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MoDERN TELECOMMUNICA­
tions equipment is highly modular and can 
scale to a wide range, of applications. Usu­
ally, the equipment's cost and complexity 
requires that it be manufactured-to-order, or 
at least assembled-to-order. In this context, 
orders double as specifications, describing 
what should be manufactured as well as how 
the product should be installed, Producing a 
correct and complete order for such equip­
ment can be challenging when requirements 
are incomplete, inconsistent, or when the 
finalproduct is large and complicated , A 
good order is technically correct and meets 
customer requirements for network capacity 
and growth without over-engineering. In­
complete configurations can lead to cost 
overruns if the missing elements are discov­
ered during manufacturing. If they are not, 
faulty products can result. Either way, the 
customers are unhappy, 

We have tackled the configuration problem 
for a number of large telecommunications 
products sold by AT&T and Lucent Tech­
nologies. Our Prose configurators are based 
on CLASSIC, 1 a description logic-based 
knowledge representation system developed 
at AT&T Bell Laboratories. CLASSIC is 
freely available for academic purposes, and 
commercially available for other purposes. a1 

http :llwww. research. att. comlswltoolsl 
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USING DFSCR1n10N LOGICS AS A FOUNDATION, THE 

AUTHORS DEVELOPED COMMERCIAL CONFIGURATORS FOR 

LARGE, COMPLEX TELECOMMUMCATIONS PRODUCTS. I 
classic. AT&T has distributed CLASSIC to 
more than I 00 universities; itis also in use for 
internal projects at AT&T, Lucent, and NCR. 
Implementations are available in LISP, C++, 
and C. 

CLASSIC is part of a description logic 
family that was developed with the goal of 
balancing usability, expressivity, and com­
plexity. We have found it to be well suited to 
our configurator needs. Because it attempts 
to provide predictable performance in all 
cases, CLASSIC is less expressive than many 
description logic systems, but it has been 
widely used in both industrial applications 
and academic systems. 

Some of our configurators have been in 
use since 1990. They have processed more 
than $4.5 billion in orders and have docu­
mented many benefits, including reduced 
order processing time, reduced staffing, and 
product-knowledge consistency checking. 
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Background 
We began developing a configurator based 

on description logic in 1988 when we were 
approached by a group of system engineers 
involved in the re-engineering of an impor­
tant business process, which at AT&T is 
sometimes called the Engineer, Furnish, and 
Install process. The EF&I process begins 
with customer-sales interaction and ends 
when a product is successfully manufactured 
and installed . T he engineering group had 
identified product configuration as key to 
EF&I business processes. 

Among the most important goals of this 
re-engineering project were: 

• decreasing the time between new equip­
ment sales and installation, and 

• reducing the rework cansed by mistakes 
and inaccuracies in incoming orders. 
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With this in mind, we developed a proto­
type configurator for the Fr Series G fi ber­
optic transmission system. TheFT Series G 
configurator was never released, but it was 
effective enough that a software development 
team was assigned to the project in early 
1990. The project, now called Prose (prod­
uct offerings expertise), delivered its first 
configuration to AT&Ts Merrimac Valley 
Works in Andover, Massachusetts, later that 
year. We assisted our software development 
collaborators in eventually developing and 
deploying 18 Prose configurators, and they 
have played an important supporting role in 
re-engineering the EF&I process. · 

Early lessons. Over the years, we learned 
many lessons. Two early discoveries were 
particularly important to our success. First, 
realizing that product knowledge was scat­
tered across different organizations, we 
decided to merge the product know ledge into 
a knowledge base that was both consistent 
and commonly accessible. 

Second, given the dynamic nature of 
complex telecommunications products, we 
quickly realized that product know ledge inai.n­
tenance would be an ongoing concern. Also, 
tl1ekey products from a business standpoint­
new products and top sellers-change the 
most. During the 10 years we worked on con­
figurators, we observed change rates as high 
as 40 to 50% per year for some products (as 
measured by turnover and changes in config­
uration rules and constraints). Consequently, 
knowledge acquisition and maintenance were 
high on our list of problems to solve, and 
drove much of the work we did on technical 
problems. 

Many people involved in the EF&I process 
need to understand the product knowledge 
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underlying a specific order- the whys and 
why nots of a pa,rti.cular product configura­
tion. This need overrode many oilier issues for 
tlS. Given this, one member of our team devel­
oped some novel approaches to explanation 
and troth maintenance in description logics.2.3 

The knowledge problem. ln real-world 
applications, success seldom comes from 
focusing solely on technical issues. In fact, 
to solve knowledge acquisition and mainte­
nance problems for the.Prose configurators, 
we had to consider the context in which 
knowledge originated and was distributed 
throughout the EF&I business process. This 
context imposed specific requirements on ow· 
configuration platform. 

We selected description logics as a basis 
for our work because the field has several 
important features for addressing configura­
tion problems, including: 

• object-oriented modeling; 
• mle r.epresentation, organization, and 

triggering; 
• . active inference and knowledge comple­

tion; 
• explanation, product training , and help­

desk support; 
• ability to handle incrementally evolving 

specifications; 
• extensible schemas; 
• reasoning mechanisms that handle in­

. complete or ambiguous information; 
• inconsistency detection, en-or handling, 

and retraction; and 
• modularity. 

These needs are common in. many com~ 
plicated deductive tasks, but we believe there 
were particularly critical in our configurator 

applications. In particular, the fact that 
knowledge was distributed and used by dif­
ferent people in different geographical loca­
tions produced some special challenges. 

We are not alone in using description log­
ics for configuration. Ford Motor Company, 
for example, has an automotive configura­
tor4 based on another description logic. To 
our knowledge, we have developed the first 
commercial de$cription !ogic-bas~ ~nfig­
urator, as well as the longest. lived· and 
arguably most significant description logic­
based contigurator environi:nent. The side­
bar, "Description logics" offer further infor­
mation on the method itSelf. Following; we 

. offer a simple e'xar.llple mJd, use it as a con­
text to explore each .Of the description logic 
features above. 

DACS IY·2000 

For efficiency, telecommunications net­
works bundle individual phone calls into 
composite signals known as DS 1 and DS3 
signals. These are standards in the US do­
mestic market. lLLS! as indi vidnal phone calls 
are switched by switching machines, higher 
level signals are also switched, in a manner 
of speaking: software in a cross-connect sys­
tem controls the signals and can reroute them 
in case of network congestion, outage, and 
soon. 

As an example bere, we chose our 
DACS IV-2000 cross-connect system. 
Althot1gh simplified for our discussion, the 
example covers a repre.~entation and rea­
soning structure that is isomorphic to our 
deployed configurators. 

Figure 1 shows the basic physical stwc­
. ture of the DACS IV-2000. Essentially, it is 
composed of equipn:~ent bays, each of which 
has shelves for electronic assemblies, which 
in turn have slots for circuit-packs (not shown 
in Figure 1). The equipment is modular and 
thus engineers can add new functionality and 
capacity to existing systems simply by 
adding circuit packs. 

A DACS IV-2000 has a single switch bay 
and up to eight interface bays_ The intelface 
bays connect to the outside world (incoming 
and outgoing signals) and the switch bay 
"switches" tile signals under software control. 

A more detailed description of the DACS 
IV-2000 configuration is available. 5 We also 
have built a configurator demo for stereo 
equipment 6 and have recently ported it to the 
Web. For most people, this is a more acces-
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sible domain than teleconununica.tions, yet 
is reasoning isomorphic to that of the de­
ployed telecommunications configurators. 
The demo is available at http://taylor.es. 
vassar.edulstereo-demol. 

Description logics and the 
DACS system 

We now have more than eight years' expe­
rience with deployed configurators based on 
description logics. Most of the telecommu­
nications equipment we encounter has sev­
eral levels of ruerarcrucal nesting: circuit 
packs, assemblies, and bays or frameworks 
for the assemblies; individual frameworks 
are themselves composed into higher level 
entities, fiber-optic links, wireless cell sites, 
and so on. The ru.erarchical structure inherent 
in most teleconununications equipment lends 
itself narurally to object-oriented methodol­
ogy and, in particular, to declarative tech­
niques. Thus, in producing a configuration, 
we are not so much interested in how a 
piece of equipment works, as we are in its 
structure: the components and their inter­
relationships. 

Object-oriented modeling. Configuration 
applications usually have some sort of struc·- . 
tured domain. Our DACS IV-2000 application 
has a knowledge base that includes a concept 
taxonomy and instance descriptions. Figure 2 
shows a piece of the concept taxonomy. At the 
top is a general concept, DACS-IV-THING, 
with subconcepts DACS-IV-BAY, DACS­
IV-SHELF, and DS3-EQUIPMENT. At the 
bottom are DS3-EQUIPMENT. DS3-32-
SHELF, and COMBO-BAY. Subconcepts are 
related to parent concepts by an "isa" relation 
(denoted by dark arrows), which means, for 
example, that anything that is a DS3-32-
SHELF is also DACS-JV-SHELF. 

Concepts are structured descriptions and 
can have many encoded restrictions. Lower 
level concepts inherit restrictions from higher 
level concepts, but contain additional restric­
tions used to distinguish them from their par­
ents. Hence, lower level concepts are more 
specific and higbe( level concepts are more 
general. The inheritance rue(a.rchy encodes 
restrictions at the most abstract level possi­
ble. Like most description logics, CLASSIC 
supports strict inheritance, and thus restric­
tions represent true statements about a con­
cept and all its subconcepts. The most gen­
eral concept in Figure 2, DACS-IV-THING, 

JUlY/ AUGUS11998 

contains information that is colllinon to all 
of DACS-IV-THING's subconcept~. Such 
information might include knowledge about 
price-that a price exists, is non-negative, 
has a certain upper bound, and so on. More 
specific information that distinguishes com­
ponent classes like DS3-32-SHELF from 
DS3-EQUIPMENT is associated with more 
specialized concepts , such as specific price 
ranges. 

The COMBO-BAY concept illustrates 
some of tbis structure. It has roles for each of 
the foil\' shelves in the bay, and for additional 
equipment such as cabling. Each role has: 

t a number resttiction, which restricts the 
numberof"fillers" than the role can con­
tain; and 

t a value restriction, which limits the fillet'S 
to a cet1ain "type" and is involved in p(o­
pagation (more on this later). 

Instances, often called individuals, are 
si.milar to objects in object-oriented lan­
guages. In Figure 2, they appear as circles 
alfld their labels have numbers attached. Each 
individual has a unique identity. Individuals 
e;an inherit from concepts but not od1er indi­
viduals. We distinguish instance inheritance 
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from concept inheritance in our diagrams by 
using different arrows. Roles define relations 
between individuals. When one individual is 
related to another we include an appropri­
ately labeled line in our diagrams-in Fig­
ure 2, the Bay#9 and Shelf#19 individuals 
are related by the thirdshelf relation. 

One reason that we organize the knowl­
edge base in this fashion is that it simplifies 
summarization. Because CLASSIC recog­
nizes the class membership of all its instances, 
we can retrieve and count all the instances of 
DSl-ASSEMBLY for summary reports and 
the like after configuration is completed. 

We created the DACS IV-2000 knowledge 
base working with a domain expert. In the 
beginning, the database of instance informa­
tion, such as particular circuit packs and their 
specifications, was hand-compiled. Later in 
the project, we developed a domain-specific 
translator for our product experts to use. The 
translator was based on a notation that prod­
uct experts and technical consultants used to 
express configuration rules and constraints. 
The notation they were using was informal and 
imprecise, but after we sharpened it, it became 
the main vehicle for knowledge acquisition. 

Rule representation, organization, and 
triggering. Typically, a knowledge base con­
tains class rules and definitions. It's common 
to see constraints that :lpply across different 
structural components of a configuration. In 
our domain, for example, software has to 
match hardware. Thus, certain hardware 
selected in a DACS IV-2000 configuration, 
such as circuit packs for processing DS3 sig­
nals, might require a specific software release 
(sometimes called a "generic"). 

Figure 3 shows a simple diagram sequence 
that illustrates how we use rules to implement 
such constraints. The top-level node in Figure 
3a (BAY-LINEUP) represents a concept def­
inition with two roles: software and inter­
face-bay. In addition, the interfacebay role has 
a value restriction-uppershelf[0-1]. In other 
words, any instance playing the role of inter­
face bay in the DACS-IV lineup cannot have 
more than one uppershelf. BAY-LINEUP has 
one subconcept, BAY-LINEUP-G2, which 
has an associated rule (indicated by the white 
arrow). Individuals have a unique identity and 
are numbered (Lineup#12 and Bay#27). 

Description logics are said to have active 
inference because they deduce the logical 
consequences of given information. Once a 
description logic system recognizes that an 
object is an instance of the rule's left-hand side, 
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Figure 2. Concept hierarchy for a small portion of the DACS IV-2000 knowledge base. 

the rule is triggered and asserts a new fact on 
the object. For example, suppose we add the 
information that the upper shelf ofBay#27 is 
filled with aDS3-SHELF (seeFigure3b). The 
filler could be any of type of DS3-SHELF. 
When this happens, the knowledge base rec­
ognizes that Lineup# 12 is an instance ofBAY­
LINEUP-G2 (Figure 3c ), because the precon­
ditions for it being a BAY-LINEUP-G2 have 
been met. Because a rule is associated with this 
new concept (indicated by white arrow), the 
knowledge base also asserts thatLineup#12is 
a BAY-LINEUP-G2 (Figure 3d). Conse­
quently, Lineup#12 acquires several new par­
ent concepts in this process. These new con­
cepts may provide more information about 
Lineup#l2, and the cycle of recognition and 
assertion can be repeated in a chaining fash­
ion until all possible information is derived? 

In the telecommunications domain, rules 
fall into two classes: hard and fast rules (such 
as auxiliary power supplies are required 
when capacity exceeds a given amount) and 
rules of thumb (such as one performance 
monitoring circuit pack per bay is usually­
but not always-sufficient). Because CLAS­
SIC does not allow default reasoning and 
exceptions, all products configured by the 
knowledge base must abide by the hard and 
fast rules; hence, the rules of thumb are uni­
versally enforced just like other rules. CLAS­
SIC does not support explicit defaults. If a 
default representation were available, we 
would have implemented our rules of thumb 
as defaults. 

In some cases, the Prose platform imple­
mented a form of defaults via its user inter­
face. This method is compatible with input 

completion, one of the simplest proposals for 
handling defaults in description logics. If the 
user does not specify certain input values, the 
system "completes" the input with pre­
selected default values. In another applica­
tion, we implemented the default information 
as a "guided system". Users could then chose 
to follow the rules of thumb by asking for a 
guided system or they could over ride this 
information by deleting the guidance request. 

Active inference and knowledge comple­
tion. After the interface guides the user 
through a few simple questions, the under­
lying description logic provides active infer­
ence. For example, users answer questions 
about the desired system capacity, as well as 
their preferences on a few high-level features, 
such as performance monitoring. With these 
inputs, the configuration application per­
forms a search using the CLASSIC knowl­
edge base to determine a range of solutions 
that satisfy these inputs. It also determines if 
follow-up questions need to be asked. The 
configurator then generates a complete (ab­
stract) product description. 

For example, imagine that the user chooses 
a capacity in terms of DS 1 and DS3 signals, 
but does not specify a particular level of qual­
ity. CLASSIC deduces the minimum number 
of circuit packs of each type that will meet 
these requirements, then adds shelves, bays, 
and cabling required to feed that equipment. A 
description logic-based system might also pre­
sent several abstract solutions. When the user 
selects one, the system might then ask for fur­
ther input-such as service quality informa­
tion-before completing the configuration. 
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Figure 3. The rule triggering process: (a) individuals lineup#12 and Bay#27 are created to hold the configuration 
state; (b) the upper shelf of Bay#27 is asserted as a DS3-SHELF; (c) the new information about Boy#27's upper shelf 
couses Bay#27 to be reclassified as a BAY-LINEUP-G2; and (d) a rule fires that derives the software requirement for 
lineup#12. 

CLASSIC calculates the logical implica­
tions (or deductive closure) of the informa­
tion users provide. The user can view the 
completed information on any component or 
the entire system by clicking an icon or other 
interface element. 

One way in which description logics 
achieve knowledge completion is to propa­
gate information from one instance to another 
via value restrictions. Figure 4 illustrates how 
this works. In this example, Shelf#53 and 
Shelf #61 are both instances of DS3-SHELF 
(Figure 4a). Bay#27 is a DS3-BAY that has 
inherited value restrictions for the upper­
shelf and lower-shelf roles such that any filler 
of the upper-shelf role must be a DS3-32-
SHELF (that is, it has a capacity of 32 DS3 
signals) and any filler of the lower-shelf role 
must be a DS3-16-SHELF. When Shelf#53 is 
added to the upper-shelf role, the value 
restriction associated with that role is prop­
agated to that individual: it becomes a DS3-
32-SHELF (Figure 4b). If anything about 
Shelf#53 conflicts with this new information, 
an error condition is raised, and Shelf#53 is 
prevented from filling the upper-shelf role. 

Explanation, product training, and help­
desk support. CLASSIC can justify all of 
its beliefs.2 Not only can users view any piece 
of information; they can also have any deduc­
tion explained. 

In our first eKample, if the user asks why 
GENERIC2 software became part of the con­
figuration, she learns that adding a DS3-
SHELF to the lineup caused a rule to fire­
which, in effect, required GENERIC2 soft­
ware. Similarly, the propagation in shown in 
Figure 4 can be supplied if a user wonders 
why Shelf#53 is a DS3-32-SHELF. The 
explanation facility can answer other ques­
tions such as why one object does or does not 
subsume another object, why a rule was 
asserted, or why an error occurred. 

Inferences can also have associated tem­
plates that present explanations in terms that 
are acceptable to the user. For example, in 
some of our systems, we present answers in 
English by associating natural language tem­
plates with explanation options in pop-up 
menus. We could also use forms-based tem­
plates compatible with a help system that 
presents information in a familiar form. 

Explanations and inspection functions let 
product engineers and help-desk personnel 
view product information in one source, 
which could also be made publicly available. 
The ability to justify, explain, and generally 

~----------------------------------------------------------------------------------------------------~ 
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