changes is as large over weekends as over 
working hours, we have to accept almost any bad quote from the few weekend 
contributors. These weekend quotes are sometimes test quotes or other outliers in 
the absence of a liquid market. Our solution is a time scale that compresses the 

re weekends and other inactive periods and thus leads to a lower tolerance. 
Accounting for the low weekend activity is vital, but the exact treatment of 

typical volatility patterns during working days is less important. Therefore, we 
14; cannot accept using only physical time (= calendar/clock time), but the following 

solutions are possible: 

1. A very simple business time with two states: active (working days) and 
inactive (weekend from Friday 21:00:00 GMT to Sunday 21:00:00 GMT, 
plus the most important and general holidays). The speed of this business 
time as compared to physical time would be either 1.4 (in active state) or 
0.01 (in inactive state). 

2. An adaptively weighted mean of three simple, generic business time scales 
t with smoothly varying weights according to built-in statistics. This 
solution suits those filter developers that prefer to avoid the complex 1, 
technology of Chapter 6. 
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TABLE 4.4 Active periods of the three generic markets. 

Daytimes limiting the active periods of three generic, continent-wide markets; in Green-

wich Mean Time (GMT). The scheme is coarse, modeling just the main structure of world-
wide financial markets. The active periods differ according to local time zones and business 
hours. The Asian market starts on the day before from the viewpoint of the GMT time 
zone. 

Market k tstart,k tend,k 

East Asia 1 21:00 7:00 
Europe 2 6:00 16:00 
America 3 11:00 21:00 

3. An adaptively weighted mean of three generic business time scales t as 
defined by Chapter 6 or Dacorogna et al. (1993). 

The second solution differs from the third one only in the definition of the 
basic 6-time scales. The adaptivity mechanism is the same for both solutions. 

Three generic 6-times are used, based on typical volatility patterns of three 
main markets: Asia, Europe, and America. In the second solution, these t times 
are defined as follows: 

3.4 if tstart,k < td < tend,k on a working day 

dt 
= (4.25) 

0.01 otherwise (inactive times, weekends, holidays) 

where td is the daytime in Greenwich Mean Time (GMT) and the generic start and 
end times of the working-daily activity periods are given by Table 4.4. They cone-
spond to typical observations in several markets. The active periods of exchange-
traded instruments are subsets of the active periods of Table 4.4. The time scales 
6k are time integrals of d6k /dt from Equation 4.25. Thus the time 2,k flows either 
rapidly in active market periods or very slowly in inactive periods. Its long-term 
average speed is similar to physical time. The implementation of Equation 4.25 
requires some knowledge about holidays. The database of holidays to be applied 
may be rudimentary (e.g., Christmas holidays) or more elaborate to cover all main 
holidays of the financial centers on the three continents. The effect of daylight 
saving time is neglected here as the market activity model is coarse. 

If the three 6k-times are chosen as defined by Chapter 6 (the third solution of 
the list), effects like daylight saving time and local holidays (i.e., characteristic for 
one continent) are also covered. The activity in the morning of the geographical 
markets is higher than in the afternoon—a typical behavior of FX rates and, even 
more so, interest rates, interest rate futures, and other exchange-traded markets. 

Once the three scales Ok are defined (by the integrals of Equation 4.25 in 
our suggestion), their adaptively weighted mean is constructed and used as the 
time scale t for filtering. This 6-time is able to approximately capture the daily 
and weekly seasonality and the low volatility of holidays. High precision is not 
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required as 0- is only one among many ingredients of the data cleaning algorithm, 
many of which are based on rather coarse approximations. This is the definition 
of a-time: 

with 

= E Wk 

all k 

E Wk = 1 

all k 

(4.26) 

(4.27) 

where "all k" means "all markets." This is three in our case, but the algorithm also 
works for any other number of generic markets. The weights wk are adaptive to 
the actual behavior of the volatility. A high wk reflects a high fitness of d-k, which 
implies that the volatility measured in 2,k has low seasonal variations. 

The determination of the wk might be done with methods such as the maxi-
mum likelihood estimation of a volatility model. However, this would be unreliable 
given the local convergence issues and the existing modeling limitations of Equa-
tion 4.26. The proposed heuristic method always returns an unambiguous solution. 
The volatility of changes of the filtered variable is measured on all 1,k-scales in 
terms of a variance similar to Equation 4.16: 

ak EMA [ t9'smooth;  
(1x)2 1 

61,k WO _I 
(4.28) 

where 31,k is the interval between validated neighbor quotes in N-time, Sx is the 
corresponding change of the filtered variable, S'ao is defined by Equation 4.17 
and the time scale of the EMA is z7k-time. The notation is as in Sections 3.3.5 
and 3.4.3. Smoothing with a short range Agsmooth is necessary to diminish the 
influence of quote-to-quote noise. The EMA computation assumes a constant 
value of (Sx)2 /(8/,k + 8.6o) for the whole quote interval. This means the "next 
point" interpolation of Equation 3.52. 

The fluctuations of the variable ak indicate the badness of the 7,k model. In 
the case of a bad fit, o-k is often very low (when the 77k-scale expands time) and 
sometimes very high (when the 1)k-scale compresses time). The fluctuations are 
quantified in terms of the variance Fk, 

Fk = EMA[ Agr; — EMA[ A6r; crk])2 I 
= MVar[ 6", 2; cric 

(4.29) 

where the time scale is .0k-time; the MVar operator is explained in Section 3.3.8. 
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FIGURE 4.2 The scalar filtering window moves forward in time by including new scalar 
quotes and dismissing old ones. 

The range .6, 6, has to be suitably chosen. In our approximation, the fluctuations 
directly define the weight of the kth market: 

1 
Wk = 1 

Fk Eallk' Fk, 

aigr 
F which satisfies Equation 4.27 and can be inserted into Equation 4.26. 

4.5 THE SCALAR FILTERING WINDOW 

(4.30) 

The scalar filtering window is located at the bottom of the hierarchical structure 
of the algorithm as shown in Table 4.1. It covers the set of all recent scalar quotes 
contained in a time interval. This neighborhood of quotes is used to judge the 
credibility of new incoming scalar quotes. In the course of the analysis, these new 
quotes are included and old quotes are dismissed at the back end of the window 
following a certain rule. Thus the window is moving forward in time. This 
mechanism is illustrated by Figure 4.2. 

All the scalar quotes within the window have a provisional credibility value, 
which is modified with new incoming quotes. When the quotes leave the window, 
their credibilities are regarded as finally determined. Sufficiently credible quotes 
are then used to update the statistics needed for adaptivity. 
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At the initialization of a filter from scratch, the window is empty. When the 
first scalar quote enters, it cannot be filtered by pair filtering yet, only the level 
filter applies. 

4.5.1 Entering a New Quote in the Scalar Filtering Window 

Whenever a new scalar quote enters the window, an analysis is made based on 
earlier results and the new quote. 

There are two possible ways in which a new quote enters the scalar filtering 
window: 

1. The normal update. A new scalar quote from the data source enters, is 
analyzed, and finally becomes the newest member of the scalar filtering 
window. The window variables are updated accordingly. These operations 
are described by Sections 4.5.2 through 4.5.6. 

2. A filter test. A new scalar quote from any source is merely tested. It is 
analyzed as in a normal update, but it does not become a member of the 
window. No window variable is changed by this test. Thus we execute 

fn the steps of Section 4.5.2 and avoid those of Sections 4.5.3 through 4.5.6. 
The resulting trust capital of the new scalar quote is returned. 

ru 
4.5.2 The Trust Capital of a New Scalar Quote 

The algorithm of the filtering window is organized in an iterative way. Whenever 
a new quote enters the window, an update is made based on earlier results and an 
analysis of the new quote. 

When the new, i t h scalar quote arrives, it already satisfies certain basic va-
lidity criteria (e.g., a price is not negative) and has possibly been transformed to 
a logarithmic value. This is ensured by the higher-level quote splitting algorithm 
explained in Section 4.6. The following filtering operations are done with the 

• ; 
incoming i t h scalar quote: 

rTk 

1. The base trust capital Tio is computed as the result of the level filter, 
Equation 4.6, if the scalar quote is a bid-ask spread. Otherwise, Tio = 0. 

TM cTiheveresulting Tio of Equation 4.6 is multiplied by a configured constant 
ei that determines the importance of level filtering. 

2. The new quote is compared to all old quotes of the window through pair 
filtering steps as described in Section 4.4.3. The trust capitals Tii resulting 
from Equation 4.13 determine the trust capital T of the new quote and also 
affect the trust capitals Tj of the old quotes. 

For computing Tij, we need the expected squared value change V from Equa-
tion 4.20 and 6',c0, from Equation 4.19 and therefore the number Q of valid 
quotes in the time interval from quote j to quote i . For this, we use the valid-quote 
age Q3 of the old quotes 

Q = Qj + 1 (4.31) 
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The increment by 1 stands for the new quote, which is not yet included in the 
window. The computation of Qj is explained at the end of Section 4.5.3. The 
resulting value of Q is inserted in Equation 4.19. 

The trust capital of the new, i t h quote is computed additively as follows 

i —1 

Tit = Clevel TiO 

j=i—n 

(4.32) 

Ti' is not termed Ti because it is not yet the final trust capital in some cases. 
Equation 4.32 is a weighted sum with weights Cj = C(Tj) from Equation 4.1, 
which are the current credibilities of the n other quotes of the window. 

The number n of quotes used for comparison to the i th quote has an influence 
on the trust capital and thus the credibility. The higher the value of n, the higher 
the trust capital according to Equation 4.32 (provided that we are in a series of 
good data). This effect reflects the fact that the more comparisons to other quotes, 
the more certain our judgment on credibility. However, the effect of increasing n 
by adding more and more remote quotes is marginal. The remoteness of quotes 
implies a high term proportional to (A.01)3 in the denominator of Equation 4.13, 
so the resulting Tij values are close to zero. The choice of n is further discussed 
in Section 4.5.4. 

Equation 4.32 is a conservative concept insofar as it judges the credibility of 
a new quote in the light of the previously obtained credibilities Ci of the earlier 
quotes. In the case of an unusually large real move or price jump, new quotes 
on a new level might be rejected for a prolonged time. To prevent this, there is 
special treatment of "after-jump" situations, which may lead to a correction of the 
resulting trust capital Ti and a quicker acceptance of a new level after a jump. 

The first step of the after-jump algorithm is to identify the location of a possible 
real jump within the scalar filtering window. This is done during the computation 
of Equation 4.32. At every j, we test whether the incomplete sum of that equation 

j—i 

Ti,atj = + E T.,J 
ji=i—n 

is less than the critical value Tent 

(4.33) 

Tent = ACIevel Ti0 — 1 (4.34) 

(where kt, is defined below). At the same time, we test Ti j > 0 (this indicates 
having reached a new, stable level after the jump rather than an outlier). At the 
first j where both conditions are satisfied, we conclude that a value jump must 
have taken place somewhere before quote j — 1. Although this jump certainly 
happened before quote j, we define jjump = j because this is the index of the 
first quote where we have a reason to believe that the jump was real. In order to 

0125



106 CHAPTER 4 ADAPTIVE DATA CLEANING 

validate this possible real value jump, we initialize an alternative trust capital Ti" 

Ti7at Aump = Tcrit — 0.5 + — Tent) (4.35) 

We dilute the normal trust capital Tiati by a small dilution factor A. When the 
filter is initialized (before seeing some 10 acceptable quotes), we choose a slightly 
larger pt value in order to prevent the filter from being trapped by an initial outlier. 
The offset term —0.5 in Equation 4.35 prevents the alternative hypothesis from 
being too easily accepted. For all values of j > :bump, we set 

= µ T./ (4.36) 

and insert these diluted trust capitals Ty of old quotes in Equation 4.1. The 

resulting credibilities C7 are used to complete the computation of the alternative 

trust capital Ti": 

i-1 

Ti, Ti:at 4um, E T./ 
i=fiump 6P. ; 

ko analogous to Equation 4.32. ru Now, we decide whether to take the normal, conservative trust capital or 
the alternative Tit'. The resulting, final trust capital is 

rarg 
if Ti" > TI and Ti" > 0 

(4.38) 
otherwise 

The alternative solution prevails if its trust capital exceeds 0 and the trust capital 
of the conservative solution. The trust capital Ti of the new quote is the end result 
of a pure filter test. In the case of a normal update, the window has to be updated. 

(4.37) 

4.5.3 Updating the Scalar Window 

A new quote affects the trust capitals of the old quotes of the window. The most 
dramatic change happens in the case of accepting the alternative hypothesis ac-
cording to Equation 4.38. In this case, a real value jump is acknowledged, which 
leads to a major reassessment of the old quotes. First, the pairwise trust capital of 
quote comparisons across the jump is diluted 

Tcorr,u = Ti j  otherwise 
ltTii for < ]jump

In the normal case with no jump, T Dorr,ii = To. Afterward, the quotes after the 
newly detected jump get a new opportunity 

Tj, new = 
I it Tj if j /jump and Ti < 0 

Ti otherwise 

In the case of a jump, this new value Tj,new replaces Tj. 

(4.39) 

(4.40) 
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In every case, whether there is a jump or not, the trust capitals of all quotes 
are finally updated additively following Equation 4.32 

Tj,new = T1 Ci Teorr,ij , for j = i—n i-1 (4.41) 

where Ci = C(Ti) follows from Equation 4.1 by substituting Ti from Equa-
tion 4.38. The result Tj,new of Equation 4.41 is replacing the old value Ti. It 
should also be clarified that the diluted values T1" from Equation 4.36 are never 
directly used to modify the trust capitals T. 

In historical filtering, Equations 4.39 through 4.41 may lead to the rehabili-
tation of an initially rejected old quote. Even in real-time filtering, the corrected 
trust capital of an old quote indirectly contributes to the filtering of new quotes 
through Equation 4.32 and through the use of only sufficiently credible old quotes 
in the statistics of adaptive filtering. 

The valid-quote age Qi of all the old quotes is also updated 

Q j,new = Qj Ci , for j = i — 1 (4.42) 

where Ci = C(Ti). The more credible the new quote, the higher the increment of 
the valid-quote age Q. 

After all these updates, the new quote with index i and with its newly computed 
trust capital Ti is inserted in the window as its newest member, with the valid-quote 
age Qi initialized to zero. 

4.5.4 Dismissing Quotes from the Scalar Window 

The window does not grow infinitely. At the end of a normal update as described 
in Section 4.5.3, a rule for dismissing scalar quotes is applied. There are three 
criteria for obtaining a properly sized window: (1) a sufficient time interval, (2) a 
sufficient number of quotes, and (3) a sufficient overall credibility of all scalar 
quotes. These criteria are listed here in the sequence of increasing importance. 

In our general quote dismissal rule, we use the product of the criteria. At 
the end of an update with a new quote, the following condition for dismissing the 
oldest quote (with index i — n) is evaluated: 

(72.1 —1,i—n+i) n2
(n-1 

Eci_, 
,=0 

> W (4.43) 

The sum of credibilities, the overall credibility, is the most important criterion and 
is therefore raised to the sixth power. This exponent is a parameter as many others; 
the value 6 has been found optimal in tests of samples of different data frequencies 
and qualities. The configuration parameter W defines the sufficient size of the 
window and has the dimension of a time. The parameter W is somehow related to 
the parameter v of Equation 4.13, which determines a filtering range. Choosing a 
very large W when v is limited does not add value because the distant quotes have 
a negligible weight in this case. 
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A few considerations may illustrate the behavior of Equation 4.43. If the data 
in the window are of good quality, the window is of small size. As soon as a 
cluster of low-quality or doubtful data enters the window, it will grow (sometimes 
to a very large size) until the situation becomes clearer and most old quotes can be 
dismissed again. In the case of a sparse time series, the window may contain few 
quotes but these quotes will extend further in time than for a dense time series. 
After dismissing the oldest quote when Equation 4.43 is fulfilled, the whole quote 
dismissal procedure is repeated as long as the remaining window still satisfies 
Equation 4.43. 

In very rare cases, the window grows to a very large size and the filtering algo-
rithm becomes slow. This problem and its solution are discussed in Section 4.5.6. 
Aside from this, another safety measure is taken where a quote older than 300 days 
is dismissed from the window even if Equation 4.43 is not fulfilled, as long as the 
remaining window still has at least two quotes. 

Dismissed scalar quotes are also reported to the higher level of the filtering 
algorithm. This is necessary in the case of historical filtering for producing the 
final filtering results. 

4.5.5 Updating the Statistics with Credible Scalar Quotes 

When a scalar quote is dismissed from the window, its credibility Ci has reached 
a final value that will no longer be changed where Ci = C(Ti) results from Equa-
tion 4.1. This is the right moment to update all the statistics needed for the adap-
tivity of the filter. 

Invalid quotes are excluded from these statistics and they are simply ignored 
when updating the statistical variables. We set a critical credibility level Ccrit
where only quotes with credibility values above Ccrit are used for updating the 
statistics. However, we should not be too rigid when excluding quotes. The filter 
has to adapt to unexpected events such as sudden volatility increases, but this 
requires including also some mildly rejected quotes. In fact, tests have shown that 
only the totally invalid quotes should be excluded here. We choose a low critical 
credibility level. In the initial phase, right after a filter starts from initialization 
(before having seen 10 acceptable quotes), we take a larger, more cautious value. 

If a dismissed quote has a credibility CL > Ccfit, we update all the statis-
tics. These updates typically imply the computation of moving average iteration 
formulas, and the statistics are explained in Sections 4.4.2 through 4.4.6. 

4.5.6 A Second Scalar Window for Old Valid Quotes 

The quote dismissal rule of Equation 4.43 makes sure that the scalar window stays 
reasonably small—except in the case of a very long series of bad quotes. Such 
long, rarely occurring series usually consist of computerized quotes (e.g., repeated 
or monotonic quotes). The filtering window technology as described so far is well 
able to handle this case, but the computation time of the filter grows very much 
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in the case of a very large window. In real time, this does not really matter, but 
historical filtering becomes slow. 

For efficiency reasons, the filter therefore supports a second queue of old valid 
quotes. The normal scalar window size is strictly limited to a maximum number of 
quotes, but an old quote dismissed from the normal window is stored in a second 
scalar window if its credibility exceeds a low threshold value. Otherwise, the 
dismissed quote is treated as any dismissed quote, as explained before, including 
the updating of statistics and the final reporting of its credibility. 

This second scalar window of old valid quotes is normally empty. As soon as 
one or more dismissed quotes are in this window, it is treated as a part of the normal 
scalar window in all computations. The trust capital computation of Equation 4.32, 
for example, has a sum over both scalar windows, starting at the window of old 
valid quotes. The window of old valid quotes stays and possibly grows as long 
as the quote dismissal condition (applied to the two joined scalar windows) is not 
fulfilled. When the condition is fulfilled, the oldest quote of the scalar window of 
old valid quotes is deleted. After deleting all of its quotes, the second window is 
again empty and filtering is back to the normal mode. 

The concept of a second scalar filtering window for old valid quotes adds quite 
some complexity to the filter and is motivated only by computational efficiency. 

4.6 THE FULL-QUOTE FILTERING WINDOW 

The full-quote filtering window is managed on hierarchy level 2 of Table 4.1. It 
is basically a sequence of recent full quotes plus a set of algorithmic methods of 
managing and processing this sequence. The full-quote filtering window has the 
following tasks: 

■ Splitting the quotes into scalar quotes that can be used in the filtering 
operations of Section 4.4. 

■ A first basic validity test for the filtered variables. This is usually a domain 
test (e.g., rejecting negative prices). Rejected scalar quotes are marked as 
invalid (Ci = 0) and eliminated from all further tests. They do not enter a 
scalar filtering window. 

■ In many cases, a transformation of the quoted level such as taking loga-
rithms of prices instead of raw price values. 

■ Creating independent filtering environments for all types of scalar quotes, 
each with its own scalar filtering window. 

■ Storing the credibility of dismissed scalar quotes until all the other scalar 
quotes belonging to the same full quote have also been dismissed. (The 
spread filter may dismiss quotes before the bid price filter, for example.) 

■ Storing the full quotes as long as two or more filtering hypotheses coexist, 
until one of them wins. This is decided by the next higher hierarchy level 
(see Section 4.7). The decision between filtering hypotheses can also be 
made fast enough to make this point superfluous. 
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■ When a full quote is finally dismissed, reporting it, together with its filter-
ing results, to the higher level (needed only in historical filtering). 

In principle, the full-quote filtering window also offers the opportunity of analyzing 
those data errors that affect full quotes in a way that cannot be analyzed when just 
looking at scalar quotes after splitting. In our experience, we have never found 
a good reason to implement this (aside from the filtering hypotheses discussed in 
Section 4.7). 

The full quotes may enter a full-quote filtering window in a form already 
corrected by a filtering hypothesis. This fact plays no role here since the algorithm 
of the full-quote window does not care about quote corrections. This is managed 
on a higher level. The most important task of the full-quote filtering window is 
quote splitting. 

4.6.1 Quote Splitting Depending on the Instrument Type 

Quotes can have complex structures as explained in Section 4.2.1. The filter fol-
lows the guideline of quote splitting, which is motivated by the goals of modularity 
and transparency. Instead of trying to formulate complex algorithms for complex 
data structures, we split the quotes into scalar quotes that are individually filtered, 
wherever possible. Some filtering operations are done on a higher level before 
splitting as explained in Section 4.7. 

The quote splitting unit has the task of splitting the stream of full quotes into 
streams of different filtered variables, each with its scalar quotes that are used in 
the filtering operations of Section 4.4. 

Some quotes, such as bid-ask or open/high/low/close quotes, are splittable by 
nature. Only the bid-ask case is discussed here as many instruments come in the 
form of bid-ask quotes. Other instruments have single-valued quotes. Bid-ask 
quotes are split into three scalar quotes: 

■ Bid quote 

■ Ask quote 

■ Bid-ask spread 

Other instruments have single-valued quotes, which are "split" into one scalar 
quote: 

■ The "level" quote 

This is not as trivial as it looks because quote splitting is coupled with two other 
operations: basic validity testing and mathematical transformations, as will be 
explained. The user of the filter has to know whether an instrument has single-
valued or bid-ask quotes and has to select or configure the filter accordingly. 

4.6.2 The Basic Validity Test 

Many quotes have a natural lower limit in a predetermined domain. This instru-
ment-dependent information has an impact on quote splitting and needs to be 
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configured by the user. The lower limit of the allowed domain is called pmin. For 
some instruments, there is no limit (or pmin = —oo). The choice of the lower limit 
is rather obvious for most instruments. A list of important examples is presented 
here: 

Prices. Genuine asset prices of whatever kind, including FX and equity prices, 
are never negative. This means: pmin = 0. 

FX forward premiums/discounts. As explained in Section 2.3.2, the "forward 
points" can be positive or negative. There is no lower limit (pmin = —oo)• 

Interest rates. These can be slightly negative in extreme cases such as the JPY 
case discussed in Section 2.3.1 (but these negative interest rates were above 
-1%). Some theories rely on interest rates staying always positive, but a 
filter is not allowed to reject slightly negative interest rates if these are 
posted by reasonable contributors. The filter should use a moderately 
negative value of pmin here, e.g. —5%. 

Short-term interest-rate futures. These can normally be handled as ordinary prices 
(where pmin = 0), but are in fact defined by Equation 2.3 to have no lower 
limit (but an upper one). In practice, futures prices are quite far from 0, 
so it does not matter whether we assume a lower limit of 0 or none. 

The choice of the lower limit is important for the further treatment. The following 
errors lead to complete invalidity: 

■ Quotes that violate the monotonic sequence of time stamps (i.e., quotes 
with a time stamp before the previously treated quote). In some software 
environments, this is an impossible error. 

■ A domain error. An illegal level p of the filtered variable (i.e., p < pmin) 
as opposed to a merely implausible level. 

Invalid scalar quotes with an error of this kind do not enter a scalar filtering 
window and are completely ignored in all further filtering steps. We mark them 
by setting Ci = 0. This is a fundamentally stronger statement than merely giving 
a very low credibility as a result of the scalar filtering window. 

In the case of bid-ask quotes, the three resulting scalar quotes are tested indi-
vidually: 

■ Bid quote. Domain error if bid quote pbid < pmin• 
■ Ask quote. Domain error if ask quote paste < pmin• 
■ Bid-ask spread. Domain error if pask < Pbid• 

Thus it is possible that the same quote leads to a valid bid quote passed to the 
scalar filtering window of bid prices and an invalid ask quote that is rejected. 

The domain test of bid-ask spreads needs to be further discussed. First, we 
might interpret bad values (pas', < pbid) as the result of a sequence error. In other 
words, if the contributor typed ask-bid instead of bid-ask, this would be an error 
that could be corrected by the filter. This interpretation, although being true in 
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many cases, is dangerous as a general rule. We prefer to reject all ask quotes that 
are less than the bid quote. 

On the other hand, a more rigid test might also reject zero spreads. However, 
there are some quote contributors to minor markets interested only in either bid or 
ask or middle quotes. These contributors often produce formal quotes with pbid = 

Pask. In some markets, such quotes are the rule rather than the exception. A filter 
that rejects all of those quotes is throwing away some valuable and irreplaceable 
information. 

The solution looks as follows. First, there is a filtering option of generally 
rejecting zero spreads (i.e., the case pbid = Pask). If the user chooses this option, 
the quote splitting algorithm will act accordingly. Otherwise, zero spreads can be 
accepted, but they have low credibilities in a market dominated by positive spreads. 
This is further explained in the next section. 

4.6.3 Transforming the Filtered Variable 

The filtered variable is mathematically transformed in order to reach two goals: 

fin 1. A simpler (e.g., more symmetric) density function. The basic filtering 
operations (e.g., Equation 4.6), assume a roughly symmetric distribution 
of the scalar quote values (and their changes). Some variables, mainly the 
bid-ask spread, have a skewed distribution. The filtering method contains 
no full-fledged analysis to determine the exact nature of the distribution. 
This would be too much for an efficient filter algorithm. The idea of the 
transformation is that the mathematically transformed variable has a more 
symmetric distribution than the raw form. For the logarithm of bid-ask 
spreads, this has been demonstrated in Muller and Sgier (1992). 

2. The transformed variable should not depend on units such as Japanese Yens 
per U.S. Dollar. Relative changes have the advantage of being comparable 
between different financial instruments and different time periods of the 
same instrument. They do not depend on the units in which the different 
rates are expressed. A usual way to work with relative, unit-free variables 

fi is to take the logarithm of the raw variables such as prices. 
eeei 

The rules of the mathematical transformation are closely related to the validity 
tests of Section 4.6.2. The transformation never fails because all illegal quotes have 
already been removed by the domain tests. The transformed quote value is denoted 
by x and used in many formulas of Section 4.4. 

For single-valued quotes, bid quotes, and ask quotes, the following transfor-
mation is made: 

x i log(P 00Pmin) if Pmin > —
otherwise 

exists 

For bid-ask spreads, the transformation is 

= xspread = 45.564 .,/xask — xbid

(4.44) 

(4.45) 
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where xb,d and xask are results from Equation 4.44. Equation 4.45 has been chosen 
to return a value similar to log (xask +constant for a wide range of arguments 

Xask Xbid of typically occurring sizes. Indeed, a logarithmic transformation 
of spread values would be a natural choice. The reason to use Equation 4.45 
rather than a logarithmic transformation is related to zero spreads.2 A logarithmic 
transformation would make zero spreads impossible (as log(0) —oc). When 
inserting a zero spread in Equation 4.45, we obtain the legal result x = 0. This 
value is far away from typical ranges of values obtained for positive spreads, so 
its credibility is likely to be low in normal situations. When zero spreads become 
a usual event, the filter will start to accept them. 

4.7 UNIVARIATE FILTERING 

Univariate filtering is the top level of the filter. All the main filtering functions are 
managed here. The full-quote filtering window with its quote splitting algorithm 
of Section 4.6.1 is on a lower hierarchy level (see Table 4.1). Thus the univariate 
filter sees full quotes before they are split; it has access to all components of a full 
quote in their raw form (with no transformation). 

The tasks of univariate filtering are as follows: 

■ Serving as the main configuration of a filter. 

■ Analyzing those data errors that affect not only individual quotes but a 
whole continuous sequence of quotes. The presence (or absence) of such 
a general error defines the filtering hypothesis. Two such cases were found 
in financial data and are therefore covered by the filter: 

1. Decimal errors. A wrong decimal digit of the quote, corresponding 
to a constant offset from the true quote. 

2. Scaling factor. The quote deviates from the true level by a constant 
factor, often a power of 10. 

Both cases are further discussed here. 

■ Creating a new full-quote filtering window for a newly detected filtering 
hypothesis. 

■ Managing filtering hypotheses and their full-quote filtering windows dur-
ing their lifetimes, selecting the winning hypothesis. 

■ In the case of an error hypothesis, correcting the error of new incoming 
quotes according to the hypothesis and passing the corrected quotes to the 
full-quote filtering window. 

■ Packaging the filtering results to be accessed by the user. 

■ Recommending a suitable build-up period of the filter prior to the desired 
start date of the filtering result production, based on the filter configuration. 
Typical sizes are from weeks to months. 

2 The treatment of zero spreads is discussed at the end of Section 4.6.2. 
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The errors affecting a continuous sequence of quotes cannot be sufficiently fil-
tered by the means described in the previous sections; they pose a special challenge 
to filtering. The danger is that the continuous stream of false quotes is accepted to 
be valid after a while because this false series appears internally consistent. 

A filtering hypothesis is characterized by one general assumption on an error 
affecting all its quotes. This can lead to another unusual property. Sometimes the 
cause of the error is so clear and the size of the error so obvious that quotes can 
be corrected. In these cases, the filter produces not only credibilities and filtering 
reasons but also corrected quotes that can be used in further applications. This 
will discussed further. 

The errors leading to a filter hypothesis are rare. Before discussing the details, 
we should evaluate the relevance of this filtering element in general. Such an 
evaluation may lead to the conclusion that the filtering hypothesis algorithm is not 
necessary in a new implementation of the filter. 

Decimal errors have been the dominant error type in the page-based data feed 
from Reuters in 1987-1989. In later years, they have become rare; they hardly exist 
in modern data feeds. The few remaining decimal errors in the 1990s often were of 
short duration so they could successfully be filtered also through the standard data 
filter. Thus there is no convincing case for adding a decimal error filter algorithm 
to a filter of modern data. A decimal error filter is needed if old, historical data 
have to be cleaned. 

The scaling filter is also superfluous if the user of the filter has a good orga-
nization of raw data. If a currency is resealed (e.g., 1000 old units =1 new unit as 
in the case of the Russian Ruble), a company with good data handling rules will 
not need the data cleaning filter to detect this; this resealing will be appropriately 
handled before the data is passed to the filter. Resealed currencies (or equity quotes 
after a stock split) can be treated as a new time series. However, the transition 
between the two definitions may not be abrupt, and there may be a mixture of 
quotes of both scaling types for a while. A scaling analysis within the filter can 
serve as an additional element of safety to treat this case and detect unexpected 
scale changes. 

There is the possibility of having coexisting hypotheses, for example, the 
hypothesis of having a decimal error and the hypothesis of having none. If an 
immediate decision in favor of one hypothesis is always made, there is no need to 
store two coexisting hypotheses. Note that the filtering hypothesis algorithms are 
executed for each new quote before quote splitting. 

4.7.1 The Results of Univariate Filtering 

The output of the univariate filter consists of several parts. For every quote entered, 
the following filtering results are available: 

1. The credibility of the quote 

2. The value(s) of the quote, possibly corrected according to a filtering hy-
pothesis such as a scaling factor or a decimal error as explained in 4.2.2 
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3. The filtering reason, explaining why the filter has rejected a quote 

4. Individual credibilities of scalar quotes (bid, ask, spread) 

Users may only want a minimum of results, perhaps just a yes/no decision on 
using or not using the quote. This can be obtained by simply checking whether 
the credibility of the quote is above or below a threshold value, which is usually 
chosen to be 0.5. 

In the case of bid-ask data, the credibility C of the full quote has to be deter-
mined from the credibilities of the scalar quotes, usually applying the following 
formula: 

C = min(Cbid, Casks Cspread) (4.46) 

This formula is conservative and safe; valid quotes are meant to be valid in every 
respect. The timing of the univariate filtering output depends on whether it is in a 
historical or real-time mode. 

4.7.2 Filtering in Historical and Real-Time Modes 

The terms "historical" and "real-time" are defined from the perspective of filtering 
here. A filter in real-time mode may be applied in a historical test. The two modes 
differ in their timing: 

■ In the real-time mode, the credibilities of a newly included quote resulting 
from Equations 4.38 and 4.1 are immediately passed to the univariate 
filtering unit. If there is only one filtering hypothesis, these credibilities 
are directly accessible to the user. If there are several hypotheses, the 
hypothesis with the highest overall credibility will be chosen. 

■ In the case of historical filtering, the initially produced credibilities are 
modified by the advent of new quotes. Only those quotes are output whose 
credibilities are finally determined. At that time, the quotes leave the full-
quote filtering window and this implies that their components have also left 
the corresponding scalar filtering windows. If several filtering hypotheses 
coexist, their full-quote windows do not dismiss any quotes and so we 
get filtering results only when conflicts between filtering hypotheses are 
finally resolved in favor of one winning hypothesis. 

Although these modes are different, their implementation and selection is easy. In 
the historical mode, we retrieve the oldest member of the full-quote window only 
after a test on whether this oldest quote and its results are ready. In the real-time 
mode, we pick the newest member of the same full-quote window. Thus it is 
possible to get both modes from the same filter run. 

A special option of historical filtering should be available by obtaining the last 
quotes and their results when the analysis reaches the most recent available quote. 
It should be possible to output the full-quote window (of the dominant filtering 
hypothesis) for that purpose, even if the credibilities of its newest quotes are not 
finally corrected. 
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This leads to another timing mode that might frequently occur in practice. A 
real-time filter might be started from historical data. In this case, we start the filter 
in historical mode, flush the full-quote window as soon as the filter time reaches 
real time, and then continue in real-time mode. This can be implemented as a 
special mode if such applications are likely. 

4.7.3 Choosing the Filter Parameters 

The filter algorithm as a whole depends on many configuration parameters. Ta-
ble 4.5 summarizes the definitions and explanations. The parameters are listed in 
the sequence of their appearance in Chapter 4. Some less important parameters 
have no symbol and appear directly as numbers in the text; nevertheless they have 
been included in Table 4.5. The same parameter values can be chosen for the 
different financial markets. Tests have shown that we need no parameter adjust-
ments because the adaptive algorithm successfully adjusts to different financial 
instruments. 

Filter users may choose the parameter values in order to obtain a filter with 
properties suited to their needs. A higher value of o in Equation 4.11, for instance, 
will lead to a more tolerant filter. For a sensitivity test, we define different filters, 
for example, a weak (tolerant) filter and a strong (fussy) filter. This is explained 
in Section 4.9. 

4.8 SPECIAL FILTER ELEMENTS 

The filter described so far is flexible enough for most cases, but not for some of 
the special error types presented at the end of Section 4.2.2. These errors can 
be identified by additional algorithmic elements, which are discussed by Muller 
(1999). Moreover, there can be disruptive events such as the redefinition of finan-
cial instruments that pose some additional problems. For these rare cases, the data 
cleaning environment should provide the possibility of human intervention. 

4.8.1 Multivariate Filtering: Filtering Sparse Data 

Multivariate filtering is a concept that has not been used in the empirical results of 
this book, and univariate filtering as described in Section 4.7 remains the highest 
algorithmic level. Multivariate filtering requires a more complex and less modular 
software than univariate filtering—but it seems the only way to filter very sparse 
time series with unreliable quotes. Some concepts of a possible implementation 
are presented here. 

In the financial markets, there is a quite stable structure of only slowly varying 
correlations between financial instruments. In risk management software pack-
ages, a large, regularly updated covariance matrix is used to keep track of these 
correlations. Covariance matrices between financial instruments can also be ap-
plied in the data cleaning of sparse quotes. Although univariate filtering methods 
work well for dense quotes, they lose a large part of their power when the density 
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TABLE 4.5 List of filter parameters. 

Description of parameter Symbol Equation number 

Range of mean x Oz9r 4.3, 4.4 

Parameters of ,a,.xm2 in used in the level filter (after Equation 4.7) 

Critical deviation from mean x t o 4.8 

Critical size of value change 0 4.11 

Interaction range in change filter (normal v 4.13 
value, special value for bid-ask spread) 

Range of quote density Al)r 4.15 

Weight of new quote in quote density (normal cd 4.15 
value, special value for repeated quotes) 

Range of short-term, standard and long-term A6r 4.16 
volatility (vf t, v, vo„) 

Relative time interval offset for volatility do 4.17 

Absolute time interval offset for volatility 86min 4.17 

Relative limits of quote interval 6,29 (upper, 4.19 
lower) 

Weight of squared granule in volatility offset 4.21 

Parameters used for volatility offset so for (after Equation 4.21) 
bid-ask spreads 

Range (memory) of the quote diversity R 4.22 
analysis 

All parameters of the impact of quote diversity 4.24 

Activity of active periods, for .0i, 4.25 

Activity of inactive periods, for .19k 4.25 

Range of short-term volatility used for z, AD-smooth 4.28 

Range of the variance of volatility fluctuations Az3, 4.29 
used for 19

Weight of the level filter Clevel 4.32 

Trust capital dilution factor (normal value, µ 4.34 — 4.36 
special value at initialization from scratch) 

Window size parameter W 4.43 

Critical credibility for statistics update Ccrit (Section 4.5.5) 
(normal value, special value at initialization 
from scratch) 

Lower limit of allowed domain (prices, FX Pmin 4.44 (and Section 4.6.2) 
forwards, interest rates) 

Factor in transformation of bid-ask spreads 4.45 

Standard credibility threshold for accepting a (Section 4.7.1) 
quote 
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of quotes is low. When a new quote of a sparse series comes in, there are only few 
quotes to compare and these quotes can be quite old and thus not ideal for filtering. 
This is the place where some additional information from the covariance matrix 
becomes useful. This can technically be done in several ways. 

The only method outlined here is the artificial quote method. If the sparse rate 
(e.g., in form of a middle price) is included in a covariance matrix that also covers 
some denser rates, we can generate some artificial quotes of the sparse series by 
exploiting the most recent quotes of the denser series and the covariance matrix. 
The expectation maximization (EM) algorithm of Morgan Guaranty (1996) is a 
method to produce such artificial quotes; there are also some alternative methods. 
Results are good if all the series included in the generation of artificial quotes are 
highly correlated or anticorrelated to the sparse series. 

Artificial quotes may suffer from three uncertainties: (1) they have a stochastic 
error in the value because they are estimated, (2) there is an uncertainty in time due 
to asynchronicities in the quotes of the different financial instruments (Low et al., 
1996), and (3) only a part of the full quote is estimated from the covariance matrix 
(e.g., the middle price, whereas the bid-ask spread has to be coarsely estimated as 
an average of past values). Therefore, an additional rule may be helpful by using 
artificial quotes only if they are not too close to good quotes of the sparse series. 

In some cases, we can simply use arbitrage conditions to construct an artificial 
quote, such as the triangular arbitrage of FX cross rates explained in Section 2.2.2. 
The following algorithmic steps are done in the artificial quote method: 

■ Define a basket of high-frequency time series which are fairly well corre-
lated or anticorrelated to the sparse series. 

■ Generate artificial quotes from the correlation matrix and mix them with 
the normal quotes of the sparse series, thus reinforcing the power of the 
univariate filtering algorithm. 

■ Eliminate the artificial quotes from the final output of the filter (because a 
filter is not a gap-filler). 

This algorithm has the advantage of leaving the univariate filtering algorithm al-
most unchanged. The multivariate element only enters in the technical form of 
additional quotes. Quotes are the usual input of univariate filtering. 

4.9 BEHAVIOR AND EFFECTS OF THE DATA FILTER 

Data cleaning is a necessity because unfiltered outliers would spoil almost any data 
application. However, there is a legitimate concern about unwanted side effects 
caused by data cleaning. Are too many ticks rejected? Does filtering open a door 
to arbitrary data manipulation? 

The rejection rates are low as shown by the typical examples presented in 
Table 4.6. The investigated data filter is a standard filter developed and used by 
Olsen & Associates (O&A), following the guidelines of Chapter 4. A proper build-
up time is essential for such an adaptive filter as explained in Section 4.3.1. In all 
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TABLE 4.6 Data cleaning: Rejection rates. 

Percentage of ticks rejected by a standard data cleaning filter of Olsen & Associates, for 
different financial markets. The analyzed test samples always consist of irregularly spaced 
high-frequency data over a period of one year. The reported rejection rates originate from 
the filter working in real-time mode. 

Market Financial 
instrument 

Analyzed 
time 

period 

Number of 
all ticks 
in period 

Rejected 
outlier 
ticks 

All 
rejected 

ticks 

Major FX rates EUR-USD Mar 99 —Feb 00 3,457,116 0.07% 0.30% 
USD-JPY Jan 89 —Dec 89 683,555 0.24% 0.49% 
USD-JPY Jan 99 —Dec 99 1,324,421 0.06% 0.48% 

Minor FX rates USD-MYR Jan 99 —Dec 99 1,950 7.59% 8.41% 
USD-MXP Jan 99 —Dec 99 55,227 1.14% 1.66% 

Spot interest rates GBP Jan 99 —Dec 99 10,471 0.08% 50.27% 
(3 months) 

Short-term interest 
rate futures 

CHF 
(Mar 00, LIFFE) 

Jan 99 —Dec 99 34,561 8.54% 8.54% 

examples, the build-up period was the 3 months preceding the analyzed period. 
All the examined raw data have been collected from the Reuters real-time data 
feed. Two rejection rates are indicated: (1) the rejection rate of "classical" outliers 
only, and (2) the rate of all rejected ticks, including those monotonically drifting 
or excessively repeated ticks identified by special parts of the cleaning algorithm. 
These "nonclassical" data errors are explained in Section 4.2.2 and can directly 
or indirectly lead to bad data quality, as the normal outliers. Therefore, they are 
eliminated by a good data filter. 

For frequently quoted, major financial instruments, less than 0.5% of the 
ticks are rejected, as indicated by examples of major FX rates (EUR-USD and 
USD-JPY) in Table 4.6. The two analyzed USD-JPY samples are separated in 
time by 10 years. The percentage of outliers has clearly decreased over these 
10 years. Data quality seems to have improved. However, the percentage of all 
rejected ticks has remained almost stable, due to an increase of monotonically 
drifting and excessively repeated ticks. These bad ticks are generated by improper 
computerized quoting, which has obviously become more widespread over the 
years. Minor FX rates such as USD-MYR and USD-MXP in Table 4.6 typically 
have higher rejection rates, which may exceed 5%. In less liquid markets, the 
competitive pressure to publish high-quality data seems to be lower. The spot 
interest rate of GBP with a maturity of 3 months in Table 4.6 has the high rejection 
rate of 50%, but there are just 0.1% true outliers. The high number of 50% 
is solely due to the quoting habit of one single bank that excessively repeated 
few quotes at high frequency over long periods. This behavior is also found for 
other, similar financial instruments. Market data from exchanges are often more 
reliable because of the centralized data generation. The percentage of outliers is 
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smaller, and there are no monotonically drifting or excessively repeated quotes. 
This latter observation can be made for the Swiss Franc (CHF) interest rate futures 
of Table 4.6, where all the rejected ticks are true outliers. However, the outlier rate 
is rather high, about 8.5%. A closer look shows that most of these rejected ticks are 
empty ticks with formally quoted values of zero. Whatever the reason of the data 
supplier to post these empty ticks, the filter rightly rejects them as outliers. The 
rejection rates of Table 4.6 have been computed for the filter running in real-time 
mode. The corresponding rejection rates of historical filtering (see Section 4.7.2) 
are similar—usually slightly lower. A data filter needs a testing environment to 
analyze its statistical behavior. Table 4.6 presents a simple example of results 
produced by such a testing environment. 

A good general method to test the effects of filtering in practice is a sensitivity 
analysis of the following kind. The data application, whatever it is, is implemented 
twice, using two different filters. Both filters may follow the same algorithm, but 
one of them is weak with more tolerant parameters, leading to a lower rejection 
rate, perhaps only half the rejection rate of the other filter. Then the results of 
both applications are compared to each other. The deviations between analogous 
results directly reflect the sensitivity or robustness of the analysis against changes 
in the data cleaning algorithm, and indirectly the possible degree of distortion by 
the filter. 

This has been done, for example, in the case of an extreme value study of 
FX returns—a type of analysis very sensitive to outliers (which naturally lead 
to extreme return observations). Fortunately, the results for both filters are very 
similar, which means that both filters successfully eliminate the true outliers. The 
doubtful ticks that are accepted by one filter and rejected by the other one have 
little influence on the final results. 
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5 
BASIC STYLIZED FACTS 

5.1 INTRODUCTION 

Gathering basic stylized facts on the behavior of financial assets and their returns 
is an important research activity. Without such facts it is not possible to design 
models that can explain the data. High-frequency data opened up a whole new 
field of exploration and brought to light some behaviors that could not be observed 
at lower frequencies. In this chapter we review the main stylized facts for foreign 
exchange (FX) rates, interbank money market rates, and Eurofutures contracts. 

These stylized facts can be grouped under four main headings: autocorrela-
tion of return, distributional issues, scaling properties, and seasonality. We find a 
remarkable similarity between the different asset types. Hence, we shall examine 
each of the properties first for FX rates and then show how they are present or 
modified for the others. FX rates have been the subject of many studies. However, 
these studies do not present a unified framework of the return distributions of the 
data-generating process. Most of the earlier literature analyzed daily time series, 
but, more and more, recent publications deal with intraday prices. They essentially 
confirm the findings of this chapter. Here, we use a set of intraday time series cov-
ering a worldwide 24 hr market,' and we present a study of fundamental statistical 

1 For a full description of the data, we refer the reader to Chapter 2. 
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properties of the intraday data. More specifically, this chapter demonstrates the 
following: 

■ At the highest frequency, the middle price is subject to microstructure 
effects (e.g., the bouncing of prices between the bid and ask levels). The 
price formation process plays an important role and overshadows some of 
the properties encountered at lower frequencies. 

■ The distributions of returns are increasingly fat-tailed as data frequency 
increases (smaller interval sizes) and are hence distinctly unstable. The 
second moments of the distributions most probably exist while the fourth 
moments tend to diverge. 

■ Scaling laws describe mean absolute returns and mean squared returns as 
functions of their time intervals (varying from a few minutes to one or 
more years). We find that these quantities are proportional to a power of 
the interval size. 

■ There is evidence of seasonal heteroskedasticity in the form of distinct 
daily and weekly clusters of volatility. This effect may partly explain the 
fat-tailedness of the returns and should be taken into account in the study 
of the return distributions. Daily and weekly patterns also exist in quote 
frequency. 

■ Daily and weekly patterns are also found for the average bid-ask spread, 
which is negatively correlated to the volatility. The trading activity in 
terms of price quoting frequency has a positive correlation to the volatility 
and a negative one to the spread. These findings imply that the trading vol-
ume is also positively correlated to the volatility. The daily patterns of all 
these variables may be explained by the behavior of three main markets—
America, Europe, and East Asia—whose active periods partially overlap. 
Our intraday and intraweek analysis shows that there are systematic vari-
ations of volatility, even within what are generally considered business 
hours. 

The literature presents a number of views regarding the distributions of FX returns 
and the corresponding data-generating process. Some papers claim FX returns to 
be close to Paretian stable ones, for instance, (McFarland et al., 1982; Westerfield, 
1997); some to Student distributions that are not stable (Rogalski and Vinso, 1978; 
Boothe and Glassman, 1987); some reject any single distribution (Calderon-Rossel 
and Ben-Horim, 1982). Most researchers now agree that a better description of the 
data generating process is in the form of a conditional heteroskedastic model rather 
than being from an unconditional distribution. Among the earliest to propose this 
for the FX rates were Friedmann and Vandersteel (1982); Wasserfallen and Zim-
mermann (1985); Tucker and Scott (1987) and Diebold (1988). On distributional 
issues, the only agreement seems to be that daily returns are fat-tailed and that there 
are substantial deviations from a Gaussian random walk model. Moreover, all of 
the literature on GARCH agrees that the distribution is not stable. Many of the 
studies of the late 1980s have been limited to daily or even weekly data except for 
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5.2 PRICE FORMATION PROCESS 
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FIGURE 5.1 The autocorrelation function for the USD-DEM returns is plotted for 
different time lags in minutes up to 60 min. The returns are computed with prices inter-
polated using the previous tick interpolation method (see Chapter 3). The two horizontal 
lines represent the 95% confidence interval of an i.i.d. Gaussian process. The sampling 
period runs from January 5, 1987, to January 5, 1993. The autocorrelation is significantly 
negative up to a time lag of 4 min. 

Wasserfallen and Zimmermann (1985); Feinstone (1987); Ito and Roley (1987), 
and Wasserfallen (1989). These papers analyze intradaily samples restricted to 
particular local markets and their local business hours. Recently the group of 
Bamdorff-Nielsen has come up with the normal inverse Gaussian distribution that 
seems to capture some of the features we describe here, as observed in Eberlein 
et al. (1998); Bamdorff-Nielsen (1998), and Barndorff-Nielsen and Prause (1999). 

5.2 PRICE FORMATION PROCESS 

The following three facts pertain to the short-term (less than 10 min) behavior of 
the foreign exchange intradaily returns. They highlight the difficulties inherent in 
tick-by-tick analysis. 

5.2.1 Negative First-Order Autocorrelation of Returns 

Goodhart (1989) and Goodhart and Figliuoli (1991) first reported the existence 
of negative first-order autocorrelation of returns at the highest frequencies, which 
disappears once the price formation process is over. In Figure 5.1, the autocorre-
lation function of returns measured at a 1 min interval is plotted against its lags. 
The returns are computed using the previous tick interpolation. There is significant 
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autocorrelation up to a lag of 4 min. For longer lags, the autocorrelations mainly lie 
within the 95% confidence interval of an identical and independent (i.i.d.) Gaus-
sian distribution. Goodhart (1989) also demonstrated that this negative autocorre-
lation is not affected by the presence (or absence) of major news announcements. 
Finally, Goodhart and Figliuoli (1992) showed that the resulting oscillations of 
the prices are not caused by bouncing prices between different geographical areas 
with different information sets. In Figure 5.1, negative autocorrelation is ob-
served not only at the first lag (1 min) but also at further lags up to about 3 or 
4 min. This is due to irregular spacing of ticks. If tick time is taken (i.e., an 
artificial time scale that moves by one unit with every tick), the negative autocor-
relation is observed only at the first lag and rarely at larger lags, thus justifying 
the term "first-order" This behavior is characteristic if individual ticks randomly 
deviate from the market average while return clusters of longer duration are ab-
sent. 

A first explanation of this fact is that traders have diverging opinions about 
the impact of news on the direction of prices—contrary to the conventional as-
sumption that the FX market is composed of homogeneous traders who would 
share the same views about the effect of news so that no negative correlation of the 
returns would be observed. A second—and complementary—explanation for this 
negative autocorrelation is the tendency of market makers to skew the spread in a 
particular direction when they have order imbalances (Bollerslev and Domowitz, 
1993; Flood, 1994). A third explanation is that even without order imbalances or 
diverging opinions on the price, certain banks systematically publish higher bid-
ask spreads. This could also cause the prices to bounce back and forth between 
banks (Bollerslev and Domowitz, 1993). An early model for this bid/ask bounce 
was proposed by Roll (1984) in modeling transaction data in the stock market. 

The idea is that the two prices, bid and ask, can be hit randomly according to the 
number of buyers and sellers in the market. If the number of buyers is equal the 
number of sellers, which is the case most of the time in the market without exo-
geneous news, this model will produce a negative autocorrelation of transaction 
returns at high-frequency. 

This negative autocorrelation is also seen in FX-rate transaction prices (Good-
hart et al., 1995) and in Eurofutures contracts (Ballocchi et al., 1999b). For some 
stock indices such as the S&P 500, Bouchaud and Potters (2000) finds the autocor-
relation of returns to be positive while it is not found in stock returns themselves 
or in futures contracts on indices (Alm et al., 2000). The explanation for the pos-
itive autocorrelation of stock indices is that some of them are constructed from 
equities that have very different liquidity. The model is called the lagged adjust-
ment model (Aim et al., 2000). In this model one group of stocks reacts more 
slowly to aggregate information than another group of stocks. Because the auto-
covariance of a well-diversified portfolio is just the average cross-covariance of 
the stocks that make up the portfolio, this results in positive autocorrelations. In 
any case, the autocorrelation of returns is directly related to microstructure effects 
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FIGURE 5.2 The figure on the left presents the spread size frequencies for USD-DEM 
quotes during June 16, 1993, collected from Reuters FXFX page. The figure on the right 

s presents the spread size frequencies for USD-DEM transactions during June16,1993, from 
an analysis of Reuters Dealing 2000-2 by Goodhart et al. (1995). 

in the market and should be carefully considered before using data at very high 
frequency. 

The negative first-order autocorrelation can be seen as unwanted noise to 
be removed in a further study. An effective price can be defined in a way to 
eliminate the negative autocorrelation, as already discussed at the end of Sec-

a a  3.2.2. 

5.2.2 Discreteness of Quoted Spreads 

6.; Bid-ask spreads have discrete values. For studying this, we use the spread in its 
raw form, defined as ask price minus bid price, rather than the relative spread 
defined by Equation 3.12. In the example of Figure 5.2, bid-ask spreads of 
FX quotes are discretely distributed with the major peak at 5 basis points, fol-
lowed by peaks at 10 and 7 basis points. A basis point is the smallest quoted 
decimal digit, which is 0.0001 German Marks per U.S. Dollar in the case of 
USD-DEM. In other, longer sampling periods and for other FX rates, we ad-
ditionally observe spreads of 3, 8, 15, and 20 basis points with noticeable fre-
quency. In a sample investigated by Bollerslev and Melvin (1994), the peaks 
at 5, 7, 10, and 15 basis points account for more than 97% of the distribution. 
These conventional spread values have evolved over the years, depending on the 
markets. For USD-DEM and some other major FX rates, the highest spread fre-
quency peak shifted from 10 to 5 basis points during the 1990s, partly because 

0145



126 CHAPTER 5 BASIC STYLIZED FACTS 

the price levels became lower (Muller and Sgier, 1992). As explained in Sec-
tion 3.2.5, spreads mainly depend on the cost structure of the market making 
banks and the habits of the market. Goodhart and Curcio (1991) have shown 
that individual banks usually quote two or three different spreads. Market mak-
ers who want to attract buyers more than sellers, or the other way around, tend 
to publish a skewed quote where only either the bid or the ask price is compet-
itive and the other price is pushed away by a spread of conventional size, of-
ten 5 or 7 basis points. When they are uncertain about the direction the price 
should take, they may quote larger spreads with conventional values such as 10 
or 15 (Lyons, 1998). Because different banks have different conventions and 
market situations change over time, the distribution of spreads has 4 or 5 peaks 
instead of 2 or 3. 

A possible way to approximately model the real spreads, that is the difference 
between traded bid and ask prices, could be an analysis of the market microstruc-
ture which is discussed in detail by Flood (1991). Such a real spread model would 
analyze the microoscillations of (almost) simultaneous prices from different mar-
ket makers. The effective spread would be something like the difference between 
the lowest ask and the highest bid prices currently quoted by any market maker—a 
model that would complement the effective price model proposed in Section 5.2.1. 
We did not try to set up such a subtle model, although we think that this would 
be the only way to overcome the limitations of quoted spreads. In a recent pa-
per, Hasbrouck (1998) precisely proposes a market microstructure model for the 
clustering of the spreads based on a similar idea of a latent continuous efficient 
price. 

Although the distribution of the spreads is discrete and consistent with theory 
(Admati and Pfleiderer, 1988; Subrahmanyam, 1991) market makers will cover 
themselves by conventional larger spreads in periods of higher risk such as in the 
release of important news (Goodhart, 1989), the closing or opening of markets 
(Bollerslev and Domowitz, 1993) and lunch breaks, (Muller et al., 1990). More 
generally, the size of the spread is inversely related to market activity as measured 
by the tick frequency or the mean hourly volatility (Milner et al., 1990). The 
size of the spread is directly related to the (instantaneous) volatility, which also 
measures the risk (Bollerslev and Domowitz, 1993). 

In Figure 5.2, very different pictures emerge from the quoted spreads, which 
are only indicative, and the spreads as obtained from the electronic dealing system 
Reuters Dealing 2000-2. The different behaviors of the spread constitute the most 
pronounced difference between quoted prices and transaction prices. In Figure 5.2, 
the spread of actual transaction prices is uniformly distributed as one would expect. 
In their paper, Goodhart et al. (1995) note that, contrary to spreads, the volatility 
of middle prices does not exhibit substantial differences when transaction prices 
are used instead of quotes. 

In the case of exchange-traded instruments such as Eurofutures (IR futures), 
there is no well-defined spread because the bid and the ask quotes are not syn-
chronized and, depending on the market state, there may be only bid quotes 
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or only ask quotes for a while. Nevertheless, a spread can be computed from 
bid and ask quotes that are few seconds apart. This effective spread is usually 
very small, typically less than one basis point on the Eurofutures market 
(Ballocchi et al., 1999b), which represents relative spreads of the order of 10-4
according to the definition in Equation 3.12. Similar values are found for bond 
futures traded on the Deutsche Termin-Borse (DTB) (Franke and Hess, 1997). 

5.2.3 Short-Term Triangular Arbitrage 

The extremely short-term dynamics of price processes is also reflected in the sig-
nificant predictive power of the USD-DEM in contrast to the other currencies 
(Goodhart and Figliuoli, 1991). A short delay is needed before traders in smaller 
currencies adjust themselves to the patterns of the two leading currencies. It is 
an effect comparable to the one we described in Section 5.2.1 for the positive au-
tocorrelation of high-frequency returns of stock indices. Eben (1994) also finds 
evidence of triangular arbitrage opportunities at very high frequencies arising from 
very short-term trend reversals between two USD-rates, which are not yet reflected 
in the quoted cross rates. Although the detection of triangular arbitrage opportu-
nities is rather easy and quick with a unique vehicle currency, it takes more time 
when the rates between two vehicles (e.g., USD and DEM) change (Suvanto, 1993; 
Hartmann, 1998). 

Triangular arbitrage opportunities detected in quoted data do not necessarily 
reflect riskless profit-taking opportunities in real markets. The transaction costs 
may exceed the profits and the transaction prices may adjust more quickly than 
the quotes. 

5.3 INSTITUTIONAL STRUCTURE AND EXOGENEOUS 
IMPACTS 

5.3.1 Institutional Framework 

An example of an institutional framework is the European Monetary System (EMS) 
introduced in the 1990s to keep some intra-European FX rates within certain bands. 
An intradaily analysis of FX rates within the EMS gives some insights into the 
distinct characteristics of this monetary system at a time when the bands were still 
quite narrow. As illustrated in Figure 5.3 (b), the EMS achieved a smaller drift 
exponent of the scaling law. 

The scaling law relates the mean absolute return E[IrI] observed over time 
intervals of a certain size to the size At of these intervals: E[Ir I] = const (At)D. 
The exponent D is called the drift exponent and empirically estimated using data 
samples. Low drift exponents indicate that the EMS successfully reduced the 
size of returns over large time intervals as compared to the volatility of short-
term returns. A further, detailed discussion of drift exponents and their empirical 
estimation can be found in Section 5.5. 
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FIGURE 5.3 Drift exponents of the scaling law as a function of time, empirically esti-
mated for yearly samples. (a): Drift exponents of freely floating rates against the USD, 
DEM (•), FRF (A), JPY (*). (b): Drift exponents of EMS rates against the DEM, ITL (0) 
and FRF (*). 

When the Italian Lira (ITL) left the EMS in 1992 and the EMS bands of the 
French Franc (FRF) were broadened in 1993, the values of the drift exponents 
went up and approached those of freely floating rates, as can be seen in Figure 5.3. 

The drift exponent and the long-term volatility under the EMS were reduced, 
however, at the cost of a larger probability of extreme events. This is further 
explained in Section 5.4.2. The statistical analysis of EMS rates shows that insti-
tutional setups such as the EMS can be distinguished from freely floating markets 
by purely statistical criteria in a robust way, independent of assumptions on the 
generating-process.2

Another effect of the market framework can be seen in other financial high-
frequency data such as interbank spot interest rates. In this market, money market 
quotes coming from East Asia are systematically higher than those from Europe or 
America. Figure 5.4 clearly indicates that for USD 3-month money market rates 
(spot interest rates collected from Telerate) the last bid quote before 2 a.m. GMT 
(Greenwich Mean Time) almost always exceeds the last bid quote before 8 p.m. 
GMT. On average, the early quote is larger by one-eight of a percent. The interest 
rate intraday seasonality is caused by a geographical market segmentation between 
East Asia on one side and Europe and America on the other side. This segmentation 
is justified by market practitioners as being due to institutional constraints and 
credit risks, making it less appealing on average for a European bank to place a 
deposit with an East Asian counterparty than with a European counterparty. The 
temporary difficulties in the Japanese banking sector were a likely cause of the 
segmentation. The segmentation became very pronounced in the last half of 1995 
and again during the "Asian crisis" in 1998 (with interest rate deviations of about 

2 See Svensson (1992) for a review of the literature on the modeling of target zones, and in particular, 
of the European Monetary System. 
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FIGURE 5.4 Daily difference between the last bid quote before 2 a.m. GMT and the 
last bid quote before 8 p.m. GMT. The early quote is systematically higher than the later 
one. Data sample: Quotes of the USD 3-month interbank money market rates published 
by Telerate. The analysis runs from January 5,1993, to January 31, 1995. 

0.5%). As explained in Section 2.3.1, the segmentation even caused negative SPY 
interest rates in the European and American markets. 

5.3.2 Positive Impact of Official Interventions 

One special type of trader is the central banks, as the time and the size of their 
interventions can be measured on an intradaily basis. Central banks may operate 
either directly through officially announced interventions or indirectly through 
unannounced interventions. Official interventions operate essentially as signals 
given to the markets and are therefore difficult to measure, see Edison (1993) for 
a review of the literature on central bank interventions. Some evidence is given 
in Goodhart and Hesse (1993) of the positive effects in the long run of official 
interventions, although they may result in short-term losses for the central bankers. 
One could, however, easily extend the analysis to any other long-term trader. A 
trader who can afford to keep a large open position for a long time will have some 
impact on the market through his reputation, even if he doesn't have a large share 
of the market. This is the case of some hedging funds, for example. Peiers (1997) 
shows the positive impact of unannounced interventions and interventions of a 
central bank, the Bundesbank, through the biggest player on the market, namely 
the Deutsche Bank. 

5.3.3 Mixed Effect of News 

News is a very broad concept covering a phone call of a customer who wants to 
make a large FX transaction (due to inventory imbalances, for instance), a con-
versation with a colleague, price forecasts and histories when used in technical 
analysis programs or the economic forecasts of the research department of a bank, 
general economic and political news, and major economic news announcements. 
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FIGURE 5.5 Intraday distribution of 15-min mean changes for the absolute returns 
(Equation 5.1 for the USD-DEM). Sudden peaks are darkened. The values are averages 
over all weeks of a sampling period of many years. 

News is therefore difficult to quantify. Goodhart (1989) first tried to quantify 
news by looking at the "news" pages of Reuters. General economic and polit-
ical news was displayed on the AAMM page (until February 1997). Goodhart 
(1989) found that "small" news does not have a significant effect on the behav-
ior of the foreign exchange rates. Distinct and relatively large price movements 
unrelated to any news are indeed apparent. The price formation process seems 
to prevail, notwithstanding the presence or absence of news. In contrast, major 
economic news announcements such as trade, unemployment, budget deficit, or 
gross domestic product growth have significant impact (Goodhart, 1989). Eco-
nomic news announcements along with the market expectations and the effect of 
the previous announcement were displayed in Reuters' FXNB page. Effective 
news—that is, the difference between the market expectation and the actual figure 
that is released—increases the volatility as the dispersion of traders' views on the 
impact of the effective news widens. 

In Figure 5.5 we study the systematic effect of news release over a full day. 
We plot as a function of daytime (in GMT) a quantity that reflects the change 
of volatility by examining its relation to the neighboring values. This quantity is 
defined as 

1 
hi = exp In Iri I — 

2
— hilri—lri+11] (5.1) 
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where the index i represents the time of day (in steps of 15-min), and the hi are 
averaged over all working days of a long sampling period. The three right peaks 
in Figure 5.5 show the clear-cut effect of news release in New York and Japan. 
News is not released every working day, but when it is, this happens at the typical 
daytimes indicated by peaks. The two peaks for the United States are separated 
by 1 hr and reflect the change of daylight saving time, which does not exist in 
Japan. The first two peaks on the left correspond to the beginning of the Japanese 
trading session and to the time just after the Japanese lunch. Goodhart et al. (1993) 
further show that major economic news announcements, such as release of the U.S. 
trade figures or changes in the U.K. base interest rate, have a significant impact 
on the return process. This effect however extends over 3 or 4 days as markets 
eventually incorporate the effects of the news. Moreover, the direction of the effect 
on the level of the price is difficult to predict. This can be explained by the highly 
nonlinear dynamics of the FX rates (Guillaume, 1994). 

An alternative way to quantify the impact of news is with the mixture of 
distribution hypothesis (Clark, 1973; Tauchen and Pitts, 1983; Andersen, 1996). 
In this framework, the clustering of the volatility results from the clustering of the 
news arrival process. Because the news arrival process is an unobserved variable, 
proxies for the market activity such as the volume of trade are used (volume is 
not available in the FX markets). Moreover, as shown in Jones et al. (1994), 
volume can be rather noisy. Therefore, empirical studies in the FX intradaily 
markets use the tick frequency or the spread as proxies for the level of activity. 
Although a certain correlation between these variables and the volatility is obvious 
from the simple inspection of Figure 5.12, severe limitations harm the use of 
these variable as noted earlier. Moreover, Dave (1993) shows that tick frequency 
can only be a good approximation of the volume when markets are analyzed as 
separate geographical entities. Thus, there is no overlap between markets and 
the data are not disaggregated by individual bank subsidiary. Goodhart (1989) 
also shows that tick frequency does not specifically rise when news is released. 
Therefore, empirical evidence in favor of this mixture of distribution hypothesis 
is only partial, (Demos and Goodhart, 1992; Bollerslev and Domowitz, 1993). A 
more recent paper by Melvin and Yin (2000) provides new support for the link 
between news arrival frequency and quote frequency. 

In another study, Almeida et al. (1998) are able to quantify the effect of news 
to a short-lived response of 15 min on average, confirming the results of Figure 5.5. 
The peaks of that figure disappear if longer time intervals are examined. This is 
also confirmed in a study by Franke and Hess (1998) on other very liquid markets 
such as the U.S. treasury bond market and the German Bund futures market. By 
studying the effect of scheduled U.S. macroeconomic news releases, these authors 
were able to detect an increase of volatility of the U.S. Treasury bond futures 
contracts. This anomalous volatility would last from few minutes to a maximum 
of an hour. Moreover, they show that the futures Bund price reacts significantly to 
an American news announcements. They attribute this reaction to the increasing 
integration of the German bond market. It is only with the use of more sophisticated 
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indicators, rather than purely examining the returns, that it is possible to detect a 
significant impact of the news. Recently, Zumbach et al. (2000) have developed 
a scale of market shocks by integrating different volatility measures and relating 
a shock to its probability of occurrence. This measure is able to clearly identify 
turbulences on the market as well as to quantify the effect of news (Zumbach et al., 
2000). 

5.4 DISTRIBUTIONAL PROPERTIES OF RETURNS 

We mentioned in the introduction to this chapter the variety of opinions about the 
distributions of FX returns and the corresponding data-generating process. In this 
section, we do not want to propose a new model for the probability distribution 
function, but rather examine empirically what type of behavior is observed when 
returns are measured at different frequencies. We shall first present general results 
on the entire distribution and note that they are fat-tailed. Then, instead of looking 
at the center of the distribution, we shall present an alternative way to characterize 
the distribution by looking at the behavior of the tails. 

There are many possible models of distribution functions, but this variety 
is greatly reduced when considering the tails of the distributions. The tail of 
a distribution can be described by using only one parameter, the tail index a. 
The empirical estimation of the tail index is difficult and requires large numbers 
of observations. The availability of high-frequency data makes this possible in 
practice. The methods, the empirical results, and their interpretation are presented 
in Section 5.4.2. 

5.4.1 Finite Variance, Symmetry and Decreasing Fat-Tailedness 

In this subsection, we analyze the probability distribution of returns of financial 
assets. The probability distribution associates each movement size with a certain 
probability of occurrence. In the case of empirical data, the domain of possible 
return values is divided into boxes, and one counts the frequency of occurrence 
in each box. One important issue in the case of tick-by-tick data is that this data 
are irregularly spaced in time, tj. We have already discussed in Chapters 2 and 3 
the different ways of constructing a homogeneous time series. Here we chose to 
take linearly interpolated prices. This is the appropriate method for interpolating 
in a series with independent random increments for most types of analyses. An 
alternative method discussed earlier, taking the last valid price before the gap as 
representative for the gap interval, must be avoided in a study of distributions as 
it would lead to a spurious large return from the last valid price within the gap to 
the first real price after the gap. 

In Tables 5.1 and 5.2, we present the empirically computed moments of the 
distributions for the major FX rates against the USD and the major FX rates against 
the DEM.3 The means are close to zero, as compared to the standard deviations, 

3 At least three of these cross rates have disappeared with the introduction of the Euro. Nevertheless, 
we think it is still interesting to report the results for them because they show the convergence of those 
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TABLE 5.1 Moments of return distributions for USD FX rates 

This table gives an empirical estimation of the first 4 moments of the unconditional return 
distribution at different time intervals for the major currencies against the USD for the 

period from January 1, 1987, to December 31, 1993. The term kurtosis refers to the 
excess kurtosis, so a normal distribution has a kurtosis value of zero. 

Rate Time interval Mean Variance Skewness Kurtosis 

USD-DEM 10 min -2.73.10-7 2.62.10-7 0.17 35.10 
1 hr -1.63.10-6 1.45- 10-6 0.26 23.55 
6 hr -9.84.10-6 9.20.10-6 0.24 9.44 
24 hr -4.00.10-5 3.81-10-5 0.08 3.33 
1 week -2.97-10-4 2.64.10-4 0.18 0.71 

USD-JPY 10 min -9.42.10-7 2.27.10-7 -0.18 26.40 
hr -5.67.10-6 1.27.10-6 -0.09 25.16 

6 hr -3.40.10-5 7.63-10-6 -0.05 11.65 
24 hr -1.37-10-4 3.07-10-5 -0.15 4.81 
1 week -9.61.10-4 2.27-10-4 -0.27 1.30 

GBP-USD 10 min -6.91-10-9 2.38-10-7 0.02 27.46 
1 hr 7.61-10-7 1.40.10-6 -0.23 21.53 
6 lir 4.63-10-6 8.85.10-6 -0.34 10.09 
24 hr 1.72.10-5 3.60-10-5 -0.26 4.41 
1 week 6.99-10-5 2.72-10-4 -0.66 2.77 

USD-CHF 10 min -2.28.10-7 3,07.10-7 -0.04 23.85 
1 hr -1.37-10-6 1.75-10-6 0.05 18.28 
6 hr -8.23.10-6 1.11.10-5 0.05 7.73 
24 hr -3.38-10-5 4.51-10-5 -0.04 2.81 
1 week -2.58.10-4 3.16.10-4 0.09 0.34 

USD-FRF 10 min -1.98-10-7 2.08.10-7 0.35 43.31 
1 hr -1.18.10-6 1.28-10-6 0.47 28.35 
6 hr -7.13-10-6 8.29.10-6 0.23 9.69 
24 hr -2.91-10-5 3.40-10-5 0.06 3.22 
1 week -2.32-10-4 2.44.10-4 0.16 0.88 

and the absolute values of the skewness are, except in very few cases, significantly 
smaller than 1. We can conclude from these facts that the empirical distribution is 
almost symmetric. The mean values are slightly negative (except for GBP-USD 
where the currencies are inverted) because during this period (from January 1, 
1987, to December 31, 1993) we have experienced an overall decline of the USD. 
For all time horizons, the empirically determined (excess) kurtosis exceeds the 
value 0, which is the theoretical value for a Gaussian distribution. For the shortest 

currencies to the Euro by exhibiting lower variances than the others. They present a good example of 
the influence of external factors on the statistical behavior of financial asset pnces. 
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TABLE 5.2 Moments of return distributions for DEM FX rates 

This table gives an empirical estimation of the first 4 moments of the unconditional return 

distribution at different time intervals for the major currencies against the DEM for the 

period from January 1, 1987, to December 31, 1993. The term kurtosis refers to the 

excess kurtosis, so a normal distribution has a kurtosis value of zero. 

Rate Time interval Mean Variance Skewness Kurtosis 

DEM-FRF 10 min 9.84.10-8 1.91-10-8 0.54 86.29 

1 hr 5.89.10-7 1.14.10-7 0.79 69.70 
6 hr 3.53.10-6 6.53.10-7 1.41 36.87 

24 hr 1.07.10-5 2.84.10-6 1.15 24.26 

1 week 8.94.10-5 1.93.10-6 1.92 3.95 

DEM-NLG 10 min -5.19-10-8 1.42-10-9 -5.68 9640.85 

1 hr -3.11-10-7 7.54-10-9 2.76 4248.12 

6hr -1.86.10-6 2.48.10-8 0.74 124.35 

24 hr -7.80.10-6 9.66-10-8 -0.30 30.02 

1 week -4.57.10-5 6.63.10-7 0.03 0.06 

DEM-ITL 10 min 1.07.10-6 1.75-10-7 0.86 64.03 

1 hr 6.46.10-6 1.24.10-6 1.83 89.92 

6 hr 3.88.10-5 7.16.10-6 1.03 37.26 
24 hr 1.18.10-4 2.53-10-5 -0.51 13.08 

1 week 9.42-10-4 1.37.10-4 -0.25 0.17 

GBP-DEM 10 mm 4.53.10-7 9.86.10-8 -0.32 25.97 

1 hr 2.69.10-6 7.12.10-7 -0.34 16.90 

6hr 1.56.10-5 4.62-10-6 -0.02 7.48 

24 hr 7.04.10-5 1.79-10-5 0.27 3.15 
1 week 1.17.10-4 1.29.10-4 0.07 0.59 

DEM-JPY 10 min -3.39.10-6 2.21.10-7 -0.09 12.35 

1 hr - , .03.10-5 1.46.10-6 -0.03 88.58 

6hr -1.21-10-4 9.12.10-6 -0.04 6.57 
24 hr -4.85.10-4 3.56.10-5 0.12 2.52 

1 week -3.15-10-3 2.67.10-4 -0.07 0.03 

time intervals, the kurtosis values are extremely high. Another interesting feature 
is that all of the rates show the same general behavior, a decreasing kurtosis with 
increasing time intervals. At intervals of around 1 week, the kurtosis is rather close 
to the Gaussian value. 

Tables 5.1 and 5.2 suggest that the variance and the third moment are finite in 
the large-sample limit and that the fourth moment may not be finite. Some solid 
evidence in favor of these hypotheses is added by the tail index studies that follow, 
mainly the results of Table 5.3. Indeed, the larger the number of observations, 
the larger the empirically computed kurtosis. At frequencies higher than 10 min, 
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there seems to be some contradiction between the work of Goodhart and Figliuoli 
(1991), which claims that the fat tails start to decrease at these frequencies, and 
the paper of Bollerslev and Domowitz (1993), which gives some evidence of a still 
increasing fat-tailedness. One can show, however, that both results hold depending 
on whether one uses the linear interpolation method or the previous tick to obtain 
price values at fixed time intervals at such frequencies. This is an example of the 
difficulty of making reliable analyses of quoted prices at frequencies higher than 
10 min. The divergence of the fourth moment explains why absolute values of the 
returns are often found to be the best choice of a definition of the volatility (i.e., the 
one that exhibits the strongest structures).4 Indeed, because the fourth moment 
of the distribution enters the computation of the autocorrelation function of the 
variance, the autocorrelation values will systematically decrease with a growing 
number of observations. 

To complement Tables 5.1 and 5.2, we plot on Figure 5.6 the cumulative 
frequency of USD-JPY for returns measured at 10 min, 1 day, and 1 week on the 
scale of the cumulative Gaussian probability distribution. Normal distributions 
have the form of a straight line, which is approximately the case for the weekly 
returns with a moderate (excess) kurtosis of approximately 1.3. The distribution 
of 10-min returns, however, has a distinctly fat-tailed form and its kurtosis in 
Table 5.1 is very high. If the data-generating process was a random walk with 
increments from a stable distribution, which is defined by the law that scaled 
returns r/ (A t)Y for a certain y have the same distribution irrespective of the 
measurement interval At, we would obtain a uniform distribution with identical 
moments within the significance limits.5 Considering all the presented results, 
this is clearly not the case. This instability of distributions was also found by 
other authors. McFarland et al. (1982) and Boothe and Glassman (1987) suggest 
that distributions are composed of reactions to different flows of information. 
Calderon-Rossel and Ben-Horim (1982) are in agreement with our findings and 
claim that the returns cannot be accurately described by a unique type of stable 
distribution. 

5.4.2 The Tail Index of Return Distributions 

The tails of all possible distributions can be classified into three categories:6

i. Thin-tailed distributions for which all moments are finite and whose cu-
mulative distribution function declines exponentially in the tails 

ii. Fat-tailed distributions whose cumulative distribution function declines 
with a power in the tails 

iii. Bounded distributions which have no tails 

4 We shall see some evidence of this in Section 5.6.1 and in Chapter 7. 
5 Here there is no need to further characterize stable distributions in addition to the described scaling 

behavior. Section 5.5.2 has a definition and discussion of stable distributions. 
6 The interested reader will find the full development of the theory in Leadbetter et al. (1983), and 

de Haan (1990). 
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FIGURE 5.6 The cumulative distributions for 10-min, 1-day, and 1-week USD-1PY 
returns shown against the Gaussian probability on the y-axis. On the x-axis the returns 
normalized to their mean absolute value are shown. The mean absolute return for 10 min 
is 2.62 x 10-4, for 1 day 3.76 x 10-3, and for 1 week 1.14 x 10-2. The three curves are 
S-shaped as typical of fat-tailed distributions. The S-shapes of the three curves are very 
differently pronounced. 

A nice result is that these categories can be distinguished by the use of only 
one parameter, the tail index a with a = no for distributions of category (i), 
a > 0 for category (ii), and a < 0 for category (iii). The empirical estimation 
of the tail index and its variance crucially depends on the size of the sample (Pictet 
et al., 1998). Only a well chosen set of the most extreme observations should be 
used. The very large sample size available for intradaily data ensures that enough 
"tail observations" are present in the sample. An important result is that the tails 
of a fat-tailed distribution are invariant under addition although the distribution 
as a whole may vary according to temporal aggregation (Feller, 1971). That is, 
if weekly returns are Student-t identically and independently distributed, then 
monthly returns are not Student-t distributed.? Yet the tails of the monthly return 

7 This is an implication of the central limit theorem. 
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distribution are like the tails of the weekly returns, with the same exponent a, but 
the real tail might be very far out and not even seen in data samples of limited 
size.8 Another important result in the case of fat-tailed distributions concerns the 
finiteness of the moments of the distribution. From 

00 
E [ = Mo + c f xk' I dx +o (xk—a) (5.2) 

where X is the observed variable, Mo is the part of the moment due to the center 
of the distribution (up to s), c is a scale variable and a is the tail index. It is easily 
seen that only the first k-moments, k < a, are bounded. 

How heavy are the tails of financial asset returns? The answer to this question 
is not only the key to evaluating risk in financial markets but also to accurately 
modeling the process of price formation. Evidence of heavy tails presence in 
financial asset return distributions is plentiful (Koedijk et al., 1990; Hols and De 
Vries, 1991; Loretan and Phillips, 1994; Ghose and Kroner, 1995; Muller et al., 
1998) ever since the seminal work of Mandelbrot on cotton prices (Mandelbrot, 
1963). He advanced the hypothesis of a stable distribution on the basis of an 
observed invariance of the return distribution across different frequencies and the 
apparent heavy tails of the distribution. A controversy has long been going on in the 
financial research community as to whether the second moment of the distribution 
of returns converges. This question is central to many models in finance, which 
heavily rely on the finiteness of the variance of returns. The risk in financial 
markets has often been associated with the variance of returns since portfolio 
theory was developed. From option pricing models (Black and Scholes, 1973) 
to the Sharpe ratio (Sharpe, 1994) used for measuring portfolio performance, the 
volatility variable is always present. 

Another important motivation of this study is the need to evaluate extreme 
risks in financial markets. Recently, the problem of risk in these markets has 
become topical following few unexpected big losses like in the case of Barings 
or Daiwa. The Bank for International Settlements has set rules to be followed by 
banks to control their risks, but most of the current models for assessing risks are 
based on the assumption that financial assets are distributed according to a normal 
distribution. In the Gaussian model the evaluation of extreme risks is directly 
related to the variance, but in the case of fat-tailed distributions this is no longer 
the case. 

Computing the tail index is a demanding task but with the help of high fre-
quency data it is possible to achieve reasonable accuracy (see Pictet et al., 1998; 
Dacorogna et al., 2001a), where a theorem is proved which explicitly shows that 
more data improve the estimation of the tail index. Here, we present the main 
frameworks. 

8 Sec, for instance, the simulations done in Pictet et al. (1998) where for a high enough aggregation 
level, it is not possible to recover the theoretical tail index for Student-t distributions even if one can 
use 128 years of 10-min data. 

9 The interested reader can find the details in two recent papers by Pictet et al. (1998) and Dacorogna 
et al. (2001a). 
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Let X1, X2, Xn be a sequence of n observations drawn from a sta-
tionary i.i.d. process whose probability distribution function F is unknown. We 
assume that the distribution is fat-tailed—that is, the tail index a is fmite.1° Let 
us define X(1) > X(2) > . . . > X(n) as the descending order statistics from 
X1, X2, • • • Kn • 

Extreme value theory states that the extreme value distribution of the ordered 
data must belong to one of just three possible general families, regardless of the 
original distribution function F (Leadbetter et al., 1983). Besides, if the original 
distribution is fat-tailed, there is only one general family it can belong to 

G(x) 
o 

= l
exp(—x —") 

x <0 
x > 0, a > 0 

(5.3) 

where G(x) is the probability that X(1) exceeds x. There is only one parameter to 
estimate, a, which is called the tail index. The stable distributions (excluding the 
Gaussian distribution), the Student-t model, and the unconditional distribution of 
the ARCH-process all fall in the domain of attraction of this type of distribution. 

To give more intuition to these statements, we plot the logarithm of the order 
statistics m as a function of the difference between the logarithms of the most 
extreme observation, In X(1), and the mth observation in the ordered sequence, 
In X(,i). Such a plot is shown on Figure 5.7 for the case of a Student-t distri-
bution with 4 degrees of freedom. Because we are in the domain of attraction 
of exp(—x—'), it is trivial to see that the problem of estimating a becomes the 
problem of estimating the slope of the tangent at in —> 0 of the curve shown in 
Figure 5.7. We see that a straight line with a slope equal to 4 is indeed a good tan-
gent to the curve, as it should be because the theoretical tail index of the Student-t 
distribution is equal to the number of degrees of freedom. Although the behavior 
of In X(. ) is quite regular on Figure 5.7 because we took the average values over 
10 Monte Carlo simulations, it is not always so and the problem of how to choose 
the number of points that are far in the tail is not trivial. One needs a more formal 
way to estimate the tail index. The estimator we present here is a way of estimating 
the slope of the tangent shown in Figure 5.7. There are other ways of studying 
the tail index by directly fitting the distribution of ordered data to some known 
distribution.11

We concentrate our efforts on the estimator first proposed by Hill (1975) 

H 
Yn,m = 

m_i 
  E In — In X(m) where m > 1 (5.4) 
m — 1 i=i 

This estimator was proven to be a consistent estimator of y = 1/a for fat-tailed 
distributions in Mason (1982). From Hall (1982) and Goldie and Smith (1987), it 
follows that (y,,,, y )m1/2 is asymptotically normally distributed with mean zero 

10 A good review of the definitions used in this chapter can be found in Leadbetter et of (1983). 
11 A good reference to learn about these methods is the book by Embrechts et al. (1997). 
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FIGURE 5.7 The logarithm of the order statistics m is plotted as a function of the 
difference between the logarithm of the most extreme observation and the logarithm of 
the ordered random observations. The data are drawn from a Student-t distribution with 
4 degrees of freedom averaged over 10 replications of a Monte-Carlo simulation. The 
straight line represents the theoretical tangent to this curve. 

and variance y2 . In fact the Hill estimator is the maximum likelihood estimator 
of y and a = 1/y holds for the tail index. For finite samples, however, the 
expected value of the Hill estimator is biased. As long as this bias is unknown, 
the practical application of the Hill estimator to empirical samples is difficult. A 
related problem is that 2, , m depends on m, the number of order statistics, and there 
is no easy way to determine which is the best value of m. Extending a bootstrap 
estimation method proposed by Hall (1990), Danielsson et al. (1997) solved the 
problem by means of a subsample bootstrap procedure, which is described and 
discussed by Pictet et al. (1998). Many independent subsamples (or resamples) 
are drawn from the full sample and their tail behaviors are statistically analyzed, 
which leads to the best choice of m. For such a statistical analysis, the subsamples 
have to be distinctly smaller than the full sample. On the other hand, the subsamples 
should still be large enough to contain some representative tail observations, so 
the method greatly benefits from a large sample size to begin with. 

Tail index values of some FX rates have been estimated by a subsample boot-
strap method and are presented in Table 5.3. The confidence ranges indicated 
for all values are standard errors times 1.96. Assuming a normally distributed 
error, this corresponds to 95% confidence. The standard errors have been obtained 
through the jackknife method, which can be characterized as follows. The data 
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TABLE 5.3 Estimated tail indices of FX rates 

Estimated tail index values a and their 95% confidence ranges, for main FX rates against 
the USD, gold (XAU), and silver (XAG) and some of the main (computed) cross rates 
against the DEM, Muller et al. (1998). The tail index values are based on the subsample 
bootstrap method using the Hill estimator, the confidence ranges result from the jackknife 
method. Computed cross rates are obtained via the two bilateral rates against the USD, 
see Equation 2.1. The estimations are performed on samples from January 1, 1987, to 
June 30, 1996. The time intervals are measured in 6-time (see Chapter 6). 

Rate 30 min 1 hr 2 hr 6 hr 1 day 

USD-DEM 3.18 ±0.42 3.24 ±0.57 3.57 ±0.90 4.19 ±1.82 5.70 ±4.39 
USD-JPY 3.19 ±0.48 3.65 ±0.79 3.80 ±1.08 4.40 ±2.13 4.42 ±2.98 
GBP-USD 3.58 ±0.53 3.55 ±0.65 3.72 ±1.00 4.58 ±2.34 5.23 ±3.77 
USD-CHF 3.46 ±0.49 3.67 ±0.77 3.70 ±1.09 4.13 ±1.77 5.65 ±4.21 
USD-FRF 3.43 ±0.52 3.67 ±0.84 3.54 ±0.97 4.27 ±1.94 5.60 ±4.25 
USD-ITL 3.36 ±0.45 3.08 ±0.49 3.27 +0.79 3.57 +1.35 4.18 +2.44 
USD-NLG 3.55 ±0.57 3.43 ±0.62 3.36 +0.92 4.34 ±1.95 6.29 ±4.96 

f9 DEM-JPY 3.84 ±0.59 3.69 ±0.87 4.28 ±1.49 4.15 ±2.20 5.33 ±3.74 
GBP-DEM 3.33 ±0.46 3.67 ±0.70 3.76 ±1.17 3.73 ±1.59 3.66 ± L70 
GBP-JPY 3.59 ±0.63 3.44 ±0.70 4.15 ±1.32 4.35 ±2.27 5.44 ±4.12 
DEM-CHF 3.54 ±0.54 3.28 ±0.54 3.44 ±0.82 4.29 ±1.84 4.21 ±2.43 
GBP-FRF 3.19 ±0.46 3.33 ±0.62 3.37 ±0.90 3.41 ±1.27 3.34 ±1.65 

XAU-USD 4.47 ±1.15 3.96 ±1.13 4.36 ±1.82 4.13 ±2.22 4.40 ±2.98 
XAG-USD 5.37 ±1.55 4.73 ±1.93 3.70 ±1.52 3.45 ±1.35 3.46 ±1.97 

sample is modified in 10 different ways, each time removing one-tenth of the total 
sample. The tail index is separately computed for each of the 10 modified sam-
ples. An analysis of the deviations between the 10 results yields an estimate of 
the standard error, which is realistic because it is based on the data rather than 
restrictive theoretical assumptions. The methodology is explained by Pictet et al. 
(1998). 

All the FX rates against the USD as well as the presented cross rates have 
a tail index between 3.1 and 3.9 (roughly around 3.5). These values are found 
in the 30-minute column of Table 5.3. The other columns are affected by lower 
numbers of observations and thus wider confidence ranges. The chosen cross rates 
are computed from USD rates according to Equation 2.1. None of them was part 
of the European Monetary System (EMS), except GBP-DEM for a period much 
shorter than the analyzed sample. Gold (XAU-USD) and silver (XAG-USD) have 
higher tail index values above 4. These markets differ from FX. Their volatilities 
were very high in the 1980s, followed by a much calmer behavior in the 1990s, a 
structural change that may have affected the tail statistics. 
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TABLE 5.4 Estimated tail indices of cross rates. 

Estimated tail index values and their 95% confidence ranges, for cross FX rates. The tail 
index values are based on the subsample bootstrap method using the Hill estimator, and the 
confidence ranges result from the jackknife method. All the cross rates of the lower part 

were subject to the regulations of the European Monetary System (EMS). The computed 
cross rates are obtained via the two bilateral rates against the USD (see Equation 2.1). 
The estimations are performed on samples from January 1988 to June 1994 (62 years). 

The time intervals are measured in a-time (see Chapter 6). 

Rate 30 min 1 hr 2 hr 6 hr 

DEM-JPY 4.17 ±1.13 4.22 ±1.48 5.0611.40 4.7312.19 
GBP-DEM 3.63 10.46 4.0911.98 4.7811.60 3.22 ±0.72 
GBP-JPY 3.9311.16 4.4811.20 4.6711.94 5.60 12.56 
DEM-CHF 3.76 ±0.79 3.64 ±0.71 4.0211.52 6.0212.91 
GBP-FRF 3.3010.41 3.4210.97 3.8011.34 3.48 ±1.75 

FRF-DEM 2.5610.34 2.4110.14 2.3610.27 3.6611.17 
DEM-ITL 2.93 11.01 2.60 ±0.66 3.17 ±1.28 2.76 ±1.49 
DEM-NLG 2.45 10.20 2.1910.13 3.14 ±0.95 3.24 ±0.87 
FRF-ITL 2.89 10.34 2.73 10.49 2.5610.41 2.34 ±0.66 

In Section 5.3.1, we have seen that cross rates behaved differently when both 
exchanged currencies were members of the EMS in the 1990s. A difference is also 
found when considering the tail behavior, as shown in Table 5.4. The sample was 
chosen accordingly, during the lifetime of the EMS. The upper block of Table 5.4 
has non-EMS cross rates for comparison, the lower block has EMS cross rates. 
The 1-day column is missing in Table 5.4 as the sample size is smaller than that 
of Table 5.3. The tail index values of EMS cross rates are around 2.7, distinctly 
lower than the typical value of 3.5 found for other cross rates in the upper part 
of Table 5.4 and other FX rates in Table 5.3. The 30-min columns of both tables 
should mainly be considered, but the values of the other columns confirm the same 
fact that EMS cross rates have fatter tails. 

The cross rates are computed from USD rates according to Equation 2.1. As 
compared to direct quotes, these computed cross rates have larger spreads and an 
artificially generated volatility (i.e., noise due to the price uncertainty within the 
spread and asynchronous fluctuations of the used USD rates). Therefore we have 
also analyzed direct cross rate quotes in the limited sample (since October 1992) 
where they are available. These direct quotes have less short-term noise and lead 
to slightly but systematically lower tail index values than those of computed cross 
rates. The small tail index of EMS cross rates indicates that the reduced volatility 
induced by the EMS setup is at the cost of a larger probability of extreme events, 
which may lead to realignments of the system. This is an argument against the 
credibility of institutional setups such as the EMS. 
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Like the drift exponent as a function of time, the tail index reflects the in-
stitutional setup and, in a further interpretation, the way different agents on the 
markets interact. The tail index can therefore be considered as another empirical 
measure of market regulation and market efficiency. A large tail index indicates 
free interactions between agents with different time horizons, with a low degree 
of regulation and thus a smooth adjustment to external shocks. A small tail index 
indicates the opposite. 

With very few exceptions, the estimated tail indices are between 2 and 4. A 
few confidence ranges extend to values outside this range, but this is due to the 
limited number of observations mainly for the longer return measurement intervals. 
Using Equation 5.2, we conclude that the second moment of the return distribution 
is finite and the fourth moment usually diverges. In Section 5.6.1, this fact leads 
us to preferring the autocorrelation of absolute returns to that of squared returns, 
which relies on the finiteness of the fourth moment. 

Tables 5.3 and 5.4 indicate that the distribution of FX returns belongs to the 
class of fat-tailed nonstable distributions that have a finite tail index larger than 
2. Furthermore, the very high values of the kurtosis in Tables 5.1 and 5.2 and the 
growth of these values with increasing sample size provide additional evidence 
in favor of this hypothesis.12 From Tables 5.3 and 5.4, one can also verify the 
invariance of the tail index under aggregation, except for the longest intervals, 
where the small number of observations becomes a problem in getting significant 
estimates of a. The smaller number of data for large intervals forces the estimation 
algorithm to use a larger fraction of this data, closer to the center of the distribution. 
Thus the empirically measured tail properties become distorted by properties of the 
center of the distribution, which, for a > 2 and under aggregation, approaches the 
normal distribution (with a = on) as a consequence of the central limit theorem. 

In Table 5.5, we present the results of a estimations of interbank money mar-
ket cash interest rates for five different currencies and two maturities. Although 
generally exhibiting lower a 's, the results are close to those of the FX rates. The 
message seems to be the same: fat tails, finite second moment,13 and nonconverg-
ing fourth moment. . We also find a relative stability of the tail index with time 
aggregation. The estimations for daily returns give more consistent values than in 
the case of the FX rates. Yet the estimations are more noisy as one would expect 
from data of lower frequency, and this is reflected in the high errors displayed in 
Table 5.5. The tail index estimation is quite consistent but can significantly jump 
from one time interval to the next as is the case for GBP and CHF 6 months. This 
market is much less liquid than the FX market. Interest rate markets with higher 
liquidity can be studied in terms of interest rate derivatives, which are traded in 

12 Simulations in Gielens et al (1996) and McCulloch (1997) show that one cannot univocally 
distinguish between a fat-tailed nonstable and a thin-tailed distribution only on the basis of low estimated 
values of the tail index. However, the confidence intervals around the estimated tail index values and 
the diverging behavior of the kurtosis are strong evidence in favor of the fat-tail hypothesis. 

13 In most of the cases, except perhaps the 6-month interest rate for JPY, a is significantly larger 
than 2. In the JPY case, if the first 2 years are removed, we get back to values for a around 3. 
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TABLE 5.5 Estimated tail index for cash interest rates. 

Estimated tail index values of cash interest rates and their 95% confidence ranges, for five 
different currencies and two maturities. The tail index values are based on the subsample 

bootstrap method using the Hill estimator, and the confidence ranges result from the 
jackknife method. The time intervals are measured in i7-time (see Chapter 6). The 
estimations are performed on samples going from January 2, 1979, to June 30, 1996; "m" 
refers to a month. 

Currency Maturity 1 day 1 week Maturity 1 day 1 week 

USD 3m 4.03 +2.99 3.53 13.46 6m 4.1012.84 3.5013.07 
DEM 3m 2.54 10.73 2.88 11.63 6m 2.39 10.76 2.6211.82 
JPY 3m 3.1612.07 3.4313.01 6m 2.0310.85 3.6013.53 
GBP 3m 2.61 10.84 3.86 13.78 6m 4.04 12.64 6.6517.53 
CHF 3m 3.6912.41 5.2415.13 6m 3.02 +1.26 7.4617.31 

futures markets such as London International Financial Futures Exchange (LIFFE) 
in London or Singapore International Monetary Exchange (SIMEX) in Singapore. 

To study the stability of the tail index under aggregation, we observe how the 
estimates change with varying sample size. We do not know any theoretical tail 
index for empirical data, but we compare the estimates with the estimation done 
on the "best" sample we have, 30-min returns from January 1987 to June 1996. 
To study the tail index of daily returns, we use an extended sample of daily data 
from July 1, 1978, to June 30, 1996. The small-sample bias can be studied by 
comparing the results to the averages of the results from two smaller samples: one 
from June 1, 1978, to June 30, 1987, and another one from July 1, 1987, to June 
30, 1996. These two short samples together cover the same period as the large 
sample. The results are given in Table 5.6.14 When going from the short samples 
to the long 18-year sample, we see a general decrease of the estimated a toward 
the values reached for 30-min returns. The small-sample bias is thus reduced, but 
probably not completely eliminated. We conclude that, at least for the FX rates 
against the USD, the a estimates from daily data are not accurate enough even if 
the sample covers up to 18 years. The case of gold and silver is different because 
the huge fluctuations of the early 1980s have disappeared since then. The picture 
in this case is blurred by the changing market conditions. 

A similar analysis of 30-min returns reinforces the obtained conclusions. In 
this case, the two shorter samples are from July 1, 1988, to June 30, 1992, and 
from July 1, 1992, to June 30, 1996. The large sample is again the union of the two 
shorter samples. A certain small-sample bias is found also for the 30-min returns 
of most rates comparing the two last columns of Table 5.3, but this bias is rather 
small. This is an expected result because the number of 30-min observations is 
much larger than that of the daily observations. 

14 For the short samples we do not give the errors because we present only the average of both 
samples. The errors are larger for the short samples than for the long sample. 
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TABLE 5.6 Estimated tail index for different samples sizes. 

Estimated tail index for the main FX rates, gold (XAU) and silver (XAG) on different 
samples for both daily and 30-min returns. The time intervals are measured in i7-time (see 
Chapter 6). 

FX rates Daily returns 
Short samples 7/1978-6/1996 

30-min returns 
7/1988-6/1996 Short samples 

USD-DEM 4.84 4.34 ±2.46 3.27 ±0.50 3.29 
USD-JPY 7.81 5.69 ±3.94 3.86 ±0.71 3.94 
GBP-USD 4.79 4.35 ±3.02 3.37 ±0.53 3.57 
USD-CHF 5.24 4.15 ±2.71 3.63 ±0.55 3.61 
USD-FRF 4.48 4.37 ±2.85 3.52 ±0.54 3.59 
USD-ITL 3.82 3.97 ±1.94 3.38 ±0.44 3.56 
USD-NLG 4.17 4.05 ±1.98 3.56 ±0.66 3.57 

XAU-USD 3.65 3.88 ±2.53 4.24 ±0.99 4.00 
XAG-USD 3.94 3.40 ±1.92 4.12 ±0.75 3.54 

5.4.3 Extreme Risks in Financial Markets 

From the practitioners' point of view, one of the most interesting questions that 
tail studies can answer is what are the extreme movements that can be expected 
in financial markets? Have we already seen the largest ones or are we going to 
experience even larger movements? Are there theoretical processes that can model 
the type of fat tails that come out of our empirical analysis? The answers to such 
questions are essential for good risk management of financial exposures. It turns 
out that we can partially answer them here. Once we know the tail index, we 
can apply extreme value theory outside our sample to consider possible extreme 
movements that have not yet been observed historically. This can be achieved 
by a computation of the quantiles with exceedance probabilities.15 Although 
this chapter focuses on stylized facts, it is interesting to show an example of 
the application of some of these empirical studies, which is very topical to risk 
management. There is a debate going on to design the best hedging strategy 
against extreme risks. Some researchers suggest using a dynamic method by 
utilizing conditional distributions (McNeil and Frey, 2000). We think that for 
practical purposes the hedge against extreme risk must be decided on the basis of 
the unconditional distribution. For a large portfolio, it would be impossible to find 
counterparties to hedge in very turbulent states of the market. Like in the case of 
earthquakes, hedging this type of risk needs to be planned far in advance. 

Let us consider the expansion of the asymptotic cumulative distribution func-
tion from which the Xi observations are drawn as 

F(x) = 1 - a x' [1 b x-13] (5.5) 

15 We follow here the approach developed in Dacorogna et al (2001a). 
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We denote by xp and xt quantiles with respective exceedance probabilities p and 
t. Let n be the sample size and choose p < 1/n < t; that is, xt is inside the 
sample, while xp is not observed. By definition (we concentrate on the positive 
tail), 

p = axi7" [1 ± bxpl , t = axia [1 ± 

Division of the two exceedance probabilities and rearrangement yields 

Xp = 

(5.6) 

lia bx;,-fl lia
xt (—

P) \1 4-bx,75

Given that t is inside the sample, we can replace t by its empirical counterpart 
m/n, say; that is, m equals the number of order statistics X„ which are greater 
than Xt. An estimator for xp is then as follows 

= (5.8) 

where m equals the lit obtained from the tail estimation corresponding to p. To 
write this estimator we ignore the last factor on the right-hand side of Equation 5.7. 
This would be entirely justified in the case of the Pareto law when b = 0. Thus j'cp
is based on the same philosophy as the Hill estimator. For an m sufficiently small 
relative to n, the tails of Equation 5.5 are well approximated by those of the Pareto 
law, and hence Equation 5.8 is expected to do well. In fact, it is possible to prove 
(de Haan et al., 1994) that, for the law in Equation 5.5 

l 
P 1) 

n ap"\ CXp 

has the same limiting normal distribution as the Hill estimator. Equation 5.9 gives 
us a way to estimate the error of our quantile computation. 

Table 5.7 shows the result of a study of extreme risk using Equation 5.8 to 
estimate the quantiles for returns over 6 hr. This time interval is somewhat shorter 
than an overnight position (in /9-time) but is a compromise between the accuracy 
of the tail estimation and the length of the interval needed by risk managers. The 
first part of the table is produced by Monte Carlo simulations of synthetic data 
where the process was first fitted to the 30-min returns of the USD-DEM time 
series. The second part is the quantile estimation of the FX rates as a function of 
the probability of the event happening once every year, once every 5 years, and 
so on. Because we use here a sample of 9 years, the first two columns represent 
values that have been actually seen in the data set, whereas the other columns 
are extrapolations based on the empirically estimated tail behavior. Although the 
probabilities we use here seem very small, some of the extreme risks shown in 
Table 5.7 may be experienced by traders during their active life. 

(5.9) 
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TABLE 5.7 Extreme risks in the FX market. 

Extreme risks over 6 hr for model distributions produced by Monte-Carlo simulations of 
synthetic time series fitted to USD-DEM, compared to empirical FX data studied through 
a tail estimation. 

1/1 
year 

1/5 
year 

Probabilities (p) 
1/10 1/15 
year year 

1/20 
year 

1/25 
year 

Models: 
Normal 0.4% 0.5% 0.6% 0.6% 0.7% 0.7% 
Student 3 0.5% 0.8% 1.0% 1.1% 1.2% 1.2% 
GARCH(1,1) 1.5% 2.1% 2.4% 2.6% 2.7% 2.9% 
HARCH 1.8% 2.9% 3.5% 4.0% 4.3% 4.6% 

USD rates: 
USD-DEM 1.7% 2.5% 3.0% 3.3% 3.5% 3.7% 
USD-JPY 1.7% 2.4% 2.9% 3.2% 3.4% 3.6% 
GBP-USD 1.6% 2.3% 2.6% 2.9% 3.1% 3.2% 
USD-CHF 1.8% 2.7% 3.1% 3.5% 3.7% 4.0% 
USD-FRF 1.6% 2.3% 2.8% 3.0% 3.3% 3.4% 
USD-ITL 1.8% 2.8% 3.4% 3.8% 4.1% 4.4% 
USD-NLG 1.7% 2.5% 2.9% 3.2% 3.4% 3.6% 

Cross rates: 
DEM-JPY 1.3% 1.9% 2.2% 2.5% 2.6% 2.8% 
GBP-DEM 1.1% 1.7% 2.1% 2.3% 2.5% 2.6% 
GBP-JPY 1.6% 2.3% 2.7% 3.0% 3.2% 3.4% 
DEM-CHF 0.7% 1.0% 1.2% 1.3% 1.4% 1.5% 
GBP-FRF 1.1% 1.8% 2.2% 2.5% 2.7% 2.9% 

An interesting piece of information displayed in Table 5.7 is the comparison 
of empirical results and results obtained from theoretical models.16 The model's 
parameters, including the variance of the normal and Student-t distributions, result 
from fitting USD-DEM 30-min returns. For the GARCH (1,1) model (Boilersley, 
1986), the standard maximum likelihood fitting procedure is used (Guillaume 
et al., 1994) and the GARCH equation is used to generate synthetic time series. 
The same procedure is used for the HARCH model (Muller et al., 1997a). The 
model's results are computed using the average th and y obtained by estimating 
the tail index of 10 sets of synthetic data for each of the models for the aggregated 
time series over 6 hr. As expected, the normal distribution model fares poorly 
as far as the extreme risks are concerned. Surprisingly, this is also the case for 

16 The theoretical processes such as GARCH and HARCH are discussed in detail in Chapter 8. Here 
they simply serve as examples for extreme risk estimation. 
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the Student-t distribution with 3 degrees of freedom. The GARCH (1,1) model 
gives results closer to those of USD-DEM but still underestimates the risks by a 
significant amount. The HARCH model slightly overestimates the extreme risk. 
This is probably due to its long memory, which does not allow the process to 
modify sufficiently its tail behavior under aggregation. Obviously, further studies 
need to be pursued to assess how well models such as HARCH can predict extreme 
risks. In general, ARCH-type processes seem to capture the tail behavior of FX 
rates better than the simple unconditional distribution models. The advantage of 
having a model for the process equation is that it allows the use of a dynamic 
definition of the movements and it can hopefully provide an early warning in case 
of turbulent situations. 

Paradoxically, in situations represented by the center of the distribution (nonex-
treme quantiles), the usual Gaussian-based models would overestimate the risk. 
Our study is valid for the tails of the distribution, but it is known that far from the 
tails the normal distribution produces higher quantiles than actually seen in the 
data. 

5.5 SCALING LAWS 

In this section, we examine the behavior of the absolute size of returns as a function 
of the frequency at which they are measured. As already mentioned, there is no 
privileged time interval at which the data and the generating process should be 
investigated. Thus it is important to study how the different measures relate to 
each other. One way of doing this is to analyze the dependence of mean volatil-
ity on the time interval on which the returns are measured. For usual stochastic 
processes such as the random walk, this dependence gives rise to very simple 
scaling laws (Section 5.5.2). Since Muller et al. (1990) have empirically docu-
mented the existence of scaling laws in FX rates, there has been a large volume of 
work confirming these empirical findings, including Schnidrig and Wiirtz (1995); 
Fisher et al. (1997); Andersen et al. (2000) and Mantegna and Stanley (2000). 
This evidence is confirmed for other financial instruments,17 as reported by Man-
tegna and Stanley (1995) and Ballocchi et al. (1999b). The examination of the 
theoretical foundations of scaling laws are studied in Groenendijk et al. (1996); 
LeBaron (1999b), and Barndorff-Nielsen and Prause (1999). 

Before discussing the literature, we present the empirical findings. 

5.5.1 Empirical Evidence 

The scaling law is empirically found for a wide range of financial data and time 
intervals in good approximation. It gives a direct relation between time intervals 

17 Brock (1999) has extensive discussions of scaling in economics and finance. He points out that 
most of these regularities are unconditional objects and may have little power to discriminate between 
a broad class of stochastic processes. Brock (1999) points out that the main object of interest in 
economics and finance is the conditional predictive distribution as in Gallant et al. (1993). Scaling 
laws may help in restricting the acceptable classes of conditional predictive distributions. 
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At and the average volatility measured as a certain power p of the absolute returns 
observed over these intervals, 

{E[Ir IP]} liP = c(p) At°(P) (5.10) 

where E is the expectation operator, and c(p) and D(p) are deterministic functions 
of p. We call D the drift exponent, which is similar to the characterization of 
Mandelbrot (1983, 1997). We choose this form for the left part of the equation 
in order to obtain, for a Gaussian random walk, a constant drift exponent of 0.5 
whatever the choice of p. A typical choice is p = 1, which corresponds to absolute 
returns. 

Taking the logarithm of Equation 5.10, the estimation of c and D can be 
carried out by an ordinary least squares regression. Linear regression is, in this 
case, an approximation. Strictly speaking, it should not be used because the E[ir I] 
values for different intervals At are not totally independent. The longer intervals 
are aggregates of shorter intervals. Consequently, the regression is applied here 
to slightly dependent observations. This approximation is acceptable because the 
factor between two neighboring At is at least 2 (sometimes more to get even 
values in minutes, hours, days, weeks, and mean months), and the total span 
of analyzed intervals is large: from 10 min to 2 months. In addition, we shall 
see in Chapters 7 and 8 that volatility measured at different frequencies carries 
asymmetric information. Thus we choose the standard regression technique,18 as 
Friedmann and Vandersteel (1982) and others do. The error terms used for E[Ir I] 
take into account the approximate basic errors of our prices19 and the number of 
independent observations for each At. 

The results presented here are computed for the cases p = 1 and p = 2. It 
is also interesting to compute instead of { E[Ir 1/1}1IP the interquartile range as a 
function of At. Such a measure does not include the tails of the distribution. Re-
cently, the development of the multifractal model (Fisher et al., 1997) has brought 
researchers to study a whole spectrum of (also noninteger) values for the exponent 
p. In the same line of thought, multicascade models (Frisch, 1995) are also mul-
tifractals and involve different drift exponents for different measures of volatility. 
This feature is a typical signature of multifractality. 

In Figure 5.8, we present empirical scaling laws for USD-JPY and GBP-USD 
for p = 1. Both the intervals At and the volatilities E[Ir I] are plotted on a 
logarithmic scale. The sample includes 9 years of tick-by-tick data from January 
1, 1987, to December 31, 1995. The empirical scaling law is indeed a power law 
as indicated by the straight line. It is well respected in a very wide range of time 
intervals from 10 min to 2 months. The standard errors of the exponents D are less 
then 1%. The 1-day point in Figure 5.8 can be identified only by the corresponding 
label, not by any change or break between the intraday and interday behaviors. 

18 See Mosteller and Tukey (1977, Chapter 14). 
19 In Section 5.5.3, we give a full treatment of this problem. 
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FIGURE 5.8 Scaling law for USD-JPY (right) and GBP-USD (left). On the y-axis, the 
natural logarithm of the mean absolute return (p = 1 in Equation 5.10) is reported. The 
error bars correspond to the mode described in Section 5.5.3. The sample period is 
January 1, 1987, to December 31, 1995. 

Small deviations for the extreme interval sizes can be explained. The data 
errors grow on both sides, as discussed in Section 5.5.3. For long intervals, the 
number of observations in the sample becomes smaller and smaller, leading to 
a growing stochastic error. For very short intervals, the price uncertainty within 
the bid-ask spread becomes important. In fact, researchers such as Moody and 
Wu (1995) studied the scaling law at very high frequencies and obtained different 
exponents because they did not take into account the problem of price uncertainty. 
Recently, Fisher et al. (1997) also found a break of the scaling law around 2 hr. It is 
clear on both plots of Figure 5.8 that for time intervals shorter than 1 hour the points 
start to depart from a straight line. This deviation can be treated in two ways. In 
a first approach, we treat the price uncertainty as a part of the measurement error, 
leading to error bars that are as wide as to easily include the observed deviation at 
short time intervals. In a second approach, the deviation is identified as a bias that 
can be explained, modeled, and even eliminated by a correction. Both approaches 
are presented in Section 5.5.3. 

In Table 5.8, we report the values of the drift exponent for four of the major 
FX rates against the USD and for gold for three different measures of volatility. 
Each of these measures treats extreme events differently. The interquartile range 
completely ignores them. The measure with p = 2 gives more emphasis to the 
tails than p = 1. The scaling law exponents D are around 0.57 for all rates and 
for p = 1, very close to 0.5 for p = 2, and around 0.73 for the interquartile range. 
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TABLE 5.8 Drift exponents for FX rates. 

Drift exponents with standard errors found for the USD against DEM, JPY, CHF, and GBP 
and XAU against USD for two different powers and for the interquartile range. The 
sampling period extends from January 1, 1987, to December 31, 1995. 

Currency Ellrll {E11r121}112 Interguartile 

DEM 0.575 ± 0.006 0.501 ± 0.003 0.725 ± 0.017 
JPY 0.570 ± 0.005 0.480 1 0.035 0.691 10.012 
GBP 0.578 ± 0.004 0.514 ± 0.003 0.718 ± 0.011 
CHF 0.574 ± 0.005 0.500 ± 0.002 0.7371 0.015 
XAU 0.576±0.005 0.491 ± 0.002 0.754 ± 0.012 

These numbers are somewhat lower than those published by Muller et al. (1990), 
but this earlier study only covered 3 years of data. It seems that over the years the 
drift exponent for p = 1 has slightly decreased from typically 0.59 to 0.57. 

The lower the weight of tails in the statistics, the more the empirically deter-
mined drift exponent deviates from the Gaussian random walk value of 0.5. This 
behavior is a consequence of the changing form of the distribution under aggre-
gation and can also be seen as a sign of multifractality, as mentioned earlier. We 
repeated our analysis with only studying either negative returns or positive ones. 
The results show no significant asymmetry of positive and negative changes in ac-
cordance to the studies of Section 5.4.1. All results indicate a very general scaling 
law that applies to different currencies as well as to commodities such as gold and 
silver (which was additionally tested with a smaller sample). This phenomeno-
logical law becomes more important as the return distributions are unstable and 
the scaling law cannot be explained as a trivial consequence of a stable random 
process. This point will be discussed further in Section 5.5.2. Besides the evidence 
presented in Section 5.4, we find further evidence here for an unstable distribution 
because the drift exponent changes for the different measures of volatility. We 
find lower exponents D 0.5 for IEHr12J1112 and higher exponents D 0.7 for 
the interquartile ranges, and these can only be explained by varying distribution 
forms for different time intervals. 

Similar scaling laws have been found by Ballocchi et al. (1999b) in a study of 
Eurofutures contracts2° on the London International Financial Futures Exchange 
(LIFFE) and the Chicago Mercantile Exchane (CME) and in stock indices by 
Mantegna and Stanley (2000). We report here the results for the drift exponent 
for p = 1 for various contracts in Table 5.9. Here again the scaling law displays 
a drift exponent significantly larger than that expected for a Gaussian random 
walk and very close to the values obtained for foreign exchange rates. The table 

20 For a full description of these data and how they are treated for such a study, see Section 2.4. 
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TABLE 5.9 Drift exponents for Eurofutures. 

Drift exponents with standard errors found for Eurofutures contracts. The drift exponent 
is for E[Irl] (p = 1). All values are significantly larger than 0.5. 

Expiry Eurodollar Euromark Sterling 

March 1995 0.60 ± 0.02 0.60 f 0.01 0.61 f 0.02 
June 1995 0.66 ± 0.02 0.65 + 0.01 0.62 + 0.02 
September 1995 0.68 + 0.02 0.66 f 0.01 0.62 + 0.02 
December 1995 0.64 ± 0.02 0.66 ± 0.01 0.64 ± 0.02 
March 1996 0.57 ± 0.03 0.66 ± 0.01 0.63 ± 0.02 
June 1996 0.70 ± 0,01 0.62 ± 0.01 0.62 f 0.02 
September 1996 0.70 ± 0.01 0.65 ± 0.01 0.62 ± 0.01 
December 1996 0.69 ± 0.01 0.63 ± 0.02 0.60 ± 0.02 
March 1997 0.66 ± 0.02 0.62 ± 0.02 0.63 ± 0.02 

presents quite a dispersion of the exponents because the sample for each contract 
is relatively short. As a second step, we have repeated the scaling law analysis 
on an average of contracts. We averaged the mean absolute values of the returns 
(associated with each time interval) on the number of contracts. When the analysis 
referred to single Eurofutures, the average was computed on 9 contracts; when it 
referred to all Eurofutures and all contracts together, the average was computed 
on 36 contracts. Then we performed a linear regression for the logarithm of the 
computed averages against the corresponding logarithm of time intervals, taking 
the following time intervals: 1 day, 2 days, 1 week, 2 weeks, 4 weeks, 8 weeks, 
and half a year. The resulting drift exponent is 0.599 ± 0.007, remarkably close to 
the FX results. Ballocchi (1996) performed such studies for interbank short-term 
cash rates and computed the drift exponent of the mean absolute return averaged 
over 72 rates (12 currencies and 6 maturities from 1 month to 1 year), and the result 
is again 0.569 ± 0.007, close to the numbers listed in Table 5.8. To summarize, 
we find drift exponents of the mean absolute return of around 0.57 for FX rates 
and for cash interest rates, and 0.6 for Eurofutures. 

5.5.2 Distributions and Scaling Laws 

In this section we discuss how the distributions relate to the scaling law. There 
are remarkably few theoretical results on the relation between the drift exponents 
and the distribution aside from the trivial result for Gaussian distributions where 
all the exponents are 0.5. We only know of two recent papers that deal with this 
problem, Groenendijk et al. (1996) and Bamdorff-Nielsen and Prause (1999). The 
latter gives E[Ir I] as a function of the aggregation and the parameters of the Normal 
Inverse Gaussian (NIG) Levy process. The data generated from this process do not 
exhibit a scaling behavior, but the relationship is very close to a straight line when 
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expressed in a double-logarithmic scale. The authors show that, with a particular 
choice of parameters, they can reproduce what they call the "apparent scaling" 
behavior of the USD-DEM data. There are other processes that present "apparent 
scaling" behavior. An example of such a process is given by LeBaron (1999a). In 
the literature, most scaling law results are of an empirical nature and are stylized 
facts directly obtained from the actual data. These results do not assume any 
particular data-generating process. Therefore, formal statistical tests are needed 
to test whether the empirically observed scaling laws are consistent with a particular 
type of null distribution. Although the findings of these statistical tests would not 
change the presence of empirical scaling laws, they would provide guidance for 
modeling return and volatility dynamics with those distributions consistent with 
the observed data dynamics. 

We shall use here the approach of Groenendijk et al. (1996) to present a 
theorem they prove, which gives a good understanding of the relation between 
the drift exponent and other distributional properties for i.i.d. distributions. If we 
assume a simple random walk model 

x(t) = x (t — At) + s(t) (5.11) 

where x is the usual logarithmic price and the innovations s(t) are i.i.d., then the 
n-period return r [n At] (t) has the form 

n-1 

r[nAd(t) = x(t) — x(t — nAt) _ iAt) 
i=0 

(5.12) 

where we have used Equation 5.11. In particular, if the si 's follow a normal 
distribution with mean zero and variance a2, the variance of r[nAt](t) is equal to 
no-2. 

Groenendijk et al. (1996) consider the following quantity: 

In (E [Ir (nAt) I"]) — In (E [Ir (At) I"]) (5.13) 

where At is the smallest time interval and {r (n At)} is the sequence of returns 
aggregated n-times. This quantity is directly related to the left-hand term of the 
scaling law shown in Equation 5.10. 

The theorem they prove is related to the notion of stable distributions. Let us 
briefly state what this notion means. This class of distributions has the following 
attractive property. Let {an }n°° I denote a sequence of increasing numbers such that 
an EL, si has a nondegenerate limiting distribution, then this limiting distribu-
tion must belong to the class of stable distributions (Ibragimov and Linnik, 1971, 
p. 37). Ibragimov and Linnik (1971) show that the numbers an, which satisfy 
this requirement, are of the form a, =- s(n), where s(n) is a slowly varying 
function, that is, 

s(tn) 
Ern = 1 

n-4.00 s(n) 
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with t > 0. Therefore, as r(nAt) is of the form E7_ 1 Eh we can expect rt (n At) 
to be of the order an (i.e., of the order n li"), for large values of n. As a result, 
the dominating term in Equation 5.13 will be p ln(n) I a , such that the relationship 
between Equation 5.13 and ln(n) will be linear with slope p la for all distributions 
that satisfy a generalized central limit law. 

Theorem: Let (Et 1," I denote a sequence of i.i.d. random variables with common 
distribution F(.). Let F(.) belong to the domain of attraction of a stable law with 
index a. Let p be such that 0 < p < a fora < 2 and 0 < p < 2 for a = 2. Then 

In(E[Ir(nAt)11]) — ln(E[Ir(At)IP]) p 
lim   = — (5.14) 
n-*co ln(n) a 

Let us now consider the case p = 2. Following the theorem, the class of 
distributions of 8(t) must now be restricted to the distribution with finite vari-
ance. Using the independence assumption, we can easily obtain the following 
result: 

[E[Ir(nAt)12] = E 
n—i 

e(t — i 6,t) 
b=0 

n-1 

= E[s2(t — UV)] = no-2

(5.15) 

Consequently, the numerator in Equation 5.14 reduces to In(n) and the fraction 
to 1. This is in accordance with the theorem, as it follows from the standard 
limit theory that distributions with finite variance lie in the domain of attrac-
tion of the normal distribution, which has an a = 2, which, in this particu-
lar case, should not be confused with the tail index a of Section 5.4.2. In our 
study of tail indices, the conclusion was that the second moment of the distri-
bution was finite (our tail indices were all largely above 2). Also, the results 
lead to a value of 0.5 (Table 5.8), which is the value one should theoretically 
obtain for p = 2 (as we were studying the square root of the second moment). 
There is, though, a difference between our empirical results and this theoreti-
cal result for p = 1 and for the interquartile range. There are at least three 
explanations for this. The first is that the distribution F'(.) of the random vari-
able is not really common, which can be caused by heteroskedasticity. The sec-
ond explanation is that the theorem is an asymptotic result and we might not 
have converged with our data to the limit. The third explanation is related to 
the i.i.d. assumption for the innovations under which the theoretical result is ob-
tained. A drift exponent for Enr 11, which is different from 0.5, could be an 
indication that there is a certain dependence between consecutive prices. We 
have already seen some of these dependencies for the very short-term (negative 
autocorrelation of returns) and we shall see some more in this and in the next 
chapter. 
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5.5.3 A Simple Model of the Market Maker Bias 

In Section 5.5.1, we reported the findings published in Muller et al. (1990) about 
the scaling law of volatility measures. The parameters of this law seem very stable 
(see Guillaume et al., 1997) but depend on the way the statistical quantities are 
computed and on the errors that enter the evaluation through the least square fit of 
the scaling law parameters. In Muller et al. (1990), we briefly mention the problem 
but in order to help people reproduce our results, we give here the full derivation 
of the error, which consists of a stochastic component and a market maker bias. 

When making statistical studies of returns, researchers only consider the usual 
statistical error due to the limited number of observations. This error is clearly 
dominant when the return is measured over time intervals of a day or more. When 
the time interval is reduced to a few minutes, however, the uncertainty of the price 
definition due to the spread must be also considered. The market makers are biased 
toward one of the two prices, either the bid or the ask, thus introducing a bouncing 
effect that reflects in a negative autocorrelation of the returns in the very short-
term (see Section 5.2.1, Goodhart and Figliuoli, 1991; Guillaume et al., 1997). The 
true market price is between the bid and the ask quotes but not necessarily in their 
exact midpoint.21 This uncertainty can be assessed to a considerable fraction of the 
nominal bid-ask spread. For short horizons, the amplitudes of price movements 
become comparable to the size of the spread. If spreads are large (especially minor 
FX rates), the uncertainty implies an important measurement error. For bid-ask 
data from electronic exchanges and transaction price data, the measurement error 
due to uncertainty is smaller or even negligible. 

The purpose of this section is to derive the error on the statistical quantity 
entering the scaling law computation when the measurement error is also taken 
into account. We derived this model independently (Muller et al., 1995) but it 
turns out that it is very similar to the model developed by Roll (1984) for equity 
prices. 

We rely here on the definitions provided in Chapter 3 for the quantities we 
are going to use. The scaling law (see Equation 5.10) is empirically computed by 
fitting its logarithmic form, 

log( I Ax I) = D log At + log c (5.16) 

The law becomes linear in this form. For the linear regression, we need to know 
the errors of log I Ax I. We saw that there is a similar scaling law for (( I rI2))1/2: 

1 
—
2 

log (11-12)) = D' log At + log c' (5.17) 

The problem is to find the error on I Ax I knowing that we have an uncertainty 
related to the price definition and to the spread. Expressions with absolute values 

21 For a discussion of this point, see Muller et al. (1990); Bollerslev and Domowitz (1993); Goodhart 
and Payne (1996). 
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such as I Ax I are known for their poor analytical tractability. Therefore, the whole 
error computation is done for the analogous case of ((I r I2))1/2. Following the 
arguments given in the introduction, let us assume that x7 is the series of true 
logarithmic market prices whereas the observed middle values xi as defined by 
Equation 3.6 are subject to an additional market maker bias Ei: 

Xi = ei (5.18) 

The true return is defined analogous to Equation 3.7: 

r*(ti) 4_ 1 (5.19) 

Its relation to the observed return follows from Equations 3.7 and 5.18, 

Yi = si — si--1 (5.20) 

To compute the error, a minimum knowledge on the distribution of the stochas-
tic quantities is required. We know that the returns ri and r7 follow a Gaussian 
distribution only as a crude approximation (see Section 5.4), and the market maker 
bias Ei might also be nonnormally distributed. Nevertheless, we shall assume 
Gaussian distributions (the same assumption is used in Roll, 1984) as approxima-
tions to make the problem analytically tractable: 

r:` E N (0, Q*2) (5.21) 

and 

Ei E NI 0, (5.22) 

where .N-(p„ 62) is the Gaussian probability distribution with mean µ, and variance 
Q2. The maximum deviation of the market maker bias is the distance between the 
middle price and the bid price (or ask price), that is half the spread. As a coarse 
approximation, we assume that the standard deviation is half that value, that is 
one-fourth of the typical value of the relative spread (Equation 3.12). This means 
that 172 is assumed to be one-eighth of the squared relative spread.22 Studies 
with transaction prices have shown that the "true" spread is very different from the 
quoted spread (see Section 5.2.2). This quantity is a kind of convention; the market 
maker is really interested in one of the bid or ask prices and adds or subtracts a 
canonical value to the price she or he wants to use. In normal market conditions, the 
price is settled with an equal distribution of buyers and sellers (same assumption 
as in Roll, 1984). Thus, in a first approximation, the two random variables, the 
true returns and the market maker bias as it appears in quoted prices can well be 
assumed to be independent. The choice of the market maker bias is somewhat 

22 We neglect spread changes. 
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arbitrary and depends on the model used. In the context of an efficient market 
with no arrival of information, Roll (1984) has assumed a similar bias. 

Now, we are ready to compute the expectation of r7 from Equation 5.20, using 
Equations 5.21 and 5.22 and the independence of rt and ei, 

p2 = E (r0 = E ((r2)) = Q*2 + n2 (5.23) 

The squared observed returns are thus biased by the positive amount of 272. 
Empirical measures of (r2) are not only biased but also contain a stochastic 

error, which is defined as the deviation of (r2) from its expectation Q2. The variance 
of this stochastic error can be formulated 

0.2 = E  (1.2) 
— 

Q2)2] = E e r 2)2 2 
(r2) 

Q2 
Q4) (5.24) 

The last form of this equation has the expanded terms of the square. The first term, 
(r2)2, can be explicitly written by inserting Equations 5.12 and 5.20; the other two 
terms can be simplified by inserting Equation 5.23. We obtain 

n
0'2 = Elk E (q` + 8i - 8i-1)21

2

/ - Q4 (5.25) 

The first term is somewhat tedious to compute because of the two squares and the 
sum. We expand the squares to get many terms for which we have to compute 
the expectation values. All of those terms that contain r * or a to an odd power 
have a zero expectation due to the symmetry of the normal distribution and the 
independence of r * and E. The expectations of r *2 and £2 can be taken from 
Equations 5.21 and 5.22. The expectations of the fourth moments of normal 
distribution are 

E (r74) = 3 [E (r, 
2)12 = 3 Q*4 (5.26) 

E (61) = E (4_1) = 3 [E (sOf = 
3 4 (5.27) 

as found in (Kendall et al., 1987, pp. 321 and 338), for example. By inserting this 
and carefully evaluating all the terms, we obtain 

2 n + 2 *4 2 (n +2) *2 2 n2 +

n

3 2n ± 1 77 (5.28)4= 
 n    n + 

By inserting Equation 5.23, we can express the resulting stochastic error variance 
either in terms of Q*, 

a
2 

= 
2 
- 4 

4n n- Q 
*2 2 ( 3 1 ) 4 

n n 
(5.29) 
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(5.30) 

Now, we know both the bias 772 of an empirically measured (r2) and the 
variance of its stochastic error. For reporting the results and using them in the 
scaling law computation, two alternative approaches are possible: 

1. We can subtract the bias n2 from the observed (r2) and take the result with 
a stochastic error of a variance following Equation 5.30, approximating Q2
by (r2) . We do not recommend this here because 772 is only approximately 
known and thus contains an unknown error. However, the idea of bias 
modeling and bias elimination is further developed in Chapter 7. 

2. We can take the originally obtained value of (r2) and regard the bias 772 as 

a separate error component in addition to the stochastic error. This is an 
appropriate way to go, given the uncertainty of 772. 

Following the second approach, we formulate a total error with variance 6t20.tai, 
containing the bias and the stochastic error. The stochastic error is independent 
of the bias by definition, so the total error variance is the sum of the stochastic 
variance and the squared bias 

2  
Ctotal = a

2 + 4 2 A ( 1 1)  

77- 
A

n Q- 
+

1  
n nz.

 (5.31) 

This is the final, resulting variance of the total error of (r2). 
For the application in the scaling law, we can use a good approximation for 

large values of n >> 1, which is reasonable even for small values of n. By dropping 
higher order terms from Equation 5.31, we obtain 

2 4 4 
a total 

2 2 2 4 

n 
— (r ) (5.32) 

In the last form, the theoretical constant Q2 has been replaced by its estimator (r2), 
see Equation 5.23. 

The mean squared return with error can be formulated as follows: 

(r2)valerror = (r2) ± 1/04 + _2 472)2 (5.33) 

where the second term is the standard deviation of the error according to Equa-
tion 5.32. 

The scaling law is usually formulated for ((r2))1/2 rather than (r2), as in 
Equation 5.10. Applying the law of error propagation, we obtain 

(72)1/2with error 
r 2 ) 1/2 ± d(r2 / 1/2 ' 2 4.2 ) 2 = \ d(r2 ) 

= (r2)1/2 ± 174 (r2) 
4 (r2) ' 2 n 

(5.34) 
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The scaling law fitting is done in the linear form obtained for log((r2))1/2 (see 
Equation 5.17). Again applying the law of error propagation, we obtain 

 0. 
log(r2) wili2th error log (r2)1 /2 

2 

q

_1_ dlog(r2)1/2 4 

d(T2)I/ V 4 (T2) 4- 2 n)
(5.35) 

— log(r2)1/2 ± '(7: 2)2 21, 

which gives rise to the following expression for the error variance of this quantity: 

Var (log(r2 ) 1/2) =  ' 14 (,-2)2 2n 
(5.36) 

The assumption is now that the variance of the error for log I Ax I is approx-
imately the same as that of log((r2))1/2 in Equation 5.36 and that we only need 
to replace there the empirically obtained ((r2))1 /2 by the empirically obtained 
Ax I. This approximation is justified by the similar sizes and behaviors of both 

quantities. We obtain 

/7
4

Var (logT i)z + - (5.37) 
4 i Ax i 2 n 

This expression has interesting properties. In the case of long time intervals, 
>> 77, and the term 1/(2n) becomes the essential cause for errors. In the 

case of short time intervals, n is very big but I Ax I is of the same order as 7), and 
the first term of the right-hand side of the equation plays the central role. This 
explains the peculiar form of the errors in Figure 5.8, very large for high-frequency 
points, then diminishing (almost undistinguishable because of the high number of 
observations) and eventually increasing again when the number of observations 
becomes small. 

5.5.4 Limitations of the Scaling Laws 

We have already mentioned that the empirical results indicate a scaling behavior 
from time intervals of a few hours to a few months. Outside this range, the behavior 
departs from Equation 5.10 on both sides of the spectrum. Many authors noticed 
this effect, in particular, Moody and Wu (1995) and Fisher et al. (1997) for the 
short time intervals. It is important to understand the limitations of the scaling 
laws because realized volatility is playing more of an essential role in measuring 
volatility and thus market risk. It also serves as the quantity to be predicted in 
volatility forecasting and quality measurements of such forecasts, as we shall see 
in Chapter 8. 

In the previous section, we saw that the bid and ask bounce generates an 
uncertainty on the middle price, and we have estimated its contribution to the 
error of the volatility estimation. For most risk assessment of portfolios, a good 
estimation of the daily volatility is required. Unfortunately, in practice, departures 
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from the i.i.d. diffusion process make the realized volatility computed with returns 
measured at very short intervals no longer an unbiased and consistent estimator 
of the daily volatility. It is thus interesting to go one step further than in the 
previous section and to model the bias in order to obtain an easy correspondence 
between volatilities estimated at different frequencies. Recently, Corsi et al. (2001) 
have investigated and modeled the bias and its effect on measurements of realized 
volatility. 

There are two limitations to the precision of the estimation of realized volatil-
ity. The number of return observations in the measurement period is limited and 
leads to a stochastic error (noise). One can easily see that for long time intervals 
(a year and more) it becomes difficult to assess the statistical significance of the 
volatility estimation because there are not more than a handful of independent 
observations. This number grows and the noise shrinks when the return measure-
ment intervals shrink, but then the bias starts to grow. Until now, the only choice 
was a clever trade-off between the noise and the bias, which led to typical return 
intervals of about an hour. Tick frequency and data gaps play a major role. The 
goal is to define a superior realized volatility, which combines the low noise of 
short return interval sizes with the low bias of large return intervals. We shall not 
enter in the details here since it is still a research in progress. It suffices to mention 
that this is a crucial issue for a widespread use of high-frequency data in volatility 
estimation. 

Gencay et al. (2001d) also provide evidence that the scaling behavior breaks 
for returns measured at higher intervals than 1 day. Figure 5.9 reports their de-
composition of the variance on a scale-by-scale basis through the application of a 
nondecimated discrete wavelet transform.23 This methodology does not assume 
any distributional form to the returns. The wavelet variance for each absolute re-
turn series is plotted on a log-log scale in Figure 5.9. For example the first scale is 
associated with 20-min changes, the second scale is associated with 2*20=40-min 
changes, and so on. Each increasing scale represents lower frequencies. The first 
six scales capture the frequencies 1/128 < f < 1/2; that is, oscillations with a 
period length of 2 (40 min) to 128 (2560 min). Because there are 72*20 = 1440 
min in a day, we conclude that the first six scales are related with intraday dynamics 
of the sample. 

In the seventh scale, an apparent break is observed in the variance for both 
series which is associated with 64*20 =1280-min changes. Because there are 1440 
min in a day, the seventh scale corresponds to 0.89 day. Therefore, the seventh 
and higher scales are taken to be related with 1 day and higher dynamics. 

For a power law process, v2 (ri ) cc -cia-1 so that an estimate of a is obtained 

by regressing log v2 (-r) on log Tr"—I . Figure 5.9 plots the ordinary least squares 
(OLS) fits of the sample points for two different regions. Estimated slopes for 
the smallest six scales are —0.48 and —0.59 for USD-DEM and USD-JPY series, 

23 A extensive study of wavelet methods within the context of time series analysis and filtering is 
presented in Gencay et al. (2001b). 
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FIGURE 5.9 Wavelet variance for 20-min absolute returns of (a) USD-DEM and (b) 
USD-113Y from December 1, 1986, through December 1, 1996, on a log-log scale. The 
circles are the estimated variances for each scale. The straight lines are ordinary least 
squares (OLS) fits. Each scale is associated with a particular time period. For example 
the first scale reflects 20-min changes, the second scale reflects 2 * 20 = 40-min changes, 
the third scale reflects 4 * 20 = 160-min changes, and so on. The seventh scale is 
64 * 20 = 1280-min changes. Because there are 1440-min per day, the seventh scale 
corresponds to approximately one day. The last scale shows approximately 28 days. 

respectively. This result implies that a = —0.52 for the USD-DEM series and 
a = —0.40 for the USD-WY absolute return series for the first six scales (intraday). 

5.6 AUTOCORRELATION AND SEASONALITY 

Before closing this chapter, we investigate the autocorrelation and the seasonality 
of high-frequency data. Are returns and the volatility serially correlated, beyond 
the negative short-term autocorrelation in Section 5.2.1? Are there periodic pat-
terns, seasonality, in the data? Clearly, we expect to find very little data during 
weekends and holidays, but what else can be said about different weekdays and 
daytimes? We answer these questions by using two types of statistical analysis. 
The autocorrelation function of a stochastic quantity reveals at the same time seri-
ally dependence and periodicity. The autocorrelation function signals a periodic 
pattern by peaking at lags that are integer multiples of the particular period. We 
call the other type of analysis an intraday-intraweek analysis. It relates quantities 
to the time of the day (or the week) when they are observed. We thus obtain 
average quantities evaluated for every hour of a day or of a week. 
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FIGURE 5.10 Autocorrelations of hourly returns (o), their absolute values (*), and 
their squares (+) as functions of the time lag, for XAU (gold) against USD. The band about 
the zero autocorrelation line represents 95% significance of the hypothesis of independent 
Gaussian observations. 

5.6.1 Autocorrelations of Returns and Volatility 

A convenient way to discover stylized properties of returns is to conduct an auto-
correlation study. The autocorrelation function examines whether there is a linear 
dependency between the current and past values of a variable: 

E[x(t — r) — (x)][x(t) — (x)] 
(T) = 

✓E[x(t — r) — (x)]2 E[x(t) - (x)]2
where x(t) can be any time series of a stochastic variable and r is the time lag. 
The autocorrelation function peaks at lags corresponding to the periods of seasonal 
patterns. 

Here we present an analysis of the autocorrelation function p of hourly re-
turns, their absolute values, and their squares over a sample of 3 years from March 
1, 1986, to March 1, 1989. We see in Figure 5.10 that the last two variables 
have a significant, strong autocorrelation for small time lags (few hours), which 
indicates the existence of volatility clusters or patterns. More interesting is the 
significant peak for time lags of and around 24 hr. This is a strong indica-
tion of seasonality with a period of 1 day. The autocorrelation of the returns 

(5.38) 

0181



162 CHAPTER 5 BASIC STYLIZED FACTS 

0.3 

0 2-

0.1-

00

USD/DE M

0.3 

0.2 

0.1 

00 

USDIFRF 

00 05 1.0 1.5 2.0 25 30 00 05 1.0 1.5 2.0 2.5 30 
Power Power 

FIGURE 5.11 The first 10 lags of the autocorrelation function of Ir IP as a function 
of the power p for USD-DEM and USD-FRF (first lag on top, 10th at the bottom). The 
maxima are shown by bullet signs (•), The returns are measured over 30 min (in 2,-time, 
see Chapter 6). Right above the bottom, at a very low autocorrelation value, there is a 
horizontal line in both graphs. This is the upper limit of the 95% confidence band of the 
hypothesis of independent Gaussian observations. 

themselves is insignificant as it stays mostly inside the confidence band of Fig-
ure 5.10. 

Because the autocorrelation function varies when the absolute returns are 
raised to a different power, as can be seen in Figure 5.10, we systematically stud-
ied the influence of the power p on the autocorrelation function. Some studies 
on the influence of the power of absolute returns on the autocorrelation have 
been published (Granger and Ding, 1995; Muller et al., 1998; Bouchaud and 
Potters, 2000). Granger and Ding (1995) conclude that the exponent p = 1 
leads to the highest autocorrelation. Here, as in Muller et al. (1998), we report 
a full analysis of the autocorrelation coefficients as a function of the power p 
of absolute returns. Figure 5.11 shows how the tails of the distribution influ-
ence autocorrelation. Increasing the power of the absolute returns boils down 
to increasing the relative importance of extreme events in the statistics. In Fig-
ure 5.11, we see that the autocorrelation, for the 10 lags considered, decreases 
when the influence of extreme returns is increased. In other words, extreme 
events are less correlated with each other than average or small absolute returns. 
From this study, it seems that the heteroskedasticity is mainly due to the aver-
age behavior, not the extreme events. This is represented by a low exponent p 
smaller than 1; the maximum autocorrelation is for values of p close to one-
half. 

The results presented in Table 5.3 can well explain a feature shown in Fig-
ures 5.10 and 5.11 where the positive autocorrelation of absolute returns is stronger 
than that of squared returns. The tail index a being almost always below 4, the 
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TABLE 5.10 Time conversion table. 

Time conversion table between Greenwich Mean Time (GMT), Europe (MET), USA (EST), 
and Japan (JPT). The letter D indicates a particular day. Note that GMT and JPT are not 
subject to daylight saving changes whereas the regions under MET and EST are. 

GMT MET EST JPT 

D 0:00 D 1:00 D-1 19:00 D 9:00 
D 3:00 D 4:00 D-1 22:00 D 12:00 
D 6:00 D 7:00 D 1:00 D 15:00 
D 9:00 D 10:00 D 4:00 D 18:00 
D 12:00 D 13:00 D 7:00 D 21:00 
D 15:00 D 16:00 D 10:00 D+1 0:00 
D 18:00 D 19:00 D 13:00 D+1 3:00 
D 21:00 D 22:00 D 16:00 D+1 6:00 

fourth moment of the distribution is unlikely to converge.24 The denominator 
of the autocorrelation coefficient of squared returns is only finite if the fourth 
moment converges, whereas the convergence of the second moment25 suffices to 
make the denominator of the autocorrelation of absolute returns finite. The sec-
ond moment is finite if a is larger than 2. Indeed, besides the empirical evidence 
shown in Figure 5.11, we find that the difference between the autocorrelations 
of absolute returns and squared returns grows with increasing sample size. This 
difference computed on 20 years of daily data is much larger than that computed 
on only 8 years. For a lag of 9 days, we obtain autocorrelations of 0.11 and 0.125 
for the absolute returns over 8 and 20 years, respectively, while we obtain 0.072 
and 0.038 for the squared returns, showing a strong decrease when going to a 
larger sample. The same effect as for the daily returns is found for the autocor-
relation of 20-min returns, where we compared a 9-year sample to half-yearly 
samples. 

5.6.2 Seasonal Volatility: Across Markets for OTC Instruments 

The most direct way to analyze seasonal heteroskedasticity in the form of daily 
volatility patterns is through our intraday statistics. We construct a uniform time 
grid with 24 hourly intervals for the statistical analysis of the volatility, the number 
of ticks, and the bid-ask spreads. 

The low trading activity on weekends implies a weekly periodicity of trading 
activity and is a reason for adding intraweek statistics to the intraday statistics. 
Both statistics are technically the same, but the intraweek analysis uses a grid of 

24 Loretan and Phillips (1994) come to a similar conclusion when examining the tail behavior of 

daily closing prices for FX rates. 

25 For a more formal proof of the existence of the autocorrelation function of stochastic variables 

obeying fat-tailed probability distribution, see Davis et al. (1999). 
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TABLE 5.11 Average number of ticks. 

Average number of ticks for each day of the week (including weekends) for the USD against 

DEM, JPY, CHF, and GBP and XAU (gold) against USD. The sampling period is from January 
1, 1987, to December 31, 1993. The tick activity has increased over the years except for 

XAU (gold). 

DEM JPY GBP CHF XAU 

Monday 4888 2111 1773 1764 607 

Tuesday 5344 2438 2043 2031 698 

Wednesday 5328 2460 2033 2022 717 

Thursday 5115 2387 1948 1914 702 

Friday 4495 1955 1633 1670 675 

Saturday 17 16 15 14 27 

Sunday 168 181 46 34 6 

seven intervals from Monday 0:00-24:00 to Sunday 0:00-24:00 (GMT). With this 
choice, most of the active periods of the main markets (America, Europe, East 
Asia) on the same day are included in the same interval. The correspondence 
of the hours between main markets is shown in Table 5.10. The analysis grids 
have the advantage of a very simple and clear definition, but they treat business 
holidays outside the weekends (about 3% of all days) as working days and thus 
bias the results. The only remedy against that would be a worldwide analysis of 
holidays, with the open question of how to treat holidays observed in only one part 
of the world. Another problem comes from the fact that daylight saving time is 
not observed in Japan while it is in Europe and in the United States. This changes 
the significance of certain hours of the day in winter and in summer when they are 
expressed in GMT. An alternative here would be to separate the analysis according 
to the winter and the summer seasons. 

An analysis of trading volumes in the daily and weekly grids is impossible as 
there is no raw data available. The average numbers of ticks, however, give an idea 
about the worldwide market activity as a function of daytime and weekdays. They 
are counts of original quotes by representative market makers, though biased by 
our data supplier. The two bottom graphs of Figure 5.12 improve our knowledge 
of the intraday and intraweek studies. They show, for example, that even the least 
active hour, 3:00 to 4:00 GMT (noon break in East Asia), contains about 20 ticks 
for DEM, a sufficient quantity for a meaningful analysis. The intraweekly results 
are shown in Table 5.11. The ranking of the FX rates according to the amount of 
published quotes corresponds fairly well to the ranking obtained by the Bank of 
International Settlements (BIS) with its survey of the volume of transactions on 
the FX market (Bank for International Settlements, 1995, 1999). 

Intraday volatility in terms of mean absolute returns is plotted in the two 
top histograms of Figure 5.12 for USD-DEM. Both histograms indicate distinctly 
uneven intraday-intraweek volatility patterns. The daily maximum of average 
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Intraday Volatility Intraweek Volatility 
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FIGURE 5.12 Hourly intraday and intraweek distribution of the absolute return, the 
spread and the tick frequency: a sampling interval of At = 1 hour is chosen. The 
day is subdivided into 24 hours from 0:00 — 1:00 to 23:00 — 24:00 (GMT) and the week 
is subdivided into 168 hours from Monday 0:00 — 1:00 to Sunday 23:00 — 24:00 (GMT) 
with index i. Each observation of the analyzed variable is made in one of these hourly 
intervals and is assigned to the corresponding subsample with the correct index i. The 
sample pattern does not account for bank holidays and daylight saving time. The FX rate 
is USD-DEM and the sampling period covers the 6 years from 1987 to 1992. 
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TABLE 5.12 Average volatility. 

Average volatility for each day of the week (including weekends) for the USD against DEM, 
JPY, CHF, and GBP and XAU (gold) against USD; for the period from January 1, 1987, 
to December 31, 1993. The volatility figures have to be multiplied by 10-3. They refer 
to one day. Corresponding annualized volatility figures are obtained through another 
multiplication by the factor 065.25 ^ 19.11. 

DEM JPY GBP CHF XAU 

Monday 6.12 4.66 5.44 6.04 5.75 
Tuesday 5.28 5.17 5.49 5.88 5.48 

Wednesday 4.93 5.02 5.04 5.52 5.47 
Thursday 5.83 5.15 5.04 5.91 5.39 

Friday 6.62 5.00 5.86 6.53 5.87 
Saturday 0.58 0.74 0.76 0.88 1.19 

Sunday 2.25 2.04 1.77 1.70 1.25 

volatility is roughly four times higher than the minimum. The patterns can be ex-
plained by considering the structure of the world market, which consists of three 
main parts with different time zones: America, Europe, and East Asia. Even 
the lunch-break familiar to the European and East Asian markets, but not to the 
American one, can be detected in the form of the two minima of the histogram for 
USD-DEM. The main daily maximum occurs when both the American and the 
European markets are active. Other markets have similar patterns with character-
istic differences in the weights of the markets, such as a higher volatility for the 
USD-JPY when the East Asian markets are active (as to be shown in Chapter 6). 
The patterns for USD-CHF and USD-DEM are similar, as expected. The pattern 
for XAU-USD reflects the well-known fact that the East Asian gold market is 
less active than the European and American ones. Different volatilities across the 
American, European, and Japanese markets were also detected by Ito and Roley 
(1987),26 in their intraday study of the Japanese Yen. 

Table 5.12 shows quite similar volatilities for the working days of the week. 
It does not confirm the weekend effect found by McFarland et al. (1982) with sys-
tematically lower volatilities on Fridays.27 Their analysis was however different 
by taking daily changes at 18:00 GMT and putting together Saturdays, Sundays, 
and Mondays. The volatility is low on weekends, but, for FX rates, higher on 
Sundays than on Saturdays. This is due to the early Monday mornings in East 
Asia and in Australia, which coincide with Sunday nights in GMT. 

The intraweek volatilities of Table 5.12 are correlated with the activities mea-
sured in terms of the number of ticks (Table 5.11). The analogous correlation 

26 For these authors volatility is measured by both the standard deviation and the mean absolute 
returns. 

27 The effect seems to be the reverse on the stock market (high returns on Fridays). 
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TABLE 5.13 Correlation coefficients for activity measures. 

Correlation coefficients computed for the different intraday analyses for the USD against 
DEM, JPY, CHF, and GBP and XAU (gold) against USD. Sampling period: from January 1, 
1987, to December 31, 1993. 

DEM JPY GBP CHF XAU 

E(IrD-ticks +0.540 +0.421 +0.779 +0.755 +0.885 
Ear D-spread —0.220 —0.485 —0.570 —0.704 —0.287 
Ticks-spread —0.693 —0.018 —0.881 —0.707 —0.450 

coefficients between the intradaily histograms of Figure 5.12 are also positive, as 
explicitly shown in the first line of Table 5.13. We conjecture that both variables 
are positively correlated to a third one, the worldwide intraday transaction volume, 
which is not known for the FX market. Transaction volume figures are, however, 
available for the stock market; their positive correlation to squared returns (and 
hence the volatility) has been found by Harris (1987) and other authors. Recently, 
Hasbrouck (1999) examined the data of the New York Stock Exchange and found 
similar correlations as in Table 5.13 for his transaction data, but the correlations 
did not uniformly increase when the data were aggregated. 

The statistics show that an analysis of return distributions that neglects the large 
differences between the hours of a day and the days of the week is inappropriate. 
In Chapter 6, we will introduce a new time scale to solve this problem. 

5.6.3 Seasonal Volatility: U-Shaped for Exchange Traded 
Instruments 

Intradaily seasonalities were also found in the stock markets by Ghysels and Jasiak 
(1995), Andersen and Bollerslev (1997b) and Hasbrouck (1999). Unlike the FX 
market, stock exchanges and money market exchanges are active less than 24 hr a 
day. Thus the shape of the seasonality is different. It is called the U-shape because 
the high volatility of the opening is followed by a decrease, which is in turn 
followed by an increase of volatility just before closing. Ballocchi et al. (1999b) 
study the Eurofutures markets and find the expected intraday seasonality. For all 
contracts traded on LIFFE the hourly tick activity displays the U-shape with its 
minimum around 11 a.m. to 1 p.m. (GMT) and a clustering of activity around the 
beginning and the end of the trading day. There are differences among Eurofutures 
between the levels and widths of the peaks and the level of the minimum. The 
Eurodollar (a contract type traded on CME, see section 2.4.1) displays similar 
behavior but the activity in the first half of the working day, which takes place 
when the European markets are still open, is higher than during the second half of 
the day, when European markets have already closed and Asian markets are not 
yet open. 

0187



168 CHAPTER 5 BASIC STYLIZED FACTS 

25 1.4 

1.2 
to 2 < Tr_se o 
H -7- 1.0 
13 E 

1 .E 
12 0.8 

E 2 
z 0.6 , 1 w co xi 
i.a. < 
al , 0.4 
> co al 

0.2 

6 12 18 24 0 6 12 18 24 
Hour of the Day (GMT) Hour of the Day (GMT) 

FIGURE 5.13 Intraday analysis of Short Sterling in position two. The intraday tick 
activity (left histogram) displays the average number of ticks occurring in each hour of 
the day whereas the intraday volatility (right histogram) shows the mean absolute return. 
Both plots display similar U-shapes, the only difference being that the minimum appears 
one hour later for intraday returns. The time scale is GMT (not UKT, the local time used 
by LIFFE in London). The sampling period starts on January 1, 1994, and ends on April 15, 
1997. The total number of ticks is 184,360. 

Intraday returns follow a pattern similar to that presented by intraday tick 
activity. In general, opening hours show the highest price variation (the difference 
with respect to the average of the other hours is around one basis point); only in 
some cases does the largest return occur toward closing time (usually in the last 
positions). Differences occur in some positions28 for Short Sterling, Eurolira, and 
Three-Month Ecu,29 which display the minimum of the U-curve 1 hour later than 
in the tick-activity case. This can be seen in Figure 5.13, which displays intraday 
tick activity and intraday returns for Short Sterling in position two. Note that the 
U-shapes in this figure are blurred by the fact that Greenwich Mean Time (GMT) is 
used. The observations do not only cover winter months but also summers where 
the time scale used by LIFFE in London is shifted by 1 hour (daylight saving time). 
If the time scale was local time (UKT) instead of GMT, the U-shapes would be 
more pronounced with clearer peaks at opening and closing. 

The first two positions of the Euromark display less regularity in the intraday 
return behavior. This behavior is confirmed also by correlation results: on the 
whole, the correlation between hourly tick activity and hourly returns is above 
0.96; only Euromark for the first two positions and Three Month-Ecu for the 
fourth position show a lower correlation around 0.90. In general, for Eurodollar, 
Euromark and Short Sterling, hourly returns tend to increase from position 1 

28 For an explanation of the word "position," see Section 2.1.2. 
29 Short Sterling, Eurolira, Three Month-Ecu, and Euromark are names of LIFFE contracts, all with 

an underlying 3-month deposit. Ecu is the European Currency Unit that preceded the Euro. 
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FIGURE 5.14 Volatility as a function of time to expiry. The volatility values are daily 
averages over 36 contracts (9 for Eurodollar, 9 for Euromark, 9 for Short Sterling, and 9 for 
Eurolira). The abscissa corresponds to the time to expiry: the farther on the right-hand 
side, the farther away from expiry. 

to position 4; Eurodollar and Short Sterling display a decrease for some hours 
in position 4. 

Looking at intraweek tick activity, there is evidence of a day-of-the-week 
effect. In general, the level of activity displays a minimum on Monday and a 
maximum on the last two working days of the week, usually on Thursday for 
LIFFE contracts and on Friday for CME contracts. The difference is definitely 
significant for the Eurodollar; in fact, for positions 1 and 2 the tick activity on 
Friday is almost double that on Monday and it becomes more than double for 
positions 3 and 4. In general, there is a gradual increase from Monday to Friday. 

5.6.4 Deterministic Volatility in Eurofutures Contracts 

Ballocchi et al. (2001) provide evidence that the volatility of futures prices sys-
tematically depends on the time interval left until contract expiry. We call these 
systematic volatility patterns deterministic, as opposed to the also existing stochas-
tic fluctuations of volatility. In order to probe the existence of a seasonality related 
to contract expiry, a sample consisting of many futures contracts is needed. For 
several Eurofutures contact type (Eurodollar, Euromark, Short Sterling, and Eu-
rolira) and for each contract expiry, we build a series of hourly returns using linear 
interpolation. Then we compute daily volatilities taking the mean absolute value 
of hourly returns from 00:00 to 24:00 (GMT) of each working day (weekends and 
holidays are excluded). These daily volatilities are plotted against time to expiry. 
The result is shown in Figure 5.14. The vertical axis represents the mean volatility 
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computed from all Eurofutures and all contracts together. The horizontal axis 
represents the time left to expiry, as we move towards the left the number of days 
to expiry decreases. 

Figure 5.14 spans a period of about 360 days because only within that period 
we are able to compute our mean volatility based on a full set of contracts. Some 
contracts have bad data coverage for times to expiry exceeding 360 days. The 
results obtained are quite interesting. There is a downward trend in volatility as the 
time to expiry decreases (moving from right to left in Figure 5.14). This downward 
trend is weak between about 300 and 180 days before expiry but becomes strong as 
we move toward the expiry date. There is also an unexpected behavior consisting 
of oscillatory movements with peaks every 90 days corresponding to rollover 
activities near the ending of contracts. These results are confirmed also by a 
deterministic volatility study on each single Eurofutures type—except Eurolira, 
which displays an increment in volatility as we move toward expiry. Eurodollar, 
Euromark, and Short Sterling show a decreasing volatility at least for the last 300 
days before expiry. All Eurofutures display oscillatory movements with peaks 
around expiry dates (this appears particularly evident for Short Sterling). 

A possible explanation for this effect is that these markets are all "cash settled" 
and therefore have no "delivery risk"; this means there is no risk of holding these 
futures on expiry day. Due to transaction costs, it is cheaper to take the cash at 
expiry than to close the position and realize the cash the day before. In other 
future markets such as the Deutsche Termin-B8rse or the commodity markets, 
people who hold long positions to expiry actually take physical delivery of the 
underlying commodity or bond. There is a risk as expiry approaches as to which 
bond or type of commodity will be delivered. This may cause an increase in 
volatility as expiry approaches—a behavior opposite to that of Figure 5.14. 

5.6.5 Bid-Ask Spreads 

The bid-ask spread reflects many factors such as transaction costs, the market 
maker's profit, and the compensation against risk for the market maker, see (Glass-
man, 1987; Glosten, 1987). The subject of the intraday and intraweek analysis is 
the relative spread sj (Equation 3.12). It is usually below or around 0.1%, and 
its distribution is not symmetric. Negative changes are bounded as spreads are 
always positive, but the spread can exceed 0.5% in times of low market activity. 
The arithmetic mean of sj weights these low-activity spreads too strongly and 
therefore we choose the geometric mean as a more appropriate measure: 

Si = (5.39) 

The index i indicates the hour of a day (or a week) or the day of the week, depending 
on the analysis. The total number of ticks that belong to the i t!' interval is ni. j is 
the index and si, j the spread of these ticks. 
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TABLE 5.14 Average spreads. 

Geometric average of the relative spread for each day of the week (including weekends) for 
the USD against DEM, JPY, CHF, and GBP and XAU (gold) against USD; for the period from 
January 1, 1987, to December 31, 1993. The relative spread figures have to be multiplied 
by 10-4. 

DEM JPY GBP CHF XAU 

Monday 4.57 5.72 4.82 6.32 12.58 
Tuesday 4.52 5.64 4.77 6.28 12.51 
Wednesday 4.57 5.71 4.81 6.32 12.49 
Thursday 4.64 5.77 4.84 6.38 12.62 
Friday 4.79 6.00 4.99 6.49 12.59 
Saturday 7.69 17.91 17.32 18.02 13.26 
Sunday 5.28 6.78 9.60 10.99 14.04 

Muller and Sgier (1992) analyze in detail the statistical behavior of the quoted 
spread. Here we shall present their main conclusions. First, it is important to 
remember that all the statistical analyses are dominated by one property of quoted 
FX spreads, which is the discontinuity of quoted values (see Section 5.2.2). This 
data set contains price quotes rather than traded prices. The banks that issue these 
price quotes are facing the following constraints: 

■ Granularity: FX prices are usually quoted with five digits-that is, 1.6755 
(USD-DEM) or 105.21 (USD-JPY). The lowest digit sets the granularity 
and thus the unit basis points. 

■ Quoted spreads are wider than traded spreads as they include "safety mar-
gins" on both sides of the real spread negotiated in simultaneous real 
transactions. These margins allow the FX dealers, when called by a cus-
tomer during the lifetime of the quote, to make a fine adjustment of the 
bid and ask prices within the range given by the wide quoted spread. They 
can thus react to the most recent market developments. 

■ FX dealers often have biased intentions: while one of the prices, bid or 
ask, is carefully chosen to attract a deal in the desired direction, the other 
price is made unattractive by increasing the spread. 

■ Because quoted spreads are wider than traded spreads, they do not need 
the high precision required in the direct negotiation with the customer on 
the phone. Hence, there is a tendency to publish formal, "even" values of 
quoted spreads as discussed in Section 5.2.2. 

The strong preference for a few formal spread values, mainly 5 and 10 basis points, 
clearly affects every statistical analysis. 

The results are shown in the middle histograms of Figure 5.12 and in 
Table 5.14. The general behavior of spreads is opposite to those of volatility 
and tick frequency. Spreads are high when activity is low, as already noticed by 
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FIGURE 5.15 Cumulative distributions of relative spreads (left) and logarithm of the 
relative spread (right) shown against the Gaussian probability on the y-axis. The distribu-
tion is computed from a time series of linearly interpolated spread sampled every 10 min 
for USD-DEM. The sample runs from March 1, 1986, to March 1, 1991. 

Glassman (1987). FX spreads on Saturdays and Sundays can have double and 
more the size of those on weekdays and, as in Table 5.12, Sundays differ slightly 
less from working days than Saturdays. Sunday in GMT also covers the early 
morning of Monday in East Asian time zones. Unlike the volatilities, the average 
FX spreads exhibit a clear weekend effect in the sense that the Friday figures are 
higher, though still much lower than those of Saturday and Sunday. The spreads of 
gold vary less strongly, but they have double the size of the FX spreads on working 
days. The FX rate with the smallest spreads, USD-DEM, was the most traded one 
according to all the BIS studies (until it was replaced by EUR-USD in 1999). The 
histograms in Figure 5.12 have intraday patterns that are less distinct than those 
of volatility, but still characteristic. We analyze their correlations with both the 
volatilities and the numbers of quoted ticks. All the correlation coefficients on the 
second line of Table 5.13 and most of them on the third line are negative, as one 
would expect. The FX rates have different spread patterns. For USD-CHF, for 
instance, there is a general spread increase during the European afternoon when 
the center of market activity shifts from Europe to America, while the USD-JPY 
spreads decrease on average at the same daytime. This indicates that American 
traders are less interested in Swiss Francs and more in Japanese Yens than other 
traders. Hartmann (1998) uses the spreads to study the role of the German Mark 
and the Japanese Yen as "vehicle currencies," as compared to the USD. 

An analysis of the empirical cumulative distribution function of the relative 
spreads is shown in the left graph of Figure 5.15 for USD-DEM and for In s in the 
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right graph of Figure 5.15. The resulting cumulative distribution functions have 
the following properties: 

1. They are not Gaussian, but convex (s strongly, Ins slightly), indicating a 
positive skewness and leptokurticity (of the tail on the positive side). 

2. They look like a staircase with smooth corners. For the nominal spread 
in basis point, snom, we would expect a staircase with sharp corners, the 
vertical parts of the staircase function indicating the preferred "even" val-
ues such as 10 basis points. Although s is a relative spread (%-= snom/Pbid), 
where the bid price pbid fluctuates over the 5-year sample, and although we 
use linear interpolation in the time series construction (see Section 3.2.1), 
the preferred "even" snom values are still visible. 

• 

Cei 
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6 
MODELING SEASONAL 

VOLATILITY 

6.1 INTRODUCTION 

The intradaily and intraweekly seasonality of volatility is a dominant effect that 
overshadows many further stylized facts of high-frequency data. In order to con-
tinue the research for stylized facts, we need a powerful treatment of this season-
ality. 

Many researchers who study daily time series implicitly use, as a solution, 
a business time scale that differs from the physical scale in its omission of Sat-
urdays, Sundays, and holidays. With the a-scale we extend this concept to the 
intraday domain, thereby allowing us to tackle a fundamental source of seasonality 
originating from the cyclical nature of the 24-hr hour trading around the globe in 
different geographical locations. 

There are, therefore, three main motivations for our model: 

■ To provide a tool for the analysis of market prices by extending the concept 
of business time scale to intraday prices 

■ To make a first step toward formulating a model of market prices that also 
covers the intraday movements 

■ To gain insight into the interactions of the main market centers around the 
world and their relevance to each particular foreign exchange (FX) rate 

174 
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A number of papers such as Andersen and Bollerslev (1997b, 1998b), Taylor 
and Xu (1997), and Beltratti and Morana (1999) propose alternative approaches 
for dealing with volatility seasonalities. They are based on a factorization of 
the volatility into an essentially deterministic seasonal part and a stochastic part, 
which is (more or less) free of seasonalities. The former is then modeled by a set 
of smooth functions. Cutting out the inactive periods of the time series and gluing 
together the active parts, Andersen and Bollerslev (1997b) succeeded in applying 
their method also to the S&P 500 index. This procedure is not fully satisfactory for 
a number of reasons: time series have to be preprocessed, there is no treatment of 
public holidays and other special days, the model fails when the opening or closing 
time of the market changes, and it is not adequate for instruments with a complex, 
hybrid volatility pattern. Gencay et al. (2001a) use the wavelet multiresolution 
methods for dealing with volatility seasonalities which is studied in Section 6.4. 

6.2 A MODEL OF MARKET ACTIVITY 

6.2.1 Seasonal Patterns of the Volatility and Presence of Markets 

The behavior of a time series is called seasonal if it exhibits a periodic pattern 
in addition to less regular movements. In Chapter 5 we demonstrated daily and 
weekly seasonal heteroskedasticity of FX prices. This seasonality of volatility has 
been found in intradaily and intraweekly frequencies. In the presence of seasonal 
heteroskedasticity, autocorrelation coefficients are significantly higher for time 
lags that are integer multiples of the seasonal period than for other lags. An 
extended autocorrelation analysis is studied in Chapter 7. 

As studied in Chapter 5, the intraweek analysis indicates that the mean absolute 
returns are much higher over working days than over Saturdays and Sundays, when 
the market agents are hardly present. The intraday analysis also demonstrates that 
the mean absolute hourly returns have distinct seasonal patterns. These patterns are 
clearly correlated to the changing presence of main market places of the worldwide 
FX market. The lowest market presence outside the weekend happens during the 
lunch hour in Japan (noon break in Japan, night in America and Europe). It is at 
this time when the minimum of mean absolute hourly returns is found. 

Chapter 5 also presents evidence of a strong correlation between market pres-
ence and volatility such that the intraday price quotes are positively correlated to 
volatility when measured with mean absolute hourly returns. Market presence is 
related to worldwide transaction volume which cannot be observed directly. In the 
literature, a number of papers present substantial evidence in favor of a positive 
correlation between returns and volume in financial markets, see the survey of 
(Karpoff, 1987). 

The correlation of market presence and volatility requires us to model and 
explain the empirically found seasonal volatility patterns with the help of funda-
mental information on the presence of the main markets around the world. We 
know the main market centers (e.g., New York, London, Tokyo), their time zones, 
and their usual business hours. When business hours of these market centers 
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overlap, market activity must be attributed to their cumulative presence; it is im-
possible to assign the market activity to only one financial center at these times. 
The typical opening and closing times of different markets can be determined from 
a high-frequency database (such as the O&A database), which also contains the 
originating locations of the quoted prices. 

In many of the approaches cited in the introduction, in particular in Baillie 
and Bollerslev (1990) where the seasonality of volatility is modeled by dummy 
variables, no further explanation of this seasonal pattern is given. We consider 
it advantageous to try to identify at every moment of the day which markets are 
responsible for the current volatility. 

6.2.2 Modeling the Volatility Patterns with an Alternative Time 
Scale and an Activity Variable 

Before relating the empirically observed volatility to the market presence, we 
introduce a model of the price process, which will be used for describing and 
analyzing the seasonal volatility patterns. A return process with strong intraday 
and intraweek volatility patterns may not be stationary. Our model for the seasonal 
volatility fluctuations introduces a new time scale such that the transformed data 
in this new time scale do not possess intraday seasonalities. 

The construction of this time scale utilizes two components: the directing pro-
cess, 6 (t), and a subordinated price process generated from the directing process. 
Let x(t) be the tick-by-tick financial time series that inherits intraday seasonal-
ities. The directing process, NO : R —> R, is a mapping from physical time 
to another predetermined time scale. Here, it is defined such that it contains the 
intraday seasonal variations.' 'OW, when used with the subordinated price gen-
erating process x(t) = x*[tg(t)], leads to the x* process, which has no intraday 
seasonalities. Although this is not the only possible model to treat the observed 
seasonality, other traditional deseasonalization techniques are not applicable as 
the volatility is seasonal, not the raw time series. 

In the literature, a variety of alternative time scales have been proposed, in 
different contexts. In the early 1960s, Allais (see, for instance, Allais, 1974) had 
proposed the concept of psychological time to formulate the quantity theory of 
money. Mandelbrot and Taylor (1967) suggested to cumulate the transaction vol-
ume to obtain a new time scale which they call the transaction clock. Clark (1973) 
suggested a similar approach. Stock (1988) studied the postwar U.S. GNP and 
interest rates and proposed a new time scale to model the conditional heteroskedas-
ticity exhibited by these time series. Here we propose to use a new time scale to 
account for the seasonality. 

I The t (t) process can assume different roles in different filtering environments. If, for instance, the 
interest is to simply filter out certain holiday effects from the data, then zp (t) can be defined accordingly. 
Under such a definition, the transformation will only eliminate the specified holiday effects from the 
underlying x (t) process. The /, type time transformations are not limited to seasonality filtering. They 
can also be used within other contexts such as the modeling of intrinsic time or transaction clock. 
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Because the 0-scale fully accounts for the seasonality of x, x* has no seasonal 
volatility patterns. The process x* may however have nonseasonal volatility pat-
terns; it may be conditionally heteroskedastic. No attempt is made in this chapter 
to determine its exact nature. The time scale 6(t) is a strictly monotonic function 
of physical time t. Any time interval from t1 to t2(> t1) corresponds to a 6-time 
interval of the positive size 62 — al. The new activity variable a is defined as the 
ratio of the interval sizes on the different scales, 

— Ui 
at,2 = 

12 — tl 
(6.1) 

This activity reflects the seasonal volatility patterns. Its relation to other "activ-
ity" variables such as market presence or transaction volume was mentioned in 
Section 6.2.1 and is discussed below.2

6.2.3 Market Activity and Scaling Law 

The volatility-based activity defined by Equation 6.1 can be computed with the 
empirical scaling law (see Chapter 5) for returns, which relates (for p = 1) 
(jAxI), the mean absolute returns over a time interval to the size of this inter-
val, At, 

E[Ir = c AtD (6.2) 

where E is the expectation operator, c is a constant depending of the specific 
time series. D is the drift exponent, which determines the scaling properties of 
the underlying process across different data frequencies. The drift exponent D 
is about 0.6 for major FX rates, whereas the pure Gaussian random walk model 
would imply D = 0.5. The scaling law expressed in Equation 6.2 holds for all 
time series studied and for a wide variety of time intervals ranging from 10 min to 
more than a year. 

The scaling law is applied to subsamples in a so-called intraweek analysis 
that allows us to study the daily seasonality (open periods of the main markets 
around the world) as well as the weekly seasonality (working days — weekend). 
Here, we choose a sampling granularity of At = 1 hr. The week is subdivided 
into 168 hr from Monday 0:00 — 1:00 to Sunday 23:00 - 24:00 (Greenwich Mean 
Time, GMT) with index i. Each observation of the analyzed variable is made in 
one of these hourly intervals and is assigned to the corresponding subsample with 
index i. The 168 subsamples together constitute the full 4-year sample. The sam-
ple pattern is independent of bank holidays and daylight saving time. A typical 
intraday and intraweek pattern across the 168 hr of a typical week is shown in 
Figure 6.1. 

2 In skipping Saturdays and Sundays, other researchers use an implicit activity model with zero 
activity on the weekends. 
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FIGURE 6.1 Histogram of the average hourly activity (as defined in Equation 6.4 for 
a statistical week (over 4 years) for the USD-DEM rate. 

The scaling law, Equation 6.2, is applied to the i  hourly subsample instead 
of the full sample and mathematically transformed to 

E[Irl  ) 111)Atgi = (6.3) 
c* ) 

From Chapter 5, we know that ri can strongly vary for the different hours of a 
week. The time interval At = 1 hr (for the hourly sampling) is nevertheless 
constant. Therefore, it is replaced by the interval Agi on the new time scale t . 
The size of Agi is no longer constant, but reflects the typical volatility of the ith 

hour. The constant c* is essentially the c of Equation 6.2, but can differ slightly 
as it is calibrated by a normalization condition presented later. 

The activity of the i th hourly subsample directly follows from Equation 6.1, 

(E[Irill)1/D
astat,i = , At = 1 hr (6.4) 

At c* 

This is the volatility-based activity definition used in the following analysis. The 
constant c* is calibrated to satisfy the following, straightforward normalization 
condition: 

1 , 168 

168 
astat,i = 1 

i=1 
(6.5) 

6.2.4 Geographical Components of Market Activity 

In Figure 6.1, the histogram of the average hourly activity defined by Equation 6.4 
is plotted for the USD-DEM rate. Although the activity definition is based only 
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on return statistics, the histogram exhibits clear structures where there is very low 
activity over the weekends and strongly oscillating activity patterns on normal 
business days. The most active period is the afternoon (GMT) when the European 
and American markets are open simultaneously. We have varied the At granularity 
of this analysis from 15 min to 4 hr and found no systematic deviations of the 
resulting activity patterns from the hourly ones. Furthermore, the activity patterns 
are remarkably stable for each of the 4 years of the total sample. The strong 
relation between return activity and market presence leads to the explanation of 
activity as the sum of geographical components. Although the FX market is 
worldwide, the actual transactions are executed and entered in the bookkeeping 
of particular market centers, the main ones being London, New York, and Tokyo. 
These centers contribute to the total activity of the market during different market 
hours that sometimes overlap. 

Goodhart and Figliuoli (1992) have explored the geographical nature of the FX 
market to look for what they call the island hypothesis. They studied the possibil-
ity that the price bounces back and forth from different centers when special news 
occurs before finally adjusting to it. Along the same idea, Engle et al. (1990), in a 
study with daily opening and closing USD-JPY prices in the New York and Tokyo 
markets and a market-specific GARCH model, investigate the interaction between 
markets. They use the terms heat wave hypothesis for a purely market-dependent 
interaction and meteor shower hypothesis for a market-independent autocorrela-
tion. They find empirical evidence in favor of the latter hypothesis. Both studies 
have not found peculiar behavior for different markets. This encourages us to 
model the activity with geographical components exhibiting similar behavior. 

The activity patterns shown in Figure 6.1 and the results reported in Chapter 5 
suggest that the worldwide market can be divided into three continental compo-
nents: East Asia, Europe, and America. The grouping of the countries appearing 
on the Reuters pages in our three components can be found in Table 6.1. This divi-
sion into three components is quite natural and some empirical evidence supporting 
it will be presented in Chapter 7. 

The model activity of a particular geographical component k is called ak(t); 
the sum of the three additive component activities is a(t): 

3 

a(t) = Eak(t)
k=1 

(6.6) 

This total activity should model the intraweekly pattern of the statistical activity 

astat,i as closely as possible. Unlike asw, which has relatively complex behavior 
(see Figure 6.1), the components ak(t) should have a simple form, in line with 
known opening and closing hours and activity peaks of the market centers. 

6.2.5 A Model of Intraweek Market Activity 

Each of the three markets has its activity function ak (t). For modeling this, we use 
quantitative information on market presence. A statistical analysis of the number 
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TABLE 6.1 Definition of the three generic markets. 

Grouping of the different countries appearing in the multicontributor pages or record from 
Reuters according to the three components of the worldwide market. 

Index k Component Countries 

1 East Asia Australia, Hong Kong, India, Indonesia, Japan, South Korea, 
Malaysia, New Zealand, Singapore 

2 Europe Austria, Bahrain, Belgium, Germany, Denmark, Finland, 
France, Great Britain, Greece, Ireland, Italy, Israel, Jordan, 
Kuwait, Luxembourg, Netherlands, Norway, Saudi Arabia, 
South Africa, Spain, Sweden, Switzerland, Turkey, United Arab 
Emirates 

3 America Argentina, Brazil, Canada, Mexico, United States 

of price quotes originating from each of the three markets defined by Table 6.1 

reveals two aspects on market presence: 

• A market has opening times that are longer than those of a particular 
submarket (e.g., an individual bank in one financial center such as Tokyo, 
Paris, or Chicago). The market opening time is the union of the opening 
times of all relevant institutions of the market. 

• Two markets (East Asia and Europe) have a local price quote frequency 
minimum in the middle of their working day, corresponding to a noon 
break. This local minimum is very pronounced in East Asia and moderate 
in Europe. In America, there is no minimum around noon. These differ-
ences reflect the well-known, different business habits concerning lunch 
breaks. 

Each of the three markets is modeled to have two basic states, either open or 
closed. The activity does not completely go to zero when the market is closed 
because it is defined in terms of returns. The activity during the closing hours is 
modeled to stay on a small constant base level ap,k. During the opening hours, a 
much stronger, varying, positive activity al,k adds to the base level, 

3 3 
a(t) ---- E[ao,k - F al,k(t)] r=- an +Eal,k(t) > 0 (6.7) 

k=1 k=1 

The joint base level ao is regarded as one model parameter. There is no need to 
analyze components ao,k. 

The activity during opening hours, a 1 ,k, is modeled with a polynomial with 
smooth transition to the constant behavior of the closing hours. This choice is 
mathematically convenient because such functions are easily differentiable and 
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analytically integrable. For parsimony, the number of parameters of this polyno-
mial is kept at a minimum to model the smooth transitions, the lunch break, and 
the skewness to account for the relative weights of morning and afternoon hours. 

In the subsequent analysis, the statistical week is considered from t = 0 on 
Monday 00:00 to t = 168 hr on Sunday 24:00 (GMT), as shown in Figure 6.1. 
In order to define the opening and closing conditions of the markets in a con-
venient form, an auxiliary time scale Tk is introduced. Essentially, it is GMT 
time; the following market-dependent transformations are only done for technical 
convenience: 

Tk [(t Atk) modulo (24 hr)] — Atk (6.8) 

where Atk has the value of 9 hr for East Asia, 0 for Europe, and —5 hr for America. 
(The result of the modulo operator is the left-hand side argument minus the nearest 
lower integer multiple of the right-hand side argument.) The weekend condition 
(WEC) also depends on the market:3

(t + Atk) modulo (168 hr) > 120 hr (6.9) 

Now the model for an individual market component can be formulated by 

0 if Tk < Ok or Tk > Ck or (WEC) 
ai,k(t) (6.10) 

ctopen,k(t) if ok < < Ck and not (WEC) 

where ok and ck are the parameters for the opening and closing hours, respectively. 
The polynomial function is 

\ 2 pr  
aopen,k(t) ok =  (Tk Ok) (Tk Ck)2 (Tk — Sk) [(Tk — mk)2 +"k] 

2 "k 
(6.11) 

where wk represents the scale factor of the Oh market, sk the skewness of the 
activity curve, mk fixes the place of the relative minimum around the noon break, 
and dk determines the depth of this minimum. The special form of the first factor 
is chosen to avoid too strong a dependence of the scale factor on sk.

In Figure 6.2, the panel on the left illustrates the shape of the geographical 
seasonality in the European market. The opening and closing times are where 
the activity level is zero. These parameters are illustrated with "o" and "c" signs. 
The seasonality has two peaks with the second peak higher than the former. The 
relative minimum between the two peaks is the lunch break effect. The location 
and depth of this relative minimum are controlled by the parameters "m" and "d" 
of the last term of Equation 6.11. The activity starts to peak with the opening 

3 The Japanese markets were open on some Saturday mornings according to certam rules in earlier 
years. These Saturdays, which are noticeable in Figure 6.1, are neglected here, but discussed in 
Section 6.3.2. 
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FIGURE 6.2 The geographical seasonality patterns. The panel on the left illustrates 
the shape of the geographical seasonality in the European market. The seasonality has two 
peaks with the second peak higher than the former. The relative minimum between the 
two peaks is the lunch break effect. In the right panel, the North American geographical 
seasonality is plotted. It has no lunch break effect. 

of the market in the morning, slows down during the lunch break and it peaks in 
the afternoon again. As the market closing time approaches, the level of activity 
gradually goes down and reaches zero. In the right panel of Figure 6.2, the North 
American geographical seasonality is plotted, which has no lunch break effect. 
The parameter s controls the asymmetry of the peaks for the European market, 
whereas in the case of the North American market, it controls the skewness of the 
overall pattern. 

This polynomial model applies to all markets. The European and Asian mar-
kets (k = 1, 2) have finite dk values in the fitting process, but for the American one, 
the parameter d3 always diverges to very high values. This reflects the missing 
noon break in this market, which has already been found in the tick frequency 
statistics. 

The Equation 6.11 for America thus degenerates to a simpler form with no 
local activity minimum 

aopen,3(t) = 03 +C3 sw3 ( ,_7'3 — 03)2 (T3 — 03)2 (T3 — S3) 

2 3 
(6.12) 

Some of the model parameters, the opening and closing times, are already known 
from the quote frequency statistics. For the other parameters, there are constraints. 
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To ensure positive activities, ao and wk must be positive and sk outside the opening 
hours, 

ao > 0 , wk > 0 , Sk < Ok or sk > Ck (6.13) 

The parameter mk in Equation 6.11 should be within the opening hours as it 
models the noon break: 

Ok < mk < ck (6.14) 

The functions ai 1(0 must be fitted to the results of the statistics, astat (t), by 
minimizing the integral of the weighted square deviation of a(t) from astat(t). A 
continuous function astat(t) is not available but rather the hourly series astat,i from 
Equation 6.4. Therefore, the sum over the intraweekly sample is used instead of 
the integral: 

168 [astat,i ao Lk=1ai,k(ti)] 2

0.2 
i=1 error,i 

= min, ti = (i — 1 —) hr (6.15) 

The hourly intervals are represented by their middle points in this approximation. 
The least square model has 11 parameters, three 0.4's, three sk's, two mk 's, two dk 's, 
and the base activity ao. The values of opening, ok, and closing, ck, are subject to 
random measurement error originating from the price quote frequency statistics. 
Therefore, these values are allowed to vary slightly for adjusting the fit. The 
minimization problem of Equation 6.15 is nonlinear in some of the parameters. 
It can be solved by the Levenberg-Marquardt method (see Press et al., 1986, 
Section 14.4), but in complex cases a simple genetic search algorithm provides the 
optimum parameters much more efficiently. 

The main American and European markets observe daylight saving time dur-
ing summer, whereas the main East Asian markets do not. This fact is ignored 
for the fitting. Only the GMT scale is used. A posterior daylight saving time 
correction is proposed in Section 6.3.2. 

The resulting parameter estimates for four major FX rates and gold (XAU-
USD) are presented in Table 6.2 together with the relative weights of the different 
markets (to be defined in Section 6.3.1). In the top panel of Figure 6.3, the result-
ing activity model together with the statistical activity for the USD-JPY is shown, 
and the bottom panel of Figure 6.3 shows the same quantity for the USD-CHF. 
Figure 6.4 displays the activity model over 48 hr (outside the weekend) with its 
different components for the same rates. 

6.2.6 Interpretation of the Activity Modeling Results 

The resulting parameters of the activity model and Figures 6.3 and 6.4 confirm the 
close relation between market presence and intraweekly volatility patterns. The 
market-specific tick frequency analysis and the activity fitting results compare fa-
vorably taking into account the Reuters coverage and the limitations of our model. 
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TABLE 6.2 The parameter estimates for the three generic markets. 

The parameter estimates for the major FX rates and gold (XAU-USD) with the corre-

sponding market weights. The sum of the market weights is less than 100 percent. The 

rest is accounted for by the basic activity ao. The residual activity ao, the scale factor 

w, and the parameter d, which determines the depth of the minimum at lunch time, are 

dimensionless numbers. The w values are a factor of 10-4. 

Rate ao k Market Weight w 

USD-DEM 0.03 1 East Asian 24.1% 1.69 -3:32 8:24 3:33 0.97 -3:33 
2 European 38.5% 1.07 5:54 1839 11:07 2.06 20:21 
3 American 34.1% 12.46 11:24 23:25 40:44 

USD-JPY 0.03 1 East Asian 35.4% 1.40 -4:14 8:43 3:35 1.01 -4.17 
2 European 27 6% 5.37 6:55 16:40 11:02 1.51 17:23 
3 American 33.4% 18.73 11:48 22:50 34:55 

GBP-USD 0.02 1 East Asian 24.3% 1.05 -3:48 8:59 3:40 1.08 -4:02 
2 European 39.1% 0.98 6:00 18:19 11:13 2.85 20:05 
3 Amencan 34.0% 13.88 11:24 23:11 31:43 

USD-CHF 0.01 1 East Asian 22.0% 1.12 -4:00 9:00 3:40 1.06 -4:00 
2 European 45.1% 1.04 5:00 18:00 11:23 2.45 -4:45 
3 American 31.6% 13.71 12:00 24:00 24:00 

XAU-USD 0.02 1 East Asian 9.7% 0.14 -3:43 9:36 4:05 3 17 -4:15 
2 European 54.8% 298 5:36 17:19 11:10 1.54 2:42 
3 American 33.8% 354.9 15:21 21:30 21:32 

In both cases and for all FX rates, the local minima around noon have the following 
properties: they are pronounced in East Asia, moderate in Europe, and do not exist 
in America. 

The USD-DEM and the USD-CHF have close parameter values as would be 
expected with a larger weight for Europe in the case of the USD-CHF, whereas the 
USD-DEM shows a higher weight for the American market. Gold (XAU-USD) 
has a very small East Asian market, which extends late because it is mainly traded 
with Europe. In general, its active trading periods in the individual markets seem 
to be less extended than for the FX rates. A similar effect is detected with silver. 
The USD-JPY has a strong East Asian component with a strong overlap with the 
American market. It is for this rate that the earliest opening of the East Asian 
market is found. The first example in Figure 6.4 (USD-JPY) has its main market 
in East Asia. The second example in Figure 6.4 (USD-CHF) has it in Europe, in 
line with the common sense expectation. 

An alternative measure of market activity could also be based on the frequency 
of price quotes. According to the study in Chapter 5 (Table 5.13), this variable 
is highly correlated to the volatility. Yet we do not recommend it as an activity 
measure for two reasons. 

1. This number depends on the coverage of the FX market by Reuters and its 
policy to publish prices on its FXFX page. For instance, a new price was 
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FIGURE 6.3 The histograms of the average hourly activity for a statistical week (over 
4 years) for the USD-JPY (above) and USD-CHF (below) rates and the modeled activity. 

shown for a particular rate on this page at maximum one price every 6 sec. 
Some relevant price revisions were therefore lost because of limitations 
of the data supplier. Whereas the price revisions depend directly on the 
data supplier's coverage or policy, the prices are issued by market makers 
who closely follow the real market value and have many data sources avail-
able. Thus published prices are conditioned more by other simultaneously 
available prices, which do not necessarily appear on this data source. 

In order to provide some empirical evidence of this dependence, we com-
pare the hourly shares of the weekly number of price revisions in the 168 
hr of the statistical week (see Section 6.2.1) of two different data suppli-
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FIGURE 6.4 The model activity decomposed into the three different continental mar-
kets over a period of 48 hr during normal business days for the same rates as in Figure 6.3. 
The top curve is the sum of 00 and the three market activities. 

ers, Reuters and Knight Ridder,4 for the same period. The two resulting 
statistical functions differ substantially. Knight Ridder data are about half 
as frequent as Reuters data and cover the East Asian markets quite poorly. 
We measure the difference of the two curves in terms of the root mean 
squared error (RMSE) of all hourly differences. 

We then apply the same approach for a comparison of absolute returns be-
tween the two suppliers. We analogously measure the difference between 
the two resulting curves in terms of the RMSE of the hourly differences. 

4 Since this study was done, Knight Ridder has been integrated with Telerate to Bridge. 
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The RMSE ratio RRMSE is defined as follows: 

RRMSE 

24 re Droyiel2 

41 
(fire f ikry fief 

187 

(6.16) 

where fi are the mean hourly number of ticks and 1)1 are the mean hourly 
absolute returns. The RMSE value here is consistently lower than that for 
the tick frequency; the ratio is 0.32 for DEM-USD, 0.17 for JPY-USD, 0.20 
for USD-GBP, 0.42 for CHF-USD, and 0.52 for XAU-USD. This shows 
that the volatility is less dependent than the number of price revisions on 
the data supplier. 

Another illustration of this is given in Figure 6.5. We show in these graphs 
the result of an intraday study of both the tick frequency and the average 
hourly returns for USD-JPY computed during the same time period on a 
sample coming from the traditional FXFX page of Reuters (left graphs) 
and another sample coming from the new method Reuters chose to publish 
its data, the Reuters Instrument Codes (RICs). This new method, being 
much more suited for computer manipulations, allows the data vendor to 
transmit much more information and this is very apparent when examining 
the two upper graphs on the hourly number of ticks. On the other hand, 
the two lower graphs show little differences because they are computed 
directly from the prices, which are not governed by the data vendor policy 
but rather by the market. We use a similar RMSE ratio as in Equation 6.16 
and find values around 0.12. This example indicates clearly the problem 
one is faced with the activity definition. During the same period and for 
the same market, the activity should be independent of the data source. 
This is only the case for the hourly absolute returns. 

2. Returns are less sensitive than the tick frequency to data holes. The fre-
quency goes to zero if the communication line is broken (there is no good 
interpolation method for this variable) whereas, with the proper price in-
terpolation, only the variation around the interpolated line for the returns 
is lost. 

The transaction volume, a potential candidate to describe market activity, 
is not available in hourly frequency. Transaction volume data are available for 
particular dates through two surveys published by the Federal Reserve Bank of 
New York (1986 and 1989). Although these surveys are useful to quantify the 
amount of capital involved, they do not give any indication about intradaily, daily, 
and weekly changes. We do not propose our activity model as a direct model for 
the seasonal patterns of transaction volume, but suggest its usefulness in future 
research. 
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FIGURE 6.5 The comparison of the tick activity (upper graphs) and the hourly absolute 
return (lower graphs) for two data sources. The old Reuters FXFX page and the new 
Reuters Instrument Code (RIC) data. The comparison is conducted for the USD-JPY 
from October 25, 1993 to March 18, 1995. 

6.3 A NEW BUSINESS TIME SCALE (#-SCALE) 

6.3.1 Definition of the #-Scale 

In Section 6.2.2, the time scale 0 was introduced to model the seasonal, intradaily 
and intraweekly aspect of heteroskedasticity. In Equation 6.1, the activity variable 
has been defined as the "speed" of 0 against the physical time t. The continuous 
activity function a(t) of Equation 6.7, developed in the previous sections, allows 
us to define 0 as its time integral, 
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3 

0-0)  a(t) dt' ao (t — to) + Ea-kw (6.17) f
o k=1 

The starting date to chosen for the 0-scale is arbitrary. The activity is always posi-
tive, so its integral U (t) is a monotonically increasing function. The Ok represents 
in fact the business time scale of the e l market and is defined as 

19.1((t) 
fro

This quantity is informative in itself and can be used to model intramarket be-
havior. Because of the regular weekly pattern of a, 6 is predictable according to 
Equation 6.17; it may be computed also for the future. Due to normalization (see 
Equation 6.5), 6-time can be measured in the same units as physical time (e.g., 
hours, days, weeks); one full week in 6-time corresponds to one week in physical 
time. 

The relative weight, Wk, of each market component can be defined with the 
help of the integral 79-k over a full week: 

, k (t + 1 week) — 6k (t) 6k (t + 1 week) — 6k (t) 
Wk = (6.19) 

(t + 1 week) — (t) 1 week 

This is the share of the kth market in the U interval of one week. In Table 6.2, 
the relative weights of each component, as given by Equation 6.19, are presented 
together with the fitted parameters. These weights are in fact interesting pieces of 
information about the market shares of the components defined in Section 6.2.4 
and Table 6.1. They are in line with the results of the market surveys regularly 
made by the (Bank for International Settlements, 1990, 1993, 1995). 

The 6-scale contracts periods of low activity and expands period of high 
activity. This is clearly seen on Figure 6.6 where the mapping function between 
0-time and physical time is shown for USD-DEM over a week. Because the 0-
time is normalized to physical time over 4 years (see the next section), the two 
scales almost coincide after a week but not exactly (0-scale is slightly above 168 
hr), because we have chosen the week of September 9 to October 1, 1995, where 
there was no market holiday. This figure shows that during the weekend, 6-time 
flows very slowly, compensating for the low activity during this period in physical 
time. 

ai,k(t') dt' (6.18) 

6.3.2 Adjustments of the U-Scale Definition 

The 0-scale defined in Section 6.3.1 reflects a rigid intraweekly pattern of expected 
market activity. However, there is more relevant information about the activity due 
to information on business holidays, daylight saving times, and scheduled events 
in general. In practice, for volatility forecasts, it is desirable to account for this 
information in the construction of the 6-scale. Such adjustments are carried out 
in Equation 6.17 by recalibrating the factor c* over the whole sample. 
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FIGURE 6.6 The time mapping function between physical time and s time. The week 
chosen to draw this mapping function is a week with no market holidays (September 25 
to October 1, 1995). The thin line represents the flow of physical time. 

It is difficult to take into account the different holidays of each market ac-
curately.5 In the framework of the three markets of Table 6.1, our approach is an 
approximate solution. A holiday is considered if it is common to a large part of 
one of the three markets of the model. On such holidays, the activity ai,k is set to 
zero for this market. The holiday is treated like a weekend day in Equation 6.10. 

In some countries, there are half-day holidays . Their treatment would require 
the splitting of the daily activity functions into morning and afternoon parts. This 
splitting could also be used to model the few Saturday mornings in Japan (until 
1989) when the banks were open. These modifications have not been made as they 
are beyond our objective of modeling the main features of the FX activity patterns. 

The daylight saving time observed in two of the markets, Europe and America, 
has an influence on the activity pattern and thus on i,. The presence of local markets 
depends on local time rather than on GMT. One way to deal with this is to convert 
the time constants of Table 6.2 from GMT to a typical local time scale of the 

5 Future holidays are not always known in advance as, for instance, the Islamic holidays. Thus, 0 
might no longer be predictable in those special cases. 
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FIGURE 6.7 The hourly returns for USD-DEM from June 3, 1996, 00:00:00 to Septem-
ber 11, 1996, 00:00:00 are plotted using the physical time scale and the .0-time scale. Note 
also the extreme events that are clearly visible on both graphs. 

market. This conversion yields different results for the local times in summer and 
in winter. The time constants are fixed to the mean of the summer and winter 
conversion results, reflecting the fact that the sample used in the activity fitting 
is composed of approximately half summer and half winter. The computation of 
the activity and .6 is then based on Equation 6.10 with these local time constants. 
A better algorithm, which takes into account the difference between summer and 
winter local market time and which allows a dynamic adaptation to changes in the 
activity pattern indicates substantial improvement (Breymann, 2000). 

So far, volatility patterns with periods of more than one week have been 
neglected. Yet there may be patterns with longer periods caused by month-end 
effects, by the monthly or quarterly releases of certain important figures such as 
the American trade or unemployment figures, and by yearly effects. Moreover, 
there are long-term changes such as the overall volatility increase over the past 15 
years as shown in Chapter 5. None of these effects has been found to be significant 
in a 4-year sample we studied. 

Figure 6.7 illustrates the effect of the time transformation with the hourly 
returns of USD-DEM over 3 months both in physical and in 6-time. It is easy to 

0211



192 CHAPTER 6 MODELING SEASONAL VOLATILITY 

TABLE 6.3 Quality test of the a-scale. 

Test for the quality of the a-scale as calculated in Equation 6.21. This ratio illustrates the 
reduction of intraweekly volatility fluctuations when using the a-scale. 

USD-DEM USD-JPY GBP-USD USD-CHF XAU-USD 

Volatility ratio 0.28 0.29 0.25 0.29 0.25 

see that the quiet periods during the weekends are in the upper graph in physical 
time. They give the sense of periodicity. In the lower graph, where hourly returns 
are computed in z9-hours, the seasonality is removed and the picture resembles 
much more those made with weekly or daily data (omitting weekends). Another 
remarkable feature of these graphs is the number of large movements. During this 
period, the USD-DEM experienced price changes as high as 1.5% in an hour. 

6.3.3 A Ratio Test for the #-Scale Quality 

There are various ways to measure the quality of a a-time scale. Because the 
goal of such a scale is to remove the daily and weekly seasonality of volatility, 
it is natural to test the extent to which this has been achieved. Here we define a 
quantitative test that allows discrimination between various possible business time 
scales. 

The absolute returns on an intraweekly sample as described in Section 6.2.3 
are first computed on the physical time scale. We define the size of the weekly 
fluctuations of mean volatility: 

1/2 
1 Ar (E n1=1 irj(ti)I 1 • \1—. E=1  Iri(ti)l )

Fv(t) E  
N 

(6.20) 
i=i i=i 

where i is the index of the hourly interval in the statistical week and N = 168 
the total number of these intervals. Absolute returns are observed and averaged 
over m weeks with index j, for each hour of the statistical week. The fluctuations, 
which are large when analyzed in physical time t, should be strongly reduced when 
analyzed in a-time. For analyzing the fluctuations in a-time, the sampling over 
one full week is again divided into 168 intervals. Instead of being equally spaced 
in physical time, they are now equally spaced in z9-time. This condition can be 
formally written as a (ti÷i) — (4) = 1 hr, where the hour is now measured on 
the a-scale. The sequence ti that fulfills this condition is computed by numerical 
inversion of the a (t) function on one week. The volatiliy ratio is defined by 

Fv(e) / F v(t) (6.21) 

where F.„(, ) and Fv(t) measure the deseasonalized and raw volatility fluctuations. 
This ratio measures the quality of the extent to which the a scale successfully 
eliminates the seasonal fluctuations of the volatility. 

In Table 6.3, the resulting ratio is between 0.25 and 0.29 for all rates indicating 
the quality of the a-scale. For a perfect z9-scale, the measure tends to zero, and 
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for physical time, the measure is one. Any other 0--scale derivation can also be 
measured the same way, the one with the lowest ratio being the best intraday 
deseasonalization method. In the next chapter, we will utilize the 0-scale in 
analyzing the autocorrelation function of absolute returns. 

6.4 FILTERING INTRADAY SEASONALITIES WITH WAVELETS 

The previous sections show that the practical estimation and extraction of the in-
traday periodic component of the return volatility is feasible. The literature also 
demonstrated that such extraction of the seasonal volatility component is indis-
pensable for meaningful intraday studies. Earlier studies have shown that strong 
intraday seasonalities may induce distortions in the estimation of volatility models 
and are also the dominant source for the underlying misspecifications as studied 
in (Guillaume et al., 1994; Andersen and Bollerslev, 1997b). Besides, Section 7.3 
reveals how such a periodic component pulls the calculated autocorrelations down, 
giving the impression that there is no persistence other than particular periodicities. 

To illustrate the impact of seasonalities, Gengay et al. (2001a) consider the 
following AR(1) process with a periodic component: 

4 

Yt = fiYt-1 E 3.0Sit Et t = 1 . . .T (6.22) 
i=i 

where Sit = sin(2 t) ?pit, a = 0.0, yo = 1.0, 13 = 0.99, and T =- 1000. 
Periodic components are P1 = 3, P2 = 4, P3 = 5, and P4 = 6 so that the process 
has 3, 4, 5, and 6 period stochastic seasonality. The random variables Et and vit 
are identically and independently distributed disturbance terms with zero mean. 
The signal-to-noise ratio, 71, in each seasonal component is set to 0.30. 

Figure 6.8 presents the autocorrelation of the simulated AR(1) process with 
and without the periodic components. The autocorrelation of the AR(1) pro-
cess without seasonality (excluding E3.0Sit from the simulated process) starts 
from a value of 0.95 and decays hyperbolically as expected. However, the auto-
correlation of the AR(1) process with the seasonality indicates the existence of 
a periodic component. The underlying persistence of the AR(1) process in the 
absence of the seasonality component is entirely obscured by these periodic com-
ponents. An obvious route is to filter out the underlying seasonalities from the 
data. A simple method for extracting intraday seasonality that is free of model 
selection parameters is proposed by Gengay et al. (2001a). The proposed method 
is based on a wavelet6 multiscaling approach which decomposes the data into its 
low and high-frequency components through the application of a nondecimated 
discrete wavelet transform. In Figure 6.8, the solid line is the autocorrelation of 
the nonseasonal AR(1) dynamics and the dotted line is the autocorrelation of the 
deseasonalized series with the method proposed in Gengay et al. (2001a). As 

6 An introduction to wavelets can be found in a book by Gencay et al. (2001 b). 
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FIGURE 6.8 Sample autocorrelations for the simulated AR(1) process (straight line), 
AR(1) plus seasonality process (dot-dashed line), and wavelet transformation of the AR(1) 
plus seasonality process (dotted straight line). 

Figure 6.8 demonstrates, wavelet methodology successfully uncovers the nonsea-
sonal dynamics without imposing any spurious persistence into the filtered series. 

With this method, Gengay et al. (2001a) study two currencies, namely the 
5-min Deutschemark— U.S. Dollar (USD-DEM) and Japanese Yen — U.S. Dollar 
(USD-JPY) price series for the period from October 1, 1992, to September 29, 
1993. This data set is also known as the HFDF-I data set. Figure 6.9 presents 
autocorrelations of the 5-min absolute return series. This shows that the intradaily 
absolute returns exhibit strong intraday seasonalities. This phenomenon is well-
known and reported extensively in the literature; (see for example, Dacorogna 
et al., 1993; Andersen and Bollerslev, 1997a). 

For a long memory process (see Hosking, 1996), the autocovariance function 
at lag k satisfies y (k) 2,k' where X is the scaling parameter and a E [0, 1]. A 
leading example is the fractionally integrated process for which a = 1— 2d and 
d is the order of fractional integration. In Andersen and Bollerslev (1997a), the 
fractional order of integration is estimated as d = 0.36 for the same USD-DEM 
series utilized in this example. Andersen et al. (2001) calculate six d estimates 
from various volatility measures for the USD-DEM and USD-JPY series. These 
six d estimates vary from 0.346 to 0.448. In this example, the fractional integration 
parameter is set d = 0.4 to represent the average of these six estimates. Figure 6.10 
presents the autocorrelograms of the filtered 5-min absolute returns along with 
the estimated autocorrelogram of a long memory process with d = 0.4. These 
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findings indicate that the wavelet method is more successful in filtering out intraday 
seasonalities relative to the method presented in Andersen and Bollerslev (1997a). 
The persistence of volatility in further lags is also much smaller in Gengay et al. 
(2001a) relative to the Andersen and Bollerslev (1997a). However, the seasonality 
filters of both Gengay et al. (2001a) and Andersen and Bollerslev (1997a) suffer 
from the fact that the decay of the volatility persistence is slow in the immediate 
lags relative to the method of Dacorogna et al. (1993). 
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7 
REALIZED VOLATILITY DYNAMICS 

7.1 INTRODUCTION 

High-frequency returns no longer exhibit the seasonal behavior of volatility when 
investigated in deseasonalized form. Therefore, well-known stylized facts start to 
be visible in the deseasonalized returns and the corresponding absolute returns. 
Deseasonalization can be achieved by taking returns regularly spaced in J-time. 
Absolute returns are just one form of realized volatility whose general definition 
is given by Equation 3.8. 

Realized volatility has a considerable statistical error, which can be reduced 
by taking returns over short time intervals. This leads to a high number of observa-
tions within a given sample.' Unfortunately, the choice of a small return interval 
also leads to a bias caused by microstructure effects. This bias is explained in 
Section 5.5.3 as a consequence of biased quoting, which leads to a bouncing effect 
of quotes within a range related to the bid-ask spread. In Section 5.5.3, the bias is 
treated as a component of the measurement error. In Section 7.2, we study the bias 
empirically and propose a simple bias correction method that applies to the bias 
caused by any microstructural effect, not only bid-ask bouncing. Bias-corrected 
realized volatility has a smaller error than the error attainable without correction. 

1 Using overlapping returns is also helpful, as explained in Section 3.2.8. 
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After appropriately defining realized volatility, we can analyze its dynamical 
behavior through different statistical methods. The fundamental properties of the 
volatility dynamics are the conditional heteroskedasticity (also called the volatil-
ity clustering) and the long memory of the autocorrelation of volatility.2 In this 
chapter, we also examine the asymmetry of information flow between volatilities 
computed from returns measured at different frequencies which is a typical prop-
erty to study with high-frequency data. Financial markets are made of traders with 
different trading horizons. In the heart of the trading mechanisms are the market 
makers. At the next level up are the intraday traders who carry out trades only 
within a given trading day but do not carry overnight positions. Then there are 
day traders who may carry positions overnight, short-term traders and long-term 
traders. Each of these classes of traders may have their own trading tool sets 
consistent with their trading horizon and may possess a homogeneous appearance 
within their own classes. Overall, it is the sum of the activities of all traders for 
all horizons that generates the market prices. Therefore, market activity would 
not exhibit homogeneous behavior, but the underlying dynamics would be hetero-
geneous with each trading horizon (trader class) dynamically providing feedback 
across all trader classes. Figure 7.1 illustrates such a heterogeneous market where 
a low-frequency shock to the system penetrates through all layers reaching the mar-
ket maker in the middle. The impact of these low-frequency shocks penetrates the 
entire market. The high-frequency shocks, however, would be short lived and may 
have no impact outside their boundaries. We will study this heterogeneity-driven 
asymmetry in this chapter. 

This book utilizes the deseasonalization method explained in Chapter 6, and 
Dacorogna et al. (1993), but a flurry of alternative ways of treating the seasonality 
have also been proposed: the time-of-day dummy variables, Baillie and Bollerslev 
(1990); a renormalization of the returns by the seasonal volatility, Taylor and Xu 
(1997); the flexible Fourier framework to model the seasonal pattern, Andersen 
and Bollerslev (1997b); time deformation with tick frequency, Pecen et al. (1995); 
Baestaens and Van den Bergh (1995); the use of cubic splines, Engle and Russell 
(1997); models that include both systematic components and stochastic seasonal 
components, Beltratti and Morana (1998); and the wavelet multiresolution method 
of Gencay et al. (2001a) in Section 6.4. 

7.2 THE BIAS OF REALIZED VOLATILITY AND ITS 
CORRECTION 

Realized volatility plays a key role both for the exploration of stylized facts and 
for practical applications such as market risk assessment. When computing it, 

2 This clustering property was first noted in Mandelbrot (1963) in his study of cotton prices and 
the long memory in Mandelbrot (1971), These findings remained dormant until the early 1980s for 
the volatility clustering until Engle (1982) and Bollerslev (1986) proposed the ARCH and LARCH 
processes. In the early 1990s, a comprehensive study of the long memory properties of the financial 
markets had started. 
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Long-Term Traders 

Market Mak.

Medium -T- Traders 

Time Horizons 
(price changes) 

FIGURE 7.1 Financial markets are made of traders with different trading horizons. 
In the heart of the trading mechanisms are the market makers. A next level up are the 
intraday traders who carry out trades only within a given trading day. Then there are 
day traders who may carry positions overnight, short-term traders and long-term traders. 
Each of these classes of traders may have their own trading tool sets and may possess a 
homogeneous appearance within their own classes. Overall, it is the sum of the activities 
of all traders for all horizons that generates the market prices. Therefore, market activity 
is heterogeneous with each trading horizon dynamically providing feedback across the 
distributions of trading classes. 

using Equation 3.8, we can take advantage of high-frequency data by choosing a 
short time interval At of the analyzed returns. This leads to a large number of 
observations within a given sample and thus a low stochastic error. At the same 
time, it leads to a considerable bias in most cases. 

In the following bias study, Equation 3.8 is considered in the following form: 

1/2 

v(ti) = v(At, n, 2; ti) .=-- —n D r (At; ti—n+j)]
2 1 n 

1 

I 

j=1 

(7.1) 

The choice of the exponent p = 2 has some advantages here. In Section 5.5, we 
found that the empirical drift exponent of v is close to the Gaussian value 0.5 if v 
is defined with an exponent p = 2. Assuming such a scaling behavior and a fixed 
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sample of size T = n A t, v2 has an expectation independent of At: 

E[v2(nAt, 1, 2; ti)] = n E[v2 (At, n, 2; 0] E[r(At; ti_n+ j)]2 (7.2) 
j=i 

Thus v2 can be empirically estimated as the sum of all squared returns within T, 
irrespective of the size of At. Moreover, the time scale can be changed, such as 
from 0-time to physical time, and the return intervals can be of irregular size. This 
implies that the estimator is also immune to data gaps within the full sample. If 
prices are interpolated, previous-tick interpolation (see Equation 3.1) should be 
used here, because linear interpolation leads to an underestimation of volatility. 
With all the mentioned modifications, the sum of squared returns remains an es-
timator for v2, as long as all the return intervals exactly cover the full sample T. 
These nice properties may have led Andersen et al. (2000) to choose the name 
"realized volatility" for the sum of squared returns, as on the right-hand side of 
Equation 7.2. 

The empirically found bias violates Equation 7.2, especially if At is very 
small. The deviation of the empirical behavior from Equation 7.2 provides a 
measure of the bias. We choose a large enough time interval Atref = q At as the 
bias-free reference case to judge the bias of smaller intervals At. In practice, a 
good choice of Atref is between few hours and 1 working day. We define the bias 
factor B(ti): 

B (ti) = 
v(At, m q, 2; ti) 

U(Atref, m, 2; ti) 

E7 1[r(At; ti —mg- j)]2

7 E =1[1^ (Atref; ti—mq+jq)]2 
(7.3) 

where m is the number of analyzed reference intervals of size Atref, and q 
Atref /At is an integer number. If the scaling assumption of Equation 7.2 is true, 
B(ti) converges to 1 for large samples (i.e., large m and q). The bias can be 
measured in terms of the deviation of B(ti) from 1. 

In Figure 7.2, the bias factor B(ti) is plotted versus time, for two different 
markets: the FX rate USD-CHF and the equity index Nikkei-225. The time scale 
in both cases is a business time: the 49 weekend hr from Friday 8 p.m. GMT 
to Sunday 9 p.m. GMT are compressed to the equivalent of only 1 hr outside the 
weekend. The results do not strongly depend on this choice. Similar bias behaviors 
are obtained when the analysis is done in 0-time or physical time. The reference 
time interval is Atref = 1 working day. The investigated return intervals At are 
much shorter and vary between 2 min (q = 720) and 1 hr (q = 24). The number 
m = 260 of reference intervals is chosen high enough to limit the stochastic error 
of v (Atref, m, 2; ti). This means a bias measurement on a moving sample of about 
1 year 260 working days. 

The bias factor distinctly deviates from 1 in Figure 7.2, especially for small 
values of At such as 2 min and 5 min. For At = 1 hr, the bias is still visible but 
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FIGURE 7.2 Bias factors plotted versus time, for the FX rate USD-1PY (upper panel) 
and the Japanese equity index Nikkei-225 (lower panel). Deviations from 1 indicate a bias 
in realized volatility. The bias factor is the ratio of two mean realized volatilities over the 
same sample (see Equation 7.3). The investigated return measurement intervals At are as 
follows. Bold curves: At = 1 hr; middle curves: At = 5 min; thin curves: At = 2 min. 

can be neglected more easily. Surprisingly, the biases have different signs. The 
bias of the foreign exchange (FX) rate is positive, whereas that of the equity index 
is negative (B(19) < 1). The bias can be explained by microstructure effects, but 
these are obviously different for different markets. The microstructure effects of 
FX rates were discussed in Chapter 5, in particular the negative autocorrelation 
due to a bouncing effect within the bid-ask spread (Section 5.2.1). The bias due 
to this effect can be modeled as in Section 5.5.3 and in Corsi et al. (2001), where 
the influence of data gaps on the bias is also analyzed. There is ongoing research 
aiming at refined versions of this bias model. The negative bias of the equity 
index has to be explained differently. An equity index is a weighted average 
of some equity prices. Some of the individual equities play a leading role in 
price adjustments and establish small trends that the other equities follow. This 
mechanism causes a short-term (few minutes) positive autocorrelation of the index 
returns and eventually a negative bias of realized volatility when a very short 
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interval At is chosen. The bias factors moderately fluctuate over time, but there 
are no dramatic shifts. The overall levels are maintained even over the 10-year 
sample of Figure 7.2 (upper panel). 

The bias can be avoided either by taking large return intervals At (with the 
disadvantage of large stochastic errors) or by introducing a bias correction for 
small intervals At. Eliminating the bias seems to be a demanding task requiring a 
model of the microstructure effects. Section 5.5.3 has such a model for FX rates, 
but other markets such as equity indices need other models. 

Instead of developing bias models for each market, we suggest a simple bias 
correction method that needs no explicit model and only relies on the assump-
tion that the bias-generating mechanism is much more stable over time than the 
volatility itself. The limited size of bias fluctuations in Figure 7.2 justifies this 
assumption. The bias correction is simple. Each realized volatility observation is 
divided by the bias factor as measured in the past: 

v(At , n, 2; ti) 
vcorr (At, n, 2; ti) =  

B(ti) 
(7.4) 

where B(ti) is defined by Equation 7.3. This bias correction can be computed 
in real time, because it is based on information fully available at time ti. Some 
variations of Equation 7.4 are possible, as suggested by Corsi et al. (2001). The 
bias correction factor can be computed by moving average operators as explained 
in Section 3.3 instead of the sums of Equation 7.3. 

Figure 7.3 probes the success of the simple bias correction. The bias factor 
&on- of the already bias-corrected realized volatility can be measured in the same 
way as the bias of the uncorrected volatility (Equation 7.3): 

Bcorr(ti) = v(Atref, m, 2; ti) 

,17q vcon(At , m q, 2; ti) 
(7.5) 

A perfect bias correction implies Bwri-(ti) = 1. However, the bias correction is 
not perfect. Both the bias correction and its measurement in Equation 7.5 rely 
on a quantity v (Atref, m, 2; ti), which has a stochastic error. These imperfections 
are visible in the form of fluctuations of Bcon- about 1 in Figure 7.3. Figure 7.2 
and Figure 7.3 are based on the same samples and parameters and can directly be 
compared. Bcor, in Figure 7.3 is much closer to 1 than B in Figure 7.2, in all cases. 
This fact demonstrates a successful bias correction for both markets, FX and the 
equity index. 

In spite of the success of Equation 7.4 as shown in Figure 7.3, the simple bias 
correction has some shortcomings, one of them being the multiplicative nature of 
the formula. Realized volatility values are corrected by a slowly varying correction 
factor, irrespective of the current volatility level. One can argue that an additive 
or nonlinear correction of realized volatility would reflect reality better than the 
multiplicative correction. (An additive correction may lead to impossible negative 
volatility values, though.) A fair judgment may be as follows. Equation 7.4 
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FIGURE 7.3 Bias factors plotted versus time, for the FX rate USD-JPY (upper panel) 
and the Japanese equity index Nikkei-225 (lower panel), computed by Equation 7.5. The 
investigated realized volatility values have already been bias-corrected by Equation 7.4, so 
the small deviations from 1 indicate imperfections of the bias correction. The investigated 
return measurement intervals At are as follows. Bold curves: At = 1 hr; middle curves: 
At = 5 min; thin curves: At = 2 min. The same scaling as in Figure 7.2 is used. 

succeeds in largely reducing the bias and is thus better than no bias correction. 
As soon as an appropriate model of the bias-generating process for a particular 
market exists, the corresponding bias-correction method will be clearly superior 
to Equation 7.4. 

Bias correction is a means to compute realized volatility with smaller intervals 
At and, for a given sample of size T = nat, a smaller stochastic error. Unfortu-
nately, the bias correction introduces an additional stochastic error due to the factor 
v (Atref, in, 2; ti ) in Equation 7.3. Corsi et al. (2001) show that a bias-corrected 
volatility with reasonable parameters has a total error that is still distinctly smaller 
than the error of uncorrected volatility. The following rough calculation also shows 
this. Uncorrected volatility requires a rather large Est of about 1 hr (with q = 24) 
to keep the bias at bay. The stochastic error is proportional to 1-T4, and a bias 
of roughly of the same size adds to the error. Bias-corrected volatility can have a 
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small At = 5 min (q = 288). The stochastic error is proportional to .0/288, but 
the factor v (Atref, m, 2; ti) with m = 260 leads to another stochastic error com-
ponent proportional  to J1/260. Both error components together are proportional 
to .11/288 + 1/260 ..,/1/137. This is distinctly smaller than the value without 
bias correction, j1/24 (where the bias makes the error even larger). 

So far, the bias discussion has been restricted to realized volatility with an 
exponent p = 2 in Equation 3.8. When choosing another exponent (such as 
p = 1, a good choice for many following studies), the bias discussion becomes 
more complicated. The scaling behavior deviates from Gaussian scaling, as seen 
in Section 5.5, and data gaps have a stronger influence on the bias than in the 
case p = 2. For exponents other than 2, a bias correction with a formula such 
as Equation 7.4 is less successful, and more research is needed. The technique 
of bias correction is rather new and will be improved by ongoing research. The 
realized volatility studies of the following sections are older and do not contain 
any bias correction. However, the choice of very short return intervals (such as 5 
min) has been avoided, so the size of the bias is limited. 

7.3 CONDITIONAL HETEROSKEDASTICITY 

7.3.1 Autocorrelation of Volatility in #-Time 

This section analyzes the autocorrelations of returns and realized volatility in 
physical and O-time.3 The study utilizes a 20-min frequency instead of an hourly 
one. We did not take smaller intervals than 20 min in order to avoid a strong bias, 
as explained in Section 7.2. The autocorrelation function of the USD-DEM is 
shown in Figure 7.4 for up to 720 lags. The confidence intervals in Figure 7.4 
refer to 95% confidence for a Gaussian random process around the sample mean. 
Because the distributions of returns and volatility are not Gaussian, the confidence 
intervals are provided as a reference rather than for exact statistical significance. 

In Figure 7.4, the autocorrelation function of volatility has a distinct structure, 
which is far beyond the confidence intervals. For lags of any integer number of 
days, clear peaks are found. These peaks indicate the daily seasonality. The weekly 
seasonality is highly visible in the form of high autocorrelation for lags around 
1 week and low autocorrelation for lags of about half a week (which frequently 
means the correlation of working days and weekends). Finally, there is a finer 
structure with small but visible peaks at integer multiples of 8 hr, corresponding to 
a frequency three times the daily frequency. Our world market model with three 
continental markets is confirmed by this observation. Apart from these seasonal 
peaks there must be a positive component of the autocorrelation that declines 
with increasing lag. In Figure 7.4, this component cannot be observed as it is 
overshadowed by seasonality. 

The autocorrelations of returns, unlike those of volatility (absolute returns), 
are close to zero and within the confidence intervals for most of the lags. The 

3 Absolute returns are studied here. 
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FIGURE 7.4 The autocorrelation function of USD-DEM returns and volatility (absolute 
returns). The data sampling is in 20-min frequency in physical time for lags up to 10 days. 
The 95% confidence interval is for a Gaussian random process. The sampling period is 
from March 3, 1986, to March 3, 1990. 

squared returns, instead of absolute returns, may also be used as a proxy for 
the underlying volatility. Autocorrelations of square returns also exhibit similar 
seasonality peaks as those of absolute returns, but are less pronounced. It is well 
known that the theoretical autocorrelation of squared returns is meaningful only 
if the kurtosis of the return process is finite, which is not guaranteed for currency 
returns. 

A similar autocorrelation analysis is also carried out with the a-time scale 
instead of the physical time t, and it is presented in Figure 7.5. There are no 
large seasonal peaks in the volatility autocorrelations of the a-time. This is due to 
the fact that the 6-scale is constructed to eliminate the intraday seasonality. The 
autocorrelation of volatility is significantly positive and declines at an hyperbolic 
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FIGURE 7.5 The autocorrelation function of the USD-DEM returns and the absolute 
returns at 20-min data frequency in 17-time. The number of lags is up to 1014 days. The first 
lag is marked by an empty circle. The exponential decay is shown with a dashed line. The 
hyperbolically decay fits best to the autocorrelation function of the absolute returns. The 
figure on the right is the same autocorrelation function for the absolute returns extended 
to a much larger number of lags with the superimposition of the hyperbolic decay. 

rate. This behavior can be explained by the presence of a long memory process 
in the underlying data-generating process of returns. The rate of decline in the 
autocorrelation is, however, slower than an exponential decline, which would be 
expected for a low-order GARCH process, Bollerslev (1986). 

The autocorrelation function of volatility (Figure 7.5) is not completely free of 
seasonalities. A narrow peak can be identified at a lag of 1 week. This peak might 
be due to the day of the week effects. In our framework, the activity is assumed 
to be the same for all working days, which may exhibit slight variations across 
the working days. A small local maximum at a lag of around 1 average business 
day (one-fifth of a week in 0); a small local maximum at a lag of 2 business days 
and maxima at 3 and 4 business days also exist. A plausible reason for these 
remaining autocorrelation peaks is a market-dependent persistence of absolute 
returns. Autocorrelations with a lag of 1 business day compare with the behaviors 
of the same market participants, whereas autocorrelations with lags of one half or 
11 business days compare with the behaviors of different market participants (on 
opposite sides of the globe). The market-dependent persistence decreases after 
2 business days. The predominance of the "meteor shower hypothesis" found 
by Engle et al. (1990) is confirmed by the fact that the autocorrelation curve in 
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Figure 7.5 does not exhibit strong maxima for each full business day. Yet the 
remaining small maxima indicate a certain "heat wave" component. 

7.3.2 Short and Long Memory 

The autocorrelation function of volatility decays at a hyperbolic rate rather than 
an exponential rate. In studies based on daily FX prices (e.g., Taylor, 1986) or 
weekly FX prices (e.g., Diebold, 1988), the number of observations is usually too 
small for outright rejection of either a hyperbolic or an exponential decay of the 
autocorrelation functions. In studies with longer daily series such as Ding et al. 
(1993), evidence of long memory is found with the S&P 500 from January 1928 to 
August 1991 (17,055 observations). To illustrate the presence of the long memory, 
two curves, one hyperbolic and one exponential, are drawn in Figure 7.5 together 
with the empirical autocorrelation functions. The hyperbolic curve approximates 
the autocorrelation function much more closely than the exponential curve. This 
behavior of volatility is similar to the fractional noise process of Mandelbrot and 
Van Ness (1968) and Mandelbrot (1972), which exhibits hyperbolic decay in the 
autocorrelation function and thus the long memory serial dependence. 

The hyperbolic (fh ) and exponential (fe) functions used in the analysis above 
have the following form: 

fh(r) = k , and f e(r) = k e—r/ h (7.6) 

where the parameters are k, h, and r. r determines the lag order of the autocorre-
lation function. The exponential function cannot simultaneously capture the short 
and long-term persistence, whereas the hyperbolic function is able to capture both 
successfully. For the hyperbolic function, k values vary from 0.2 to 0.3 depending 
on the FX rate, whereas h is remarkably stable around 0.28 for all the rates. 

In Figure 7.4 and the first panel of Figure 7.5, the number of lags are limited 
to 720 intervals (i.e., 10 days) at the 20-min data frequency. In the second panel of 
Figure 7.5, the number of lags are extended to 4320 (i.e., 60 days) in 0-scale. The 
decay in the volatility autocorrelations is more rapid after 10 days. This type of 
pattern is not specific to USD-DEM, but is also found in longer time intervals and 
other FX rates. To explore this behavior further, we compute the autocorrelation 
function of daily returns (business days) for up to 200 lags and a sample of 20 
years. The result is presented in Figure 7.6 and indicates the persistence of the 
hyperbolic behavior even at the daily frequency. 

A process that exhibits a hyperbolic decay in its autocorrelation function is 
the "fractional noise" of Mandelbrot and Van Ness (1968), which is a purely self-
similar fractal. We test the empirical significance for this theoretical process. In 
Mandelbrot (1972), the autocorrelation function of fractional noise processes is 
given by 

1/ + 112H — 2 /2H + 1/ — 112H
a =  

2 
(7.7) 
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FIGURE 7.6 Autocorrelation function of the absolute business day volatilities in the 
0-time scale. The data are for the USD-DEM rate from June 1,1973, to June, 1, 1993. The 

Prai hyperbolic (solid curve) and the exponential functions (dotted curve) are superimposed on 
the empirical autocorrelation function. The 95% confidence intervals are for an identically 
and independently distributed Gaussian process. 

11. 

en where 1 is the lag parameter and H the Hurst exponent, which lies between 0.5 and 1 
for "persistent" fractional noise. For a large number of lags (1), the autocorrelation vire 

function converges to 

a c-,-; H H _ 12(H -1) (7.8) 

which has a hyperbolic decay. The autocorrelations of absolute returns in Fig-
ures 7.5 and 7.6 also follow a hyperbolic decline. The exponent 2(H — 1) of 
Equation 7.8 from the USD-DEM volatilities is H = 0.87 in Figure 7.5 and H 
0.86 in Figure 7.6. From the H values, the factor H (2H — 1) leads to 0.64 and 
0.62, respectively. These values are empirically found to be much lower, which 
are 0.25 and 0.20, respectively. This indicates that volatility does not follow a 
pure fractional noise process. Volatility is positive definite and has a skewed and 
fat-tailed distribution, whereas the distribution function of pure fractional noise is 
Gaussian. 
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In Peters (1989, 1991), the existence of fractional noise in the returns rather 
than volatility has been investigated similar to Equation 5.10. These findings claim 
that a drift exponent different from 0.5 necessarily indicates fractional noise. This 
conclusion holds only if the distribution forms are stable, but Figure 5.6 does not 
support this claim. We, therefore, conclude that the return process does not support 
the fractional noise hypothesis. Unlike volatility, the returns themselves exhibit 
no significant autocorrelation (see the thin curves in Figures 7.4 and 7.5). 

7.4 THE HETEROGENEOUS MARKET HYPOTHESIS 

In the earlier sections, we analyzed the presence of two stylized facts. Namely, 
a hyperbolic decay of the volatility autocorrelations and the "heat wave" effect. 
Volatility characterizes the market behavior more deeply than just indicating the 
size of current or recent price movements. It is the visible "footprint" of less 
observable variables such as market presence and also market volume (for which 
information is hardly available in FX markets). 

The fact is that, contrary to traditional beliefs, volatility is found to be posi-
tively correlated to market presence, activity, and volume. Karpoff (1987), Baillie 
and Bollerslev (1989), and Muller et al. (1990), emphasize the key role of volatil-
ity for understanding market structures. The serial correlation studies of LeBaron 
(1992b,c) show that subsequent returns are correlated in low-volatility periods and 

P; slightly anti-correlated in high-volatility periods. In continuous samples mixed 
from both low-volatility and high-volatility periods, this effect indicates that the 

1'4 forecastability of return is conditional to volatility. Thus, volatility is also an 
indicator for the persistence of trends. 

These properties of volatility lead us to the hypothesis of a heterogeneous 
3  market, as opposed to the assumption of a homogeneous market where all partici-
= 

pants interpret news and react to news in the same way. The heterogeneous market 
hypothesis is characterized by the following: 

1. Different agents of the heterogeneous market have different time horizons 
.fg 
g and dealing frequencies. On the side of high dealing frequencies, there 

07i are the FX dealers and market makers (who usually have to close all their 
open positions before the evening); on the side of low dealing frequencies, 
there are the central banks, commercial organizations, and, for example, 
the pension fund investors with their currency hedging. The different deal-
ing frequencies clearly mean different reactions to the same news in the 
same market. The market is heterogeneous with a "fractal" structure of 
the participants' time horizons as it consists of short-term, medium-term, 
and long-term components. Each such component has its own reaction 
time to news, related to its time horizon and characteristic dealing fre-
quency. If we assume the memory of volatility of one component to be 
exponentially declining with a certain time constant, as in a GARCH(1,1) 
process, the memory of the whole market is composed of many such expo-
nential declines with different time constants. The superposition of many 
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exponential declines with widely differing time constants comes close to 
a hyperbolic decline. 

2. In a homogeneous market, the more agents are present, the faster the price 
should converge to the "real market value" on which all agents have "ra-
tional expectations." Thus, the volatility should by negatively correlated 
with market presence and activity. In a heterogeneous market, different 
market actors are likely to settle for different prices and decide to execute 
their transactions in different market situations. In other words, they create 
volatility. This is reflected in the empirically found, positive correlation 
of volatility and market presence. 

3. The market is also heterogeneous in the geographic location of the partici-
pants. This immediately explains the "heat wave" effect. In Section 7.3.1, 
we indicated that the memory in the volatility process is relatively weak at 
time lags of about z or 12 business days when market actors on opposite 
sides of the globe are related to each other and relatively strong at time 
lags of about 1 or 2 business days when identical groups of participants 
are considered. 

The market participants of the heterogeneous market hypothesis differ also in 
other aspects beyond the time horizons and the geographical locations. They may 
have different degrees of risk aversion, face different institutional constraints, and 
transaction costs. 

7.4.1 Volatilities of Different Time Resolutions 

The heterogeneous market hypothesis presented in the previous section is associ-
ated with fractal phenomena in the empirical behavior of FX markets. A scaling 
law relating time horizon and size of price movements (volatility) was identified 
in Chapter 5. This relation is used here to explain why the perception of volatility 
differs for market agents with different time horizons. 

Short-term traders are constantly watching the market to reevaluate their cur-
rent positions and execute transactions at a high frequency. Long-term traders 
may look at the market only once a day or less frequently. A quick price increase 
of 0.5% followed by a quick decrease of the same size, for example, is a major 
event for an FX intraday trader but a nonevent for central banks and long-term 
investors.4 Long-term traders are interested only in large price movements and 
these normally happen only over long time intervals (see the scaling law of Muller 
et al., 1990). Therefore, long-term traders with open positions have no need to 
watch the market every minute.5 In other words, they judge the market, its prices, 
and also its volatility with a coarse time grid. A coarse time grid reflects the view 
of a long-term trader and a fine time grid that of a short-term trader. Bjorn (1994) 
follows similar methodologies for building an automatic trading model. 

4 Small, short-term price moves may sometimes have a certain influence on the timing of long-term 
traders' transactions but not on their investment decisions. 

5 They have other means to limit the risk of rare large price movements by stop-loss limits or options. 
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The time grid in which real traders watch the market is not strictly regular. 
In the following lagged correlation study, however, we measure volatilities over 
different but regularly spaced grids. These volatilities are defined in terms of 
absolute returns. We prefer mean absolute values to roots of mean squares here 
because they are statistically less dominated by extreme observations, which are 
rather important in FX markets with their fat-tailed unconditional distribution 
functions. The convergence of the fourth moment—a requirement for many types 
of analysis such as the autocorrelation of squared returns—is not guaranteed for 
empirical returns. In Chapter 5, we demonstrated that the autocorrelations of 
the returns indicate a stronger signal for powers around one. This argument is 
reinforced in Dacorogna et al. (2001a), where the autocorrelation of absolute 
returns is also shown to be much more stable under sample size changes than that 
of the squared returns. Other studies, such as Ding et al. (1993), also find absolute 
returns to be optimal in the autocorrelation studies. 

The volatility based on absolute returns has two essential timing parameters 
(Guillaume et al., 1997): 

• The interval size of the time grid in which returns are observed 
• The total size of the sample over which it is computed (the number of grid 

intervals considered) 

For exploring the behavior of volatilities of different time resolution, we define 
two types of volatility. The "coarse" volatility, vc, and the "fine" volatility, vf , 
are defined by 

• n n 

vc(to = E r(Ati, jAt1)1 and vf (ti) = E ti_i jAt')I 

J=1 
(7.9) 

where At' = At I n. Figure 7.7 illustrates this definition where at every time point, 
ti = 6At', both quantities are simultaneously defined. In this way, the two 
synchronous time series are obtained whose relation can be explored. 

7.4.2 Asymmetric Lead-Lag Correlation of Volatilities 

Analyzing the correlation between two time series, such as fine and coarse volatil-
ities, is a standard technique used in empirical finance where the correlation coef-
ficient measures the linear dependence of the two time series. Lagged correlation 
is a more powerful tool to investigate the relation between two time series. The 
lagged correlation function considers the two series not only simultaneously (at 
lag 0) but also with a time shift. The correlation coefficient Qt of one time series 
and another one shifted by a positive or negative time lag r is measured and plotted 
against the value of the lag. The lagged correlation study of this section follows 
Muller et al. (1997a). 

Lagged correlation reveals causal relations and information flow structures in 
the sense of Granger causality. If two time series were generated on the basis of 
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FIGURE 7.7 The coarse volatility, vc(t), captures the view and actions of long-term 
traders while the fine volatility, vf (t), captures the view and actions of short-term traders. 
The two volatilities are calculated at the same time points and are synchronized. 

a synchronous information flow, they would have a symmetric lagged correlation 
function, or = The symmetry would be violated only by insignificantly 
small, purely stochastic deviations. As soon as the deviations between or and 
Q__ T become significant, there is asymmetry in the information flow and a causal 
relation that requires an explanation. 

In a first analysis, we consider a working-daily time series where weekends 
are omitted. The variables under study are the "fine volatility" and the "coarse 
volatility." Fine volatility is the mean absolute working-daily returns averaged 
over five observations, so covering a full (working) week. Coarse volatility is the 
absolute return over a full weekly interval. 

The correlation between fine volatility and coarse volatility is a function of the 
number of lags. When the number of lags is zero, the fine and coarse volatilities are 
completely identical. In the case of first positive or negative lag, the two intervals 
do not overlap but follow each other immediately. 

The panel on the left hand side of Figure 7.8 shows the lagged correlation 
function for the USD-DEM in a sample longer than 21 years. The correlation 
maximum is found at lag zero, which is expected. For the nonzero lags, there is 
an asymmetry where the coarse volatility predicts fine volatility better than the 
other way around. The asymmetry is significant for the first two lags where the 
difference QT —Q_ T-, represented by the thin curve in Figure 7.8, is distinctly outside 
the confidence interval for identically and independently distributed observations. 

This result can be explained in terms of the heterogeneous market hypoth-
esis presented earlier in this section. For short-term traders, the level of coarse 
volatility matters because it determines the expected size of trends and thus the 
scope of trading opportunities. On one hand, short-term traders react to clusters of 
coarse volatility by changing their trading behavior and so causing clusters of fine 
volatility. On the other hand, the level of fine volatility does not affect the trading 
strategies of long-term traders (who often act according to the "fundamentals" of 
the market). 
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TABLE 7.1 Difference between lagged correlation for FX rates and gold. 

The sample period is from June 6, 1973, (August 8, 1980 for gold) to February 1, 1995. 

The lags are measured in weeks and 3 hr (in a9gime), respectively. The negative values 
indicate the predictability of finely defined volatility from coarse volatility. 

Differences USD-DEM USD-JPY GBP-USD CHF-USD DEM-JPY XAU-USD 

Weekly 

pi —Q_1 -0.138 -0.127 -0.130 -0.131 -0.129 -0.122 

92 — 9-2 -0.105 -0.047 -0.055 -0.076 -0.074 -0.072 

3 hourly 

Q1 —Q_1 -0.117 -0.136 -0.113 -0.093 -0.100 -0.108 

92 — 9-2 -0.058 -0.057 -0.059 -0.056 -0.055 -0.068 

Similar behavior of the lagged correlation is observed for other FX rates such 
as USD-JPY and GBP-USD, cross rates such as DEM-JPY, and gold (XAU-USD). 
Table 7.1 reports the difference Q — _1 and Q2 — Q-2 for a set of these time series. 
The numbers are similar across the different rates (and also all of the investigated 
minor FX rates not shown here). The first lag difference is around -0.13 and the 
second lag difference is around -0.07. 

The results with daily data also prevail in high-frequency and in intraday data. 
Every intra-day study requires an appropriate treatment of the strong intradaily 
seasonality of volatility. Here we use the predefined business time scale zp pre-
sented in Chapter 6. A time series with regular intervals in a-time is constructed 
by selecting the last quote before each point of a regular U-grid. As a basic time 
interval in we choose 30 min. This means there is only some 7 min 
of physical time during the daily volatility peak in the European afternoon and 
American morning.6 Fine volatility is now the mean absolute half-hourly returns 
averaged over six observations, covering a 3-hr time interval. Coarse volatility is 
the absolute returns over a full 3-hr interval. All these time intervals are calculated 
in 19-time. An interval of 3 2,-hr is clearly smaller than the working day of an FX 
dealer. It often covers a time span with quite homogeneous market conditions. 

Figure 7.8 (right panel) provides the lagged correlation function for USD-
DEM in 8 years of half-hour returns. Although the half-hour data cover a shorter 
time span than the daily series, the number of observations is larger. The findings 
from the half-hourly data confirm the results from the daily series such that coarse 
volatility predicts fine volatility. We therefore conclude that these findings are 
independent of the data frequency. 

The intradaily behavior of the lagged correlation is similar for other FX rates 
and gold (see Table 7.1). The empirical findings are similar across the different 
rates. The first lag difference is around -0.11 and the second lag difference is 
around -0.06, which are close to the corresponding values of Table 7.1. In the 

6 In fact, a much higher frequency of the series should be avoided due to the fact that price changes 
observed over 5 min or less can be overly biased by microstructure effects (see Section 7.2). 
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FIGURE 7.8 Asymmetric lagged correlation of fine and coarse volatilities for USD-
DEM. The left figure is for working-daily return in a week. The right graph is for high 
resolution study with half-hourly returns within 3 hr (in 13-time). The negative lags indi-
cate that the coarse volatility was lagged compared to the fine volatility. The thin curve 
indicates the asymmetry. The 95% confidence intervals are for identically and indepen-
dently distributed observations. The sampling period for the left figure is 21 years and 8 
months, from June 6, 1973, to February 1, 1995. The sampling period for the right figure 
is 8 years, from January 1, 1987, to January 1, 1995. 

right panel of Figure 7.8, there is also a weak, rather wide local maximum around 
lag -11, corresponding to -33 hr in 0-time. This corresponds to a lag of about 1 
working day (because a working day is 1/5 rather than 1/7 of a business week). The 
difference Qr 0, also has a significant (negative) peak around lag 11. This effect 
has been identified in the right panel of Figure 7.8 and discussed in Section 7.3. 
Following Engle et al. (1990), we call it a "heat wave" effect where traders have 
a better memory of the events approximately 1 working day ago (when they were 
active) than a broken number working days ago (when other traders on different 
continents, with different time zones, were active). 

The peak around lag -11 can be explained by a residual seasonality that the 
0-scale is unable to capture. However, the 0-scale is well able to treat ordinary 
seasonality as indicated by the lack of an analogous peak around the positive lag 11. 
The heat wave effect is more than just seasonality and it cannot be eliminated by 
a simple time scale transformation. This can be interpreted such that volatility 
modeling should consider not only volatilities of different time resolutions but 
also volatilities with the selective memory of individual geographical markets and 
their time zones. 
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Assymetric lead-lag correlation is not only present in the FX market but also in 
the Eurofutures market as shown in Ballocchi et al. (1999a). Figure 7.9 presents the 
results of a lead/lag correlation analysis for forward rates implied from Euromark 
contracts on the London International Financial Futures Exchange (LIFFE). The 
asymmetry is highly significant for the first lag and for all maturities. At lag 1, 
again coarse volatility predicts fine volatility significantly better than the other 
way around. The study was conducted with a 3-hr grid in a-time where the fine 
volatility is the mean absolute return measured every 3 hr over 3 days and the 
coarse volatility is the mean absolute return over the whole 3-day interval. The 
sample runs from April 1, 1992, to December 30, 1997, which constitutes 700 
observations. The effect is rather robust with respect to changes in the definition 
of the fine and coarse volatilities. Moreover, it is interesting to note that the size of 
the effect seems to increase when increasing the time-to-start of the forward rate. 

To explore this effect on a wider set of parameters, Gilles Zumbach suggested 
to the following quantities: 

C(T, n, n') = Corr( off, Il(t) , 6[T, —10 + T)) (7.10) 
2.4 2n 

where T = 4 weeks and n and n' are the granularities of our volatility estimator. 
Then it is possible to compute a quantity I that depends on both n and n': 

I (n, n') = C(T, n, n') — C(T , n', n) (7.11) 

which means that we look at the first lag difference where the lag is 4 weeks. 
This quantity should in principle be symmetric but we know from Figure 7.8 that 
it changes sign and is antisymmetric. Figure 7.10 presents the results of a study 
conducted by Zumbach (private communication), for the quantity I computed for 
values of n going from 2 to 12 over a period T of 4 weeks on the a-time scale. This 
means that the returns are measured at frequencies as low as 2 weeks to frequencies 
as high as every 10 min in a-time. The FX rate is USD-CHF and the sampling 
period runs from June 1, 1987, to August 1, 1997. The asymmetry is striking and 
exists for all these different parameters. The maximum of the effect is obtained for 
n = 11 for the fine volatility and n' = 7 with differences as high as 0.29 between 
the two correlations, about two times more than in Table 7.1. Similar figures were 
also obtained for other FX rates like USD-DEM or USD-JPY. 

7.4.3 Conditional Predictability 

The conditional correlation studies of LeBaron (1992b,c) indicate that subsequent 
returns are correlated in low-volatility periods and slightly anticorrelated in high-
volatility periods. In continuous samples mixed from both low-volatility and high-
volatility periods, this important effect indicating the forecastability of return does 
not exist unconditionally. It exists conditional to volatility. Thus, volatility is also 
an indicator for the persistence of trends. The idea is to compute the following 
triplet: 

(v(t), r(t), r(t ± At)) 
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FIGURE 7.9 Lead-lag correlation of fine and coarse volatilities for four different implied 
forward rates derived from the Three-Month LIFFE Euromark, with a 3-hr grid in #-time. 
The sampling period is from April 1, 1992, to December 30, 1997. In the panels, a month 
is represented by m. 
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FIGURE 7.10 The correlation difference (Equation 7.11) between coarse and fine 
volatilities is explored for the USD-CHF FX rate. The asymmetry of the lead-lag corre-
lation (at one lag of 4 weeks) is apparent around the diagonal, which naturally presents a 
correlation of 1 (and a difference of 0) because we are correlating a quantity with itself. 
The top half of the graph presents a positive difference in the lagged correlation whereas 
the bottom half presents the symmetric negative difference. The sampling period is from 
June 1, 1987, to August 1, 1997. (With permission of Gilles Zumbach.) 

where v(t) is a measure of volatility calculated with the weekly variance of daily 
returns.7 Then triplets of similar volatility, v (t), are put into the same bin, and the 
autocorrelation of returns at lag At, conditional to v (t), is studied: 

p(v) = p(r(t), r (t + At) I v(t)) (7.12) 

Such an analysis has four parameters, At for the returns and the three parameters 
for the volatility as identified in Section 3.2.4 and in the Equation 3.8: At, n, 
and p. 

7 In principle, any definition of volatility along the lines of Equation 3.8 can be chosen and its 
parameters varied until the conditional correlation reaches a maximum. 

0237



218 CHAPTER 7 REALIZED VOLATILITY DYNAMICS 

° 
4o

006 000 0.I0 

Volatility 

0 

FIGURE 7.11 The conditional autocorrelation of weekly returns of USD-DEM as a 
function of the average absolute weekly return over 5 days. The sampling period is June 
1, 1973, to June 1, 1994. 

This function p(v) is presented for the FX rate USD-DEM on Figure 7.11. 
It is computed with a At of 1 week and a volatility definition that uses the mean 
weekly absolute returns over 5 weeks. In summary, the parameters for the graph 
are At = 1 week, nit = 5 weeks, and p = 2. The conditional correlation appears 
only for data at low frequency. The effect is quite strong for low volatility with a 
conditional correlation close to 0.3 at its maximum, decreasing down to negative 
values of -0.15 for high volatility. The computation is done with overlapping 
bins containing always the same number of observations to avoid changing the 
significance of the different results. From this figure, it appears that the "current 
state" of the market changes the price process behavior and the volatility plays 
an important role beyond its own dynamics. The results shown here for the most 
traded FX rates are also present in the other FX rates. It was also reported by 
LeBaron (1992b) for stock indices. Varying the parameters cause this effect to 
disappear for At smaller than 1 day. In the intraday region, influence of the heat 
wave effect becomes important and overshadows the findings. 
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8 
VOLATILITY PROCESSES 

8.1 INTRODUCTION 

One of the many challenges posed by the study of high-frequency data in finance is 
to build models that can explain the empirical behavior of the data at any frequency 
at which they are measured from minutes to months. We are now going to examine 
how conventional models perform when confronted with this problem. In the 
previous chapter, we discussed the rich structure of the volatility dynamics. We 
need to introduce new types of volatility models to account for this structure, 
leading to a higher predictive power. 

Many statistical processes proposed in the literature can be described by the 
following general formula for equally spaced returns rt: 

rt = crt Et (8.1) 

where Et is an identically and independently distributed (i.i.d.) random variables
with zero mean and variance 1. In this chapter, t denotes the index of a homoge-
neous time series rather than time itself. "Homogeneous" means equally spaced 
on any chosen time scale. We usually choose t9-time as introduced in Chapter 6, so 

In this chapter, normal and Student-t distnbutions of st are studied. 

219 
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the model appropriately accounts for seasonalities. The volatility at is the square 
root of the variance of the return rt . 

Many models are based on Equation 8.1, but they largely differ in the modeling 
of the volatility variable at . We distinguish three main types of volatility modeling: 

1. ARCH-type models. These autoregressive conditional heteroskedastic 
models define the variance o-,2 of the return rt as a function of past returns. 
This function can be simple or rather complicated. In the GARCH process, 
for example, at also depends on its own past values, but there is always an 
equivalent formulation that defines at as a function of past returns only. 
The volatility o-t is a model variable that cannot be directly observed, but 
it can be computed if a sufficiently long series of past return values up 
to rt _1 is known. All the statistical processes discussed in the following 
sections of this chapter belong to the ARCH type. 

2. Stochastic volatility models. In stochastic volatility models, the volatility 
variable at does not depend on past returns. Instead, it depends on its 
own past values. The volatility variable at is neither observable nor di-
rectly computable from past returns. As a consequence, it is more difficult 
to estimate the parameters of stochastic volatility models than those of 
ARCH-type models. The statistical process of 6t has a memory, so an 
autoregressive conditional heteroskedastic behavior can be obtained also 
with stochastic volatility models. There are different types of stochastic 
volatility models as noted in Taylor (1994); Ghysels and Jasiak (1995), 
and Ghysels et al. (1996). It is possible to model heterogeneous market 
behavior in the framework of stochastic volatility; a modern example is 
the cascade model of Ghashghaie et al. (1996) and Breymann et al. (2000) 
where volatility modeling is inspired by turbulence models. 

3. Models based on realized volatility. Rather than modeling at, (Andersen 
et al., 2000) propose to define ut as the realized volatility computed at 
index t — 1. This realized volatility is computed with high-frequency data, 
with return intervals of, for example, 30-min, in order to keep stochastic 
errors low. The time interval of the main model (i.e., the interval between 
the indices t — 1 and t) is usually much larger (e.g., 1 working day). This 
means using realized volatility at t — 1 as a predictor of the volatility 
between t —1 and t by relying on the volatility clustering. This model has 
the advantage of using empirical data instead of model assumptions that 
might be wrong. However, it has some disadvantages: 

■ Realized volatility is biased if computed at high frequency (see Sec-
tion 7.2). A bias correction method such as Equation 7.4 would 
improve the model. 

■ Realized volatility computed at high frequency (fine volatility) lags 
behind coarse volatility in the lead-lag analysis (see Section 7.4.2). 
This lag leads to suboptimal forecast quality when predicting the 
volatility of the next step of the model. 
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■ Im general, realized volatility at t —I may not be the best predictor 
of volatility between t — 1 and t. It should be replaced by a more 
sophisticated forecast of realized volatility at t. 

In most of these statistical processes of 6E2, it is possible to add some terms mod-
eling external (exogeneous) influences. If volume figures at t — 1 are available, 
for example, they may be a piece of information to predict the volatility Qt . The 
processes discussed here are not of this type, they are univariate. 

In the remainder of this chapter, we stay within the framework of ARCH-
type modeling and compare different models. The ultimate quality criterion of a 
model is its predictive power. Therefore there are some volatility forecast tests 
in Section 8.4. Forecasting is further discussed in Chapter 9 where it is the main 
subject. 

8.2 INTRADAY VOLATILITY AND GARCH MODELS 

The Autoregressive Conditional Heteroskedastic (ARCH) model of Engle (1982) 
and its generalized version (GARCH) by Bollerslev (1986) are widely used, not 
only in the foreign exchange (FX) literature (see, for a review, Bollerslev et al., 
1992) but also as the basic framework for empirical studies of the market mi-
crostructure such as the impact of news (Goodhart and Figliuoli, 1991; Goodhart 
et al., 1993) and central bank interventions (Goodhart and Hesse, 1993; Peiers, 
1997), or inter and intramarket relationships in Engle et al. (1990) and Baillie 
and Bollerslev (1990). The main assumption behind this class of models is the 
relative homogeneity of the price discovery process among market participants 
at the origin of the volatility process. In other words, the conditional density of 
one GARCH process is assumed to adequately capture all the information and the 
news. In particular, GARCH parameters for the weekly frequency theoretically 
derived from daily empirical estimates are usually within the confidence interval 
of weekly empirical estimates (Drost and Nijman, 1993). 

However, we have already seen in this book that several empirical facts are 
at odds with this homogeneous view of the market. First, the long memory of 
the volatility (Section 7.3.2) indicates the presence of several market components 
corresponding to several time horizons. Note that this property of the volatility has 
already been successfully incorporated in the GARCH setting as the fractionally 
integrated GARCH (Baillie et al., 1996). Second, at the intradaily frequency, 
round-the-clock time series reveal seasonal patterns that reflect, among others, the 
geographical dispersion of the traders, concentrated in three main geographical 
areas: Asia, Europe, and America. Although the first investigations of the ef-
fect of these different geographical locations seemed to indicate that news would 
uniformly spread out around the world (the so-called meteor shower hypothesis 
in Engle et al., 1990), we saw traces of heat wave effects in the previous chap-
ter. Third, exchange rates movements are not necessarily related to the arrival 
of news when inspected at the intraday frequency, Goodhart (1989), reflecting 
the fact that intraday traders may have other constraints and objectives than, for 
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example, longer-term traders. Fourth, at extremely high frequencies, FX rates ex-
hibit distinct microstructure effects due to the price formation process as studied 
in Chapter 5. 

In this section, we investigate the importance of this heterogeneity for the 
modeling of the foreign exchange (FX) markets using the GARCH setting. More 
specifically, we show that estimates of a GARCH process with data in physical 
time are likely to be spurious, even though estimates for one particular frequency 
seem to be reasonable. Estimates are only consistent when the seasonal patterns 
are taken into account. However, even when these seasonal patterns are accounted 
for, the aggregation properties of the GARCH model break down at the intradaily 
frequencies, revealing the presence of traders with different risk profiles. In ad-
dition to the presence of different trader categories, we observe microstructure 
effects when analyzing returns over time intervals shorter than about 90 min. At 
the other extreme, the instability of coefficient estimates over different subperiods 
of 6 months suggests the presence of seemingly random long-term fluctuations. 
Finally, these misspecifications of the GARCH process result in its quite poor out-
of-sample predictive power for the volatility as compared to realized volatility. 

8.2.1 Parameter Estimation of GARCH Models 

The GARCH(1,1) process is defined as follows: 

2
(it co cilet—i fil6-2 t (8.2) 

where cr is the conditional variance and 8r is the squared innovation. 
To test the effects of the temporal heterogeneity of the markets, this 

GARCH(1,1) process is estimated for several frequencies. The lowest analyzed 
frequency is daily and the highest frequency is defined by a homogeneous time 
series with 10-min intervals. At the higher frequencies (intervals less than 2 hr), 
we include a fourth-order autoregressive (AR(4)) term t1 = oir, in Equa-
tion 8.1 to account for the statistically significant (negative) autocorrelation of the 
returns at these frequencies (see Section 5.2.1). The regression equation for the 
return process is 

rt = + Et (8.3) 

At lower frequencies such a term is not needed, and we use the process of Equa-
tion 8.1. 

The parameters of the process are estimated as follows. Let 0 denote the set 
of parameters characterizing the process. Assuming that the innovations at are 
normally distributed, the log-likelihood 

2 

function is 

1
L(0) = --

n 
In(27r) — —2 E (1n(o-i2) + 4) (8.4) 

where the index t has been substituted by i. The number of observations used for 
the estimation is n. An initial fraction of data must be reserved and used for the 
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build-up of cr2, because of the memory of the volatility process. An estimate 9 for 
the parameters is given by the solution of the maximization problem 

max L(0) 

The log-likelihood procedure has many desirable properties.2 The solution is 
independent of the coordinate system in which the parameters are defined, such 
that the estimation can be done in any parametrization and the results will be 
identical, up to the chosen parameter transformation, This property is true for 
finite samples and any data set, assuming a non-degenerate maximum. Even if the 
process is misspecified (i.e., the data were not generated by the estimated process), 
the maximum is identical in any coordinate system. Estimating GARCH processes 
by maximum likelihood is difficult because of the presence of a one-dimensional 
manifold in the parameter space where the likelihood function is large and almost 
constant (for a discussion of this point and a good practical solution using the 
property mentioned above, see Zumbach, 2000). 

The assumption of conditional normality can be relaxed by assuming a Stu-
dent-t distribution for st (Baillie and Bollerslev, 1989) or the generalized exponen-
tial distribution (Nelson, 1991). Both of these distributions have fat tails. In the 
case of the Student-t distribution, the log-likelihood function takes the following 
form: 

£(o) = [1n(v — 2) + 2 In Pr 1 /2 r (Di — ln F (L*1- )] 

EL, [In(q) + (v + 1) in (1 + a7(8,L2))] 
(8.5) 

where v is the number of degrees of freedom of the Student-t distribution and F 
is the usual gamma function. Both forms of the log-likelihood function are valid 
for any process following Equation 8.1, not only GARCH but also the process we 
shall study in Section 8.3.1. 

The maximum of the likelihood function is found by an iterative procedure 
that combines two methods: a genetic algorithm (GA) (Goldberg, 1989; Pictet 
et al., 1995) and the Berndt, Hall, Hall, and Hausman (BHHH) algorithm (Berndt 
et al., 1974) which is a variant of the gradient descent method. The initial solu-
tions are chosen randomly to avoid any a priori bias in the estimation and stored 
in "genes," which form an initial population. Starting from this population, the 
genetic algorithm constructs a new population using its selection and reproduction 
method (Pictet et al., 1995). The solutions with the highest log-likelihood found 
by the genetic algorithm are used as starting points of the BHHH algorithm, which 
leads to a further improvement. Once convergence of the BHHH is achieved, 
the next generation of the GA is computed on the basis of the previous solutions 

2 See Davidson and MacKinnon (1993) for a general reference. 
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obtained with the BHHH algorithm and a set of solutions from the previous gen-
eration. This iterative procedure continues until no improvement of the solution 
is found. The BHHH algorithm alone can be trapped in local maxima of the log-
likelihood instead of finding the global maximum. The chosen combination with 
a genetic algorithm has the advantage of avoiding local maxima. The method is 
rather fast, notwithstanding the very large number of observations (368,000 data 
points for the 10-min frequency). Robust standard errors are computed using the 
variance-covariance matrix estimation of White (1980). 

8.2.2 Temporal Aggregation of GARCH Models 

If the empirical data can be described as generated by one GARCH(1,1) process 
at one particular data frequency, the behavior of the data sampled at any other fre-
quency is theoretically determined by temporal aggregation (or disaggregation) of 
the original process. These theoretically derived processes at different frequencies 
can be compared to the empirically estimated processes at the same frequencies. 
Significant deviations between empirical and theoretical results lead to the rejec-
tion of the hypothesis of only one GARCH process. We can show then that there 
is more than one relevant frequency in the volatility generation, and the market 
can be called temporally heterogeneous, as already found in Section 7.4. 

There are two approaches for the theoretical aggregation of GARCH models. 
The GARCH model can be viewed as either a jump process (Drost and Nijman, 
1993) or a diffusion process (Nelson and Foster, 1994). Both approaches lead to 
very similar results, so we only report results based on Drost and Nijman (1993). 
In both approaches, the sum of ai and /31 (of Equation 8.2) tends to 1 as the 
frequency increases. The autoregressive parameter 01 tends to 1, whereas the 
moving average parameter al tends to 0. In other words, the higher the frequency, 
the longer the clusters of volatility as measured in numbers of time series intervals. 

Because previous results confirmed the adequacy of these theoretical results 
at the daily and weekly frequencies (Drost and Nijman, 1993), we use the daily 
estimations as a starting point to compute the results for the higher frequencies. 
High frequencies also have the advantage of high statistical significance. 

Drost and Nijman (1993) show that symmetric weak GARCH(1,1) processes 
are closed under temporal aggregation. A process is symmetric if the marginal 
distribution of returns is symmetric. The term "weak GARCH(1,1)" is exactly 
defined by Drost and Nijman (1993). It encompasses all processes that essentially 
follow Equation 8.2 with some weak, nonlinear deviations that are not visible 
in the autocorrelation of volatility. More precisely, if st is a symmetric weak 
GARCH(1,1), following the equation ar = " aet2 + fat 1, then the high-
frequency parameters no, a, and 0 and the kurtosis IC = E[4]/ (E [41)2 determine 
the corresponding low-frequency parameters. We obtain the symmetric weak 
GARCH(1,1) process e with 

0-2(n)t
2 Te 

rn = (m) " (n) ,  (n)tm—m P (rn)a2  ( 12)tin (8.6) 
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and kurtosis Tc(n )s where 

1 — fur 
076(m) = m ce0 + a)

a(m)_O + — 1 (n) 

71 (n)S = 3 + (KE — 3)1m + 6(KE — 1) 

tm — 1 — m(P + + (f3 + a)mlla — 13a(8 + a)) 
m2(1 — # — a)2(1 — —2,8a) 

IP(m)l 

with 

< 1 is the solution of the quadratic equation 

75(m) a(13, a, Ks, m)(p +a)m — b(j, ot, in) 

a(P, Ks, m){1 Q3 + 0 2n11 1 + Soo — 2b(/3, a, m) 

225 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

a (3 , a, Kr, rn) (8.11) 

(1 — — a)2(1 — )32 — 2/3a) 
m(1 — /3)2 + 2m(m 1) 

(ice — 1){1 — (/3 +a)2} 

+4 
{m — 1 — m(S +a) + +0z)m}{a — #a(S + a)} 

1— + a)2

b( , a, m) {a — Pa (0 + a)} 
1—(+a)2 

These formulas are used to determine the parameters of the aggregated GARCH 
processes and can also be used for going from low to high-frequency (i.e., for 
disaggregation). 

When exploring temporal aggregation, we have to choose a time scale. Sea-
sonality is not the subject of an aggregation study, but might disturb it. Eliminating 
seasonalities by using the 6-scale presented in Chapter 6 is a natural choice. How-
ever, we have additionally tested an alternative time scale which we call a business 
time scale in the remainder of this section. This business time simply omits the 
weekend periods from Friday 22:30 GMT to Sunday 22:30 GMT, when markets 
are virtually closed. 

As a third time scale, we have tried physical time. In physical time, weekends 
cover two-sevenths of the total sample. This causes a complete breakdown of the 
estimation procedure, yielding very large a l estimates. Physical time including 
weekends is simply unusable here. The aforementioned business time is a usable 
substitute of physical time from which it only differs in its omission of weekends. 

I - + ce)2m.
(8.12) 
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FIGURE 8.1 Aggregation of the GARCH(1,1) for estimated coefficients in business 
time (•) and theoretically derived coefficients (.6.) using the (Drost and Nyman, 1993) 
results for USD-DEM, for different aggregation factors (1 = 10 min; 2 = 20 min; 3 = 30 
min; 6 = 1 hr; 12 = 2 hr; 36 = 6 hr; 72 = 12 hr; 144= 24 hr). The labels of the estimated 
coefficients (•) are printed in bold. The diagonal dotted line represents the stationarity limit 
for which ai + pi = 1. Sampling period: 7 years from January 1, 1987, to December 31, 
1993. 

8.2.3 Estimates of GARCH(1,1) for Various Frequencies 

Time series of USD-DEM have been sampled with frequencies between 10 min 
and 1 day. For each series, the GARCH(1,1) coefficients have been estimated 
using the procedure of Section 8.2.1. The resulting coefficients al and pi (see 
Equation 8.2) are plotted in Figure 8.1 in the form of black circles, which are 
labeled by the number of 10-min intervals contained in the time series interval. 
The label "144" thus means daily sampling. 

For comparison, the theoretical values of ai and )31 are also plotted as triangles. 
The reference values at daily frequency (label 144) are estimated from real data, but 
the values at all other frequencies are computed from these reference values accord-
ing to Drost and Nijman (1993), as explained in Section 8.2.2.A computation ac-
cording to Nelson and Foster (1994) yields similar results that are not plotted here. 
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FIGURE 8.2 Aggregation of the GARCH(1,1) for estimated coefficients in 0--time (6) 
and theoretically derived coefficients (A) using the (Drost and Nijman, 1993) results for 
the USD-DEM for different aggregation factors (1 = 10 min; 2 = 20 min; 3 = 30 min; 6 
= 1 hr; 12 = 2 hr; 36 = 6 hr; 72 = 12 hr; 144= 24 hr). The labels of the estimated 
coefficients (•) are printed in bold. The diagonal dashed line represents the limit for which 
al  + pi = 1. Sampling period: 7 years from January 1, 1987, to December 31, 1993. 

Although the coefficient estimates may look quite reasonable for some lower 
frequencies, the global picture for all frequencies appears quite odd. In particular, 
the estimates for frequencies higher than 2 hr decrease down to values close to 
0.75, whereas the theory, represented by the triangles in Figure 8.1, suggests that ,81 
should tend to one. The triangles are very far from the corresponding black circles. 
The hypothesis of volatility being generated by only one GARCH(1,1) process is 
clearly rejected with the high significance of high-frequency data analyzed over 
7 years. 

The results of Figure 8.1 are computed on the basis of the business time intro-
duced at the end of Section 8.2.2. Figure 8.2 shows the corresponding results 
based on 19-time. The time scale 19 is in fact a better choice because of its 
better deseasonalization. However, the results of Figure 8.2 are similar to those 
of Figure 8.1. The strong deviation between theoretical and empirically estimated 
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TABLE 8.1 Results of the GARCH(1,1) estimation in business time. 

GARCH(1,1) parameter estimates for USD-DEM, using the business time scale, for differ-

ent frequencies. Robust standard errors are given in parentheses. The coefficients with a 
prime are computed from the (dis)aggregation formulas for the jump hypothesis of Drost 
and Nijman (1993). The daily interval serves as a reference basis. 

Interval 00 Pt al +131 cs P; +>31

10 min 2.15 • 10-8 0.227 0.752 0.979 0.001 0.999 1.000 
(0.17 • 10-8) (0.0013) (0.0012) 

20 min 2.66 • 10-3 0.179 0.816 0.995 0.002 0.997 0.999 
(0.15 • 10-8) (0.0037) (0.0051) 

30 min 2.65. 10-8 0.143 0.853 0.996 0.003 0.996 0.999 
(0.18 • 10-8) (0.0062) (0.0101) 

1 hr 1.79. 10-7 0.142 0.784 0.926 0.006 0.992 0.999 
(0.42 • 10-7) (0.0066) (0.0114) 

2 hr 3.11 • 10-8 0.023 0.970 0.993 0.011 0.986 0.997 
(0.13 • 10-8) (0.0020) (0.0015) 

6 hr 2.43 • 10-7 0.041 0.941 0.982 0.029 0.962 0.991 
(0.22 • 10-7) (0.0039) (0.0061) 

12 hr 1.07 • 10-6 0.054 0.905 0.959 0.046 0.936 0.982 
(0.17 • 10-6) (0.0061) (0.0102) 

24 hr 1.91 • 10-6 0.068 0.897 0.965 
(0.67 • 10-6) (0.0095) (0.0153) 

coefficients already starts with the 6-hr frequency. The conclusions on temporal 
aggregation of GARCH are the same. The choice of the time scale has no strong 
impact on a temporal aggregation study, as long as physical time with its high 
weight of weekends is avoided. 

Detailed results for the two time scales are also listed in Tables 8.1 and 8.2. 
Table 8.1 presents the results obtained for USD-DEM in the business time scale 
and Table 8.2 for the same rate but in the 0-time scale. The error estimates of the 
results provide more evidence against the hypothesis of only one GARCH(1,1) 
process generating the data. Even the theoretically computed coefficients at low 
frequency, which seem quite close to the estimated coefficients, are often outside 
the confidence intervals. Only the coefficients for the GARCH process are pro-
vided in Tables 8.1 and 8.2, even when an AR(4) term was included in Equation 8.1 
for frequencies higher than 2 hr (as discussed at the beginning of Section 8.2.1). We 
have observed that the inclusion of this autoregressive term in the return equation 
does not significantly change the values of the GARCH coefficients. 

The coefficient estimates are quite similar across different FX rates.3 The 
hypothesis of only one GARCH(1,1) process is rejected for all the FX rates we 
tested, not only USD-DEM. The volatility clusters have about the same size-if 
measured in numbers of time series intervals-for all levels of aggregation. In 

3 See Andersen and Bollerslev (1997b) for similar results. 
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TABLE 8.2 Results of the GARCH(1,1) estimation in 6-time. 

GARCH(1,1) parameter estimates for USD-DEM, using 0-time, for different frequencies. 
Robust standard errors are given in parentheses. The coefficients with a prime are com-
puted from the (dis)aggregation formulas for the jump hypothesis of Drost and Ngman 
(1993). The daily interval serves as a reference basis. 

Interval ezo al 1 al +01 a l Pi fic 

10 min 4.09 • 10-9 0.153 0.839 0.992 0.001 0.999 1.000 
(0.27 • 10-9) (0.0047) (0.0049) 

20 min 1.24 • 10-8 0.149 0.830 0.979 0.001 0.998 0.999 

(0.84 • 10-8) (0.0057) (0.0063) 
30 min 2.56 • 10-8 0.153 0.815 0.968 0.002 0.997 0.999 

(0.21 • 10-8) (0,0077) (0.0091) 
1 hr 1.36 • 10-8 0.047 0.942 0.988 0.004 0.995 0.999 

(0.46 • 10-8) (0.0094) (0.0129) 
2 hr 1.65 • 10-8 0.031 0.962 0.993 0.008 0.989 0.997 

(0.28 • 10-8) (0.0014) (0.0022) 

6 hr 5.93 • 10-8 0.029 0.963 0.992 0.023 0.971 0.994 

(0.40 • 10-8) (0.0011) (0.0013) 
121u 1.91 • 10-7 0.039 0.948 0.987 0.038 0.949 0.988 

(0.45 • 10-7) (0.0013) (0.0047) 
24 hr 8.08 • 10-7 0.061 0.915 0.975 

(2.74 • 10-7) (0.0119) (0.0155) 

other words, the volatility memory seems quite short-lived when measured with 
high-frequency data and long-lived when measured with data of daily or lower 
frequency. The information content of the volatility variable ut is not the same for 
different frequencies. Different volatilities are relevant at different frequencies. 
We attribute this, along with other authors (Andersen and Bollerslev, 1997a), to 
the presence of many independent volatility components in the data. This is again 
the signature of market heterogeneity. The GARCH model does not capture the 
heterogeneity of traders acting at different time horizons. 

This is a plausible explanation of the abnormal results we obtain at high 
frequencies from the estimation of the GARCH model using a Student-t distribu-
tion instead of the normal distribution such as in Baillie and Bollerslev (1989).4
GARCH is misspecified, no matter which form of the conditional distribution of 
returns is chosen. 

To further assess the behavior of the volatility as estimated by GARCH(1,1) 
processes, we have investigated the temporal stability of the coefficient estimates 
for several subsamples. Figure 8.3 provides the estimations of the GARCH pa-
rameters for USD-DEM at the 2-hr time interval, using O--time, for subsamples 
of 6 months, with about 2,190 observations per subsample. As can be seen, the 

4 Although the algorithm converges, the sum of the a t and /31 increasingly exceeds 1 as the frequency 
becomes higher. One also finds excess residual skewness and kurtosis. Since these results are robust 
to the size of the sample, they cannot be attributed to a larger number of tail observations. 
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FIGURE 8.3 Temporal stability of the GARCH(1,1) coefficients for subperiods of 6 

months for the USD-DEM at the 2-hr frequency. The time scale is .0-time. In the parameter 
space, the coefficients are represented by black circles (•) and connected by lines indicating 
the temporal sequence. Sampling period: 7 years from January 1, 1987, to December 31, 
1993. 

coefficients are not stable over time. Some of them are in the left half of Fig-
ure 8.3, quite far from the others. Moreover, these aberrant coefficients are not 
directly connected in the temporal sequence. The shifts in coefficient values have 
an irregular sequence in time, as shown by the lines connecting the points in Fig-
ure 8.3. The hypothesis of all parameters being equal across the subsamples can 
be rejected by using a likelihood-ratio test (see e.g., Hamilton, 1994) with very 
high significance. This is again a sign of misspecification of the model, but it may 
also indicate changes in market behavior. 

The forecasting quality of GARCH models will be tested in Section 8.4.2. 
There we shall see that an increasing sample size does not improve the volatility 
forecasts from GARCH models. The forecasting quality saturates when increasing 
the sample size after a certain threshold value. The subsamples used for Figure 8.3 
are large enough, so the erratic behavior of GARCH coefficients in that figure 
cannot be attributed to small sample sizes. 
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In Chapter 7 we showed that there is asymmetry in the interaction between volatil-
ities measured at different frequencies. A coarsely defined volatility predicts a fine 
volatility better than the other way around. This effect is not present in a simple 
GARCH model. More complex types of ARCH models have to be developed to 
account for the heterogeneity found in high-frequency data, such as the HARCH 
(Heterogeneous Autoregressive Conditional Heteroskedasticity) model. 

The HARCH process proposed in this section has a variance equation based 
on returns over intervals of different sizes. The empirical behavior of lagged cor-
relation can be reproduced well with this new process. At the same time, HARCH 
is able to reproduce the long memory of volatility,5 as found in Section 7.3.2, 
Dacorogna et al. (1993), and Ding et al. (1993). Moreover, the terms of the con-
ditional variance of HARCH reflect the component structure of the market in a 
natural way. 

As with most processes from the ARCH family, HARCH is based on squared 
returns,6 with their good analytical tractability. Whereas the convergence problem 
of the fourth moment of the return distribution forced us to define volatility in 
terms of absolute returns in the correlation analysis of Section 7.4.1, there is no 
such constraint for the volatility equation of the HARCH process. 

8.3.1 The HARCH Model 

In this section, we present the HARCH model as it was first presented by Muller 
et al. (1997a). This should facilitate the understanding of the approach but this 
initial formulation as the initial ARCH formulation is cumbersome to compute. 
In the next sections, we shall see a formulation with a much faster and simpler 
computation and estimation. As in Equation 8.2, the returns rt of a HARCH(n) 
process are defined with the random variable et, which is identically and indepen-
dently distributed (i.i.d.) and follows a distribution function with zero expectation 
and unit variance:7

where 

rt = 6r Et 
2 

a2 = CO + Ec; Ert_i
j=1 i=1 

(8.13) 

co > 0 , cn > 0 , ci > 0 for j = 1 . . . n — 1 (8.14) 

5 The FIGARCH process, Baillie et al. (1996), has been designed to model the long memory but 
cannot reproduce the lead-lag correlation of Section 7.4.2 as it is still based on returns observed over 
intervals of constant size. 

6 Except for a process class proposed by Ding et al. (1993), which models volatility in terms of 
different powers of absolute returns 

7 Here, we utilize a normal distribution and alternatively explore Student-t distributions. 
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The equation for the variance a? is a linear combination of the squares of aggre-
gated returns. Aggregated returns may extend over some long intervals from a 
time point in the distant past up to time t — 1. The heterogeneous set of relevant 
interval sizes leads to the process named HARCH for "Heterogeneous Autore-
gressive Conditional Heteroskedasticity." The first "H" may also stand for the 
heterogeneous market if we follow that hypothesis as proposed in Section 7.4. 

The HARCH process belongs to the wide ARCH family but differs from all 
other ARCH-type processes in the unique property of considering the volatilities 
of returns measured over different interval sizes. The Quadratic ARCH (QARCH) 
process (see Sentana, 1991) is an exception. Although QARCH was not developed 
for treating different interval sizes, it can be regarded as a generalized form of 
HARCH as explained in Section 8.3.3. 

The coefficients c cn should not be regarded as free parameters of the 
model. The heterogeneous market approach leads to a low number of free model 
parameters, which determine a much higher number n of coefficients modeling 
the long memory of volatility. 

The explicit formulation of HARCH(2) may help to illustrate the special prop-
erties of the HARCH process.8 The variance equation of HARCH(2) can be written 
in two forms: 

Crt2 =. CO + Cl rt2-1 c2 (rt--1 rt_2)2

co (ci c2) ri+ C2 rt2_2 -I- 2 C2 rt_i rt_2 (8.15) 

The second form of this HARCH(2) process can be identified as an ordinary 
ARCH(2) process, except for its last term which contains the mixed product 
rt_irt _,. In other ARCH-type processes, the absolute values of returns matter 
where in HARCH, also their signs matter. Two subsequent returns of the same 
size and in the same direction will cause a higher contribution to the variance 
process than two subsequent returns that cancel out each other. 

The variance, the unconditional expectation of squared returns, can be derived 
from Equation 8.13: 

n [ j 
E(r) = E(crt2) = co + cj E(r21) (8.16) 

j=1 

The cross products, such as rt_irt _2 in Equation 8.15, have no influence here 
as their expectation is zero. A necessary condition of stationarity is constant 
unconditional variance: 

E(r) = , i > 1 (8.17) 

8 Whereas HARCH(1) is identical to ARCH(1). 
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Inserting this in Equation 8.16, we obtain the variance 

E(r,2) = 
co 

, 
— 2 J=1 J ci 

which must be finite and positive 

(8.18) 

(8.19) 

This necessary stationarity condition is also a sufficient condition for both the 
stationarity of the process and the existence of the variance, the second moment. 
Proving this is not trivial and we do not follow here the path chosen by Engle 
(1982) and Bollerslev (1986) because the mixed products, such as rt_1rt_2, make 
the matrix formulation of the problem difficult. The HARCH process can be seen 
as a Markov chain. Meyn and Tweedie (1993) have obtained some results for 
the ergodicity and recurrence of Markov chains that can be used for proving the 
stationarity and the moment condition. The complete proof is given by Dacorogna 
et al. (1996). 

The conditions for the existence and constant unconditional expectation of 
higher moments can be obtained through steps analogous to Equations 8.16 through 
8.19, but the computation becomes increasingly tedious for higher moments and 
larger n values. The expectation of the 2mth moment is 

E(r ni) = E(gi2m) E(4m) (8.20) 

Equation 8.13 of the variance is inserted in E(oPi) and all the terms are explicitly 
computed. Some products of powers of returns have nonzero expectations, leading 
to an equation system for these expectations and E(crt2m). The equation system 
has the dimension in for n = 2 and higher for larger n values. In the relatively 
simple case of the fourth moment (tn = 2) of HARCH(2) (n = 2), the expectation 
E(r?Tt2 1) has to be computed and solved together with the equation for E(r4). In 

the standard case of st following a normal distribution, N(0, 1), E(4) = 3 and 
the following necessary condition is obtained to keep the fourth moment finite 

3 [c3' + (ci + C2)2] + c2 [1 + 3 (ci + 6c1c2 4c.i)] < 1 (8.21) 

The sufficiency of this necessary fourth moment condition is also proven in Da-
corogna et al. (1996). In Figure 8.4, the second and fourth moment conditions 
according to Equations 8.19 and 8.21, plus the sixth moment condition following 
an analogously derived equation, are plotted for a HARCH(2) process. Processes 
with a finite second and a diverging fourth moment exist in a large part of the 
c1-c2-plane. This is remarkable because half-hourly FX returns have an empiri-
cal distribution with a tail index between 2 and 4, as found in Section 5.4.2 and 
Dacorogna et al. (2001a). 
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FIGURE 8.4 Moment conditions for the coefficients c1 and c2 of a HARCH (2) process 
with a normally distributed et. The straight line on the right represents the boundary for 
the stationarity and the existence of the second moment. The curves in the middle and 
on the left represent the boundaries for the existence of the 4th and 6th moments. 

8.3.2 HARCH and Market Components 

The memory in the volatility is known to be long, as discussed in Section 7.3.2. 
Therefore, we need a high order of HARCH, a large n, to model the behavior of 
empirical time series. This implies a high number of coefficients cj, which should 
not be free parameters of HARCH. We need a parsimonious parametrization. In 
the case of ARCH, some high-order processes can be formulated as low-order 
GARCH processes (Bollerslev, 1986), but no analogous method is at hand to 
reduce the number of HARCH parameters. 

Our approach of parsimonious parametrization allows for the exploration of 
the component structure of the market. The coefficients c1 reflect the relative im-
pact of different market components with different relevant time intervals. There-
fore, we select m market components corresponding to m free parameters, each 
associated to some coefficients ci in a limited range of j. The j ranges are sep-
arated by powers of a natural number p, so the typical time interval size of a 
component differs from that of the neighbor component by a factor of p. All cj 
values within one component are assumed to be the same: 

cj = Ci = Ciu) 

i(j) = max ( k kEN A k< logj  2 , j=  1 ... pm-1
log p 

(8.22) 

Only in different coefficients Ci have to be estimated to determine the whole set 
of n = p---1 coefficients cj. 
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Table 8.3 presents such a component scheme for a time series in ft-time with 
a basic grid of 30 min, p = 4, and 7 components (m = 7). An interval of 30-
min in 0—time means only some 7 min during the daily volatility peaks around 
14:00 GMT, some 80 min during the Far Eastern lunch break, and even more 
during weekends and holidays with their very low volatility. Table 8.3 shows the 
minimum relevant time intervals of a component rather than the total size of the 
volatility memory. In fact, the memory of the volatility can greatly exceed the 
indicated interval. The medium-term traders of component 5, for example, are 
not interested in the volatility of hourly returns, are most interested in volatilities 
observed over 1 to 3 idays, and are also interested in volatilities observed over 
longer intervals. 

The choice of the number of components, m = 7, and the factor between the 
typical time resolutions of the components, p = 4, is reasonable but somewhat 
arbitrary. The essential results of this chapter do not strongly depend on this 
choice and can be found also with other m and p values. The model should cover 
the variety of relevant time resolutions of the market.9 A too small choice of 
m misses the chance of revealing the component structure; a too large m (with 
a small p) leads to too many parameters to be estimated and an unrealistically 
narrow definition of market components. 

A quantity more suitable for the intuitive understanding than a coefficient Ci 
is the impact h of a market component. The expected variance formula, Equa-
tion 8.18, strongly suggests a definition of the impact of the j th coefficient as jci. 
The impact /i of the i th component is defined as the sum of the impacts of all its 
coefficients c j. By inserting the coefficient definitions of Equation 8.22, we obtain 

Il = Cl = Cl 

i-1

E = (p — 1,1-2 P + +1 

j=pr-2+1 2 
Ci for > 

(8.23) 

The impact of the long-term components may be considerable even when the 
coefficients appear to be small. The impact of the fifth component, for example, 
is /5 = 30816C5, where p is assumed to be 4 as in Table 8.3. 

The stationarity condition (Equation 8.19) can now be formulated in terms of 
the impacts. Their sum is smaller than 1: 

m 

< 1 (8.24) 

9 The choice of Table 8.3 is m = 7. An even higher value, m = 8, has also been tested, leading 
to a low, insignificant impact of the eighth component and a rejection in a likelihood ratio test. We 
conclude that the seventh component is the last relevant one on the long-term side. 
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TABLE 8.3 Definition of the HARCH components. 

A HARCH model with seven market components, each with a range of indices j. All 

coefficients cj of a component are identical and only seven parameters need to be esti-

mated. The time intervals are the relevant intervals for the volatility perception of the 

time components (not the total duration of their memory). These basic intervals are given 

in 0--time and also in physical time. Two columns show the minimum and maximum size of 
the interval that can occur for a time component, depending also on the daytime. These 

time component descriptions may contribute to a better understanding of the model. 

Range of j Approximate 
range of time 
intervals in 

Shortest 
Interval (at 
daily or 
weekly 
volatility 
peaks) in 
physical time 

Longest 
interval (but 
avoiding 
weekends 
and 
holidays) in 
physical time 

1 1 30 min 7 min 80 min 

2 2 — 4 1 — 2 hr 16 min 3 1 hr 

3 5 — 16 2 — 8 hr 50 min 9 hr 

4 17-64 8 —32 hr 2 4 hr 1 day 

5 65 — 256 11 — 5 days 2 1 day 3 1 days 

6 257 — 1024 5 1 — 21 
days 

3-t days 2 21 days 
(weekends 
always 
contained) 

7 1025 — 4096 3 —12 
weeks 

3 weeks 12 weeks 
(weekends 
always 
contained) 

Description of the time 
component 

Short-term, intraday deal-
ers (arbitrage opportuni-
ties), market makers 

Intraday dealers with few 
transactions per day 

Dealers with overnight po-
sitions and occasional in-
traday transactions 

Few traders concerned 
(time intervals often be-
yond local business hours 
but less than a business 
day) 

Medium-term traders, no 
intraday trading 

Long-term traders 

Long-term investors, cen-
tral banks 
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8.3.3 Generalization of the Process Equation 

In Equation 8.13, all the returns considered by the variance equation are observed 
over "recent" intervals ending at time t 1. This strong limitation will be justified 
by its empirical success, but we can also formulate a more general process equation 
with observation intervals ending in the past, before t —1, 

rt = crt €t 

2 
2 x-Nn v , j 12- at = CO + CJIc rt—i) —...4=1 I at —i 

where 

co > 0 , cik > 0 for j 1 n, k = 1 j; 
bi > 0 for i = 1 . q 

(8.25) 

(826) 

This generalized process equation considers all returns between any pair of two 
time points in the period between t — n and t — 1. It covers the case of HARCH 
(all ef t, = 0 except some ci ) as well as that of ARCH and GARCH (all cik = 
0 except some cji). The last term of the variance equation is a "GARCH term," 
which may contribute to a parsimonious model formulation. Such a GARCH term 
may partially model the fading volatility memory of several market components 
together, but therefore miss the chance of clearly indicating the actual component 
structure. The main idea of HARCH, taking intervals of different sizes, may also 
be combined with other ideas from the recent literature about GARCH variations. 
HARCH can also be regarded as a special case of the Quadratic ARCH model 
suggested by Sentana (1991). The results obtained for QARCH also apply to 
HARCH. However, QARCH has been developed in a very different context. Sen-
tana (1991) gives neither a concept of volatilities observed over long intervals nor 
the stationarity and moment conditions as in Section 8.3.1. 

For HARCH, the simple form of Equation 8.13 is preferred. This HARCH 
is successful in empirical studies, but its computation and estimation is tedious 
because of the large number of coefficients cf. This can be strongly improved 
by introducing the EMA-HARCH process with its partial volatility concept in the 
next section. 

8.3.4 EMA-HARCH Model 

In HARCH, the coefficients ci cn are not regarded as free parameters of the 
model. The heterogeneous market approach leads to a low number of free model 
parameters, which determine a much higher number n of dependent coefficients 
modeling the long memory of volatility. 

The approach is to keep in the equation only a handful of representative interval 
sizes instead of keeping all of them, and replace the influence of the neighboring 
interval sizes by an exponential moving average (EMA) of the returns measured 
on each interval. This also has the advantage of including a memory of the past 
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intervals. Let us now introduce the concept of partial volatility orT, which can be 

regarded as the contribution of the / h. component to the total market volatility 0-2. 
Here the volatility cr.? is defined as the volatility observed over an interval of size 
kj. We can reformulate the HARCH equation in terms of o-j as follows: 

rt = 6 t Et 

= co -1- EC • 6j ,t 
j=1 

(8.27) 

where n is now the number of time components in the model. The notation is 
slightly changed to Cj instead of cj used in the old formulation to reflect the 
different meaning of the coefficients. Unlike the standard HARCH, the partial 
volatility o-y has a memory of the volatility of past intervals of size kj. The formal 

definition of al is 

2 0- . 2 

) kj 2

+ (1 — ,u,j) E rt—i (8.28) 

where k j is the aggregation factor of the returns and takes n possible values, 
following the relation 

ki = pi-2 + 1 for j > 1 with ki 1 (8.29) 

When p = 4, kj can only take the values 1, 2, 5, 17, 65, 257, 1025, • • • , 4' 2 -I- 1. 
For a 5-min data series, this would mean that the horizons would correspond to 5 
min, 10 min, 25 min and so on. The construction of Equation 8.29 ensures that the 
time components (k1 's) are economically meaningful. Equation 8.28 is the iterative 
formula for an exponentially weighted moving average, a special application of 
Equation 3.51. The volatility memory is defined as a moving average of recent 
volatility. The depth of the volatility memory is determined by the constant kti: 

M(10 
j = e (8.30) 

where the memory decay time constant of the component is given as the function 
M of the component's volatility interval kJ. Without introducing new parameters, 
M(kj) can be defined as 

M(kj) 
(ki+i — ki) 

2 
(8.31) 

This definition is based on the start and the end point of the component interval 
kj and makes sure that that the EMA kernel is centered at the characteristic time 
horizon of the component. 
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It is easy to prove that a necessary stationarity condition for the new formu-
lation is 

EV,/ < 
j=1 

(8.32) 

The proof relies on the fact that the expectation of the exponential moving average 
is the same as the expectation of the underlying time series and that the expectation 
of cross terms is zero. A similar proof as in Dacorogna et al. (1998a) can be given 
for the sufficiency of this condition. 

We can now define the impact I j of each component, 

Ij = kiCj (8.33) 

Every component with a coefficient Cj has an impact Ij on the conditional volatility 
process. The stationarity condition, Equation 8.32, can be re-formulated using the 
sum of impacts: 

< 1 (8.34) 

An iterative formula needs an initial value for o-? at the beginning of the 
time series. A reasonable assumption of that initial value is the unconditional 
expectation of qt. Here the first value is computed from a data sample prior to 
the model estimation sample. We term this sample the "build-up" sample. 

8.3.5 Estimating HARCH and EMA-HARCH Models 

HARCH and EMA-HARCH models are applied to and estimated for empirical 
FX data here. The time series are homogeneous in 0-time, which removes the 
seasonal pattern of intraday volatility. The time interval is 30 min and the sample 
includes 10 years of data from January 1, 1987, to December 31, 1996. 

For the computation and estimation of both HARCH and EMA-HARCH, we 
use seven components. For HARCH, the components of Table 8.3 are used. For 
EMA-HARCH, one component is built from only one time interval but includes, 
according to Equation 8.28, a moving average that extends over a certain range, 
which should account for the neighboring time intervals. In fact, there are now two 
parameters controlling the component definition. The time interval size over which 
returns are computed, kJ., and the range of the moving average, M(kj). Both of 
them are fixed and the optimization is carried out to solve the Cj parameters. The 
optimization is implemented by searching for the maximum of the log-likelihood 
function. The procedure we follow to find the maximum is described at the end of 
Section 8.2.1. It combines two methods: a genetic algorithm (GA) search (Pictet 
et al., 1995) and the Berndt, Hall, Hall, and Hausman (BHHH) algorithm (Berndt 
et al., 1974). 
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TABLE 8.4 HARCH coefficients for USD-DEM, 
Comparison between the coefficients and impacts of the two HARCH processes from 
a half-hourly USD-DEM series, which is equally spaced in 6-time over 10 years. Instead 
of the coefficients Ci, the impacts Ii are given. These provide a direct measure of the 

impacts of the market components on the HARCH variance. The market components are 
those of Table 8.3 for HARCH and as in Equations 8.28 and 8.30 for EMA-HARCH. The 
distribution of the random variable 6(t) is normal with zero mean and a unit variance. 

USD-DEM 

Coefficient Estimate 

HARCH 

Standard error r-statistics Estimate 

EMA-HARCH 

Standard error [-statistics 

co 1.276x10-7 0.03994x10-7 31.94 0.529x10-7 0.04399x10-7 21.01 

/1 0 1309 0.007151 18.30 0.1476 0.008295 17.80 

12 0.1930 0.010010 19.28 0 1875 0.012297 15.25 

/3 0.1618 0.009179 17.62 0.1829 0.012545 14.58 

14 0.0703 0.007363 9.55 0.0507 0.010324 4.91 

/5 0.1003 0.006774 14.81 0.1434 0.010952 13.10 

16 0.1014 0.006892 14 71 0.1120 0.011835 9 47 

/7 0.0990 0.006118 16.18 0.1145 0.010540 10.86 

Log-

likelihood 

5.7947 5.8014 

The result of the optimization procedure is a set of ci coefficients from which 
the component impacts are calculated using Equation 8.23 (for HARCH) or Equa-
tion 8.33 (for EMA-HARCH). The sum of impacts I; must be below one for 
stationarity of the process (Equations 8.24 and 8.34). In Table 8.4, the coefficients 
for both the HARCH and EMA-HARCH are shown with their t -statistics for USD-
DEM. They are obtained on exactly the same data set. The log-likelihoods can be 
compared because both models have the same number of independent coefficients. 
Clearly, the log-likelihood is improved by going to EMA-HARCH. In both cases, 
all coefficients are highly significant according to the t-statistics and contribute 
to the variance equation. The stationarity property is fulfilled in both cases. The 
HARCH and EMA-HARCH have total impacts of 0.8567 and 0.9386, respectively. 
The impacts of the different components are remarkably similar. Two small dif-
ferences are worth noticing. The relative importance of the long-term components 
is slightly higher for EMA-HARCH (37% instead of 35%) and the minimum for 
the fourth component is more pronounced in EMA-HARCH. The t-statistics are 
also consistently smaller for EMA-HARCH than for HARCH but still highly sig-
nificant in all cases. The residuals in both formulations still present an excess 
kurtosis, as was noticed in Muller et al. (1997a) for HARCH. 

These results show that we have achieved the goal of redesigning the HARCH 
process in terms of moving averages. We are able to keep and even improve on the 
properties of the original HARCH and to considerably reduce the computational 
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FIGURE 8.5 Impacts of market components of HARCH processes with components as 
defined in Table 8.3. Each HARCH model has been made for a particular FX rate by fitting 
a half-hourly time series equally spaced in 6-time over 7 years. The differences between 
the impacts, in particular the low values of the fourth component, are highly significant (see 
the error values of Table 8.4). The values for USD-DEM are those presented in Table 8.4 
and they are not fundamentally different from those of other FX rates. 

time to optimize the model. The EMA formulation of the process equation reduces 
this time by a factor of 1000, making the computation of HARCH volatility much 
more tractable even with limited computational power. In the next section, we will 
explore the forecasting ability of these models and compare it to a more traditional 
approach to volatility. 

The impacts /i are also plotted in a histogram (Figure 8.5) where it is possible 
to compare the results for different FX rates. The impact of the fourth component 
is the weakest among all impacts. This is not only for USD-DEM but also many 
other rates and also for other sampling periods.10 The fourth component has a 

1° When a 7-year sample is split into two parts of 3 1/2 years, the estimated coefficients on both of 
these subsamples are quite stable. 
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TABLE 8.5 Results of the EMA-HARCH for the LIFFE Three-Month Euromark. 

Results of the EMA-HARCH process estimate for 3-hr 19-time intervals for the different 
forward rates for the LIFFE Three-Month Euromark. The underlying data are from the 
LIFFE Three-Month Euromark. Standard errors are given. Instead of the coefficients Ci 
(for i > 0), the corresponding impacts Ii are given. Data sample: from April 6, 1992, 
to December 30, 1997, representing 16,774 observations. The forward rates are labeled 
according to the market conventions for forward rate agreements, as explained in the text. 
The 3x6 forward interest rate, for example, applies to the interval starting in 3 months 
and ending in 6 months. 

3x6 6x9 9x12 12x15 15x18 

E 

K0 2.90 ± 0.15 4.54 ± 0.24 4.29 ± 0.24 6.45 ± 0.39 4.22 ± 0.37 
/1 0.20 ± 0.01 0.17 ± 0.01 0.19±0.01 0.18 ± 0.01 0.12 ± 0.01 

/2 0.01 + 0.01 0.00 + 0.02 0.00 ± 0.02 0.01±0.01 0.00 ± 0.02 
/3 0.17 ± 0.02 0.16 ± 0.02 0.16 ± 0.02 0.15 + 0.02 0.15 + 0.02 
/4 0.08 ± 0.02 0.11 ± 0.02 0.13 ± 0.02 0.14 ± 0.02 0.12 ± 0.02 
/5 0.11 + 0.02 0.15 ± 0.02 0.16 ± 0.02 0.15 ± 0.02 0.19 + 0.02 
/6 0.23 ± 0.02 0.22 ± 0.02 0.19 ± 0.02 0.08 ± 0.02 0.11 ± 0.02 
/7 0.00 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 

L 7.753 7.478 7.345 7.320 7.307 

typical time horizon of around 12 hr-too long for intraday dealers and too short 
for other traders. This naturally explains the weakness of that component. 

When comparing the impacts of Figure 8.5 with the component definition of 
Table 8.3, we see further interesting features captured by HARCH models. First, 
the short-term components have, in all cases, the largest impacts. These short-
term components model essentially the intraday dealers and the market makers 
who are known to dominate the market. Second, the similarity in the impacts of 
the USD-CHF and USD-DEM are plausible as it is well known that the Swiss 
National Bank policy was tightly tied to the USD-CHF to the USD-DEM rates. 
The relative weakness of the longer-term components for the GBP-USD is another 

• relevant piece of information that can be gathered from this parametrization and 
has been confirmed to us by market participants. Since the 1992 crisis, the long-
term investors have been reluctant to invest in this market and have been more 
concentrated on the cross rate GBP-DEM. The relative impact of the fifth and the 
sixth components are in the same order for USD-CHF and USD-DEM but inverted 
in the case of both USD-JPY and GBP-USD. 

8.3.6 HARCH in Interest Rate Modeling 

As described in Chapter 7, we hayed performed a lead-lag correlation analysis and 
established the HARCH effect for forward interest rates implied by interest rate 
futures, constructed according to Section 2.4.2 (see Figure 7.9). In this section, 
we use the HARCH parametrization in terms of market components to investigate 
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whether we obtain similar features as in the case of foreign exchange rates. To avoid 
a systematic, deterministic decrease of volatility as explained by Section 5.6.4, we 
use forward rates for fixed time intervals. The forward rates are labeled according 
to the market conventions for forward rate agreements. The /xJ forward rate (e.g., 
the 3x6 forward rate) is the forward rate quoted at time t and applicable for the 
interval starting at time (t I) and ending at time (t J) (I and J are expressed in 
months). The corresponding time-to-start is I months and the maturity is (J — I) 
months. 

The results of the EMA-HARCH process estimation for 3-hr 1,-time intervals 

for the different forward rates for the LIFFE Three-Month Euromark are given 

in Table 8.5. The EMA-HARCH process is estimated for each forward rate by 
maximizing the log-likelihood and use data from April 6, 1992, to December 30, 
1997, with about 16,800 observations. The distribution of the random variable 
et is normal with zero mean and a unit variance. The market components (with 
p = 4) are similar to the ones described in the previous section. Like in the case of 
FX rates, the impact coefficient for the interval range from 6 hr to 1 days (second 
component) is very small. These results also indicate a decreasing impact of the 
longer-term components (corresponding to the market actors with the longest time-
horizon) going from the first forward rate (i.e., whose time-to-start is closest in the 
future) to the last one (i.e., whose time-to-start is farthest in the future), reflecting 
the decrease in the volatility autocorrelation. The sum of the impacts is smaller 
than one in all cases, meaning that the estimated processes are stationary according 
to Equation 8.34. 

8.4 FORECASTING SHORT-TERM VOLATILITY 

The true test of the veracity of a volatility model is its ability to forecast the future 
behavior of volatility. This means that the data used to test the model are distinct 
from the data used to find the model parameters. All of the analyses described in 
this section are performed in an out-of-sample setting. 

There is some added complexity in the case of volatility models where there 
is no unique definition of volatility. Andersen and Bollerslev (1998a) showed that, 
if the wrong estimators of volatility are taken, it is not possible to really test the 
forecasting quality of a model. That is why it is important to set a framework in 
which a forecasting performance analysis can be performed. 

8.4.1 A Framework to Measure the Forecasting Performance 

We choose here a path similar to that proposed in Taylor and Xu (1997). We 
construct a time series of realized hourly volatility, vh (t), from our time series of 
returns as follows: 

oh 

Vh,t = r2 • t—i 
i=i 

(8.35) 
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where ab is the aggregation factor. In this case, we use data points every 10 min 

in t9--time, so the aggregation factor is ah = 6. 
Forecasts of different models are compared to the realized volatility of Equa-

tion 8.35. The one-step ahead forecasts are based on hourly returns in .0-time. 
The advantage of using hourly returns instead of 30-min returns as in the previous 
section is that hourly forecasts are compatible with the historical hourly volatility 

defined in Equation 8.35. Four models are studied here. 

• The first model is used as a benchmark and is a naive historical model 
inspired by the effect described in Section 7.4.2 and Miiller et al. (1997a) 

where low-frequency volatility predicts high-frequency volatility. The 
historical volatility is computed over a given day measured from the hourly 
returns. This quantity, properly normalized, is used as a predictor for the 
next hour volatility, v(t + 1), as defined in Equation 8.35. Formally the 
forecasting model vb is 

24 6j 

Vb,t 
1 

24 1—• 
E rt—i 

j=1 )2 (8.36) 

where the factor in front of the summation is here to normalize vb to hourly 
volatility. 

• GARCH(1,1) is 

Vgarch,t = ht = ao + aist2_1 + Pik-1 (8.37) 

where et is and follows a normal distribution function with zero mean 
and unit variance. 

• The HARCH model in Equation 8.13 and the seven components of Ta-
ble 8.3, introduced by Muller et al. (1997a). 

• The EMA-HARCH model in Equation 8.27 and 8.28 with seven compo-
nents. 

The three parameter models are optimized over a sample of 5 years of hourly 
data using the estimation procedure described in Section 9.3.5. The forecasts 
are then analyzed over the 5 remaining years. We term this procedure the static 
optimization. To account for possible changes in the model parameters, we also 
recompute them every year using a moving sample of 5 years. We term this 
procedure dynamic optimization. In this case, the performance is always tested 
outside of the gliding sample to ensure that the test is fully out-of-sample. In both 
cases, we use an out-of-sample period of 5 years of hourly data, which represents 
more than 43,000 observations. 

We compare the accuracy of the four forecasting models to the realized hourly 
volatility of Equation 8.35. The quantities of interest are the forecasting signal, 

s f = v ft — Vh,t (8.38) 
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where f is any of the forecasting models, and the realized signal, 

sr = Vh,t+1 Vh,t (8.39) 

The quantity -.Uf, t is taken in the estimation sample either directly or resealed by 

the ratio of the averages vh and z'ip This makes the forecast values on average 
closer to the historical volatility. In the rest of this chapter, we call the quantity, 
(vh • iif, t )/i5f, the resealed forecast. 

In this formulation, performance measures proposed in Dacorogna et al. 
(1996) can be applied because the quantities defined in Equations 8.38 and 8.39 
can take positive and negative values contrary to the volatilities, which are positive 
definite quantities. One of these measures is the direction quality, 

Ar(Nf sf • sr > 01) 
Qd = (8.40) 

Mavf sf  'Sr 0}) 

where N is a function that gives the number of elements of a particular set of 
variables. It should be noted that this definition does not test the cases where 
either the forecast is the same as the current volatility or the volatility at time t +1 
is the same as the current one. This is, of course, unlikely to occur in our particular 
case. A detailed statistical discussion of this measure can be found in Pesaran and 
Timmerman (1992). 

In addition to this measure, we use a measure that combines the size of the 
movements and the direction quality. It is often called the realized potential, 

sign(sf • sr)  ISr I 
= (8.41) 

E isr 
In fact, the measures Qr and Qd are not independent and Qr is a weighted average 
of sign(sf • sr) whereas 2Qd — 1 is the corresponding unweighted average. It is 
easy to show that if 

Qr > 2Qd — 1 (8.42) 

the forecast of the sign of sr for large Is, I values is better than average. 
A more traditional measure such as the comparison of the absolute error of a 

model to a benchmark model can also be used. This benchmark model is chosen 
to be the historical volatility as defined in Equation 8.36, vb. The quantity 

E Isr _ model
Qf = (8.43) 

L_ 
_ s bf enchmark 

is a quality measure, which increases with an increasing performance of the model. 
If Q f > 0, the model outperforms the benchmark. If Q f < 0, the benchmark 
outperforms the model. The second part of Equation 8.43 is similar to the known 
Theil's U-statistic, Makridakis et al. (1983), except that we use the absolute value 
instead of the squared errors. 
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TABLE 8.6 Forecasting performance for USD-DEM. 

Forecasting accuracy of various models in predicting short-term market volatility. The 
performance is measured every hour over 5 years, from January 1, 1992, to December 
31, 1996, with 43,230 observations. In parentheses, the accuracy of rescaled forecasts is 
shown. 

USD-DEM Qd Qr Q f 

Static Optimization 

Benchmark 67.7% (67.6%) 54.2% (54.3%) 0.000 

GARCH(1,1) 67.8% (67.3%) 58.5% (59.7%) 0.085 (0.072) 

HARCH(7c) 69.2% (68.7%) 58.3% (59.2%) 0.134 (0.129) 

EMA-HARCH(7) 69.4% (68.8%) 60.7% (62.5%) 0.140 (0.128) 

Dynamic Optimization 

Benchmark 67.7% (67.4%) 54.2% (54.6%) 0.000 

GARCH(1,1) 67.0% (66.0%) 59.5% (59.8%) 0.074 (0.057) 

HARCH(7c) 67.7% (66.8%) 60.1% (60.8%) 0.113 (0.102) 

EMA-HARCH(7) 68.8% (67.7%) 62.4% (62.9%) 0.133 (0.117) 

S 

i. 

The summations (including J\i) in Equations 8.40, 8.41, and 8.43 are over all 
hours in the out-of-sample period. The number of independent observations is 
large so that the degrees of freedom of the calculated tests are sufficiently large. 
Performance measures based oh squares such as the signal correlation or squared 
errors are not used because our interest is in squared returns and the fourth moment 
of the distribution of returns may not be finite, as discussed in Section 5.4.2. 

8.4.2 Performance of ARCH-Type Models 

In Table 8.6, the results for the different performance measures are presented for 
the most traded FX rate, USD-DEM, for the static and dynamic optimizations. In 
parentheses, the results for the scaled forecasts are presented. For all measures, 
three parameter models perform better than the benchmark and the EMA-HARCH 
performs the best. The forecast accuracy is remarkable for all ARCH-type models. 
In more than two-thirds of the cases, the forecast direction is correctly predicted 
and the mean absolute errors are smaller than the benchmark errors for all models. 
The realized potential measure shows that the forecast of volatility change is ac-
curate not only for small Is,- I but also for large ones. The condition expressed in 
Equation 8.42 is always satisfied for all models. Neither the scaled forecast nor 
the dynamic optimization seems to significantly improve the forecasting accuracy. 
The realized potential Qr is the only measure that consistently improves with 
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dynamic optimization. Examining the model coefficients computed in moving 
samples shows that they oscillate around mean values. No structural changes in 
the coefficients were detected. The accuracy improvement in Q, together with 
the loss in Q f in the case of dynamic optimization indicates that the prediction 
of large movements is improved at the cost of the prediction of direction of small 
real movements. From the point of view of forecasting short-term volatility, the 
EMA-HARCH is the best of the models considered here and compares favorably 
to HARCH. Similar conclusions can be drawn from the results for four other FX 
rates." The cross rate JPY-DEM presents results slightly less accurate than the 
other currencies, but it should be noted that the early half of the sample has been 
synthetically computed from USD-DEM and USD-JPY. This may lead to noise in 
the computation of hourly volatility and affect the forecast quality. 

11 The interested reader will find them m Dacorogna et al. (1998b), where similar tables are listed 
for USD-JPY, GBP-USD, USD-CHF, and DEM-JPY. 
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9 
FORECASTING RISK AND RETURN 

9.1 INTRODUCTION TO FORECASTING 

This section examines forecasting models for different variables. The predicted 
variable should be observable, so the forecasts and the true variable values can be 
compared in the future to allow for statistical forecast quality tests. The following 
variables can be predicted: 

■ The absolute size of future returns. This can be done in different mathemat-
ical forms, one of them using realized volatility as defined in Section 3.2.4. 
We ignore the direction of the future price returns here and assume their 
probability distribution function to be symmetric by default. Under this 
assumption, the chosen forecast variable also measures the risk of holding 
a position in the financial asset. 

■ The future return over the forecast period, including its sign. This also 
implies a price forecast because the future price is the price now plus the 
future return. 

■ A full probability distribution function of future returns. This is the most 
comprehensive goal. Given the natural uncertainty of forecasting, we are 
rarely able or willing to forecast details of the distribution function, and 
we are more than happy to have good forecasts of its center and its width. 

248 
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There are basically two approaches for constructing forecasting models. The 
foreign exchange market again serves as our main example. The first approach 
builds upon structural economic models testing various forms of market efficiency' 
or the study of the issues such as the purchasing power parity model and the 
modeling of risk premia (see Baillie and McMahon, 1989; MacDonald and Taylor, 
1992). Meese and Rogoff (1983) carried out the first comprehensive out-of-sample 
tests of these models, which they call structural models. 

Models following the second approach are often called time series models 
and are based on information extracted from the past of the time series through 
various forms of linear and nonlinear statistical operators and prefiltering tech-
niques. These types of models can be univariate or multivariate.2 In this chapter, 
we adopt the second approach and study univariate time series models by utilizing 
only past prices to forecast a given series. There are two main motivations for 
this approach. First, the absence of any theory for the short-term movements of 
the foreign exchange (FX) rates makes the structural models irrelevant for these 
horizons. Second, the availability of high-frequency data can capture many of the 
market effects that are relevant to the short-term movements, (e.g., the behavior 
of different market participants). 

The forecasting models presented in this chapter are univariate where only 
one time series is predicted. They are univariate not only in the predicted target 
variable but also in the information set used. Multivariate forecasting as an impor-
tant but complex subject is not discussed here, but Chapter 10 has some relevant 
discussions. 

The models work with high-frequency data as described by Chapter 2 and 
take into account every tick in the market. The predicted quantity (e.g., the price 
or future realized volatility) is related to a time horizon, (e.g., the return of the 
next hour or the volatility of one full business day from now.) The use of high-
frequency data allows us to make short-term forecasts for time intervals less than 
a day. This leads to a large number of observed forecast intervals and thus high 
statistical significance. 

In principle, the knowledge of the "true" data-generating process in the sense 
of Chapter 8 should also lead to the "true" forecasting model. We have indeed 
used statistical processes to generate forecasts and measured the success of these 
statistical processes in terms of their forecasting quality in Chapter 8. In practice, 
the way from a statistical process to a good forecasting model is not as straight-
forward. Many otherwise popular statistical processes have serious shortcomings 
when looking at the intradaily and temporally aggregated behavior, as shown in 
Section 8.2. Moreover, the statitical processes of that section are volatility models. 
The price aspect of these models is trivial by having the current price as expecta-
tion value for future prices. When moving to forecasting models, we can be more 
ambitious by also constructing nontrivial price forecasts. We also introduce new 

1 The reader may refer to Fama (1970, 1991). 

2 Granger and Newbold (1977) and Priestley (1989) are introductions to these types of models. 
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testing methods for forecasts. Thus the two topics, data-generating processes and 
forecasting, are only loosely related. 

Forecasting models can be tested by comparing the forecasts to the actual 
values of the predicted variable. A possible test criterion is the standard deviation 
of the forecasts from the actual values. Different test criteria can be computed 
by statistical means, using a test data sample as discussed in Section 9.4. The 
test result consists of not only a quantitative quality measure but also a statistical 
significance measure of this quality. The test sample can also be used to optimize 
the forecasting model and its parameters. In that case, the resulting optimized 
model should be tested in another sample (i.e., out-of-sample). The test results of 
the original sample (in-sample) cannot be used as an unbiased measure; they only 
give an upper limit of the otherwise unknown forecasting model quality. 

Two examples of univariate time series models are given: volatility forecast-
ing models used for risk assessment in Section 9.2 and a large real-time price 
forecasting system with live data feeds in Sections 9.3 and 9.4.3.3

9.2 FORECASTING VOLATILITY FOR VALUE-AT-RISK 

Risk can be measured by different means, for example, through an extreme value 
analysis as in Sections 5.4.2 and 5.4.3. Here we follow a simpler approach by 
regarding volatility as the variable that determines the risk. This is also the view 
of popular risk assessment methods. In these methods, the volatility value is 
inserted in a standard model to compute the Value-at-Risk (VaR): the expected loss 
of a portfolio after one business day corresponding to the 1% quantile,4 (i.e., in a 
scenario that is worse than 99% of the expected cases and better than the remaining 
1%). Inserting a volatility figure (computed from variances and covariances of 
returns of the portfolio assets) may not be enough to compute a reliable VaR. This 
is discussed by Dave and Stahl (1998), but is not the focus of interest here. 

The required volatility value is in fact a volatility forecast for the period from 
"now" to "now plus one business day." In this section, we discuss univariate 
volatility forecasting models. Multivariate volatility models need separate treat-
ment because they depend on the intradaily covariance or correlation between 
assets. This poses some problems as discussed in Chapter 10. 

9.2.1 Three Simple Volatility Forecasting Models 

Muller (2000) has a discussion ofvolatility forecasts based on time series operators 
as presented in Section 3.3. Following that paper, we consider three operator-
based volatility forecasting methods of increasing sophistication and quality: (1) 
the volatility forecasts of RiskMetricsTM developed by J. P. Morgan (1996) as a 

3 This forecasting model is running in real time as a part of the Olsen & Associates Information 
System (OIS). 

4 Our scientific interest also extends to forecast intervals other than one business day and quantiles 
other than 1%, of course. 
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well-known example, (2) an improved version based on tick-by-tick data, and (3) 
a further improved multi-horizon version. 

All of these volatility models can be seen as observations of volatility in the 
past (i.e., realized volatility measurements as Equations 3.8 or 3.68, for exam-
ple). However, the models are intended to be applied to the future. The computed 
volatility values, although measured in the past, are estimates of the future volatil-
ity and thus measures of risk. Autoregressive heteroskedasticity as discussed in 
Section 5.6.1 is the stylized fact that justifies using a certain past volatility as an 
estimate of future volatility. Section 9.3 has another approach where the volatility 
forecast is no longer a realized volatility of the past, and Section 8.4.2 considers 
volatility forecasts directly derived from statistical processes. 

The RiskMetrics methodology uses a well-known example of a simple volatil-
ity forecast based on an IGARCH process with the following conditional expec-
tation of the squared return: 

o2 (t) = µ a2(t — At) (1 — µ) [x(t) — x(t — A Of (9.1) 

with p, = 0.94. This formula is evaluated only once per business day, at a given 
daytime; the resulting volatility value is valid until it is replaced by a new one, 
one business day later. The time scale t is thus a business time scale omitting 
weekends, with At = 1 business day. Equation 9.1 is an exponential moving 
average (EMA) iteration as explained in Section 3.3.5 and can be written as such, 
using the notation of Equation 3.51, 

12(t) = EMA [r; [x(t) — x(t — At)12] (9.2) 

evaluated at discrete time points separated by At = 1 business day, with an EMA 
range of T = — = 15.67 business days. The EMA operator is explained in 
Section 3.3.5, but Equation 3.52 has to be replaced here by a version for discrete, 
homogeneous time series, 

1 
= v =   (9.3) 

1 + a + 1 

as explained by Miiller (1991). The only parameter, bt = 0.94, has been chosen 
to optimize the volatility forecasting quality of Equation 9.1 over a wide range of 
financial assets and test periods according to J. P. Morgan (1996). 

In Figure 9.1, two volatilities are presented. The difference between the two 
curves solely originates from the choice of daytime when the price x is sampled 
and the volatility is computed by Equation 9.1 or 9.2. One curve is sampled at 
7 a.m. (Greenwich Mean Time) GMT which is a time in the late afternoon of East 
Asian time zones or a suitable daytime for the daily risk calculations of an East 
Asian risk manager. The other curve is sampled at 5 p.m. GMT, a suitable daytime 
for a risk manager in London. 

The differences between the two curves are surprisingly large: up to 25%, an 
alarming uncertainty for risk managers. In our case, two risk managers measure 
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FIGURE 9.1 Top panel: Daily standard RiskMetrics USD-JPY volatility for January, 
1999 to February 1999. Circles: Data sampled at 7 a.m. GMT. Diamonds: Data sampled 
at 5 p.m. GMT. Bottom panel: The USD-JPY price plotted against time. 

very different volatility and thus risk levels for the same financial instrument, just 
because they live in different time zones. A difference can persist over weeks, as 
shown in Figure 9.1. This figure is just an example. The same surprisingly strong 
effect can also be found for other financial instruments, sampling periods, choices 
of daytime, and process equations. 

Both deviating volatility values cannot be right at the same time; there must 
be an error in these values. This error is of stochastic nature; there is no systematic 
bias dependent on the daytime. In Figure 9.1, the difference between the two 
curves is neither always positive nor negative; it changes its sign. 

Figure 9.1 demonstrates the large stochastic error of the RiskMetrics method. 
The large size of this error has two main reasons: 

1. The rather small range of the kernel of about 16 business days. The number 
of independent observations is limited. We cannot essentially change this 
fact, because the choice of a short range is also motivated by the goal of 
fast adaptivity to new market events. 
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2. The results depend on only one observation per day, taken at a certain 
daytime. All the other information on prices of the day is thrown away. 
The value at that daytime may have little representation for the full day: 
it may be located on top of a short-lived local peak of the price curve. 

The second investigated volatility forecasting model was introduced by Muller 
(2000). It follows RiskMetrics as closely as possible. There are only two innova-
tive modifications: 

■ The squared volatility a2(t) is computed at every available tick, not only 
once per business day. 

■ Simple returns are replaced by operator-based, smoothed returns. 

Nothing is changed otherwise; the sampling range of 15.67 business days and the 
business-daily nature of (smoothed) returns are preserved. The formula is again 
written with the help of time series operators: 

a2 = c EMA [r; (x — EMA[At, 4; x])2] (9.4) 

again with At = 1 business day and r = 15.67 business days. Equation 9.4 is 
iteratively evaluated tick by tick. The iterated operator EMA[r, 4; x] is defined 
by Equation 3.53. As the simple EMA operator, it can be efficiently computed by 
using the iterative Equation 3.51. 

The constant c compensates for the fact that we use smoothed returns, x — 
EMA[At, 4; x], instead of the simple returns, x(t) — x(t — At). In the case 
of x following a Gaussian random walk, the theoretically correct value is c = 
128/93. Using this factor eliminates a systematic bias of the tick-by-tick volatility 
as compared to the RiskMetrics volatility. 

Equation 9.4 is computed on a special business time scale defined as fol-
lows. The 49 weekend hours from Friday 8 pxn. GMT to Sunday 9 p.m. GMT 
are compressed to the equivalent of only 1 hr outside the weekend. This fully 
corresponds to the time scale of RiskMetrics, which omits the weekend days. A 
more sophisticated and appropriate choice of the business time scale would be the 
.0--time of Chapter 6, but this is avoided here in order to keep the approach as close 
to RiskMetrics as possible. 

The advantages of the tick-by-tick volatility forecast are demonstrated in Fig-
ure 1.3. The volatility as a function of time appears as one continuous, consistent 
curve. We obtain volatility values at any daytime now, not just once or twice a day. 
A risk manager in London measures the risk of the instrument on the same basis as 
a risk manager in East Asia, as should be expected. The variations of the volatility 
level over time are more moderate in Figure 1.3 than the corresponding variations 
of the RiskMetrics volatility, although the kernel range of 15.67 business days is 
the same. 

The tick-by-tick volatility forecast is based on (almost) continuously over-
lapping returns. Overlapping returns lead to reduced stochastic noise of volatility 
measurements, as shown in Section 3.2.8. In addition to this, the tick-by-tick 
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volatility is based on smoothed rather than simple returns, which also leads to a 
reduction of stochastic noise. 

The third volatility model is a multiple-horizon version of the second model: 

vvz-1 
Z-dc=0 fw 

a2 =
 ak 

with 

(9.5) 

ak = c EMA [ro f.t ; — EMA[Ato A, 4; x])2  (9.6) 

where the partial volatility forecasts of Equation 9.6 are like the volatility forecasts 
of Equation 9.4. The weights Auk of the partial volatility forecasts, their return 
intervals to At, and their sampling ranges to f tic are in geometric sequences and 
can be flexibly chosen and optimized by setting the parameters n (the number of 
partial forecasts), fw, Oto, fAt, to, and fr • 

The third volatility model (Equation 9.5) shares the advantages of the second 
one (Equation 9.4) and has the additional multiple-horizon property, which leads 
to superior volatility forecast quality. This is in analogy to the multiple-horizon 
EMA-HARCH process shown in Section 8.3.4, which is also superior to single-
horizon processes such as GARCH. 

9.2.2 Choosing the Best Volatility Forecasting Model 

The quality of volatility forecasting models has to be measured in statistical tests, 
comparing the forecasts to the actual values of the target variable, which is a form 
of realized volatility here. 

In out-of-sample tests of the three volatility forecasting models presented in 
Section 9.2.1, the tick-by-tick model of Equation 9.4 has distinctly better volatility 
forecasts than the RiskMetrics model of Equation 9.1 or 9.2. Equation 9.5 leads 
to even better volatility forecasts. 

Testing the quality of volatility forecasts implies some technical difficulties. 
First, there are several quality measures to choose from. This is discussed in Sec-
tions 9.4.1 and 8.4.1, where volatility forecasts are derived from process equations 
and tested by several criteria. 

A second difficulty lies in the bias of both realized volatility (the target vari-
able) and volatility forecasts which appears if the return intervals chosen are too 
small. This bias is discussed in Section 3.2.4 and in Andersen et al. (2000). 
Volatility forecast tests are affected by this bias. A treatment of the bias is almost 
inevitable when designing volatility forecasting models and tests based on high-
frequency returns over intervals of less than an hour. Corsi et al. (2001) propose 
a suitable bias correction method. 

Due to these technical difficulties, there is no comprehensive study of high-
frequency volatility forecasts and their qualities yet. The final goal is the develop-
ment of a consistent methodology of risk analysis based on high-frequency data 
with superior forecasting quality: real-time risk assessment. 
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This section examines the forecasting model of Dacorogna et al. (1996). This 
model supports several forecast intervals. Hourly returns are predicted as well as 
daily, weekly, monthly, and quarterly returns. The forecasting model of returns 
relies on an underlying volatility forecast. Both the volatility and return forecasts 
use the same methodology. Volatility is treated with the help of an alternative time 
scale, the intrinsic time of the time series. 

9.3.1 Intrinsic Time 

The foreign exchange returns exhibit conditional heteroskedasticity which can be 
treated through a change of time scale. This is the second layer of our forecasting 
model on top of the business time 0-scale. Some literature followed a similar 
approach to treat the conditional heteroskedasticity, such as Stock (1988), who 
uses two types of time deformation, one based on the time series itself and one 
on business cycle variables.5 In our approach, we also use the underlying time 
series to construct a time deformation. It is based on the scaling law defined in 
Equation 6.2 and on the price volatility: 

0(k) — (k— ) Ax 1E 
v(tc) -=- (tc_i) k  

6,0 
(9.7) 

where to is the current time, the price difference is taken on the same interval as 
00, and E and c are the scaling law inverse exponent and factor, respectively. The 
constant k is a calibration factor dependent on the particular time series. Its role 
is to keep z in line with physical time in the long run. This relationship is in fact 
the reverse of the scaling law for a particular return taken on a constant 0-time 
interval size. 

This second new time scale, the r -scale, does not directly use the physical 
time t, and does not need to have fundamental information about the behavior of 
the series. The only information needed to define the scale are the values of the 
time series themselves. Thus we have chosen to call this time scale intrinsic time. 
The consequence of using such a scale is to expand periods of high volatility and 
contract those of low volatility, thus better capturing the relative importance of 
events to the market. Any moving average based on the intrinsic time r dynam-
ically adapts its range to market events. Therefore a forecasting model based on 
the -scale has a dynamic memory of the price history. 

There is, however, a problem when using such a time scale. The intrinsic time 
r is only known for the past, contrary to the business time scale 0, which is known 
also for the future, because it is based on average behavior. Thus a forecasting 
model for the price actually needs to be composed of two forecasting models, one 
for the intrinsic time and one for the price. The first requires forecasting of the 
size (not the direction) as time cannot flow backward. 

5 In the same paper Stock (1988) indicates how this approach can be compared to the ARCH models. 
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9.3.2 Model Structure 

The price generating process is far from stationary in physical time. In Sec-
tion 9.3.1, the geographic seasonality and conditional heteroskedasticity are mod-
eled through successive changes of the underlying time scales. After these trans-
formations, the remaining structure and the dynamics of the transformed series can 
be analyzed. The model presented in this section captures the dynamics through 
the computation of nonlinear indicators. Because the model is on the business-
time scale g, all equations are written in terms of this new scale. The relation to 
the physical time scale is given by Equation 6.17. 

9.3.3 A Linear Combination of Nonlinear Indicators 

The model equations are based on nonlinear indicators, which are modeled with 
moving averages. Indicators for market prices come conceptually from simple 
trading systems used in practice by market participants.6 Those trading systems 
yield buy and sell signals by evaluating an indicator function. The crossing of a 
certain threshold by the indicator on the positive side is regarded as a buy signal, 
on the negative side as a sell signal. An indicator is thus used as a predictor of a 
variable or its change, for instance, a price change (i.e., a return). 

Finding an ideal indicator, if it exists at all, would be enough to make a 
good price forecast. We, however, have no ideal indicators. Therefore there is 
need to combine different indicators appropriately to optimize their respective 
influence. Partly, the forecasting models presented here are based on a linear 
combination of price indicators z, where the relative weights are estimated by 
multiple linear regression. For a fixed forecasting horizon A af (corresponding to 
a Atf in physical time), the price forecast f is computed with 

= xc + E cx, (Az, / ) zx,i(Af f rc) 

j =1 

(9.8) 

where xe is the current price, and m is the number of indicators used in the model 
(from two to five per horizon). All the indicators are estimated in intrinsic time 
scale (r-scale). The coefficients cx, j(Agf ) are estimated with a multiple linear 
regression model. 

A i f in Equation 9.8, the forecasting horizon expressed in intrinsic time, is 
not yet defined. This quantity must be computed from its own forecasting model, 
which is similar to that in Equation 9.8. The forecasting horizon, Aif , can be 
written as an intrinsic time forecast, 

Aff = if — to = Ect,;(,6,01) zr,,(6.6f , #c) (9.9) 
j=1 

6 See for instance Dunis and Feeny (1989); Murphy (1986). 
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where the forecasting model is computed in t9-scale. The coefficients cx,i (A #f) 
are estimated through a multiple linear regression and zr, (A#f , #c) are the in-
trinsic time indicators. 

Contrary to most traditional forecasting models, this model does not rely on 
a fixed basic time interval but is designed with a concept of continuous time. In 
fact, the time when a price is recorded in the database is unequally spaced in 
time. Moreover, the use of the t -scale implies that our forecasting models must 
be computed simultaneously over several fixed time horizons A#f . 

Given a forecasting horizon in physical time Atf and the price history until 
xe, one can compute A #f with Equation 6.17 and tc with Equation 9.7. With a 
sufficiently large set of indicators, z,,i (A19 f, '001 ZX , j (A ff re), and coefficients, 
c,,1 (A#1 ) and cx,i (A#f ), the price forecast can be computed by choosing the 
appropriate Aif with Equation 9.9 and substituting it into Equation 9.8. In the next 
two sections, we define the indicators and study how to compute the coefficients 
cx,i. 

9.3.4 Moving Averages, Momenta, and Indicators 

In Equations 9.8 and 9.9, the indicators are based on momenta, which are based on 
moving averages. In particular, we work with exponential moving averages (EMA) 
because they may be conveniently expressed in terms of recursion formulae (see 
Chapter 3). 

The momentum indicator is 

rnx (Arr, re) xe — EMA[Atr ; xl(tc) (9.10) 

which compares the most recent price to its own exponential moving average 
(EMA), using the notation in Section 3.3.5 and computed by the recursion formula 
of Equation 3.51. This is done by using intrinsic time as the time scale. It is 
also possible to define the first and the second momenta. The first momentum, 

( 
mx , is the difference of two exponential moving averages (or momenta) with 
different ranges. This can be considered as the first derivative of x (t). The second 

(2) momentum, mx , is the linear combination of three exponential moving averages 
(or momenta) with different ranges, which provide information on the curvature 
of the series over a certain past history. 

In section 9.3.3 we introduce the concept of indicators. Here we want to define 
those that are used in our forecasting models. 

There are a large number of technical indicators (Murphy, 1986; Dunis and 
Feeny, 1989) and momenta indicators are widely used in technical trading systems. 
We limit our focus on momenta type indicators. Following Equation 9.8, let an 
indicator for returns with a range A Tr, zx(Arx, rc) be defined as follows: 

[  
m,  (At,-, re) 

z.,(Arr, rc) = 

11 + (n.°) (Arr, re)/mmax )2

(9.11) 
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FIGURE 9.2 The nonlinear function for computing the momentum indicator. This 
function is presented for different values of the parameter p. 

where m.r , (A rr , rc) are normalized momenta of order o of returns, miln„ is the 
maximum value the indicator can take, and the power p is the accentuator of the 
indicator movements. In the case of price indicators, p must be an odd number 
to keep the sign of the moving average. The shape of the nonlinear function 
is illustrated in Figure 9.2 for different powers p and for a mmax of one. This 
functional shape illustrates how the indicator plays the role of a primitive trading 
system. If the momentum has a high positive or negative value, the indicator zx
saturates, which is when the indicator is fully exposed in a long or short position. 
The power p both plays the role of a threshold (no threshold if p = 1) and 
influences how the model approaches its full long or short position. The max
value plays the role of the quantity of capital invested and also influences the shape 
of the indicator function. 

The definition given in Equation 9.11 can easily be extended to other types of 
problems. For instance, the same definition can be used for constructing indicators 
for the intrinsic time in the -0- -scale, zr(A0r, 0-c) where the parameters are now 
defined as functions of r, computed using Equation 9.7 on the 0-scale. The 
function r (0) is a monotonic positive definite function so that all of its momenta 
are positive.7 When the function is raised to an even power, only the upper right 
quadrant of Figure 9.2 becomes relevant. The primitive trading system analogy 
does not work in this case but the emphasis on large movements can be avoided 
by leveling off the indicator. 

In the implementation of this algorithm, the indicators are continuously up-
dated. Every new price received from the market makers causes the model to 

7 Time never flows backward. 

0278



9.3 FORECASTING RETURNS OVER MULTIPLE TIME HORIZONS 259 

recompute all its indicators for all the horizons. It then updates the forecasts for 

each time horizon. 

9.3.5 Continuous Coefficient Update 

The forecasting model environment is such that the indicators and the correspond-
ing coefficients are continuously updated. Each coefficient (cx, j, cr,j) is updated 

by estimating the model in the most recent past history. The length of the past 
history is a function of the forecasting horizon.8 The motivation for horizon-
dependent finite samples for optimization is motivated from the fact that there are 
different regimes in the market and short-term horizons are particularly sensitive 
to them. Furthermore, short-term traders are not influenced by a past much older 
than 3 months. The use of samples extending into the far past to optimize short 
forecasting horizons will make the model less adaptive to regime changes. 

Adaptation to long-term regime or structural changes is enabled by re-eva-
luation of the optimization as soon as enough new information becomes available. 
The optimization sample size is kept fixed (in 0-time), rolled forward, and then 

linear regression is reapplied to the new sample. This technique is similar to that 

used in Schinasi and Swamy (1989) and Swamy and Schinasi (1989) except that 
we use a fixed sample size while they add on the new data to their sample. The 
model is optimized through the usual generalized least-square method, except for 
two modifications. 

Our forecasting models run in real time and the continuous reoptimization can 
generate instabilities (rapid jump from positive to negative forecast) when standard 
linear regression techniques are used. The instabilities originate from both the 
indicators and their coefficients in the linear combination (Equations 9.8 and 9.9). 
The indicators are moderately volatile and we avoid indicators that are too volatile 

by limiting the power of the exponents in the indicator construction to 3 for simple 
momenta and 7 for higher momenta. Moderately volatile indicators can cause 
instabilities only if their coefficients are large. The coefficients are less volatile 

than the indicators (due to the large optimization samples), but they may have high 
values if the regression by which they are optimized is near-singular because of high 
correlation between the indicators. Within a particular sample, the high positive 
and negative coefficients typical in the solution of a near-singular regression matrix 
would balance each other out. However, as soon as these coefficients are used with 
changing indicator values outside this sample, the equilibrium is lost and the high 
coefficients may boost the forecast signal. We have already eliminated one source 
of near-singularity by avoiding indicators that are too similar in the same forecast. 

The standard regression technique is applied under the assumption of precise 
regressors and a dependent variable with a Gaussian error. Our regressors (indi-
cators), however, originate from the same database as the dependent variable (the 

return); thus, they are prone to database errors (missing data, badly filtered data, 
and so on) and to errors in the construction of the t and r time scales. Taking into 

8 A few months for hourly forecasts, up to a few years for 3-month forecasts. 
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account the regressor errors allows a solution to the problem of near-singularities 
in a natural way. Instead of considering the j th regressor zi, i at the i th observation 
(where we have dropped the variable index and the horizon for ease of notation), 
we consider the imprecise regressors = zj,i + si,i where e Li is the random 
error with variance of Q2 times that of z3 . We call the small parameter Q the typical 
relative error of the indicators and we assume it is roughly the same for all indica-
tors of the type we defined in Section 9.3.4. Without going into the details of the 
calculation, such a change modifies the final version of the system of k equations. 
The kth equation can be written as follows: 

m N N 

ECj (1 + 02 Sjk) EwiZj,i Zk,i =E wi Yi Zk,i 

j=1 i=1 i=1 

(9.12) 

where N is the number of observations used in the regression, m is the number 
of indicators (same as in Equation 9.8), wi is a weighting function depending 
on the type of moving averages used (here it is an exponential), and kik is the 
usual Kronecker symbol: 1 for j = k and 0 for j k. The quantity Yi is the 
usual response term of the regression: x(#i + A61 ) — x(t9,). There is only one 
addition to the original regression: the diagonal elements of the system matrix are 
multiplied by a constant factor 1 + 02, slightly greater than 1. 

The effect of increasing diagonal values of the original matrix by the factor 
02 is to guarantee a minimum regularity of the modified matrix even if the original 
one is near-singular or even singular. The variable Q2 can be interpreted as the 
parameter of this minimum regularity. This desired effect is also accompanied 
by a slight decrease of the absolute values of the coefficients cj, because the 
right-hand side of the equation system remains unaffected by the modification. 
The decreases are insignificant, the only exceptions being for coefficients inflated 
by near-singularity in the original regression: there, the absolute values decrease 
substantially, which is what we want anyway. 

The other departure from the usual regression technique is a modification of 
the regression response Yi necessitated by the leptokurtic behavior of returns. The 
forecast signals are much less leptokurtic than the returns, hence the optimization 
is dominated by exceptionally large real price movements rather than the "normal" 
price movements. This is also accentuated by the fact that it is squared returns 
that enter into the computation of the least square fit. Furthermore, the users of 
our forecasting models are more interested in the correct direction of the forecast 
than in the absolute size of a return forecast. A pure linear regression is thus 
inappropriate. 

The minimization of the sum of squared deviations, however, has an important 
advantage: it can be reached by solving a system of linear equations. Theoretically 
though, the least sum of squares could be replaced by any utility function. Our 
problem is thus to find, within the framework of the regression technique, a more 
appropriate optimization (or utility) function. The best way to achieve this goal 
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is through a mapping function of the returns: the forecast should fit the mapped 
returns Yi rather than the real returns Yi. 

A suitable mapping function makes the mapped returns less leptokurtic than 
the original ones. The rest of the regression problem remains unchanged. The 
desired effects can be obtained with an underproportional mapping function pre-
senting the following properties: 

■ Small returns should be amplified when considered in the regression, in 
order to establish a sufficient penalty against forecasts of the wrong direc-
tion. 

■ Large returns should be reduced when considered in the regression, so the 
distribution function of mapped returns is no longer leptokurtic. 

■ The mapping effects should decrease with the increasing time horizon size. 

The choice of such a mapping function M is arbitrary provided it has the above 
properties. The one function used in our model is 

= 111(170 =  [y r Bye 
AYi 

(9.13) 

with the parameters A, B, and a depending on the time horizon 0-f . The same 
parameters are used for all different FX rates. They have been calibrated by trial 
and error in order to keep the full sample variance of the mapped returns on the same 
level as that of the original returns. The parameter a must follow the condition 
0 < a < 0.5 because the mapping function must be an underproportional bijection. 

9.4 MEASURING FORECAST QUALITY 

Two questions are relevant for testing any forecasting model of foreign exchange 
(FX) rates: 

■ What data should be used for testing? 

■ What is a good measure of forecasting accuracy? 

Since the classical paper by Meese and Rogoff (1983), researchers in this field have 
been aware of the need for out-of-sample tests to truly check the forecast validity. 
Because of the statistical nature of FX rates, there would be little significance in 
the forecast accuracy measured on the same data that were used for optimizing the 
models. The real test comes when the model is run on data that were not used in 
constructing the model. In our case, our model being run in real-time, we have 
a continuous out-of-sample test. Besides the question of in and out-of-sample, 
there is a question as to what constitutes the relevant quantity for measuring the 
accuracy of forecasting methods. In Makridakis et al. (1983) the main measures 
are reviewed. We limit ourselves here to presenting the reasons as to why we chose 
certain types of measures and how we compute the uncertainty of these measures. 
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9.4.1 Appropriate Measures of Forecast Accuracy 

Most standard measures rely on the mean square error (MSE) and the mean ab-
solute error (MAE) for each time horizon. These errors are then compared to the 
similar ones produced by a naive forecasting model serving as a benchmark. One 
naive model may be the random walk forecast where expected returns are zero 
and the best forecast for the future is the current price. These accuracy measures 
are, however, all parametric in the sense that they rely on the desirable proper-
ties of means and variances, which occur when the underlying distributions are 
normal. The selection of the random walk model to derive the benchmark MSE 
or MAE is inherently inappropriate. It is in effect comparing the price volatility 
(MSE or MAE) with the forecasting error. There is no reason to expect that the 
heteroskedasticity and the leptokurticity of returns would not affect their MSE 
or MAE for a particular horizon. Thus the significance of their comparison with 
the forecast MSE or MAE is unclear. It might only reflect the properties of price 
volatility. 

Such considerations have led us to formulate here nonparametric methods of 
analyzing forecast accuracy. These are generally "distribution free" measures in 
that they do not assume a normally distributed population and so can be used when 
this assumption is not valid. One measure that has this desirable property is the 
percentage of forecasts in the right direction. To a trader, for instance, it is more 
important to correctly forecast the direction (up or down) of any trend than its 
magnitude. We term this measure the direction quality, also known as the sign 
test: 

D(At f) = 
N(ti f I (.). f Xc)(X f Xc) > 0}) 

N (ti f I (3c" f — xc)(x f — xc) 0 0)) 

where N is a function that gives the number of elements of a particular set of 
variables {x }, and xc and x f have the same definition as in Equation 9.8. We give 
the forecasting horizon in physical time Otf because the quality must be measured 
in the time scale in which people look at the forecasts. It should be clarified here 
that this definition does not test the cases where either the forecast is the same as 
the current price or when the price at time 19c + Ai,/ is the same as the current 
one. To illustrate this problem, let us note that the random walk forecast cannot 
be measured by this definition. Other definitions could be used, like counting the 
case when the direction is zero as half right and half wrong. Excluding the cases 
where one of the two variables is zero would be a problem if this would occur very 
often. Our results show that it only occurs quite seldom and for the real signal 
(xf — xc) (few percent of the observations on the very short horizons) and almost 
never for the forecast signal (if — X C) • 

Unlike more conventional forecasts, for instance, a weather forecast, an FX 
rate forecast is valuable even when its direction quality is slightly above 50% and 
statistically significant. No trader expects to be right all the time. In practice we 
assume that a D significantly higher than 50% means that the forecasting model is 
better than the random walk. The problem lies in defining the word "significant." 

(9.14) 
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As much as one would like to be independent of the random walk assumption, we 
are still forced to go back to it in one way or the other, as here, when we want 
to define the significance level of the direction quality. As a first approximation, 
we define the significance level as the 95% confidence level of the random walk: 

1.96 
ap  

2, 
(9.15) 

where n is the number of tests. The factor 2 comes from the assumption of an 
equal probability of having positive or negative signals. It is a similar problem to 
the one of tossing a coin. 

Another measure we use in conjunction with the previous one is the signal 
correlation between the forecasting signal and the real price signal: 

E7=-/ 1(X p Xc,i) f,i Xc,i) 
C(At f ) = 

1Et = fi — Xc,i)2 Eiji (xf,i Xc,i)2

where n' is the number of possible measures in the full sample, n the number 
of full forecasting horizons in the full sample, and is n — n'. Here again the 
forecasting horizon is given in physical time, &J.. We estimate the significance 
of this quantity using 1.96/./'. 

Both the direction quality and the signal correlation unfortunately have a slight 
drawback. They do not provide a measure of the forecast effectiveness. Neverthe-
less, we believe that they are superior to standard measures due to the nonnormality 
of the return distributions. The direction quality, which for all practical purposes 
is the most relevant indication of the forecast, and the signal correlation must be 
highly significant before we accept a model as being "satisfactory." 

(9.16) 

9.4.2 Empirical Results for the Multi-Horizon Model 

Optimization consists of two distinct, but interrelated operations, corresponding 
to the two main types of parameters in the models. The linear model coefficients 
cr, j and cx,i are optimized through least squares (see Section 9.3.5), and under 
the control of this process, always fulfill the strict out-of-sample condition when 
applied to a forecast. On the other hand, the nonlinear parameters of the indicators 
described in Section 9.3.4 must be optimized by trial and error to meet the above 
criteria: the direction quality and the signal correlation. The data set used in 
selecting the best combination of indicators is termed the in-sample period where 
the model parameters are fully optimized. 

In Table 9.1 we indicate how our sample is divided to satisfy the different 
requirements of model initialization, in-sample optimization, and out-of-sample 
tests. The initialization period is needed for both initializing the different EMAs 
(see the discussion in Section 3.3.3) and computing the first set of linear coefficients 
cr,i and ex,i. The results presented in the next section are computed over two 
specific periods using our database of intraday market makers' quotes. The first 
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TABLE 9.1 The sampling periods of the forecast study. 

The data samples used for initialization, model training (in-sample), and testing (out-of-

sample). 

Data range Data types Data size Usage 

June 1, 1973, to Feb. 2, 1986 Daily data 152 months Model initialization 

Feb. 3, 1986, to Dec. 1, 1986 Intraday 10 months Model initialization 

Dec. 1, 1986, to Sep. 1, 1990 Intraday 46 months In-sample period 

Sep. 3, 1990, to Nov. 3, 1992 Intraday 25 months Out-of-sample tests 

runs from December 1, 1986, to September 1, 1990 (46 months), and is our in-
sample period. The second runs from September 3, 1990, to October 3, 1992 (25 
months). This second period is pure post ex-ante testing—that is, data from this 
period were not used at all for building the model. These 25 months constitute our 
out-of-sample test. 

9.4.3 Forecast Effectiveness in Intraday Horizons 

The forecast horizons here are for 2, 4, and 8 hr. This choice was made for two 
reasons. First, there is almost no literature to study models for such short horizons. 
Second, the statistical significance of the findings can be enhanced due to a large 
number of observations within a few years at the intraday frequency. 

The quality measures are computed for each time horizon at an interval of 1/12 
of the horizon. As mentioned earlier, the forecast accuracy is always measured 
in the physical time scale because it is in this scale that the different forecasts 
are useful. The number of relevant points in the statistical computation varies 
depending on the horizon and on the number of missing data for the different 
currencies. For the 2 hr horizon it varies from around 70,000 tests to 140,000, 
for 4 hr from 35,000 to 70,000, and for 8 hr 24,000 to 37,000. These very large 
numbers ensure that our statistical results are highly significant. We currently 
have 41 currencies running on the Olsen Information System (OIS), but in order 
not to overwhelm this study with numbers, we only show results for the 10 most 
important FX rates against the USD and 10 of the most traded cross rates. For the 
other currencies the results are very similar. The direction quality and the signal 
correlation are given in percentage for the in and out-of-sample testing periods 
in Table 9.2 for the USD rates and in Table 9.3 for the cross rates. Juxtaposing 
both results show clearly that, except for the 2 hr in the USD rates and for GBP-
USD, the quality achieved in-sample is in most cases maintained out-of-sample 
and sometimes even slightly improved. 

In Table 9.4 we summarize the significance of these results. For each horizon 
and for each currency we write a "+" sign if both the direction quality and the 
signal correlation are above the significance levels computed using Equation 9.15 
for the direction quality and 1.96/ n7 for the signal correlation. If one of the two 
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TABLE 9.2 Direction quality and signal correlation for 10 USD rates. 

Direction quality and signal correlation, in-sample and out-of-sample, for 9 FX rates and 

gold price against the USD. The numbers are expressed in percentage. 

FX Hor. Direction Correlation FX Hor. Direction Correlation 

USD-DEM 2hr 52.1 / 51.6 +2.8 / +0.7 USD-NLG 2hr 51.5 / 50.8 +2.0 / -0.0 
4hr 52.6 / 52.1 +4.91 +3.0 4hr 51.5 / 51.8 +1.9 / +1.2 
8hr 52.0 / 52.5 +2.8 / +2.0 8hr 50.5 / 51.8 +0.1 / +3.2 

USD-JPY 2hr 51.5 / 52.2 +1.8 / +3.2 USD-ITL 2hr 51.5 / 50.8 +1.6 / -1.3 
4hr 51.7 / 52.9 +2.1 / +6.0 4hr 51.8 / 51.8 +2.4 / +1.4 
8hr 51.8 /52.1 +4.0 / +5.4 8hr 51.7 / 52.4 +1.9 / +4.3 

GBP-USD 2hr 51.8 /50.5 +1.1 / -1.9 USD-CAD 2hr 51.8 / 52.6 +3.0 / +3.5 
4hr 51.5 / 51.7 +1.6 / +0.9 4hr 51.9 / 52.9 +4.8 / +5.2 
8hr 50.6 / 51.3 +1.9 / +2.1 8hr 52.4 / 53.6 +2.9 / +6.0 

USD-CHF 2hr 51.5 / 51.2 +1.7 / -0.7 AUD-USD 2hr 51.8 / 53.4 +0.8 / +3.5 
4hr 52.2 / 52.1 +2.7 / +1.9 4hr 51.7 / 54.2 +2.7 / +6.5 
8hr 52.5 / 51.5 +2.4 / -0.4 8hr 51.4 / 53.7 +4.0 / +6.1 

USD-FRF 2hr 51.0 /50.8 +1.1 / -0.4 XAU-USD 2hr 52.5 / 53.0 +3.5/ +2.3 
4hr 52.2 / 51.6 +3.1 / +2.2 4hr 53.5 / 53.1 +4.3 / +3.8 
8hr 50.7 / 51.5 +0.1 / +0.4 8hr 53.5 / 52.9 +3.9 / +2.9 

measures or both are below the significance level we write a "-" sign. Except for 
two USD rates (GBP-USD and USD-FRF), two cross rates (CAD-CHF and XAU-
CHF), and the 2 hr horizon for the USD rates, which do not sustain conclusively 
the out-of-sample test, the other cases confirm the success of the model. The 2 hr 

6.j cross-rates pass the out-of-sample test for 80% of the cases (only 40% of the cases 
for the USD rates) and the 4 hr for 80% and 8 hr for 90% of the cases. The USD 
rates for the 4 hr pass the test in 90% of the cases and for 8 hr in 80% of the cases. 

In this chapter, we have shown that with the help of high-frequency data 
the statistical properties of FX rates can be better understood and that specifying 

isa 

forecasting models for very short-term horizons is possible. These models contain 
ingredients all designed to better capture the dynamics at work in the FX market. 
The most important characteristics of the models are as follows: 

• Univariate time analysis type of model but based on intraday nonhomo-
geneous data, 

• Variable time scales to capture both the seasonal heteroskedasticity 
scale) and the autoregressive conditional heteroskedasticity (r-scale) 

• Linear combination of nonlinear indicators 

• Multiple linear regression with two modifications to avoid instabilities and 
to correct for the leptokurtic behavior of the returns 
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TABLE 9.3 Direction quality and signal correlation for 10 cross rates. 

Direction quality and signal correlation, in-sample and out-of-sample, for 9 FX cross rates 

and gold price. The numbers are expressed in percentage. 

FX Hor. Direction Correlation FX Hor. Direction Correlation 

JPY-DEM 2hr 52.5 / 51.7 +2.3 / +1.0 GBP-CHF 2hr 54.4 / 55.1 +7.4 / +6.5 
4hr 51.8 / 51.0 +3.0 / +2.5 4hr 53.5 / 54.1 +6.2 1+5.0 
8hr 52.0 / 51.0 +4.0 / +1.3 8hr 53.8 / 54.2 +6.4 / +8,0 

GBP-DEM 2hr 54.0 / 55.2 +6.1 / +5.6 JPY-CHF 2hr 52.6 / 51.7 +3.1 / +0.9 
4hr 53.3 / 54.5 +5.3 / +4.4 4hr 52.2 / 50.8 +3.5 / +2.1 
8hr 53.3 / 54.2 +4.7 / +8.7 8hr 54.1 / 51.4 +9.1 / +1.5 

CHF-DEM 2hr 57.1 / 55.5 +12.5 / +8.1 GBP-JPY 2hr 52.8 / 53.3 +4.5 / +4.0 
4hr 54.9 / 54.6 +9.7 / +6.2 4hr 52.3 / 53.0 +4.6 / +4.8 
8hr 55.2 / 54.4 +10.0 / +6.7 8hr 52.8 / 52.8 +6.5 / +6.2 

FRF-DEM 2hr 62.0 / 62.7 +20.4 / +22.0 CAD-CHF 2hr 51,1 / 51.2 +1.9 / -0.4 
4hr 59.7 / 59.5 +15.0 / +16.1 4hr 52.0 / 51.7 +2.6 / +0.4 
8hr 57.6 / 56.3 +14.3 / +13.2 8hr 52.3 / 51.8 +4.3 / +1.6 

DEM-AUD 2hr 51.4 / 51.1 +2.5 / +1.2 XAU-CHF 2hr 51.0 / 50.6 +1.0 / -0.8 
4hr 51.2 / 51.1 +3.1 / +2.1 4hr 52.1 / 51.0 +3.2 / -0.2 
8hr 50.5 / 51.2 +4.0 / +3.2 8hr 52.0 / 52.4 +3.0 / +5.1 

■ Continuous optimization of the model coefficients in a finite size, fore-
casting horizon-dependent sample. 

The forecast quality of these models is evaluated on a very large sample with 
two different measures that avoid statistical problems arising from the nature of 
the FX rate time series. The rigorous separation of in and out-of-sample measures, 
the large number of observations, and the stringent significance levels mean that 
the statistical results of the forecast evaluation are convincing evidence for our 
models having beat the random walk for most of the 20 studied currencies and for 
the very short-term forecasting horizons. These results are also corroborated by 
those we obtain on the other 21 rates that run on the Olsen Information System 
(OIS). 

What are the consequences of such results on the economic theory of market 
efficiency? We believe that they point to the extension and improvement of meth-
ods and tools for defining and analyzing market efficiency. The accepted theory 
was probably never conceived for such short horizons, and even more important, it 
takes an unrealistic view of market response to new information. Being developed 
only in a statistical framework, the theory assumes that economic actors integrate 
new price information instantaneously, and very little attention is paid to the time 
needed for a piece of information to be available to all market participants and to 
the diverse interpretation of that information. In the context of very short time 
horizons these factors play critical roles in market adjustments. It is reasonable 
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TABLE 9.4 Significance of the forecast quality for 20 exchange rates. 

The in-sample and out-of-sample forecast significance for 10 USD rates and 10 cross rates. 

The "+" sign indicates a forecast quality above the significance limits of all test criteria, 

otherwise the "-" sign is used. Example: "+/-" means a significant in-sample quality and an 

insignificant out-of-sample quality. 

2 hr USD-DEM +/- USD-NLG +/- JPY-DEM +/+ GBP-CHF +I+ 

USD-JPY +/+ USD-ITL +/- GBP-DEM +/+ JPY-CHF +1+ 

GBP-USD +/- USD-CAD +/+ CHF-DEM +/+ GBP-JPY +/+ 

USD-CHF +/- AUD-USD +/+ FRF-DEM +/+ CAD-CHF +/-

USD-FRF +/- )(AU-USD +/+ DEM-AUD +1-- XAU-CHF +/-

4 hr USD-DEM +1+ USD-NLG +/+ JPY-DEM +/+ GBP-CHF +/+ 

USD-JPY +1+ USD-ITL +1+ GBP-DEM +/+ JPY-CHF +/+ 

GBP-USD +/- USD-CAD +/+ CHF-DEM +1+ GBP-JPY +/+ 

USD-CHF +/+ AUD-USD +/+ FRF-DEM +/+ CAD-CHF +/-

USD-FRF +1+ XAU-USD +/+ DEM-AUD +/+ XAU-CHF +/-

8 hr USD-DEM +/+ USD-NLG -/+ JPY-DEM +/- GBP-CHF +/+ 

USD-JPY +/+ USD-ITL +/+ GBP-DEM +/+ JPY-CHF +/+ 

GBP-USD +/+ USD-CAD +1+ CHF-DEM +/+ GBP-JPY +/+ 

USD-CHF -/- AUD-USD +1+ FRF-DEM +/+ CAD-CHF +1+ 

USD-FRF -/- XAU-USD +/+ DEM-AUD -/+ XAU-CHF +/+ 

to assume that the markets need afinite time to adjust to any information and that 
this time depends on the nature of the information. 

We think that these adjustments can be modeled and hence that a certain 
predictability of price movements exists. Our forecasting models, while a positive 
step in this direction, are nevertheless only a first one and there is still room for 
improvement through a better understanding and definition of intrinsic time and 
through the search for better indicators. 
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CORRELATION AND 
MULTIVARIATE RISK 

sn 
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10.1 INTRODUCTION 

het 

Correlations and covariances between returns of different financial assets play an 
important role in fields such as risk management and portfolio allocation. This 
chapter addresses three problematic issues concerning linear correlation coeffi-
cients of returns, computed from high-frequency data: 

1. The correlation of intraday, equally spaced time series derived from un-
evenly spaced tick-by-tick data deserves careful treatment if a bias result-
ing from the classical missing value problem is to be avoided. We propose 
a simple and easy-to-use method, which corrects for different data frequen-
cies and gaps by updating the linear correlation coefficient calculation with 
the aid of covolatility weights. This is a bivariate alternative to time scale 
transformations which treat heteroskedasticity by expanding periods of 
higher volatility while contracting periods of lower volatility. 

2. It is generally recognized that correlations between financial time series 
vary over time. We probe the stability of correlation as a function of 
time for 7 years of high-frequency foreign exchange rate, implied forward 
interest rate, and stock index data. Correlations as functions of time in 
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turn allow for estimations of the memory that correlations have for their 
past values. 

3. It has been demonstrated that there is a dramatic decrease in correlation, 
as data frequency enters the intrahour level (the "Epps effect"1). We 
characterize the Epps effect for correlations between a number of financial 
time series and suggest its possible relation to tick frequency. 

10.2 ESTIMATING THE DEPENDENCE OF FINANCIAL TIME 
SERIES 

Measuring the dependence or independence of financial time series is of increas-
ing interest to those concerned with multivariate decision formation (e.g., in risk 
assessment or portfolio allocation). Often this is estimated quantitatively using the 
linear correlation coefficient,2 which is a basic measurement of the dependence 
between variables. Zumbach (1997) reviews many interesting measures of asso-
ciations besides the linear correlation. The popularity of this measure stems from 
its simple definition, practical ease of use, and its straightforward results, which 
are easily interpreted, scale free, and directly comparable. Although the calcula-
tion of the correlation coefficient is well defined and rather simple, a number of 
unresolved issues exist with respect to application of the rule and interpretation of 
results in the high-frequency data domain. 

■ The data input for the correlation coefficient calculation are two time series 
with equal (i.e., homogeneous) spacing between ticks. This necessity is 
easily satisfied for low frequency (< one tick per week) data. However, 
the intraday case deserves more careful treatment if a resulting data bias 
is to be avoided. A problem arises when the two time series of unevenly 
spaced tick-by-tick data have different frequencies or active hours within 
a day, which may or may not overlap. We propose a simple and easy-to-
use normalization method, which corrects for frequency differentials and 
data gaps. This alternative formulation updates the correlation calculation 
only where data exists, ensuring that there is no measurement bias resulting 
from the classical missing value problem (see Krzanowski and Marriott, 
1994, 1995) or from differences in the active hours of the financial time 
series. In addition, this formulation remains scale free and straightforward 
to understand and implement. 

■ The linear correlation coefficient calculation largely discards the time vari-
able. The variances of two time series and their covariance are constructed 

1 Epps (1979). 
2 The use of the linear correlation coefficient is appropriate not only for multivariate normal joint 

distributions but also for multivariate elliptical joint distributions. Many financial joint return dis-
tributions have been observed to fall into or close to this latter category. Also for fat-tailed return 
distributions, the linear correlation coefficient remains a useful and relevant measure of association; 
only the interpretation of results and, more specifically, the determination of accurate confidence limits 
is problematic. Correlations of squared returns from fat-tailed distributions are even more problematic. 
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either with the assumption of being constant or as a type of average value 
if value changes are recognized. It is generally accepted that correlations 
in financial time series vary over time (Longin and Solnik, 1995) and are 
even subject to correlation "breakdown" or large changes in correlation in 
critical periods. In the discussion that follows, we probe the stability of 
correlation as a function of time, for a number of financial instruments, in 
order to determine the relevance of using high-frequency data. We go on 
to investigate the manner in which present correlation values are in turn 
correlated to their past values (autocorrelation of correlations). A model of 
the self-memory of correlation is proposed as the basis for the formulation 
of a long-term correlation forecast. 

■ The impact of time series data frequency on correlations should also be 
clearly established. This is especially relevant as higher frequency data 
becomes more widely available and more often used in order to improve 
statistics. Previous authors have demonstrated a dramatic decrease in 
correlation as data frequency enters the intra-hour level, for both stock 
(Epps, 1979) and foreign exchange returns (see Guillaume et al., 1997; 
Low et al., 1996). This discussion attempts to characterize and investigate 
more deeply the Epps effect in a number of financial time series through 
the examination of 7 years of high-frequency data. 

10.3 COVOLATILITY WEIGHTING 

The calculation of correlation coefficients is straightforward but some inconve-
nience is introduced via its simple definition. The correlation calculation requires 
two equally spaced (i.e., homogeneous) time series as input. This necessity is easily 
satisfied where low-frequency (< one tick per week) data are concerned. However, 
the problem requires more careful treatment at higher data frequencies where one 
cannot dictate the time or number of observations. One often faces two main prob-
lems when estimating correlation between two high-frequency time series. The 
first involves correlating two time series of inherently different frequencies. If the 
two time series are both regular with respect to data arrival intervals but of different 
frequencies, one might create from them two equally spaced, homogeneous time 
series, which both have frequencies equal to the lesser frequent of the two. This 
easy situation does not occur very often, though. It is more common to be faced 
with time series such as foreign exchange (FX) rates, where data frequency can 
vary from very few quotes to hundreds of quotes per hour. What is the best way to 
measure the dependence between an FX rate and another one that is perhaps less 
active or has activity peaks and valleys at completely different daytimes? Ideally, 
one would prefer the correlation calculation to be updated more often when more 
information exists and less often when it does not exist. A way to do this is to 
introduce a time scale that compresses physical time if there is no information 
and to expand it when it exists. This is similar to the idea presented in Chapter 6, 
where 0--time was introduced to model volatility patterns. This method has been 
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found useful for a number of applications, but is time-consuming to implement in 
practice. Moreover, we have the multivariate problem of two time series for which 
we would need a common time scale. 

A second problem arising when estimating correlation between two high-
frequency financial time series is that of missing values or data gaps. Large data 
gaps are actually an extreme case of the first problem (varying and nonmatching 
data arrival frequencies), but there is no harm in discussing the two problems sep-
arately. Despite one's best efforts, data gaps sometimes occur due to failures in the 
data acquisition chain. One can only make an educated guess about the correlation 
between two time series when such a gap occurs; it cannot be measured. More 
commonly, there are financial instruments whose time series have regular and large 
data gaps as part of their inherent character. Consider, for example, attempting to 
correlate a stock index (e.g., the Dow Jones Industrial Average,) which exists for 8 
hr per day, 5 days per week (except holidays), with another stock index that exists 
for a similar amount of time each day but with a relatively large time shift (e.g., the 
Financial Times 100 index). There are a number of different schools of thought 
regarding the correlation between two financial instruments when one or both are 
not actually active. These sometimes consider derivatives of the instruments rather 
than the underlying instruments themselves. Other arguments confuse time-lagged 
correlation with direct correlation, but these are entirely different issues. When 
faced with varying activity rates and data gaps, it would be convenient to use some 
form of data interpolation to solve these problems. Unfortunately, the experience 
of many practitioners has not been reassuring (see Press et al., 1992). 

Some methods for approximating a homogeneous time series from unevenly 
spaced, tick-by-tick data involve some form of data imputation. Methods of im-
puting data vary in complexity and effectiveness and most have been found to be 
beneficial under at least some set of conditions and assumptions. However, all 
forms of imputation rely on a model, and a standard supposition is that critical 
characteristics of the data do not change between in-sample and out-of-sample pe-
riods. There is always the possibility that imputation will introduce a false bias into 
variance and covariance calculations, but nevertheless it is difficult to avoid some 
form of it in cases where data is not of an infinitely high frequency. Some useful 
attempts have been made to circumvent imputation all together. One interesting 
and recent example is described in de Jong and Nijman (1997). This work builds 
on efforts described in Cohen et al. (1983) and Lo and MacKinlay (1990a,b). 
The authors develop a covariance estimator, which uses irregularly spaced data 
whenever and wherever it exists in either of two time series. However, methods 
such as this one rest on the assumption that the processes generating transaction 
times and the prices themselves are independent. This assumption may be quite 
reasonable, depending on the instruments involved, but proving so is rarely trivial 
and we prefer to avoid it altogether. 

In this discussion, we propose and illustrate a simple measure of correlation 
that avoids imputation based on data models or assumptions on distributional 
characteristics. Although the inputs for this alternative measure are homogeneous 
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time series derived through simple linear interpolation, the method filters out any 
underestimation of variances and covariances caused by lack of sampling variation. 
In addition, rather than making the strong assumption that price and transaction 
time are independent, this method makes use of the arrival time variable in order 
to compensate for the sometimes large differences that can exist in financial time 
series frequencies. Data gaps of varying size are common and we ignore any 
discussion of whether correlation actually exists during this period, because in 
any case we cannot measure it directly. Our goal is rather to develop a measure 
of correlation where information exists and to avoid updating our measure where 
data do not exist, a fact that should be recalled when results are interpreted. This 
implies that a lower data frequency or data gaps in one time series may limit the 
use of another one, and the unavoidable price to pay is a certain loss of statistical 
significance. However, the method is specifically meant to measure correlations 
at high data frequencies where statistical significance is high by nature. 

10.3.1 Formulation of an Adjusted Correlation Measure 

The standard linear correlation coefficient is a measure of correlation between two 
time series Axi and Ayi and is defined as follows: 

E7_.1 (Axi — (Ax))(Ayi — (Ay)) 
(xi = ,  (10.1) 

ri--1 (Axi — (Ax))2 E7--1 (AM — (AY))2

with the sample means, 

Axi 
 Ayi

n 
(Ax) E _ and (Ay) E 

i=1 i=l n 
(10.2) 

The sample is of size T with n = T I At homogeneously spaced observations. 
Correlation values are unitless and may range from — 1 (completely anticorrelated) 
to 1 (completely correlated). A value of zero indicates two uncorrelated series. 

The two variables Axi and Ayi are usually returns of two financial assets. In 
risk assessment (but not in portfolio allocation), the deviation of returns from the 
zero level is often considered instead of the deviation from the sample means (Ax ) 
and (Ay). In this special case, we can insert (Ax) = (Ay) = 0 in Equation 10.1. 

An estimate of the local covolatility for each of these observations is defined 
by further dividing each time span (At) over which Axi and Ayi are calculated 
into m equal subintervals from which subreturn values, Ai-3 and A57- j, can be ob-
tained. This redefined time series now consists of ri = Ai equally spaced return 
observations where At mA T. The return definitions conform to Equation 3.7, 
based on logarithmic middle prices as in Equation 3.6. To obtain a homogeneous 
series, we need linear interpolation as introduced in Equation 3.2. The choice of 
linear interpolation method is essential. 

For each of the previous coarse returns, Axi (as for Ayi), there exists a corre-
sponding estimation of covolatility between the two homogeneous time series of 
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returns 

A53j; Ai) E — (A5ci.n) t • — 0. 
(10.3) 

where 

m  

= 
A 

and (Ajii.ni ) 
m 

(10.4) 

The most obvious choice for a is 0.5, though this can be investigated as a way to 
magnify or demagnify the weight given to farther outlying return values. A value 
of 0.5 is used in all cases described in this discussion. 

Equation 10.3 formulates covolatility around the mean rather than around 
zero and it therefore follows that (Di = 0 for the case of returns derived from two 
linearly interpolated prices existing outside of our region of interest, At. These 
covolatility estimates can be inserted as weights in all the sums computed to obtain 
the variances and covariance of the correlation calculation: 

[ (Axi - (Ax))(Ayi - (Ay))04 
.1ETT [ (Axi — (Ax))2coi 11/Ef i [ — (AY))260j 

(10.5) 

Note that Axi and Ayi from Equation 10.5 are the same values as used in 
Equation 10.1, as they are logarithmic returns taken over the same time period, 
At. These coarse return values can then be defined as the sum of the fine return 
values 

E 
J=1 

(10.6) 

The sample means (Ax) and (Ay) have to be reconsidered in Equation 10.5. 
In the special case of risk assessment, we can still replace them by zero. Otherwise, 
we prefer that they are calculated again in a weighted fashion so that returns are 
considered only when observations over intervals of size At exist. Rather than 
keeping Equation 10.2, we define covolatility weighted mean values for both time 
series: 

ET 1 At (Axi 
• 
toi) t (Ayi coo

(4x) = i=1 and (Ay) =  '-1 (10.7) 
T1 At 

L-ei=1 wi Z-4=1 wi 
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In this way, the means are calculated over the identically weighted data sample 
also used for the rest of the correlation calculation. The weights adjust for periods 
of lower or higher activity. 

Equation 10.3 is formulated in such a way that coi = 0 for the case of returns 
interpolated over a data gap—that is, a tick interval that fully contains the analyzed 
interval of size At. Data gaps have no influence on the means, and the sums of 
Equations 10.5 and 10.7 are not updated there. The covolatility adjusted measure 
of correlation described by Equation 10.5 also retains the desirable characteris-
tics of the original, standard linear correlation coefficient; it is scale free, and 
completely different measurements are directly comparable. In addition, this al-
ternative method is only slightly more complicated to implement than the standard 
linear correlation coefficient and can easily be implemented on a computer. 

As will be applied later, this correlation measure easily fits into the frame-
work of autocorrelation analysis. Given a time series of correlations 6t, it can be 
correlated with a copy of itself but with different time lags (r) between the two, 
as shown in Equation 10.8: 

R(Q(Axi, Ayt, wt), r) = 

EL,+1 ("t - ('- 1))(6t-r — (02)) 

[ELTH-1(6r — (Q1))2 — (62))21 12

for r > 0, where 

(10.8) 

n 
x—Nn

(61) —  1 E .6t and ( -62) =  1 2_, Qt-r (10.9) 
n— r n— T 

t=r+1 t=r+1 

For the discussions that follow, we measure correlation using the covolatility ad-
justed method described by Equation 10.5, unless otherwise stated, and always 
with m = 6 and a = 0.5 (see Equation 10.3). Any subsequent use of the com-
monly recognized linear correlation coefficient (Equation 10.1) will be referred to 
as the "standard" method. 

10.3.2 Monte Carlo and Empirical Tests 

Various tests were performed on the covolatility adjusted correlation measure in 
order to test its behavior when applied to time series with differing frequencies 
and data gaps. 

A first test used synthetic Monte Carlo data to illustrate the effectiveness 
of the method. Two separate, uncorrelated, normally distributed, i.i.d. random 
time series, At and 13i, were produced, each with zero mean, standard deviation 
a = 0.01 and size m = 10, 000. A third series, Ci, can then be formed as a linear 
combination of the previous two: 

C7L1 + (1 — k)Brii (10.10) 
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TABLE 10.1 Results of a Monte Carlo simulation of correlations. 

Comparing the covolatility adjusted linear correlation 6 to the standard linear correlation 
Q, both applied to synthetic time series. The series Di is like Ci, but regularly spaced 

sections of the data are replaced by linearly interpolated data. Details are described in the 
text. Note the similarity of the Q(Ai, CO and -6(A1, Di) columns. 

Multiplier k 
Equation 10.10 

Q(Ai, Ci) 
Equation 10.1 

Q(Ai, Di ) 
Equation 10.1 

Q(Ai, Di ) 
Equation 10.5 

0.0 0.00 0.00 0.00 
0.1 0.12 0.10 0.12 
0.2 0.23 0.15 0.22 

0.3 0.38 0.28 0.38 

0.4 0.52 0.40 0.51 

0.5 0.69 0.51 0.69 

0.6 0.83 0.62 0.82 

0.7 0.92 0.67 0.91 

0.8 0.97 0.72 0.95 

0.9 0.99 0.74 0.97 

1.0 1.00 0.74 0.99 

where the constant k is selected such that 0 < k < 1. In this way, the new series 

Ci has a controllable correlation to the original data series Ai. 
The synthetic returns Ci were then cumulated to synthetic prices Pi, with 

starting value PI = 10 and sample size m 1 = 10, 001: 

pm+1 =__ 
i=2 (10.11) 

The pure cumulation of C, leads to synthetic logarithmic prices that are transformed 
to synthetic nonlogarithmic prices by the exponential function. 

Repeated data sections, each consisting of 50 price observations, were then 
deleted in the time series Pi and replaced by prices linearly interpolated from the 
prices bracketing the deleted sections. The distance between these artificial data 
gaps also consisted of 50 observations, creating an alternating series of original 
data patches followed by data gaps filled with linearly interpolated prices. Finally, 
the first differences of this altered price series were taken to build a new series of 
returns, D. 

Equation 10.5 was then used to measure the correlation between one of the 
original return distributions, Ai, and the manipulated return distribution, Di, given 
various values of the constant multiplier k. Results are shown in comparison to 
the standard linear correlation calculation in Table 10.1. 

A comparison of columns two (Q(A, C)) and four CO (A , D)) shows that the 
covolatility adjusted correlation measure described by Equation 10.5 successfully 
approximates the original standard linear correlation between distributions A and 
C before some data patches were replaced by linearly interpolated values. Any 
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small deviations that exist are due to the statistical error (-- 2%) of these tests. The 
third column of Table 10.1, by contrast, shows standard correlation values severely 
affected by the interpolation-filled data gaps. This simple example illustrates one 
of the original design goals of the covolatility adjusted linear correlation measure: 
correlation is measured where data exist, and the calculation is not updated where 
data do not exist. 

Tests with foreign exchange data were performed to exemplify the effect 
of the covolatility adjusted correlation measure on time series with fluctuating 
data frequency and volatility. Homogeneous time series of USD-DEM prices 
were generated according to Section 3.2.2, equally spaced by 3-min intervals, 
once in physical time, once in a-time as explained in Chapter 6. USD-DEM 
has a high data frequency (see Table 2.2), but is also characterized by large in-
traday and intraweek fluctuations of both data frequency and volatility as shown 
in Section 5.6.2 and Figure 5.12. Absolute value of USD-DEM returns were 
used because they are known to have autocorrelations of greater magnitude than 
actual returns. Three autocorrelation functions are investigated: (1) standard au-
tocorrelation (Equation 10.8) of 18-min returns in physical time, (2) standard 
autocorrelation of 18-min returns in 6-time (see Chapter 6), and (3) autocorrela-
tion measured by the covolatility adjusted correlation coefficients (Equation 10.5), 
analyzing 18-min in physical time. The covolatility computation was done in 3-
min intervals and with m = 6 (Equation 10.3), resulting in a covolatility value 
every 18 min. Results of these measurements are shown in Figure 10.1. A to-
tal data period of 6 months was used, ranging from January 1, 1996, to July 1, 
1996. 

The covolatility adjusted autocorrelation values (bullets in Figure 10.1) are 
significantly lower than the corresponding standard autocorrelation values, but 
close to the standard autocorrelation of the series equally spaced in 6-time. We 
ascribe the high level of standard autocorrelation in physical time to the weekly 
seasonality of the data. The high absolute returns during working days and the 
low values on weekends are responsible for part of the high standard autocor-
relation at lags up to about 1 day. As described in Chapter 6, 6-time elimi-
nates seasonality and thus the part of the autocorrelation caused by seasonality. 
The covolatility behaves similarly in the following respect. Weekends with their 
data gaps have extremely low covolatility values, so they are practically elim-
inated from the statistics. Weekly seasonality no longer affects the statistics. 
At lags around 24 hr, the picture is different. The covolatility adjusted auto-
correlation approaches the value of the standard autocorrelation in a clear peak 
which indicates daily seasonality. Unlike #-time, which deforms time to elim-
inate seasonality, the covolatility adjusted correlation measure was designed to 
give a high weight to the most active periods, with no intention to hide all the 
seasonalities. Removing seasonality is not always desirable, so we find the co-
volatility adjusted correlation estimation to be a suitable method for many ap-
plications. In addition, the simplicity of this methodology lends itself to wider 
use. 
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FIGURE 10.1 Autocorrelation of the absolute values of USD-DEM returns as a function 
of the time lag. The triangles (A) refer to standard autocorrelation of absolute returns, 
equally spaced in physical time. Bullets (s) refer to the covolatility adjusted autocorrelation 
of the same absolute returns. Crosses (+) refer to standard autocorrelation of absolute 
returns, equally spaced in 29-time. Sampling period: January 1, 1996, to July 1, 1996. 

10.4 STABILITY OF RETURN CORRELATIONS 

When correlation is calculated between two time series, the assumption is that this 
quantity does not vary over time. For the case of financial time series this is seldom 
occurs, although time variance of the correlation coefficient over time can some-
times be small. This issue is critical for portfolio pricing and risk management 
where hedging techniques can become worthless when they are most needed, dur-
ing periods known as correlation "breakdown," or relatively rapid change. Boyer 
et al. (1997) have also demonstrated that a detection of correlation breakdown or 
other structural breaks by splitting a return distribution into a number of quan-
tiles can yield misleading results. We use high-frequency data to estimate cor-
relations literally as a function of time for a number of different financial time 
series in an effort to better understand the level of change that can occur. High-
frequency correlation estimations are contrasted with lower-frequency estimates 
for the same sample periods. The "memory" that correlation coefficients have 
for their past values is also estimated for a number of examples using a simple 
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TABLE 10.2 Data sampling for correlation as function of time. 

Four different sampling schemes are selected to divide the total sampling period of size T 
from January 7, 1990, to January 5, 1997, 

Correlation Data frequency Number of returns 95% confidence 
calculation (number of returns per correlation band 

period per day) calculation 1.96/,F2 
TIN f = n NIT n 

365 days 1 365 0.10 
128 days 3 384 0.10 
32 days 12 384 0.10 
7 days 72 504 0.09 

and appropriate parameterization. Such estimations can be applied to long-term 
correlation forecasting, which is required, for example, to price or hedge financial 
options involving multiple assets, Gibson and Boyer (1997). 

10.4.1 Correlation Variations over Time 

The general stability of correlation coefficients was examined using various corre-
lation calculation intervals and data frequencies. This involved examination of a 
fixed historical time series over a time period T, from January 7, 1990, to January 
5, 1997. The time series of returns (r (0) was then divided into N subsets of equal 
duration (TIN) from which correlation coefficients were computed according to 
Equation 10.1. Four values of N were selected, while the total period T always 
remained constant. A homogeneous series of n returns was then chosen inside 
each period of size TIN via linear interpolation, so each correlation coefficient is 
based on n observations. Similar numbers n were selected for all the four values 
of N in order to maintain nearly uniform statistics, as shown in Table 10.2. In this 
table, the number of return observations per day, f = n NIT, is also given. 

Results from these calculations are shown in Figures 10.2 to 10.7, where 
correlations versus time are displayed, and dashed lines above and below zero 
correlation are 95% confidence ranges assuming normally distributed random dis-
tributions. The confidence limits are slightly nonuniform due to small variations 
in statistics. Some correlations were computed with fewer observations than n 
because of missing observations. Whenever a weight coi from Equation 10.3 was 
equal to zero, the corresponding observation was ignored. The weights col were not 
used for any other purpose, and the correlations remain standard linear correlations 
defined by Equation 10.1. 

Correlation coefficient mean values and variances are given for each pair of fi-
nancial instruments and for each of the four calculation frequencies in Table 10.3. 
Having virtually the same statistical significance for all correlation calculations 
shown in Figures 10.2 through 10.7, we can make a number of observations about 
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TABLE 10.3 Means, variances, maxima and minima of correlation. 

Means, variances, maxima and minima of the linear correlation coefficients as shown in 
Figures 10.2 through 10.7. For each pair of financial instruments, four correlation intervals 
TIN of decreasing size are investigated. The total sampling period T is from January 7, 
1990, to January 5, 1997. 

Instrument Correlation Mean Variance Max Min. 

pair period value (a2) 

USD-DEM - USD-NLG 1 year 0.99 0.000026 0.99 0.98 
USD-DEM - USD-NLG 128 day 0.99 0.00012 1.00 0.95 
USD-DEM - USD-NLG 32 day 0.96 0.0029 1.00 0.54 
USD-DEM - USD-NLG 7 day 0.88 0.0067 0.98 0.41 

USD-DEM - USD-GBP 1 year 0.76 0.029 0.96 0.42 
USD-DEM - USD-GBP 128 day 0.79 0.015 0.98 0.57 
USD-DEM - USD-GBP 32 day 0.76 0.031 0.98 0.09 
USD-DEM - USD-GBP 7 day 0.69 0.030 0.97 0.20 

USD-DEM - USD-ITL 1 year 0.76 0.040 0.99 0.41 
USD-DEM - USD-ITL 128 day 0.75 0.057 0.99 0.18 
USD-DEM - USD-ITL 32 day 0.76 0.044 0.99 0.07 
USD-DEM - USD-ITL 7 day 0.68 0.044 0.97 0.07 

DJIA - AMEX 1 year 0.73 0.0083 0.84 0.60 
DJIA - AMEX 128 day 0.70 0.0087 0.85 0.57 
DMA - AMEX 32 day 0.41 0.041 0.78 -0.29 
DMA - AMEX 7 day -0.01 0.030 0.62 -0.50 

DEM 3-6m - DEM 9-12m 1 year 0.84 0.00074 0.88 0.81 
DEM 3-6m - DEM 9-12m 128 day 0.78 0.0084 0.90 0.57 
DEM 3-6m - DEM 9-12m 32 day 0.71 0.025 0.96 0.13 
DEM 3-6m - DEM 9-12m 7 day 0.54 0.074 1.00 -1.00 

USD 3-6m - DEM 3-6m 1 year 0.33 0.024 0.51 0.13 
USD 3-6m - DEM 3-6m 128 day 0.30 0.028 0.59 -0.10 
USD 3-6m - DEM 3-6m 32 day 0.30 0.051 0.85 -0.34 
USD 3-6m - DEM 3-6m 7 day 0.28 0.066 1.00 -0.52 
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FIGURE 10.2 Linear correlation coefficients calculated using increasingly small sub-
intervals, TIN = (365 days, 128 days, 32 days, and 7 days), for the FX return pair USD-
DEM — USD-N LG. The dashed lines above and below zero correlation are 95% confidence 

ranges assuming normally distributed returns. 

correlation stability. The highly correlated USD-DEM — USD-NLG returns shown 
in Figure 10.2 appear largely constant over the total sample period of 7 years. As 

the subperiod width for correlation calculation decreases (and the number of cor-
relation calculations inside the total period increases), more structure becomes 
apparent. This additional structure is reflected by an increasing variance in Ta-

ble 10.3. Correlations calculated with lower data frequency are not simply an 
average of those calculated with higher quotation frequencies; Table 10.3 shows 

the mean value for USD-DEM — USD-NLG correlations moving steadily down-
ward with increasing correlation resolution (an -11% change between yearly data 
resolution and weekly resolution). This can be partially explained by considering 
that error distributions for empirically computed correlations are not symmetric 
when coefficients differ from zero. However, such drops in correlation with higher 
data frequency as can be observed with the DJIA-Amex pair point to a stronger 
effect which will be addressed in more detail in Section 10.5. 
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FIGURE 10.3 Linear correlation coefficients calculated using increasingly small sub-
intervals, T/N = (365 days, 128 days, 32 days, and 7 days), for the FX return pair USD-
DEM — USD-GBP. The dashed lines above and below zero correlation are 95% confidence 
ranges assuming normally distributed returns. 

Figures 10.3 and 10.4 show correlations for the FX rate pairs USD-DEM — 
USD-GBP and USD-DEM — USD-ITL. Note that the inverse rate USD-GBP was 
used instead of the more usual GBP-USD, in order to be in line with other currencies 
and to obtain positive correlation. Both figures exhibit fast and large drops in 
correlations during the second and third weeks of September 1992. Presumably, 
this directly reflects the turmoil of the European Monetary System (EMS) at that 
time, when GBP and ITL left the system. This appears to be a clear example of 
correlation breakdown. 

Recapitulating the major points of Section 10.4, correlation was examined as a 
function of time for a number of different financial instruments. The time frame of 
7 years was divided in four different ways, using subperiods of 365, 128, 32, and 7 
days. The number of subperiods over the total 7 year period was then 7, 19, 79, and 
365, respectively. The subperiods of different size were divided into n intervals 
for return observations. This number n had roughly the same size in all cases, 
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FIGURE 10.4 Linear correlation coefficients calculated using increasingly small sub-
intervals, TIN = (365 days, 128 days, 32 days, and 7 days), for the FX return pair USD-
DEM — USD-ITL. The dashed lines above and below zero correlation are 95% confidence 
ranges assuming normally distributed returns. 

between 365 and 504, so the statistical significance of correlation values was always 
comparable. The correlation between some financial instruments can be described 
as reasonably stable. However, brief but large breaks can be observed in almost all 
cases, and the additional statistics provided by time series of higher frequency are 
essential to detect such occurrences. In addition, we observed decreasing absolute 
values all the correlations we examined when going to higher data frequencies. 
This will be further discussed further in Section 10.5. 

10.4.2 The Exponential Memory of Return Correlations 

The linear correlation values shown in Figures 10.2 through 10.7 can be seen 
as time series in their own right. A certain stability of correlation levels seems 
to indicate that markets have a memory for these levels. This memory can be 
investigated by considering the autocorrelation of the correlation time series. We 
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FIGURE 10.5 Linear correlation coefficients calculated using increasingly small sub-
intervals, TIN = (365 days, 128 days, 32 days, and 7 days), for the stock index pair MIA —
AMEX (both expressed in USD). The dashed lines above and below zero correlation are 
95% confidence ranges assuming normally distributed returns. 

focus on the weekly correlation measurements displayed in the lower right plots of 
Figures 10.2 through 10.7. These weekly correlations are computed from 20-min 

returns. The autocorrelation analysis was performed for different lags (r), using 
Equation 10.8. 

Results of these calculations are shown in Figure 10.8. Shown along with 
each autocorrelation curve are the 95% confidence limits for a normally distributed 
random process. The differences in the behaviors of the six correlation pairs are 
striking. For foreign exchange rate correlations, we observe a significantly positive 
autocorrelation extending to long lags up to 50 to 100 weeks. Correlation structures 
have a long memory. For correlations between implied forward interest rates, we 
find a positive autocorrelation above the significance limit for lags up to 3 or 4 
months, which means a reduced but still long memory. The correlation of the stock 
index pair (Down Jones and AMEX Stock Index) behaves differently as it dives 
below significance already at the first lag of 1 week. The market has no consistent 
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FIGURE 10.6 Linear correlation coefficients calculated using increasingly small sub-
intervals, TIN = (365 days, 128 days, 32 days, and 7 days), for the implied forward 
interest rate pair USD 3-6 months — DEM 3-6 months. The dashed lines above and below 
zero correlation are 95% confidence intervals assuming Linear correlation coefficients 
calculated using increasingly small subintervals, TIN = (365 days, 128 days, 32 days, and 
7 days), for the implied forward interest rate pair USD 3-6 months — DEM 3-6 months. 
The dashed lines above and below zero correlation are 95% confidence ranges assuming 
normally distributed returns. 

memory of the level, but this may be due to the strong Epps effect of the 20-min 
returns, explained in Section 10.5. Figure 10.8 also shows that autocorrelation 
values for each of the six instrument pairs decline roughly exponentially but with 
markedly different attenuation rates. 

To better gauge the difference in autocorrelation attenuation for these corre-
lation pairs, the autocorrelations shown in Figure 10.8 were modeled by a simple 
exponential function: 

Y Ae'lx (10.12) 
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FIGURE 10.7 Linear correlation coefficients calculated using increasingly small sub-
intervals, TIN = (365 days, 128 days, 32 days, and 7 days), for the implied forward 
interest rate pair DEM 3-6 months — DEM 9-12 months. The dashed lines above and 
below zero correlation are 95% confidence ranges assuming normally distributed returns. 

where A is an exponential attenuation length and A is a simple weight. These pa-
rameters were fitted to the data in Figure 10.8, starting with the first lag (neglecting 
the zeroth lag, which is equal to one by definition) and only to the point where 
autocorrelation data fell below the 68% of the upper confidence limit, thus focus-
ing on the initial decay of autocorrelation. The autocorrelations of USD-DEM — 
USD-GBP correlations are shown in Figure 10.9. The results for the autocorrela-
tions of correlation data shown in Figure 10.8 are also reported in Table 10.4. The 
DMA-AMEX pair is excluded here due to the lack of correlation in the 20-minute 
returns, as mentioned above. 

The goodness of fit can be judged by the x 2 value, divided by the degree of 
freedom m in fitting. This is also shown in Table 10.4. Each autocorrelation value 
was assumed to have a stochastic error of 1/.5, where N is the total number 
of correlation observations considered when calculating an individual autocorre-
lation value. All x2 / m values are below 1 or just slightly above 1, indicating 
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in Figures 10.2 through 10.7. The 95% confidence ranges corresponding to normally 
distributed random distributions are shown as dotted curves, where the curvature is 
caused by the decreasing size of the sample with growing lags. The total sampling period 
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FIGURE 10.9 Fit of an exponential function to the autocorrelation of USD-DEM - 
USD-GBP weekly correlation coefficients. 

that Equation 10.12 describes the data rather well. Adding a second exponential 
function to Equation 10.12 did not significantly improve the goodness of fit in all 
cases unless the data point at zero lag (defined as being equal to one) was added 
to the data set. 

Table 10.4 shows considerable values of the amplitude A (which cannot ex-
ceed 1) and a long memory of the correlation level. The pair USD-DEM - USD-
NLG has the longest memory with an exponential attenuation length of more than 
80 weeks, which is just over one and a half years. The autocorrelation model of 
Equation 10.12 with the parameters of Table 10.4 can be the basis of a correlation 
forecast. This forecast could be remarkably long-term due to the long memory in 
correlation, depending on the instrument pair. 

10.5 CORRELATION BEHAVIOR AT HIGH DATA FREQUENCIES 

Previous authors have observed a dramatic decrease in correlation as the time 
intervals of the returns enter the intrahour level, for both stock (Epps, 1979) and 
FX returns (Guillaume et al., 1997; Low et al., 1996). We follow the suggestion of 
Low et al. (1996) by referring to this phenomenon as the Epps (1979) effect after 
the first identifiable author to thoroughly document it. In this discussion, the Epps 
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TABLE 10.4 Autocorrelation study. 

The autocorrelations of weekly correlation data shown in Figure 10.8 are fitted to the 
parametrization given in Equation 10.12, for five financial instrument pairs. A large value 
of a. indicates a long, exponentially decaying memory of the correlation level. The variable 
X2/m indicates the goodness of fit (good fits have a value around 1 or preferably below); 
m is the degree of freedom of fitting. 

Instrument A 
(weeks) 

X2/m 

USD-DEM — USD-NLG 0.35 ± 0.01 80.9 ± 7.1 0.65 
USD-DEM — USD-GBP 0.62 ± 0.02 31.5 f 1.8 0.15 
USD-DEM — USD-ITL 0.61 ± 0.02 59.8 ± 3.0 0.34 
DEM 3-6m — DEM 9-12m 0.27 ± 0.04 10.0 ± 2.6 1.30 
USD 3-6m — DEM 3-6m 0.23 ± 0.03 21.8 ± 5.4 0.41 

effect is characterized and investigated for a number of foreign exchange rates, 
efi stock indices, and implied forward interest rate pairs through the examination of 
1..q4 the same 7 years of high-frequency return values as used in the previous sections. 

The basis of our exploration was a set of homogeneous time series of returns, 
equally spaced by 5-min intervals, for several financial instruments. Linear inter-
polation was used in the sense of Equtions 3.2 and 3.6. For each time series of 
5-min returns, we obtained 499 additional time series through aggregation: 10-min 
returns, 15-min returns, .. . , 2500-min returns. To cover longer time intervals, 877 
more time series were obtained by further aggregation in coarser steps: 2530-min 
returns, 2560-min returns, . . . , 28810-min returns, where a 28810-min interval 
roughly corresponds to 20 days. Various calculations were performed with these 

• many times series. The most interesting results are the correlation coefficients for 
returns of different financial instruments, using the same time interval size. This 
can be done for all interval sizes of the aggregated time series. 

The resulting correlation coefficients are plotted as a function of the time 
interval size in Figure 10.10. When returns are computed with high frequency, 
over intervals distinctly shorter than 1 day, the correlation levels diminish in Fig-
ure 10.10. The same effect is better viewed in Figure 10.11, where the same data 
are shown with a logarithmic scale of interval sizes and where the data point far-
thest to the left (highest data frequency) corresponds to the correlation calculated 
using linearly interpolated, homogeneous time series of 5-min returns. 

Table 10.5 gives the minimum and maximum values for the linear correlation 
coefficient data shown in Figure 10.10. Also given are the time intervals at which 
maxima occurred. We noted several problems when taking the maximum of cor-
relation as a function of the time interval. The correlation graphs reach a more or 
less stable maximum level at time intervals exceeding one day, but this stability 
is not perfect for any correlation graph. Moreover, the maximum of correlation 
is affected by increasing stochastic noise for large time intervals. In an attempt 
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FIGURE 10.10 Linear correlation coefficients calculated for six pairs of financial in-
struments as a function of the size of the time interval of returns. For all calculations 
the total sampling period remained constant (from January 9, 1990, to January 7, 1997,) 
causing the 95% confidence ranges to be narrow at high data frequencies and wider as 
the time interval increases. Rapid declines in correlation at very high data frequencies are 
noted in all cases. 
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FIGURE 10.11 Linear correlation coefficients calculated for six pairs of financial in-
struments as a function of the size of the time interval of returns. The same data as in 
Figure 10.10 are shown with a logarithmic horizontal axis. Rapid declines in correlation at 
very high, intraday data frequencies are noted in all cases. 
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TABLE 10.5 Correlation results characterizing the Epps effect. 

Minima, maxima, and mean values (averaged over time intervals between 1 and 2 days) of 
correlation coefficients. These correlations are functions of the time interval of return 
measurement, as plotted in Figures 10.10 and 10.11. Also given are the time intervals 
at which the maxima occurred and the time intervals where the coefficient reaches 90% 
of the mean value. This latter time interval in the last column is called the stabilization 
interval-the threshold after which the Epps effect no longer affects correlation results. 
The sampling period was from January 9, 1990, to January 7, 1997. 

Instrument 
pair 

MM. 
con. 

Max. 
corr. 

Interval 
of max. 
(days) 

Mean 
corr. 

(1-2 days) 

90% 
of 

mean 

Stabiliz. 
interval 
(min) 

USD-DEM - USD-GBP 0.55 0.86 7.2 0.79 0.71 10 
USD-DEM - USD-NLG 0.78 1.00 14.0 0.99 0.89 15 
USD-FRF - USD-ITL 0.49 0.86 12.0 0.79 0.71 25 
USD-NLG - USD-FRF 0.69 0.99 16.9 0.97 0.87 25 
USD-FRF - USD-GBP 0.48 0.86 7.2 0.80 0.72 30 
USD-JPY - DEM-JPY 0.34 0.62 19.4 0.48 0.43 30 

ell 
qiF ; 

DEM-GBP - USD-GBP 
DJIA - AMEX 

0.23 
0.00 

0 75 
0.86 

17.0 
13.3 

0.45 
0.77 

0.41 
0.69 

170 
320 

.e9 
rong DEM 3-6M - DEM 9-12M 0.40 0.90 19.2 0.82 0.74 340 

to give a more accurate reference level of the correlation drop due to the Epps 
effect, Table 10.5 also reports the arithmetic mean of all correlation values based 
on time intervals between 1 and 2 days. A total of 224 correlation values (i.e., 224 
aggregated time series) belong to this range of time intervals. Although there is 
no best choice of time interval for the general case, this mean value is considered 
as a reasonable reference level of correlation in its stable region. When moving 
to shorter time intervals, the Epps effect makes the correlation values decline. As 
a threshold value of the Epps effect, Table 10.5 also shows the time interval at 
which correlations drop to 90% of the reference level. This estimation of the Epps 
threshold or, seen from the other side, the correlation stabilization interval has 
the advantage that it can be uniformly applied to all cases, and it does not deliver 
obviously misleading results based on the maximum value of correlation. 

We find that even currency pairs that are highly correlated in the long term 
become much less correlated in the intrahour data frequency range. Muller et al. 
(1997a) propose a hypothesis of heterogeneous markets where the market agents 
differ in their perception of the market, have differing risk profiles, and operate 
under different institutional constraints (see also Section 7.4). If the financial mar-
kets are indeed composed of heterogeneous agents with different time horizons of 
interest, then the Epps effect in correlation estimations can be interpreted as a cut-
off between groups of agents. Short-term traders focus on the rapid movements of 
individual rates rather than multivariate sets of assets. For these short-term agents, 
correlations between instruments play a secondary role. Other, less rapid agents 
reestablish "correct" correlations after market shocks, but this takes some time. 
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FIGURE 10.12 Correlation stabilization intervals (= stabilization points, in min) as a 
function of the inverse square root of the product of the tick frequencies. The same 
instrument pairs and stabilization intervals as in Table 10.5 are plotted. 

When considering the stabilization interval in the last column of Table 10.5, 
we find that the Epps effect already vanishes at return measurement intervals of 
10 min for the correlation of the most frequently quoted financial instruments. For 
pairs of less frequently quoted instruments, the Epps effect may last for hours, 
up to 6 hr in Table 10.5. This indicates a relationship between tick frequencies 
(and perhaps liquidity) of instruments and the duration of the Epps effect. Two 
correlation studies were made to probe this relationship: (1) standard correlation 
between the stabilization interval and the tick frequency of the more frequently 
quoted instrument of the pair and (2) standard correlation between the stabilization 
interval and the tick frequency of the less frequently quoted instrument. Mean tick 
frequencies per business day were taken, as listed in Table 2.2. 

The greater of the two tick frequencies is estimated to have a standard correla-
tion of -0.59 to the stabilization interval. The corresponding standard correlation 
of the lower tick frequency is -0.65. These values are significant to 92% and 95% 
confidence levels, respectively, assuming a normal random distribution. Therefore 
we conclude that, to a reasonable level of confidence, both of the tick frequencies 
substantially affect the stabilization interval after which the Epps effect of corre-
lations vanishes. Tick frequency and stabilization interval are inversely related. 
This can be seen graphically in Figure 10.12 where the stabilization interval is 
plotted versus the inverse geometric mean of the two tick frequencies. When two 
tick frequencies are very high, as on the left-hand side of Figure 10.12, the stabi-
lization interval becomes small. On the other side, at very low data frequencies, a 
plateau in the correlation stabilization interval appears to exist at a data interval of 
300 to 400 min. This would indicate that the Epps effect does not play a substantial 
role in attenuating correlation values beyond 6-hr return measurement intervals, 
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even if the instruments involved are very inactive (< 100 data updates per business 
day). It should be stated that these are indicative and preliminary results and an 
enhanced study with more instruments and statistics is called for. 

10.6 CONCLUSIONS 

The problems associated with estimation of correlation at higher data frequencies 
have been discussed and illustrated using examples. An easy-to-use covolatility 
adjusted correlation estimator, which correctly accounts for missing or nonexis-
tent data, has been proposed. The effect of this new formulation is to estimate 
correlation when data exist, and to make no update to the correlation calculation 
when data do not exist. The input of the method is homogeneous time series lin-
early interpolated between the ticks. At times when tick intervals are longer than 
the return measurement intervals, the weight of the return observations tends to 
zero. Because the estimator is adjusted by covolatility, some of the information 
from the more frequent of the two time series involved will not be fully utilized, 
and statistical significance can be degraded. With growing data frequency, this 

cn degradation is inevitable but tolerable because the statistical significance based on 
high-frequency sampling is high by nature. Covolatility adjusted correlation is an 

rU estimator complementary to other estimators. Its fluctuating weighting of obser-
vations is an alternative to time scale transformations such as thei,-time discussed 
in Chapter 6. 

Empirically estimated linear correlation coefficients of returns vary over time. 
The return correlations of some financial instrument pairs widely fluctuate from 
week to week, whereas other correlations are very stable over periods of many 
years. It was observed that long-term historical stability is not a guarantee of future 
correlation stability. This was evidenced through the examination of USD-ITL and 
USD-GBP return correlations with the USD-DEM rate. The crisis of 1992, when 
the involvement of ITL and GBP in the European Monetary System (EMS) was 
suspended, was reflected by a dramatic and rapid change in their correlations with 
other currencies thereafter. Correlation calculated over a long data sample (years) 

Lk has an averaging effect, and increased structure in correlations is observed when 
correlations are calculated over smaller periods (weeks). Depending on the time 
horizon of interest, there is pertinent information to be gained when calculations 
are performed over smaller periods using high-frequency data. The self-memories 
of return correlations have been modeled as exponential attenuations through esti-
mation of the autocorrelation of linear correlation coefficients. Correlation values 
have memories for their past values that differ between instument pairs and often 
extend over years rather than only weeks. The understanding of this correlation 
memory is a first step toward correlation forecasting. 

The behavior of the correlation coefficient as a function of the time interval 
of return measurement has been investigated. Nonzero correlations of returns 
are dramatically attenuated when this interval decreases and enters the intrahour 
region. This behavior is called the Epps effect and depends on the pair of investi-
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gated financial instruments. When the measurement interval exceeds a threshold 
value called the stabilization interval, the Epps effect gives way to a rather stable 
behavior of the correlation. There is some preliminary evidence of an inverse 
relationship between the stabilization interval and the mean tick frequency of the 
instruments involved. If financial markets are composed of heterogeneous agents 
as suggested in Section 7.4, the stabilization interval can be interpreted as a thresh-
old between groups of agents. For extremely short-term traders focusing on time 
horizons below the stabilization interval, correlations between instruments may be 
less of an issue than for other agents. 

In applications such as asset allocation or risk assessment, the return measure-
ment intervals should preferably be chosen longer than the stabilization interval. 
However, there is no general "best" time interval for measuring correlation. It is 
important to choose the most relevant interval size for a specific application. 
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11 
TRADING MODELS 

11.1 INTRODUCTION 

Recently, the skepticism among academics to the possibility of developing prof-
, itable trading models has decreased with the publication of many papers that docu-
i ment profitable trading strategies in financial markets, even when including trans-

action costs. 
In the earlier literature, simple technical indicators for the securities mar-

ket have been tested by Brock et al. (1992). Their study indicates that patterns 
uncovered by technical rules cannot be explained by simple linear processes or 
by changes in the behavior of volatility.' LeBaron (1992a), LeBaron (1997) and 
Levich and Thomas (1993b) follow the methodology of Brock et al. (1992) and use 
bootstrap simulations to demonstrate the statistical significance of the technical 

In Gencay (1998b), the DMA data set of Brock et al. (1992) is studied with simple moving average 
indicators within the nonparametric conditional mean models. The results indicate that nonparatnetnc 
models with buy-sell signals of the moving average models provide more accurate sign and mean 
squared prediction errors (MSPE) relative to random walk and GARCH models, Gencay (1999) shows 
that past buy-sell signals of simple moving average rules provide statistically significant signpredictions 
for modeling the conditional mean of the returns for the foreign exchange rates. The results in Gencay 
(1999) also indicate that past buy-sell signals of the simple moving average rules are more powerful 
for modeling the conditional mean dynamics in the nonparametric models. 

295 
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trading rules against well-known parametric null models of exchange rates. Sul-
livan et al. (1999) examine the trading rule performance by extending the Brock 
et al. (1992) data for the period of 1987-1996. They show that the trading rule 
performance remains superior for the time period that Brock et al. (1992) studied; 
however, these gains disappear in the last 10 years of the Dow Jones Industrial 
Average (DJIA) series. Lo et al. (2000) have proposed an approach to evaluate the 
efficacy of technical analysis based on technical pattern recognition using nonpara-
metric kernel regression. They apply their method to a large number of U.S. stocks 
and they report that several technical indicators provide incremental information 
of practical value. Overall, the scope of the most recent literature supports the 
technical analysis, but it is generally limited to simple univariate technical rules. 
One particular exception is the study by Dacorogna et al. (1995), which exam-
ines real-time trading models of foreign exchanges under heterogeneous trading 
strategies. They conclude that it is the identification of the heterogeneous market 
microstructure in a trading model which leads to an excess return after adjusting 
for market risk. 

Trading models are investment tools that provide explicit buy and sell trading 
recommendations. A clear distinction should be made between a price change 
forecast (presented in Chapter 9) and an actual trading recommendation. A trad-
ing recommendation naturally includes a type of price change forecast, but must 
also account for the specific risk profile of the dealer or user of the respective 
trading model. Another distinction is that a trading model must take into account 
its past trading history. This decision might be biased by the position it is currently 
holding and the price paid for entering in this position, whereas a price forecast is 
not submitted to such asymmetries. A trading model thus goes beyond predicting 
a return. It must decide if a certain action is to be taken. This decision is subject 
to the specific risk profile, the trading history, and institutional constraints such as 
opening hours or business holidays. 

The purpose of this chapter is not to provide ready-to-use trading strategies, 
but to give a description of the main ingredients needed in order for any real-
time trading model to be usable for actual trading on financial markets. Any 
reasonable trading strategy is composed of a set of tools that provides trading 
recommendations within a capital management system. In this book we shall 
not discuss the capital management part, but we wish to show that with a rea-
soned approach and high-quality data, it is possible to design practical and prof-
itable trading models. Indeed, we have developed our own trading models and 
this presentation builds on this experience. Our models anticipate price move-
ments in the foreign exchange (FX) market sufficiently well to be profitable for 
many years yet with acceptable risk behavior, and, they have been used by many 
banks. 

Market investors mainly use trading models as decision tools, but in this chap-
ter we will also illustrate that profitable trading models with robust performance 
measures can be employed as a statistical tool to study the market structure and to 
test the adequacy of price-generation processes. 
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A robust performance measure of trading strategies is one of the most im-
portant ingredients in the development of new models and also in their use. In 
Section 11.3, we discuss different possible performance measures and we derive 
two risk-adjusted ones for investors with risk-averse preferences. Maximizing 
these measures is equivalent to maximizing the expected utility of an investor. 

To construct successful trading strategies is not an easy task and many possible 
mistakes must be avoided during the different development phases of new models. 
We shall describe here some of the main traps in which new system designers 
generally fall and provide some ideas as to how to construct more robust trading 
strategies. In the following sections we will also give a short description of the 
various components needed in trading models and a specific approach using genetic 
algorithms to obtain more robust optimization results. 

11.2 REAL-TIME TRADING STRATEGIES 

In the assumption of a heterogeneous market, there is no trading strategy that is 
absolutely better than other ones. Which strategy to choose will depend on the 
trading and risk profile of the investor. This is confirmed by the existence of many 
different types of portfolio and investment strategies in the financial markets. It is 
also why we use in this study different trading model algorithms. We believe that 
these new investment strategies will simply contribute to, and not fundamentally 
change, the heterogeneous composition of financial markets. 

To be useful, real-time trading models must provide realistic trading recom-
mendations that the user can follow. This means that the models should do the 
following: 

■ Give a warning a few minutes in advance of a deal. 

■ Not change recommendations too rapidly. 

■ Not give recommendations outside business hours. 

■ Take into account market holidays. 

■ Support stop-loss (around the clock). 

In this section, we present the basic system architecture that we use in our 
real-time trading models and discuss the main components needed to transform 
available price quotes into actual trading recommendations. The model is divided 
in three main parts, that is, 

■ Generation of the trading model recommendations. 

■ Receipt of the simulated positions by the simulated trader. 

■ Generation of the model statistics by the performance calculator. 

Figure 11.1 depicts the overall structure and data flow of a simple real-time trading 
model. The next subsections describe these different components. 

0317



298 CHAPTER 11 TRADING MODELS 

Filtered Quotes 

Trading Model 

Market - Time 

Current Return Calculator 

Current Return 

V

Gearing Calculator 

Gearing 

Stop-loss Detector 

Gearing 

Recommendation Maker 
(Deal Filter) 

Recommendation 

Simulated Trader 

Performance 
Calculator 

Position Maker 
(Opportunity Catcher) 

Position 
V 

Book-keeper 
(Cost Calculator) 

Position÷Cost 

Historical 
Statistics 

Model Statistics 

Simulated Trader Statistics 

Simulated Position 

Display 

TM 
Portfolio 

- — - — 

Warning signal 
to users 

Users 

FIGURE 11.1 Data flow of prices and deal recommendations within a real-time trading 
model. 
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TABLE 11.1 Market constraints. 

FX market business time constraints for the trading models running for different geo-

graphical markets. The markets are listed roughly in the order of their opening times in 
GMT. 

Market Time zone Opening time Closing time Holidays 
(local time) (local time) (per year) 

Tokyo JPT 09:00:00 18:00:00 15 Days 
Singapore PRC 09:00:00 18:00:00 11 Days 
Frankfurt MET 08:30:00 17:00:00 12 Days 
Vienna MET 08:00:00 17:30:00 15 Days 
Zurich MET 08:00:00 17:30:00 10 Days 
London UKT 07:30:00 17:00:00 10 Days 
New York EST 08:00:00 14:00:00 12 Days 

11.2.1 The Trading Model and Its Data-Processing Environment 

As in forecasting or other applications, trading models depend heavily on the 
quality of the financial data that are fed to the program. Problems related to bad or 
invalid data can play an important role at different stages of the decision process. 
For instance, bad data can disturb the computation of the model indicators and 
then imply a partial or complete loss of the prediction power related to these 
indicators. One other sensitive part is the computation of the current return of the 
open positions. The current return is often used to trigger stop-profit algorithms, 
or exit specific positions. Any invalid price that passes through the filter incorrectly 
can produce a long-term perturbation effect on the trading abilities of the system, 
especially if it is used as a transaction price. To avoid data-related problems, a good 
trading system must include a special filter to cancel or postpone recommendations 
until a realistic transaction price is selected. 

Trading Hours and Market Holidays Although some markets like the FX market 
operate continuously, individual traders or institutions generally partake of this 
market only for a portion of each day. Our models accommodate such users by 
incorporating the notion of business hours and holidays. Every trading model is 
associated with a local market that is identified with a corresponding geographical 
region. In turn, this is associated with generally accepted office hours and public 
holidays. The local market is defined to be open at any time during office hours 
provided that the trading model does not operate on a weekend or a public holiday. 
Typical opening hours for a model are between 9:00 and 17:00 local time, the exact 
times depending on the particular local market and traded instruments. In the case 
of FX, Table 11.1 presents typical opening hours of different geographical markets. 
Except for closing an open position if the price hits a stop loss limit (described in 
section 11.2.1), a model may not deal outside of the market's opening hours. 
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Current Return Calculations In the trading room, people seldom take a full exposure 
at once. The traders like to build their positions in steps (gearing steps). In such 
cases, it is useful to introduce an auxiliary variable, the average price p paid for 
achieving the current exposure (gearing). This variable simplifies the computation 
of the return of a position built in steps. After a new deal with index i, the average 
price depends on the type of transaction as follows: 

P 

Pi-1 if lgil < and gigi-1 > 0

—1 
  t ,=21-] if Igi l > and gigi _ i > 0 

Pi if gigi _ i < 0 or gi _ i = 0 

undefined if gi = 0 

cn where gi _i and gi are the previous and current gearings, respectively, pi is the 

La.:3 current transaction price, and pi _l is the average price before the deal. In the initial 

Vie; 
If 

when the current gearing is neutral, the average price /5 is not yet defined. 
If we start from a neutral position gi_i = 0 or reverse a position gi gi_ i < 0, the 
price to build the position is simply the current price pi . If the new position is 
built on top of a previous position, then we need to compute the average price paid 
from the price paid for each fraction of the full position. If the new position is just 
unfolding part of the previous position, then the average price paid for the position 
does not change. It is simply either profit taking or stop loss. 

The average price p is needed to compute a quantity central to a trading model, 
the return of a deal, 

fr,r: 
ri (gi-1 — — 1) (11.2) 

Pi-1 

where the gearing is equal to 0 if the model takes an opposite position (gigi_ i < 
0) and gi otherwise. There are deals with no return: those starting from a neu-
tral gearing, gi _i = 0, and those increasing the absolute value of the gearing 
while keeping its sign.2 In these cases, Equation 11.2 does not apply (whereas 
Equation 11.1 applies to all deals). 

The current return, r,, is the unrealized return of a transaction when the current 
position is off the equilibrium (gi 0 0). If pc is the current market price required 

2 The example below demonstrates the accounting of a trading model of USD-CHF, where CHF 
is the home (numeraire) currency and USD is the foreign exchanged currency. The trading model is 
played with a limit of 100 CHF. The usual practice for the capital flow in foreign exchange trading is 
that it is started from a capital of zero with credit limit. This is what is assumed here, All of our return 
calculations are expressed in terms of the home currency. In other words, the returns are calculated m 
terms of DEM for USD-DEM, CHF for USD-CHF, FRF for USD-FRF, and JPY for DEM-JPY. 

0320



11.2 REAL-TIME TRADING STRATEGIES 301 

for going back to neutral, generalizing Equation 11.2 yields the current return, 

Pc 
rc = gi(= — 1) 

Pi 
(11.3) 

Gearing Calculation A gearing calculator lies at the heart of a trading model. The 
gearing calculator provides the trading model with its intelligence and the ability to 
capitalize on movements in the markets. The gearing calculator also provides the 
trading model with particular properties. These include the frequency of dealing 
and the circumstances under which positions may be entered. 

In other words, the gearing calculator is the real model. In contrast, the other 
trading model components form a shell around the gearing calculator, providing it 
with price data, detecting if the stop-loss is hit, and examining the trading recom-
mendations made by the gearing calculator. The gearing calculator reevaluates its 
position every time a new price quote is received from the data-vendors. (As pre-
viously noted, a filter validates each price beforehand in order to eliminate outliers 
and other implausible data.) 

The gearing calculator employs two kinds of ingredients: a set of indicators, 
which are produced from the input price data, and trading rules, which are functions 
of the past dealing history, the current position, and other quantities such as the 
current unrealized return of an open position. 

The models described here give a recommendation not only for the direction 
but also for the amount of the exposure. In our models, the possible exposures 
(gearings) are ± ±1 (full exposure) or 0 (no exposure). 

Recommendation Maker The fact that the gearing calculator's indicators and rules 
suggest entering a new position does not necessarily mean that the model will make 
such a recommendation. Whether it does or not depends on various secondary rules 
that then take effect. 

These rules constitute the deal acceptor. This determines whether the deal pro-
posed by the indicators is allowed to be made. The prime constraint is the timing 
of the proposed deal. First, no deal other than a stop-loss deal (see Section 11.2.1) 
may take place within a few minutes of a deal already having occurred. This is to 
prevent overloading a human dealer who may be following the models. Second, 

Time Gearing Current position in CHF Current position in USD FX 

0 0 0 0 Don't care 
0.5 -50 35.71 1.4 

2 1 -100 69.04 (33.33 more) 1.5 
3 0 10.46 (69.04*1.6 more) 0 1.6 

In the example above, the trading lots in CHF are always 50 (half gearing step) or 100 (full gearing 
step) when increasing the (long or short) position, whereas decreasing the position means selling the 
full current USD amount (when going to neutral) or half the current USD amount (when going from 
gearing 1 to 1/2). There can be other accounting conventions, but they hardly differ numerically. 
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the gearing calculator may make a recommendation to enter a new trading position 
but this recommendation can be followed only if the local market is open. 

The quality of the most recent price imposes another constraint. A stringent 
filter determines if a given price is suitable for dealing. This is to ensure that 
recommended deals are made only with genuine prices rather than extraneous data. 
The deal acceptor permits a new deal only with a price passing the deal-filter. 

If the gearing calculator suggests entering a new position but the deal acceptor 
decrees otherwise, the suggestion is simply ignored. Eventually, when timing and 
other factors are right, the gearing calculator will suggest entering a new position 
and the deal acceptor will approve. 

Stop-Loss Detection Besides being passed on to the gearing calculator, the filtered 
price quotes are also sent to the stop-loss detector. The stop-loss detector is 
triggered if the market moves in an unexpected direction. That is, if the model 
enters a trading position because it anticipates the market to move in a certain 
direction but in fact the market then moves the other way, the stop-loss may be 
hit. The trading model defines a stop-loss price when a position is entered. If the 
current price — that is, the most recent price — moves below the stop-loss price (for 
a long position) or above the stop-loss price (for a short position), the stop-loss is 
said to be hit. Hitting the stop-loss causes a deal to close the current open position 
(i.e., return to the neutral position). In effect, the stop-loss prevents excessive loss 
of capital when the market moves in an unexpected direction. The stop-loss price 
may change when a new position is entered or as the current price changes (see 
Section 11.2.1). The current stop-loss price is displayed on the user-agent. 

For 24-hr markets like FX, a stop-loss deal may occur at any time, even outside 
local market hours. In this case, the assumption is that a position that is kept open 
outside market hours is handled by a colleague present in another market-place 
who will deal appropriately if the stop-loss is hit. Should this happen, no further 
change in position occurs until the local market opens once again. 

Stop-Profit Control The concept of stop-profit is associated with that of stop-loss. 
The stop-loss price starts to move in parallel with the current price once a trading 
model has achieved a potential profit (3% or slightly less in FX market) since 
entering the latest position. In other words, being in a situation whereby the model 
could realize such a gain by immediately entering a neutral position causes the 
stop-loss price to start moving. The difference between the stop-loss and current 
prices is kept constant as long as the current price continues moving in a direction 
that increases the potential profit of the open position. That is, the stop-loss price 
moves as a ratchet in parallel with the current price. The stop price is allowed to 
move only during opening hours. It is never adjusted when the market is closed. 

The model then enters a neutral position if it detects prices slipping backward. 
This allows a model to save any profit it has generated rather than lose it when 
the market abruptly turns. This one-directional movement of the stop-loss price 
allows the model to capitalize on a price trend. 
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11.2.2 Simulated Trader 

The simulated trader allows the system to control continuously its performance by 
simulating a trade every time the trading model gives a recommandation. In the 
following, we shall describe the different part that composes the simulated trader. 

Opportunity Catcher The trading model may make a deal recommendation in two 
distinct ways. One, the gearing calculator may make a recommendation that is 
then authorized by the deal acceptor. Two, hitting the stop-loss price activates the 
stop-loss detector. 

Whichever way a deal comes about, the opportunity catcher is activated. The 
opportunity catcher manifests itself on the user-agent as an eye-catching signal for 
the FX dealer to buy or sell according to the recommendation. 

While he or she is actively dealing, the opportunity catcher in the trading 
model collects the transaction price with which to deal, either the median bid price 
if going from a longer position to a shorter one or the median ask price if going 
from a shorter position to a longer one. This search for the transaction price lasts 
for 2 or 3 min depending on the currency, the assumption being that a quoted price 
has a life-time of about 2 or 3 min even if it is superseded by later quotes. 

After the 2 or 3 min search period, a second signal appears on the user-agent 
signifying that the trading model has made a simulated deal using the transaction 
price found by the opportunity catcher. The FX dealer then concludes his or 
her deal-making activities and waits until the trading model produces another 
recommendation.3

Bookkeeper The bookkeeper executes simulated deals on behalf of the trading 
model. It keeps track of all deals that have been made and evaluates statistics 
demonstrating the performance of the trading model. The bookkeeper computes a 
set of quantities that are important for the different trading rules like the following: 

■ The maximum return when open, which is the maximum value of r, from 
a transaction i to a transaction i + 1 reached during opening hours, 

■ The minimum return when open, which is the minimum value of r, from 
a transaction i to a transaction i + 1 reached during opening hours. 

In this section we describe some of the important variables that need to be watched 
for deciding on the quality of a specific model. These are the following: 

■ The total return, RT, is a measure of the overall success of a trading 
strategy over a period T, and is defined by 

RT E r • 
j=1 

(11.4) 

3 As a point of detail, the opportunity catcher is not activated for a stop-loss deal occurring outside 
market hours. In this case the trading model deals directly. A human trader following the model should 
then make a corresponding deal for himself as quickly as possible. 
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where n is the total number of transactions during the period T, j is the 1 th
transaction and rj is the return from the i th transaction. The total return 
expresses the amount of profit (or loss) made by a trader always investing 
up to his/her initial capital or credit limit in his/her home currency. 

■ The cumulated return, CT, is another measure of the overall success of 
a trading model wherein the trader always reinvests up to his/her current 
capital, including gains or losses 

CT ri) — 1 . 
j.i 

(11.5) 

This quantity is slightly more erratic than the total return. 
■ The maximum drawdown, DT, over a certain period T = tE —to, is defined 

by 

DT max( Rtb — Rtb to < to < tb < tE) (11.6) 

where Rib and Rtb are the total returns of the periods from to to to and tb, 
respectively. 

■ The profit over loss ratio provides information on the type of strategy used 
by the model. Its definition is 

PT NT( r j I rj > 0 ) 
(11.7) 

LT NT(rj jri < 0) 

where NT is a function that gives the number of elements of a particular 
set of variables under certain conditions during a period T. Here the 
numerator corresponds to the number of profitable deals over the period T 
and the denominator is the number of losing deals over the same period. 

11.3 RISK SENSITIVE PERFORMANCE MEASURES 

Evaluating the performance of an investment strategy generally gives rise to many 
debates. This is due to the fact that the performance of any financial asset cannot 
be measured only by the increase of capital but also by the risk incurred during the 
time required to reach this increase. Returns and risk must be evaluated together 
to assess the quality of an investment. In this section we describe the various 
performance measures used to evaluate trading models. 

The annualized return, RT,A, is calculated by multiplying the total return 
(Equation 11.4) with the ratio of the number of days in a year to the total number 
of days in the entire period.4 In order to achieve a high performance and good 

4 If it is the annualization of one particular return (for one trade going from neutral to neutral), one 
simply needs to multiply the return by the ratio of 1 year in days to the time interval from neutral to 

neutral. Usually, the annualization of the total return is calculated for all the trades during a whole 
year. This is simply the sum of all trade returns not annualized during the whole year. If at the end of 
the year there is an open position, the current return of your open position is added to the total return. 
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acceptance among investors, investment strategies or trading model performance 
should provide high annualized total return, a smooth increase of the equity curve 
over time, and a small clustering of losses. The fulfilment of these conditions 
would account for a high return and low risk. In addition to favoring this type 
of behavior, a performance measure should present no bias toward low-frequency 
models by including always the unrealized return of the open position and not only 
the net result after closing the position. 

Already in 1966, Sharpe (1966) introduced a measure of mutual funds perfor-
mance, which he called at that time a reward-to-variability ratio. This performance 
measure was to later become the industry standard in the portfolio management 
community under the name of the Sharpe ratio, Sharpe (1994). Practitioners fre-
quently use the Sharpe Ratio to evaluate portfolio models. The definition of the 
Sharpe ratio is 

ST = Apt 
r 

Nrir7 
(11.8) 

where 7 is the average return and o is the variance of the return around its mean and 
Apt is an annualization factor,5 depending on the frequency at which the returns are 
measured Sharpe (1994).6 Unfortunately, the Sharpe ratio is numerically unstable 
for small variances of returns and cannot consider the clustering of profit and loss 
trades. 

There are many aspects to the trading model performance; therefore, different 
quantities have to be computed to assess the quality of a model. In the section on 
the bookkeeper, we already described some of the important variables that need to 
be watched for deciding on the quality of a specific model. Here we introduce the 
two risk-sensitive measures that are the basic quantities used in further sections to 
analyze the behavior of trading models. 

11.3.1 ; if: A Symmetric Effective Returns Measure 

As the basis of a risk-sensitive performance measure, we define a cumulative 
variable Rt, at time t, as the sum of the total return RT of Equation 11.4 and the 
unrealized current return r, (Equation 11.3) of the open position. This quantity 
reflects the current value of the investment and includes not only the results of 
previously closed transactions but also the value of the open position (mark-to-
market). This means that Rt is measuring the risk independently of the actual 
trading frequency of the model. Similar to the difference between price and returns, 
the variable of relevance for the utility function is the change of R over a time 

5 Apt = 12 for monthly frequency. 
6 Here the Sharpe ratio refers to the calculation of the returns in the expressed currency and the 

variance is computed with monthly returns. The monthly returns are the total return achieved to the 
end of the month (sum of all returns up to now, including the current return of the open position) minus 
the total return achieved at the end of the previous month. 
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interval At, 
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XAt = — k —At (11.9) 

where t expresses the time of the measurement. Generally At is allowed to vary 
from 7 days to 301 days. A risk-sensitive measure of trading model performance 
can be derived from the utility function framework (Keeney and Raiffa, 1976). Let 
us assume that the variable X At follows a Gaussian random walk with mean X pt

and the risk aversion parameter a is constant with respect to Xpt. The resulting 
utility u ()CAL) of an observation is — exp(—aXAt), with an expectation value of 

= u(X At) exp(a2aL /2), where at is the variance of Xpt The expected utility 
can be transformed back to the effective return, Xeff = — log(—T01 a where 

2 coTAt
Xeff

2 

The risk term a o-i, /2 can be regarded as a risk premium deducted from the original 
return where olt is computed by 

oat n
TC2 =  (X At — At 

Unlike the Sharpe ratio, this measure is numerically stable and can differentiate 
between two trading models with a straight-line behavior (olt = 0) by choosing 
the one with the better average return.7 The measure Xeff still depends on the size 
of the time interval At. It is hard to compare Xeff values for different intervals. 
The usual way to enable such a comparison is through the annualization factor, 
Apt, where Apt is the ratio of the number of At in a year divided by the number 
of At's in the full sample 

Xeff,ann,ilt = Apt Xeff 
a 

Apt 

where X is the annualized return and it is no longer dependent on At. The factor 
AAtoir has a constant expectation, independent of At. This annualized measure 
still has a risk term associated with At and is insensitive to changes occurring with 
much longer or much shorter horizons. To achieve a measure that simultaneously 
considers a wide range of horizons, a weighted average of several Xeff,„„,, is 
computed with n different time horizons Ati , and thus takes advantage of the fact 
that annualized Xeff,ann can be directly compared, 

Wi Xeff ann Ati 
ff = (11.13) Xe 

wi 

7 An example for the limitation of the Sharpe ratio is its inability to distinguish between two straight 
line equity curves with different slopes. 
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where the weights w are chosen according to the relative importance of the time 
horizons i t and may differ for trading models with different trading frequencies. 
Generally, a is set to a = 0.1 when the returns are expressed as a percentage. If 
they are expressed in numbers, a would be equal 10. The risk term of Xeff is based 
on the volatility of the total return curve against time, where a steady, linear growth 
of the total return represents the zero volatility case. This volatility measure of the 
total return curve treats positive and negative deviations symmetrically, whereas 
foreign exchange dealers become more risk averse in the loss zone and hardly care 
about the clustering of positive profits. 

11.3.2 Reff: An Asymmetric Effective Returns Measure 

A measure that treats the negative and positive zones asymmetrically is defined 
to be Reff, (Muller et al., 1993b; Dacorogna et al., 2001b) where Reff has a high 
risk aversion in the zone of negative returns and a low one in the zone of profits, 
whereas Xeff assumes constant risk aversion. A high risk aversion in the zone of 
negative returns means that the performance measure is dominated by the large 
drawdowns. The Reff has two risk aversion levels: a low one, a+, for positive 

A i?t (profit intervals) and a high one, a_, for negative A k (drawdowns), 

a — J a+ for ARt > 0 
(11.14) 

a_ for Ai?' t < 0 

where a+ < a_. The high value of a_ reflects the high risk aversion of typical 
market participants in the loss zone. Trading models may have some losses but, if 
the loss observations strongly vary in size, the risk of very large losses becomes un-
acceptably high. On the side of the positive profit observations, a certain regularity 
of profits is also better than a strong variation in size. However, this distribution 
of positive returns is never as vital for the future of market participants as the dis-
tribution of losses (drawdowns). Therefore, a+ is smaller than a_ and we assume 
that a+ = a_/4 and a_ = 0.20. These values are under the assumption of the 
return measured as percentage. They have to be multiplied by 100 if the returns 
are not expressed as percentage figures. 

The risk aversion a associated with the utility function u (A i?-) is defined in 
Keeney and Raiffa (1976) as follows: 

d2u 
[d(ARM2 a = (11.15) du 

d(6..R) 

The utility function is obtained by inserting Equation 11.14 in Equation 11.15 and 
integrating twice over AR: 

{u = u(AR) = a+
1 1 cce_AR 

a_ a+ a_ 

for Ai? > 0 

for OR < 0 
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The utility function u (A /4) is monotonically increasing and reaches its maximum 

0 in the case A R oo (infinite profit). All other utility values are negative. (The 
absolute level of u is not relevant; we could add and/or multiply all u values with 
the same constant factor(s) without affecting the essence of the method.) 

The inverse formula computes a return value from its utility: 

CJ 

= AR(u) = 

log(—a+u) 

logo—a+
OR 

—u_u) 

a+

a_ 

for u 

for u 

1 

1 

Cr+ 

The more complicated nature of the new utility definition, Equation 11.16, makes 
deriving a formula for the mean utility quite difficult and offers no analytical 
solution. Moreover, the Reff is dominated by the drawdowns that are in the tail 

of the distribution, not in the center. The assumption of a Gaussian distribution, 
which may be acceptable for the distribution as a whole, is insufficient in the tails 
of the distribution, where the stop-loss, the leptokurtic nature of price changes, and 
the clustering of market conditions such as volatility cause very particular forms 
of the distribution. 

Therefore, the use of explicit utilities is suggested in the Reif  algorithm. The 
end results, Reff and the effective returns for the individual horizons, will however, 
be transformed back with the help of Equation 11.17 to a return figure directly 
comparable with the annualized return and Xe-. The utility of the j th observation 
for a given time interval At is 

UPtj = U(1? Et, —At) (11.18) 

The total utility is the sum of the utility for each observation 

not — 

L w.)=1 2)1 Uptj 

v-,1\73

Z-, j=1 V1 

In this formula, N1 is the number of observed intervals of size At that overlaps 
with the total sampling period of size T and the weight v j is the ratio of the 
amount of time during which the j th interval coincides with the sampling period 
over its interval size At. This weight is generally equal to one except for the first 
observation(s), which can start before the sample starts, and the last one(s), which 
can end after the sample ends. To obtain a lower error in the evaluation of the mean 
utility, different regular series of overlapping intervals of size At can be used. The 
use of overlapping intervals is especially important when the interval size At is 
large compared to the full sample size T. Another argument for overlapping is 
the high, overproportional impact of drawdowns on Reif. The higher the overlap 
factor, the higher the precision in the coverage of the worst drawdowns. 
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The mean utility upt can be transformed back to an effective return value by 
applying Equation 11.17: 

A i?eff,pt = At) (11.20) 

This A.keff,pt is the typical, effective return for the horizon At, but it is not yet 

annualized. As in the case of the Xeff, an annualization is necessary for a compar-
ison between Reff values for different intervals. The annualization factor, Apt, is 
the ratio of the number of At in a year divided by the number of nonoverlapping 
At's in the full sample of size T. We have 

1?eff ,ann, At = Apt A-keff,At (11.21) 

To achieve a measure that simultaneously considers a wide range of horizons, 

we define Reff as a weighted mean over all the n horizons, 

Reff = 
En i =1 w 

Reff ,ann,Ati (11.22) 

where the weights wi are chosen according to the relative importance of the time 
horizons Ati and may differ for trading models with different trading frequen-
cies. In the case of the trading models described in this book, we have choosen a 
weighting function 

tet = W(Att) = 
1 

, pt  ) 2
2 d- ( log 90 dys 

(11.23) 

with the maximum for a At of 90 days. 
Both Xeff and Reff are quite natural measures. They treat risk as a discount 

factor to the value of the investment. In other words, the performance of the model 
is discounted by the amount of risk that was taken to achieve it. In the Xeff case 
the risk is treated similarly both for positive or negative outcome, whereas in the 
case of Reff negative performance is more penalized. 

11.4 TRADING MODEL ALGORITHMS 

We turn now to the description of the techniques used to build the real-time trading 

models. Trading models have been developed for many decades by a large number 
of people and applied in all types of financial markets. These models have been 
designed from a broad class of indicators ranging from classical technical analysis 
up to chaotic theory. It is just not possible to provide a comprehensive list of the 
various approaches used in trading system design and the literature in this field is 
so large that we will leave this exercise to other authors. As in the case of technical 
analysis, hundreds of articles and books have been written. 
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Generally, trading systems are built from a few classes of indicators providing 
specific types of information on the underlying financial time series. For instance, 
we have these: 

■ The trend following indicators, which allow to detect and follow major 
market trends. 

■ The overbought and oversold indicators, which allow to detect important 
market turning points. 

■ The cycle indicators, which try to emphasize periodic market fluctuations. 

■ The timing indicators, which provide optimum exit conditions. 

As an example we will describe one model that we have developed for the 
FX market and that many large banks have actively used for a decade. As we 
have pointed out earlier, a trading strategy is built from some indicators and a set 
of decision rules. Indicators are variables of the trading system algorithm whose 
values, together with the system rules, determine the trading decision process. In 
Chapter 3.3 we gave different descriptions of indicators that have been used in 
conjunction with trading models. 

11.4.1 An Example of a Trading Model 

The real-time trading model (RTT) studied in this section is classified as a one-
horizon, high-risk/high-return model. The RTT is a trend-following model and 
takes positions when an indicator crosses a threshold. The indicator is momen-
tum based, calculated through specially weighted moving averages with repeated 
application of the exponential moving average operator (see Section 3.3.6). In the 

case of extreme foreign exchange movements, however, the model adopts an over-
bought/oversold (contrarian) behavior and recommends taking a position against 
the current trend. The contrarian strategy is governed by rules that take the recent 
trading history of the model into account. The RTT model goes neutral only to 
save profits or when a stop-loss is reached. Its profit objective is typically at 3%. 
When this objective is reached, a gliding stop-loss prevents the model from losing 
a large part of the profit already made by triggering it to go neutral when the market 
reverses. 

At any point in time t, the gearing function for the RTT is 

where 

gt(ix) = sign(Ix(t)) f (11,(01) c(I (t)) 

II(t) = xt — M A(T = 20 days, 4; x) 

where xt is the logarithmic price at time t and the moving average (MA) of x 
follows the definition and notation of Equation 3.56 (where the last argument x of 
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MA indicates the time series to which the MA operator is applied), 

1 
if lIx (t)I > b 1 

f (1Ix(01) = if a < IIx (t)I < b 0.5 
if lIx (t)1 <a 0 

and 
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ct(I) 
1+1 if Ilx (t)1 < d 

—1 if II,(t)I > d and gt_i • sign(Ix (t)) > 0 and 17 > P 

where a < b < d and ri is the return of the last deal and P the profit objective. 

The function, f (11,,(t)I), measures the size of the signal at time t and the function, 
c(II, I), acts as a contrarian strategy. The model will enter a contrarian position 
only if it has reached its profit objective with a trend following position. In a 

typical year, the model will play against the trend two to three times while it deals 
roughly 60 to 70 times. The hit rate of the contrarian strategy is of about 75%. 

The parameters a and b depend on the position of the model, 

a(t) = 
a if gt-1 0 
2a if gt_l =0 

and b = 2a. The thresholds are also changed if the model is in a position gt 0 0 
and the volatility of the price has been low, in the following way: 

{a(t) = a if Ix, — xt 1 > v 
10a if Ix, — xt 1 < 

where xe is the logarithmic entry price of the last transaction and v is a threshold, 
generally quite low < 0.5%. This means that the model is only allowed to change 
position if the price has significantly moved from the entry point of the deal. 

Because Xe- and Reff are implicit functions of the gearing, the optimization of 
the RTT model is based on the Xe- and Re performance. The parameters subject 
to optimization are; r, a, d, and v. There are two other auxiliary parameters, 
which are the stop loss, S, at which an open position is automatically closed and 
the profit objective, P. These parameters are only optimized at the end once the 
others have been found and they are also not allowed to vary all the way because 
maximum stop-loss and maximum gain limits are set by the environment.8 The 
model is subject to the open-close and holiday closing hours of the Zurich market. 

11.4.2 Model Design with Genetic Programming 

The major problem with trading models is the large amount of time needed to 
develop and optimize new trading strategies. As we said before, a trading strategy 
is a small computer program composed of some indicators to forecast price trends 
combined with a set of rules to determine the trading decision process. 

8 For more details on the optimization procedure, see Pictet et al. (1992). 
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One very promising approach in the search of new trading strategies is pro-
vided by genetic programming (GP) method (Koza, 1992; Banzhaf et al., 1998). 
This is an evolutionary algorithm that allows to automatically discover computer 
programs that solve a given problem. Evolutionary algorithms tend to find glob-
ally satisfactory solutions to the problem and, much in the same way as in nature, 
populations of organisms tend to adapt to their surrounding environment. Such 
an approach has been applied to stock indices, as noted in Allen and Karjalainen 
(1999), and to exchange rates, as noted in Oussaidene et al. (1997); Neely et al. 
(1997); Bhattacharyya et al. (1998). 

Individual programs in GP are represented as parse trees with ordered bran-
ches in which the internal nodes are functions (with subtree branches as function 
arguments) and the leaves or terminal nodes are variables. The functions are chosen 
from a user-defined function set, those that are a priori believed to be useful for 
the problem at hand, and the leaves are selected from a terminal set containing the 
principal variables or constants of the problem. 

Once an initial population has been created, the genetic algorithm enters a 
loop. At the end of each iteration (or generation), a new population has been 
created by applying a certain number of stochastic operators to the members of 
the previous population. A selection operator is first applied in order to extract 
some above-average individuals for reproduction. When a population of parents 
has been extracted, two reproduction operators are used: crossover and mutation. 
As shown on Figure 11.2, the crossover operator starts by selecting a random 
crossover point in each parent tree (a and b) and then exchanging the subtrees, 
giving rise to two offspring trees (c and d). The crossover sites, c 1 and c2, are 
usually chosen with nonuniform probability, in order to favor internal nodes with 
respect to leaves. In the same figure we can observe that from two parents trees, 
which are not interesting, the crossover is able to generate the offspring (c), which 
correspond to a well-known simple trading strategy using the difference between 
two moving averages. After crossover, a certain proportion of the offspring are 
subject to mutation. The mutation operator is implemented by randomly removing 
a subtree at a selected point and replacing it with a randomly generated subtree. 

In the basic genetic programming approach, it is generally required that all 
elements of a tree return the same data type, so as to allow arbitrary subtrees to be 
recombined by the crossover and mutation operators. This closure property (Koza, 
1992) can be a potential limitation in some applications like the trading strategies 
search process. In earlier studies, on the use of GP for searching new trading 
strategies (Oussaidene et al., 1997), a large proportion of the population members 
were noted to be irrelevant and resulted in a wasteful search. For instance, if you 
carefully study the different GP trees in Figure 11.2, you can easily conclude that 
only the offspring (c) corresponds to a reasonable indicator. 

As mentioned, trading models are a function of the price history. In the case 
of the FX market, it is common to consider the logarithmic middle price x, which 
possesses an exact symmetry x —> —x, corresponding to the interchange of the 
expressed and exchanged currencies. Consider the U.S. Dollar to German Mark 
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EMA 

CD 0 

(a) (b) 

EMA EMA 
20 CD CD CD CI 16 

(c) (d) 

FIGURE 11.2 Crossover operator. 

(USD-DEM) exchange rate. A trading model that is optimum for the USD-DEM 
rate is also expected to be optimum for the inverted DEM-USD rate. For this to 
hold, the model for the inverted DEM-USD rate should provide a signal, at any time 
t, that has exactly the reverse sign than the one for the USD-DEM rate. It means 
the output signal gt (x) of a consistent trading model must be an antisymmetric 
function of the return. Enforcing the symmetry condition on the trading model 
thus requires that gt (x) —> gt (—x) = —gt (x). Maintaining this property in a GP 
tree requires tracking the symmetry property at individual nodes in the tree, and 
forms the basis for defining syntactic restrictions. To enforce the symmetry, three 
possible types are defined: 

■ Antisymmetric type A (e.g., a moving average of x): 
A(—x) = —A(—x) 

■ Symmetric type S (e.g., a volatility): S(—x) = S(x) 

■ Constant type C (numerical constants) 

Constants are in essence of symmetric type; however, there are many advantages 
to considering the constant type separately. In specifying a GP trading model, 
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+ — A S C 

A A — 

S — S S 

C — S — 

* / A S C 

A S A A 

S A S S 

C A S — 

FIGURE 11.3 Syntactic restrictions for basic arithmetic operators. 

every node evaluation is considered to return both a value and a type (A, S, or 
C as defined above). The typing mechanism is used to categorize the symme-
try properties. A variety of functions may be considered for formulating trading 
models. Each function must be specified in terms of syntactic restrictions relating 

to symmetry, and guiding their combination with terminals and other functions. 
As an example, the syntactic restrictions for the basic arithmetic operators are 
provided in Figure 11.3. In these tables, the first row and column correspond to 
the type of the two arguments, with the intersection cells showing the type of the 
result. The symbol "—" represents a combination of arguments that is disabled. 
Operation on two constants is generally disabled to avoid wasteful computation 
of constants through the regular crossover and mutation operators (Evett and Fer-
nandez, 1998). The constants are generally mutated using specific non-uniform 
mutation operators (Michalewicz, 1994). 

Other classes of functions are useful in the construction of the trading strate-
gies. The important one is the class of the time series convolution operators 
described in Section 3.3. For instance, in Figure 11.2, we see exponential moving 
averages of the middle logarithmic price x for the two ranges of 20 and 40 days. 
Such operators can be used as function nodes if their syntactic restrictions are 
provided. They can also be used directly as input variables of the antisymmetric 
or symmetric type, depending on their symmetry properties when x is replaced by 
—x. In the case of a moving average operator, syntactic restrictions are forced to 
have the same symmetry type for the input and output signals. 

Other operators often used in trading strategies are the classes of: 

■ Logic operators: AND, OR, 
■ Comparison operators: greater than, smaller than, 
■ Conditional operators: IF-then, IF-then-else. 

As we expect an asymmetric output trading signal, it is suitable to use for these 
operators a ternary Boolean logic, Oussaidene et al. (1997). 

In using such trading strategies, like in Bhattacharyya et al. (1998), we clearly 
depart from the closure property. In fact, we consider here a strongly typed GP 
approach (see Montana, 1995), where the evolution procedure needs to define a 
random tree initialization routine, and crossover and mutation operators respecting 
the defined restrictions. 

As an example, we describe a study by Chopard et al. (2000) who analyze five 
exchange rates (USD-DEM, USD-JPY, USD-CHF, GBP-USD, and USD-FRF), 
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where each time series contains 9 years of hourly data from January, 1, 1987, 
to December, 31, 1995. The data are divided into alternate training (in-sample) 
and test (out-of-sample) periods of 11 year each. We have used the four arith-
metic functions (+,—,*,/), the basic comparison (<, >), and the logical operators 
(AND,OR,IF), which were defined in Bhattacharyya et al. (1998). Both compar-
ison and logical operators are defined for a ternary logic {-1,0,+1}, which corre-
sponds to the signal returned by a trading model. As in the case of the arithmetic 
functions, these operators are used with syntactic restrictions to preserve the over-
all symmetry properties of the generated GP trees. Indicators reported in earlier 
studies (Oussaidene et al., 1997; Bhattacharyya et aL, 1998) are also used for this 
application. The terminals used are as follows: 

■ Antisymmetric indicators: Mn that represent the momentum of price x 
over n days. Here we consider three different ranges: Mg and M16, . 

■ Symmetric indicators: V, that are volatility indicators over n days: Vg 

and V16. 

■ Constant values in the range [-2, +2]. 

As a last step, the output value of the GP tree is mapped to a gearing value in the 
range [-1, +1] to obtain a gearing signal. For the purpose of reducing overfitting, 
each trading model is tested on many exchange rate time series. The fitness 
measure, Xeff , of a GP-tree is then defined as the average fitness over each exchange 
rate, decreased by a penalty proportional to the standard deviation of these values. 

Five independent optimization runs are performed. In each run, we evolve 
four subpopulations of 100 individuals each. All subpopulations are created ran-
domly using the ramped half-half approach (Koza, 1992) with a maximum depth 
of 4. In the reproduction phase, we use the tournament selection. The muta-
tion and crossover operators are used with corresponding probabilities of 20% 
and 80% and the maximum depth allowed for generated trees is fixed to 6. Each 
subpopulation sends periodically 5% of its best individuals to another, randomly 
selected, subpopulation. A given subpopulation includes its local buffer of re-
ceived migrants when the difference between the best and the average scores of 
the current population is smaller than half the standard deviation of the scores. 
The new individuals replace an equal number of low-fitness ones in the receiving 
population. The evolution is stopped when a maximum number of 10,000 indi-
viduals have been evaluated. The selected solution is the best solution found by 
the four subpopulations. 

Table 11.2 presents the performance results of the different runs. The first 
entry gives the average quality of the basic antisymmetric momentum indicators 
M8, M16, and M32. The results of the optimization runs are given in decreasing 
order of their out-of-sample performance. The results of this table indicate that 
on average the performance of the solutions provided by the genetic algorithm are 
significantly higher than the performance of the basic momentum indicators. 
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TABLE 11.2 Trading model results versus tree complexity. 

Tree complexity, yearly return R, and fitness value Xeff (in percent) corresponding to the 

in-sample and out-of-sample periods. The results are given for preoptimized indicators 

and for the best solution of each optimization run. 

Run Tree 
complexity 

In-sample 
R Xeff 

Out-of-sample 
R Xeff 

Indicators 1 4.23% -1.84% 3.61% -3.77% 
Run 1 21 8.12% 3.86% 6.29% 1.09% 
Run 2 17 9.49% 4.16% 5.80% 0.47% 
Run 3 19 7.45% 2.82% 5.06% -2.34% 
Run 4 24 7.71% 3.55% 4.87% -3.28% 
Run 5 28 6.84% 2.63% 3.10% -5.85% 

For instance, the solution selected in the second run that provides the best 

in-sample result is given by the GP-tree: 

(IF (> V8 0.027) 
(IF (> V16 0.108) 

(+ M16 M32) 
(* M32 1.957) ) 

(* M8 1.542) 

The use of syntatic restrictions allows the discovery trees of lower complexity on 
average, compared with the previous study of Oussaidene et al. (1997), and all 
the generated GP trees are valid. However, there may exist some solutions that do 

not generate any trades, because some conditions always evaluate the same value. 
These solutions are quickly eliminated in the selection process. On average the 

solutions seem to be more robust and to provide higher out-of-sample performance. 
One limiting problem in these optimizations was implied by the use of "hard" 

logical and basic comparison operators that give rise to undesirable discontinuities 
due to the jumps of the Boolean variables that can occur for tiny changes of the 
basic indicators. One better way of implementing these operators would be through 
the use of fuzzy-logic. A smoother transition between different logical states can 
probably provide better performances. 

All these optimization runs are done using hourly data, for obvious efficiency 
reasons. Then, when such optimization is completed, the final selected solu-
tion(s) must be tested in the complete real-time trading model environment with 
tick-by-tick data to check its behavior and to do some fine-tuning needed for the 
understanding of the final users. 
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11.5 OPTIMIZATION AND TESTING PROCEDURES 

When the main trading strategy has been selected, one of the most difficult tasks is 

to optimize the parameters present in the model and to test the different solutions 

in order to select the most robust trading model to be used in the real time data. 

The goal is to select robust solutions that have desirable generalization properties 

to provide satisfactory performance in the future. 
In the optimization process we expect the selection of a trading model that 

realizes large profits from the price moves present in the time series. We assume 

that these profits will be maximized when the trading model catches the dynamics 
of the price-generation process. Unfortunately, during the optimization phase the 
trading model repeatedly sees the same data set and discovers how to profit from 
some specific price moves that could be due to some random fluctuation of the 
prices. This will lead a trading model to provide poor results on real-time data. 

Such a model is called an "overfitted" model. To minimize overfitting during 
optimization, a few important elements are to be present: 

■ A good measure of the trading model performance 

■ Indicator evaluation for different time series 

■ Large data samples 
■ A robust optimization technique 
■ Strict testing procedures 

An optimization algorithm will always try to find the best solution in the pa-
rameter space. In the case of trading models, optimization of such properties is 
not suitable, because a solution corresponding to the best possible parameters gen-
erally corresponds to an overfitted solution. As we argued earlier, such solutions 
will often generate poor generalizations in a real-time trading setting. In the next 
section, we shall concentrate on one robust optimization technique based on the 
genetic algorithm approach. This method allows the selection of a group of so-
lutions that correspond to broad regions of the parameter space where the trading 
performance is higher on average, rather than the highest. 

11.5.1 Robust Optimization with Genetic Algorithms 

The new element we want to present in this section is a way to automatize the search 
for improved trading models. Genetic algorithms offer a promising approach for 
addressing such problems (Allen and Karjalainen, 1999). Genetic algorithms con-
sider a population of possible solutions to a given problem and evolve it according 

to mechanisms borrowed from natural genetic evolution: reproduction and se-
lection. The criterion for selecting an individual is based on its fitness to the 
environment, or more precisely to the quality of the solution it bears. A possible 
solution is coded as a chromosome (gene), which is formally the data structure 
containing the values of the quantities characterizing the solutions. 

In the framework of the present optimization, a gene will contain the indicator 
parameters, a time horizon, a weighting function of the past, and the type of 
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operations used to combine them. Contrary to GP, the gene does not offer the 

flexibility to the algorithm but only to the parameters. The fitness function will be 
based on the return obtained from the recommendations of a given trading model. 

Sharing Scheme For Multi-Modal Functions A major problem in trading model op-
timization is to obtain models that are robust against market changes and random 

noise in data collection. In such optimization problems, sharp peaks of high fit-
ness are usually not representative of a general solution, but rather they indicate 
accidental fluctuations. Such fluctuations may arise out of inherent noise in the 

time series or due to threshold effects in the trading model performance. Peaks in 
such a discontinuous, noisy and multimodal fitness space generally correspond to 

trading models that will not perform well in out-of-sample tests. 
In the context of genetic algorithms, optimizing multimodal functions has 

been investigated using methods inspired from the natural notions of niche and 

species, as noted by Goldberg and Richardson (1987); Deb and Goldberg (1989), 
and Yin and Germay (1993). The general goal is to be able to create and maintain 
several subpopulations, ideally one per major peak of the fitness function, instead 

of having the whole population converging to one global optimum. 
One of the best methods was proposed by Goldberg and Richardson (1987). 

The idea is that the GA perception of the fitness function is changed in such a 
way that when individuals tend to concentrate around a high peak, the fitness is 
reduced by a factor proportional to the number of individuals in the region. This 
has the effect of diminishing the attractiveness of the peak and allowing parts of the 
population to concentrate on other regions. This effective fitness of an individual 
i, called shared fitness sf, is given by 

t., 
f(t)

sf k.t ) = 
.) 

(11.24) 
m(

where f (i) is the original fitness and m(i) is called the niche count. For an 
individual i, the quantity m(i) is calculated by summing up the sharing function 
values contributed by all N individuals of the population, 

m(i) = E sh(di j) (11.25) 

i=1 

where dij is the distance between two individuals i and j and 

1 — (t) c' if d1i < a 
sh (dii ) = 

s (11.26) 
0 otherwise 

The quantities a and us are constants. A difficulty of this method is in choosing 
the value of as. This requires prior knowledge about the number of peaks in 
the solution space. In our economical application as well as in many realistic 
problems, this information is not readily available. 

A method is proposed in Yin and Germay (1993) based on a different sharing 
scheme and using an adaptive cluster methodology. The authors show that this 
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method is effective in revealing unknown multimodal function structures and is 
able to maintain sub-population diversity. This method establishes analogies be-
tween clusters and niches in the following way. The GA population is divided by 
the adaptive MacQueen's KMEAN clustering algorithm, in K clusters of individu-

als that correspond to K niches, The shared fitness calculation is the same as in the 
classical sharing method, but the niche count m(i) is no longer associated with a,. 
In this case, the number of individuals within the cluster to which the individual 
i belongs plays a central role in the niche count calculation. As the number of 
clusters is associated with the number of niches (peaks), the individuals are put 
into a single partition of K clusters, where K is not fixed a priori but is determined 
by the algorithm itself. Therefore no a priori knowledge about the numbers of 
peaks of the fitness function is required as in the classical sharing method. The 
niche count m(i) is computed as 

( di, 
m(i) = — *   xi E Cc (11.27) 

2 Dmax

where Nc is the number of individuals in the cluster c, a is a constant, and di, is 
the distance between the individual i and the centroid of its niche. The algorithm 
requires a distance metric in order to compute the distance between two clusters 
and the distance between one individual and one cluster. Two clusters are merged 
if the distance between their centroids is smaller than a threshold parameter Dmin. 
Moreover, when an individual is further away than a maximum distance Dmax 
from all existing cluster centroids, a new cluster is formed with this individual as 
a member. The efficiency of the algorithm is improved by sorting the population 
in descending order according to the individual's fitness before the application of 
the clustering. 

Such genetic algorithm with sharing and clustering has been applied to stan-
dard multimodal and continuous fitness functions by Yin and Germay (1993) and 
Chopard et al. (1995) with promising results. One example of a more complex 
application was the determination of the optimum parameters of the business time 
scale,9 which is used for analyzing price history and computing indicators. In this 
example, the optimization is quite difficult because we have to optimize simulta-
neously 17 parameters and the function is nonlinear in some of its parameters. To 
solve such a problem, it was necessary to add a normalization of the parameter 
space in the genetic algorithm—that is, each parameter is only allowed to vary in 
the range [0,1]. In simple problems, the two clustering parameters are generally set 
to Dmin = 0.05 and Dmax = 0.15. But here, because of the large dimensionality of 
the parameter space, the value of the clustering parameters Dalin and Dmax must be 
much larger. In this case, the two parameters are multiplied by where n is the 
number of parameters to be optimized. The results obtained with this genetic algo-
rithm are very promising and the sharing and clustering approach clearly increases 

9 This is a time scale that contracts and expands time based on seasonal activity or volatility of the 
time senes (see Chapter 6). 
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the speed of convergence compared to the simple genetic algorithm described in 
the previous section. 

When applied to the indicator optimization problem, the genetic algorithm 

with sharing and clustering runs into difficulties. If the fitness landscape contains 
too many sharp peaks of high fitness, all the selected clusters concentrate around 

these peaks and the genetic algorithm is unable to find robust solutions. In the next 

section, we propose some modifications to the genetic algorithm to detect clusters 
in the parameter space that correspond to more general and robust solutions. 

Modified Sharing Function for Robust Optimizations We need to find a new genetic 
algorithm that avoids the concentration of many individuals around sharp peaks of 
high fitness but detects broad regions of the parameter space containing a group of 
individuals with a high average fitness level and a small variance of the individual 

fitness values. 
To solve this problem, we propose a new sharing function that penalizes 

clusters with large variance of the individual fitness values and also penalizes 
clusters with too many solutions concentrated inside too small a region. The 
distance metric considered here is the Euclidean distance computed in the real 
parameter space (phenotypic sharing). In the proposed sharing scheme, all the 
individuals that belong to a given cluster c will share the same fitness value, 

(1V, 1 — rd) 
s f (i) = f c —   a CO Vxi E Cc (11.28) 

N ay rd

where Arc is the number of genes in the cluster c, f c is the average fitness value, 
and the standard deviation of the individual fitness values cr (fc) is defined by 

Nc Nc

1
 

fe = Ef(i) and o- ( f c) =  1 1 E(f(i) — 7;)2
— i=1 

(11.29) 

As the method is based on the distribution of gene fitness inside each cluster, we 
keep only the clusters that contain at least a minimum number of members. We 
use a minimum cluster size of two individuals. As we also need to keep enough 
clusters of reasonable size, we have to limit the size of the largest clusters. The 
term NclAra, in Equation 11.28 is used to control the number of genes inside each 
cluster. If N, is smaller than the expected average number of genes inside each 
cluster Nay, the correction is reduced, otherwise it is increased. Here, the constant 
Nay is chosen such that the population size is divided by the (preconfigured) 
expected number of clusters. 

The second term (1 — rd)/rd in Equation 11.28 is used to penalize clusters 
with too high a concentration of genes around their centroid. The value rd is 
defined as 

rd = 
Nc

dic 

Nc 
—Ecr,

i
max 

=1 

(11.30) 
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where di, is the distance of the gene i to the centroid of the corresponding cluster 
c. Here the square root is used to avoid too large a correction for an average 

concentration of genes, as is often the case. 
To keep the cluster's space as large as possible, we also have to minimize the 

overlap between different clusters. To reduce this overlap, the clustering parameter 

Dmin must be quite large and here we use D. = Dmax. In order to have a 
reasonable clustering parameter for large dimensionality of the parameter space, 
the values of the two clustering parameters Dmin and Dmax are multiplied by 
where n is the number of parameters to be optimized. 

With this new sharing scheme, the selection pressure is no more specific to 
each individual, as in a standard GA, but is the same for all genes present in a given 
cluster. This allows us to get a selection mechanism that looks for subpopulations 
of solutions with an average high quality instead of the best individual solution. 
Of course, the overall convergence speed is slightly reduced. 

The selection pressure toward robust solutions is still present through the 
adaptive cluster methodology that tends to create clusters around a group of good 
individuals and through the reproduction technique, which uses elitism and mating 
restriction inside each cluster. Moreover, to keep a larger variety in the population, 
all the individuals who do not really belong to any clusters (i.e., who are further 

than the maximum distance Dmax from all existing cluster centroids) will have 
an unmodified fitness value. During the reproduction phase these individuals will 
have no mating restriction and generally a slightly higher selection probability. 

To speed up the full process, the result of each different gene is stored and 
not recomputed when this gene appears again in the next generations. Moreover, 
the information of all the previously computed solutions can be used at the end to 
assess the reasonableness of the optimum solution. 

Eventually, the algorithm selects, for each cluster, the best solution that is not 
farther than the distance Dinax / 2 from the cluster centroid. The final solution is 
the solution selected for the cluster that has the maximum average fitness corrected 
by the variance—that is, for the maximum value of f c — o- (fc). 

The success of this type of genetic algorithm is still quite sensitive to the 
quality of the fitness measure but also to the normalization of the parameter space 
(i.e., to the quality of the metric used in the cluster construction). If the parameters 
do not have all the same sensitivity, this should also be reflected in the clustering 
algorithm. That is why we introduce the possibility of modifying the normalization 
of the parameter space, but in many applications this is not enough and some 
parameter mapping functions are needed. These functions depend on the specific 
problem to solve. 

11.5.2 Testing Procedures 

Strict optimization and testing procedures are a necessary condition to obtain robust 
trading strategies. The three main phases in the development of new trading models 
are as follows: 
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■ The development and optimization of new trading strategies 

■ The historical performance tests to select the strategies from data that were 
not used to optimize the models 

■ Real-time tests to confirm the performance of the selected models 

The amount of historical data available for both the development (optimiza-
tion) and the testing of a new trading model is always of finite size. On one side, 
to obtain meaningful and robust optimization results, a data sample as large as 
possible is requested. On the other side, the same is true for the statistical tests of 
the performance of a new model. Of course, the same data cannot be used for both 
the optimization and for the test of a trading strategy. The available historical data 
must be split into a minimum of two different sample periods. One period, named 
the in-sample, is used for the optimization and the other one, named the out-of-
sample, for the performance tests. Such splitting must never be modified during 
the optimization or the testing phase, otherwise the risk of overfitting the historical 
data becomes very large and the statistical tests on the model performance are 
unreliable. 

Another problem to take into account with financial data is the long-term het-
eroskedasticity (i.e., the presence of clusters which correspond to periods where the 
average price volatility is higher and other ones where the average price volatility 
is lower). As many trading models can react quite differently according to the aver-
age volatility of the market prices, it is not very convenient if the two selected data 
sets for optimization and testing present significative differences in their statistical 
properties. 

A rule that provides reasonable results is to use two-thirds of the historical data 
for the optimization and one-third for the tests. The first part of the optimization 
data must be kept for the indicator initialization. The size of this initialization 
period, also named the build-up period, depends on the type of the indicators. 
In the case of exponential moving averages, the size of the initialization must be 
approximately 12 times larger than the range of the slower moving average. 

At the end of the optimization process, the performance tests are executed 
once. If these performance tests do not provide good results, then the new trading 
model must be rejected. 

It is strongly recommended to avoid tiny modifications of the initial model 
until good performance tests are obtained, because such procedure implies that the 
out-of-sample data period is, in fact, used indirectly for the optimization process 
itself, and again opens the door to overfitting problems. 

When a new model is selected and passes the historical performance tests, the 
final phase is to check it in real-time for a few months. These last tests, named 
ex-ante tests, are useful to confirm the historical performance of the model and to 
check its reaction to real-time data flow. At Olsen & Associates (O&A), only the 
models that pass with success, both the historical test and the real-time ex-ante 
period, are used for real trading. 
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11.6 STATISTICAL STUDY OF A TRADING MODEL 

11.6.1 Heterogeneous Real-Time Trading Strategies 

The idea of this section is to use some trading models developed at Olsen & Asso-
ciates as a tool to study the market structure (work presented in Dacorogna et al., 

1995). These models act like filters that concentrate on typical price movements 
and give us information about the market itself. The hypothesis of a heterogeneous 
market leads to three conjectures: 

1. In a heterogeneous market, no particular trading strategy is systematically 
better than all the others. Excess return can be gained for different trading 

profiles, so various ways of assessing the risk and return of trading models 
are needed. 

2. The different geographical components of the FX market have different 
business hours according to different time zones and, on the assumption of 

the heterogeneous market hypothesis, different strategies. Therefore, there 
are disruptions in the market behaviors from one geographical component 
to the next. Trading models that do not explicitly analyze the geographical 
components can avoid these disruptions only by restricting their active 
hours to the normal business hours of one geographical market. For such 
models, trading 24 hr a day does not pay. 

3. The most profitable models actively trade when many agents are active in 
the market (liquid periods) and do not trade at other times of the day and 
on weekends. The heterogeneous market hypothesis attributes the prof-
itability of trading models to the simultaneous presence of heterogeneous 
agents, whereas the classical efficient market hypothesis relates this prof-
itability to inefficiencies. (This would imply that the illiquid periods of 
the market are the most favorable for excess returns.) If our conjecture is 
right, the optimal daily trading time interval should depend on the traded 
FX rate rather than the model type. Trading will be most profitable when 
the main markets for a particular rate are active. 

Two trading models based on different algorithms are used in this study. The 
performance of these models is analyzed against changing market conditions, 

trading intervals, opening and closing times, and market holidays. The first trading 
model (RTT) is the one described in Section 11.4.1. Whereas the RTT model relies 
on one indicator with one time horizon, the second type of trading model (named 
here RTM) uses three different time horizons simultaneously to incorporate the 
views of three different market components. Like the RTT model, the RTM models 

have a profit objective of 3%, but the stop-loss value and profit objective are much 
smaller. The dealing frequencies of the RTM models are often higher than those 
of the RTT models, and they are also neutral more often. 

The study presented here does not try to optimize the models in any way, 
so the distinction between in and out-of-sample is of little relevance. All the 
tests were conducted in a 7-year period from March 1986 to March 1993 for 
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TABLE 11.3 Performance comparison between models. 

Performance comparison between the O&A class RTT, RTM trading models, and a (bench-

mark) 20-day moving average model. The displayed performance measures are the annual-

ized total return R, the risk-sensitive performance measure Xeff, the maximum drawdown 

D, the profit-loss ration and the dealing frequency F. These performance measures are 

explained in Sections 11.2.2 and 11.3.1. 

FX rate Model R Xeff D P/L 

USD-DEM MA(20) 5.5% -0.9% 21.1% 0.57 1.0 
RTT 16.9% 11.2% 9.6% 0.41 1.7 

RTM 11.3% 8.6% 8.4% 0.68 2.0 

USD-JPY MA(20) 6.6% 0.6% 21.3% 0.53 0.9 
RTT 9.6% 4.2% 10.9% 0.59 1.5 
RTM 6.0% 3.5% 9.6% 0.45 1.9 

GBP-USD MA(20) 10.7% 5.5% 14.0% 0.58 1.0 
RTT 11.9% 7.1% 14.6% 0.40 1.6 
RTM 10.6% 8.2% 7.9% 0.66 2.1 

USD-CHF MA(20) 8.0% 0.9% 19.2% 0.59 1.1 
RTT 11.6% 6.1% 14.5% 0.55 1.3 

RTM 14.0% 10.1% 16.9% 0.65 1.9 

USD-FRF MA(20) 7.1% 4.0% 15.8% 0.56 1.0 
RTT 15.5% 11.2% 7.5% 0.75 1.1 
RTM 10.7% 8.6% 5.3% 0.60 2.1 

USD-NLG MA(20) 7.5% 3.3% 16.6% 0.55 1.0 
RTT 16.4% 10.9% 8.7% 0.50 1.7 
RTM 14.0% 11.2% 7.4% 0.69 2.1 

USD-ITL MA(20) 8.5% 1.7% 21.7% 0.57 1.0 
RTT 14.6% 7.2% 10.5% 0.42 1.6 
RTM 9.4% 6.1% 9.3% 0.65 1.9 

DEM-JPY MA(20) 1.4% 0.8% 4.9% 2.00 0.1 
RTT 10.9% 8.7% 6.5% 0.66 1.9 
RTM 10.1% 8.6% 5.9% 0.73 1.6 

Average MA(20) 7.7% 2.2% 18.5% 0.56 1.0 

RTT 13.4% 8.3% 10.4% 0.54 1.6 
RTM 10.8% 8.1% 8.8% 0.64 2.0 
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TABLE 11.4 Performance comparison between markets. 

The average risk-adjusted return Xeff for the different markets is shown as a percentage 

the average dealing frequency F is given in number of deals per week. The markets are 

listed in the order of their opening times in GMT. 

Market Xeff 
RTT RTM 

Dealing frequency (F) 
RTT RTM 

Tokyo -0.8 1.6 1.3 1.4 
Singapore -0.4 2.3 1.4 1.4 
Frankfurt 7.5 6.7 1.5 1.8 
Vienna 8.3 7.8 1.5 2.0 
Zurich 8.3 8.1 1.6 2.0 
London 8.6 8.2 1.6 2.0 
New York 6.3 6.7 1.5 1.9 

USD-DEM, USD-JPY, GBP-USD, USD-CHF and DEM-JPY, and a 61 year period 
from December 1986 to March 1993 for USD-FRF, USD-NLG, and USD-ITL. 

Table 11.3 shows the comparative performance of the two types of models 
(RTT and RTM) together with the performance of a simple 20-day moving average 
model tested with the same high frequency data and the same environment. All 
models produce a significant profit even when transaction costs are fully accounted 
for. However, they differ both in the size of the average profit and in the risk of 
temporary losses. This was formulated as the first conjecture in the introduction. 
These results are a good illustration of the possibility of having diversified strategies 
that are all profitable but correspond to different risk profiles. 

Realistic trading models should be configured for traders located in particular 
geographical locations. Our high-frequency data give us the flexibility of config-
uring different opening hours for different markets. In Table 11.3, the models were 
computed within the market constraints of Zurich. Now we want to show how the 
effective return varies if the market constraints are changed. Six other markets are 
tested: Frankfurt, London, New York, Singapore, Tokyo, and Vienna. Table 11.4 
shows the different parameters related to the active times of these markets. 

The same eight FX rates used for the performance comparison in Table 11.3 
were tested here. In Table 11.4, we present the average of Xeff over the eight FX 
rates for the seven markets and the corresponding mean dealing frequency. The 
bad results for Tokyo and Singapore are not surprising because these markets are 
the least liquid. Good results in these markets are only obtained for USD-JPY and 
DEM-JPY. For the other five markets, Xcff generally does not vary much (within 
1 to 2%), but it clearly peaks on the most active market (London) although the 
models were optimized for the Zurich market. This presents the first empirical 
evidence for our third conjecture that within the active times, the performance is 
not very sensitive to certain changing conditions. 
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TABLE 11.5 The best Xeff as a function of opening hours. 

The best Xeff, in percent, as a function of the number of daily business hours and the 

opening and closing times in MET. The sixth column shows the Xeff reached when the 
models are allowed to trade 24 hr. The last column shows the hour that produces the 
best when only 1 hour per day is allowed for trading. 

FX rate Model Best 
Xeff

Interval 
size 

Daytime Xeff (24hr) 
24hr trading 

Best 1-hr 
trading 

USD-DEM RTT 9.7 12hr 7:00 - 19:00 6.7 16:30 - 17:30 
RTM 9.0 11hr 8:30 - 19:30 2.8 12:00 - 13:00 

USD-JPY RTT 4.3 9hr 8:30 - 17:30 4.2 10:00 - 11:00 
RTM 7.6 9hr 3:00 - 12:00 0.5 17:00 - 18:00 

GBP-USD RTT 13.4 10hr 9:00 -19:00 6.9 16:30 - 17:30 
RTM 9.0 8hr 6:00 - 14:00 5.8 13:00 - 14:00 

USD-CHF RTT 7.4 1hr 16:30 - 17:30 -5.8 16:30 - 17:30 
RTM 5.1 8hr 9:30 - 17:30 -0.6 18:30 - 19:30 

USD-FRF RTT 11.2 8hr 11:00 - 19:00 0.5 17:00 - 18:00 
RTM 9.4 9hr 8:00 - 17:00 1.6 16:00 - 17:00 

USD-NLG RTT 12.3 8hr 12:00 - 20:00 6.9 16:00 - 17:00 
RTM 8.8 101r 8:30 - 18:30 4.6 15:30 - 16:30 

USD-ITL RTT 9.2 9hr 12:00 -21:00 0.3 16:30 - 17:30 
RTM 6.6 8hr 11:00 - 19:00 1.3 13:00 - 14:00 

=.1 

Lij 

At the beginning of this Section 11.6.1, we introduced two conjectures as 
subjects of research: it is not favorable to extend the dealing period to more than 
the normal business hours or even to 24-hr trading for our model types (conjecture 
2); and the most profitable dealing periods should be the most active and liquid 
ones (conjecture 3). To test these conjectures, two main questions were asked: Is 
there an optimal daily business interval and do these optimal opening and closing 
hours differ for different rates? We present here the results of a study where we 
vary both the length and the starting point of the daily opening period. The two 
real-time model classes were tested with daily working intervals of 1, 8, 9, 10, 11, 
12, 13, and 24 hr, shifting the opening time in 30-min steps from 0:00 to 24:00. 

Table 11.5 shows the best Xeff values together with their corresponding work-
ing hours in Middle European Time (MET) for all rates and trading models used in 
this study. The models were optimized in-sample on 91 hours from 8:00 to 17:30. 
Some first remarks can be made by looking at the results: shorter time intervals 
(8-10 hr) are generally preferred to longer ones (11-13 hr), thus confirming con-
jecture 2. There is not much profit in long working time intervals; these only tend 
to increase the number of bad deals because the indicators are more sensitive to 
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noise. Yet, because longer time intervals cover a larger period, the Xeff values of 
longer time intervals are more stable against changing opening and closing hours, 
that is, their variance is clearly smaller than that of shorter intervals. One exception 
is model RTT for USD-CHF where the 1-hr time interval is best, but the models 
still have significant peaks at the 9-hr interval (from 8:30 to 17:30, 4.9%). 

Further evidence in support of conjecture 2 is given by the sixth column in 
Table 11.5, listing the Xeff values for 24-hr trading for comparison with the best 
Xeff values attained for shorter trading intervals. The Xeff(24-hr) values are much 
lower than the best Xeff values for almost all rates and models. This failure of 
24-hr trading can be interpreted as an insufficiency of the models to deal with 
short-term price movements, in particular the disruptive market behaviors arising 
when the main dealing activity shifts from one geographical location to another 
(with a different time zone). A 24-hr trading interval leads to a dealing frequency 
higher than that of a 12-hr interval. Contrary to the 24-hr trading interval, the 
best 1-hr intervals that coincide with the most active times of the day are seldom 
significantly worse than the rest of the intervals tested. 

In Table 11.5, there are also indications that conjecture 3 is valid. The USD-
JPY models show a strong tendency toward favoring opening hours early in the 
European morning (or closing times early in the afternoon), whereas GBP-USD 
and USD-ITL prefer opening times in the late morning. These results are in line 
with the time zones of the home markets of the currencies and must be related to 
market liquidity. For JPY, better results are obtained when its main market (Far 
East) is active, for GBP and ITL, when London (1-hr behind the Zurich market) 
is active (ITL is traded more in London than in Milan). The results of the RTT 
model for USD-NLG seem to contradict this conjecture, but it should be qualified. 
There is, in fact, another peak with an Xeff of 11.3% at a 12-hr trading interval 
from 7:30 to 19:30. 

In conclusion, the systematic analysis of the influence of the trading hours on 
these models reveals some important facts. First of all, if we regard our model 
classes as representing medium-term components in the market, we see that it is 
not useful to stay active 24-hr a day. Without a much more sophisticated treatment 
of the intraday movements, it does not pay for a medium-term trader to be active 
all the time. Second, it shows that, contrary to assumptions based on the classical 
efficient market hypothesis, a trading model is profitable when its active hours 
correspond to the most active hours of one of the main geographical components 
of the market. It is essential that the models execute their deals when the market 
is most liquid. This fact is illustrated by three empirical findings: 

• The maxima of performance are clustered around opening hours when the 
main markets are active. 

• The best active times are shifted for certain currencies to accommodate 
their main markets (Japan for JPY, London for GBP). 

• If the models are only allowed to trade for 1 hour, the best choice of this 
hour is usually around the peaks in the daily activity of the market. 
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The systematic variation of the business hours of the trading models again reveals 
the geographical structure of the FX market and its daily seasonality by the most 
profitable trading times being concentrated where the market is most liquid. 

11.6.2 Price-Generation Processes and Trading Models 

Instead of feeding the trading models with real data, we can use simulated data from 
different price-generation processes. The results indicate that the performance of 
the trading models with real FX data is much higher relative to the simulated 
price processes. This demonstrates that the trading models successfully exploit a 
certain predictability of returns that exists beyond the scope of the studied price-
generation processes. The results also provide opportunity to compare different 
statistical price processes with each other. In the case of the RTT model described 
in Section 11.4.1, the out-of-sample test period is 7 years of high-frequency data 
on three major foreign exchange rates against the U.S. Dollar and one cross rate. 
From its launch in 1989 until the end of 1996, the model had not been reoptimized 
and was running on the original set of parameters estimated with data prior to 
1989. This allows us a unique advantage that there is no socially determined 
coevolutionary relationship between our data set and the technical strategies used 
in implementing our specification tests. 

The trading model yields positive annualized returns (net of transaction costs) 
in all cases. Performance is measured by the annualized return, Xeff, Ref-, deal 
frequency and maximum drawdown. Their simulated probability distributions are 
calculated with the three traditional processes, the random walk, GARCH, and 
AR-GARCH, but also with an AR-HARCH. The null hypothesis of whether the 
real-time performances of the foreign exchange series are consistent with these 
traditional processes is tested under the probability distribution's of the perfor-
mance measures. As expected from the discussions of the previous chapters, the 
results from the real-time trading model are not consistent with the random walk, 
GARCH(1,1) and AR-GARCH(1,1) as the data-generating processes. It is also 
the case with the AR-HARCH processes. 

Simulation Methodology The distributions of the performance measures under vari-
ous null processes are calculated by using a simulation methodology. In our trading 
model simulations, we use a 5-min interval sampling of the prices in order to keep 
the computation within manageable bounds. It is a good compromise between ef-
ficient computation and realistic behavior when compared to the real-time trading 
model results generated from all ticks. The main information used by a trading 
model to update its indicators is the returns. The return between two consecutive 
selected ticks at time t1_1 and ti is defined as 

= xi — 

and the corresponding elapsed a-time (described in Section 6.2) between these 
two ticks is 

Aej = ei — ej-1 
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By construction, in the sampled time series, the average elapsed a-time between 
two ticks, AO, is nearly 5 min. 

Multiple time series from a given theoretical price generation process need to 
be generated. To keep the impact of special events like the data holes in the model 
behavior, we decided to replace the different bid-ask price values but always keep 
the recorded time values. As the different ticks are not exactly regularly spaced, 
even in a-time, the average return corresponding to a 5-min interval needs to be 
calculated. This is calculated by resealing the observed return values 

( 

) I/E 
AO 

au] 

where the exponent 1/E is called the drift exponent and it is set to 0.5 under the 
random walk process. 

To obtain meaningful results, a simulated time series should have the same 
average drift a and average variance a2 as the observed returns. This is done by 
generating returns, Pi, corresponding to a 5-min interval in t9-time. In the case of 
a random walk process, the returns Pi are computed with 

P./ = E 

where E j ti N (0, a2).10 When the effective elapsed time between two ticks, At9i , 
elpx is not exactly 5-min, we scale again the generated return using the same scaling 

formula 

F*4 P• 
AO • )

r ' — 
1/2 

j AO 

fl where AO is 5 min. If there is a data hole, the sum of the generated return Pi is 
' computed until the sum of the added 5-min intervals is larger than the size of the 

data hole measured in a-time. The sum of the returns is scaled with the same 
technique as individual returns. 

The simulated logarithmic prices, x'j, are computed by adding the generated 

returns r'. to the first real logarithmic price value xo. The bid-ask prices are 
computed by subtracting or adding half the average spread, that is, 

/ exp x j 2- Pal sk,j = 

and 

rs7
= exp — 2

I° In the simulations, e is specified to be normally distributed. We also explored bootstrapping the 
residuals of the studied models. The main findings of the study remain unchanged between these two 
approaches. 
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The parameters and the normalized residuals of the GARCH(1,1) process 
are estimated using the maximum likelihood procedure presented in Chapter 8. 
The simulated returns are generated from the simulated normalized residuals and 
the estimated parameters. The estimated parameters of the AR(p)-GARCH(1,1) 
processes together with the simulated residuals are used to generate the simulated 
returns for this process. As before, half of the average spread is subtracted (added) 
from the simulated price process to obtain the simulated bid (ask) prices. 

For each replication we start by generating the simulated data a year before the 
model is tested. This year is 1989 and it is used to create the history dependency 
in returns and to initialize the different trading model indicators. 

Empirical Results The simulated data are the 5-min 6-time series,11 from January 
1, 1990, to December 31,1996, for three major foreign exchange rates, USD-DEM, 
USD-CHF (Swiss Franc), USD-FRF (French Franc), and the most liquid cross-
rate DEM-JPY (Deutsche Mark — Japanese Yen). From Chapter 6, we know that 
high-frequency data inherits intraday seasonalities and require deseasonalization. 
We use for this study the deseasonalization methodology presented in Chapter 6. 
Our data set contains 671,040 observations per currency. The simulations for each 
currency and process are done for 1000 replications. 

Before discussing the details of different studies, we present in Table 11.6 
results that substantiate the claims made at the beginning of this section. We give 
a summary of the p-values of the main performance measures for the USD-DEM, 
USD-CHF, USD-FRF, and DEM-JPY. The p-value12 represents the fraction of 
simulations generating a performance measure larger than the original. 

The methodology of this study places a historical realization in the simulated 
distribution of the performance measure under the assumed process and calculates 
its one-sided p-value.13 This indicates whether the historical realization is likely to 
be generated from this particular distribution or not. More important, it indicates 

11 The real-time system uses tick-by-tick data for its trading recommendations. The simulations in 
this study are carried out with 5-min data as it is computationally expensive to use the tick-by-tick 
data for the simulations. The historical performance of the currency pairs from the 5-min series are 
within a few tenths of a percent for all performance measures with the performance of the real-time 
trading models utilizing the tick-by-tick data. Therefore, there is no loss of generality from the use of 
the 5-min frequency for the simulations instead of the tick-by-tick feed. 

12 The p-value represents a decreasing index of the reliability of a result. The higher the p-value, the 
less we can believe that the observed relation between variables in the samples is a reliable indicator of 
the relation between the respective variables in the population. Specifically, the p-value represents the 
probability of error that is involved in accepting our observed result as valid, that is, as representative of 
the population. For example, a p-value of 0.05 indicates that there is a 5% probability that the relation 
between the variables found in our sample is purely coincidental. In other words, assuming that in the 
population there was no relation between those vanables whatsoever, and by repeating the experiment, 
we could expect that in approximately every 20 replications of the expenment there would be one in 
which the relation between the variables in question would be equal or stronger than ours. In many 
areas of research, the p-value of 5% is treated as a borderline acceptable level. 

13 p-value calculations reported in this study are the simulated p-values obtained from the distribu-
tion of 1000 replications of a given performance measure. For brevity, we simply refer to it as p-value 
in the text. 
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TABLE 11.6 p-value Comparisons. 

p-value comparisons with random walk (RW), GARCH(1,1), and AR(4)-GARCH(1,1). The 
p-values are expressed in percentage. The definitions of the three performance measures 
are presented in Section 11.3. 

Currency RW GARCH(1,1) AR(4)-GARCH(1,1) 

Annual return 
USD-DEM 0.3 0.4 0.1 
USD-CHF 8.9 8.4 3.7 
USD-FRF 1.2 0.9 0.3 
DEM-JPY 2.1 1.2 0.5 

Xeffective 
USD-DEM 0.0 0.1 0.1 
USD-CHF 0.7 1.4 1.9 
USD-FRF 0.2 0.1 0.2 
DEM-JPY 0.2 0.4 0.1 

Reffective 
USD-DEM 0.0 0.0 0.0 
USD-CHF 0.6 0.9 2.3 
USD-FRF 0.1 0.1 0.1 
DEM-JPY 0.1 0.4 0.1 

whether the historical performance is likely to occur in the future. A small p-
value (less than 5%) indicates that the historical performance lies in the tail of the 
distribution and the studied performance distribution is not representative of the 
data-generating process, given that the trading model is a good one. If the process 
that generates the performance distribution is close to the data-generating process 
of the foreign exchange returns, the historical performance would lie within two 
standard deviations of the performance distribution, indicating that the studied 
process may be retained as representative of the data-generating process. 

Random Walk Process The results for the random walk process for USD-DEM 
time series are reported in Table 11.7. The first and the second columns are the 
historical realization and the p-value of the corresponding performance measures. 
The remaining columns report the 5th and the 95th percentiles, mean, standard 
deviation, skewness, and the kurtosis of the simulations. 

After the transaction costs, actual data with the USD-DEM, USD-CHF, USD-
FRF and DEM-JPY yield an annualized total return of 9.63, 3.66, 8.20, and 6.43%, 
respectively. The USD-CHF has the weakest performance relative to the other 
three currencies. The Xeff and Res. performance of the USD-DEM, USD-FRF, 
and DEM-JPY are all positive and range between 3 and 4%. For the USD-CHF, 
the Xeff and Reif  are -1.68 and -4.23%, reflecting the weakness of its performance. 
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TABLE 11.7 Random Walk Simulations for USD-DEM. 

The second column presents the performance of the trading model with the actual data. 

The results under columns p-value, percentile, mean, standard deviation, skewness, and 

kurtosis present the values of these statistics from 1000 replications with the random 

walk process computed every 5-min for a period from 1990 to 1996. The p-values are 

reported in percentage terms (e.g., 0.3 refers to 0.3%). The definitions of the performance 

measures are presented in Sections 11.2.2 and 11.3. 

Description Historical 
realization 

p-value 
(in %) 

Percentile 
(5%, 95%) 

Mean St.Dev Skew. Kurt. 

Annual return 9.63 0.3 -11.38, 4.03 -3.44 4.74 0.09 -0.13 
Xeffective 3.78 0.0 -20.25, -4.14 -12.11 5.09 0.13 -0.23 
Reffective 4.43 0.0 -26.42, -7.70 -16.80 5.90 0.03 -0.20 

Max drawdown 11.02 100.0 25.26, 94.86 53.79 21.36 -0.71 0.21 
Deal frequency 1.68 100.0 2.20, 2.71 2.46 0.16 -0.10 -0.19 

Horizon: 7 days 
Xeffectwe 3.47 0.0 -19.65, -4.24 -11 83 4.76 0.08 -0.15 
Reffective 1.80 0.0 -24.14, -7.21 -15.51 5.20 0.05 -0.15 

Horizon: 29 days 
Xeffective 3.27 0.0 -20.21, -4.36 -12.10 4.95 0.07 -0.23 
Reffective 2.16 0.0 -27.05, -8.07 -17.45 5.91 0.02 -0.28 

Horizon: 117 days 
Xeffective 4.07 0.0 -20.85, -3.42 -12.21 5.44 0.10 -0.32 
Reffective 5.10 0.0 -31.01, -6.53 -18.10 7.49 0.26 0.25 

Horizon: 301 days 
Xeffective 4.62 0.0 -23.37, -2.42 -11.89 6.32 0.39 0.02 
Reffective 6.83 0.0 -27.85, -3.25 -14.56 7.49 0.35 0.16 

The p-values of the annualized return for the USD-DEM, USD-CHF, USD-
FRF, and DEM-JPY are 0.3, 8.9, 1.2, and 2.1%, respectively. For the USD-
DEM and USD-FRF, as reported in Table 11.6, the p-values are less than the 
2% level and it is about 2% for the USD-CHF. In the case of the USD-CHF, 
the p-value for the annualized return is 8.9, which is well above the 5% level. 
As indicated in Section 11.3, the annualized return only utilizes two points of 
the equity curve leaving a large degrees of freedom to infinitely many paths that 
would be compatible with a given total return. X eff and Reif are more stringent 
performance measures, which utilize the entire equity curve in their calculations. 
The p-values of Xeff and Reff are 0.0, 0.0% for USD-DEM, 0.7 and 0.6% for USD-
CHF, 0.2 and 0.1% for USD-FRF, and 0.2 and 0.1% for DEM-JPY. The p-values 
for the Xeff and Ref are all less than 1%, rejecting the null hypothesis that the 
random walk process is consistent with the data-generating process of exchange 
rate returns. 

The maximum drawdowns for the USD-DEM, USD-CHF, USD-FRF and 
DEM-JPY are 11.02, 16.08, 11.36, and 12.03%. The mean maximum drawdowns 
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from the simulated random walk processes are 53.79, 63.68, 47.68, and 53.49 for 
the USD-DEM, USD-CHF, USD-FRF, and DEM-JPY, respectively. The mean of 
the simulated maximum drawdowns are three or four times larger than the actual 
maximum drawdowns. The deal frequencies are 1.68, 1.29, 1.05, and 2.14 per 
week for the four currency pairs from the actual data. The deal frequencies indicate 
that the RTT model trades on average no more than two trades per week although 
the data feed is at the 5-min frequency. The mean simulated deal frequencies are 
2.46, 1.98, 1.65, and 3.08, which are significantly larger than the actual ones. 

The values for the maximum drawdown and the deal frequency indicate that 
the random walk simulation will yield larger maximum drawdown and deal fre-
quency values relative to the values of these statistics from the actual data. In 
other words, the random walk simulations deal more frequently and result in more 
volatile equity curves on average relative to the equity curve from the actual data. 
Correspondingly, the p-values indicate that the random walk process cannot be 
representative of the actual foreign exchange series under these two performance 
measures. The summary statistics of the simulated performance measures have 
negligible skewness and statistically insignificant excess kurtosis. This indicates 
that the distributions of the performance measures are symmetric and do not exhibit 
fat tails. 

The simulation results with the random walk process demonstrate that the 
real-time trading model is a consistent model. In other words, a process with no 
mean and a homoskedastic variance should only perform to generate an average 
return that would match the mean transaction costs. This consistency property is 
an essential ingredient of a trading model and the real-time trading model passes 
this consistency test. The means of the simulations indicate that the distributions 
are correctly centered at the average transaction costs, which is expected under 
the random walk process. For instance, the mean simulated deal frequency of the 
USD-DEM is 2.46 deals per week or 127.92 (2.46 x 52) deals per year. The relative 
spread for the USD-DEM is 0.00025, which in turn indicates an average transaction 
cost of -3.20% per year. Given that the mean of the simulated annualized return is -
3.44, we can conclude that the mean of the simulated annualized return distribution 
is centered around the mean transaction cost. 

The behavior of the performance measures across 7-day, 29-day, 117-day and 
301-day horizons is also investigated with Xeff and Reif . The importance of the 
performance analysis at various horizons is that it permits a more detailed analysis 
of the equity curve at the predetermined points in time. These horizons correspond 
approximately to a week, a month, 4 months and a year's performance. The Xeff
and Reif values indicate that the RTT model performance improves over longer 
time horizons. This is in accordance with the low dealing frequency of the RTT 
model. In all horizons, the p-values for the Xeff and Reff are less than a half a 
percent for USD-DEM, USD-FRF, and DEM-JPY. For USD-CHF, the p-values 
are less than 2.4% for all horizons. Overall, the multihorizon analysis indicates 
that the random walk process is not consistent with the data-generating process of 
the foreign exchange returns. 
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TABLE 11.8 GARCH(1,1) parameter estimates. 

The sample is 5-min returns from 1990-1996. 

USD-DEM USD-CHF USD-FRF DEM-JPY 

ao 4.95 (4.23) 0.11 (0.12) 9.38 (7.09) 2.97 (4.03) 
al 0.1111 (0.0005) 0.1032 (0.0007) 0.1572 (0.0007) 0.0910 (0.0005) 
$1 0.8622 (0.0007) 0.8578 (0.0009) 0.8137 (0.0009) 0.8988 (0.0006) 

LL 6.45 6.17 6.29 6.34 
Q(12) 4810 4201 4256 3089 
gaz 1.04 1.03 1.07 1.05 
Esk -0.07 -0.03 -0.05 0.16 
Eku 11.73 7.28 22.93 27.73 

GARCH(1,1) Process A more realistic process for the foreign exchange returns is 
the GARCH(1,1) process, which allows for conditional heteroskedasticity. The 
GARCH(1,1) estimation results are presented in Table 11.8. The numbers in 
parentheses are the robust standard errors and the GARCH(1,1) parameters are 
statistically significant at the 5% level for all currency pairs. The Ljung-Box 
statistic is calculated up to 12 lags for the standardized residuals and it is distributed 
with )(2 with 12 degrees of freedom. The Ljung-Box statistics indicate serial 
correlation for the USD-DEM. The variances of the normalized residuals are near 
one. There is no evidence of skewness but the excess kurtosis remains large for 
the residuals. 

In Table 11.9, the simulation results with the GARCH(1,1) process are pre-
sented for the USD-DEM rate. Because GARCH(1,1) allows for conditional het-
eroskedasticity, it is expected that the simulated performance of the RTT model 
would yield higher p-values and retain the null hypothesis that GARCH(1,1) is 
consistent with the data-generating process of the foreign exchange returns. The 
results, however, indicate smaller p-values, which is in favor of a stronger rejection 
of this process relative to the random walk process. 

One important reason for the rejection of the GARCH(1,1) process as well 
as the random walk model is that these are pure volatility processes without pre-
dictability of the direction of returns, which matters for trading models. Another 
reason is the aggregation property of the GARCH(1,1) process. The GARCH(1,1) 
process behaves more like a homoskedastic process as the frequency is reduced 
from high to low frequency. Because the RTT model trading frequency is less 
than two deals per week, the trading model does not pick up the 5-min level 
heteroskedastic structure at the weekly frequency. Rather, the heteroskedastic 
structure behaves as if it is measurement noise where the model takes positions, 
and this leads to the stronger rejection of the GARCH(1,1) as a candidate for the 
foreign exchange data-generating process. 
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TABLE 11.9 GARCH(1,1) simulations for USD-DEM. 

Description Historical 
realization 

p-value 
(in %) 

Percentile 
(%, 95%) 

Mean St.Dev Skew. Kurt. 

Annual return 9.63 0.4 -11.14, 5.12 -3.27 4.90 -0.08 -0.01 
Xeffective 3.78 0.1 -20.40, -3.16 -11.88 5.18 -0.07 -0.11 
Reffective 4.43 0.0 -26.60, -6.37 -16.50 6.10 -0.14 -0.05 

Max drawdown 11.02 100.0 24.17, 93.96 53.33 21.50 -0.73 0.30 

Deal frequency 1.68 100.0 2.14, 2.64 2.39 0.15 -0.02 -0.15 

Horizon: 7 days 
Xeffective 3.47 0.2 -19.56, -3.49 -11.64 4.90 -0.06 -0.03 
Reffective 1.80 0.0 -24.19, -6.58 -15.37 5.38 -0.08 -0.05 

Horizon: 29 days 
Xeffective 3.27 0.2 -19,95, -3.29 -11.86 5.00 -0.12 -0.04 
Reffective 2.16 0.1 -26.92, -6.75 -17.20 6.04 -0.20 -0.03 

Horizon: 117 days 
Xeffective 4.07 0.1 -21.24, -2.77 -11.91 5.56 0.03 -0.28 
Reffective 5.10 0.1 -30.17, -5.44 -17.57 7.60 0.29 0.31 

Horizon: 301 days 
Xeffective 4.62 0.2 -22.73, -1.48 -11.73 6.42 0.28 0.16 
Reffective 6.83 0.3 -27.64, -2.01 -14.28 7.72 0.26 0.38 

psi In a GARCH process, the conditional heteroskedasticity is captured at the 
frequency that the data have been generated. As it is moved away from this 
frequency to lower frequencies, the heteroskedastic structure slowly dies away 
leaving itself to a more homogeneous structure in time. More elaborate processes, 
such as the multiple horizon ARCH models (as in the HARCH process of Miiller 
et al. (1997a)), possess conditionally heteroskedastic structure at all frequencies in 

ata general. The existence of a multiple frequency heteroskedastic structure seems to 
1,4zt be more in line with the heterogeneous structure of the foreign exchange markets. 

Table 11.6 we presented a summary of the p-values of the annualized re-
fi=t turn for the USD-DEM, USD-CHF, USD-FRF and DEM-JPY. In the case of the 

GARCH(1,1) simulation, they are 0.4, 8.4, 0.9, and 1.2%, respectively. All four 
currency pairs except USD-CHF yield p-values, which are smaller than 1.3%. The 
Xeff and Reif are 0.1 and 0.0% for USD-DEM, 1.4 and 0.9 percent for USD-CHF, 
0.1 and 0.1% for USD-FRF, and 0.4 and 0.4 percent for DEM-JPY. 

The historical maximum drawdown and deal frequency of the RTT model is 
smaller than those generated from the simulated data. The maximum drawdowns 
for the USD-DEM, USD-CHF, USD-FRF, and DEM-JPY are 11.02, 16.08, 11.36, 
and 12.03 for the four currencies. The mean simulated drawdowns are 53.33, 
60.58, 46.00, and 48.77 for the four currencies. The mean simulated maximum 
drawdowns are three to four times larger than the historical ones. The historical 
deal frequencies are 1.68, 1.29, 1.05, and 2.14. The mean simulated deal frequen-
cies are 2.39, 1.87, 1.59, and 2.66 for the four currencies. The differences between 
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the historical deal frequencies and the mean simulated deal frequencies remain 
large. Therefore, the examination of the GARCH(1,1) process with the maximum 
drawdown and the deal frequency indicates that the historical realizations of these 
two measures stay outside of the 5% level of simulated distributions of these two 
performance measures. 

The mean simulated deal frequency for the USD-DEM is 2.39 trades per week. 
In annual terms, this is approximately 124.28 deals per year. The half spread for the 
USD-DEM series is about 0.00025 and this yields 3.11% when multiplied with the 
number of deals per year. The -3.11% return would be the annual transaction cost 
of the model. For the model to be profitable, it should yield more than 3.11% per 
year. Table 11.9 indicates that the RTT model generates an excess annual return of 
9.63%, whereas the mean of the annualized return from the GARCH(1,1) process 
stays at the -3.27% level. 

The multi-horizon examination of the equity curve with the )4 and Ref 
performance measures indicates that the GARCH(1,1) process as a candidate for 
the data generation mechanism is strongly rejected at all horizons from a 7-day 
horizon to a horizon as long as 301 days. The overall picture coming out of the test 
is not very different for the GARCH(1,1) than that of the random walk process. 

AR(4)-GARCH(1,1) Process A further direction is to investigate whether a condi-
tional mean dynamics with GARCH(1,1) innovations would be a more successful 
characterization of the dynamics of the high-frequency foreign exchange returns. 
The conditional means of the foreign exchange returns are estimated with four 
lags of these returns. The additional lags did not lead to substantial increases in 
the likelihood value. 

The results of the AR(4)-GARCH(1,1) optimization are presented in Ta-
ble 11.10. The numbers in parentheses are the robust standard errors and all 
four lags are statistically significant at the 5% level. The negative autocorrelation 
is large and highly significant for the first lag of the returns. This is consistent with 
the high-frequency behavior of the foreign exchange returns and is also observed in 
Dacorogna et al. (1993). The Ljung-Box statistics still indicate serial correlation 
in the normalized residuals. The variances of the normalized residuals are near 
one. There is no evidence of skewness but the excess kurtosis remains large for 
the residuals. 

The p-values of the annualized returns are presented in Table 11.6. They are 
0.1, 3.7, 0.3, and 0.5% for the USD-DEM, USD-CHF, USD-FRF, and DEM-JPY. 
The results indicate that the AR(4)-GARCH(1,1) process is also rejected under the 
RTT model as a representative data generating process of foreign exchange returns. 
Here again, a possible explanation of this failure is the relationship between the 
dealing frequency of the model and the frequency of the simulated data. The 
AR(4)-GARCH(1,1) process is generated at the 5-min frequency but the model 
dealing frequency is between one or two deals per week. Therefore, the model 
picks up the high-frequency serial correlation as noise and this serial correlation 
works against the process. This cannot be treated as a failure of the RTT model. 
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TABLE 11.10 AR(4)-GARCH(1,1) parameter estimates. 

The sample is 5-min return from 1990-1996. ao values are 10-9. The numbers in 
parentheses are the standard errors. The standard errors of cep are 10-11. LL is the 
average log likelihood value. Q(12) refer to the Ljung-Box portmanteau test for serial 
correlation and it is distributed x2 with 12 degrees of freedom. The 4 05(12) is 21.03. 

E'sk and Eku are the variance, skewness, and the excess kurtosis of the residuals. 

USD-DEM USD-CHF USD-FRF DEM-JPY 

a0 
al 
fit 

3.90 (3.40) 
0.099 (0.0005) 

0.8796 (0.0006) 

8.19 (9.03) 
0.0874 (0.0006) 
0.8833 (0.0007) 

7.28 (5.80) 
0.1349 (0.0007) 
0.8411 (0.0008) 

2.92 (3.93) 
0.088 (0.0005) 

0.9008 (0.0006) 

Yi -0.176 (0.001) -0.208 (0.001) -0.200 (0.002) -0.130 (0.002) 

Y2 -0.011 (0.001) -0.031 (0.002) -0.025 (0.002) -0.090 (0.002) 

Y3 0.003 (0.001) -0.001 (0.002) -0.005 (0.002) -0.005 (0.002) 

Y4 -0.004(0.001) -0.002 (0.001) -0.008 (0.002) -0.010 (0.002) 

LL 6.46 6.19 6.30 6.35 
Q(12) 623 531 492 374 
E,72. 1.04 1.03 1.07 1.05 

Esk -0.07 -0.04 -0.05 0.15 

Eku 12.29 7.86 21.84 27.98 

Rather, this strong rejection is evidence of the failure of the temporal aggregation 
properties of the AR(4)-GARCH(1,1) process at lower frequencies. 

The rejection of the AR(4)-GARCH(1,1) process with the Xeff and Re- is 
even stronger and very much in line with the results for the random walk and the 
GARCH(1,1). The p-values of the Xeff and Reif are 0.1, 0.0 percent for USD-
DEM, 1.9, 2.3% for USD-CHF, 0.2, 0.1% for USD-FRF, and 0.1, 0.1% for DEM-
JPY. The p-values remain low at all horizons for the Xeff. and R . The p-values 
of the maximum drawdown and the deal frequency also indicate that in almost all 
replications the AR(4)-GARCH(1,1) generates higher maximum drawdowns and 
deal frequencies. 

Conclusions This extensive analysis of real-time trading models with high-fre-
quency data suggests two main conclusions. First, technical trading models can 
generate excess returns, which are explained neither by traditional theoretical pro-
cesses nor by luck. Second, the foreign exchange rates contain conditional mean 
dynamics that are neither present in the random walk nor GARCH(1,1), and AR-
GARCH(1, 1) processes. 

The dealing frequency of the model is approximately between one and two 
per week although the data feed is at the 5-min frequency. Because the model's 
trading frequency is less than two deals per week, it does not pick up the 5-min level 
heteroskedastic structure at the weekly frequency. Overall, the results presented in 
this section have a general message to the standard paradigm in econometrics. It is 
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TABLE 11.11 
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AR(4)-GARCH(1,1) simulations tor USD-DEM. 

Description Historical 
realization 

p-value 
(in %) 

Percentile 
(5%, 95%) 

Mean St.Dev Skew. Kurt. 

Annual return 9.63 0.1 -10.46, 3.13 -3.68 4.13 -0.01 -0.16 
Xeffective 3.78 0.1 -16.72, -3.16 -9.95 4.27 -0.02 -0.18 

Reffective 4.43 0.0 -21.37, -5.28 -13.37 4.93 -0.07 -0.15 

Max drawdown 11.02 100.0 21.73, 84.55 49.07 19.16 -0.59 0.03 
Deal frequency 1.68 100.0 1.89, 2.35 2.12 0.14 -0.04 -0.26 

Horizon: 7 days 
Xeffective 3.47 0.1 -16.53, -2.86 -9.72 4.13 0.01 -0.18 

Reffective 1.80 0.2 -19.63, -4.95 -12.33 4.45 -0.01 -0.17 

Horizon: 29 days 
Xeffective 3.27 0.1 -16.90, -3.24 -9.94 4.21 0.00 -0.11 
Reffective 2.16 0.1 -21.54, -5.87 -13.67 4.87 -0.02 -0.02 

Horizon: 117 days 
Xeffective 4.07 0.1 -17.37, -2.83 -9.97 4.50 0.00 -0.26 
Reffective 5.10 0.0 -24.10, -4.75 -14.17 5.98 0.23 0.21 

Horizon: 301 days 
Xeffective 4.62 0.1 -18.19, -2.01 -9.83 4.95 0.19 0.16 
Reffective 6.83 0.1 -22.90, -2.91 -12.15 6.15 0.34 0.53 

not sufficient to develop sophisticated statistical processes and choose an arbitrary 
data frequency (e.g., 1 week, 1 month, annual) claiming afterward that this partic-
ular process does a "good job" of capturing the dynamics of the data-generating 
process. In financial markets, the data generating process is a complex network of 
layers where each layer corresponds to a particular frequency. A successful char-
acterization of such data generating processes should be estimated with models 
whose parameters are functions of intra and inter-frequency dynamics. In other 
fields, such as in signal processing, paradigms of this sort are already in place. 
Our understanding of financial markets would be increased with the incorporation 
of such paradigms into financial econometrics. Our trading model, within this 
perspective, helps us to observe this subtle structure as a diagnostic tool. 

11.7 TRADING MODEL PORTFOLIOS 

In the previous sections we have described what trading models are and how we 
can optimize and test them. In this section we will briefly study the combination 
of different trading model strategies into portfolios and discuss the particular case 
of currency risk hedging. 

Any trading strategy is based on some specific indicators and decision rules 
and then will perform better in some market conditions. To reduce the risk im-
plied by the use of such trading models, it is common to combine various trad-
ing strategies, which provide different trading signals for the same asset, in a 
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portfolio of models. As these models generally do not have the same cluster-
ing of good and bad periods, the overall risk is then reduced. But this is true 
only if the composition of the trading model portfolio is not changed too often. 
Dynamic modifications of the trading model portfolio, which keep a reasonable 
risk profile, are very hard to obtain and at O&A we advocate choosing static 
portfolio strategies where the dynamic behavior is left to the trading models them-
selves. 

The optimal trading model portfolio strategy depends on certain decisions of 
the investor such as the choice of the investment assets, frequency of changes, 
and limits of risk and exposure. One of the main problems is the selection of 
the trading models to be used in such a portfolio. It is easy to test many differ-
ent combinations and to select the best one, but such a procedure can produce 
undesirable results. In fact, during this selection procedure, the risk of over-
fitting particular historical data may again occur from the back door. To over-
come these types of problems, it is often desirable to use an equally weighted 
portfolio—that is, a portfolio where the same proportion of capital or credit limit 
is invested in each trading model. Another possibility is to select the optimal 
trading model portfolio using a robust optimization procedure, like in trading 
model optimization (Section 11.5.1), but we will not discuss such an approach 
here. 

Table 11.12 compares the performance obtained for a trading model portfolio, 
which corresponds to an equally weighted portfolio strategy, to the performance 
of the individual trading models on the same period. The analysis period is from 
January 1993 to December 1997. During this period, all these trading models 
were running in the real-time O&A information system with no reoptimizations. 
On this table we observe very well that for the same annualized total return the 
risk of the portfolio is considerably lower than the average risk on the individual 
models. The maximum drawdown of the portfolio is about half of the average 
maximum drawdown of the models and the annualized Xeff is one of the largest. 
The variation of the total return of the portfolio over the years is plotted on Fig-
ure 11.4. 

Portfolios of trading models can be used as dynamic investment strategies in 
many financial markets, but the complexity of the optimization of such portfolios 
based on a very large number of trading models (needed for a good diversification) 
would be extremely hard to control. As we observed in the previous sections, the 
optimization of the different trading strategies is in itself a complicated process 
that needs to be done at regular intervals to take into account the nonstationarity 
of the underlying time series. 

In the case of foreign exchange, an interesting application of portfolio trading 
models is the dynamic hedging of currency risk. In this case, the number of models 
to optimize is reduced and it is reasonable to consider a dynamic hedging strategy 
based on the trading recommendations. In the next section we will provide a brief 
description of this approach. 
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TABLE 11.12 Portfolio performance of O&A trading models. 

Performance comparison between 10 O&A class RTT, RTM trading models, and an equally 
weighted portfolio of the same models. The different performance measures displayed are 
the annualized total return R, the risk-sensitive performance measure Xeff, the maximum 
drawdown D, and the annualized Sharpe ratio S. 

FX rate Model R Xeff

USD-DEM RTT 6.8% 2.3% 10.2% 0.73 
RTM 3.4% 1.3% 9.8% 0.51 

DEM-RY RTT 1.7% -2.6% 16.1% 0.19 
RTM 9.3% 6.4% 8.9% 1.32 

USD-CHF RTT 3.7% -1.2% 10.9% 0.38 
RTM 2.5% -0.3% 13.7% 0.36 

USD-FRF RTT 9.2% 4.7% 9.9% 1.03 
RTM 5.6% 2.5% 10.0% 0.71 

GBP-DEM RTT 5.6% 2.2% 14.3% 0.69 
RTM 5.0% 2.8% 8.1% 0.79 

Average values 5.2% 1.8% 11.2% 0.71 

Portfolio 5.2% 4.1% 5.5% 1.09 

11.8 CURRENCY RISK HEDGING 

Hedging problems arise whenever an investor, for example, a fund manager or a 
commercial organization, is holding foreign assets such as foreign securities over 
a period of time. The foreign assets are denominated in a foreign currency. The 
investor measures the performance of his/her investment in terms of the investor's 
home currency. The foreign assets have a degree of volatility in terms of their own 
currency. Due to the foreign exchange rate movements the volatility is, however, 
higher when expressed in terms of the investor's home currency. This implies 
additional risk. By additionally taking a short position in the foreign currency, 
this implicit foreign currency exposure can be compensated and the risk can be 
reduced; this is the basic idea of hedging. Whereas a constant short position is 
referred to as static hedging, this section deals with dynamic hedging where the 
foreign currency positions vary over time. 

In this section, a strategy of hedging the foreign exchange (FX) risk associated 
with foreign investment is specified. As an innovative element of this strategy, real-
time trading models are used. The whole strategy can then be called a dynamic 
overlay. To be successful, we need profitable trading models that are only weakly 
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FIGURE 11.4 Total return of a portfolio of 10 O&A trading models over 5 years. 

correlated or anticorrelated to the usual primary investments, because positive 
correlation would imply an increased risk. 

An investor's risk/return decisions must be matched to the set of all possible 
investments (including dynamic allocation of capital to the foreign currencies), the 
feasible set. Figure 11.5 shows this feasible set as a shadowed region. The upper-
left border of this set is termed the efficient frontier; those investment portfolios 
lying along this frontier deliver the maximum possible return for the minimum 
possible risk or the minimum risk for the set of best possible returns. The point 
at which an investor's indifference curve has a common tangent with the efficient 
frontier represents the best possible match between the investor's preferences and 
the possible investment portfolios. The right, dashed vertical line in Figure 11.5 
indicates the expectation for the risk of a primary investment, which is left com-
pletely unhedged. A circle is drawn where this vertical line intersects with the 
horizontal line indicating the expected return of the primary investment. 

The dashed vertical line to the left in Figure 11.5 indicates the reduction of 
risk achieved through an optimal static hedge of the primary investment, which 
usually implies short positions in all foreign currencies in which the foreign assets 
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FIGURE 11.5 Set of feasible portfolios available to an investor when he/she implements 
a currency hedging strategy. The efficient frontier lies on the upper-left edge of the set 
(gray area), or along the darkened edge in the figure. 

of the primary investment are denominated. In practice, this reduction in risk may 
be purchased at the price of slightly reduced returns due to transactions costs, thus 
the circle that intersects this risk line is lowered to slightly below the expected 
return of the primary investment in this example.14 This optimal static hedge has 
succeeded in reducing risk. However, note that there may still be some distance 
between the static point and the efficient frontier of the feasible set, which is defined 
by the use of dynamic allocation to foreign currencies through trading models. The 
distance between the statically hedged portfolios and the efficient frontier marks 
the improvement that can be attained through a dynamic currency overlay using 
trading models. 

The subject of currency hedging has been discussed in the literature for some 
time. In Froot (1993), full hedging is recommended for minimizing the risk due to 
short-term FX volatility. On the other hand, it is also shown that a lower amount 
of hedging or even no hedging is better for minimizing the risk of long-term value 

14 Whereas the transactions costs of a one-time, static FX transaction are minimal, the short positions 
in the foreign currencies may imply considerable costs of carry due to interest rate differential between 
the two currencies. These costs, which are sometimes also in favor of the investor, may lead to a 
distinct return difference between statically hedged and unhedged portfolios. 
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fluctuations of the investment. Depending on the time horizon, there is thus a 
certain range, a scope within which the hedging ratio can be chosen. 

Levich and Thomas (1993a) go one step further. They hedge a position dy-
namically by varying the hedge ratios over time. They show that this is profitable 
as compared to no hedging or static hedging. In their most successful strategy, a 
"currency overlay" with many currencies involved, they change the hedge ratios 
by following simple "technical trading signals." 

In the overlay strategy described here, the allowed ranges of static hedging 
and the exposure due to dynamic hedging are limited.15 Thus the main purpose 
of hedging, which is reducing the risk due to FX rate volatility, is maintained. On 
the other hand, we have a well-founded additional profit expectation, based on the 
profitability of the trading models and trading model portfolios. 

11.8.1 The Hedging Ratio and the "Neutral Point" 

Currency hedging means, for an investor who has bought a foreign asset such as 
equity of value s, holding a short position of size —sh in the foreign currency in 
order to minimize the volatility of the value of his/her total position due to FX rate 
fluctuations. The hedging ratio h is defined as 

h = 
Sh 

The study by Froot (1993) shows that choosing the best h, the one that minimizes 
the total volatility, is not trivial and depends on the time horizon of the investor. 
For short-term investors, the best h is 1 or slightly less; for long-term investors, 
who hold their position over many years, the best choice of h is about 0.35. In 
Froot (1993), the hedging ratio h is assumed to be constant over time. 

In our dynamic hedging approach (we follow here the method suggested in 
Muller et al., 1997b), we want to vary h over time, following some real-time 
trading models to reach an additional profit or to reduce the risk of the primary 
investment expressed in the home currency. This requirement will, when used 
during optimization, automatically set limits to the type of hedging strategy to 
use. In the lack of a clear criterion like reducing the risk, some rules could be 
introduced to achieve desirable features like, for instance, h would not depart too 
much from the best value—that is, in most cases, between 0.35 and 1 according to 
Froot (1993). Each of the individual foreign currencies has its own hedging ratio 
hi, but there is also the option of taking only one global hedging ratio h for all 
currencies. The following discussion applies to both the individual hi and h. 

In lack of an objective risk criterion, most investors set some limits hmth
and hmax on the choice of the hedging ratio, often to satisfy some institutional 
constraints or to limit the risk if they have no other quantitative criterion to do this. 
A typical choice might be hmin = 0 (no hedging) and hmax = 1 (full hedging). 

15 Interested readers are referred to our internal paper where the methodology is described in detail, 
Muller et al. (1997b). 
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In the middle between the extreme h values, we define the neutral point, h, of the 
hedging strategy to be 

Strom 

'114 

iw 

hmin hmax 
hmid = 2 

and the total possible range Ah of dynamic hedging is 

Ah = hmax hmin 

(11.32) 

(11.33) 

We have seen that the O&A real-time trading models vary their gearings be-
tween two limits called "gearing -1" and "gearing 1" as explained in Section 11.2.1. 
If the neutral point hint,' is chosen for static hedging and if there is only one foreign 
currency and one trading model (for the FX rate between that foreign currency and 
the home currency), these trading limits directly correspond to the limits hinin and 
hmax. However, the investor may decide to allow wider exposure limits for the 
dynamic positions than those of the static positions. The situation becomes more 
complicated in the presence of many currencies and many trading models. 

11.8.2 Risk/Return of an Overlay with Static and Dynamic Positions 

To solve the allocation problem, a basis of portfolio theory has to be applied to 
our particular overlay problem. 

A portfolio II can be written in terms of the sum of the primary investment 
(P l), a static foreign exchange position placed in order to hedge foreign exchange 
risk (SH) and a series of variable positions placed to dynamically hedge foreign 
exchange risk (DH) 

11 = PI SH DH (11.34) 

In what follows, we refer to a portfolio diversified in i = 1 to n currencies and 

F- dynamically hedged by j = 1 to m trading models: 

n = Ecoi +EhiaiRrx+EwiRiim 
i=i 

(11.35) 

Expectation of portfolio returns, or changes in value, can then be written as E[6. II], 
or as a sum of the expectation values of its comprising parts: 

E[All] = E[AI] 4- E[AR FX] E[ARTM] (11.36) 

that is, 

/I 

E[Aru = EceiE[Ah] EhiaiE[ARrx] + EwjE[ARP4] (11.37) 
i=1 i=1 j=i 
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where 

Ali = the fractional return of the i th underlying foreign investment component 

at a given time, t, and over a time horizon, At; A /i A/i (At, t) 
(It — It—At)/1t—At, where h are in units of the home currency, 

ai = the amount of the portfolio allocated to the i th currency in units of the home 
currency, 

hi = the unitless static hedging ratio for the i th foreign currency, 

ARrx = the portfolio returns due to fluctuations in the static hedge positions, 

coi = the weights given to each trading model (in units of the home currency), 
and 

AR TAI = the trading model return values. 

The risk of the portfolio is characterized by the variance of the portfolio returns 
. 

n 

bon = E [(An - E[AII])1 (11.38) 

11.8.3 Dynamic Hedging with Exposure Constraints 

To compute the efficient frontier of the dynamic hedging strategy, we need to 
optimize the return given the risk or conversely optimize the risk given the return. 

3 
Such an optimization is suitably done using the Lagrange multiplier technique. 

We can maximize the quantity16 E[A — Xioiri or, more conveniently, minimize 

von — a[AI-1]. The parameter is the Lagrange multiplier and can be varied 
from 0 (considering risk only) to high positive values (considering mainly return 
while keeping risk under some control) to get the whole efficient frontier. Each 

a value of A. corresponds to a point on the efficient frontier. Let us call U the target 
function to be minimized, 

U = aim — E[All] (11.39) 

where E[A 1-1] and von have been defined and expressed in Equations 11.37 

t‘rj and 11.38. 
Some components of the total portfolio have free coefficients, which can be 

determined with the goal of minimizing the target function U: the hedging ratios 
hi and the amounts of money (maximum exposures) col allocated to the trading 
models. These coefficients are generally subject to constraints: 

1. The trading model sizes co./ must not be negative: wi > 0. In fact, such 
negative w1 would mean doing the opposite of the trading recommenda-
tions. In these cases, this will lead to new transaction costs, which make 
the actual returns much worse than the formal results suggest. Therefore, 
we exclude negative trading model coefficients. 

16 This first quantity is very similar to Xeff, the risk-corrected return derived in Section 11.3.1. The 
optimization problem comes back to optimizing Xeff for different risk aversion constants. 

0365



346 CHAPTER 11 TRADING MODELS 

2. The static hedging ratios hi are limited to an allowed range between hmin, 
and hmax,i • Generally there are regulations or risk management rules that 
do not allow the investors to take too extreme positions, therefore hedging 
ratios that are above hmax,i or below hmin,i are generally excluded. 

The constraints make a direct solution of the allocation problem impossible. 
The minimization of U (a quadratic function of the coefficients) under linear 

constraints on the coefficients is a special case of quadratic programming. A 
technique developed by Markowitz (1959), based on the simplex method, can 
solve this problem; we follow Markowitz (1987). There is no local minimum of 
U in the space of the coefficients; this can be proven. The solution, once found, 
always represents the global minimum. 

Currency-wise exposure limits may be less rigid than those on the hedging 
ratios. But exposure limits on foreign currencies are not simple, as they involve 
several assets together. The exposure constraints are linear in co j and hi. As 
the simpler constraints, they can be fully accounted for in the framework of the 
solution method presented by Markowitz (1987). 

The whole efficient frontier can be obtained by minimizing U for different 
choices of the Lagrange multiplier A. The left-hand side of the efficient frontier 
obviously starts at A = 0 where the return of the portfolio has no influence and only 
risk counts. The right-hand side limitation of the efficient frontier is less evident. 
For unconstrained dynamic strategies, the efficient frontier normally extends to 
infinity (when more and more money is allocated to trading models). A hedging 
strategy should obviously not deal with infinite risks. There should be a risk 
limit beyond which the strategies are considered unacceptable even if the formal 
exposure limits are not yet reached. But in the case of constraints, the efficient 
frontier generally has a genuine end on the right-hand side. Therefore, we use a 
"shooting" strategy for determining the A. value that approximately leads to the 
desired maximum risk at the right end of the efficient frontier. The method by 
Markowitz (1987) helps us to find this value. 

11.8.4 Concluding Remarks 

This problem turns out to be rather difficult and requires many different inputs and 
programs to solve it in a practical way. The algorithm needs the following main 
ingredients: 

■ The user-defined investment goals such as primary investment and expo-
sure limits. 

■ Time series of returns of all assets in the portfolio: FX rates, interest 
rates (or their differentials), and typical primary investments such as stock 
indices and bond indices of many currencies. 

■ Time series of returns of the trading models used for dynamic hedging 
(including transaction costs). 

■ The computation of mean returns and the covariance matrix of all relevant 
assets. 
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• A target function to be optimized, measuring risk and return, with a La-
grange multiplier that sets the balance between risk and return. This func-
tion depends on two types of parameters, which are static hedging ratios 
and trading model allocation sizes. 

• A method to solve the quadratic programming problem with linear con-
straints (exposure limits). 

In conclusion, we are able to solve the dynamic overlay problem under expo-
sure constraints with a quite complex but well-understood algorithm. The result is 
the efficient frontier of feasible solutions, each with a particular risk/return profile. 
It is the choice of the investor to decide which portfolio on the efficient frontier 
he/she wants to follow. 

Fart 
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12 
TOWARD A THEORY OF 

HETEROGENEOUS MARKETS 

CO 

At the end of this in-depth review of some of the techniques and models used 
with high-frequency data, there is clear evidence that price movements of foreign 
exchange rates and other financial assets for short to medium-term horizons are 
predictable to some extent. This is substantiated by a positive forecast quality and 
high real-time trading model returns (e.g. Dacorogna et al., 1992; Pictet et al., 
1992; Gencay et al., 2001c, 2002). More generally, financial returns of whatever 

L 
asset substantially depart from the random walk model and are being predicted 
with some success by market participants. 

Where does this sustained predictability originate? Are the real-time trading 
models, for instance, successful in capturing the inefficiencies of the foreign ex-
change (FX) market? Because this market is widely held to be the most efficient 
of the financial markets, does this success conflict with the theory of efficient mar-
kets, which precludes the ability to forecast and denies the existence of profitable 
trading models? Should we conclude from this evidence that markets are ineffi-
cient? We believe that we should rather adapt our theory of the financial market 
to the reality of the stylized facts and of markets that are very efficient in a newly 
defined way. 

The motivation of this chapter is to explain why and how markets can be at 
the same time highly efficient and to some extent predictable. There are a number 

348 
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of reasons for this that are all associated with market dynamics. We want to put in 
perspective the current theory of efficiency and suggest to move beyond it. This 
is one of the big challenges ahead in the theory of finance. Many researchers are 
working in this special field, such as the whole movement of "behavioral finance" 
around Robert Shiller,1 or parts of the econophysics group and many others who 
see the need to find ways of moving from a rather static definition to a more 
dynamic one. 

12.1 DEFINITION OF EFFICIENT MARKETS 

In conventional economics, markets are assumed to be efficient if all available 
information is reflected in current market prices (Fama, 1970, 1991). Economists 
have embarked on weak, semi-strong, and strong-form efficiency tests. The weak-
form tests investigate whether market prices actually reflect all available infor-
mation. The semi-strong tests are based on so-called event studies, where the 
degree of market reaction to "news announcements" is analyzed. The strong-form 
tests, finally, analyze whether specific investors or groups have private informa-
tion from which to take advantage. By and large, most studies conclude that the 
major financial markets are efficient and that all information is reflected in cur-
rent prices. However, the conclusions of such studies have been bogged down by 
methodological questions: in particular, whether any observed departures from 
market efficiency are due to any genuine market inefficiency or whether a defi-
ciency of the market pricing model is being used as a yardstick to compare actual 
with theoretical prices. 

The inference that in an efficient market no excess return can be generated 
with trading models is based on the assumption that all investors act according 
to the rational expectation model (Shiller, 1989; Fama, 1970). If this assump-
tion is wrong, the conclusion that forecasting is impossible is also questionable. 
The assumption of rational expectations has been called into question on various 
platforms and the idea of heterogeneous expectations has become of increasing 
interest to specialists. Shiller (1989), for example, argues that most participants 
in the stock market are not "smart investors" (following the rational expectation 
model) but rather follow trends and fashions. The modeling of "noise trader" has 
become a central subject of research in market microstructure models. On the FX 
market, there is much investigation of "speculative bubbles" and the influence of 
technical analysis on the dealer's strategy (see, for example, Frankel and Froot, 
1990). Some attention has also been caught by the possibility of time-varying 
expectations, which better reflect to our view of the market (Bekaert and Hodrick, 
1992). Variation over time in expected returns poses a challenge for asset pricing 
theory because it requires an explicit dynamic theory in contrast to the traditional 
static capital asset pricing model (CAPM). 

I See, for instance, Shiller (2000) where the author claims that the market agents are essentially 
acting irrationally. 
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In summary, the conclusion that financial asset prices are not predictable is 
based on three assumptions: market prices reflect all the information available, 
news and events that hit the market are normally distributed, and the market is 
composed of homogeneous agents. The two first assumptions are reasonable 
starting points for the definition. The third assumption poses a real problem. It 
is clear that all market agents have in fact bounded rationality. They cannot be 
omniscient and do not all enjoy the same freedom of action and access to the 
markets. Recent works by Kurz (1994) and Gouree and Hommes (2000) present 
new theoretical models to tackle this problem. Introducing the heterogeneity of 
agents can give rise to very interesting nonlinear effects in the models. They 
show that many of the price fluctuations can be explained by endogenous effects. 
Similar conclusions are reached by Farmer and Lo (1999) in their discussion of 
market efficiency. They base their analysis on a comparison with the evolution of 
ecological systems. Farmer (1998) develops a market model inspired by ecological 
systems that contains agents with various trading strategies. 

12.2 DYNAMIC MARKETS AND RELATIVISTIC EFFECTS 

We just saw that conventional economics makes its inferences on efficient markets 
on the basis of a model in which economic agents are entities that act according to 
the rational expectation strategy. Any differences in planning horizons, frequency 
of trading, or institutional constraints are neglected. However, there is substantial 
empirical evidence that investors have heterogeneous expectations, as noted in 
Muller et al. (1993a) and Muller et aL (1997a). Surveys on the forecasts of 
participants in the FX market reflect the wide dispersion of expectation at any 
point in time. The huge volume of FX trading is another indication reinforcing 
this idea because it takes differences in expectation among market participants to 
explain why they trade.2 In Chapter 7, we presented the heterogeneous market 
hypothesis; at the end of this book the need for such a view becomes clear. It is 
the most elegant way to reconcile market efficiency with the stylized facts. Lux 
and Marchesi (1999) have developed simulation models of financial markets that 
include agents with different strategies (fundamentalists and chartists). They were 
able to show (Lux and Marchesi, 2000) that this model can reproduce most of the 
empirical regularities (fat tails, long memory, and scaling law) even though they 
use normally distributed news in their simulations. 

The theoretical work on financial markets with heterogeneous agents has also 
gained momentum in the literature. Among this literature, Brock (1993), Brock 
and Kleidon (1992), Brock and LeBaron (1996), Brock and Hommes (1997), and 
Hommes (2000) investigate the underlying source for the structural heterogeneity 
of financial markets. Brock (1993) studies the interacting particles system the-
ory to build structural asset pricing models. Brock and Hommes (1997) build a 
general theory of expectation formation, which nests rational expectations in an 

2 Over $1500 billion US is traded every day in the different centers like Tokyo, London, and New 
York according to a survey taken every 3 years by the Bank for International Settlements (1999). 
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econometrically tractable system. Brock and Kleidon (1992) show how bid-ask 
spreads fluctuate over the day by firm size categories as a measure of "thickness" 
of the market. Brock and LeBaron (1996) stress not only the standard asymmetric 
information theory in matching key stylized facts, but also the importance of the 
role of multiple time scales. Hommes (2000) provides a review of recent work on 
heterogeneous agent financial theory. 

There are many ways to describe heterogeneous expectations. We believe 
that the most promising approach is to differentiate the expectations according to 
their time dimension because we consider the different time scales of the market 
participants the key characteristic of the market. Some are short-term traders, 
others have long-term horizons with market makers at the short-term end of the 
scale and central banks at the long-term end. Contrary to the usual assumption, 
there is no privileged time scale in the market. The interaction of components 
with different time scales gives rise to characteristically relativistic effects3 such 
as certain properties of volatility clusters, trend persistence, lag between interest 
rate adjustment, and FX rate adjustment. The latter is a good example of what 
conventional theory considers an inefficiency whereas we see it as an effect arising 
from the different time scales involved in the market. To take advantage of the lag 
in adjustment between interest rate and exchange rate moves, an investor needs to 
tie up his/her money for months or even years. This is a very long time for an FX 
trader. Some investors will thus tend to ignore these profit opportunities whereas 
others invest in them, as is testified by the development of managed currency funds 
based on this property. The combination of all of these effects ultimately enables 
the construction of successful forecasting and trading models. 

In long time intervals, market price changes are "flatter" and have fewer rel-
evant movements (trend changes) than in short-term intervals. The higher the 
resolution and the smaller the intervals, the larger the number of relevant price 
movements. The long and the short-term traders thus have different trading op-
portunities: the shorter the trading horizon, the greater the opportunity set. A 

market participant's response to outside events should always be viewed as rela-
tive to one's intrinsic opportunity set. A short-term trader does not react in the 

same way as a long-term trader. Economic decision makers, such as traders, 
treasurers, and central bankers, interpret the same information differently. The 
variation in perspective has the effect that specific price movements cannot lead to 
a uniform reaction; rather, they result in individual reactions of different compo-
nents. In turn, these reactions give rise to secondary reactions, with the different 
components reacting to their respective initial response. Watching the intraday 
price movements, one clearly sees the sequences of secondary reactions triggered 
by the initial events. See, for example, Goodhart and Curcio (1991); Almeida 
et al. (1998) on news effect on the FX market or Franke and Hess (1997) on the 

3 We use here the term "relativistic" to express the dynamic interaction between different market 
components relative to each other rather than relative to the news that has impacted the market. These 
effects are sometimes called endogenous effects in the literature, Kurz (1994). 
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Deutsche Termin-Borse. The existence of different trading strategies in the mar-
ket was also put forward in Chapter 7 to explain the HARCH effect of asymmetry 
in the information flow at different frequencies. LeBaron (2000) shows that in-
troducing agents with different time horizons in his market model gives rise to 
heteroskedasticity effects in the resulting price volatility. 

The delay with which the secondary reactions unfold is called the relaxation 
time. If diverse components with different time scales interact in the market, there 
is typically a mixture of long and short relaxation times following the impact of 
outside events. If different relaxation times are combined, the resulting autocorre-
lation decays hyperbolically or almost hyperbolically. This is a natural explanation 
of the long memory effects detected in financial markets. Dacorogna et al. (1993) 
studied the autocorrelation function for short-term absolute returns, confirmed the 
hyperbolic decay, and revealed that volatility clusters tend to have a longer mem-
ory than assumed by other studies of the subject. We saw in Chapter 7 that many 
studies confirm this effect. 

There is yet another phenomenon, which originates from the fact that financial 
markets are spread worldwide. Economic and political news and trading activity 
are not stationary. They have a clear-cut pattern of moving around the world in 
a 24-hr cycle. The price data of foreign exchange rates reflect this in terms of 
a 24-hr seasonality in market volatility, Muller et al. (1990). This seasonality 
can be accounted for by introducing a business time scale such as in Dacorogna 
et al. (1993). The 24-hr cycle implies that market reactions to an event cannot 
be simultaneous and that there are distinct relaxation times following the event. 
Geographical components related to the business hours of the different trading 
centers must be added to the time components. The interaction of geographical 
components leads to behaviors such as the "heat wave" effect proposed by Engle 
et al. (1990). 

12.3 IMPACT OF THE NEW TECHNOLOGY 

The realization that there is value in the data to define an investment strategy has 
brought to life many new firms that specialize in modeling financial markets and 
in providing trading advices on the basis of technical models. The question is, 
of course, will the impact of the new technology be a passing phenomenon or 
will it have a long-term effect? As the relativistic phenomenon arises from the 
interaction of components with different time scales, it will remain appropriate as 
long as heterogeneous expectations continue to exist in the market. The interaction 
process may become more complex, but it cannot disappear. 

News technologies enable users to identify additional trading opportunities 
to increase their profits. This quickens their pace of trading and contributes to 
higher market volume and liquidity. The improved liquidity lowers the spreads 
between bid and ask prices. Lower spreads imply lower transaction costs, which in 
turn increase the opportunity horizon for profitable trading. The new technology 
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introduces a shift in perspective, with components starting to focus on more nu-

merous short-term time intervals. 
As components become increasingly short-term in their focus, the spectrum 

of short-term components increases. This has the effect that relative differences 
among components become more significant and the relativistic effects more pro-
nounced. Contrary to accepted notions, which assume that sufficient buying power 
can "trade away" any phenomenon, the increased buying power will have the over-
all effect of enhancing the relativistic effects. Thus the very basis of our ability 
to forecast and build profitable trading models will be enhanced. This statement 
must be qualified in the sense that the reaction patterns will become increasingly 
diversified, and therefore more complex, and the speed of adjustment will increase 
requiring more and more sophisticated models. 

12.4 ZERO-SUM GAME OR PERPETUUM MOBILE? 

Conventional thought has it that financial markets must be a zero-sum game. This 
is true if we take a static view. In reality, the financial markets are dynamic and 
they are highly complex. 

Markets are a platform for components to take advantage of the diversity of 
interests. They are able to match their opposing objectives when one component 
buys and another component sells. The lower the friction, the easier a counterpart 
for a particular transaction is found and the larger, therefore, is the particular com-
ponent's opportunity set. By being able to go ahead with a particular transaction, 
the flexibility of the respective components is increased and their profit potential 
improved. 

The new technology fosters the ability of the market to provide an environ-
ment for the generation of wealth. As explained, interaction within the market 
gives rise to relativistic effects and relaxation times. To the extent that these rela-
tivistic effects are understood and incorporated into forecasting and trading model 
technology, market participants have the opportunity to generate additional profit 
or limit their losses. In our terminology, the profit that is generated is energy 
extracted from the market. Improved efficacy of component interaction gener-
ates additional energy and reduces the friction associated with buying and selling 
within the market. The process may be compared to the search for more efficient 
engines in the automobile industry where everybody gains from it in the long term. 

Have we achieved a perpetuum mobile? The answer is clearly no. Like 
any other technological innovation, the new technology does not generate energy 
from nothing, but it does take advantage of the energy potential existing in the 
financial markets. By offering a service to the economic agents, financial markets 
are not closed systems but do get a permanent input of money. This makes them 
highly open systems in terms of energy. Besides, a lot of resources have been 
put into the new technology in the form of extensive research, development work, 
and hardware to treat the information. Numerous studies have shown that simple 
trading rules do not work in efficient markets. Only elaborated treatment of the 
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data allows the identification of profitable trading rules. This treatment is not free, 
it has a price. Moreover, as the relativistic reaction patterns become increasingly 
diversified, research and development efforts will have to increase in the future to 
keep up with the ever-changing nonlinear patterns. 

12.5 DISCUSSION OF THE CONVENTIONAL DEFINITION 

As the markets consist of a diversity of components, different relaxation times 
occur because of the underlying relativistic effects between different components. 
It follows that the weak form of efficiency coupled with the rational expectation 
model cannot be attained. Because of the presence of different time components 
with heterogeneous expectations, current market prices cannot reflect all available 
information. The price discovery mechanism follows rather a dynamic "error 
correction model" where the successive reactions to an event unfold in the price. 
Why, then, did this not show up more clearly in previous scientific investigations? 
Some of the several reasons include the following: 

■ High-frequency data are a prerequisite for the empirical investigation of 
relativistic phenomena. 

■ Extensive computing power is needed to show the predictability in finan-
cial markets. Access to reasonably priced computing power has become 
available only recently. 

■ It is in the past few decades that an increasing awareness for dynamic and 
nonlinear processes has been gained. Such an awareness is crucial for the 
study of relativistic effects. 

The presumption of conventional economics that forecasting is impossible 
per definition has had a powerful impact on the research on market efficiency. 
Economists have focused on structural studies that were hamstrung by a lack of 
high-frequency data and theoretical shortcomings. Little academic research has 
been invested in actually trying to predict shorter-term price movements and build 
successful trading models. 

12.6 AN IMPROVED DEFINITION OF "EFFICIENT MARKETS" 

Although the current definition of efficient markets has shortcomings, we do not 
think that this concept should be abandoned; rather, it should be adapted to the new 
findings. It is important to find a good measure of how well a market operates. 

From a dynamic perspective, the notion of reduced friction should be central 
to the notion of efficiency. We consider an efficient market to be a market where 
all market information must be available to the decision makers and there must 
be participants with different time scales and heterogeneous expectations trading 
with each other to ensure a minimum of friction in the transaction costs. 

A quantitative measure of efficiency might be derived from the bid-ask spreads 
(those between real bid and ask prices being more appropriate for such a measure 

0374



12.6 AN IMPROVED DEFINITION OF "EFFICIENT MARKETS" 355 

than the nominal spreads quoted in information systems). Spreads are not only a 
measure of "friction," they also contain a risk component. The volatility or, more 
precisely, the probability of extreme returns within short time intervals should be 
considered together with the spread in the quantitative measure of market efficiency 
to be proposed. We are sure that in the years to come this definition will prevail 

and we shall find precise measures of efficiency as it is the case in thermodynamics 

and engineering. 
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market activity, 175, 177, 183 
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ARCH, see model 
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basis point, 23, 125, 171 
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bias, 44 

bias of realized volatility, see volatility 
market maker bias, 154 
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Brownian motion, 49 
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time interval, 56 
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conditional predictability, 215 
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data 
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distribution, see probability distribution 

nonstable, 142 
Dow Jones Industrials, 8 
dynamic memory, 255 
dynamic optimization, 246 
dynamic overlay, see hedging 

E 

economic forecast, 129 
economic news announcement, 130 
econophysicist, 9 
effective news, 130 
effective number of observations, 50 
efficient frontier, 341 
efficient markets, 349, 354 
electronic order-matching system, 15 

Electronic Broking Services (EBS), 15 
Reuters Dealing 2000, 15 

EMA-HARCH, see model 
Epps effect, see correlation, 293 
equity indices, 32 
EUREX, 24 
EURIBOR, 25 
Euro, 24 
Eurodeposits, 21 
Eurofutures contracts, 121 
Eurolira, see market, Eurofutures 
European Monetary System (EMS), 127 
Euroyen, see market, Eurofutures 
expiry, 12, 29, 31 

quarterly expiry, 24 
time-to-expiry, 31 

exponential attenuation, 293 
exponential decline, 209 
exponential memory, 282 
exposure, 339 
extreme events, 6 
extreme risks, 144 
extreme value theory, 138 

F 

fat-tailedness, 132 
FIGARCH, see model 
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filter 
adaptive method, 98 
after-jump algorithm, 105 
artificial quote method, 118 
ask quote, 110 
bid quote, 110 
bid-ask quote, 110 
bid-ask spread, 110 
build-up period, 87 
credibility, 93, 114 
data cleaning, 82 
data filter, 82 
decimal error, 113 
domain error, 111 
filter configuration, 113 
filter parameters, 116 
filtering algorithm, 89 

credibility, 89 
full-tick filtering window, 89 
scalar filtering window, 89 
univariate filter, 89 

filtering hypothesis, 113 
error hypothesis, 113 
winning hypothesis, 113 

forward premiums/discounts, 111 
full-quote filtering window, 109 

quote splitting, 110 
high-quality data, 100 
histoncal mode, 115 
historical operation, 87 
interest rate, 111 
level filter, 88, 91 
level quote, 110 
multivariate filtering, 100, 116 

filtering sparse data, 116 
next point interpolation, 96 
pair filtering, 88, 93, 98 
price, 1 1 1 
real-time mode, 115 
real-time operation, 87 
repeated quotes, 100 
scalar filtering window, 103 

filter test, 104 
the normal update, 104 

scalar quote, 110 
scalar window 

dismissing scalar quotes, 107 
scaling factor, 113 
second scalar window, 108 
sensitivity analysis, 120 
short-term interest-rate futures, 111 
spread filter, 98 
spread quoting, 98 
strong filter, 116 
time scale, 100 

INDEX 

timing, 87 
trust capital, 90, 104 
univariate filtering, 113, 116 
validity test, 110 
weak (tolerant) filter, 116 

finite variance, 132 
first position, 30 
forecasting, 248 

forecast accuracy, 246, 262 
forecast effectiveness, 264 
forecast horizon, 264 
forecast quality, 261 
forecasting model, 249 
multivariate forecasting, 249 
real-time price forecasting system, 250 
signal correlation, 263 

forecasting signal, 263 
real signal, 263 

volatility forecast, 250 
forecasting performance, 243 

benchmark comparison, 245 
direction quality, 245 
realized potential, 245 

foreign exchange (FX) market, see market 
forward discount, 23 
forward interest rate, 25 
forward points, 23 
forward premium, 23 
forward rate, 22, 25 
fractal behavior, 8, 209 
fractional noise process, 207 
FXFX page, 16 

G 

GARCH, see model 
Gaussian distribution, 135, 155 
genetic algorithm, 223, 317 

adaptive clustering, 319 
multi-modal function, 318 
sharing scheme, 319 

genetic programming, 311 
closure property, 312 
function nodes, 312 
syntactic restrictions, 313 
terminal nodes, 312 
tournament selection, 315 

geographical components, 179 
geometric mean, 170 
goodness-of-fit, 285 
granularity, 171 

H 

HARCH, see model 
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heat-wave component, 207 
heat-wave effect, 209, 214, 352 
hedge funds, 17 
hedging, 31 

currency overlay, 343 
currency risk, 209, 340 
dynamic hedging, 340, 345 
instruments, 24 
neutral point, 343 
ratio, 343 

heterogeneity, 44 
heterogeneous markethypothesis, see hypoth-

esis 
hetcroskedasticity, 35, 162 

autoregressive conditional, 265 
Hill estimator, 145 
holiday 

half-day, 190 
holidays, see market 
hyperbolic decline, 210 
hypothesis 

heat wave hypothesis, 179 
heterogeneous market hypothesis, 209, 210, 

224 
island hypothesis, 179 
meteor shower hypothesis, 179, 206 

IGARCH, see model 
implied interest rate, 25 
implied volatility, see volatility 
index 

AMEX Stock Index, 283 
Down Jones Index, 283 

indicator, 257 
antisymmetric, 315 
cycle, 310 
overbought and oversold, 310 
symmetric, 315 
timing, 310 
trend following, 310 
volatile indicator, 259 

information set, 82, 249 
instability, 259 
institutional constraints, 14, 128 
institutional framework, 127 
institutional investors, 17 
interbank interest rates, 21 
interbank money market rates, 121 
interpolation, see method 
intervention, 129 

official, 129 
intraday 

analysis, 127 

movements, 174 
prices, 174 
statistics, 163 
volatility, 174 

intraweek 
analysis, 177 
statistics, 163 
volatility, 174 

intrinsic time, see time scale, r-scale 
investment assets, 339 

J 

J. P. Morgan, 6 

K 

kernels, 52 
Kronecker symbol, 260 
kurtosis, 134, 205 

operator, 71 

L 

lagged correlation, 211 
lead-lag, 20 
lead-lag correlation, 211 
leptokurticity, 173 
LIBOR, 25 
LIFFE, 24, 31 
likelihood 

likelihood-ratio test, 230 
log-likelihood, 222 
maximum likelihood, 223, 330 

Ljung-Box, 334 
long memory, 8, 198, 207 
long-term regime, 259 

M 

mapping function, 261 
mark-to-market, 305 
market 

Asian stock, 52 
bond, 28 
centralized, 11 
decentralized (OTC), 11 
derivative, 11 
equity, 32 
Eurofutures, 169 

Eurodollar, 169 
Eurolira, 24, 169 
Euromark, 169 
Euroyen, 24 

379 
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Short Sterling, 169 
foreign exchange (FX), 11, 13, 13 

FX forward, 15 
FX forwards, 14 
FX futures, 14 
FX spot, 13, 15 

futures, 11, 12 
bond futures, 28 
commodity futures, 31 
Eurofutures, 24 
individual equity futures, 33 

geographical market, 214 
German bond market, 131 
heterogeneous market, 210 
holidays, 190 
homogeneous market, 210 
interest rate futures, 23, 25 
liquid, 1 
market microstructure, 5 
opening hours, 176 
option, 11, 13, 33 
over-the-counter (OTC), 2, 12, 19, 21, 24 
over-the-counter interest rate, 23 
participants, 10 

anonymity, 10 
spot, 11, 12 
spot interest rate, 24 
U.S. treasury bond market, 131 

market activity, 175, 177, 183 
market efficiency, 14, 45, 156, 249, see effi-

cient markets 
market expectation, 130 
market makers, 19 
market microstructure effect, 197, 201 
market risk, 158 
market-dependent persistence, 206 
Markov chain, 233 
matunty, 22 
maximum likelihood, see likelihood 
mean absolute error (MAE), 262 
mean square error (MSE), 262 
mean squared prediction errors (MSPE), 295 
measure 

asymmetric effective returns, 307 
reward-to-variability ratio, 305 
risk-sensitive performance, 304 
symmetric effective returns, 305 

method 
distribution free measure, 262 
interpolation, 37 

linear, 54 
previous-tick, 37 

nonparametric method, 262 
overlapping, 44 
panel regression, 47 

INDEX 

polynomial, 25 
polynomial interpolation, 26 

microstructure, 2, 5, 14 
Middle European Time (MET), 326 
middle price, 122 
misspecification, 222 
mixture of distributions, 131 
model 

ARCH, 221 
capital asset pricing model (CAPM), 349 
EMA-HARCH, 237, 254 
FIGARCH, 221, 231 
GARCH, 44, 146, 221, 222, 224, 328 

AR-GARCH, 328 
diffusion process, 224 
estimation problems, 226 
jump process, 224 
temporal aggregation, 224 

HARCH, 146, 231, 335 
AR-HARCH, 328 
HARCH components, 236 

IGARCH, 251 
in-sample optimization, 263 
intraweek market activity, 179 
lagged adjustment model, 124 
macroeconomic, 5 
market activity, 175, 183 
market maker bias, 154 
market microstructure, 14 
model initialization, 263 
model structure, 256 
moving average model, 295 
multi-horizon, 263 
multicascade model, 148 
multifractal model, 148 
multivariate volatility model, 250 
nonparametric conditional mean models, 

295 
Normal Inverse Gaussian (NIG) Levy pro-

cess, 151 
out-of-sample test, 263 
purchasing power parity model, 249 
QARCH, 232 
random walk, 54, 147, 150, 152, 253, 331 
risk premia, 249 
structural model, 249 
time series model, 249 
trading, see trading model 
trading model, 295 
volatility, 6 

moment, 55, 132, 135, 137 
finite second moment, 142 
nonconverging fourth moment, 142 

momenta, 257 
Monte Carlo simulations, 145 
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INDEX 

multifractal model, 8 
multifractality, 148 
multiple assets, 278 

N 

near-singularity, 259 
neutral point, see hedging 
noise trader, 349 
nonstable distribution, 142 
notional deposit, 26 

0 

official intervention, 129 
Olsen & Associates (O&A), 4, 11, 18 
open position (mark-to-market), 305 
opening hours, see trading hours 
operator, 35 

average, 55 
backward shift, 77 
causal, 54 
comparison, 314 
complex moving average, 75 
conditional, 314 
convolution, 51 
crossover, 312 
derivative, 55, 66 
difference, 78 
differential, 64 
exponential moving average (EMA), 59 

iterated, 59 
homogeneous, 58 
linear operator and kernels, 54 
logic, 314 
microscopic, 36, 76 
moving average (MA), 61 
moving correlation, 71 
moving kurtosis, 71 
moving norm, 63 
moving skewness, 71 
moving standard deviation, 63 
moving variance, 63 
mutation, 312 
nonlinear, 58 
regular time series, 77 
tick frequency, 79 
time translation, 77 
time-translation invanant, 54 
volatility, 68, 79 
windowed Fourier transform, 74 

optimization 
robust optimization, 317 

option pricing, 3 
out-of-sample, 222 

outright forward rate, 22 
outright forward transactions, 23 
overlap 

method, 44 
overlap-free, 50 
overlapping returns, see return 

overshooting, 27 

p 

performance index, 32 
periodicity, 160, see seasonality 
permanence hypothesis, 5 
perpetuum mobile, 353 
physical delivery, 31 
portfolio 

pricing, 277 
trading model portfolio, 338 

post ex-ante testing, 264 
prefiltering technique, 249 
price, 37, 38 

bid-ask, 17 
effective price, 40, 125 
middle, 122 
price formation, 3, 123 
synthetic, 275 
transaction, 1, 15 

probability density function (pdf), 54 
probability distribution, 54, 132 
process, see model 
psychological time, 176 

Q 

quadratic programming, 346 
quote, see data 

R 

random walk, see model 
rational expectations, 210 
real market value, 210 
realized volatility, see volatility 
regime shifts, 8 
relaxation time, 352 
return, 37, 40 

deseasonalized, 197 
mean, 48 
nonoverlapping, 50 
overlapping, 47 
synthetic, 275 

Reuters, 1, 21 
Reuters Instrument Code (RIC), 15 
risk management, 3, 14, 52, 277 

381 
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risk profiles, 14 
risk-sensitive measures, 305 
RiskMetrics, 251 

methodology, 251 
volatility, 253 

robustness, 58 
rolling over, 13 
rollover scheme, 29 
root mean squared error (RMSE), 186 

safety margins, 171 
scaling laws, see stylized facts 

empirical, 177 
scaling properties, 8 

significance, 9 
seasonality, 35, 44, 175 

daily seasonality, 204 
geographical seasonality, 181 
ordinary seasonality, 214 
seasonal heteroskedasticity, 175, 265 
seasonal volatility, 174 
weekly seasonality, 204 

second position, 30 
segmentation, 128 
serial expiry contracts, 24 
settlement rules, 12 
Sharpe ratio, 305 
short memory, 207 
signal processing, 338 
Singapore International Monetary Exchange, 

24 
skewness, 173 

operator, 71 
realized, 46 

slippage, 32 
speculative bubbles, 349 
spot 

interest rates, 21 
market, see market 
trading, 11 
transaction, 23 

spread 
average, 46, 172 
bid-ask, 17, 19, 23, 40, 45, 91, 124, 125, 

154, 170, 354 
credit spread, 21 
effective, 126 
log, 45 
quoted, 171 
relative, 45 
traded, 171 

spurious persistence, 194 
stability, 143 

INDEX 

standard limit theory, 153 
stochastic process, see mde1147 
stock indices, 32 
stock splits, 32 
stop-loss deal, 301 
stop-profit algorithm, 299 
stringent filter, 302 
structural change, 259 
stylized facts, 2, 14, 121, 127 

autocorrelation of return, 121 
autocorrelation study, 161 
bid-ask bounce, 124 
bid-ask spread, 170 
daily and weekly patterns, 122 
deterministic volatility, 169 
discreteness, 125 
distribution of returns, 122 

fat-tailed, 122 
distributional issues, 121 
distributional properties, 132 

bounded distributions, 135 
fat-tailed distributions, 135 
thin-tailed distributions, 135 

negative first-order autocorrelation of re-
turns, 123 

scaling laws, 122, 147 
apparent scaling, 152 
fat tails, 142 
interquartile range, 150 
limitations, 158 

scaling properties, 121 
seasonal heteroskedasticity, 122, 163 
seasonal volatility, 163, 167 

U-shaped, 167 
seasonality, 121 

subordinated process, 176 
swap, 23 

FX swap rates, 23 
symmetry, 132 
synthetic price, see pnce 
synthetic return, see retum 

T 

tail 
index, 6, 132, 135 
statistics, 6 

Taylor expansion, 62 
technical analysis, 3, 14, 129 
technological change, 8 
temporal aggregation, 224 
test 

ex-ante test, 322 
likelihood ratio, 7 
Monte Carlo, 274 
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INDEX 

out-of-sample test, 249 
ratio test, 192 

tick, 1, 10 
tick frequency, 37, 46 

log, 46 
tick time, 124 

tick-by-tick, see data 
time horizon, 209, 210, 249, 307, 309 
time scale, 8, 176 

t-scale, 255 
19-scale, see time scale, 19-time 
19-time, 174, 176, 188 
business, 174, 188, 225 
tick time, 124 
variety of time scales, 8 

time stamp, 10, 15 
trading horizon (trader class), 198 

day trader, 199 
intraday trader, 199 
long-term trader, 199 
market maker, 199 
short-term trader, 199 

trading hours, 174, 299, 327 
trading model, 295 

current pnce, 302 
current retum, 300 
gearing calculator, 301 
market constraints, 299 
performance calculator, 297 
performance measures, 304 

Ref-, 307 
Xeff , 305 
Sharpe ratio, 305 

portfolios, 338 
real-time trading models, 296, 310, 323 
real-time trading strategies, 297 
recommendation maker, 301 
simulated trader, 297, 303 

bookkeeper, 303 
opportunity catcher, 303 

stop-loss deal, 301 
stop-loss detector, 302 
stop-loss price, 302 
stop-profit algorithm, 299 
stop-profit control, 302 
symmetry properties, 315 
testing procedures, 317 
trading hours, see trading hours 
transaction costs, see transaction 

transaction 
clock, 176 
costs, 170, 295, 325, 331, 333 
price, 1, 15 
volume, 46, 176 

trust capital, see filter 

U 

uncertainty, 154 
undershooting, 28 

V 

383 

Value-at-Risk (VaR), 6, 250 
variable 

activity, 176 
direction change indicator, 47 
price, see price 
realized covariance, see covariance 
realized skewness, see skewness 
return, see return 
spread, see spread 
tick frequency, see tick 
volatility, see volatility 

vehicle currency, 19, 172 
volatility 

annualized, 41 
coarse volatility, 211 
conditional heteroskedasticity, 198 
daily volatility, 158 
deterministic volatility, 170 
expected volatility, 96 
fine volatility, 211 
historical, 41 
implied, 43 
model, 43 
patterns, 176 
realized volatility, 37, 41, 197, 248 

bias, 154, 159, 198 
bias correction, 202 

volatility clustering, 122, 161, 198, 228 
volatility ratio, 47, 192 

w 
wavelet, 193 

multiscaling approach, 193 
signal-to-noise ratio, 193 
wavelet transform, 159 
wavelet variance, 160 

weekend effect, 172 
White's variance-covariance matrix estimation, 

224 

Y 

yield curve, 25 

z 
zero-sum game, 353 
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