
Page 1 of 224 FORD 1011

Introduction to

Kno led

Mark Stefik

Morgan Kaufmann Publishers, Inc.
San Francisco, California

Page 2 of 224 FORD 1011

Sponsoring Editor Michael B. Morgan
Production Manager Yonie Overton
Production Editor Elisabeth Beller
Editorial Coordinator Marilyn Uffner Alan
Text Design, Project Management,

Electronic Illustrations and Composition Professional Book Center
Cover Design Carron Design
Copyeditor Anna Huff
Printer Quebecor Fairfield

Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205 USA
Telephone 415/392-2665
Facsimile 415/982-2665
Internet mkp@mkp.com

Library of Congress Cataloging-in-Publication Data is available for this book.
) t::~

I.,,,.

r-""i l'\

0(!-+
ISBN 1-55860-166-X

© 1995 by Morgan Kaufmann Publishers, Inc.

All rights reserved

Printed in the United States of America

99 98 97 96 95 5 4 3 2 1
,~:.--~-~1 ~~""'l

{ .<-''"'
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means---electronic, mechanical, photocopying, recording, or otherwise-without the prior written
permission of the publisher.

Brand and product names referenced in this book are trademarks or registered trademarks of their respec
tive holders and are used here for informational purposes only.

Page 3 of 224 FORD 1011

on tents

Foreword Edward A. Feigenbaum xiii

Preface xv

Notes on the Exercises xix

INTRODUCTION AND OVERVIEW 1

PART I FOUNDATIONS 19

CHAPTER 1 Symbol Systems 21

1.1 Symbols and Symbol Structures 22
1.1.1 What Is a Symbol? 22
1.1.2 Designation 25
1.1.3 Causal Coupling 28
1.1.4 Cognitive and Document Perspectives of Symbols 30
1.1.5 Summary and Review 32

Exercises for Section 1.1 32

1.2 Semantics: The Meanings of Symbols 35
1.2.1 Model Theory and Proof Theory 36
1.2.2 Reductionist Approaches for Composing Meanings 41
1.2.3 Terminology for Graphs and Trees 44
1.2.4 Graphs as Symbol Structures 47
1.2.5 The Annotation Principle and Metalevel Notations 50
1.2.6 Different Kinds of Semantics 55
1.2.7 Summary and Review 59

Exercises for Section 1.2 60

v

Page 4 of 224 FORD 1011

vi

1.3 Modeling: Dimensions of Representation 68
1.3.1 Fidelity and Precision 69
1.3.2 Abstractions and Implementations
1.3.3 Primitive and Derived Propositions
1.3.4 Explicit and Implict Representations
1.3.5 Representation and Canonical Form
1.3.6 Using Multiple Representations 85
1.3.7 Representation and Parallel Processing
1.3.8 Space and Time Complexity 89
1.3.9 Structural Complexity 98
1.3.10 Summary and Review 101

Exercises for Section 1.3 102

71
77

80
84

88

1.4 Programs: Patterns, Simplicity, and Expressiveness 107
1.4.1 Using Rules to Manipulate Symbols 107
1.4.2 Treating Programs as Data 110

CONTENTS

1.4.3 Manipulating Expressions for Different Purposes 112
1.4.4 Pattern Matching 114
1.4.5 Expressiveness, Defaults, and Epistemological Primitives 117
1.4.6 The Symbol Level and the Knowledge Level 129
1.4.7 Summary and Review 130

Exercises for Section 1.4 131

1.5 Quandaries and Open Issues 136

CHAPTER 2 Search and Problem Solving 146

2.1 Concepts of Search 147
2.1.1 Solution Spaces and Search Spaces 148
2.1.2 Terminology about Search Criteria 153
2.1.3 Representing Search Spaces as Trees 156
2.1.4 Preview of Search Methods 157
2.1.5 Summary and Review 158

Exercises for Section 2.1 159

2.2 Blind Search 165
2.2.1 Depth-First and Breadth-First Search 165
2.2.2 Top-Down and Bottom-Up Search: A Note on Terminology 171
2.2.3 Simple and Hierarchical Generate-and-Test 173
2.2.4 A Sample Knowledge System Using Hierarchical

Generate-and-Test 180
2.2.5 Simple and Backtracking Constraint Satisfaction 187
2.2.6 Summary and Review 193

Exercises for Section 2.2 194

Page 5 of 224 FORD 1011

CONTENTS vii

2.3 Directed Search 203
2.3.1 Simple Match 205
2.3.2 Means-Ends Analysis 210
2.3.3 Hierarchical Match and Skeletal Planning 219
2.3.4 Hill Climbing and Best-first Search 225
2.3.5 Shortest-Path Methods 232
2.3.6 A* and Related Methods 239
2.3.7 Summary and Review 248

Exercises for Section 2.3 251

2.4 Hierarchical Search 259
2.4.1 Two-Level Planning 264
2.4.2 Planning with Multiple Abstraction Levels 271
2.4.3 Planning with Imperfect Abstractions 275
2.4.4 Summary and Review 279

Exercises for Section 2.4 280
.,

2.5 Quandaries and Open Issues 287

CHAPTER 3 Knowledge and Software Engineering 291

3.1 Understanding Knowledge Systems in Context 292
3.1.1 The Terminology of Knowledge Systems and Expertise 292
3.1.2 Knowledge Systems and Document Systems:

Five Scenarios 299
3.1.3 Preview of Knowledge Acquisition Topics 311
3.1.4 Summary .and Review 312

Exercises for Section 3.1 312

3.2 Formulating Expertise 314
3.2.1 Conducting Initial Interviews 314
3.2.2 Taking Protocols 320
3.2.3 Characterizing Search Spaces 324
3.2.4 Adapting Protocol Analysis for Knowledge Systems 327
3.2.5 Summary and Review 330

Exercises for Section 3.2 330

3.3 Collaboratively Articulating Work Practices 336
3.3.1 Variations in Processes for Interview and Analysis 336
3.3.2 Documenting Expertise 345
3.3.3 Engineering Software and Organizations 349
3.3.4 Summary anq Review 358

Exercises for Section 3.3 359

Page 6 of 224 FORD 1011

viii CONTENTS

3.4 Knowledge versus Complexity 365
3.4.1 MYCIN: Study of a Classic Knowledge System 365
3.4.2 The Knowledge Hypothesis and the Qualification Problem 380
3.4.3 Summary and Review 389

Exercises for Section 3.4 389

3.5 Open Issues and Quandaries 394

PART II THE SYMBOl lEVEl

CHAPTER 4 Reasoning about Time

4.1 Temporal Concepts 407
4.1.1 Timeline Representations 407
4.1.2 A Discrete Model of Transactions

in the Balance of an Account 408

4.2 Continuous versus Discrete Temporal Models 410

4.3 Temporal Uncertainty and Constraint Reasoning 411
4.3.1 Partial Knowledge of Event Times 412
4.3.2 Arc Consistency and Endpoint Constraints 414
4.3.3 Time Maps and Scheduling Problems 416
4.3.4 The Interface between a Scheduler and

a Temporal Database 416

4.4 Branching Time 421

4.5 Summary and Review 423

Exercises for Chapter 4 424

4.6 Open Issues and Quandaries 427

CHAPTER 5 Reasoning about Space

5.1 Spatial Concepts 433

5.2 Spatial Search 435
5.2.1 Simple Nearest-First Search 436
5.2.2 Problems with Uniform-Size Regions 437
5.2.3 Quadtree Nearest-First Search 438
5.2.4 Multi-Level Space Representations 440

5.3 Reasoning about Shape 442

5.4 The Piano Example: Using Multiple Representations of Space 444
5.4.1 Reasoning for the Piano Movers 444
5.4.2 Rendering a Piano 448
5.4.3 The Action of a Piano 450

403

405

432

Page 7 of 224 FORD 1011

CONTENTS ix

5.5 Summary and Review 452

Exercises for Chapter 5 453

5.6 Open Issues and Quandries 458

CHAPTER 6 Reasoning about Uncertainty and Vagueness

6.1 Representing Uncertainty 461
6.1.1 Concepts about Uncertainty
6.1.2 The Certainty-Factor Approach
6.1.3 The Dempster-Shafer Approach
6.1.4 Probability Networks 483

461
469
476

6.1.5 Summary and Conclusions 504

Exercises for Section 6.1 506

6.2 Representing Vagueness 517
6.2.1 Basic Concepts of Fuzzy Sets 518
6.2.2 Fuzzy Reasoning 524
6.2.3 Summary and Conclusions 531

Exercises for Section 6.2 532

6.3 Open Issues and Quandries 533

PART Ill THE KNOWLEDGE LEVEl.

CHAPTER 7 Classification

7.1 Introduction 543
7.1.1 Regularities and Cognitive Economies 543

7.2 Models for Classification Domains 54 7
7.2.1 A Computational Model of Classification 547
7 .2.2 Model Variations and Phenomena 549
7 .2.3 Pragmatics in Classification Systems 554
7 .2.4 Summary and Review 556

Exercises for Section 7.2 557

7.3 Case Studies of Classification Systems 563
7.3.1 Classification in MYCIN 563
7.3.2 Classification in MORE 567
7 .3.3 Classification in MOLE 572
7.3.4 Classification in MDX 580
7.3.5 Classification in PROSPECTOR 582
7.3.6 Summary and Review 586

Exercises for Section 7.3 586

460

541

543

Page 8 of 224 FORD 1011

CONTENTS

7.4 Knowledge and Methods for Classification 588
7.4.1 Knowledge-Level and Symbol-Level Analysis

of Classification Domains 589
7.4.2 MC-1: A Strawman Generate-and-Test Method 592
7.4.3 MC-2: Driving from Data to Plausible Candidates 593
7.4.4 MC-3: Solution-Driven Hierarchical Classification 594
7.4.5 MC-4: Data-Driven Hierarchical Classification 596
7.3.6 Method Variations for Classification 599
7.4.7 Summary and Review 602

Exercises for Section 7.4 603

7.5 Open Issues and Quandaries 604

CHAPTER 8 Configuration 608

8.1 Introduction 608
8.1.1 Configuration Models and Configuration Tasks 609
8.1.2 Defining Configuration 610

8.2 Models for Configuration Domains 612
8.2.1 Computational Models of Configuration 612
8.2.2 Phenomena in Configuration Problems 615
8.2.3 Summary and Review 620

Exercises for Section 8.2 621

8.3 Case Studies of Configuration Systems 625
8.3.1 Configuration in XCON 625
8.3.2 Configuration in M1/MICON 633
8.3.3 Configuration in MYCIN's Therapy Task 637
8.3.4 Configuration in VT 640
8.3.5 Configuration in COSSACK 647
8.3.6 Summary and Review 650

Exercises for Section 8.3 652

8.4 Methods for Configuration Problems 656
8.4.1 Knowledge-Level and Symbol-Level Analysis

of Configuration Domains 656
8.4.2 MCF-1: Expand and Arrange 661
8.4.3 MCF-2: Staged Subtasks with Look-Ahead 662
8.4.4 MCF-3: Propose-and-Revise 665
8.4.5 Summary and Review 665

Exercises for Section 8.4 666

8.5 Open Issues and Quandaries 667

Page 9 of 224 FORD 1011

CONTENTS

CHAPTER 9 Diagnosis and Troubleshooting

9.1 Introduction 670
9 .1.1 Diagnosis and Troubleshooting Scenarios
9 .1.2 Dimensions of Variation in Diagnostic Tasks

9.2 Models for Diagnosis Domains 673
9.2.1 Recognizing Abnormalities and Conflicts
9.2.2 Generating and Testing Hypotheses 680
9.2.3 Discriminating among Hypotheses 690
9 .2.4 Summary and Review 700

Exercises for Section 9.2 701

670
671

677

9.3 Case Studies of Diagnosis and Troubleshooting Systems 711
9.3.1 Diagnosis in DARN 712
9.3.2 Diagnosis in INTERNIST 715
9.3.3 Diagnosis in CASNET/GLAUCOMA 724
9.3.4 Diagnosis in SOPHIE III 729
9.3.5 Diagnosis in GDE 737
9.3.6 Diagnosis in SHERLOCK 744
9.3.7 Diagnosis in XDE 748
9.3.8 Summary and Review 759

Exercises for Section 9.3 761

9.4 Knowledge and Methods for Diagnosis 764
9.4.1 Plan Models for Diagnosis 765
9.4.2 Classification Models for Diagnosis 766
9.4.3 Causal and Behavioral Models for Systems 767
9.4.4 Summary and Review 768

Exercises for Section 9.4 769

9.5 Open Issues and Quandaries 771

APPENDIX A Annotated Bibliographies by Chapter

APPENDIX B Selected Answers to Exercises

Index 853

xi

670

776

811

Page 10 of 224 FORD 1011

• lntro uction an verv1ew
The Building of a Knowledge System

tQ Identify Wild Plants

There is always a tension between top-down and bottom-up presentations. A top-down presenta
tion starts with goals and then establishes a framework for pursuing the parts in depth. Bottom
up presentations start with fundamental and primitive concepts and then build to higher-level
ones. Top-down presentations can be motivating but they risk lack of rigor; bottom-up presenta
tions can be principled but they risk losing sight of goals and direction.

Most of this book is organized bottom-up. This reflects my desire for clarity in a field that
is entering its adolescence, metaphorically if not chronologically. The topics are arranged so a
reader starting at the beginning is prepared for concepts along the way. Occasionally I break out
of the bottom-up rhythm and step-at-a-time development to survey where we are, where we have
been, and where we are going. This introduction serves that purpose.

The following overview traces the steps of building a hypothetical knowledge system.
Woven into the story are some notes that connect it with sections in this book that develop the
concepts further. Many of the questions and issues of knowledge engineering that are mysterious
in a bottom-up presentation seem quite natural when they are encountered in the context of
building a knowledge system. In particular, it becomes easy to see why they arise.

I made up the following story, so it does not require a disclaimer saying that the names
have been changed to protect the innocent. Nonetheless, the phenomena in the story are familiar
to anyone who has developed a knowledge system. Imagine that we work for a small software
company that builds popular software packages including knowledge systems. This is a story of a
knowledge system: how it was conceived, built, introduced, used, and later extended.

To Build a Knowledge System
It all began when we were approached by an entrepreneur who enjoys hiking and camping in the
hills, mountains, and deserts of California. Always looking for a new market opportunity, he

1

Page 11 of 224 FORD 1011

2 INTRODUCTION AND OVERVIEW

noticed that campers and hikers like to identify wild plants but that they are not very good at it.
Identifying wild plants can be useful for survival in the woods ("What can I eat?") and it also has
recreational value. He was convinced that conservationists, environmentalists, and well-heeled
hikers have a common need.

The entrepreneur proposed that we build a portable knowledge system for identifying
wildlife. He had consulted a California hiking club and a professional naturalist. He suggested
that we begin by constructing a hypertext database about different kinds of plants, describing
their appearance, habitats, relations to other wildlife, and human uses. Our initial project team is
as follows:

A hike representing the user community and customer.
A naturalist, our domain expert on wildlife identification.
A knowledge engineer, our expert in acquiring knowledge and knowledge representation.
A software engineer, the team leader having overall responsibility for the development of
software.

After some discussion within the company we agreed to develop a prototype version of the
knowledge system using the latest palmsize or "backpack" computers. If the technical project
seemed feasible, we would then consider the next steps of commercialization. We planned to use
the process of building the prototype to help us determine the feasibility of a larger project. We
recruited the naturalist and a prominent member of one of the hiking clubs to our project team.
We called the group together and started to learn about each other's ideas and terminology.

Notes .The participants are just getting started. They need to size up the task, develop
their goals, and determine their respective roles oh the project. They need to .consider
many questions about the nature of the knowledge system they would build. They ask
"Who wants it?'' because the situation and people matter for shaping the system. They
also ask "What do these people do?" and "What role· should the system play?" because
these issues arise in all software engineering projects,

Connections See Chapter 3 for a discussion of the initial interview concepts :and
background on software engineering.

Our Initial Interviews
Our naturalist tells us he wants to focus on native trees of California. We begin with the famous
California redwood trees, the Sequoia sempervirens or coastal redwood and the Sequoiadendron
giganteum or giant redwood that thrives in the Sierras. Our naturalist is a stickler for complete
ness. He also adds the Metasequoia glyptostroboides or dawn redwood, which grew in most parts
of North America. The dawn redwood was thought to have become extinct until a grove was dis
covered in China in 1944. At a blackboard he draws a chart of plant families as shown in Figure
I. I. He tells us about the history of the plant kingdom:

Page 12 of 224 FORD 1011

w

DIVISION

ORDER

FAMILY

GENUS

SPECIES

Taxodium

Taxodium
distichum
(swamp

bald cypress)

I
Taxale

I
Yew

Metasequoia

Metasequoia
glyptostroboides

(dawn
redwood)

Gymnosperms

r
Taxodiaceae

(swamp cypress)

· Sequoia

Sequoia
sempervirens

(coastal
redwood)

I

Coniferale

Pinus
(pine)

Abies
(fir)

Sequoiadendron

Sequoiadendron
giganteum

(giant
redwood)

Pice a
(spruce)

Cunninghamia

Cunninghamia
lane eo lata
(Chinese

fir)

Angiosperms

Dicotyledon

I I 1···l
Oak Maple

Sciadopitys

Sciadopitys
vertic illata
(Japanese

umbrella pine)

Elm

Others

FIGURE 1.1. A partial taxonomy showing relations among plants closely related to California redwood trees. In our scenario and
thought experiment, the naturalist was asked about redwoods and started lecturing about plant families.

~

Page 13 of 224 FORD 1011

4 INTRODUCTION AND OVERVIEW

Plants evolved on Earth from earlier one-celled animals. About 200 million years
ago was the age of conifers, the cone-bearing trees. Redwoods are members of the
conifers, which were the dominant plant species at that time. They are among the
gymnosperms, plants that release their seeds without a protective coating or shell.

Our naturalist is a gifted teacher but he tends to slip into what we have started to call his
"lecture mode." After an hour of exploring taxonomies of the plant kingdom we begin to get rest
less. One of the team members interrupts him to ask the proper location in the taxonomy for the
"albino redwoods," which are often visited in Muir Woods. This question jars the naturalist.
Albinos do not fit into the plant taxonomy because they are not a true species, but rather a
mutated parasite from otherwise normal coastal redwoods. Redwoods propagate by both seeds
and roots. Sometimes something goes wrong in the root propagation, resulting in a tree that lacks
the capability to make chlorophyll. Such rare plants would normally die, except a few that con
tinue to live parasitically off the parent. Albino trees have extra pores on their leaves that rnalce
them efficient for moving quantities of water and nutrients from their host and parent trees.

At this point another member of the group, a horne gardener, wants to know about trees she
had purchased at a local nursery called Sequoia sempervirens soquel and Sequoia sempervirens
aptos blue. Again, the naturalist explains that these trees are not really species either. Rather,
they are clones of registered individual coastal redwoods, propagated by cuttings and popular
with nurseries because they grow to be predictable "twins" to the parent tree, having the same
shape and color. These registered clones are sometimes called cultivars. They would be impossi
ble to identify reliably by visual examination alone and they are not found in the wild.

This leads us to a discussion of exactly what a taxonomic chart means, what a species is,
what the chart is useful for, and whether it is really a good starting place for plant identification.
Clearly the chart does not contain all the information we need about plants because some plants
of apparent interest do not appear in it. We also have learned that there are some plants about
which there is debate as to their lineage. After discussion we decide that the information is inter
esting and that it would be a good base for establishing names of plants, but that it would not be
appropriate for us to proceed by just filling out more and more of the taxonomic chart. We decide
to focus on actual cases of plant identification at our next session.

Notes In this part of the story the participants are beginning to build bridges into each
other's areas to understand how they will work together. They bring to the discussion
some preexisting symbol structures or representations, such as the plant taxonomic chart.
Often there needs to be discussion about just what the symbols mean and whether those
meanings are useful for the task at hand. As in this story, it sometimes turns out that these
symbols and representations need to be modified. When the end product includes a
knowledge system, then conventions about symbol structures must be made precise
enough for clear communication and also expressive enough for the distinctions made in
performing the task

Connections See Chapter 1 for an introduction to symbols and symbol structures and
the assignment of meaning to them. See Chapter 3 for a discussion of tools and methods
for incremental formalization of knowledge.

Page 14 of 224 FORD 1011

To Build a Knowledge System 5

1. The specimen is tall,
2. I'd guess about 30 or 35 feet tall.
3. So it's a tree ...
4. symmetrical in shape.
5. From the needles in the foliage, it's obviously a pine,
6. but not one of the coastal pines since we're at too high an elevation in these mountains.
7. Could be either a Pinus ponderosa, ajeffreyi, or a torreyana.
8. Let's see (walking in closer) ... dark green needles, not yellow-green,
9. about7inches1ong,and

10. in clusters of three.
11. Rather grayish bark, not cinnamon-brown.
12. Medium-sized cones.
13. Seems to be a young tree. Others like it are near, reaching heights of over a hundred feet tall.
14. It's probably a Pinus jeffreyi, that is, a Jeffrey pine.

FIG~RE 1 . .2. Transcription of our naturalist talking through the identification of one of the plants.

The Naturalist in the Woods
We prepare to study the naturalist's classification process on some sample cases. One member of
the group sets up portable video and audio recorders at a local state park. Our hiking club mem
ber is our prototype user. We define his job as walking into the woods and selecting a plant to be
identified. In this way we hope to gain insight into what plants he finds interesting and to test the
relevance of the plant taxonomy. We ask the naturalist to "think out loud" as he identifies·plants.
Recording such a session is called taking a protocol. This results in verbal data where the natural
ist talks about the bark coloration, surface roots, and leaf shapes. After these dialogs are recorded
and pktures of the plants are taken, we transcribe all of the tapes. Figure 1.2 shows a sample tran
script.

Mter the session in the park, we go over the transcripts carefully with the naturalist, trying
to reconstruct any intermediate aspects of his thought process that were not verbalized. We ask
him a variety of questions. "What else did you consider here? How did you know that it was not
a manzanita? Why couldn't it have been a fir tree or a digger pine? Why did you ask about the
coloring of the needles?" Our goal is not so much to capture exactly what his reasoning was in
every case, but rather to develop a set of case examples that we could use as benchmarks for test
ing our computer system. As it turns out, the naturalist does different things on different cases.
He does not always start out with exactly the same set of questions, so his method is not one of
just working through a fixed decision tree or discrimination network.

Notes At this point the group has begun a process of collecting knowledge about the
task in terms. of examples of problem-solving behavior. As we will see below, it is possi
ble to make some false starts in this, and it is also possible to recover from such false
starts.

Connections See Chapter 3 for discussion of the assumptions and methods of the
"transfer of expertise approach.

Page 15 of 224 FORD 1011

6 INTRODUCTION AND OVERVIEW

Characterizing the Task

The knowledge engineer begins a tentative analysis of the protocols. He tells us he might need to
analyze these sessions several different ways before we are done. He wants to characterize the
actions of the naturalist in terms of problem-solving steps. His approach is to model the problem
solving task as a search problem, in which the naturalist's steps carry out different operations in
the search. Figure 1.3 shows his first tentative analysis of the session from Figure 1.2. In this, he

Collect Initial Data
Determine height of plant: Plant is more than 30-feet tall. (1)
Shape is symmetrical. (4)
Foliage has needles. (5)

Determine General Classification
Infer: Plant is a tree. (3) Plant is a pine tree or a close relative.
Knowledge: Only pines and close relatives have needle-shaped leaves. (5)

Collect Data about Location
Mountrun location.
Knowledge: Trees from the low areas and the coast do not grow in the mountains. (6)
Rule out candidates that do not grow in this region.

Form Specific Candidate Hypotheses
Mountain pine trees include the Pinus ponderosa, the jeffreyi, and the torreyana .. (7)

Determine Data to Discriminate among Hypotheses
Knowledge: The hypotheses make different predictions about needle color and bark color.
Species: ponderosa jeffreyi torreyana
Bark color: cinnamon-brown grey brown
Needle color: yellow-green dark green du11 green.
Needle clusters: three three five
Needlelength: 8" 7" 10"

CollectDiscriminating Data
Needles are dark green. (8)
Needle$ are 7 inches long. (9)
Needles are clustered in threes. (10)
Barkis grayish. (11) ·
Cones are medium-size. (12)

Consider Reliability of Data
There are other trees in the area of the same character. (13)
Mature he!ghtofother:s is more than lOOfeet. (13)
Infer that the specimen is representative but not yet full grown. (13)

Dete'rm.ine Whether Unique Solution Is Found
Only a Pinus jeffreyi fits th.e data. (14)

Retrieve Common Name
Knowledge: APinusjeffreyi is commonly called a Jeffrey pine.

FIGURE 1.3. Preliminary analysis of the protocol from the transcript in Figure 1.2. The numbers in paren
theses refer to the corresponding steps in Figure 1.2.

Page 16 of 224 FORD 1011

To Build a Knowledge System

Examples:
Tall tree

Desert region
Spring bloomer ...

Examples:
Tree is 30 feet tall
Rainfall is 4 inches

per year
Berries are red

Data. Space

Abstracted
data

t
/II.. Data
' I ' abstraction

t

G

Heuristic
match

Solution Space

Solution , 1 ,
refinement 'f

t

Examples:
Pinus family

Vine in bush ...

Examples:
Arbutus menzies IT

(Madrone) ...

FIGURE 1.4. The search spaces for classification. This method reasons about data, which may be
abstracted into general features. The data are associated heuristically with abstracted solutions and ulti
mately specific solutions.

7

characterized operations such as "determining the general classification," "collecting data,"
"forming specific candidate hypotheses," and so on. These operations constitute a sketch of a
comp~tation model for the plant identification, which searches through a catalog of possible
answers.

This tentative analysis of the protocol is consistent with a computational model that the
knowledge engineer calls "classification." Someone in the group objects, arguing that the natu
ralist was not "classifying." Instead, he was merely "identifying" plants because the classes of
possible plants were predetermined. The knowledge engineer agrees but explains that this is
exactly what classification systems do. He draws Figure 1.4 to illustrate the basic concepts used
in this method.

To use this method, we needed to identify the kinds of data that could be collected in the
field-the data space-as well as the kinds of solutions-the solution space. Data consist of such
observations as the number of needles in a cluster. A final solution is a plant species. Classifica
tion uses abstractions of both data and solutions. A datum such as "3 inches of rain falls in the
region annually" might be generalized to "this is a dry, inland region." A solution and species
description such as Pinus contorta murray ana (lodgepole pine) might be generalized to pine tree.
There are variations of classification, but they all proceed by ruling out candidate solutions that
do not fit the data. Further analysis of protocols on multiple cases would be needed to determine
what kinds of knowledge were being used and how they were used.

The knowledge engineer now has some questions for the naturalist. Suppose the solution
space is given by a catalog of possibilities, such as the charts in the botany books we used on the

Page 17 of 224 FORD 1011

INTRODUCTION AND OVERVIEW

project. The protocol analysis in Figure 1.3 shows that the naturalist quickly ruled out the coastal
varieties of the pine tree. But how about the many other species of pine that grow in the moun
tains? With book in hand, he asks why the naturalist had not considered a coulter pine (Pinus
coulteri). The naturalist is taken aback. He answers that the coulter pine actually is a plausible
candidate and asks to see the pictures of the specimen. After looking at it, he says the pine cones
are too small and that the specimen does not have a characteristic open tree shape like an oak
tree. Continuing, the knowledge engineer asks about the sugar pine. The naturalist answers that
the cross-examination ferls like "lesson time," but that sugar pines are the tallest pine trees in the
world, being more than 200 feet tall and that you would know immediately if you were in a sugar
pine forest. However, the idea of systematically going through the catalog to analyze the proto
cols is appealing, so the two of them start working over them. The naturalist suggests that all of
this post-protocol explanation and introspection might make him more systematic about his own
methods.

As we continue to work on this, the significant size of the search space becomes clearer to
everyone. One could be "systematic" by asking leading questions about each possible plant spe
cies. I;Iowever, there are about 50 common species of just pine trees in California. Species of
trees represent only a small fraction of the native plants. A quick check of some catalogs suggests
that there are about 7,000 plant species of interest in California, not counting 300 or 400 species
of wildflowers that are often discounted as weeds. It is clear that any identification process needs
a means to focus its search, and that we need to be economical about asking questions. We begin
to examine the protocols for clues about search strategy. We want to understand not only what he
knows about particular plants, but also how he narrows the search, using knowledge about the
families of plants and other things to quickly focus on a relatively small set of candidates.

Notes The group is developing a systematic approach for gathering and analyzing the
do~ain lmowledge. The protocol analysis has led to a framework based on heuristic clas
sification. Usually protocol analysis and selection of a framework are done together. It is
not ull.usual for the analysis to reveal aspects that were :q.ot articulated. Experts sometimes

_ forget to say things out loud and sometimes make mistakes. For these reasons, it is good
practice to compare many examples of protocols on related cases. Knowledge needed for
a task is seldom revealed all at once.

Connections See Chapter 2 for characterizations of problem solving as search andfor
the terminology of data spaces, search spaces, and solution spaces. This chapter focuses
on basic methods for search. To build a computational model of a task domain, we need

-to identify-the search spaces and to determine what knowledge is needed and how itis
used. See Chapter 3 for a discussion about approaches and psychological assumptionsfor
the analysis of protocols. See Chapters 7, 8, and 9 for examples of the knowledge-level
analysis and computational models for different tasks.

A "Naturalist in a Box"
As we build up a collection of cases and study the transcripts, we become aware of some diffi
culties with our approach. The first problem is that the naturalist is depending a great deal on

Page 18 of 224 FORD 1011

To Build a Knowledge System 9

properties of the plants that he can see and smell. Much of the knowledge he is using in doing
this is not articulated in the transcripts.

Our hiking club representative kids the naturalist, saying he is "cheating" by just looking at
the plants. We decide to take this objection seriously, and then notice three specific kinds of
problems in the collected protocols. The first problem is that the naturalist makes his visual
observations very quickly and often neglects to verbalize what he is doing at that point. Second,
the naturalist does not articulate what guides his processes of perception. We need a systematic
way of knowing where he is looking and then gathering the characterizations and inferences
from what is seen. Third, we realize that the situation in which our system will be used intro
duces a new aspect of the task outside of the naturalist's field experience: communicating as
though blind with an inexperienced observer. In short, the taking and analyzing of protocols
seemed to be a good approach, but our approach was providing us with data for solving the
wrong problem.

These problems mean that we have more work to do. For example, some additional "defi
nitions" need to be captured, such as just what a "mottled pattern" is and what color is "cinna
mon-brown." In using terms to refer to things in the world, we need to be sure that another
observer can interpret the description and find the same thing. We call this the "reference" prob
lem. We become nervous about the perceptual aspects of the naturalist's thinking because our
"portable classifier" would not have capabilities for machine perception: In our projected system
our users will need to observe the plants themselves. In addition, much technical vocabulary.
appeared in the protocols. We are becoming familiar with the naturalist's vocabulary as a result
of working on the project. However, we recognize that our potential users and customers will not
be comfortable with a question such as "Does it have radical leaves?" or "How many stamens
and stigma are there?"

Again, we need a new approach to create a product that our potential customers will find
usable. After a few hours of brainstorming, one of the group members proposes a knowledge
acqui_sition set up that we later called "our naturalist in a box," as shown in Figure 1.5.

In our setup the naturalist sits at a working table in a tent in the forest with whatever books
and pictures he needs. The user walks off into the woods with a portable television. Each has a
headset that allows them to speak by radio. In addition, the naturalist can show pictures from his
books or drawings over the video link. This setup approximates the storage and display functions
we would have with a portable hypermedia system, where the computer and stored images might
perform the role of the "naturalist in the box." The voice communication would substitute for a
pointing device and keyboard. All communications on the audio and video links are recorded for
our later analysis. In addition, pictures of the plants and the user are taken, but not shown to the
naturalist until later when we analyze the sessions.

At first the naturalist feels quite confined and hampered by the setup. A crucial question
was whether the naturalist could properly identify the plants without seeing them. Soon, how
ever, it becomes clear that the naturalist is able to function in this mode and that the setup is suit
able for obtaining the information we need. We begin to discover specific requirements about the
interactions with the user.

Along the way there are some interesting surprises. One fall day, a user wants to identify a
brilliant red shrub at the side of the trail. As he describes the bush, the naturalist starts to ask
whether it has shiny leaves organized in groups of three originating from the same point on the

Page 19 of 224 FORD 1011

10 INTRODUCTION AND OVERVIEW

Video camera

User
Naturalist

FIGURE 1.5. Our "naturalist in a box" setup for gathering realistic problem-solving protocols.

stem. Suddenly the naturalist becomes alarmed and says, "No, don't touch that! It's probably
Rhus diversiloba, I mean, poison oak!" This leads us to recognize the need for additional
functionality in the performance program, beyond the simple drive to classify.

We begin to record various images of the plants from our cases and organize them for com
puter-contr?lled retrieval in a catalog of digitized images. The naturalist begins to use these
images in his conversations with the "users." With a few keystrokes, he can retrieve an image
and display it on the user's television. We make a simple interface to switch from general views
of a plant to close-up views of its foliage, bark, or seeds. We also make it easy to arrange image
arrays of similar plants next to each other for visual comparison. Together with the naturalist we
experiment with different ways of retrieving and displaying images.

From the many video sessions it becomes apparent that our users are not willing to answer
"20 questions" in order to identify plants. For one thing, they often do not understand words such
as pollen cones or deciduous. Over a few weeks of experimenting with the setup, we begin to
understand more about the flexibility inherent in the information exchanged in a session between
the naturalist and a user. We notice that a user might volunteer some basic constraints at the
beginning. For example, once it is determined that the region was "high desert" there is no point
in considering plants that could grow only in less arid regions. Once it is determined that it is
winter, there is no point asking questions about deciduous leaves that would no longer be on the
plant. If the user is interested in shrubs, it is not necessary to enter that constraint for every spec
imen.

Our programmers create a template of constraints that can be carried over from problem to
problem, without the need to reenter them or infer them from new data. To avoid tailoring our
interactive approach to the requirements and idiosyncrasies of a single user, we rotate through a

Page 20 of 224 FORD 1011

To Build a Knowledge System 11

collection of users and test whether the vocabularies and kinds of interactions can be easily
understood.

As we broaden our activities to different parts of the wilderness, our naturalist suggests
that we enlist the help of other naturalists who specialized in those regions. The naturalists work
alternatively as a team and as individuals checking each other's work. We find that they differ in
their approaches. This raises general issues about combining expertise. We collect the interesting
cases for staff discussion.

As we begin to use the system, we need a name for it. Someone proposes calling it
SEQUOYAH, after the Cherokee for whom the redwoods are thought to be named. Born in 1760,
Sequoyah was known for developing a written alphabet for Native American languages. His goal
was to enable the tribes to communicate and to preserve their Indian dialects. We thought that the
name was appropriate for honoring the Native Americans who lived in and knew so much about
the wilderness. We also saw the knowledge system as a new kind of writing medium or active
documentation, that would be an appropriate tool for a modem-day Sequoyah.

Notes The group has had some false starts. They needed to define the task better to
focus their process of finding and formulating the relevant knowledge. The term process
keeps coming up in the context of building and using knowledge systems. Knowledge
systems for specific tasks must be designed to fit the processes in those tasks. In this
example, the group discovered that it had made a crucial error in its assumptions about
the way that the system would be used. In particular, it had implicitly assumed that the
user would have the same observational skills as the naturalist. Addressing this exposed
the need for different protocols.

Connections Chapter 3 considers general points from software engineering about
defining tasks and about involving potential users and multiple experts in early stages of

-system design. When multiple experts are available, there is an opportunity for them to
check each other's work, to find idiosyncrasies and gaps, and to develop alternative rea-
soiling models. Chapter 1 discusses the use of multiple models in reasoning. -

Developing Formal Representations
Working from the protocols and other background material, we begin to develop formal relations
for modeling the identification of plants. These relations need to make distinctions adequate for
representing the reasoning in our sample cases. For example, we need to define a "color" relation
that would map consistently to a range of colors and color mixtures. Furthermore, we know that
the bark, leaves, and cones could all be different colors. This leads us to formalize a vocabulary
of standard "parts" for plants. Following the biologist's lead, we select standard terms for parts
and use the same names for particular relations throughout our database.

The knowledge engineer develops an example of a frame for our consideration, as shown
in Figure 1.6. As he explains it, the frame is a representation that would be used for the reasoning
done internally by SEQUOYAH and externally for our discussions of what SEQUOYAH could
and should do. Internally, SEQUOYAH might employ multiple and different representations for
some parts of its task, but we would define our understanding and view of them largely through
the vocabulary made visible in frames. Externally, user interfaces would specify how we viewed

Page 21 of 224 FORD 1011

12

Identity

Genus: Sequoia
Species: Sequoia sempervirens
Common name: coastal redwood

Shape ·---- ----,
25 years ' . '

L~:~~-J
,--------,
' ' 100 years : view :
' ---------,--------.

Spike-top 1 view :
~------- -·

Size

Max. height: 370 ft.
Max. diameter: 35 ft.

·.,'---------------'

Seed cones ' : view
'

Length: .75-1.5 inches
Scale arrangement: spirals

·------- -.
Pollen cones ' ' : view :

'
.. _______ _

Scale arrangement: spirals

INTRODUCTION AND OVERVIEW

Variations

Cultivars: aptos blue, soquel, Santa Cruz
Dwarf: Albo spica
Albino: albino redwoods

Habitat

Climate zones: 4-9, 14-24

Branches

Long branches view

Arrangement: shoots in alternate array

Short branches

Leaf arrangement: spirals

Leaves

Shape:

Stalk: sessile
Life: persistent

I Needle I
Awl

view

·------- -.
' '

~-~-i~~-j
·------- -,
' '
: view :
' ' ---------

FIGURE 1;6. Example of a composite frame tried for data entry. In designing these we seek ways that
would ensure the use of a uniform vocabulary in the database.

and interacted with the frames. His purpose at this setting is to consider some of the meaning and
vocabulary that we would use in creating SEQUOYAH. The general idea is that we will choose a
uniform vocabulary to the extent that it is possible.

The first thing he explains about the frame in Figure I.6 is that it contains many different
kinds of information. For example, the boxes marked "view" are intended to link to digitized
photographs that can be shown to the user. They are not intended for interpretation by
SEQUOYAH itself. The second point is that many of the entries have further elaborations else
where in the data base. For example, there is a frame for pollen cones, a frame for the Sequoia
genus, a frame for climate zone 14, a general frame for leaves, and so on. Using the frames, we
define vocabulary and relations for plants, their parts, their botanical classifications, their habi
tats, as well as observations and tests that could be carried out by our users. In addition we
develop criteria for choosing what to observe, choosing what candidates to consider, combining
constraints, and developing warnings about hazards.

We then discuss the different data fields, with an eye toward specifying more precisely
what they should mean. The naturalist says that separating the common name from the botanical

Page 22 of 224 FORD 1011

To Build a Knowledge System 13

name is a good idea. In the case of the redwood, several other trees are commonly called red
woods that are not related. In Brazil, the Amazonia is often called a redwood. It has light red and
orange wood. In Burma, there is a tree called the Andaman redwood. It has red or crimson wood
streaked with red. In Europe, the wood from Pinus sylvestris or Scots pine is often called red
wood. The naturalist suggests that we provide means for retrieving descriptions and comparing
trees with similar names.

We then talk about descriptions of climate zones. We decide to use the zones established in
the Sunset New Western Garden Book, which is widely used in the western states. However, there
is an important issue about the meaning of habitat. Do we mean the places where the tree could
be grown or the places where it grew naturally? Do we mean the places where it survives or the
places where it thrives? Naturalists sometimes define habitat as the regions where the species
will propagate naturally. It becomes clear that we needed to be able to distinguish several differ
ent meanings of habitat, both for consistent reasoning by the system and for consistent encoding
of the database. The naturalist offers to provide a candidate set of standard terms and relations for
the knowledge base.

Climate zones delineate places on the map. We notice in the protocols that the naturalist
makes substantial use of information about location. If SEQUOYAH knew where the user was
located, it could automatically take that information into account in its analysis, ruling out or de
emphasizing plants that would not be expected to grow there naturally. This leads us to consider
representations of map data, relating information about climate, latitude, longitude, and eleva
tion. We also decide to include information about parks, towns, lakes, and so on. We recruit a
specialist to the team who can investigate the availability and possible formats of map informa
tion.

A question comes up about the choice of units of measurement. In talking about length or
width, should we use inches and miles or metric units? That issue turns out not to matter much
because the computer can convert the information between different units of measurement.

One of the important uses of the frames is to represent the possible solutions to the classifi
cation task. Ideally, a solution corresponds to a single species. In going over the cases we had
obtained from the "naturalist in a box" protocols, however, we find a few cases that challenge
our representational capabilities. Some of the most interesting (and at first perplexing) cases are
ones where several plants were growing so closely together that the observer did not realize that
the "specimen" was actually two or more different plants. For example, vines can become so
intertwined with their host plants that their leaves appear to belong to the host. To enable
SEQUOYAH to reason about such cases, we decide to admit "composite solutions," generated
by appropriately mixing together the attributes of plants that grow in this way. In cases such as
this, decisions about what the system can represent determine the coverage of its problem-solv
ing abilities.

Finally, we notice that we need to model some data about the seasons. Plants appear differ
ently in different seasons. This is especially true for plants that show bursts of spring growth,
plants that lose their leaves, and flowers with a limited blooming period.

Over the next few weeks, we build up a knowledge base about the domain. As the knowl
edge base becomes more complete, we compare its performance on test cases with that of our
naturalist. Our goal is not so much to replicate the precise sequence of his steps as much as to
approximate his skill and expertise over a range of cases.

Page 23 of 224 FORD 1011

14 INTRODUCTION AND OVERVIEW

Notes At this point the group is beginning to develop formalsymb.olicrepresentations
to model the domain, as in the example of the redwood tree frame, Tojl!(;lge ,~dequ(l<;Y '?f
representations, the group needs to keep the task in mind. The world is quite open...:ended,
and every project needs to determine the bounds on the knowledgy that it will Jormalize;
Different designs for representation have different capabilities for milking 'distinctions.
Different choices for symbol structures can also have a large impact on the practicality of
making different kinds of inferences. For example, before picking representations for
space (map data) and time (seasonal data), we need to lmow whatkinds of inferences we
expect the system to make and which ones must be made quickly.

One powerful advantage of computer systems over books as knowledge Jiledi(lis
that they can be executed. That is, ,the mo.dels can be run and debugged on c::ase,s,:::Jbis
encourages ,the systematic development and testing of models in an experimentali1lQde: '

Connections Chapter 1 introduces concepts about symbols and meaning withe:xam.,. .
pies of objects and relations used in building models. Issues aboutrepresentationaiJ.drea
soning about space and time are considered in Chapters 4 and 5.

Testing the System with Users
Over the next few weeks we get ready to work with what we called our "beta-test" users. By
"beta-test," we mean the first people outside of our working group to try out our system. Given
our operational version of SEQUOYAH, we knew that people could give us quite specific feed
back about what they thought about it. Our goal is to collect information that will enable us to
improve our product, bringing it closer to our customers' needs.

We -use a variety of approaches to gather information. One is to work with hiking clubs to
observe their use of the system. We collect detailed records of their interactions with the system,
including video records, trying to identify those places where SEQUOYAH confused them. We
also interview them about the system and collect questionaires and suggestions. This process
reveals bugs, proposed changes, and proposed new features, which we then consider in the meet
ings of our development staff.

One thing we discover is that our customers often have very good ideas. We decide that we
need a way to encourage customers to send us new ideas and bug reports on a regular basis. This
leads to a "message" feature that we add to our system. At any time during a session, a user can
push a message key and type in a short message with a suggestion or bug report. This creates a
file on the computer with the user's name, the version of the system, the context in the session,
and so on. At some later time, the user can plug his or her computer into a modular telephone and
it would dial an 800-number that passed the information to us. The information gathered auto
matically in this way enables us to reproduce the situation where the problem arose. To encour
age contributions, we offer rewards for suggestions that we later incorporate into our products.

Notes Testing the early version of a system in realistic settings is a cruCial p~ of '
every knowledge-system project._ Custom systems that_ are tailored for a singkugroup
of users can be developed with those users from_the beginning. Companies that try.to

Page 24 of 224 FORD 1011

To Build a Knowledge System 15

market to a large .set of users need to have effective ways to probe those markets and to
assess the products. These studies can involve a joint effort between marketing and devel
opmentstaff.

Connections Marketing and testing are not major themes in this text. We mention
them here to fill in some of the larger commercial context of knowledge systems. How
eyer, Chapter 3 contains some suggestions for approaches for developing systems jointly
with user groups.

Add-on Systems
We now skip forward in the story. SEQUOYAH is in its second release in the market. Several
organizations have approached us about "opening" our knowledge base so it can be extended.

One idea that provokes a lot of interest is extending SEQUOYAH to act as a "digital trail
gu'ide" to the hiking trails in the state and national parks. Several well-known hikers express an
interest in collaborating on add-on systems, which would provide an interactive interface for hik
ers in choosing and selecting hiking trails. Different tour promoters specialize in different kinds
of hikes. Some focus on challenges. Some focus on nature walks. Some would like to exchange
"hiking instructions" that connect with each other and into the extensive map and plant database
that we have already built. For example, software for guiding a nature walk could draw the
hiker's attention to a particularly interesting redwood on a trail and could provide backup for
questions drawing on our general database about wildlife. We see that by providing facilities for
extending and exchanging databases, we can extend our market. One of the hiking magazines
proposes to work with us to develop digital trail guides that they would distribute with their quar
terly.magazine. They would like to have a partnership arrangement with us for developing the
software and also to give special agreements to their members for purchasing our systems. The
simpler proposals for a digital trail guide would build on our map database by overlaying trail
information, showing the distance between points, the altitudes, the slope of trails. Other more
elaborate proposals include systems that would design day hikes for campers on demand, given
constraints about distance, what they want to see, and so on.

In addition, a group of California nurseries approaches us about extending SEQUOYAH to
advise on landscaping with native plants. With the difficulties created by drought in California,
they have seen much greater interest in the horticultural use of water-efficient native plants. One
nursery wants to extend our database of native plants and to develop a design assistant for land
scapes. The database would be extended to include information about layout, planting, fertiliz
ing, pruning, ecology, and forest management. They want to extend the plant selections to
include plants overlooked by hikers, such as native grasses used for controlling erosion. They
observe that many horticulturists are trying to catch up in their understanding about native plants.
In an arrangement similar to one of the hiking clubs, one professional nursery proposes to create
quarterly "digital feature reports" that recommend newly available plants and to extend the
database and ideas into new areas.

We convene some company meetings to assess the commercial prospects and managment
and technical issues for these proposals. One of the issues that we see is that there will suddenly

Page 25 of 224 FORD 1011

16 INTRODUCTION AND OVERVIEW

be many different versions of our system. What will the maintenance issues be when someone is
using last year's version of our plant database with a new digital trail guide from the hiker's
club? We want the software to work together as well as possible, accessing the latest versions.

We also discover that the landscaping advisor system would need representation and rea
soning capabilities beyond those that we had used in SEQUOYAH. One member of the develop
ment sketches out a mockup of the user interface in conjunction with one of the landscape spe
cialists, a horticulturalist. The mockup, which is shown in Figure I. 7, shows the system reasoning
about plants and maps. The map representations are more detailed than the ones that we used for
SEQUOYAH, but about the same as would be needed for the trail guide applications. They
would, however, need to represent additional elements, such as water systems and lighting. Fur
thermore, the preliminary examination of the search processes for landscape design suggested
that the methods used by SEQUOYAH, heuristic classification, would not be adequate. The
landscaping system has a much more complex space of possible solutions. For example, a solu
tion might include compatible plant selections; layout; land contouring; and the construction of
sheds, patios, water sytems, and so on. There are quite a range of functions that the system could
perform, including creating perspective drawings of the landscape, projecting plant growth over
time using parameterized fractal drawings of plants, and comparsion views that show the effects
of different choices. In general, it appears that the landscape advisor would be much more com
plex than SEQUOYAH to build. We need to identify software from other vendors that we could
incorporate in the product. We recognize that a preliminary study is needed to determine what
features would be desirable and what is affordable.

As we explore the technical and policy issues for our product, we recognize that there is
not just the one business of selling "boxes" to hikers, but rather that there are many different
businesses for providing data and services in our "knowledge medium." Some of the businesses
could build on each other, and some of them require expertise beyond the means of our company.
We need to understand which businesses make sense strategically and what the conditions are for
making the~ commercially viable. If we turn our knowledge system into an "open system," we
need to consider what protections would be required for our software.

As we consider the changes we are seeing in technologies and concepts for publication and
communication, we realize that our products are examples of a new kind of writing for people
who enjoy the wilderness. The products are enabling such people to make their ideas and exper
tise active in a way that is more adaptable than books. Reflecting back on the Cherokee
Sequoyah's work to introduce an alphabet as a symbol system for American Indians, we feel that
the selection of a name for our system is even more appropriate.

Notes As knowledge systems become larger, the issues for managing, updating! and
sharing information become more crucial. In the current state ofthe art, people ~ave not :
yet confronted the issues ()f making knowledge bases that can be used for multiple tasks. j
Although this point is notemphasized in the story, there are many open issues about'
copyright and distribution of electronic publications and electronic services. The first j
generation of electronic networks discouraged commercial participation and sidestepped

1

.the opportunity (and effort) to shape or inform enduring public policies, .Many poijcy~ j

makers now believe that even the research networks seem likely to benefit fronithe use
1

of market mechanisms to fOster the creation and administratiqn of new services:

Page 26 of 224 FORD 1011

To Build a Knowledge System

The Landscape Advisor

Foliage constraint

I evergreen II deciduous I
Climate zone: 14

Landscape overview

Sunshine hill

Conditions

~ I full sun I heat resistant

wet soil II drought tolerant I
oak root
fungus

forest

smog
tolerant

region

Wildflower
region

D

special
conditions

Picnic
region

I Drought-resistant plants I
Wildflowe< <ogion .~ ~ Wllilregion
Background function Foreground function

~------------------------------- -------: I -------------------·--••••••••

drought-resistant ' : drought-resistant ' :
shrubs ' ' flowers and grasses '

I : ' I : :
drought-resistant shrubs ' ' perennials, drought-resistant
between 6 and 8 feet tall

: : flowers and grasses
' ' '

17

FIGURE 1.7. Mockup of a user interface for a landscape advisor. This system needs to accept as input a
description of a landscape, including details about land contours, existing vegetation and trees, and uses
for different areas. It needs a vocabulary to identify different uses of plants in yards, such as for erosion
control, screening, shade, and so on. It needs to represent a variety of constraints about kinds of foliage
desired, soil condition, and user needs. A "solution" is an expression of any of the plantings, changes to
land contours, or physical structures that make up the elements of a landscape.

Page 27 of 224 FORD 1011

18 INTRODUCTION AND OVERVIEW

The Story and This Book

The preceding story is a tour through topics relevant to building knowledge systems. It empha
sizes the social and product issues over the technical issues of building them, which are the pri
mary topics of this book.

The SEQUOYAH story is intended to "make the strange more familiar." We seek an inte
grated perspective on diverse topics: protocol analysis from information-processing psychology,
project organization concepts from software engineering, search methods from artificial intelli
gence and operations research, and representation and reasoning concepts from computer sci
ence and graph theory. To understand about knowledge systems - from what knowledge is to
how it is represented, or from how systems are built to how they are used - requires that we
wear several different hats. For everyone, some of these hats fit better than others. This introduc
tory story provides an orientation for why there are so many hats. We refer back to it occasion
ally in the text.

As you read this book, these increasingly familiar topics will reinforce each other. Protocol
analysis may seem familiar as the art of conversation or the art of interview, but when applied in
knowledge engineering it rests on models of problem solving as search and psychological as
sumptions. Choosing a data structure may seem like the art of programming, but in the context of
knowledge engineering, the engineering choices depend on requirements for the reasoning and
search. Building a model of a classification task or a configuration task may seem like formaliz
ing common sense, but in the context of knowledge engineering it rests on foundations about
search methods and solution spaces. In this book, I hope to sharpen our perceptions of the "unex
amined familiar." People who participate in knowledge engineering in their own areas of exper
tise report a deeper sense about what they know and how they use it. They also gain new per
spectives on the nature of knowledge, and the processes for creating it, using it, debugging it, and
communicating it.

Page 28 of 224 FORD 1011

This chapter introduces symbol structures,
representation, meaning, modeling, inference, and
computation. It presumesonly a modest familiarity
with programming and logic

ym I Syste s

1

In their 1975 Turing Award paper, Allen Newell and Herbert Simon presented what they called
the physical symbol system hypothesis:

The Physical Symbol System Hypothesis. A physical symbol system has the neces
sary and sufficient means for general intelligent action.

By necessary, Newell and Simon meant that an analysis of any system exhibiting general intelli
gence would show that the system is a physical symbol system. By sufficient, they meant that any
physical symbol system of sufficient complexity could be organized to exhibit general intelli
gence. By general intelligent action, they meant the same order of intelligent and purposeful
activity that we see in people, including activities such as planning, speaking, reading books, or
composing music. This hypothesis puts symbols at the core of intelligent action. Roughly, it says
that intelligent systems are subject to natural laws and that the natural laws of intelligence are
about symbol processing.

Symbols are central and familiar elements of natural language, mathematics, logical for
malisms, and programming languages. As suggested by the physical symbol system hypothesis,
they have also been traditionally associated with dominant theories of mind and intelligence. In
recent years, symbolic and representational theories of mind have been challenged by other
accounts based on nonsymbolic and subsymbolic structures. To pursue these topics here would
defer us from our primary interest in knowledge systems and is deferred to the quandaries section
of this chapter.

Whatever the case for natural systems and general intelligence, symbols are central to
knowledge systems. We can build and study knowledge systems without resolving the issue of
whether they are intelligent. However, we cannot build them or understand them without using

21

Page 29 of 224 FORD 1011

22 SYMBOL SYSTEMS

symbols or without understanding the nature of symbols. This chapter is about symbols, what
they are, how they acquire meaning, and how they are used in creating computational models.

1.1 Symbols and Symbol Structures
Symbols are the elements of our spoken and written languages. Here are some examples of sym
bols:

Paige
infers
3.141592654
computer
a-very-long-hyphenated-word .

Symbols can be arranged into larger structures that we call symbol structures or simply
expressions. Figure 1.1 shows several examples of symbol structures.

Whev we refer to symbols in the context of knowledge systems, we usually mean words,
numbers, and graphics. These symbols appear on computer displays, are represented in computer
memories, and are manipulated by our programs. Symbols and symbol structures are so familiar
that we seldom pause to examine their nature. In the following, however, we define symbols and
introduce terminology that will enable us to be precise about the properties that we attribute to
them.

1.1.1 What Is a Symbol?

The dictionary defines a symbol as a written or printed mark that stands for or represents some
thing. A symbol may represent an object, a quality, a process, or a quantity as in music, mathe
matics, or chemistry.

For us the dictionary definition of symbol is preliminary. It conveys basic intuitions about
the term. Symbols are marks in a medium. They are used to represent things. Although this defi
nition seems simple enough, it raises some questions: Is any marking a symbol? Does the notion
of "write" include electronic or biological encodings? Can we determine from a symbol itself
what it represents? Can two people disagree about what a symbol represents? Can a symbol rep
resent itself?

Although these questions may seem obscure, simple confusions about symbols and repre
sentation repeatedly lead to difficulties in creating and using knowledge systems. Symbols are
fundamental to creating and using computational models. Through a series of examples, this sec
tion develops terminology and a framework for understanding and answering these questions.

The dictionary definition suggests that two basic themes concern the nature of symbols:
(1) What is a marking, and (2) What is representation or reference? Markings and reference are
the topics of this section.

We begin with registration, which is about recognizing and identifying markings. Con
sider Figure 1.2. What symbols are in the figure? One person might say that there are two over
lapping squares arranged so that part of one square is occluded by the other. Another person
might say simply that there is a set of eight horizontal and vertical lines. There is nothing about

I
i

1

l
1
l
i

I
I
I

l
l

1
l
l

I Page 30 of 224 FORD 1011

1.1 Symbols and Symbol Structures

-,

Paige
a+b
(SQRT{- (* bb) (* 4 a c)))

(forall (x) (if (and (instance-of x oak-leaf)
(equals season spring))

(color x green)))

(V'x) .t(~) ~ g(x)

Willythrewthe ball to Morgan.

S~bi~bt:
Verb:.

. Ot;)j~ct:

Willy

threw

ball

Mmgan

FIGURE 1.1. Examples of symbol structures. A symbol is a pattern in a physical medium recognizable
by some interpreter. A symbol structure is a physical arrangement of symbols.

23

the figure itself that makes one person right and the other wrong. These different accounts of
what symbols are in the figure are called different registrations of the figure. When different
people look at markings they may disagree about what symbols are present. They may use differ
ent conventions about notation to identify symbols in particular kinds of documents, such as
musical scores, books of poetry, or architectural drawings.

The issue of what markings constitute a symbol is intimately bound up in however a per
son or machine recognizes it. When we say that something is a symbol, we imply the choice of a
recognizer. Typically, a recognizer has an associated alphabet or set of symbols that it can recog-

I
-

FIGURE 1.2. The registration of symbols: This example shows marks on a page. There they might be
recognized as a single symbol, or as two overlapping squares, or as a set of horizontal and vertical lines.
Each different registration corresponds to a recognition process for a different interpreter.

Page 31 of 224 FORD 1011

24 1 SYMBOL SYSTEMS

nize. It can tell whether some set of markings constitutes a symbol in the set, and also, identify
the symbol. We use the terms token and type to distinguish individual physical symbols (tokens)
from classes of symbols that are recognized by the recognizer as equivalent (types). For exam
ple, if a recognizer was designed to recognize the alphabet letters used in English- as printed in a
particular font, then not counting numerals and punctuation there would be 52 types - one for
each upper and lowercase character. On a printed page in this font, each occurrence of the letter
"a" corresponds to a token. Two tokens are equivalent for the purposes of recognition if they are
of the same type.

We now give a definition of symbol that takes recognizers into account. A symbol is a
physical marking or pattern, which can be read, recognized, and written by a recognizer. A sym
bol structure is an arrangement of one or more symbols in a physical medium. We also use the
simpler term expression to refer to a symbol structure. So far, our definition of symbol mentions
markings but not representation. We postpone discussing representation, that is, the assignment
of meaning to symbols.

Not every piece of matter or energy is a symbol. The wind blows leaves across the ground
and leaves markings, but these are not symbols. When we identify certain patterns as symbols,
there must always be a recognizer that identifies the symbols. The recognizer can determine
where each symbol starts and stops, can tell them apart, and can determine the salient features of
the arrangement of symbols. Sometimes the recognizer is part of a larger system that can retrieve
and sense symbols, compare them, write new symbols, and do various kinds of reasoning. Some
times we use the somewhat vague term interpreter to refer to various kinds of larger systems
that include a recognizer.

The registration issue even arises in mundane contexts such as interpreting text symbols
written on a page. Consider the symbols in the following sentences on this page.

Willy lives across the street. He threw a ball to Morgan. (1)

In the typical account, the symbols in (1) are the images of the eleven printed words, and the
symbol structures are the sentences, which are composed of adjacent words. Other registrations
are possible. For a theory of English spelling and grammar, the symbols are the printed charac
ters, that is, images of letters of the alphabet and the symbol structures are words composed of
letters; the sentences in turn are composed of words. For a theory of typography and font design,
the symbols could be printed strokes or dots and the symbol structures the letters that they form.
Different registrations correspond to different recognizers.

The modifier physical is intended to emphasize the concrete physical realizability of sym
bols, and to preclude any confusion with "ideal" symbols that have no tangible existence, such as
perfect letters of an alphabet. The patterns can be almost anything. They can be arrangements of
electrical charge in a computer memory, arrangements of organic compounds in brain cells con
nected by nerves, patterns of electromagnetic waves with intensities arranged in time, patterns of
brightness on a display screen, patterns of nucleotides in a gene, dark marks on white paper, or
scratches and paintings on ancient Indian pottery. When we say that genes are symbols, we could
have in mind recognizers that are either automatic machines that read genes from DNA, or natu
rally occurring biological mechanisms that read genes to build proteins. The symbols in a symbol
structure can be adjacent in a medium or linked together in some other way.

Page 32 of 224 FORD 1011

1.1 Symbols and Symbol Structures 25

A physical symbol system is a machine such as a computer that operates on symbol struc
tures. It can read, recognize, and write symbols. A symbol system creates new expressions, mod
ifies old expressions, makes new copies of expressions, and destroys expressions. Symbols may
be communicated from one part of a symbol system to another in order to specify and control
activity. Over time, a physical symbol system produces a changing collection of symbol struc
tures.

Our definition of symbol admits a very wide variety of techniques for realizing symbols.
They need to persist long enough to be useful for a symbol system.

1.1.2 Designation

In some branches of theoretical computer science and mathematics, symbols are taken as primi
tive and undefined terms. In these theoretical studies of computation, ideal machines with vari
ous kinds of finite and infinite memories read and write symbols. Turing machines with finite
control stores and infinite tapes are examples of ideal machines of this sort. Like other such
abstract machines, they are used for discussing formal theories about computability.

·" These theories are concerned with fundamentals of formal languages and mathematical
objects. Not only are they removed from finite and physical implementations, but they are also
removed from practical uses and familiar settings.For example, these theories are not concerned
with issues involved in creating physical patterns and arranging for their flexible and reliable
manipulation. They treat computers as isolated systems. Symbols go in. An idealized computer
munches on them and then other symbols come out.

However, knowledge systems are built from real computers and compute things relevant to
a real, physical world. They are part of larger systems and we need to be able to discuss how they
are connected and embedded in a physical setting. To interact appropriately with an external
world, computers must be able to reason about it and also be able to represent aspects of it with
symbols. It is for worldly settings that Newell and Simon's physical symbol system hypothesis
was developed and in such settings the concepts of knowledge, reference and representation are
of interest.

An embedded computer system is one that is integrally part of a larger system. Examples
of such larger systems include electronic ignition systems devices, electronic banking systems,
inventory and manufacturing systems, aircraft carrier information management systems, electro
mechanical systems in a troubleshooting context, medical systems for patient monitoring, sales
and inventory systems at point of sale terminals, and communications networks. The boundary of
what constitutes the larger system depends on the purposes of our analysis. It could include
machines or even people in a social organization. All computer systems can be seen as embedded
systems.

Our dictionary definition of symbol says that symbols represent things. We now tum our
attention to what it means to represent something.

When we talk about representation, we need to identify three things: the symbols, the situ
ation, and an observer. As suggested in Figure 1.3, the observer is an agent, that is, someone or
something that perceives both the symbols and the situation. The observer uses the symbols as a
model of the situation. When the observer perceives the situation, he organizes his understanding
of it in his mind in terms of different elements, often referred to as objects. These objects have

Page 33 of 224 FORD 1011

26

The "tree"

0
0

0
~

Observer

SYMBOL SYSTEMS

Physical medium

abc

tree

house

Observed situation

FIGURE 1.3. Designation is in the mind of an observer. It is a mapping between elements he perceives
in the situation and symbols in the physical medium.

different relations to one another. For example, the observer might view a car in a situation as
being on the driveway, or a car door as being part of a car. The observer uses symbols to stand
for objects in the situation. When an observer picks some set of perceived objects in the situation
and makes symbols for them, we say that he reifies them. When he associates symbols with
objects in the situations, we say that the symbols designate the objects. The relation indicating
what symbols stand for is called designation, or equivalently, denotation.

This brings us to an important point about symbolhood and defining designation: the need
for an observer. The problem is that giving an account of what symbols represent requires a van
tage point, usually outside of the symbol system. In most cases, the things that symbols stand for
have been perceived by somebody. What a symbol stands for is not determined by a symbol's
encoding or by its location. Restated, designation is not a physical property of the markings.
Designation is assigned by and relative to an observer.

We introduce a distinction between a symbol system and its environment as shown in Fig
ure 1.4. The boundaries that define the symbol system and environment depend on a point of
view. The boundary around a symbol system delimits where the symbols are for particular pur
poses of analysis. A symbol system is contained in its environment and often its symbols refer to
parts of that environment. We use the term domain or symbol domain to refer to a elements of
interest in the environment.

In Figure 1.4, the observer of the computerized heating and cooling system says that "the
'reading' symbol stands for the room's temperature." From a cognitive science perspective, we
may imagine that the observer's mind may itself have separate symbol structures: one standing
for the reading symbol in the computer, one standing for the room's temperature, and another
standing for the designation relation between the first two.

Exactly what do we mean when we say that the "temperature reading of 20" designates
the room's temperature? There may be many symbols equal to 20 at various places in the
computer's memory. For example, another 20 may be used by the computer to keep track of the
number of heat vents in the building. We do not mean that every 20 pattern in the computer's

l

Page 34 of 224 FORD 1011

1 .1 Symbols and Symbol Structures 21

External environment
,-----------------------l
I Internals to the symbol system I
1 i--- ------------ ----- -- -- ---- -- ~~~~~t~r-~~~~~~----- ---- -- ---- ----------- - -! I

I l I
I l I
I l I
I : I
I Aro~ I

I I
I I
I I
I

The "reading" I
. symbol stands for the I

I room's temperature. --

I a I
I o I

I ~ I

: r\k A~==w·''ifJ~ :
L_ Observer _____________________ !

FIGURE 1.4. Designation is in the mind of an observer, who can give an account of both the symbol sys
tem and the manner in which its symbols designate aspects of an environment.

memory "stands for" the room's temperature. We probably associate a particular register in the
machine as the "temperature variable." There must be some way for an observer to access a sym
bol. Two observers discussing the meanings of symbols must assure each other that they are
referring to the same elements of the physical symbol system, such as by agreeing on the use of a
particular addressing scheme. They might say that the symbol that is stored at memory location
1012 designates the temperature of the room.

Names are not the only means for identifying particular symbols. When a computer user
looks at a display as shown in Figure 1.5, the display renders symbols and presents them for per
ception, identification, pointing and manipulation. A user interacts with a computer using the dis
play and various keyboards or pointing devices. The picture elements or pixels in the display sur
face provide a view of information stored elsewhere in the computer, updated and maintained by
a display controller. Thus, a user can identify a symbol by pointing at it, not just by naming it.

Figure 1.5 decomposes the process of designation for a variable into three steps. First an
addressing scheme (memory address 1012 or "reading") is used to locate the variable or storage
element. Then its value is determined (20). Then that value is assigned a referent in the environ-

Page 35 of 224 FORD 1011

28 1 SYMBOL SYSTEMS

Steps Example

Addressing

Mnemonic ~ Physical
name Name address ''reading'' ~ 1012

tables

Evaluation t t
Address ~ Symbol 1012 ~ 20

Eval.

Reference t t
Symbol ~ Referent 20 ~ ''room

Map temperature''

FIGURE 1.5.' Designation for a variable involves addressing, evaluation, and mapping to some referent
in the environment.

ment ("room temperature"). The addressing scheme provides each symbol with a unique address
and supplies a reliable means for accessing the symbol through that address. In effect, the
address is a name for the symbol. Computer languages often provide various external names that
are mnemonics for referring to addresses.

1.1.3 Causal Coupling
All of the action of designation is in the mind of the observer. If an observer changes his mind
about what a symbol refers to, that need not have any observable effect on the symbol or the
environment. We now consider a more active relation where changes to the symbols or the envi
ronment can have effects.

Consider the heat-regulation system in Figure 1.6, which includes a thermocouple, a com
puter, and heating and cooling units controlled by the computer. In this system the electronics
have been arranged such that the computer can access a symbol in its memory that it interprets as
a reading of the temperature of a room on a numeric scale. The value of the temperature symbol
is determined by a physical process starting with an interaction between the air in the room and a
sensor. Electrical voltages corresponding to temperature are converted to digital signals by an
analog-to-digital converter. The particular operating principles of the sensor and communication
devices do not matter for the purposes of this example. The components are arranged so that
when the temperature changes, a series of physical events follows, causing the temperature sym
bol- the contents of computer memory at address 1012- to change. This kind of connection
beween phenomena at one place and a distant symbol is called causal coupling. The term causal
coupling can be expanded to include cases where all of the changes take place inside a single
system, rather than just interactions between symbols in the system and entities in the environ
ment.

Page 36 of 224 FORD 1011

1.1 Symbols and Symbol Structures 29

External environment
,-----------------------
1 , ________________________ ~~~~~~~ _t_?_ ~~~- ~~~~-~1- ~~-s_t~~- ________________ ·:

I Computer memory :

I
I
I
I
I
I
I
I
I.
I

Heating and
cooling vent

ND
converter

Controller for
heating and

cooling system

20

address: 1012

"the temperature
reading''

Computer processor
Other

Computer communication network

' 1---' L_ ______________________ ___.j

FIGURE 1.6. Causal coupling: In this example, a change in room temperature causes a change in the
"temperature symbol" in a computer memory. Causal coupling can go from outside to inside as when a
change in the sensor causes a change to a register in the computer's memory. It can also go from inside to
outside, as when changing a register in the computer causes a setting to change in a heating vent. The key
notion is that a phenomenon or a change in something causes a change in a symbol elsewhere.

_There are always propagation delays between the time of the cause and the time of the cor
responding change to a symbol. In large distributed systems, these propagation delays can be
crucial in determining the dynamic behaviors of the systems. However, in the following exam
ples, we will assume that the delays are negligible for the purposes of our analysis.

Causal coupling can go from outside a symbol system to inside such as from a sensor to a
register in the example in Figure 1.6. It can also go from inside to outside, as when a change in a
symbol in a controller in Figure 1.6 causes a change in the setting of a heating and cooling vent
that controls the distribution of air. These two directions correspond respectively to sensing and
motor control. Causal coupling can go between two symbols inside the computer such as when
the system transmits a reading between different parts in order to decide whether to vent cool air
into a room. Copies of the reading may be transmitted periodically along a computer communi
cation network to various environmental control units in the building.

Causal coupling from an environment to symbols inside a computer is a very simple case
of machine perception. In more sophisticated examples of machine perception, the effect on
symbols is mediated by a potentially complex interpretation process. For example, consider a
machine vision system that interprets digitized images from video cameras. The required compu
tational process involves many levels of automatic analysis, and has many ambiguities and
uncertainties associated with the sensor readings and the interpretation process. For example, the
recognition of a person in a scene can involve processing of thousands of individual picture ele-

Page 37 of 224 FORD 1011

30 SYMBOL SYSTEMS

ments, recognition of edges and regions in the image, clustering of regions into larger images,
comparing images from the sensor to stored images of objects expected in the scene, and so on
until finally the image on the camera is associated with an identification symbol.

Causal coupling and designations are independent relations. A symbol may be causally
connected to an object in an environment but not designate that object for some observer; simi
larly, a symbol may designate some object in the environment for an observer but not be causally
connected with it. For example, suppose that the wire in Figure 1.6 becomes broken. In this
event, the reading inside the computer probably will be incorrect and the tokens communicated
to other systems will not be tied causally to the temperature of the room. The internal reading
now contains misinformation. The neighboring systems may respond correctly, but based on
misinformation. Indeed, reasoning about such disconnections illustrates an example where we
need to reason separately about the two relations. Even though the wire is broken, we still want
to say that the symbol "stands for" the temperature. Because the wire is broken, the mechanism
is not operating correctly and the symbol may be wrong.

1.1.4 Cognitive and Document Perspectives of Symbols

Symbols in computational systems play two distinct and important roles: the document role and
the cognitive role. When we are interested in the use of symbols to communicate with another
person, we are taking a document perspective. In this role we are interested in symbols as pre
sentations, that is, in the way that they can be used to explain things. Knowledge systems share
properties with paper and electronic documents. They use symbols, they mediate communica
tion, they are often constructed by groups of people, and people come to agreement about what
the symbols mean.

When we are interested in the use of symbols for automated reasoning in the computer, we
are taking a cognitive or "mentalist" perspective. In this role, we are interested in symbols as
representations, that is, in the way that they model a situation, the properties of the symbols as
the computer manipulates them in various ways to carry out reasoning, and in how we can use
resulting symbols to infer things about the situation.

Figure 1. 7 shows two users interacting with a graphical representation of scheduled tem
perature changes over time. In this case, the graph and various interactive menus for changing it
constitute a user interface. They are external symbols that the users can see and talk about.

The situation in Figure 1.7 is representative of the context in which knowledge systems are
created and used. Multiple people interact around a display. They create, discuss, share, and
modify symbols that appear on the display. The symbols on the display are causally connected to
symbols internal to the machine and perhaps to symbols on other machines. Part of the discus
sion is used to agree about meanings of the symbols. This is necessary in case multiple people
are making changes to the system.

Sometimes we distinguish model symbols or domain symbols, such as the temperature
reading symbol, from view symbols that represent and are causally coupled with presentations
on the display. There are often many different kinds of view symbols, engaged in different parts
of the process of rendering an appropriate image and supporting interactions with it.

Suppose two users are talking about the temperature control system, and one of them
points to a display and says, "This is the room's temperature." He is interested mainly in the
symbol structure on the display and probably means that it designates the room's temperature,

Page 38 of 224 FORD 1011

1 .1 Symbols and Symbol Structures 31

External environment
~-----------------------,

_______________________ !~~~~~~ _t_~ ~~- ~~-~~~~ ~!~t~-~- _ _ _ _ _ _ _ _ __ _ _ __ _ _ __ _ _ _ I

Heating and
cooling vent

Let's lower the
temperature by two

degrees at 7:00.

0
0

0
1\k

AID
converter

Controller for
heating and

cooling system

~I ,---·
;~

Time

Computer memory

20

(The temperature
reading symbol is in
address 1012 and has Other
the name reading.)

Computer processor

Computer communication network

processors

Display
controller

FIGURE 1.7. Two people having a discussion about the planned control of room temperature over time.
The mechanisms of the system including the sensing of room air temperature, the formatting of the dis
play, the interactions with the user interface, and the control of the heating and air conditioning through
the controller can be explained in terms of causal coupling. The assignment of meaning to symbols is
described by the concept of designation.

I
I

that he expects the other party to be able to read and understand it, and that the indication it pro
vides is up to date because of causal coupling. If the second person is a designer of the system, he
might be concerned with many internal symbols. He or she would be familiar with all of its inter
nal connections and mechanisms, could refer variously to a symbol on the display, a symbol used
to construct the image rendering of the display, the reading symbol in computer memory, the
"symbol" that is the digital electrical pattern at the output of the analog-to-digital converter, the
symbol that is the analog voltage on the output line from the sensor, or even the symbol that is
the configuration of bent metal inside the temperature sensor? To the designer all of these sym
bols play a role in the overall mechanism. When there is a chain of causal connections between
symbols in a symbol system, it is sometimes convenient to ignore the differences between them
in informal conversation.

Page 39 of 224 FORD 1011

32 SYMBOL SYSTEMS

1.1.5 Summary and Review

We began with a dictionary definition of symbols that says symbols are markings that represent
things. This definition leaves open issues about the nature of markings and the nature of repre
sentation, leading us ultimately to introduce both a recognizer and an observer into our account
of symbols.

We define markings relative to a recognition process. Symbols are physical patterns that
can be read, recognized, and written by a recognizer. The identification of a set of markings as
constituting a symbol is called registration. Symbol structures (or expressions) are arrangements
of symbols in a physical medium. There can be multiple copies of a pattern or symbol in a sym
bol system. This gives rise to the terminological distinction between types and tokens. Types are
classes of equivalent symbols in the alphabet of the recognizer; tokens are individual symbols in
a medium.

We make few computational requirements on the physical patterns used for making sym
bols. The patterns must persist long enough for the workings of the symbol system and there
must be a means for reading and writing the symbol structures.

We "define representation relative to an observer. An observer is able to look both at the
symbol system and a situation, and determines which elements of the situation are referred to by
the symbols. This kind of meaning is a semantics of reference, and is called designation or deno
tation. The term "symbol" is sometimes used casually by computer professionals to mean
roughly the same thing as "term" in propositional logic, or roughly, what we called a "marking."
However, when more precision is warranted, symbolhood requires specifying both a recognizer
to identify the markings and an observer to assign meanings to them.

An environment is a setting that contains a symbol system. Computer systems are embed
ded in larger systems. Causal connections link symbols to their environments in such a way that
a change in the environment causes a change in the symbol or a change in a symbol causes a
change in the environment. Our heat control system provides an example of this kind of connec
tion, where changes in room temperature lead to changes in a reading.

We distinguish two perspectives on symbols in symbol systems. The document perspective
emphasizes the observer's use of symbols for communication in presentations. The cognitive
perspective emphasizes the computational use of symbols as representations.

Exercises for Section 1. 1

IIIII Ex. 1 [CD-05] Wannups. The following questions about symbols were raised early in this sec
tion. Indicate the answers with yes or no. If the question is ambiguous, explain briefly.
(a) Yes or No. Is any marking a symbol?
(b) Yes or No. Can the marking for a symbol be an electronic or biological encoding?
(c) Yes or No. Can we determine from a symbol itself what it represents?
(d) Yes or No. Can two people disagree about what a symbol represents?
(e) Yes or No. Can a symbol represent itself?

Ex. 2 [CD-05] Recognizers and Observers.
(a) Briefly, why are symbols (themselves) defmed relative to a recognizer?
(b) Briefly, why is designation defined relative to an observer?
(c) Briefly, what is the difference in concerns between part (a) and part (b)?

Page 40 of 224 FORD 1011

1 .1 Symbols and Symbol Structures 33

111111

Ex. 3 [05] Designation for Symbols on a Computer Display. Consider the following story.
Two accountants are using a spreadsheet program to make financial projections about
rental property. As is typical for spreadsheet models, they have defined variables that stand
for things like rental income, utilities costs, mortgage payments, depreciation and so on.
One of the two accountants points to a place on the screen and says, "The utility cost esti
mate for this month is too low because the tenants will probably run the air conditioner dur
ing the summer." Later they discuss whether monthly cashflow variables should include
projected tax payments or depreciation.

In this chapter, we described a process of designation of program variables in terms of
three steps: addressing, evaluation, and designation. Do these steps show up in the activi
ties of the two accountants? Explain briefly.

Ex. 4 [CD-05] Terminology. For each of the following statements indicate whether it is true or
false. If the statement is ambiguous, explain briefly.

Ex.S

(a) True or False. An embedded computer system is a computer that is hidden inside a
larger system.
(b) True or False. In machine sensing, causal coupling means a change in the environ
ment causes a change of a symbol or symbol structure.
(c) True or False. In machine control, causal coupling means a change of a symbol or
symbol structure causes something to change in the environment.
(d) True or False. We defme both types and tokens with respect to a recognition process.
(e) True or False. The document perspective of symbols in a knowledge system requires
that symbols (or displays of them) need to be readable by observers who can discuss their
meanings.

[!-15] Storyboards and the Role of Assumptions in Understanding Narrative. Several pro
jects in AI have sought to create computer systems that understand stories, that is, that give
summaries of stories and answer questions about them.

This open-ended exercise shows how the translation of natural-language sentences
into formal representations requires knowledge about the situations that the sentences
describe.

Consider the following two-sentence story about Paige and Morgan, a girl and her
brother.

Paige rolled the ball to Morgan.
Morgan threw it back to Paige.

(a) A storyboard, such as is used in making movies and cartoons, is a sequence of scenes,
each of which is a snapshot of the story world.

Imagine a sequence of scenes representing the sequence of events in the story. Fill in
information for the intermediate scenes that would be represented in a storyboard for our
sample story.

For all scenes.
Paige is a person.
Morgan is a person.
There is a ball.
Paige and Morgan are in a play area.
They are playing together.
(Various implicit facts about orientation, mass, roundness of balls, gravity, air, that
are not really mentioned in the story.)

Page 41 of 224 FORD 1011

34

Ex.6

1 SYMBOL SYSTEMS

Scene 1
Paige has the ball.
She starts to roll it to Morgan.
(Various implicit facts about Paige's feet being on the ground, how she moves, etc.)

Scene 2
The ball is in motion, rolling from Paige to Morgan.
Paige no longer has the ball.
Morgan is paying attention to the arrival of the ball.

Scene 3

Scene 6
Paige catches the ball.
Paige has the ball.

(b) In the sample two-sentence story, does the story say explicitly who has the ball at the
end? What assumptions might you use to answer the question? How does understanding
the second sentence rely on understanding the first one?

[!-10] Assumptions and Nonsense. The sentences we use for efficient human communica
tion can be remarkably brief. This is possible because we use many clues from the context
to understand what is being said. In doing that, we also make many assumptions. Consider
the following answer that one person gave another when asked if he could have a ride to
the airport.

1. I could give you a ride.
2. Except that my car is being fixed at the garage.
3. But it should be ready by now.
4. Except I don't have any money to pay for the repairs.
5. But I can borrow some from Dan.
6. Except Dan isn't around right now.
7. But he should be right back.

(a) Describe what a normal, competent and rational listener would believe about the
availability of a timely ride to the airport after hearing each of these statements.
(b) What does this tell us about inferential processes for understanding stories.

Ex. 7 [7] The Knowledge Representation Hypothesis. Brian Smith (1982) proposed the knowl
edge representation hypothesis, which follows:

Every intelligent physical symbol system includes symbol structures that we as
external observers can take to be a propositional account of the system's knowl
edge. These symbol structures play an essential and causal role in determining
the system's behavior. Furthermore, the system's behavior is independent of our
account of its internal structures.

Smith does not require a trivial mapping of one symbol structure to one proposition, and
the symbol structures can be graphs, arrays, or distributed symbols. The encoding process
could be arbitrarily complex. For example, in a particularly perverse security robot the
symbols could be recorded using an encryption algorithm, which presumably would make
the "mentalese" elusive or computationally intractible to decipher. Thus, the knowledge
representation hypothesis covers a wide range of representational approaches.

Page 42 of 224 FORD 1011

1 .2 Semantics: The Meanings of Symbols 35

(a) Briefly, compare the knowledge representation hypothesis to the physical symbol sys
tem hypothesis. What does the knowledge representation add, if anything, to the physical
symbol system hypothesis? How does Smith's notion of a propositional account differ
from Newell and Simon's notion of designation?
(b) What does the knowledge representation hypothesis guarantee about an observer's
ability to make sense of "mentalese"? What does it predict about the correspondence
between symbols used by the observer and symbols in the observed system?
(c) Why is it useful to ascribe levels in representational theories of mind?
(d) Are these hypotheses the subject of extensive inquiry in artificial intelligence
research? Of what use are they to the study of knowledge systems?

Ex. 8 [CD-05] Defining Symbols. The dictionary defines a symbol as a written or printed mark
that stands for or represents something. In this section we have argued that there are several
practical issues about this definition.
(a) Briefly, what issues does the registration problem raise about the dictionary definition
of symbols?
(b) In defining designation, the text claimed that designation is not a property of the sym
bol itself. Why not? Briefly, what issue does this point about designation raise about the
dictionary defmition of symbols?

1.2 Semantics: The Meanings of Symbols

The term semantics is used to describe both natural language and computer languages. It is often
contrasted with syntax and is popularly understood to refer to the meaning of symbols and ex
pressions in languages. "Getting the semantics right" is a goal often lauded in computer science.

In this vein, Hayes (1974) and others have argued for principled and systematic design of
semantics for representation languages used in computers. As he put it, representation languages
ought to have a semantic theory. Later in this section we consider in more detail what Hayes
meant by this. For now we note that proposals like this have taken on broader appeal as the
knowledge bases being proposed have increased in size and as it has seemed worthwhile to be
able to combine knowledge bases that were developed separately.

There are many pragmatic issues in developing semantic theories for knowledge systems.
The problem is not just principled versus "sloppy" semantics. More fundamentally, there is con
fusion about what kinds of semantics are needed.

A semantics is an approach for assigning meanings to symbols and expressions. Different
kinds of semantics differ in the kinds of symbols considered and the kinds of meanings they
assign. In the following we will consider several kinds of semantics that are relevant for under
standing knowledge systems.

We begin by reviewing the most studied approach to semantics, the declarative semantics
used for the predicate calculus. We then broaden the discussion by considering some historical
examples of how AI researchers assigned meaning to expressions in representation languages
and graph structures. For this it is convenient to establish some terminology and notation for
graphs and trees. The terminology introduced here will be sufficient to carry us through the first
three chapters of this book. Finally, we consider how different kinds of semantics are needed for
different purposes. We compare several kinds of semantics that are relevant to knowledge
systems.

Page 43 of 224 FORD 1011

36

Logical
statements

lsa (CBall)

lsa (A Block)

lsa (D Block)

lsa (B Block)

On (A Table)

On (CTable)

On (BA)

On (Table Floor)

On (D Floor)

On (X Y) ---7 Above (X Y)

Above (X Y) 1\ Above (Y Z) ---7

Above (X Z)

Table

FIGURE 1.8. The elements of a declarative semantics for logic.

1 • .2.1 Model Theory and Proof Theory

1

Conceptualization
(model)

Floor

Truth space

TRUE

FALSE

SYMBOL SYSTEMS

We begin with the semantics developed for formal logic. We use this to establish a vocabulary
and a basis for comparing other kinds of semantics. Our presentation is brief, since the goal is to
summarize the concepts of semantics used with the predicate calculus.

Constants, Variables, Interpretations, and Models

Predicate calculus has two kinds of symbols: constants and variables. Constants are used to name
elements in a special set known as the universe of discourse. In other words, this set includes
terms for all of the things we are talking and reasoning about. Object constants name the objects
in the set. Function constants are used to designate functions on members of the set. For exam
ple, arithmetic operations would be defined as functions. Relation constants name relations on
the set.

Variables are used to describe properties of objects in the set without naming them. The
predicate calculus includes relations for the logical operators A (AND), v (disjunctive OR), and
the usual others as well. A first-order predicate calculus includes universal and existential quanti
fiers on objects, but not on functions or relations.

Here is an example of an expression in predicate calculus in the example in Figure 1.8:

On (Ball Table)

In this example, On is a relation constant. Ball and Table are object constants. Another is

Above (X Y) A Above (Y Z) = >Above (X Z)

Page 44 of 224 FORD 1011

1.2 Semantics: The Meanings of Symbols 37

These statements are also called axioms in the model. Statements like these are what we write
when we "axiomatise" a domain.

The first part of the semantics of predicate calculus is essentially the same as the semantics
of reference from Section 1.1. We assume there is a memory or database of statements in the
calculus. There is an observer and the observer has in mind a conceptualization, analogous to
what we have called an environment. Designation in the mind of the observer associates the
object, function, and relation constants with their counterparts in the conceptualization. In the
terminology of logic, a mapping from the statements to the conceptualization is called an inter
pretation. Unfortunately, this is one of those words which has many different meanings in com
puter science.

For any term, we define its extension to be the elements in the conceptualization that it
designates. Thus the extension of the term C would simply be the ball sitting on the table. A term
like Block refers to a class of objects, whose members include the blocks A, B, and D. Similarly,
an indefinite node might correspond to a variable whose referent has not yet been precisely
determined, but that is perhaps limited to be some member of a class. So far we have not related
the meaning of such terms to the inferences carried out on the model. To build a working system,
claiming that terms refer to something does not signify much if the system does not reason with
them. To formalize such reasoning, we need to add semantics of truth and semantics of proof.

The next part of the semantics involves the assignment of truth to logical statements. The
basic idea is quite simple. First we consider ground statements or ground literals, which are ones
that can be tested quite simply in an interpretation. For example, the statement that "C is a
ball"-lsa(C Ball)-and the statement "A is on the table"-On(A Table)-can be readily checked.
We say that they are satisfied in the obvious or intended interpretation of Figure 1.8. For a differ
ent interpretation they might not be satisfied. In Figure 1.8, the statement On(B Floor) is not satis
fied. Truth semantics gives us a way of assigning a truth value to logical statements relative to
an interpretation.

If an interpretation satisfies a sentence for all variable assignments, then it is said to be a
model of the sentence. For example, the following sentence is satisfied by the intended interpre
tation of Figure 1.8 for all assignments to the variable X.

('v' X) Is a (X Ball) v I sa (X Block) => Above (X Floor)

Variable assignment has no effect if there are no variables. Any interpretation that satisfies
a ground sentence is a model of that sentence. A sentence is satisfiable if and only if there is some
interpretation and variable assignment that satisfy it. An interpretation is a model for a set of sen
tences if it is a model for every sentence in the set.

The Meanings of Expressions
Much of the utility of predicate calculus arises from the systematic rules for assigning truth val
ues to new expressions in the language. For example, if we are given that both of the following
statements are true,

lsa(Biock A)

lsa(Biock B)

Page 45 of 224 FORD 1011

38 1 SYMBOL SYSTEMS

then we can conclude that the conjunctive statement is also true.

lsa(Biock A) A lsa(Biock B)

The rules for this, which are learned by every beginning student of logic, are what people refer to
as the well-founded semantics of logic. For another example, suppose we are asked whether the
following formula is true.

(lsa (Block A) 1\ lsa (Block B))v lsa (Block C)

We can assign

X= I sa (Block A)

Y = I sa (Block B)

Z = I sa (Block C)

In our standard interpretation, we have

X=True

Y=True

Z= False

The next step is to determine the truth value of the expression.

(X 1\ Y) v Z

One way to do this is with a truth table as in Table 1.1. In this table, we build up the values
for the total expression from the truth values of the subexpressions. This is exactly the sort of
property that Hayes requested of a semantic theory, that is, an account of how the meaning of a
whole symbol structure is built up from the meanings of the parts. Of course, in complicated
expressions there are often shortcuts and it is not usually necessary to write out a complete truth
table. Nonetheless, at least in the propositional calculus, this is an approach than can be followed
in case of doubt.

TABlE 1.1. A truth table.

X y z (X A Y) (X 1\ Y)v Z

T T T T T
T T F T T
T F T F T
T F F F F

F T T F T
F T F F F
F F T F T
F F F F F

Page 46 of 224 FORD 1011

1 .2 Semantics: The Meanings of Symbols 39

Formulas that are always true, regardless of the truth or falsity of their terms, are said to be
valid. Such formulas are called tautologies. In propositional logic, truth semantics gives us a
very simple and automatic way to determine whether a formula is valid. We simply compute its
truth table and check whether every combination of truth assignments yields true for the formula.

Continuing with our example, if we have the statements

On (A Table)

On (BA)

then we can establish that the following statements are true without any further consultation with
the model.

Above (A Table)

Above (BTable)

We can also ask questions about the truth of a statement without associating it with a par
ticular interpretation. Some sentences are true for every possible interpretation. For example, the
left statement below implies the right statement for all possible interpretations. In such cases, we
say that the sentence on the left "logically implies" the sentence on the right.

(-A A B)=> A v 8

The semantics of logic also deal with what is called provability. Predicate calculus pro
vides prescriptions for establishing the truth or falsity of expressions, either from axioms or from
expressions already established. Sanctioned inferences are described by rules of inference,
which can be used to deduce new facts from old ones. The best known rule of inference is modus
ponens, which says that if we have a fact p, and that p implies q, then we can deduce q. In the·
concise notation of logic, we would say

modus ponens: A 1\ (A=> B) 1- 8

where the tumstyle figure means "proves." Figure 1.9 gives an example of the use of modus pan
ens to deduce that Felix is a member of the artificial intelligentsia. Roughly speaking, a proof is
a sequence of statements where each successive statement follows from the preceding ones by
some rule of inference, and the last statement is the "proved" conclusion.

A second important rule of inference is universal instantiation. It says that if something is
true of everything, it is true of any particular thing. In logical notation, we would say

universal instantiation: (\ix) A(x) => B(x), A(a) 1- B(a)

Figure 1.10 shows how universal instantiation can be used to deduce that Ken is brilliant.

Truths, Proofs, and Decidability

The related ideas from truth theory and proof theory can be written using special symbols as fol
lows. The following is a predicate calculus statement read as "A implies B."

A=>B

Page 47 of 224 FORD 1011

40

Given the rule
Can-pronounce (Student "heuristic")

=> Member (Student

Artificial-intelligentsia)

And the fact
Can-pronounce (Felix "heuristic"

Use modus ponens to deduce
Member (Felix Artificial-intelligentsia)

1 SYMBOL SYSTEMS

;IF a student can pronounce heuristic

;THEN he is a member of the

;artificial intelligentsia

;Felix can pronounce heuristic

;Thus, Felix is a member of the
;artificial intelligentsia

FIGURE 1.9. A logical deduction using modus ponens.

By itself this expression is neither true nor false. It is satisfied relative to an interpretation and
variable assignment if and only if A is not satisfied (true) orB is satisfied in the interpretation.
This rule is from truth theory. If such an implication is true for every interpretation and variable
assignment, then we say "A logically implies B" and write the following.

A!=B

Note that this is not a statement in the predicate calculus, but rather, is a statement about predi
cate calculus statements. Similarly, we write the following if B is a tautology.

!=8

Finally, if there is a formal proof from A to B we write the following.

At-B

Assuming the rule
V(Student)

Undergraduate (Student)

"Institution (Student Cal-Tech)

=> Brilliant (Student)

And the facts
Undergraduate (Ken)

Institution (Ken Cal-Tech)

Use universal instantiation to deduce

Brilliant (Ken)

;For all students

;IF the student is an undergraduate

;at Cal Tech

;THEN the undergraduate is brilliant

;Ken is an undergraduate

;Ken goes to Cal Tech

;Ken is brilliant

FIGURE 1.1 0. A logical deduction using universal instantiation.

Page 48 of 224 FORD 1011

1 .2 Semantics: The Meanings of Symbols 41

A proof of a sentence is a finite sequence of sentences in which each element is a sentence
chosen from a set, a logical axiom, or the result of applying a logical rule of inference. An
important result of mathematical logic states that whenever a set of sentences implies another
sentence, then there exists a finite proof of that sentence. For this reason the predicate calculus is
said to be decidable.

Such proofs offer us yet a third possible semantics for logic, called a proof semantics. A
proof theory determines whether a given expression is valid, that is, derivable, from a given
database of facts. It is valid if there is a proof. For a given statement, there may be many possible
proofs or no proofs at all. A proof semantics can be defined to associate a statement with a
proof, or more simply, with "valid" or "not valid."

Proof theory establishes a standard of reasoning. It brings sense to many examples of con
fusing and illogical reasoning. For example, consider the following.

Given:

Conclude:

All fleas like some dog.
No fleas like any swimmer.
No dogs are swimmers. (1)

Even if we suppose that the first two sentences are true relative to some interpretation, the con
clusion does not follow. For example, all fleas could like the same nonswimming dog. Proof
semantics provides a careful and systematic account of when deductions are justified, that is,
what follows rightfully from what. Reasoning that follows the appropriate logical principles is
said to be sound. Sound is used here as a technical term to describe systems or methods that
derive no more than can be supported according to explicit rules of logic. Thus, the conclusion in
(1) is not sound. In contrast, the conclusion in (2) is sound but bogus. Bogus is not a technical
term. The fault lies not in the inference but in the nonstandard interpretation.

Given:

Conclude:

Some fleas like all dogs.
No fleas like any swimmer.
No dogs are swimmers. (2)

But how can we tell which inferences are sound? The approach in logic is to characterize
sound inferences systematically as those that follow from specified rules of inference.

In summary, there are three parts to the semantics of predicate calculus, the semantics of
reference, the semantics of truth, and the semantics of proof. Each is a mapping from symbols
and expressions to some kind of meaning, where the meaning may be elements in a model, the
symbols true and false, or a proof. These are related respectively to model theory, truth theory,
and proof theory. Sometimes this whole approach is called a declarative semantics.

1.2.2 Reductionist Approaches for Composing Meanings

A language is a set of expressions. In natural languages, a conventional unit of expression is the
sentence. In English, sentences contain subjects and predicates. Crucial to the notion of a lan
guage is that there is a way of deciding whether any particular arrangement of symbols is a sen
tence in the language. In written and spoken natural languages, grammars are sets of rules that

Page 49 of 224 FORD 1011

42 1 SYMBOL SYSTEMS

determine which arrangements of symbols are sentences. Thus, the expression "Shoe blue knob
five running." is not a sentence and "He runs in blue shoes." is a sentence.

One remarkable fact about natural language is that indefinitely many linguistic expressions
have meaning for people. Consider the following sentence:

The pink mouse flew her helicopter downtown to the opera. (3)

We have no trouble attributing a meaning to this silly sentence, even though it is unlikely
that any reader of this book ever encountered it before reading it here. How can this be so? It
suggests that the experience of understanding a sentence that we have never seen before is akin
to the process of (say) adding two numbers we have never seen before or driving a car we have
never seen before. We can do the addition because we view the numbers in terms of their smaller
pieces, such as the digits in the ones column, the digits in the tens column, and so on. We have an
algorithm that takes account the significance of the decimal representation and the rules for com
bining 1-digit numbers.

By this analogy, we expect it to be the case that there is a systematic way of interpreting
expressi~ns in natural language. This is a structural approach to composing meanings. Some
times we call it a reductionist approach because the meaning of the whole sentence derives from
the meanings of its parts.

The truth and proof semantics of predicate calculus both follow a reductionist approach in
that the meaning of an expression is determined in a systematic way from the meanings of its
parts. For example, the truth value of the expression A " B can be determined systematically
from the truth value of A, the truth value of B, and the usual definition of 1\.

It turns out that a reductionist view of the composition of meaning is not quite adequate for
sentences in natural language. Consider the sentence "Is there any salt?" Asked of an environ
mental scientist measuring water quality, this sentence is probably a request for information
about the results of his measurements. Asked of a waiter at a restaurant, the question would be
interpreted as an indirect request to bring a salt shaker to the table. Part of the problem is that the
sentence is not always the right unit of analysis. Context is provided by other sentences. Another
problem is that this account of meaning fails to take into account the role of the speaker, the lis
tener, and the situation.

For all of the shortcomings of a structural approach to semantics in natural language, this
approach is important for systematic computer representations. We need to know how the mean
ing of an expression depends on the meaning of the terms in the expression. An account of the
composition of meaning should draw on regularities in the arrangement of symbols. Restated,
regularities in meaning should be reflected by regularities in symbol structures.

Computer systems use many different kinds of representations, not just sentences from a
predicate calculus. Consider the following paragraph:

When I write at home, I often look out the window at some of California's giant red
wood trees. This morning on one such tree, I saw some branches high above a ham
mock outside where age and neighboring growth have combined to cause them to
turn brown and die. Sometime in the months ahead these branches will come crash
ing down. I remembered that I should phone a tree surgeon to tend to them before
they land in the hammock.

Page 50 of 224 FORD 1011

r- ..

1.2 Semantics: The Meanings of Symbols

physical object forces

/

tree loose branch gravity

agents chores

""' /
tree surgeon avoid danger

Partial
inside view

Contents

177160
036512
175621

~
falling objects

0
0

0
0

43

FIGURE 1.11. Deciphering the "mentalese" of the Mark-1 writing robot. This is analogous to trying to
figure out how a computer works from the circuit diagram but without the operations manual.

According to Newell and Simon's physical symbol system hypothesis, the cognitive parts
of this story-writing, observing trees, and planning activities-can be accounted for in tenns of
the processing of symbols, that is, marks in a memory and a processor that can read and manipu
late those marks. Let us suppose for the purposes of this discussion that the agent in the previous
paragraph is actually a manufactured physical symbol system, a "Mark-1" writing robot. As sug
gested in Figure 1.11, somewhere inside the Mark -1 there is a memory medium with marks that
we expect correspond to "home," "giant California redwood trees," "hammock," "tree-surgeon,"
"phoning" and so on for whatever knowledge and beliefs the robot may be said to possess. In a
well-ordered system we would also expect to find symbol-processing machinery that causes the
anticipation of falling branches and the phoning of a tree surgeon. It is not necessary that the
Mark -1 itself be able to tell us about the location and encoding principles for the underlying sym
bol system. However, if we as observers can discover the "mentalese" of the Mark-1, we expect
to find symbols and processors that are causally connected with the behavior of the robot.

In artificial intelligence and cognitive science these expectations about symbols in memory
and their connection with intelligent behavior are at the core of representational theories of

Page 51 of 224 FORD 1011

SYMBOL SYSTEMS

mind. In the context of knowledge systems, the emphasis shifts from deciphering mentalese to
the systematic use of symbols in a computational knowledge medium.

By a semantic theory Hayes means an account of the way that particular configurations of
symbols in a representation scheme correspond to particular configurations of the external
world. By calling it a "theory," Hayes demands more than just allowing observers to assign arbi
trary meanings to symbols. He wants a systematic approach for indicating how sentences in the
language represent the subject matter. The grammar rules that determine whether a set of words
is a sentence should also help us to determine what the sentence means. The regularities of this
explain how we make any sense out of the sentence about the pink mouse in the helicopter.

Seeking a semantic theory shifts the focus from a concern with interpreting or decoding
the symbol structures of a particular robot to the design of representation languages of adequate
power for which we can give a principled account of what symbols written in them mean. The
goal of this revised enterprise is technical: It is the development of engineering principles by
which we can design symbol structures and knowledge systems whose properties are predictable
and understood. In both cases-mentalese languages of the mind or representation languages
what we seek is a systematic way of assigning meanings to expressions.

Returning to our analogy about the understanding of natural language, we would like to
ask questions about the meaning of symbols and to derive answers using a computational process
on the symbol structures in memory. So far, the declarative semantics of predicate calculus satis
fies the requirements we have listed. Later in this section, we discuss why additional kinds of
semantics have been developed to satisfy additional requirements. First, however, we will look at
further examples of representational structures and at some of the approaches for assigning
meanings to them that are in the same spirit as the declarative semantics although they are usu
ally less-thoroughly developed.

1.2.3 Terminology for Graphs and Trees

Graphs are made up of two kinds of elements usually called nodes and arcs. Figure 1.12 gives
several examples of graphs. The nodes are the circles and the arcs are the lines connecting them.
When the nodes or arcs have distinguishing labels the graph is called a labeled graph. It is com
mon in depictions of knowledge representations to use graphs with labels on the arcs and the
nodes. Graphs are also distinguished as being either directed or undirected. Directed graphs
have directed arcs, meaning the two ends are distinguishable. Directed arcs have an orientation,
meaning that they start at one designated node and end at another. They are usually represented
visually as arrows as shown in Figure 1.12.

A graph is cyclic if there is a path, starting from one of its nodes, that leads along the arcs
from one node to another leading back eventually to the starting node. For directed graphs, the
path must follow in the direction of the arcs. An acyclic graph is a graph with no cycles. Figure
1.13 gives examples of cyclic and acyclic graphs. Directed acyclic graphs are called dags.

We define trees as directed acyclic graphs in which every node (except the root node) has
exactly one ancestor. The root node is the unique node in the tree having no ancestors. Some
times the term forest is used to refer to a set of trees.

Page 52 of 224 FORD 1011

1.2 Semantics: The Meanings of Symbols

Node Labeled node

0 0

Directed graph

Undirected graph

~
cb-0

A graph with four
nodes and four arcs.

Directed graph with labeled arcs

FIGURE 1.12. Some basic terminology about graphs.

45

Trees are a very important special case in graph theory and computer science. As is appar
ent from the reference to "ancestors" and "root node" in the definition, trees have their own spe
cial terminology, which we will now make more precise. For trees, the directed arcs are also
called branches. Directionality of the arcs point is important. Borrowing familiar language from
family trees, we say that branches directly connect parent nodes with children nodes. Conven-

Cyclic directed graph

Acyclic directed graphs

FIGURE 1.13. Examples of cyclic and acyclic directed graphs.

Page 53 of 224 FORD 1011

46

Tree
(directed graph version)

Terminal node

FIGURE 1.14. Comparing two definitions of trees.

1 SYMBOL SYSTEMS

uag "Tree"
(undirected graph version)

No unique root.
No differentiation between node and successors.

No terminal nodes or fringe.

tionally, ·arcs point from parents to children. Ancestor and descendant nodes are defined in the
obvious way. Mathematically inclined writers often prefer to use the term successors to refer to
children nodes. Nodes with no successors are called terminal nodes.

Trees can be generated or drawn a little at a time. In this case, the term leaf node is used to
refer to terminal nodes or to any other nodes showing no successors, even if further generation
may potentially cause more successors to be presented. The set of nonterminal nodes is collec
tively called the interior and the set of leaf nodes is collectively called the fringe. In reasoning
problems we often consider trees that are expanded incrementally. In these cases, the terms leaf
node and terminal node are sometimes used to refer to nodes that have no successors yet,
although they may later. We use the terms dynamic fringe or frontier in such cases to refer to
the set of the deepest nodes in the tree that have been explored so far.

The term branching factor refers to the number of successors of a node. Often for the pur
poses of analysis, it is convenient to assume that all of the interior nodes in a tree have the same
branching factor. When different nodes have different numbers of successors, we sometimes use
an average branching factor for a set of nodes.

Before leaving this discussion of terminoiogy, we note that although our definition of tree
is the one most commonly used in computer science, it differs from the definition of tree most
used in mathematics. In mathematics, trees are usually defined for undirected graphs rather than
directed graphs. There are several equivalent definitions for trees as undirected graphs. (1) A tree
is a graph that is connected and that has one more node than arc. (2) A tree is a connected, acyclic
graph. Undirected trees are called "uags" or undirected, acyclic graphs.

Figure 1.14 compares trees based on directed and undirected graphs. In uag trees, there is
no privileged node that stands for the root, no nodes are characterized or terminal or in the fringe,
and there is no orientation to links differentiating nodes and their successors. It has been said that
you can "pick up" a uag tree from any node so that the rest of it "hangs down." The directed ver
sion of trees is commonly associated with linked data structures in computer science and with
search processes that have a starting place.

Page 54 of 224 FORD 1011

1.2 Semantics: The Meanings of Symbols 47

1.2.4 Graphs as Symbol Structures
In the following we will consider examples of a graphic descriptive language often called a
semantic network. The term semantic network arises from Ross Quillian's Ph.D. thesis in which
he used them as network models of information. Semantic networks are used for different pur
poses, are assigned meanings (semantics) in different ways, and are depicted by figures with
nodes and directed arcs.

Since Quillian's thesis semantic networks have been used to model all sorts of non
semantic things such as propositions in logic, the physical structure of objects, and the behavior
of devices. At some time, virtually every one of these representations has been called "semantic"
by someone. In AI and knowledge engineering, the term semantic network refers generally to a
wide class of informal and formal symbolic representations. What these representations have in
common is that they are all made of links and nodes. In hindsight, it is clear that this definition is
indistinguishable from that of a graph. Graphs and graph structures have many useful properties
as representations. However, there is nothing fundamentally "semantic" about graphs.

Graphs can mean things in just the same way that sentences in a language can mean things.
We, choose graphs as examples of representations simply because so many representations in
knowledge systems are graphs. The issues are much the same whether the representations are
graphs, grammatical sentences, or bitmaps.

When we use the term semantic network, we draw on vocabulary from the AI literature.
We develop several informal variations of semantic networks in the following, using them to
show why we need principles for systematic representation languages.

Consider the sentence:

Willy threw a ball to Morgan. (2)

Figure 1.15 shows one way to represent the information stated in this sentence using a graph. The
syntax of our graph is simple. Nodes, depicted here as ovals, stand for various kinds of objects
and links, depicted here as arcs with arrowheads and labels, stand for various kinds of relations.
Arcs naturally have two ends, so they are most useful for representing two-part or binary rela
tions. Relations involving more than two parts (n-ary relations) can be represented as nodes.
Thus, in addition to the nodes that correspond to physical objects (Willy, Morgan, a ball) there
are nodes that stand for relations. For example, the verb throw is represented as a particular 3-ary
relation called a "throw event." The binary relations include did-action, thrower, thrown-to, and
object-thrown.

thrower object-thrown

FIGURE 1.15. Example of a semantic network.

Page 55 of 224 FORD 1011

48 1 SYMBOL SYSTEMS

FIGURE 1.16. Extended example of the semantic network from Figure 1.15, showing some assumed
relations (thin lines).

For such symbol structures to be useful in knowledge systems, there must be a way to
structure knowledge in expressions and there must be a systematic way to determine the mean
ings of expressions from the individual terms and the structure of the network. Given the net
work in Figure 1.15, we could ask:

Was something thrown?
Is the ball a baseball?
When did the event take place?
Is Willy a person?

From Figure 1.15, we might guess that the presence of a "throw event" indicates that something
was thrown. There is no indication at all of the kind of ball; nor is there any explicit indication
that the kind of ball has not been determined. The form of the verb threw in (2) suggests that the
event took place in the past. Unless the binary relation did-action indicates when the event took
place, however, nothing is known about the time of the event. There is no explicit indication that
Willy is a person, although this is a reasonable inference to make from the use of capitalization in
the English sentence in (2). In a revised version of the semantic network in Figure 1.16, the
graph is augmented with some thin-line arrows, intended to represent other relations, not stated
in the sentence, but perhaps inferred from some context. The revised figure indicates (loosely
speaking) that Willy and Morgan are people.

Unfortunately, this is much too glib. The history of representation languages in AI shows
that it is easy and misleading to ascribe unwarranted knowledge and power to representations
when we must use human intelligence to interpret them. A simple experiment demonstrates this.
Consider how unintelligible the network becomes in Figure 1.17 when we substitute numbered
symbols ("gensyms") for names: g0001 for is-a, g0002 for Willy, and so on. The loss of intelligi
bility reveals the amount of background that we unconsciously use to interpret drawn semantic
networks. In effect we make guesses about what an interpreter would do. Changing the natural
language symbols to gensyms removes the (possibly misleading) clues that guided our guesses.

Continuing this example, Figure 1.18 shows two sentences together with semantic net
works that are intended to represent their contents. In this example, three elements take part in
the across relation: Willy's dwelling is across the street from the speaker's dwelling. This three
part relation is expressed by the relation node with three binary relation arrows (across-object,

Page 56 of 224 FORD 1011

- ~; -<

1 .2 Semantics: The Meanings of Symbols 49

FIGURE 1.17. Semantic network of Figure 1.16 substituting numbered symbols ("gensyms") for names.
The difficulty of making sense of this figure shows how easy it is to overlook the knowledge that people

can bring to bear in interpreting semantic networks.

Sentence

Willy lives across the
street from our place.

Graph representation of its contents

Sentence

Laverle lives across the
bridge from our house.

across-object

Graph representation of its contents

across-object

across-what

Across Relation

across-from

The Speaker

across-what

across-from

FIGURE 1.18. Sentences with similar meanings should be represented by similar symbol structures.

Page 57 of 224 FORD 1011

50 SYMBOL SYSTEMS

across-what, across-from) pointing to the other boxes. Such a representation provides specific
predetermined places for putting expected kinds of information.

In summary, one of the requirements of having a semantic theory is that we give a detailed
account of how meaning is ascribed to representations by their interpreter. For good engineering,
the assignment of meaning should be systematic so that representations with similar meanings
should have similar structures.

1.2.5 The Annotation Principle and Meta/eve/ Notations

In the following, we illustrate a sequence of semantic issues using semantic networks. In this
sequence, we retrace some of the history of ideas in the development of representation languages
in AI.

We begin by considering a symbol system intended to reason about characters in old car
toons. Tweety the bird and Sylvester the cat are favorite cartoon examples traditionally used at
least once in all AI texts. Just for fun we will treat objects from such cartoons as our domain or
"world" in the following examples. Presumably the system would need to represent the fact that
birds and cats are animals, that birds have feathers and can fly, that canaries are birds, that
Tweety is a neighbor of Sylvester and so on. One attempt to represent these facts in a simple
semantic network is shown in Figure 1.19.

In describing such a representation, we must give an account of the processing that the sys
tem will carry out on the symbol structures in the course of its reasoning. For example, we expect
the symbol system to infer that Tweety can fly. A common idea in such representations is that
general information ought to be stored as high in a generalization hierarchy as applicable and
inherited by nodes below it by means of a search process. This idea was motivated by psycholog
ical studies of human memory response. If more general properties are stored higher up in a gen
eralization hierarchy, one would expect it to take more time for a subject to affirm a statement
like "Tweety eats" than one like "Tweety is yellow."

a-kind-of

FIGURE 1.19. A simple semantic network to represent facts about Tweety and Sylvester.

Page 58 of 224 FORD 1011

1 .2 Semantics: The Meanings of Symbols

One account of the inferential processing in an inheritance model follows:

The link from the bird node represents that birds can fly. The canary node is linked to
the bird node, so that the processor can add that canaries can fly. Continuing this pro
cess, the processor infers that Tweety can fly because the Tweety node is linked to
the canary node. ·

51

This naive argument and organization captures some of the logical structure of the domain. We
know that a bird is an animal and the answers to questions about birds will often be derived
through general properties of animals. Semantic networks treat these deductions specially, lead
ing to economies of computation for common cases.

However, from the same network we could give an analogous account showing how the
processor would infer that Tweety has fur, as follows:

The link at the cat node represents that cats have fur. The Sylvester node is linked to
the cat node, so that the processor can add that Sylvester has fur. Continuing this pro
cess, the processor infers that Tweety has fur because the Tweety node is linked to
the Sylvester node.

The silliness of the latter account derives from the last step, where the "fur" inference is
implausible because Tweety is not a cat. More precisely, the implied processing acts as if we can
infer that y has a property if y is linked to x by an arc and x has the property. This inference is too
broad. The problem is that the network does not explicitly indicate which links convey inheri
tance of properties and it is clear that not all of them do. Being a neighbor of somebody does not
usually imply that one has the properties of that person. Neighbor-of means something different
from is-a and a-kind-of, so the processor needs to treat these different relations differently. But
they are all represented in the same way in the graph, as directed arcs, albeit with different
names. This brings us to the annotation principle.

The Annotation Principle. Differences in intended processing should be reflected
by differences in symbol structures. If two symbol structures are intended to be
treated in different ways by a processor in a symbol system, the processor must be
able to distinguish among some of the properties of the symbol structures. If two
symbol structures are intended to be processed in the same way by a processor, then
some of their relevant properties should appear the same to the processor.

The annotation principle makes explicit a structural approach to systematizing the compo
sition of meaning. It is simple and perhaps obvious, but it comes up in many different guises in
the design of symbol systems. The term annotation refers to the use of auxiliary symbols that are
used to modify the interpretation of other symbols. These annotation symbols typically do not
have the same kinds of meaning as the symbols that they annotate. For example, they usually do
not designate objects in the environment.

Annotations are also called metalevel notations and metadescriptions. They are the basis
for many of the representational frameworks and declarative notations used in knowledge repre
sentation languages. They are called metalevel because they do not refer to the same environ-

Page 59 of 224 FORD 1011

52

covered-by
(structural)

a-kind-of
(inherit)

color
(property)

1 SYMBOL SYSTEMS

Bird Seed

eats (property)

FIGURE 1.2Q. Augmenting the semantic network of Figure 1.19 with notations on arcs to guide
processing.

ment that the cartoon characters in our example inhabit. Rather, they guide a processor in its pro
cessing of the symbol structures.

Programming and representation languages sometimes provide special mechanisms for
adding annotations to symbol structures. For example, metaclasses in object-oriented languages
are often used to define how the system instantiates classes or allocates storage. In this same
vein, some languages provide ways of embedding structures within notations in a way that is
invisible to programs using normal methods for accessing memory. Representation languages
provide annotation mechanisms to simplify the design and development of interpreters or sym
bol structure processors. In this section, we will consider several examples of annotations. Many
of these examples are drawn from problematic cases that were noticed by developers of early
semantic networks.

In the example of the neighbor-of arc versus the is-a arc in Figure 1.19, we could modify
our approach so that that the processor would differentiate among the arcs on the basis of their
relation names. This would require that the processor have information for each different rela
tion. An alternative is to augment the network with annotations.

In Figure 1.20, we extend the semantic network with additional annotations indicated by
parenthetical labels associated with the arcs. This is a first step toward an engineering practice of
developing taxonomic descriptions of relations. Such taxonomies characterize relations. For
example, annotations can indicate which relations are used for inheritance, that is, for the propa
gation of properties from nodes that designate general classes to nodes that designate more spe
cific ones. In Figure 1.20, is-a and a-kind-of are annotated as inheritance links. By such propaga
tion the representation can serve to represent that canaries can fly and that Tweety is yellow. The
amount of processing required to propagate properties is determined by the branching factor of
the network and the depth to which the information must be propagated. To provent looping,
inheritance networks are generally required to be acyclic.

Page 60 of 224 FORD 1011

1 .2 Semantics: The Meanings of Symbols 53

Annotations can indicate which relations are structural, that is, which relationships
describe information about physical structure in terms of subcomponents. In our cartoon exam
ple, cats have fur. If more detail were required we could show nested structural relations: Cats
have paws, and paws have claws, and so on. As we make a representation more detail, we some
times find it useful to increase the number of symbols used to represent the elements of a situa
tion. Initially, it might be adequate to treat (say) properties of a eat's claws as properties of the
cat. For example, we might just represent the eat's claws as being sharp. Later, however, we
might need to represent claws on two different feet. Some claws are dulled and some are sharp.
Furthermore, we may find that we want to reason in a similar way about bird claws and cat
claws. At some point, however, the overall complexity of the representation may be reduced if
we separate the representation of claw properties from cat properties, that is, if we reify the claws
as separate objects with their own properties. Then the overall represent becomes a composite
consisting of a cats, legs, paws, claws, and any other reified parts that are convenient. This makes
it possible to simplify the overall hierarchy of classes into reusable representational elements.

· Finally, some links could indicate information about nodes used for documentation by a
database maintenance routine. Examples of this are the relations creator and date-created, which
would connect nodes to representations of the knowledge engineer who created them and the
dates that they were created. Such relations are used· for purposes of bookkeeping and updating
and can be ignored by a processor concerned strictly with the subject matter of cartoons.

These examples show how annotations enable an interpreter to distinguish cases for a
small number of different annotations corresponding to relation types rather than a large number
of different relation names. In particular, it opens up the possibility of defining classes of rela
tions with common behavior. In our first account of processing in Figure 1.19, we assumed that
the processor knew the names of the different relations in order to decide how to process them.
With annotations, a symbol processor can treat is-a and a-kind-of as identical for the purposes of
inheriting properties. Exercise 7 considers an alternative processing architecture for realizing this
same effect. Regularities in the ways that symbols are to be interpreted can be exploited in terms
of regularities in annotations and in the architecture of their processors.

Annotation in a semantic network can guide not only the processing of arcs but also the
processing of nodes. How can the processor determines which objects designate things that can
appear in a cartoon? Clearly, Sylvester and Tweety can appear and both are shown in the network
as nodes. But canary is also a node. Does it make sense to say that "canary can appear in a car
toon" or "canary can appear in the node animal"? When we say that "Canaries are yellow," we do
not refer to any particular canary. We referred to a class of small yellow birds. A class does not
correspond to bounded physical entity in the world. You cannot "see" a class of birds. A class is a
cognitive artifact that we use in organizing our thinking.

Making the meaning of classes such as "canary" philosophically and genetically precise
requires more work. Does the class include ancestral birds from the age of the dinosaurs that dif
fer increasingly from today's canaries? The value of precision in sorting out and representing
such matters depends on the expected uses of the symbol system.

Figure 1.21 adds node annotations shown as parenthetical labels to indicate whether nodes
designate classes or individuals. Even so, this is not yet enough to answer our question about
what nodes designate things that can appear in the cartoons. For example, the network shows that
cats eat available birds. What is this strange node available-birds? Again, it seems to describe a

Page 61 of 224 FORD 1011

54 1 SYMBOL SYSTEMS

a-kind-of

FIGURE 1.21. Augmenting the semantic network of Figure 1.19 with notations on nodes to guide
processing.

class. Early developers of semantic networks were quite free in defining such nodes, but lax in
characterizing precisely what they meant. The issue here is not that such nodes have no place in
a semantic theory. Rather, the issue is that there is a fair amount of work required to be precise
about what such nodes are intended to mean, and also work in arranging that the operations of a
system are correct relative to the intended meaning of such representations.

We consider one more example. It would be convenient to be able to refer to particular
birds that have not yet been identified with known individuals. For example, we might see a grin,.
ning Sylvester in the cartoon with yellow feathers in his mouth. We may want to reason about the
fate and status of the unfortunate consumed bird, without knowing whether it was Tweety. Mys
tery stories make much use of this kind of reference. They tell us about a murderer, before telling
us whether the foul deed was committed by the pretty maid, the spoiled son, the spinster aunt, the
wily lawyer or the sinister butler. Figure 1.19 introduces indefinite individual nodes to refer to
concepts such as the unknown eaten canary or the unidentified murderer.

What these notations about nodes have in common is that they are all about reasoning
about the identity of individuals. We assumed without saying so that distinct nodes refer to dis
tinct things. Class nodes refer to classes of objects. In our simplest examples, we have one node
for Sylvester and another node for Tweety. The indefinite nodes change the way an interpreter
reasons about identity. If we have a node for "the murderer" and other nodes for the maid, ·the
spoiled son, and so, then later inferences about the possible identity of the murderer may leave us
with more than one node referring to the same thing. If the system infers that the butler did it,
then we would say that the butler node and the murderer node are co-referential.

More generally, two representations are said to be co-referential if they refer to or desig
nate the same thing. For example, the symbols "the first U.S. president" and "George Washing
ton" would usually be co-referential. Technically, the question of whether two representations
are co-referential must be determined relative to an observer. Annotations can be used to support
reasoning about identity and co-referentiality. Thus, our example of indefinite individual annota
tions for nodes support such reasoning. In addition, some representation languages include spe-

Page 62 of 224 FORD 1011

1.2 Semantics: The Meanings of Symbols 55

cific co-reference relations intended to indicate where different symbols are known to be co-ref
erential. Examples of such annotations and reasoning with them are given in the exercises.

1.2.6 Different Kinds of Semantics

We have now established the background to consider different approaches to semantics. A
semantics assigns meanings to symbols. Different kinds of semantics differ in the kinds of sym
bols considered and the kinds of meanings they assign.

To understand the different approaches it is useful to understand the goals of people who
use them. Following Woods' discussion of semantics in Woods, 1975, we compare these
approaches using caricatures of different points of view. The first set of caricatures is concerned
with assigning meanings to symbols in programs and representation languages. These include the
Logician, the Programming Language Designer, the Systems Engineer, and the Representation
Language Designer. The second set of caricatures is concerned with assigning meanings to sym
bols in natural languages. These include the Computational Linguist, the Social Linguist, and the
Social Scientist. These caricature names do not fully characterize the different fields. They are
intended to exemplify some of the different kinds of issues that are relevant when people create
semantics.

Semantics for Programs and Representation Languages
The Logician is concerned with specifying the meaning of a formal notation. To this end she is
usually concerned with a formal definition of truth in a set theoretic model, sometimes called a
Tarskian semantics. She wants a systematic way to determine when expressions in the notation
are "true" propositions, when they are false, and what follows from what. For example, she
wants to know how the truth of an expression like "(Socrates is a man) and (Socrates is short)''
depends on the truth assignments of the two parenthesized expressions and the conjunction and.
In the previous section described the semantics of the predicate calculus in terms of a reference
semantics, a truth semantics, and a proof semantics.

The predicate calculus by itself does not embody any computational process. Programming
languages and practical knowledge representation languages, however, need to specify processes
for computing and reasoning. To accommodate this, additional kinds of semantics have been pro
posed.

The Programming Language Designer is interested in providing a formal specification of
computation in programming languages. He wants to be clear about how syntax indicates what
computation is to be performed, so that he can build reliable and portable compilers and com
piler-compilers. He prefers formal specifications so that the omissions, contradictions, and ambi
guities typical of informal language specifications may be avoided. His semantics describe how
the output and final states of a program depend on its inputs and input states. There are different
approaches to specifying this.

The idea that a proof system can give meaning to a programming language, and hence to
programs, is due to Hoare. This enterprise is sometimes called the axiomatic semantics,
although it is more commonly called the denotational semantics. This differs from the usual
sense of semantics in logic. Ordinarily, the formal semantics of a proof system is given by relat
ing it to a model theory defined in set-theoretic terms. Here, a proof system is used to specify the
semantics of a programming language or a class of its implementations.

Page 63 of 224 FORD 1011

56 SYMBOL SYSTEMS

The denotational semantics involves three interpretation functions. One interpretation
function maps programs onto mathematical functions that relate inputs to outputs. A second
maps language expressions and program states onto values. A third maps commands in the lan
guage onto state transition functions. The details and variations of this approach are intricate and
beyond the scope of this section. The main point is that the semantics map syntax onto descrip
tions of a computation.

The Systems Engineer is also a computer scientist, but she is chiefly concerned with aids
to building and maintaining large computer programs. She is concerned with how a large pro
gram is built up from many subprograms and hardware subsystems. Big programs are written by
groups of people, used by different people in constructing their own subprograms, and modified
as needs change. She wants to be able to modify her subprograms without changing the pro
grams that use them. She also wants to be able to use subprograms without knowing the details
of how they work. The semantics useful to a Systems Engineer are about the requirements of
subprograms. She is interested in external data representations, subprogram parameters, control
regimes, and computational resources required by subprograms. Generically, we say that such
approaches are concerned with interface semantics. In practical examples this involves a mix
ture of informal and formal descriptions.

The Representation Language Designer is interested in the reasoning phenomena that arise
when people gain new information while working on a problem. People make assumptions about
defaults and about what events and values are possible and likely. They change their minds in the
light of new information, sometimes retracting things they believed earlier. The Representation
Language Designer would like to have ways of describing computational methods and goals that
could guide such nonmonotonic reasoning in computers. To the extent that they effect the opera
tion of an interpreter, he is also interested in distinctions such as those discussed earlier in this
section between class nodes, individual nodes, and so on. He may characterize this as knowledge
for control or metalevel reasoning. He does not want to hide this knowledge inside a "black box"
interpreter or to intermingle it with the domain knowledge. He wants to enter the statements
declaratively and have the interpreter find them and use them when it decides what to do next in
the reasoning process. Generically, we call the association of such knowledge with domain sym
bols a reasoning control semantics. This semantics maps statements in the representational lan
guage to computational processes for reasoning. The semantics for programming and represent
ing languages are summarized in Table 1.2.

Semantics for Natural Languages

We now turn to semantics for natural languages. The Computational Linguist is concerned with
the translation of sentences in natural languages into formal representations of their meanings.
She is interested in characterizing how the same sentence can sometimes mean different things
and that some sentences mean nothing at all. She would like to find an unambiguous notation in
which to express the different things that a sentence can mean. Thus, the Computational Linguist
is concerned with the translation of sentences and expressions from natural language into formal
notations such as predicate calculus or a well-defined semantic network. We call this approach a
logical language semantics. Note that this approach maps sentences in one language to senten
ces in another.

Page 64 of 224 FORD 1011

1.2 Semantics: The Meanings of Symbols 57

TABLE 1.2. Different semantics for programming and representation languages.

Kind of
Semantics

Reference
semantics

Truth
semantics

Proof
semantics

Denotational
semantics

·.,

Interface
semantics

Reasoning
control
semantics

Used for Symbols Meanings

Identifying how symbols in Symbols and expressions in Designation. A description
a computer refer to things in a physical symbol system or of things known to an
an observer's environment. in a representation language. observer.

Identifying what terms and
expressions are true.

Identifying what terms and
expressions are valid.

Characterizing how the
syntax in a programming
language specifies a
computation.

Characterizing the
operations and requirements
of modules in a computer
program.

Characterizing how
symbols should be treated
in a nonmonotonic
reasoning process .

Symbols and expressions in
logical formulae with a
given conceptualization.

Symbols and expressions in
logical formulae with a
given database of formula.

Symbols and expressions in
the syntax of a
programming language.

Program modules.

Symbols and expressions in
a representation language.

True or false.

Valid or not, as supported
by a proof.

A characterization in terms
of mathematical functions
indicating how final states
and output are determined
by initial states and input.

Abstractions described as
protocols, arguments, types,
and operations.

Reasoning processes for
default reasoning priorities,
and so on.

. Before passing on, we note in passing that is not generally adequate to consider sentences
one at a time when assigning meanings. Consider the following two pairs of sentences.

(1) It is 12:30. Morgan is out to lunch.

(2) His memos never make sense. Morgan is out to lunch.

In this example, the first sentence gives us an important clue about an idiomatic interpretation of
the second sentence. Thus sentences do not necessarily provide independent chunks that can be
analysed or processed independently to determine their meaning. Natural language requires a
context to determine meaning. This is in striking contrast to the truth and proof semantics of
logic, and contrary to the suggestion that the meaning of an expression in a representation lan
guage be determined by the meaning of its parts.

Returning to our tour of kinds of semantics, the Social Linguist recognizes that many sen
tences uttered in conversation are chosen for their effect on the listener rather than to communi
cate statements about an external situation. For example, the English statement, "The car is
almost out of gas" may be uttered as an indirect request to a driver to stop at the next gas station.
Even statements that seem to contain logical operators often have unusual meanings. Only a per
verse sense of humor would allow one to answer "yes" to English question "Are you left-handed

Page 65 of 224 FORD 1011

58 SYMBOL SYSTEMS

or right-handed?" This is a request for information. One of the expected responses is "right
handed." The Social Linguist refers to the semantics studied by the Computational Linguist as
merely the "literal meaning." He classifies statements as kinds of "speech acts," whose purpose
in conversation is to indicate agreements, disagreements, commitments, priorities, goals, under
standings, and other aspects of the communication and negotation process involving the agents.
We call this approach action semantics because the meanings of the sentences are actions
intended to have certain effects.

The Social Scientist is also concerned with the use of symbols in human interactions. She
is interested in how it is that people come to agree about the meaning of terms that they use
together in speaking and writing. She recognizes that people do not immediately understand each
other's terms and that they develop models of each other and their use of language. She focuses
on phenomena related to the change and elaboration of meaning. She characterizes the meaning
of terms as being socially constructed and negotiated, as people sharpen or broaden what they
mean by words. The point here is not the need for another kind of semantics, but rather, a need to
focus on different properties of meaning. In our previous discussions of meanings, we acted as
though meanings were fixed and unchanging. In contrast, the Social Scientist studies the evolu
tion and ~on vergence of meaning.

Before leaving these examples of kinds of semantics, we note that the list is not exhaustive
and that there are many further variations. In the 1890s, the philosopher Frege, who invented the
declarative semantics of logic, was also concerned with the relation between equality and the
designations of terms in natural language. He proposed two natural language sentences, which
have often been cited as perverse examples.

(1) Necessarily, the Morning Star is the Morning Star.

(2) Necessarily, the Morning Star is the Evening Star.

In these sentences, the term Morning Star refers to a bright star observed near the sun at sunrise.
The term Evening Star refers to a bright star observed near the sun at sunset. From an astronomi
cal point of view, the two terms refer to the same physical object, usually the planet Venus. From
Frege's point of view, however, the first sentence is true and the second false. The two terms do
not have the same "meaning."

People still argue about exactly what Frege meant with this example. Some people relate
Frege's idea to the idea of transformational grammars. These grammars transform sentences to
either a standard form or a logical statement. This approach is similar to the logical sematics
described earlier. In this account, the terms evening star and morning star have different mean
ings because there are no rules for transforming them to the same form. The reason that the two
terms are not made equivalent is that the transformational rules involve knowledge about varia
tions in syntax but presumably not knowledge of astronomy.

A different explanation of Frege's point is based on consideration of the term intensional
which means "of the senses." In this view, the semantics of evening star and morning star refer
to the process by which they are perceived. They are perceived differently because one is seen in
the morning and the other in the evening. This approach can be seen as a more sophisticated
view of a reference semantics. It focuses on the operations, processing, and interpretation of the
senses. We cannot simply refer to "the world" as though it were something that we necessarily all

Page 66 of 224 FORD 1011

1.2 Semantics: The Meanings of Symbols 59

TABLE 1.3. Kinds of semantics for natural languages.

Kind of
Semantics Used for Symbols Meanings

Logical Characterizing what Example sentences and Sentences in a formal
language sentences in natural expressions from natural notation, such as predicate
semantics language mean. language. calculus.

Action Characterizing how Example sentences and The goals, agreements, and
semantics sentences in natural expressions from natural commitments of agents in a

language are used to cause language. conversation.
action.

Intensional Characterizing how terms in Terms in natural language The operation, processes,
semantics natural language refer to used in writing and speech. and interpretations of the

things that are perceived. senses.

see the same way. We must say more about how we go about perceiving and understanding it. We
call this approach intensional semantics. Table 1.3 summarizes approaches for assigning mean
ing to sentences in natural language.

Other philosophers take intensions to correspond to concepts, ideas, or things that can be
imagined. Further discussion of related topics such as the semantics of necessity and intensional
logic would take us too far afield.

1.2.7 Summary and Review
A semantics is a way of assigning meanings to symbols. There is no single "true" meaning or true
way of assigning meanings, at least in the academic fields. Different fields have different tradi
tions for assigning meanings. We considered examples of semantics for programming and repre
sentation languages and also for natural languages.

Looking back over the different examples of semantic theories, we can group them roughly
into three families. First is the referential family of semantic theories. In this family, meaning
fulness comes in the relations of symbols to objects of different kinds. Members of this family
include the reference semantics, the intensional semantics, and perhaps the denotational seman
tics of programming languages where the "objects" are mathematical.

Next is the cognitive family of semantic theories. Meaningfulness arises from the system
atic ways that subject matter is mentally and computationally represented and how reasoning
processes are sanctioned over those representations. This family includes the truth semantics,
proof semantics, operational semantics, reasoning control semantics, and interface semantics.

Third is the social family of semantic theories. This family emphasizes communication. In
this approach, meaningfulness derives from the ways that agents use symbols in their interac
tions with each other. This family includes the action semantics.

These approaches to semantics are complementary. In discussing knowledge systems we
draw on different approaches for different purposes. When we think of knowledge systems as
embedded systems whose symbols refer to the world we draw on the referential family. When we

Page 67 of 224 FORD 1011

60 1 SYMBOL SYSTEMS

argue about the conclusions that knowledge systems should reach and their computational char
acteristics we draw on the cognitive family of semantic theories. Finally, when we interact with
people to incrementally define symbols to be used in a knowledge system that they will use and
when we consider the interactions of knowledge systems in a human organization, we draw on
the social family of semantic theories.

Exercises for Section 1.2

Ex. 1 [05] Identifying Graphs and Trees. Classify each of the following graphs as (1) directed or
undirected, (2) labeled or unlabeled, (3) cyclic or acyclic, and (4) graphs, trees, or forests.
(a)

(b)

(c)

(d)

Page 68 of 224 FORD 1011

1 .2 Semantics: The Meanings of Symbols 61

Ill

Ex. 2 [05] Terminology. For each of the following statements indicate whether it is true or false.

Ex.3

Ex.4

If the statement is ambiguous, explain briefly.
(a) True or False. The main thing that different so-called semantic networks have in com
mon is that they are composed of nodes and links (possibly labeled). This is the same as a
definition of a kind of graph and there is nothing inherently semantic about graphs.
(b) True or False. A reductionist and structural approach to the meaning of a representa
tion says that the meaning of an expression is determined by the meaning of its terms and
by the pattern of their arrangement. Restated, the meaning of an expression composed of
terms is a composition of their meanings.
(c) True or False. The annotation principle says that formal representations should be
decorated with informal annotations that help people to understand them.
(d) True or False. Two nodes in a graph representation are defined to be coreferential if
they both have arcs that point directly to a common node.
(e) True or False. The declarative semantics of predicate calculus consists of a reference
semantics, a truth semantics, and a proof semantics.

[05] Terminology. For each of the following statements indicate whether it is true or false.
If the statement is ambiguous, explain briefly.
(a) True or False. Acyclic graph is one in which there are two directed arcs leading to the
same node.
(b) True or False. In reasoning by inheritance, properties are propagated from general
nodes to more specific ones.
(c) True or False. In drawings of is-a hierarchies, the arcs point in opposite the conven
tional direction for trees. That is, they point from specialized nodes to generalized nodes.
(d) True or False. The annotation principle is intended to make the design of interpreters
simpler for systematic representation languages.
(e) True or False. The usual definition of a tree in computer science is equivalent to a
dag.

[CD-!-10] Reasoning about Identity. Indefmite-individual nodes are used to refer to indi
viduals whose identity has not yet been established. They provide a notation to express
incremental reasoning about identity. One proposed framework defines two kinds of rela
tions for reasoning about such nodes: anchor relations, which link an indefinite-individual
node to an individual node, and co-reference relations, which link two indefinite nodes to
each other. In the usual interpretation, different individual nodes designate different objects
in the environment, anchor relations mean that an indefinite designates the same object in
the environment as the individual node it is linked to, and co-reference relations mean that
two indefinite nodes designate the same object in the environment even if it has not been
identified yet.
(a) Consider a semantic network with individual nodes Huey, Duey, and Louie represent
ing duck characters in a cartoon story and indefinite nodes for dessert-eater and brown
coat-wearer. Draw a semantic network to indicate that the dessert-eater and the brown
coat-wearer are known to be the same individual.
(b) Describe appropriate processing on this representation that would infer who ate the
dessert, given that the brown coat was worn by Huey.
(c) Suppose that in a different situation, the processor had anchored dessert-eater to Huey
and brown-coat-wearer to Louie. In what sense would it then become semantically inappro
priate for the processor to put a co-reference link between the two indefinite-individual
nodes?

Page 69 of 224 FORD 1011

62

Ill Ex.5

1 SYMBOL SYSTEMS

[CD-!-15] Closed World and Other Assumptions. In murder mystery stories, the closed (or
locked) room scenario is one in which all of the possible suspects are locked together in the
same room (or train), so that no one could enter or leave during the crucial period when the
foul deed was done. Furthermore, in detective stories, there is a kind of "fair play" assump
tion amounting to a contract between the author and a reader, which says that it must be
possible for the reader to solve the mystery from the evidence given. Introducing a
revenge-seeking cousin in the last scene or aliens with special powers from outer space is
not considered fair play in the genre.

Similarly, in AI systems the closed-world assumption means that all of the objects of
interest are described in the database. Usually many assumptions about interpretations
influence modeling and representation.

In this exercise we consider an adventure of the three cartoon character ducks Huey,
Duey, and Louie, nephews of Donald Duck. The three ducks were locked alone in a room
with the dessert, so that none of them could escape and no one else could enter. Suppose
also that the dessert could only be eaten by a duck, and that the dessert disappeared while
they were in the room.
(a) How could a knowledge system infer who ate the dessert, given that neither Duey nor
Louie wore the brown coat and that the brown-coat-wearer ate the dessert? Show how this
requires the use of a closed-world assumption?
(b) Professor Digit says, "Although we can use quite simple reasoning models to infer the
answer to problems like this, real world (and cartoon world) possibilities are quite endless.
How do we know that the dessert did not simply evaporate? There are many different
assumptions about the world that a system could make in solving problems like this." Do
you agree with Digit? If yes, give some examples.
(c) In everyday reasoning, we are able to imagine a wide range of possibilities, and yet
we are not overwhelmed by them on simple problems. Briefly, describe an approach for
knowledge systems that provides this capability.

Ill Ex. 6 [15] Representing Physical Parts. Representations are designed for a purpose and the ade-
. quacy of a representation is judged relative to that purpose. In this exercise, we consider

representations of physical parts. We are given the following statements:

A Buick is a kind of automobile.
All automobiles can be driven.
A Sky bird is a kind of Buick.
The body of a Skybird is a sport body with an asymmetric shape.
The particular Sky bird with serial number 100 has a red body.
A Sky bird body has a left door and a right door.
The right door of a Skybird body is a passenger door.
The left door of a Skybird body is a driver door.
A driver door is shaped as trapezoid pattern 1.
A passenger door is shaped as trapezoid pattern 2.
A car door has a handle.
The engine of a Skybird is a model600.
A model 600 engine has four cylinders.

(a) Assuming that you will use a graph representation, discuss how you distinguish
between the following:

Page 70 of 224 FORD 1011

1 .2 Semantics: The Meanings of Symbols

Representations of part relations versus representations of other relations
Representations of classes versus representations of particular objects

63

(b) Suppose that our task is to compute the list of parts of an object, from the largest part
down to the smallest one.

In a rigorous discussion of what it means to be a part, we would need to define more
what it means to be a part. For example, coatings such as paint are not considered to be
parts. Substances used to make up materials such as metal alloys are also not considered to
be parts. There is also a practical issue of granularity. Are we really interested in listing the
lock washer on the bolt that holds the hand to the door shaft? Assume for this problem that
the granularity of interest corresponds to the granularity in the network.

Show a systematic graph representation for the statements above.
(c) Describe your method for computing the list of the parts of a Skybird, using your
graph representation as the database.
(d) Describe your approach for inheriting part descriptions. Specifically, explain how
your approach includes door handles for both the passenger and driver door in the inven
tory.

Ex. 7 [1-40] Partitioned Semantic Networks. In 1975, Gary Hendrix observed that semantic net
works were clumsy when compared with predicate calculus for representing quantified
statements. He proposed a mechanism (Hendrix, 1975) for partitioning semantic networks
into "spaces" that contained nodes and links and that were convenient for indicating the
scope of quantified relations. Spaces are well suited for this purpose in that the node and
arc variables encoding information within a space look exactly like the representations of
specific facts. Furthermore, such variables are effectively isolated from constant informa
tion by partition boundaries.

Although interest in using semantic networks for representing statements in predicate
calculus has been rather limited, notations for partitioning networks have provoked more
interest as general representational mechanisms. Partitions are used for delineating clusters
and defining boundaries for information hiding. For example they have been used to repre
sent contexts, alternative worlds, and plots.
(a) Figure 1.22 represents the statement "Every dog has scratched a flea." The partitions
in this figure are SA, the outermost space, and S 1, the space that indicates the form over
which the variable dis scoped. Arcs labeled with an e indicate element-of relations for the
sets to which they point. Similarly, arcs labeled with an s indicate subset relations. The
presence of each node and arc within a space are interpreted as implicit statements of exis-

'
1---~

FIGURE 1.22. Roughly, "Every dog has scratched a flea."

Page 71 of 224 FORD 1011

1 SYMBOL SYSTEMS

FIGURE 1.23. The "invisibility" of the contents of spaces.

tence about objects and their relations. Thus, the nodes in the figure assert that the follow

ing:

There are dogs.
There are fleas.
There are scratching events.
Every dog, d, has participated in a scratching event, s, in which it was the scratcher

and some flea, f, was the scratchee.

In the same network, there are some metalevel statements, the details of which we

will be a bit vague about.

G is a general statement.
It has a form (the space Sl) and a universally quantified variable within that form (d).

Use this same graph and boundary notation to express the statement: "Every dog has
visited every fire hydrant." Assume that both quantifications are part of the same general

statement.
(b) In Hendrix's scheme, partitions determine what nodes are visible to a routine search.
We do not detail Hendrix's particular approach here. In this exercise, we assume that if a
space is contained in another space, the contained space can "see" everything in the con
taining space, but the contents of the contained space are invisible to the containing space.
We assume further that the spaces are organized in a strict containment or subset hierarchy.

For example, in Figure 1.23, a search for instances of dog would find Polar and Bar
ney and Sonny Blue, but not d. What other mechanisms discussed in this section could

serve to distinguish variables from constants?

Page 72 of 224 FORD 1011

1.2 Semantics: The Meanings of Symbols 65

left

FIGURE 1.24. Semantic network representing "Sylvester left the room."

Ex. 8

(c) Two philosophers, Dr. A and Dr. B, have gotten together to discuss partitioned net
works as presented in this exercise. After several minutes of deep thought, Dr. A exclaimed,
"Eureka! Partitioned nets are not so strange. The partitions function just like parentheses in
predicate calculus notation." Dr. B thought about this, and countered, "No. They are just
notations for grouping network elements into sets. They could be used for other purposes,
too."

What feature of partitions enables them them to do more than delimit sets?
(d) Explain how partitions are more flexible for representing sets than parentheses in a
linear notation, assuming the usual rules for well-formed expressions?

[!-20] Modeling Beliefs of Multiple Agents. Sometimes it is useful for representation lan
guages to indicate when to "escape" to alternative interpretations. We consider this starting
with an example, drawn from the cartoons. Tweety is a bird, Sylvester is a cat, and they
play tricks on each other.
(a) Consider the sentence:

"Sylvester left the room."

Using the notation from this section, we could represent this in a semantic network as in
Figure 1.24.

Consider now the revised sentences:

"Sylvester was hiding in the room."
"He knew that Tweety believed he had left the room."

What is at issue in semantics if we use the same representation as before to indicate
what Tweety believed?
(b) Professor Digit says he can always distinguish beliefs by inventing new relations. For
example, to represent the example from part (a) he proposes relations like knows,
believes, and believes-that-another-agent-believes. Why is this approach problem
atic?
(c) Propose an approach that would distinguish what Tweety believes from what Sylves
ter believes. Describe some of the requirements for interpreting symbols in your approach.
Will your approach extend to cover the situation where there is deliberate deception
because Tweety really saw Sylvester hiding and acted as if he did not see him in order to
fool him. (Hint: See preceding exercise.)

Ex. 9 [10] Kinds of Semantics. The following cases refer to the kinds of semantics described in
this section.
(a) What is the difference in concerns between a naive reference semantics and an inten
sional semantics? Why might a social scientist fmd a reference semantics naive?
(b) Programming formalists who want guarantees of the correctness of systems advocate
the decoration of programs with annotations describing expectations and invariants. What
approach to semantics would they use?
(c) What kind of semantics is called the "literal meaning" of natural-language sentences?

Page 73 of 224 FORD 1011

66 1 SYMBOL SYSTEMS

Alternative # 1-Chinese Restaurant

Pro Arguments
Chinese food is healthy.
A variety of food is available.

Con Arguments
Chinese lunch is expensive.

Alternative #2-Hotdog Stand

Pro Arguments
Hotdogs are prepared quickly.
Hotdogs are inexpensive.

Con Arguments
Hotdogs contain a lot of fat.
No place to sit down.

Alternative ,#3-Ice Cream Parlor

Pro Arguments
Ice cream is available quickly.

Con Arguments
Ice cream, by itself, is not satisfying.
Ice cream, by itself, is not healthy.

FIGURE 1.25. Some arguments for lunch alternatives.

(d) What kind of semantics is most relevant to computer-aided software engineering
· (CASE) tools, that is, tools for coordinating the programming activities of a programming
team?
(e) What kind of semantics is relevant for describing a reasoning process based on
assumptions and defaults with different probabilities ?

Ex. 10 [CD-!-30] Argumentation versus Proof It is often observed that arguments are not always
won by "logic." This exercise considers ways that argumentation may be characterized in a
way that is meaningful and computational, but which requires elements beyond those of
the usual semantics of logic.

In this exercise, we consider three people who are discussing where to have lunch. We
will call the lunchers A, B, and C. They have identified three possible restaurants: a Chi
nese restaurant, a hot dog stand, and an ice cream parlor.
(a) The three lunchers agree to write out arguments for and against the different alterna
tives. They come up with a chart like that in Figure 1.25.

One of the three lunchers, who is studying logic, observed that the process they were
going through was quite different from the process of proving a theorem. It was not much
like writing down a theorem "Chinese food is the best lunch" and then trying to prove it.
Do you agree? If yes, explain the essential ways in which the process differs from proof.
(b) Once the arguments were written down, the lunchers then decided that some of the
arguments depended on various assumptions. They wrote down a list of dependencies
including those shown in parentheses in Figure 1.26.

Page 74 of 224 FORD 1011

1.2 Semantics: The Meanings of Symbols

Alternative #1-Chinese Restaurant

Pro Arguments
Chiilese food is healthy.

A variety of food is available.

Con Arguments
Chinese lunch is expensive.

Alternative #2-Hotdog Stand

Pro Arguments
Hotdogs are prepared quicldy.

Hotdogs are inexpensive.

Con Arguments
Hotdogs contain a lot of fat.
No place to sit down.

Alternative #3-Ice Cream Parlor

Pro Arguments
Ice cream is available quicldy.

Con Arguments
Ice cream, by itself, is not healthy.

Assumptions

(Depends on assumption that the vegetables are fresh
and not overcooked.)

(Depends on assumption that they order separately.
It is cheaper if they share a couple of main dishes.)

(Depends on the assumption that they get there
before the usual large lunchcrowd.)

67

(Depends on whether the low-cost vendor is there today.)

(Depends on the assumption that they are unwilling to
sit at the fountain on the patio.)

(Depends on the assumption that they get there before
·the large lunch crowd.)

FIGURE 1.26. Some arguments for lunch alternatives, showing supporting assumptions.

Reflecting on this process, one of the lunchers noted that the process was taking on
some of the elements of deduction. Do you agree? Explain briefly.
(c) As the lunchers pondered the assumptions, they noticed that they didn't believe all of
them.

Luncher A believes all of the assumptions except three. He does not believe that the
low cost hot dog vendor will be there today. He does not believe that sharing main dishes in
the Chinese restaurant will reduce costs. He also does not believe that they can get to the
ice cream parlor before the lunch crowd does.

Lunchers B and C also have different beliefs in the truth of the assumptions.
At this point, one of the lunchers notices that their process has a kind of "truth theory,"

but that it is different from that of logic because it admits assumptions. Briefly, explain the
significance of this difference.
(d) After the different beliefs in the assumptions were tallied, the lunchers noticed that
there was still more they wanted to discuss before drawing a conclusion. For example,
luncher A noticed that he believed the pro argument "Chinese food is healthy" and also the
con argument "Chinese lunch is expensive." However, he cared about the former argument

Page 75 of 224 FORD 1011

68 1 SYMBOL SYSTEMS

more than the latter because the amount of money he spends on lunch has never been sig
nificant to him. Similarly, the other lunchers evaluate the arguments in their own ways.

How does this part of their decision process require concepts beyond the declarative
semantics of logic? Explain briefly.

Note: This exercise is based on the idea of an argumentation spreadsheet, as
described in Steftk et al, 1987, which was part of the Colab project at Xerox Palo Alto
Research Center (PARC).

Ex. 11 [!-L-15] Graphs and Logic as Representations. In many graph representations, an account
of the meaning includes an account of processing by the physical symbol system. For
example, a process might specify how information associated with one node can be propa
gated to other nodes to which it is linked in particular ways.
(a) Create a graph representation (semantic network) for the following three sentences.
Referring to the elements of your graph representation, describe how you would infer that
"Bill can fly":

All birds can fly.
A pelican is a kind of bird.
Bill is a pelican.

(b) Instead of using the semantic network representation, translate these statements into
formulas of the predicate calculus. Give a short proof that "Bill can fly." Indicate the rules
of inference that (such as modus ponens and universal instantiation) you use in the proof
steps.

11'1111 Ex. 12 [CD-05] The Changeable Mind of the Observer. Professor Digit is disturbed by the idea
that the meaning of symbols is in the mind of an observer.

For example, suppose in a medical domain about infectious diseases that some of the
microorganisms responsible for the disease "sniffleitus" develop a resistance to a particular
antiobiotic treatment. In that case, doctors and other medical practitioners would extend
the symbol sniffleitus to include the new dominant variant of the disease and would also
prescribe a different treatment for it.

Professor Digit is concerned about the philosophical consequences of this, especially
in the case that the knowledge system itself is not modified. He asks: "When people
change their use of some symbols used in a knowledge system, does that change what the
program means?"
(a) Briefly, show how the answer to the professor's question depends on our choice of
semantics. Compare the answers for reference and denotational semantics.
(b) Suppose that the knowledge engineer now updates the program so that it prescribes a
different treatment for sniffleitus, respecting its acquired resistance. Again, does this
change the meaning of the program for denotational and reference semantics?

(This exercise was inspired by an example from William Clancey.)

1.3 Modeling: Dimensions of Representation
Like many computer programs, a knowledge system is a computational model of something,
where the "something" is the domain or the situation. For example, a knowledge system for diag
nosis and repair of radios would typically include a model of the physical parts of a radio, a
model of the functions of the parts and of their electrical operation, a model of how the compo
nents can fail, a model of the diagnosis task, and a model for the repair task. For each model, rep-

Page 76 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation 69

resentations are required and the representations must satisfy particular properties in order to be
adequate.

The design of representations is a central concern in building computational models,
involving many considerations and sometimes several· changes until appropriate designs are
found. In talking about the suitability of representations, we are concerned not only with the
properties of the symbols themselves, but rather with their properties as representations. In the
previous section, we discussed representational properties involving reference semantics, truth
semantics, and proof semantics. These properties are concerned mainly with identity and infer
ence.

In this section we broaden our discussion of representational properties, including many
that bear on the computational use of representations. We discuss fidelity and precision, abstrac
tions and implementations, primitive and derived propositions, explicit and implicit representa
tions, canonical forms, use of multiple representations, space, time and structural complexity,
and the broad implications of parallel processing for efficient manipulation of symbol structures.
These dimensions arise in the design of all kinds of computational models.

The concepts introduced in this section are typical of an engineering approach to system
design. For example, we ask about the adequacy of representations for making particular distinc
tions. We ask about the efficiency of particular operations on symbol structures. We ask how that
efficiency differs according to different assumptions about the nature of the computational pro
cessing elements.

If you have had programming experience, many of the representational properties dis
cussed in this section will be familiar. A programmer must design representations, making sure
sure that they cover the cases of interest, that all of the important distinctions can be represented,
and that computations run in reasonable time and space. These practical concerns are inherent
in building knowledge systems and are encountered by everyone who builds computational
models.

1.3.1 Fidelity and Precision

Fidelity refers to the correctness of statements or predictions about the world. When applied to
representations, it refers to the correctness of the meaning that we ascribe to them. Another term
for fidelity is accuracy. Precision refers to the degree of detail in predictions about the world.
Similarly, the precision of representations refers to the degree of detail in the meanings that we
ascribe to them. For example, a computation that is given to ten decimal digits is more precise
than one that is given only to six digits. In a circuit diagnosis system, a representation that pre
dicts that voltage will rise to "eight volts plus or minus one" is more precise than one that simply
predicts that voltage will rise.

Representations can have fidelity with little precision or have great precision without fidel
ity. For example, the statement "The sun will rise tomorrow morning and set in the evening" has
fidelity, but little precision. It does not give the precise time of the sunrise or say anything about
its path across the sky. In contrast, the statement that there are 1,456,853,123 molecules of air in
a tiny bottle in my study has great precision but is not accurate.

Different tasks have different requirements for accuracy and precision. Consider in Figure
1.27 two representations of a chemical structure for different tasks. The first representation pres
ents molecules as topological structures, characterized by nodes (atoms) and arcs (bonds) be-

Page 77 of 224 FORD 1011

10

Topological representation:

Logical clauses

(Connected C A)

(Connected C B)

(Connected CD)

(Connected C E)

Three-dimensional representation:

illustration

A

I
E-C-B

I
D

A Stereoisomers

C~------------ B --' - '

'

D E D

1 SYMBOL SYSTEMS

A

c_; _____________ E
--' - '

B

Clause for left molecule

Clauses for both
(Center C)

(Top A)
Clause for right molecule

... Topological clauses from above

(Clockwise-Order BE D) (Clockwise-Order E B D)

FIGURE 1.27. Stereoisomers are mirror-image molecules. They have the same atoms and the same cor
responding chemical bonds, but they are distinguished by their shape.

tween them. A topological representation describes which atoms are connected. It is adequate for
determining the chemical composition of a molecule in terms of its individual atoms.

However, a representation of a molecule limited to topology is inadequate for reasoning
about molecular interactions. Molecules can have the same topological properties and yet differ
in their three-dimensional structures. For example, organic enzymes must fit against other mole
cules and their interactions depend on the particulars of their three-dimensional structures. When
two molecules are mirror images of each other, they are called stereoisomers. Stereoisomers
have the same topology but act differently in some chemical reactions.

Precision and fidelity are not usually independent considerations. Representations that are
correct but imprecise often lead ultimately to incorrect predictions. Continuous systems are ones
in which a small change in the initial conditions leads to a small change in the final conditions. In
continuous systems, small compromises in precision typically cause few problems in fidelity, if
the results are not extrapolated too far. Chaotic systems, however, are ones in which arbitrarily
small changes in the initial conditions can lead to large changes in the results. Even with great
computational precision, there is little confidence in the fidelity of predictions for such systems.

Page 78 of 224 FORD 1011

1 .3 Modeling: Dimensions of Representation 71

Fidelity and precision reflect a tension between our representational goals and limitations
when we use computational models. There are usually trade-offs in representations involving
efficiency, fidelity and precision. Typically, an increase in precision requires a decrease in effi
ciency.

Practical knowledge systems employ multiple representations with different trade-offs in
precision. In a diagnostic reasoning system, representations with low precision may be adequate
for making coarse predictions about circuit behavior. For the purpose of isolating and identifying
a faulty component, this may be enough to rule out major blocks of the circuit. More precise rep
resentations may then be called on to make a more detailed analysis on selected parts of the cir
cuit. For this reason, the design of a computational model sometimes involves a suite of comple
mentary representations with degrees of precision suitable for different purposes.

1.3.2 Abstractions and Implementations

Abstractions are high-level descriptions that say what a representation must do but not precisely
how it must do it. Abstractions are essential in large programming projects. Abstractions are
soinetimes explicit as the "exported interface" of a program. When one subprogram refers to
another and depends only on its exported interface, then implementations of the called program
can be changed without changing the calling program. This facilitates the use of alternative
implementations. Implementations are specific data structures and associated methods for stor
ipg information and carrying out operations relative to a given computational interpreter.

Unfortunately, the word abstract is misleading. All representations are abstract in that they
leave out some features. In the terms of the previous section, all practical representations lack
something in their precision, so they are necessarily "abstract."

The terms abstraction and implementation are better understood as describing relations
between representations. When the relation between two representations is akin to the relation
between high-level specifications and low-level and detailed descriptions, then we call the for
mer abstractions and the latter implementations. This distinction is common in programming
methodology and software engineering. Figure 1.28 suggests how an object-oriented language
could specify abstractions in terms of "message protocols" that an implementation must include.
In this context, an implementation is a description of how it carries out the required protocol. In
idealized programming practice, we first build specify abstract models and then develop
implementations. Typically, however, these processes are intertwined.

We define abstractions in terms of a set of features with meaning, a set of operations that
change the features or return information about them, and a set of invariants on the features that
must be preserved by the operations. This style follows object-oriented approaches to program
ming. For example, we could define an abstract representation of a figure as an entity with a
shape, an origin and dimensions, certain computable properties such as area that are related to its
dimensions, and operations for changing its dimensions, moving it about, and determining
whether it covers arbitrary points in the plane. In this example, there are several invariants. The
dimensions and shape of a figure do not change when it is moved. However the origin of a figure
is not an invariant; it changes when the figure is moved. A complete characterization of the ab
stractions should characterize the required precision of the representation as well.

------~-- ----------------------~

Page 79 of 224 FORD 1011

12. 1 SYMBOL SYSTEMS

Abstraction of Figure Implementation of Figure

Protocol specification Method specification

Retrieve-Figures (scene) "' Procedure for returning figures. (
Retrieve-Shape (figure)

~
Procedure for retrieving shape.

Retrieve-Origin (figure)
-~

Procedure for retrieving origin.
Move (figure) , Procedure for moving figure.

.

Invariants Storage specifications

Shape does not change when Variable for position
figure is moved. . ..

FIGURE 1.28. Abstractions and implementations.

To' make the abstraction/implementation distinction concrete we define an abstraction for
figures and then compare three implementations of it. Our abstraction of "figure" requires the
following specific operations:

Get-Shape (figure): Retrieve a description of the shape of the figure, one of square, circle,
triangle, and spiral.

~, Get-Origin (figure): Retrieve the origin of the figure.
Get-Area (figure): Retrieve the area of the figure.
Move (figure): Move the figure to a new location.

-, Overlap (figure 1, figure 2): Determine whether two figures overlap.
Get-Overlapping-Figures (figure-set): Find all of the figures in a set that overlap a given
figure.

We now consider three alternative data structures for representing a scene with figures. We
think of these data structures as alternative implementations. We illustrate these data structures
with example representations of a square.

A Binary Array Representation for Figures
Figure 1.29 shows a two-dimensional binary array (bitmap) representation of the square. Each
position in the bitmap corresponds to a square picture element or pixel in the scene. A 0 in the
bitmap indicates that the position is unoccupied, and a 1 indicates the presence of some object at
the position. Movement of an object is represented by appropriately shifting the bits representing
the object to new positions in the bitmap.

Figure 1.30 shows how a stack of such bitmaps can represent a scene containing several
two-dimensional objects. Each object is represented by a separate bitmap and the composite
scene is visualized by sighting through the stack of bitmaps, performing a logical OR of the bits
corresponding to the same location on the plane.

Page 80 of 224 FORD 1011

1 .3 Modeling: Dimensions of Representation

QOQOOOOOOOOO

0.0 0 0 0 0 0 0 0 0 0 0
0 .o 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
o o·o o 1 o o 1 o o o o
0 0 ~b 10 0 1 0 0 0 0
000011110000
0 0 D 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

FIGURE 1.29. A two-dimensional binary array representation of a square.

73

Figure 1.31 summarizes how the operations of the figure abstraction could be carried out in
this implementation.

· This representation has inherent limitations in precision. Consider the program that
implements the shape recognizer. For large enough figures it is clear that the imprint on the
bitmap will be different for squares, circles, triangles, and spirals. However, for cases where the
size of the image is close to the size of a pixel, the images can be indistinguishable. For example,
a 2-pixel-by-2-pixel square and a circle with a radius of 1 pixel have the same rendering. Simi
larly, in deciding whether two figures overlap, protocol must report that they do if they are within
one pixel of each other. In a real task, we need to be specific in describing the required precision
for the protocols in order to determine whether the bitmap implementation would be adequate.

A Property List Representation for Figures
Figure 1.32 proposes another representation of a square in terms of a coordinate table with prop
erty lists. This representation indexes figures through a table according to the coordinates of their
origins. For each figure, there is a property list of features indexed through the table. For exam
ple, in a square, the value of the shape property would be "square." Also for a square, the value

b /7 Squ=l

/ jl Cimle2

' ' ' / I Spring7

/m
FIGURE 1.30. A stack of bitmaps. The composite scene would be obtained by sighting through the stack.

Page 81 of 224 FORD 1011

14 1 SYMBOL SYSTEMS

811 Get-Shape: A recognition program analyzes a bit image in a plane to infer a shape andits parame
ters.

11 Get-Origin: A computation is performed on the image. For example; to fmd the origin of a squate
the location of the leftmost and bottom-most corner must be determined. ..

11. Get-Area: Acomputation must be performed on the shape parameters returned'by Get-Shape: Fora
square, the length of a side is multiplied by itself.

11 Move: The property list is shifted to a new cell in the array.
11 Overlap: A computation must be performed on the two shape descriptions .
. II Get-Overlapping-Figures: A search is made through the list of planes, iteratively invoking. the

Overlap method.

FIGURE 1.31. Implementing the operations for the bit image implementation of a figure.

of the side-length property would be a number indicating the length of the square's side. The ori
gin of the square is determined by the indices of its description in the array. Thus, the lower left
corner of' the square is located in the scene at position (4, 3) and is indexed in the array through
the cell at position (4, 3). If two figures have the same origin, then the coincident cell contains a
list of pointers to the figure descriptions.

Figure 1.33 describes one way that the figure operations could be implemented. The oper
ation of Get-Shape is simpler than in the pixel representation since it is only necessary to retrieve
the value of the shape property. In contrast, the Overlap operation is made more difficult. Differ
ent computational approaches are possible. One approach, equivalent in precision to the bitmap
approach, is to project the figure onto a temporary bitmap and then check whether any of the cor
responding pixels are both on. An alternative approach is to solve the intersection problem ana
lytically. To determine whether a square intersects a circle, we would need to compute the inter-

8 Property list

7 Link
from (Shape: square)

6

l/1/
(side-length 4)

5

4

3
/

2

1

0 1 2 3 4 5 6 7 8 9 10

FIGURE 1.32. A feature-oriented representation of a square in a table. The property list description of
the square is located at index (4, 3) in the table.

Page 82 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation 75

,111 Get~Shape: Retrieve a token naming the shape from the property list. :. ::: ·

111 Get:·:Origin: Return the indices in the array to the property list,·. . .···.. . , .·
Jlill Get-Area:. Perform a computation on the shape panu:neters. For a ,square, the length of a sidiis

squared. · . . · · ; <
111 Move: Shift the propertylistto a new cell in the array. .··. . ·. · .• ··•·.. ~·<{.
111 Overlap: Perform a computation on the shape. This may be done by intersecting the poup.~aJ:!~§~~f

the two figures or by computing a projection for each figure onto a plane and then.intersectiJ:!g't:Q~~e
projections. . . · .•..• · · ·~ 7·.N

111 Get-Overlapping-Figures: Search through the list of planes for those that overlap the given fi~111;e.

FIGURE 1.33. Implementing the operations for the property list implementation of a figure.

section of a circle and a line. If all of the figures are rectangles or polygons, the latter approach
can be quite efficient.

A, Graph Representation for Figures
Our third candidate representation for figures is a graph representation as in Figure 1.34. This
data structure has a unique node called the head node that represents the figure as a whole. In
Figure 1.34, the head node has an is-a link to the class Square. The head node has part links to
designate relations to each of the four lines that make up the sides, and other nodes representing
such information as the position. Moving the square in this representation amounts to changing
the position nodes to link to different coordinates. A set of figures is represented as a list of such
graph representations.

Figure 1.35 summarizes how the different operations of the figure abstraction could be car
ried out on the graph representation. As in the case of the property list representation, the shape
of the figure is determined by a retrieval operation except that instead of returning the value of a
property the procedure must follow an is-a link and return the name of a class. Retrieving the
origin of a square requires traversing through the nodes representing the parts of the square to

is-a
(inherit)

other lines
representing the other

sides
other relations on line 7
such as its orientation

FIGURE 1.34. A graph representation of a square.

Page 83 of 224 FORD 1011

76 1 SYMBOL SYSTEMS

1111 Get-Shape: Starting at the head node, follow the is-a link to its class and return the name of t:Qat .
class.

1111 Get-Origin: Starting.at the headnode, follow the bottom-side·link.to a line, the origin1inkt()a
position, and then return the values. of the xand yrelations on thatposition.

1111 Get-Area: Perform acomputation on the shape parameters. For a square, the length of a side is
squared. ..

1111 Move: Shift the property list to a new cell in the array. All of the positions of all of the lines in the
figure are updated to reflect new coordinates

1111 Overlap: The computation is analogous to the case of the property-list representation.
·1111 Get-Overlapping-Figures: Search through the list of figures to find those that overlap.

FIGURE 1.35. Implementing the operations for a graph representation of a figure.

obtain the origin of the bottom side. The computation of overlap is analogous to the property list
case.

Comparing Representations for Figures
The bitmap, property list, and graph all support the same abstraction. We can compare their per
formance for carrying out the prescribed operations. For example, consider the retrieval of the
origin of a square in a scene. In the property -list table, retrieval of the origin requires that the pro
cessor be able to determine the indices of the entry in the table containing the square's descrip
tion. To retrieve the square's origin in the graph representation, the processor must traverse the
graph to retrieve the coordinates of the line representing the bottom side of the square. In the
bitmap representation, retrieving the origin (at least for a "Manhattan square") involves stepping
through the bitmap to locate the lowest and leftmost bit that is 1 and then returning the indices of
that bit. Thus, to present the same abstraction, the three implementations must employ radically
different processes with different amounts of time and space for the operation. Table 1.4 crudely
compares the speeds of the operations on the three representations.

As shown in Table 1.4 there are trade-offs in the choice of implementations. One
implementation is better for some operations, and another is better for others. If the objects are
rectangles aligned with the coordinate axes, the computation for determining overlap requires
only a few arithmetic operations given the positions and sizes of the rectangles. In the absence of
special hardware, using bitmaps to decide whether such rectangles overlap would be fast enough
for small figures but inefficient for large ones. If, however, the shapes of objects are irregular and
nonrectangular and the bitmap logical ANDing operation was limited to tight regions containing

TABLE 1.4. Partial table of trade-offs for the three alternative implementations of a square.

Implementation Return Origin Compute Overlap Name Shape

Pixel arrays Slow Fast for small figures Slow

Property-list table Fast Depends on shapes Fast

List graph representations Medium Depends on shapes Fast

Page 84 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation 17

the objects, the bitmap representation could be made simple and efficient for determining the
area of overlap. If we want to find the set of figures in a scene that overlap a given figure, then
searching through the lists and tables and computing intersections can be a nontrivial computa
tion for both the graph and feature representations.

1.3.3 Primitive and Derived Propositions

Reviewing the comparison of representations of figures, it is striking that, for each kind of query
we considered, the favored data structure was one in which the required information was directly
accessible.

Hector Levesque calls such representations vivid (Levesque, 1986). Others have called
these analogical and direct. Vivid representations have the following characteristics:

For every kind of object of interest in the world, there is a type of symbol.
For every simple relationship of interest in the world, there is a type of connection among
the symbols.
There is a one-to-one correspondence between the symbols and the objects that they desig
nate in the world.
There is a one-to-one correspondence between the connections and the relations that they
designate in the world. That is, the relation holds among the objects in the world if and
only if the connection exists among the symbols in the knowledge base.

In considering vividness, we should not treat the notion of a "connection" among symbols too
narrowly. Pointers in data structures are the simplest case of connections, but, as Levesque sug
gests, the notion can be extended to mean that two symbols are connected if they jointly satisfy
some predicate that can be computed in bounded time. The tighter that the bounds are on compu
tation, the better.

The terms vivid, analogical, and direct draw on a perceived similarity of the structure of a
representation to the structure of the things designated.

An example of a vivid representation is given in Figure 1.36, which shows a line drawing
of a chemical structure; Figure 1.37 shows a graph that could be used to represent the same struc
ture. The similarity of both representations is apparent: There is a node for each atom of the mol
ecule and a link for each chemical bond. The graph in Figure 1.37 shows a pair of links for each
chemical bond, leading from each participating atom to the other.

0 H H
II / /
c--c--c-H

H"' / H/ "'H
C-H

1/H /H
C--C-H

/ "' H H

FIGURE 1.36. Line drawing of a chemical molecule.

Page 85 of 224 FORD 1011

18 1 SYMBOL SYSTEMS

FIGURE 1.37. Semantic network and analogical representation of a molecule.

Analogical representations are like scale models. An often cited example of a direct repre
sentation is the representation of spatial relations in a room by maps. A map is called direct
because ofthe similarity between the two-dimensional plane of the paper and the two-dimen
sional plane of the floor of the room. The paper is a direct homomorph of the room. Map and
room have the same sort of structure (two-dimensional Euclidean space) and thereby admit the
same sorts of operations such as sliding, rotation, and measurement. Naturally, the map is sim
pler than the actual room, in that various properties and relations such as texture, color, or a third
dimension are missing from the map.

From another perspective, however, these concepts add nothing to the concepts of abstrac
tions and implementations from the previous section. The "real world" does not present itself to
us in terms of specific categories, objects, and relations. These concepts are all invented by us
and we use them to describe what we perceive. To say that the line drawing of the chemical
model is vivid is to say that it shares particular desired properties with the abstraction we want to
use. The concepts of atoms and bonds are invented by people. In this regard, the notion of vivid
ness is rather naive. Since designation depends on an observer, the directness of the representa
tion depends on the distinctions already made by the observer. Thus, the world does not present
itself to us in terms of objects and relations. Those are properties of how we think about the
world, rather than intrinsic properties of the world itself. Thus vividness has to do with the corre
spondence of a representation with a favored model of the world, rather than a correspondence
with the world itself.

Page 86 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation

(large number of)
Derived Propositions

!j\ ,,
Supports

(small number of)
Primitive Propostions

What is the molecular weight?
What is the reactivity?
Are two atoms in the same molecule?
How many oxygens in this molecule?

Which atoms are bonded to each other?

FIGURE 1.38. A small number of primitive propositions can support a much larger number of derived

ones.

79

This argument brings us to a different way of understanding and appreciating what is
important about vivid representations. Much of the appeal of a vivid representation arises from
the astute selection of primitive and derived propositions. Primitive propositions are those mod
eled directly in the representation. Derived propositions are other propositions about the objects
that can be determined by a computation based on the primitive ones.

The primitive propositions in Figures 1.36 and 1.37 are the representations of atoms and
bonds. An example of a derived property is the connectedness of atoms in molecules. To deter
mine whether carbon 1 is in the same molecule as carbon 6, one can simply follow the bond links
starting from carbon 1, searching for a path to carbon 6. If no path can be found, the atoms are in
separate molecules. Another derived property is the molecular weight, which can be computed
by summing the atomic weights of all the connected atoms in a molecule.

Figure 1.38 illustrates a common strategy in the design of knowledge systems that exploits
this distinction between primitive and derived propositions. A large number of propositions can
be derived from a small number of primitive ones. Derived propositions are computed on
demand. In our representation of a chemical molecule, we had explicit representations indicating
which atoms are bonded to their neighbors. These bonds were the basis for other computations
on the graph, such as computing the molecular weight, computing the number of instances of any
particular kind of atom in a molecule, computing the distance of separation of atoms of a particu
lar type in a molecule, and so on.

The disciplined. separation of intrinsic and derived properties can simplify the process of
verifying that invariants are satisfied. To verify invariants in a design that segregates primitive
and derived operations, it is enough to check the effects of operations on the primitive proposi
tions. For example, assuming that interactions with air or other environment sources of atoms are
properly accounted for, the making and breaking of chemical bonds in organic chemistry does
not change the weight of the compounds or the number of atoms present. In building a computa
tional model of chemical reactions, we might demand that our model preserve the same invari
ants.

To take an example, if the links representing chemical bonds between carbon 3 and carbon
4 are broken, no further changes to the underlying representation are needed to indicate consis-'
tently that carbon 1 is no longer part of the same molecule as carbon 6. No further changes are

Page 87 of 224 FORD 1011

80 1 SYMBOL SYSTEMS

needed to prepare for the computation of the molecular weight of the molecule containing car
bon 1. In effect, the "conservation of atoms" that chemists ascribe to the real world is captured
faithfully by the "conservation of nodes" during the operations that make and delete links
between nodes. For another example, if carbon 1 were bond linked to carbon 6 to form a ring
molecule, and then the bond link between carbon 3 and carbon 4 was deleted, then with no fur
ther computational work the representation would correctly show that the molecule remains
intact. In summary, the design of a vivid representation involves not only deciding which proper
ties to make explicit, but also which properties to compute from a small set of primitive symbol
structures, manipulated by the operations of frequent interest.

1.3.4 Explicit and lmplict Representations

Advocates of early representation languages developed in AI often characterized them as having
explicit representations. But what is the difference between an explicit representation and an
implicit one and what are the advantages of explicit ones? In this section we define what it
means for a representation to be explict and compare some example representations along this
dimension:"

What It Means for a Representation to be Explicit

A representation is explicit or declarative to the extent that it has the following properties:

Modularity. The representation is self-contained and autonomous. In other words, there is
an identifiable and bounded set of symbol structures that make up the representation, they
are distinct and separate from the interpreter programs that use them, and there is a well
defined and narrowly prescribed interface by which other parts of the system access the
representations.
Semantics. The representation must have well-understood semantics. As usual, different
kinds of semantics are appropriate for different situations. A denotational semantics or
interface semantics is required to describe what behaviors correspond to different repre
sentations. If the interpreter draws inferences from the representation, the semantics
include a reference semantics, a truth semantics, and a proof semantics. When the repre
sentation is used in reasoning with limited resources defeasible reasoning, then the seman
tics must include a reasoning control semantics.
Causal Connection. For the representation to have any effect on the system from which it
is separated, there must be a causal connection such that changing the representation
causes the system to change its behavior in a way that is appropriate for the change to the
representation and its semantics. This causal connection provides the basis by which the
representation governs reasoning and behavior of the system.

A representation is said to be implicit if it is not explicit.
Explicit representations are important in knowledge systems. Their value does not rest on

performance characteristics of the representations, since explicit and implicit representations are
the same with regard to performance. Their value rests on the practical leverage that they provide
for parameterizing the control of complex know ledge systems.

Page 88 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation 81

The importance attributed to explicit representations in knowledge systems reflects the
concern of the field to the processes of updating of knowledge bases and reuse of knowledge sys
tems. The combination of modularity, causal connection, and semantic correspondence makes it
easier to change explicit representations than implicit ones. The semantics are understood and
the interface is narrowly prescribed. These representational properties provide part of the inter
face to a knowledge system as a computational model.

The success of explicit representations in facilitating reuse and change depends on the
extent to which the system's designers correctly anticipate the nature and extent of the different
situations in which the system must operate, and which can be provided for by declarations. In
this way, the design of explicit representations amounts to a bet about the likely dimensions
needed for use and for change.

Comparing the Explicitness of Representations
We now consider two pairs of examples of representations to compare and discuss whether they
are explicit. Figure 1.39 shows two approaches for organizing representations of facts about
chemical elements in a reasoning system. In both organizations, particular parts of the systems
are concerned with reasoning about molecular weights, chemical reactions, and printing reports
about chemical structures.

In the first approach, facts about the elements are scattered throughout the system. For
example, statements about the weight and valence of the element carbon are located in separate
parts of the program, perhaps several times. To add a new chemical element to the system or to
change the facts about an existing one requires finding all of the places where it may be encoded.

In the second approach, a single table of chemical facts is stored separately from the rea
soning methods. Whenever a fact about the elements is needed, the program invokes a database
retrieval interface to retrieve the required information. To update the facts used by the system
requires only updating the table.

Which of these approaches use explicit representations? First we consider the requirements
for semantics and a causal connections, which the two approaches have in common. Both repre
sentations in Figure 1.39 have a semantics described by a characterization of atomic numbers,
valence, and molecular weight. These amount to what chemists call a "ball-and-stick" model of
molecules or roughly "labeled graphs." The operational semantics of the representation of chem
ical reactions or the computation of molecular weight are easily described in terms of primitives
for making and breaking of bonds and appropriate graph operations and conservation laws. In
summary, both representations satisfy the second and third requirements of being an explicit rep
resentation.

However, the first approach does not satisfy the modularity requirement. The database
interface for the second approach has a quality of modularity that is lacking in the first. The rep
resentations of chemical facts in the first approach are scattered throughout the program that uses
them. In contrast, the symbols making up the representation in the database are identifiable and
separable from their interpreter. The database symbols are stored in a separate database, and are
accessible from the program by a retrieval interface to the database. Thus, the database is declar
ative or explicit, but the first approach is not.

Figure 1.40 shows two approaches for defining the term father in a reasoning system. The
first approach defines the term father using a set of predicate calculus statements. These state-

Page 89 of 224 FORD 1011

00
N Approach I : : Approach 2

Chemical reasoning system Chemical reasoning system

Molecular weight module Molecular weight module

begin begin
If node.name="c" then wt=12.01 wt=GetWeight(node)

...
~nd end

Chemical reaction module Chemical reaction module

begin begin
If node.name="c" then valence=4 valence=GetValence(node)

~
/' ...

end end

Graph printing module Graph printing module

begin begin
If node.name="c" then print "carbon" print GetName(node)

' , ...
end end

Data retrieval interface ~If

Atom Name Atomic No. Weight

H Hydrogen I 1.0080
He Helium 2 4.003
Li Lithium 3 6.940
Be Beryllium 4 9.02
B Boron 5 10.82
c Carbon 6 12.01
.

FIGURE 1.39. Two representations of facts about the elements in a chemical reasoning system.

Valence

I
0
I
2
3
4
. ..

Page 90 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation

Approach 1 .
Parent(x) => Person(x)
Child(x) => Perrson(x)
Parent(x) => HasChild(x)
Parent(x) => NumChildren(x)2: 1
Father(x) => Parent(x) A Male(x)

Approach 2
Parent

Superclasses: Person
Children: [Value: a Person]
Cardinality: Minimum 1

Father
Superclasses: Parent, Male

FIGURE 1.40. Two representations for defining the term father in a reasoning system.

83

ments enable a reasoning system to answer questions about fathers, noting that fathers have the
properties of people, parents, and males and that they have at least one child. In the first
approach, the relevant statements can be part of a large base of facts. The second approach in
Figure 1.40 draws on concepts from object-oriented and frame-representation languages. A par
ent is defined as a person who has at least one child. The term father inherits the properties from
male and parent.

We now consider the explicitness of the two approaches for defining father. Again, both
approaches have semantics and both approaches have a causal connection. What is at issue is
whether either or both representations satisfy the requirement of modularity.

It is sometimes argued that any representation in predicate calculus is explicit because the
sentences in a logic language are identifiably separated from their interpreter. However, senten
ces about growing pumpkins can be mixed up with ones about conducting international affairs.
There is nothing in the representation that makes evident the extent of interactions, especially if
one assumes a complete theorem prover. Thus, without boundaries in the representation, there is
only a limited sense of modularity.

In contrast, the frame representation is designed so that all of the symbols that make up the
definition of father are clustered together in a unit. The interpreter of a frame language is limited
to making certain kinds of inferences involving inheritance, subsurnption, mutual exclusion, and
so on. In this way, the interface between different concepts is more narrowly prescribed, accord
ing to the rules of the particular frame language. Furthermore, the interaction with and through
the interpreter are narrow because the operations of the interpreter in a frame language are fewer
and more directed than those in a complete theorem prover.

In summary, explicit representations must be modular, must have well-defined semantics,
and must have a causal connection between the representation and the behavior of the system.
Explicit representations are used in knowledge systems to provide convenient interfaces for con
trolling the behavior of the system. A design that makes some representations explicit makes
assumptions about what aspects of the systems behavior need to be controlled and parameterized
for ease of reuse.

Page 91 of 224 FORD 1011

84

A

/ " B F
I I
C E
" / D

1

(AB CD EF)

B

/ " C A
I I

D F

" / E

B~C~D~E~F~A

t I
2

(B CDEFA)

1 SYMBOL SYSTEMS

A
/ " F B

I I
E C
" / D

A~F~E~D~C~B

1 I
3

(AFED CB)

FIGURE 1.41. Three graph representations of a chemical molecule, equivalent under rotation and
reflection.

1.3.5 Representation and Canonical Form

The design wf symbol structures with structure-building primitives often leads to questions about
the equivalence of descriptions. Figure 1.41 shows three graphs representing chemical mole
cules. Each letter stands for a unique bivalent piece of the molecule, and the links indicate chem
ical bonds between the pieces. Below each drawing is a picture of a linked list, showing how the
descriptions of the pieces might be arranged in a data structure. Thus, in the first molecule, the
first element of the linked list is A, the second is B, and so on to F, corresponding to the last piece
of the molecule, which is linked back to A.

The three graphs in Figure 1.41 are topologically equivalent; that is, they are made up of
the same kinds of pieces connected in exactly the same ways. Graph 2 is like graph 1 except that
it has been rotated, so that it starts with B rather than A at the top. Graph 3 is also like graph 1
except that it has been reflected: Reading graph 1 clockwise instead of counterclockwise would
yield the linked list shown for graph 3. A computer program that could generate all six of the
rotated versions of this data structure, as well as the corresponding six reflections, potentially
would have to deal with 12 distinct graph representations for the same kind of molecule.

The graph in Figure 1.42 is made of the same pieces as the three we have considered.
However, it designates a distinct class of molecule because it is topologically different. The posi
tions of B and C have been exchanged in the graph. No combination of rotations and reflections
will yield a data structure like those in Figure 1.41.

To simplify the testing of equivalence in such representations, it is convenient to define
canonical forms and canonical functions. Canonical functions transform expressions into canon
ical or standard forms. For example, we define the canonical form for these graphs as the list
structure that is earliest in an alphabetical order reading left to right.

Given a canonical function, there is a test for deciding whether two expressions are equiv
alent: Apply the canonical function and test whether the resulting canonical expressions are
equal. Thus, a canonical function is a procedure c that transforms any expression e into a unique
equivalent expression c(e) such that, for any two expressions el and e2, el is equivalent to e2 if
and only if c(el) is equal to c(e2). The resulting expressions, c(el) and c(e2), are called canoni
cal forms. The canonical forms induce equivalence classes on the set of expressions. For each
equivalence class, the canonical form is a distinguished representative of the class.

Page 92 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation

A
/ " C F

I I
B E

" / D

A~C~B~D~E~F

1 I
(A CB DEF)

FIGURE 1.42. A data structure representing a molecule that has the same pieces as that in Figure 1.41,

but that is not equivalent.

85

In the circular molecular graphs example, rotation and reflection are equivalence-preserv
ing transformations because they do not change the identity of the graph. Without a canonical
function, testing for equivalence would require searching for a chain of equivalence-preserving
transformations connecting two expressions. Given a canonical function, we need only compute
the corresponding canonical forms and compare them for equality.

For circular lists like these, it is easy to define a canonical form. We need to determine a
starting node and an orientation for traversing the graph. One approach is to pick the linear repre
sentation that would come earliest in an alphabetic ordering. Thus, the representation (A B C D E
F) comes before (B C D E F G) and also before (A FED C B). Because the linked list for graph
1 in Figure 1.41 is in canonical form, and is different from the linked list in Figure 1.42, which is
also in canonical form, the two data structures must designate different kinds of molecules.

The basis of canonical forms comes partly from graph theory and partly from the domain
model. Thus, the same issues that we considered in the representation of molecules arise in the
representation of electrical circuits. Are two given circuits equivalent? Does a large circuit con
tain a subcircuit equivalent to a known one? For sufficiently rich domains, the simple assump
tions of pattern-matching languages are inadequate for answering these questions.

In many cases, there is no general function for efficiently computing canonical forms.
Chapter 2 shows that the issue of equivalence testing arises in the design of systems that system
atically generate symbol structures as candidate solutions to a problem. Not paying attention to
canonical forms in such systems can result in the unwanted generation of variant and redundant
representations of the same solutions. What is important to remember is when our models are
rich enough to represent things in more than one way, determining equivalence classes can be a
crucial part of designing efficient approaches to reasoning.

1.3.6 Using Multiple Representations
All this attention of designing a suitable symbol structure and interpreter as a representation may
have left the impression that a knowledge engineer must find a single best representation and
stick with it. An important alternative to this is the use of multiple representations. Multiple rep
resentations make it possible to combine the advantages of different representational forms. In
multiple representations, more than one symbol structure designates something in the environ
ment.

Page 93 of 224 FORD 1011

86 SYMBOL SYSTEMS

Molecule: A03
Molecular- Wt: 58 [cached]
Structure: <pointer to semantic network representation of the molecular

graph>

FIGURE 1.43. Caching molecular weight using multiple representations.

Suppose we had a knowledge system that reasoned about interactions between molecules.
Suppose it occasionally reasoned about breaking bonds, but very frequently needed to access the
molecular weight. You will recall that in our example of a graphical representation of a molecule,
molecular weight was computed by traversing the graph that represents the molecule and sum
ming the individual atomic weights. If molecular weight was used for many inferences, it would
be expensive to traverse the graph and recompute it everytime it was needed.

An obvious alternative is to cache the computed molecular weight as part of the represen
tation of th,e molecule as in Figure 1.43. The cached molecular weight is redundant to the molec
ular weight computed by traversing the molecular structure.

Whenever multiple representations are used, measures must be taken to keep them syn
chronized. In this case, whenever any operation is performed that changes the graph representing
a molecule, the cached molecular weight could become invalid. This issue is inherent in the use
of multiple representations and is called the stale data problem. To preclude the accidental
use of stale data in a computation, we need to extend our concern with the operations and invari
ants of abstractions to include multiple representations rather than just primitive propositions. As
in the example of caching molecular weight, cached values need to be invalidated whenever the
assumptions behind their caching become invalid. Specifically, the cached molecular weight
should be invalidated whenever operations make or break chemical bonds.

It is worthwhile to approach the stale data problem in two parts. To preclude inferences
using invalid derived data, it is enough to mark the cached and derived representations as invalid
whenever the underlying primitive representations are changed. This is known as invalidating
the cache. Typically, an additional bit or a special value associated with the cache is used to indi
cate when the cache is valid. A separate question is when to recompute the derived value. If the
primitive values could change several times before the derived value is requested, it is wastefull
to recompute the cache every time that the primitive data change. A more efficient alternative is
to recompute the derived value only on demand, that is, when the value is requested and the
cache is not valid.

For another example of the use of multiple representations, we return to the three imple
mentations of the figure abstraction that we considered earlier. Suppose that a typical scene con
tained tens of thousands of figures and that a common operation was to find all of the figures in a
given region that overlap with a given figure.

Each of the proposed implementations is potentially expensive for this operation. In the
pixel representation, we need to compare (or AND) the planes of pixels for every figure. This
operation is proportional to nd2 where where n is the number of figures and d2 is the number of
pixels per plane. For the property-list representation, the table indicates the origins of the figures
but not their sizes. Because figures can have arbitrary sizes, figures whose origins are arbitrarily

1

I
l
I
I

Page 94 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation 81

Array of image positions
Graph representation of figure

8

7 <

6
<', ', ..

/ v -..
,< ,'<

5 > /.

4

3 Close-up of cell

2
{Figure 1, Figure 2, ... }

1

0 1 2 3 4 5 6 7 8 9 10 Count of figures overlapping cell

FIGURE 1.44. Combining representations.

distant could still overlap. Thus, information about origins does not let us weed out figures that
potentially overlap and we need to compute the overlap of the figure of interest with every possi
ble figure. For the graph representation, the computation is similar.

Figure 1.44 shows an approach to making this computation more efficient by combining
multiple representations. In this example, each figure is represented in detail by a graph represen
tation. From this graph representation, the coverage on the plane is then projected back onto a
coarse map. We call this projection the figure's "shadow." Each cell in this coarse map has a
count of the number of figures that cover that cell, wholly or partially, and a list of pointers to
those figures.

The advantage of this representation is the way that it provides a coarse but inexpensive
filter that makes it unnecessary to perform detailed overlap computations for most figures. To
find the figures that overlap a given figure we procede as follows. First we find the shadow for
the figure of interest. Then we collect all of the figures which have common elements in the
shadow. These are the figures that "potentially" overlap the given figure. This eliminates from
detailed consideration all of those figures whose shadows do not overlap. When there are tens of
thousands of figures and all but a few of them are eliminated, the savings can be considerable.

As always with multiple representations, we must consider how operations could invali
date the cached values. Thus, when a figure is moved, the projection is recomputed and the old
counts in the coarse array of image positions are decremented under its shadow. If any cell has a
count of zero, then it's accumulated shadow is zeroed out. Then the origin of the figure is
updated and a new projection is computed, the shadow is ORed into the coarse array, and the cell
data are updated.

The coarser the shadow array, the less expensive it is to maintain. At any resolution, the
shadow overlap is accurate in that it never misses a potential overlapped figure. Precision de
pends on the coarseness of the map. Lack of precision shows up as a false positive: Two figures
may seem to overlap if they actually cover disjoint parts of a cell.

In summary, multiple representations create new options when there are unacceptable
trade-offs among fidelity, precision, and efficiency. Whenever multiple representations are used,

Page 95 of 224 FORD 1011

88 1 SYMBOL SYSTEMS

the concern with consistency and invariants must be extended to include not only primitive prop
ositions but also multiple representations.

1.3.7 Representation and Parallel Processing
In a conventional (von Neumann) computer architecture, one processor operates on symbol
structures in a passive memory. As alternative computer architectures become available, we
should consider the opportunities for parallel and distributed computation. The efficiency of
operations on a representation depends both on the data structure and the capabilities of the com
puter.

Figure 1.45 shows an example of a parallel computer architecture: a simplified picture of a
connection machine (Hillis, 1985). A connection machine links together thousands of extremely
small processors and memories. The first generation of these machines contains up to 64,000
small processors. The sequence of operations carried out by the small processors is ,determined
by the front-end processor, which broadcasts instructions to them. Figure 1.45 shows communi
cation links from the cells to each of their four neighbors and to the front end processor. In the
actual·.,computer there is also a packet switching network that makes it possible to send informa
tion simultaneously between arbitrary pairs of processors.

A connection machine can perform discrete simulations of fluid flow, as shown in Figure
1.46. The hexagon-shaped cells correspond to small regions of space. Within a cell, particles
move about according to specific interaction rules. For example, a particle in motion will con
tinue to move in the direction it started unless it collides with another particle or with some
obstacle in the space. In the figure, an obstacle in a cell is indicated by a solid rectangle and a
moving particle is indicated by an arrow.

The wind in a wind tunnel does not blow over one square centimeter of an airplane model
at a time. It blows across the whole model at once, showing the engineers how the flow in one

Instructions
and data Front-end

~----~
processor

Synchronized parallel computers

FIGURE 1.45. Architecture of a connection machine.

Page 96 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation

Representation
of particle

Representation
of obstacle

Representation
of cell in space

FIGURE 1.46. Part of a simulation of fluid flow on a connection machine.

89

section interacts with the flow in another. If we simulate the wind in parallel, that is, simulating
the flow of air particles through all of the space at once, the results can be computed more
quickly. This approach has been called "data-level parallelism" (TMC, 1986).

With data-level parallelism, the simulation can be carried out by representing each cell
with a processor in the connection machine. At each time step, every cell updates its state by
checking all of its adjoining cells for particles that are heading in its direction. The cells then
update their state according to the interaction rules. A connection machine is capable of modeling
approximately 1 billion cell updates per second. These results are averaged to predict macro
scopic effects accurately, providing a computational alternative to a wind tunnel.

This approach to simulating fluid flow would be almost unthinkable on a conventional
computer. Data-level parallelism makes it practical by providing enough processor power to
assign a computer to each region of space. The representation is analogous to a computational
view of the universe in which small regions of space are seen as computational elements that
communicate with their nearest neighbors. This point of view has some subtle advantages over
steady-state modeling. For example, the analogical representation naturally and faithfully pre
dicts the emergence of turbulence; that is, the unstable and chaotic swirls that develop, as fluid
flows across complex surfaces. This is an important aspect of reality that is not captured by the
differential equation models typically used.

The main point of this example is that the efficiency of a representation depends both on
the data structure and the capabilities of the computer. When we say that computers are "good
with numbers," this is a result of the built-in hardware for efficiently performing arithmetic oper
ations on binary representations of numbers. A connection machine is good for data-level paral
lelism because of the many built-in and interconnected processors supporting massive parallel
ism. As new computer architectures become widely available to knowledge engineers, the design
of appropriate representations will need to encompass not only the selection of data structures,
but also the selection of effective computer architectures.

1.3.8 Space and Time Complexity ADVANCED

So far in this chapter we have referred rather loosely to symbol structures and their interpreters as
being efficient or not. In this section we present notation and concepts for quantitatively charac
terizing the complexity of computations.

Page 97 of 224 FORD 1011

90 1 SYMBOL SYSTEMS

The amount of storage that an algorithm uses is called its space complexity and the
amount of time that it uses is called its time complexity. In the broadest sense, the efficiency of
an algorithm involves all the various computing resources needed for executing it. Time require
ments are typically the dominant factor in determining whether or not a particular algorithm is
efficient enough to be practical.

Time and space requirements of an algorithm can often be expressed in terms of a single
variable, the "size" of the problem instance. For example, the size may be "the number of ele
ments to be sorted" or "the number of cities to be visited." This is convenient because we expect
the relative difficulty of problems to vary with their size.

For idealized computations, we assume that accessing any storage element in memory
requires unit time, meaning that each access takes the same amount of time. Similarly, in com
puting time complexity, it is common to count the number of times that the steps are performed,
where each step must be executable in constant time. In computing space complexity, it is cus
tomary only to account only for space actually accessed by the algorithm. There is no charge for
memory that is not referenced during execution. If the algorithm requires that a large data struc
ture be initialized, then we have to be clear about whether we are counting the initialization time
and usually we should. Thus, the time complexity of an algorithm is always greater than or equal
to its space complexity, since every an instruction can either reuse an element of memory or allo
cate a new one.

Asymptotic Complexity
In the theory of algorithms, the "big-oh" notation is used to indicate asymptotic measures of
complexity. The notation O(j(n)) refers to a numeric quantity that is within a constant factor of
f(n) where f is a function of the integer n, which is some parameter of the method being analyzed.
More precisely, we say that

Xn = O(j(n)) (1)

when there is a positive constant C such that

(2)

for all n greater than some initial integer, n0• For example, if the time complexity of some algo
rithm is precisely

6n2 + 43n +16 (3)

we could say simply that it was O(n2
) since, for large enough n, the running time is dominated by

the squared term. This is called an asymptotic complexity because it need only hold for large
enough n. In this way, the big-oh notation leaves out the details of a complexity measure while
presenting enough information to get the main point of a comparison. It is often the case that
minor variations in algorithms do not change the way that they scale, and thus, do not require
changes to estimates of asymptotic complexity.

Page 98 of 224 FORD 1011

1 .3 Modeling: Dimensions of Representation 91

FIGURE 1.47. Entries in an unsorted, linear list. Search time is proportional to the length of the list.

In addition to the big-oh notation, there are two other conventional shorthands-little oh
and omega notations-that summarize related asymptotic conditions. These notations are
defined in equations (4) through (6).

g(n) is O(j(n))
g(n) is o(j(n))
g(n) is Q(j(n))

g(n) :::; C f(n) for n > n0

lim g(n) I f(n) = 0 as n -----1 oo

g(n) > Cf(n) for n > n0

(4)
(5)
(6)

Algorithms can take different amounts of time for different classes of starting data. If we
talk about the time complexity of the algorithm, we have to specify whether we are referring to
the exact time for particular data of size n, the worst-case time for data of size n, the average time
for all possible data of size n, or the typical time for data of size n. In general, the worst-case
tiiiles are the easiest to compute and at one time these were the ones most often used to character
ize algorithms. However, worst-case times are not always usefully indicative of the performance
of algorithms. Today it is considered more appropriate to give several characterizations of the
time complexity of an algorithm, including not only worst-case and average times, but also typi
cal times for well-characterized classes of cases.

To give an example of the use of the order notation for comparisons, we will compare three
algorithms for searching a symbol structure for an entry. In the first case, the entries are kept in
an unsorted linear list, such as that in Figure 1.47. Figure 1.48 presents pseudocode for searching
this list. It iterates down the list starting at the beginning, comparing each list element in tum
with the target entry. If a matching entry is found, it returns "yes" together with some auxiliary
data. If the algorithm encounters the end of the list as indicated by the entry with a slash in it, it
returns "no."

If there are n items in the list, the algorithm will execute the steps in the loop n times. We
can treat this loop as a unit of time or otherwise normalize it to the instruction time for the steps
in the loop. Of course in doing this, we need to be sure that no step in the loop requires a time
that depends on n. In such cases, we need to account how much time each step takes.

To search a list:
1. Proc~dure(target, 1 ist)
2. do begin
3. item := pop(list)
4. if riame(i tern) = name(t~rget) then return- "yes" with data (i tern);
5. end until end-of~list (list);

t* Here if target not found; * l
6. return "no"

FIGURE 1.48. Method for searching an unsorted, linear list.

Page 99 of 224 FORD 1011

92 1 SYMBOL SYSTEMS

<

FIGURE 1.49. Entries in a balanced tree. Search time is proportional to the depth of the tree.

How long does our algorithm take to run? In this problem, the worst-case time complexity
is O(n), where the algorithm searches to the end of the list and then fails. But what is the average
time to find an entry? To answer this question, we need to make some assumptions about the list.
Suppose, for example, that that the desired item will almost never be found in the list. In this
case, the algorithm usually searches to the end of the list and then fails.

on··,the other hand, suppose that the target is usually found in the list. Again, to make the
estimate we need to make assumptions about the position of the data in the list. Suppose that
there is an equal probability that the target will be at each point in the list. It is easy to see that on
average the method will search half of the list before matching the target. Since "half' is a con
stant factor, once again we have that the average time complexity is O(n).

Different symbol structures and algorithms can support the same abstractions but with dif
ferent efficiencies. Figure 1.49 gives an alternative tree representation of a set to be searched. For
now, we assume that each entry in the tree has two links called "more" and "less." The data are
arranged so we have a three-way test at each entry. If the entry equals the target, the search is
done. Otherwise, if the target is alphabetically less than the entry, the algorithm follows the
"less" link and checks the entry there. If the target is alphabetically greater than the entry, the
algorithm follows the "more" link and checks the entry there. Eventually, the algorithm either
finds the target or reaches the edge of the tree. This algorithm is presented in Figure 1.50.

To search a tree:
1. Procedure(target, tree)
2. begin
3. item := root(tree)
4. do begin
5. if name(item) = name(target) then return "yes" with data(item) •·
6. elseif lexical(target) < lexical(item) then item:= less(item)
7. elseif lexical(target) > lexical(item) theh item :~ more(item)
8. end until null (item);

/* Here if target not found. */

9. return "no"

FIGURE 1.50. Method for searching a tree.

Page 100 of 224 FORD 1011

1 .3 Modeling: Dimensions of Representation 93

I length = 8 I A I B I D I E G M S I X I

FIGURE 1 . .51. Entries in a sorted, linear list. Search time is proportional to the length of the list.

Once again, we ask about the time complexity of the algorithm. To analyze the time we
need to make assumptions about the shape of the tree. Suppose we know that this is a balanced
tree, in the sense that the subtrees on either side of a node are of nearly the same size. As the
algorithm proceeds, it marches down a path from the root or top of the tree. The maximum num
ber of times the algorithm must execute the loop is the depth of the tree, that is, the number of
steps in a path from the root. The length of such a path for a balanced tree is the ceiling or next
integer greater than login). Thus, the worst-case time complexity of this method is 00 log n l).
Readers interested in more details about operations on balanced trees can consult a basic text
book on algorithms and data structures, such as Knuth, 1973.

Before leaving this searching example, we note that achieving an O(log n) time on it does
n9t necessarily require having a tree structure. Figure 1.51 gives a tabular representation of the
list where items can be reached by indexing them in array. Unlike the previous list example, this
one assumes that the items are kept in the table in alphabetical order. This sorted data structure
lends itself to a binary search, where the first item checked is one halfway through the list. If an
item does not match, the search then proceeds in a manner analogous to the method in Figure
1.50. It focuses its search to either the elements greater than or less than the item just searched
and tries again at the middle of an unsearched portion of the list. At each comparison, the region
left to search is approximately halved. A binary search considers the same items in the same
order as the tree search. It trades arithmetic operations on indices for link-following operations in
a tree. Once again, the average and worst-case time complexities are O(log n). Updating the table
to add or delete an element takes time O(n).

Different algorithms have different asymptotic complexity functions. What is efficient
enough depends on the situation at hand. However, one widely recognized distinction is between
polynomial time algorithms and exponential time algorithms. A polynomial time algorithm is
one whose time complexity function is O(p(n)) for some polynomial functionp, where n is used
to denote the input size. An algorithm whose time complexity function is greater than this for all
fixed polynomials is called an exponential time algorithm.

The distinction between these two types of algorithms is particularly significant when we
compare the solution of large problems, since exponential functions grow so much faster than
polynomial ones. Because of this growth property, it is common practice to refer to a problem as
intractable if there is no polynomial time algorithm for solving it.

Space and Time Complexity for Parallel Algorithms

When multiple or parallel processors are engaged in a computation, it is appropriate to express
time complexities in a way that takes into account the number of processors. In some cases, we
can assign n processors to problems of size n although this option is often not realistic.

Using k processors can not reduce the asymptotic time complexity of a problem by more
than a factor of k. This is not to trivialize the value of multiprocessing. After all, applying 64,000

Page 101 of 224 FORD 1011

94

0 H H
II / /
c--c--c-H

H"- / / "
C-H H H

1/H /H
C--C-H

/ "' H H

1 - SYMBOL SYSTEMS

FIGURE 1.52. The weight of a molecule is the sum of the weights of its constituent atoms.

processors to achieve a constant speedup by a constant factor of 64,000 can be very dramatic and
practically significant.

Our earlier simulation example of fluid flow showed that when multiple processors are
available, there can be an opportunity for radically rethinking an approach to a problem. Discov
ering different ways to partition problems can be very challenging and does not always lead to
dramatic· speedups. A recurring issue as parallel processing becomes more available is finding
ways to partition problems.

In the fluid flow problem, the dramatic speed-up was largely due to the fact that the prob
lem could be divided into a set of local computations. Each processor represented a small region
of space. All of the data required for its computation was contained in the processor itself or
could be obtained from its immediate neighbors. Such computations are called local computa~
tions. This is important because it is often the case in massively parallel computers that commu
nications instructions beyond local neighbors require much more time than other instructions.

In contrast, global computations involve combining data from distant processors or
aggregating over a large set of processors. In such computations, some serialization of process
ing is often required. For example, consider our earlier problem of computing the total weight of
a molecule given a graph representation of its structure.

Figure 1.52 gives an example of a molecule. Suppose we assign a processor to every atom
in the molecule. Each processor has a table of addresses of the processors that represent adjacent
or chemically linked atoms in the molecule. An algorithm for computing the total weight must
include the weight of each atom exactly once.

Roughly, one way to proceed is to start at one atom and have it ask each of its neighbors in
tum to send it their weights for summing. The process iterates until each atom had contacted its
previously uncontacted neighbors. The resulting partial sums are accumulated as they approach
the starting atom. We can visualize the process in terms of two waves. The first wave is a request
for weight sums. It moves out from the processor representing the starting atom. The second
wave is the returning wave, containing the partial sums. Unfortunately, in spite of the fact that
this approach uses n processors, it still runs in O(n) time in the worst case, such as when the start
ing atom is at the end of a long linear molecule.

To speed up the process we would need to engage more processors at once. There are
many ways to do this and specialized languages for different computer architectures. The details
of this are beyond the scope of this section, but one way to understand it is to imagine that we
superimpose a summing tree over the molecule as in Figure 1.53. There are 19 atoms in this fig
ure, but they are linked in a tree with only 5 levels. All of the atoms linked together at the first

Page 102 of 224 FORD 1011

1 .3 Modeling: Dimensions of Representation 95

FIGURE 1.53. The weight of a molecule is the sum of the weights of its constituent atoms. Heavy links
correspond to chemical bonds. Arrows indicate data flow to summation points for computing the total
weight.

level of the tree (labeled 1) are performed on the first cycle. These partial sums are then com
bined at the second level of the tree on the next cycle. Those partial sums are combined at the
next level. After each phase, only half as many processors are active as on the previous phase.
The total sum is aggregated in time proportional to the ceiling of the depth of the tree, that is, in
0 (log n) time.

Complexity Distributions
It is well known that for some algorithms the worst-case complexity is much worse than the aver
age complexity. But the average case can also be misleading.

Consider the distribution of computation times in Figure 1.54. In this example, there is a
population of possible inputs to the algorithm and the time to perform the computation on the
input varies drastically. Thus, there is a small set of elements for which the time is O(x\ and a
few more where the complexity is O(x2

). The largest set of elements has complexity O(x4
). The

curve drops off so that there are only a few elements where the complexity is O(xn).
In this example, the worst-case time complexity is O(xn). Perhaps surprisingly, the mean

time complexity is still O(xn In). That this is the case can be seen by considering equation (7).

N

mean complexity= (liN) L xi
i=l

Thus the mean complexity is dominated by the largest term.

(7)

Page 103 of 224 FORD 1011

96

Number
of

cases

n

,..-

r- -

- ,..-

Complexity of computation
(log scale)

FIGURE 1.54. Distribution of cases with different complexity orders.

1 SYMBOL SYSTEMS

n

What this shows us is that the mean complexity is also not necessarily representative of
typical complexity. Referring back to Figure 1.54, most of the elements in the set will result in
computations that are O(x4

). Thus, the mode of the distribution is much less than the mean. This
example suggests that providing a distribution of complexities may in many cases be a more
meaningful way of conveying expectations about running time than either a worst-case or mean
case analysis.

Phases, Phase Transitions, and Threshold Effects
The previous section characterizes expected running times of algorithms in terms of their perfor
mance on populations of structures. In this section we consider phenomena that can arise when
populations are characterized by possibly critical values of variables. The terminology of these
phenomena-phases, phase transitions, and threshold effects-is drawn from physical chem
istry. The analyses are drawn from statistical mechanics.

Phase transitions are familiar from everyday experience. Most substances have character
istic melting points and boiling points. As temperature is raised or lowered at constant pressure
near these points, materials undergo phase transitions-from solid to liquid or from liquid to gas.
Underneath this abrupt, qualitative change at the macroscopic level is a small change at the
microscopic level. Temperature is a measure of the vibrations of atoms in a substance. As tem
perature is increased, these vibrations become more energetic. Increased temperature causes a
substance to expand because the vibrations increase the average separations between atoms.
Usually small changes in temperature cause small changes in vibration and small changes in the
size of an object made from the material.

However, at certain critical points such as the melting point and boiling point, small
changes in temperature result in gross changes at the macroscopic level. At these points, the

Page 104 of 224 FORD 1011

-
1.3 Modeling: Dimensions of Representation 91

actual energy and separations of the vibrating atoms changes only slightly it but results in a qual
itative softening as vibrations become vigorous enought to enable atoms to slide past each other.

To a first order approximation, phase transitions are very sharp. Below the melting point,
the substance is a solid and above it is a liquid. Such sharp transition points are called thresholds.
If we view the area around the transition point in fine detail, the story is usually more chaotic. As
ice forms, sometimes crystals form and then melt and then form again. Liquids sometimes exist
in "superchilled" states for periods of time without making the transition. Mathematical models
show both phenomena-the relatively sharp macroscopic transition points as well as fine
grained chaotic behavior in the immediate vicinity of the transition.

For a simple example of this phenomenon in the context of algorithmic complexity, we
consider again algorithms that operate on trees. Suppose that we have a population of trees char
acterized by an average branching factor, b. We use the term cluster size to refer to the expected
size of a tree drawn from the population. We will consider several such algorithms in Chapter 2
that search trees. For now it is enough to know that our algorithm visits every node in a cluster.

To determine the time complexity of such an algorithm, it is useful to know how many
nodes there are in a cluster. To count the nodes, we start at the root of the tree. On average, there
ar~ b nodes immediately adjacent to the root. Then there are b2 nodes immediately adjacent to
these one level down. For a tree of infinite extent, the cluster size, C(b), is given by equation (8).

C(b) =_I b; = 1 I (1- b)
idJ (8)

For trees of finite depth, d, the cluster size is given by equation (9).
d-1

C(b)=_I (9)
i=O

Figure 1.55 shows cluster size as a function of the average branching factor for trees of dif
ferent depth. For a potentially infinite tree, an average branching factor less than one leads to a
finite-size cluster. However, when the average branching factor reaches 1, there is a singularity in
the graph as number of nodes connected to the root on average suddenly becomes infinite. This
singularity is an example of a threshold. It marks the existence of a phase transition character
ized by an explosive increase in cluster size as the threshold is approached from below. For any
fixed polynomial of b, the time complexity of our node-visiting algorithm exceeds the polyno
mial as b approaches the critical point.

The signature of the phase transition for potentially infinite trees is still visible for trees of
finite depth. The other curves in Figure 1.55 show the expected cluster size for trees with several
fixed depths.

Phase transitions show up in many kinds of computations. For example, they show up in
the analysis of search methods where the number of nodes explored along a false "garden path"
corresponds to the cluster size in this example. They also show up in analyses of algorithms that
work over more general graph structures than trees. Again in these cases, the cluster sizes of
graphs undergo phase transitions as the number of connections between nodes increases.

Page 105 of 224 FORD 1011

98

Average
cluster

size

100

50

45

40

35

30

25

20
15

10

5

.8

Infinite
tree

.9 1.0 1.1

Average branching ratio

1

1.2

SYMBOL SYSTEMS

Different
depths of

tree

FIGURE 1.55. Cluster size for trees with finite depth, d, as a function of the average branching factor, b.
(Adapted fom Huberman, B. A., and Hogg, T. Phase transitions in artificial intelligence systems. Artificial
Intelligence 33, 1987, pp. 155-171.)

1.3.9 Structural Complexity
Space and time complexity are properties of algorithms as applied to populations of different
possible data structure inputs. Sometimes the running time of an algorithm over a particular data
structure depends a great deal on its particular properties. For example, an algorithm to reverse
the order of a list depends on the number of elements in the list. Algorithms that search trees
depend on the particular depths and branching factors of the trees.

Measures of the properties of a structure are called structural complexities. In this book
we use several different measures of structural complexity for different kinds of structures and
different purposes, as suggested by Figure 1.56. In this section we develop and study two exam
ples of such measures. First, however, we discuss generally what it is that measures of structural
complexity are good for.

Measures of structural complexity provide scales for comparing structures. Suppose that
we are given a set of structures {Sp S2, S3, .•• , Sn} and a complexity measure C. If C(S1) > C(S2)

then we say that structure S1 is more complex than S2• We can use the scale to identify the sim
plest members of a set.

Suppose further that there is a computation, F, that we can perform on various members of
the set, and that the time complexity of F(Sk) depends in a known way on C(Sk). In this case, the

Page 106 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation

Measure
Number of elements
Depth of tree
Branching factor

Hierarchical diversity
Width of constraint graph

Bandwidth of constraint graph

Shannon information entropy

Remarks
Same as space complexity.
Can be used to compute space and time complexities for tree searches.
Can be used together with depth to compute space and time complexi
ties of tree searches.
Measure of the diversity of structures in unlabeled trees.
Measure of complexity of labeled graphs, such as constraint graphs.
Related to time complexity for solving constraint satisfaction problems.
Measure of complexity of graph structures. Related to time complexity
for solving constraint satisfaction problems.
Measure of the sharpness of a distribution of probabilities. Used in
diagnostic systems to select probe sites most likely to reduce the
number of competing hypotheses.

FIGURE 1.56. Examples of measures of structural complexity.

struf:tural complexity measure can be useful for partitioning the set of structures into families
whose time complexities for Fare equivalent. For example, suppose that the time complexity
relates to the structural complexity as follows:

time complexity (F(Sk)) = O(mqsxl) for some constant m.

That is, the time complexity for computing F on Sk is polynomial in the structural complexity of
Sk. In this case, C gives us a means for dividing {Sp S2, ••• Sn) into easy and hard problems. The
more complex the structure, the longer it takes to compute F on it. In this way, measures of struc
tural complexity can provide useful alternatives to nonrepresentative worst-case estimates of
time complexity over large populations of data structures. The alternatives are either to measure
C(Sk) so as to get a better estimate of the time complexity of F(Sk) or to identify Sk as belonging
to a subpopulation where the range of C(S) is much narrower and thereby more representative.

To be concrete, we now consider a particular complexity measure for unlabeled trees. This
complexity measure is called Huberman-Hogg complexity or hierarchical diversity (Huber
man & Hogg, 1986). Huberman and Hogg were struck by examples of structures in physics and
computational systems. In physics, both crystalline materials and gases are considered to be rela
tively simple when compared with amorphous structures. Crystalline structures are considered
simple because their molecular structures are repetitious. Gases are simple because the mole
cules are randomly located and do not aggregate. On the other hand, amorphous structures have a
mixture of molecular structures of different sizes and are considered complex. Similarly in lin
guistics, random strings are viewed as simpler than sentences produced by the grammars of for
mal and natural languages. Huberman and Hogg sought a measure of structural complexity that
would reflect these intuitions. They wanted to quantify the regularities and hierarchical structure
of trees.

We first consider some examples of hierarchical structures. Figure 1.57 shows three unla
beled trees, {T1, T2, T3 }. Intuitively, what should be the relative complexities of the three trees?
Most people would agree that T1 is the simplest, that is,

C(T1) ~ C(T2)

C(T1) ~ C(T3)

Page 107 of 224 FORD 1011

100 1 SYMBOL SYSTEMS

However, what is the relation between C(T2) and C(T3). Because T3 has more nodes than T2 we
might classify it as more complex. On the other hand, T3 is very symmetric. All of the subtrees of
T3 are identical at each level, making it very simple.

Hierarchical diversity is intended to measure the diversity of a structure and to reflect the
number of interactions among nonidentical elements. For this reason, it counts T2 as the most
complex of the three trees in Figure 1.57. In fact, the tree T3 can be extended to balanced binary
trees of arbitrarily large size without increasing its hierarchical diversity.

We are now ready to define hierarchical diversity. The hierarchical diversity of a tree,
D(T), is defined recursively. The diversity of a node with no subtrees is just 1. The diversity of a
node with subtrees is the made up of two terms. The first term counts the number of non
isomorphic subtrees of the node. We refer to each set of identical subtrees as a cluster. At each
level, there are k clusters of identical subtrees. We are interested in counting the number of dif
ferent interactions at each level, so all identical subtrees count as 1. Specifically, we multiply
together the diversities of the clusters at the lower level. This product is then multiplied by Nk,
the number of ways that the k different clusters can interact as given in equation (8).

(8)

Combining these factors we obtain equation (9)

k

D(T) = (2k - 1) II D(Ij)
j=l (9)

where j ranges over the k nonisomorphic subtrees.
Figure 1.58 gives examples of computing hierarchical diversity. The number in the box for

each level of the tree gives the structural diversity at that node. The diversity of T1 is trivial, since
the node has no subtrees. Because the subtrees of T3 are identical, there is only one cluster at
each level. Thus, the diversity of T3 is 1 and is less than the diversity of T2• In T4 and T5, the mag
nitude of the diversity is much higher, because the product of the diversities at lower levels is
higher.

It is easy to see that Huberman-Hogg complexity does correspond to the intuitions about
physical complt;xity by comparing the values it yields for different trees. We have already ob-

•

!- tA
Tl T2 T3

FIGURE 1.57. Some examples of hierarchical structures of differing complexity. By the hierarchical
complexity measure, T2 is the most complex of the three trees.

Page 108 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation 101

1

FIGURE 1.58. Examples of computing the hierarchical diversity of trees. The trees T1, T2, and T3 are
repeated from Figure 1.57, with the points indicating nodes replaced by boxes containing the diversity at
that node in the tree.

served that it has a low value for trees with much symmetry, because the number of non
isomorphic subtrees of a node will be low. Indeed, for complete trees with uniform branching
factors like T3, it is easy to show that D(7) = 1. Similarly, hierarchical complexity is low for trees
of trivial depth. It is highest for trees like T4 and T5 , where there is substantial asymmetry. As
Huberman and Hogg put it, the measure is optimum at a place midway between order and disor
der. Although this goes beyond the scope of this section, Huberman-Hogg complexity and some
variants of it are involved in hypotheses about the complexity of systems that are adaptable and
are relevant to the study of machine learning systems.

In summary, the point of a structural complexity measure is to summarize intrinsic proper
ties of structures on a scale so that we can compare them. When structural complexity measures
are mathematically related to the time complexity of algorithms that run over the data structures,
they can be used to partition the space of data structures into cases of graded difficulty.

1.3.10 Summary and Review

This section surveys computational issues in the design of representations. It introduces a vocab
ulary of dimensions for comparing alternative representations for computational models.

We compared symbol structures and their interpreters for representing a square: a pixel
array, a property list, and a graph representation. These representations provide alternative
implementations of a common abstraction for figures, with operations for such things as retriev
ing size and position, moving figures, and computing overlap of figures. Different implemen
tations can have dramatically different computational requirements for time and space.

Page 109 of 224 FORD 1011

102 SYMBOL SYSTEMS

When we design representations, we decide which propositions to make primitive and
which derived. This theme pervades our discussion of vivid and analogical representations. Thus
directed graphs model the topology of molecules or the connectivity of circuits. Maps, like other
scale models, have the same kinds of structures as their domains, that is, two-dimensional
Euclidean spaces.

Representations are explict when they are written in a declarative language. This means
that they are modular, that they have well-characterized semantics, and that there is a causal con
nection between the representation and the system that interprets it. The declarative quality of a
representation depends not only on the symbols themselves, but also on the people who need to
understand it and the complexity of what is described. Explicit representations are widely used
because they afford advantages for making changes to systems.

When computational models are sufficiently expressive, they may admit several expres
sions of the same thing. In such cases we need to consider canonical functions and canonical
forms.

It is not necessary to select and use a single representation in knowledge systems. When
different implementations offer trade-offs in efficiency, multiple representations can be usefully
combined. This requires maintaining an appropriate causal connection between symbol struc
tures, and careful accounting to invalidate and recompute caches at appropriate times.

Parallel computing architectures offer opportunities to include both structure and process
in analogical and direct representations. In the wind flow example, not only is the structure of the
data similar to structure of the domain, but also the activity of the processors is similar to the
activity in spatial regions of the domain.

Finally, we introduced the big-oh notation for summarizing asymptotic space and time
complexity. The worst-case complexity is often the easiest to compute but need not be represen
tative of the average complexity. Indeed, even average complexity can be misleading about the
expected complexity if the average is skewed by a small number of cases of very high complex
ity. A more meaningful presentation of expectations is sometimes given by a distribution of com
plexities over a population of structures. A structural complexity measure is any measure based
on the size or organization of a symbol structure. Measures of structural complexity are closely
related to measures of time complexity for algorithms that run on the structures.

Exercises for Section 1.3

Ex. 1 [CD-05] Systematic Representations. Professor Digit was fascinated when he learned
about the physical symbol system hypothesis, and dashed off to build several computer
programs that he called "minimal symbol systems." He later exhibited these to his col
leagues. The first minimal symbol system was a single instruction which compared two
bits ("the input bits") in memory and then set a bit ("the output bit") in computer memory
from 0 to 1 depending on the results. When his colleagues asked what his program did, he
told them that it was an ultrafast multiplication program: When both of the input bits were
0, they represent the numbers 3141592653589793238462643 and 987654321987654321.
In that case, the program sets the output bit to 0, indicating the product of the two numbers.
If either of the two input bits is one, the program sets the output bit to 1 meaning that it
does not know the input numbers and cannot compute the product. His colleagues were
puzzled (flabbergasted?) by this, but he assured them that this his interpretation was rea
sonable because a bit can designate anything whatsoever.

Page 110 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation 103

(a) How many input and output states does his program have?
(b) In what way is Professor Digit's account unsatisfactory? (Hint: What do we reason
ably require of a computer program that reasons about operations on numbers?)

Ex. 2 [CP-1 0] Computing about Rectangles. In this chapter we considered examples of represen
tation where the choice of primitives or symbol structures was intended to make some
inferences computationally effective. Manhattan rectangles are rectangles whose sides are
parallel to either the x- or y-axes in the real plane. Such rectangles can be represented as a
record with the fields (left, bottom, width, height).

Two rectangles are said to overlap if their areas have at least one point in common.
Describe an algorithm for deciding efficiently whether two rectangles overlap. (Hint: It is
possible to consider area-overlap in terms of x andy components.)

Ex. 3 [CP-15] More Computing about Rectangles. The Manhattan separation between rectangles
can be defined as the minimum length of a segmented Manhattan line between the closest
edges of the rectangles, where the edges of the line are confined to integer coordinates.

Briefly, sketch an algorithm for deciding whether two rectangles are within a Manhat
tan separation of k units.

Ex. 4 [CD- !-CP-30] Parallel Computing about Rectangles. The claim that bitmaps are inefficient
for determining whether two Manhattan rectangles overlap depends on several assump
tions about the rectangles and the capabilities of the computer.
Suppose we have a bitmap processing computer (called SAM for "synchronous active
memory"). Each processor has 16 bits of addressable memory, a 1-bit accumulator, and 1-
bit wide communication lines to each of its four neighboring processors. The instructions
can communicate with a host computer. The host computer can select arbitrary combina
tions of rows and columns of the bitmap processors. All the selected bitmap processors per
form the same instruction at the same time, as broadcast by the host computer. The
processors have the following instruction set:

Load and store instructions
store <bit> <bit>:=Acc
load <bit> Acc:=<bit>

1-bit operations
clr-
and <bit>
gt <bit>
lt <bit>
xor <bit>
or <bit>
nor <bit>
cmp <bit>
not <bit>
ge <bit>
inv-
1 e <bit>
nand <bit>
set-

Acc:=O
Ace :=Ace and <bit>
Acc:=Acc greater-than <bit>
Ace:= Ace less-than <bit>
Acc:=Acc xor <bit>
Acc:=Acc or <bit>
Acc:=Acc nor <bit>
Acc:=Acc equals <bit>
Ace :=not <bit>
Ace :=Ace greater-than-or-equals <bit>
Acc:=not Ace
Acc:=Acc less-than-or-equa7s <bit>
Acc:=Acc nand <bit>
Acc:=l

Page 111 of 224 FORD 1011

104 1 SYMBOL SYSTEMS

Neighbor communication operation
dot <mask> Acc:=MaskoNbr0+Mask1Nbr1+Mask2Nbr 2

+Mas k3Nbr 3+Ma s k4Acc

Host communication operations
read- Host-Data:=Acc (ored over selected cells)
write- Acc:=Host-Data (for all selected cells)

Note: The dot instruction is a kind of dot product. Each mask bit indicates which
neighbor's accumulators are included in the result. For example,

dot (0 3) means to OR together the accumulators from neighbors 0 and 3 and
save the result in the accumulator.

dot (1 2 4) means to OR together the accumulator values from neighbors 1 and 2
together with the accumulator of self and save the result in the
accumulator.

(a) Suppose the initial data in bitplanes 1 and 2 for a 4x4 SAM array are as follows:

Bit 1 Bit 2

Rectangle 1 Rectangle 2

The following algorithm computes the intersection of the rectangle stored in bit 1 (across
the entire block) with the rectangle stored in bit 2.

load 1
and 2
read

illustrate the action ofthis algorithm using matrices to show the state of bit 1, bit 2, and the
accumulator at each step. How does the value read on Host-Data depend on the rectan

gles?
(b) Suppose that bit 0 in an 8x8 SAM memory is initialized with a large filled-in rectan-

gle as follows:

Page 112 of 224 FORD 1011

1.3 Modeling: Dimensions of Representation

Trace the execution of the following program.

load 0
inv
dot (0 1 2 3 4)
inv
xor 0

10.5

Explain how this is an edge-finding program, finding those points at the outer limits of the
rectangle. Hint: Consider de Morgan's laws.

Note that the bits in the mask of the dot instruction correspond to the directions of the
neighbors with O=North, 1=East, 2=South, and 3=West. Cells at the edge of the array
always return 0 when they try ask for data beyond the array.
(c) Is the computation in part (b) an example of a local computation or a global computa
tion? Explain briefly.
(d) Write a SAM program to compute whether rectangles stored in bit 1 and bit 2 are at
least 1 unit of Manhattan separation apart. Does your program depend on the shape of the
figures (that is, must they be rectangles)?

Ex. 5 [10] Canonical Forms. Each of the following data structures represents a circular linked
structure of six items.

1. (afbced)
2. (b c e d a f)
3. (b face d)
4. (decbfa)
5. (cedabf)

(a) Suppose the interpreter is supposed to treat rotation and reflection is equivalence-pre
serving operations. The canonical form for these lists is defmed as the list that is earliest
"alphabetically" starting with the left-most term. In other words, the leftmost element of
the canonical form of the lists is its alphabetically earliest one. In the event of a tie, then the
second element is considered following the simplest rules of dictionary order.

Give the canonical form for each structure.
(b) Indicate which of the structures are equivalent to each other. How many distinct struc
tures are represented here?

Ex. 6 [05] Terminology. Determine whether each of the following statements are true or false. If
a statement is ambiguous, explain your answer briefly.
(a) True or False. Fidelity and precision refer roughly to the accurateness and detail of a
representation in its use in making predictions.
(b) True or False. There is usually exactly one best way to implement a given abstraction.
(c) True or False. In most inferential systems, a large number of propositions can poten
tially be derived from a small number of primitive ones.
(d) True or False. One of the advantages of using multiple representations is that such
systems need not contend with the stale data problem.
(e) True or False. In a system that is implemented in multiple layers, the implementation
at one level of description may in tum be an abstraction for the next level down.

Ex. 7 [05] More Terminology. Determine whether each of the following statements is true or
false. If a statement is ambiguous, explain your answer briefly.

Page 113 of 224 FORD 1011

106 1 SYMBOL SYSTEMS

FIGURE 1.59. Three trees.

(a) True or False. When a system has two representations for the same thing and one is
derived from the other by a long computation and the derived result is referenced more fre
quently than the primitive one is changed, it is appropriate to cache the derived representa
tion.
(b) True or False. To prevent stale data problems, a cache should be invalidated when
ever its value is retrieved.
(c) True or False. It is appropriate to recompute a derived and cached value whenever an
operation changes a primitive value on which it depends.
(d) True or False. One problem with the bitmap representation of figures is that for low
enough precision or resolution of the bitmap, the shapes of some figures are indistinguish
able.
(e) True or False. If the running time of a computation is 56m2n3 + 37m3n + 60m2n +
3n + 30, then we can characterize its time complexity as O(m2n\

Ex. 8 [05] Even More Terminology. Determine whether each of the following statements is true
or false. If a statement is ambiguous, explain your answer briefly.
(a) True or False. Explicit representations offer advantages over implicit ones in knowl
edge systems that must be modified over time.
(b) True or False. An implicit representation is one whose utility rests on unstated
assumptions.
(c) True or False. A bitmap is an implicit representation of shapes.
(d) True or False. An explicit representation usually requires a declarative semantics.
(e) True or False. The declarative semantics (including reference semantics, truth seman
tics, and proof semantics) are the only semantics needed for defining a declarative repre
sentation.

Page 114 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness 107

Ex. 9 [05] Asymptotic Superlinear Speed-ups. Is it possible to achieve more than a factor of k
order speed-up on a problem by applying k processors instead of one, assuming that all
processors are equivalent? If yes, give a brief example. If not, present a brief argument.

Ex. 10 [05] Space versus Time Complexity (True or False). The asymptotic time complexity of an
algorithm for a single processor is always greater or equal to its asymptotic space complex
ity. Explain briefly.

Ex. 11 [08] Hierarchical Diversity. Figure 1.59 gives four unlabeled trees of eight nodes each.
Compute the hierarchical diversity of each tree.

1.4 Programs: Patterns, Simplicity, and Expressiveness
Whenever we build computational models, we express them in programming languages or repre
sentation languages. Observably, some languages are better than others for particular programs
in that the programs are generally more concise, easier to understand, and easier to extend. But
what makes some languages and representations better than others in this way?

In the previous section on representational properties, we considered the use of program
ming abstractions. Programming abstractions are used to build systems in levels, so that the most
abstract level gives a concise description of a program in terms of appropriate primitives.

In this section we consider two additional methods for achieving simplicity of expression:
metalevel factoring and the use of epistemological primitives with a large base of shared knowl
edge. We introduce these concepts through a sequence of increasingly sophisticated examples.
Along the way we consider basic ideas widely used in building knowledge systems: production
rules, pattern matching, and logic programming.

1.4.1 Using Rules to Manipulate Symbols
Our first example is quite elementary for anyone who has written many computer programs. It is
a starting point for comparisons.

Figure 1.60 depicts a traffic intersection where a farm road crosses a highway. The right
of-way at this intersection is indicated by a traffic light, which has a sensor to detect traffic enter
ing the highway from the farm road, assuming that traffic drives on the right-hand side of the
road.

Figure 1.61 depicts two internal symbol structures for the controller of the traffic-light sys
tem. There is a cell or storage element named fa r m- road - 1 i g h t that designates the traffic light
facing the farm road. This cell contains one of three symbols red, ye 11 ow, or green. Similarly
there is another cell, hi ghway-1 i ght, designating the traffic light facing the highway. It is con
venient to think of these cells as program variables, and the symbols in the cells as the values of
the variables.

Symbol systems change symbol structures dynamically. Our account of the traffic-light
controller is a simulation. That is, it uses a running computer program to.model another (usually
more complicated) system that we call its "world." The values in the program variables corre
spond to a snapshot of the world at some instant of time. As the program runs, its program
actions model world actions that would change it over time. An observer could watch the simula
tion just as he might watch the world, seeing the traffic light on a highway tum yellow, and then
red, and then a light on a farm road tum green.

Page 115 of 224 FORD 1011

108

Fanner Brown's
place

~Lfj9

FIGURE 1.60. Traffic light at an intersection of a highway and a farm road.

1 SYMBOL SYSTEMS

Figure 1.62 illustrates four computational "rules" that specify the behavior of a traffic-light
controller. The particular syntax for the rules in this figure and others in this section is not
important. Many variations are possible in programming languages.

The rules in our simulation example make use of two external timers called 1 i g h t- t i mer
and t r a f f i c- timer, which can be started and tested to see whether an allotted time is up, and
a sensor, which can be tested to determine whether a car is present at the end of the farm road.
The code and variables for the simulated timers and sensor are not shown.

The rules in Figure 1.62 are examples of production rules. Each rule has two major parts,
called the if-part and the then-part. The if-part of a rule consists of conditions to be tested. In the
first rule, the conditions test whether the highway light is green, whether a car is waiting, and
whether time is up on the traffic timer. If all of the conditions in the if-part of a rule are true, the
actions in the then-part of the rule are carried out. In the idiosyncratic terminology of production
rules, we say that the rule is "fired." The then-parts of these rules consist of actions to be taken.
In the first rule, these actions tum the highway light to yellow and start the light timer. The parts
of a production rule are sometimes called by different names. The if-part is also known as the sit
uation part, the conditional or the antecedent. The then-part is also known as the action part or
the consequent.

In our program, after the first rule is tried, the second, third, and fourth rules are tried in
order. The program then starts over again with the first rule. The complete simulation program
would have representations of cars and rules for modeling traffic. Cars could speed up, slow
down, or tum. No two cars could occupy the same space at the same time (we hope!). The simu
lated sensor would occasionally indicate that a simulated car is present. Then the timers would
perform their measurements of simulated elapsed time and the rules of our traffic-light controller

fann-road-light highway-light

Value: Red Value: Green

Possible values: {red, yellow, green} Possible values: {red, yellow, green}

FIGURE 1.61. Symbol structures in the traffic-light controller.

Page 116 of 224 FORD 1011

1 .4 Programs: Patterns, Simplicity, and Expressiveness

do
begin

begin
farm-road-light := 'red
highway-light := 'green
start (light-timer)
start(traffic-timer)
start (sensor)

end

;rule-1
if highway-light= 'green

and car-waiting? (sensor)
and time-up?(traffic-timer)

then highway-light := 'yellow
start (light-timer)

;rule-2
if highway-light= 'yellow

and time-up?(light-timer)
then

;rule-3
if

then

;rule-4

highway-light := 'red
farm-road-light := 'green
start (traffic-timer)

farm-road-light= 'green
and time-up? (traffic-timer)
farm-road-light := 'yellow
start (light-timer)

if farm-road-light = 'yellow
and time-up? (light-timer)

then farm-road-light := 'red
highway-light := 'green
start (traffic-timer)

end

FIGURE 1.62 Rules in the traffic-light controller.

;infinite loop

;Initially ...

;turn the farm-road light red

;turn the highway light green

;start the light timer

;start the traffic timer

;start the sensor

;IF the highway light is green and

;and the sensor shows a car waiting

;and the traffic timer shows time up

;THEN tum the highway light yellow

;and start the light timer.

;IF the highway light is yellow

;and the light timer shows time up

;THEN turn the highway light to red

;and tum the farm road light to green

;and start the traffic timer.

;IF the farm road light is green

;and the traffic timer shows time up

;THEN tum the farm road light to yellow

;and start the light timer.

;IF the farm road light is yellow

;and the light timer shows time up

;THEN tum the farm road light to red

;and tum the highway light to green

;and start the traffic timer.

109

Page 117 of 224 FORD 1011

110

Program

I statement 1

I statement 2

I statement 3
...

Data

I ce111

I ce112
...

I sensor 1

I
I k
I

I
I

I

Interpreter

Fetch-execute
cycle

FIGURE 1.63. Program and interpreter for the traffic-light controller .

. "

1 SYMBOL SYSTEMS

would cycle around, switching the lights to control the simulated flow of traffic at the intersec-
tion.

Production rules take many different forms. The rules shown in Figure 1.62 are similar to
IF statements available in most programming languages. In this example, the selection of which
rule to fire next is quite trivial. The program specifies exactly what to do, step by step.

Variations on production rules can admit many kinds of additional information, different
syntaxes, and different methods for controlling execution. They are used to model simulation
and also to model reasoning. Later in this section we will consider production rules that are
based on pattern matching. Production rules are an important representation in knowledge-based
systems because they directly represent how actions depend on conditions. Production rules are
sometimes called situation-action rules.

Figure 1.63 shows the organization of the traffic-light controller system. There is a pro
gram made up of a set of statements-the rules from Figure 1.63. The statements in this program
are retrieved and executed by an interpreter. This architecture is essentially the same as that of a
von Neumann computer where the program is represented as instructions in computer memory
and the interpreter is the processor which carries out a fetch-execute cycle. The difference in this
case is that the statements are rules and the interpreter executes the rules. Nonetheless, the inter
preter is still quite simple, in that the rules are executed in sequential order. The bottom part of
the figure corresponds to data read or written by the program. The data are the program variables
that store the state of farm- road -1 i ght and hi ghway-1 i ght. The reading from the sensor is
also included in data. These data are read and sometimes written as the program runs. By design,
the program never directs its interpreter to decode the data as instructions:

1.4.2 Treating Programs as Data
The representation of programs as symbol structures is related to the stored program concept:
the storing of computer instructions in memory in the same manner as data. Different codes are
recognized by the processor as different instructions. Storing programs in memory has the practi-

Page 118 of 224 FORD 1011

1 .4 Programs: Patterns, Simplicity, and Expressiveness

This program is
written in language 1.

~
Program

I statement 1 I
I statement 2 I
I statement 3 I

. . .

Data

I cell1 I
I cell2 I

. . .

I sensor 1 I

k

Fetch-execute
cycle

- M M M------ -·
'

'

'
'
' '
'

(program as
data)

This program is
written in language 2

and interprets
programs written

in language 1.

~
Program

I statement 1 I
I statement 2 I
I statement 3 I

...

Data

I cell1 I
I cell2 I

...
-- ------------

k-

111

This interpreter
interprets programs

written in
language 2.

Fetch-execute
cycle

FIGURE 1.64. Universal computation, in which one computational process emulates another by interpre
ting its instructions as data.

cal advantage of making it easier to arrange for computers to run different programs. This is the
major contribution of the von Neumann architecture for computers.

That programs on one computer can interpret symbolic instructions of a different computer
is the universal computation concept. The "universal" part of this refers to the ability to simu
late the instructions of any computer. A universal computer can be programmed to carry out the
instructions of a different computer, even though its instruction codes are different. The basic
idea as shown in Figure 1.64 is that the universal computer maintains a table to look up sets of
instructions in its memory that simulate the instructions written for the other computer.

Universal computation places few constraints on the representations that are used in the
two computers. The instruction sets on the two computers could be identical or very different.
The symbols can have structural similarities or be very different. Let { s 1' s2, .•• , s k } be symbols
on the simulated computer, representing either instructions or data, and {S1

, S2, ••• , Sk} be sym
bols on the simulating computer. There must be a mapping, M, between the two sets of symbols,
stated as M: {sk} ---0 {Sk}. Similarly there must be a mapping, P, between the processing steps or
instructions on the two computers. Suppose that { ip i2, i3, ••• , in} is a sequence of descriptions of
the symbols in the memory of the simulated computer when its interpreter is rull. Universal com
putation requires that when the simulating computer runs, that it yields a sequence of states, such
that M holds between corresponding symbols in each of the states in order.

As suggested by Figure 1.64, universal computation divides an interpreter into layers. This
layered approach is not limited;say, to simulating obsolete computers that are no longer manu-

Page 119 of 224 FORD 1011

112 1 SYMBOL SYSTEMS

factured. It is widely used in knowledge systems to partition programs into simpler layers. At
each layer, interpreters make much use of symbol manipulation operations for recognizing pat
terns, extracting parameters, and carrying out parameterized action.

In the following sections, we see concrete examples of how symbol manipulation lan
guages provide symbol manipulation primitives and thereby layers of interpretation that can sim
plify the writing of programs.

1.4.3 Manipulating Expressions for Different Purposes

The layperson's view of computers is that they are good with numbers, that is, they are able to do
arithmetic rapidly. In contrast to arithmetic, algebra and calculus involve much richer symbol
manipulation. For example, a typical exercise in an introductory calculus course is to differenti
ate a polynomial like that in expression (1) to yield its derivative (2).

function: fix)= (2/3)i + 7x2 + 12x- 8
derivative:f(x) = 2x2 + 14x + 12

(1)
(2)

The function in (1) can be represented indifferent ways, such as the LISP computer language, as
shown in (3). The advantage of LISP in the following examples is that the patterns are simpler
because the program syntax requires no parsing.

(defun f (x) (+ (* (/ 2 3) (expt x 3))
(* 7 (expt x 2))
(* 12 X)

(- 8))) (3)

Equation (1) could also be expressed in a graph notation, as shown in Figure 1.65. In either case,
a symbol system (such as a standard LISP interpreter) can be made to compute the value of the
polynomial given a value for x. A LISP interpreter would evaluate the equation in (1) to yield that
flO) = -8, fl1) = 11.666667, and f(.508517) = 0. A different program, a dif.ferentiator, could
accept the definition off as input and produce as output a symbolic expressionfJ representing its
derivative:

(defun f1 (X) (+ (* 2 (expt x 2))
(* 14 X)

12)) (4)

This expression (4) is a full-fledged LISP program, as is the original function definition in (3). It
could be executed or further differentiated.

Looking at the equivalent semantic network representation in Figure 1.65, it is easy to see
how a differentiation program could work, that is, how it could symbolically differentiate a poly
nomial. A differentiation program needs to create a second linked structure of terms, computing
the coefficient and exponent relations of the new terms from corresponding relations on the old
terms. For each term, it creates a new term node, linking it to a new coefficient node, a new ex
ponent node, and a new next-term. Each-new coefficient is computed by multiplying the old co-:-

Page 120 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness 113

Coefficient

Exponent

Coefficient

Exponent

Coefficient

Exponent

Coefficient

Exponent

FIGURE 1.65. Graph representation of a polynomial.

efficient by the old exponent; the new exponent is the old exponent minus one. The new terms
represent the new polynomial with the values as shown in (4). Thus, the differentiation process
builds a new polynomial representation as it traverses the original polynomial representation,
computing the parameters of each new term from the parameters of the old terms. It must walk
through the graph and create a new graph whose properties are computed from those of the orig
inal graph.

Furthermore, different computations can be done on a single representation. Another sym
bolic manipulation program, a quadratic root finder, could be written to take the roots of a sec
ond-order polynomial such as (4). For this, we view a polynomial as fitting the following pattern

f(x) = ax?+ bx + c

and then apply the quadratic equations

root 1 = (-b + sqrt(b2
- 4ac))12a

root2 = (-b- sqrt(b2
- 4ac))/2a

(5)

(6)

A quadratic root finder steps through the terms of a polynomial and extracts values for the
parameters a, b, and c. Given these parameter values, computing the roots as in (5) and (6)
requires another modest procedure, not much more complicated than the preceding polynomial
functions.

In summary, radically different computations can be performed on a representation. The
polynomial representation can be used to yield specific evaluations for different values of x.
Alternatively, a differentiator program operate on the same representation to produce derivatives.

Page 121 of 224 FORD 1011

114 1 SYMBOL SYSTEMS

Similarly, a root finder can use the representation as a template for extracting parameters for
computing quadratic roots.

1.4.4 Pattern Matching
In the examples of the last section, the symbol-manipulating operations included traversing
graphs, extracting information, and creating new expressions. Because structure recognition and
parameter extraction are so fundamental, people have designed computer languages that provide
these operations as primitive computational mechanisms. Such mechanisms are widely used in
production-rule and logic programming languages. This section uses these operations to give
concrete examples of how appropriate symbol manipulation primitives can simplify the expres
sion of programs.

There are two main variations on pattern matching, notably one-way pattern matching and
two-way pattern matching (unification). In one-way pattern matching, a pattern with variables is
matched against an expression containing constants. At the end of the operation, the variables in
the pattern may take on values corresponding to parts of the constant structure. In unification,
patterns with variables are matched against other patterns with variables. Variables in both pat
terns may take on values at the end of the matching operation.

Figure 1.66 shows a simple example of a pattern and the results of matching it against an
expression. A key element in the syntax of pattern matching is the specification of pattern varia
abies. In the following, there are three pattern variables to be matched: a, b, and c. In the follow
ing examples, we indicate that terms are variables to be matched by preceding them with ques
tion marks at the parts of the pattern where matching is to take place. Other terms are assumed to
be constants in the matching process. When a pattern variable appears again later in a pattern
matching rule it need not be preceded by a question mark. The value of the variable is required to
match the corresponding datum in the matching expression.

Matching a pattern against an expression requires aligning the corresponding parts of the
pattern with the expression and then extracting values for the pattern variables. Thus, the pattern
matching process assigns values a= 2, b = 14, and c = 12.

Matching the pattern
· (+ (* ?a (expt x 2))

(* ?b X)

?c)

to the expression
(+ {* 2 (expt x 2))

(* 14 X)

12))

yields values for the pattern variables
a = 2, b = 14, c = 12

FIGURE 1.66. An example of pattern matching.

.. """::!
l

Page 122 of 224 FORD 1011

1 .4 Programs: Patterns, Simplicity, and Expressiveness

if-]Jart: {pattern to be matched}
{if (match test-expres~ion

(+ (* ?a {expt x 2))
(* ?b X)

?c))

then-part:· {actions to be carried out}
(then (~etf root (/ (+ (- b)

(sqrt (- (* b b)

(* 4 a c))

(* 2 a))

;IF the test expression matches
;a quadratic polynomial

;THEN compute a root

FIGURE 1.67. Pattern-matching rule for computing the discriminant of a second-order polynomial.

11.5

Figure 1.67 shows an example of how pattern matching can be used with a production rule.
If the pattern matches the test expression, then the parameter values are extracted and a root of
the polynomial can be computed.

To simplify programming, many production-rule languages and logic-programming lan
guages provide an automatic way of searching for candidate expressions. The job of the inter
preter is deciding how to traverse a database to find candidate expressions for possible matching.
For example, the following three production rules do most of the work for differentiating polyno
mials:

rule 1: (deriv (*?a (expt x ?n))) -> (* n a (expt x (n-1)))

rule 2: (deriv (+ ?u ?v)) -> (+ (deriv u) (deriv v))
rule 3: (deriv (- ?u ?v)) -> (- (deriv u) (deriv v))

These rules are examples of a rewrite or substitution language. In such a language, there
is a working memory containing one or more expressions. Patterns are matched against these
expressions. If they match, then the rule replaces the expression with a new one. Multiple rules
correspond to different possible patterns in memory, treated as distinct cases. For rules in this for
mat, the if-part is often called the left side and the then-part is called the right side.

Figure 1.68 dissects the first rule for our analysis. Given an appropriate interpreter, this
rule specifies how to differentiate a single term in a polynomial: Create a new term such that the
coefficient is the coefficient of the matching term times its exponent, and the exponent is the
exponent of the matched term minus one.

if-part:{pattern to be matched]
(deriv (* 1a (expt x ?n))) ;IF there is an expression matching ?a x7n

then-part: [rewrite actions to be carried out]
· (* n a (expt x <n-1))) · ;THEN replace it with na.x"-1

FIGURE 1.68. Rewrite production rules combine pattern matching and action with search.

Page 123 of 224 FORD 1011

116

Initial expression
(deriv (+ (* (/ 2 3)(expt x 3))

(* 7 (expt x 2))
(* 12 X)

(- 8)))

Step 1: Apply rule 2 to the sum of tenns
(+ (deriv (* (/ 2 3)(expt x 3)))

(deriv (* 7 (expt x 2)))
(deriv (* 12 x))
(deriv (-8)))

Step 2: Apply rule 1 to the first term
(+ C* 2 (expt x 2))

(deriv (* 7 (expt x 2)))
(deriv (* 12 x))
Cderiv (-8)))

Step 3: Apply rule 1 to the second term
(+ (* 2 (expt x 2))

(* 14 X)

Cderiv (* 12 x))
(deriv (-8)))

After a Jew more steps we have the derivative
(+ (* 2 (expt x 2))

(* 14 X)

12)

FIGURE 1.69. Rule applications in the differentiation of a polynomial.

1 SYMBOL SYSTEMS

Figure 1.69 shows how these rules could be applied in the differentiation of a polynomial.
In the first step, rule 2 is applied to change the derivative of a sum to the sum of some deriva
tives. Our single-step application of the rule operates on all of the terms at once. Alternatively,
rules could be written that convert a sum of n terms into one term plus the sum of the remaining
terms. In the second step, rule 1 is applied to differentiate the first term. This process continues
until no more rules match and the polynomial is completely differentiated. For simplicity we
have omitted some intermediate rules and steps for simplifying terms. For example, in addition
to the steps in Figure 1.69, (expt x 1) is reduced to x, and (* 2 7) is reduced to 14.

Pattern-matching languages enable us to write very short programs. The first advantage is
that the program: does not need to specify in detail how to extract information. It need only spec
ify the patterns to be matched and the use to be made of the extracted information. Much of the
programmatic detail is supplied by the language interpretation program, which searches the
graph, matches patterns against expressions, extracts parameters, and builds new structures with
substituted information.

Page 124 of 224 FORD 1011

1 .4 Programs: Patterns, Simplicity, and Expressiveness

This program is in terms
of pattern matching.

(It carries out polynomial
differentiation or

whatever.)

t
Program

I statement 1 I
I statement 2 I
I statement 3 I

. . .

Data <:

I cell1 I
I cell2 I

. . .

I sensor 1 I

Fetch-execute
cycle

This program interprets
patterns. It searches

through symbol graphs,
extracts parameters, and
performs substitutions.

t
Program

I statement 1 I
I statement 2 I
I statement 3 I

...

Data

I cell1 I
I cell2 I

...

(Program as

I

data)

~-

This interpreter
interprets the

program of the
pattern matcher.

I Interpreter I

Fetch-execute
cycle

117

FIGURE 1.70. An example of metalevel factoring. In pattern-matching languages, programs can be terse
because much of the work of graph search, matching, parameter extraction, and substitution is done auto
matically.

This approach in pattern-matching language shows an important way that conciseness can
be achieved in programming: metalevel factoring. This conciseness is possible due to the parti
tioning of interpretation into two levels. As illustrated in Figure 1. 70, one level of interpretation
is carried out by the rules in pattern matching. This process differentiates polynomials, finds
roots, and so on. The symbolic description of this program is simple, largely, because so much of
the work is done by the next interpreter: the processor that interprets the pattern-matching rule
program. That processor selects which rule to fire, locates candidate symbolic expressions to
consider, tests candidate expressions to determine whether they match the patterns given in the
if-parts of rules, extracts the values of pattern variables, and rewrites expressions according to
the actions in the then-parts of the rules.

1.4.5 Expressiveness, Defaults, and Epistemological Primitives

The preceding discussion of symbol manipulation languages emphasizes simplicity of expres
sion. In this section, we extend the discussion from programming languages to representation
languages. The boundary between programming and representation languages is not sharp since
many ideas that started out as part of representation languages are now part of programming lan
guages and conversely. Roughly, representation languages represent facts in a way that enables

Page 125 of 224 FORD 1011

118 1 SYMBOL SYSTEMS

their use for many different possible purposes. A representation system includes a database
containing facts expressed in the representation language plus an interpreter that provides
answers to queries. In this section, we consider what it means for representation languages and
query languages to be expressive.

Our perception of the simplicity of computational models depends on being able to
describe them in simple terms and on being able to leave many things unsaid. We begin with a
characterization of representation in terms of predicate calculus and then consider other well
known languages.

In 1985, Hector Levesque and Ronald Brachman (Levesque & Brachman, 1985) called
attention to what they described as a tradeoff between tractability and expressiveness. They
asked: What is the appropriate service to be provided by a knowledge representation system?
They offered a strawman proposal. A knowledge representation (KR) system manages a knowl
edge base and presents a picture of the world or an environment based on what it represents.
Given a knowledge base, they required that a KR system be able to determine, given a sentence,
Z, whether that sentence is believed to be true. More precisely, assuming that the knowledge base
is a finite set of sentences and that KB stands for their conjunction, they wanted to know whether
KB => Z. Determining this generally requires not just retrieval capabilities but also inference.

Their strawman proposal was to use the first-order predicate calculus as the exemplary
representation language. This has the advantage that

KB I=Z iff t- (KB =>Z)

That is, if Z is true then it is derivable from the sentences in the knowledge base. Unfortunately,
this requirement also has the effect of ensuring that the strawman service as described cannot be
provided.

The difficulty of providing this service follows from its generality. No theorem prover can
always determine the answer for arbitrary sentences in reasonable time. Completeness requires
generality and brings a price of intractability. This is not to say that finding a proof or counterex
ample is intractable for every sentence. For most theorem provers there are classes of problems
that are easy. Many theorem provers also have worst cases that are much more time-consuming
than the average cases and the easy ones. If theorem provers are complete then it follows that
some classes of problems are intractable.

Knowledge systems use a wide range of representations with different expressiveness. One
dimension along which representations differ is the degree to which they can leave things unsaid
about a model. There are different ways that a language can be incomplete in what it can say.

Consider the logic sentences in Figure 1.71. The first sentence says John is not a female
without saying what he is. The second sentence says that either Jack or Monica is a parent of
Steve, but does not specify which. Nor does it say that some other person might not be a parent
of Steve, since nothing has been said about a person having exactly two biological parents. The
third sentence says that Steve has at least one male parent but does not say who that parent is.
The fourth sentence says that all of Steve's neighbors own pets without saying who those neigh
bors are, who their pets are or even whether there are any neighbors. These examples show that
first-order logic can leave many kinds of details unspecified. It avoids representing details that
may not be known. Indeed, this ability to not specify details is quite remarkable. It reflects the
original intended use of predicate calculus to formalize infinite collections of mathematical enti-

Page 126 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness

-,Female (John)

Parent (Steve, Jack) v Parent (Steve, Monica)

3 XParent (Steve, x) ;\ Male (x)

V x Neighbor (Steve, x) => 3 y Owns-Pet (x y)

FIGURE 1.71. Example sentences with different kinds of incomplete information.

119

ties. This use emphasizes different requirements from typical applications of knowledge systems
where domains are often finite and many of their details are explicitly represented.

Following the exposition in Levesque and Brachman, 1985, we consider incomplete
knowledge and inference for a relational database, a logic program, and a semantic network. As
we consider KR systems based on these languages, we will see not only that they cannot perform
the strawman KR service, but also that they necessarily must perform different though related
services. Our goal in the following is not to give a thorough characterization of relational
d~tabases, logic programming, or semantic networks. Rather, it is to sketch them briefly and
compare them to reveal general issues about the expressivenesss of representations.

Representation and Inference Using a Relational Database

Databases store facts. In this section we consider examples from a relational database to show
limitations that the format imposes on the kinds of incompleteness in represented facts. In princi
ple, it might be argued that a database imposes no limitations on information because it is a gen
eral storage medium. In this argument, the interpretation of symbols is entirely open-ended. For
example, we could use a database to build exactly one table that would just be addresses and
memory contents for an arbitrary computer program. However, this misses the intent of the
mechanisms provided with databases.

Databases have mechanisms for matching and retrieval and these mechanisms are used in a
well-defined way by the query language. These are similar in purpose to the pattern-matching
operations we discussed earlier for symbol-manipulation tasks. When we speak of using a
database and having a "natural" or "standard" interpretation, we presume to make the most use
of the query language and the retrieval mechanisms.

Figure 1. 72 lists some entries from a relational database.
To characterize in first-order logic the information in these sentences, we can use a collec

tion of function-free atomic sentences such as the following:

Course(CS131)

Days(CS112,TTh)

Course(CS112) Enrollmen (CS131, 60)

Days(CS228A, TTh) Cross-Listin (CS275, Ling120)

The expression of incompleteness is much more limited than in our earlier examples from predi
cate calculus. For example, we have no sentences like the following.

-, Time(CS228A, 11) Days(CS112, TTh)v Days(CS112, MWF)

Page 127 of 224 FORD 1011

120 1 SYMBOL SYSTEMS

Course Name Days Time Enrollment Instructor Cross-Listing
CS131 Applied Linear Algebra MW 11 60 Golub
CS275 Computational Linguistics ll TTh 3 10 Kay Linguistics 120
CS112 Computet Organization TTh 11 40 Gupta
CS228A · futro to Knowledge Systems TTh 4 50 Stephic
CS237A Advanced Numerical Analysis MWF 10 40 Staff·
CS260 Concrete Mathematics MWF 9 35 Knuth

FIGURE 1.72. Example entries from a relational database.

Furthermore, the standard interpretation of a database contains more information than is
typical of a collection of sentences from first-order logic. Suppose we were to ask the question,

"How many courses are offered at 11 o'clock?" (7)

Assuming that the database includes only courses in the Computer Science Department, question
(7) might be answered by a query (8) such as

Count c in Course where c. Time = 11 (8)

This query asks about the entries in the database. The relation between those entries and the
world is in the mind of the questioner. It is also supported by various assumptions that the query
system makes in its processing.

Returning to question (7), a logical account of what the query should return must use infor
mation not explicitly stored in the database. For example, it must determine which literal atoms
correspond to distinct course names. In the simplest case, unique atom names correspond to
unique courses. To indicate this with theorems would require us to add a statement expressing
explicit inequality for every pair of constants. Such theorems are not represented explicitly in the
database. However, even if we did that, it would not quite work in this case. Course CS275 is
cross-listed between the departments of Linguistics and Computer Science, resulting in two
course numbers for the same course. Thus, the rule for determining unique courses would need
to be expanded to something like "unique atoms declared to be courses correspond to unique
courses unless declared otherwise by an explicit Cross-Listing relation." Another important
assumption used in answering query (8) to the database is that all of the courses that are offered
are listed in the database. This is an example of a closed-world assumption (CWA). By embod
ying these assumptions, the query system is able to answer a question about the world using a
computation on its database.

An important issue in processing queries is in finding answers quickly. In the context of
databases this topic is called query optimization. Suppose we wanted to answer the following
question:

"How many courses in the Computer Science Department are offered at 11 o'clock
by graduates of MIT who also teach in the medical school?". (9)

Page 128 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness 121

In searching for an answer to such a query there are several choices about how to search
the database. Should the system first identify all of the instructors of 11 o'clock classes in the
Computer Science Department? Alternatively, it could identify all instructors who graduated
from MIT or all instructors who teach both at the medical school and in the Computer Science
Department. Query optimization employs a computational model of a database based on the
times required by different database operations. Query optimization is concerned with the order
that different fields are indexed and the size of sets on which various operations are performed.
Although a discussion of the methods of query optimization is beyond the purposes of this sec
tion, we notice that such concern with the efficiency of answering a particular query is an import
ant practical concern. Unfortunately, it is also outside the scope of the strawman KR service.
Know ledge about query optimization is another example of know ledge we like a know ledge sys
tem to have but that we would not need to specify. In this case, the knowledge is unsaid and is
unsayable in the knowledge base because it is handled by the query optimizer, which is a sepa
rate program. Beyond trivial problems, knowledge about how to make inferences efficiently is
crucial.

In summary, inference is carried out by database operations and accessed through a query
language. Normally, a query language makes certain assumptions about the way that symbols are
used to represent the world. Knowledge for making inferences efficiently is held in the query
system.

Representation and Inference Using Logic Programming
In this section we give a short introduction to logic programming to show how it fits in this
sequence of representations with different expressiveness.

In logic programming a knowledge base is a collection of first-order sentences. They have
the form:

'<./ X1 X2 ••• Xn [Pl 1\ ••• 1\ Pm => Pm+l]

where each P; is atomic and m ~ 0. (10)

Sentences in this form are called Horn clauses. Hom clauses are more general than sentences in
a relational database. In the case where m = 0 and the arguments to the predicates are all con
stants, this reduces to the form of a relational database.

Figure 1.73 gives some examples of sentences in PROLOG. Each sentence ends with a
period. The first six sentences are function-free atomic sentences as with the relational database
examples. They say that "Paige is female" and "Morgan is male" and so on. The next four sen
tences are sirniliar except that they involve a 3-ary predicate.

The second to the last sentence defines brother as a derived relation. Roughly, it says
that "someone is my brother if he has the same parents that I have and he is male and he is not
me." In comparison with the previous syntax for Hom clauses, PROLOG elides the universal
quantification symbols, replaces the conjunction symbols with. commas, and replaces the
implication symbol with :-.The\= means "roughly not equal," although we will discuss some
subtleties of this later. A PROLOG rule consists of a head and a body, connected by :-. The head
of the last rule in Figure 1. 73 is brother (S e 1 f , S i b 1 i n g) . The head describes what the rule
is intended to define. The body of the rule is the implied conjunction parents (Self, Mom,

Page 129 of 224 FORD 1011

122

female(paige).
female(mabel).
female(ellen).
maleCmorgan).
male(stan).
maleCmark).

parents(mabel, paula, peter).
parents(stan, paula, peter).
parents(paige, ellen, mark).
parents(morgan, ellen, mark).

1 SYMBOL SYSTEMS

brother(Self, Sibling) :- parents(Self, Mom, Dad), parents(Sibling, Mom;
Dad), male(Sibling), Sibling\= Self.

likesCpolar, Person) :- has_food(Person), pats(Person, polar).

FIGURE 1.73. Example sentences from PROLOG.

Dad), parents(Sibling, Mom, Dad), male(Sibling), Sibling\= Self. The body
describes a conjunction of goals that must be satisfied, one after the other, for the head to be true.
The body and head in PROLOG are in the reverse order that we defined them for the Horn clause
in (10).

In PROLOG, atoms that begin with capital letters are taken to be variables and atoms that
begin with lowercase letters are taken to be constants. The last sentence means roughly that
"Polar likes anyone who pats him and has food." In this sentence, polar is a constant corre
sponding to my neighbor's dog and Person is a variable. (Curiously, English conventions for
capitalizing names is at odds with PROLOG syntax in this example.)

The analog in PROLOG to processing a database query is interpreting a PROLOG pro
gram. Figure 1. 7 4 illustrates some steps in processing the statement brother (p a i g e , S i b -
l in g), which translates roughly as "Who is Paige's brother?" The process begins by retrieving
the rule that defines brother and binding S e l f to p a i g e. This value for the S e l f variable is
kept for the subsequent.matches in the sentence. The interpreter then steps through the clauses of
the rule. In the first clause, unification binds Mom to ell en and Dad to rna rk. After a few more
steps, a consistent binding is found and the answer morgan is returned.

This example is a very simple case. Only one step of backtracking was required, when the
matching routine binds both Self and Sibling to paige.

Figure 1.75 gives another example of running the same program, except that a different
query is answered because a different argument is made constant. In this case, the query
brother (Self, morgan) translates roughly as "Who is Morgan the brother of?" This ability
to use definitions in more than one kind of computation is one of the interesting features oflogic
programming. It exemplifies what is meant when people say that logic programming makes it
possible to say what a program should compute without saying how it should compute it. This is

Page 130 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness

A Query
?- brother(paige, Sibling)

Trace of the matching process
Match prot her (paige, Sib 1 i ng) against the database.
This retrieves the definition of brother:

123

parents(Self, Mom, Dad), parents(Sibling, Mom, Dad), male(Sibling), Sibling

\=Self.

bind SeH to paige.
Match pa'rents (paige, Mom, Dad) against the database.
bind Mom to ell en.
bindDadto mark.

Matchparents(Sib ling, ell en, rna rk) against the database.
This fiist match is with parents (pa i.ge, e 11 en, rna r k)
bind Sib 1 ing to paige.

Match rna l e (paige) against the database.
Thisfails and there is no method for proving male. So the matcher starts to unwind.

Itlooks for another match to (S i b l i n g , e 11 en , rna r k) in the database.
Itmatches parents (morgan, ell en, mark)
bind Sib 1 j n g to morgan.

Matc;h rna le (morgan) against the database.

Testthatmorgan /=paige.

Retum:morgan, that is, brother (paige, morgan)

FIGURE 1.74. Processing a PROLOG query using the program in Figure 1.73.

also called a "declarative reading" of a logic program. For this query, the program returns the
answer paige.

However, reading and executing a program in more than one way is not without costs. A
PROLOG interpreter proceeds through its generation and backtracking process in a predeter
mined order. In logic programming languages, common practice is to write programs to be effi
.cient for one expected use.

In our example of the brother predicate, it is assumed that the most common computa
tion is to find the brother of S e l f. The way the predicate is written prescribes how the computa
tion in that case is carried out as follows. First the Mom and Dad of S e l f are determined. Then the
system generates candidates in the database having the same Mom and Dad as parents. Then can
didates that are not male are eliminated. Finally, a check is made that the candidate is not equal to
S e 1 f. The backtracking interpreter enables the program to answer other questions, but at a cost
of more search. For example, when brother is asked how to determine whose brother S i b 1 i n g

Page 131 of 224 FORD 1011

124

Another Query
?- brother(Self, morgan)

Trace of the matching process

Match b rot her (Self, morgan) against the database.
This retrieves the definition of brother:

SYMBOL SYSTEMS

parents(Self, Mom, Dad), parents(Sibling, Mom, Dad), male(Sibling).
bind Sibling to morgan.

Match parents (Self, Mom, Dad) against the database.
Thefirstmatchiswithparents (mabel, paula, peter).
bind S e 1 f to m a be 1 .
bind Mom to paul a.
bind Dad to peter.

Match parents (Sib l in g=Mo rg an, Mom=pa u l a, Dad=pete r) against the database.
This faik The interpreter backtracks.

Matchparents (Self, Mom, Dad)againstthedatabase.
Thenextmatchisparents (stan, paula, peter).
This fails in the same manner as the previous.

Match parents (Self, Mom, Dad) againstthedatabase.
Thenextmatchisparents (paige, ellen, mark).
bind Self to paige.
bind Mom toe ll en.
bind Dad to rna r k.

Match parents(morgan, ellen, mark) againstthedatabase.
This succeeds.

Match rna l e (morgan) against the database.
This succeeds.

Testthatmorgan /= paige.
This succeeds.

Return: paige,thatis,brother(paige, morgan)

FIGURE 1.75. Another PROLOG query: "Who is Morgan the brother of?''

is, it begins by generating candidates for Self that have a Mom and Dad. The process is sound,
but inefficient.

Logic programming extends the capability for determining whether a sentence is true
beyond that of a relational database because it includes instructions for performing inferences
that can determine the truth of derived relations. Thus, unlike the case of a relational database,

Page 132 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness 125

some of the knowledge about the order in which to try inferential steps is in the knowledge base
(database) and under the control of the programmer as expressed by the ordering of clauses.

In performing its inferences, the PROLOG interpreter makes several assumptions. It
assumes that unique atoms refer to unique individuals. This assumption is reflected in the way
that unification works. Obviously, the only constants it considers are those in the database. This
is the closed-world assumption. It also assumes that something it cannot prove must be false.
This explains the rationale behind the backtracks in Figures 1.74 and 1.75. This is called a "fail
ure-as-negation" (FAN) assumption.

PROLOG is not a complete theorem prover. It is based on a resolution theorem prover for
Horn clauses. The particular strategy that it uses is a form of linear input resolution. The infer
ence process is split into two parts: a retrieval part that extracts atomic facts from a database by
pattern-matching and a search part that tries to use non-atomic Hom sentences to form the infer
ences. There are many details that could be discussed about how PROLOG goes about deciding
what clause to consider next and how this relates to more general theorem provers, but discuss
ing them would take us beyond our current purposes.

However, it is interesting to note that the kinds of incompleteness of knowledge that logic
programming can represent are similar to those in relational databases. For example, there are no
clauses like the following:

-, male (paige) parents (paige, ellen, mark) v parents (paige, ozma, wizard)

PROLOG has predicates for NOT and disjunction. However the predicate NOT(B) does not
declare that B is false. Rather, it tests whether the negated clause can be proven. It succeeds if the
negated clause cannot be proven. The status of this kind of statement is different from the others
that we have discussed. For example, its effect depends not only on the contents of the knowl
edge base but also on the power of the theorem prover.

On one hand, including NOT in a language undermines its proof semantics. Characterizing
what inferences are true becomes quite difficult. On the other hand, statements involving not can
be quite useful for modeling certain kinds of human reasoning about defaults that resist formal
ization using standard semantics of logic. They allow the language to say "assume x if you can
not prove otherwise."

Within PROLOG, negation and disjunction can be used in rules, but they cannot be
included as ground statements since all ground statements must be atomic. Similarly, there are
restrictions on the i:- predicate. Different versions of PROLOG treat it differently, but in most
common ones it can only be used if the terms have already been bound. It succeeds only if the
terms are different.

In summary, logical languages express several things. Like a relational database, they
describe a space of possibilities. This is reflected in focusing on the terms in the database coupled
with the closed world assumption. We can find all possible candidates for Paige's brother in the
database. Restricting the kinds of incomplete knowledge in the language limits the work required
of the inference machinery. Unlike a relational database, logical programming makes it possible
to represent derived propositions. At the same time, the way that the statements for deriving
propositions are expressed determines the efficiency of the search strategy for each kind of
query. Clauses are considered in a predefined order so that logic programs implicitly embody
expectations about what queries will be asked in terms of how a computation is performed. In

Page 133 of 224 FORD 1011

126 1 SYMBOL SYSTEMS

likes

FIGURE 1.76. A simple semantic network.

other words, the way that a program is written makes some inferences more efficient than others.
Finally, the inclusion of facilities like NOT can express metalogical knowledge. They make it
possible to advise the inferential process about how to carry out default reasoning, a concept that
is not part of standard logic.

Representation and Inference Using Frame Languages
We now revisit semantic networks as introduced earlier. Since there is no single language of
semantic networks, we will concern ourselves with some features that have been common to a
wide range of frame languages.

Figure 1.76 presents a semantic network representation similar to ones we considered ear
lier in this chapter.

One of the things to notice is that a semantic network provides different ways to handle
predicates of different arity. Unary relations are called types or classes. They are organized in a
taxonomy. For example, the relation

Person(Willy)

is represented using the is-a link between the nodes Willy and Person. Binary predicates are rep
resented by arcs. For example, in Figure 1.76, the binary relation meaning "Willy likes football,"
represented in logic by

Likes(Willy, Football)

shows up in the semantic network as the arc labeled likes connecting the nodes Willy and Foot
ball. Binary relations are sometimes called attributes. Higher-order relations are represented by
creating special objects. For example, the predicate

Threw(Willy, Ball, Morgan)

is represented in Figure 1.76 with a special kind of object called a "throw-event."

1-'--

Page 134 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness 121

Inferences in frame languages about classes take several forms. In the simplest case, all
members of a class have some common property. The characterization of the property A is given
at the level of the class class, but is interpreted as being a property of its instances.

\::f x (is-a (x class) => A(x))

We called such reasoning from classes to instances inheritance reasoning. In Figure 1.76, we
infer that "Willy breathes air" from the facts that Willy is a person, person is a subclass of mam
mal, and all mammals breath air. By placing an attribute high in a taxonomy, one can allow many
instances below to inherit that property. This kind of reasoning lends itself to a graph search
where one starts with the node in question and searches up the taxonomy to find a node defining
the property. It also lends itself to certain intuitive approaches for default reasoning. For exam
ple, if nodes at different levels of a taxonomy indicate different values to be inherited, then the
search process can be used to either specialize or override the values of attributes of nodes at dif
ferent levels.

There are other variations on information about inheritance. Predicate calculus provides no
laiowledge or epistemological primitives for organizing a knowledge base. In contrast, many
frame languages provide primitives for expressing certain commonly used relations for organiz
ing the terminology of a KS. These include such relations as subclasses, specifications for
defaults, and primitives for defining the structure of objects in terms of their parts. These primi
tives are a beginning of a theory of semantics.

A simple example suffices to give the flavor of such expressions as they relate to the inher
itance relations discussed so far. Figure 1.77 defines Plant-Part as a class for large structural ele
ments of growing plants.

One of the properties of a plant part is that it has a color. In a frame language, we can indi
cate that all parts have some color by establishing a description involving a color link from the
class. This is the link labeled "value specification" in Figure 1.77. That link indicates a closed
world specification. In particular, it indicates that the color of an instance of Plant-Part must be
some instance of the Color node and that in the absence of other information we can assume that
the color of a plant part is brown. In frame languages, such an instance of Color must be a filler
of this role in an instance of Plant-Part.

Another node in the figure is the Tree node. The Tree node illustrates some notions for
structuring inheritance relations. Frame languages incorporating such notions are called struc
tured inheritance languages.

The Tree node defines a property of trees called foliage. The notation in Figure 1. 77 is sup
posed to indicate the following: Trees have foliage. Foliage is a relation indicating a part of a
tree. The value or filler in a foliage relation of an instance of a tree must be an instance of a plant
part. Like all plant parts, tree foliage has a color. Its color, however, is limited to red and green
rather than the full range of colors. Furthermore, the default color of foliage is green rather than
brown. The dashed links in Figure 1. 77 are intended to suggest this web of relations, so that the
plant-part description for foliage of trees is related to the general description of plant part and
overrides some of its elements.

This richer set of links conveys an important shift in style of representation. This style rec
ognizes the awkwardness of representing objects, especially objects with structure, in terms of
flat propositions associated with a single node. In this style, an individual is represented by a

Page 135 of 224 FORD 1011

128

Plant-Part

Color:

.,

: Value specification

Red

Freq: ...

'

(a color) <- Value specialization
- ----------------------------------' Default: Brown ' '

/

' is-a '
'

'
Trees '

'
'

Foliage: (a plant-part) '
'

Color: {Red or Green}

Default: Green

1 ! SYMBOL SYSTEMS

-

Part-Relations

Relation

type

FIGURE 1.77. Example of structured inheritance in a frame-based representation language.

cluster of nodes where some nodes and links, primitive to the interpreter, are used to define the
mutual roles. Within such representations, single is-a links are inadequate for capturing the many
relations between the bundled parts. The richer set of connections opens up the possibility of spe
cializing subconcepts of generic ones by restricting some of the subparts of the description
embodied by the generic concept.

With the usual but important caveats about efficiency of inference and reasoning with
incomplete knowledge, the meaning of everything we have said here about frame languages is
similar to what we said about relational databases and logic programming in that it can be char
acterized by predicate calculus statements. What is extra is the set of knowledge primitives and
guidelines for representation. Such guidelines are sometimes called the epistemological level for
characterizing frame languages because they introduce primitives for knowledge used by the
interpreter. In practical knowledge base tools, which emphasize the process of building KSs
incrementally, such characterizations are also useful for limited forms of type checking as new
concepts are added to the KS.

The appeal of the graphical nature of semantic networks has led to many forms of reason
ing that are not well understood. Historically, developers of semantic networks have been lax in
characterizing the semantics of the representations. As many formalists have lamented, it is
unfortunately much easier to develop algorithms that seem to reason over structures of a certain

Page 136 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness 129

kind than it is to characterize the behavior of those algorithms carefully or to justify the reason
ing that is carried out.

Referring back to our earlier examples of a relational database and logic programming,
frame languages are intermediate in terms of how they embody inference. As with relational
databases, inference is carried out by an external interpreter that makes various assumptions
about the network. Unlike logic programming, there is no way to express derived propositions.
The main example of inference for semantic networks is reasoning about inheritance of proper
ties. As in the case of NOT in logic programming, computations of default values have provided
examples of reasoning that are said to model human reasoning but that are not characterized eas
ily in terms of truth or proof semantics.

1.4.6 The Symbol Level and the Knowledge Level

The what-to-how spectrum ranks programming languages in terms of expressiveness. Programs
written in languages at the "how" end of the spectrum describe what to do in many, simple steps.
At the "what" end of the spectrum, languages provide integrated sets of powerful primitives.
Because many of the details of what to do are represented in the interpreter, the programs written
in these languages are shorter.

A representation system is expressive to the extent that it makes it possible to leave things
unsaid, both in the language and in queries to the representation system. A striking aspect about
this characterization of expressiveness is that the prescription of what an interpreter can bring to
bear to process either a program statement or a query is extremely open-ended. Interpreters can
be categorized according to what they bring to bear in processing queries.

In the design of knowledge systems, it is useful to distinguish between two levels of analy
sis known as the symbol level and the knowledge level. The symbol level is concerned with
manipulating patterns of symbols. It is not concerned with what the symbols designate in an
external world, that is, it is not concerned with their reference semantics. The knowledge level is
concerned with particular tasks and, for that reason, with what symbols mean. At the knowledge
level we are concerned with what knowledge is needed to carry out a task and how that knowl
edge can be used.

Most of the examples of expressiveness in this section have been about the symbol level.
Analysis at the symbol level is concerned with the structural complexity of symbol structures. It
is concerned with space and time complexity of algorithms over symbol structures, independent
of what the symbols mean.

The advantages of expressiveness provided by pattern-matching languages are entirely due
to operations at the symbol level. That is, the knowledge that pattern-matching interpreters use to
make programs simpler is all about the symbols themselves. The interpreters know about pattern
matching, they laiow about the extraction of parameters during matches, they know about substi
tuting constants for variables, and they know about backtracking search. A theorem prover, a pat
tern matcher, or a query-processing program could be said to have knowledge, but what they
know is about the structure of the symbols that they manipulate. They know about efficient
indexing of their tables. They know how to reliably traverse a graph. They can carry out a search
for solutions using such information.

When we analyze the complexity of various kinds of algorithms over graphs and relate
their running time to properties of the graphs, we are working at the symbol level. Symbol-level

Page 137 of 224 FORD 1011

'BO 1 SYMBOL SYSTEMS

analyses are of broad interest in computer science. Similar computational phenomena arise when
similar procedures run over similar symbol structures.

The knowledge that an interpreter may use to interpret a statement in a program, represen
tation language, or query, however, can also include knowledge and assumptions about the
world. In our examples of the expressiveness of representation languages, we referred to closed
world assumptions and failure as negation assumptions. These examples are at the knowledge
level because they are concerned with what symbols mean.

More broadly, an interpreter can gain further expressive leverage in query processing by
effectively solving problems. In this way it moves beyond what we call a representation system
toward what we call a knowledge system. The knowledge employed includes methods for find
ing solutions and knowledge for guiding that search. Chapter 2 discusses problem solving and
the use of search methods as ways to find solutions. An analysis of a task at the knowledge level
characterizes the use of world knowledge in terms of its effect in guiding the search of a space of
possible solutions.
. Looking further ahead, Chapter 3 discusses fundamentally what knowledge is and where it
comes frolJl. It extends our discussion about the construction of knowledge systems beyond the
symbol-level manipulations in the computer to the social situations in which knowledge systems
are created and used.

1.4.7 Summary and Review
In this section we considered the expressiveness of programming and representation languages.
One indicator of expressiveness is what things need not be stated explicitly. In pattern-matching
languages, the simplicity of the programs results because some operations are performed auto
matically by the interpreter of the language. Some of the complexity is factored out of the pro
gram and placed in the interpreter. In several example programs we saw how the expression of
the differentiation program was made simpler when many of the details of graph search, parame
ter extraction, and substitution were handled by the interpreter of the pattern-matching language.
This approach is called metalevel factoring.

Representations differ what they can express easily and the things they express at all. For
example, all of the representations we considered were less capable than predicate calculus in
expressing certain kinds of incompleteness of knowledge, such as ground literals involving
negation and disjunction.

In the relational database example, the language is equivalent to function-free terms with
constant arguments and the interpreter is the query system. We saw that a practical query lan
guage actually depends on additional assumptions, such as closed-world assumptions, and also
that it needs to be concerned about the efficiency of query processing.

In the logic programming example, the representation is in terms of Horn clauses and the
interpreter is that for the language. We required closed-world assumptions as well as failure-as
negation assumptions for use in the search for solutions.

In the structured inheritance networks, we saw that epistemological primitives can be used
to organize clusters of nodes into larger coherent structures. These languages provide prescrip
tions for organizing representations, including specialized closed-world assumptions and knowl
edge about defaults. This idea has been extended to the design of specialized representation
shells for specific tasks and to the approach of building large knowledge bases with many poten-

Page 138 of 224 FORD 1011

1 .4 Programs: Patterns, Simplicity, and Expressiveness 131

tially reusable representations and compositional primitives. Such approaches are on the edge of
current research.

Exercises for Section 1.4

Ex. 1 [00] Pattern Matching. Assume the following symbol structures:

II -, Ex. 2

(and (likes Fido Bonzo)(feather-brained Fido))

(and (likes Rover Lucky)(feather-brained Lucky))

(and (likes Spot Sperald)(feather-brained Lucky))

(or (likes Sport Dizzy)(feather-brained Dizzy))

What values would be assigned to the pattern variables by matching the following pattern
against each of the symbol structures?

(and (likes ?dog ?person)(feather-brained ?person))

Hint: Some of the expressions do not match at all.

[15] Common Sense and the Database. Consider a database of family relationships. Sup
pose there are predicates for brother, father, mother, sister, and surname. For example, the
database may contain several thousand facts like the following:

(brother Joe Mike)

(father Joe Pete)

(brother Mike Azel)

(father Fred Sam)

(surname Mike Smith) (surname Sam Stevens)

(brother Ed Joe)

_ (father Andy Nick)

You may assume for the purposes of this exercise that the personal names used in these
relations are unique identifiers for individuals. In addition, there are some rules for infer
ring surnames:

Rule 1: "A father and a son always have the same surname."
If (father ?fath-1 ?son-1) and (surname ?fath-1 ?sur),

then (assert (surname ?son-1 ?sur))

Rule 2: "Two brothers always have the same surname."
If (brother ?bro-1 ?bro-2) and (surname ?bro-1 ?sur),

then (assert (surname ?bro-2 ?sur))

(a) In what way is rule 1 weaker than the common-sense meaning of the corresponding
natural language statement? Discuss briefly.
(b) Does rule 2 have the same problems as rule 1? How does the answer to this question
depend on the properties of the pattern-matching process of the rule interpreter?
(c) Give two additional rules similar to the ones above that would extend the situations
for inferring the surnames of brothers, fathers, or sons. Briefly discuss any relevant proper
ties of the matching process of the rule interpreter.
(d) Would it be appropriate to add a notation saying that the brother relation is commuta
tive? (Hint: This is a trick question. The given database is missing entries for some crucial
kinds of people in families.)

Ex. 3 [CD-00] Simulation versus Deduction. After staring at several production-rule programs,
Professor Digit exclaimed, "Eureka! Simulation and deduction are just the same thing! All

Page 139 of 224 FORD 1011

132

11111

1 SYMBOL SYSTEMS

of these programs use production rules and some control structure or other! It's all just if
then or pattern matching." Do you agree with Professor Digit? Explain briefly.

Ex. 4 [L-05] Representation Using Predicate Calculus. Sometimes the naive translation of state
ments into the predicate calculus can be misleading. Consider the following statement:

Ex.S

Every person knows someone who has a feather-brained dog.

(a) Represent this statement in predicate calculus.
(b) Is the logical interpretation of the statement realistic? Give an example of what else a
program would need to know to make realistic use of such a statement.

[!-15] Control in Production Systems. In production-rule systems, it often happens that
more than one rule matches the data in the working memory. When this happens and it is
desired to fire only one rule, some means must be found for selecting among the rules. The
set of rules that match the data at a given cycle is called the conflict set. A method for
choosing which rules in a conflict set to fire is called a conflict-resolution strategy.

Suppose the following set of rules is used for recommending choices of food for
patrons in a restaurant. The left sides are conjunctions of terms that must be in the memory,
and the right sides list foods to be recommended.

For example, rule 3 can be translated roughly as "If it is breakfast time and the patron
is overweight, then recommend cereal."

rule-1: breakfast-time -> (eggs bacon)
rule-2: breakfast-time hungry -> (eggs bacon waffles)
rule-3: breakfast-time overweight-> (cereal)
rule-4: breakfast-time hurried -> (juice toast jelly)
rule-5: breakfast-time overweight hungry-> (fruit cereal)
rule-6: breakfast-time kids -> (milk pancakes)
rule-7: breakfast-time runner -> (yogurt fruit)
rule-8: breakfast-time kids hungry -> (pancakes eggs juice)
rule-9: breakfast-time hungry runner-> (fruit cereal)
rule-10: kids -> (pizza)
rule-11: lunch-time kids -> (burgers fries shakes)
rule-12: lunch-time overweight -> (salad)
rule-13: runner -> (sportDrink)

(a) A rule is in the conflict set if all the terms on the left side of the rule are present in the
working memory. What is the conflict set for each of the following cases?

working memory-1: kids
working memory-2: hungry runner
working memory-3: lunch-time
working memory-4: lunch-time kids

Note: The conflict set can be large or small, depending on how many rules match. Remem
ber that every element on the left side of the rule must match an element in working mem
ory.
(b) Suppose instead that the interpreter uses a "most specific rule" strategy. Again, the
conflict set is made up of all of the rules that match the data. The winning rule is the one
that matches the most terms in the data. In the event of a tie, the earliest rule in the

Page 140 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness 133

Ex.6

1111 Ex. 7

sequence dominates. For each of the following cases, give the conflict sets, the match
scores, and the winning rules.

working memory-1: kids
working memory-2: breakfast-time hungry kids
working memory-3: hungry runner
working memory-4: breakfast-time seniors

(c) Suppose that we change the interpreter of the rules so each cycle proceeds in two
passes. First all of the rules are matched against all of the data. Then the most specific
rule/data match (determined by the maximum number of matching terms) is identified and
that rule is fired. After a rule fires, the data it matched are removed from the working mem
ory and the process is repeated. In the event of a tie, the rule with the lowest index numbers
is done first. Conflict sets are recomputed at each cycle. Briefly, describe the actions of the
interpreter given the following initial working memory.

working memory: breakfast-time kids hungry runner

[1 0] Rule Interpretation Example. Use the traffic-light controller rules in Figure 1.62.
(a) Describe the behavior of the traffic-light system when there is no traffic on the farm
road. (Focus on the case where there has been no traffic there for a long time.)
(b) Describe the behavior of the traffic-light system when the farm road and the highway
are both crowded with traffic.
(c) Describe the behavior of the traffic-light system if the sensor is jammed, so that it
always indicates "car-waiting" even when there is no traffic on the farm road.

[!-20] Forward and Backward Chaining. When the firing of rules is driven by matching the
left sides of the rules against data, we say that the rules are driven by forward chaining.
Consider the following rules:

(Rule-1
(if (mother ?mom ?kid))
(then (parent mom kid)))

(Rule-2
(if (father ?dad ?kid))
(then (parent dad kid)))

(Rul e-3
(if (and (parent ?gran ?par)

(parent par ?kid)))
(then (grandparent gran kid)))

(Rule-4
(if (and (brother ?unc ?mom)

(mother mom ?kid)))
(then (uncle unc kid)))

(Rule-5
(if (and (brother ?unc ?dad)

(father dad ?kid)))
(then (uncle unc kid)))

Page 141 of 224 FORD 1011

134

(Rule-6
(if (and (sister ?an ?mom)

(mother mom ?kid)))
(then (aunt an kid)))

(Rule-?
(if (and (sister ?an ?dad)

(father dad ?kid)))
(then (aunt an kid)))

1 SYMBOL SYSTEMS

(a) Suppose the interpreter fires the rules using forward chaining. The rules are matched
against the data in the working memory. When more than one rule matches, the first rule is
fired first. The interpreter uses an audit table to keep track of which rules have been fired
on which data. Each rule is fired exactly once on each combination of matching data. More
specifically, every combination of data is considered for each rule and no rule is fired more
than once on the same data. When a rule is fired, the then-part adds new data to the work
ing memory which may then be processed by other rules. The process stops when no more
rules match any new data.

Write down the resulting data given that the working memory initially contains the
following:

(mother Mary Ellen)
(father Virgil Ellen)
(brother Karl Ellen)
(sister Paula Ellen)
(sister Julie Ellen)
(mother Ellen Paige)
(mother Ellen Morgan)
(father Mark Paige)
(father Mark Morgan)
(brother Eric Mark)
(brother Mike Mark)

(b) Considering what you observed in part (a), is the answer sensitive to the order in
which the rules are fired? Explain briefly.
(c) When the frring of rules is driven by matching the right sides of the rules against
goals, we say that the rules are driven by backward chaining. For example, we could use
backward chaining on the rules to flnd all of Morgan's aunts. We would first find the rules
that conclude that somebody is an aunt, in this case, rules 6 and 7. Proceeding frrst with
rule 6, we examine the left side. If the rule is satisfied, we can apply the rule at once. Oth
erwise, we can make new goals from the left side and try again. In this case, we can infer
that Paula and Julie are Morgan's aunts.

Show how backward chaining can be used to determine Paige's uncles starting from
the initial state of the working memory.
(d) Give the trace of backward chaining for detennining Paige's grandparents.
(e) In backward chaining to compute Paige's grandparents, and expanding the clauses in
rule 3,

(and (parent ?gran ?par)
(parent par Paige)))

why is it probably more efficient to consider the clause about Paige's parents first?

Page 142 of 224 FORD 1011

1.4 Programs: Patterns, Simplicity, and Expressiveness 135

(f) Briefly, what would happen if we use this approach to determine Ellen's grandpar
ents?

Ex. 8 [! -1 0] From Explicit Representation to Machine Learning. Upon understanding the opera
tion of a universal Turing machine and the von Neumann architecture, Professor Digit was
struck by a sense of profundity. He gathered his graduate students together and announced
that there were three main principles that should forever change the way they view compu
tation and machine learning:

o Symbol structures are dynamic and changeable in physical symbol systems.
o Programs are prescriptions for changing symbol structures.
o Programs themselves are represented by symbol structures and can be inter

preted by other programs.

From these, Professor Digit concluded that we have the key for building learning sys
tems. Programs could just reason for a while, see how they are doing, and then use symbol
processing to modify themselves to be better. Programs could be self-organizing, using the
powerful pattern-matching ideas discussed in this section. For example, when a pattern in a
rule (the manipulating rule) matched part of another is that simple!

Do you agree? Explain briefly.

Ex. 9 [CD-CP-16] "Predicate Calculus as Assembly Language." John Sowa sometimes remarks
that predicate calculus (PC) is to a representation language (RL) what assembly language
(AL) is to a high-level programming language (HL). Noting that the analogy is not exact,
he observes that characterizing what a representation language means in terms of predicate
calculus requires an increase in verbosity not unlike the increase in the size of a program
description when a program in a high-level language is compiled. This exercise explores
some questions inspired by this analogy.

In the following, RL, AL, and HL all correspond to classes of languages. For the pur
poses of discussion, choose whatever instances of these classes are appropriate.
(a) What semantics is relevant for comparing PC and RL? What semantics is relevant for
comparing AL and HL?
(b) What expectations does the analogy about HL:AL create about the relative computa
tional efficiencies of PC and RL? Briefly explain how the analogy is misleading with
regard to efficiency.
(c) What things can you express in AL that you cannot say in HL? What kinds of things
can you say in HL that you cannot say in AL?
(d) What things can you express in PC that you cannot say in RL? What kinds of things
can you express in RL that you cannot say in PC?

Ex. 10 [05] Basic Concepts. Determine whether each of the following statements are true or false.
If a statement is ambiguous, explain your answer briefly.
(a) True or False. Pattern-matching languages tend to provide simple expressions of pro
grams because the detailed operations of matching, parameter extraction, substitution, and
backtracking need not be explicitly described in the program.
(b) True or False. Requiring that it be possible to tell whether a sentence follows from a
database of sentences is intractable even if we limit the class of sentences that can be
expressed and tested. (Note: The sentence tested and the sentences in the database are not
arbitary but are limited to some restricted class. The question is whether proof must be
intractable even so.)

Page 143 of 224 FORD 1011

136 1 SYMBOL SYSTEMS

(c) True or False. Failure as negation is seldom used as a policy in logic programming
because there is no fixed upper limit on the amount of time needed to construct a proof.
(d) True or False. Hom clauses are more general and expressive than the atomic senten
ces used in a relational database.
(e) True or False. Compared with logic programming languages, structured inheritance
languages tend to be strong on expressing inference and weak on providing epistemologi
cal primitives.

1 . .5 Quandaries and Open Issues
This chapter concentrated on symbols, symbol structures, and physical symbol systems as funda
mental concepts for understanding knowledge systems. In this section, we step back from this
broad development to ask how our attitudes about symbols and traditional formal systems can be
misleading. We consider results and speculations from cognitive science and philosophy. We
briefly discuss theories of cognition that build upward from nerves and others that build down
ward from intelligent agents. These theories enrich our perspectives about the role of symbols in
both com~utation and communication.

The Physical Symbol System Hypothesis, Again
We begin our consideration of open issues with the hypothesis with which we opened this chap
ter, the physical symbol system hypothesis by Newell and Simon (1975).

The Physical Symbol System Hypothesis. A physical symbol system has the neces
sary and sufficient means for general intelligent action.

By this, Newell and Simon meant that an analysis of any system exhibiting general intelligence
would show that the system is a physical symbol system and that any physical symbol system of
sufficient complexity could be organized to exhibit general intelligence. By general intelligent
action, they meant the same order of intelligent and purposeful activity that we see in people,
including activities such as planning, speaking, reading books, or composing music.

The hypothesis proposes that intelligence follows from the organization of physical sys
tems and that it obeys natural laws. It also suggests that human intelligence follows directly from
our organization as physical symbol systems and that, in principle, it is possible to build artifi
cially intelligent systems by creating symbol structures that have the right properties.

Throughout most of this book, we skirt around the question of what constitutes "intelli
gence." This issue leads to many debates within artificial intelligence, but the arguments have
tended to be rather sterile in the context of knowledge systems, where the focus is on the con
struction of systems with task-specific performance criteria.

Within AI the hypothesis has received a mixed reception. Some researchers consider it
obvious and tautological, given that physical symbol systems are capable of manipulating and
interpreting symbols. They believe that mind is an emergent phenomenon from the right kind of
computation. Others find the hypothesis fundamental, but not obvious and potentially wrong.
Another argument is that the physical symbol hypothesis is vague and trivial. It begs the import
ant questions of just what kinds of organization are necessary for intelligence, and what kinds of
mechanisms are needed for processing the symbols. Supporters of this view argue that the es-

Page 144 of 224 FORD 1011

1 .5 Quandaries and Open Issues 137

sence of intelligence is in the details. They argue that vague hypotheses are of little use scientifi
cally because they are not testable by experiment. Still others consider the hypothesis circular,
turning on definitions of symbol, action, and intelligence that preclude normal kinds of scientific
testing.

One of the most extreme positions on this was presented by Rodney Brooks when he
argued that intelligent systems need not have representations (Brooks, 1991). Brooks' paper was
based on ideas explored building simple robotic creatures called "insects," "mobots," or
"animats." He argued that AI has relied too much on the study of representations. He proposed an
approach wherein increases in functionality come from a layering of systems, each of which con
nects perceptors to effectors without symbolic intermediaries. In the same issue, Kirsh (1991)
argues that the potential of Brooks' seemingly symbol-free approach is overstated and that the
example systems embody symbols anyway.

The status of the physical symbol system hypothesis now is like the status of the axiom of
choice before set theory was made rigorous. For many years, set theory was informal. Its theo
rems were considered obvious and not worthy of careful attention. Then, some puzzling exam
ples were found in strangely constructed infinite sets. This led to the formalization of the seem
ingly, ingenuous axiom of choice in mathematics. This axiom says that the Cartesian product of a
nonempty family of nonempty sets is nonempty. Restated more simply, given a set, it is possible
to select an element from it. At first nobody recognized that the axiom was needed. Then, after
the axiom was made explicity, it was not at all clear what its consequences were. Set theory now
includes branches of study with and without this axiom. In just this way, research on artificial
intelligence now debates whether symbols are necessary for intelligence.

The debate about the role of symbols takes place in the context of models of mind. Since
the time when he first proposed the physical symbol system hypothesis, Newell and others have
gone on to develop much more elaborate hypotheses and models of mind. Although reviewing
these is beyond the scope of this section, the interested reader is referred to Newell, 1991. The
next few sections show how these debates are concerned both with the nature of intelligence and
the nature of symbols.

Symbols in Natural Minds
Symbols in computer languages and memories are compact, discrete markings. Critics of compu
tational models of cognition have argued that because symbols in computer systems are digital,
they are irrelevant to the operation of memories in living brains. Our concern is with the con
verse. How do studies of brains or memory offer insights about the design of knowledge sys
tems?

At the time of this writing, progress in understanding how memory in a brain works has
been quite limited. Experiments on the biological mechanisms of memory have focused on ani
mals with extremely simple nervous systems. These experiments study small parts of small ner
vous systems and raise many new questions. Are the mechanisms for memory in one part of the
nervous system the same as mechanisms for other parts? What storage and retrieval mechanisms
are universal across different species? Are the same mechanisms used for short- and long-term
memories?

Beyond the issue of how memories work are larger questions about how minds and brains
work. The organization of brains and nervous systems is being studied on many fronts. Within

Page 145 of 224 FORD 1011

138 1 SYMBOL SYSTEMS

that context, the most crucial property of symbols is their use in causing action at a distance in.
space or time. Many kinds of actions are possible, such as triggering a specific external activity
by the symbol system or evoking larger symbol structures. Symbols can cause action at a dis
tance in space because they can be copied and transmitted to distant processors. Whenever they
are presented, symbols cause a processor to carry out a reproducible action. Symbols can cause
action at different times because they can be stored in memories and recalled for later use. This
"action at a distance" property explains how memories stored in one part of a brain can be used
to cause actions, controlled by a distant part of the brain.

The biological memories studied so far employ local, chemical, and physical changes dur
ing learning. Chemical traces of brain activity also provide data on how different areas of the
brain have specialized functions; detailed timing studies of linguistic and problem-solving activ
ities provide data on how much parallelism must be employed for various mental tasks. Combin
ing these kinds of data for a unified understanding of brain function is a long way off.

Connectionism, Signals, and Symbols
Most of o,ur discussion of the operation of physical symbol systems was based on architectural
concepts from Turing and von Neumann machines, in which the processor is separate and dis
tinct from the memory that retrieves symbols, interprets them, and causes operations to be car
ried out. In these models memory is a passive structure, capable of storage and retrieval but little
else. Inspired by models of neural networks, there is an active and vigorous school of thought in
cognitive science called connectionism that challenges these basic assumptions about symbols
and information processing. Connectionists argue that von Neumann computational models are
irrelevant to the operation of a brain.

Connectionist systems are networks of large numbers of simple but highly interconnected
units. Each unit is assumed to receive signals along its input lines, either excitatory or inhibitory
or both. Typically the individual units do little more than add the signals, perhaps combining
them with an internal state. The output of a unit is a simple, nonlinear function, such as a thresh
old function of the sum. The connectionist framework gives us "distributed symbols," colorfully
described as "symbols among the neurons." These distributed symbols have many of the essen
tial properties of the symbols described in this chapter: They are material patterns, recognizable
by complicated processors. However, connectionism mixes memories and processors together so
much that one cannot draw a neat boundary between them. Connectionism challenges the notion
that memory and processors are separable.

One mystery in cognitive models is how it is that slow nerves can compute so quickly. The
massively parallel connectionist models have much appeal in explaining this. Related mysteries
potentially drawing on massive parallelism include how people can recognize enormous num
bers of patterns and how brain function continues without catastrophic failure even when the
brain has sustained damage.

How do new symbols and expressions acquire their meanings? Connectionists look toward
repeated patterns in the orderliness of the world and in the repeated structure of routine tasks. In
this view, the meaning of symbol structures is intimately tied to their creation and use. From the
beginning, symbols are linked to perception and action.

Agre and Chapman (1988) have argued that information-processing theories of intelli
gence presuppose a substantial and implausible amount of mental processing machinery. For

Page 146 of 224 FORD 1011

1 .5 Quandaries and Open Issues 139

example, they propose an "indexical functional" theory of representation rather than having
unique symbols that stand for unique objects in the world. lllustrating their ideas in a video game
player, they would have an indexical symbol standing for "the bee on the other side of the block
in the direction I am moving" rather than having a bee- 064 symbol. Roughly, the patterns of
interaction between the symbols reflects the patterns of interaction between the observer and the
environment. This moves much of the inferential load into the representation and even into the
environment. By defining terms indexically, it may also reduce the number of symbols needed.

Fodor and Pylyshyn (1988) argue that a crucial point of difference between connectionist
and classical models of mind is that the meaning of a unit in a connectionist account is not a rule
based composition of the meanings of the units to which it is connected. In this chapter we saw
that this reductionist view that the meaning of an expression is composed from the meanings of
its parts is a property of truth semantics of most representation languages such as the predicate
calculus. It is also a property of denotational semantics that describe the operation of program
ming language, and it is useful in explaining concepts such as recursion.

In a connectionist graph, a link between unit x and unity means that states of node x caus
ally affect states of unity. Fodor and Pylyshyn argue that this particular aspect of connectionism
disqualifies it from providing a complete basis for a theory of cognition. They favor a classical
information-processing model. For example, they observe that people can understand sentences
that they have never heard before and that are structured quite differently. Similarly, people carry
out wide classes of inferences that they have never made before. In the information-processing
model, much of the power comes from pattern matching and recursive processing of symbol
structures. In the grammar case, rules of grammar and rules of interpretation can be applied
recursively in processing long (previously unheard of) sentences. Such recursive processing
seems essential to the process and is missing from the connectionist account.

For Fodor and Pylyshyn, the connectionist models are more compelling for explaining
low-level perceptual processes than high-level symbol manipulation processes in intelligent sys

. terns. From the perspective of knowledge systems, we would like to understand the computa
tional limitations of models built in either way. This is an area in which much basic work remains
to be done.

Although the physiological elements of a brain can be reduced to smaller elements, the
basic notion that the meaning of the whole is a function of the meanings of the parts becomes
less tenable as the parts become as small as individual nerve cells. More important in this realm
are patterns of interactions. Marvin Minsky addresses this issue extensively in his book The Soci
ety of Mind. He describes many kind~ of mental phenomena, processes, and possible constructs.
One interesting aspect of Minsky's theory is that its elements range from being implementational
in nature to being psychological in nature. In this vein, Minsky sees "symbolness" as a matter of
degree rather than as a sharp issue. Comparing connectionist and symbolic formalisms for com
puting in terms of their capabilities and computational resources, Minsky (1990) argues that
mental architectures need both kinds.

This notion that representations can have different degrees of a symbol-like character is
also in line with computational models of perception. One of the ubiquitous concepts in research
on perception is the signal. Examples of signals include acoustic waveforms, visual images, or
the output of various other sensor arrays. Signals have extents in space and time. We can talk
about changes in a signal over a second and can analyze the structure of a signal across both large
and small intervals. Signal processing includes developing analyses of signals and various ab-

Page 147 of 224 FORD 1011

140 1 SYMBOL SYSTEMS

stractions of them. For example, we can say that a signal has a particular frequency in some
interval, or that its amplitude is increasing, or that it is periodic. Analyses of one-dimensional
signals on time can attribute particular properties to arbitrary points in time; analyses of two
dimensional images can attribute abstractions to arbitrary points in a plane. When an abstraction
is attributed to all of the points of a signal, the abstraction itself is said to be a signal-like repre
sentation. We can reasonably ask whether mental representations are more like signals or more
like symbols.

Within architectures of cognition, it is now common to refer to subsymbolic processing. As
experimentation with neural networks continues, such terminology and methodology will proba
bly find its place in the design of knowledge systems.

Cognition and Levels

It would be nice to have theories of cognition that explain mental activities all the way from the
firing of nerves to emotion and reason. Returning to our discussion of the ongoing dialog
between information processing psychology and connectionism, Fodor and Pylyshyn suggest
that instead of providing a comprehensive architecture for cognition, connectionism may provide
a computational account of how nerves work, or rather the physical mechanisms of memory and
low-level computation. Thus, although connectionist architectures may be unsuitable as a com
plete basis for explaining cognition, they are appropriate for implementing other levels of cogni
tion. Many cognitive scientists suggest that systems should be understood in terms of levels of
cognition and representation. Levels also lead to insights about different kinds of symbols, what
they are used for, and how they fit into different kinds of theories.

Cognitive scientists characterize two levels of description above the raw physical encod
ings of memory. The memory itself is called either the physical level or the biological level.
Above that Newell distinguishes the symbol level from the knowledge level (Newell, 1982);
other cognitive scientists have used the corresponding terms functional level and semantic level
(Pylyshyn, 1984), respectively. The symbol level is a description in terms of symbols (tokens and
terms), expressions, and the deterministic interpretation of them. A symbol theory does not refer
to the physical properties of a system but only to the way that the system operates. It is con
cerned with how the behavior of a system can be explained in terms of processes on symbols. In
representational theories of mind, a system's behavior is explained not only in terms of the sen
sory inputs from its immediate environment, but also in terms of its internal state encoded in
symbols. The symbol level is concerned with the manipulation of these symbols.

In theories of intelligence, the knowledge level is concerned with the representational con
tent of the symbols. The knowledge level describes systems as agents, having goals, actions, and
physical embeddings. An agent selects actions to achieve its goals. Newell's knowledge level is
intended for predicting and understanding behavior without having an operational model of the
processing actually done by the agent at the symbol level and below. To predict the behavior of
an agent at the knowledge level, an observer ascribes to the agent principles of rationality.
These principles provide constraints on the role and interpretation of symbols, but they are a
much less complete description of behavior than a problem-solving process. More detailed
accounts of behavior are possible at the symbol level. For example, at the symbol level one could
predict which state-to-state transitions are likely to occur in a system, corresponding to rational
decisimrs. Methodological approaches based on taking protocols of people solving problems and

Page 148 of 224 FORD 1011

1 .5 Quandaries and Open Issues 141

comparing these with computer traces (Newell, Simon, & Shaw, 1963) have shown how com
puter programs can predict and model in considerable detail the steps that human problem solv
ers take in solving problems. Such experiments provide evidence supporting the validity both of
computational models of problem solving and for representational theories of mind.

The terms symbol level and knowledge level are used somewhat differently for knowledge
systems. In the context of knowledge systems, we use the term knowledge level to refer to analy
ses of a task in terms of the knowledge that is needed for a task and how it is used. We use the
term symbol level to refer to physical representations.

The Semantics of Existential Quantifiers
Terms in natural language routinely refer to states of affairs that are contrary to fact. The follow
ing phrases are all problematic in the analysis of their designations: "the current king of France,"
"the Wizard of Oz," "justice," "the common cold," "the unexplored regions of Africa," "the way
things could have been," and "the average American." A well-known aphorism, attributed to
Korzibski, comes to mind: "The map is not the territory." One should not confuse symbols with
their designations. Linguists collect such odd examples of referring expressions. These examples
reflect issues that a coherent theory for reference semantics must deal with. A larger set of such
examples gathered from many sources can be found in Chierchia and McConnell-Ginet, 1990.

Graeme Hirst (1989) has analyzed such examples in a challenge to the semantics of exis
tential and universal quantifiers in logic as used to represent the meanings of sentences in natural
language. His examples range from sentences about things that aren't there ("I don't own a
dog"), events that never happened, existence ("the existence of carnivorous cows"), fictional
characters, things at different times, and things that might have been. His examples show that if
we want a reasonable account of common sentences about existence, nonexis~ence, and nonexis
tent objects then we need more than one notion of existence.

Hirst's work makes it possible for us to see more clearly the assumptions behind our for
mulations of truth and proof semantics. In our discussion in this chapter about different kinds of
semantics, we saw how some linguists use formallangU.age semantics to represent the meaning
of sentences. Hirst turns this around. He notices that most logics and knowledge-representation
languages base their semantics of universal and existential quantifiers on the ontological assump
tions of Russell and Quine. These examples show that these semantics are inadequate for captur
ing subtleties of meaning in natural language.

How Is Communication Possible?
The interaction between natural language and thought has been a topic of interest of many years.
In the 1930s, Benjamin Whorf, an insurance company fire inspector, teamed up with an anthro
pologist Edward Sapir to explore the influence of language on thought and culture.

According to legend, Whorf developed his interest in language when he saw how fre
quently verbal misunderstandings led to fires. For example, he noted that people smoke and then
thoughtlessly toss their spent matches into "empty" gasoline drums. Because gasoline fumes are
highly flammable, empty does not mean safe.

The Sapir-Whorf hypothesis holds that language molds the form and texture of thought.
As Whorf puts it, "We dissect nature alop.g lines laid down by our native tongues We cut
nature up, organize it into concepts, and suscribe significances as we do, largely because we are

Page 149 of 224 FORD 1011

142 SYMBOL SYSTEMS

parties to an agreement to organize it this way-an agreement that holds throughout our speech
community and is codified in the patterns of our language."

Language influences thought in several ways. It provides the words we use for expression,
it determines what is routinely included in sentences, and it determines what is easy and difficult
to express. This highlights the role of the social context in an analysis of the meaning of lan
guage. Children both learn about the environment and learn language in a social setting. Lan
guage shapes learning and perception and arguably thought.

When we communicate with each other through language, we routinely leave things out in
the interest of efficiency in speech. This is why communication requires more than translation to
internal symbols. To communicate effectively one needs not only only to translate or change the
form, but also to fill in the missing information, to make plausible inferences, to integrate new
knowledge with previous knowledge, and to signal understandings and possible misunderstand
ings with the other communicants.

There are deep questions about how these processes might actually work. What is really
happening when two people believe they have achieved mutual understanding about the mean
ing of a word and how do they create a basis for convergence? Faced with such questions, Lakoff
and Johnson studied examples of ordinary conversation. Lakoff is a linguist who was struck by
the pervasive use of metaphor in everyday language and thought. Johnson is a philosopher who
was struck that traditional philosophical views permitted little role for metaphor in understand
ing the world or mental life. Their book (Lakoff & Johnson, 1980) is a rich source of examples of
how metaphors enable us to comprehend one aspect of a concept in terms of another. Consider
the sentences "It's hard to get that idea across to him" and "Your reasons came through to us."
Both sentences make use of a conduit metaphor for communication and meaning. "That boosted
my spirits." "I'm feeling up." These sentences use an up/down metaphor, where happy is up and
sad is down. Perhaps this is based on common human experiences related to posture. Drooping
posture typically goes along with sadness and an erect posture with a positive emotional state.
Lakoff and Johnson believe that metaphor enables new symbols and statements to draw on pre
sumably familiar situations, imbuing symbol structures with meaning that relates to commonly
shared experiences. Metaphors carry hints about the construction of meaning. This work is excit
ing because it suggests basic ways that communications can carry meaning, enabling a listener to
construct meaning about experiences that he or she did not have with his own senses.

Pieces of Mind
Imagine that we are observing a team of people working together. As outside observers, we could
try to model the group as a single symbol system. Of course, there are some immediate quibbles
about the persistence of symbols. When someone speaks, the "speech symbols" are heard,
recorded, and processed by the participants. One point of view is that the group of people func
tions as a single physical symbol system, or as an organization as having a collective intelli
gence or group mind. This attribution of agency to a group is not uncommon. Committees, com
panies, and even nations are often described anthropomorphically as having goals, personalities,
strengths, and emotions.

Minsky (1986) has proposed modeling a mind as a society of agents, composed of simpler
agents all the way down. In this model, new agents are created and specialized as a mind devel
ops. In comparison with connectionism, which tries to extend upward from essentially nerve

Page 150 of 224 FORD 1011

1 .5 Quandaries and Open Issues 143

models, Minsky's society of mind tries to extend downward from powerful abstract agents to
simpler ones. Symbols enable remote access. Symbols correspond to activations of "k-lines" that
cause various parts of the brain to become active. There are many things yet to be understood
about the power of this model of cognition. Indeed, it is difficult to tell at this stage whether var
ious models of cognition are distinguishable experimentally. As a challenge, try to design an
experimental psychological test under which the society-of-mind model and some different one
would yield different signatures.

The society of mind blurs together all of the issues about communication and computation.
Suppose we as observers have a wonderful "symbol-scope" for looking into the activities of a
brain housing a mind. In a society model the interactions among high-level agents may be more
akin to communication between separate beings while symbolic interactions between low-level
agents may be more akin to computation or message passing as in a programming language. We
can imagine looking at a robot who is looking at a scene. Suppose the robot is reaching for a
block. As outside observers, we may see early visual processors creating scene descriptions. The
early-perception agents may reduce these symbols to descriptions passed along to scene-interpre
tation agents, which have access to their previous interpretation of the scene a few moments ago,
as well as to other scenes. They may identify changing parts of the picture and update an indexi
cal representation of the "current scene." Elsewhere in the mind, we may see some high-level
agent describing the place to put the block in terms of other constructions it has made before,
possibly using "metaphor" in its communications. Of course, this scenario is very speculative.
We just don't know how all this processing is done in the human brain. We can now build robots
to carry out parts of it.

Minsky has been a critic of the assumption that there is a useful and crisp division between
symbolic and nonsymbolic systems. The society model challenges another sharp distinction,
between symbols used externally between agents (natural language) and symbols used internally
between agents that form a mind.

Active Documents
People build knowledge bases collaboratively. They discuss and agree about the meanings of
symbols in the knowledge bases. They design the behavior of the systems around the agreed
upon meanings of the symbols. Viewed this way, knowledge systems are like blackboards or
paper. They are a place for writing symbols. They augment human memory and processing with
external memory and processing. Like scratch pads or calculators, knowledge systems augment
our short-term memories. Like books in a library, they augment long-term memory. Like mail,
speech, and blackboards, they augment various media for human communication. As we talk
about this, it is curious how we begin to mix cognitive and document perspectives. In any social
situation in which knowledge systems are built and serve a group of people, they necessarily
must function as electronic documents, used for communication among those people.

Knowledge systems are not just passive media for recording and retrieving writings. We
expect them to carry out rational processes using the symbols. This brings us back to the cogni
tive perspective on the meaning of symbols. In knowledge systems, we often use the same lan
guage to serve both cognition and documentation. For example, the same production rule lan
guage may be used for inference and as elements of explanations of the behavior of a system; the
concepts acquired in knowledge arquisition are the same as the concepts used in problem solv-

Page 151 of 224 FORD 1011

144 1 SYMBOL SYSTEMS

ing. In programming terms, this is akin to the advantage of a "source language debugger," which
makes it unnecessary to know a lower-level machine language (the target language for the com
piler) when debugging a program. There can be several layers of symbol interpretation and com
pilation between the symbols that users see and the ones that are used in the rational processes of
symbol manipulation. The advantage is that computations can be more efficient when the source
language is compiled. To have it both ways, systems need to be able to translate back and forth
between external (source) and internal (compiled) languages.

Returning to the discussion of the role of symbols, knowledge systems straddle the distinc
tion between internal and external symbols. The psychological models of symbols are useful for
describing the reasoning processes that knowledge systems engage in. The communications
models for symbols are most useful for describing how separate knowledge system can interact,
and for describing how knowledge systems can interact with people.

About Foundations

Although speculations about evolution, communication, and rationality are fascinating, they are
far beyond the concepts that are applied routinely in knowledge engineering. Brian Smith (1986)
wants to·,develop a theory of correspondence explaining the intricate relations among representa
tion, specification, implementation, communication, and computation. Understanding these rela
tions may provide insights about building knowledge systems. Symbols are deeply rooted not
just in the methods of knowledge engineering and AI, but also in psychology, mathematics, com
puter science, and logic. The open issues in this section show that we have not yet heard the last
word.

Knowledge systems are not built entirely on firm and securely established foundations. As
is the case with even such fields as physics, astronomy, and mathematics, the foundations are
subject to inspection, reexamination, and occasional challenges. We make progress in the
absence of entirely satisfactory answers. Practitioners depend more on their native ability to
communicate than on having a fundamental grasp of the connections between communication
and computation. They draw insights from cognitive architectures without insisting that knowl
edge systems be modeled closely after human minds; they draw on insights from logic without
insisting that a knowledge system use strictly logical principles.

It is important to adopt an appropriate attitude toward foundations. In physics and astron
omy, ne.w theories of elementary particles and cosmology provide insights about foundations.
But only slowly does this work yield knowledge that changes what applied physicists do. In
mathematics there have been revolutions in theories of measure and sets, but basic mathematics
stays the same. For example, there have been no changes in the tables of integration and differen
tiation used in calculus, even as the foundations of measure theory have shifted. The subject mat
ter of these fields depends on stable properties that are emergent from the properties of the foun
dations. For example, a sense of connection and coherence about topics in biology is mostly
independent of foundations in chemistry, and a sense of connection and coherence in chemistry
is mostly independent of foundations in physics. Although knowledge engineering is newer,
there is a sense of connection and coherence about our theories of symbols, knowledge, and
search that we expect to persist even as the field expands at its edges.

In considering the foundations of mathematics, Bertrand Russell once remarked that we
judge the veracity of our axioms by their implications for our theorems, not our theorems by the

Page 152 of 224 FORD 1011

1 .5 Quandaries and Open Issues 145

axioms. We might say that we judge our symbols by what we can compute with them. This
reflects a confident experimental and flexible attitude about foundations: They are important, but
subject to change. The details become less relevant with increasing distance. This section con
veys that spirit, as well as an engineering at titude about the use of symbols in the design of
knowledge systems.

Page 153 of 224 FORD 1011

Page 154 of 224 FORD 1011

Knowledge and Software

Engineering

In the summer of 1973. Patrick Winston gave the Computers and Thought Award lecture at the

International Joint Conference on Artificial Intelligence at Stanford University. In this lecture he

spolteofhisexperienceteachingM11'undergraduatesabouttheworkingsofanAlprogram.
MACSYMA. that could integrate and differentiate expressions front the real calculus. The prob-
lems that the program solved were the same kinds of problems that are given in first-year calcu-
lus courses. Sample problems for the program included the differentiation and integration of trig-
onometric functions. polynomials. exponentials. and compositions of them.

Accor-dingtoWmston.thepedagogical sequenceusually workedoutinthesameway.The
students were familiar with numerical approximation methods for integration and differentiation

and with computer programs that used these methods. They were surprised and impressed. how-
ever. that a program could perform integration and ditferentiation synrbolically. In their view,
such a program had a pretty good claim on being intelligent. The next part ofthe course explored
howtheproyamwmkedfllnmrdenmleameddmflnprogramwnmgmnzeduomdseamh It
had a collection of rules for differentiation and integration. It matched these rules against situa-
tionstodecide whichonestoapply.WhenthestudentsunderstoodthattheAlprogramusedthe
bmic and integration rules taught in an introductory calculus course. their percep-

tion changed. Atypical response was: "lhat program is not so smart! It integrates the same way I
do.”

In retrospect, it is not clear what Winston‘: students expected to find inside the integration
program beyond knowledge (the integration and differentiation rules) and the search methods.
Theirstrpriseatfindingtheseingredientsatthecoreofthesystemsuggeststhattheywerepre
pared culturally for something quite different, something awesome and mysterious. In all fair-
ness,thestudents'surprisewhentheyunderstoodtheworkingsoftheintegrationprogramwas

tracking a shift thm was spreading throughout the field of AI at the same time. A] was shitting

291

Page 154 of 224 |=oRD 1011

Page 155 of 224 FORD 1011

192 3 I KNOWLEDGE AND SOFTWARE ENGINEERING

from the pursuit of powerful search and reasoning methods toward a recognition of the role of
special case knowledge—in this case the transforms of calculus. As Goldstein and Pqiert (1977)
putitfouryearslater'inanol'ten-quotedpapentherehadbeenashiftofparadigminAlfroma
technique-oriented theory of intelligence to a knowledge-oriented theory of intelligence:

'lhe fundamental problem of understanding intelligence is not the identification of a
few powerful techniques. but rather the question of how to represent large amounts

of knowledge in a fashion that permits their effective use and interaction. (p. 85)

This chapter is about the formulation and formalization of knowledge for knowledge sys-
tems. lt attempts to bridge the gap that separates our everyday human understanding of how we
discover. use. and articulate knowledge from our technical understanding of how we can incor-

porate knowledge in computational models.

3.1 Understanding Knowledge Systems In Context

We begin by discussing terminology that is widely used for describing knowledge systems. To
illustrate issues in developing knowledge sytems, we then consider a sequence of settings in
which knowledge systems are developed and used.

3.1.1 The Terminology of Knowledge Systems and Expertise

Since the 1970s when the term expert system came into use. terminology has shined to reflect a

deeper understanding of issues and distinctions. 'lhis section discusses the terminology. the
shiftsandtlrereasorrsfortheshifts.

What Knowledge Is, According to the Dictionary

Since the beginning of knowledge engineering, the term knowledge has been controversial when
it is used as a description of something that computers can represent and use. Much of the strug-
gle in making sense of knowledge engineering is in dealing with this word. In ordinary usage. the
term knowledge is used imprecisely and sometimes synonymously with other words such as
data. infornration. and truth. Within technical literature. however. there is potential for confusion
and controversy. To illustrate this, consider the simpler word information. The term infonnation
theory is routinely applied to concepts for encoding bits for efficient transmission over commu-
nication channels. Information theory is about noisy signals. compact encodings, redundancy,
bandwidth. and so on. Perhaps surprisingly, information theory has nothing to do with what
information means. This is confusing because in common discourse the term infonnarion is used
broadly. leading us to expect much more from a theory with that name.

Philosophers distinguish several kinds of knowledge. such as knowledge about what we
perceive. Mathematical theorems are arguably formalized knowledge. There is knowledge about
natural laws. There is knowledge about social. legal. and regulatory constraints. There is knowl-

edge about effective reasoning in particular contexts.
llebs-ter's New Tlventieth Century Dir:tr'0nary of the English Language (second edition)

provides evidence of the broad usage of the term knowledge. 'lhis dictionary was published in

Page 155 of 224 FORD 1011

Page 156 of 224 FORD 1011

3.1 Understanding Knowledge Systems In Connaxt 293

1968, very near the time at which knowledge engineering was getting started. This dictionary

definition of knowledge does not say explicitly that knowledge can be held only by people, but it

does not mention computers or even books. It offers tlte following seven meanings relevant to

our purposes:

1. a elem and certain perception of something; the act. fact. or state of knowing; under-

standing.

2. learning; all that has been perceived or grasped by the mind.

3. practical experierrce: skill; as a knowledge of searnanship.

4. ocqrrtrirtronce or familiarity such as with a fact or place.

5. cognizance; recognition.

6. irrfcrntation; the body of facts accumulated by mankind.

7. acquaintance witkfacrs: range of awareness, or understanding.

We begin with meaning I. about perception. The term perception connotes the certainty

provided by reliable sensory perception as portrayed by the expression "seeing is believing.“

Perception provides evidence about an external reality. All models of knowledge formulation

rely on external evidence somehow. Knowledge system development includes feedback loops

that ultimately involve the sensory abilities of the system developers and others. However. a

strict reliance on perception is too confining and overstates the reliability of the senses. What did

the magician really do‘? The senses can be fooled. Such strict reliance also ignores the utility of

communication for conveying knowledge of distant events. For example, we all know a bit about

great historical figures from the past even though none of as has seen them: nor have we seen the
integers of rnarhcmatics. From a perspective of knowledge engineering, perception is a basis for

knowledge. Perception plus prior knowledge plus rationality gives a basis for action. But percep-

tiou should not be confused with knowledge itself.

Meaning 2 is about leaming. This can refer either to academic learning. as in references to
a learned scholar or to more mundane forms of everyday learning. (“Everyone makes mistakes,

kid. Now tell me. what you have learned about playing baseball near windows?) The academic

meaning is too restricted for knowledge engineering because academic concerns at any given

time are only a subset of human concerns. The more mundane interpretation of learning encom-
passes methods for acquiring infomration through processes of abstraction, generalization. and

model building. In knowledge engineering. machine-learning techniques formulate experience
as knowledge. But computers can represent and use knowledge obtained from other agents. with-
out having direct experiences themselves and without generalizing front casm themselves.

Meaning 3 is about practical experience. Experience is what knowledge is about and is
essential for the creation of knowledge. But one must reflect on the expericc to gain knowl-

edge. The searnanship example conveys the idea that to be considered knowledgeable. a person
tnust have a breadth of practical experience. The implication is that a person who has been at sea

often enough will probably have encountered enough situations to acquire whatever he needs to
know.

Meaning 4 refers to acquaintance or familiarity with a fact. Colloquially, we contrast
someone who has "book knowledge” with others who have practical experience. A medical in-

Page 156 of 224 FORD 1011

Page 157 of 224 FORD 1011

194 3 I KNOWLEDGE AND SOFTWARE ENGINEERING

tent with book learning may be a riskier candidate for ueating a patient than a seasoned doctor.

The farmer's experience is less complete than that of the latter. From a perspective of knowledge

engineering. acquaintance and familiarity refer to degrees of knowledge. but should not be con-

fused with the nature of knowledge.

Meaning 5. about recognition. refers to a shallow degree of knowledge. If we recognize a

face but cannot remember much about the person. we "know" the person but not very well. Rec-

ognition is often thought to be easier than generation. as in the case of people who can roughly

understand a foreign language without being able to speak it. This meaning of the term knowl-

edge is similar in status to meaning 4.

Meaning 6. about information accumulated by humankind. suggests that knowledge can be

accumulated. This meaning of information is not the same as in information theory. It suggests

that knowledge is somehow encoded.

Meaning 7 is about acquaintance with facts. We attribute knowledge to those who

demonstrate broad competence. 'l'his meaning has some of the same force and limitations as

meaning 3. It suggests that part of the work of knowing something is being able to apply that

knowledge to a range of situations. We must reason in new situations using what we have

acquired in specific ones. This implies an ability to infer and to generalize. For example. if an
automobile driver knows that he is driving in a school neighborhood where children are playing,

he is expected to drive his vehicle slowly and cautiously. Suppose something unusual happens in

a driving situation, such as a wagon load of children's toys rolling into the street. The driver's

handbook probably does not mention this precise situation. Nonetheless. if a driver fails to slow

down and ultimately injures someone. a court of law will not accept excuses about the “incom-

pleteness of a mental theorem prover” or claims that the driver never had exactly that experience

before. As in meaning 3. having knowledge implies broad competence.

Looking back over these dictionary meanings of knowledge—-perception. recognition.
learning, experience. competence—it is noteworthy that they are all about relations and pro-
cesses involving agents and their environments. Knowledge is not clutracterized by such proper-

ties as weight or extent. Knowledge is not a substance or a quantifiable property. It is not simply
an encoding. What seems to matter and what we are inclined to describe when we characterize
knowledge are the expectations it creates between environments. agents. and their rational
actions. This stance on the meaning of the term knowledge is consistent with usage of the term in

technical discussions about knowledge systems.

Defining Knowledge in Terms of Situations, Action, and Agents
Knowledge. as the word is used for knowledge systems. refers to the codllled experience of
agents. 'l'he experience is the source of the information for solving problems. By codified. we
mean that the knowledge has been formulated. recorded. and made ready for use. This statement
connects the practical intuitions of those who build knowledge systems. the theoretical founda-
tions of knowledge as embedded representations to guide action. and the issues and problem
that are driving the development of the field. The formulation as codified experience acknowl-
edges that such experience is generally hard-won and valued.

'lhinking about experience and isolating what is new in it is hard work. Experience must
be articulated to become explicit knowledge. and in our sense. tlnt requires more than just a list-
ingoffacts.suchasdiepriceofeggsorthepostaladdressesofdiefoundersofAl.Codified
experience must be organized and generalized to guide future action. We can formalize the pro-

Page 157 of 224 FORD 1011

Page 158 of 224 FORD 1011

3.1 Understanding Knowledge Systems in Context 195

cess of knowledge creation in terms of the scientific method. Knowledge is that which is justified

by our experience. or more formally. it is what we have learned from our experiments.

It is easy but misleading to overlook the roles of agents with respect to knowledge. When

we refer to an “experience." some agent must interact with the world to have the experience.

Usually this agent is assumed to be a person. When we refer to the codification of experience in

symbols. some agent must conceive the symbols. We can say that books contain knowledge. but

when wedoso. wetacitlyassurnethattherearepeople whocan makesenseofthewritings inthe
books.

Agents are also involved when we consider written representations of knowledge. One of

the insights in the past few years about the nature of knowledge and knowledge systems is that

when meaning is attributed to systems and symbols there is necessarily an agent. As discussed in

Chapter 1, symbols do not have meanings inherently; they are assigned meanings by an

observerlagent and the assignment of meaning is in the mind of the observer.

if we say that “Computer system X knows that meningitis causes fever." we imply that

from the perspective of some observers (such as ourselves). the computer system has representa-

tions of meningitis and fever; has representatiom of the relations between them; can form judg-

ments about this situation based on generalizations of other situations; and can render and com-

municate its judgments involving the situations, meningitis as an infectious agent. and fever.

Thus. knowledge cannot be isolated front its creation or use. Experience involves agents in

particular situations working on particular tasks with their own background assumptions. For

example. a doctor seeing a patient with particular symptoms may quickly propose an explanation

of why the patient is sick. knowing that there has recently been well-water contamination in the

area. Such knowledge is particular to experiences of the time and place.

Knowledge as a ‘Tmnsportable Substance”

Within AI and knowledge engineering. the term knowledge acquisition refers to any technique

by which computer systems can gain the knowledge they need to perform their mks. For new-
comers and also those who have thought deeply about knowledge. the term is problematic. The

term acquisition is odd because it suggests that knowledge is like a substance. In this view,
knowledge is delivered using a transportation process from someone or somewhere and the cru-
cial step in building a knowledge system is to “get” the knowledge.

The metaphor of knowledge as a “transportable substance” has long been used in informal

English conversation. For example. books and teaching are said to "convey knowledge"; elders
“pass along" knowledge to the next generation; knowledge and secret information sometimes

“leak out." These metaphors reflect a truism. During edrrcation. knowledge becomes known by

additional people. Knowledge systems themselves are sometimes thought of as knowledge distri-
bution systems. However the procen of spreading and knowing involves more than transporta-
tion.

The substance and transportation metaphor implies that knowledge starts out in a domain

experfsheadandthattheobjectistogettheknowledge intoacornputer. Thissoundslikeasim-
ple matter that involves asking a few questions of an expert followed by some programming.
Unfortunately. on this simplistic line of thought, many knowledge systems projects have flotill-

dered in months of misguided attempm at knowledge acquisition that never converge. Some pro-

jects fail utterly.

Page 158 of 224 FORD 1011

Page 159 of 224 FORD 1011

196 3 I KNOWLEDGE AND SOFTWARE ENGINEERING

The transportation metaphor ignores the processes of knowledge creation and use. It does
not consider that knowledge must somehow originate. it does not consider that knowledge can

be implicit in the interactions ofan agent with an environment. it does not consider that cornmu-

nication is at least two-way. involving the cooperative activity of agents that need to agree on

spoken or written symbols and behaviors.

To ernphmize the constructive and comparative aspects of building knowledge bases we

prefer the term knowledge formulation. The formulation of knowledge includes identifying it,

describing it, and explaining what it means. To emphasize aspects of writing and the choice of

representation. we say that knowledge is codified. This suggests that besides transportation. the

process of building a knowledge base also involves articulating essential elements of experience

and preserving them in writing.

Knowledge often goes through stages of refinement in which it becomes increasingly for-

mal and precise. Part of this process involves identifying the conditions under which the knowl-

edge is applicable. and any exceptional conditions. It also involves organizing the representa-
tions so they can be used by a problem solver or other interpreter. To convey these meanings, the

term knowledge formalization is used. This term helps us to characterize what happens as we

progress from informal notes to formal computational models.

As knowledge systems are built. it is often the case that participants achieve greater

insights about how to carry out the task. These insights come from the careful examination of

particular cases and the search for better generalizations. This suggests that the knowledge that
goes into knowledge systems does not simply originate from finished mental representations that
already express all the infomration. Experts sometimes can give only vague accounts of their
thinking. But they do know how to make their thinking more precise through experiments. In this

experimentation process. knowledge is often created or discovered.
In summary. the process of developing a knowledge base involves more than transporta-

tion of facts. Historically. the process has been called knowledge acquisition. Recognizing other
dimensionsofwhatisneededhelpsustomake senseoftheprocessandthernethodsbywhich

people approach it.

Expert Systems and Knowledge Systems

The terms expert system and knowledge system were invented in the context of artificial intel-
ligence research and partly in reaction to it. The term intelligence has always been problematic
because there is no widespread agreement about exactly what intelligence is.

In this context. the developers of the first expert systems were interested in what they saw

as practical problems. 'l‘hey took scientific reasoning and practical problem solving as their cen-
tral examples of intelligent behavior. They adopted interview techniques, protocol analysis. and
other methods of information-processing psychology to investigate the nature of these task
domains. As they built computational models, they were struck by the amount of special case

knowledge that was brought to bear in solving the problems efficiently. This difference domi-
nated the character of the programs and was the context for the "knowledge and expertise" ter-
minology.

An expert system is a computer program whose performance is guided by specific. expert
hiowledge in solving problems. The problem-solving focus is crucial in this characterization.
The knowledge of central interest in expert systems is that which can guide a search for solu-

Page 159 of 224 FORD 1011

Page 160 of 224 FORD 1011

3.1 Understanding Knowledge Systems in Context 297

tions. The term expert connotes both narrow specialization and substantial competence. Having a

narrow focus is essential to the feasibility of a system. Although the term expert has been loosely

applied in some cues, it is intended to describe systems that solve problems that are otherwise

solved by people having substantial training and exceptional skill. Thus the standard of perfor-

mance for expert systems is in human tenns. by comparison with people carrying out a particular
kind of task.

‘lhe first expert systems were characterized as expert-level advhors or consultants.

Expert systems are now being used in a wide range of different interactive roles. To the consul-

tant metaphor, we now add other metaphors describing the role and interactivity of a system: the

smart spreadsheet. the intelligent patient monitor. the financial advisor. the scheduling assistant,

the therapy critic. the cognitive coprocessor. These terms suggest dilferent ways of thinking

about the split of initiative and responsibility between knowledge systems and their users. In

whaever role we employ expert systems. those system require knowledge to be competent.

Even in the most successful applications where expert systems outperform human experts

in their reliability and consistency of results, expert systems have less breadth and flexibility than

human experts. This has created confusion about tle suitability of the term expert, often resulting

in unproductive arguments about the quality and boundaries of expertise.
The term knowledge system is a shorthand for the term knowledge-based system. A

knowledge system is a computer system that represents and uses knowledge to carry out a task.

As the applications for the technology have broadened. the more general term knowledge system

has become preferred by some people over e:q2ert system because it focuses attention on the

knowledge that the systems carry. rather than on the question of whether or not such knowledge

constitutes expertise.

The Parts of a Knowledge System

The classical formulation of a knowledge system is shown in Figure 3.l. This formulation has

become somewhat frayed around the edges. and we offer alternative formulations shortly. None-

theless. familiarity with it is worthwhile because the terminology is still widely used.

Ellie!‘ Ind

User knowledge engineer

lfllll 3.1. The classical characterizuion of a knowledge system.

Page 160 of 224 FORD 1011

Page 161 of 224 FORD 1011

198 3 I KNOWLEDGE AND SOFTWARE ENGINEERING

The classical formulation includes a knowledge base. two human-computer interfaces. and

a semch or inference subsystem. 11ie knowledge base is the repository for the knowledge used

by the system-the rules and hints for guiding the search for solutions. The knowledge base is

updated periodically to reflect changes or extensions to the domain knowledge.
The user interface is the part of a knowledge system that interacts with the system's pri-

mary users. It is responsible for all communications in the system's role as a consultant for solv-

ing problems in its domain. such as asking questions about the problem at hand, answering que-

ries, and displaying results.

The second human-computer interface in the classical formulation is the expert interface

This is the interface by which knowledge is entered into the system. The expert interface is used

by a knowledge acquisition team consisting of an expert and a knowledge engineer. The expert

interface provides access for updating. testing. and debugging a knowledge base. including tools

for examining the contents of the knowledge base. By implication. not all users can update a

system's knowledge base. That responsibility is assigned to a smaller group that oversees and

approves changes and takes into account efiects across a wide range of situations. In personal
knowledge systems or in knowledge system that allow personalizing a knowledge base. the

responsibilities and interfaces may be partitioned differently.

The inference subsystem is the pm that reasons its way to solutions of problems. with its

search guided by the contents of the knowledge base. Traditionally. colorfully. and colloquially.
this part has been called the inference engine. 'lhis part of a knowledge system must include

provisions for setting goals. representing and recording intermediate results. and managing

memory and computational resources.

These terrns—IurowIedge base. search system. expert and user inrerfaces—all name parts

of a program or computer system. However, an inventory of program parts is not the best way to
understand a knowledge system. Systems for different purposes and based on different

approaches look too much alike by these top-level categories. Nor does further decomposition
into smaller parts necessarily help us to understand how different systems work or what their
limitations are.

Another problem with this classical formulation of expert systems in terms of their parts is
that the formulation does not say precisely what the roles of the different parts are. Consider the

knowledge base. In some systems the knowledge-base subsystem does no more than manage a

collection of data structures. perhaps providing some search facilities. In others. the knowledge-
base subsystem performs inference on the representations. With such variations in the architec-
tural components. the terms give us little guidance for developing or understanding systems.

To make sense of knowledge systems and the knowledge that they carry. we need to step
back and observe more than the apparent organizational structures ofthe programs. We need to

look at a knowledge system both in its problern-solving context and in the social and organiza-
tional contexts in which knowledge is created. communicated. and reinterpreted. We begin by

defining some terms about knowledge and work settings. In the next section. we consider a se-
quence of scenarios that provide contexts for understanding the processes by which knowledge
and knowledge systems can be developed First, we introduce terms about knowledge and activity.

Bodies of Knowledge
Adomaln is a body ofknowledge. The subject matter ofa domain must be recordedorcarried
somehow. it may be recorded in written literature or canied by people and conveyed verbally or

Page 161 of 224 FORD 1011

Page 162 of 224 FORD 1011

3.1 Understanding Knowiedge Systems in Context 199

by apprenticeship training. The term domain does not connote anything about the amount of

knowledge included. Often a domain is either a field of academic study or a professional area.

lntemal medicine. health care, diets for diabetics, agriculture. law. civil engineering, and force
transducer design are all examples of dotnains. Different domains have different degrees of spe-
cialization. For example. estrogen chemistry is more specialized than organic chemistry. which is
more specialized than general chemistry.

A task is a kind of job that is done. In the context of knowledge systems, a task involves

solving a kind of problem. Tasks can be described at different levels of generality. Very general

tasks include such things as diagnosis. configuration. design, planning. and scheduling. An
example of a very specialized task would be “inferring DNA segmentation structure from restric-
tion enzyme digest data."

When we refer to domain knowledge, we mean the general terminology and facts of a

domain without a focus on a particular task. For example. we might refer to a general corpus of
facts about chemistry without considering whether the task was to plan a chemical synthesis or to

interpret thedata from an instrtunent. When we use the term task knowledge, we referto the ter-

minology. computational models, and facts associated with carrying out a kind of task. without

necessarily focusing on a particular domain. For example, we might consider the knowledge and

models about a scheduling tsk, without regard to whether it was job-shop scheduling for a man-

ufacturing plant or course and classroom scheduling for a university.

The term tut domdn combines these ideas. A task domain is the knowledge, assump-

tions, and requirements associated with doing a particular task in a particular domain. The term is

usually used in the context of a particular set of people doing a specialized task. "Diagnosing

infectious diseases” is an example of a task domain. A problem is a particular instance of a task.

It consists of a particular set of input data together with the accepted answers. Acaae is an exam-
ple of a problem that includes the given information. the methods used. and the results obtained.

3.1.2 Knowledge Systems and Document Systems: Five Scenarios

Putting knowledge into computers raises many foundational questions. What is knowledge?

Where does it come from? How is it created? How is it held by computers? In the context of par-

ticular knowledge systems. these questions tend to have concrete and immediate answers. We

now present five scenarios in which knowledge systems are developed and used.

Personal Knowledge Systems

The first scenario is a penotnl knowledge system as illustrated in Figure 3.2. In this scenario a

person has a sample situation or device in mind. It might be a radio. an electronic circuit. or a

billing and inventory system. The task might be to fix the radio. to design the circuit. or to

develop a purchasing schedule that reduces warehouse costs. Carrying out the task is framed in
terms of a search for solutions. We refer to the person who builds the knowledge system as the

system builder.

There are several motivations for creating personal knowledge systems. For example. the

system builder may want the knowledge system to solve routine problems or routine parts of

problems so he can facts on harder and more interesting ones. Alternatively. he may want to use

the knowledge system to improve his productivity, check his work. or extend his methods to

larger problems than he can solve by hand. He can rely on the tirelessness of an automatic system

Page 162 of 224 FORD 1011

Configuration tasks select and arrange instances of parts
frotrl (l:set. Computational models for configuration are
used for build-to~order manufacturing tasks and also for
tasks such as planning and therapy recommendation.
Incremental decision-making methods for configuration
must cope with threshold effects and horizon effects.

nfi ur ti n

8.1 Introduction
A configuration is an arrangement of parts. A configuration task is a problem-solving activity
that selects and arranges combinations of parts to satisfy given specifications. Configuration
tasks are ubiquitous. Kitchen designers configure cabinets from catalogs of modular cupboards,
counters, closets, drawers, cutting boards, racks, and other elements. Salespeople for home enter
tainment systems must design configurations from tape decks, optical disk players, receivers,
turntables, and other units that can play recordings from different media, as well as from video
screens, speakers, and other units that can present performances to people. Computer engineers
and salespeople configure computer systems from various computing devices, memory devices,
input and output devices, buses, and software. Dieticians configure diets from different combina
tions of foods. Configuration problems begin with general specifications and end with detailed
specifications of what parts are needed and how they are to be arranged.

A definitional characteristic of configuration, as we shall use the term, is that it instantiates
components from a predefined, finite set. This characterization of configuration does not create
new parts or modify old ones. Configuration tasks are similar to classification tasks in that
instantiation includes the selection of classes. However, to solve a classification problem is
merely to select one (or perhaps a few) from the predefined set of classes. To solve a configura
tion problem is to instantiate a potentially large subset of the predefined classes. The search
space of possible solutions to a configuration problem is the set of all possible subsets of compo
nents. This is the power set of the predefined classes. Furthermore, multiple instantiations of the
same part may be used in a solution, and different arrangements of parts count as different solu
tions. Configuration problems are usually much harder than classification problems.

608

Page 163 of 224 FORD 1011

8.1 Introduction 609

8.1.1 Configuration Models and Configuration Tasks

Custom manufacturing and mass manufacturing are often seen as opposites. Custom manufactur
ing tailors products to the specific and different needs of individual customers; mass manufactur
ing achieves economies of scale when high-volume manufacturing techniques make it possible
to reduce the unit costs of nearly identical products. An industrial goal common to many kinds of
manufacturing is to combine the flexibility of custom manufacturing with the economics of mass
production. An important strategy for this is to create lines of products that can be tailored to a
customer's requirements by configuring customer-specific systems from a catalog of mass-pro
duced parts. This approach has been called an a la carte or build-to-order marketing and manu
facturing strategy.

A la carte manufacturing requires special capabilities of an organization. For production,
the required capabilities include the efficient means for managing of an inventory of parts, for
bringing the parts together that are required for each order, for assembling the parts into prod
ucts, and for testing the quality of the different assembled products. A well-recognized logistic
requirement for this process is to accurately understand the customer's needs and to develop a
prodgct specification that meets those needs. This step, which actually precedes the others, is the
configuration step. The success and efficiency of the entire enterprise depends on configuration.

Since flexible product lines can involve hundreds or thousands of different, configurable
parts, there are many possibilities for errors in the configuration process. Errors in a configura
tion can create costly delays when they are discovered at assembly time, at testing time, or by a
customer. An effective configuration process reduces costs by reducing level of inventory, reduc
ing the amount of idle manufacturing space, reducing the delay before customers' bills are paid,
and better ensuring customer satisfaction.

As these factors have been recognized, companies have sought automated and semi-auto
mated configuration systems for routinely creating, validating, and pricing configurations to
meet the differing requirements of their customers. One of the first and best known knowledge
based configuration systems is the XCON system for configuring VAX computer systems
(McDermott, 1981). Knowledge-based systems for configuration tasks are being built by many
organizations.

Configuration is a special case of design. In design the elements of the designed artifact are
not constrained to come from a predefined set. They are subject only to the constraints of the
manufacturing methods and the properties of the raw materials. The knowledge necessary for
configuration tasks is more bounded than the knowledge for general design tasks. In general
design tasks, the solution space is more open-ended. For example, designing a pickup truck from
scratch is more open-ended than choosing options for a new one. In configuration tasks, much of
the "design work" goes into defining and characterizing the set of possible parts. The set of parts
must be designed so they can be combined systematically and so they cover the desired range of
possible functions. Each configuration task depends on the success of the earlier task of
designing configurable components.

From a perspective of knowledge engineering, configuration tasks are interesting because
they are synthetic or constructive tasks. They are tasks for which combinatorics preclude the pre
-enumeration of complete solutions. Just as not all classification tasks are the same, not all config
uration tasks are the same. Configuration models can be used as a basis for different kinds of
tasks, not necessarily involving manufacturing and physical parts. For example, "configuring"

Page 164 of 224 FORD 1011

610 8 CONFIGURATION

therapies can be a part of a larger diagnosis and therapy task. Configuring alternative combina
tions of steps for a plan can be an important part of a planning process. In such cases we refer to
a configuration model for a task.

Knowledge-engineering techniques are suitable for classification tasks and configuration
tasks because most of the complexity in specifying how to carry out the task is in the domain
knowledge rather than the methods themselves. The knowledge-level methods define roles for
different kinds of knowledge and these roles help to control the way that the bodies of knowl
edge interact and guide the search for solutions.

8.1.2 Defining Configuration

Selecting and arranging parts is the core of solving a configuration problem. Figure 8.1 presents
an example of a configuration that is a solution to a configuration problem. In this example, the
configuration has two top-level parts: Part-1 and Part-2. Each of these parts has subparts.

Configuration-!

Part-1

Part-1-1 Part-1-2

Part-1-1-1 Part-1-1-3

~A
- A -A

B~ _Iiiii A

w -
... -

B
Part-1-1-2

--Ill A BL..- ---Ill B r
B -

A
1111

B
A,..

·~
Ill

I ...

Part-2 I Ill

A B
11 Part-2-1 Part-2-2 B

.. ...
A c ..

B ~ 111111 A B Ill-

I
-- - ...

D.,

FIGURE 8.1. An example of a configuration using a port-and-connector model. In this figure, all compo
nents are shown as boxes and the top-level component is Configuration-!. It has two parts, Part-1 and Part-
2. The arrangement of the configuration is indicated by the part-of hierarchy, displayed graphically by the
containment of boxes and by the interconnections among parts. Each part has a number of ports, labeled
A,B,C, or D. For example, the B port ofPart-1-1-1 is connected to the A port ofPart-1-1-3.

Page 165 of 224 FORD 1011

8.1 Introduction 611

Configuration domains differ in their representations of arrangements. For example, Figure
8.1 represents arrangements using a port-and-connector model. The ports on each part corre
spond to the different roles that subparts can have with respect to each other. Like all models
governing arrangements, a port-and-connector model constrains the ways things can be con
nected. Components can be connected only in predefined ways. Ports may have type specifica
tions indicating that they can be connected only to objects of a particular kind. Each port can
carry only one connection.

Variations in the search requirements and the available domain knowledge for different
configuration tasks lead to variations in the methods. Nonetheless, certain regular patterns of
knowledge use appear across many different configuration tasks. Configuration methods work
through recognizable phases. They map from user specifications to abstract descriptions of a
configuration, and they refine abstract solutions to detailed configurations specifying arrange
ments and further requirements. We distinguish between solution expansion and solution refine
ment phases, not to imply that they are independent, but to emphasize the distinct meanings of
part requirement hierarchies, functional abstraction hierarchies, and physical containment hierar
chies. Addition of required components is often a specialized process and can involve goals for
both··correcting and completing a specification. Refinements of specifications include the consid
eration of alternative arrangements as well as selection among alternative implementations. Con
figuration methods must mix and balance several kinds of concerns and different bodies of
knowledge.

Figure 8.2 shows the relevant spaces for defining configuration problems. It is a useful
starting framework from which we shall consider variations in the following sections. In some
domains there is no separate specification language: Specifications are given in the language of

N•----------------------------~--

Specifications

Specifications

0

'
'

'

Specification to

\ •truoture m•tching

Addition~~
specifications !

Component
hierarchy

'
'
'

FIGURE 8.2. Spaces in configuration tasks.

Configuration space

Abstract and
partial solutions

t t· Solution
refinement

t and expansion

t

Abstraction
hierarchy

~

m
'- Arrangement

~del

Page 166 of 224 FORD 1011

612 8 CONFIGURATION

parts and arrangements and the task begins with a partial configuration. In that case, we omit the
boundary in the figure between the specification space and the configuration space. The outer
oval in the configuration space signifies that the representations for partial and expanded solu
tions are mixed together. Most configuration methods work incrementally on candidates,
expanding the candidates to include more parts and refining the specifications to narrow the
choices.

By analogy with names for classification methods, the pattern of knowledge use suggested
by Figure 8.2 could be called heuristic configuration to emphasize the use of heuristic knowl
edge to guide the generation and testing of possible configurations. It could also be called hier
archical configuration to emphasize the importance of reasoning by levels, both component
hierarchies and abstraction hierarchies. For simplicity, we just use the term configuration.

8.2 Models for Configuration Domains

This section discusses what configuration is and what makes it difficult.

8.2.1 Computational Models of Configuration

To understand configuration tasks we need a computational model of the search spaces and the
knowledge that is used. Our model has the following elements:

' ... i A specification language
,-. A submodel for selecting parts and determining their mutual requirements

A submodel for arranging parts
A submodel for sharing parts across multiple uses

We begin by describing these elements generally and simply. We then introduce the "widget"
domain as a concrete instantiation of a configuration model. We use this domain to illustrate rea
soning and computational phenomena in configuration tasks. Afterward, we draw on the
domains from the previous section to extract examples of kinds of knowledge and the use of
knowledge.

A specification language for a configuration task describes the requirements that configu
rations must satisfy. These requirements reflect the environment in which the configured product
must function and the uses to which it will be put. A specification may also indicate which opti
mizing or due-process criteria should be used to guide the search, such as minimizing cost or
space or preferring some possibilities over others. (See the exercises.)

A functional specification describes capabilities for desired behaviors. For example, rather
than saying that a computer configuration needs a "printer," a functional specification might say
that the computer needs to be able to print copies. The printing function may be further special
ized with qualifiers about speed, resolution, directionality, character sets, sizes of paper, color or
black and white, and so on. One advantage of describing systems in terms of functions rather
than in terms of specific classes of manufactured parts is that functions can anticipate and sim
plify the addition of new classes of components to a catalog. When a functional specification
language is used, the configuration process must have a means for mapping from function to
structure.

Page 167 of 224 FORD 1011

8.2 Models for Configuration Domains 613

A specification language is not defined independently of the other submodels. Some con
figuration models use the same language for describing specifications and for describing config
urations. This approach avoids the function-to-structure mapping by associating each part with a
list of key functions. The most common approach is called the keymcomponent approach. This
approach has two parts: (1) For every major function there is some key component, and (2) all
the key components (or abstract versions of them) are included in the initial partial configuration
that specifies a configuration. A specification is assumed to include all the key parts. To complete
a configuration, a configuration system satisfies the prerequisites of all the key parts it starts with
as well as the parts it needs to add to the specification, and it also determines a suitable arrange
ment for all the included parts.

A sub model for parts specifies the kinds of parts that can be selected for a configuration
and the requirements that parts have for other parts. Some parts require other parts for their cor
rect functioning or use. For example, computer printed circuit boards may require power sup
plies, controllers, cables, and cabinets. A part model defines required-component relations, so
that when a configuration process considers a part description, it can determine what additional
parts are needed. Required parts can be named explicitly or described using the specification lan
guage. Descriptions indicate which parts are compatible with each other and what parts can be
substituted for each other under particular circumstances.

A submodel for spatial arrangements provides a vocabulary for describing the place
ment of parts and specifies what arrangements of parts are possible. Together, the arrangement
model and the specification language form a basis for describing which arrangements are accept
able and preferred. They make it possible to determine such things as where a part could be
located in an arrangement, whether there is room for another part given a set of arranged parts,
and which parts in a set could be added to an arrangement. Arrangement models constrain the set
of possible configurations because they govern the consumption of resources, such as space,
adjacency, and connections. These resources are limited and are consumed differently by differ
ent arrangements. Arrangement models are a major source of constraints and complexity in con
figuration domains.

A submodel for sharing expresses the conditions under which individual parts can be
used to satisfy more than one set of requirements. In the simplest case, part use is mutually exclu
sive. For example, a cable for one printer cannot be used simultaneously to connect to another
printer. For some applications, mutual exclusion is too restrictive, such as with software pack
ages that may use the same memory, but at different times. The following exemplifies a range of
categories of use and sharing for configuration systems:

i'.'.i Exclusive use: Components are allocated for unique uses.
''' Limited sharing: Parts can be shared between certain functions but not across others.
~21 Unlimited sharing: A component can be allocated for as many different purposes as

desired.
Serial reusability: A component can be allocated for several different purposes, but only
for one purpose at a time.
Measured capacity: Each use of a component uses up a fraction of its capacity. The com.:.
ponent can be shar~ as long as the total use does not exceed the total capacity. The electri
cal power provided by a supply is an example of a resource that is sometimes modeled this
way.

Page 168 of 224 FORD 1011

614 8 CONFIGURATION

Specification Language
A widget component

Key components

in functional hierarchy ~ CAJ w w w
A-1 A-2 B-1 B-2 C-1 C-2 D-1 D-2

Parts Submodel

Part-A-1 Part-B-1 Part-C-1 Part-D-1

Required parts: 2 B's Required parts: 2 C's Required parts: None
Required parts:

B & 2 C's
Size: Half slot Size: Half slot Size: Half slot

Size: Half slot

Catalog

~ Part-A-2 Part-B-2 Part-C-2 Part-D-2

Required parts: 3 B's Required parts: None Required parts: None Required parts: C 1
Size: Full slot Size: Full slot Size: Half slot Size: Double slot

Arrangement Submodel

Half slot Full slot Double slot Empty slots

Widget

case -z_______;eft Right

Extension plug

(__ Extension case

Must occupy last
unused top half slot

of previous case

Sharing Submodel

All parts are allocated for exclusive use.

FIGURE 8.3. The widget model, W-1, illustrates phenomena in configuration problems.

A particular domain model may incorporate several of these distinctions, assigning differ
ent characteristics to different parts. Sometimes these distinctions can be combined. One way to
model how different software packages could share memory would be to post capacity con
straints indicating how much memory each package needs. The system allocation for serial
usage would be determined as the maximum capacity required for any software package. This
approach mixes serial reusability with measured capacity.

fu summary, our framework for computational models of configuration has four sub
models: a specification language, a submodel for parts and requirements, a submodel for ar-

Page 169 of 224 FORD 1011

8.2 Models for Configuration Domains 61.5

rangement, and a submodel for component sharing. We return to these models later to describe
variations on them and to identify the ways in which they use domain knowledge. In the next
section, we instantiate our configuration model for the widget domain and use it to illustrate
important phenomena in configuration tasks.

8.2.2 Phenomena in Configuration Problems

This section describes reasoning phenomena that arise in configuration problems. These phe
nomena are illustrated in the context of the sample domain in Figure 8.3. Figure 8.3 presents W-
1, a model for configuring widgets. We use W-1 to illustrate configuration phenomena in the fol
lowing discussion and in the exercises at the end of this section.

Widget requirements are specified in terms of the key generic components A, B, C, and D.
The W-1 parts submodel provides a catalog with two choices of selectable components for each
generic component. Thus, generic component A can be implemented by either A -1 or A-2, B can
be implemented by B-1 or B-2, and so on. Each component requires either a half slot, a full slot,
or a double slot. Figure 8.4 presents the rules for the widget model.

·. When components are arranged in the widget model, there are sometimes unavoidable
gaps. When configurations are combined, these gaps are sometimes complementary. For this rea
son it is not always adequate to characterize the amount of space that a configuration takes up
with a single number. Figure 8.5 defines several terms related to measures of space in the widget
model. Occupied space refers to the number of slots occupied by components, including any
required extension plugs. Trapped space refers to any unoccupied slots to the left of other slots,
including slots to the left of or below an extension plug. Space (or total space) is the sum of
occupied space and trapped space. The minimum space for a specification is the minimum
amount of space required by any possible configuration that satisfies the specification.

Required Parts
Each part in a configuration must have all of its required parts, as shown in Figure 8.3.

Arrangement
Components must be arranged in alphabetical order (left to right and top to bottom). Parts with the
same letter (e.g., C-T and C-2) can be mixed in any order.
All identical components (components with the same letter and number) must be in the same widget
case.
Afull~slot component must occupy a single vertical slot. It cannot be split across slots. A double-slot
componentmustoccupy two adjacent full slots in the same widget case.

• Anupper half slot must be filled before the corresponding lower half slot can be filled.
No full-slot gaps are allowed, except at the right end of a case.
If a case ls full, an extension case can be added butit requires using an extension plug in the last upper

.. half slot ofthe previous case.
Wheri an extension plug is used, no component can be placed in the half slot below the plug.

Sharing
The W~l sharing submodel requires that distiilct parts be allocated to satisfy each reqUirement.

FIGURE 8.4. Further rules governing the W-1 widget model.

Page 170 of 224 FORD 1011

616

A-1 B-2·

A-1

Occupied space: 3.5 slots
Space: 3.5 slots

A-1 B-2

8

B-2 C-1

~
Trapped space: 0 slots

B-2 C-1

~

~~----------------~
Trapped space: .5 slots) Occupied space: 3.0 slots

Space: 3.5 slots

A-1 B-2

D-1

Occupied space: 7.5 slots
Space: 10 slots

B-2 C-1 Ext. plug

~
D-2

Trapped space: 2.5 slots

CONFIGURATION

FIGURE 8.5. Examples illustrating the terms total space, occupied space, and trapped space. For most
problems, the key factor is the total space, which is called simply "space."

Configuration decisions are made incrementally. Figure 8.6 illustrates stages in a solution
process, starting with the initial specifications {A, D}. Under the part-expansion phase, alterna
tives for required parts for A and D are considered. For requirement A, the candidates are the
selectable parts A-1 and A-2. However, A-1 and A-2 both have further requirements. A-1
expands to two B's, which could be implemented as either B-l's or B-2's. If B-1's are chosen,,
these require C's, which themselves can be implemented as either C-1 's or C-2's. This expansion
of requirements shows why we cannot use a simple constraint-satisfaction method with a fixed
number of variables and domains to solve the configuration task for the top-level parts. Depend
ing on which alternatives are chosen, different required parts will be needed, and different fur-

Page 171 of 224 FORD 1011

8.2 Models for Configuration Domains

Specifications: {A, D}
Key

Choices~ Requires ----->

Part Expansion
/ 2 B-1's -----)-4 C's ~ 4 C-1's

A-1 -----)- 2 B's

A< ::3B-2'•
A-2 -----)- 3 B's ~

__ _---
7

B ~ B-1 ·-----)- 2 C's ~2 C-1's

:_ B-2 2 C-2's

--~ 2C's ~ 2C-1's

2 C-2's

D-2 ·-----)- C-1

Part Arrangement

Candidate part selection: {A-1, 2 B-1's, 5 C-1's, D-2}

A-1 B-1 C-1 C-1 D-2

B-1 C-1 C-1 C-1

Legal arrangement for the candidate solution

617

FIGURE 8.6. The dynamic nature of configuration problems. In this example, the initial specifications
are {A, D}. The solid arrows indicate where there are alternatives for implementing a part. The dashed
arrows indicate places where a part requires further parts. There are several possible solutions for the
given specifications. One solution is shown at the bottom. This one fits within a single widget case.

ther requirements will be noted. This dynamic aspect of the problem suggests the use of dynamic
and hierarchical constraint methods.

The arrangement model for W-1 lends itself to a sequential layout process, which first
places the required A components and then the B components, C components, and D components
in left-to-right order. If at any point all of the components of the same type cannot be fitted into
the space remaining in a widget case, an extension case is required. If the number of required
components of a g~ven type is more than fits into a single case, then the candidate cannot be

Page 172 of 224 FORD 1011

618 8 CONFIGURATION

arranged according to the rules. Furthermore, when more than one case is required, there must be
an available slot in the previous case for its extension plug. At the bottom of Figure 8.6 is one
solution to the sample problem, which fits within a single widget case.

Threshold Effects
Configuration problems exhibit threshold effects. These effects occur when a small change in a
specification causes candidates to exceed certain fixed thresholds, requiring discontinuous and
potentially widespread changes to the candidate. For example, in computer configuration
domains, overflowing the capacity of a cabinet requires the addition of not only an extension
cabinet, but also various components for extending the bus and additional power supplies. In
applications where parts have parameters to be determined by configuration, requirements for
upgrading the size of components can have ripple effects, so that further parts need to be
changed to accommodate changes in weight or size, resulting in shifts to different motor models.
Depending on how the decision making is organized in a configuration system, threshold effects
can occur in the middle of solving a problem if requirements discovered partway through the
process exceed initial estimates of required capacity. In such cases, many early decisions may
need to be revised (see Exercise 4).

Figure 8. 7 illustrates a threshold being exceeded when the widget specification is changed
from {A, D} to {A, 2 D's}. In the two solutions shown, the additional required components
exceed the capacity of a single widget case. Furthermore, in the second candidate solution, some
of the implementations for a C part were switched to C-2 (rather than C-1) to avoid violating the
rule that identical parts must be placed in the same case and to avoid overflowing the extension
case. The capacity of a case is a resource. Threshold effects can occur for different kinds of
resources. Other arrangement resources include order and adjacency.

Global resources that can be exceeded in different configuration domains include size,
power, weight, and cost. These resources present special challenges for allocation and backtrack
ing. They are called global resources because they are consumed or required by components
throughout a configuration rather than by just one component. In the cases cited, the consump
tion of the resource is additive consumption, meaning that requirements can be characterized in
terms of numeric quantities. Requirements from different parts are summed together.

Horizon Effects
When configuration decisions are made incrementally, their evaluation criteria are typically
applied in a local context, meaning that they recommend the best solution limiting the evaluation
to a small number of factors. This due-process approach is called myopic because it does not try
to take into account all of the entailments of a decision caused by the propagation of effects in
the model. This leads to a phenomenon called the horizon effect. In nautical experience, the cur
vature of the earth defines a horizon beyond which things are hidden. To see things farther away,
you have to get closer to them. In reasoning systems, the "visible horizon" corresponds to things
that have been inferred so far. Partway through a configuration process, you cannot see all the
consequences of the choices so far because some inferences have not yet been made and because
some other choices have yet to be made. At best, you can make estimates from the decisions
made so far.

In the idealized case where configuration choices are independent, locally optimal deci
sions yield globally optimal solutions. For example, if the total cost of a solution is the sum of

Page 173 of 224 FORD 1011

8.2 Models for Configuration Domains 619

Specification {A, 2 D's}

Candidate-1

Total parts required: {A-1, 2 B-1's, 6 C-1's, 2 D-2's}

Candidate-2
·.,

Total parts required: {A-1, 4 B-1's, 8 C-1's, 4 C-2's, 2 D-1's}

C-1 C-1 C-1 C-1 D-1

C-1 C-1 C-1 C-1 D-1

FIGURE 8.7. Threshold effects. This figure illustrates two possible solutions to a widget configuration
problem with the specifications {A, 2 D's}. Both candidate solutions exceed the capacity of a single wid
get case. In more involved examples, exceeding one threshold can lead to a ripple effect of exceeding
other thresholds as well, leading to widespread changes in a configuration.

the costs of the independently determined parts, then picking the cheapest part in each case will
lead to the cheapest overall solution. If the choice of the next component can be determined by
combining the known cost of a partial solution with an estimate of the remaining cost, and the
estimate is guaranteed never to be too high, then the A* algorithm can be used as discussed in
Section 2.3.

However, in many configuration situations and domains these conditions do not hold and
myopic best-first search does not necessarily lead to a globally optimal solution. In each of the
following cases, both part A and part B satisfy the local requirements. Part A costs less than part

Page 174 of 224 FORD 1011

620 8 CONFIGURATION

B and would be chosen by an incremental best-first search that is guided by cost of the part.
These cases show why a choice that is locally optimal need not be globally optimal.

Case 1. Undetected required parts. The other parts required by part A are much more
expensive than the parts required by part B, so the total cost of a complete solution is
higher if A is chosen. The further requirements for parts A and B may involve con
straints not yet articulated, choices dependent on situations not yet determined, or
design variables not yet introduced.

Case 2. Unanticipated arrangement conflicts. The parts required by part A consume
slightly more of some resource than the parts required by part B. If A is chosen, a
threshold will be crossed by later decisions leading to additional expensive cabinets,
cases, or whatever. If B had been chosen, the threshold would not have been crossed
and the overall solution would have been cheaper (see Exercise 4).

Case 3. Undetected sharability. There are requirements not yet considered for a part that
is compatible with B but not with A. If B is a sharable component, then choosing B at
this stage will make it unnecessary to add parts later on, leading to an overall savings.
TQ.is phenomenon is especially likely to occur in domains that include multifunctional
coi:nponents, such as multifunctional computer boards that incorporate several inde
pendent but commonly required functions (see Exercise 5).

All three cases exhibit the horizon effect. The local evaluation fails to lead to an optimal solution
because the indicators fall past the "observable horizon" defined by the commitments and infer
ences made so far.

If computational complexity was not an issue, the effects of the first case could be miti
gated by determining the problematic effects of the required components for a part before com
mitting to a part. Thus, no commitment would be made to choose A until the effects of all of its
required components are known. The second case could be mitigated by considering the effects
on all resources consumed by a component. The effects in the third case could be mitigated by
considering all possible sharings of a component before committing to the selection.

To summarize (with tongue in cheek), the effects of incremental decision making and
myopic optimization can be mitigated by performing decision making as far past the immediate
horizon as needed. Unfortunately, exponential computational resources are required to look so
far ahead. In the following knowledge and symbol-level analyses, we discuss more realistic ways
to cope with threshold and horizon effects.

8.2.3 Summary and Review
This section models configuration in terms of four elements: a specification language, a model
for selecting parts and determining their mutual requirements, a model for arranging parts, and a
model for sharing parts across multiple functional requirements. Parts models can be simple cat
alogs of parts. They can also include hierarchical relations based on functionality, required parts,
and bundled packaging. Arrangement models express what physical arrangements of parts are
possible and how some arrangements of parts preclude other arrangements. Arrangement models
range from complex spatial models to simple named resource models where parts fit in any of a
finite number of separately accounted spaces. Sharing models indicate when parts chosen to sat-

Page 175 of 224 FORD 1011

8.2 Models for Configuration Domains 621

isfy one requirement can be used to satisfy others as well. Variations in sharing include exclusive
use, open use, metered use, and serial reuse.

Search spaces for configuration domains can be large. Configurations themselves are rep
resented in terms of fairly complex symbol structures that indicate the selection, arrangement,
and parameterization of their parts. Most configuration tasks are carried out incrementally, build
ing up descriptions of candidate solutions from descriptions of their parts.

Although configuration domains differ in the complexity of their submodels and the
degree to which decisions in each submodel are dependent on decisions in others, they typically
exhibit threshold effects where small changes in local requirements can cause discontinuous
effects when overall capacities are exceeded. These threshold effects can arise in any of the sub
models. Threshold effects and horizon effects for large interconnected problems create a
challenge in ordering and managing configuration decisions. The next section presents case stud
ies of configuration systems.

Exercises for Section 8.2

1111

Ex. 1 [!-05] Global Resources. Decisions about global resources are often problematic in config
uration tasks.
(a) Why? What are some examples of global resources from the configuration domains in
this chapter?
(b) Briefly describe some alternative approaches for making decisions about global re
sources.

Ex. 2 [10] Skeletal Configurations. Professor Digit is a consultant to a company that configures
computer systems for its customers. He argues that the number of possible computer con
figurations may be high but that the number of "really different" configurations sought by
customers is actually quite low. He proposes that a knowledge system for configuration
would be simpler if it proceeded as follows:

Ex. 3

1. Search a library of configurations and find the one closest to the initial config
uration proposed for the customer, taking into account which components are
key components.

2. Add new key components from the customer's initial configuration that are
missing, and remove any extra key components and their required parts from
the matching library configuration.

3. Revise the configuration to accommodate the customer's needs.

(a) Briefly describe the main assumptions about the configuration task on which the via
bility of Professor Digit's proposal depends.
(b) Sam, a graduate student working with Professor Digit, says this proposal creates a ten
sion in the solution criteria for cases in the library between conservative and perhaps ineffi
cient configurations that are easy to extend and ones that are minimal for a fixed purpose.
Do you agree? Explain briefly.
(c) Suppose the computer configuration domain is subject to many threshold effects.
Briefly, what are the implications for Professor Digit's proposal?

[25] Configuring Widgets. The text defines a configuration model, W-1, for widgets. We
assume that the following cost figures apply for widget parts.

Page 176 of 224 FORD 1011

622

111111 Ex.4

111111 Ex.S

8 CONFIGURATION

Part Unit Cost
A-1 $50
A-2 $20
B-1 $20
B-2 $40
C-1 $ 5
C-2 $10
D-1 $40
D-2 $20

(a) Find a minimal space configuration for the specification {A, B}. Use the standard
widget model in which there is no sharing of parts across functions. If there is more than
one configuration with the minimum space, choose the one with the lowest cost. Draw the
final configuration, following packing constraints.
(b) Find a minimal cost configuration for the specification {A, B}, ignoring case costs. If
there is more than one configuration with the minimum cost, choose the one with the low
est space requirement. Explain your reasoning. Draw the final configuration.
(c) Parts a and b use the same solution criteria but in a different order. Are the results the

, same? Why?

[30] Threshold Effects in Local Cost Evaluations. This exercise considers threshold effects
in a configuration task. It uses the same cost figures as Exercise 3.
(a) Complete the following table showing the configurations for the minimum costs and
minimum space solutions for the specifications {A}, { B}, and { C}. Include trapped space
in your computation of minimum space.

Specification

{C}

{B}

{A}

Minimum Cost

$5
{C-1}

Minimum Space

.5
{C-1} or {C-2}

(b) Find a minimal cost configuration for the specification {A, 2 B 's}. Explain your rea
soning. Ignore case costs.
(c) Suppose we are given the following costs for cases:

Widget case $60
Extension case $120

Find a minimal cost configuration for the specification {A, 2 B 's} including the cost of the
case(s). Draw your configuration and explain your reasoning.

[15] Estimates That Aggregate Space and Cost Constraints. Professor Digit proposes that a
simple and appropriate way to account for case costs would be to add to the cost of each
component a fractional cost corresponding to the fraction of the slots that are required. He
offers this as a method of reflecting case costs back into the decision making about individ
ual parts. The purpose of this exercise is to evaluate this approach.

Page 177 of 224 FORD 1011

8.2 Models for Configuration Domains 6.23

IIIII Ex.6

We are given the following costs for cases:

Widget case $60
Extension case $120

(a) Show the adjusted component costs by filling in the missing entries in the accompa
nying table. The case increment is the additional cost of the part accounting for the space
the part requires in terms of a fraction of the case cost.

Part Part Case Case-Adjusted
Cost Increment Part Cost

A-1 $50 $ 5 $55
A-2 $20 $10 $30
B-1 $20
B-2 $40
C-1 $ 5
C-2 $10
D-1 $40
D-2 $20

(b) Using Professor Digit's adjusted case costs, complete the following table, showing the
configurations with the minimum costs.

Specification

{C}

{B}

{A}

Minimum Cost Configuration

$10
{C-1}

$45
{B-1, 2 C-l's}

(c) Briefly explain why Professor Digit's proposal is both fair and inadequate for guiding
a search for a minimal cost solution.
(d) Using the above table as an evaluation function to guide the search for a minimum
cost solution, what would be the minimum cost configuration that Digit's approach would
yield for {A, 2 B 's}? What is its estimated cost? What is its real cost? Explain briefly.
(e) What is the real minimum cost solution? What is its estimated cost and its real cost?

[40] Shared Parts. In this exercise we develop the modified widget model W-S to enable
limited sharing of parts. Suppose the functions for {A} and for { D} are never needed at the
same time. We define A* to be the set of components including an A and all of its required
parts. Similarly D* is the set including aD and all of its required parts. In W-S, sharing is
permitted between A* and any D*, which means a single component can satisfy a require
ment both for A and for D. No other part sharing is allowed, such as between two different
D*'s.
(a) Fill in the following table of configurations, focusing on those requiring minimal
space. For simplicity, leave specifications for C unrefined to C-1 or C-2 where possible.

Page 178 of 224 FORD 1011

624 8 CONFIGURATION

You can use the results of previous exercises. You need only fill in the minimal space par
tial configurations.

Hint: You may find it useful in solving the later parts of this exercise to include other
"near minimal space" partial configurations in your table as well.

Specification Minimum Space Configurations

{D}

{2 D}

'"

Configuration Space Occupied Space Trapped Space

{A-1, 2 B-2} 3 2.5 .5
{A-1, B-1, B-2, 2 C}

{B-2, 2 C, D-1} 2.5
... more

{2 B-2, 4 C, 2 D-1} 5
... more

(b) Without sharing, what are all the minimal space configurations for {A, 2D}? Draw
the configurations you find. Briefly explain your reasoning.
(c) With sharing, what are the minimal space configurations for {A, 2D}? Draw the con
figurations you find. Briefly explain your reasoning.
(d) What do the results of parts b and c tell us about optimizing in shared part models?
Briefly describe the computational phenomena introduced to the optimization process
when sharing is permitted.

Ex. 7 [05] Widget Thresholds. In the example of the widget configuration domain, how does the
rule that all identical parts must be in the same case contribute to a threshold effect?

Ex. 8 [05] Special Cases for Spatial Reasoning. The following paragraph describes some
requirements for spatial relationships in configurations of elevators:

The counterweight is a piece of equipment made up of metal plates that are
always 1 inch thick. The plates are stacked to get the total load needed to balance
the weight of the elevator car, the car's load, attached cables, and other compo
nents. The plates can be ordered in varying lengths and widths. They are usually
hung from the machine sheave that provides the traction that moves the elevator.
The placement of the sheave and its angle of contact with the cable are critical to
get enough traction to make the elevator move. Safety codes regulate the mini
mum clearance between the elevator car and the counterweight, between the
counterweight and the shaft walls on its three other sides, and between the coun
terweight and the floor in its lowest position and the ceiling in its highest posi
tion. These code clearances, in tum, are calculated using values such as the
weight supported, length of cables, height of the building, and other factors. The
configuration must specify the position of the sheave, the length of hoist cable,
the size of the counterweight in three dimensions, and actual clearances of the
counterweight and any obstacle it might run into all along the elevator shaft.

Page 179 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 62.5

(a) Is a general approach to spatial reasoning important for this example? If not, why not?
(b) Why was it appropriate to use a fixed structure for its parameter network to capture
the reasoning above?

8.3 Case Studies of Configuration Systems

In this section we consider several knowledge systems and show how they solve configuration
problems. Our purpose is to consider the search requirements of the task, the kinds of knowledge
that are needed, the organization of the knowledge, and examples of implementation. The cases
illustrate a range of approaches to configuration tasks.

8.3.1 Configuration in XCON

XCON (also called Rl) is a well-known knowledge system for configuring computer systems
(McDermott, 1982). XCON has a place among configuration systems analogous to MYCIN's
place among classification systems. XCON was the first well-known knowledge system for con
figuration, and it was initially characterized in terms of symbol-level issues and basic search
methods. Work on both MYCIN and XCON continued for several years and resulted in successor
systems. Retrospective analyses of these systems have uncovered new ways of looking at them
in knowledge-level terms. For MYCIN, the analysis has shifted from an account of backward
chaining at the symbol level to models for classification at the knowledge level. For XCON, the
analysis has shifted from forward chaining and match at the symbol level to search spaces and
models for configuration at the knowledge level. In both cases insights from the analysis have
led to new versions of the systems. For MYCIN the new system is called NEOMYCIN (Clancey
& Letsinger, 1981); for XCON it is XCON-RIME (Barker & O'Connor, 1989).

We consider XCON together with its companion program, XSEL. Together, the two sys
tems test the correctness of configurations and complete orders of Digital Equipment Company
computers. Different parts of the configuration task are carried out by the two systems. XSEL
performs the first step in the process: acquiring initial specifications. Neither XSEL nor XCON
has a separate "specification language," but XSEL acquires a customer's order interactively in
terms of abstract components. XSEL checks the completeness of an order, adding and suggesting
required components. It also checks software compatibility and prerequisites. The output of
XSEL is the input to XCON.

XCON checks orders to greater detail than XSEL. XCON adds components to complete
orders. It also determines a spatial arrangement for the components, power requirements, cabling
requirements, and other things. It considers central processors, memory, boxes, backplanes, cabi
nets, power supplies, disks, tapes, printers, and other devices. It checks prerequisites and market
ing restrictions. It also assigns memory addresses and vectors for input and output devices. It
checks requirements for cabling and for power. Figure 8.8 illustrates the knowledge and infer
ence patterns for XSEL and XCON. For simplicity in the following, we refer to the combined
system simply as XCON.

Although XCON does not have a functional specification to satisfy, it still needs to decide
when an order is complete. It needs to detect when necessary components have been omitted, but
it would not be appropriate for it to pad a customer's order with extra components, routinely
inflating the price and the functionality of the configured system. Instead, XCON just adds what-

Page 180 of 224 FORD 1011

626

Specifications

Extend order
Customer specifications
(generic components)

-------~

·.,

~
Incremental

specifications

Abstraction hierarchy
(specific components)

Specifications

Extend order

---------~

~
Incremental ~

specifications

Component
hierarchy

8 CONFIGURATION

XSEL

Configuration space

Abstract
solutions

Components

XCON

Solution
refinement

Solution
expansion

Component hierarchy
(software compatibility,

prerequisites)

Configuration space

t
, I, Staged
'f' 1 . so utiOn
t refinement

t
Components

Abstraction
hierarchy

~

~
' . Arrangement
~del

~---:

FIGURE 8.8. The pattern of knowledge use for XCON and XSEL. The systems split the responsibility,
with XSEL performing the first steps and XCON performing a more detailed job. XSEL is concerned
mainly with the completeness of a customer's order with regard to major system components ("key com
ponents") and software compatibility and licensing. XCON focuses on hardware configuration and consid
ers power requirements, bus connections, cabling, and arrangement of components in the cabinets.

Page 181 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 627

ever parts are necessary for the operation of the parts that have been specified already. XCON
uses a key-component approach.

Crucial to the operation of XCON is its component database. This database has grown over
time and in 1989 was reported to contain information on more than 31,000 parts. There were 40
types of parts and an average of 40 attributes per part. Figure 8.9 gives an abbreviated example
of two component descriptions. The interpretation of the information in Figure 8.9 is approxi
mately as follows:

The RK711-EA is a bundle of components. It contains a 25-foot cable (70-12292-
25), a disk drive (RK07-EA*), and another bundle of components (RK611). The
RK611 consists of three boards (G727), a unibus jumper cable (M9202), a backplane
(70-12412-00), and a disk drive controller (RK611 *).Because of its interrupt prior
ity and data transfer rate, the RK611 * is typically located toward the front of the uni
bus. The module is comprised of five hex boards, each of which will start in lateral
position "A" It draws 15.0 amps at +5 volts, 0.175 amps at -15 volts, and .4 amps at
+ 15 volts. It generates one unibus load and can support up to eight disk drives. It is

·• connected to the first of these with a cable (070-12292).

Other information includes requirements for boards and power and information about communi
cations that will influence how the devices are connected to the computer's buses.

In addition to the component database, there is a container-template database that describes
how parts can physically contain other parts. These templates enable XCON to keep track of
what container space is available at any point in the configuration process and what the options
are for arranging the components. They also provide coordinate information so XCON can
assign components to locations in a cabinet. In XCON, arrangement includes electrical connec
tions, panel space, and internal cabinet locations. XCON uses a model for spatial reasoning in
which the possible locations are described in terms of "slots," places where boards can plug in,
and nexuses, places where devices can be attached in cabinets. Figure 8.10 gives an example of a
template. Part of the interpretation of this template follows:

The components that may be ordered for the CPU cabinet are SBI modules, power
supplies, and an SBI device. Up to six bus interface modules fit into the cabinet. The
cabinet contains a central processor module and some memory. There are three slots
for options that occupy 4 inches of space and one slot for an option that occupies 3
inches of space. The description "CPU nexus-2 (3 5 23 30)" indicates that the central
processor module must be associated with nexus 2 of the bus interface. The numbers
in parentheses indicate the top left and bottom right coordinates of the space that can
be occupied by a CPU module.

Customer orders to XCON are highly variable. Although two system configurations may
need most of the same kinds of actions to occur, even slight differences in the configurations may
have broad consequences because of complex interactions between components. The knowledge
for driving the configuration task in XCON is represented mostly using production rules. In the
following we examine some rules from XCON and consider the kinds of knowledge they repre
sent.

Page 182 of 224 FORD 1011

628

RK711-EA
CLASS:
TYPE:
SUPPOR1ED:
COMPONENT LIST:

RK611*
CLASS:
TYPE:
SUPPOR1ED:
PRIORITY LEVEL:
TRANSFER RA1E:
SYS1EM UNITS:
SLOTS REQUIRED:
BOARD LIST:

BUNDLE
DISK DRIVE
YES
1 070-12292-25
1 RK07-EA*
1 RK611

UNIBUS MODULE
DISK DRIVE
YES
BUFFERED NPR
212
2
6 RK611 (4 TO 9)
(HEXAM7904)
(HEX AM7903)
(HEX AM7902)
(HEX AM7901)
(HEXAM7900)

DC POWER DRAWN: 15.0 .175 A
UNIBUS LOAD: 1
UNIBUS DEVICES SUPPOR1ED: 8

8 CONFIGURATION

CABLE TYPE REQUIRED: 1 070-12292 FROM A DISK DRIVE UNIBUS DEVICE

FIGURE 8.9. Two component descriptions from X CON's database. The attributes of a component are
used in the configuration process to determine when other parts are needed, such as subsystems and
cabling. They also describe parameters that influence the arrangement of parts and the power require
ments. (Adapted from McDermott, 1982a, Figure 2.2, pp. 46-47.)

Parts require other parts for their correct operation. The initial specifications to XCON
refer explicitly to key components, but not necessarily all the other components required to
enable a configuration to function correctly. Figure 8.11 gives an example of a rule for adding a
component.

Parts require other parts for a variety of reasons. For example, disk drives require disk con
trollers to pass along commands from the central processor. One disk controller can service sev
eral drives. All of these devices require cables to interconnect them. They also require power
supplies to power them and cabinets to house them. The interlocking requirements are repre
sented in XCON by a combination of rules and the databases about components and templates.
Requirements for additional components are expressed locally, which means each description of
a component includes specifications for other components that it requires. When XCON adds a
component to a configuration, it needs to check whether the new component introduces require
ments for other components.

XCON uses knowledge to govern the automated arrangement of components, as demon
strated in Figure 8.12. Several kinds of choices must be made about arrangements in XCON. A

Page 183 of 224 FORD 1011

8.3 Case Studies of Configuration Systems

CPU CABINET
CLASS:
HEIGHT:
WID1H:
DEP1H:
SBI MODULE SPACE:

POWER SUPPLY SPACE:

SBI DEVICE SPACE:

CABINET
60INCHES
52 INCHES
30INCHES
CPU NEXUS-2 (3 5 23 30)
4-INCH-OPTION-SLOT 1 NEXUS-3 (23 5 27 30)
MEMORY NEXUS-4 (27 5 38 30)
4-INCH-OPTION-SLOT 2 NEXUS-5 (38 5 42 30)
4-INCH-OPTION-SLOT 3 NEXUS-5 (42 5 46 30)
3-INCH-OPTION-SLOT NEXUS-6 (46 5 49 30)
FPANEXUS7 1(2 3210 40)
CPU NEXUS-2 (10 32 18 40)
4-INCH-OPTION-SLOT 1 NEXUS-3 (18 32 26 40)
MEMORY NEXUS-4 (26 32 34 40)
4-INCH-OPTION-SLOT 2 NEXUS-5 (34 32 42 40)
CLOCK-BATTERY (2 49 26 52)
MEMORY-BATTERY (2 46 26 49)
IO (2 52 50 56)

629

FIGURE 8.1 0. An example container template from XCON. (Adapted from McDermott, 1982a, Figure
2.3, page 48.)

distinction is made between the CPU cabinet, the CPU extension cabinets, and the unibus cabi
nets. The CPU is the central processing unit and SBI modules are bus interface modules. Compo
nents whose class is SBI module are located in the CPU cabinet. There is only a limited amount
of space in these cabinets, as indicated by the templates. XCON assigns components to locations
incrementally. In placing objects in the unibus cabinet, XCON needs to account for both panel
space and interior space. Modules that support each other need to be located either in the same
backplane or in the same box. Another arrangement issue is the electrical order by which objects
are located on the bus. This order affects system performance. Other arrangement decisions con
cern the allocation of floor space to cabinets, taking into account any known obstructions at the
customer site.

Rule for adding parts
IF: The most current active context is assigning a power supply

THEN:

and a unibus adapter has been put in a cabinet
and the position it occupies in the cabinet (its nexus) is known
and there is space available in the cabinet for a power supply
for that.nexus
and there is an available power supply
and there is no H7101 regula tor available
Add an H7101 regulator to the order.

FIGURE 8.11. A rule from XCON for adding required parts to a configuration.

Page 184 of 224 FORD 1011

630 8 CONFIGURATION

Rule for arranging parts
IF: The most current active context is assigning a power supply

THEN:

and
and
and
for
and
and

a unibus adapter has been put in a cabinet
the position it occupies in the cabinet (its nexus) is known
there is space available in the cabinet for a power supply
that nexus
there is an available power supply
there is an H7101 regulator available

Put the power supply and the regulator in the cabinet in the
available space.

FIGURE 8.12. A rule from XCON for arranging parts in a configuration.

Other rules add specifications to further guide the configuration process. The XCON rule
in Figure 8.13 is an example of this. In other cases in XCON, the rules propose changes to the
given specifrcations. For example, if there are components in the order that have incompatible
voltage or frequency requirements, XCON tries to identify a minority set of components having
the "wrong" voltage or frequency and replaces them with components of the right voltage and
frequency.

Choices also must be made about implementation and arrangement. Some combinations of
choices are incompatible with others. For example, there may be a tension between having opti
mal performance of the bus and still packing' as many components into a single cabinet as possi
ble. XCON can fall back to delivering a configuration that works without guaranteeing that per
formance is optimal.

The strategy taken by the designers of XCON was to organize it to make decisions in an
order that would enable it to proceed without undoing the decisions it has made so far. XCON's
decisions are organized into stages and subtasks. Stages correspond to large groups of subtasks,

Rule for extending the specifications
IF: The most current active context is checking for unibus jumper

THEN:

cable 6hanges in some box
and the box is the second box in some cabinet on some unibus
and there is an unconfigured box assigned to that unibus
and the jumper cable that has been assigned to the last
backplane in the box is not ~ BC11A~lo

and there is ~ BC11A-10 available a~d the current length of the
unibus is known
Mark the jumper cable assigned to the backplane as ncit assigned
and assign the BCllA-10 to the backplane
and increment the ~ufrent length of the unibus by ten feet.

FIGURE 8.13. An example of a rule for adding or changing specifications.

Page 185 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 631

Stage 1 .Determine whether anything is grossly wrong with the order, such as mismatched items or
missing prerequisites.

Stage 2 Put the appropriate components in the CPU and CPU expansion cabinets. ""'-
Stage 3 Put boxes in the unibus expansion cabinets and put the appropriate components in those boxes.
Stage 4 Put panels in the unibus expansion cabinets.
Stage 5 Create the floor layout of the system.
Stage 6 Add necessary cables to the configuration.

FIGURE 8.14. Stages for the XCON system. The grouping and ordering of decisions in these stages is
arranged so that, for the most part, later decisions depend only the results of earlier decisions.

and subtasks can involve as little as a single rule. There are six stages and several hundred sub
tasks. We first discuss gross interactions among the stages and then the more complex interac
tions among subtasks.

XCON's stages are shown in Figure 8.14. These stages were not determined through a rig
oreus analysis of the configuration problem. Rather, the ordering was originally designed to
reflect the way human experts performed the task. The ordering has evolved since then for
XCON, based on the insights and measurements that have become possible with an explicit
knowledge base. Nonetheless, the basic rationale of XCON's ordering of stages is straightfor
ward. Component selection and component placement in boxes determines what cables are
needed, and floor layout must be known to determine the length of cables. This is why stage 6
comes after stages 1, 2, 3, and 5. Any arrangement of components made before all the required
components are known is likely to require rearrangements, because prerequisite components
often need to be co-located. This is why stages 2 and 3 should come after stage 1. Any attempt to
locate front panels for unibus devices on cabinets before it is known how many cabinets are
being used and where devices are located would probably need some redoing. This is why stage
4 comes after stage 3. Ordered in this way, the later stages implicitly assume that the previous
stages have been completed successfully.

The first stage adds missing but required components to the specification. The component
descriptions characterize some components as requiring others for their operation and also char
acterize some components as coming in "bundles," which means they are packaged together for
either marketing or manufacturing reasons. Adding required components is potentially recursive,
since some required components require still other components. The first stage does not arrange
components. In addition to adding components, the first stage detects any mismatched compo
nents in the order, such as components with mismatched power requirements as discussed
already.

The second and third stages arrange components. The second stage locates SBI modules in
the CPU cabinet. This stage can introduce additional components, but not ones that could them
selves require revisiting decisions in the first stage or this stage. For example, stage 2 may need
to add CPU extension cabinets if there are too many components to fit in the one containing the
central processor. When all the relevant components have been placed, stage 2 puts a bus termi
nator in the appropriate place in the last cabinet and adds dummy or "simulator" modules to fill
out any leftover slots corresponding to unordered options. Until these cabinets have been config
ured, it is not known whether these additional parts are needed. Because these parts do not com-

Page 186 of 224 FORD 1011

632 8 CONFIGURATION

pete for space with other components and because they have no further requirements, adding
them does not trigger requirements for further parts.

The third stage is the most complex. This stage determines the parameters of three kinds of
arrangements: spatial arrangement of boxes in cabinets, spatial arrangement of components
inside boxes, and electrical arrangement of components on the unibus. For communication on
the unibus, the relevant factors are interrupt priority level and transfer rate. In an optimal order,
the components would be arranged in descending order of priority level (or more precisely, in
nonincreasing order). Within components of the same priority, they should be ordered by
decreasing transfer rate. XCON defines an "(almost) optimal unibus order" as one in which no
pairs of components at the same priority level are connected so that the one with lower transfer
rate comes before the one with the higher transfer rate. Below that, XCON characterizes any
other ordering as suboptimal. The third stage uses an iterative approach in configuring the unibus
expansion cabinets. It first tries to arrange the components in an optimal unibus order within the
space available. If that fails, it then tries other rearrangements of the components that compro
mise the optimal unibus order but save space. Depending on what it can achieve, XCON may
need to allocate new cabinets and try again. This leads to ordering further parts in addition to the
cabinets, needed for extending the unibus across the cabinets. Within this stage XCON must
sometimes backtrack to consider all the alternatives.

The fifth and sixth stages for XCON introduce no new theoretical issues. The fifth stage
generates a linear floor plan for the computer system. The last stage generates cable assignments,
using the interdevice distances that have been determined by the earlier stages. It is interesting to
note that XCON's method does more than satisfice. Especially in stage 3, its ranking and itera
tive development of alternatives is a due-process approach that attempts to optimize the layouts
using essentially a best-first generate-and-test method.

The next level down from stages in XCON is subtasks, implemented as one or more rules.
In contrast to the simple and fixed ordering of stages, the determination of the order of perform
ing subtasks is complex, situation specific, and governed by conditionals. XCON employs exten
sive look-ahead to detect exceptional situations and to check for possible future conflict before
making decisions. Early subtasks check for interactions with later ones. One difficulty in XCON
is that there are many potential long-range interactions. Restated, in spite of the task ordering,
there are still many possible interactions among decisions that are scheduled in early tasks and
those that are scheduled in later ones. Anticipating these interactions with conditional subtasks
has yielded a knowledge base that has proven quite complex to maintain. In 1989, XCON had
more than 31,000 components and approximately 17,500 rules (Barker & O'Connor, 1989). The
knowledge base changes at the rate of about 40 percent per year, meaning that modifications are
made to that fraction of it.

This maintenance challenge has led to the development of a programming methodology
for XCON called RIME (Bachant, 1988; van de Brug, Bachant, & McDermott, 1986), which
provides guidelines intended to simplify the continuous development of the system. RIME pro
vides structuring concepts for rule-based programming. From the perspective of configuration
problems, it institutionalizes some of the concepts we have seen already in the organization of
XCON, especially in the third stage.

RIME advocates an approach based on concepts called "deliberate decision making" and
"propose-and-apply." Deliberate decision making amounts todefining configuration in terms of

Page 187 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 633

small formal subtasks that are represented as explicit, separate processes. Examples of these pro
cesses in the RIME implementation of XCON include selecting a device, selecting a container
for a component, and selecting a location within a container to place a component. These pro
cesses were distributed and sometimes duplicated among the rules of XCON. By naming these
processes explicitly and representing them uniquely, RIME brings to XCON-RIME a concern for
modularity at the symbol level.

Another part of the RIME methodology, called propose-and-apply, organizes subtask
descriptions as a sequence of explicit stages that include proposing operators, eliminating the
less desirable ones, selecting an operator, and then performing the operation specified. In the
context of configuration tasks, this separates each subtask into three parts: looking ahead for
interactions in the situation, selecting a best choice for part selection or arrangement, and then
executing that choice. This bundling institutionalizes the way that XCON-RIME considers inter
locked combinations of choices and backtracks on generating alternatives but not on making
commitments.

Sometimes configuration choices cannot be linearly ordered without backtracking because
the optimization requires a simultaneous balance of several different kinds of decisions. In
XCON, this occurs most noticeably in the third stage, which resolves this issue by bundling deci
sions and generating combinations of decisions in an iterative approach. In particular, by gener
ating composite alternatives in a preferred order, this stage generates some combinations of
choices before committing to any of the individual choices about unibus order and spatial
arrangement.

In summary, XCON is a knowledge system for configuring computer systems. Together
with XSEL, it accepts customer orders interactively in terms of abstract parts. Using the key
component assumption, functionality is specified in terms of a partial configuration. Decisions
about the selection and arrangement of a part often interact with decisions about distant parts.
XCON organizes its decision making into an ordered set of stages, but the detailed set of deci
sions is still highly conditional and must account for potential interactions. RIME is a program
ming methodology for a new implementation of XCON that organizes the configuration process
in terms of small, explicit subtasks with explicit modules for look-ahead, generation of alterna
tives, and commitment.

8.3.2 Configuration in M1 /MICON

M1 is an experimental knowledge system that configures single-board computers given a high
level specification of board functions and other design constraints. M1 is part of a larger single
board computer design system called MICON (Birmingham, Brennan, Gupta, & Sieworek,
1988). Single-board computer systems are used for embedded applications, in which computer
systems are integrated in larger pieces of equipment. The limitation to single-board systems
means M1 does not contend with spatial layout issues for components inside boxes and cabinets.

M1 configures systems that use a single microprocessor, memory, input and output
devices, circuitry to support testing, and circuitry to enhance reliability. The output of M1 is a list
of components for a design, the list of how these components are interconnected, an address map
that defines where input and output devices are in memory, and some graphs detailing options
and costs for enhancing reliability and fault coverage. Figure 8.15 sketches the main search

Page 188 of 224 FORD 1011

634 8 CONFIGURATION

r---·~--------------------------------

'
'
'

'
'

'

Specifications

Specifications

Re~
specifications
for reliability

Configuration space

Components

Functional
hierarchy

~
' Arrangement
~del

--

FIGURE 8.15. The specification language for Ml is a list of key components, using Ml 's functional
hierarchy. Ml also has a component hierarchy that describes required parts, which are supporting cir
cuitry. Its arrangement model is based on ports and connections. Not shown in this figure is Ml 's knowl
edge for reliability analysis.

knowledge for Ml. Like our exemplar of configuration systems, M1 has knowledge for mapping
specifications to abstract solutions; knowledge for refining abstract solutions by selecting, add
ing, and arranging parts; and knowledge for adding specifications.

M1 represents a functional hierarchy of components, as shown in Figure 8.16. This hierar
chy includes both abstract parts and physical parts. The abstract parts are developed by general
izing the functions of a class of parts. For example, the abstract part PI0-0 embodies a set of
functions common to all the devices in M1's database for parallel input and output. An important
purpose of abstract components is that they define a standard wiring interface called a "func
tional boundary."

M1 begins with an interactive session with a user to acquire specifications for the system
to be configured. This session leads to a number of specifications about power, area, and the
desired functionality of the system. Like XCON, M1 uses a key-component assumption for spec
ifying functionality. The key components used by M1 correspond to the third level (the lowest
abstract level) of its component hierarchy. For example, M1 asks the user whether a serial
input/output device is required and represents what it knows about serial input/output devices in
its description of the abstract class SI0-0, as shown in Figure 8.16.

Each abstract part has a set of specifications that characterize its function and performance.
In 1989, the parts database described 574 parts, of which 235 were physical parts and the rest
were abstract parts. The user's requirements for these are entered as a set of values. For example,
the specifications for a serial input/output device allow the user to specify, among other things,

Page 189 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 635

Component for single-board computer

Processor Memory Input/output devices

I ~ ~
68009-Proc-0 SRAM-0 ROM-0 SI0-0 PI0-0

I 1\ 1\ 1\ 1\
6809 62256 6264 2764 2716 6850 8251 8255 6821

fiGURE 8.16. A functional hierarchy used in the Ml system. Some parts in this hierarchy represent
abstract parts. These parts are developed by generalizing the functions of a class of physical parts. For
example, the abstract part PI0-0 embodies a set of functions common to all parallel input/output chips in
Ml 's database. SRAM-0 represents static random-access memory. ROM stands for read-only memory.
SI0-0 and PI0-0 represent serial and parallel input/output devices, respectively. Parts like SI0-0 and PI0-
0, at the third level ofMl's component hierarchy, correspond to key components and are used for specify
ing functionality. They also define functional boundaries, which provide a framework for specifying how
th\! more detailed parts should be connected. (Adapted from Birmingham, Brennan, Gupta, & Sieworek,
1988, Figure 2, page 38)

how many ports are needed, a chip type if known, an address, a baud rate, and whether the device
should be compatible with RS232 output. The user requirements then become constraints to
guide the initial selection of parts.

Once abstract parts are selected, M1 moves on to instantiate these parts and to arrange
them. The main arrangement decisions for M1 are the electrical connections between the compo
nents. In contrast with the spatial arrangement subtasks in XCON, M1 produces a spatially
uncommitted network list that is passed to commercial programs for layout and wire routing.

During the phase of part instantiation, M1 adds supporting circuitry. Figure 8.17 shows
that a baud rate generator and RS232 driver are instantiated as parts of a serial input/output
device. The templates are represented procedurally as rules, as suggested by the abbreviated
English rule for connections in SI0-0 in Figure 8.18. In some cases the part expansion involves
substantial expansion into individual parts. For example, individual memory chips are organized
into an array to provide the required word width and storage capacity.

The next step in M1 is an optional analysis of the reliability of the design. If the analysis is
requested, the user is asked about several more characteristics as well as a selection of reliability
metrics such as mean time to failure and coverage of error detection. The user is also asked to
provide relative weights for trading off total board area and monetary cost. M1 has a number of
rules for determining sources of failure. These rules also guide it in making design changes, such
as substituting parts, changing their packaging, or adding error-correcting circuitry and redun
dant circuitry. M1 's method is summarized in Figure 8.19.

In summary, Ml has one of the simplest configuration tasks of the applications we will
consider. Specifications include parameters about size and power as well as function. Functional
ity is represented in terms of key components, where key components are expressed as abstract
parts in a component hierarchy. A weighted evaluation function is used to select among compet
ing parts when there is no clear dominance. Part expansion is driven by templates represented as
rules. No conflicts arise in expanding or arranging parts. Other than recomputations required

Page 190 of 224 FORD 1011

636 8 CONFIGURATION

SI0-0

6850 RS232_DRIVE

... DATA_BUS DCD 111-GND -... IRQ RTS "" CONTROL_l "" - ...

... RfW TxDATA DATA_l

DATA_BUS

IRQ

WRITE

ADDRESS_BUS -- RS RxDATA ""' DATA_2 OUT"" - ~ OUT

CLOCK

IO_CS

-...
....
'""

vt I cso CTS

I CSl TxCLK

E RxCLK

CS2

BAUD_RATE_GENERATOR

OUT

""' ... CONTROL_2 - ...
Ill-

II-

--
FIGURE 8.11. Ml uses templates and a port-and-connector model for describing the space of possible
interconnections. The template in this figure is for the serial input/output device SI0-0. (Adapted from
Birmingham, Brennan, Gupta, & Sieworek, 1988, Figure 4, page 37)

after the reliability analysis, Ml performs no backtracking. Ml uses a port-and-connector model
for arrangements. The arrangement process does not compute an optimal layout. All topological
arrangements are achievable, so no revision of component choices or specifications is required
on the basis of connectivity constraints.

IF the goal ts assert_template and
the part::_name is 6850 and
the abstract"-pa rt_name . is 6850 ..

THEN get_part(RS232_DRIVER)
get_part(BAUD_RATE_GENERATOR)
connect_net(6850, dO, SIO_O, DATA_BUS)
connect_net_;VCC(6850, CSO) ·
connect_net_GND(685Q, DCD)
cbnnect_net(6850, JxCLK,. BAUD_RATE_GENERATOR, ·OUT)
, . . (more)·

FIGURE 8.18. Sample rule representation for template knowledge, specifying connections between the
internal parts that make up an abstract component and the outer ports of the abstract part. These outer
ports are called a functional boundary.

Page 191 of 224 FORD 1011

8.3 Case Studies of Configuration Systems

To peiform Ml s method for configuring single-board computer systems:
1. Get specifications.

I* Initial part selection. *I
2. Repeat through step 4 for each key function of the specifications.
3. Collect parts that satisfy the specification.
4. Select the part having the highest rating according to M1's

feature-weighted evaluation function.

I* Perform a reliability analysis if requested and make part
substitutions. *I

5. If a reliability analysis is requested, then repeat through step 9
until the reliability specifications are satisfied.

637

6. Use an external program to predict mean time to failure, error
detection coverage, and reliability of individual components.

7.
-_.,. 8.

9.

Report on reliability and acquire revised specifications.
Acquire weighting factors from the user to guide trade-offs
between board area and cost.
Select parts, substituting more reliable components and adding
redundant and error-detection circuitry as needed.

I* Expand design for cascaded components. *I
10. Repeat through step 11 for each cascadable part.
11. Invoke associated procedure to cascade the parts to the

required sizes. (Generate arrays for memories or trees for
priority encoding and carry look-ahead.)

I* Connect parts using structural templates. */
12. Repeat through step 14 for each unconnected part.
13. Retrieve the template rule for this component.
14. Apply the rule to retrieve parts for ancillary circuitry and

connect the ports of the parts as required.

FIGURE 8.19. The search method used by Ml.

8.3.3 Configuration in MYCIN's Therapy Task

MYCIN is well known as a knowledge system for diagnosing infectious diseases. Its diagnostic
task has been so heavily emphasized that its second task of therapy recommendation is often
overlooked. The computational model for therapy recommendation is different from that for
diagnosis. This section explains how therapy recommendation in MYCIN is based on a configu
ration model.

The term therapy refers to medical actions that are taken to treat a patient's disease. The
most powerful treatments for infectious diseases are usually drugs, such as antibiotics. In

Page 192 of 224 FORD 1011

638 8 " CONFIGURATION

Example results from the diagnostic task
Therapy reco~mendations a~e based on the followihg possible iden~ties of
the organi.sms:

<item 1>

<item 2>
<item 3>

The identity of ORGANISM-1 may be STREPTOCOCCUS-GROUP-D.
The identity of ORGANISM-1 may be STREPTOCOCCUS-ALPHA.
The identity of ORGANISM-2 is PSEUDOMONAS.

Example results from the therapy task
.The preferred therapy recommendation is as follows:
ln order to cover for i terns <1><2><3>
Give the following in combination

L. PENICILLIN
Dose: 285,000 UNITS/KG/DAY - IV

2. GE:NTAMICIN
nose: 1.7 MG/KG QBH - IV or IM
Comments: Modify dose in renal failure.

FIGURE 8.20. Therapy recommendation in MYCIN. (From Shortliffe, 1984, pp. 123, 126.)

MYCIN, a therapy is a selected combination of drugs used to cover a diagnosis. Figure 8.20
presents an example of diagnostic results and a therapy recommendation. The results are charac
terized in terms of items. The first two items correspond to alternative and competing identifica
tions of the first organism. Medical practice usually requires that the therapy be chosen to cover
both possibilities. A possible therapy is shown at the bottom of the figure, recommending a com
bination of drugs. In some cases, MYCIN ranks alternative therapies, each of which is a combi
nation of drugs. By analogy with more typical configuration problems, the organisms that must
be covered by the treatment correspond to specifications, drugs correspond to parts, and thera
pies correspond to configurations.

It would have been simpler in MYCIN if the same computational model could have been
used for both diagnosis and therapy. However, there are several phenomena and considerations
that arise in therapy recommendations that violate assumptions of the classification model that
MYCIN used for diagnosis. The most basic issue is that the number of possible solutions based
on combinations of drugs to cover combinations of diseases is too large to pre-enumerate. More
problematic than this, the selection of drugs to cover one item is not independent of the selection
of drugs to cover another. This follows from competing concerns in therapy. On the one hand, it
is desirable to select therapeutic drugs that are the most effective for treating particular diseases.
For the most part, this decision is based on drug sensitivities of different organisms. Tests are run
periodically in microbiology laboratories to determine the changing resistance patterns of micro
organisms to different drugs. On the other hand, drugs sometimes interfere with each other and it
is usually desired to keep as low as possible the number of drugs simultaneously administered to
a patient. Thus, the best combination of drugs to cover two different diagnoses might be different
from the union of the best drugs to treat them separately. For example, it might be best to treat

Page 193 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 639

both possible infections with the same drug, even if a different drug might be selected by itself
for either one of them.

Sometimes the risks associated with illness require that a doctor prescribe a treatment
before time-consuming laboratory tests can be completed. For example, culture growths would
narrow the range of possible diagnoses but may delay treatment for several hours. Other compli
cating factors include drug interactions, toxic side-effects, cost, and ecological considerations.
An example of an ecological factor is when physicians decide to reserve certain drugs for use
only on very serious diseases. In some cases, this measure is used to slow the development of
drug-resistant strains of organisms, which is accelerated when a drug is widely prescribed. In
medical jargon, all negative factors for a therapy are called "contra-indications." Patient-specific
contra-indications include allergies, the patient's age, and pregnancy.

In the initial therapy algorithm for MYCIN (Shortliffe, 1984), therapy recommendation
was done in two stages. A list of potential therapies was generated for each item based on sensi
tivity information. Then the combination of drugs was selected from the list, considering all con
tra-indications. This approach was later revised (Clancey, 1984) to make more explicit the medi
ation between optimal coverage for individual organisms and minimization of the number of
drugs prescribed.

The revised implementation is guided by the decomposition of the decision into so-called
local and global factors. The local factors are the item-specific factors, such as the sensitivity of
the organism to different drugs, costs, toxicity, and ecological considerations. Global factors deal
with the entire recommendation, such as minimizing the number of drugs or avoiding combina
tions that include multiple drugs from the same family, such as the aminoglycosides family. One
variation is to divide the hypothesized organisms into likely and unlikely diagnoses and to search
for combinations of two drugs that treat all of the likely ones. There are sometimes trade-offs in
evaluating candidates. One candidate might use better drugs for the most likely organisms but
cover fewer of the less likely organisms. In such cases, the evaluation function in the tester needs ·
to rank the candidates. Close calls are highlighted in the presentation to a physician.

Figure 8.21 shows MYCIN's revised therapy method. Local factors are taken into account
in the "plan" phase. Global factors are taken into account in the generate-and-test loop. Thus, the

>
J

Rank > Propose

(plan) (generate)

Local factors

Sensitivity of organism
Toxicity

Drug allergies
Ecological concerns

> Approve

(test)

Global factors

Minimize number of drugs
Testing ''most likely'' organisms

> Prescribe

FIGURE 8.21. Therapy recommendation viewed as a plan, generate, and test process. (Adapted from
Clancey, 1984, Figure 6-1, page 135.)

Page 194 of 224 FORD 1011

640 8 CONFIGURATION

test step considers an entire recommendation. Patient-specific contra-indications are also taken
into account at this stage.

In summary, MYCIN is a knowledge-based system that performs diagnosis and therapy
tasks. The diagnosis task is based on a classification model and is implemented using production
rules. The therapy task is based on a configuration model and is also implemented using produc
tion rules. A solution to the therapy task is a selected subset of drugs that meet both local condi
tions for effectively treating for organisms as well as global optimality conditions such as mini
mizing the number of drugs being used. MYCIN's configuration model involves selection but
not arrangement of elements. As in all configuration problems, small variations in local consider
ations can effect the scoring of an entire solution.

8.3.4 Configuration in VT

VT is a knowledge system that configures elevator systems at the Westinghouse Elevator Com
pany (Marcus, 1988; Marcus & McDermott, 1989; Marcus, Stout, & McDermott, 1988). VT
searches for solutions by proposing initial solutions and then refining them. This is called a "pro
pose-and-refine" approach. The search spaces for VT are shown in Figure 8.22.

Interwoven with VT's model of parts is a parametric model of elevator systems. Compo
nents are described in terms of their parameters. For example, a hoist cable may have a parame
ter for HOIST-CABLE-WEIGHT. Parameters can also describe aspects of an elevator system not
associated with just one of its parts. For example, the parameters TRACTION-RATIO and
MACHINE-SHEAVE-ANGLE depend on other parameters associated with multiple parts.

r~~---n------------~

' '
: Specifications Configuration space '

'

' ' '
'
'
'
' ' ' '
'
'
'

'

'

Revise specification
(extend design and
post constraints)

Propose parts
and parameters

Component
hierarchy

Expand and , 1 ,
refine ~

solutions t
t

Parameter model

FIGURE 8.22. VT uses a propose-and-refme approach.

i--_r_

Page 195 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 641

Design methods involving such parametric models are sometimes called parametric design.
Collectively, VT's parameters provide an abstract description of a solution.

VT starts with specifications of elevator performance, architectural constraints, and design
drawings. Specifications of elevator performance include such things as the carrying capacity
and the travel speed of the elevator. Architectural constraints include such things as the dimen
sions of the elevator shaft. VT's task is to select the necessary equipment for the elevator, includ
ing routine modifications to standard equipment, and to design the elevator layout in the
hoistway. VT's design must meet engineering safety-code and system performance requirements.
VT also calculates building load and generates reports for installing the elevator and having it
approved by regional safety-code authorities. Data for VT come from several documents pro
vided by regional sales and installation offices. There are documents describing customer
requirements, documents describing the building where the elevator will be installed, and other
design drawings. VT also accepts information about the use of the elevator, such as whether it is
mainly to be used for passengers or freight, the power supply available, the capacity, the speed,
the shaft length, the required width and depth of the platform, and the type and relative location
of the machine.

·• VT's approach involves two separate phases. The first phase is for knowledge acquisition
and analysis. During this phase VT uses a knowledge acquisition tool called SALT to develop a
general plan for solving elevator configuration problems. SALT is not concerned with the specif
ics of a particular case, but rather with the acquisition and organization of knowledge for the
range of cases that VT needs to solve. The concepts and analyses of SALT are discussed in the
following. The second phase for VT is the solution of particular cases. This is where the propose
and-refine approach is applied. Roughly, VT follows a predetermined plan using knowledge
organized by SALT to guide its decisions. VT constructs an elevator configuration incrementally
by proposing values for design parameters, identifying constraints on the design parameters, and
revising decisions in response to constraint violations in the proposal.

To explain the operation of VT we begin in the middle of the story, with its parameter net
work. This network is generated by SALT and used by VT on particular cases. Figure 8.23 gives
an example of part of a parameter network. Each box represents a design parameter. The arrows
show a partial order of inferences in which values of parameters at the tail of an arrow determine
values of parameters at the head of an arrow. Solid arrows indicate how one parameter is used to
compute values for another. Dashed lines indicate cases where values for parameters establish
constraints on values for other parameters. We use this network to establish a vocabulary about
kinds of knowledge used in VT's propose-and-refine approach. Afterward, we consider the anal
ysis used by SALT to organize such knowledge.

Within a parameter network, knowledge can be expressed in one of three forms: proce
dures for computing a parameter value, constraints that specify limits on parameter values, and
fixes that specify what to do if a constraint is violated. Figure 8.23 shows some of VT's knowl
edge for extendiug a configuration by proposing values for parameters. SALT expects to have a
procedure for every parameter. The first rule in Figure 8.24 computes a value for a design param
eter from other parameters. A rule like this is shown in a parameter network by arrows between
boxes. In Figure 8.23, the rightmost pair of boxes connected by a downward arrow depicts this
relation.

The second rule in Figur~ 8.24 selects a part from the database. Like Ml and XCON, VT
has a database of parts that describes the pieces of equipment and machinery VT configures.

Page 196 of 224 FORD 1011

642

Hoist-cable
quantity

Hoist-cable
weight

Machine
groove
pressure

Comp-cable
unit-weight

Comp-cable
weight

Traction
ratio

Contributes to

Car
supplement

weight

Key

>

8 CONFIGURATION

CWT-to
platform
distance

Car-hitch
to-CWT

hitch
distance

Machine
sheave
angle

Maximum
traction

ratio

Machine
groove
model

Maximum
machine
groove
pressure

Constraints ·-------->

Hoist-
cable-

diameter

'W
Machine-
groove-

pressure-
factor

FIGURE 8.23. Segment ofVT's knowledge base showing relations among parameters. Each box repre
sents one of VT's design parameters. Arrows between the boxes indicate a partial order for detennining
values for parameters. (Adapted from Marcus, 1988, Figure 4-5, page 102.)

There is a table of attributes for each kind of part, such as motors and machine models. The attri
butes describe functional restrictions, such as the maximum elevator speed or the maximum
load, and other attributes, such as height or weight. Roughly speaking, VT first establishes values
for certain key design parameters and then selects appropriate parts from the database.

Within VT's representational framework, the type of a part is itself just another parameter.
The third rule in Figure 8.24 uses attributes from a database entry about a selected part to set val
ues for design parameters. The domain for a given design parameter is the set of values obtain
able from the relevant fields of the parts database.

Besides proposing values for design parameters, VT can post constraints on design values.
Figure 8.25 gives an example of a constraint, expressed both in a tabular form and as a produc
tion rule. The precondition or conditional part of a constraint determines when the constraint is
applicable, which means when it will be posted. VT uses its constraints to influence values in a
directional way. The constraint in Figure 8.25 constrains a value of the parameter CAR-JAMB-

Page 197 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 643

Computing a value for a parameter
IF: A value has been generated for HOIST-CABLE-DIAMETER, and

there is no value for MACHINE-GROOVE-PRESSURE-FACTOR
THEN: Set MACHINE-GROOVE-PRESSURE-FACTOR to be 2 * HOIST-CABLE-DIAMETER.

Selecting a part from the component database
IF: A value has been generated for SUSPENDED-LOAD. and

THEN:
there is no value for MACHINE-MODEL
Search the database in the MACHINE table and retrieve the value
of the MACHINE-MODEL field for the entry with the SMALLEST WEIGHT
whose field value for MAX-LOAD is greater than the value of the
SUSPENDED-LOAD parameter.

JUSTIFICATION: Taken from Standards Manual IliA. page 139.

Using attributes from a selected part to set other parameters
IF: A value has been generated for MACHINE-MODEL, and

there is no value for MACHINE-SHEAVE-DIAMETER
THEN: Search the database in the MACHINE table and retrieve the value

for MACHINE-SHEAVE-DIAMETER from the value of the SHEAVE-DIAMETER
field in the machine entry whose field value for MODEL is the
same as the value for the MACHINE-MODEL parameter.

FIGURE 8.24. Examples of rules representing knowledge for extending a configuration. All three rules
propose values for parameters. (Adapted with permission from Marcus, Stout, & McDermott, 1988, Fig
ures 7 and 8, page 100.)

Tabular fonn
constrained value:
constraint type:
constraint name:
PRECONDITION:
PROCEDURE:
FORMULA:
JUST! FICATION:

CAR-JAMB-RETURN
MAXIMUM
MAXIMUM-CAR-JAMB-RETURN
DOOR-OPENING = SIDE
CALCULATION
PANEL-WIDTH * STRINGER-QUANTITY
This procedure is taken from Installation Manual I,
page 12b.

Rulefonn
IF: DOOR-OPENING = SIDE
THEN: CAR-JAMB-RETURN MUST BE <= PANEL~WIDTH * STRINGER-QUANTITY

FIGURE 8.25. An example of a constraint from VT's knowledge base. (From Marcus, 1988, page 88.)

Page 198 of 224 FORD 1011

644 8 c CONFIGURATION

IF: There has been a violation of the MAXIMUM-MACHINE-GROOVE-PRESSURE
constraint

THEN: (1) Try a DOWNGRADE for MACHINE-GROOVE-MODEL. (Level 1 effect:
Causes no problem.)
(2) Alternatively, try an INCREASE BY-STEP of 1 of HOIST-CABLE
QUANTITY. (Level 4 effect: Changes minor equipment sizing.)

FIGURE 8.26. An example of a rule representing knowledge for selecting a part by performing a search
of the database when enough of the parameters are known. When there is more than one possible fix for a
problem, VT relies on an ordered set of effect levels, trying more drastic fixes only after the less drastic
ones have failed.

RETURN, depending on values of the parameters PANEL-WIDTH and STRINGER-QUAN
TITY.

Figure 8.26 gives an example of the third form of knowledge used by VT, knowledge for
revising a"configuration after a violation has occurred. In this example, two alternatives are pro
posed to guide the choice of revisions when the constraint is violated. Constraint violations can
be understood as conflicts over priorities. Viewed in the larger context of the entire elevator sys
tem, every procedure for proposing parameter values is a myopic best-first search. If the solution
to the overall elevator configuration problem were made up of independent subproblems, then
each parameter subproblem could be solved or optimized separately. Constraint violations corre
spond to antagonistic interactions between subproblems. To arbitrate in these cases, VT uses a
scale for comparing the effects of changes. VT recognizes several different kinds of effects for
making a change and establishes preferences among them. These effects are summarized in Fig
ure 8.27. According to this list, the least desirable kind of fix is one that compromises the perfor-

Effect level
1
2
3
4
5
6
7
8
9

10
11

Effect of fix
Causes no problem
Increases maintenance requirements
Makes installation difficult
Changes minor equipment sizing
Violates minor equipment constraint
Changes minor contract specifications
Requires special part design
Changes major equipment sizing
Changes building dimensions
Changes major contract specifications
Compromises system performance

FIGURE 8.27. Categories of effects from making a change in VT. When VT detects that a constraint has
been violated and there are several different possible fixes, it prefers to make fixes with the least drastic
consequences. This list enumerates the kinds of fixes from least drastic to most drastic. Every "fix" rule is
assigned an effect level corresponding to an entry in this list.

Page 199 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 64.5

mance of the elevator system. In weighing the costs of different changes, one-time difficulties in
installation (#3) are considered less costly than ongoing increases in maintenance costs (#11).

To review briefly, VT distinguishes three main forms of knowledge about elevator design:
knowledge for proposing parameter values, knowledge constraining parameter values, and
knowledge about what revisions to make when constraints are violated. We next consider some
of the analyses and considerations that go into VT's organization of such knowledge. The core of
SALT's operation is the analysis and structuring of parameter networks.

Much of SALT's analysis is concerned with checking paths through the network. In the
ideal case, there are unique paths through the network whereby all the elevator system parame
ters can be computed for any combination of input parameters. In the simplest case, VT would
need only to invoke knowledge for proposing parameter values, without using knowledge for
constraining parameter values or fixing values after constraint violations. The partial ordering
represented by the network would allow VT to compute other parameter values from the given
ones, continuing in a data-driven fashion until the elevator was configured. Such an ideally struc
tured computation has not proven workable in practice. Analogous to RIME, SALT can be
understood as a structured programming environment for building parameter networks that
approach this ideal. It uses the equivalent of structured programming in the parameter network to
yield behaviors that converge to optimal configurations given a wide range of input parameters.

SALT's analysis includes checking for a number of undesirable patterns in the parameter
network, including ones involving loops. These patterns correspond to such things as race condi
tions, unreachable paths, and potential deadlocks as described in the following. For example, if
one procedure is applicable for computing motor torque for speeds less than 300 and another is
applicable for speeds greater than 200, then there would be two applicable procedures for the
speed 250. This is a race condition because either procedure could be executed depending on the
order of traversal used by VT's interpreter. Similarly, there might be combinations of conditions
such that no procedure is applicable for some combination of parameters.

A deadlock condition is recognized when there are procedures for computing two parame
ters such that each procedure requires the value of the other parameter before it can be run. In a
data-driven interpreter, this would result in an infinite delay while each procedure waits for the
other. When it detects the possibility of a deadlock, SALT guides the builder of a knowledge base
in adding procedures that estimate initial parameter values. When this results in multiple proce
dures proposing a value, SALT guides the user in converting some of the procedures to post con
straints on values and in adding procedures that propose fixes when there is a conflict. In this
way, SALT incrementally builds revision cycles into the parameter network. These revision
cycles correspond to programming idioms. For example, a revision loop can incrementally
increase the value of a parameter up to some limit. That idiom, implemented in terms of con
straints and fixes, corresponds in function to an iterative looping construct in procedural pro
gramming languages.

SALT assumes that the procedures for proposing parameter values correspond to an
underconstrained case reflecting local optimality. Potential fixes should be less preferred
(locally) than the value originally proposed. The default strategy in VT is to try values in a best
first order. If the fixes for one constraint violation have no effect on other constraint violations,
then this strategy guarantees that the first configuration found will be the most preferred. How
ever, it is possible that fixes selected for one constraint violation may interact with values for

Page 200 of 224 FORD 1011

646 8 CONFIGURATION

other parameters in the network. A particularly pathological case of feedback between conflict
ing fixes is called thrashing. Thrashing occurs in scenarios of different complexity. In a simple
scenario, a fix for one parameter value causes a new value to be computed for a second variable,
which then violates a constraint, causing a fix to a third variable, which causes an opposing
change in the first variable, violating the original constraint again. The term thrashing refers to
any persistent looping behavior that results when antagonistic fixes undo and redo a repeating
sequence of changes.

SALT uses syntactic techniques to analyze a parameter network for the possibility of these
behaviors. A detailed consideration of SALT's syntactic analysis methods and the expressive
power of the language is beyond the scope of this section. The tests built into SALT are intended
to detect common errors of omission by builders of a VT knowledge base.

Given a SALT-created network, VT works on a particular case as follows. It starts with a
forward-chaining or data-driven phase in which procedures extend the configuration by propos
ing parameter values. As it extends the design, VT records which parameter values were used to
derive other ones using a truth maintenance system (TMS). Constraint violations are detected by
demons, which invoke procedures to revise the network. The fix procedures then propose
changes to values of individual parameters or to combinations of parameters.

The effects of the proposed change are investigated with limited look-ahead as follows.
First VT verifies that the revised value violates no constraints on the changed parameter. Then it
works through the consequences, verifying that there are no antagonistic changes to the proposed
fix using a TMS. If a proposed change violates constraints, then the next alternative fix is consid
ered. The TMS keeps track of combinations of revisions it has tried so as not to repeat any. This
process is a due-process approach. The prioritized list of effects in Figure 8.27 guides backtrack
ing to approximate a best-first search.

From a network perspective like that in Figure 8.23, many kinds of interactions in the
search space can be visualized. The most common interaction among design parameters in VT is
a rippling effect that follows when a constraint violation causes one piece of equipment to be
upgraded, or increased in size. In this case, other pieces of related equipment may be affected
and upgraded as well. Depending on circumstances, the initial fix may trigger a sequence of
changes. For example, requiring more hoist cables than fit on the machine model selected may
result ultimately in selecting a larger machine model and using larger sheaves.

The 1988 version of VT recognized 54 different kinds of constraint violations, of which 37
had only one known fix, meaning one parameter that might be revised. The remaining constraint
violations also had a small number of fixes. Each possible fix provides directions of where to
look next in VT's search for solutions. On an average case, however, VT needs to consider only a
small number of fixes. In a typical run, VT makes between 1,000 and 2,000 design extensions
and only about one-hundredth as many fixes to a design. In a typical case, VT detects 10 or 20
constraint violations and averages just slightly more than 1 fix per violation.

In summary, VT constructs an approximation to a solution and then refines it. VT's knowl
edge base is made up predominantly of three kinds of knowledge: knowledge for proposing
design extensions, knowledge for posting constraints, and knowledge for revising the configura
tion when constraint violations are detected. VT's rules are applied in a data-driven fashion with
limited look-ahead. VT's performance using this approach depends on the prior analysis by
SALT, which identifies undesirable patterns and missing information in the network. In represen
tative runs, VT detects very few constraint violations, and the first fix tried almost always works.

Page 201 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 641

rM~---

'
' ' '
'
'

'

'
'
'

Specifications

Specification to
structure matching
(key components)

AdditiOnal ~
specifications

(constraint posting)

Configuration space

t
t Solution
t refinement

t

Functional hierarchy
(key components)

FIGURE 8.28. COSSACK begins with user specifications, in terms of evaluation criteria and functional
specifications. The evaluation criteria are used to order candidates in component selection. Functionality
specifications are represented using a key-component approach, where key components may be either
hardware or software components.

8.3.5 Configuration in COSSACK

COSSACK (Mittal & Frayman, 1989) is a knowledge system for configuring personal comput
ers that was developed at Xerox Corporation. Because Xerox stopped selling personal computers
shortly after COSSACK became operational, the system never received substantial field testing.
However, COSSACK is an interesting system from a technical point of view especially in its use
of a partial-choice strategy.

Like the other computer configuration systems we have considered so far, COSSACK's
process starts with customer requirements. These include evaluation criteria, such as minimum
cost, expandability, early delivery requirements, and functionality requirements. COSSACK per
forms a best-first search, using the evaluation criteria to order candidates during component
selection. Figure 8.28 shows the elements involved in COSSACK's search. Specifications are
mapped onto abstract solutions. Abstract solutions are incrementally refined, making choices
about component selection and arrangement.

COSSACK uses key components to express functionality specifications. It creates require
ments in terms of specific components, such as an "Epson-LX80 printer," and also in terms
of abstract component descriptions, such as a "letter-quality printer." Figure 8.29 presents a por
tion of COSSACKS's functional hierarchy. In this class hierarchy, each node represents a sub-

Page 202 of 224 FORD 1011

648

Processor Memory
External

Hardware
component

8

Display

CONFIGURATION

Data entry
device

/\
General
purpose

Special
purpose

Floppy Rigid Tape
drive disk drive

Color
display

Monochrome
display

Pointing
device

Keyboard

~

Floating
point processor

Printing
device

~ drive ~
~

Communications Board

~ ~

~ I A
Modem Motherboard Extension

board Daisy
wheel
printer

~

Dot Laser
matrix printer

printer ~

~

~

External storage
interface board

Memory
board

Asynchronous
communications

clock board

Extension
board
slot

Display
controller

board

~

~

Connector

~
External
storage

slot

Port Cable

~

Serial Parallel Keyboard
port port port

FIGURE 8.29. Portion of the functional hierarchy for components in COSSACK. Any component below
the root can be a key component. COSSACK also considers software components in its configuration and
has classes for word processors, accounting programs, spreadsheets, and operating systems.

class of its parent node. Any node lower than hardware component, the root, can be used to
express a key component. Besides the classes of hardware components shown, COSSACK rep
resents software components as well. In January 1987, COSSACK represented a total of 65
different hardware components and 24 different software components.

As in other configuration tasks, specifying a key component often leads to requirements
for other components. COSSACK distinguishes two main relations for this, subcomponent and
required component. The subcomponent relation indicates that other components are
always included with the key component. This can reflect a manufacturing decision, as when
multiple components are assembled as part of the same board. For example, the manufacturing

Page 203 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 649

4045 Laser Printer

Class: PrintingDevice

Functional specifications
Printing technology: Laser
Printing speed: 8,000 cps
Print quality: Letter
Graphics capability: Yes

Subcomponents
Font packages: (Modem-10,

Required components
Printer driver:

??? constraint: Constraint 23
Printer cable:

??? constraint: Constraint 44

Constraint 23

Description: Constraint on printer driver for 4045 printer
Component type: PrinterDriver
Constraint expression: (Compatible-with 4045SLaserPrinter)
Number of components needed: 1
Optional constraint: No
Requested use: Shared

Constraint 44

Description: Constraint on cable for 4045 printer
Component type: PrinterCable
Constraint expression: (OR(Cable type: 36/25length: 10 feet)

(Cable type: 36/251ength: 25 feet))
Number of components needed: 1
Optional constraint: No
Requested use: Exclusive

FIGURE 8.30. Frame representation of a component in COSSACK's functional hierarchy. This frame
represents a 4045laser printer. Frame slots are organized into groups: functional specifications, sub
components, required components, and processing information. The functional specifications are used
when matching this description against specifications using key words. Slots in subcomponents refer to
other parts, both hardware and software, that are included or bundled with this component. The required
component slots describe other components, not bundled with this one, that are needed for correct opera
tion. Constraints associated with thos~ slots are used to narrow the choices.

group may package a clock, memory, and modern on one multifunctional board. Parts can also be
bundled for marketing reasons. The required component relation indicates that other parts
are necessary for the correct functioning of a part. As with XCON and Ml, this indicates a range
of requirements for auxiliary parts and cables. Required component relations are also useful
for software components. For example, these relations can indicate how much memory or exter
nal storage capacity a particular software package needs to run.

Figure 8.30 gives an example of a frame representation of a component from COSSACK's
knowledge base. The key component in this case is a 4045laser printer. The slots grouped under
"Functional specifications" are used for matching. For example, this printer would satisfy a spec
ification for a letter-quality printer. The subcomponents include various other parts that are nec
essarily included. This example shows that various font packages are routinely bundled with a
printer purchase.

Required components for the 4045 printer include a software driver for the printer and a
cable. Like VT, COSSACK posts constraints to guide future decisions. In Figure 8.30 Constraint
23 indicates that any driver can be used that is compatible with the 4045 printer. Constraint 44
indicates that the cable must be of type 36/25 and can have a length of either 10 or 25 feet.

The two constraints in this figure illustrate a representational issue not dealt with in the
previous configuration systems that we considered: the reuse or sharability of components across

Page 204 of 224 FORD 1011

650 8 CON FIGURATION

different requirements. When one component description presents a requirement for another
component, can the second component be used to satisfy any other requirements? In Figure 8.30,
the software module for the printer driver can be shared, meaning that, in principle, the driver
can be used for other components as well, such as when a configuration includes multiple print
ers. Similar issues come up for required components for hardware. For example, can a modem
and a printer use the same RS232 port? In contrast, constraint 44 indicates that the printer cable
cannot be shared. It must be dedicated to the exclusive use of one printer.

Like VT, COSSACK does not organize its design subtasks in a fixed order for all sub
problems. Also like VT, it has knowledge for extending a design by making choices and for post
ing constraints. COSSACK is able to retract component decisions, revisit preference..:guided
choices, and remove constraints that were posted as requirements when the retracted components
were originally selected. Unlike VT, COSSACK does not use domain-specific knowledge for
modifying a configuration when constraint violations are detected, but rather employs a blind
search.

COSSACK uses a partial-commitment strategy to reduce backtracking. Figure 8.31 shows
a simplified example of a case where partial commitment makes guessing and backtracking
unnecessacy. In this example, both the operating system and an accounting package are specified
as key components. Neither component has any immediate constraints bearing on the other. We
assume that no other preferences are known to guide the choice. At this point, a simple generate
and-test approach could arbitrarily select candidates for either one. Suppose it arbitrarily selected
Accounting Package #1 and OS Version B. Then later, when it expanded the required compo
nents for Acounting Package #1, it would pick a rigid disk drive and discover that none of the
satisfactory disk drives are compatible with OS Version B, leading to backtracking. The partial
choice approach enables it to generalize the requirements held in common by Accounting Pack
age #1 and Accounting Package #2. This would result in the generation of a constraint specifying
that whatever rigid disk was chosen, its operating system must be OS Version A.

Arrangement issues in COSSACK are not as complex as in XCON and are represented
using constraints on a port-and-connector model. The main arrangement conflict is that personal
computers have a limited number of slots. Components consume both slots and ports.

In summary, COSSACK is a knowledge-based system for configuring personal computers.
It uses a key-component model for functionality, a preference model for selecting components in
a best-first search, constraint posting to add specifications for related decisions, and partial com
mitment to reduce backtracking. It relaxes the notion that required components need to be dedi
cated to a single use by representing "sharable" components.

8.3.6 Summary and Review

A configuration is an arrangement of parts. A configuration task instantiates a combination of
parts from a predefined set and arranges them to satisfy given specifications. The large size of
configuration search spaces precludes pre-enumeration of complete solutions. Knowledge-based
systems for configuration are important to manufacturers that customize their products for indi
vidual customers by configuring customer-specific systems from a catalog of mass-produced
parts.

XCON is a well-known knowledge system for configuring computer systems at Digital
Equipment Company. Together with its companion program, XSEL, XCON tests the correctness

Page 205 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 651

Key
components

' : Choice of accounting package

Accounting Package #1

Constraint 10
Class: SoftwareApplicationPackage

Component type: RigidDiskDrive
Required components /' Constraint expression: (Min-capacity 10 megabytes)
External storage: L__ ________________ __j

??? constraint: Constraint 10

Accounting Package #2

Constraint 12
Class: SoftwareApplicationPackage

Component type: RigidDiskDrive
Required components /' Constraint expression: (Min-capacity 10 megabytes)
External storage: L__ ________________ __j

??? constraint: Constraint 12

Choice of operating system

OS Version A

Class: OperatingSystem

Choice of disk drive

Rigid Disk Drive #1

Class: DiskDrive
Capacity: 15 megabytes

Required components
Operating system: OS Version A

OS Version B

Class: OperatingSystem

Rigid Disk Drive #2

Class: DiskDrive
Capacity: 20 megabytes

Required components
Operating system: OS Version A

FIGURE 8.31. Simplified partial commitment example from COSSACK. In this example, we assume
that an accounting package and an operating system have been specified as key components. COSSACK
notices that whatever rigid disk drive it chooses, the required operating system is OS Version A.

of configurations and completes orders for computers. Like all configuration systems, XCON
relies on a component database and a body of rules that describes what combinations of parts
work correctly together and how they should be arranged. The challenge of maintaining a large

· database about parts and a body of rules about their interactions has led to the development of a
programming methodology for XCON called RIME. RIME organizes configuration knowledge
in terms of small recurring subtasks such as selecting a device, selecting a container for a compo
nent, and selecting a location within a container to place a component. To a first approximation,
these subtasks are local, explicit, and separate processes. To represent knowledge about the inter
actions among these subtasks, RIME organizes the subtask descriptions as a sequence of explicit

Page 206 of 224 FORD 1011

652 8 CONFIGURATION

stages that look ahead for interactions in the situation and select a best choice for part selection
or arrangement before executing that choice.

Ml is an experimental knowledge system that configures single-board computers given a
high-level specification of board functions and other design constraints. Ml represents compo
nents in a functional hierarchy. Like XCON, Ml relies on the use of key components to specify
system function. It selects abstract parts and then instantiates them. Spatial layout is carried out
by commercial programs for layout and wire routing.

In MYCIN, a therapy is a selected combination of drugs used to treat a patient for infec
tious diseases. This example shows that configuration can be used as a model for a task not
involving manufacturing. The heuristic classification model that MYCIN uses for diagnosis is
inadequate for characterizing therapy because the number of possible solutions based on combi
nations of drugs to cover combinations of diseases is too large to pre-enumerate. MYCIN's con
figuration model separates consideration of local factors, such as the sensitivity of the organisms
to different drugs, from global factors that deal with the entire recommendation, such as mini
mizing the number of drugs.

VT is a knowledge system that configures elevator systems at the Westinghouse Elevator
Company. Interwoven with VT's model of parts is a parametric model of elevator systems. VT's
approach involves separate phases for knowledge acquisition and analysis and for solving partic
ular cases. The analysis phase includes checking for race conditions, unreachable paths, and
potential deadlocks. The case phase uses data-driven procedures to extend the configuration by
proposing parameter values. VT's knowledge is organized within a parameter network in one of
three forms: procedures for computing a parameter value, constraints that specify limits on
parameter values, and fixes that specify what to do if a constraint is violated. Analogous to
RIME, VT's analysis and knowledge acquisition facility can be viewed as a structured program
ming environment for building parameter networks.

COSSACK is a knowledge system for configuring personal computers. It begins with user
specifications, in terms of evaluation criteria and functional specifications. The evaluation cri
teria are used to order candidates in component selection. Functionality specifications are repre
sented in terms of key components. In describing how components require each other, COS
SACK distinguishes between subcomponents that are always included and ones that must be
added. COSSACK also distinguishes between different ways that components may be shared to
satisfy multiple requirements. COSSACK uses a partial-commitment strategy.

Challenges in configuration tasks arise from the size of the search spaces and the complex
ity of individual solutions. Most configuration systems build descriptions of solutions incremen
tally. However, the acceptability of a configuration depends not only on local considerations.
Following the threshold effect and horizon effect, interactions can propagate and be far-reaching.
The next section considers how different computational methods used in these cases try to cope
with these effects.

Exercises for Section 8.3
Ex. 1 [05] Prefigured Configurations. Professor Digit argues that very few of the possible VAX

computer configurations are actually ever built. By his own estimate, no more than 1 in
1,000 of the configurations that are possible for VAXes will ever be ordered. He believes
that all the effort in building knowledge-based configuration programs like XCON is

Page 207 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 653

Ex.2

unnecessary. He recommends instead that a table recording all actual configurations be
kept and used to avoid refiguring them. This table would contain the input/output pairs
from the history of configuration. It would show what configuration was used for every
VAX system that has been ordered. The first column of the table would contain the specifi
cations and the second column would describe the configuration.
(a) Briefly discuss the merits of Professor Digit's proposal. Is a reduction by a factor of
1,000 enough to make the table size manageable?
(b) Discuss advantages for building a knowledge-based configuration system· over a
"table system" even in cases where the determination of configurations is not computation
ally challenging.

[10] Due Process in Configuration Problems. Several of the descriptions of the configura
tion systems mentioned optimization and best-first search.
(a) Which of the configuration systems discussed in this section perform exhaustive
searches for solutions?
(b) Briefly explain the meaning of the term due-process search in the context of configu
ration problems, relating it to ideas for best-first search and optimization as discussed in
this section. What are the implications of a high rate of turnover of knowledge in configu
ration domains?

Ex. 3 [05] "Parts Is Parts." This exercise considers limitations of a simple port-and-connector
model for configuration as shown in Figure 8.32.

Configuration-!

Part-1

Part-1-1 Part-1-2

Part-1-1-1 Part-1-1-3

~A BL
.-- A A A

,... ..
·r ...

B
Part-1-1-2

YA
BL r----11 B r

B '----

A B
A,.

·~ ·~ I ...

Part-2 II
A B..,

11 Part-2-1 Part-2-2 B~'"" ..
A c.

B""" .. A B--
I

.. ,... - .. -D

FIGURE 8.32. Ports and connectors.

Page 208 of 224 FORD 1011

654

Ill

8 CONFIGURATION

(a) How many top-level parts are there in configuration-!? How many detailed parts are
shown?
(b) Why is there a difference between subparts and required parts in configuration prob
lems?
(c) Are cables parts? A port-and-connector model represents cables as mere connections
between ports. Briefly, what are some of the practical issues in representing cables as
parts? How could a port-and-connector model be augmented to accommodate this?

Ex. 4 [05] Key Components. The key-component approach is the technique of representing the
functionality of a configuration in terms of essential components or abstract components in
a partial configuration.

Ex.S

(a) Briefly, what representational issues does this approach seek to side-step?
(b) What is an advantage of this for the user interface in systems like XCON?
(c) Does the configuration model for therapy in MYCIN use a key-component approach?

[!-10] Thrashing in Antagonistic Subproblems. Thrashing occurs in VTwhen fixes for con
straint violations of one parameter lead to constraint violations of another parameter,
whose fixes lead ultimately to further violations of the first parameter.

Here is an example of thrashing behavior for the parameter network in Figure 8.33:
VT derives a value for machine-groove-pressure and maximum-machine-groove-pressure
and finds that machine-groove-pressure is greater than the maximum. This triggers a fix
that decreases car-supplement-weight. This decreases car-weight, which in tum decreases
suspended-load. This decreases machine-groove-pressure, the desired effect, but also
increases traction-ratio. An increase in traction-ratio makes it more likely for it to exceed
its maximum. A violation of maximum-traction-ratio leads to the fix of increasing comp
cable-unit-weight, which in tum increases comp-cable-weight, cable-weight, and sus
pended-load. Increasing suspended-load increases machine-groove-pressure. Thrashing
occurs if this scenario repeats.
(a) Annotate Figure 8.33 with directed arcs to show the operation of the fix operations to
revise parameter values. Also annotate it with + and - to show the subsequent increases
and decreases in parameter values.
(b) An antagonistic interaction is one where there are simultaneous contributions from
different arcs in opposite directions to change the value of a parameter. At which nodes in
the thrashing scenario are there antagonistic interactions? Briefly, what measures can be
taken in systems like VT to deal with such interactions?

Ex. 6 [1 0] Structured Programming Methodologies for Configuration Knowledge. Several of the
configuration projects discussed in this section have needed to face the classical knowl
edge engineering issue of providing support for acquiring, organizing, and maintaining a
large knowledge base. In two of the cases that were described (XCONIRIME and
VT/SALT), special languages or subsystems were developed for this. This exercise briefly
compares the approaches taken for RIME and SALT.
(a) Both XCON and VT build descriptions of solutions incrementally. How is this
reflected in the forms of knowledge that they expect?
(b) What is the distinction between local and global interactions in configuration prob
lems? Why is this distinction important?
(c) Briefly compare propose-and-apply with propose-and-revise.

Ex. 7 [10] Configuration Grammars. Professor Digit says the knowledge representations used in
configuration systems are excessively ad hoc. In particular, he advocates developing gram-

Page 209 of 224 FORD 1011

8.3 Case Studies of Configuration Systems 655

Hoist-cable
quantity

Comp-cable
unit-weight

CWT-to
platform
distance

Hoist-cable
weight

Comp-cable
weight

Suspended
loads

Car
weight

Traction
ratio

Car
supplement

weight

Car-hitch
to-CWT

hitch
distance

Machine
sheave
angle

Machine
groove
model

groove
pressure

Maximum
traction

ratio

Maximum
machine
groove
pressure

Key

Contributes to) Constrains ·--- -----;>

FIGURE 8.33. Interactions between antagonistic subproblems. (Adapted from Marcus & McDermott,
1989, Figure 5, page 18.)

Ex.8

mars for describing valid configurations analogous to those used for describing valid sen
tences in computer languages. He argues that standard algorithms from the parsing litera
ture could then be used to carry out configuration tasks.
(a) Briefly list some of the kinds of domain knowledge needed for configuration tasks.
What are some of the main problems with Professor Digit's proposal for using grammars to
represent this knowledge?
(b) Is configuration essentially a parsing task? Explain briefly.

[05] Levels of Description. Professor Digit can't decide whether XCON, the well-known
rule-based computer configuration program, reasons forward or backward. On the one
hand, the production rules used by XCON are interpreted by forward chaining. On the
other hand, he has seen XCON described as working backward by setting up subproblems.
Briefly, how can the apparent terminological confusion be resolved? Are either of these
characterizations useful in understanding the main computational phenomena that arise in
XCON's configuration task?

Page 210 of 224 FORD 1011

656 8 CONFIGURATION

8.4 Methods for Configuration Problems
In the preceding sections we considered example knowledge systems for configuration tasks and
developed a computational model to compare and analyze configuration domains. This section
revisits our model of configuration to discuss knowledge-level and symbol-level analysis and
then presents sketches of methods for configuration. Our goal in this section is not to develop an
"ultimate" configuration approach, but rather to show how variations in the requirements of con
figuration tasks can be accommodated by changes in knowledge and method.

As in the case of classification tasks, most of the complexity in configuration tasks is in the
domain-specific knowledge rather than in the search methods. Furthermore, most of the remain
ing complexity in the methods is in implementations of general search techniques. In this section
the methods are stripped down to basics so we can see the assumptions they depend on in the
configuration domain.

8.4.1 Knowledge-Level and Symbol-Level Analysis
of Configuration Domains

Knowledge ahout configuration is used by the submodels of our model. We begin our knowl
edge-level analysis by considering variations in the knowledge from the domains of our case
studies. The submodels define major categories of knowledge for configuration in terms of its
content, form, and use.

The Parts Submodel: Knowledge about Function and Structure
The parts submodel contains representations and knowledge about what the available parts are,
what specifications they satisfy, and what requirements they have to carry out their functions.
The simplest parts submodel is a catalog, which is a predetermined set of fixed parts. However,
in most configuration domains the set of parts includes abstractions of them, organized in an
abstract component hierarchy also called a functional hierarchy. Such hierarchies are used in
mapping from initial specifications to partial configurations and in mapping from partial config
urations to additional required parts. In most configuration domains these hierarchies represent
functional groupings, where branches in the hierarchy correspond to specializations of function.
In the last section we saw several examples of functional hierarchies in the computer configura
tion applications for XCON, Ml, and COSSACK.

At the knowledge level an abstraction hierarchy guides problem solving, usually from the
abstract to the specific. At the symbol level a parts hierarachy can be implemented as an index
into the database of parts. There are several other relations on parts that are useful for indexing
the database.

The determination of required parts is a major inference cycle in configuration. This pro
cess expands the set of selected parts and consumes global resources. The required-parts rela
tion indicates what additional parts are required to enable a component to perform its role in a
configuration. For example, a disk drive requires a disk controller and a power supply. These
parts, in turn, may require others. These relations correspond to further requirements, not to spe
cializations of function. In contrast, power supplies are required parts for many components with
widely varying functions. Power supplies perform the same function without regard to the func
tion of the components they serve.

Page 211 of 224 FORD 1011

8.4 Methods for Configuration Problems 657

We say that parts are bundled when they are necessarily selected together as a group.
Often parts are bundled because they are manufactured as a unit. Sometimes parts are manufac
tured together because they are required together to support a common function. For example, a
set of computer clocks may be made more economically by sharing parts. In other cases parts are
made together for marketing reasons. Similarly, bundling components may reduce requirements
for some resource. For example, communication and printing interfaces may be manufactured on
a single board to save slots.

In some domains, parts are bundled because they are logically or stylistically used
together. In configuring kitchen cabinets, the style of knobs and hinges across all cabinets is usu
ally determined by a single choice. Parts can also be bundled for reasons not related to function
or structure. For example, a marketing group may dictate a sales policy that certain parts are
always sold together.

Some part submodels distinguish special categories of "spanning" or "dummy" parts.
Examples of spanning parts from the domain of kitchen cabinets are the space fillers used in
places where modular cabinets do not exactly fit the dimensions of a room. Examples of filler
parts from computer systems are the conductor boards and bus terminators that are needed to
compensate electrical loads when some common component is not used. Examples from config
uring automobiles include the cover plates to fill dashboard holes where optional instruments
were not ordered. Dummy and filler parts are often added at the end of a configuration process to
satisfy modest integrity requirements.

Another variation is to admit parameterized parts, which are parts whose features are deter
mined by the given values of parameters. A modular kitchen cabinet is an example of a parame
terized part. Parameters for the cabinet could include the choice of kind of wood (cherry, maple,
oak, or alder), the choice of finish (natural, red, golden, or laminate), and the choice of dimen
sions (any multiple of 3 inches from 9 inches to 27 inches).

Finally, parameterization can be used to describe properties of parts and subsystems, as in
the VT system. Global properties of a configuration such as power requirements, weight, and
cost are usually treated as parameters because they depend on wide-ranging decisions. In the VT
system, essentially all the selectable features of the elevator system and many intermediate prop
erties are represented in terms of parameters.

The Arrangement Submodel: Knowledge about Structure
and Placement
The arrangement submodel expresses connectivity and spatial requirements. There are many
variations in the requirements for arrangement submodels. Some configuration domains do not
require complex spatial reasoning. For example, VT's elevator configurations all use minor vari
ations of a single template for vertical transport systems. Ml uses a port-and-connector model
for logical connections but its configurations are spatially uncommitted. Spatial arrangement of
antibiotics is not relevant for MYCIN therapy recommendations.

Arrangements do not always require distance metrics or spatial models. In configuring the
simplest personal computers, the slots that are used for different optional parts are referenced and
accounted for by discrete names or indexes. A configuration task need only keep track of which
slots are used without bothering about where they are.

Figure 8.34 illustrates several examples of specialized arrangement models. The simplest
of these is the port-and-connector model. This model was used in the Ml and COSSACK appli-

Page 212 of 224 FORD 1011

658 8 CONFIGURATION

Port-and-connector model Linear-placement model

Part-1

Part-1 I Part-21 Part-3 Part-4

' '
~--~---
' ' : Ordered-slot model : Packed-box model
' ' ' '

Par~

'

' --

FIGURE 8.34. Alternative models of arrangement for configuration problems. Different arrangement
models lend themselves to different resource allocation strategies.

cations discussed earlier. In this model, ports are defined for all the configurable parts. Ports have
types so that different kinds of ports have different properties. Ports are resources than can be
assigned to at most one connector. COSSACK implemented a port-and-connector model in a
frame language, combining its use for specifying the arrangement of parts with indexing on con
straints that specified what parts were compatible or required. The linear-placement model orga
nizes parts in a sequence. A specialization of this model was used in XCON for specifying the
order of electrical connections on a computer bus. In that application, roughly speaking, it is
desirable to locate parts with a high interrupt priority or a high data rate nearer the front of the
bus. Location on the bus was a resource that was consumed as parts were arranged. The ordered
slot model combines a linear ordering with a spatial requirement. In the version in Figure 8.34,
parts are ordered along a bus, starting with Part-1 and ending with Part-4. Parts in the first row
can be up to two units deep, and parts in the second row can be only one unit deep. In this exam
ple, both space and sequence are resources that get consumed as parts are arranged. The packed
box model emphasizes the efficient packing of parts. In this model, space is a consumable

Page 213 of 224 FORD 1011

1-----:.--

8.4 Methods for Configuration Problems

Part-1

Part-2

Part-3

Part-4

Part-S

Part-6

Eart-7

Part-8

Cabinet space

Box-1

Box-2

......................................
U B B B B B BUB DB B B B U aU B B II BUB B B B B BUB B B B B BUB B
11 a • a a a a a a • a a

Side view

659

Panel space

Panel for Part -1

Panel for Part-7

Front view

FIGURE 8.35. Another variation on models of arrangement for configuration problems. In this model,
parts are arranged in boxes and boxes are arranged in cabinets. In addition, some parts require control pan
els and there is a limited amount of panel space. Panels for parts must be located on the cabinet that con
tains the parts. In this model, space in boxes, space in cabinets, and space for panels are all resources con
sumed during configuration. Because of the connections between parts and panels, the resource allocation
processes are interdependent.

resource. Constraints on packing may also include requirements about certain parts being adja
cent to one another.

All the variations in Figure 8.34 represent physical containment. Physical-containment
relations form a hierarchy whose branches indicate which parts are physically contained in oth
ers. For example, a cabinet may contain a circuit board, which in tum may contain a processor
and some memory. Contained parts do not necessarily carry out specializations of their
container's function, nor are they necessarily required parts for their container.

COSSACK uses a port-and-connector model to account for the use of slots. It also keeps
track of memory resources. XCON's arrangement models are the most complex in our example
systems. Figure 8.35 illustrates another complication in arrangement models. In this example,
there are three interlinked tasks in arrangement: the location of boards inside boxes, the location
of boxes inside cabinets, and the location of panels on the front of cabinets. The tasks are inter
linked because the control panels for particular boards need to be located on the cabinet contain
ing the corresponding boards.

XCON also admits complex arrangement conditions and interactions with nonspatial
resources. For example, a rule for allocating slots inside boxes says: "a box can accommodate

Page 214 of 224 FORD 1011

~~:--:__ -

660 8 CONFIGURATION

five 4-slot backplanes; the exception is that a 9-slot backplane may not occupy the space
reserved for the second and third 4-slot backplanes." This example combines electrical require
ments with space allocation.

Knowledge about Decision Ordering and Interactions
The difficulty of configuration problems arises from a three-horned dilemma, where the three
horns are combinatorics, horizon effects, and threshold effects. The combinatoric difficulty is
that the number of possible configurations increases multiplicatively with the number of parts
and arrangements. In the configuration domains discussed in this chapter, there are far too many
possible configurations to instantiate them all in complete detail. Most decisions need to be made
on the basis of partial information about the possible configurations. This is where the horizon
effect comes in. At each stage of reasoning, some interactions are not yet visible either because
not enough inferences have been made or because not enough commitments have been made.
When information is partial, a natural approach is to rely on estimates. This is where the thresh
old effect comes in. A small difference in specifications or descriptions can lead to large, wide
spread changes. Because of their approximate nature, estimation functions can be off by small
amounts. If these small errors are near critical thresholds, then the estimates may not be trust
worthy.

To reiterate the argument in short form, there are too many configurations to develop them
in detail. Making choices on the basis of partial information is subject to horizon effects. Esti
mates at the horizon based on partical information are subject to threshold effects.

The approaches that we consider for coping with these effects assume that there are pre
dictable or typical patterns of interaction and that knowledge about these patterns is available.
The following discussion is concerned with the dimensions of these patterns.

The first horn of the dilemma, combinatorics, is dealt with by two major techniques:
abstraction and decision ordering. Thus, the use of functional abstractions in reasoning about
configuration amounts to hierarchical search and has the usual beneficial effects. Controlling the
order of decisions can reduce the amount of backtracking in search. In the context of configura
tion, knowledge-level justifications of decision ordering complement the symbol-level graph
analyses. In XCON and VT, the reduction of backtracking is characterized in terms of dependent
and independent decisions, where each decision is carried out only after completing other deci
sions on which it depends.

For example, XCON defers cabling decisions to its last subtask. Three assumptions ratio
nalize this late placement of cabling decisions. The first assumption is that for any configuration,
cabling is always possible between two components. This assumption ensures that the configura
tion process will not fail catastrophically due to an inability to run a cable. The second assump
tion is that all cables work satisfactorily, for any configuration. Thus, a computer system will
work correctly no matter how long the cables are. The third assumption is that cable costs do not
matter. Cable costs are so low when compared with active components that they will not influ
ence an overall cost significantly. As long as these assumptions hold, XCON would never need
to backtrack (even if it could!) from a cable decision and there is no need to consider cable issues
any earlier in XCON's process. If there were some special cases where cables beyond a certain
length were unavailable or would prevent system operations, a fix in terms of other component
choices or arrangements would need to be determined and XCON would be augmented with
look-ahead rules to anticipate that case.

Page 215 of 224 FORD 1011

8.4 Methods for Configuration Problems 661

Much of the point of the SALT analysis in the elevator domain is to identify patterns of
interactions. VT's data-driven approach is a least-commitment approach and is analogous to con
straint satisfaction methods that reason about which variable to assign values to next. Least com
mitment precludes guessing on some decisions when refinements on other decisions can be made
without new commitments. Deadlock loops correspond to situations where no decision would be
made. To handle cases where decisions are inherently intertwined so there is no ordering based
on linear dependencies, SALT introduces reasoning loops in the parameter network that search
through local preferences toward a global optimum.

The partial-commitment approach extends least commitment by abstracting what is com
mon to the set of remaining alternatives and then using that abstraction to constrain other deci
sions. VT narrows values on some parameters, sometimes on independent grounds, so that com
ponents are partially specified at various stages of the configuration process.

In VT, such reasoning can amount to partial commitment to the extent that further infer
ences are drawn as the descriptions are narrowed.

All efforts to cope with the combinatorics of configuration encounter horizon effects.
Since uniform farsightedness is too expensive, an alternative is to have limited but very focused
farsightedness. Domain knowledge is used to anticipate and identify certain key interactions,
which require a deeper analysis than is usual. This approach is used in XCON, when it employs
its look-ahead rules to anticipate possible future decisions. The required conditions for look
ahead can be very complex. In XCON, heuristics are available for information gathering that can
tell approximately whether particular commitments are feasible. The heuristics make look-ahead
less expensive.

Finally, we come to techniques for coping with the threshold effect. The issue is not just
that there are thresholds, but rather that the factors contributing to the threshold variables are
widely distributed. Sometimes this distribution can be controlled by bringing together all the
decisions that contribute. This helps to avoid later surprises. Knowledge about thresholds and
contributing decisions can be used in guiding the ordering of decisions. In general, however,
there is no single order that clusters all related decisions. One approach is to anticipate thresholds
with estimators and to make conservative judgments. For example, one could anticipate the need
for a larger cabinet. This conservative approach works against optimization. In XCON, many of
the constraints whose satisfaction cannot be anticipated are soft. This means that although there
may be violations, the softness of the constraints reduces the bad consequences. Thus, the extra
part may require adding a cabinet, but at least it is possible to add new cabinets.

In summary, domain knowledge is the key to coping with the complexity of configuration.
Knowledge about abstractions makes it possible to search hierarchically .. Knowledge about key
interactions makes it possible to focus the computations for look-ahead to specific points beyond
the horizon. Knowledge about soft constraints reduces the effects of threshold violations.

8.4.2 MCF-1: Expand and Arrange

In this section and the following, we consider methods for configuration. In principle, we could
begin with a method based on a simple generate-and-test approach. By now, however, it should
be clear how to write such a method and also why it would be of little practical value. We begin
with a slightly more complex method.

Page 216 of 224 FORD 1011

662 8 CONFIGURATION

Figure 8.36 presents an extremely simple method for configuration, called MCF-1. MCF-1
acquires its specifications in terms of key components, expands the configuration to include all
required parts, and then arranges the parts. Although this method is very simple it is also appro
priate for some domains. MCF-1 is M1's method, albeit in skeletal form and leaving out the sec
ondary cycle for reliability analysis and revision. It is practical for those applications where the
selection decisions do not depend on the arrangement decisions.

MCF-1 has independent auxiliary methods get-requirements, get-best-parts, and arrange
parts. The auxiliary method get-requirements returns all the requirements for a part and returns
the initial set of requirements given the token initial-specifications. Given a set of requirements,
there may be different alternative candidate sets of parts for meeting a requirement. The method
get-best-parts considers the candidate sets of new parts and employs a domain-specific evalua
tion function to select the best ones. Finally, given a list of parts, the method arrange-parts deter
mines their best arrangement. A recursive subroutine, add-required-parts, adds all the parts
required by a component.

MCF-1 relies on several properties of its configuration domain as follows:

Specifications can be expressed in terms of a list of key components.
There is a domain-specific evaluation function for choosing the best parts to meet require
ments.
Satisfactory part arrangements are always possible, given a set of components.
Parts are not shared. Each requirement is filled using unique parts.

The first assumption is quite common in configuration tasks and has little bearing on the method.
The second assumption says there is a way to select required parts without backtracking. An
evaluation function is called from inside get-best-parts. The third assumption says that arrange
ment concerns for configurations involve no unsatisfiable constraints, even in combination. This
is not unusual for configuration tasks that use a port-and-connector model for arrangements. In
such domains, one can always find some arrangement and the arrangement does not affect the
quality of the configuration. This assumption is crucial to the organization of MCF-1 because it
makes it possible to first select all the required parts before arranging any of them. It implies fur
ther that the arrangement process never requires the addition of new parts. A somewhat weaker
assumption is actually strong enough for a simple variation of the method: that part arrangement
never introduces any significant parts that would force backtracking on selection or arrangement
decisions. The last assumption means the system need not check whether an existing part can be
reused for a second function. This method would need to be modified to accommodate multi
functional parts.

8.4.3 MCF-2: Staged Subtasks with Look-Ahead

Method MCF-1 is explicit about the order that configuration knowledge is used: first, key com
ponents are identified; then required parts are selected; and finally, parts are arranged. As dis
cussed in our analysis of configuration, these decisions may need to be more tightly interwoven.
Sometimes an analysis of a domain will reveal that certain groups of configuration decisions are
tightly coupled and that some groups of decisions can be performed before others. When this is
the case, the configuration process can be organized in terms of subtasks, where each subtask

Page 217 of 224 FORD 1011

8.4 Methods for Configuration Problems

To perform configuration using MCF-1:
· I* Initialize and determine the key components from the

specifications. *I
1. Set parts-list to nil.

663

I* Get-requirements returns specifications for required parts given
a part. *I

. ,

2. Set requirements to get-requirements(initial-specifications).
3. Set key-components to get-best-parts(requirements).

4.
5.

6.
7.

8 .

9.

10.

I* Add all the required parts to the parts-list. *I·
For each key component do
begin

end

Push the key component onto the parts-list.
Add-required-parts(key-component).

I* Arrange parts in the configuration. *I
Arrange parts using arrange-parts(parts-list).
Return the solution.

I* Recursive subroutine to add parts required by a given
part. When there are multiple candidates it selects the best one
get-best-parts. *I

1. Add-required-parts(part)
2. begin
3. Set requirements to get-requirements(part).
4. If there are some requirements, then
5. begin
6. Set new-parts to get-best-parts(requirements).
7. For each of the new-parts do.
8. begin
9. Push the new-part onto the parts-list.
10. Add-required-parts(new-part).
11. end
12. end
13. end

FIGURE 8.36. MCF-1, a simple method for configuration problems in which there is no interaction
between selection and arrangement of required parts.

performs a combination of closely related decisions to refine, select, and arrange components.
Subtasks cluster decisions so that most interactions among decisions within a subtask are much
greater than interactions with decisions outside of it.

Page 218 of 224 FORD 1011

664 8 CONFIGURATION

In some domains the partitioning of decisions into subtask clusters does not necessarily
yield a decision ordering in which all later decisions depend only on early ones. To restate this in
constraint satisfaction terms, there may be no ordering of variables such that values can be
assigned to all variables in order without having to backtrack. To address this, knowledge for
selective look-ahead is used to anticipate interactions. Such knowledge is domain specific and
may involve conservative estimates or approximations that anticipate possible threshold effects.
This approach can be satisfactory even in cases where the look-ahead is not foolproof, if the fail
ures involve soft constraints.

This approach is followed in MCF-2. The method description given in Figure 8.37 says
very little about configuration in general. Nonetheless, MCF-2 is the method used by XCON,
albeit with its domain:..specific particulars abstracted.

To perform configuration using MCF-2:
I* Initialize and get the key components from the specifications. *I

1. Set parts-list to nil.
2. Set requirements to get-requirements(initial~specifications).
3. Set key-components to get-best-parts(requirements).

I* Conditionally invoke Subtasks. *I
4. While there are pending subtasks do
5. begin
6. Test conditionals for invoking subtasks and choose the best

one.
7. Invoke a specialized method for the subtask.
8. end
9. Return the solution.

I* Each specialized method performs a subset of the task. It is
responsible for refining some specifications. adding some parts. and
arranging some parts. It incorporates whatever look-ahead is needed.
*I

10. Method-for-Subtask-1:

I* Subtask-1: Look ahead as needed and expand some parts. *I
I* Subtask-2: Look ahead as needed and arrange some parts. *I

20. Return.

30. Method-for-Stage-3:

FIGURE 8.37. MCF-2, a method for configuration problems in which part selection and arrangement
decisions can be organized in a fixed sequence of subtasks. The method depends crucially on the proper
ties of the domain. This method tells us very little about configuration in general.

Page 219 of 224 FORD 1011

8.4 Methods for Configuration Problems 665

This method is vague. We might caricature it as advising us to "write a configuration sys
tem as a smart program using modularity as needed" or as "an agenda interpreter that applies
subtasks in a best-first order." Such symbol-level characterizations miss the point that the deci
sion structure follows from an analysis of relations at the knowledge level. This observation is
similar to the case of methods for classification. The particulars of the domain knowledge make
all the difference. The burden in using MCF-2 is in analyzing a particular domain, identifying ·
common patterns of interaction, and partitioning the decisions into subtasks that select and
arrange parts while employing suitable look-ahead.

It is interesting to compare MCF-2 to the general purpose constraint satisfaction methods.
One important result is that when the variables of a constraint satisfaction problem (CSP) are
block ordered, it is possible to find a solution to the CSP with backtracking limited to the size of
the largest block, which is depth-limited backtracking. Although there are important differences
between the discrete CSP problems and the configuration problems, the basic idea is quite sim
ilar. Subtasks correspond roughly to blocks. When subtasks are solved in the right order, little or
no backtracking is needed. (See the exercises for a more complete discussion of this analogy.)

As in MCF-1, MCF-2 does not specify an arrangement submodel, a part submodel, or a
sharing submodel. Each domain needs its specially tailored submodels. In summary, MCF-2
employs specialized methods for the sub tasks to do special-case look -ahead, to compensate for
known cases where the fixed order of decision rules fails to anticipate some crucial interaction
leading to a failure. The hard work in using this method is in the analysis of the domain to parti
tion it into appropriate subtasks.

8.4.4 MCF-3: Propose-and-Revise

In MCF-2, there are no provisions in the bookkeeping for carrying alternative solutions, or for
backtracking when previously unnoticed conflicts become evident. Figure 8.38 gives MCF-3,
which is based loosely on the mechanisms used in VT, using the propose-and-revise approach.
Like MCF-2, we can view MCF-3 as an outline for an interpreter of knowledge about configura
tion. It is l~osely based on the ideas of VT and the interpretation of a parameter network. It
depends crucially on the structure of the partial configuration and the arrangement of know ledge
for proposing values, proposing constraints, noticing constraint violations, and making fixes.

The beauty of MCF-3 is that the system makes whatever configuration decisions it can by
following the opportunities noticed by its data-driven interpreter. In comparison with MCF-2,
MCF-3 is does not rely so much on heuristic look-ahead, but has provisions for noticing con
flicts, backtracking, and revising.

8.4.5 Summary and Review

This section sketched several different methods for configuration, based loosely on the example
applications we considered earlier. We started with a method that performed all selection deci
sions before any arrangement decisions. Although this is practical for some configuration tasks,
it is not adequate when arrangements are difficult or are an important determinant of costs. The
second method relied on look-ahead. Our third method triggered subtasks according to knowl-

Page 220 of 224 FORD 1011

666 8 CONFIGURATION .

To pe1jorm configuration using MCF-3:
I* Initialize and obtain requirements. *I

1. Initialize the list of parts to empty.
2. Set requirements to get-requirements(initial-specifications).
3. Set key-components to get-best-parts(requirements).

I* Apply the domain knowledge to extend and revise the configuration.
*I

4. While there are open decisions and failure has not been signaled do
5. begin
6. Select the next-node in the partial configuration for which a

decision can be made.
7, If the decision is a design extension, then invoke method

propose-design-extensions(next-node).
8. If the decision is to post a constraint, then invoke method

post-design-constraints().
9. If there are violated-constraints, then invoke revise-design().
10. end
11. Report the solutions (or failure).

fiGURE 8.38. MCF-3, a method based on the propose-and-revise model.

edge about when the subtasks were ready to be applied and used constraints to test for violations
when choices mattered for more than one subtask.

Exercises for Section 8.4

Ex. 1 [1 0] MYC1N's Method. How does MYCIN's method for therapy recommendation fit into
the set of methods discussed in this section? Is it the same as one of them? Explain briefly.

Ex. 2 [R] Subtask Ordering. After studying the XCON system and reading about constraint satis
faction methods, Professor Digit called his students together. "Eureka!" he said. "MCF-2 is
really a special case of an approach to constraint satisfaction that we already know: block
ordering. In the future, pay no attention to MCF-2. Just make a tree of 'constraint blocks'
corresponding to the configuration subtasks and solve the tasks in a depth-first order of the
tree of blocks."
(a) Briefly sketch the important similarities and differences between CSP problems and
configuration problems.
(b) Briefly, is there any merit to Professor Digit's proposal and his suggestion that there is
a relation between traversing a tree of blocks in a CSP problem and solving a set of staged
subtasks in a configuration problem?
(c) Briefly relate the maximum depth of backtracking necessary in a CSP to the "no back
tracking" goal of systems like XCON.

Ex. 3 [1 0] Methods and Special Cases. The methods for configuration are all simple, in that the
complexity of configuration tasks is manifest in the domain-specific knowledge rather than

Page 221 of 224 FORD 1011

8.5 Open Issues and Quandaries 667

in the methods. The methods, however, form a progression of sorts, in that they can be seen
as providing increased flexibility.
(a) In what way is MCF-1 a special case of MCF-2?
(b) In what way is MCF-2 a special case ofMCF-3?
(c) In what way could MCF-3 be generalized to use other techniques from the example
systems in this chapter?

8.5 Open Issues and Quandaries

In the 1970s, folk wisdom about expert systems said that they might be developed routinely for
"analytic" tasks but not "synthetic" tasks, which were too difficult. Analytic tasks were charac
terized in terms of feature recognition. Medical diagnosis was cited as an example of an analytic
task. In contrast, synthetic tasks reasoned about how to put things together. Design was said to be
an example of a synthetic task.

In hindsight, this dichotomy is too simplistic. Some problem-solving methods combine
aspects of synthesis and analysis, to wit: "synthesis by analysis" and "analysis by synthesis."
Large tasks in practical domains are made up of smaller tasks, each of which may have its own
methods. In the next chapter we will see that even methods for diagnosis require the combination
of diagnostic hypotheses.

However, the main point for our purposes is that synthetic tasks tend to have high combi
natorics and require a large and complex body of knowledge. This made them unsuitable for the
first generation of knowledge systems, which performed simpler tasks mostly based on classifi
cation. Design tasks are still more often associated with research projects than with practical
applications. Ambitious knowledge systems for design tasks tend to be doctoral thesis projects.

Configuration tasks specify how to assemble parts from a predefined set. It could be
argued that the "real" difficulty in configuration tasks is setting up the families of components so
that configuration is possible at all. For computer configuration, this involves designing the bus
structures, the board configurations, the bus protocols, and so on. If these standards were not
established, there would be no way to plug different options into the same slot. There would be
no hope of creating a simple model of functionality around a key-component assumption. Behind
the knowledge of a configurable system, there is a much larger body of knowledge about part
reusability in families of systems. This brings us back to the challenges of design.

The goal in both configuration and design is to specify a manufacturable artifact that satis
fies requirements involving such matters as functionality and cost. Design can be open-ended.
Will the truck ride well on a bumpy road? What load can it carry? What is its gas mileage? Can
the engine be serviced conveniently? There is an open-ended world of knowledge about materi
als, combustion, glues, assembly, manufacturing tools, markets, and other matters.

Human organizations have responded to the complexity of designing high-technology
products by bringing together specialists with different training. The design of a xerographic
copier involves mechanical engineers concerned with systems for moving paper, electronical
engineers concerned with electronic subsystems, and computer engineers concerned with inter
nal software. But this is just a beginning. Other people specialize in particular kinds of systems
for transporting paper. Some people specialize in printing materials. Some specialize in the
design of user interfaces. Some specialize in different manufacturing processes, such as plastics,
sheet metal, and semiconductors. Others specialize in servicing copiers in the field.

Page 222 of 224 FORD 1011

668 8 CONFIGURATION

As the number of issues and specializations increase, there are real challenges in managing
and coordinating the activities and in bringing appropriate knowledge to bear. Competition
drives companies to find ways to reduce costs and to speed the time to bring products to market.
In this context, a large fraction of the cost of producing a product is determined by its design.
Part of this cost is the design process itself, amortized over the number of products made. But the
main point is about the time of decisions. Many decisions about a product influence the costs of
its manufacture and service. What size engine does the truck have? Does it run on diesel or gaso
line? Can the battery be replaced without unbolting the engine? How much room is in tlie cab?
How many trucks will be sold? Many of these decisions are made at early stages of design and
cannot be changed later, thus locking in major determinants of the product cost.

To reduce costs we must understand them at earlier stages of design. Thus, products are
designed for manufacturing, designed for flexibility, designed for portability, or designed for ser
vicing. All these examples of "design for X' attempt to bring to bear knowledge about X at an
early stage of design. In design organizations, this has led to the creation of design teams and a
practice called "simultaneous engineering." The idea is to bring together specialists representing
different concerns, and to have them participate all the way through the design process.

There, are no knowledge systems where you "push a button to design a truck." The
challenges for acquiring the appropriate knowledge base for such ambitious automation are stag
gering. Instead, the response to shortening product development times involves other measures.
Many of these involve ways for moving design work online. Databases and parts catalogs are
online. Simulation systems sometimes replace shops for prototyping. The controls for manufac
turing equipment are becoming accessible through computer networks. Reflecting the reality that
much of an engineer's day is spent communicating with colleagues, another point of leverage is
more advanced technology for communicating with others. This ranges from facsimile machines
and electronic mail, to online computer files, to devices that enable teams of engineers to share a
"digital workspace."

Systems to support design need not automate the entire process but can facilitate human
design processes, simulate product performance and manufacturing, and automate routine sub
tasks. The elements of new design systems include knowledge systems, online catalogs, collabo
ration technology, simulation tools, and visualization tools. These elements reflect a move
toward shared digital workspaces. As the work practice and data of design organizations become
more online, many different niches appear where knowledge systems can be used to assist and
automate parts of the process.

Automation advances as it becomes practical to formalize particular bodies of knowledge.
Inventory and catalog systems now connect with drafting systems to facilitate the reuse of manu
factured parts. Drafting systems now use constraint models and parameterized designs to relate
sizing information from one part of the system with sizing information from other parts. In
design tasks such as the design of paper paths using pinch roller technology (Mittal, Dym, &
Morjaria, 1986), it has been practical to systematize a body of knowledge for performing large
parts of the task.

Conventional tools for computer-aided design (CAD) tend to be one of two kinds: analysis
tools or drafting tools. An example of an analysis tool is one for predicting the effects of vibra
tions on structure using finite element analysis. An example of a drafting tool is a tool for pro
ducing wire-frame models of solids. Knowledge-systems concepts are beginning to find their
way into CAD systems, joining the ranks of graphics programs, simulation systems, and visual-

Page 223 of 224 FORD 1011

8.5 Open Issues and Quandaries 669

ization systems. As computer technology for computer graphics and parallel processing have
become available, there has been increased development of tools to help designers visualize
products and manufacturing, by simulating those steps and showing the results graphically.

In summary, configuration tasks are a relatively simple subset of design tasks. They are
more difficult because specifications can be more open-ended and design can involve fashioning
and machining of parts rather than just selection of them. Human organizations have responded
to the complexities of modern product design by engaging people who specialize in many differ
ent concerns. This specialization has also made it more difficult to coordinate design projects and
to get designs to market quickly.

Page 224 of 224 FORD 1011

