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INTRODUCTION. R1 2 is a rule-based system that has much in 
common with other domain-specific systems that have been 
developed over the past several years [1, 8]. It differs from these 
systems primarily in its use of Match rather than 
Generate-and-Test as its central problem solving method [2]; 
rather than exploring several hypotheses until an acceptable one 
is found, it exploits its knowledge of its task domain to generate a 
single acceptable solution. R1's domain of expertise is 
configuring Digital Equipment Corporation's VAX-11 /780 systems. 
Its input is a customer's order and its output is a set of diagrams 
displaying the spatial relationships among the components on the 
order; these diagrams are used by the technician who physically 
assembles the system. Since an order frequently lacks one or 
more components required for system functionality, a major part 
of R1's task is to notice what components are missing and add 
them to the order. R1 is currently being used on a regular basis by 
DEC's manufacturing organization.3 

THE DOMAIN. The VAX-11/780 is the first implementation of 
DEC's VAX-11 architecture. The VAX-11 /780 uses a high speed 
synchronous bus, the sbi, as its primary interconnect; the central 
processor, one or two memory control units, up to four massbus 
interfaces, and up to four unibus interfaces can be connected to 
the sbi. The massbuses and particularly the unibuses can support 
a wide variety of peripheral devices. A typical system contains 
about 90 components; these include cabinets. periperal devices, 
drivers for the devices, and cables. There are a large number of 
rules that constrain the ways in which these components may be 
associated. 

R1 'S DEFINING CHARACTERISTICS. R1 is implemented in 
OPS4, a production system language developed at 
Carnegie-Mellon University [3, 7]. An OPS4 production system 

1rt>is paper d escribes R1 as i t exists in June of 1gao; it i s a highly 
condense d version of (5). 

2 Four years ago 1 couldn't even say "knowledge engineor'", now 1 ... 

3rhe development of R1 was supported by Digital Equipment 
Corporation. The research tl'tat led to the development of OPS4, the 
language in wh,ch Rl is written, was sponsored by the Defense Advanced 
Research Projects Agency. (DOD), ARPA Order No. 3597, and monitored 
by the Air Force Avionics Laborato ry under Contract F33615· 78·C·1151 . 
The views and c;:onctusions contain:Jd in this documont a re those of the 
author and should not be interpreted as representing the official policies, 
either exp ressed or implied, of Digital Equipment Corporation, the 
Defense Advanced Research Projects Age ncy , or the U.S. Government. 
VAX, PDP-11 , UNIBUS, and MASSBUS are trademarks of Digital 
Equipment Corporation. 

consists of a set of productions held in production memory and a 
set of data elements (eg, state descriptions) held in worl<ing 
memory. A production is a rule composed of conditions and 
actions: 

Conditions are forms that are instantiated by memory elements. 
Actions add elements to worl<ing memory or modify existing 
elements. The recognize-act cycle repeatedly finds all production 
instantiations and executes one of them. 4 R1 exploits this 
recognition match. Its rules have conditions that recognize 
situations in which a particular type of extension to a particular 
type of partial configuration is permissable or required; the actions 
then effect that extension. 

OPS4's two memories have been augmented, - for this 
application, with a third. This memory, the data base, contains 
descriptions of each of the 420 components currently supported 
for the VAX. Each data base entry consists of the name of a 
component and a set of eight or so attribute/value pairs that 
indicate the properties of the component that are relevant for the 
configuration task. As R1 begins to configure an order, it retrieves 
the relevant component desc riptions. As the configuration is 
generated , working memory grows to contain descriptions of 
partial configurations , results of various computations, and 
context symbols that identify the current subtask. · 

Production memory contains all of R1 's permanent knowledge 
about how to configure VAX systems. R1 currently has 772 rules 
that enable it to perform the task. 5 These rules can be viewed as 
state transition operators. The conditional part of each rule 
describes features that a state must possess in order for the rule to 
be applied. The action part of the rule indicates what features of 
that state have to be modified or what features have to be added in 
order for a new state that is on a solution path to be generated. 
Each rule is a more or less autonomous piece of knowledge that 
watches for a state that it recognizes to be generated. Whenever 

4
0PS4's cycle time, though it is es•entially independent oftne size of 

boll> p roduction memory and w orking memory [ 4), depends on particular 
features of the production system (e9, the number and complexity of the 
conditions and ac tions in each production); the averCJge cycle time ror 
OPS4 interpreting R1 is about 150 milliseconds. OPS4 is implemented in 
MACLISP; Rl Is run on a PDP· lO (model KL) and loads in 412 pages of 
core. 

5only 480 of these rules are "configuralion rules"' ; the remainder 
contain more general (non domain· specific) knowledge that Rl needs in 
ord~r to use the configura lion rutes. 
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that happens, it can effect a state transition. If all goes well, this 
new state will, in turn, be recognized by one or more rules; one of 
these rules will effect another state transition, and so on until the 
system is configured. English translations of two sample rules are 
shown in Figure 1. 

ASSIGN·UB·MODULES·EXCEPT·THOSE·CONNECTING-TO·PANELS-4 

IF: THE CURRENT CONTEXT IS ASSIGNING DEVICES 
TO UNIBUS MODULES 

AND THERE IS AN UNASSIGNED DUAL PORT DISK DRIVE 
AND THE TYPE OF CONTROLLER IT REQUIRES IS KNOWN 
AND THERE ARE TWO SUCH CONTROLLERS NEITHER 

OF WHICH HAS ANY DEVICES ASSIGNED TO IT 
AND THE NUMBER OF DEVICES THAT THESE 

CONTROLLERS CAN SUPPORT IS KNOWN 

THEN: ASSIGN THE DISK DRIVE TO EACH OF THE CONTROLLERS 
AND NOTE THAT THE TWO CONTROLLERS HAVE BEEN 

ASSOCIATED AND THAT EACH SUPPORTS ONE DEVICE 

PUT-UB-MODULE-6 

IF: THE CURRENT CONTEXT IS PUTTING UNIBUS MODULES 
IN BACKPLANES IN SOME BOX 

AND IT HAS BEEN DETERMINED WHICH MODULE TO TRY 
TO PUT IN A BACKPLANE 

AND THAT MODULE ISA MULTIPlEXER TERMINAL INTERFACE 
AND IT HAS NOT BEEN AS SOCIA TED WITH ANY PANEL SPACE 
AND THE TYPE AND NUMBER OF BACKPLANE SLOTS 

IT REQUIRES IS KNOWN 
AND THERE ARE AT LEAST THAT MANY SLOTS AVAILABLE 

IN A BACKPLANE OF THE APPROPRIATE TYPE 
AND THE CURRENT UNIBUS LOAD ON THAT BACKPLANE 

IS KNOWN 
AND THE POSITION OF THE BACKPLANE IN THE BOX IS KNOWN 

THEN: ENTER THE CONTEXT OF VERIFYING PANEL SPACE 
FOR A MULTIPLEXER 

Figure 1: Two Sample Rules 

It is usual to distinguish the matching of forms and data from 
search; for example, in discussing the amount of search occurring 
in a resolution theorem prover, the unification of clauses is 
considered to be part of tt'le elementary search step. But Match is 
also a method for doing search in a state space [6]; it is analogous 
to methods such as Hill Climbing or Means-ends Analysis, though 
much more powerful. The characteristic that distinguishes Match 
from other Heuristic Search methods is that in the case of Match 
the conditions (tests) associated with each state are sufficient to 
guarantee that if a state transition is permissible, then the new 
state will be on a solution path (if there is a solution path). Thus 
with Match, false paths are never generated, and so backtracking 
is never required. Match is well suited for the configuration task 
because, with a single exception, the knowledge that is available 
at each step is sufficient to distinguish between acceptable and 
unacceptable paths. The subtask that cannot always be done with 
Match alone is placing modules on the unibus in an acceptable 
sequence; to perform this subtask, R1 must occassionally 
generate several candidate sequences. 

The fan-in and fan-out of R1's rules provide a measure of the 

degree of conditionality in the configuration task. The fan-in of a 
rule is the number of distinct rules that could fire immediately 
before that rule; the fan ·out is the number of distinct rules that 
could fire immediately after the rule. The average fan-in and 
fan-out of R1's rules is 3. The graph of possible rule firing 
sequences, then, has 666 nodes, one for each of the rules 
(excluding the 106 output generation rules); each of these nodes 
has, on the average, three edges coming into it and three going 
out. It should be clear that unless the selection of which edge to 
follow can be highly constrained, the cost (in nodes visited) of 
finding an adequate configuration (an appropriate path through 
the rules) will be enormous. It is in this context that the- power of 
the Match method used by R1 becomes apparent. When R1 can 
configure a system without backtracking, it finds a single path that 
consists, on the average, of about 800 nodes. When R1 must 
backtrack, it visits an additional N nodes, where N is the product of 
the number of unsuccessful unibus module sequences it tries 
(which is rarely more than 2) and the number of nodes that must 
be expanded to generate a candidate unibus module 
configuration (which is rarely more than 300). 

R1 'S EVOLUTION. 1n a period of less than a year, R1 went from 
an idea, to a demonstration system that had most of the basic 
knowledge required in the domain but lacked the ability to deal 
with complex orders, to a system that possesses true expertise. Its 
development parallels, in many respects, the development of the 
several domain-specific systems engineered by Stanford 
University's Heuristic Programming Project [2]. R1's 
implementation history divides quite naturally into two stages. 
During the first stage, which began in December of 1978 and 
lasted for about four months, I spent five or six days being tutored 
in the basics of VAX system configuration, read and reread the two 
manuals that describe many of the VAX configuration constraints, 
and implemented an initial version of R1 (consisting of fewer than 
200 domain rules) that could configure the simplest of orders 
correctly, but made numerous mistakes when it tried to tackle 
more complex orders.6 The second stage, which lasted for 
another four months, was spent in asking people who were expert 
in the VAX configuration task to examine R1 's output, point out 
R1's mistakes, and indicate what knowledge R1 was lacking. R1 
was sufficiently ignorant that finding mistakes was no problem. 
Given a criticism of some aspect of the configuration by an expert, 
all that was necessary in order to refine R1's knowledge was to 
find the offending rule, ask the expert to point out the problem with 
the c ondition elements in the rule, and then either modify the rule 
or split it into two rules that would discriminate between two 
previously undifferentiated states. During this stage, R1's domain 
knowledge almost tripled. 

VALIDATION. During October and November of 1979, Rt was 
involved in a formal validation procedure. Over the two month 
period, R1 was given 50 orders to configure. A team of six experts 

6
Duting this fits! stage, R1 's name was XCON. 
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examined R1's output, spending from one to two hours on each 
order. In the course of examining the configurations, 12 pieces of 
errorful knowledge were uncovered. The rules responsible for the 
errors were modified and the orders were resubmitted to R1 and 
were all configured correctly. Each of these 50 orders contained, 
on the average, 90 components; R1 fired an average of 1056 rules 
and used an average of 2.5 minutes of cpu time in configuring 
each order. Since January of 1980, R1 has configured over 500 
orders. It is now integrated into DEC's manufacturing 
organization. It has also begun to be used by DEC's sales 
organization to configure orders on the day they are booked. 

CONCLUDING REMARKS. R1 has proven itself to be a highly 
competent configurer of VAX-11/780 systems. The configurations 
that it produces are consistently adequate, and the information 
that it makes available to the technicians who physically assemble 
systems is far more detailed than that produced by the humans 
who do the task. There are, however, some obvious ways in which 
to enlarge its domain so that it can become a more helpful system. 
Work has already begun on augmenting R1's knowledge to enable 
it to configure other computer systems manufactured by DEC. In 
addition, we plan to augment its knowledge so that it will be able to 
help with the scheduling of system delivery dates. We also plan to 
augment Rl's knowledge so that it will be able to provide 
interactive assistance to a customer or salesperson that will allow 
him, if he wishes, to specify some of the capabilities of the system 
he wants and let R1 select the set of components that will provide 
those capabilities. Ultimately we hope to develop a salesperson's 
assistant, an R1 that can help a customer identify the system that 
best suits his needs. 
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