
Google - Exhibit 1030, cover

Buiidirig Internet

Google - Exhibit 1030, coverf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Google - Exhibit 1030, page i

Building Internet Firewalls

Elizabeth D. Zwicky, Simon Cooper & D. Brent Chapman

Second Edition, June 2000

ISBN: 1-56592-871-7, 890 pages

Compieteiy revised and much expanded, the new edition of the nigniy respected and
bestseiiing Buiiding Internet Firewaiis now covers Unix, Linux, and Windows NT.

This practicai and detailed guide expiains in step—by—step fashion now to design and
instaii firewaiis and configure Internet services to work with a firewaii.

It covers a wide range of services and protocois and offers a complete iist of
resources, inciuding the iocation of many pubiiciy avaiiabie firewaiis construction toois.

Release Tean1[oR] 2001

Google - Exhibit 1030, page if

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Google - Exhibit 1030, page 346

Bniidirgg Irifrmrt F:'rr.'im{ir

20.1.4 DNS Security Problems

Some security problems with DNS are described in the following sections.

20.1.4.1 Bogus answers to DNS queries

The first security problem with DNS is that many DNS servers and clients can be tricked by an attacker into
believing bogus information. Many clients and servers don't check to see whether all the answers they get
relate to questions they actually asked, or whether the answers they get are coming from the server they
asked. A machine that asks for the IP address of "malicioushost" and gets back the requested information
plus a false IP address for "trustedhost", as well, may cache the extra answer without really thinking about it
and answer later queries with this bogus cached data. This lack of checking can allow an attacker to give false
data to your clients and servers. For example, an attacker could use this capability to load your server's cache
with information that says that the IP address of a machine the attacker controls maps to the hostname of a
host you trust for password—iess access via rlogin. (This reason is only one of several why you shouldn't allow
the BSD "r" commands across your firewall; see the full discussion of these commands in Chapter 18.)

Some Unix DNS implementations will accept and cache answers even when they haven't made a query; some
Microsoft implementations will crash if they receive an unrequested answer. Both of these behaviors are
undesirable and have been eliminated by recent releases. Windows 2000 by default will only accept answers
to queries but will accept those answers from any server. It can be configured to require the response to
come from a queried server and should be on security—critica| machines.

Later versions of DNS for Unix (BIND 4.9 and later) check for bogus answers and
are less susceptible to these problems. Earlier versions, and DNS clients and
servers for other platforms, may still be susceptible.

20.1.4.2 Malicious DNS queries

Not only are some DNS implementations vulnerable to hostile answers, some are vulnerable to hostile
questions. In particular, some DNS servers have problems with buffer overflows and may crash or execute
hostile code if a query is too long. (See Chapter 13, for more information about buffer overflow attacks.) If
your log files show queries that contain very long "hostnames" containing control characters, people are
probably attempting buffer overflow attacks. Again, vendors have been working on eliminating these
vulnerabilities, but you should check to make certain the appropriate patches have been made in the version
you are running. There are known problems with versions of BIND 4 prior to 4.9.7 and BIND 8 prior to 8.1.2
(note that this does not guarantee that later versions don't also have problems that haven't been found yet).

20.1.4.3 Mismatched data between the hostname and IP address DNS trees

The attack that uses bad cached data to give you an apparently trustworthy hostname for an untrusted host
points out the problem of mismatched data between the hostname and IP address trees in DNS. In a case like
the one we've described, if you look up the hostname corresponding to the attacker's IP address (this is
called a reverse lookup), you get back the name of a host you trust. If you then look up the IP address of this
hostname (which is called a double-reverse lockup}, you should see that the IP address doesn't match the
one the attacker is using, which should alert you that something suspicious is going on. Reverse and double-
reverse lookups are described in more detail later in this DNS discussion.

There are perfectly valid reasons for these checks to return inconsistent values; no rules require a forward
and reverse Iookup to return consistent information. In fact, when DNS is used for load balancing between
servers, it is difficult to arrange for this consistency. In these situations, DNS is being used to determine the
location of a service rather than the IP address of an individual host.

page 346

Google - Exhibit 1030, page 346f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Google - Exhibit 1030, page 347

Brrildiiig Iiifrnrrr Firvrria/Zr

Any program that makes authentication or authorization decisions based on the hostname information it gets
from DNS should be very careful to validate the data with this reverse Iookup/double-reverse Iookup method.
In some operating systems (for example, SunOS 4.x and later), this check is automatically done for you by
the grethostbyadow) library function. In most other operating systems, you have to do the check yourself.
Make sure that you know which approach your own operating system takes and that the daemons that are
making such decisions in your system do the appropriate validation. (And be sure you're preserving this
functionality if you modify or replace the vendor's iibc.)

Better yet, don't do any authentication or authorization based solely on hostname or even on IP address;
there is no way to be sure that a packet comes from the IP address it claims to come from, unless some kind
of cryptographic authentication is within the packet that only the true source could have generated.

Some implementations of double-reverse Iookup fail on hosts with multiple addresses, (e.g., dual-homed
hosts used for proxying). If both addresses are registered at the same name, a DNS lookup by name will
return both of them, but many programs will read only the first. If the connection happened to come from the
second address, the double-reverse will incorrectly fail even though the host is correctly registered. Although
you should avoid using double-reverse implementations that have this flaw, you may also want to ensure that
on your externally visible multi-homed hosts, Iookup by address returns a different name for each address,
and that those names have only one address returned when it is looked up. For example, for a host named
"foo" with two interfaces named "e0" and "e1", have lookups of "foo" return both addresses, lookups of "foo-
a0" and "foo—e1" return only the address of that interface, and lookups by IP address return "foo—eC-" or "foo—
e1" (but not simply "foo") as appropriate.

For internal multi—homed hosts, you probably don't want to set things up in the way
we've described; if you do, you may end up needing to list them by multiple names
anywhere you want to give them permissions, such as in /etc/exports files.

20. 1.4.4 Dynamic update

It's very convenient for clients to be able to update DNS servers. For instance, at sites that use DHCP to
dynamically assign addresses to computers, dynamic updates allow clients to have consistent names. When a
client gets an address from DHCP, it can then register that address with the name server under the client's
usual name. There is a standard for dynamic updates of DNS, but it isn't very widely used because it provides
no kind of authentication. Some servers do provide authentication methods for dynamic updates (for
instance, windows 2000 allows you to integrate DNS with Active Directory and use Kerberos to authenticate
update requests), but there is no widespread and interoperable standard for this.

Without authentication, dynamic update of DNS is extremely risky. You can't keep hostile clients from stealing
addresses from each other or swamping the server in changes. Therefore, dynamic updates in DNS can be
used only inside networks where there is a very high degree of trust.

20.1.4.5 Revealing too much information to attackers

Another problem you may encounter when supporting DNS with a firewall is that it may reveal information
that you don't want revealed. Some organizations view internal hostnames (as well as other information
about internal hosts) as confidential information. They want to protect these hostnames much as they do
their internal telephone directories. They're nervous because internal hostnames may reveal project names or
other product intelligence, or because these names may reveal the type of the hosts (which may make an
attack easier). For example, it's easy to guess what kind of system something is if its name is "lab—sun" or
"cisco—gw".

Even the simplest hostname information can be helpful to an attacker who wants to bluff his or her way into
your site, physically or electronically. Using information in this way is an example of what is commonly called
a social’ engineering attack. The attacker first examines the DNS data to determine the name of a key host or
hosts at your site. Such hosts will often be listed as DNS servers for the domain or as MX gateways for lots of
other hosts. Next, the attacker calls or visits your site, posing as a service technician, and claims to need to
work on these hosts. The attacker will then ask for the passwords for the hosts (on the telephone) or ask to
be shown to the machine room (in person). Because the attacker seems legitimate and seems to have inside
information about the site — after all, the machine names are right - people will often grant access. Social
engineering attacks like this takes a lot of brazenness on the part of the attacker, particularly if they're
carried out in person, but you'd be amazed at how often such attacks succeed.

page 34?

Google - Exhibit 1030, page 347f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Google - Exhibit 1030, page 348

Bsrrirfiigg Iiifeimev‘ Frniimfir

Besides internal hostnames, other information is often placed within the DNS - information that is useful
localiy but you'd really rather an attacker not have access to. DNS HINFO and TXT resource records are
particularly revealing:

HINFO (host information records)

These name the hardware and operating system release that a machine is running: it's very useful
information for system and network administrators but also tells an attacker exactly which list of bugs
to try on that machine.

TXT (textual information records)

These are essentially short unformatted text records used by a variety of different services to provide
various information. For example, some versions of Kerberos and related tools use these records to
store information that, at another site, might be handled by NIS.

Attackers will often obtain DNS information about your site wholesale by contacting your DNS server and
asking for a zone transfer, as if they were a secondary server for your site. You can prevent this either with
packet filtering (by blocking TCP-based DNS queries, which will block more than just zone transfers) or by
configuring your DNS server to control which hosts it is willing to do zone transfers to (although it will use the
IP address to validate hosts and will be vulnerable to IP spoofing}. The various versions of BIND control this in
different ways (consult your BIND documentation for more information), while the Microsoft DNS server
allows you to specify that only hosts that receive notifications may do zone transfers.

The question to keep in mind when considering what DNS data to reveal is, "Why give attackers any more
information than necessary?" The following sections provide some suggestions to help you reveal only the
data you want people to have.

20.1.5 Setting Up DNS to Hide Information, Without Subdomains

We've mentioned that DNS has a query—forwarding capability. By taking advantage of this capability, you can
give internal hosts an unrestricted view of both internal and external DNS data, while restricting external
hosts to a very limited ("sanitized") view of internal DNS data. You might want to do this for such reasons as:

I Your internal DNS data is too sensitive to show to everybody.

0 You know that your internal DNS servers don't all work perfectly, and you want a better-maintained
view for the outside world.

I You want to give certain information to external hosts and different information to internal hosts (for
example, you want internal hosts to send mail directly to internal machines but external hosts to see
an MX record directing the mail to a bastion host).

Figure 20.3 shows one way to set up DNS to hide information; the following sections describe all the details.
This mechanism will work only for sites that use a single domain (all hosts are named something like
nost.foo.exarnpie, rather than host.siiiywaiks.foo.exarnple and host.engi'neering.foo.example). If you have
subdomains, you will need a more complicated configuration, which we discuss in the next section.

Figure 20.3. A firewall can be used to hide DNS information

i:)?r:;2!':T

—h Queries
mz~;uur.'.%.°.': .'Mi..'r.' as.-av‘-.I.'.w ;:aJr.'.l

P -': if »r if?’
E‘ I :51’, i ~_

Heal Sum Fake Server

 2- ;

.1 al 1
Mil " = Iiillli -' E Ilillli ~ _

lniemai Hosi 5 Internal E Bastion
I ; Server 5 Hosl

page 348

Google - Exhibit 1030, page 348f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

