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ABSTRACT

A broad range of well~structured problems-——embracing forms of diagnosis, catalog selection. and

skeletal planning-—are solved in ‘expert systems‘ by the methods of heuristic classification. Llhese
programs have a characteristic inference structure that systematically relates data to a pre-enumerated

set of solutions by abstraction, heuristic association, and refinement. ln contrast with previous

descriptions of classification reasoning, particularly in psychology, this analysis emphasizes the role of

a heuristic in routine problem solving as a non—hierarchical, direct association between concepts. in

contrast with other descriptions of expert systems. this analysis specifies the knowledge needed to solve

a problem. independent of its representation in a particular computer language. The heuristic

classification problem-soltting model provides a useful framework for characterizing lcinds of prol)~

lems, for designing representation tools. and for understanding non-classification (constructive)
problem -soloing methods.

To understand something as a specific instance of a. more

general case—which is what understanding a more fundamen-

tal principle or structure means—is to have learned not only a

specific thing but also a model for understanding other things

like it that one may encounter. [13]

1. Introduction

Over the past decade, a variety of heuristic programs, commonly called ‘expert

systems’, have been written to solve problems in diverse areas of science,

engineering, business, and medicine. Developing these programs involves

satisfying an interacting set of requirements: Selecting the application area and

specific problem to be solved, bounding the problem so that it is computation-

ally and financially tractable, and implementing a prototype program—to name

a few obvious concerns. With continued experience, a number of programming

environments or ‘tools’ have been developed and successfully used to imple-

* Expanded version of “Classification Problem Solving“. in: Proceedings Fourth National Con-

ference on Artificial Intelligence, Austin. TX (August 1984) 49-55.
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ment prototype programs [51]. Importantly, the representational units of tools

(such as ‘rules’ and ‘attributes‘) provide an orientation for identifying manage,

able subproblems and organizing problem analysis. Selecting appropriate ap.
plications now often takes the form of relating candidate problems to known

computational methods, our tools.

Yet, in spite of this experience, when presented with a given ‘knowledge
engineering tool’, such as EMYCIN [94], we are still hard-pressed to say what
kinds of problems it can be used to solve well. Various studies have demon-

strated advantages of using one representation language instead of another-__

for ease in specifying knowledge relationships, control of reasoning, and

perspicuity for maintenance and explanation [2, 3,21,27, 92]. Other studies

have characterized in low-level terms why a given problem might be in-ap.
propriate for a given language, for example, because data are time-varying or

subp1'ob1ems interact [51]. While these studies reveal the weaknesses and

limitations of the rule-based formalism, in particular, they do not clarify the

form of analysis and problem decomposition that has been so successfully used

in these programs. In short, attempts to describe a mapping between kinds of

problems and programming languages have not been satisfactory because they
don't describe what a given program knows: Applications-oriented descriptions

like ‘diagnosis’ are too general (e.g., solving a diagnostic problem does not

necessarily require a device model), and technological terms like ‘rule-based’

do not describe what kind of problem is being solved [48, 49]. We need a better

description of what heuristic programs do and know—a computational charac-

terization of their competencewi-independent of task and independent of pro-

gramming language implementation. Logic has been suggested as a basis for a

‘knowledge—level’ analysis to specify what a heuristic program does and might

know [69, 71]. However, we have lacked a set of terms and relations for doing
this.

In an attempt to characterize the knowledge-level competence of a variety of

expert systems, a number of programs were analyzed in detail.‘ There is a

striking pattern: These programs proceed through easily identifiable phases of

data abstraction, heuristic mapping onto a hierarchy of pre-enumerated solu-

tions, and refinement within this hierarchy. In short, these programs do what is

commonly called clamficarlon, but with the important twist of relating concepts

in difierent classification hierarchies by non-hierarchical, uncertain inferences.

We call this combination of reasoning heuristic classification.

Note carefully: The heuristic classification model characterizes a form of

knowledge and reasom'r1g—patterns of familiar problem situations and solu~

tions, heuristically related. In capturing problem Situations that tend to occur

and solutions that tend to work, this knowledge is essentially experiential, with

‘Including: Ten rule-based systems {MYCIN, PUFF, CLOT, HEADMED, SACON from the EMYCIN

family [15], plus WINE, BANKER, The Drilling Advisor. and other proprietary systems developed 3!

Teknowledge, Inc.),_ a frame-based system (GRUNDYL and a program coded directly in LISP

(so1=HIE 111).
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an overall form that is problem-area-independent. Heuristic classification is a

'method of computation, not a kind of problem to be solved. Thus, we refer to

‘the heuristic classification method‘, not ‘classification problem’.

Focusing on epistemological content rather than representational notation,

this paper proposes a set of terms and relations for describing the knowledge

used to solve a problem by the heuristic classification method. Subsequent
sections describe and illustrate the model in the analysis of MYCIN, SACON,

GRUNDY, and SOPHIE 111. Significantly, a knowIedge—level description of these

programs corresponds very well to psychological models of expert problem

solving. This suggests that the heuristic classification problem-solving model

capturesgeneral principles of how experiential knowledge is organized and

used, and thus generalizes some cognitive science results. A thorough dis-

cussion relates the model to schema research; and use of a conceptual graph

notation shows how the inference-structure diagram characteristic of heuristic

classification can be derived from some simple assumptions about how data and

solutions are typically related (Section 4). Another detailed discussion then

considers “what gets selected”, possible kinds of solution (e.g., diagnoses). A

taxonomy of problem types is proposed that characterizes solutions of problems

in terms of synthesis or analysis of some system in the world (Section 5). We

finally turn to the issue of inference control in order to further characterize tool

requirements for heuristic classification (Section 6), segueing into a brief

description of constructive problem solving (Section 7).

This paper explores different perspectives for describing expert systems; it is

not a conventional description of a particular program or programming

language. The analysis does produce some specific and obviously useful

results, such as a distinction between electronic and medical diagnosis pro-

grams (Section 6.2). But there are also a few essays ,with less immediate

payoffs, such as the analysis of problem types in terms of systems (Section 5)

and the discussion of the pragmatics of defining concepts (Section 4.5). Also,

readers who specialize in problems of knowledge representation should keep in

mind that the discussion of schemas (Section 4) is an attempt to clarify the

knowledge represented in rule-based expert systems, rather than to introduce

new representational ideas.

From another perspective, this paper presents a methodology for analyzing

problems, preparatory to building an expert system. It introduces an inter-

mediate level of knowledge specification, more abstract than specific concepts

and relations, but still independent of implementation language. Indeed, one

aim is to afford a level of awareness for describing expert system design that

enables knowledge representation languages to be chosen and used more

deliberately.

We begin with the motivation of wanting to formalize what we have learned

about building expert systems. How can we classify problems‘? How can we

select problems that are appropriate for our tools‘? How can we improve our

tools‘? Our study reveals patterns in knowledge bases: Inference chains are not
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arbitrary sequences of implications, they compose relations among concepts in

a systematic way. Intuitively, we believe that understanding these high-level

knowledge structures, implicitly encoded in today’s expert systems, will enable

us to teach people how to use representation languages more eliectively, and

also enable us to design better languages. Moreover, it is a well-established

principle for designing these programs that the knowledge people are trying to

express should be stated explicitly, so it will be accessible to auxiliary programs

for explanation, teaching, and knowledge acquisition (e.g., [30]).

Briefly, our methodology for specifying the knowledge contained in an

expert system is based on:

—a computational distinction between selection and construction of solutions;

—a relational breakdown of concepts, distinguishing between abstraction and

heuristic association and between subtype and cause, thus revealing the

‘classification nature of inference chains; and
—a categorization of problems in terms of synthesis and analysis of systems in

the world, allowing us to characterize inference in terms of a sequence of

classifications involving some system.

The main result of the study is the model of heuristic classification, which

turns out to be a common problem-solving method in expert systems. Identify-

ing this computational method is not to be confused with advocating its use.

Instead, by giving it a name and characterizing it, we open the way to

describing when it is applicable, contrasting it with alternative methods, and

deliberately using it again when appropriate.

As one demonstration of the value of the model, classification in well-known

medical and electronic diagnosis programs is described in some detail, contras-

ting diflerent perspectives on what constitutes a diagnostic solution and

different methods for controlling inference to derive coherent‘ solutions. Indeed,

an early motivation for the study was to understand how NEOMYCIN, a medical

diagnostic program, could be generalized. The resulting tool, called HERACLES

(roughly standing for ‘Heuristic Classification Shell’) is described briefly, with a

critique of its capabilities in terms of the larger model that has emerged.

In the final sections of the paper, we reflect on the adequacy of current

knowledge engineering tools, the nature of a knowledge-level analysis, and

related research in psychology and artificial intelligence. There are several

strong implications for the practice of building expert systems, designing new

tools, and continued research in this field. Yet to be delivered, but promised by

the model, are explanation and teaching programs tailored to the heuristic

classification model, better knowledge acquisition programs, and demon-

stration that thinking in terms of heuristic classification makes it easier to

choose problems and build new expert systems.

2. The Heuristic Classification Method Defined

We develop the ideaiof the heuristic classification method by starting with the
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common sense notion of classification and relating it to the reasoning that

-occurs in heuristic programs.

2.1. Simple classification

As the name suggests, the simplest kind of classification is identifying some

unknown object or phenomenon as a member of a known class of objects,

events, or processes. Typically, these classes are stereotypes that are hierar-

chically organized, and the process of identification is one of matching obser-

vations of an unknown entity against features of known classes. A paradigmatic

example is identification of a plant or animal, using a guidebook of features,

such as coloration, structure, and size. MYCIIN solves the problem of identifying

an unknown organism from laboratory cultures by matching Culture in-

formation against a hierarchy of bacteria (Fig. 2.1)?
The essential characteristic of classification is that the problem solver selects

from a set of pre—enumerated solutions. This does not mean, of course, that the

‘right answer’ is necessarily one of these solutions, just that the problem solver

will only attempt to match the data against the known solutions, rather than

construct a new one. Evidence can be uncertain and matches partial, so the

output might be a ranked list of hypotheses. Besides matching, there are

several rules of inference for making assertions about solutions. For example,

evidence for a class is indirect evidence that one of its subtypes is present.

2.2. Data abstraction

In the simplest problems, data are solution features, so the matching process is

direct. For example, an unknown organism in MYCIN can be classified directly

Bacteria Clunlinatinrt"

  

 
   E;.1TE|qr;.3_:-.,c'TEn|Ar;E,a_E nu-:ua:i¢+uu_u~_~. ms-rn norms f\]EIS‘E,ER|,5_ srupnvccfcoecus -:.me.or'.':u:o»:I:u:‘
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FIG. 2.1. MYCIN’s classification of bacteria.

2For simplicity, we will refer to classification hierarchies throughout this paper, though in

practice these structures are not trees, but almost always ‘tangled’ structures with some nodes
havin multi le arents.3 P P
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given the supplied data of Gram stain and morphology. The features ‘Gram,

stain negative’ and ‘rod-shaped’ match a class of organisms. The solution might
be refined by getting information that allows subtypes to be discriminated.

For many problems, solution features are not supplied as data, but are

inferred by data abstraction. There are three basic relations for abstracting data
in heuristic programs:

(1) definitional abstraction. based on essential, necessary features of a

concept (“if the structure is a one-dimensional network, then its shape is a_
beam”);

(2) qualitative abstraction, a form of definition involving quantitative data,
usually with respect to some normal or expected value (“if the patient is an

adult and white blood count is less than 2500, then the white blood count is

low"); and

(3) generalization in a subtype hierarchy (“if the client is a judge, then he is

an educated person”).

These interpretations are usually made by the program with certainty; belief

thresholds and qualifying conditions are chosen so the abstraction is categori-

cal. It is common to refer to this knowledge as being ‘factual’ or ‘definitional’.

2.3. Heuristic classification

In simple classification, data may directly match solution features or may match

after being abstracted. In heuristic classification, solutions and solution features

may also be matched heuristicaiiy, by direct, non-hierarchical association with

some concept in another classification hierarchy. For example, MYCIN does

more than identify an unknown organism in terms of visible features of an

organism: MYCIN heuristically relates an abstract characterization of the patient

to a classification of diseases. We show this inference structure schematically,

followed by an example (Fig. 2.2).

Basic observations about the patient are abstracted to patient categories,

which are heuristically linked to diseases and disease categories. While only a

subtype link with E.coli infection is shown here, evidence may actually derive

from a combination of inferences. Some data might directly match E.coli

features (an individual organism shaped like a rod and producing a Gram-

negative stain is seen growing in a culture taken from the patient). Descriptions

of laboratory cultures (describing location, method of collection, and in-

cubation) can also be related to the classification of diseases.

The important link we have added is a heuristic association between a

characterization of the patient (‘compromised host’) and categories of diseases

(‘gram—negative infection’). Unlike definitional and hierarchical inferences, this

inference makes a great leap. A heuristic relation is uncertain, based on

assumptions of typicality, and is sometimes just a poorly understood cor-

relation. A heuristic, is often empirical, deriving from problem-solving
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HEURISTIC MATCH

Patient Abstractions =s Disease Ctasses

DATA REFINEMENT
ABSTRACTION

Patient Data Diseases

HEUFNSTIC

Compromised Host =-. Gram-Negatiueiniection

GENERALIZATION SUBTYPE

Immunosuppressed E.coli Infection

GENEFIALIZATION

Leukopenia

DEFINITIONAL

Low WBC

QUALITATIVE

WBC ( 2.5

FIG. 2.2. Inference structure of MYCIN.

experience; heuristics correspond to the ‘rules of thumb’, often associated with

expert systems [35].

Heuristics of this type reduce search by skipping over intermediate relations

(this is why we do not call abstraction relations ‘heuristics’). These associations

are usually uncertain because the intermediate relations may not hold in the

specific case. Intermediate relations may be omitted because they are un~

observable or poorly understood. In a medical diagnosis program, heuristics

typically skip over the causal relations between symptoms and diseases. In

Section 4 we will analyze the nature of these implicit relations in some detail.

To summarize, in heuristic classification abstracted data statements are

associated with specific problem solutions or features that characterize a solu-

tion. This can be shown schematically in simple terms (Fig. 2.3).

This diagram summarizes how a distinguished set of terms (data, data

abstractions, solution abstractions, and solutions) are related systematically by
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HEUFl|STiC MATCH

Data Abstractions 2:» Solution Abstractions

DATA REFINEMENT
ABSTRACTION

Data Solutions

FIG. 2.3. Inference structure of heuristic classification.

difierenr kinds of relations. This is the Structure of inference in heuristic
classification. The direction of inference and the relations ‘abstraction’ and

‘refinement’ are a simplification, indicating a common ordering (generalizing
data and refining solutions), as well as a useful way of remembering the

classification model. In practice, there are many operators for selecting and

ordering inferences, discussed in Section 6.

3. Examples of I-leuristic Classification

Here we schematically describe the architectures of SACON, GRUNDY, and SOPHIE

111 in terms of heuristic classification. These are brief descriptions, but reveal

the value of this kind of analysis by helping us to understand what the

programs do. After a statement of the problem, the general inference structure

and an example inference path are given, followed by a brief discussion. In

looking at these diagrams, note that sequences of classifications can be com~

posed, perhaps involving simple classification at one stage (SACON) or omitting
‘abstraction’ or ‘refinement’ (GRUNDY and SACON).

In Section 4, we will reconsider these examples, in an attempt to understand

the heuristic classification pattern. Our approach will be to pick apart the ‘inner

structure’ of concepts and to characterize the kinds of relations that are typically

useful for problem solving.

3.1. SACON

Problem: SACON [5] selects classes of behavior that should be further in-

vestigated by a structural-analysis simulation program (Fig. 3.1).

Discussion: SACON solves two problems by classification—heuristically analyz-

ing a structure and then using simple classification to select a program. It

begins by heuristically selecting a simple numeric model for analyzing a

structure (such as an airplane wing). The numeric model, an equation, produces

stress and deflection estimates, which the program then qualitatively abstracts

as behaviors to study in more detail. These behaviors, with additional in-

formation about the material, definitionally characterize different configura-

tions of the MARC simulation program (e.g., the inelastic-fatigue program).
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Analysis Program

DATA
ABSTFIACTION

Quantitative Prediction
of Material Behavior

DEF!N|T|ONAL
HEUFHSTIC MATCH

Abstractstructure =:- Numericlvlodei

DATA
ABSTFIACTION

Structure Description

!nelastic~Fatigue
Program

DEFINITIONAL

I Fatigue
Dem-‘°t‘°" * Material

QUALITATIVE

Stress and Deflection

Magnitude

' DEFINlTlONAL
HEUFIISTIC

Size _ . .

Beam +SuppOn =;. SpecificEquation
Distribution

DEFINITIONAL

One-dimensional
and Network

FIG. 3.1. Inference structure of SACON.

There is no refinement because the solutions to the first problem are just a

simple set of possible models, and the second problem is only solved to the

point of specifying program classes. (In another software configuration system

we analyzed, specific program input parameters are inferred in a refinement

step.)
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3.2. or-zunnv

Problem: GRUNDY [78] is a model of a librarian, selecting books a person might
like to read.

Discussion: GRUNDY solves two classification problems heuristically, classifying
a reader’s personality and then selecting books appropriate to this kind of

person (Fig. 3.2). While some evidence for person stereotypes is by data

abstraction (a JUDGE can be inferred to be an EDUCATED-PERSON),
other evidence is heuristic (watching no TV is neither a necessary nor sufficient

characteristic of an EDUCATEDPERSON).

Illustrating the power of a knowledge-level analysis, we discover that the

people and book classifications are not distinct in the implementation. For

example, ‘fast plots’ is a book characteristic, but in the implementation ‘likes

fast plots’ is associated with a person stereotype. The relation between a person

stereotype and ‘fast plots’ is heuristic and should be distinguished from

abstractions of people and books. One objective of the program is to learn

better people stereotypes (user models). The classification description of the

user modeling problem shows that GRUNDY should also be learning better ways to
characterize books, as well as improving its heuristics. If these are not treated

separately, learning may be hindered. This example illustrates why a knowledge-
level analysis should precede representation.

It is interesting to note that GRUNDY does not attempt to perfect the user

model before recommending a book. Rather, refinement of the person stereo-

HEUFIISTIC MATCH

Self-Description ;-. People =¢. Book
and Behavior Classes Classes

FIEFINEMENT

Books

HEURISTIC HEUFIISTIC

WatchesNoTV =9 Educated =:. Bookswithlntelligent
Person Main Character

Stereotype
SUBTYPE

"Earth Angels"

FIG. 3.2. Inference structure of owner.
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type occurs when the reader rejects book suggestions. Analysis of other

programs indicates that this multiple—pass process structure is common. For
example, the Drilling Advisor makes two passes on the causes of drill sticking,

considering general, inexpensive data first, just as medical programs commonly

consider the ‘history and physical’ before laboratory data. The high-level,

abstract structure of the heuristic classification model makes possible these

kinds of descriptions and comparisons.

3.3. SOPHIE [11

Problem: SOPHIE III [12] classifies an electronic circuit in terms of the component

that is causing faulty behavior (Fig. 3.3).

Discussion: soPHIE’s set of pre-enumerated solutions is a lattice of valid

and faulty circuit behaviors. In contrast with MYCIN, so1=-I-1te’s solutions are

device states and component flaws, not stereotypes of disorders. They are

related causally, not by subtype. Data are not only external device behaviors,

but include internal component measurements propagated by the causal analy-

HEURISTIC MATCH

Qualitative Values = Behavior at Some Port
oi Ports of Some Module in

Behavior Lattice

DATA

ABSTRACTION REHNEMENT

Quantitative
. . B h .

Circuit 9 awor Component Fault

DEFINITIONAL

Local Circuit Measurements

HEURISTIC

{VOLTAGE N11 N14) =:. Variable Voltage
is High Reference is High or OK

QUALITATIVE - CAUSE

{VOLTAGE N11 N14] > 31V 05 Collector Open

I FIG. 3.3. Inference structure of SOPHIE.
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sis of the LOCAL program. Nevertheless, the inference structure of abstractions’
heuristic relations, and refinement fits and heuristic classification model,
demonstrating its generality and usefulness.

4. Understanding Heuristic Classification

The purpose of this section is to develop a principled account of why the

inference structure of heuristic classification takes the characteristic form we

have discovered. Our approach is to describe what we have heretofore loosely
called ‘classes’, ‘concepts’, or ‘stereotypes’ in a more formal way, using the

conceptual graph notation of Sowa [88]. In this formalism, a concept is

described by graphs of typed, usually binary relations among other concepts,

This kind of analysis has its origins in semantic networks [77], the conceptual.

dependency notation of Schank et al. [83], the prototype/perspective descrip.
tions of KRL [7], the classification hierarchies of Kl,-ONE [85], as well as the

predicate calculus.

Our discussion has several objectives:

(1) to relate the knowledge encoded in rule—based systems to structures more

commonly associated with ‘semantic net’ and ‘frame’ formalisms;

(2) to explicate what kinds of knowledge heuristic rules leave out (and thus

their advantages for search efficiency and limitations for correctness); and

(3) to relate the kinds of conceptual relations collectively identified in

knowledge representation research (e.g., the relation between an individual

and a class) with the pattern of inference that typically occurs during heuristic

classification problem solving (yielding the characteristic inverted horeshoe

inference structure of Fig. 2.3).

One important result of this analysis is a characterization of the ‘heuristic

relation’ in terms of primitive relations among concepts (such as preference,

accompaniment, and causal enablement), and its difference from more essen-

tial, ‘definitional’ characterizations of concepts. In short, we are trying to

systematically characterize the kind of knowledge that is useful for problem

solving, which relates to our larger aim of devising useful languages for

encoding knowledge in expert systems.

4.1. Schemas vs. definitions

In the case of matching features of organisms (MYCIN) or programs (SACON),

features are essential (necessary), identifying characteristics of the object,

event, or process. This corresponds to the Aristotelian notion of concept

definition in terms of necessary properties? In contrast, features may be only

‘incidental’, corresponding to typical manifestations or behaviors. For example,

3Sowa [88] provides a good overview of these well-known philosophical distinctions. See alS0
[28, 72].
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E. coli is normally found in certain parts of the body, an incidental property. It

' is common to refer to the combination of incidental and defining associations

as a ‘schema’ for the concept.“ lnferences made using incidental associations of
a schema are inherently uncertain. For example, we might infer that a parti-

cular person, because he is educated, likes to read books, but this might not be

' true. In contrast, an educated person must, by definition, have learned a great

deal about something (though maybe not a formal academic topic).

The nature of schemas and their representation has been studied extensively

1 in Al. As stated in the introduction (Section 1), our purpose here is to exploit
this research to understand the knowledge contained in rules. We are not

2 advocating one representation over another; rather we just want to find some

way of writing down knowledge so that we can detect and express patterns. We

use the conceptual graph notation of Sowa because it is simple and it makes
basic distinctions that we find to be useful:

~ A schema is made up of coherent statements mentioning a given concept, not

a list of isolated, independent features. (A statement is a complete sentence.)

-A schema for a given concept contains relations to other concepts, not just
‘attributes and values’ or ‘slots and values‘.

—A concept is typically described from different points of view by a set of

schemata (called a ‘schematic cluster’), not a single ‘frame’.

-The totality of what people know about a concept usually extends well

beyond the schemas that are pragmatically encoded in programs for solving

limited problems.

Finally, we adopt Sowa‘s definition of a prototype as a ‘typical individual’, a

specialization of a concept schema to indicate typical values and characteristics,

where ranges or sets are described for the class as a whole. Whether a program

uses prototype or schema descriptions of its solutions is not important to our

discussion, and many may combine them, including ‘normal’ values, as well as a

spectrum of expectations.

4.2. Alternative ellcodings of schemas

To develop the above points in some detail, we will consider a conceptual

graph description and how it relates to typical rule-based encodings. Fig. 4.]

shows how knowledge about the concept ‘cluster headache‘ is described using

the conceptual graph notation.5

Concepts appear in brackets; relations are in parentheses. Concepts are also

related by a type hierarchy, e.g., a HEADACHE is a kind of PROCESS, an

‘Here we use the word ‘schema’ as a kind of knowledge, not a construct of a particular

programming language or notation. See [49] for further discussion of this distinction.

‘One English translation would be: “A cluster headache is a headache that occurs with a

frequency in clusters, experienced by an older man, accompanied by lacrimation, with charac-
teristic severe, of location unilateral, occurring at a point in time of early sleep."
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[UNILATERAL] [EARLY-SLEEP]

T T
[SEVERE] A {CHRC) <-—-— [HEADACHE] —?> (FREQI :3- {Cl-USTEREDI

i i
IACCM) IEXPR}

i V
[LACRIMATION] [OLDER-MAN]

[EARLY-SLEEP] is
[TIME: [STATE: [SLEEP]] -9 (AFTER) -2» [TIME-PERIOD: @few-hrs]]

[CLUSTERED] is
[DAILY] 6 (FREQ) -6- [EVENT] -) (DURATION) —) [TIME-PERIOD: @1week]

[OLDER-MAN] is
[MAN] -9 -(CHRC) —> [etc]

FIG. 4.]. Schema describing the concept CLUSTER-HEADACHE and some related concepts,

OLDER-MAN is a kind of MAN. Relations are constrained to link concepts of

particular types, e.g., PTIM, a point in time, links a PROCESS to a TIME. For

convenience, we can also use Sowa‘s linear notation for conceptual graphs.

Thus, OLDER~MAN can be described as a specialization of MAN, “a man

with characteristic old”. CLUSTERED in “an event occurring daily for a

week”. EARLY-SLEEP is “a few hours after the state of sleep".

We make no claim that a representation of this kind is complete, com-

putationally tractable, or even unambiguous. For our purposes here, it is simply

a notation with the advantage over English prose of systematically revealing

how what we know about a concept can be (at least partially) described in

terms of its relations to concepts of other types.

For contrast, consider how this same knowledge might be encoded in a

notation based upon objects, attributes, and values, as in MYCIN. Here, the

object would be the PATIENT, and typical attributes would be HEADACHE-

ONSET (with possible values EARLY-MORNING, EARLY-SLEEP, LATE-

AFTERNOON) and DISORDER (with possible values CLUSTER-

HEADACHE, INFECTION, etc.). A typical rule might be, “If the patient has

headache onset during sleep, then the disorder of the patient is cluster

headache.” The features of a cluster headache might be combined in a single

rule. Generally, since_ none of the features are logically necessary, they are
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considered in separate rules, with certainty factors denoting how strongly the

symptom (or predisposition, in the case of age) is correlated with the disease. A

primitive ‘frame’ representation, as in lN'I‘l':‘RNIST [76], is similar, with a list of
attributes for each disorder, but each attribute is an ‘atomic’ unit that bundles

together what is broken into object, attribute, and value in MYCIN, e.g.,

"HEADACHE-ONSETOCCURS-EARLY-SLEEP”.

The idea of relating a concept (such as CLUSTER~HEADACHE) to a set of

attributes or descriptors, is common in AI programs. However, a relational

analysis reveals marked difierences in what an attribute might be:

(a) An attribute is an atomic proposition. In INTERNIST, an attribute is a string

that is only related to diseases or other strings, e.g., HEADACI-IE-ONSET
EARLY—SLEEP-EXPERIENCED-BY-PATIENT.

(b) An attribute is a relation characterizing some class of objects. In MYCIN, an

attribute is associated with an instance of an object (a particular patient,

culture, organism, or drug).

(b1) An attribute is a binary relation. A MYCIN attribute with the values ‘yes’

or ‘no’ corresponds to a unary relation, ((attribute) (object)), e.g.,

(HEADACHE—ONSET—EARLY-SLEEP PATIENT), “headache onset during

early sleep is experienced by the patient.”

(b2) An attribute is a binary relation. A MYCIN attribute with values

corresponds to a binary relation, ((attribute) (object) (vaIue)), e.g.,

(HEADACHE-ONSET PATIENT EARLY—SLEEP), “headache onset

experienced by the patient is during early sleep.”

(c) An attribute is a retarion among classes. Each class is a concept. Taking

the same example, there are two more primitive relations, ONSET and

EXPERIENCER, yielding the propositions: (ONSET HEADACHE EARLY-

SLEEP), “the onset of the headache is during early sleep", and

(EXPERIENCER HEADACHE PATIENT), “the experiencer of the

headache is the patient.” More concisely,

[EARLY—SLEEP] <— (ONSET) <— [HEADACHE]

—-—) (EXPR)—a~ [PATIENT] .

These relations and concepts can be further broken down, as shown in Fig. 4.1.

The conceptual graph notation encourages clear thinking by forcing us to

unbundle domain terminology into defined or schematically described terms

and a constrained vocabulary of relations (restricted in the types of concepts

each can link). Rather than saying that “an object has attributes”, we can be

more specific about the relations among entities, describing abstract concepts
like ‘headache’ and ‘cluster’ in the same notation we use to describe concrete

objects like patients and organisms. In particular, notice that headache onset is

a characterization of a headache, not of a person, contrary of the MYCIN

statement that “headache onset is an attribute of person.” Similarly, the
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relation between a patient and a disorder is different from the relation between
a patient and his age.”

Breaking apart ‘parameters’ into concepts and relations has the additional

benefit of allowing them to be easily related, through their schema descriptions_
For example, it is clear that HEADACHE-ONSET and HEADACHE-

SEVERITY both characterize HEADACHE, allowing us to write a simple,
general inference rule for deciding about relevancy: “If a process type being
characterized (e.g., HEADACHE) is unavailable or not relevant, then its

characterization (e.g., HEADACHE-ONSET) is not relevant." As another

cxample, consider a discrimination inference strategy that Compares disorder

processes on the basis of their descriptions as events. Knowing what relations

are comparable (e.g., location and frequency), the inference procedure can

automatically gather relevant data, look up the schema descriptions, and make

comparisons to establish the best match. To summarize, the rules in a program

like MYCIN are implicitly making statements about schemas. This becomes clear

when we separate conceptual links from rules of inference, as in NEOMYCIN.

4.3. Relating heuristics to conceptual graphs

Given all of the structural and functional statements we might make about a

concept, describing processes and interactions in detail, some statements will

be more useful than others for solving problems. Rather than thinking of

schemas as inert, static descriptions, we are interested in how they link

concepts to solve problems. The description of CLUSTERED-HEADACHE

given in Fig. 4.1 includes the knowledge that one typically finds in a diagnostic

program. To understand heuristics in these terms, consider first that some

relations appear to be less ‘incidental’ than others. The time of occurrence of

the headache, location, frequency, and characterizing features are all closely

bound to what a cluster headache is. They are not necessary, but they together

distinguish CLUSTER-HEADACHE from other types. That is, these relations

discriminate this headache from other types of headache.

On the other hand, accompaniment by lacrimation (tearing of the eyes) and

the tendency for such headaches to be experienced by older men are cor-

relations with other conceptsf’ Here, in particular, we see the link between
different kinds of entities: a DISORDER-PROCESS and a PERSON. This is

the link we have identified as a heuristic—a direct, non-hierarchical association

5-The importance of defining relations has been discovered repetitively in Al. Woods‘ analysis of

semantic networks [100] is an early, well-known example. The issue of restricting and defining

relations was particularly important in the development of OWL [61]. Researchers using rule—based
languages, like MYCIN’s, felt curiously immune from these issues, not realizing that their ‘attributes’
were making similar confusions.

7What discriminates is relative. If kinds of headache tended to be associated with diflerent ages

of people, then this might be a CLUSTER—ELDERLY—HEADACHE and we would consider the

age of the cxperiencer to be a discriminating characteristic.
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between concepts of different types. Observe that why an older man

experiences cluster headaches is left out. Given a model of the world that says

that all phenomena are caused, we can say that each of the links with

HEADACHE could be explained causally. Whether the explanation has been

left out or is not known cannot be determined by examining the conceptual

graph, a critical point we will return to later.
When heuristics are stated as rules in a program like MYCIN, even known

relational and definitional details are often omitted. This often means that

intermediate concepts are omitted as well. We say “X suggests Y”, or “X

makes you think of Y”. Unless the connection is an unexplained correlation,

such a statement can be expanded to a full sentence that is part of the schema

description of X and/or Y. Thus, the geologist’s rule “goldfields flowers—>

serpentine rock” might be restated as, “Serpentine rock has nutrients that

enable goldfields to grow well.” Fig. 4.2 shows the conceptual graph notation of

this statement (with “enable” shown by the relation “instrument” linking an

-entity, nutrients, to an act, growing).

The concepts of nutrients and growing are omitted from the rule notation,

just as the causal details that explain the growth process are skipped over in the

‘conceptual graph notation. The rule indicates what you must observe

(goldfields flowers growing) and what you can assert (serpentine rock is near

the surface). It captures knowledge not as mere static descriptions, but an

efficient, useful connections for problem solving. Moreover, the example makes
clear the essential characteristic of a heuristic inference—a non-hierarchical

and non—definitional connection between concepts of distinct classes.

Heuristics are selected statements that are useful for inference, particularly

how one class choice constraints another. Consider the goldfields example. Is

the conceptual graph shown in Fig. 4.2 a schema for serpentine, golclfields,

nutrient, or all three? First, knowledge is something somebody knows; whether

goldfields is associated with nutrients will vary from person to person. (And for

at least a short time, readers of this paper will think of goldtields when the

word ‘nutrient’ is mentioned.) Second, the real issue is how knowledge is

practically indexed. The associations a problem solver forms and the direc—

tionality of these associations will depend on the kinds of situations he is called

upon to interpret, and what is given and what is derived. Thus, it seems

plausible that a geologist in the field would see goldfields (data) and think

 

 [GOLDFIELDS] 4- (03.1) (- [snow]

{INST} -> [NUTRIENTS]

{CHRC) 6- [SERPENTINE]

FIG. 4.2. A heuristic rule expanded as a conceptual graph.
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about serpentine rock (solution). Conversely, his task might commonly be to

'find outcroppings of serpentine rock; he would work backwards to think of

observables that he might look for (data) that would indicate the presence of

serpentine. Indeed, he might have many associations with flowers and rocks,
and even many general rules for how to infer rocks (e.g., based on other plants,
drainage properties of the land, slope). Fig. 4.3 shows one possible inference

path.

In summary, a heuristic association is a connection that relates data that is

commonly available to the kinds of interpretations the problem solver is trying
to derive. For a physician starting with characteristics of a person, the patient,
connections to diseases will be useful. It must be possible to relate new

situations to previous interpretations and this is what the abstraction process in

classification is all about (recall the quotation from Bruner in Section 1). The

specific person becomes an ‘old man‘ and particular disorders come to mind.

Problems tend to start with objects in the real world, so it makes sense that

practical problem-solving knowledge would allow problems to be restated in

terms of stereotypical objects: kinds of people, kinds of patients, kinds of

stressed structures, kinds of malfunctioning devices, etc. Based on our analysis

of expert systems, links from these data concepts to solution concepts come in
different flavors:

-agent or cxperiencer (e.g., people predisposed to diseases);

— cause, co-presence, or correlation (e.g., symptoms related to faults);

-preference or advantage (e.g., people related to books);

— physical model (e.g., abstract structures related to numeric models).

These relations do not characterize a solution in terms of ‘immediate

properties’—they are not definitional or type discriminating. Rather, they

capture incidental associations between a solution and available data, usually

concrete concepts. (Other kinds of links may be possible; these are the ones we

have discovered so far.)
The essential characteristic of a heuristic is that it reduces search. A heuristic

rule reduces a conceptual graph to a single relation between two concepts.

Through this, heuristic rules reduce search in several ways:

(1) Of all possible schemas that might describe a concept, heuristic con-

data solution

F OWERS —. ROCKS
(3) recall I“ :3’ (2) generalize

general rule T T
(‘ll §P9§}W’Iil"lZ9= GOLDFIELDS :3» SERPENTINE (1) goal: f-ind rockEC

specific rule

FIG. 4.3. Using a general rule to work backwards from a solution.
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nections are those that constrain a categorization on the basis of available data

‘(e.g., the strength of SERPENTINE rock may be irrelevant for inferring the

presence of hidden deposits).
(2) A heuristic eliminates consideration of intermediate (and often invariant)

relations between the concepts it mentions, associating salient cases directly

(e.g., the goldfields rule omits the concept NUTRIENT).

While not having to think about intermediate connections is advantageous,

. this sets up a basic conflict for the problem solver—his inferential leaps may be

wrong. Another way of saying that the problem solver skips over things is that

there are tmarticuiated assumptions on which the interpretation rests. We will

consider this further in the section on inference strategies (Section 6).

4.4. Relating inference structure to conceptual graphs

In the inference-structure diagrams (such as Fig. 3.2) nodes stand for pro-

positions (e.g., “the reader is an educated person"). The diagrams relate

propositions on the basis of how they can be inferred from one another: type,

definition, and heuristic. So far in this section we have broken apart these

atomic propositions to distinguish a heuristic link from essential and direct

characterizing relations in a schema; and we have argued how direct, incidental

connections between concepts, which leave out intermediate relations, are

valuable for reducing search.

Here we return to the higher-level, inference—structure diagrams and include

the details of the kinds of links that are possible. In Fig. 4.4 each kind of

class/concept

  

 
 
 

type definition

and discriminating

schema relations

"definition"

(generic class to generic seibctass}

Ola?-5 subclass

D D

FIG. 4.4. Conceptual relations used in heuristic classification.
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inference relation between concepts is shown as a line. Classes can be con-

-nected to one another by any of these three kinds of inference relations. We

make a distinction between heuristics (direct, non-hierarchical, class-class rela-

tions, such as the link between goldfields and serpentine rock) and definitions

(including necessary and discriminating relations, plus qualitative abstraction

(see Section 2.2)). Definitional and subtype links are shown vertically, to

conform to our intuitive idea of generalization of data to higher categories,
what we" have called data abstraction.

It is important to remember that the ‘definitional’ links are often non-

essential, ‘soft’ descriptions. The ‘definition’ of leukopenia as white blood

count less than normal is a good example. ‘Normal’ depends on everything else

happening to the patient, so inferring this condition always involves making
some assumptions.

Note also that this is a diagram of static, structural relations. In actual

problem solving other links will be required to form a case-specific model,

indicating propositions the problem solver believes to be true and support for

them. In particular, surrogates [88] (also called individuals [10], such the MYC]N

‘context’ ORGANISM-1) will stand for unknown objects or processes in the

world that are identified by associating them with a class in a type hierarchy.‘
Now we are ready to put this together to understand the pattern behind the

inference structure of heuristic Classification. Given that a sequence of heuristic

ciassifications, as in onunnv, is possible, indeed common, we start with the

simplest case by assuming that data classes are not inferred heuristically.

Instead, data are supplied directly or inferred by definition. When solution

classes are inferred by definition, we have a case of simple classification

(Section 2.1), for example, when an organism is actually seen growing in a

laboratory culture (like a smoking gun). In order to describe an idealized form

of heuristic classification, we leave out definitional inference of solutions.

Finally, inference has the general form that problem descriptions must be

3 It is not often realized that each MYCIN ‘context’ has a disringtrished attribute calied its ‘name’ that

corresponds to the link between the surrogate (entity to be classified) and a classification hierarchy.

The pattern was only evident to system designers to the extent that they realized that each ‘r:ontext‘

type has some identifying attribute that allows it to be translated. For example, after identifying an

organism, the program says “the E.eoli" rather than ORGANISM-1 (or whatever its number was),

referring to the objecticontext hierarchy if there are more than one, “the E.coli from the blood culture

of 3,-’l4,"7'7.“ Thus, we have the identity of the organism, name of the infection, site of the culture, etc.

Corresponding to each of these identifying attributes is a hierarchy of ‘values’ with static properties.

Titus, there are tables of organisms, infections. culture sites, etc. It is in such a table that MYCIN stores

the information that E.coli is a gram-negative rod. A single. general rule uses the table to identify the

unknown organism. These tables are also called ‘grids‘; we were unaware at the time (1974-1977) that

we were recording the same kind of information other Al programmers were storing in ‘frame

hierarchies‘. The pattern was partially obscured by our use of special-case rules, for example. to allow

for inforrect data, making the grids appear to be a convenient computational short-hand for collapsing

similar rules, rather than a notation for describing classes.
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abstracted (proceeding from subclass to class) and partial solutions must be

refined (proceeding from class to subclass).

If we thus specialize the right side of the inference diagram in Fig. 4.4 to a

data class and a solution class and glue them together, we get a refined version

of the original inverted horseshoe (Fig. 2.3). Fig. 4.5 shows how data and

solution classes are typically inferred from one another in the simplest case of

heuristic classification. This diagram should be contrasted with all of the

possible networks we could construct, linking concepts by the three most

general relations (subtype, definitional, incidental). For example, all links might

have been definitional, all concepts subsumed by a single class, or data only

incidentally related to other concepts. Furthermore, considering knowledge

apart from how it is used, we might imagine complex networks of concepts,

intricately related, as suggested by Fig. 4.1. Instead, we find that diverse

classification structures are often linked directly, omitting relational details.

Clearly independent of programming language, this pattern is Very likely an

essential aspect of practical, experiential models of the world.

4.5. Pragmatics of defining concepts

In the course of writing and analyzing heuristic programs, we have been struck

by the difliculty of defining terms. What is a ‘compromised host’? How is it

dillerent from ‘immunosuppression‘? Is an alcoholic imrnunosuppressed? We

do not simply write down descriptionsof what we know. The very process of

formalizing terms and relations changes what we know, and itself brings about

concept formation.

In many respects, the apparent unprincipled nature of MYCIN is a good

reflection of the raw state of how experts talk. Two problems we encountered

data “as; solution class

schemes

I d I" "
"definition" we 8 Eamon

and discriminating
schema relations

V
data “ass data Subclass solution subclass

[3 Cl D

FIG. 4.5. Typical conceptual relations in simplest form of heuristic classification.
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illustrate the difficulty of proceeding without a formal conceptual structure, and

thus, refiect the unprincipled state of what experts know about their own

reasoning:

(a) Twice we completely reworked the hierarchical relations among im-

munosuppression and compromised host conditions. There clearly is no agreed-

upon network that we can simply write down. People do not know schema

hierarchies in the same sense that they know phone numbers. A given version

is believed to be better because it makes finer distinctions, so it leads to better

problem solving.

(b) The concepts of ‘significant organism’ and ‘contaminant’ were sometimes

confused in MYCIN. An organism is significant if there is evidence that it is

associated with a disease. A contaminant is an organism growing on a culture

that was introduced because of dirty instruments or was picked up from some

body site where it normally grows (e.g., a blood culture may be contaminated

by skin organisms). Thus, evidence against contamination supports the belief

that the discovered organism is significant. However, a rule writer would tend

to write ‘significant’ rather than ‘not contaminant’, even though this was the

intended, intermediate interpretation. There may be a tendency to directly
form a general, positive categorization, rather than to make an association to

an intermediate, ruled-out category.

To a first approximation, it appears that what we ‘really’ know is what we

can conclude given other information. That is, we start with just implication

(P—> Q), then go back to abstract concepts into types and understand relations

among them. For example, we start by knowing that “WBC <2500->LEUKO-

PENIA”. To make this principled, we break it into the following pieces:

(1) ‘Leukopenia’ means that the count of leukocytes is impoverished:

[LEUKOPENIA] = [LEUKOCYTES] -2» (CH RC) —>

[CURRENT-COUNT] —> (Cl-lRC)—> [IMPOVERISHED].

(2) ‘impoverished’ means that the current measure is much less than normal:

[IMPOVERISHED: x] =

[CURRENT-MEASURE: x] —» (<)—> [NORMAL-MEASURE: x].

(3) The (normal/current) count is a kind of measure:

[COUNT] < [MEASURE]

(4) A fact, the normal leukocyte count in an adult is 7000:

[LEUKOCYTES] —> (CHRC) —> [NORMAL-COUNT] -1- (MEAS)—>

[MEASURI-Z: 7000/mm3].

With the proper interpreter (and perhaps some additional definitions and

relations), we could instantiate and compose these expressions to get the effect

of the original rule. This is the pattern we follow in knowledge engineering,

constantly decomposing terms into general types and relations to make explicit

the rationale behind implications.
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Perhaps one of the most prcplexing difficulties we encounter is distinguishing
between subtype and cause, and between state and process. Part of the

problem is that cause and effect are not always distinguished by our experts.

For example, a physician might speak of a brain-tumor as a kind of brain-mass-

lesion. It is certainly a kind of brain-mass, but it causes a lesion (cut); it is not a

kind of lesion. Thus, the concept bundles cause with effect and location: a

lesion in the brain caused by a mass of some kind is a brain—mass-lesion (Fig.

‘4.6).
Similarly, we draw causal nets linking abnormal states, saying that brain-

hematoma (mass of blood in the brain) is caused by brain-hemorrhage (bleed-

ing). To understand what is happening, we profit by labeling brain—hematoma

as a substance (a kind of brain—mass) and braimhemorrhage as a process that

afiects or produces the substance. Yet when we began, we thought of brain-

hemorrhage as if it were equivalent to the escaping blood.

It is striking that we can learn concepts and how to relate them to solve

problems, without understanding the links in a principled way. If you know

that WBC < 2500 is leukopenia, a form of immunosuppression, which is a form

of compromised host, causing E.coli infection, you are on your way to being a

clinician. As novices, we push tokens around in the same non-comprehending

way as MYCIN.

Once we start asking questions, we have difficulty figuring out how concepts

are related. If immunosuppression is the state of being unable to fight infection

by mechanisms, then does impoverished white cells cause this state? Or is it

caused by this state (something else affected the irnmunosystem, reducing the

WBC as a side-effect)? (Worse yet, we may say it is an ‘indicator’, completely

missing the fact that we are talking about causality.) Perhaps it is one way in

which the immunosystem can be diminished, so it is a kind of immunosup-

pression. It is difficult to write down a principled network because we don't

know the relations, and we don't know them because we don’t know what

the concepts mean—we don’t understand the processes involved. Yet, we

might know enough to relate data classes to therapy classes and save the

patient‘s'life!

A conceptual graph or logic analysis suggests that the relations among

concepts are relatively few in number and fixed in meaning, compared to the

number and complexity of concepts. The meaning of concepts depends on what

we ascribe to the links that join them. Thus, in practice we jockey around

concepts to get a well-formed network. Complicating this is our tendency to

use terms that bundle cause with effect and to relate substances directly,

leaving out intermediate processes. At first, novices might be like t0day’s

expert programs. A concept is just a token or label, associated with knowledge

[MASS] —> (csus) «J; [LESION] -9 (LOB) -> [BRAIN]

FIG. 4.6. Conceptual graph of the term ‘brain-mass-lesion‘.
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of how to infer truth and how to use information (what to do if it is true and

how to infer other truths from it). Unless the token is defined by something
akin to a conceptual graph, it is diflicult to say that the novice or program

understands what it means. But in the world of action, what matters more than

the functional, pragmatic knowledge of knowing what to do?

Where does this leave us? One conclusion is that ‘principled networks‘ are

impossible. Except for mathematics, science, economics, and similar domains,
concepts do not have formal definitions. While heuristic programs sometimes

reason with concrete, well-defined classifications such as the programs in sncon
and the fault network in SOPHIE, they more often use experiential schemas, the

knowledge we say distinguishes the expert from the novice. In the worst case,
these experiential concepts are vague and incompletely understood, such as the

diseases in MYCIN. In general, there are underlying (unarticulated or un.

examined) assumptions in every schema description. Thus, the first conclusion

is that for concepts in nonformal domains this background and context cannot

in principle be made explicit [36]. That is, our conceptual knowledge is
inseparable from our as yet ungeneralized memory of experiences.

An alternative point of view is that, regardless of ultimate limitations. it is

obvious that expert systems will be valuable for replacing the expert on routine

tasks, aiding him on difficult tasks, and generally transforming how we write

down and teach knowledge. Much more can be done in terms of memory

representation, learning from experience, and combining principled

models with situation/action, pragmatic rules. Specifically, the problem of

knowledge transformation could become a focus for expert systems research

including compilation for efficiency, derivation of procedures for enhancing

explanation [92], and re-representation for detecting and explaining patterns,

thus aiding scientific theory formation. Studying and refining actual knowledge

bases, as exemplified by this section, is our chief methodology for improving our

representations and inference procedures. Indeed, from the perspective of

knowledge transformation, it is ironic to surmise that we might one day decide

that the ‘superficial’ representation of EMYCIN rules is a fine executable lan-

guage, and something like it will become the target for our knowledge

compilers.

5. Analysis of Problem Types in Terms of Systems

The heuristic classification model gives us two new angles for comparing

problem—solving methods and kinds of problems. First, it suggests that we

characterize programs by whether solutions are selected or constructed. This

leads us to the second perspective, that different ‘kinds of things’ might be

selected or constructed (diagnoses, user models, etc.). In this section we will

adopt a single point of view, namely that a solution is most generally a set of

beliefs describing what is true about a system or a set of actions (operations) 
l
I
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that will physically transform a system to a desired description. We will study

variations of system description and transformation problems, leading to a

hierarchy of kinds of problems that an expert might solve.

5.1. What gets selected?

-This foray into systems analysis begins very simply with the observation that all

classification problem solving involves selection of a solution. We can charac-

‘ terize kinds of problems by what is being selected:

- diagnosis: solutions are faulty components (SOPHIE) or processes affecting the

device (MYCIN);

—user model: solutions are people stereotypes in terms of their goals and

beliefs (first phase of GRUNDY);

-catalog selection: solutions are products, services, or activities, e.g., books,

personal computers, careers, travel tours, wines, investments (second phase of

GRUNDYL

— model—basea' analysis: solutions are numeric models (first phase of SACON);

—slceleral plannlrtg: solutions are plans, such as packaged sequences of pro-

grams and parameters for running them (second phase of SACON, also first

phase of experimental planning in MOLGEN [38]).

Attempts to make knowledge engineering a systematic discipline often begin

with a listing of kinds of problems. This kind of analysis is always prone to

category errors. For example, a naive list of ‘problems’ might list ‘design’,

‘constraint satisfaction’, and ‘model-based reasoning’, combining a kind of

problem, an inference method, and a kind of knowledge. For example, one

might solve a VLSI chip design problem using constraint satisfaction to reason

about models of circuit components. It is important to adopt a single perspec-

tive when making a list of this kind.

In particular, we must not confuse what gets selected—what constitutes a

solution—with the method for computing the solution. A common misconcep-

tion is that there is a kind of problem called a ‘classification problem’,

opposing, for example, classification problems with design problems (for

example, see [88]). Indeed, some tasks, such as identifying bacteria from

culture information, are inherently solved by simple classification. However,

heuristic classification as defined here is a description of how a particular

problem is solved by a particular problem solver. If the problem solver has a

priori knowledge of solutions and can relate them to the problem description

by data abstraction, heuristic association, and refinement, then the problem can

be solved by classification. For example, if it were practical to enumerate all of

the computer configurations R1 might select, or if the solutions were restricted

to a predetermined, explicit set of designs, the program could be reconfigured

to solve its problem by classification. The method of solving a configuration

problem is not inherent in the task itself.
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With this distinction between problem and computational method in mind,
- we turn our attention to a systematic study of problem types. Can we form an

explicit taxonomy that includes the kinds of applications we might typically
encounter?

5.2. Background: Problem categories

One approach might be to focus on objects and whatican be done to them. We

can design them, diagnose them, use them in a plan to accomplish some

function, etc. This seems like one way to consistently describe kinds of

problems. Surely everything in the world involves objects.

However, in attempting to derive such a uniform framework, the concept of

‘object’ becomes a bit elusive. For example, the analysis of problem types in

Building Expert Systems (hereafter BES, [51], see Table 5.1) indirectly refers to

a program as an object. Isn’t it really a process? Are procedures objects or

processes? It’s a matter of perspective. Projects and audit plans can be thought

of as both objects and processes. Is a manufacturing assembly line an object or

a process? The idea of a ‘system’ appears to work better than the more

common focus on objects and processes.

By organizing descriptions of problems around the concept of a system, we

can improve upon the distinctions made in BES. As an example of the

difficulties, consider that a situation description is a description of a system.
Sensor data are observables. But what is the difference between INTER-

PRETATION (inferring system behavior from observables) and DIAGNOSIS

(inferring system malfunctions from observables)? Diagnosis, so defined, in-

cludes interpretation. The list appears to deliberately have this progressive

design behind it, as is particularly clear from the last two entries, which are

composites of earlier ‘applications’. In fact, this idea of multiple ‘applications’

to something (student behavior, system behavior) suggests that a simplification

might be found by adopting more uniform terminology. As a second example,

TABLE 5.1. Generic categories of knowledge engineering applications. From

[51], Table 1.1, p. 14

INTERPRETATION Inferring situation descriptions from sensor data

PREDICTION Inferring likely consequences of given situation

DIAGNOSIS Inferring system malfunctions from observables

DESIGN Configuring objects under constraints

PLANNING Designing actions

MONITORING Comparing observations to plan vulnerabilities

DEBUGGING Prescribing remedies for malfunctions

REPAIR Executing a plan to administer a prescribed remedy

INSTRUCTION Diagnosis, debugging, and repairing student behavior

CONTROL Interpreting, predicting, repairing, and monitoring

system behaviors.
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consider that the text of BES says that automatic programming is an example

-of a problem involving planning. How is that different from configuration

under constraints (i.e., design)? Is automatic programming a planning problem

or a design problem? We also talk about experiment design and experiment

planning. Are the two words interchangeable?

We can get clarity by turning things around, thinking about systems and what
can be done to and with them.

5.3. A system-oriented approach

We start by informally defining a system to be a complex of interacting objects

that have some process (I/O) behavior. The following are examples of systems:

—a stereo system,

—a VLSI chip,

~an organ system in the human body,

a a computer program,

- a molecule,

- a university,

—an experimental procedure.

Webster’s defines a system to be “a set or arrangement of things so related

or connected as to form a unity or organic whole." The parts taken together

have some structure. It is useful to think of the unity of the system in terms of

how it behaves. Behavior might be characterized simply in terms of inputs and

outputs.

Figs. 5.1 and 5.2 summarize hierarchically what we can do to or with a system,

revising the BES table. We group operations in terms of those that construct a

system and those that interpret a system, corresponding to what is generally

CONSTRUCT

{synthesis}

SPECIFY DESIGN ASSEI-‘ISLE

{constrain} (manufacture)

{ZCINIIEEUIIE ?LAN MODIFY

(structure) {process} (repair)

‘FIG. 5.1. Generic operations for synthesizing a system.
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IHTERPRET

(analysis)

IDENTIFY PREDICT CONTROL

(recognize) (simulate)

/\
MONITOR DIAGNOSE

{audit} (debug)

{check}

FIG. 5.2. Generic operations for analyzing a system.

called synthesis and anafysis. Common synonyms appear in parentheses below

the generic operations. In what follows, our new terms appear in upper case,

INTERPRET operations concern a working system in some environment. In

particular, IDENTIFY is different from DESIGN in that it requires taking I/0

behavior and mapping it onto a system. If the system has not been described

before, then this is equivalent to (perhaps only partial) design from 1/0 pairs.

PREDICT is the inverse, taking a known system and describing output

behavior for given inputs. (‘Simulate’ is a specific method for making predic-

tions, suggesting that there is a computational model of the system, complete at

some level of detail.) CONTROL, not often associated with heuristic programs,

takes a known system and determines inputs to generate prescribed outputs

[96]. Thus, these three operations, IDENTIFY, PREDICT, and CONTROL,

logically cover the possibilities of problems in which one factor of the set

-{input, output, system} is unknown.

Both MONITOR and DIAGNOSE presuppose a pre-existing system design

against which the behavior of an actual, ‘running’ system is compared. Thus,

one identifies the system with respect to its deviation from a standard. In the

case of MONITOR, one detects discrepancies in behavior (or simply charac-

terizes the current state of the system). In the case of DIAGNOSE, one

explains monitored behavior in terms of discrepancies between the actual

(inferred) design and the standard system.

To carry the analysis further, we compare our proposed terms to those used

in Building Expert Systems:

(1) ‘Interpretation’ is adopted as a generic category that broadly means t0

describe a working system. The most rudimentary form is simply identifying

some unknown system from its behavior. Note that an identification strictly
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speaking involves a specification of constraints under which the system

operates and a design (structure/process model). In practice, our understanding

may not include a full design, let alone the constraints it must satisfy (consider

the metarules of HERACLES (Section 6.1) versus our Vague understanding of why

they are reasonable). Examples of programs that identify systems are:

-DENDRAL2 system: molecular (structure) configuration [16] (given spectrum

' behavior of the molecule).

_— PROSPECTORZ system = geological (formation) configuration [47] (given samples
and geophysics behavior).

—DEBUGGv: system = knowledge (program) configuration of student’s subtrac-

tion facts and procedure [17] (given behavior on a set of subtraction prob-

lems).

(2) ‘Prediction’ is adopted directly. Note that prediction, specifically simula-

tion, may be an important technique underlying all of the other operations

(e.g., using simulation to generate and test possible diagnoses).

(3) ‘Diagnosis’ is adopted directly as a kind of IDENTIFICATION, with

some part of the design characterized as faulty with respect to a preferred
model.

(4) ‘Design’ is taken to be the general operation that embraces both a char-

acterization of structure (CONFIGURATION) and process (PLANNING).

(5) ‘Monitoring" is adopted directly as a kind of IDENTIFICATION, with

system behavior checked against a preferred, expected model.

(6) ‘Debugging’ is dropped, deemed to be equivalent to DIAGNOSIS plus
"MODIFY.

(7) ‘Repair’ is more broadly termed MODIFY; it could be characterized as

transforming a system to effect a redesign, usually prompted by a diagnostic

-description. MODIFY operations are those that change the structure of the

system, for example, editing a program or using drugs (or surgery) to change a

living organism. Thus, MODIFY is a form of ‘reassembly’ given a required

design modification.

(8) The idea of ‘executing a plan’ is moved to the more general term

ASSEMBLE, meaning the physical construction of a system. DESIGN is

conceptual; it describes a system in terms of spatial and temporal interactions

of components. ASSEMBLY is the problem of actually putting the system

-together in the real world. For example, contrast n1's problem with the

problem of having a robot assemble the configuration that R1 designed.

"ASSEMBLY is equivalent to planning at a different level, that of a system that

builds a designed subsystem.

(9) ‘Instruction’ is dropped because it is a composite operation that doesn’t

-apply to every system. In a strict sense, it is equivalent to MODIFY.

0 In addition to the operations already mentioned, we add SPECIFY-

S referring to the separable operation of constraining a system description,
‘I’ generally in terms of interactions with other systems and actual realization in
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the world (resources aflecting components). Of course, in practice design

diificulties may require modifying the specification, just as assembly may
constrain design (commonly called ‘design for manufacturing’).

5.4. Configuration and planning

The distinction between configuration and planning requires some discussion,

We will argue that they are two points of View for the single problem of

designing a system. For example, consider how the problem of devising a

vacation travel plan is equivalent to configuring a complex system consisting of

travel, lodging, restaurant, and entertainment businesses and specifying how

that system will service a particular person or group of people. ‘Configure’

views the task as that of organizing objects into some system that as a

functioning whole will process/transform another (internal) system (its input),

‘Plan’, as used here, turns this around, viewing the problem in terms of how an

entity is transformed by its interactions with another (surrounding) system. Fig_

5.3 illustrates these two points of view.

VLSI design is a paradigmatic example of the ‘configuration’ point of view,

The problem is to piece together physical objects so that their behaviors

interact to produce the desired system behavior.

The ‘planning’ point of view itself can be seen from two perspectives

depending on whether a subsystem or a surrounding global system is being
serviced:

(1) We service some system by moving it around for processing by subsystems

of a surrounding world. Paradigmatic examples are experiment planning (e.g.,

MOLGEN [39, 89]) and shop scheduling (e.g., ISIS [37]). ASSEMBLY always

involves planning of this form, and strictly speaking Stefik‘s MOLGEN solves an

assembly problem, designing a system that physically constructs a DNA/cell

configuration (a pre-designed subsystem). Equivalent examples are errand

Cnnflgurnflon

System
described as

Input interacting —--9 Output
objects 

Planning

Transformation

process described Transformed
fij: system

as Sequence of (output)
operators  

FIG. 5.3. The design problem seen from two perspectives.
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planning [50], vacation, and education plans. Here there is a well-defined

‘object that is transformed by a well-defined sequence of interactions. In

general, we do not care how the surrounding system is modified by these

interactions, except that there are resource constraints affecting planning when

many systems are being serviced.

(2) We specify how a web’-defined object system will service a larger system in

' which it is contained. Servicing is done by “moving the object system around“.

The paradigmatic example is the traveling salesman problem. Most realistic

problems are hybrid because the ‘service subsystem’ is resource limited and

must be ‘restocked’ and ‘refueled’ by the surrounding system. Truckin’, the

game used for teaching LOOPS [90], makes this clear. The traditional traveling

salesman problem takes this form when allowance is made for food or fuel

stops, etc.

While we appear to have laid out three perspectives on design, they are all

computationally equivalent. It's our point of view about purpose and struc-

turedness of interactions that makes it easier to understand a system in one

way rather than another. In particular, in the first form of planning, the

serviced subsystem is getting more organized as a result of its interactions. The

surrounding world is modified in generally entropy-increasing ways as its

resources are depleted. In the second form of planning the serviced world is

getting more organized, while the servicing subsystem depletes its resources.

Without considering the entropy change, there is just a single point‘ of view of a

surrounding system interacting with a contained subsystem.

‘Configuration’ is concerned with the construction of well—structured

systems. In particular, if subsystems correspond to physically-independent

components, design is equivalent to organizing pieces so they spatially fit

together, with flow from input to output ports producing the desired result.

(Note that R] is given some of the pieces, not the functional properties of the

computer system it is configuring. The functional design is implicit in the roster

of pieces it is asked to configure——the customer’s order.) It is a property of any

system that can be described in this way that it is hierarchically decomposable

into modular, locally interacting subsystems—the definition of a well—structured

system. As Simon [86] points out, it is sufficient for design t1'actability for

systems to be ‘nearly decomposable‘, with weak, but non-negligible interactions

among modules.

Now, to merge this with the conception of ‘planning’, consider how an

abstract process can be visualized graphically in terms of a diagram of con-

nected operations. The recent widespread availability of computer graphics has

revolutionized how we visualize systems (processes and computations). Exam-

ples of traditional and more recent attempts to visualize the structure of

processes are:

(1) Fiowcharts. A program is a system. It is defined in terms of a sequence of

. operations for transforming a subsystem, the data structures of the program.
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Subprocedures and sequences of statements are subsystems that are struc-

turally blocked and connected.

(2) Automate theory. Transition diagrams are one way of describing finite

state machines. Petri nets and datafiow graphs are other, related, notations for

describing computational processes (see [88] for discussion).

(3) Actors. A system can be viewed in terms of interacting, independent

agents that pass messages to one another. Emphasis is placed on rigorous, local

specification of behaviors [52]. Object—oriented programming [43] is in general

an attempt to characterize systems in terms of a configuration, centering

descriptions on objects that are pieced together, as opposed to centering on
data transformations.

(4) Thinglab. Borning [9] emphasized the use of multiple, graphic views for

depicting a dynamic simulation of mutually constrained components of a

system. Borning mentions the advantages of visual experimentation for under-

standing complex system interactions.

(5) Rocky’s boots. In this personal computer gameg, icons are configured to

define a program, such as a sorting routine that operates on a conveyor belt.

Movement icons permit automata to move around and interact with each

other, thus describing ‘planning’ (how systems will interact) from a ‘configura-

tion‘ (combination of primitive structures) point of view.

(6) FLIPP displays. Decision rules can be displayed in analog form as

connected boxes that are interpreted by top-down traversal (see Fig. 5.4).

Subproblems can be visually ‘chunked’; logical reasoning can be visualized in

terms of adjacency, blocking, alternative routes, etc. Characteristic of analog

representations, such displays are economical, facilitating encoding and per-

ception of interactions [60].

('7) Streams. The structure of procedures can be made clearer by describing

them in terms of the signals that flow from one stage in a process to another

[1]. Instead of modeling procedures in terms of time-varying objects (variables,

see ‘planning’ in Fig. 5.3), we can describe procedures in terms of time—

invariant streams. For example, a program might be characterized as

ENUMERATE + FILTER + MAP + ACCUMULATE,

 
FIG. 5.4. Simple FLIPP display, encoding rules A-5 B, A—>C, and D—r C. (From [29].]

9The Learning Company, Menlo Park, CA.



I-IEURISTIC CLASSIFICATION 321

a configuration of connected subprocesses. Stream descriptions, inspired by

' signal processing diagrams, allow a programmer to visualize processes in a

succinct way that reveals the structural similarity of programs.

These examples suggest that we have not routinely viewed ‘planning’ prob-

lems in terms of system ‘configuration’ because we have not had adequate

notations for visualizing interactions. In particular, we have lacked tools for

’ graphically displaying hierarchical interactions and movement of subsystems

through a containing system. Certainly a large part of the problem is that

interactions can be opportunistic, so the control strategy that affects servicing (in

either form of planning) is not specifiable as a fixed sequence of interactions.

The inability to graphically illustrate Flexible strategies was one limitation of

the original Actors formalism [52]. On the other hand, control strategies

themselves may be specifiable as a hierarchy of processes, even though they are

complex and allow for opportunism. The representation of procedures in

HERACLES (Section 6.1) as layered rule sets (corresponding to tasks) (with both

data-directed reasoning encoded as a separate set of tasks and inherited

‘interrupt" conditions) is an example of a well-structured encoding of an

opportunistic strategy. More generally, strategy might be graphically visualized as

layers of object-level operations and agenda—processing operations.

In general, a configuration point of view is impossible when physical or

planning structures are unstable, with many global interactions [52]. It is

difficult or impossible to plan in such a world; this suggests that most practical

planning problems can be characterized in terms of configuration. It is interes-

ting to note that replacing state descriptions (configurations) with process

descriptions has played an important role in scientific understanding of the

origins of systems [86]. As illustrated by the examples of this section, to

understand these processes, we return to a configu1'ation description, but now

at the level of the structure of the process instead of the system it constructs or

interprets.

5.5. Combinations of system problems

Given the above categorization of construction and interpretation problems, it

is striking that the expert systems tend to solve a sequence of problems pertaining

to a given system in the world. Two sequences that commonly occur are:

(a) The construction cycle: SPECIFY+ DESIGN {+ ASSEMBLE}.

An example is R1 with its order processing front-end, XSEL. Broadly speaking,

selecting a book for someone in GRUNDY is single-step planning; the person is

‘serviced’ by the book. Other examples are selecting a wine or a class to attend.

The common sequence of terms in business, ‘plan and schedule‘, are here

named SPECIFY (objectives) and PLAN (activities).

(b) The maintenance cycle: {MONITOR+PREDICT+} DIAGNOSE+
MODIFY.
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This is the familiar pattern of medical programs, such as MYCIN. The sequence

- of MONITOR and PREDICT is commonly called test (repeatedly observing
system behavior on input selected to verify output predictions). MODIFY is

also called therapy.

This brings us back to the BES table (Table 5.1), which characterizes

INSTRUCTION and CONTROL as a sequence of primitive system opera-

tions. We can Characterize the expert systems we have studied as such

sequences of operations:

MYCIN = MONITOR (patient state)

+ DIAGNOSE (disease category) + IDENTIFY

(bacteria) 4» MODIFY (body system or organism)

GRUNDY = IDENTIFY (person type) + PLAN (reading plan)

sacorv = IDENTIFY (structure type)

+ PREDICT (approximate numeric model)

+ IDENTIFY (classes of analysis for refined prediction)

SOPHIE = MONITOR (circuit state)

+ DIAGNOSE (faulty module/component)

When a problem solver uses heuristic classification for multiple steps, as in

GRUNDY, we say that the problem-solving method is sequential‘ heuristic

ciassification. Solutions for a given classification (e.g., stereotypes of people)

become data for the next classification step. Note that MYCIN does not strictly

do sequential classification because it does not have a well-developed

classification of patient types, though this is a reasonable model of how human

physicians reason. However, it seems fair to say that MYCIN does perform a

monitoring operation in that it requests specific information about a patient to

characterize his state; this is clearer in NEOMYCIN and CASNET where there are

many explicit, intermediate patient state descriptions. On the other hand,

SOPHIE provides a better example of monitoring because it interprets global

behavior, attempting to detect faulty components by comparison with a stan—

dard, correct model (discrepancies are violated assumptions).

It should be noted that how a problem is characterized in system terms may

depend on our purpose, what ‘problem’ we are attempting to solve in doing the

system analysis or in building an expert system. For example, the OCEAN

program (a product of Teknowledge, Inc.) checks configurations of computer

systems. From a broad perspective, it is performing a MONITOR operation of

the system that includes the human designer. Thus, 0CEAN’s inputs are the

constraints that a designer should satisfy, plus the output of his designing

process. However, unlike psauoor, we are not interested in understanding and

correcting the designer’s reasoning. Our purpose is to determine whether the

computer system design meets certain specification constraints (e.g., power and
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_ space limitations) and to make monor corrections to the design. Thus, it seems

more straightforward to say that OCEAN is doing a CONFIGURATION task, and

we have given it a possible solution to greatly constrain its search.

Finally, for completeness, we note that robotics research is concerned chiefly

with ASSEMBLY. Robotics is also converting CONTROL of systems from a

_ purely numeric to a symbolic processing task. PREDICT in systems analysis

has also traditionally involved numeric models. However, progress in the area of

qualitative reasoning (also called mental models) [6] has made this another

application for heuristic programming. Speech understanding is a strange case

of identifying a system interaction between two speakers, attempting to

characterize its output given a partial description (at the level of sounds) and

environmental input (contextual) information.

Heuristic classification is particularly well—suited for problems of inter-

pretation involving a system that is known to the problem solver. In this case,

the problem solver can select from a set of systems he knows about (IDEN-

TIFY), known system states (MONITOR), known system faults (DIAGNOSE),

or known system behaviors (PREDICT/CONTROL). The heuristic

classification method relies on experiential knowledge of systems and their

behaviors. In contrast, constructing a new system requires construction of new

structures (new materials or new organizations of materials). Nevertheless, we

intuitively believe that experienced problem solvers construct new systems by

modifying known systems. This confluence of classification and constructive

problem solving is another important area for research.

Another connection the reader may have noticed: We made progress in

understanding what expert systems do by describing them in terms of in-

ference-structure diagrams. This vividly demonstrates the point made about

streams, that it is highly advantageous to describe systems in terms of their

configuration, structurally, providing dimensions for comparison. Gentner

points out [42], that structural descriptions lie at the heart of analogy for-

mation. A structural map of systems reveals similar relations among com-

ponents, even though the components and/or their attributes may differ. This

idea has been so important in research in the humanities during this century

that it has been characterized as a movement with a distinct methodology,

termed structuralism [31]. The quotation by Bruner at the front of this paper

describing the advantage of classification for a problem solver, applies equally

well to the knowledge engineer.

6. Inference Strategies for Heuristic Classification

The arrows in inference-structure diagrams indicate the flow of inference, from

data to conclusions. However, the actual order in which assertions are made is

often not strictly left to right, from data to conclusions. The process, most

generally called Search or inference control has several aspects in heuristic
classification:
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—_How does the problem solver get data? Is it supplied or must it be requested?

—If data is requested, how does the problem solver order his requests? (Called

a quesrion—asking strategy.)

—Does the problem solver focus on alternative solutions, requesting data on
this basis?

— When new data is received, how is it used to make inferences?

—If there are choices to be made, alternative inference paths, how does the

- problem solver select which to attempt or which to believe?

In this section we first survey some well-known issues of focusing including
data gathering, hypothesis testing, and data-directed inference. In this context,

we introduce the HERACLES program, which is designed to solve problems by
heuristic classification, and discuss its inference strategies. After this, we

consider a kind of heuristic classification, termed causal-process classification,

in order to understand the problem of choosing among inference paths. The

discussion finally serves as a bridge to a consideration of non-classification or

what we call constructive problem solving.

6.1. Focusing in heuristic classification

Focusing concerns what inferences the problem solver makes given new in-

formation or what inferences he attempts to make towards finding a solution.

The idea of a ‘triggering’ relation between data and solutions is pivotal in

almost all descriptions of heuristic classification inference (sec [3, 8'1, 93]). It is

called a constrictor by Pople in recognition of how it sharply narrows the set of

possible solutions [76]. We say that “a datum triggers a solution" if the prob-

lem solver immediately thinks about that solution upon finding out about the

datum. However, the assertion may be conditional (leading to an immediate

request for more data) and is always context-dependent (though the context is

rarely specified in our restricted-domain programs) [23]. A typical trigger

relation (from NEOMYCIN) is “Headache and red painful eye suggests glaucorna"—

red, painful eye will trigger consideration of headache and thus glaucoma, but

headache alone will not trigger this association. In PIP [75], there is a two-stage

process in which possible triggers are first brought into working memory by

association with solutions already under consideration. In general, specificiIy—-

the fact that a datum is frequently associated with just a few solutions-

determines if a datum triggers a solution concept (“brings it to mind”) in the

course of solving a problem.

Triggers allow Search to non-exhaustively combine reasoning forwards from

data and backwards from solutions. Simple classification is constrained to be

hierarchically top-down or directly bottom up from known data, but heuristic

triggers make search opportunistic. Briefly, a given heuristic classification

network of data and solution hierarchies might be interpreted in three ways:

(1) Data-directed search: The program works forwards from data to ab-
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_stractions, matching solutions until all possible (or non-redundant) inferences
have been made.

(2) Solution- or hyp0thesis~a.’irected search: The program works backwards

from solutions, collecting evidence to support them, working backwards

through the heuristic relations to the data abstractions and required data to

solve the problem. If solutions are hierarchically organized, then categories are

considered before direct features of more specific solutions.

(3) Opportunistic search: The program combines data and hypothesis-direo

ted reasoning [50]. Data abstraction rules tend to be applied immediately as
data become available. Heuristic rules trigger hypotheses, followed by a

focused, hypothesis-directed search. New data may cause refocusing. By

reasoning about solution classes, search need not be exhaustive.

Data- and hyp0thesis—directed search are not to be confused with the

implementation terms ‘forward’ or ‘backward chaining’. R1 provides a superb

example of how different the implementation and knowledge—Ievel descriptions

can be. Its rules are interpreted by forward chaining, but it does a form of

hypothesis—directed search, systematically setting up subproblems by a fixed

procedure that focuses reasoning on spatial subcomponents of a solution [63].

The degree to which search is focused depends on the level of indexing in the

implementation and how it is exploited. For example, MYC1N’s ‘goals’ are solution

classes (e.g., types of bacterial meningitis), but selection of rules for specific

solution (e.g. E.coIi meningitis) is unordered. Thus, Mvc1N’s search within each

class is unfocused [22]. Generalized heuristics, of the form “data class implies

solution class” (e.g., “compromised host implies gram—negative rods” or “flowers

imply underlying rocks”) make it possible to focus Search on useful heuristics in

both directions (e.g., if looking for serpentine rock, recall that flowers identify

rocks; if describing area and see flowers, recall that flowers identify rocks).m

Opportunistic reasoning requires that at least some heuristics be indexed so

that they can be applied in either direction, particularly so new data and

hypothesized solutions can be related to previously considered data and

solutions. The HERACLES program (Heuristic Classification Shell, the general-

ization of NEOMYCIN) cross-indexes data and solutions in several ways that were

not available in EMYCIN. HERACLES’ inference procedure consists of 75 metarules

comprising 40 reasoning tasks [23]. Focusing strategies include:

— working upwards in type hierarchies before gathering evidence for subtypes;

"' How human knowledge is indexed plays a major role in knowledge acquisition dialogues. The

heuristic-classification model suggests that it may be eflicient to proceed from data classes. asking
the expert for associated solution classes. But it may be clifiicult to enumerate data classes. Instead,

the expert might find it easier to work backwards from solutions (e.g., book categories) and then

use a generate and test method to scan data prototypes (e.g., people stereotypes) for a match.

Knowledge acquisition for heuristic classification is briefly considered in [24]. See also the
discussion of ETS in Section -10.
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—discriminating hypotheses on the basis of their descriptions as processes;

—ri1aking inferences that relate a new hypothesis to previously received data;
—seeking general classes of data before subclasses; and

— testing hypotheses by first seeking triggering data and necessary causes.

In HERACLES, the operators for making deductions are abstract, each

represented by a set of metarules, corresponding to a procedure or alternative

methods for accomplishing a task. Such a representation makes the explicit the

inference control that is implicit in MvC1N’s rules [22]. As an example, Fig. 6.1

illustrates how NEoMYCIN’s abstract operators use backward deduction to

confirm a hypothesized solution. (The program attempts to test the hypothesis

TB by applying a domain rule mentioning ocular nerve dysfunction; to find this

out, the program attempts to rule it out categorically, discovering that there is a

CNS problem, but there are not focalsigns; consequently, the domain rule

fails.)

As a second example, the following are some of the forward-deductive

data-interpretation operators that HERACLES uses to relate a new datum to
known solutions.

—- Finding out more specific information so that a datum can be usefully related

to hypotheses (e.g., given that the patient has a headache, finding out the

duration and location of the headache).

—Making deductions that use the new datum to confirm ‘active’ solutions

(those previously considered, their taxonomic ancestors, and immediate

siblings), sometimes called ‘focused forward-reasoning’.

—Triggering possible solutions (restricted to abnormal findings that must be

explained or ‘non-specific’ findings not already explained by active solutions).

4 Fmnour 6 ASSERT was
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FIG. 6.]. Backward deduction in NEDMYCIN to contirrn a solution.
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In general, the rationale for an inference procedure might be very complex.

‘A study of HERACLES’ inference procedure reveals four broad categories of
constraints:

—mathematical (e.g., efficiency advantages of hierarchical search),

—sociological (e.g., cost for acquiring data),

—cognitive (e.g., computational resources), and

'—problem expectations (e.g., characteristics of typical problems).

These are discussed in some detail in [23]. Representing inference pro-

cedures so they can be explained and easily modified is currently an important

research topic (e.g., see [21, 39, 68]). Making the assumptions behind these

procedures explicit so they can be reasoned about the dynamically modified is a

challenging issue that AI is just beginning to consider.

In its inference procedure representation, HERACLES brings together the

advantages of rule and frame representations. The ‘frame’ paradigm advocates

the point of view that domain concepts can be represented as hierarchies,‘

separated from the inference procedure—an essential point on which the

generality of the heuristic classification model depends. On the other hand, the

‘rule’ paradigm demonstrates that much of the useful problem-solving know-

ledge is in non-hierarchical associations, and that there are clear engineering

benefits for procedures to be encoded explicitly, as well-indexed conditional

actions. In HERACLES domain concepts are hierarchically related; domain rules

represent heuristic, non-hierarchical associations; and metarules represent an

inference procedure that interprets the domain knowledge, solving problems by

heuristic classification. The architecture of HERACLES, with details about the

encoding of metarules in MRS [41], the metarule compiler, and explanation

program are described in [26].

6.2. Causal-process classification

A generic form of heuristic classification, commonly used for solving diagnostic

problems, is causal-process classification. Data are generally observed mal-

functions of some device, and soiutions are abnormal processes causing the

observed symptoms. We say that the inferred model of the device, the

diagnosis, explains the symptoms. In general, there may be multiple causal

explanations for a given set of symptoms, requiring an inference strategy that

does not realize every possible association, but must reason about aiternative

chains of inference. In the worst case, even though diagnostic solutions are

pre-enumerated (by definition), assertions might be taken back, so reasoning is

non-monotonic. However, the most well—known programs that solve diagnostic

problems by causal-process classification are monotonic, dealing with alter»

native lines of reasoning by assigning weights to the paths. Indeed, many

programs do not even compare alternative explanations, but simply list all

solutions, rank—ordered_.
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In this section, we will study sopnns in more detail (which reasons non-

monotonically, using assumption-based belief maintenance), and compare it to

casner [99] (which compares alternative chains of inference without explaining
contradictions), and NEOMYCIN [27] (which reasons exhaustively, using certainty
factors to rank alternative inference chains). In these programs, solutions are

pre-enumerated, but paths to them must be constructed. Our study serves

several purposes: (1) to use the heuristic classification model to relate elec-

_tronic and medical diagnosis, revealing that medical programs are generally
trying to solve a broader problem; (2) to describe alternative heuristic

classification inference strategies; and (3) to distinguish between classification

and constructive problem solving.

6.2.1. Electronic and medical diagnosis compared

In SOPHIE, valid and abnormal device states are exhaustively enumerated, can

be directly confirrned, and are causally related to component failures. None of

this is generally possible in medical diagnosis, nor is diagnosis in terms of

component failures alone sufficient for selecting therapy. Medical programs

that deal with multiple disease processes (unlike MYCIN) do reason about

abnormal states (called parhophysiologic states, e.g., “increased pressure in the

brain"), directly analogous to the abnormal states in sopms. But curing an

illness generally involves determining the cause of the component failure.

These ‘final causes’ (called diseases, syndromes, etiologies) are processes that

affect the normal functioning of the body (e.g., trauma, infection, toxic

exposure, psychological disorder). Thus, medical diagnosis more closely

resembles the task of computer system diagnosis in considering how the body

relates to its environment [56]. In short, there are two problems: First to

explain symptoms in terms of abnormal internal states, and second to explain

this behavior in terms of external influences (as well as congenital and

degenerative component flaws). This is the inference strucsture of programs

like CASNET and NEOMYCIN (Fig. 6.2).

A network of pathophysiologic states causally relates data to diseases. States

are linked to states, which are then linked to deseases in a classification

hierarchy. Diseases may also be non—hierarchically linked by heuristics (“X is a

complication of Y” [93]). The causal relations in these programs are heuristic

because they assume certain physiologic structure and behavior, which is often

poorly understood and not represented. In contrast with pathophysiologic states,

diseases are abstractions of_processes—causal stories with agents, locations, and

sequences of events. Disease networks are organized by these process features

(e.g., an organ system taxonomy organizes diseases by location). A more

general term for disease is disorder stereotype. In process control problems, such

as chemical manufacturing, the most general disorder stereotypes correspond

to stages in a process (e.g., mixing, chemical reaction, filtering, packaging).

Subtypes correspond to _what can go wrong at each stage [23].
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FIG. 6.2. Inference structure of causal-process classification.

Structure/function models are often touted as being more general by doing

away with ‘ad hoc symptom-fault rules’ [40]. But programs that make a single

fault assumption, such as DART, select a diagnosis from a pre-enumerated list, in

this case negations of device descriptions, e.g., (NOT (XORG X1)), “X1 is not

an exclusive—or gate“. However, a structure/function model makes it possible

to construct rests (see Section 7). Note that it is not generally possible to

construct structure/function models for the human body, and is currently even

impractical for the circuit SOPHIE diagnoses (IP-28 power supply).

To summarize, a knowledge-level analysis reveals that medical and electronic

diagnosis programs are not all trying to solve the same kind of problem.

Examining the nature of solutions, we see that in an electronic circuit diagnosis

program like SOPHIE solutions are component flaws. Medical diagnosis pro-

grams like CASNET attempt a second step, causal-process classification, which is

to explain abnormal states and flaws in terms of processes external to the

device or developmental processes affecting its structure. It is this experien—

tial knowIedge—what can affect the device in the w0rld—that is captured in

disease stereotypes. This knowledge cannot simply be replaced by a model of

device structure and function, which is concerned with a different level of

analysis.

The heuristic classification model and our specific study of causal-process

classification programs significantly clarifies what NEOMYCIN knows and does,

and how it might be improved:

(1) diseases are processes affecting device structure and function;

(2) disease knowledge takes the form of schemas;

(3) device history schemas (classes of patients) are distinct from diseases;

(4) pathophysiologic states are malfunctioning module behaviors.

Furthermore, it is now clear that the original (bacteremia) MYCIN system does

a combination of heuristic classification (using patient information to classify

cultures as contaminated or significant) and simple classification (matching

features of organisms, such as Gram stain and morphology). The meningitis

knowledge base is more complex because it can infer the organism class

heuristically, from patient abstractions, without having a culture result. NEOMY»



330 W.J. CLANCEY

cm goes a step further by dealing with drflerent processes (infectious, trauma,
‘psychogenic, etc.) and reasoning backwards from internal descriptions of

current system states (e.g., brain-mass-lesion) to determine original causes

(etiologies).

An important idea here is that medical diagnostic programs should separate

descriptions of people from descriptions of diseases heuristically associated

with them. Triggers should suggest patient types, just as they select diseases,

_ Thus, medical diagnostic reasoning, when it takes the form of heuristic

classification, is analogous to the problem—soIving stages of GRUNDY, the expert
librarian.

6.2.2. Inference control for coherency

As mentioned above, programs differ in whether they treat pathophysiologic

states as independent solutions (NEOMYCIN) or find the causal path that best

accounts for the data (CASNET). If problem features interact, so that one datum

causes another (D1—rD2 in Fig. 6.3), then paths of inference cannot be

correctly considered independently. The second feature explains the first, so

classifications (alternative explanations) of the former can be omitted; there is a

‘deeper cause‘ (C2 dominates C'l). This presumes a single fault, an assumption

common to programs that solve problems by heuristic classification. CASNET

uses a more comprehensive approach of finding the path with the greatest

number of confirmed states and no denied states. The path describes a causal

process, with an etiology or ultimate cause at the head and the path of states

linking the etiology to the findings serving as a causal explanation of the

findings.

In the simplest ruie—based systems, such as MYCIN, search is exhaustive and

alternative reasoning paths are compared by numerical belief propagation (e.g.,

certainty factors). For example, Fig. 6.4 shows that a datum, D1, is explained

by two processes, C1 and C2. MYCIN and NEOMYCIN would make all three

inferences, using certainty factor combination to determine which of Cl and C2

is more likely.

A more complicated approach involves detecting that one reasoning path is

subsumed by another, such as the conflict-resolution strategy of ordering

production rules according to specificity. HERACLES/NEOMYC‘lN’S treatment of

C1 C2

00 -—3b-o1 —-——%o2

FIG. 6.3. Interacting data in classification.
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Ct C2

D1 D2

_ FIG. 6.4. Multiple explanations for a datum.

non~specific and ‘red-flag’ triggers is similar. In this case, assuming that D'l is a

non-specific finding (associated with many disorders and may not need to be

explained) and D2 is a red-flag finding (a serious symptom that must be

explained) that triggered C2, NEOMYCIN will not make the inference relating D1

to C1 because D1 is already explained by C2. Therefore, C1 will not be added

to the list of possible solutions.

After finding some single classification that accounts for the most data, a

residue of unexplained findings may remain. The approach used in CASNET and

INTERNIST is to remove the explained data and simply begin another cycle of

classification to explain what remains. In our example, both D1 and D2 would

be explained by C2, so nothing would remain.

To summarize, when there are multiple causal links for classifying data—

multiple explanations—inference must be controlled to avoid redundancy,

namely multiple explanations where one would have been sufficient. The aim is

to produce a coherent model that is complete (accounting for the most data)

and simple (involving one fault process, if possible). In contrast with the idea of

focussing discussed earlier, coherency places constraints on the sum total of

inferences that have been made, not just the order in which they are made.

Of course, for an explanation based on a pathophysiological network to be

coherent, it is necessary that inferences be consistent. For example, if D1 and

D2 are contradictory, the network shown in Fig. 6.4 will not produce consistent

explanations. (C2 would depend on contradictory facts.) Presumably the

knowledge engineer has ensured that all paths are consistent and that con-

tradictory alternatives are explicit (e.g., by introducing (NOT D1) to the path

including D2).

An ideal way to avoid these problems is to perform the diagnosis using a

model of a correctly working device, in contrast with a network of pathophysi0-

logical states. This is the method used by SOPHIE. A consistent interpretation

includes the observed data and assumptions about the operation of circuit

components. A fault is detected by making inferences about circuit behavior in

the case at hand until a contradiction is found. Specifically, SOPHIE uses

assumption-based belief maintenance to detect faults. It propagates constraints

(describing device behavior), records assumptions (about correct behavior of

components and modules) upon which inferences are based, explains con-



332 W.J. CLANCEY

tradictory inferences in terms of violated assumptions, and makes measure-

" ments to narrow down the set of possible violated assumptions to a single fault,

Making assumptions explicit and reasoning about them ensures coherency,

rather than relying on its implicit and ad hot: encoding in the design of a state
network.

6.2.3. Multiple solutions and levels of detail

The first step beyond selecting single pre-enumerated faults is to dynamically
construct sets of alternative faults, as proposed for canuceus [76]. Each set of

faults consistutes a differential diagnosis or set of alternative diagnoses. Each

diagnosis consists of one or more faults. A diagnosis of multiple faults is

constructed by operators that combine disorders in terms of subtype and cause,

For example, referring to Fig. 6.4, one differential diagnosis would include C1

& C2; another would include C2, but not C1.

The next more complicated approach allows for interactions among dis-

orders, as in ABEL [73]. Interaction can take the form of masking or subtracting

(quantitative) effects, summation of effects, or superimposition with neither

subtraction nor summation. These interactions are predicted and explained in

ABEL by finding a state network, including normal states, that is consistent on

multiple levels of detail. Combinatorial problems, as well as elegance, argue

against pre—enumerating such networks, so solutions must be constructed. Each

diagnostic hypothesis is a separately constructed case-specific model—the links

describing the individual case do not all pre—exist in the knowledge base.

A simple way of comparing this kind of reasoning to what occurs in

classification is to consider how concepts are instantiated and related in the two

approaches. In a program like MYCIN, there are case-specific instances, but they

are only the most general concepts in the knowledge base——the patient,

laboratory cultures, organisms, and drugs. Links among these instances (or

individuals), constituting the ‘context tree’, are dynamically created (albeit

given as data) to form a case-specific model. In contrast, in ABEL case-specific,

constructed descriptions are also at the level of individual disorders and their

causes-—disease components are instantiated and linked together in novel ways

(thus allowing for interaction among diseases).

6.2.4. Constructing implication paths vs. constructing solutions

If all programs construct inference paths, aren’t they all solving problems by

construction of solutions? At issue is a point of View about what is a solution.

In NEOMYCIN, CASNET, and SOPHIE, the solutions are single faults, pre-

enumerated. Reasoning about inference paths is a mechanismfor selecting these

solutions. While an inference path through the causal network of CASNET or

NEOMYCIN is a disease process description, it is only a linear path, no different

from a chain of implication in MYCIN. While links represent subtype and cause,

they are interpreted in a uniform way for propagating weights. We conclude
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that if there is only one operator for building inference paths, the program is

‘not constructing a solution, but is only selecting the nodes at the end points of

its reasoning chains. All of the programs we characterize as doing constructive

problem solving either have a generator for solutions or must choose among

multiple operators for constructing a solution. The solutions aren’t explicitly

enumerated, so there can be no pre—existing links for mapping problem descrip-

tions to solutions directly. In ABEL and CADUCEUS, solutions are descriptions of

_ disease processes, constructed by operators for incrementally elaborating and

aggregating solution components, which is more than just propagating belief

(what we commonly call implication’). The constructed solution is not simply

an inference path from data to solution, but a configuration of primitive

solution components; these programs configure disease descriptions, they do not

select them directly.

It should now be abundantly clear that it is incorrect to say that diagnosis is a

‘classification problem’. As Pople concluded in analyzing the inadequacies of

lNTERNlS'l', only routine medical diagnosis problems can be solved by

classification [76]. When there are multiple diseases, there are too many

possible combinations for the problem solver to have considered them all

before. The problem solver must construct a consistent network of interacting

diseases to explain the symptoms. The problem solver formulates a solution; he

doesn’t just make yes-no decisions from a set of fixed alternatives. For this

reason, Pople calls non-routine medical diagnosis an ill-structured problem

[87], though it may be more appropriate to reserve this term for the theory

formation task of the physician-scientist who is defining new diseases. To make

the point most boldly: for GRUNDY, the librarian, to satisfy a reader by

constructing a solution, would have to write a new book.

7. Constructive Problem Solving, an Introduction

In a study of problem solving, Greene and Simon characterize kinds of

problems in terms of the constraints imposed on the problem solver.

In a transformation problem such as the Tower of Hanoi, or finding

a proof for a theorem, the goal is a specific [given] arrangement of

the problem objects, such as a specific location for all of the disks in

the Tower of Hanoi, or a specific expression to be proved in logic.

Thus, the question is not what to construct, as it is in a problem of

design, but how the goal can be constructed with the limited set of

operators available. . . . [45]

While different tasks do impose different constraints on the problem solver,

we have argued that experimental knowledge allows a ‘design’ problem to be

solved as if it were a ‘transformation’ problem. For while design problems may

' not generally provide the problem solver with a specific solution to attain, he
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may from experience know of a solution that will work. In heuristic

‘classification the solution space is known to the problem solver as a set of

explicit alternatives, and problem solving takes the form of ‘proving’ that one

of them is best or acceptable.”

For example, in diagnostic programs that assume a single fault, such as

NEOMYCIN, CASNET, SOPHIE, and DART, the inference process is equivalent to

finding the most specific and most likely theorem (solution) that can be proved

correct. Thus, the spectrum of problem-solving etlort and methodology is

aligned at least as much with experience as with the nature of the task. Amare]

makes this point in distinguishing between ‘derivation’ and ‘formation’ prob-

lems [4], emphasizing that experience provides knowledge for mapping prob-

lem conditions to solutions. Thus, experience moves tasks for a given problem

solver to the ‘derivation’ end of the spectrum—heuristic classification.

Often problems of DESIGN and DIAGNOSIS are not amenable to solution

by heuristic classification because possible final ‘states’ cannot be practically

enumerated, exhaustively learned (from experience or direct teaching), or for

some reason a previously used solution is just not acceptable; solutions must be

constructed rather than selected. However, even when solutions are con-

structed, classification might play a role, for example, in planning the problem-

solving process or in selecting the pieces to be configured.
The essential differences between heuristic construction and classification are

the need for some ‘data structure’ to post the assembled solution and operators

for proposing and reasoning about solution fragments [34]. In classification,

triggers focus the search, but may not be necessary; controlled forward-

deduction from given data and hierarchical Search in the set of fixed solutions

may be sufiicient. In construction, triggers may be essential, as well as know-

ledge about how parts of a solution fit together.

The following are some examples of heuristic construction operators:

(1) In HASP, the ocean surveillance signal interpretation system [70], one

operator attaches a new line segment (from the input sensor) to a previous line

that was last heard less than thirty minutes ago (with a certainty of 0.5), thus

extending the model of the location of a particular vessel.

(2) ABEL has six ‘structure building‘ operators, including projection (to hypo-

thesize associated findings and diseases suggested by states in the case—specific

model) and causal elaboration (to determine causal relations between states at

a detailed level, based on causal relations between states at the next aggregate

level) [74].

(3) AM has operators for proposing (syntactic) structural modifications to

" In adopting the heuristic classification model as a psychological theory, we must he more careful
about this issue of explicitness. Human memory has properties different from knowledge base

representations, so there is a difference between ‘explicitly known now‘ and ‘previously known’. In

practice, remembering a previous solution may require reconstruction, and hence some elements of

constructive problem solving.
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iiconcepts. For example, a concept is generalized by deleting a conjunction in its
'§ characteristic function definition in LISP [58]. One lesson of EURISKO is that
l complex concept formation requires a more extensive set of operators (defined

l. in terms of conceptual relations, or as Lenat puts it, “slots for describing
l‘ heuristics”).

(4) MOLGEN [89] has both assembly~design operators and laboratory-domain
H operators. PROPOSE-OPERATOR is a design operator that proposes a
‘ laboratory operator that will reduce differences between the goal and current

lstate, extending the plan forward in time. It is “responsible for linking new
glaboratory steps correctly to the neighboring laboratory steps and goals.”
5 There are four kinds of physical, structure-modifying laboratory operators:

merge, amplify, react, and sort.

I (5) In DART, diagnosis is done by classification (and the use of the proof

method is made explicit in the program description), but testing the circuit to

; gather more information (MONITOR) is done by construction. The abstract
'|. operator (IF (AND a1 am Ob) THEN (OR (NOT P1) (NOT Pn))) serves

/I as a template for generating test, where the ai are achievable settings or
structure changes, Ob is one or more observations to be made, and the Pi are

lassumptions about correct device structure or function. Thus, a particular
J device setting and observations will confirm that one or more assumptions are

violated, narrowing down the set of possible faults (similar to SOPHIE). Note that

the heuristics used in DART are general search strategies used to control the

deductive process, not domain—specific links. DART has heuristics and uses

H classification (for diagnosis), but it does not do heuristic classification, in the
form we have described it. Specifically, it lacks experiential, schema knowledge

for classifying device states and describing typical disorders.

; (6) MvC1N‘s antibiotic therapy program [25] generates combinations of drugs
from ‘instructions’ that abstractly describe how the number of drugs and their

: preference are related. These generator instructions can be viewed as operators

(or a grammar) for constructing syntactically correct solutions.

To summarize the alternative means of computing solutions we have seen:

(1) Solutions might be selected from a pre-enumerated set, by classification.

, (2) Solutions may be generated whole, as in DENDRAL and Mvcnsfs therapy

i, program.

(3) Solutions may be assembled from primitives, incrementally, as in HASP.

As Simon indicates [86], these methods can be combined, sequentially or

' hierarchically (as in hierarchical planning), with perhaps alternative decom-

_: positions for a single system.

8. Relating Tools, Methods, and Tasks

ll In our discussion we have emphasized the question, “What is the method for
computing a solution?” We have made a distinction between data and solution
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in order to Clarify the large-scale computational issues of constructing a l
solution versus selecting it from a known set. The logical next step is to relate

what we have learned about conceptual structures, systems problems, and the

classification/construction distinction to the tools available for building expert

systems. Conventionally, the thing to do at this point would be to provide a big
table relating tools and features. These can be found in many books (e.g., [46])_
The new analysis we can provide here is to ask which tool features are useful

for heuristic classification and which are useful for constructive problem

solving.

While simple rule-based languages like EMYCIN omit knowledge-level dis-

tinctions we have found to be important, particularly schema hierarchies, they
have nevertheless provided an extremely successful programming framework

for solving problems by classification. Working backwards (backchaining) from

a pre-enumerated set of solutions guarantees that only the relevant rules are

tried and useful data considered. Moreover, the program designer is

encouraged to use means-ends analysis, a clear framework for organizing rule

writing. EZMYCIN and other simple rule-based systems are appropriate for solving
problems by heuristic classification because inference chains are short (com-

monly five or fewer steps between raw data and solution), and each new rule

can be easily viewed as adding a link in the mapping between data (or some

intermediate abstraction) and solutions.

With the advent of more complex knowledge representations, such as

KL-ONE, it is unclear whether advantages for explicit representation will be

outweighed by the difficulty of learning to use these languages correctly. The

analysis needed for identification of classes and relations and proper adherence

to representational conventions might require considerable experience, or even

unusual analytical abilities (recall the analysis of concepts in Section 4.5).

Recent research indicates that it might be difiicult or practically impossible to

design a language for conceptual structures that can be unambiguously and

consistently used by knowledge engineers [11]. Just as the rule notation was

‘abused’ in MYCIN by ordering rule clauses to encode hierarchical and pro-

cedural knowledge, users of KL.-ONE implicitly encode knowledge in structural

properties of concept hierarchies, relying on the effect of the interpreter to

make correct inferences. Brachman, et al. propose a model of knowledge

representation competence, in which a program is told what is true and what it

should do, and left to encode the knowledge according to its own conventions

to bring about the correct reasoning performance.”

“See [59] for details. In apparent conflict with our use of inference diagrams to describe what a

heuristic-classification problem solver knows, Levesque says. “There is nothing to say about the

structure of these abstract bodies of knowledge called knowledge bases." One way of resolving this

is to say that knowledge content has structure, but knowledge-level specification is not about

structures in the agent (problernsolver). This is supported by Newcll‘s remark. “Relationships exist



to encode a heuristic classification problem solver have now been identified, no

knowledge engineering tool today combines these capabilities in a complete

package. Perhaps the best system for classification we could imagine might be a

combination of KL-ONE (so that conceptual relations are explicit and to provide

automatic categorization of concepts [85]), HERACLES (so that the inference

procedure is explicit, well-structured, and independent of domain knowledge

representation), and SHRINK [54] (to provide automatic refinement of

classifications through problem-solving experience). In this respect, it should be
noted there is some confusion about the nature of heuristic classification in

some recent commercial tools on the market. Close inspection reveals that they

- are capable of only simple classification, lacking structures for data abstraction,

as well as a means to separate definitional features from heuristic associations

between concepts [46].

. Regarding constructive problem solving, the major distinction among tools

nut appears to be the method for coping with alternative choices in configuring a
I solution. Tools for constructive problem solving necessarily include methods
i for controlling search that go beyond the focusing operations found in tools
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While many of the conceptual structures and inference mechanisms required

 

1 that solve problems by classification. For example, well-known search control
_l methods used in construction include: Leasbcommitment [89] (avoiding

decisions that constrain future choices), representing explicitly multiple ‘hypo-

thetical’ worlds (branching on choices to construct alternative solutions), vari-

able propagation or relaxation (systematic refinement of solutions), backtrack-

ing (retracting constructions), version space search [67] (bounding a solution

using variables and constraints), and debugging [91] (modifying an unsatis-

J factory solution).

What have we learned that enables us to match problems to tools? Given a

, task, such as troubleshooting, we might have previously asked, “Is this tool

ll good for diagnosis?" Now, we insert an intermediate question about com-

] purarional requirements: Is it possible or acceptable to pre-enumerate solu-
tions? Is it possible or acceptable to rank order solutions? Rather than

matching tasks to tools directly, we interpose some questions about the method

3 for computing solutions. The basic choice of classification versus construction is

' the missing link for relating implementation terminology (‘rules’, ‘blackboard’,

‘units’) to high-level conceptual structures and inference requirements.

In summary, we suggest the following sequence of questions for matching

problems to tools:

. Continued from p. 336

between goals, of course, but these are not realized in the structure of the system, but in

knowledge“ [69]. This is our intent in separating the abstract characterization of what a problem

solver knows (heuristic classification model) from its encoding in the agent’s symbol system (expert

system representation).
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(1) Describe the problem in terms of a sequence of operations relating to

systems. If the problem concerns ASSEMBLY or construction of a perceptual

system, seek a specialist in another area of AI. If the problem concerns

numerical PREDICTION or CONTROL, it might be solved by traditional

systems analysis techniques.

(2) {)0 constraints on customization or naturally occurring variety allow the

solution space to be practically pre-enumerated? If so, use heuristic

classification. If not, is there a hierarchical or grammatical description that can

be used to generate possible solutions? Are there well-defined solution-con.

struction operators that are constrained enough to allow an incremental

(state-space) search?

(3) Are there many uncertain choices that need to be made‘? If a few,

exhaustive generation with a simple certainty-weighing model may be

sutficient; if many, some form of lookahead or assumption/justification-based

inference mechanism will be necessary.

The notation of inference-structure diagrams used in this paper can also be

used to form a knowledge specification that can then be mapped onto the

constructs of a particular knowledge representation language. First, identify
and list possible solutions, data, and intermediate (more general) categories.

Examining inference chains, classify links between concepts as definitional,

type categorization, and heuristic. Then, draw an inference-structure diagram

to arrange relations within a type hierarchy vertically and show heuristics as

horizontal lines. Finally, map this diagram into a given representation lan-

guage. For example, subtype links are represented as ordered clauses in an

EMYCIN rule: ‘‘If the patient has an infection, and the kind of infection is

meningitis, and. . . ."

Our study suggests two additional perspectives for critiquing constructive

tools. Viewing solutions as models of systems in the world, we require means

for detecting and controlling the coherency (completeness and consistency) of

inferences. In describing computational‘ methods in terms of operators, we need

means to construct, record, and relate inference graphs. We conclude that the

method by which inference is controIled—how an inference graph representing

a system model is computed—is a Crucial distinction for comparing alternative

knowledge engineering tools for constructive problem solving. Relating the

above methods for constructing solutions (e.g., version space, least commit-

ment, blackboard architecture) to problem tasks is beyond the scope of this

paper. It is possible that the problem categories of Section 5 will be useful.

Though they may prove to be an orthogonal consideration, as we discovered in

distinguishing between classification and construction.

9. Knowledge-level Analysis

As a set of terms and relations for describing knowledge (e.g., data, solutions,

kinds of abstraction, refinement operators, the meaning of ‘heuristic’), the
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heuristic classification model provides a knowledge-level analysis of programs

[69]. As defined by Newell, a knowledge-level analysis “serves as a
specification of what a reasoning system should be able to do." Like a

specification of a conventional program, this description is distinct from the
irepresentational technology used to implement the reasoning system. Newell

cites Schank’s conceptual dependency structure as an example of a knowledge
il level analysis. It indicates “what knowledge is required to solve a problem. . .

‘l how to encode knowledge of the world in a representation." It should be noted

E‘ that Newell intends for the knowledge-level specification to include the closure
of what the reasoning system might know. Our approach to this problem is to

i characterize the problem solver’s computational method and the structure of
' his knowledge. What a heuristic classification problem solver “is able to do” is

specified in terms of the patterns of problem situations and solutions he knows

and the space of (coherent) mappings from raw data to solutions.

After a decade of ‘explicitly’ representing knowledge in AI languages, it is

. ironic that the pattern of heuristic classification should have been so difficult to

see. In retrospect, certain views were emphasized at the expense of others:

(a) Procedureless languages. In aII attempt to distinguish heuristic program-

ming from traditional programming, procedural constructs are left out of

representation languages (such as EMYCIN, ops, KRL [57]). Thus, inference

relations cannot be stated separately from how they are to be used [48, 49].

(b) Heuristic nature of problem solving. Heuristic association has been

emphasized at the expense of the relations used in data abstraction and

refinement. In fact, some expert systems do only simple classification; they

have no heuristics or ‘rules of thumb’, the key idea that is supposed to

distinguish this class of computer programs.

(c) Iniplenientation terminology. In emphasizing new implementation tech-

nology, terms such as ‘modular’ and ‘goal-directed’ were more important to

highlight than the content of the programs. In fact, “goal directed" charac-

terizes any rational system and says very little about how knowledge is used to

solve a problem. ‘Modularity’ is a representational issue of indexing, how the

knowledge objects can be independently accessed.

Nilsson has proposed that logic should be the lingua franca for knowledge-

level analysis [71]. Our experience suggests that the value of using logic is in

adopting a set of terms and relations for describing knowledge (e.g., kinds of

abstraction). Logic is especially valuable as a tool for knowledge-level analysis

because it emphasizes relations, not just implication.

10. Related Analyses in Psychology and Artificial Intelligence

Only a monograph—length review could do justice to the vast amount of

research that relates to heuristic classification. Every discipline from ancient

philosophy through modern psychology seems to have considered some part of

the story.
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Several Al researchers have described heuristic classification in part,
influencing this analysis. For example, in CRYSALIS [33] data and solution

abstraction are clearly separated. The EXPERT rule language [97] similarly
distinguishes between ‘findings’ and a taxonomy of hypotheses. In PROSPECTOR

[47], rules are expressed in terms of relations in a semantic network. In

CENTAUR [3], a variant of EMYCIN, solutions are explicitly prototypes of CllSEaSes_

Chandrasekaran and his associates have been strong proponents of the

classification model: “The normal problem-solving activity of the physician, ,_

(is) a process of classifying the case as an element of a disease taxonomy"
[19, Recently, Chandraselcaran, Weiss, and Kulikowski have generalized

the classification schemes used by their programs (MDX [18] and exrenr [98]) to

characterize problems solved by other expert systems.

In general, rule-based research in Al emphasizes the importance of heuristic

association; frame systems emphasize the centrality of concepts, schema, and

hierarchical inference. A series of knowledge representation languages begin~

ning with KRL have identified structured abstraction and matching as a Central

part of problem solving [7]. These ideas are well-developed in KL-ONE, whose

structures are explicitly designed for classification [85].

Building on the idea that ‘frames’ are not just a computational construct, but

a theory about a kind of knowledge [49], cognitive science studies have

described problem solving in terms of Classification. For example, routine

physics problem solving is described by Chi [20] as a process of data abstraction

and heuristic mapping onto solution schemas (“experts cite the abstracted

features as the relevant cues (of physics principles)"). The inference structure

of SACON, heuristically relating structural abstractions to numeric models, is the

same. In NEWTON, De Kleer referred to packages of equations, associated with

problem features, as RALCMS (Restricted Access Local Conscquent Methods)

(“with this representation, only a few decisions are required to determine

which equations are relevant") [32].

Related to the physics problem solving analysis is a very large body of

research on the nature of schemas and their role in understanding [82,83].

More generally, the study of classification, particularly of objects, also called

categorization, has been a basic topic in psychology for several decades (e.g.,

see the chapter on “conceptual thinking" in [53] and [80]). However, in

psychology and emphasis has been on the nature of categories and how they

are formed (an issue of learning). The programs we have considered make an

‘*--—4::

[

l

identification or selection from a pre—existing classification (an issue of memory

retrieval). In recent work, Kolodner combines the retrieval and learning

process in an expert system that learns from experience [54]. Her program uses

the MOPS representation, a classification model of memory that interleaves

generalizations with specific facts [55].

Probably the most significant work on classification was done by Bruner and

his colleagues in the 19505 [14]. Bruner was concerned with the nature of
4..-
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concepts (or categories), how they were attained (learned), and how they were

_-. useful for problem solving. A few quotes illustrate the clarity and relevance of
_ his work:

 
 
 
 

 

To categorize is to render discriminably different things equivalent,

to group objects and events and people around us into classes, and

to respond to them in terms of their class membership rather than

their uniqueness. [14, p. 1]

. . . the task of isolating and using a concept is deeply imbedded in

the fabric of cognitive life; that indeed it represents one of the most

basic forms of inferential activity in all cognitive life. [14, p. 79]

. . . [what] we have called “concept attainment" in contrast -to

“concept formation" is the search for the testing of attributes that

can be used to distinguish exemplars from nonexemplars of various

categories, the search for good and valid anticipatory cues. [14, p.

233]

Bruner described some of the heuristic aspects of classification:

- . - regard a concept as a network of sign-significate inferences by

which one goes beyond a set of observed criteria properties ex-

hibited by an object or event in question, and then to additional

inferences about other unobserved properties of the object or event.

[14, p. 244]

What does categorizing accomplish for the organism? ...it makes

possible the sorting of functionally significant groupings in the

world. [14, p. 245]

We map and give meaning to our world by relating classes of events

rather than by relating individual events. The moment an object is

placed in a category, we have opened up a whole vista for “going

_ beyond” the category by virtue of the superordinate and causal

l relationships linking this category to others. [14, p. 13]

l Bruner was well ahead of Al in realizing the centrality of categorization in
'. problem solving. Particularly striking is his emphasis on strategies for selecting

l cues and examples, by which the problem solver directs his learning of new
lcategories (‘information gathering strategies’). Bruner’s study of hypothesis

[formation and strategies for avoiding errors in learning is particularly well-
developed, “For concern about error, we contend, is a necessary condition for

[ evoking problem-solving behavior" (page 210) (compare to ‘failure—driven

I memory’ [84] and ‘impasses‘ [95]).

li On the other hand, Bruner’s description of a concept is impoverished from

L today’s point of view. The use of toy problems (colored cards or blocks, of
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course) suggested that categorization was based on ‘direct significants’—_.a

logical combination of observable, discriminating (perhaps probabilistic) fea-

tures. This Aristotelian view persisted in psychology and psychometrics wen

into the 19705, until the work of Rosch, who argues that concepts are proto.

typical, not sets of definitional features [28, 45, 64, 79]. Rosch’s work was

influenced by AI research, but it also had its own effect, particularly in the

design of KRL [7].

The heuristic classification model presented in this paper builds on the idea

that categorization is not based on purely essential features, but rather is

primarily based on heuristic, non-hierarchical, but direct associations between

concepts. Bruner, influenced by game theory, characterizes problem solving
(once a categorization was achieved) in terms of a payoff matrix; cues are

categorized to make single decisions of actions to take. Influenced by the

psychology of the day, he views problem solving in the framework of a stimulus

and a response, where the stimulus is the ‘significant’ (cues) and the response is

the action that the categorization dictates. He gives examples of medical

diagnosis in this form.

We have had the advantage of having a number of working models of

reasoning to study—expert systems-—-whose complexity go well-beyond what

Brunet was able to formally describe. We have observed that problem solving

typically involves a sequence of categorizations. Each categorization can be

characterized generically as an operation upon a system—specify, design,

monitor, etc. Most importantly, we have seen that each classification is not a

final consequence or objective in “a payoff matrix governing a situation” (page

239). Rather it is often a plateau chaining to another categorization. Bruner’s

payoff matrix encodes heuristic associations.

Building upon Rosch’s analysis and developments in knowledge represen-

tation, recent research in cognitive science has significantly clarified the nature

of concepts [28, 79]. In particular, attention has turned to why concepts take

the form theydo. While many concepts are based on natural kinds (e.g.,

MYClN’s organisms and GRuNDv’s books), others are experiential (e.g., reader

and patient stereotypes of people), or analytic (e.g., soPHiE’s module behavior

lattice and sAeoN’s programs). Miller [66] suggests that formation of a category

is partly constrained by its heuristic implication. Thus, therapeutic implication

in medicine might serve to define diagnostic and person categories, working

backwards from pragmatic actions to observables. This functional, even

behavioral, View of knowledge is somewhat disturbing to those schooled in the

definition of concepts in terms of essential features, but it is consistent with our

analysis of expert systems. Future studies of what people know, and the nature

of meaning, will no doubt depart even more from essential features to consider
heuristic ‘incidental’ associations in more detail.

Finally, learning of classifications has been a topic in Al for some time.

Indeed, interest goes back to early work in pattern recognition. As Chandrase-
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karan points out [18], it is interesting to conceive of Samuels’ hierarchical

‘evaluation functions for checker playing as an implicit conceptual hierarchy.

Recent work in classification, perhaps best typified by Michalski’s research [65],

continues to focus on learning essential or definitional features of a concept

hierarchy, rather than heuristic associations between concepts. However, this

form of learning, emphasizing the role of object attributes in classification, is an

advance over earlier approaches that used numeric measures of similarity and

_ lacked a conceptual interpretation. Also, working from the traditional research

of psychometrics, Boose’s ETS knowledge acquisition program [8] makes good

use of a psychological theory of concept associations, called personal construct

theory. However, ETS elicits only simple classifications from the expert, does not

exploit distinctions between hierarchical, definition, and heuristic relations, and

has no provision for data abstraction.

Perhaps the greatest value of the heuristic classification model is that it

provides an overarching point of view for relating pattern recognition, machine

learning, psychometrics, and knowledge representation research.

11. Summary of Key Observations

The heuristic classification model may seem obvious or trivial after it is

presented, but the actual confusion about knowledge engineering tools, prob-

lem-solving methods, and kinds of problems has been quite real in Al for the

past decade. Some might say, “What else could it be? It had to be

classification"—as if a magic trick has been revealed. But the point of this

paper is not to show a new kind of trick, or a new way of doing magic tricks,

but to demystify traditional practice.

Sowa’s reference to Levi-Strauss’ anthropological ‘systems analysis’ is apt:

The sets of features . . . seem almost obvious once they are presen-

ted, but finding the right features and categories may take months

or years of analysis. The proper set of categories provides a

structural framework that helps to organize the detailed facts and

general principles of a system. Without them, nothing seems to fit,

and the resulting system is far too complex and unwieldy.

Expert systems are in fact systems. To understand them better, we have

given high—level descriptions of how solutions are computed. We have also

related the tasks of these programs to the kinds of things one can do to or with

a concrete system in the world. Below is a summary of the main arguments:

(1) A broad view of how a solution is computed suggests that there are two

basic problem-solving methods used by expert systems: heuristic classification
and construction.

(2) Kinds of inference in different stages of routine problem solving vary
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systematically, so data are often generalized or redefined, while solutions are;

more often matched schematically and refined. A domain-specific heuristic is a

direct, non-hierarchical association between different classes. It is not a Cate-

gorization of a ‘stimulus’ or ‘cue’ that directly matches a concept’s definition,

Rather, there may be a chain of abstraction inferences before reaching Cate.

gories that usefully characterize problem features. This pattern is shown two

ways in Figs. 2.3 and 4.5. The inference structure of heuristic classification is

common in expert systems, independent of the implementation in rules,
"frames, ordinary code, or some combination.

(3) Selecting solutions involves a form of proof that is often characterized as

derivation or planning; constructing solutions involves piecing together solu-

tions in a manner characterized as configuration. To select a solution, the

problem solver needs experiential (‘expert’) knowledge in the form of patterns

of problems and solutions and heuristics relating them. To construct a solution,

the problem solver applies models of structure and behavior, in the form of

constraints and inference operators, by which objects can be designed, assem-

bled, diagnosed, employed in some plan, etc.

(4) A broad view of kinds of problems, described in terms of synthesis and

analysis of systems, suggests two points of view for describing a system’s design:

a configuration in terms of structural relations of functional components, versus

a plan for the processes that characterize the system’s behavior. From the point

of view of a system, reasoning may involve a limited set of generic operations,

e.g., MONITOR, DIAGNOSE, MODIFY. In heuristic classification this takes

the form of a sequence of mapping between classifications corresponding to

each generic operation.

(5) In a manner analogous to stream descriptions of computer programs, the

inference-structure diagrams used in this paper reveal the patterns of reasoning
in expert systems.

12. Implications

A wide variety of problems can be solved by heuristic mapping of data

abstractions onto a fixed, hierarchical network of solutions. This problem~

solving model is supported by psychological studies of human memory and

categorization. There are significant implications for expert systems research.

The model provides:

(1)_A high-level structure for decomposing problems, making it easier to
recognize and represent similar problems. For example, problems can be

characterized in terms of sequences of system classifications. Catalog selection

(single—step planning) programs might be improved by incorporating a more

distinct phase of user modelling, in which needs or requirements are explicitly

classified. Diagnosis programs might profitably make a stronger separation
between device—history stereotypes and disorder knowledge. ‘Blackboard’ sys-
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tems might re-represent ‘knowledge sources’ to distinguish between

-classification and construction inference operators.

(2) A specification for a generic knowledge engineering tool designed

specifically for heuristic classification. The advantages for knowledge acquisi-

tion carry over into explanation and teaching.

(3) A basis for choosing application problems. For example, problems can be

selected using the systems taxonomy (Figs. 5.1 and 5.2), allowing knowledge

engineers to systematically gain experience in different kinds of problems.

Problems might be chosen specifically because they can be solved by heuristic
classification.

(4) A foundation for characterizing epistemologic adequacy of representation

languages [62], so that the leverage they provide can be better understood. For

example, for classification it is advantageous for a language to provide con-

structs for representing problem solutions as a network of schemas.

(5) A focus for cognitive studies of human categorization of knowledge and

search strategies for retrieval and matching, suggesting principles that might be

used in expert programs. Human learning research might similarly focus on the
inference structure of heuristic classification.

Finally, it is important to remember that expert systems are programs. Basic

computational ideas such as input, output, and sequence, are essential for

describing what they do. The methodology of our study has been to ask, “What

does the program conclude about? How does it get there from its input?” We

characterize the flow of inference, identifying data abstractions, heuristics,

implicit models and assumptions, and solution categories along the way. If

heuristic programming is to be different from traditional programming, a

knowledge—level analysis should always be pursued at least one level deeper

than our representations, even if practical constraints prevent making explicit

in the implemented program everything that we know. In this way, knowledge

engineering can be based on sound principles that unite it with studies of

cognition and representation.
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