
CONFIGURAfi()N ' :
: -

An lnclusfriai-Sbengtlt
Description &ogic-Basecl
Configurator Platform
hborah L Mchinness and Jon R. Wright, AT&T Labs-Research

MoDERN TELECOMMUNICA­
tions equipment is highly modular and can
scale to a wide range, of applications. Usu­
ally, the equipment's cost and complexity
requires that it be manufactured-to-order, or
at least assembled-to-order. In this context,
orders double as specifications, describing
what should be manufactured as well as how
the product should be installed, Producing a
correct and complete order for such equip­
ment can be challenging when requirements
are incomplete, inconsistent, or when the
finalproduct is large and complicated , A
good order is technically correct and meets
customer requirements for network capacity
and growth without over-engineering. In­
complete configurations can lead to cost
overruns if the missing elements are discov­
ered during manufacturing. If they are not,
faulty products can result. Either way, the
customers are unhappy,

We have tackled the configuration problem
for a number of large telecommunications
products sold by AT&T and Lucent Tech­
nologies. Our Prose configurators are based
on CLASSIC, 1 a description logic-based
knowledge representation system developed
at AT&T Bell Laboratories. CLASSIC is
freely available for academic purposes, and
commercially available for other purposes. a1

http :llwww. research. att. comlswltoolsl

JUlY / AUGUST 1991

USING DFSCR1n10N LOGICS AS A FOUNDATION, THE

AUTHORS DEVELOPED COMMERCIAL CONFIGURATORS FOR

LARGE, COMPLEX TELECOMMUMCATIONS PRODUCTS. I
classic. AT&T has distributed CLASSIC to
more than I 00 universities; itis also in use for
internal projects at AT&T, Lucent, and NCR.
Implementations are available in LISP, C++,
and C.

CLASSIC is part of a description logic
family that was developed with the goal of
balancing usability, expressivity, and com­
plexity. We have found it to be well suited to
our configurator needs. Because it attempts
to provide predictable performance in all
cases, CLASSIC is less expressive than many
description logic systems, but it has been
widely used in both industrial applications
and academic systems.

Some of our configurators have been in
use since 1990. They have processed more
than $4.5 billion in orders and have docu­
mented many benefits, including reduced
order processing time, reduced staffing, and
product-knowledge consistency checking.

1094-7 t67/98/S l0.00@ t998 JEEE

Background
We began developing a configurator based

on description logic in 1988 when we were
approached by a group of system engineers
involved in the re-engineering of an impor­
tant business process, which at AT&T is
sometimes called the Engineer, Furnish, and
Install process. The EF&I process begins
with customer-sales interaction and ends
when a product is successfully manufactured
and installed . T he engineering group had
identified product configuration as key to
EF&I business processes.

Among the most important goals of this
re-engineering project were:

• decreasing the time between new equip­
ment sales and installation, and

• reducing the rework cansed by mistakes
and inaccuracies in incoming orders.

69

FORD 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

DS3
lntertace-32

Module

Blank
panel

Figure I. The hierordlicol structure of o DACSIY· 2000 crQSS·tonnect syslem ..

With this in mind, we developed a proto­
type configurator for the Fr Series G fi ber­
optic transmission system. TheFT Series G
configurator was never released, but it was
effective enough that a software development
team was assigned to the project in early
1990. The project, now called Prose (prod­
uct offerings expertise), delivered its first
configuration to AT&Ts Merrimac Valley
Works in Andover, Massachusetts, later that
year. We assisted our software development
collaborators in eventually developing and
deploying 18 Prose configurators, and they
have played an important supporting role in
re-engineering the EF&I process. ·

Early lessons. Over the years, we learned
many lessons. Two early discoveries were
particularly important to our success. First,
realizing that product knowledge was scat­
tered across different organizations, we
decided to merge the product know ledge into
a knowledge base that was both consistent
and commonly accessible.

Second, given the dynamic nature of
complex telecommunications products, we
quickly realized that product know ledge inai.n­
tenance would be an ongoing concern. Also,
tl1ekey products from a business standpoint­
new products and top sellers-change the
most. During the 10 years we worked on con­
figurators, we observed change rates as high
as 40 to 50% per year for some products (as
measured by turnover and changes in config­
uration rules and constraints). Consequently,
knowledge acquisition and maintenance were
high on our list of problems to solve, and
drove much of the work we did on technical
problems.

Many people involved in the EF&I process
need to understand the product knowledge

70

underlying a specific order- the whys and
why nots of a pa,rti.cular product configura­
tion. This need overrode many oilier issues for
tlS. Given this, one member of our team devel­
oped some novel approaches to explanation
and troth maintenance in description logics.2.3

The knowledge problem. ln real-world
applications, success seldom comes from
focusing solely on technical issues. In fact,
to solve knowledge acquisition and mainte­
nance problems for the.Prose configurators,
we had to consider the context in which
knowledge originated and was distributed
throughout the EF&I business process. This
context imposed specific requirements on ow·
configuration platform.

We selected description logics as a basis
for our work because the field has several
important features for addressing configura­
tion problems, including:

• object-oriented modeling;
• mle r.epresentation, organization, and

triggering;
• . active inference and knowledge comple­

tion;
• explanation, product training , and help­

desk support;
• ability to handle incrementally evolving

specifications;
• extensible schemas;
• reasoning mechanisms that handle in­

. complete or ambiguous information;
• inconsistency detection, en-or handling,

and retraction; and
• modularity.

These needs are common in. many com~
plicated deductive tasks, but we believe there
were particularly critical in our configurator

applications. In particular, the fact that
knowledge was distributed and used by dif­
ferent people in different geographical loca­
tions produced some special challenges.

We are not alone in using description log­
ics for configuration. Ford Motor Company,
for example, has an automotive configura­
tor4 based on another description logic. To
our knowledge, we have developed the first
commercial de$cription !ogic-bas~ ~nfig­
urator, as well as the longest. lived· and
arguably most significant description logic­
based contigurator environi:nent. The side­
bar, "Description logics" offer further infor­
mation on the method itSelf. Following; we

. offer a simple e'xar.llple mJd, use it as a con­
text to explore each .Of the description logic
features above.

DACS IY·2000

For efficiency, telecommunications net­
works bundle individual phone calls into
composite signals known as DS 1 and DS3
signals. These are standards in the US do­
mestic market. lLLS! as indi vidnal phone calls
are switched by switching machines, higher
level signals are also switched, in a manner
of speaking: software in a cross-connect sys­
tem controls the signals and can reroute them
in case of network congestion, outage, and
soon.

As an example bere, we chose our
DACS IV-2000 cross-connect system.
Althot1gh simplified for our discussion, the
example covers a repre.~entation and rea­
soning structure that is isomorphic to our
deployed configurators.

Figure 1 shows the basic physical stwc­
. ture of the DACS IV-2000. Essentially, it is
composed of equipn:~ent bays, each of which
has shelves for electronic assemblies, which
in turn have slots for circuit-packs (not shown
in Figure 1). The equipment is modular and
thus engineers can add new functionality and
capacity to existing systems simply by
adding circuit packs.

A DACS IV-2000 has a single switch bay
and up to eight interface bays_ The intelface
bays connect to the outside world (incoming
and outgoing signals) and the switch bay
"switches" tile signals under software control.

A more detailed description of the DACS
IV-2000 configuration is available. 5 We also
have built a configurator demo for stereo
equipment 6 and have recently ported it to the
Web. For most people, this is a more acces-

IEEE INTtLUGINT SYSTEMS

FORD 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

sible domain than teleconununica.tions, yet
is reasoning isomorphic to that of the de­
ployed telecommunications configurators.
The demo is available at http://taylor.es.
vassar.edulstereo-demol.

Description logics and the
DACS system

We now have more than eight years' expe­
rience with deployed configurators based on
description logics. Most of the telecommu­
nications equipment we encounter has sev­
eral levels of ruerarcrucal nesting: circuit
packs, assemblies, and bays or frameworks
for the assemblies; individual frameworks
are themselves composed into higher level
entities, fiber-optic links, wireless cell sites,
and so on. The ru.erarchical structure inherent
in most teleconununications equipment lends
itself narurally to object-oriented methodol­
ogy and, in particular, to declarative tech­
niques. Thus, in producing a configuration,
we are not so much interested in how a
piece of equipment works, as we are in its
structure: the components and their inter­
relationships.

Object-oriented modeling. Configuration
applications usually have some sort of struc·- .
tured domain. Our DACS IV-2000 application
has a knowledge base that includes a concept
taxonomy and instance descriptions. Figure 2
shows a piece of the concept taxonomy. At the
top is a general concept, DACS-IV-THING,
with subconcepts DACS-IV-BAY, DACS­
IV-SHELF, and DS3-EQUIPMENT. At the
bottom are DS3-EQUIPMENT. DS3-32-
SHELF, and COMBO-BAY. Subconcepts are
related to parent concepts by an "isa" relation
(denoted by dark arrows), which means, for
example, that anything that is a DS3-32-
SHELF is also DACS-JV-SHELF.

Concepts are structured descriptions and
can have many encoded restrictions. Lower
level concepts inherit restrictions from higher
level concepts, but contain additional restric­
tions used to distinguish them from their par­
ents. Hence, lower level concepts are more
specific and higbe(level concepts are more
general. The inheritance rue(a.rchy encodes
restrictions at the most abstract level possi­
ble. Like most description logics, CLASSIC
supports strict inheritance, and thus restric­
tions represent true statements about a con­
cept and all its subconcepts. The most gen­
eral concept in Figure 2, DACS-IV-THING,

JUlY/ AUGUS11998

contains information that is colllinon to all
of DACS-IV-THING's subconcept~. Such
information might include knowledge about
price-that a price exists, is non-negative,
has a certain upper bound, and so on. More
specific information that distinguishes com­
ponent classes like DS3-32-SHELF from
DS3-EQUIPMENT is associated with more
specialized concepts , such as specific price
ranges.

The COMBO-BAY concept illustrates
some of tbis structure. It has roles for each of
the foil\' shelves in the bay, and for additional
equipment such as cabling. Each role has:

t a number resttiction, which restricts the
numberof"fillers" than the role can con­
tain; and

t a value restriction, which limits the fillet'S
to a cet1ain "type" and is involved in p(o­
pagation (more on this later).

Instances, often called individuals, are
si.milar to objects in object-oriented lan­
guages. In Figure 2, they appear as circles
alfld their labels have numbers attached. Each
individual has a unique identity. Individuals
e;an inherit from concepts but not od1er indi­
viduals. We distinguish instance inheritance

71

FORD 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

from concept inheritance in our diagrams by
using different arrows. Roles define relations
between individuals. When one individual is
related to another we include an appropri­
ately labeled line in our diagrams-in Fig­
ure 2, the Bay#9 and Shelf#19 individuals
are related by the thirdshelf relation.

One reason that we organize the knowl­
edge base in this fashion is that it simplifies
summarization. Because CLASSIC recog­
nizes the class membership of all its instances,
we can retrieve and count all the instances of
DSl-ASSEMBLY for summary reports and
the like after configuration is completed.

We created the DACS IV-2000 knowledge
base working with a domain expert. In the
beginning, the database of instance informa­
tion, such as particular circuit packs and their
specifications, was hand-compiled. Later in
the project, we developed a domain-specific
translator for our product experts to use. The
translator was based on a notation that prod­
uct experts and technical consultants used to
express configuration rules and constraints.
The notation they were using was informal and
imprecise, but after we sharpened it, it became
the main vehicle for knowledge acquisition.

Rule representation, organization, and
triggering. Typically, a knowledge base con­
tains class rules and definitions. It's common
to see constraints that :lpply across different
structural components of a configuration. In
our domain, for example, software has to
match hardware. Thus, certain hardware
selected in a DACS IV-2000 configuration,
such as circuit packs for processing DS3 sig­
nals, might require a specific software release
(sometimes called a "generic").

Figure 3 shows a simple diagram sequence
that illustrates how we use rules to implement
such constraints. The top-level node in Figure
3a (BAY-LINEUP) represents a concept def­
inition with two roles: software and inter­
face-bay. In addition, the interfacebay role has
a value restriction-uppershelf[0-1]. In other
words, any instance playing the role of inter­
face bay in the DACS-IV lineup cannot have
more than one uppershelf. BAY-LINEUP has
one subconcept, BAY-LINEUP-G2, which
has an associated rule (indicated by the white
arrow). Individuals have a unique identity and
are numbered (Lineup#12 and Bay#27).

Description logics are said to have active
inference because they deduce the logical
consequences of given information. Once a
description logic system recognizes that an
object is an instance of the rule's left-hand side,

72

Figure 2. Concept hierarchy for a small portion of the DACS IV-2000 knowledge base.

the rule is triggered and asserts a new fact on
the object. For example, suppose we add the
information that the upper shelf ofBay#27 is
filled with aDS3-SHELF (seeFigure3b). The
filler could be any of type of DS3-SHELF.
When this happens, the knowledge base rec­
ognizes that Lineup# 12 is an instance ofBAY­
LINEUP-G2 (Figure 3c), because the precon­
ditions for it being a BAY-LINEUP-G2 have
been met. Because a rule is associated with this
new concept (indicated by white arrow), the
knowledge base also asserts thatLineup#12is
a BAY-LINEUP-G2 (Figure 3d). Conse­
quently, Lineup#12 acquires several new par­
ent concepts in this process. These new con­
cepts may provide more information about
Lineup#l2, and the cycle of recognition and
assertion can be repeated in a chaining fash­
ion until all possible information is derived?

In the telecommunications domain, rules
fall into two classes: hard and fast rules (such
as auxiliary power supplies are required
when capacity exceeds a given amount) and
rules of thumb (such as one performance
monitoring circuit pack per bay is usually­
but not always-sufficient). Because CLAS­
SIC does not allow default reasoning and
exceptions, all products configured by the
knowledge base must abide by the hard and
fast rules; hence, the rules of thumb are uni­
versally enforced just like other rules. CLAS­
SIC does not support explicit defaults. If a
default representation were available, we
would have implemented our rules of thumb
as defaults.

In some cases, the Prose platform imple­
mented a form of defaults via its user inter­
face. This method is compatible with input

completion, one of the simplest proposals for
handling defaults in description logics. If the
user does not specify certain input values, the
system "completes" the input with pre­
selected default values. In another applica­
tion, we implemented the default information
as a "guided system". Users could then chose
to follow the rules of thumb by asking for a
guided system or they could over ride this
information by deleting the guidance request.

Active inference and knowledge comple­
tion. After the interface guides the user
through a few simple questions, the under­
lying description logic provides active infer­
ence. For example, users answer questions
about the desired system capacity, as well as
their preferences on a few high-level features,
such as performance monitoring. With these
inputs, the configuration application per­
forms a search using the CLASSIC knowl­
edge base to determine a range of solutions
that satisfy these inputs. It also determines if
follow-up questions need to be asked. The
configurator then generates a complete (ab­
stract) product description.

For example, imagine that the user chooses
a capacity in terms of DS 1 and DS3 signals,
but does not specify a particular level of qual­
ity. CLASSIC deduces the minimum number
of circuit packs of each type that will meet
these requirements, then adds shelves, bays,
and cabling required to feed that equipment. A
description logic-based system might also pre­
sent several abstract solutions. When the user
selects one, the system might then ask for fur­
ther input-such as service quality informa­
tion-before completing the configuration.

IEEE INTELLIGENT SYSTEMS

FORD 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 3. The rule triggering process: (a) individuals lineup#12 and Bay#27 are created to hold the configuration
state; (b) the upper shelf of Bay#27 is asserted as a DS3-SHELF; (c) the new information about Boy#27's upper shelf
couses Bay#27 to be reclassified as a BAY-LINEUP-G2; and (d) a rule fires that derives the software requirement for
lineup#12.

CLASSIC calculates the logical implica­
tions (or deductive closure) of the informa­
tion users provide. The user can view the
completed information on any component or
the entire system by clicking an icon or other
interface element.

One way in which description logics
achieve knowledge completion is to propa­
gate information from one instance to another
via value restrictions. Figure 4 illustrates how
this works. In this example, Shelf#53 and
Shelf #61 are both instances of DS3-SHELF
(Figure 4a). Bay#27 is a DS3-BAY that has
inherited value restrictions for the upper­
shelf and lower-shelf roles such that any filler
of the upper-shelf role must be a DS3-32-
SHELF (that is, it has a capacity of 32 DS3
signals) and any filler of the lower-shelf role
must be a DS3-16-SHELF. When Shelf#53 is
added to the upper-shelf role, the value
restriction associated with that role is prop­
agated to that individual: it becomes a DS3-
32-SHELF (Figure 4b). If anything about
Shelf#53 conflicts with this new information,
an error condition is raised, and Shelf#53 is
prevented from filling the upper-shelf role.

Explanation, product training, and help­
desk support. CLASSIC can justify all of
its beliefs.2 Not only can users view any piece
of information; they can also have any deduc­
tion explained.

In our first eKample, if the user asks why
GENERIC2 software became part of the con­
figuration, she learns that adding a DS3-
SHELF to the lineup caused a rule to fire­
which, in effect, required GENERIC2 soft­
ware. Similarly, the propagation in shown in
Figure 4 can be supplied if a user wonders
why Shelf#53 is a DS3-32-SHELF. The
explanation facility can answer other ques­
tions such as why one object does or does not
subsume another object, why a rule was
asserted, or why an error occurred.

Inferences can also have associated tem­
plates that present explanations in terms that
are acceptable to the user. For example, in
some of our systems, we present answers in
English by associating natural language tem­
plates with explanation options in pop-up
menus. We could also use forms-based tem­
plates compatible with a help system that
presents information in a familiar form.

Explanations and inspection functions let
product engineers and help-desk personnel
view product information in one source,
which could also be made publicly available.
The ability to justify, explain, and generally

~--~
JUlY/AUGUST 1998 73

FORD 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

