
Computer Systems
A PROGRAMMER'S

PERSPECTIVE

r v y "/

L
/ II I—r^LJL /

fcj-Sa
|jaBi

i

si»cK Ms &s A

Google - Exhibit 1023, coverf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

I
I

iLibrary of Congress Catalogjng-in-Publication Data
Bryant, Randal E.,

Computer Systems / Randal E. Bryant and David R. O’Hallaron
p, cm.
Includes bibliographical references and index.
ISBN 0-13-034074-X

1. Computer Systems.
TA177.4.S85 2003
658,15~dc2t

1

I. 0‘Hallaron, David R.
2001038726

I
Vice President and Editorial Director, ECS: Marcia Horton
Acquisitions Editor: Eric Frank
Editorial Assistant: Delores J. Mars _
Vice President and Director of Production and Manufacturing, ESM: David VK Riccardi
Executive Managing Editor: Vince O’Brien
Managing Editor: David A. George
Production Editor: Rose Kernan
Director of Creative Services: Paul Belfanti
Creative Director: Carole Anson '
Art Director/Cover Designer: Jon Boylan
Art Editor: Xiaohong Zhu
Manufacturing Manager: Trudy Pisciotti
Manufacturing Buyer: Lisa McDowell
Marketing Manager: Holly Stark

1i
i

i
i
11m■

© 2003 by Randal E. Bryant and David R. O’Hallaron
Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

Pratt ico
Hall

1
All rights reserved. No part of this book may be reproduced, in any format or by any means, without permission in
writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America
110 98765432 1

ISBN 0-13-D3M07M-X
1

Pearson Education Ltd., London .
Pearson Education Australia Pty. Limited, Sydney
Pearson Education Singapore, Pte, Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Education de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

1
1I■

| 1

wm

Google - Exhibit 1023, page if

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

594 Chapter 8 Exceptional Control Flow

"gjre 8.10
Logical control flc
Accesses provide <
;-o.-|rarn with the

sfjat it has exclusiv
[of the processor. I
Jwtical bar repress

cc.'i.ion of the logi
Ecrntrol flow for a

8.2 Processes

Exceptions provide the basic building blocks that allow the operating system
provide the notion of a process, one of themost profound and successful ideas
computer science.

When we run a program on a modern system, we are presented with fha
illusion that our program is the only one currently running in the system. Or
program appears to have exclusive use of both the processor and the memog
The processor appears to execute the instructions in our program, one after Hi
other, without interruption. Finally, the code and data of our program appear*
be the only objects in the system’s memory. These illusions are provided to us l|
the notion of a process.

The classic definition of a process is an instance of a program in execution
Each program in the. system runs in the context of some process. The conter
consists of the state that the program needs to run correctly. This state includf
the program’s code and data stored in memory, its stack, the contents of its gcr.eni
purpose registers, its program counter, environment variables, and the set of ops;
file descriptors.

Each time a user runs a program by typing the name of an executable objec
file to the shell, the shell creates a new process and then runs the executabli: obis;
file in the context of this new process. Application programs can also create net
processes and run either their own code or other applications in the context of ±>
new process.

A detailed discussion of how operating systems implement processes L
yond our scope. Instead, we will focus on the key abstractions that a prooal
provides to the application:

• An independent logical control flow that provides the illusion that our p^|
gram has exclusive use of the processor.

• A private address space that provides the illusion that our program zz
exclusive use of the memory system.

Let’s look more closely at these abstractions.

Ill

completion. (
r.i’aliy, C is able

The key poi
Each process e>

feaspended) whi
jjsontext of one oi(si

The only evidei
feapsed time of

rrpears to perk
•:cr program. I
Execution of oi
.xcmiory locatic

In general,
Art the logical
zi any other p:

mterproces
memory, and s<

Any proce
. acurrent p
example, in Fi|
xe other hand

?■ tnecutes befor
| The notioi
it Each

Tvcs- slice. Thu

■
ESI

8.2.1 Logical Control Flow

A process provides each program with the illusion that it has exclusive use oi dt
processor, even though many other programs are typically running on the s>>:=3
If we were to use a debugger to single step the execution of our program, we w mi
observe a series of program counter (PC) values that corresponded exclus..
instructions contained in our program’s executable object file or in shared objer
linked into our program dynamically at run time. This sequence of PC v.iJu j*
known as a logical control flow.

Consider a system that runs three processes, as shown in Figure 8.10. if
single physical control flow of the processor is partitioned into three logical j:~. .
one for each process. Each vertical line represents a portion of the logical •in *.
a process. In the example, process A runs for a while,'followed by B, whicii r_r

Privati

ijjrocess als<
. tie system
me is the s<
a± p;ogram
■t a byte of
sacral be re;
l Although
Lee is diffei

||

Google - Exhibit 1023, page 594f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Section 8.2 Processes 595
|||I Figure 8.10

Logical control flows,
Piocesses provide each
program with the illusion

p. that it has exclusive use
of the processor. Each

|,v vertical bar represents a
portion of the logical
control flow for a process.

Process A Process B Process C

[:::::Time

to completion. C then runs for awhile, followed by A, which runs to completion,
j Finally, C is able to run to completion.

The key point in Figure 8.10 is that processes take turns using the processor.
Finch process executes a portion of its flow and then is preempted (temporarily
suspended) while other processes take their tupns. To a program running in the
context of one of these processes, it appears to have exclusive use of the Drocessor,
Tne only evidence to the contrary is that if we were to precisely measure the
elapsed time of each instruction (see Chapter 9), we would notice that the CPU
appears to periodically stall between the execution of some of the instructions in
our program. However, each time the processor stalls, it subsequently resumes
execution of our program without any change to the contents of the program’s
memory locations or registers.

In general, each logical flow is independent of any other flow in the sense
that the logical flows associated with different processes do not affect the states
of any other processes. The only exception to this rule occurs when processes
use interprocess communication (IPC) mechanisms such as pipes, sockets, shared

| memory, and semaphores to explicitly interact with each other.
Any process whose logical flow overlaps in time with another flow is called

a concurrent process, and the two processes are said to run concurrently. For
^example, in Figure 8.10, processes A and B run concurrently, as do A and C. On
■ the other hand, B and C do not run concurrently because the last instruction of B

executes before the first instruction of C. , '
; , The notion of processes taking turns with other processes is known as mulii-

zzsking. Each time period that a process executes a portion of its flow is called a
dmc slice. Thus, multitasking is also referred to as time slicing.

I

il§|

■

■
V

mmm

::
$.2.2 Private Address Space

A process also provides each program with the illusion that it has exclusive use
of the system’s address space. On a machine with n -bit addresses, the address

ispace is the set of 2" possible addresses, 0, 1, ..., 2" - 1. A process provides
|saeh program with its own private address space. This space is private in the sense
that a byte of memory associated with a particular address in the space cannot in
general be read or written by any other process.

§T Although the contents of the memory associated with each private address
space is different in general, each such space has the same general organization.

WM

Xf.
i

-■ri

US

Google - Exhibit 1023, page 595
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

596 Chapter 8 Exceptional Control Flow

oxffffffffFigure 8.11
. Process address space.

AKernel Virtual memory
-(code, data, heap, stack).. .

Memory
invisible to
user code

the prc
an inte
control
user m
the ap{
user nr

t
QxcOOQOOOO

User stack
(created at run time)

* _____
: Memory-mapped region for .
.........shared libraries '

%esp (stack pointer)

t
Lit

that all
The /p
hierarc
use the
type (/
(/proc

0x40000000

t brk
. Run-time heap
'.(created by toaiioc)

; Read/write segment
• (.a&ta,.bse) 8.2.4„ Loaded from the

” executable fileRead-only segment
(<rit, .Cex*', /jksS*!-")! The op

of exce
anism i:
Section

0x08048000
i ^ «o

For example, Figure 8.11 shows the organization of the address space for a Linux
process. The bottom three-fourths of the address space is reserved for the user
program, with the usual text, data, heap, and stack segments. The top quarter
of the address space is reserved for the kernel. This portion of the address space
contains the code, data, and stack that the kernel uses when it executes instructions
on behalf of the process (e.g., when the application program executes a system
call).

Th<
that thf
of objei
prograr
data str
table th
contain

Pi:

!!

i:
IfIS
IS
Is

At
8.23 User and Kernel'Modes

In order for the operating system kernel to provide an airtight process abstraction,
the processor must provide a mechanism that restricts the instructions that an
application can execute, as well as the portions of the address space that it can
access.

preemp
decisior
schedul
has scht
it preen
a mechi

*

m

Processors typically provide this capability with a mode bit in some control
register that characterizes the privileges that the process currently enjoys. When
the mode bit is set, the process is running in kernel mode (sometimes called su
pervisor mode). A process running in kernel mode can execute any instruction in
the instruction set and access any memory location in the system.

When the mode bit is not set, the process is running in user mode. A process |
in user mode is not allowed to execute privileged instructions that do things such
as halt the processor, change the mode bit, or initiate an I/O operation. Nor is it
allowed to directly reference code or data in the kernel area of the address space.
Any such attempt results in a fatal protection fault. User programs must instead
access kernel code and data indirectly via the system call interface.

process,
(3) pass

A c
behalf o
occur, tl
process,
opt to pi
data to <*
an expli>
call does
return o

m

Google - Exhibit 1023, page 596f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

