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594 Chapter 8 Exceptional Control Flow
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8.2 Processes

Exceptions provide the basic building blocks that allow the operating system 
provide the notion of a process, one of themost profound and successful ideas 
computer science.

When we run a program on a modern system, we are presented with fha 
illusion that our program is the only one currently running in the system. Or 
program appears to have exclusive use of both the processor and the memog 
The processor appears to execute the instructions in our program, one after Hi 
other, without interruption. Finally, the code and data of our program appear* 
be the only objects in the system’s memory. These illusions are provided to us l| 
the notion of a process.

The classic definition of a process is an instance of a program in execution 
Each program in the. system runs in the context of some process. The conter 
consists of the state that the program needs to run correctly. This state includf 
the program’s code and data stored in memory, its stack, the contents of its gcr.eni 
purpose registers, its program counter, environment variables, and the set of ops; 
file descriptors.

Each time a user runs a program by typing the name of an executable objec 
file to the shell, the shell creates a new process and then runs the executabli: obis; 
file in the context of this new process. Application programs can also create net 
processes and run either their own code or other applications in the context of ±> 
new process.

A detailed discussion of how operating systems implement processes L 
yond our scope. Instead, we will focus on the key abstractions that a prooal 
provides to the application:

• An independent logical control flow that provides the illusion that our p^| 
gram has exclusive use of the processor.

• A private address space that provides the illusion that our program zz 
exclusive use of the memory system.

Let’s look more closely at these abstractions.
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8.2.1 Logical Control Flow

A process provides each program with the illusion that it has exclusive use oi dt 
processor, even though many other programs are typically running on the s>>:=3 
If we were to use a debugger to single step the execution of our program, we w mi 
observe a series of program counter (PC) values that corresponded exclus.. 
instructions contained in our program’s executable object file or in shared objer 
linked into our program dynamically at run time. This sequence of PC v.iJu j* 
known as a logical control flow.

Consider a system that runs three processes, as shown in Figure 8.10. if 
single physical control flow of the processor is partitioned into three logical j:~. . 
one for each process. Each vertical line represents a portion of the logical •in *. 
a process. In the example, process A runs for a while,'followed by B, whicii r_r
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Section 8.2 Processes 595
|||I Figure 8.10 

Logical control flows, 
Piocesses provide each 
program with the illusion 

p. that it has exclusive use 
of the processor. Each 

|,v vertical bar represents a 
portion of the logical 
control flow for a process.

Process A Process B Process C

[:::::Time

to completion. C then runs for awhile, followed by A, which runs to completion, 
j Finally, C is able to run to completion.

The key point in Figure 8.10 is that processes take turns using the processor. 
Finch process executes a portion of its flow and then is preempted (temporarily 
suspended) while other processes take their tupns. To a program running in the 
context of one of these processes, it appears to have exclusive use of the Drocessor, 
Tne only evidence to the contrary is that if we were to precisely measure the 
elapsed time of each instruction (see Chapter 9), we would notice that the CPU 
appears to periodically stall between the execution of some of the instructions in 
our program. However, each time the processor stalls, it subsequently resumes 
execution of our program without any change to the contents of the program’s 
memory locations or registers.

In general, each logical flow is independent of any other flow in the sense 
that the logical flows associated with different processes do not affect the states 
of any other processes. The only exception to this rule occurs when processes 
use interprocess communication (IPC) mechanisms such as pipes, sockets, shared 

| memory, and semaphores to explicitly interact with each other.
Any process whose logical flow overlaps in time with another flow is called 

a concurrent process, and the two processes are said to run concurrently. For 
^example, in Figure 8.10, processes A and B run concurrently, as do A and C. On 
■ the other hand, B and C do not run concurrently because the last instruction of B 

executes before the first instruction of C. , '
; , The notion of processes taking turns with other processes is known as mulii-

zzsking. Each time period that a process executes a portion of its flow is called a 
dmc slice. Thus, multitasking is also referred to as time slicing.
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$.2.2 Private Address Space

A process also provides each program with the illusion that it has exclusive use 
of the system’s address space. On a machine with n -bit addresses, the address 

ispace is the set of 2" possible addresses, 0, 1, ..., 2" - 1. A process provides 
|saeh program with its own private address space. This space is private in the sense 
that a byte of memory associated with a particular address in the space cannot in 
general be read or written by any other process.

§T Although the contents of the memory associated with each private address 
space is different in general, each such space has the same general organization.
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596 Chapter 8 Exceptional Control Flow

oxffffffffFigure 8.11
. Process address space.
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For example, Figure 8.11 shows the organization of the address space for a Linux 
process. The bottom three-fourths of the address space is reserved for the user 
program, with the usual text, data, heap, and stack segments. The top quarter 
of the address space is reserved for the kernel. This portion of the address space 
contains the code, data, and stack that the kernel uses when it executes instructions 
on behalf of the process (e.g., when the application program executes a system 
call).
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8.23 User and Kernel'Modes

In order for the operating system kernel to provide an airtight process abstraction, 
the processor must provide a mechanism that restricts the instructions that an 
application can execute, as well as the portions of the address space that it can 
access.
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Processors typically provide this capability with a mode bit in some control 
register that characterizes the privileges that the process currently enjoys. When 
the mode bit is set, the process is running in kernel mode (sometimes called su
pervisor mode). A process running in kernel mode can execute any instruction in 
the instruction set and access any memory location in the system.

When the mode bit is not set, the process is running in user mode. A process | 
in user mode is not allowed to execute privileged instructions that do things such 
as halt the processor, change the mode bit, or initiate an I/O operation. Nor is it 
allowed to directly reference code or data in the kernel area of the address space. 
Any such attempt results in a fatal protection fault. User programs must instead 
access kernel code and data indirectly via the system call interface.
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