
Page 1

HTC EX. 1018
HTC v. Ancora

US Patent No. 6,411,941

Europaisches Patentamt

European Patent Office(19) ~a)
Office européen des brevets (11) EP 0 824 233 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
18.02.1998 Bulletin 1998/08

(21) Application number: 973058910

(22) Date of filing: 04.08.1997

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States:
AL LT LV RO SI

(30) Priority: 07.08.1996 US 693458

(71) Applicant: Compaq Computer Corporation

Houston Texas 77070 (US)

(51) lntCl.6: G06F 1I00, GOGF 1/30,
G06F 11/00

(72) Inventors:
0 Angelo, Michael F.

Houston, Texas 77068 (US)

0 Miller, Craig A.

Cedar Park, Texas 78613 (US)

(74) Representative: Brunner, Michael John
GILL JENNINGS & EVERY

Broadgate House
7 Eldon Street

London EC2M 7LH (GB)

(54) Method and apparatus for secure execution of software prior to a computer system being

powered down or entering a low energy consumption mode

(57) A computer system that automatically and se-
curely executes registered programs immediately prior

to a transition to a reduced energy consumption state.

A registrar table specifying registered programs and a

secure modification detection value for each registered

program are maintained in system management mode

memory or other secure memory space in the computer

system. A system management interrupt is generated

following a request to remove power from the computer

system or the occurrence of an event that triggers an

energy saving mode. The system management interrupt

CACHE CTRL HB
LZ

“CHE HOST ADDH / I
PAHBJ) DA” IB4-EIT HOST DATA BUFFERS

handler routine then generates a current modification

detection value for each registered program. The cur-

rent modification detection values are compared with
the secure modification detection values. Execution of

a registered program is permitted if the values match.

After all registered programs have been executed, the

computer system automatically powers down or enters

an energy saving mode. The computer system thereby

allows secure and convenient execution of programs or

commands that would typically interfere with normal
computer use.

165 VIDEO MEMORY 170

ADDRlCTHL
“HAM I MONITORVII] DATA 155

163 PIXEL DATA
VGA DAT ‘ R,G,B MCINITRAMDAC

HSYNC vsvwc 30”"

CONTROLLER

CACHE 81 USGRANT
MEMORY DEASSERT mar

PRUL‘ESSUHCDNTRULLER LOGIC ’28 122124 w CUNN 124
HDSTCTRLISTATUS I PAHALLELPURT 132

lDE 7 CONN
VDE gAfiP‘ m E lSABUS X

x‘ausw _

on

MONITORID'S 169HAS/I CASiI 125
m I NETWORK FILTERS!

MEM ADDR. MEMWE‘ INTERFACE XFHMRS

i — CONTROLLER

_

POWER 180 lSA BUS (ISA ADDRIDATAICTRLISUPPLY
P;BSP A151); WRITE

I I C I j [ROIECT
134 ISA CONN PCI CONN 142 LOGIC

FLOPPV CONTROLLER

134 m PCIEONN 142 HUM nmcuusunnrs
138 136 ‘ KEYBOARD CONTROLLER

“Emma KVBD MOUSE

-->

HTC EX. 1018
HTC v. Ancora

US Patent No. 6,411,941

EP0824233A2
Printed by Jouve, 75001 PARIS (FR)

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 2

EP 0 824 233 A2

Description

The present invention relates to computer system

security.

The present invention relates to a method for se-

curely executing registered software applications in a

computer system that is either being powered down or

entering an energy saving mode.

Computers are becoming increasingly important in

many aspects of modern life, both in homes and in busi-

nesses. Huge amounts of money are invested by com-

panies and individuals to purchase executable software.

Even more money and time is spent developing the in-
formation contained in data files such as text documents

and spreadsheets. Protecting these resources is there-

fore an important concern. Security-conscious users are

requesting that security and integrity features be incor-

porated into their personal computers to protect access

to critical files and to guarantee the trustworthiness of

installed programs. Ideally, these security features

should interfere with normal computer operation as little

as possible.
Two main causes of software untrustworthiness are

file corruption and viruses. File corruption usually fol-

lows a system failure occurring during a file transfer (i.

e. the system is turned off while a file is being copied

onto the hard disk, etc.) or similar occurrence.

Controlling the power-down ofthe computer system

is therefore important, particularly in computers with ad-

vanced operating systems such as Windows 95TM and

Windows NTTM, available from Microsoft Corp. These

operating systems requirethe userto shut down via spe-

cific software steps rather than by simply turning off the

power switch. For example, in Windows 95”", the user
should click a START button and select the SHUT

DOWN item from the START menu. The selection of the

SHUT DOWN item causes a dialog box to appear on

the screen, giving the user the options of shutting down

completely, restarting the PC, or exiting to the disk op—

erating system (DOS).

In these advanced operating systems, the shut

down procedure is needed because the numerous piec-

es of status information and configuration data con-

tained in the Windows Registry file are not updated until

the system has been properly shut down. Further, data

stored in the disk cache may not be flushed to the disk

unless the user properly exits Windows 95TM or Win-

dows NTT'V'. Network connections that are not properly

severed can cause additional problems. Thus, the re-

moval of power without following the proper shutdown

procedure can corrupt the Windows Registry file and

compromise the overall reliability ofthe computer during

subsequent operations. It should be noted, however,

that properly exiting these operating systems requires
the user to take affirmative action via menu commands

prior to toggling the on/offpower switch.

Another threat to software integrity is the problem

of "malicious code", also referred to as computer virus-

es. While many computer viruses are relatively benign,

computer viruses can be hostile, clandestine and creat-

ed to target specific types of software or hardware. They

can be introduced into a computer in as many ways as

the computer can communicate externally, such as

through the floppy drive, a network connection or a mo-

dem connection. Viruses are typically designed to rep-

licate by secretly attaching copies of themselves to files
or boot records so that the user is unaware of the intru-

sion. It is important to note that once a virus has attached

itself to a host program, the program must be different

and its integrity has been violated.

Once infected, any subsequent copies of the host

file also contain the virus, thereby increasing the poten-
tial for destruction. The virus is then activated when the

file is executed. Consequently, a virus attached to a data

file may remain dormant because the data file is not ex-
ecutable.

One common commercial method of assessing the

integrity of user software is to check for viruses by run-

ning a virus checking software program. Such programs

rely on the characteristics of the known viruses to detect

their presence. A new virus may not be detectable by

the virus checking software. If a virus is present, the vi-

rus checking software itself is susceptible because it is
loaded from the infected hard disk and must run in mem-

ory that could be infected. In addition, virus checking

software can be inconvenient to execute. A thorough

check of system resources can take several minutes,

and the user is not able to run other applications during

this time. Although virus checking software can be con-

figured to execute automatically during system boot up,

the user must again take affirmative action to execute
or schedule a virus scan at other times.

Another method of assessing a file's integrity prior

to executing involves computing an integrity assess-

ment code for the file and verifying that the code match-

es a predetermined value. Checksums (a type of integ-

rity assessment code) are adequate for detecting acci—

dental modifications of data. However, they are an inse-

cure defense against viruses. A well-designed virus

aimed at bypassing normal security features can easily

attach itself to a host program without resulting in a dif-
ferent checksum.

To address this problem, advanced modification de-

tection codes (or MDC's) have been developed to spe-

cifically detect deliberate corruption of data, and are su-

perior to simple checksums. The intent of MDC's is to

make it computationally infeasible to modify data so as

to preserve a specific modification detection code value.
Modification detection codes are sometimes referred to

by other names, including: "cryptographic checksums",

"cryptographic hashes", "secure hash algorithms", and

"message digests".

In some earlier systems, a secure hash value is cal-

culated and stored for newly installed software. There-

after, when the computer is turned on again, the stored

hash value is compared to a newly calculated value. If

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 3

EP 0 824 233 A2

a discrepancy is found, the user is alerted. A main dis-

advantage with this method is that the integrity assess-
ment codes must be stored on the hard disk, thus mak-

'ng the codes themselves susceptible to attack by ma-

icious code. Reverse-engineering a modification detec-

ion code, while difficult, is not a mathematically intrac-

able problem. Thus, software-only protective products

can offer only limited insurance against the attack of ma—

icious code, due mainly to architectural weakness

present in most computer systems. A potential solution

's to embed the modification detection code in a perma-

nent read-only memory device, but this can make sys-

em reconfiguration quite difficult.

Some degree of protection from data loss is afford-

ed by performing regular backups to a tape drive or sim-

'Iar storage medium. If afile becomes corrupted, an ear-

ier, trusted version can be restored from a backup tape.

Any changes made to the file after the backup was per-

ormed are lost. Like virus scanning and various other

administrative procedures, performing backup opera-

ions usually preempts other uses of the computer. To

circumvent this potential inconvenience, it is desirable

0 schedule backups during non-working hours or at

imes when the user is away from the machine. Sched-

Jling and running the backups also require some sort of

affirmative action to be taken by the user or system ad-
ministrator.

A problem can arise if backups and other operations

are scheduled to execute at times when it is unlikely that

the computer system will be in use. Most modern com-

puter systems incorporate "energy saving" or "hiberna-

tion" features. Techniques that are utilized to conserve

energy include powering down disk drives, disabling

monitors and reducing processor and system clock fre-

quencies. These features are typically activated when

the computer is not used for a predetermined period of

time. Depending on its programming and hardware, a

computer system may not acknowledge and execute a

scheduled operation while the system is in an energy

saving mode. Even if a scheduled operation is recog-

nized, current computerarchitectures cannot ensure se-
cure execution.

Briefly, the present invention provides a computer

system having the capability to automatically and se-

curely execute registered commands or applications im-

mediately prior to the computer powering down or en-

tering a low energy consumption mode.

Following a request to remove power from the com-

puter system or enter a low power consumption mode,

a system management interrupt (SMI) is generated. Ac-

cording to the invention, a variety of methods can be

used to generate the SMI. In one embodiment, closure

ortoggling ofthe power supply on/off switch causes spe-

cial interrupt circuitry to generate an interrupt service re-

quest that instructs the processor to jump to an interrupt

service routine which results in a power down SMI being

asserted. Alternatively, circuitry coupled to the power

supply on/off switch ls configured to bypass the interrupt

request and generate the power down SMI directly with-

out the need for a standard interrupt. In yet another em-

bodiment, toggling the power supply on/off switch initi-

ates a software process that results in a power down
SMI.

A computer system according to the present inven-

tion also allows automatic and secure execution of reg-

istered applications immediately prior to the computer

system entering a low power consumption mode. Exam-

ples of such a low power consumption mode include "hi-

bernation mode" and "energy saving mode". In this em-

bodiment, an SMI is again generated in one of a number

of ways. Special interrupt circuitry, a keyboard interrupt,

activity timers or a software process can all be used to

generate the SMI.

Regardless of the manner in which it is generated,

the power down or hibernation mode SMI places the

computer system in system management mode, caus-

ing an SMI handler routine to be executed. In turn, the

SMI handler responds by executing all applications reg-

istered with the application registrar. Importantly, the

registered applications are verified and executed in a

secure manner. Before executing a registered applica-

tion, the SMI handler first generates a current hash val-

ue for the program. The term "secure hash value" or

"hash value" is used throughout the remainder of this

specification to refer generally to a value generated by

a modification detection code, the value being specific

to a given software application. A "secure hash value"

in the preferred embodiment is 160 bits of data (20

bytes) that is essentially a mathematical representation

of a file. If any bits in the file are changed, a different
hash value will result.

In general, a secure hash table (or other type of in-

tegrity assessment code) is provided that contains a se-

cure hash value for each program that the user wants

to execute prior to the power down or entry into hiber-

nation mode. The hash table is stored in protected mem-

ory that can only be accessed when the computer sys—

tem is in system management mode. After it has gener-

ated a current hash value for the registered application,
the SMI handler checks this stored hash table for a se-

cure entry for the application. If a hash value entry is

found, it is compared with the newly-calculated hash val-

ue for the secured application. In the event the two val-

ues match, the integrity of the application is guaranteed

and it is loaded into memory and executed. The process

is repeated until all applications registered with the ap-

plication registrar have been executed.
If the two values do not match, the user is alerted

to the discrepancy and may be given the option to up-

date or override the stored hash table entry by entering

an administrative password. For security sensitive ap-

plications, the entire application or a portion of it is load-

ed into system management mode memory (hereinafter

"SMM memory") prior to application.
In an alternate embodiment of the invention, a se-

cured hash value for the table is maintained in SMM

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 4

EP 0 824 233 A2

memory, with the hash table itself is stored in normal

memory. A current table hash value is generated forthe

hash table before a hash table entry is accessed. The

current table hash value is then compared with the table

hash value stored in SMM memory. If the values are

equal, the integrity of the hash table is verified and the

new hash value of the program to be executed can be

safely compared with its original value. This embodi—

ment ofthe invention is useful for overcoming problems

associated with the limited size of SMM memory. Both
of the aforementioned embodiments of the invention

have the additional advantage of being operating sys-

tem independent.

Afterall of the registered applications have been ex-
ecuted, the SMI handler transmits a shutdown com-

mand to a decoder over a system bus if the SMI was

generated as a result of a power down request. Upon

detecting that the computer system has issued a shut-

down command, the decoder logic causes a SHUT-

DOWN input to the power supplyto be asserted, thereby

disabling power tothe system. If the SMI was generated

as a result of low power consumption mode being acti-

vated, the SMI handler transmits appropriate com-

mands to hibernation logic that controls various system

components.

The present invention has a wide variety of potential

applications, including secure execution of virus detec-

tion and removal programs and backing up files prior to

shutting down. These and other registered applications

are executed securely and without need for inten/ention

by the user.

A better understanding of the present invention can

be obtained when the following detailed description of

the preferred embodiment is considered in conjunction

with the following drawings, in which:

Figure 1 is a schematic block diagram of a computer

system incorporating system management mode

capabilities in accordance with the present inven—
tion;

Figure 2 is a graphical representation of System

Management Mode memory according to the

present invention;

Figure 3 is a schematic block diagram of a power

down circuitry associated with the power supply of

the computer system of Figure 1;

Figure 4 is a block diagram of the power supply of

the computer system of Figure 1;

Figure 5 is a schematic block diagram of hibernation

circuitry according to the present invention;

Figure 6 is a flowchart illustration of a method ac-

cording to the present invention for securely exe-

cuting and verifying the integrity of software appli-

cations prior to the computer system being turned

off or entering hibernation mode; and

Figure 7 is a flowchart illustration of a secure meth-

od according to the present invention for updating
a stored hash table or stored hash value.

Referring first to Figure 1, a computer system 8 ac-

cording to the present invention is shown. In the pre-

ferred embodiment, the system S incorporates two pri-

mary buses: a Peripheral Component Interconnect

(PCI) bus P which includes an address/data portion and

a control signal portion; and an Industry Standard Archi-

tecture (ISA) bus I which includes an address portion, a

data portion, and a control signal portion. The PCI and
ISA buses P and I form the architectural backbone of

the computer system S.

A CPU/memory subsystem 100 is connected to the

PCI bus P. The processor 102 is preferably the Pen-

tium® processor from Intel Corporation, but could be an

80486 or any number of similar or next-generation proc-

essors. The processor 102 drives data, address, and

control portions 116, 106, and 108 of a host bus HB. A

level 2 (L2) or external cache memory 104 is connected

to the host bus HB to provide additional caching capa-

bilities that improve the overall performance of the com-

puter system S. The L2 cache 104 may be permanently

installed or may be removable if desired. A cache and

memory controller 110 and a PCl-ISA bridge chip 130

are connected to the control and address portions 108

and 106 of the host bus HB. The cache and memory

controller chip 110 is configured to control a series of

data buffers 112. The data buffers 112 are preferably the

82433LX from Intel, and are coupled to and drive the

host data bus 116 and a MD or memory data bus 118

that is connected to a memory array 114. A memory ad-

dress and memory control signal bus is provided from

the cache and memory controller 110.

The data buffers 112, cache and memory controller

110, and PCI-ISA bridge 130 are all connected to the

PCI bus P. The PCI-ISA bridge 130 is used to convert

signals between the PCI bus P and the ISA bus I. The

PCI-ISA bridge 130 includes: the necessary address

and data buffers, arbitration and bus master control logic

for the PCI bus P, ISA arbitration circuitry, an ISA bus

controller as conventionally used in ISAsystems, an IDE

(intelligent drive electronics) interface, and a DMA con-
troller. A hard disk drive 140 is connected to the IDE

interface of the PCI-ISA bridge 130. Tape drives, CD-

ROM devices or other peripheral storage devices (not

shown) can be similarly connected.

In the disclosed embodiment, the PCI-ISA bridge

130 also includes miscellaneous system logic. This mis-

cellaneous system logic contains counters and activity

timers as conventionally present in personal computer

systems, an interrupt controller for both the PCI and ISA

buses P and I, and power management logic. Addition-

ally, the miscellaneous system Iogic may include circuit-

ry for a security management system used for password

verification and to allow access to protected resources.

The PCI-ISA bridge 130 also includes circuitry to

generate a "soft" SMI (System Management Interrupt),

as well as SMI and keyboard controller interface circuit-

ry. The miscellaneous system logic is connected to the

flash ROM 154through write protection logic 164. Pref-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 5

EP 0 824 233 A2

erably, the PCl-ISA bridge 130 is a single integrated cir-

cuit, but other combinations are possible.
A series of ISA slots 134 are connected to the ISA

bus I to receive ISA adapter cards. A series of PCI slots

142 are similarly provided on the PCI bus P to receive

PCI adapter cards.
A video controller 165 is also connected to the PCI

bus P. Video memory 166 is used to store graphics data

and is connected to the video graphics controller 165

and a digital/analog converter (RAMDAC) 168. The vid-

eo graphics controller 165 controls the operation of the

video memory 166, allowing data to be written and re-

trieved as required. A monitor connector 169 is connect-

ed to the RAMDAC 168 for connecting a monitor 170.

A network interface controller (NIC) 122 is also con-

nected to the PCI bus P. Preferably, the controller 122

is a single integrated circuit that includes the capabilities

necessary to act as a PCI bus master and slave, as well

as circuitry required to act as an Ethernet interface. At-

tachment Unit Interface (AUI) and 1 0 base-T connectors

124 are provided in the system S, and are connected to

the NIC 122 viafilter and transformer circuitry 126. This

circuitry forms a network or Ethernet connection for con-

necting the computer system S to a local area network

(LAN).

A combination I/O chip 136 is connected to the ISA

bus I. The combination I/O chip 136 preferably includes

a real time clocktwo UARTS, a floppy disk controller for

controlling a floppy disk drive 138, and various address

decode logic and security logic to control access to the

CMOS memory (not shown) and power-on password

values. A control line is provided to the read and write

protection logic 164 to further control access to the flash

ROM 154. Serial port connectors 146 and parallel port
connector 132 are also connected to the combination I/

0 chip 136.

An 8042 or keyboard controller is also included in

the combination I/O chip 136. The keyboard controller

is of conventional design and is connected in turn to a

keyboard connector 158 and a mouse or pointing device

connector 160. A keyboard 159 is connected to the com-

puter system S through the keyboard connector 158.

A buffer 144 is connected to the ISA bus I to provide

an additional X-bus X forvarious additional components

of the computer system S. Aflash ROM 154 receives its

control, address and data signals from the X-bus X.

Preferably, the flash ROM 154 contains the BIOS infor-

mation for the computer system and can be repro-

grammed to allow for revisions of the BIOS.

In the computer system S of Fig. 1, all electronic

devices discussed above, including the processor 102,

are powered by a regulated power supply 180. In the

preferred embodiment, the regulated power supply

(Figs. 3 and 4) has a power supply supervisory circuit

192 that provides shutdown capability via a SH UT-

DOWN input. The power supply 1 80 is shut-down via an

SMI software/hardware process that is initiated by tog-

gling the on/off switch 182 (Fig. 3). The power supply

180 receives an AC voltage supply via an AC plug 190

(Fig. 3).

An additional feature of the computer system S is a

System Management Mode (SMM), as discussed at

length immediately below. It is also noted that Figure 1

presents an exemplary embodiment of the computer

system S and it is understood that numerous other ef-

fective embodiments could readily be developed as
known to those skilled in the art.

Certain microprocessors, such as the Pentium®

processorfrom Intel Corporation, have included a mode

referred to as system management mode (SMM), which

is entered upon receipt of a system management inter-

rupt (SMI). Originally, SMIs were power management

interrupts devised by Intel Corporation for portable sys-

tems. Portable computers often draw power from bat-

teries which provide a limited amount of energy. To max-

imize battery life, an SMI is typically asserted to turn off

or reduce the power to any system component that is

not currently in use. Although originally meant for laptop

computers, SMIs have become popular for desktop and

other stationary models as well.

SMIs are asserted by either an SMI timer, by a sys-

tem request, or by other means. An SMI is a non-mask-

able interrupt having almost the highest priority in the

system. Only the reset signal R/S* and cache flush sig-

nal FLUSH*, which can be conceptualized as interrupts,

have a higher priority than the SMI. When an SMI is as-

serted, a microprocessor maps a portion of memory re-

ferred to as the system management mode memow

("SMM memory") into the main memory space. The en-

tire CPU state is then saved in the SMM memory (in the

CPU register dump 210 of Fig. 2) in stack-like, last in/

first outfashion. Afterthe initial processor state is saved,

the processor 102 begins executing an SMI handler rou-

tine, which is an interrupt service routine to perform spe-

cific system management tasks such as reducing power

to specific devices or, as in the case of the present in-

vention, providing security services. While the routine is

executed, other interrupt requests are not serviced, and

are ignored until the interrupt routine is completed or the

microprocessor is reset. When the SMI handler com-

pletes its task, the processor state is retrieved from the

SMM memory, and the main program continues. An SMI

active signal referred to as the SMIACT* signal is pro-

vided by the processor to indicate operation in SMM.

As mentioned, following assertion of its SMI input

(this is generally an active low signal), the processor 1 02
calls the SMI handler, which addresses an address

space that is separate from ordinary main memory.

Thereafter, all memory accesses refer only to SMM

memory 200. Input/output ("I/O") accesses via instruc-
tions such as IN or OUT are still directed to the normal

I/O address space, however. One advantageous side-

effect of the hardwired separate address SMM area is

that the routines stored in this space cannot be snooped

by the cache, providing an additional layer of protection.

In a typical system management mode implemen-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

