
R1: an Expert in the Computer Systems Domain1

John McDermott

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

INTRODUCTION. R1 2 is a rule-based system that has much in
common with other domain-specific systems that have been
developed over the past several years [1, 8]. It differs from these
systems primarily in its use of Match rather than
Generate-and-Test as its central problem solving method [2];
rather than exploring several hypotheses until an acceptable one
is found, it exploits its knowledge of its task domain to generate a
single acceptable solution. R1's domain of expertise is
configuring Digital Equipment Corporation's VAX-11 /780 systems.
Its input is a customer's order and its output is a set of diagrams
displaying the spatial relationships among the components on the
order; these diagrams are used by the technician who physically
assembles the system. Since an order frequently lacks one or
more components required for system functionality, a major part
of R1's task is to notice what components are missing and add
them to the order. R1 is currently being used on a regular basis by
DEC's manufacturing organization.3

THE DOMAIN. The VAX-11/780 is the first implementation of
DEC's VAX-11 architecture. The VAX-11 /780 uses a high speed
synchronous bus, the sbi, as its primary interconnect; the central
processor, one or two memory control units, up to four massbus
interfaces, and up to four unibus interfaces can be connected to
the sbi. The massbuses and particularly the unibuses can support
a wide variety of peripheral devices. A typical system contains
about 90 components; these include cabinets. periperal devices,
drivers for the devices, and cables. There are a large number of
rules that constrain the ways in which these components may be
associated.

R1 'S DEFINING CHARACTERISTICS. R1 is implemented in
OPS4, a production system language developed at
Carnegie-Mellon University [3, 7]. An OPS4 production system

1rt>is paper d escribes R1 as i t exists in June of 1gao; it i s a highly
condense d version of (5).

2 Four years ago 1 couldn't even say "knowledge engineor'", now 1 ...

3rhe development of R1 was supported by Digital Equipment
Corporation. The research tl'tat led to the development of OPS4, the
language in wh,ch Rl is written, was sponsored by the Defense Advanced
Research Projects Agency. (DOD), ARPA Order No. 3597, and monitored
by the Air Force Avionics Laborato ry under Contract F33615· 78·C·1151 .
The views and c;:onctusions contain:Jd in this documont a re those of the
author and should not be interpreted as representing the official policies,
either exp ressed or implied, of Digital Equipment Corporation, the
Defense Advanced Research Projects Age ncy , or the U.S. Government.
VAX, PDP-11 , UNIBUS, and MASSBUS are trademarks of Digital
Equipment Corporation.

consists of a set of productions held in production memory and a
set of data elements (eg, state descriptions) held in worl<ing
memory. A production is a rule composed of conditions and
actions:

Conditions are forms that are instantiated by memory elements.
Actions add elements to worl<ing memory or modify existing
elements. The recognize-act cycle repeatedly finds all production
instantiations and executes one of them. 4 R1 exploits this
recognition match. Its rules have conditions that recognize
situations in which a particular type of extension to a particular
type of partial configuration is permissable or required; the actions
then effect that extension.

OPS4's two memories have been augmented, - for this
application, with a third. This memory, the data base, contains
descriptions of each of the 420 components currently supported
for the VAX. Each data base entry consists of the name of a
component and a set of eight or so attribute/value pairs that
indicate the properties of the component that are relevant for the
configuration task. As R1 begins to configure an order, it retrieves
the relevant component desc riptions. As the configuration is
generated , working memory grows to contain descriptions of
partial configurations , results of various computations, and
context symbols that identify the current subtask. ·

Production memory contains all of R1 's permanent knowledge
about how to configure VAX systems. R1 currently has 772 rules
that enable it to perform the task. 5 These rules can be viewed as
state transition operators. The conditional part of each rule
describes features that a state must possess in order for the rule to
be applied. The action part of the rule indicates what features of
that state have to be modified or what features have to be added in
order for a new state that is on a solution path to be generated.
Each rule is a more or less autonomous piece of knowledge that
watches for a state that it recognizes to be generated. Whenever

4
0PS4's cycle time, though it is es•entially independent oftne size of

boll> p roduction memory and w orking memory [4), depends on particular
features of the production system (e9, the number and complexity of the
conditions and ac tions in each production); the averCJge cycle time ror
OPS4 interpreting R1 is about 150 milliseconds. OPS4 is implemented in
MACLISP; Rl Is run on a PDP· lO (model KL) and loads in 412 pages of
core.

5only 480 of these rules are "configuralion rules"' ; the remainder
contain more general (non domain· specific) knowledge that Rl needs in
ord~r to use the configura lion rutes.

269

FORD 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

that happens, it can effect a state transition. If all goes well, this
new state will, in turn, be recognized by one or more rules; one of
these rules will effect another state transition, and so on until the
system is configured. English translations of two sample rules are
shown in Figure 1.

ASSIGN·UB·MODULES·EXCEPT·THOSE·CONNECTING-TO·PANELS-4

IF: THE CURRENT CONTEXT IS ASSIGNING DEVICES
TO UNIBUS MODULES

AND THERE IS AN UNASSIGNED DUAL PORT DISK DRIVE
AND THE TYPE OF CONTROLLER IT REQUIRES IS KNOWN
AND THERE ARE TWO SUCH CONTROLLERS NEITHER

OF WHICH HAS ANY DEVICES ASSIGNED TO IT
AND THE NUMBER OF DEVICES THAT THESE

CONTROLLERS CAN SUPPORT IS KNOWN

THEN: ASSIGN THE DISK DRIVE TO EACH OF THE CONTROLLERS
AND NOTE THAT THE TWO CONTROLLERS HAVE BEEN

ASSOCIATED AND THAT EACH SUPPORTS ONE DEVICE

PUT-UB-MODULE-6

IF: THE CURRENT CONTEXT IS PUTTING UNIBUS MODULES
IN BACKPLANES IN SOME BOX

AND IT HAS BEEN DETERMINED WHICH MODULE TO TRY
TO PUT IN A BACKPLANE

AND THAT MODULE ISA MULTIPlEXER TERMINAL INTERFACE
AND IT HAS NOT BEEN AS SOCIA TED WITH ANY PANEL SPACE
AND THE TYPE AND NUMBER OF BACKPLANE SLOTS

IT REQUIRES IS KNOWN
AND THERE ARE AT LEAST THAT MANY SLOTS AVAILABLE

IN A BACKPLANE OF THE APPROPRIATE TYPE
AND THE CURRENT UNIBUS LOAD ON THAT BACKPLANE

IS KNOWN
AND THE POSITION OF THE BACKPLANE IN THE BOX IS KNOWN

THEN: ENTER THE CONTEXT OF VERIFYING PANEL SPACE
FOR A MULTIPLEXER

Figure 1: Two Sample Rules

It is usual to distinguish the matching of forms and data from
search; for example, in discussing the amount of search occurring
in a resolution theorem prover, the unification of clauses is
considered to be part of tt'le elementary search step. But Match is
also a method for doing search in a state space [6]; it is analogous
to methods such as Hill Climbing or Means-ends Analysis, though
much more powerful. The characteristic that distinguishes Match
from other Heuristic Search methods is that in the case of Match
the conditions (tests) associated with each state are sufficient to
guarantee that if a state transition is permissible, then the new
state will be on a solution path (if there is a solution path). Thus
with Match, false paths are never generated, and so backtracking
is never required. Match is well suited for the configuration task
because, with a single exception, the knowledge that is available
at each step is sufficient to distinguish between acceptable and
unacceptable paths. The subtask that cannot always be done with
Match alone is placing modules on the unibus in an acceptable
sequence; to perform this subtask, R1 must occassionally
generate several candidate sequences.

The fan-in and fan-out of R1's rules provide a measure of the

degree of conditionality in the configuration task. The fan-in of a
rule is the number of distinct rules that could fire immediately
before that rule; the fan ·out is the number of distinct rules that
could fire immediately after the rule. The average fan-in and
fan-out of R1's rules is 3. The graph of possible rule firing
sequences, then, has 666 nodes, one for each of the rules
(excluding the 106 output generation rules); each of these nodes
has, on the average, three edges coming into it and three going
out. It should be clear that unless the selection of which edge to
follow can be highly constrained, the cost (in nodes visited) of
finding an adequate configuration (an appropriate path through
the rules) will be enormous. It is in this context that the- power of
the Match method used by R1 becomes apparent. When R1 can
configure a system without backtracking, it finds a single path that
consists, on the average, of about 800 nodes. When R1 must
backtrack, it visits an additional N nodes, where N is the product of
the number of unsuccessful unibus module sequences it tries
(which is rarely more than 2) and the number of nodes that must
be expanded to generate a candidate unibus module
configuration (which is rarely more than 300).

R1 'S EVOLUTION. 1n a period of less than a year, R1 went from
an idea, to a demonstration system that had most of the basic
knowledge required in the domain but lacked the ability to deal
with complex orders, to a system that possesses true expertise. Its
development parallels, in many respects, the development of the
several domain-specific systems engineered by Stanford
University's Heuristic Programming Project [2]. R1's
implementation history divides quite naturally into two stages.
During the first stage, which began in December of 1978 and
lasted for about four months, I spent five or six days being tutored
in the basics of VAX system configuration, read and reread the two
manuals that describe many of the VAX configuration constraints,
and implemented an initial version of R1 (consisting of fewer than
200 domain rules) that could configure the simplest of orders
correctly, but made numerous mistakes when it tried to tackle
more complex orders.6 The second stage, which lasted for
another four months, was spent in asking people who were expert
in the VAX configuration task to examine R1 's output, point out
R1's mistakes, and indicate what knowledge R1 was lacking. R1
was sufficiently ignorant that finding mistakes was no problem.
Given a criticism of some aspect of the configuration by an expert,
all that was necessary in order to refine R1's knowledge was to
find the offending rule, ask the expert to point out the problem with
the c ondition elements in the rule, and then either modify the rule
or split it into two rules that would discriminate between two
previously undifferentiated states. During this stage, R1's domain
knowledge almost tripled.

VALIDATION. During October and November of 1979, Rt was
involved in a formal validation procedure. Over the two month
period, R1 was given 50 orders to configure. A team of six experts

6
Duting this fits! stage, R1 's name was XCON.

2 70

FORD 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

examined R1's output, spending from one to two hours on each
order. In the course of examining the configurations, 12 pieces of
errorful knowledge were uncovered. The rules responsible for the
errors were modified and the orders were resubmitted to R1 and
were all configured correctly. Each of these 50 orders contained,
on the average, 90 components; R1 fired an average of 1056 rules
and used an average of 2.5 minutes of cpu time in configuring
each order. Since January of 1980, R1 has configured over 500
orders. It is now integrated into DEC's manufacturing
organization. It has also begun to be used by DEC's sales
organization to configure orders on the day they are booked.

CONCLUDING REMARKS. R1 has proven itself to be a highly
competent configurer of VAX-11/780 systems. The configurations
that it produces are consistently adequate, and the information
that it makes available to the technicians who physically assemble
systems is far more detailed than that produced by the humans
who do the task. There are, however, some obvious ways in which
to enlarge its domain so that it can become a more helpful system.
Work has already begun on augmenting R1's knowledge to enable
it to configure other computer systems manufactured by DEC. In
addition, we plan to augment its knowledge so that it will be able to
help with the scheduling of system delivery dates. We also plan to
augment Rl's knowledge so that it will be able to provide
interactive assistance to a customer or salesperson that will allow
him, if he wishes, to specify some of the capabilities of the system
he wants and let R1 select the set of components that will provide
those capabilities. Ultimately we hope to develop a salesperson's
assistant, an R1 that can help a customer identify the system that
best suits his needs.

ACKNOWLEDGEMENTS. Many people have provided help in
various forms. Jon Bentley, Scott Fahlman, Charles Forgy, Betsy
Herk, Jill Larkin, Allen Newell, Paul Rosenbloom, and Mike
Rychener gave me much encouragement and many valuable
ideas. Dave Barstow, Bruce Buchanan, Bob Englemore, Penny
Nil, Ted Shortliffe, and Mark Stefik contributed their knowledge
engineering expertise. Finally, Jim Baratz, Alan Belancik, Dick
Caruso, Sam Fuller, Linda Marshall, Kent McNaughton, Valdis
Mongirdas, Dennis O'Connor, and Mike Powell, an of whom are at
DEC, assisted in bringing R 1 up to industry standards.

REFERENCES

1. Amarel, S. et al. Reports of panel on applications of artificial
intelligence. Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, MIT, 1977, pp. 994-1006.

2. Feigenbaum, E. A. The art of artificial intelligence.
Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, MIT, 1977, pp. 1014-1029.

3. Forgy, C. L. and J. McDermott. OPS, A domain-independent
production system language. Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, MIT, 1977,
pp. 933-939.

4. Forgy, C. L. RETE: A last algorithm lor the many
pattern/ many object pattern match problem. Carnegie-Mellon
University, Department of Computer Science, 1980.

5. McDermott, J . R1 : a rule-based configurer of computer
systems. Carnegie-Mellon University, Department of Computer
Science, 1980.

6. Newell, A. Heuristic programming: ill-structured problems.
In Progress in Operations Research, Aronofsky, J. S.; Ed.,John
Wiley and Sons, 1969, pp. 361-414.

7. Newell, A. Knowledge representation aspects of production
systems. Proceedings of the Fifth International Joint Conference
on Artificial Intelligence, MIT, 1977, pp. 987-988.

8. Waterman, D. A. and F. Hayes-Roth. Pattern.Directed
Inference Systems. Academic Press, 1978.

271

FORD 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

