
312 PART THE CAST

Font Character Spaciri

EonL Font Style Size

jUegula 1111

Tms Rmn Cancel

Univers 47 CondensedL Ralic

Bold DelaulL.

VALiFlounded DI Bold Italic 11

Vineta 12 Help

llnderline Color

Jiflofle
Auto

Effects Preview--------------------

Strikethrough Hidden

Superscript fl Small caps ______ Univers 57 Condensed ______

fl Subscript flAIl caPs
This is scalable printer resident lont The screen image ma riot exactly match the printed output

Figure 21-3

The Font dialog box in Word is properties dialog It reflects all of the characteristics of

the current selection as they relate to typography When the user changes something on
this dialog the text qualities of the selection will change but no functions are executed

The process is essentially passive configuring one rather than an active process-oriented
one This dialog reflects the best and worst of contemporary dialog design The preview
box is great but why cant the font combobox in the upper left corner use the actual

fonts too The OK and CANCEL buttons are in the upper right corner an emerging
Microsoft standard Upper right corner English-speaking people and many others read
from upper left to lower right so the terminating command buttons should be in the

lower right corner Another big mistake is that the terminating buttons are on the panes
rather than on the common dialog background This arrangement is ambiguous Does the

OK button mean to accept this pane or accept the entire dialog box All terminating
buttons should be placed outside any tabbed panes

It is easy to think of properties as an artifact of object-oriented programming

because in that world that is how we refer to the characteristics of things But

properties are just the aspects of any artifact in programthe characteristics

of document or chunk of data

properties dialog box generally controls the current selection This follows

the object-verb form The user selects the object and then via the property dia

log selects new settings for the selection

0321
IBG 1029 (Part 3 of 4)

CBM of U.S. Patent No. 7,412,416 B2

CHAPTER 21 DIALOG BOXES 313

Function dialog boxes

Function dialog boxes are usually summoned from the menu They are most

frequently modal dialog boxes and they control single function like printing

inserting or spell checking

Function dialog boxes not only allow the user to launch an action but they

often also enable the user to configure the details of the actions behavior In

many programs for example when the user requests printing the user uses the

print dialog to specify which pages to print the number of copies to print

which printer to output to and other settings directly relating to the print func

tion The terminating OK button on the dialog not only closes the dialog but

also initiates the print operation

This technique though common combines two functions into one configur

ing the function and invoking it Just because function can be configured

however doesnt necessarily mean that user will want to configure it before

every invocation prefer to see these two functions accessible separately

Many functions available from modern software are quite complicated and

have many configurable options Their controlling dialog boxes are cor

respondingly complicated too

The example shown in Figure 21-4 is from PowerPoint The user first config

ures the operation by choosing file then executes the configured command

by pressing the terminating command button OK It is very tempting to make

that terminating button say PRINT instead Fight the urge It may seem more

logical but the loss of consistently captioned terminating command button is

too great price to pay If the dialogs caption bar text is appropriate it will

read like an English phrase telling the user exactly what will happen Print the

document OK

Bulletin dialog boxes

The thiahdog box is devilishly simple little artifact that is arguably the

most abused part of the graphic user interface

The bulletin is best characterized by the ubiquitous error message box There

are well-defined conventions for how these dialogs should look and work pri

marily because the MessageBox call has been present in the Windows API since

Version 1.0 Normally the issuing programs name is shown in the caption bar

and very brief text description of the problem is displayed in the body

0322

314 PART THE CAST

File Name Directories

a\

.End Fie..

Drives

List Files of Lpe

All Fiiti...ire i.rrif lil.t hiiiiui

LirikoFiI

Figure 21-4

The Insert Picture dialog box from PowerPoint is function dialog box It is quintessen

tially modal allowing the user to first configure the function by choosing file Nothing
happens however until the OK button is pressed The dialog does not have an effect

on an object but rather performs an operation

graphic icon that indicates the class or severity of the problem along with an OK

button usually completes the ensemble Sometimes button to summon online

help is added An example from Word is shown in Figure 21-5

Both property and function dialog boxes are always intentionally requested by

the userthey serve the user Bulletins on the other hand are always issued

unilaterally by the programthey serve the program Both error and confir

mation messages are bulletins and we will cover both variants in detail in Part

VII The Guardian

0323

CHAPTER 21 DIALOG BoxEs 315

The measurement must be between -22 and 22

Figure 21-5

Heres typical bulletin dialog box It is never requested by the user but is always issued

unilaterally by the program when it fails to do its job The program simply decides that it

is easier to blame the user than it is to go ahead and solve the problem Users interpret

this as saying The measurement must be between -22 inches and 22 inches and you are

an incredible buffoon for not knowing that basic fundamental fact You are so stupid in

fact that Im not even going to change it for you

Process dialog boxes

Process dialog boxes like bulletins are erected at the programs discretion

rather than at the users request They indicate to the user that the program is

busy with some internal function and that it has become stupid

The process dialog box alerts the user to the programs inability to respond

normally It also warns the user not to be overcome with impatience and to

resist banging on the keyboard to get the programs attention

All of todays desktop computers have single-microprocessor central process

ing unit or CPU CPUs can only do one thing at time although through

concurrencywhere the CPU does tiny bit of work on several programs in

kind of round-robin-they can seemingly execute multiple software threads at

the same time problem arises when hardware becomes part of the equation

The CPU cannot use concurrent programming techniques if chunk of hard

ware ties down the system for long time What this means is that when the

computer must access the disk or the network it cannot continue with other

processing until the hardware responds If the CPU requests something big

from the disksomething that takes ten seconds saythe entire computer

comes to grinding halt for the entire ten seconds the computer gets stupid

This is true even in preemptive multi-tasking environment like Windows 95

0324

316 PART THE CAST

The CPU can preempt software threads but it still cannot preempt hardware

process

Software that makes significant use of slower hardware like networks disks or

tapes will always become stupid sometimes for relatively long periods of time

Software can also get stupid without accessing hardware Programs that must

perform billions of instructions before they can interact with usersanachro

nistically named corebound programsfrequently get stupid during their

calculations

In any case when program begins process that will take perceptible quanti

ties of time as measured by the human user the program must make it clear

that it is busy and not just being rude If the program does not indicate this

the user will interpret it as rudeness at best or at worst will assume the pro

gram has crashed and take drastic action

Design tip The program must inform the user when it gets

stupid

As we discussed in Chapter 15 many programs rely on active wait cursor hint

ing turning the cursor into an hourglass This solution springs big leaks in the

multi-threaded world of Windows 95 and better solution is process dialog

box better yet an equivalent progress meter built directly into the programs

main window

Each process dialog box has four tasks

Make clear to the user that time-consuming process is happening

Make clear to the user that things are completely normal

Make clear to the user how much more time the process will take

Provide way for the user to cancel the operation

The mere presence of the process dialog box satisfies the first requirement

alerting the user to the fact that some process is occurring Satisfring the third

requirement can be accomplished with progress meter of some sort show

ing the relative percentage of work performed and how much is yet to go
Satisfying the second requirement is the tough one The program can crash and

leave the dialog box up lying mutely to the user about the status of the

0325

CHAPTER 21 DIALOG BOXES 317

operation The process dialog box must continually show via time-related

movement that things are progressing normally The meter should show the

progress relative to the total time the process will consume rather than the total

size of the process Fifty percent of one process may be radically different in

time than 50% of the next process

The users mental model of the computer executing time-consuming process

will quite reasonably be that of machine turning or reciprocating static dia

log box that merely announces that the computer is Reading disk may tell the

user that time-consuming process is happening but it doesnt show that this

is true The best way to show the process is with some animation on the dialog

box In the Explorer in Windows 95 when files are moved copied or deleted

process dialog box shows small animated cartoon of papers flying from one

folder to another folder or the wastebasket see Figure 21-6 The effect is

remarkable the user gets the sense that the computer is really doing something

The sensation that things are working normally is visceral rather than cerebral

and users even expert users are reassured The progress bar of blue squares

satisfiesbarelythe third requirement by hinting at the amount of time

remaining in the process Although this is one of the best designed features in

Windows 95 it can still use some improvement There is one dialog box per

operation but the operation can affect many files The dialog should also show

an animated countdown of the number of files in the operation Right now the

blue squares in the progress bar just show the progress of the single file cur

rently being transferred Regardless Im tickled that Microsoft got this one so

right

Notice that the copy dialog in Figure 21-6 also has CANCEL button

Ostensibly this satisfies requirement number four that there be way to can

cel the operation The user may have second thoughts about the amount of

time the operation will take and decide to postpone it so the CANCEL button

allows him to do so However if the user realizes that he issued the wrong com

mand and wishes to cancel the operation he will not only want the operation

to stop but will want all trace of the operation to be obliterated

If the user drags 25 files from directory Alpha to directory Bravo and halfway

through the move realizes that he really wanted them placed in directory

Charlie he can push the CANCEL button Unfortunately all that does is stop the

move at its current state and abandons the remainder of the moves In other

words if the user presses the CANCEL button after 10 files have been copied the

remaining 15 files are still in directory Alpha but the first 10 are now in

0326

318 PART THE CAST

II

uu

Figure 21-6

Hooray Microsoft They really got this one right For any move copy or delete operation
in the Explorer they show well-designed process dialog box The dialog uses animation

to show paper documents flying out of the folder on the left into the folder or wastebas

ket on the right The users mental model is one of the things moving inside the comput
er and this little gem actually shows things moving It is refreshing to see the outside of

the computer reflect the inside of the computer in users terms for once The only thing

that worries me is whether Microsoft merely spawns an animation thread or actually ties

the animation to the copyin other words if the program crashes does the animation

stop too Or will pages just keep on flying from one folder to another forever

directory Bravo This is not what the user wants If the button says CANCEL it

should mean cancel and that means dont want any of this to have

any effect If the button were to accurately represent its current action it

would say ABANDON ABORT or STOP Instead it says CANCEL so cancel is what

it should do

If the user pressed the CANCEL button the program should really cancel the

effects ofthe operation by undoing the already-done part This may mean some

significant buffering is needed and the cancel operationcould easily take more

time than the original move copy or delete But isnt this rare event one when

the time required is easily justified In the Explorer the program can com

pletely undo copy move or delete attaboy so there is no reason why the

CANCEL button couldnt also undo the portion that had already been

performed

good alternative would be to have two buttons on the dialog one labeled

CANCEL and the other labeled ABANDON The user could then choose the one

he really wants

0327

Dialog Box Etiquette

the last chapter we discussed the larger design issues

concerning dialog boxes In this chapter we zoom in closer

to examine the way well-behaved dialogs should act Even an

appropriate dialog box can exhibit behavior that is unex

pected or irritating By attending to the details we can

change them from rude interrupters to polite and helpful

attendants

You rang
If you recall we divided dialog boxes into four types

property function bulletin and process One of the most

important differences between these types is the way they

are summoned The first two are shown only at the users

explicit request while the latter two are issued unilaterally by

the program When you say Jeeves come in here you

expect the butler to step smartly into the room and plainly

and immediately offer his services On the other hand when

Jeeves wants to ask for raise you want him to wait

319

0328

320 PART THE CAST

obsequiously until you are relaxing in pleasant mood before interrupting your

reverie to impose his own needs In this butlerian spirit bulletin and process

dialogs should show much more deference than property or function dialogs

Unfortunately the opposite is often true

user-requested dialog may be large and place itself front-and-center on the

screen No unrequested dialog should be so brassy however It should be

smaller more compact in its use of space and should appear off to one side of

the screen so as not to obstruct the users view of things

Whos processing

Actually the need for bulletin and process dialog boxes is unclear They are as

common as weeds in contemporary software and about as useful too In

Chapters 28 and 29 well discuss ways of eliminating bulletin dialog boxes but

what can we do with process dialogs

The answer to that question is found by asking who is doing the processing

Because dialog is separate room we must ask whether the process reported

by the dialog is function separate from that on the main window If the func

tion is an integral part of what is shown on the main window then the status

of that function should be shown on the main window instead For example

the Windows 95 flying pages dialog that was shown in Figure 21-6 is attractive

and appropriate but isnt copying file fundamental to what the Explorer

does The animation in this case could have been built right into the main

Explorer window The little pages could fly across the status bar or they could

fly directly across the main window from directory to directory

Process dialogs are of course much easier to program than building animation

right into the main window of program They also provide convenient place

for the CANCEL button so it is very reasonable compromise to fling up

process dialog for the duration of time-consuming task But dont lose sight

of the fact that by doing this we are still going to another room for this-room

function It is an easy solution but not the correct solution

The caption bar

If dialog box doesnt have caption bar it cannot be moved All dialog boxes

should be movable so they dont obscure the contents of the windows they

overlap Therefore all dialog boxes should have caption bars Is that clear

Even the Windows style guide almost agrees on this point saying In general

an application should use only movable dialog boxes

0329

CHAPTER 22 DIALOG Box ETIQUETTE 321

Design tip All dialog boxes should have caption bars

There seems to be some belief that system modal messages which of course

you will never create dont have to have caption bars because they are often

used to report fatal errors guess the programmers reasoning goes Well the

system is crashed so why bother to let them move the dialog around Of

course when your system crashes is precisely the time you might need to get

good look at what was on your screen before you reboot After all you will

probably lose whatever was there

There also seems to be widespread confusion about what text string to put in

the caption bar of dialog box Some people think it should be the name of the

function while others think it should be the name of the program The belt-

and-suspenders crew tends to use both The correct answer is very simple

neither of these

If the dialog box is function dialog the caption bar should have the name of

the functionthe verb if you will For example if you request Break from

the Insert menu the caption bar of the dialog should say Insert Break

What are we doing We are inserting break We are not breaking so the

caption bar should not say Break word like that could easily scare or

confuse somebody

Design tip Use verbs in function dialog caption bars

would go so far as to say that when the function will operate on some selec

tion the caption bar should indicate what is selected to the best of its ability

For example if you select sentence Smilin Ed is dead and invoke the

Font item from the Format menu the dialogs caption bar should say

Format font for Smilin Ed is dead If youve selected text thats too big to

fit on the caption bar it should show the first and last couple of words of the

selection separated by ellipses If nothing is selected the caption should say

Format font for future text

Design tip Use object names in property dialog caption bars

If the dialog box is property dialog the caption bar should have the name or

description of the object whose properties we are setting The properties

dialogs in Windows 95 work this way When request the Properties dialog for

directory named Backup the caption bar says Properties for Backup

0330

322 PART THE CAST

Transient posture

If dialog boxes were independent programs they would be transient-posture

programs As you might expect dialog boxes should then look and behave like

transient programs with bold visual idioms bright colors and large buttons

On the other hand transient programs borrow their pixels from sovereign

applications so they must never be wasteful of pixels The imperative to be

large is constantly at war with the imperative to be small One solution is to

make each of the individual gizmos slightly larger but to make sure that the

dialog itself wastes no additional space

Design tip Dialogs should be as small as possible but no

smaller

few years ago Borland International popularized standard by creating

extra-large buttcons with bitmapped symbols on their faces large red for

CANCEL large green checkmark for OK and big blue question mark for HELP

They were cleverly designed and very attractiveat first Most people now find

them wasteful of space and with good reason The icons on the buttcons

worked well to visually identify themselves well enough that the extra size

wasnt necessary Borland now uses the same bitmaps on buttons of more

conventional size which is much better solution The visual images

accomplished the job just fine without the need to waste precious pixels

Obscuring the parent window can be avoided by always being conservative of

space Dialog boxes should never take more room than they need Pixels remain

the most limited resource in modern desktop computers and dialog boxes can

easily overstep the boundaries of good taste by sprawling across the screen

Compare the space efficiency of the CompuServe Navigator dialog in Figure 22-1

to the one from Word in Figure 22-2

Checkboxes are relatively space-inefficient gizmo the accompanying text

requires lot of dedicated space Compared to the text of checkboxes buttcons

can be crammed together like sardines

Reduce excise

Dialog boxes can be burden on the user if they require lot of exciseunnec

essary overhead which we discussed in Chapter 13 The user will soon tire of

having to always reposition or reconfigure dialog box every time it appears

0331

CHAPTER 22 DIALOG Box ETIQUETTE 323

Uit01 Qif Forumsi

Show Message Section Numbers in Dialogs

F7 Show Library Section Numbers in Dialogs

Get News Flashes

Auto-File ant Messages in Folder Auto-Filed

Forum Messaging

On Entering Set Forum to Remember Last Session

fl On Exiting Set Forum to Forget Session

OK canceij jjalp

Figure 22-1

Here is properties dialog box from CompuServe Navigator for Windows Version 1.0
The sprawling checkboxesconsurne lot of space At least it has caption bar so you can

move it out of the way

The duty of the dialog box designer is to assure that the excise is kept to bare

minimum particularly because dialog boxes are only supporting actors in the

interactive drama

The most usual areas where dialog boxes fail to reduce excise are in

their geographical placement and their state Dialogs should always remember

where they were placed the last time and they should return to that place

automatically Most dialogs also start out fresh each time they are invoked

remembering nothing from their last run This is an artifact of the way they are

implemented as subroutines with dynamic storage We should not let these

implementation details so deeply affect the way our programs behave Dialogs

should always remember what state they were in the last time they were invoked

and return to that same state If the dialog was expanded or certain tab was

0332

324 PART Vt THE CAST

Indents and Spacing Te.t fjciv

Indentation ------- Spacing
-i OK

Left ii-25 Before pt

Cancel

Right J0 A1tr 2pt

Tabs..

special Line Spacing At
ri rn Help

Single

Figure 22-2

typical function dialog box from Microsoft Word shows an excellent use of space The

controls are compact and very conservative of space Compare this with the previous figure

Figure 22-1 Notice also their willingness to use graphic objects instead of just canned
text-based gizmos like edit fields checkboxes and push-buttons

selected the dialog should return the exact same way on subsequent visits In

Chapter 14 talked in more detail about how to apply memory to this type of

problem

The same idea can be applied to the contents of input fields If checkbox was

checked last time the dialog box should remember and come up with the box

checked next time Chances are good that the settings used the last time will be

used the next time too

Know if you are needed

The most effective way that dialog box can reduce excise is to not even bother

appearing if it is not needed If there is some way for the dialog box to be smart

enough to know whether it is really necessary the program shouldby all

meansdetermine this and prevent the user from having to merely dismiss the

unneeded box an action that is pure excise

0333

CHAPTER 22 DIALOG Box ETIQUETTE 325

For example in Word always save my document just before print it and

often print it just before closing it In other words frequently want to SAVE

PRINT and CLOSE document Unfortunately the repagination involved in

printing inadvertently marks the document as changed This means that the

program always asks me if want to save it when issue the CLOSE command

even though just did The program should pay attention Of course want

to save the document before closing Not only should it not ask this question

at all it should be able to see from my actions that didnt change it the pro

gram did The entire invocation of this dialog box is excise

The same thing is true of bulletin dialogs that tell me that the program has

completed some function normally If it was so normal the program shouldnt

need to resort to the excise of dialog box that stops the proceedings with

idiocy

If program uses dialog box to offer me selection of options every time

ask for certain function and always use the same options the program

shouldnt bother to even put up the dialog box It should be able to recognize

the pattern and remove the unnecessary step Of course it would have to

inform me first so am not surprised and it should give me the option to

override its decision

Terminating commands

for modal dialog boxes

Every modal dialog box has one or more terminating commands Most modal

dialog boxes have three the OK and CANCEL buttons and the close box on the

caption bar The OK button means accept any changes have made then close

the dialog and go away The CANCEL button means reject any changes have

made then close the dialog and go away This is such simple and obvious

formula such well-established standard that it is inconceivable that anyone

would vary from its familiar trustworthy well-trod path Yet for inexplicable

reasons many user interface designers do diverge from this simple formula

always to the detriment of their product and the despair of their users

The modal dialog box makes contract with the user that it will offer services

on approvalthe OK buttonand bold and simple way to get Out without

hurting anythingthe CANCEL button These two buttons cannot be omitted

without violating the contract and doing so deflates any trust the user might

0334

326 PART THE CAST

have had in the program It is extremely expensive in terms of stretching the

users tolerance Never omit these two buttons or change their legends

Design tip Offer OK and CANCEL buttons on all modal dialog

boxes

colleague countered this tip by suggesting that dialog box asking if the user

wants to Cancel Reservation would cause problems when it appears with an

OK and CANCEL button What does it mean to say CANCEL to Cancel Good

question and the solution to the problem is to never ask questions like that

The example is particularly ugly one for several reasons notably because it is

confirmation dialog Besides if you ever need to ask question like thatand

you shouldntdont express it using the same words that are in the termina

tion keys With Cancel Reservation the user must respond with the word

CANCEL to avoid canceling Confusing You bet Instead the question should

be stated like this Discard the Reservation Better yet well talk about how

to eliminate confirmation dialogs entirely in Part VII

Design tip Nevei use terminating words in dialogs

The design tip Offer OK and CANCEL buttons on all modal dialog boxes

applies to function and property types Bulletin dialogs reporting errorsthose

hateful thingscan get away with just an OK button as if the user wants to col

lude in the programs failure Process dialogs only need CANCEL button so

the user can end time-consuming process

The OK and CANCEL buttons are the most important controls on any dialog box

These two buttons must be immediately identifiable visually standing out from

the other controls on the dialog box and particularly from other action

buttons This means that lining up several visually-identical buttons including

OK and CANCEL is not the right thing to do regardless of how frequently it is

done id est the stack of buttons in Figure 21-4 Even from companies who

should know better the OK and CANCEL buttons are buried in groups of other

unrelated buttons and their familiar legends change with depressing frequency

The CANCEL button in particular is crucial to the dialog boxs ability to serve

its pedagogic purpose As the new user browses the program he will want to

examine the dialogs to learn their scope and purpose then CANCEL them so as

not to get into any trouble For the more experienced user the OK button

0335

CHAPTER 22 DIALOG Box ETIQUETTE 327

begins to assume greater import than the CANCEL button The user calls the

dialog box makes his changes and exits with confirming push of the OK

button

Lately Microsoft has shown off new standard for terminating buttons They

demand that the OK button be in the upper right corner of the dialog and that

the CANCEL button be positioned immediately below it with the HELP button

below that Unfortunately Microsofts style troopers have chosen poorly The

majority of users read from upper left to lower right so the terminating but

tons make more sense in the lower right of the dialog box Microsoft has also

gone for the executive gray look and the terminating buttons are not visually

identified by any unique color bitmaps or even unique font or typesize They

just blend right in with the other buttons on the dialogtoo bad

Im much more concerned with consistency in placement of these buttons than

am in the particular location they occupy However Im not indifferent to

their placement The OK button should be placed in the lower right corner of

the dialog box and the CANCEL button should be placed immediately to its left

or immediately above it The user can then dependably know that an affir

mative ending of the dialog can be had by going to the extreme lower-right

corner

The close box

Because dialog boxes are windows with caption bars they have another termi

nating idiom Clicking in the closebox in the upper right corner or double-

clicking the system menu box in the upper left corner in Windows .x termi

nates the dialog box The problem with this idiom is that the disposition of the

users changes is unclear Were the changes accepted or rejected Was it the

equivalent of an OK or CANCEL Because of the potential for confusion there

is only one possible way for programs to interpret the idiom as CANCEL

Unfortunately this conflicts with its meaning on modeless dialog where it is

the same as CLOSE command The close box is needed on modeless dialog

but not on modal dialog box So to avoid confusion the close box should

not be included in modal dialogs

Design tip ont put c1ose boxes on/dadiT
If the user expects an OK and gets CANCEL he will be surprised and will have

to do the work overand he will learn On the other hand if the user expects

0336

328 PART THE CAST

CANCEL and gets an OK he will still have to do the work over but this time

he will be angry Dont let this situation arise

The HELP button requests context-sensitive help but doesnt terminate the dia

log so it isnt terminating button It is so often grouped with the terminat

ing buttons that it has assumed the same importance by association Online

help however is not as important as the terminating commands Putting help

adjacent to them is weak but not harmful and it has the power of familiar

standard In Windows 95 Microsoft is showing that they understand this prob
1cm As you can see in Figure 22-3 they are beginning to move help away from

the OK and CANCEL terminating buttons putting it on the caption bar Up

there it is on an area common to all dialogs but clearly separated from the very

special terminating commands

Keyboard shortcuts

Many dialogs offer services that are frequently used or used repetitively like

those for REPLACE or FIND As users gain experience with the program they will

appreciate the presence of keyboard shortcuts for these frequently used dialogs

There are usually enough keys to go around and there is no reason why given

function should have just single keyboard shortcut function like FIND

should be callable with CTRLF keystroke as well as special function key like

F2 REPLACE could be CTRLR and F3

Users learn these shortcuts either from the help system or from the menus

Usually these shortcuts go unnoticed until they are desired New users go

directly to the menus and it is only after they find themselves actively search

ing for faster ways to operate that they discover them And they will then be

grateful that you had the foresight to put those shortcuts in for them It can

really please the power-user crowd and this crowd will have big influence

over new users

Tabbed dialogs

The latest user interface idiom to take the world of commercial software by

storm is the tabbed dialog sometimes called multi-pane dialog In less

than two years tabbed dialogs as shown in Figure 22-4 have gone from vir

tually unknown idiom to well-established standard When an idiom has merit

it is widely copied and the tab gizmo has been such blessing to dialog box

0337

CHAPTER 22 DIALOG Box ETIQUETTE 329

Eleneral Sharing

LI

Type Folder

Location O\

Size 2SJ2MB 121 23760 bytesj

Contains 79 Files Folders

MS-DOS name ELIDORA

Created Friday. April 14 995 115353 AM

Attributes fl .Read-onl Hidden

Arhive Stem

OKj Øpp

Figure 22-3

This properties modal dialog box from Windows 95 shows how Microsoft has finally real

ized that Help is not terminating command They removed it from the suite of terminat

ing buttons and put it on the caption bar near the close box This is certainly an improve
ment but then they went ahead and added newcomer to the terminating-button row
Apply There is no use for an apply function on this pane but it is applicable on the other

pane Sharing Why not put the Apply button on the pane where it means something and

keep it out of the way of the terminating buttons

designers that it has become standard part of Windows 95 We can expect that

developers will soon embrace it with even more vigor than they already have

0338

330 PART THE CAST

Tabbed dialogs allow all or part of dialog to be set aside in series of fully

overlapping panes each one with protruding identifying tab

Pressing tab brings its associated pane to the foreground hiding the others

The tabs can run horizontally across the top or the bottom of the panes or

vertically down either side

Many objects with numerous properties can now have correspondingly

rich property dialog boxes without making those boxes excessively large and

crowded with gizmos Many function dialogs that were also jam-packed with

gizmos now make better use of their space Before tabbed dialogs the problem

__

.orders hading

-Preets Line--

None ______________
LII

Stjje F.cJ
None ox Shadow

_________________ p1

a.yler 23

P. il

p1

4pt
Bpl
pt _______

l3pt ________
2Jp1
pt

pt

Color

Erom Text Ii p1
Auto

Figure 22-4

This is tabbed dialog box from Microsoft Word Combining borders and shading on one

dialog box makes sense if you have convenient way to do it Tabbing provides that way
Notice that Microsoft hasnt yet learned to put the terminating command buttons on the

background instead of the pane Putting them on the pane can confuse the user over

whether he is canceling the pane or the entire dialog

0339

CHAPTER 22 DiALOG Box ETIQUETTE 331

was clumsily solved with expanding and cascading dialogs which Ill discuss

shortly

believe that the tabbed dialog box is having such success because it follows

the users mental model of how things are normally stored in monocline

grouping The various gizmos are grouped in several parallel panes one level

deep

tabbed dialog allows you to cram more gizmos onto single dialog box but

more gizmos doesnt necessarily mean that the user will find it better The con

tents of the various panes on the dialog must have meaningful rationale for

being together otherwise this capability just degrades to what is good for the

programmer rather than what is good for the user

The various panes on dialog can be organized to manage increased depth or

increased breadth For more breadth each pane covers additional aspects of the

main topic the way borders and shading in Figure 22-4 both address ways

that text is enhanced For more depth each pane probes the same aspect of one

topic in greater depth For example the cascading dialog in Figure 22-7 could

be implemented as tabbed dialog with the custom color factory as separate

pane

Every tabbed dialogbox is divided into two parts the stack of panes which

call the tabbed area and the ernaindei of the dialog outside the panes which

call the untabbed area

The terminating command buttons must be placed on the untabbed area If the

terminating buttons are placed directly on the tabbed area even if they dont

change position from pane to pane their meaning is ambiguous The user may
well ask if press the CANCEL button am canceling just the changes made on

this pane or all of the changes made on all of the panes By removing the but

tons from the panes and placing them on the untabbed area their scope

becomes visually clear Microsofts Office suite has many terminating buttons

incorrectly placed in the tabbed area but the new Windows 95 has them cor

rectly placed in the untabbed area Expect to see them migrate off the panes in

subsequent releases of Office

Design tip Put terminating buttons on untabbed area

0340

332 PART THE CAST

Multi-pane dialogs have been around for while implemented with row of

push-buttons radio buttons or other common idioms for switching panes The

new tab gizmo that comes standard with Windows 95 has powerful visual

affordances that the other idioms lack The fact that Microsoft is supporting the

standard with code will make it the idiom of choice for dialog box

designers

Because you can cram so many gizmos into tabbed dialog the temptation is

great to add more and more panes to dialog The Options dialog in Microsoft

Word shown in Figure 22-5 is clear example of this problem The twelve tabs

Save Spelling Grammar AutoFormat

Revisions User Info Compability File Locations

View General Edit Print

Page Layout View Options

Show _________
Drawings field Codes cancel

fl Object Anchors Bookmarks

Text Boundaries Field Shading

Picture Placeholders I/h Selected

Nonprinting Characters

Status Bar lab Characters

Horizontal Scroll Bar paces

Vertical Scroll Bar Paragraph Marks

Vertical Ruler Optional Hjhens

Hidden Text

Figure 22-5

The Options dialog in Word is an extreme example of what can be done with tabs There is

certainly lot of stuff crammed into this one dialog which is good The problem is that

the tabs move around The active tab must be on the bottom row so if you clicked on

Grammar for example that row rolls down to the bottom and the other two rows

bubble up one level Everybody hates it when the tabs move underneath the cursor Its

better just to break this up into smaller dialogs

0341

CHAPTER 22 DIALoG Box ETIQUETTE 333

are far too numerous to show in single line so they are stacked three deep

The problem with this implementation which call stacked tabs is that if you

click on tab in the back row the entire row of tabs moves forward shunting

the other two rows to the back Very few users seem to be happy with this

because it is disconcerting to press on tab and then have it move Out from

under the mouse It works true but at what cost

Stacked tabs illustrate an axiom of user interface design That all idioms

regardless of their merits have practical limits group of five radio buttons

may be excellent but group offifty ofthem is ridiculous Five or six tabs in

row are fine but adding enough tabs to require stacking destroys the useful-

ness ofthe idiom Like overloading your Gremlin with 17 passengers your per-

formance edge decreases

All idioms have practical limits

So far whenever ask my colleagues for viable alternative to the stacked tabs

they cant give me good answer They all see the advantage of twelve panes of

options grouped in common place without incurring all of the other poten

tial nasty problems with that many gizmos There are no cascading dialogs the

dialog isnt too large the gizmos are logically grouped the implementation is

simple Although they accept its advantages they all recognize its shortcom

ings stemming almost completely from the dynamic rearranging of the tabs

Design tip Dont stack tabs

better alternative would be to just use three separate dialogs with four tabs

each There is little connection between the twelve panes so there is little need

to move between them The solution lacks certain programming elegance

but it is much easier for the user

0342

334 PART THE CAST

Expanding dialogs

Expanding dialog boxes were big around 1990 but have declined in popular

ity since then largely due to the omnipresence of toolbars and tabbed dialogs

You can still find them in many mainstream applications although Microsoft

has been working hard to eliminate them from both Windows 95 and its

applications

Expanding dialogs unfold to expose more controls The dialog shows but

ton marked More or Expand and when the user presses it the dialog box

grows to occupy more screen space The newly added portion of the dialog box

contains added functionality usually for advanced users The Color section

ofthe Windows .x Control Panel is familiar example of the expanding dialog

box as shown in Figure 22-6

Usually expanding dialog boxes allow infrequent or first-time users the luxury

of not having to confront the complex facilities that more frequent users dont

find upsetting You can think of the dialog as being in either beginner or

advanced mode which is the cause of one of its more debilitating flaws When

program has one dialog for beginners and one for experts it both insults the

beginners and hassles the experts

As implemented most expanding dialogs always come up in beginner mode

This forces the advanced user to always have to promote the dialog Why cant

the dialog come up in the appropriate mode instead It is easy enough to know

which mode is appropriate its usually the mode it was left in If user expands

the dialog then closes it it should come up expanded next time it is sum

moned If it was put away in its shrunken state last time it should come up in

its shrunken state next time This simple trait could make the expanding dialog

automatically choose the mode of the user rather than forcing the user to select

the mode of the dialog box

For this to happen of course there has to be Shrink button as well as an

Expand button The most common way this is done is to have only one but

ton but to make its legend change between Expand and Shrink as it is

pressed Notice that the Color dialog in Figure 22-6 does not do this Once the

dialog has been expanded it cannot be shrunk Normally changing the legend

on button is weak because it gives no clue as to the current state only indi

cating the opposite state In the case of expanding dialogs though the visual

0343

CHAPTER 22 DIALoG Box ETIQUETTE 335

Color Schemes Screen JemenL

Purple Squid _____________________________

Save Scheme reove Scheme Basic ColorsEEEErnrnL1
File Edit

______ Window

Text

OK Custom Colors

L__J LiJ CusLomCokrs

Figure 22-6

The Color tool in the Windows 3.x Control Panel is an expanding dialog box shown here

in its expanded state When it first comes up only the left half is visible By pressing the

Color Palette button the right side of the dialog becomes visible The left half is for

normal users Both halves are used by those fussy people who want to configure their own
private color schemes rather than selecting one from the standard palette It sure would be

nice if the dialog were smart enough to remember how last left it

nature of the expanded dialog itself is clear enough about the state the dialog

is in

more mundane reason for its demise is the difficulty of coding an expanding

dialog The Windows API offers little help whereas Windows 95 comes with

the new tab control class pre-written

Cascading dialogs

Cascading dialogs are diabolically simple technique whereby gizmos

usually push-buttons on one dialog box summon up another dialog box in

hierarchical nesting

0344

336 PART THE CAST

The second dialog box usually covers up the first one Sometimes the second

dialog can summon up yet third one What mess Thankfully cascading

dialogs have been falling from grace but examples can still be found Figure

22-7 shows an example taken from Windows 95

Speed Language General

The following Keyboard models are compabIe with your hardware Click the

one you want to et up and then click OK If yout model is not on the list

click Show All Devices If you have an installation disk for this device click

Have Disk

Models

Showompatible devices HaveQisk..

Show all devices

OK Cancel

Figure 22-7

You can still find cascading dialogs in Windows 95 Double-click on the Keyboard icon

in the Control Panel then select the General pane of the dialog You are greeted with

vast expanse of unused dialog pane space yet if you press
the Change button you

get second cascading dialog that covers most of the first one Why wasnt it part of the

first dialog instead The second dialog needlessly obscures the first one and each dialog

now offers up its own pair of terminating buttons resulting in very unhelpful ambiguity

It is simply hard to understand what is going on with cascading dialogs Part of

the problem is that the second dialog covers up the first That isnt the big

issueafter all comboboxes and popup menus do that The real confusion

comes from the presence of second set of terminating buttons What is the

scope of each CANCEL What am oKing

The strength of tabbed dialogs is handling breadth of complexity while cas

cading dialogs are better suited for depth The problem is that excessive depth

is prime symptom of too-complex interface If you find your program

0345

CHAPTER 22 DIALOG Box ETIQUETTE 337

requiring cascading dialogs for anything other than really obscure stuff that

your users wont generally need you should take another look at the overall

complexity of your interface

Examples of cascading are common Most print dialogs allow print-setup

dialogs to be called and most print-setup dialogs allow print-driver- configura

tion dialogs to be called Each layer of dialog box is another layer deeper into

the process and as the user terminates the uppermost dialog the system

returns control to the next lower dialog and so on

Cascading dialogs exist because they seem natural to programmers and because

they mirror the physical processes underneath them But this is about as back

ward motivation as one can haveit ignores the users goals and the users

mental model of the process Im not saying that cascading dialog boxes should

be avoided entirely but they represent very weak idiom Sometimes the situ

ation demands them as in the print dialog example described above However

even in that case would combine them into one dialog with three tabs or at

the least would combine the first two dialogs into single one and only main

tain the printer driver dialog separately from the main print dialog Three dia

log boxes in cascade is excessive for almost any purpose

Directed dialogs

Most dialogs are pretty static presenting fixed array of gizmos variant that

call directed dialogs changes and adapts its suite of gizmos based on some

user input

typical example of directed dialog can be found in the Customize dialog

of Windows Word as shown in Figure 22-8 The gizmos on the face of the dia

log change dynamically to adapt to the users input to other gizmos on the

same dialog Depending on the selection the user makes in the Categories

gizmo not only do the contents of the Buttons group control change but

sometimes the group gizmo itself is replaced by different type of gizmo

usually listbox If the selection in the left-hand gizmo calls for buttons to be

displayed we see buttons in groupbox but if the selection in the left-hand

gizmo calls for list of fonts or macros we see listbox filled with text items

As the figure shows the directed dialog technique can easily be combined with

tabbing

0346

338 PART THE CAST

Toolbars Menus Keyboard

Categories _______________________

Buttons II
Irt

Table

Select category then click button to see its description

Drag the button to any toolbar

rD escription
Save Changes In

__
jmaL dot

Figure 22-8

Word for Windows Customize dialog box is an example of directed dialog box

Depending on what you select in the Categories listbox gizmo the groupbox to its right

will either be collection of buttons as shown or listbox filled with macros font names
or other items The gizmos on the dialog box configure themselves in real-time to the

users actions

Programming directed dialog can get complicated so it is not done with great

frequency The new nested dialog feature in Windows 95 however may make

it easier to implement It also may be confusing to the user as he wonders

where certain gizmos went But think that it is particularly effective when the

user is entering settings in clearly sequenced manner For example in data

base access application where the user must select server then database on

that server then table within that database directed dialog would be very

appropriate The structure of the problem at hand calls for the server to be cho

sen first so the user would select one from list As soon as the selection is

made the dialog would configure itself to include field for password if the

server required it If the server wasnt password-protected the field would be

0347

CHAPTER 22 DIALOG Box ETIQUETTE 339

omitted As soon as the user selects the database one or more fields would

appear as necessary to allow the user to select the table its owner and other

required information in sequence

0348

op
Toolbars

oolbars are the new kid on the idiom block Although

not an exclusive feature of Windows they were first popu

larized on this platform not the Macintosh like so many

other GUI idioms The toolbar has great strengths and

weaknesses but they are complementary to those of its part

ner the menu Where menus are complete toolsets with the

main purpose of teaching toolbars are only for frequently

used commands and offer little help to the new user

Visible and immediate

The typical toolbar is collection of buttcons usually with

images instead of text captions in horizontal bar posi

tioned adjacent to and below the menu bar Essentially the

toolbar is single horizontal row of immediate always

visible menu items

The toolbar really gave birth to the buttcon happy mar

riage between button and an icon As visual mnemonic of

341

0349

342 PART THE CAST

function buttcons are excellent They can be hard for newcomers to

interpret but then theyre not for newcomers

Great ideas in user interface design often seem to spring from many sources

simultaneously The toolbar is no exception It appeared on many programs at

about the same time and nobody can say who invented it first if you did

thanks What is clear is that its advantages were immediately apparent to all

In stroke the invention of the toolbar solved the problems of the puildown

menu Toolbar functions are always plainly visible and the user can trigger

them with single mouse click The user doesnt have to pull down menu to

get to frequently used function

Toolbars are not menus

Toolbars are often thought of as just speedy version of the menu The simi

larities are hard to avoid They offer access to the programs functions and they

form horizontal row across the top of the screen Designers imagine that tool-

bars beyond being command vector in parallel to menus are an identical

command vector to those on menus They think that the functions available on

toolbars are supposed to be the same as those available on menus

But the purpose of toolbars is actually quite different from the purpose of

menus and their composition shouldnt necessarily be the same The purpose

of toolbars and their controls is to provide fast access to functions used fre

quently by those who have already mastered the programs basics Toolbars

offer nothing to beginners and are not supposed to The menu is where the

beginner must turn for help

Design tip Toolbars provide experienced users with fast

access to frequently used functions

The great strength of menus is their completeness Everything the user needs

can be found somewhere on the programs menus Of course this very richness

means that they get big and cumbersome To keep these big menus from con

suming too many pixels they have to be folded away most of the time and only

popped-up on request The act of popping up excludes menus from the ranks

of visible and immediate commands The tradeoff with menus is thoroughness

and power in exchange for small but uniform dose of clunkiness applied at

every step

0350

CHAPTER 23 TOOLBARS 343

The buttcons on toolbars on the other hand are incomplete and inscrutable

but they are undeniably visible and immediate They are very space-efficient

compared to menus simple single click of the mouse on toolbar buttcon

generates instant action The user doesnt have to search for the function layer

deep in menusits right there in plain sight and one click is all it takes unlike

the mouse-dragging required by menus

Why not text

If the buttcons on toolbar act the same as the items on puildown menu why

are the menu items almost always shown with text and the toolbar buttons

almost always shown with little images Why is the sky blue No wait really

there are good reasons for the difference although we almost certainly

stumbled on them accidentally

Text labels like those on menus can be very precise and clearthey arent

always but precision and clarity are their basic purpose To achieve this they

demand that the user take the time to focus on them and read them As we dis

cussed in Chapter reading is slower and more difficult than recognizing

images In their pedagogic role menus must offer precision and claritya

teacher who isnt precise and clear is bad teacher Taking the extra time and

effort is reasonable tradeoff in order to teach

On the other hand pictorial symbols are easy for humans to recognize but

they often lack the precision and clarity of text Pictographs can be ambiguous

until you actually learn their meaning However once youve learned their

meaning you dont easily forget it and your recognition remains lightning

fast whereas you still have to read the text every time In their role of provid

ing quick access to frequently used tools familiar recognition by experienced

users has the highest priority The pictorial imagery of symbols suits that role

better than text does

Buttcons have all of the immediacy and visibility of buttons along with the fast

recognition capability of images They pack lot of power into very small

space As usual their great strength is also their great weakness the image part

Relying on pictographs to communicate is all right as long as the parties have

agreed in advance what the image means They must do this because the

meaning cannot be guaranteed to be unambiguous

0351

344 PART THE CAST

Many designers think that they must invent visual metaphors for buttcons that

adequately convey meaning to first-time users This is quixotic quest that not

only reflects misunderstanding of the purpose of toolbars but reflects the

futile hope for magical powers in metaphors which we discussed in Chapter

The image on the buttcon doesnt need to teach the user its purpose it merely

needs to have bold and visual identity He will have already learned its pur

pose through other means This is not to say that the designer shouldnt strive

to achieve both ends but dont fool yourself it cant be done very often Its

lot easier to find images that represent things than it is to find images that

represent actions or relationships picture of trash can printer or chart is

pretty easy to interpret but what icon do you draw to represent apply style or

cancel or connect or merge or convert or measurement or adjust Then again

perhaps the user will find himself wondering what picture of printer means

It could mean find printer change the printers settings or report on the sta

tus of the printer Of course once he learns that the little printer means print

one copy of the current document on the active printer now he wont have

trouble with it again

Modern programs like Microsoft Word offer small library of predesigned

icons to select from when customizing the toolbars wanted buttcon that

would insert todays date into document and none of the predesigned ones

particularly communicated date to me so just used big yellow smiley

face Its sole virtue is that once you know what it does you dont forget it or

confuse it with anything else

The problem with both

It might seem like good idea to label buttcons with both text and images

There is not only logic to this argument but precedent too Ive seen many

programs that do this The original icons on the Macintosh desktop had text

subtitles Icons are really useful for allowing quick classification but beyond

that we need text to tell us exactly what the object is for

The problem is that using both text and images is very expensive in terms of

pixels Besides toolbar functions are often dangerous or dislocating and offer

ing too easy access to them can be like leaving loaded pistol on the coffee

table The toolbar is for users who know what they are doing The menu is for

the rest

0352

CHAPTER 23 TOOLBARS 345

Some user interface designers have gone ahead and added text to buttcons

either right on them or just below them and left the images in place This

strikes me as worst-of-both-worlds solution After all the space is far too valu

able to waste this way They are trying to satisr two groups of users with two

different goals one wants to learn in gentle forgiving environment The

other knows where the sharp edges are but sometimes needs brief reminder

Certainly there must be way to bridge the gap between these two classes of

users Later in this chapter well discuss some methods that dont dedicate lots

of precious video real estate to solving the problem

Immediate behavior

Unlike menus we dont depend on toolbar buttcons to teach us how they are

used Although we depend on buttcons primarily for speed and convenience

their behavior should not mislead us Toolbar buttcons should become disabled

if they are no longer applicable due to the current selection They may or may

not gray outthis is up to youbut if buttcon becomes moot it must not

offer the pliant response The buttcon must not depress

Ive seen programs that make moot buttcons disappear altogether and the

effect of this is ghastly The supposedly Rock-of-Gibraltar-like toolbar becomes

this skittish tentative idiom that scares the daylights out of new users and dis

orients even those more experienced mc The path to modeless operation

does not lie in becoming more ephemeral but rather in becoming more solid

permanent and dependable

The toolbar freed the menu to teach

It was the toolbars invention that finally allowed the pedagogical purpose of

the menu to emerge Once the frequently used functions were put into toolbar

buttcons the pulidown menus immediately ceased to be the primary function

idiom For users with even slight experience if buttcon existed it was much

faster and easier to use than pulling down menu and selecting an itema task

requiring significantly more dexterity and time than merely pointing-and-click

ing in one stationary spot Before the advent of the toolbar the pulidown menu

was home to both pedagogy and daily-use functionality Although the two pur

poses were intermixed software designers didnt segregate them into different

idioms until the toolbar demonstrated its potency However once the toolbar

became widespread the menu fell into the background as supporting character

0353

346 PART THE CAST

The only programs where the menu is still used for daily-use

functions are programs with poorly designed or non-existent toolbars

ToolTips

The big problem with toolbar buttcons is that although they are fast and mem
orable they are not decipherable How is the new user supposed to learn what

buttcons do

Macintosh was the first to attempt solution by inventing facility called

tallooÆhelp

Balloon help is one of those frustrating things that everyone can clearly see is

good yet nobody actually uses like no-fat cheese Balloon help is flyovei

facility sometimes called ollover This means that it appears as the mouse

cursor passes over something without the user pressing mouse button

similar to active visual hinting

When balloon help is active little speech bubbles like those in comic strips

appear next to the object that the mouse points to Inside the speech bubble is

brief sentence or two explaining that objects function

Balloon help doesnt work for couple of good reasons Primarily it is

founded on the misconception that it is acceptable to discomfit daily users for

the benefit of first-timers The balloons are too big too long too obtrusive and

too condescending They are very much in the way Most users find them so

annoyingly in-your-face that they keep them turned off Then when they have

forgotten what some object is they have to go up to the menu pull it down
turn balloon help on point to the unknown object read the balloon go back

to the menu and turn balloon help off Whew what pain

Microsoft on the other hand is never one to make things easy for the begin

ner at the expense of the more frequent user They have invented variant of

balloon help called ToolTips that is one of the cleverest and most-effective user

interface idioms Ive ever seen

From distance ToolTips seem the same as balloon help but on closer inspec

tion you can see the minor physical differences that have huge effect from the

users point of view Unlike balloon help ToolTips only explain the purpose of

gizmos on the toolbar They dont try to explain other stuff on the screen like

scroll-bars menus and status bars Microsoft obviously understands that the

user isnt complete idiot and doesnt need to have the most basic stuff

0354

CHAPTER 23 TO0LBARs 347

explained to him It also shows an understanding that although we are all

beginners once we all evolve into more-experienced daily users

ToolTips contain single word or very short phrase They dont attempt to

explain in prose how the object is used they assume that you will get the rest

from context This is probably the single most-important advance that

ToolTips have over balloon help illustrating the difference in design intent of

Microsoft versus Apple Apple wanted their bubbles to teach things to first-time

users Microsoft figured that first-timers would just have to learn the hard way

how things work and ToolTips would merely act as memory jogger for

frequent users

By making the gizmos on the toolbar so much more accessible for normal users

they have allowed the toolbar to evolve from simply supporting menus

ToolTips have freed the toolbar to take the lead as the main idiom for issuing

commands to sovereign applications This also allows the menu to quietly

recede into the background as command vector for beginners and for invok

ing occasionally used functions The natural order of buttcons as the primary

idiom with menus as backup makes sovereign applications much easier

to use For transient programs though most users qualifi as first-time or

infrequent users so the need for buttconsshortcutsis much less

ToolTip windows are very small and they have the presence of mind to not

obscure important parts of the screen As you can see in Figure 23-1 they

appear underneath the buttcon they are explaining and label it without con

suming the space needed for dedicated labels There is critical time delay

about half second between placing the cursor on buttcon and having the

ToolTip appear This is just enough time to point to and select the function

without getting the ToolTip This means that in normal use when you know

full well what function you want and which buttcon to use to get it you can

request it without ever seeing ToolTip window It also means that if you for

get what rarely used buttcon is for you only need to invest half-second to

find Out

That little picture of printer may be ambiguous until see the word Print

next to it There is now no confusion in my mind If the buttcon were used to

configure the printer it would say Configure Printer or even just Printer

referring to the peripheral rather than to its function The context tells me the

rest The economy of pixels is superb

0355

348 PART THE CAST

File Edit Viev Insert Format To Tble

Ii1i11J3

Figure 23-1

Microsofts ToolTips were the solution to the toolbar problem Although toolbars are for

experienced users sometimes these users forget the purpose of less-frequently used com
mand The little text box that pops up as the cursor rests for second is all that is needed

to remind the user of the buttcons function The ToolTip succeeds because it
respects

the

user by not being pedantic and by having very strongly developed respect for the value of

pixels The idiom was the gate that allowed the toolbar to develop as the primary control

mechanism in sovereign applications while letting the menu fall quietly into the back

ground as purely pedagogic and occasional-use command vector

Im very experienced user and leave ToolTips on all of the time Balloon

help on my Mac is never on except in rare cases in which turn it on for just

one balloons worth of help Microsofts solution is quantum leap beyond

balloon help and yet it is exactly the same It just goes to prove that the devil

is in the details

Design tip ToolTips are indispensable to toolbars

ToolTips have completely spoiled me for anything else now get upset with

any program that doesnt offer them Toolbars without ToolTips force me to

read the documentation or worse to learn their function by experimentation

And because toolbars contain immediate versions of commands that should be

used by moderately experienced users they inevitably contain some that are

dislocating or dangerous Explaining the purpose of buttcons with line of text

on the status line at the bottom of the screen just isnt as good as ToolTips that

appear right there where Im looking That cheerful little yellow box with

terse word or two tells me all need where need it when need it

Do not create toolbars without ToolTips In fact ToolTips should be used on

all pictographic buttcons even those on dialog boxes

0356

CHAPTER 23 TOOLBARS 349

Beyond the buttcon

Once people started to regard the toolbar as something more than just an

accelerator for the menu its growth potential became more apparent

Designers began to see that there was no reason other than habit to restrict the

gizmos on toolbars to buttcons

Opening the door to other popular gizmos was just the beginning Soon

designers began to invent new idioms expressly for the toolbar With the advent

of these new constructions the toolbar truly came into its own as primary

control device separate fromand in many cases superior topulldown

menus

After the buttcon the next gizmo to find home on the toolbar was the

combobox as in Words style font and fontsize controls It is perfectly nat

ural that these selectors be on the toolbar They offer the same functionality as

those on the pulidown menu but they also offer more object-oriented pre

sentation by showing the current style font and font size as property of the

current selection The idiom delivers more information in return for less effort

by the user

Once comboboxes were admitted onto the toolbar the precedent was set the

dam was broken and all kinds of idioms appeared and were quite effective The

original buttcon was momentary buiconone that stays pressed only while

the mouse button is pressed This is fine for invoking functions but poor for

indicating setting In order to indicate the state of selected data new varieties

of buttcons had to evolve from the original

The first variant was latdniig buttcbnone that stays depressed after the

mouse button is released

For example the four alignment buttcons shown in Figure 23-2 latch down

to reflect the current status of the selected text Well talk more about these giz

mos in Part VI

Indicating state

This variety of gizmos contributed to broadening in the use of the toolbar

When it first appeared it was merely place for fast access to frequently used

functions As it developed gizmos on it began to reflect the state of the

programs data Instead of buttcon that simply changed word from plain to

italic text the buttcon now began to indicateby its statewhether the

0357

350 PART THE CAST

110 LJAJi1c Fjj_

Figure 23-2

The development of the toolbar soon led to an extension of its purpose It evolved from

mere repository of imperative command buttons to place
where gizmos could indicate

the state of the currently selected item This is more object-oriented concept and it

makes our software more powerful The toolbar has become the place for gizmo innova

tion far beyond what we have come to expect from dialog boxes This image shows the

alignment buttcons from Microsoft Word They are latching buttcons staying down long

after the user releases the mouse button The buttcons indicate state in addition to allow

ing control of it Good user interface idioms characteristically offer such richness

currently selected text was already italicized The buttcon not only controlled

the application of the style but it represented the status of the selection with

respect to the style This is significant move towards more object-oriented

presentation of data where the system tunes itself to the object that you have

selected

As the variety of gizmos on the toolbar grows we find ourselves in the ironic

position of adding pop-ups to it The Word toolbar shown in Figure 23-3

shows the UNDO pop-up It is ironic that such very menu-like idiom should

migrate onto the toolbar Immediate UNDO certainly belongs on the toolbar

but does the associated pop-up that shows the history of past actions belong

there too There isnt clear answer It is good that the historical list is posi

tioned next to the UNDO buttcon because it makes it easy to find but the tool

bar is the place for frequently used functions How frequently would one need

to access the list Ultimately it comes down to pixels As Microsoft imple

mented it the pixel consumption is small enough to justify the idiom What

should be evident though is that the modern toolbar is increasingly pushing

the old-fashioned menu bar into the background as secondary command

vector

Toolbar morphing
Microsoft has done more to develop the toolbar as user interface idiom than

any other software publisher Thisis reflected in the quality of their products

0358

CHAPTER 23 TOOLBARS 351

file fdit view nert FQrmat Tools Tble Window help

jJcJj ioo

Rookman

Typinj The tooL
Caption

Undo Action

Figure 23-3

typical Microsoft toolbar showing the half-button half-icon gizmo call buttcon
Notice the evolution of the buttcon in the undo and redo functions on the right They
now have drop-down lists associated with them Irony of ironies the puildown menu is

migrating onto the toolbar which began as refutation of the old-fashioned pulidown

In their Office suite all of the toolbars are very customizable Each program

has standard battery of toolbars that the user can choose to be visible or invis

ible If they are visible they can be dynamically positioned in one of five loca

tions They can be attachedreferred to as dockedto any of the four sides

of the programs main window You click the mouse anywhere in the interstices

between buttcons on the toolbar and drag it to any point near an edge and

release The toolbar attaches itself permanently to that side top or bottom If

you drag the toolbar away from the edge it configures itself as floating tool

bar complete with mini-caption bar Very clever but not as clever as the

customizability of the individual toolbars

Customizingtoolbars

Microsoft has clearly seen the dilemma that toolbars represent the frequently

used functions for all users but that those functions are different for each user

This conundrum is solved by shipping the program with their best guess of

what an average persons daily-use gizmos will be and letting others customize

things This solution has been diluted somewhat however by the addition of

non-daily-use functions Clearly amateurs probably from marketing got their

hands on the Word toolbar Its default buttcon suite contains functions that

certainly are not frequently used Things like Insert Autotext or Insert

Excel Spreadsheet sound to me more like marketing features than practical

0359

352 PART THE CAST

daily options for majority of users While they may be useful at times they are

not used frequently by throngs of users

The program gives the more advanced user the ability to customize and con

figure the toolbars to his hearts content There is certain danger in provid

ing this level of customizability to the toolbars as it is quite possible for

reckless user to create really unrecognizable and unusable toolbar

Mitigating this is that it takes some effort to totally wreck things People gen

erally wont invest some effort into creating something that is ugly and hard

to use More likely they will do what have done make just few custom

changes and enter them one at time over the course of months or years The

toolbars on my personalized copy of Word look just about the same as the tool-

bars on anyone elses except for couple of exceptions Ive added smiley face

buttcon that inserts the date in my favorite format Ive added buttcon from

the format library that specifies SMALL CAPS format seem to use lot more

than most people If you were to use my word processor you might be thrown

by the smiley face and the small caps but the overall aspect would remain

familiar and workable

Of course Microsoft has extended the idiom so that you can create your own

completely new completely custom toolbars The feature is certainly overkill

for normal users but corporate MIS managers might like it lot for creating

that corporate look see Chapter 32 for discussion of such configuration

needs

My favorite part of the Microsoft toolbar facility is the attention to detail You

have the ability to drag buttcons sideways fraction of an inch to create small

gap between them This allows you to create groups of buttcons with nice

visual separations Some buttcons are mutually exclusive so grouping them is

very appropriate You can also select whether the buttcons are large or small in

size This is nice compensation for the disparity between common screen res

olutions ranging from 640x480 to 1280x1024 Fixed-size buttcons can be

either unreadably small or obnoxiously large if their size is not adjustable You

have the option to force buttcons to be rendered in monochrome instead of

color though dont really understand why you would want to Finally you

can turn ToolTips off though again cant imagine why anyone would do

this and dont know anyone who does

One of the criticisms have of the Microsoft toolbar facility is its scattered pres

ence on the menus There is Toolbars.. item on the View menu that

0360

CHAPTER 23 T0OLBARS 353

brings up small dialog box for selecting which toolbars are visible creating

new toolbars turning ToolTips on or off turning color on or off and select

ing large or small buttcons However if you want to change the selection of

buttcons on toolbar you have to go to the Customize.. item on the

Tools menu which brings up dialog box that allows you to configure the

toolbars the keyboard and the menu yes there is button on the Toolbars

dialog that takes you directly to the Customize dialog but that is hack com

pared to simple unified view have the distinct impression that this design

is the result of either accident or user testing rather than from the judgment of

skilled designer Splitting the toolbar stuff into these two separate dialogs

seems irrational to me It is not at all clear how to find the various toolbar

settings nor do think that the neophyte is effectively protected from

self-defeating actions this way

Id much prefer single dialog box like the one in Figure 23-4 that enables

the user to configure all aspects of the toolbars two-paned dialog would do

the job wellone pane for the basic selections and second pane for advanced

stuff This would be classic rendition of increasing depth on additional panes

0361

354 PART THE CAST

Show Cutornize

Show these toolbars

Fi Standard Color Buttons

Li Fornriattiri Large Buttons

LI Borders

Toollips
Reet

L_I Database

Li Drawing

LI Forms

IJ Microsoft

Li /ord for Windows 2.0

Li Toolbar

Toolbar

Cancel OK

Show Customize

Categories
__ oritrols

--
File

Edit Font Size

Insert

ISyIe

LIJ

ndow arid Help
jjjl

it

Select category then click buRon to see its description

Drag the button to any toolbar

Descripiori

Save changes In

L____________ __j Normal dot

Cancel OK

Figure 23-4

Here is proposed solution to Microsofts scattered toolbar dialogs Instead of two dialogs

available from two different menus all toolbar operations are combined on single dialog

box with two panes The Show pane contains the basics that most users may occasionally

need to use The Customize pane contains the more-sophisticated stuff that the

experienced users might want

0362

...1-

Roll the Credits Please

The modern desktop computer is getting quite crowded

typical user has half-dozen programs running concur

rently and each program must assert its identity The

user needs to recognize your application when he has rele

vant work to be done and you should get the credit you

deserve for the program you have created There are several

conventions for asserting your identity in software

Your programs name
The most fundamental element of any programs identity is

its name By convention this name is spelled out in the cap
tion bar of the programs main window call this text value

the programs title string because it is single text value

within the program that is usually owned by the main

window

The title string is used in several other places too In

Windows 3.x it is displayed beneath the programs icon In

355

0363

356 PART THE CAST

Windows 3.x it is acceptable to have very long title string because most pro

grams have main windows that are at least eight to ten centimeters wide Their

correspondingly wide caption bars can easily render long program names

Windows 95 though introduces some complications In Windows latest ver

sion the title string plays greater role in the operating systems shell interface

Paiticulaily the title string is displayed on the programs launch button on the

Startbar

The launch buttons on the Startbar automatically reduce their size as more but

tons are added which happens each time the user launches more programs As

the buttons get shorter their title strings are truncated to fit If you add your

companys name to your programs name like say Microsoft Word you will

find that it only takes seven or eight running programs or open folders to trun

cate your programs launch-button string to Microsoft... If you are also run

ning Microsoft Excel you will find two adjacent buttons with identical use

less title strings The discriminating portion of their namesWord and

Excelare hidden Yes the launch buttons also contain your programs icon

in the always-visible left end but it sure would be nice if the programs were

named Word by Microsoft and Excel by Microsoft instead

You can rightfully say that this is design fault of the Startbar and not your

problem Youd be right of course but this doesnt help the poor user In the

past your programs title string was the place to show off your company or

brand It is now becoming more-functional part of the interface

The title string has over the years acquired another purpose Many programs

use it to display the name of the currently active document Microsofts Office

suite of programs does this They append the name of the active document to

the right end of the title string using hyphen to separate it from the program

name The File Manager shows the current pathname instead of document

name The technique isnt standard but because Microsoft does it it is often

copied It makes the title string extremely longfar too long to fit onto

launch button

What Microsoft should have done with Windows 95 is add new title string to

the programs internal data structure This string would be used only on the

launch button leaving the original title string for the windows caption bar

This would enable the programmer to tailor the launch-button string for its

restricted space while letting the title string languish full-length on the always

roomier caption bar

0364

CHAPTER 24 RoLL THE CREDITS PLEASE 357

Your programs icon

The second biggest component of your programs identity is its icon stan

dard program icon is 32 pixels square In Windows 3.x the icon is usually

shownby conventionin the programs About.. box It is also displayed

in the Program Manager and on the desktop when the program is minimized

The icon didnt do lot in Windows 3.x

In Windows 95 each programs icon is used much more widely than it is in

Windows 3.x First there are flow two icons the standard one at 32 pixels

square and new miniature one that is 16 pixels square

The regular size is used on the desktop but the miniature one is used on the

caption bar the Startbar the Exploier and other locations in the Windows 95

interface Because of this increased importance you must pay greater attention

to the quality of your program icon In particular you want your programs

icon to be readily identifiable from distanceespecially the miniature version

The user doesnt necessarily have to be able to recognize it outrightalthough

that would be nicebut he should be able to readily see that it is different from

other icons Bold color is especially helpful in accomplishing this unlike

Microsofts white and pale-blue icons that are very hard to distinguish

Dependencies
nineteenth-century farm was complex facility supporting many functions

and often multiple families The architecture reflected this and the main

house was always supported by gathering of small outbuildings such as the

stable servants quarters the hen house the stone house the privy the kitchen

and the blacksmiths shop These supporting structures were called depen

dencies Because modern software frequently consists of single main screen

supported by family of smaller windows have adopted the old term call

the many smaller supporting windows dependencies

include in this category those windows that are not strictly
needed to perform

the main function of the program particularly splash screens About boxes and

Easter eggs

Dependencies are either available only on request or are offered up by the pro

gram only once Those that are offered unilaterally by the program are erected

when the program is used for the very first time or each time the program is

initiated

0365

358 PART THE CAST

About boxes

The About box is single dialog box thatby conventionidentifies the

program to the user

The About box is also used as the programs credit screen identifying the

people who created it Ironically the About box rarely tells the user much

about the program

On the Macintosh the About box can be summoned from the top of the

Apple popup menu In early versions of Windows it could be called from the

bottom of the File menu but in modern Windows 3.x and 95 it is almost

always found at the bottom of the Help menu

Microsoft has been consistent with About boxes in their programs and they

have taken simple approach to its design as you can see in Figure 24-1

Microsoft sets the pace by using the About box almost exclusively as place for

identification sort of drivers license of software find this unfortunate as it

is good place to give the curious user an overview of the program in way

that doesnt intrude on those users who dont need it Programmers every

where are following Microsofts lead and making identity-only About boxes It

is often but not always good thing to follow in Microsofts design footsteps

This is one place where diverging from Microsoft can be big advantage for

you

The main problem with Microsofts approach is that the About box doesnt

tell me about the program In reality it is an identification box It identi

fies the program by name and version number It identifies various copyrights

in the program It identifies the user and the users company These are cer

tainly useful functions but are more useful for Microsoft than for the user

Because this facility just presents the programs fine print instead of telling the

usei about the program think it should be called an i4eiitiiy box instead of

an About box

The identity box identifies the program to the user and the dialog in Figure 24-1

fulfills this definition admirably It tells us all the stuff the lawyers require and

the tech support people need to know Clearly Microsoft has made the deci

sion that an identity box is important while an About box is expendable

Personally Id like to see the two combined into one really helpful dialog

0366

CHAPTER 24 RoLL THE CREDITs PLEASE 359

Microsoft PowerPoint Veion 4Ma
Copyright 987-1 994 Microsoft Corporatian

oft-Art clionary and Program

copyright 1984-1994 Trade Secret Soft-Art Inc

All rights re.erved

Oolor Palette color Schemes Dip Art and Temp ate

eriigraphics Corporation

This product is licensed to

Alan cooper

cooper oftare Inc

Product ID 0EM43-BIJ7-2793842

rnirig This computer program is protected by copyright

law and international treaties IJnauthoried reproduction or

distribution this program or any portion it may result

in severe civil arid criminal penalties and will be prosecuted ystem
to the maimurri extent possible under the law

Figure 24-1

This About box from PowerPoint is typical example of Microsofts approach It tells you
the exact name and version of the program states relevant copyrights issues legal warnings

ugh and displays the users name and company The programs icon is traditionally

shown in the upper left corner The problem is if asked you to tell me about

PowerPoint you probably would not bother to recite the relevant copyrights to me but

would instead say something to me regarding what the program is about What is wrong
with this picture

As weve seen the About box must offer the basics of identification including

the publishers name the programs icons the programs version number and

the names of its authors Another item that could profitably belong here is the

publishers technical support telephone number

Many software publishers dont identify their programs with sufficient discrim

ination to tie them to specific software build Some vendors even go so far as

to issue the same version number to significantly different programs for

0367

360 PART THE CAST

marketing reasons Get clue The version number in the identityor about

box is mainly used for technical support misleading version number will cost

the publisher significant amount of phone-support time just figuring out pre

cisely which version of the program the user has It doesnt matter what scheme

you use as long as this number is very specific

An important part of reporting the version number is telling the user which

previous version it replaces Knowing that this is Version 3.2 isnt tremen

dously meaningful Knowing that Version 3.2 fixes bugs in Version 3.1 and

supersedes all Versions 2.x however is useful Vendors work hard to improve

their software and each version is usually intended to replace some previous

version Smaller incremental revisions are released to fix bugs but may not

entirely replace predecessor Similarly special version may be shipped that

allows compatibility with certain new hardware or software This should be

stated as well

If you are going to display an informative version number it wouldnt hurt to

explain the details of the numbering scheme on this box Most users will ignore

it but it will be appreciated by many curious users not to mention thousands

of professional users and installers

Many programs are uniquely identified by their serial number This of course

is the place to display that number The user may need to use that number in

correspondence with the publisher or for his own company records so the

program should let the user view it and select it for copying

The About box is absolutely the right place to state the authors names Most

modern programs are built by teams of technical experts that can range from

three or four to thirty or forty individuals As former software author Im

very bullish on the idea of giving credit where credit is due in the design and

development of software Programmers designers managers and testers all like

to see their names in lights Like the credits in movie the people who labored

over the product deserve their day in the sun The documentation writers often

get to put their names in the manual but the others only have the program

itself The About box is one of the few dialogs that has no functional overlap

with the main program so there is no reason why it cant be oversized Take

the space to mention everyone who contributed Although some programmers

are indifferent to seeing their names on the screen many programmers are

powerfully motivated by it and really appreciate managers who make it happen

0368

CHAPTER 24 ROLL THE CREDITS PLEASE 361

What possible reason could there be for not naming the smart hard-working

people who built the program

That last question was directed at Bill Gates who has corporate-wide policy

that individual programmers never get to put their names in the About boxes

of programs Having sold him some software can tell you that it is his per

sonal belief that no programmers should ever be identified although was able

to convince him to bend sufficiently to include the name of my company in the

Visual Basic About box He feels that it would be difficult to know where to

draw the line with individuals understand his plight but as watch the

credits for modern movies scroll for ten minutes or so Im not terribly

sympathetic

Microsofts policy in this area bothers me because their conventions are so

widely copied across the industry As result their no-programmer-names pol

icy is also widely copied by companies who have no real reason for it other than

wanting to be like Microsoft

System information

Some vendors put system information on the About box particularly informa

tion about the amount of memory used and available in the system Why do

they do this know that some Microsoft programs did it so maybe vendors

are just copying Microsoft An undocumented function in Windows 3.x

enables this for all of the utilities in that version If you put memory-meter

in the About box the only effect it can have is to bother new users by imply

ing that they need to know about memory consumption What possible con

nection could be made between asking about the program and learning how

much memory is left in the system It might make sense if the dialog told how

much memory were used by the particular program especially if it were

expressed in terms of the percentage of memory available At least then the user

could see that the program in question is using up say 20% of the memory
available to applications

The About box in Figure 24-1 has push-button that launches the Microsoft

system utility that reports on the capabilities of the entire system This is nice

feature but it would make more sense as part of the online help facility rather

than as part of the About box facility

The desire to make About boxes more useful is clearly strong one Otherwise

we wouldnt see memory usage and system-information buttons on them This

0369

362 PART THE CAST

is admirable but by taking more goaldirected approach we can add infor

mation to the About box that can really help the user The single most impor

tant thing that the About box can convey to the user is the scope of the pro

gram It should tell in the broadest terms what the program can and cant do

It should also state succinctly what the programs purpose is Most program

authors forget that many users dont know what the InfoMeister 2000 Version

3.0 program actually does This is the place to gently clue them in

The About box is also great place to give the one lesson that might launch

new user successfully For example if there is one new idiomlike direct-

manipulation methodthat is critical to the user interaction this is good

place to briefly tell him about it Additionally the About box can direct the new

user to other sources of information that will help him get his bearings in

the program Pointing him to online help or to other informational facilities

built in to the interface can give nascent user real boost

Splash screens

splash screen is an identity dialog box displayed when program fist loads

into memory

Sometimes it is just the About box that is displayed unilaterally but often

publisher creates separate splash screen that is more engaging and visually

exciting than boring old About box Not every program will have splash

screen whereas almost every Windows application will have an About box

The splash screen must be placed on the screen immediately when the user

begins loading the program so that he can read it while the bulk of the program

loads and prepares itself for running It isnt really fair for the program to fin

ish loading and prepping before it erects the splash screen The user is then

penalized for loading it and will sense this and be irked by it The program

must show the utmost respect for the users time even if it is measured in

milliseconds

Shareware splash screens

If your program is shareware the splash screen can be your most important dia

log It is the mechanism whereby you inform the user of the terms for using the

product and the appropriate way for him to pay for the product Ive heard the

shareware splash screen referred to as the guilt screen Of course this infor

mation will also be embedded in the program where the user can request it but

0370

CHAPTER 24 RoLL THE CREDITS PLEASE 363

by forcing it in the users face every time the program loads you can reinforce

the concept that the program should be paid for Some shareware splash screens

go so far as to include the text of license agreement and buttons labeled

Agree and Dont Agree The program only runs if the user presses the

Agree button

The splash screen should appear as soon as possible after the program is

invoked As soon as decent interval has passed it should disappear and the

program should go about its business If during the splash screens tenure the

user presses any key or mouse button it also should disappear If the program

is still loading or deploying it will then have to use some other idiom to

indicate this to the user

The splash screen is an excellent opportunity to create good impression in the

users mind about your program It can be used to reinforce the idea in the

users mind that he made good choice by purchasing your product It also

helps to establish visual brand by displaying the company logo the product

logo the product icon and other appropriate visual symbols

Help the first-time user

Splash screens are also excellent tools for directing first-time users to training

resources that are not used in the normal course of daily usage If the program

has built-in tutorials or wizards the splash screen can provide push-buttons

that move the user directly to these facilities

Microsoft has begun including variant of the splash screen in their Office suite

of programs These little dialogs offer up.a handy Tip of the Day shown in

Figure 24-2 that helps the beginner become more sophisticated user

Because splash screens are going to be seen by every user it means that even

first-timers will see it so if you have something to say to them this is good

place to do it On the other hand the message you offer to those first-timers

will probably get pretty boring for more-experienced users who must see it over

and over So whatever you say say it clearly and tersely and without ornamen

tation or cuteness An irritating message on the splash screen is like pebble in

your shoe rapidly creating sore spot if it isnt removed promptly Although

the Tip of the Day dialog is well-liked by many beginners experienced corn

puterphiles tend to hate them The Show Tips at Startup checkbox gizmo

allows the latter group to make the annoying idiom go away but it might be

good idea to mention how to get it back next to the checkbox

0371

364 PART THE CAsT

iii-i1i1
Did ou know eTip1

can return to the location of your last edit by preini ips j1

SHIFTF5

1eb

how Tips at Startup

Figure 24-2

The Tip of the Day dialog from Microsoft Word is variant of the splash screen It appears
once every time the program is invoked and offers the user handy hint on how to use the

program Its intention is to make the user better more sophisticated user of the

program Dont overlook the potential of such artifacts users like this kind of doting

Easter eggs
If you call up the PowerPoint About box shown in Figure 24-1 and then click

on it with the mouse outside either of the push-buttons the box quickly flash

es to black and the names of all of the programmers who built it scroll smooth

ly upwards like the credits after motion picture Remember this is Microsoft

program and Bill doesnt allow the programmers to put their names in the pro

gram But the philosophy in Redmond is What Bill doesnt know wont hurt

him and programmers have gotten their names into just about every program

Microsoft ships They do it by sneaking them into the interface with clever

but hiddencommand idioms like this one

Hidden surprises in program are called easter eggs and they are wonderful

engaging bonuses that contribute to the likableness of their host products

0372

CHAPTER 24 RoLL THE CREDITS PLEASE 365

Easter eggs dont have to be useful in fact practicality detracts from their

appeal The wonder of easter eggs is that they show off the astonishing power

of the computer by doing something for pure entertainment Like their name

implies the user gets the thrill of stumbling upon secret flower in the for

est pearl in the oyster prize in the Cracker Jack box winner in the Lotto

Users will cherish the knowledge and share it eagerly with their colleagues the

way good joke makes the rounds at the office Whatever they say they arc

talking about your program and that is good for sales

Easter eggs should be visually attractive They are worth some time and effort

in animating them or adding eye-catching artwork know one product whose

About box when you press the appropriately obscure key combination

changes to display photograph of the company president in his cups at the

office Christmas party Nobody except employees know about this easter egg

maybe it should be called Christmas egg but it has become part of the

company lore Good customers are shown this treat when they buy lots of

copies and then they feel like part of the inner circle Just like any interface

idiom easter eggs are very memorable Its harmless fun and harmless fun is

something that binds people tightly together

In Windows 3.1 go into the Program Manager and hold the CTRL and SHIFT

keys down and dont let go Now pull down the Help menu and select About

When the about box appears double-click on the Windows flag icon Close the

box with the OK button Repeat then repeat once again On the second repe

tition you see waving flag On the third repetition you get caricature of Bill

Gates Steve Bailmer Brad Silverberg or bear hosting scrolling list of cred

its naming every individual person who worked on the product Stuff like this

unites the team creates legends and builds the corporate culture

The About box is common location for easter eggs and whenever get new

program try clicking in unlikely spots on the About box looking for them

Easter eggs can be big or small active or static There are even few of them

in this book Check out the fine print in Figure 7-1 for example

Probably the most frequent use for easter eggs is the hidden credit box like the

one described above but they have other manifestations too The Tip of the

Day issues random helpful tips about the host program In Word though you

occasionally stumble on real non sequitur of tip as shown in Figure 24-3

0373

366 PART THE CAsT

Did you kno. L1.LJ
IOU can hurt youreI1 ifou run with ciors

iiP..

how Tips at Startup

Figure 24-3

The Tip of the Day dialog from Microsoft Word also contains easter eggs This one is pret

ty tame but it is still worth calling over your buddy at the office and showing it to her

This curious message cant be argued with but its placement is incongruous Users really

like easter eggs and think every program should have few The fuddy-duddies in your

company probably disagree as they do in most companies which is why caster eggs are

usually so well hidden

0374

Part VI The Gizmos
Canned Visual Design

Gizmos are concentrations of interface design as much as they

are modules of code They offer the great advantage of short

ening the development cycle
while simultaneously presenting

familiar affordanees to the user They also offer the great dis

advantage of locking designers in-to old ways of thinking

instead of leaving them free to create methods of interaction

that are more appropriate for the situation They also give

designers false sense of security using gizmosdoesnt auto

matically make interfaces good We need to look critically at

these creations understanding that they are as much result

of accident as they are of conscious design

0375

Imperative and Selection

Gizmos

Gizmos
are directly manipulable self contained visual

screen idioms Gizmos controls widgets or gadgets

whatever you choose to call them they are primary build

ing block for creating graphical user interfaces They arc

closely identified with GUI programming being as funda

mental to GUI construction as windows menus and dialog

boxes

This use of the word gizmo was coined by Mike Geary

\Vindows programmer of legendary skill who worked with

me to create the visual programming front end for Visual

Basic

Microsoft calls gizmos controls but avoid this term

because it has so many other meanings in the same context

How much control do have over the code that controls

that control that is busy controlling the modem con

troller

369

0376

370 PART VI THE GIZMOS

Gizmo-laden dialog boxes

Dialog boxes are the easiest things to build in Windows The dialog box facil

ity offers automatic tools for specifying how and where gizmos will be placed

The de facto definition of dialog box is modal window covered with gizmos

The ease with which programmers can create user interfaces based on one

gizmo-laden dialog box after another is significant Equally significant is the

difficulty involved in creating Windows interfaces using any other visual

directly manipulable idioms Essentially Windows divides the universe of inter

action into two worlds the extremely easy to implement world of canned giz

mos and the extremely difficult to implement world of direct visual interaction

Consistent with this most existing literaturefrorn Microsoft and elsewhere

covers the canned-gizmo world reasonably well while utterly ignoring any

other approach Just for the record let me say that canned-gizmo-laden dialog

boxes are not the key to successful user interface design

multitude of gizmo-laden dialog

boxes doth not good user interface

make

Im not saying that we should toss out gizmos just want to make clear that

while their inclusion may guarantee ease of implementation it doesnt guaran

tee ease of use

Most of the gizmos we are familiar with are those that come standard with the

Windows system This set of canned gizmos has always been very limited in

scope and power

Gizmo liberation

Using gizmos has always been pretty easy but writing them is lot tougher

Any journeyman programmer can create new gizmo although it takes

considerable amount of attention to detail to code it fully To comply with the

de facto standards of gizmohood it must offer many niceties such as recog

nizing all keyboard commands showing dynamic gray rectangle to indicate it

has the focus and having the ability to gray out when inactive The difference

0377

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 371

in effort between writing and merely employing gizmos though has histori

cally kept most programmers out of the business of creating gizmos

Microsoft Windows has always come with standard suite of gizmos and these

form the basis of most interaction with applications These standard gizmos are

an integral part of the operating system Technically they are in USER.EXE the

portion of Windows that defines the GUI or most of what we see on the

screen Although the programming interfaces to these gizmos bear vague

family resemblance each one is quite different There has never been com

mon application programming interface API for them and Microsoft has

failed to define an acceptable standard for third-party vendors This missing

interface has really restricted the development of new gizmos

Brave Windows developers have always invented new gizmos but almost all of

them remained proprietary The lack of either market or standards simply

made it too difficult to distribute them although few aggressive companies

developed one or two trademark gizmos to use in their own products In the

past several companies tried to sell their gizmos but never seemed to make

much headway The only gizmos that had any universality were those that came

as part of Windows itself

The advent of Visual Basic in 1992 changed all that VB has an interface that

allows third-party gizmos to be installed dynamically The gizmos are coded

into dynamic link libraries DLLs with commonly defined interface called

VBX The VBX interface isnt particularly pretty or powerful should know

invented it but it is standard and it defines method whereby program can

use gizmo that isnt an integral part of Windows Putting it another way

programmer now has an easy way to use gizmos not made by Microsoft Since

the VBX interface gained popularity along with VB there has been veritable

explosion in the gizmo market

The VBX interface is giving way to OCX and thence to OLE Custom con

trolssuperior APIs allbut it was VBX that broke the dam and showed the

way to decoupling gizmos from the operating system

As the software market shook out in the last few years many second- and third

tier software publishers saw the VBX phenomenon as an escape route from

one-way trip to Chapter 11 They took their powerful-but-money-losing

spreadsheets graphing programs and word processors and made them VBX

compliant These products found new lease on life in the thriving third-party

gizmo marketplace and programmers can now for nominal fees include in

0378

372 PART VI THE GIZMOS

their software gizmos that provide functionality comparable to more main

stream products This market shift has greatly expanded our old notions about

gizmos and their capabilities

The gizmos that Mother gives you
In TJSER.EXE of Windows 3.x there were only six classes of gizmos buttons edit

fields static fields listboxes scrollbars and comboboxes All of the other famil

iar traditional gizmos like labels group boxes radio buttons checkboxes

frames rectangles and icons were derived from one or the other of these classes

With Windows 95 the set of available gizmos has grown considerably but even

better Microsoft is delivering these new gizmos to the developer by way of

DLLs rather than as part of USER.EXE This decoupling of user code from oper

ating system code is very progressive step that will further encourage the

development of third-party gizmos

In spite of this huge amount of software already exists that was built with the

notion that gizmo can only be one of those six original ones that came with

Windows 3.x Much of what passes for interface design is really an artifact of

the limited palette of gizmos available to the Windows programmers in their

formative years We are only slowly breaking out of that trap

Although gizmos can be categorized by many factors when you examine them

in light of the users goals we find that they come in four basic flavors They

can be used to initiate function which call an imperative gizmo They can

be used to select some option or data which call selection gizmo They can

be used to enter some data which call an entrygizmo And they can be used

to directly manipulate the program visually which call display gizmo Of

course some gizmos combine one or more of these flavors Well now look at

each type in more detail

Imperative gizmos
In the interaction between humans and computers there is language of nouns

sometimes called objects verbs adjectives and adverbs When we issue com

mand we are specifying the verbthe action of the statement When we

describe what the action will affect we are specifying the noun of the sentence

Sometimes we choose noun from an existing list and sometimes we enter

new one We can modify both the noun and the verb with adjectives and

adverbs respectively

0379

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 373

call the gizmo type that corresponds to verb the imperative gizmo because

it commands immediate action Imperative gizmos take action and they take it

immediately Menu items which discussed in Part are also immediate

idioms In the world of gizmos the quintessential imperative idiom is the push

button in fact it is the only one although it comes in numerous guises Press

the button and the associated actionthe verbexecutes immediately

Push-buttons used to be identified by their unique outline but since Windows

went 3D with Windows 3.0 buttons are now identified by their raised aspect

If the gizmo is rectangular and appears raised due to its shadow on the right

and bottom and highlight on the top and left then it has the visual affordance

of an imperative It will execute as soon as the user presses and releases it with

the mouse cursor

The push-button is arguably the most visually compelling gizmo in the design

ers bag gizmos It isnt surprising that it has evolved with such diversity

across the user interface The manipulation affordances of contemporary faux-

three-dimensional push-buttons have prompted their widespread use Its

good thingso why not use it lot

Part of the affordance of push-button is its pressability which indicates its

pliancy When the user points to it and presses
the mouse button the push-but

ton on screen visually changes from raised to sunken indicating that it is

pressed This is an example of dynamic visual hinting like discussed in Part

IV Ive seen programs where buttons are painted on the screen but dont actu

ally move when pressed This is cheap and easy for the programmer to do but

it is very disconcerting for the user because it generates mental question

Did that actually do something The user expects to see the button move

the pliant responseand you must satisfy his expectations

This is increasingly important in multimedia applications many of which draw

beautiful pictures on the screen and set aside portions of them as hotspots that

are sensitive to clicking

Cursor hinting isnt enough though its desirable supplement Even if the

entire screen is consumed by collage of say baseball collectibles when the

user clicks on Louisville Slugger the bat should move to visually confirm to

the user that it is an imperative push-buttonor in this case push-bat

0380

374 PART VI THE GIZMOS

The development of the push-button

In the early versions of Windows push-buttons were stodgy beasts largely used

for terminating dialog boxes which did the bulk of the heavy work of interac

tion

On modal dialog boxes the push-button is usually used only for terminating

commands This means that it is really an excise control managing the window

rather than directly affecting the users information

Concurrent with the release of Windows 3.0 came surge of activity in user

interface innovation across the industry The toolbar was one of the great

advances of that period and it has quickly grown into de facto standard as

familiar as the menu bar To populate the toolbar the push-button was

adapted from its traditional home on the dialog box On its way it changed sig

nificantly in function role and visual aspect

On dialog boxes the push-button was rectangular and exclusively labeled with

text but when it moved to the toolbar it became square lost its text and

acquired pictograph an iconic legend Thus was born the buttcon half but

ton half icon

The invention of the toolbar qualitatively changed the role of the push-button

Actually its role expanded rather than changed as it is still fixture of dialog

box management

Buttcons

Buttcons are easy they are always visible and dont demand as much time or

dexterity as puildown menu does Because they are constantly visible they are

easy to memorize particularly in sovereign applications The advantages of the

buttcon are hard to separate from the advantages of the toolbarthe two are

inextricably linked The consistently annoying problem with the buttcon

derives not from its button part but from its icon part We instantly decipher

the visual affordanceit screams press me The problem is that the image on

the face of the buttcon never gets that clear

Icons in general are hard to decipher with certainty and icons of verbs are

much harder to decipher than icons of nouns Because buttcons are imperative

they are verbs and thus remain problematic It isnt really matter of coming

up with better visual metaphors or finding better graphic artist The problem

0381

CHAPTER 25 IMPERATIVE AND SELECTION GizMos 375

is that visual symbols that convey actions and relationships are difficult if not

impossible to find If you do find an appropriate image it may have good

mnemonic qualities but will usually be inadequate to teach newcomers its pur

pose

The dilemma arises because images do have such good mnemonic qualities

These qualities are good enough that the visual image is more than enough to

remind the daily user of the command represented by the buttcon The image

buttcon is very space-efficient compared to the older text-legend button As

long as there is way to learn it initially and it is part of the users working set

of commands he will remember the image idiomatically and have no problem

with the lack of innate learnability The distinguishing quality of the buttcons

image is that it is visually distinct and memorable

Without mechanism for explaining their purpose however buttcons and

toolbars are badly afflicted and significantly less useful than they could be The

rapid spread of buttcons on toolbars caused widespread grumbling about

incomprehensible icons In response some companies pumped up their

buttcons until they were big enough to hold text legends in addition to icons

Yet others made it the users choice adding another annoying layer of excise to

the interface Then as discussed in Chapter 23 Microsofts ToolTips neatly

solved the inscrutable buttcon problem once and for all ToolTips provide ini

tial learning without intruding on the view of the frequent user They have

spoiled me now find myself getting impatient and frustrated with programs

whose buttcons lack them The groundswell of grumbling over inscrutable

buttcons has subsided to inaudibility due to ToolTips am in constant won
der over the efficacy of the idiom They seem so clunky so much like quick-

fix solution and yet they solve the problem very adroitly

Selection gizmos
Since the imperative gizmo is verb it needs noun upon which to operate

Selection and entry gizmos ai the two types used to select nouns selection

gizmo allows the user to choose an operand from group of valid choices

No action is associated with selection gizmos Selection gizmos can either pre

sent single choice to which the user can only say yes or no or it can

present group of choices from which the user can select one or more

choices depending on how the gizmo is configured The listbox and the

checkbox are good examples of selection gizmos

0382

376 PART VI THE GIZMOS

Checkbox

The checkbox was one of the earliest visual gizmo idioms invented and it

remains the favorite for presenting single binary choice The checkbox has

strong visual affordance for clicking it appears as pliant area either because

of its little square or in Windows 95 because of its 3D recessing Once the user

clicks on it and sees the checkmark appear he has learned all he needs to know

to make it work at will click to check click again to uncheck The checkbox is

simple visual and elegant

The checkbox is however primarily text-based gizmo The checkable box

acts as visually recognizable icon next to its discriminating text This works in

just the way that icons to the left of text items in listbox help the user visually

discriminate their type Like those listbox entries however the graphic sup

ports the text rather than the other way around The checkbox is familiar

effective idiom but it has the same strengths and weaknesses as menus The

exacting text makes checkboxes unambiguous The exacting text forces the user

to slow down to read it and takes considerable amount of real estate

Traditionally checkboxes are square Users recognize visual objects by their

shape and the square checkbox is an important standard There is nothing

inherently good or bad about squareness it just happens to have been the shape

originally chosen and many users have already learned to recognize this shape

There is no good reason to deviate from this pattern Dont make them dia

mond shaped or round regardless of what the marketing or graphic arts peo

pie say

Perhaps we could do to the checkbox what the buttcon did to the menu

Perhaps we could develop checkbox gizmo that dispensed with text and used

an icon instead Well sort of We wont get far trying to iconize the checkbox

but we can replace the checkbox function with another evolving idiom the

buttcon

The push-button evolved into the buttcon by replacing its text with an icon

then migrating onto the toolbar Once there the metamorphosis of the button

continued by the simple expedient of allowing it to stay in the recessedor

pushed-instate when clicked then returning to the raised aspect when it is

clicked again The character of the gizmo changed sufficiently to move it into

an entirely different category from imperative to selection gizmo The state of

the buttcon is no longer momentary but rather locks in place until it is clicked

again call this idiom shown in Figure 251 latching buttcon

0383

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 377

LJiIl jej
Figure 25-1

The latching buttcon was invented by applying the simple expedient of not letting the but

ton pop back out after it has been clicked What is remarkable about this idiom is that it

moves the buttcon idiom from the imperative categorya verbinto the selection catego

rya noun It has all of the idiomatic and space-saving advantages of the buttcon except

that it doesnt issue an immediate command

The default toolbar configuration on Microsofts Office suite of programs

seems tacitly to separate the momentary imperative buttcons from the latch

ing selection buttcons Generally they only put imperative buttcons on the top

bar and put mostly selection buttcons on the others Other than that there are

no visible differences between the two There are no differences in their respec

tive ToolTips either dont believe that this sleight of hand has been noticed

by anyoneMicrosoft includedand it certainly doesnt bother me though it

is really gross inconsistency It is another example demonstrating how consis

tency is not user interface design principle and is something that can often be

flouted with impunity if the situation calls for it

Consistency is not necessarily

virtue

The latching buttcon is widely superseding the checkbox as single-selection

idiom Latching buttcons devote smaller portion of their pixels to excise than

checkboxes do as you can see in Figure 252 They are smaller because they

can rely on pattern recognition instead of text reading to indicate their pur

pose Of course this means that they exhibit the same problem as imperative

buttcons the inscrutability of the icon We are saved once again by ToolTips

0384

378 PART VI THE GIZMOS

Those tiny yellow popup windows give us just enough text to disambiguate the

buttcon without permanently consuming too many pixels

Charkbc i1

Checkbo

Figure 25-2

The venerable checkbox is an idiom that has been around since the beginning of GUTs

The buttcon is oniy few years old The latching variant of the buttcon is widely displac

ing the checkbox and here is one reason why If you compare the amount of video real

estate devoted to excise unproductive overhead to the amount of real estate doing useful

work as an operating gizmo you see that buttcons are significantly more efficient Not

only are they more conservative of pixels overall but the percentage of pixels devoted to

useful work is much higher for latching buttcons than for checkboxes The disadvantage of

the latching buttcon is that it lacks the discriminating text of the checkbox Ta da Our old

friend Mr ToolTips to the rescue

Menu items and momentary buttons often do the flip-flop thing

If flip-flop gizmo controls print resolution for example it will say
draft

mode until you click it then it will say presentation mode The control

affords that you can click it so when it says presentation mode it intends to

mean that by pressing it you will get into presentation mode Of course then

the gizmo changes to say draft mode to indicate that pressing it will get you

there This technique means that the control serves double-duty as an indica

tor of which state you are in Unfortunately it always shows draft mode

when you are in presentation mode and vice versa The gizmo can either serve

as state indicator or as working control but not both see Figure 253

The solution to this one is to either spell it outChange to presentation

modeor to use some other technique entirely Replacing it with two radio

buttons is popular choice See Words standard page setup dialog which has

0385

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 379

mutually exclusive radio buttons for portrait and landscape orientation They

allow control and indicate current state The downside is that they consume

lot of real estate

Another approach is pictorial Draw picture of the page in portrait When the

user clicks on it it rolls over onto its side to show that you are in landscape ori

entation This is very memorable and engaging but it is not necessarily very

discoverable That depends on how well the rest of your program has influ

enced the user to expect that small picture is pliant and will have some effect

Cursor hinting will help However its important not to put the image on top

of button If you do you will have just created pictographic flip-flop with

the same conflicting messages as those with text label

ON OFF

State is off Stale is on

Figure 25-3

Flip-flop controls are very efficient They save space by controlling two mutually exclusive

options with single gizmo The problem with flip-flop controls is that they fail to fulfill

the second duty of every gizmoto inform the user of their current state If the button

says ON when the state is off it is clear as mud what the setting is If it says OFF
when the state is off though where is the ON button Dont use em Not on buttons

and not on menus

Radio buttons

hoary variant of the checkbox is the radio button The name says it all

When radios were first put in automobiles it was discovered that manually tun

ing an analog radio with rotating knob while driving was dangerous to your

0386

380 PART VI THE GIzMos

health so automotive radios were offered with newfangled panel consisting

of half-dozen chrome-plated push-buttons each of which would twist the

tuner to pre-set station Now you could tune to your favorite station with

out taking your eyes off the road just by pushing button The idiom is pow
erful one and it still has many practical uses in interaction design but get

spooky feeling when we use interface idioms in our programs that are copied

from tube-based AM radio from 1963 Studebaker

The behavioi of iadio buttons is mutually exclusive which means that when_

one option is selected the previously selected option automatically deselects

Only one button can be selected at time We techno-geeks frequently use the

woid mux as convenient conti action of the phrase mutually exclusive and

we often use it in reference to these gizmos some geeks use slightly different

conti action mutex

In consequence of mux radio buttons always come in groups of two or more

and one radio button in each group is always selected Technically speaking

there is no enforcement of this mutual exclusion nor is there enforcement of

the always-one-selected rule The individual programmer is quite free to break

the rules single radio button is undefinedit must act like checkbox

instead

Radio buttons are even more wasteful of video space than checkboxes They

waste the same amount of space as checkboxes and for the same reasons but

radio buttons are only meaningful in groups so their waste is always multiplied

In some cases the waste is justified particularly where it is important to show

the user the full set of available choices at all times This should sound vaguely

pedagogic and it is Radio buttons are well suited to teaching role which

means they can be justified on infrequently used dialog boxes but should not

be visible on the surface of sovereign application where we must cater to daily

users

For the same reason that checkboxes are traditionally squarethats how weve

always done itradio buttons are round There are no reasons to change this

shape other than aesthetic or marketing ones and these reasons take back seat

to the established tradition Motifs radio buttons are diamonds so assume

this isnt hard-and-fast Even Microsoft is susceptible to this silly and counter

productive thinking One of the beta versions of Windows 95 was shipped with

diamond-shaped radio buttons Cooler heads prevailed though and the final

version shipped with good ol round ones

0387

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 381

Radio buttons are one of the oldest GUI idioms and consequently many

designers see them as somehow better than other newer idioms but this isnt

so In some cases radio buttons are being supplanted by more modern idioms

As you might imagine the buttcon has also done to the radio button what it

did to the checkbox replaced it on the surface of an application If two or more

latching buttcons are grouped together and mux linkedso that only one of

them at time can be latchedthey behave in exactly the same way as radio

buttons They form what call radio buttcon

They work just like radio buttons One is always selectedlatched downand

whenever another one is pressed the first one returns to its normalraised

position The alignment gizmos on Words toolbar are an excellent example of

radio buttcon as shown in Figure 254

___ ___ ____
___ ___ ___ ____I_-IIl

1r

Figure 25-4

Words alignment gizmos are mux buttcon group acting like radio buttons One is

always selected and when another is clicked the first one returns to its normal raised

position This variant is very space-conservative idiom that is well-suited for frequently

used options

Just as in all of the buttcon idioms these are very efficient consumers of space

letting experienced users rely on pattern recognition to identify them and let

ting infrequent users rely on ToolTips to remind them of their purpose First

time users will either be clever enough to learn from the ToolTips or will learn

more slowly but just as reliably from other parallel pedagogic command vec

tors

The combuttcon

variant of the radio buttcon is dropdown version Because of its similarity

to the combobox gizmo call this combuttcon It is shown in Figure 255

0388

382 PART VI THE GIZMOS

Normally it looks like single latched buttcon but if you click and hold on it

it drops down menu of several latching buttcons You slide the cursor down

the same way you do on pull-down menu to select one of the buttcon items

When you release the mouse button the selection is made and the one you

select now appears as the single buttcon on the toolbar Like menus the menu

of buttcons should also deploy if the user clicks once and releases second

click makes the selection

L1JJIA

itL1JA1

Figure 25-5

This is what call combuttcon It is mux-linked group of latching buttcons that

behave like dropdown combobox Pressing the mouse button while over the combuttcon

drops down menu of buttcons Slide the cursor down to the desired one and release The

newly selected buttcon shows on the toolbar as the selected option Think of this idiom as

way to cram several related buttcons into the space of single one It is less powerful

than just putting up four latching buttcons but useful when space is at real premium

Drawing small inverted triangle in the lower right corner of the combuttcon

can serve as visual hint that this buttcon is different You can vary this idiom

quite bit and creative software designers are doing just that in the never

ending bid to cram more functions onto screens that are always too small

You can see Microsoft variant in PowerPoint where the buttcons for specify

ing the colors of fills lines text and shadows show combuttcon menus that

0389

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 383

look more like little palettes than stacks of buttcons As you can see from Figure

256 these menus pack lot of power and information into very compact

package This facility is definitely for frequent users particularly minnies and

not at all for first-timers However for the user who has at least basic

familiarity with the available tools the idiom is instantly clear once it is discov

ered or demonstrated This is an excellent gizmo idiom for sovereign-posture

programs with which users can be expected to spend long hours interacting It

demands sufficient manual dexterity to work menu with relatively small tar

gets but is much faster than going to the menu bar pulling down menu

selecting an item waiting for the dialog box to deploy selecting color on the

dialog box and then pressing the OK button

fli
itru
No Fill

arkground

Shaded

Pattern

Color....

Figure 25-6

This combuttcon is taken from PowerPoint The buttcon in the upper left corner controls

the fill color of the selected object Clicking or pressing the buttcon causes the drop-

down menu to appear Colors are selected from the eight swatches at the top or from one

of the text items most of which bring up selection dialogs This dense packing of informa

tion both input and output is indicative of the direction in which good user interfaces are

moving

Listbox

Selection gizmos that present lists of text strings are often called picklists

because they offer lists of items from which the user can pick selection

The picklist is powerful tool for simplifying interaction because it eliminates

the possibility of making an incorrect selection Essentially picklist is gizmo

for selecting from finite set of text strings The first picklist was the listbox

In Windows 95 it has been made largely obsolete by the listview

gizmo

0390

384 PART VI THE GIzMos

Listboxes were one of the original six gizmo classes that came with Windows

1.0 They are little text windows with vertical scrolibar on the right-hand

edge You can add lines of text to the box and the scrollbar will move them up

or down The user cannot select text as in word processoron character-

by-character basisbut he can select single line of text at time listbox

variant allows multiple selection where the user can have more than one line

selected at one time

The original listbox gizmo was for text onlyit wasnt until Windows 3.0 that

non-text items could be insertedand that strong influence permeates its

operation to this day listbox filled with line after line of text unrelieved by

visual symbols is dry desert indeed Some adventurous programmers have

adapted them for graphics but lets face it most programmers arent that

masochistic

In Chapter 15 talked about the problems with scrolibars and later in this

chapter Ill talk about them some more For now suffice it to say that the prob

lems with scrolibars are numerous The traditional listbox gizmo joins brain-

dead text-only box with clumsy annoying scroilbar in particularly fetid

combination of idioms

Ive often felt that the listbox control is the one whose potential was exploited

the least by Microsoft In the early days of Windows like many other devel

opers was forced to write my own listbox gizmo class Succeeding versions of

Windows obsoleted my work but my aspirations grew too Now that more

robust gizmo interfaces are here hope some ambitious gizmo builder creates

really great listbox

Actually Microsoft seems to have done pretty decent job in Windows 95 with

the new listview gizmo Among other features it allows each line of text to

automatically be preceded with an icon

This is excellent news because believe that every item in every list should

show an identifying visual icon next to each text entry Because of this will

now forget that listboxes ever existed and deal only with the listview gizmo for

all future design suggest you do the same Too bad they didnt improve the

scrolibar while they were at it

Design tip Every text item in list should have an

identifying graphic icon next to it

0391

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 385

What listboxes er mean listviews are good for is displaying lists of items and

allowing the user to select one or more of them They are also good idioms for

providing source of draggable items If the items are draggable within the

listview itself it makes fine tool for enabling the user to put items in specific

order For example you might want to rearrange list of the people in your

department in descending order by how frequently you work with them There

is no automatic function that will do this you just have to drag them until its

right

Many lists are not static but are modified by users adding deleting and chang

ing the text of entries Supporting this requires the ability to key directly into

the listview new text item or modification to an existing one

Much to my surprise and pleasure Microsoft did pretty good job with the

listview gizmo In addition to icons it supports drag-and-drop and edit-in-

place Both of these necessities were lacking from the older Windows 3.x list-

box gizmo Until Windows 95 Microsoft handed rank and file programmers

some pretty dull tools It should come as no surprise that much of what they

built with them is coarse and difficult to use

The weight of history and habit still put the listbox gizmo onto lot of dialog

boxes Thankfully most of those dialogs appear quickly allow the user to select

single item and then go away To provide better interaction the programmer

must use the listview gizmo exclusively although Ill use the terms listview

and listbox interchangeably

Earmarking

Generally the user selects an item in listview as input to some function like

selecting the name of desired font from list of several available fonts

Selection in listbox is discrete rather than concrete and it is entirely conven

tional with keyboard equivalents focus rectangles and items shown with

COLOR HIGHLIGHT

Occasionally the listbox is used to select multiple items and this can introduce

complications There is nothing conceptually wrong about using multiple

selection in listboxes but in practice it can be problematic The selection idiom

is very well suited for single selection but much weaker for multiple selection

In concrete data multiple selection is contiguous so it is above all visible In

discrete data multiple selection works adequately if the entire playing field is

0392

386 PART VI THE GIZMOS

visible at once like the icons on desktop If two or more icons are selected at

the same time you can clearly see this because all of the icons are visible

If the pooi of available discrete items is too large to fit in single view and some

of it must be scrolled off screen the selection idiom immediately becomes

unwieldy This is the normal state for listboxes and listviews Their normal state

of selection is mux that is when you select one thing the previous selected

thing deselects If you are expecting different behavior it is far too easy to

select an item then scroll it into invisibility and select second item forgetting

that you have now deselected the first item because you cant see it anymore

The alternative is equally unpalatable the multiple selection option in the stan

dard listbox merely disables the mux linking in the selection algorithm Things

now work absolutely perfectly the user selects one item after another and each

one stays selected The
fly in the Ointment is that there is no visual indication

that things are behaving differently from the norm It is just as likely that user

will select an item scroll it into invisibility then spot more desirable second

item and select it expecting the firstunseenitem to automatically deselect by

way of the mux standard You get to choose between offending the first half of

your users or the second half Bad news

The correct action of course is to use completely different idiom from selec

tion one that is visually distinct You only need to do this in the case where you

have multiple selection within list that may scroll off screen but that case

arises frequently Please understand that what we are doing is nothing more or

less than multiple selection we are just doing it with more appropriate visual

idiom The selection idiom is heavily used in GUTs and in this case it is

overused When things can scroll off the screen multiple selection requires

better more distinct idiom

It just so happens we already have well-established idiom to indicate that

something is well lets
say chosen instead of selected Of course that idiom

is the checkbox Checkboxes communicate their purpose and their settings

quite clearly and like all good idioms are extremely easy to learn Checkboxes

are also very clearly disassociated from any hint of mutual exclusion If we were

to add checkbox to every item in our problematic listbox the user would not

only clearly see which items were selected and which were not he would also

clearly see that the items were not mux linked solving both of our problems in

one stroke call this checkbox alternative to multiple selection

An example of earmarking is shown in Figure 57

0393

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 387

DjFax1achire
ii Speakers

elephone

II Computer
__

Figure 25-7

Selection is normally mutually exclusive mux operation When the need arises to dis

card mux in order to provide multiple selection things can become confusing if some of

the items can be scrolled out of sight Earmarking is solution to this Put checkboxes

next to each text item and use them instead of selection to indicate the users choices

Checkboxes are clearly non-mux idiom and very familiar GUI idiom Users grasp the

workings of this idiom right away

Earmarking also solves another niggling problem with multiple selection

Multiple selection list gizmos when they are created have no selected items

However in some variants once the user selects an item there is no way to

return to state where nothing is selected In other words there is no idiom

for selecting nothing If the listbox is used in the sense of an operand selector

for function dialog box the CANCEL button provides the escape route if the

user changes his mind but if the listbox isnt on dialog box he may be stuck

Earmarking doesnt operate under the same rules as selection and each item in

the list is independent One click checks the box second click unchecks the

box

The inability to deselect all items in listbox has given rise to kludge that can

be seen on Words Modify Style dialog box among many others There is an

entry in the listbox for none or no selection What hack Dont stoop

to this level of programming If you need way to turn off all of the selections

use an earmarking idiom to make choosing items different from selecting items

Dragging- and-dropping

Listboxes can be imagined as little palettes of goodies to use in direct

manipulation idiom If the list in Figure 257 were on an email program for

0394

388 PART VI THE GIzMos

example you could click on an entry and drag it to message to select device

for output Its not really selection because it is completely captive operation

Without doubt many programs would benefit if their listboxes and listviews

supported dragging-and-dropping

Such listviews with draggable items are commonly used to gather items in

desired set for the user Having two adjacent listboxes one showing available

items and the other showing chosen items is common GUI idiom pair of

push-buttons placed between them allow items to be selected and transferred

from one box to the other It is so much more pleasant when the idiom is but

tressed with the ability to just click-and-drag the desired item from one box to

another without having to go through the intermediate steps of selection and

function invocation

Ordering listboxes

Sometimes the need arises to drag an item from one position to another posi

tion in the same listbox Actually this need arises far more often than most

designers seem to think At least find myself frequently wishing that could

want to order the items in list according to how often use them or how

important they are for example instead of just alphabetically Many programs

offer automatic sort facilities for important lists The Explorer for example lets

me sort my files by name by type by modification date and by size Thats nice

but what really want is to order them by importance Algorithmically the pro

gram could order them by frequency of access but that wont always get the

results want For example may have to access Words system files lot but

they are important to Word not to me Id like to press sort button to get

good head start then click-and-drag the Word files down to the bottom of the

list Of course this is the kind of thing that an experienced user wants to do

after long hours of familiarization It takes lot of effort to fine-tune direc

tory like this and the program must remember my exactsettings from run-to

runotherwise the
ability to reorder things is worthless

Being able to drag items from one place to another in listbox is powerful but

it demands that autoscrolling be implemented discussed autoscrolling in

Chapter 18 If you pick up an item in the list but the place you need to drop it

is currently scrolled out of view you must be able to scroll the listbox without

putting down the dragged object

0395

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 389

Horizontal scrolling

Listboxes normally have vertical scroilbar for moving up and down through

the list the way Santa scans his long strip
of paper with the names of good boys

and girls Listboxes can also be made to scroll horizontally This feature allows

the programmer to put extra long text into the listbox with minimum of

effort It offers nothing to the user

Scrolling list of text horizontally is terrible thing and it should never ever

need to be done When listbox scrolls up and down entire lines come and go

from view but the text inside the box remains completely readable However

when text list is scrolled horizontally it hides from view one or more of the

first letters of every single line oftext showing This makes none of the lines

readable and utterly destroys the continuity of the text To see what mean

take your bookmark and cover up just the first two characters of each line in

this paragraph See how hard it becomes to read Yes it is decipherable but you

have to strain at it The purpose of computers is to eliminate strain from the

lives of humans

DŁsign tip Never scroll text horizontally

The horizontal scroilbar provided for this action is the exact same gizmo as the

vertical one aside from its orientation of course and it was designed for rel

atively permanent settingnot temporary one The whole action of horizon

tally scrolling listbox is inappropriate the user clicks on the scroilbar to read

the right half of the entry in question then must move the cursor back to the

left and click again to restore the listbox to its normal left-justified position If

the scroll took more than one click on the scrollbar or worse yet mixed an

arrow click with bar click getting back to square one is extremely difficult and

far more complex than the operation justifies

If you find situation that seems to call for the horizontal scrolling of text

search for alternative solutions Begin by asking yourself why the text in the list

box is so long Can you shorten the entries Can you use more than one line

per entry to avoid that horizontal length Can you wrap the text onto the next

line Can you allow the user to enter aliases for the longer entries Can you use

graphical entries instead Can you use smaller typeface You should alterna

tively be asking yourself if there is some way to widen the listbox Can you

rearrange things on the window or dialog to expand horizontally

0396

390 PART VI THE GIZMOS

The best answer will usually be to wrap the text onto the next line indenting

it so it is visually different from other entries This of course means that you

now have listbox with entries of variable height The listbox gizmo from

Microsoft lets you handle this with the ownerdraw option but it demands lots

of work by the programmer Rats The listbox gizmo just keeps giving us fits

when we try to do the right thing What market opportunity for some clever

entrepreneur

Microsoft provides multi-column option for their listbox gizmo but would

still never use it This option lets you organize listbox items like newspaper

with snaking columns This works for newspapers because everything is laid

out for us to read at once However once some of it is hidden off screen the

user must simultaneously scroll vertically with his eyes while scrolling horizon

tally with mouse and scrollbar The mental management is far too difficult

Multi-column display may help programmers but it offers nothing to users

Remember Im just talking about lists of text For graphics there is nothing

wrong with horizontal scrollbars or horizontally scrollable windows in general

am just saying that providing text-based listbox with required horizontal

scrollbar is like providing computer with required pedal-powered electrical

generatorbad news

Entering data to listbox

An enormous area where little work has historically been done is in enabling

the user to make direct text entry into an item in listbox The old listbox

gizmo merely punted on this and it takes some pretty nifty coding to imple

ment it by yourself Of course the need to enter text where text is output is

widespread and much of the hacky-kludgy nature of dialog box design can be

directly attributed to its programmer trying to dodge the bullet of having to

write edit-in-place code

Finally the listview and treeview gizmos in Windows 95 offer an edit-in-place

facility The Explorer in Windows 95 uses both of these gizmos and you can

see how they work by renaming file or directory Excellent To rename file

you just click twice on the desired name and enter whatever changes are

desired dont want to look gift horse in the mouth so wont whine about

the clunky way Microsoft implemented this idiom except to say that you have

to carefully delay that second click to shift into edit-in-place mode otherwise

it will be interpreted as double-click and launch the file think Microsoft

0397

CHAPTER 25 IMPERATIVE AND SELECTION GIZMOS 391

could have done better but like said this is tradeoff Im happy to make to

get free edit-in-place Manyno mostof the items displayed in listboxes

could benefit by being able to be edited by the user

The edge case that makes edit-in-place real problem is adding new entry to

the list Most designers use other idioms to add list items Press button or

select menu item and new blank entry is added to the list and the user can

then edit-in-place its name It would be more sensible if you could say

double-click in the space between existing entries to create new blank one

right there Ahhh wishful thinking..

The real-world solution to this problem that has actually emerged over the past

few years is the combobox which well talk about next

Combobox
Windows introduced new gizmo called the combobox It isas its name

suggestsa combination of listbox and an edit field It provides an un

ambiguous method of data entry into listbox This solution is something of

scatter-gun approach but it is effective The other attribute of the combobox

that makes it winner is its popup variant that is extremely conservative of

video real estate

With the combobox gizmo there is clear separation between the text-entry

part and the list-selection part The users confusion is minimized and you can

bet that the programming was significantly easier For single selection the

combobox is superb gizmo The edit field can be used to enter new items and

it also shows the current selection in the list When the current selection is

showing in the edit field the user can edit it theresort of poor mans edit-

in-place

Because the edit field of the combobox shows the current selection the

combobox is by nature single-selection gizmo There is no such thing as

multiple-selection combobox Single selection implies mux which is one of the

reasons why the combobox is fast replacing groups of radio buttons for mux

linked options The other reasons include its space efficiency and its ability to

add items dynamically something that radio buttons cannot do

When the dropdown variants of the combobox are used the gizmo shows the

current selection without consuming space to show the list of choices

0398

392 PART VI THE GIZMOS

Essentially it becomes list-on-demand sort of like menu provides list of

immediate commands on demand combobox is popup listbox

The video efficiency of the combobox allows it to do something remarkable for

gizmo of such depth and complexity it can reasonably reside permanently on

programs main screen No listbox in supporting role could ever do that It

can even fit comfortably on toolbar It is very effective gizmo for deploy

ment on sovereign-posture application There are currently four comboboxes

visible on my word processors toolbars for example This effectively crams

huge amount of information and usefulness into very small space Using com

boboxes on the toolbar is more effective than putting the equivalent functions

on menus because the comboboxes show me their current selection without

requiring any action on my part such as pulling down menu to see the cur

rent status Once again the gizmo that delivers the goods with the smallest per

manent video footprint wins the Darwinian battle for pixels

If drag-and-drop is implemented in listboxes it should also be implemented in

comboboxes For example being able to open combobox scroll to choice

and then drag the choice onto document under construction is very pow
erful idiom Because comboboxes fit so well on toolbars the idiom has real

appeal for adding direct manipulation to sovereign applications Drag-and-

drop functionality should be standard part of comboboxes

The utility of the combobox collapses if the situation calls for multiple selec

tion the idiom just cant handle it and you must return to the plain listbox

The listbox consumes significant space on-screen-enough so that it should

probably never be considered practical for permanent deployment Instead it

should be relegated to transient dialog boxes

Treeview gizmo

Windows 95 brings us this new gizmo It is listview that can present hierar

chical data It shows sideways tree with icons for each entry The entries can

be expanded or compressed the way many outline processors work As pro

grammer like this presentation It is used for the left half of the Explorer and

find the format of the display to be effectivecertainly more effective than

scattering icons around on my desktop Unfortunately it is problematic for

users because of the trouble many people have with hierarchical data structures

If the treeview contents are restricted to no more than two levels however it

can nicely show monocline grouping of data

0399

Entry and Display /f
Gizmos __

the last chapter discussed imperative and selection giz

mos In this chapter will examine the remaining two types

of gizmos those for entry and display Display gizmos enable

the user to configure the form and appearance of their win

dows The job of entry gizmos is to accept the users

unstructured data which puts them squarely in between

error-prone fallible humans and rigid deterministic data

management software

Entry gizmos
Entry gizmos enable the user to enter new information into

the program rather than merely selecting information from

an existing list

The most basic entry gizmo is text-edit field Like selection

gizmos entry gizmos represent nouns to the program

Because one half of comb obox is an edit field some corn

bobox variants quali as entry gizmos too Also any gizmo

393

0400

394 PART VI THE GIzMOS

that lets the user enter numeric value is an entry gizmo Many of the new giz

mos from third-party developerslike spinners gauges sliders and knobsfit

in this segment Microsoft has not shipped any other standard entry gizmos so

there isnt single dominant form but in vacuum standards form from the

bottom up so stay tuned

Bounding
call any gizmo that restricts the available set of values that the user can enter

bundedentry gizmo slidei that moves fiorn to 100 for example is

bounded but dont confuse this with bound gizmo used for database

access

Regardless of the users actions no number outside those specified by the pro

gram can be entered with bounded gizmo The essential fact about bounded

gizmos is that it is impossible to enter an invalid value with one

Conversely an edit field can accept any data the user keys into it call an open-

ended entry idiom like this an uiibomided-entry gizmo

With an unbounded-entry gizmo it is easy to enter an invalid value The pro

gram may subsequently reject it of course but the user can still enter it

Simply put bounded gizmos should be used wherever bounded values are

needed If the program needs number between and 35 presenting the user

with gizmo that will accept any numeric value from 1000000 to

1000000 is not doing him any favors He would much rather be presented

with gizmo that embodies as its bottom limit and 35 as its upper limit

Users are smart and they will immediately comprehend and respect the limits

of their sandbox

igtiicffeounded gizmos for b6undedn1
It is important to understand that am talking here about.a quality of the entry

gizmo and not of the data To be bounded gizmo it needs to clearly com

municate preferably visually the acceptable data boundaries to the user An

edit field that rejects the users input after he has entered it is not bounded

control Edit fields are never bounded entry fields

Most quantitative values needed by software are bounded yet many programs

allow unbounded entry with edit fields When the user inadvertently enters

0401

CHAPTER 26 ENTRY AND DISPLAY GizMOS 395

value that the program cannot accept the program issues an error message

box This is cruelly teasing the user with possibilities that arent What

would you like for dessert Weve got everything we say Ice cream you

respond Sorry we dont have any we say How about pie you innocently

ask Nope we say Cookies Nope Candy Nope Chocolate

Nope What then you scream in anger and frustration Dont get mad
we say indignantly we have plenty of fruit compote This is how the user

feels when we put up dialog box with an unbounded edit field and ask for the

number of desired veeblefetzers He enters 17 and we reward this innocent

entry with an error message box that says You can only have between and

veeblefetzers This is extremely bad user interface design and dont ever let

me catch you doing it You should use bounded gizmo that automatically lim

its the input to or

If the bounded set of choices is composed of text rather than numbers you can

still use slider of some type or combobox or listbox Figure 26-1 shows

bounded slider used by Microsoft in the Display Settings dialog box of

Windows 95 It works like slider or scrollbar but has four discrete positions

that represent distinct resolution settings They could easily have used corn

bobox in its place but isnt the slider nicer to look at and friendlier Part of its

appeal comes from the innate visibility of the gizmo you can see the scope of

the control just by looking combobox isnt much smaller but it keeps its

cards hiddena less friendly stance

De.ktop area

Less More

1024 by 768 pieI

Figure 261

bounded gizmo only lets you enter valid values It does not let you enter invalid values

oniy to reject them when you try to move on This figure shows bounded slider gizmo

from the Display Settings dialog in Windows 95 The little slider has four discrete posi
tions As you drag the slider from left to right the legend underneath it changes from

640 by 480 pixels to 800 by 600 pixels to 1024 by 768 pixels to 1280 by 1024

pixels Why didnt they use combobox Which would you prefer rest my case

0402

396 PART VI THE GIZMOS

If the program requires numeric value that must remain within specific

boundaries give the user control that intrinsically communicates those limits

and prevents him from entering value outside of the boundaries The scroll-

bar control class does this it is bounded gizmothe only one that comes

with Windows Although scrolibars have significant drawbacks they are exem

plary in one area they allow the user to enter quantitative information by

analogy Scrollbars allow the user to specify numeric values in relative terms

rather than by directly keying in number That is the user moves the sliding

thumb to indicate by its relative position proportional value for use inside

the program They are less useful for entering precise numbers though many

programs use them for that purpose Newer gizmos like spinners are better for

entering exact numbers

Spinners

new gizmo type commonly called spinner is iapidly gaining currency

especially in Microsofts Office suite

It grays the difference between bounded and unbounded gizmos to certain

extent The spinner gizmo is small edit field with two half-height buttons

attached as shown in Figure 26-2

Margins Paper Jze Paper Source ayout

Preview-----
OK

Bottom UJ

Left JU
___________ oetauj

Rjqht jO.9

EtI

utter
JD

rFrom Edge

Mjnn

Header
Margrns

Footer J04
iwip To IWhole Document LJ

Figure 26-2

The Page Setup dialog from Word for Windows makes heavy use of the spinner gizmo On
the left side of the dialog you see stack of seven of these new controls whose popularity

is growing fast By clicking on either of the small arrowed buttons the specific numeric

value is made to increase or decrease in small discrete steps If the user wants to make

large change in one action or to enter precise setting he can use the edit field portion

for direct text entry The arrow button pprtion of the gizmo embodies bounding while

the edit field portion does not Does that make this bounded gizmo

0403

CHAPTER 26 ENTRY AND DISPLAY GIZMOS 397

Using either of the two small arrow buttons enables the user to change the

value in the edit window in small discrete steps These steps are boundedthe

value wont go above the upper limit set by the program or below the lower

limit If the user wants to make large change in one action or to enter spe

cific number he can do so by clicking in the edit window portion and directly

entering keystrokes into it just like entering text into any other edit field

Unfortunately the edit window portion of this gizmo is unbounded leaving

the user free to enter values that are out of bounds or even unintelligible

garbage In the Page Setup dialog box in the figure if the user enters bad

value the program behaves like most other rude programs issuing an error

message box explaining the upper and lower boundaries and requiring the user

to press the OK button to continue

Overall the spinner is an excellent idiom and can be used in place of plain edit

fields for most bounded entry In Part VII we will discuss ways to improve

gizmo error handling

Unbounded-entry fields

The primary unbounded-entry gizmo is the text-edit gizmo This simple box

allows the user to key in any text value

Edit fields are usually very simple boxes where word or two of data can be

entered by the user but they can also be moderately sophisticated text editors

in their own right The user can edit text within them using the standard tools

of concrete selection as discussed in Chapter 16 with either the mouse or the

keyboard

Text-edit gizmos are generally used either as data-entry fields in database appli

cations as option-entry fields in dialog boxes or as the entry field in com
bobox In all of these roles they are frequently called upon to do the work of

bounded-entry gizmo However if the desired values are finite the text-edit

gizmo should not be used If the acceptable values are numeric use bounded

numeric-entry gizmo such as slider or knob instead If the list of acceptable

values is composed of text strings then picklist should be used so the user is

not forced to type

Sometimes the set of acceptable values is finite but too big to be practical for

picklist For example program may require string of any 30 alphabetic char

acters excluding spaces tabs and punctuation marks In this case text-edit

0404

398 PART VI THE GIZMOS

gizmo is probably unavoidable even though its use is bounded If these are the

only restrictions however the edit gizmo can be designed to reject non-

alphabetic characters and characters after 30 thus making it bounded

Validation

From the gizmos point of view there is really no such thing as invalid data

Data can only be adjudged invalid in the context of the program For example

1995 is valid in text-entry gizmo that gathers the year but not in one that

gathers the month Physically an unbounded-entry gizmo cannot recognize

invalid dataonly the program can make the actual determination of validity

From the programs point of view bounded-entry gizmo will only hand it

valid input Thus by definition an unbounded gizmo can return invalid input

to the program

An unbounded gizmo that is used to gather bounded data is in moral bind

It must serve two bosses The gizmo must blithely accept whatever data the

user keys in then if the program judges that input to be invalid the gizmo is

forced to be the bearer of someone elses bad news believe that this moral

bind of putting unbounded gizmos in the role of accepting bounded input is

one of the most important contributors to user dissatisfaction with computers

Accepting bounded data into

unbounded gizmos causes user

dissatisfaction

If the data is boundedbut not too boundedthe program must let the user

enter the data only to reject it afterwards Although there are some mitigating

steps there really is no good way to solve this problem Unless..

There is one way to solve this problem the program should just go ahead and

accept whatever the user enters In other words eliminate semi-bounded data

Either coerce the correct data with bounded gizmo or accept whatever the

user gives you in an unbounded gizmo Most programmers reject this solution

They do not feel that their programs can accept for example asdf as input

to social security number field Ill wait until Chapter 29 Managing

Exceptions to argue the point

0405

CHAPTER 26 ENTRY AND DISPLAY GIZMOS 399

The way most programmers have historically dealt with this dilemma is by cre

ating what call validation gizmo or an unbounded text-entry gizmo with

built-in editing

Many edits are commonplace covering such things as dates phone numbers

zip codes and social security numbers and are packaged with text-edit gizmos

as unit particularly for database data-entry applications You can purchase

variants of the text-entry gizmo that will only allow numbers or letters or

phone numbers or that will reject spaces
and tabs for example

Although the validation gizmo is widespread idiom it is very poor one

Tactically though it is often necessary so well ignore the bigger issues for

now and look at practical ways to make it better The key to successfully design

ing validation gizmo is to give the user generous feedback An entry gizmo

that merely refuses to accept input is just plain rude not helpful and will guar

antee an angry resentful and upset user

fundamental improvement based on the axiom that things that behave dif

ferently should look different Chapter 21 is to make validation gizmos visu

ally distinct from unvalidated gizmos recommend using different color and

line style for the gizmos border dashed line in blue instead of solid black

would alert the user that something was up He would then observe it more

closely than usual when he used it for the first time and would be poised to

learn about its unique behavior

Design tip Show validatedentry gizmos with different

border

The main tool for validation gizmos is to provide rich status feedback to the

user Unfortunately the edit gizmo as we know it today provides virtually no

built-in support for feedback of any kind The designer must specifr such feed

back mechanisms in detail or none will be provided

Some gizmos reject the users keystrokes as he enters them When gizmo

actively rejects keystrokes during the entry process call it hot validation

gizmo text-only entry gizmo for example may accept only alphabetic char

acters and refuse to allow numbers to be entered Some gizmoswork the oppo

site way rejecting any keystrokes other than the numeric digits through

Other gizmos reject spaces tabs dashes and other punctuation in real-time

Some variants can get pretty intelligent and reject some numbers based on live

calculations for example unless they pass checksum algorithm

0406

400 PART VI THE GIZMOS

When hot validation gizmo rejects keystroke it must make it clear to the

user that it has done so It should also clue the user into why it made the rejec

tion though that is more difficult If an explanation is proffered the user will

be less inclined to assume the rejection is arbitrary He will also be in better

position to give the program what it wants

The user is expecting to be able to enter keystrokes at will this is the nature of

the keyboard If the gizmo is going to reject some keystrokes based on their

value it must clearly communicate this to the user

Sometimes the range of possible data is such that the program cannot validate

it until the user has completed his entry rather than at each individual key

stroke The editing step then takes place only when the gizmo loses focus that

is when the user is done with the field and moves on to the next one The edit

ing step must also take place if the user closes the dialogor invokes another

function if the gizmo is not on dialog box If the gizmo waits until the user

finishes entering data before it edits the value call it cold validation gizmo

The gizmo may wait until name is fully entered for instance before it inter

rogates database to see if it is an existing entry Each character is valid by

itself yet the whole may not pass muster The program could attempt to verify

the name as each character is entered but that would probably bring the net

work and server to their knees with the extra workload Besides although the

program would know at any given instant whether the name was valid the user

could still move on while the name was in an invalid state

Another way to address this is by maintaining countdown timer in parallel

with the input and reset it on each keystroke If the countdown timer ever hits

zero do your validation processing The timer should be set to around 400

milliseconds although you may wish to user test this for more precise num
ber The effect of this is that as long as the user is entering keystroke faster

than once every 400 ms the system is extremely responsive If the user pauses

for more than 400 ms the program reasonably assumes that the user has paused

to think something that takes months in CPU terms and goes ahead and per

forms its analysis of the input so far

To provide rich visual feedback the entry field could change colors to reflect

its estimate of the validity of the entered data The field could show in shades

of pink until the program judged the data valid where it would change to white

or green

Another good solution to the validation gizmo problem is what call

Łlb
0407

CHAPTER 26 ENTRY AND DISPLAY GIZMOS 401

This little popup window looks and behaves just like ToolTip By convention

ToolTips are yellow so the clue box would be pink or some other color and it

explains the range of acceptable data for validation gizmo either hot or cold

Whereas ToolTip appears when the cursor sits for moment on gizmo

clue box would appear as soon as the gizmo detects an invalid character it can

also display unilaterally just like ToolTip if the cursor sits unmoving on the

field for second or so If the user enters for example non-numeric char

acter in numeric-only field the program would put up clue box near the

point of the offending entry yet without obscuring it It would say for exam

ple 09 Short terse but very effective Yes the user is rejected but he is

not also ignored The clue box would work for cold validation too as shown

in Figure 26-3

Indents and Spacing Texk Elow

-lndentation------ Spacing

Left J-700 e1ore pt
Rig 22 22 122 Aftr jo pL ____________

labs

.peciaI Lifle Spacing

lFirst Line JO.19

Preview
AIinment

lJr Tr3 Tr rJ Tx
mncJ Ttx dEi mmJ

Tx itft Ttx Nt TcX rIt Tc rJc
.rJr Trrn.tr

Figure 26-3

The ToolTip idiom is so effective Im surprised that it hasnt been extended into other uses

Instead of yellow ToolTips offering flyover labels for buttcons we could have pink ones

offering flyover limits for unbounded edit fields These could easily double as error-message

box-eliminating hint windows that call clue boxes In the example shown here when the

user enters some value lower than the lowest allowable value instead of stopping the pro
ceedings with an idiotic error message box the program could replace the value in the edit

field with the lowest allowable value 22 in this case and display the pink clue box that

modelessly explains the reason for the substitution The user can enter some new value or

accept the minimum but in either case he can proceed without getting an error message

0408

402 PART VI THE GIZMOS

Typically an edit field is used to enter numeric value needed by the program

like the point size of font The user can enter anything he wants from to

500 and the field will accept it and return the value to the owning program

If the user enters garbage the gizmo must make some kind of decision In

Microsoft Word for example if enter asdf as font point size the program

issues an error message box informing me that This is not valid number and

then reverts the size to its previous value think the error message box is

rather silly
but the summary rejection of my meaningless input is perfectly

appropriate But what if had keyed in the value nine The program rejects

it with the same curt error message box believe that if the gizmo were pro

grammed to think of itself as numeric-entry gizmo it might take different

approach It doesnt bother me if the program converts the nine into

but it certainly is incorrect when it says that nine is not valid number

Without doubt it is valid and the program has put its foot in its mouth

Barring other tools simple rejection of input data is better than rejection

coupled with an error message box For example if cold validation gizmo can

only accept number between and 25 and the user enters 50 the gizmo

should change to 25 and proceed If the user enters the gizmo should

change to and proceed If the user enters asdf the gizmo should revert to

the previously valid value and proceed

Its nice when text-edit gizmo is smart enough to recognize appropriate qual

ifiers For example if program is requesting measurement and the user

enters Si or 5in or inches the gizmo should not only report the result

as five but it should report inches as well If the user enters 5mm the gizmo

should report it as five millimeters

Say that the field is requesting column width The user can enter either

number or number and an indicator of the measurement system as described

above The user could also be allowed to enter the word default and the pro

gram would set the column width to the default value for the program The

user could alternately enter best fit and the program would measure all of

the entries in the column and choose the most appropriate width for the cir

cumstances There is problem with this scenario however because the words

default and best fit must be in the users head rather than in the program

somewhere This is easy to solve though All we need to do is provide the same

functionality through combobox The user can drop down the box and find

few standard widths and the words default and best fit The dropdown

would look like the one in Figure 26-4

0409

CHAPTER 26 ENTRY AND DISPLAY GIZMOS 403

Column Width

fl7ch
1/2 inch

3/4 inch

inch

11/4 inch

11/2 inch

8et lit

Figure 26-4

The dropdown combobox makes an excellent tool for bounded entry fields because it can

accommodate entry values other than numbers The user doesnt have to remember or

type
words like default or best fit because they are there to be chosen from the drop-

down list The program interprets
the words as the appropriate number and everyone is

satisfied

The user can pull down the combobox see the words Default and Best fit

and choose the appropriate one With this idiom the information has migrated

from the users head into the program where it visible and choosable This is

good

In Chapter 29 Managing Exceptions Ill talk about using audible feedback

with validation gizmos

Using an edit field for output

The text-edit gizmo with its familiar system font and visually articulated white

box strongly affords data entry as well as data output Yet software developers

frequently use the text-edit gizmo for output only The edit gizmo certainly

works as an output field but to use this gizmo for output only is to bait-and

switch your user and he will not be amused If you have text data to output

use text gizmo and not text-edit gizmo If you want to show the amount of

free space on disk for example dont use text-edit field because the user is

likely to think that he can get more free space by entering bigger number At

least that is what the gizmo is telling him with its equivalent of body language

Theres good example of this in Chapter 11 see Figure 11-6

0410

404 PART VI THE GIZMOS

On the other hand if you are going to output changeable information go

ahead and output it in fully editable text gizmo and wire it up internally so

that it works as it appears to For example output the volume name in text-

edit gizmo so that the user can directly edit the visible name to change it on the

disk

Rich text gizmos

With the advent of the rich text gizmo in Windows 95 it will be veiy possible

for simple text-edit gizmos to take on the excise overhead of word processors

It is important for designers to be clear about the scope of options that should

be exposed to the user when edit fields are implemented with rich text gizmos

Activating entire paragraph formatting subsystems is not appropriate for simple

entry fields that are expecting single word or number as input

The rich text gizmo isnt really useful as tool for entering structured data for

fitting into rigidly structured databases It is however handy for such tasks as

composing email messages or taking notes

Insert and overtype

The handling of insert and overtype is another example where good judgment

is called for In most text editors there is user-settable option toggling

between insert and overtype mode These two modes are omnipresent in the

world of word processors and like FORTRAN never seem to die Insert and

overtype are modes that would make Larry Tesler scream they are significant

changes in the behavior of an interface with no visible indication until after the

user has interacted and there is no clear way into or out of these modes except

by means of rather obscure key

Fifteen years ago when regularly used primitive character-based text editor

used both modes Although was power user needed all the help could

get with that program and overtype mode let me shave away many keystrokes

Today with my modern GUI word processor cant imagine using overtype

mode and cant imagine anyone else actually wanting to use anything other

than insert mode but know they are out thereI had long exchange on the

Net with one of them just recently For edit fields of one line adding controls

beyond simple unimodal entry and editing is foolishthe potential for trouble

is far greater than the advantages delivered to users Of course if you are writ

ing word processor the story is different

0411

CHAPTER 26 ENTRY AND DISPLAY GIZMOS 405

Display gizmos
call the fourth category display gizmos These are the adjectives of the gizmo

grammar modifying how our screens look

These gizmos are used to display and manage the visual presentation of infor

mation on the screen rather than the information itself Typical examples

include scrollbars and screen splitters Gizmos that control the way things are

displayed visually on the screen fall into this category as do those that merely

display static information for output only These include paginators rulers

guidelines grids groupboxes and those 3D lines called dips and bumps

Although many of these gizmos are familiar to Windows users under various

names only groups and scrollbars actually come with Windows

Probably the simplest display gizmo is the text gizmo This variant of the STA

TIC control class merely displays written message at some location on the

screen The management job that it performs is pretty prosaic serving only to

label other gizmos and to output data that cannot or should not be changed by

the user

Text gizmos instead of edit gizmos

The only significant problem with text gizmos is that they are often used where

edit gizmos should be Most information in computer can be changed by the

user Why not allow the user to change it at the same point the software dis

plays it Why should the mechanism to input value be different from the

mechanism to output that value The answer is that the program should not

separate these related functions In almost all cases where the program displays

value it should do so in an editable field so the user can click on it and

change it

For example the Windows 3.1 File Manager program shown in Figure 26-5

displays the name of the disk drive currently displayed but in order to change

its value the user must go to the menus and request dialog box The user

should be able to enter the new value directly where the program displays it Of

course this is low-frequency operation so putting permanent edit gizmo

there may not be necessary it would then have to be in the tab-navigation

sequence and need keyboard accelerator Instead if the user clicks the mouse

anywhere over the name an edit gizmo could appear filled with the current

value as fully selected default and allow the user to enter new name or mod

ify the old one

0412

406 PART VI THE GIzMos

...-

Thsk Iree view pttons Window Eelp

Jal ib lc ln
-books .5cast035doc 589824 Output only field

Jaosd 5cast040doc 105472

Fc1o j5casI050doc 11776

jstrat Ei6gizm010doc 15360

Lwuid Ei6gizmU20 doc 125440

mileston Ej6gizm030 doc 72704

Hnehaps I6gizm040 doc 355328

old 16gizm050 doc 15872

Joutines uIMSXtIie

Selected files 1536O hytes ITotal 30 files

Figure 26-5

The Windows 3.1 File Manager program displays the name of the current disk volume
The user should be able to change the name by keying it in right here where the program
outputs it instead of having to go through menu item and dialog box Because the fre

quency of update is low it doesnt need permanent edit field but rather when the user

clicks directly on the volume name an edit field should appear to allow entry Once the

name has been entered click outside of the field or keypress of ENTER closes the field

and records the new name

Those darned scrolibars

Scroilbars are very frustrating gizmo fraught with problems hard to manip
ulate and wasteful of pixels The idiom is another of those originals that came

from Xerox PARC so it has certain cachet that is difficult to overcome The

scrolibar is without doubt both overused and under-examined In its role as

window scrollera display gizmoits application is appropriate at least In

many cases though it is used where it shouldnt be only because designers

dont seem to have any better ideas Thats bad rationale for any aspect of

software design

The singular advantage of the scroilbaraside from its availabilityis its pro

poitional rendering of value The scroilbars thumb is the central draggable

box that indicates the current position

If scrollbar represents percentage for example the user can see that scroll-

bar whose thumb is about equidistant between the ends represents quantity

of 50% The fact that the scrollbar conveys no information about its terminal

values detracts considerably from its usefulness as sliding value selector The

scrolibars proportional rendering flawed in implementation though it may be

0413

CHAPTER 26 ENTRY AND DISPLAY GIZMOS 407

is an excellent type of visual feedback The lessons of the scrolibar should not

be ignored by gizmo designers

big shortcoming of the scrolibar is its parsimonious doling out of informa

tion to the user It should instead generously inform us with information about

the information it is managing The new Windows 95 scrollbar uses thumbs

that are proportionally sized to show the percentage of the document that is

currently visible It could also tell us

What page we are on

How many pages there aie in

The first sentence or item öfach page as we scioll with the thumb

The page number record number graphic as we scroll with the thumb

Additionally the scrollbar is parsimonious with functions It manages the bulk

of our navigation within documents it should give us powerful tools for going

where we want to go quickly and easily It could

Offer us buttons for skipping ahead by pages/chapters/sections

Offer us buttons for jumpj the beginning and end of the

document

Give us tools for setting bookniarks that we can quickly return to

The scroilbar also demands high degree of precision with the mouse

Scrolling down or up in document is generally much easier than scrolling

down and up in document You must position the mouse cursor with great

care taking your attention away from the data you are scrolling

The scroilbar consumes relatively large amount of video real estate For what

it takes it doesnt give much back to us Id really like to see some better

scrolling idioms come into popular use

0414

New Gizmos

Gizmos
are valuable tools for interacting with users

because they encapsulate lots of complex bchavior in ready-

to-use package The ready availability of gizmos causcs us to

rely on them for designing user interfaces We use them

because they are available Unfortunately the set of gizmos

that come with Windows is pallid and thin Those available

through the emerging APIs like VBX OCX and OLE show

promise but are still incomplete and not yet available to all

tool platforms Gizmos remain significant arena for inven

tion and entrepreneurship Here are some ideas for future

gizmo iimovation

Directly manipulable tools

The most striking area for invention is in bounded-entry giz

mos So many programs offer us dialog boxes with edit fields

or spinners to gather data that could more easily be entered

through direct manipulation Using click-and-drag idioms in

409

0415

410 PART VI THE GIZMOS

place of entry gizmos not only makes input clearer and easier but it can also

automatically change previously unbounded gizmo to bounded one

One of my clients had program with some rudimentary drawing tools includ

ing drop shadow and drawing grid The drop shadow put black shape

behind and slightly offset from any graphical object to make it visually distinct

The drawing grid forced all drawing-related direct manipulations to normalize

to an invisible grid allowing drawn objects to neatly line up automatically

Both of these facilities were adjustable by way of simple nearly identical dialog

boxes The drop shadow offset or grid span was controlled by two edit giz

mos one specifying the horizontal offset the other specifying the vertical off

set replaced both of these with what call sun gizmo as shown in Figure

27-1

Because drop shadows usually appear at the bottom and to the right of an

object the sun gizmo showed small round sun above and to the left of sam-

pie graphical object The user could click and drag the sun around and as he

did so the drop shadow under the sample object would move in response

growing or shrinking in the vertical and horizontal axes The physical limita

tions of where the sun could be dragged automatically bounded the gizmo so

the user could not enter an invalid offset The drop shadow could easily be

turned off by dragging the sun to the center of the object where the shadow

would according to the laws of physics disappear

When the user moved his cursor over the sun cursor hinting indicated that the

sun was directly manipulable

The grid in this program was similarly controlled through small dialog box

with two edit gizmos for specifying the horizontal and vertical interval of the

grid replaced these gizmos with swatch of grid whose spacing the user

could adjust by direct manipulation When the cursor moved over the swatch

the cursor changed to indicate that the sample grid was pliant The user could

then just click-and-drag anywhere in the swatch to adjust the spacing

Dragging up closed the vertical interval Dragging down opened it Dragging

right or left worked the same for the horizontal axis In order to adjust one axis

without inadvertently affecting the other we used drag threshold like the one

described in Chapter 18

If the resolutionthe drag distance required to increment by oneis high

enough no supporting edit fields are needed to set the values at exactly some

0416

CHAPTER 27 NEw GIzMOS 411

Sample Text

$1 000000

Figure 27-1

The small image of sun in the upper left corner is directly manipulable idiom for telling

the program how to place drop shadow on the selected object Not only is the direct

manipulation easier and less obscure than entering numeric value but the very nature of

the sun also incorporates protective borders the user cannot physically drag it to an invalid

location therefore he cannot inadvertently enter an invalid value This means that the sun

gizmo is bounded gizmo

desired number Of course that number would have to be displayed either on

or alongside the sun or swatch for this to work well The principle of enter

where you output demands that those numbers be editable anyway for those

who would rather keyboard than directly manipulate

Both the sun gizmo and the grid swatch gizmo replaced ugly inappropriate

text gizmos with the direct manipulation of graphical objects that were visually

appropriate to the desired result The user could stay in context even though

the tools were used rarely enough to justify them residing on dialog boxes

Both gizmos finessed away the need for text entry and provided visual

bounded direct manipulation of the settings

Rub berweeks

Another client needed calendar gizmo for scheduling application so we

designed new gizmo that we called riibberweŁks The requirements for this

gizmo included the ability to adapt to any time scale from several hours to sev

eral weeks In addition the user needed to be able to place small icons on the

calendar to indicate deadlines and other events that need to be firmly anchored

in time

0417

412 PART VI THE GIZMOS

The key feature of rubberweeks was its ability to stretch When the user

dragged along it with the mouse the calendar scrolled but when the user

dragged with the ALT-shifted mouse the calendars scale changed If the user

dragged right the scale stretched longer If the user dragged left the scale

stretched shorter If the user needed to schedule series of events that would

occur within the next three days for example he could ALT-stretch the rub

berweeks to display total of just three days This allowed him to take maxi

mum advantage of the space available on the screen

By double-clicking on the rubberweeks small triangular icon could be phys

ically placed on the calendar to indicate deadline Once placed the icon could

be freely dragged to adjust its place in time

The advantages of gizmos like the sun the grid swatch and rubberweeks are

their proportional representations of the information they represent and man

age To duplicate their functionality with existing gizmos would require

descending into world of text where abstract symbols need interpretation In

the graphic world the sun gizmo shows the current setting visually and imme

diately and the control of it is direct and proportional Dragging sun gizmo

to set the extent of drop shadow much more closely approaches the ideal of

directly manipulable interface Like the carpenter swinging his hammer the

user can place the sun just so and clearly and immediately receive direct feed

back regarding his input He doesnt have to wonder whether three pixels are

too few or four pixels are too many He can see when its just right

Extraction gizmos
One of the most noticeable attributes of text edit gizmos is how stupid they

generally are If the application at hand calls for entering an address for exam

ple there are no address gizmos yet that is just what we need Validation

gizmos exist true but their ability to adapt to variable input like whole

address is nil In fact they are designed purposely to reject variable input

simple zip code validation gizmo for example will reject anything that doesnt

fit the archetype of zip code five or nine contiguous digits

An address gizmo is an example of what call an extraction iznjio

This is completely different approach to the problem of data entry An extrac

tion gizmo parses the contents of free-form text-entry gizmo according to

some rules about the general class of input For example instead of having one

field for street address one for apartment suite or mail stop one for city one

0418

CHAPTER 27 NEW GIZMOS 413

for state and one for zip code there is single text-entry gizmo several lines

tall The user keys in the entire desired address in the single field and the

gizmo makes sense of the various parts of that address

normal text-edit gizmo has method or entry point or value depending on

your language/coding model to examine its contents The contents of

normal zip code entry field would be whatever the user entered An extraction

gizmo would have several other content examination methods in addition to

the traditional one They would include

Street address line

Street

Number

Geographical designation

Second address line

Suite number

Building

Apartment

Mail stop

Floor

City line

City

State

Province

District

Zip code

Postal code

Country

0419

414 PART VI THE GIZMOS

Not all of these values would be filled only those that are relevant depending

on what the user entered The gizmo would do its best to determine which

parts of the entered text belonged in each category There are basically three

levels of discrin-iination in this process The gizmo would return the text ver

batim as the user entered it Each line of the address would be separated Street

address line Second address line City line Then each separate element of the

address would be parsed into its appropriate category

gizmo like this enables users to enter addresses the same way they manually

prepare an envelope by typing the address as block The computer does the

work of separating the fields out for efficient categorizing in database pro

gram program would then be able to for example sort the addresses by

street name or by zip code even though the address was entered as just

human-readable block

Useful types of extraction gizmos include those for proper names email

addresses physical descriptions and telephone numbers An extraction gizmo

could easily pull persons first name last name middle name honorific rank

and title from single field so the user isnt forced to manually separate them

out at entry time

Yes there will be an error rate but it wont be high and it wont be significant

An address-parsing algorithm can easily pull apart the vast majority of

addresses If someone tried deliberately to enter garbage the extraction gizmo

would probably fail to discriminate accurately but then again how many of

your employees deliberately enter garbage An end user with shrink-wrapped

application who deliberately enters garbage into his own system certainly wont

blame you for the problem

When coded into dialog box telephone-number extraction gizmo for

example would recognize phone numbers by applying series of simple lexical

and semantic rules The outputs of the field would consist of the raw text as

entered by the user along with an array of possible phone fax cellular and

pager numbers If the gizmo is unable to discern these numbers from the con

tents well it cant but in most cases where these numbers are discernible by

humans they are also discernible by software Lets take an example Say that

key this text into phone number extraction gizmo

4153662300w Home3679824 415 3679976 fax 508 2031 pager

0420

CHAPTER 27 NEw GIZMOS 415

entered some pretty torturous stuff here inconsistent and missing symbols

and varying labels Can you figure out what Ive typed Sure you can bet

computer program could too The first number is well-formed number with

area code prefix and body It has appended to it that can reasonably be

interpreted as being my work phone The comma is just separator The next

number is prefixed by the word Home so its nature is clear The absence of

an area code is not much of crisis The program could easily assume it is 415

numberthe same as all of the others If it were different it is likely that

would have entered it If not its not hanging offense The third number is

trickier Certainly it well-formed number but what is it The word fax is

ambiguous It could be referring to the third number or the fourth number

The last word in the entry pager disambiguates the two because it must be

referring to the fourth number so fax must refer to the third The lack of

hyphen in the fourth number should be no problem because the number is still

recognizable well-formed phone number

If wanted to really tax the gizmo could enter something more problematic

like this

4558 18005551212 25433 976POEN

Well this would certainly put strain on things but it wouldnt be impossible

The first number 4558 is not recognizable phone number but it is recog

nizable fragment of phone number When you want to call someone within

your company through private PBX you often just enter four-digit number

If the PBXs prefix is 488which the program is likely to already knowthe

number from the outside would be 488-4558 The second number is still

well-formed number it is just more complete than many others It includes the

long distance prefix and adds five-digit extension We guess that it is an

extension because it is not delimited from the 800 number If it were four dig

its we might have trouble discriminating between its being an extension or

another in-house number The last number is well recognizable even though

it doesnt use all-numeric digits because its form is recognizable Software

might otherwise have difficulty determining that 976-PORN is phone

number except that we are talking about field that is designed to process

phone numbersthats big hint

If experience is any guide many of you are probably having trouble swallowing

the idea of extraction gizmos They seem to fly in the face of our tradition of

0421

416 PART VI THE GIZMOS

guaranteed data integrity Well yes and no We will discuss this aspect of extrac

tion gizmos in Part VII The Guardian

Visual gizmos
Most of the traditional gizmos are merely encapsulations of text Checkboxes

radio buttons menus text edits listboxes and comboboxes are mostly text

with thin veneer of graphics added They dont exploit the full potential of

the GUI medium

Most programs when they have options to offer to the user describe those

options with text and offer that text to the user in text-based selection gizmo

like combobox If the options can be rendered visually however we should

discard the combobox and let the user point-and-click on picture of what he

wants instead of just text description

Figure 27-2 shows dialog box from Word with couple of very visual gizmos

The gizmo in the lower left corner lets the user request complex bordering

options by clicking on little images of borders instead of asking for them by

name In this situation this gizmo rescued Microsoft from difficult dilemma

because the number of bordering options is large Rules can be independently

specified for the top bottom left right and in-betweens of paragraph and

each border can have its own weight and style Offering combobox filled with

hundreds of options like thin left really thin right thick top dashed thin bot

tom would be pathologically bad Alternatively dialog box with an array of

individual comboboxes for each of the five possible borders would still be

nasty morass for the user Microsofts solution makes feature out of bug

We dont have to save visual directly manipulable gizmos for the tough stuff

though In the upper left corner of the dialog in Figure 27-2 is another visual

gizmo that offers an extremely simple mux-linked choice of one of three

options an outline drop-shaded outline or no border at all These could eas

ily have been radio buttons but clicking on the little pictures is soooo much

better The user can click on the image of what he wants instead of having to

click on the words that describe what he wants It is less ambiguous faster and

more direct

Most publishers of software use radio buttons instead of visual gizmos like

these because radio buttons come free with Windows and the visual gizmos

dont If publishers want visual gizmo they must pay designers and pro

grammers to create them This is nQt an expensive thing to do relative to other

0422

CHAPTER 27 NEw GizMos 417

Borders Shadirjq

Presets- Line------__ OK iiCNone __________

stie
tancel

None Box ShadoJ pt
Show Toolbar

Border

______________L pt

Color

Erom Text pt

Figure 27-2

The Borders dialog box from Word shows the admirable trend toward visual directly

manipulable gizmos On the left side of the dialog there are two non-traditional gizmos

labeled Presets and Border Preset lets the user click once on miniature image of his

desired result to quickly and easily achieve frequently used result box drop shadow

or no border at all Below it the border gizmo not only acts as preview of the current

settings but by clicking on any of the five places where lines can be specified the user can

create highly customized borders one line at time Although have some significant

reservations about how Microsoft implemented borders and shading in the larger sense

this dialog box is exemplary in its use of non-text gizmos

custom coding but compared to free text-based gizmo it is very costly

Microsoft didnt put such visual gizmos into their word processor until the

eighth or ninth revision and it had generated many millions of dollars of rev

enue before then

Figure 27-3 shows beautifully crafted visual gizmo in the control panel of

Windows 95 Instead of picking time zone from text list although such

list exists on the dialog you choose your time zone by clicking on blue and

green map of the world When you select zone the map sensuously slides so

0423

418 IAR- \TI fT-ii GIzMoS

that \T1jr selection is centered in the window Then was no iVI/crosoft to

i-jo this just as there is no reason for downtown law firm to have marble floors

instead of linoleum But as you run your hand along the teak and cherrywood

trim of the lobby furnishings aid slide gently into soft supple leather wing

chair you klU\\ true comfort and luxury Sure youll pay for it those la\vycrs

are going to be lot more cxpcnsie than their competitors ith plywood

Foiiiiica and 1aLtga1wde it all depends on what image you wish to convey

Date Time Tiriie Zcne

Aiitomatical djUt clock or daylight saving cFiarige

.i

Figure 27-3

The ne time zonc dialog box in V\Tindows 95 is an excellent visual gizmo It clearly shows

the selections availablc to the user attractivclv and graphically If you live on the East Coast

of the US for example all you need to do is click somewhere along thc eastern seaboard

and the map smoothly scrolls until the Eastern US is ccntcred and highlighted The anirna

tioi-i speeds up and slow down so nicely that the effect is almost sensual Ive seen people

spend man minutes pla ing with the dialog box for the sheer tactile pleasure of it \Vo

Its like walking into the lobby of someones office and finding marble walnut and leather

instead ofstucco and plywood Ifyou want to add sense ofaesthetics to your program
make them tactile aesthetics

0424

CHAPTER 27 NEw GIZMOS 419

Paradoxically gizmos are distinct objects on the surface of an application but

the path to improving them is to integrate them more intimately into the visual

fabric of the program All of the examples Ive shown so far are undoubtedly

hand-coded one-offs This is an area of significant opportunity for vendor

creating generic visual-gizmo development kit that allows average program

mers on average budgets to create visual animated directly manipulable giz

mos for their products

Adding visual richness

Adding visual richness to traditional gizmos like adding icons to buttons is an

area whose potential has barely been scratched Most gizmos can be enhanced

with the addition of graphics animation and sound

We designed progress meter that was functionally identical to run-of-the-mill

implementations but was lot more engaging because of its visual richness The

program downloaded newspaper from an online service and the progress

meter reflected the status of that operation Instead of simple horizontal row

of little rectangles that appear one at time we showed dog walking from the

left end of the gizmo to the right end of the gizmo where folded newspaper

waited When Rover got to the newspaper the download was complete and he

gave friendly bark before returning to sit attentively on the left again waiting

for the next download Good doggie

In well-written novel the protagonist usually doesnt come right out and

state her views and opinions Instead she demonstrates her point of view by her

actions The novelist is shOwing us instead of telling us and this is funda

mental technique of good fiction It is also fundamental technique of good

user interface design

Show dont tell

Instead of using words to tell your story use pictures to show the user Im not

talking about metaphoric icons here rather Im saying that instead of using

text to communicate some setting draw picture Even though the picture

0425

420 PART VI THE GIZMOS

probably consumes more space its ability to clearly communicate is well worth

the pixels In recent years Microsoft has discovered this fact and the dialog

boxes in Windows Word for example have begun to fairly bristle with little

visualizations of their purpose instead of mere textual controls

The Page Setup dialog box shown in Figure 26-2 offers an image labeled

preview This is an output-only gizmo showing miniature view of what the

page will look like with the current margin settings on the dialog Most users

have trouble visualizing what 1.2 left margin looks like The preview gizmo

shows them You could go Microsoft one better by allowing input on the pre

view gizmo in addition to output Drag the left margin of the picture and watch

the numeric value in the corresponding spinner ratchet up and down

The associated text field is still importantyou cant just replace it with the

visual one The text shows the result with precision while the visual gizmo

shows the result with accuracy

0426

Part VII The Guardian

Protecting the User

Human beings make mistakes all of the time They are

constantly making minor slip-ups and false starts putting

their feet in their mouth and stepping on each others toes

This state of ambient errors is so normal that most people

dont consider such actions to really be errors Computers

on the other hand are inherently perfect and never make

mistakes So the question arises How should perfect pro

gram react to the inappropriate inadvertent and incorrect

actions of the human user The answer to tAns question dic

tates much of the quality of programs user interface

0427

ir

âit

The End of Errors

s4IW
rç

Part discussed in detail all of the variants of the

dialog box except one the bulletin The bulletin dialog box

is issued unilaterally by the program when it is having some

sort of problem or is confronting decision that it doesnt

feel capable of answering on its own In other words

bulletin dialog boxes are used for error messages and con

firmations two of the nastiest components of modern soft

ware design believe that with proper design all error

message and confirmation dialogs can be eliminated

Further believe that most of them should be In this chap

ter Ill tell you how

Eliminating the

error message box

There is probably no more-abused idiom in the GUI world

than the error message box When lecture to groups of

programmers make many bold assertions but when

423

0428

424 PART VII THE GUARDIAN

assert that all error message boxes can be eliminated from all programs it pro
vokes them more than any other statement Some of my listeners have come so

unglued by this claim that they became apoplectic and couldnt consider any of

my other thoughts or ideas The proposal that program doesnt have the

rightno the dutyto reject the users input is so heretical that many practi

tioners dismiss it summarily Yet if we examine this assertion rationally and

from the usersrather than the programmerspoint of view it is not only

possible but quite reasonable

When say to eliminate error messages dont mean to just discard the code

that shows the actual error message dialog box while still letting the program

crash if problem arises although many programmers assume that is what

mean Instead mean that we should alter our programs so they are no longer

susceptible to the problem You cannot just yank the error messages out of

program You must replace the error-message-method of software protection

with kinder gentler more robust type of software that prevents error condi

tions from arising rather than having the program merely complain when

things arent going precisely the way it wants Like vaccinating it against dis

ease we make the program immune to the problem and then we can toss the

message reporting it To eliminate the error message we must first eliminate

the possibility of the user making the error

dont want you to crusade to eliminate all existing error messages Instead

want you to change your mental assumptions about all future error messages

Instead of assuming that error messages are normal want you to think of

them as abnormal solutions to rare problemsas surgery instead of aspirin

Treat them as an idiom of last resort

Users never want error messages Believing that your users are satisfied with

error messages confuses what they dont want with what they do Users want

to avoid the consequences of making errors which is verydifferent from saying

that they want error messages Its like saying people want to abstain from ski

ing when what they really want to do is avoid breaking their legs Don Norman

points out that people frequently blame themselves for errors in product

design Just because you arent getting complaints from your users doesnt

mean that they are happy getting error messages

Bulletin Dialog Boxes

The familiar error message box is normally an application modal dialog that

stops all further progress of the program until the user issues terminating

0429

CHAPTER 28 THE END OF ERRORS 425

commandlike pressing the OK button call this blocking bulletin because

the program cannot continue until the user responds

It is also possible for program that has put up dialog box to unilaterally take

it down again call this sustaining bulletin because the dialog disappears

and the program continues without user intervention

Sustaining bulletins are most frequently used as progress dialog boxes report

ing on the status of time-consuming procedure During the process the dia

log offers CANCEL button so the user can terminate it if he changes his mind

or grows impatient with the delay In any case when the program has com

pleted the procedure it pulls down the dialog

Sustaining bulletins are sometimes used for error reporting program that

erects an error message to report problem may correct the problem itself or

may detect that the problem has disappeared via some other agency Some pro

grammers issue an error message box merely as warningYour disk is get

ting fulland take it down again after it has been up for say 10 seconds

An error message must stop the program If it doesnt the user may not be able

to read it fully or if he is looking away he either wont see it or worse yet see

only fleeting glimpse out of the corner of his eye He will be justifiably sus

picious that he has missed something important something that will come back

to haunt him later He will now begin to worry What did miss Was that an

important bit of intelligence that will regret not knowing Is my disk full Am
about to crash This is true even if the problem has gone away by itself

If thing is worth saying with dialog box its worth assuring that the user

definitely gets the message sustaining bulletin cant make that guarantee

For this reason the only justification for sustaining bulletin dialog box is to

report process It should never be used in the role of error reporting or con

firmation gathering

Design tip Never use sustaining dialogs as error

messages or confirmations

Stopping the proceedings
We have established that error messages must stop the proceedings with

modal dialog box Most user interface designersbeing programmersimag
ine that their error message boxes are alerting the user to serious problems

0430

426 PART VII THE GuARDIAN

This is widespread misconception Most error message boxes are informing

the user of the inability of the program to work flexibly You can see an exam

ple of this back in Chapter 13 in Figure 13-1 Most error message boxes seem

to the user like an admission of real stupidity on the programs part In other

words to most users error message boxes are seen not just as the program

stopping the proceedings but in clear violation of the axiom presented in

Chapter 13 as stopping the proceedings with idiocy We can significantly improve

the quality of our interfaces by eliminating error message boxes

Design tip Error message boxes stop the proceedings with

idiocy

Why we have so many error messages

The first computers were undersized underpowered expensive and didnt

lend themselves easily to software sensitivity The operators of these machines

were white-lab-coated scientists who were sympathetic to the needs of the CPU

and werent offended when handed an error message They knew how hard the

computer was working They didnt mind getting core dump bomb an

Abort Retry Fail or the infamous CFU message This is how the tradi

tion of software treating people like CPUs began Ever since the early days of

computing programmers have accepted that the proper way for software to

interact with humans was to demand input and to barf when the human failed

to achieve the same perfection level as the CPU

call this attitude silicon sanctimony Examples of silicon sanctimony exist

wherever software demands that the user do things its way instead of adapting

to the needs of the human Nowhere is it more prevalent though than in the

omnipresence of error messages Silicon sanctimony is negative feedback

loop ignoring users when they do what the software wants but squawking at

the slightest deviation from what they expect

Silicon sanctimony is requirement for actions within software Every good

programmer knows that if module hands invalid data to module module

should clearly and immediately reject the input with suitable error indica

tor Not doing this would be great failure in the design of the interface

between the modules But human users are not modules of code Not only

should software not reject the input with an error message but the software

designer must reevaluate the entire concept of what invalid data is When it

File Unavailable

0431

CHAPTER 28 THE END OF ERRORS 427

comes from human the software must assume that the input is correct sim

ply because the human is more important than the code Instead of software

rejecting input it must work harder to understand and reconcile confusing

input The program may know what the state of things is inside the computer

but only the user knows what the state of things is outside in the real world

Ultimately the real world is more relevant and important than what the com

puter thinks

Humans have emotions and feelings computers dont When one chunk of

code rejects the input of another the sending code doesnt care it doesnt

scowl get hurt or seek counseling The processor doesnt even care if you flip

the Big Red Switch

On the other hand humanseven phlegmatic programmershave emotions

and they are raging out of control compared to anything happening in silicon

When you offer some information to colleague and she says Shut up thats

stupid your feelings get hurt your ego crushed You search for mistaken

meanings in what you said You look in the mirror checking your teeth for bits

of spinach You cancel your afternoon appointments so you can sulk in private

and wonder what is wrong with your personality All of these actions are part

of human nature

People hate error messages

When users see an error message box it is like another person telling them

Fatal error buddy That input really sucked in loud and condescending

voice Users hate this Putting interaction like this in your program is extremely

bad human interface design See Figure 28-1 Despite this most program

mers just shrug their shoulders and put error message boxes in anyway They

dont know how else to create reliable software

Many programmers and user interface designers labor under the misconception

that people either like or need to be told when they are wrong This assump

tion is false in several ways The assumption that people like to know when they

are wrong ignores human nature Many people become very upset when they

are informed of their mistakes and would rather not know that they did some

thing wrong They would be happier if the issue were never raised and the

problem just got lost in the detritus of the everyday Many people dont like to

hear that they are wrong from anybody but themselves Others are only willing

to hear it from spouse or close friend Very few wish to hear about it from

0432

428 PART VII THE GUARDIAN

ibviiius trom your aitiii that yoi.

dcrit knov jack

.quat about computer or .oftvara

thould go bark to

not
iorthj LFleae

ill me FiU
pencil and paper

Figure 28-1

This is what all error messages feel like to users They are not particularly sympathetic to

the idiosyncrasies of the central processing unit so it just feels like rude rejection and

personal condemnation No matter how nicely your error messages are worded this is how

they will be interpreted

machine You may call it denial but it is true and users will blame the mes

senger before they blame themselves

The assumption that users need to know when they are wrong is similarly false

How important is it for me to know that requested an invalid typesize Most

programs can make reasonable substitution It may or may not be important

but why should the program assume that it is We think that the program must

be dependable because most programs dont offer sufficient visual cues for the

user to supervise its actions If we push our power lawnmower off the grass

onto the gravel we can see our error not to mention hear the rattle of rocks

and feel the sting of flung pebbles If we choose bad typesize does the pro

gram show us what we have done If it does the user can see the results of his

choice if he cares to see If the program communicates clearly with the user he

can make up his own mind about his need to know when something isnt as

he expected

The assumption that it is good to tell users of their transgressions is one of the

silliest canards to permeate the world of software design It is indicative of just

how socially inept most programmers are that they find such an assumption

easy to swallow No marketing person would ever fall for it Nobody likes to be

told when he makes mistake We consider it very impolite to tell people when

they have committed some social faux pas Telling someone he has bit of let

tuce sticking to his teeth or that his fly is open is equally embarrassing for both

0433

CHAPTER 28 THE END OF ERRORS 429

parties Sensitive people look for ways to bring the problem to the attention of

the victim without letting others notice Yet programmers assume that big

bold box in the middle of the screen that stops all of the action and emits bold

beep is the appropriate way to behave

Whose mistake is it anyway

Another method of eliminating error messages is for the program to assume

when it receives bad input that maybe it doesnt understand it because the pro

gram not the user is ill-informed Conventional wisdom says that error mes

sages tell the user when he has made some mistake Actually most error

bulletins report to the user when the program gets confused Most program

mers in the grip of silicon sanctimony perpetually think about users making

mistakes and conceive of error messages as tools for correcting the users

actions Users make far fewer substantive mistakes than imagined Typical

errors consist of the user inadvertently entering an out-of-bounds number

or entering space where the computer doesnt allow it When the user enters

something unintelligible by the computers standards whose fault is it Is it the

users fault for not knowing how to use the program properly or is it the fault

of the program for not making the choices and effects clearer

Information that is entered in an unfamiliar sequence usually is considered an

error by software but people dont have difficulty with this concept Humans

know how to wait to bide their time until the story is complete Software usu

ally jumps to the erroneous conclusion that out-of-sequence input means

wrong input and issues the evil error message box

When for example the user creates an invoice for an invalid customer number

most programs reject the entry They stop the proceedings with the idiocy that

the user must make the customer number valid right now Alternatively the

program could accept the transaction with the expectation that valid cus

tomer number would eventually be entered It could for example make spe

cial notation to itself indicating what it lacks The program would then watch

to make sure the user entered the necessary information to make that customer

number valid before the end of the month book-closing In fact this is the way

most humans actually work They dont usually enter bad codes Usually

they just enter codes in sequence that the software isnt prepared to accept

Our programs make the assumption that customer account must be estab

lished before an invoice debited to that account can be valid but nowhere is

0434

430 PART VII THE GUARDIAN

this carved in stone Why cant software accept invoices independently of

account information and merely assume that things will be explained to it in

due course If the human forgets to fully explain things to the computer by

months end the program can dump irreconcilable transactions into suspense

account The program doesnt have to bring the proceedings to halt with an

error message After all the transactions in the suspense account will almost

certainly amount to only tiny fraction of the total sales so they will not be

significant factor in the business reporting cycle If they are significant though

the program will remember the transactions so they can be tracked down and

fixed This is the way it worked in manual systems so why cant computerized

systems do at least this much Why stop the entire process just because some

thing inconsequential is missing Why ground the airplane because the bar is

short one little bottle of Scotch

If the program were human assistant and it staged sit-down strike in the

middle of the accounting department because we handed it an incomplete

form wed be pretty upset If we were the boss wed consider finding

replacement for this anal-retentive petty sanctimonious clerk Just take the

form wed say and figure out the missing information yourself

have name and address program that demands enter an area code with

phone number even though have already entered the persons address It

doesnt take lot of intelligence to make reasonable guess at the area code

Most of the people in my address book live nearby If enter new name with

an address in Menlo Park the program can reliably assume that the area code

is 415 by looking at the other 25 people in my database who also live in Menlo

Park and have 415 as their area code Sure if entered new address for say

Boise Idaho the program might be stumped But how tough is it to keep list

of the 1000 biggest cities in America along with their area codes can hear

the protest already The program might be wrong It cant be sure Some

cities have more than one area code It cant make that assumption without

approval of the user Bullpucky

If asked my human assistant Chris to enter Joes information and ne

glected to mention his area code Chris would accept it anyway expecting that

the area code would arrive before its absence was critical Alternatively Chris

could look the address up in directory Lets say that Joe lives in Los Angeles

so the directory is ambiguous his area code could be either 213 or 310 If

Chris rushed into my office in panic shouting Stop what youre doing Mr

Cooper Joes area code is ambiguous Id be sorely tempted to fire poor Chris

0435

CHAPTER 28 THE END OF ERRORS 431

and hire somebody with greater-than-room-temperature IQ Why should my

software assistant be any different Kim Chriss replacement just wrote

213/3 10 into the area code field The next time need to call Joe Ill have

to determine which area code is correct but in the meantime life can go on

Again can hear the squeals of protest But but but the area code field is

only big enough for three digits cant fit 213/3 10 into it Gee thats too

bad You mean that rendering the user interface of your program in terms of

the underlying implementation modela rigidly fixed field widthforces you

to reject natural human behavior in favor of obnoxious computer-like inflexi

bility supplemented with demeaning error messages Not to put too fine

point on this but error message boxes come from failure of the program to

behave reasonably not from any failure of the user

User interface is not just skin deep

The previous example illustrates another important observation about user

interface design It is not only skin deep The user just happens to be the last

person in long chain of hard-working deadline-facing professionals

Problems that arent solved in the code are pushed through the system until

they fall into the lap of the user There are variety of ways to handle the excep

tional situations that arise in interaction with softwareand creative pro

grammer can probably think of half-dozen or so off the top of her headbut

most programmers just dont do it They are compromised by their schedule

and their preferences so they tend to envision the world in the terms of perfect

CPU behavior rather than in the terms of imperfect human behavior

Make errors impossible

Making it impossible for the user to make errors is the best way to eliminate

error messages By using bounded gizmos for all data entry users are prevented

from ever being able to enter bad numbers Instead of forcing user to key in

his selection present him with list of possible selections from which to

choose Instead of making the user type in state code for example let him

0436

432 PART VII THE GUARDIAN

choose from list of valid state codes or even from picture of map In other

words make it impossible for the user to enter bad state

Make errors impossible

Another excellent way to eliminate error messages is to make the program

smart enough that it eliminates the need to ask the user questions Many error

messages say things like Invalid input User must type xxxx Why cant the

program if it knows what the user must type just enter xxxx by itself and save

the user the tongue lashing Instead of demanding that the user find file on

disk introducing the chance that the user will select the wrong file have the

program remember which files it has accessed in the past and allow selection

from that list Another example is designing system that gets the date from

the internal clock instead of asking for input from the user

Undoubtedly all of these solutions will cause more work for programmers

This doesnt bother me bit dont want programmers to have to work

harder just for the sake of working harder but given the choice between pro

grammers working harder and users working harder Ill put the programmers

to work in an instant It is the programmers job to satisfy the user and not vice

versa If the programmer thinks of the user as just another input device it is

easy to forget the proper pecking order in the world of software design

Users of computers arent sympathetic to the difficulties faced by programmers

They dont see the technical rationale behind the rejection in an error message

box All they see is the unwillingness of the program to deal with things in

human way They see all error messages as some variant of the one shown in

Figure 28-2 This is how most users perceive error message dialog boxes They

see them as Kafka-esque interrogations with each successive choice leading to

yet blacker pit of retribution and regret

One of the big problems with error messages is that they are usually post facto

reports of failure They say Bad things just happened and all you can do is

acknowledge the catastrophe Such reports are not helpful And these dialog

boxes always come with an OK button requiring the user to collaborate in the

mayhem These error message boxes remind me of the scene in old war movies

0437

CHAPTER 28 THE END OF ERRORS 433

1\ Erase hard disk

Later

Figure 28-2

This is how most users perceive error message dialog boxes They see them as Kafka-esque

interrogations with each successive choice leading to yet blacker pit of retribution and

regret

where an ill-fated soldier steps on landmine while advancing across the rice

paddy He and his buddies clearly hear the click of the mines triggering mech

anism and the realization comes over the soldier that although hes safe now as

soon as he removes his foot from the mine it will explode taking some large

and useful part of his body with it Users get this feeling when they see most

error message boxes and they wish they were thousands of miles away back in

the real world

Positive feedback

Humans respond more favorably to positive feedback than to the negative feed

back of error messages Instead of issuing corrective message when things are

wrong your program could issue support messages when things are right so

the absence of message would indicate problem Whenever the software can

adapt to the input and accept it the software replies with some indication of

success If the software cannot make sense of the input it makes no reply at

allsilence indicates failure Just like Mom taught you when you were tot If

you cant say anything nice dont say anything at all Good advice Mom for

software interaction with users

The interaction have with hammer is illustrative of healthy interaction

between human user and tool When use hammer incorrectly it doesnt

give me an error message It doesnt attempt to correct my behavior It

doesnt point out my failings as carpenter It just doesnt put nails in very

well The hammer rewards good use with good results and rewards poor use

0438

434 PART VII THE GUARDIAN

with bad results The simplicity appropriateness and human scale of the inter

action between human and hammer are proven by the lack of professional soci

eties devoted to hammer design and by the lack of Opinion columns in

carpentry magazines on how toolmakers can create more harmonious relations

with hammer users

One of the big reasons why software is so hard to learn is that it so rarely gives

positive feedback People learn better from positive feedback than they do from

negative feedback People want to use their software correctly and effectively

and they are motivated to learn how to make the software work for them They

dont need to be slapped on the wrist when they fail They do need to be

rewarded or at least acknowledged when they succeed They will feel better

about themselves if they get approval and that good feeling will be reflected

back on the product

Advocates of negative feedback can cite numerous examples of its effectiveness

in guiding peoples behavior This evidence is true but almost universally the

context of effective punitive feedback is getting people to refrain from doing

things they want to do but shouldntthings like not driving over 55 mph not

cheating on their spouses and not chiseling on their income taxes But when it

comes to doing what people want to do positive feedback is best Imagine

hired ski instructor who yells at you or restaurant host who loudly announces

to other patrons that your credit card was rejected

Keep in mind that we are talking about the drawbacks of negative feedback

from computer Negative feedback by another person although unpleasant

can be justified in certain circumstances One can say that the drill sergeant is

at least training you how to save your life in combat and the imperious pro

fessor is at least preparing you for the vicissitudes of the real world But to be

given negative feedback by softwareany softwareis an insult The drill

sergeant and professor are at least human and have bona fide experience and

merit The program is doo-doo pond scum It is less than zero To be told by

software that you have failed is humiliating and degrading Users quite justifi

ably hate to be humiliated and degraded

Users get humiliated when software

tells them they failed

0439

CHAPTER 28 THE END OF ERRORS 435

There is nothing that takes place inside computer that is so important that it

can justiT humiliating or degrading human user Nothing dont care how

important you think your precious database integrity is it isnt worth insulting

person if you have effectiveness as your goal If data integrity is big deal for

you you need to work on methods of maintaining it without pissing off the

user There are plenty of good ways to do this We only resort to the negative

feedback ways of silicon sanctimony out of habit

No crisis inside computer is

worth humiliating human

So much effort is put into protecting the poor fragile computer from mis

handling Its all right to protect the computer but not at the cost of bothering

the user Instead we should put more effort into protecting the poor fragile

user from mishandling by the software

Treat error messages like GOTOs
When make the statement to groups of users that error message boxes should

be eliminated they generally agree some with enthusiasm and some with mild

reluctance When make that same statement to groups of programmers they

almost always protest vehemently This reinforces my belief that the continued

presence of error message boxes is due to programmers and not to users

The debate reminds me of similar one that began almost thirty years ago with

the work of mathematician Edsgar Dijkstra the inventor of structured pro

gramming Dijkstra proved mathematically that the GOTO instruction could

be eliminated from high-level programming languages and the result would be

code whose correctness could be proven His assertion sparked firestorm of

controversy in the industry that raged for decade Programmers of the óOs

and 70s matured in their craft in the days of assembler language where the

ability to jump randomly and without trace to anywhere in the program was

considered fundamental right and necessary tool to achieve adequate per

formance The structured programming revolution eventually proved these

Luddites to be wrong and few contemporary programmers working in lan

guages like Pascal and BASIC resort to GOTOs

0440

436 PART VII THE GUARDIAN

It is well known that programs filled with GOTOs are nightrnarishly difficult to

understand and maintain although it is generally acknowledged that an occa

sional well-commented GOTO harms no one So although programmers still

use GOTOs occasionally they treat them as last resort They only code

GOTOs when the equivalent structured GOTOless code would be signifi

cantly more complex and wasteful to write They know GOTOs are wrong and

using them is only rarely justified by extreme circumstance They double-check

their decision with their peers They carefully add comments to the code

describing the circumstances that justified the failure They feel guilty

want programmers to feel the same way about error message boxes as they do

about GOTOs want them to feel guilty when they code an error message

box want them to know that they have better methods at their disposal for

handling the situation want them to realize that error messages are not fun

damental right or necessary tool to achieve adequate performance

All error message boxes can be eliminated If you examine the situation from

the point of view that the error message box must be eliminated and that every

thing else is subject to change in search of this objective you will see the truth

of this assertion You will also be surprised by how little else needs to be

changed in order to achieve it In those rare cases where the rest of program

must be altered too much that is the time to compromise with the real world

and go ahead and use an error message box But want the community of pro

grammers to understand that this compromise is an admission of failure on the

programmers part That they resorted to low blow cheap shot GOTO in

their code

Exceptions
used to make single exception to my dictum about no error message boxes

believed that failed or missing hardware was adequate justification for an error

message have since re nsidered this exception and decided that it doesnt

hold water As our technological powers grow the portability and
flexibility of

our computer hardware grows too Windows 95 establishes new standard

called Plug-and-Play that allows networks and peripherals to be connected to

and disconnected from your computer without having to first power it down

This means that with Windows 95 it is now normal for hardware to appear and

disappear ad hoc Printers modems and file servers can come and go like the

tides With the development of wireless network connectors our computers

will be attaching and detaching from networks frequently easily and all in the

0441

CHAPTER 28 THE END OF ERRORS 437

normal course of walking from meeting to meeting with your sub-notebook Is

it an error if you print document only to find that no printers are connected

Is it an error if the file you are editing normally resides on drive that is no

longer reachable Is it an error if your communications modem is no longer

plugged into the computer

The deeper we wade into the Internet ocean the more this conundrum of here-

today- gone- tomorrow becomes commonplace The Internet can easily be

thought of as an infinite hard diskone that is out of the control of any one

person company or system administrator valid pointer today can be mean

ingless tomorrow Is this an error

think that none of these occurrences should be considered as errors If try

to print something and there is no printer available my program should just

spool the print image to disk The print manager program should quietly indi

cate when it reconnects to printer while it has unprinted documents in its

queue This should be an aspect of normal everyday computing It is not an

error The same is true for files If open file on the server and begin editing

it then wander out to restaurant for lunch taking my notebook with me the

program should see that the normal home of the file is no longer available and

do something intelligent It could use the built-in digital cellular phone to log

onto the server remotely or it could just save any changes make locally syn

chronizing with the version on the server when return to the office from

lunch In any case it is normal It is not an error

The most frequent cause of error messages is in responding to the user asking

for some resource that is not available This error can be eliminated by assur

ing that the program doesnt offer to the user things that might not be present

If the program offers picklists
instead of text-edit fields the user will not be

able to enter the name of an unavailable file

Yes Id like to see an error message on my screen if the printer catches on fire

but Id also like to see one if my colleague down the hall has heart attack

Error messages should be reserved for emergencies real emergencies

Do they work
There is final irony to error messages They dont prevent the user from making

errors We imagine that the user is staying out of trouble because our trusty

error messages keep them straight but this is delusion What error messages

really do is prevent the program from getting into trouble In most software

0442

438 PART VII THE GUARDIAN

the error messages stand like sentries where the program is most sensitive not

where the user is most vulnerable setting into concrete the idea that the pro

gram is more important than the user Users get into plenty of trouble with our

software regardless of the quantity or quality of the error messages in it All an

error message can do is keep me from entering letters in numeric fieldit

does nothing to protect me from entering the wrong numberswhich is

much more difficult design task

What error message dialog

boxes should look like

Now we will discuss some methods of improving the quality of error message

boxes In light of my attitude towards them you can understand the reluctance

feel about doing this Remember use these only as last resort It is better

just to take care of the problem behind the scenes and only bother the user with

it if he asks

well-formed error message box should be

Polite

Illuminating

Helpful

Never forget that an error message box is the program reporting on its failure

to do its job and it is interrupting the user to do this The error message box

must be unfailingly polite It must never even hint that the user caused this

problem because that is simply not true The customer is always right

The customer is always right

The user may indeed have entered some goofy data but the program is in no

position to argue and blame It should do its best to deliver to the user what he

0443

CHAPTER 28 THE END OF ERRORS 439

asked for no matter how silly
Above all the program must not when the user

finally discovers his silliness say in effect well you did something really stu

pid and now you cant recover Too bad It is the programs responsibility to

protect the user even when he takes inappropriate action This may seem dra

conian but it certainly isnt the users responsibility to protect the computer

from taking inappropriate action

The error message box must illuminate the problem for the user This means

that it must give him the kind of information he needs to make an appropriate

determination to solve the programs problem It needs to make clear the scope

of the problem What the alternatives are What the program will do as

default What information was lost if any The program should treat this as

confession telling the user everything

It is wrong though for the program to just dump the problem on the users

lap and wipe its hands of the matter It should directly offer to implement at

least one suggested solution right there on the error message box It should

offer buttons that will take care of the problem in various ways If printer is

missing the message box should offer options for deferring the printout or

selecting another printer If the database is hopelessly trashed and useless it

should offer to rebuild it to working state including telling the user how long

that process will take and what side effects it will cause

Figure 28-3 shows an example of reasonable error message Notice that it is

polite illuminating and helpful It doesnt even hint that the users behavior is

anything but impeccable

The end of errors

Error message boxes validate the idea that the computer is the final arbiter of

correctness and the user is there just to serve its digital majesty This attitude

influences both programmers and users It tempts programmers to make bad

judgments in design and to take shortcuts in implementation These compro

mises necessitate the use of yet more error messages Also users are anes

thetized by error messages so they cannot visualize the benefits of error-free

computing

0444

440 PART VII THE GUARDIAN

What The file you are editing PAOSE.TXT which normally

resides on the volume NETONE has become

unavailable due to an unidentified failure of the network

No data has been lost however

Scope The problem is not permanent as long as the network

connection can be re-established When that happens the

file will automatically be restored correctly

Action In the interim the program will maintain local copy of

PROST.TXT on the local volume titled IIDRIVECU in the

root directory If you would like to change the choice of

filename. drive or directory press the Save As button

Otherwise just press OK

More This program does not have the capability to diagnose the

problem further We suggest that you contact your network

administrator for further information

1JLLJ
Figure 28-3

Just like there is rarely good reason to ever use GOTO in your code there is rarely

good reason to issue an error message box However just as programmers occasionally

compromise with one or two convenient GOTOs they might occasionally issue an error

message In that case your error message should look something like this one It politely

illuminates the problem for the user offering him help in cxtricating the program from its

dilemma This error bulletin has four sections labeled What Scope Action and More that

clearly help the user understand the options available and why he might choose each The

program is intelligent enough not to lose the file just because the volume became unavail

able The dialog offers an alternative action to the user by way of the Save As..

button

0445

Managing Exceptions

side
from errors which we dealt with in the last

chapter there is potpourri of exceptional user interface

artifacts that we must examine These include message and

confirmation dialog boxes as well as the structure of many

interactions and the underlying assumptions about them To

begin with we will look at more ways in which poorly

designed programs stop the proceedings with idiocy

Alerts

There is another category of conditions that call

exceptions Like errors they stop the proceedings with

idiocy but they are not reporting malfunctions Exceptions

pop up like weeds in most programs and would like to give

them the same treatment give to errors the old heave ho

Exceptions come in two basic varieties alerts and confirma

i-ions An alert notifies the user of the programs action while

confirmation also gives the user the authority to override

that action

441

0446

442 PART VII THE GUARDIAN

When the program exercises authority that it feels uncomfortable with it often

takes steps to inform the user of its actions This is called an alert Alerts vio

late the axiom that dialog box is another room and you should have good

reason to go there see Chapter Even if an alert is justified ha why go

into another room to do it If the program took some indefensible action it

should confess to it in the same place where the action occurred and not in

separate dialog box

Conceptually program should either have the courage of its convictions or it

should not take action without the users direct guidance If the program for

example saves the users file to disk automatically it should have the confi

dence to know that it is doing the right thing It should provide means for

the user to find out what the program did but it doesnt have to stop the pro

ceedings with idiocy to do so If the program really isnt sure that it should save

the file then it shouldnt save the file but should leave that operation up to the

user

Conversely if the user directs the program to do somethingdragging file to

the trash can for exampleit doesnt need to stop the proceedings with idiocy

to announce that the user just dragged file to the trash can The program

should assure that there is adequate visual feedback of the action and if the user

has actually made the gesture in error the program should silently offer him

robust undo facility so he can backtrack

The rationale for alerts is that they inform the user Im real fan of informing

the user but not at the expense of smooth and flowing interaction get lot

of high-quality information from my watch but it doesnt need to tap me on

the shoulder and interrupt me every hour to keep me informed of the time

The alert shown in Figure 29-1 is classic example of how alerts throw rocks

at the users feet The Find dialog the one at the bottom already forces the

user to press CANCEL when the search is completed but the superimposed alert

box makes it brace of flow-breaking buttons First the OK to the alert then

the CANCEL to the Find If the information aspect of the alert were built into

the main Find dialog the users burden would be reduced by half at no

expense That is good economy for user interface designers

Alerts are so numerous because they are so easy to create Most languages offer

some form of message box facility in single line of code Conversely building

an animated status display into the face of program might require thousand

or more lines of code Programmers cannot be expected to make the right

0447

CHAPTER 29 MANAGING EXCEPTIONS 443

Find What Ipolitical
correctness Fifld

canci

fr _____
_earc

Word has finished searching the document The search item

Find was not found

Figure 29-1

Here is typical alert dialog box Unnecessary inappropriate and it stops the proceedings

with idiocy The Find dialog in Word has finished searching the document Is reporting

that fact different facility of Word If not why does it use different dialog Its like

having to go into one dining room to use fork and other one to use spoon The little

icon is sure tip-off to smarmy sanctimonious clumsy interface design Yes software

must constantly and effusively report its status to the user But doing so with proceedings-

stopping alert dialogs is wrong

choice in this situation They are too tied by conflict of interest so designers

must be sure to specify precisely where information is reported on the surface

of an application and they must follow up to be sure that the design wasnt

compromised for the sake of code Imagine if the contractor on building site

decided unilaterally not to add bathroom because it was just too much trou

ble There would be repercussions

Announcing the obvious

Software needs to keep the user informed of its actions It must have lights

meters or other gizmos built into its interface to make such status information

available to the user should he desire it Putting up an alert to announce an

unrequested action is bad Putting up an alert to announce requested action is

pathological

Software needs to be flexible and forgiving It doesnt need to be fawning and

obsequious The dialog box shown back in Chapter Figure 3-2 is classic

example of an alert that should be put out of our misery It announces that it

added the entry to our phone book immediately after we told it to add the

entry to our phone book which was mere milliseconds after we physically

0448

444 PART VII THE GUARDIAN

added the entry to what appears to be our phone book It stops the proceed

ings to announce the obvious It wouldnt surprise me if they first popped up

dialog box to announce the dialog box that announced the addition

Its as though the programmer wanted approval for how hard he worked See

dear Ive cleaned your room for you Dont you love me If person inter

acted with us like this wed suggest that he seek counseling

Confirmations

When program does not feel confident about its actions it often asks the user

foi appioval with dialog box This is called confirmation like the one

shown in Figure 29-2 Sometimes the confirmation is offered so the user has

the opportunity to second-guess one of his own actions Sometimes the pro

gram feels that it is not competent to make decision it faces and uses con

firmation to give the user the choice instead

Confirmations always come from the program and never from the user This

means that exceptions are reflection of the implementation model and are

not representative of the users goals All confirmation dialog boxes can be

eliminated just by changing the programs attitude Look for example at the

dialog in Figure 29-2

ynuwiitedHED
Figure 29-2

Every time delete file in Windows 95 get this confirmation dialog box asking me if

Im sure Yes Im sure Im always sure And if Im wrong expect you to be able to

recover the file for me Miracle of miracles this version of Windows can finally live up to

that expectation with its Recycle Bin So why does it still issue the confirmation mes

sage When confirmation box is issued routinely users get used to approving it routinely

So when it eventually reports an impending disaster to the user he goes ahead and

approves it anyway because it is routine Confirmation boxes only work if they are unex

pected When users are performing new tasks their senses will be alert to danger so the

only time they need unexpected confirmation boxes is when they are doing routine tasks

Deterministic algorithms cant do that Do yourself and your users favor and never code

another confirmation dialog box

0449

CHAPTER 29 MANAGING EXCEPTIONS 445

As discussed in Part rendering the implementation model is sure fire way

to create bad user interface This means that the confirmation method of

dealing with exceptions is wrong Confirmations get written into software

when the programmer arrives at an impasse in her coding Typically she real

izes that she is about to take some bold action and feels that the user would

want full control over this action Sometimes the bold action is based on some

condition the program detects but more often it is based on command the

user issued Typically the confirmation will be erected after the user issues

command that is either irrecoverable or whose results might cause undue

alarm

In both of these circumstances the programmer is passing the buck to the user

which is wrong The user trusts the program to do its job and the program

should both do it and assure that it does it right If it cant be absolutely sure

it is doing it right the program should at least be sure that it is able to back

track on request In other words the program should assure that startling giz

mos are clearly identified and no actions should be irrecoverable

Passing the buck to the user is also known as stopping the proceedings with

idiocy Yes even if the program has found some exceptional condition it is still

idiocy from the users point of view

As programs code grows during development programmers detect numer

ous situations where they dont feel that they can resolve issues adequately

Programmers will unilaterally insert buck-passing code in these places almost

without noticing it This tendency needs to be closely watched because pro

grammers have been known to insert d.ialog boxes into the code even after the

user interface specification has been agreed upon Programmers often dont

consider confirmation dialogs to be part of the user interface but they are

Confirmations dont work

Here is fact about confirmation messages They only work when they are

unexpected That doesnt sound so remarkable until you examine it in context

If confirmations are offered in routine places the user quickly becomes inured

to them and routinely dismisses them without glance The dismissing of con

firmations thus becomes as routine as the issuing of them Ifsomedaya

really unexpected and dangerous situation arisesone that should be brought

to the users attention he will go ahead and dismiss the confirmation just

because it has become routine Like the fable of the boy who cried wolf when

0450

446 PART VII THE GUARDIAN

there is finally real danger the confirmation box wont work because it cried

too many times when there was no danger

For confirmation dialog boxes to work they must only appear when they are

unexpected Another way of saying this is that confirmations should only

bother to appear when the user will almost definitely press the NO button

and they should never appear when the user is likely to press the YES button

Seen from this vantage they look pretty pointless dont they

The confirmation dialog box shown in Figure 29-3 is classic It appears when

ever press the DELETE button This means that it appears every time want to

say YES so always push the YES button If ever want to say No prob

ably wont even notice that there was confirming dialog box at all The irony

of the confirmation dialog box in the figure is that often have trouble with

this dialog determining which styles want to delete and which want to keep

If the confirmation box appeared whenever deleted style
that was currently

in use say it would at least be help because it would be less routine But why

not just put an icon next to the names of styles
that are in use instead and dis

pense with the confirmation It gives me better view of what is happening so

can make more informed decision about what to delete Also if the DELETE

button were separated from the OK and CANCEL buttons the chance of an inad

vertent button press would be dramatically reduced

How to eliminate confirmations

There are three axioms that tell us how to eliminate confirmation dialog boxes

The best way is to obey the simple dictum do dont ask When you design

your software go ahead and give it the force of its convictions Make sure that

if it is going to do something that it has the guts to go ahead and do it with

out whining and mewling about it Users will respect its brevity and its conf

dence

Do dont ask

Of course if the program confidently does something that the user doesnt like

it must have the ability to reverse tEhe operation Every aspect of the programs

0451

CHAPTER 29 MANAGING EXCEPTIONS 447

Styles --

aragraph review
ply

Chap header

Design Term Cancel

Design Tip

It 13rfl ew

Intern
--

List

duly..

List
Do you want to delete style Numbered Internal text

New
elete

Nurnbr
Yes iio .elp anizer..

Nurnbr

NumLis Help

Outdented List .J
escription

nterrial text Muto urrubering

Lust

User-Defined Styles

Figure 29-3

If you press the DELETE button in the Style dialog box in Word you get
this typical confir

mation box always press YES never press NO wish oh how wish that could make

this dialog go away forever In the Style dialog occasionally inadvertently delete style

really wanted to keep This confirmation however doesnt help me prevent that If its

appearance were based on some criteria other than merely asking for deletion there is

some faint chance that it would be useful As it is it merely irritates me Tell me you wont

ever create one of these please

action must be undoable Instead of asking in advance with confirmation dia

log box though let the user issue the stop-and-undo command on those rare

occasions when the programs actions were out of turn

Most situations that we currently consider unprotectable by undo can actually

be protected fairly well Deleting or overwriting file is good example The

file can be moved to suspense directory where it is kept for month or so

before it is physically deleted Actually the Recycle Bin in Windows 95 uses this

strategy except for the part about automatically erasing them after month

the user has to manually take nilt the garbage

Make everything reversible

0452

448 PART VII THE GUARDIAN

Even better than acting in haste and forcing the user to rescue the program

with undo you can make sure that the program offers the user adequate infor

mation so that the user will never issue command that leads to an inappro

priate action or never omits necessary command The program should use

sufficiently rich visual feedback so that the user is constantly kept informed the

same way the instruments on dashboards keep us informed of the state of our

cars

Directly offer enough information

for the user to avoid mistakes

Occasionally there arises situation that really cant be protected by undo

cant think of any right now and you probably cant either but we all know

programmers who can Is this legitimate case for confirmation dialog box

No The program cant offer sufficient protection to the user so it demands

that the user waive his right to protection instead better approach is to pro

vide him with protection the way we give him protection on the freeway with

consistent and clear markings We can build really good quality but modeless

warnings right into the interface Isolated brightly colored gizmos next to list-

boxes that offer full disclosure about the data to be messed with are good

start

Much more common than honestly irreversible actions are those actions that

are easily reversible but still uselessly protected by routine confirmation boxes

The confirmation in Figure 29-2 is an excellent specimen of this species There

is no reason whatsoever to ask for confirmation of move to the Recycle Bin

The sole reason that the Recycle Bin exists is to implement an undo facility
for

deleted files This goes beyond belt and suspenders This confirmation box

stops the proceedings with idiocy It is more like belt suspenders and hand

cuffs

Who are we protecting anyway
Lets face it most programs dont work all that hard to protect the user

However they do work hard to protect themselves Programs are tender

brittle souls and single bit in the wrong place can crash big program

0453

CHAPTER 29 MANAGING ExCEPTIONS 449

Programmersquite understandablyare protective of their creations Error

messages are the outward symptoms of this protection but it is the software

design imperative that shapes the program in such way that it generates these

symptoms

This design imperative is characterized by the goal of never letting tainted

unclean data get into the software The programmer erects barriers in the user

interface so that bad data can never enter the system This pure internal state is

commonly called data integrity

Data integrity posits that there is world of chaotic information out there and

before any of it gets inside the computer it must be filtered and cleaned up The

software must have an outer barrier thin crust of protection like sentries

posted on the perimeter of military base see Figure 29-4 All data is made

valid at its point of entry Anything on the outside is assumed to be bad or at

least suspect but anything that has penetrated the crust can be assumed to have

satisfied the rigorous vetting of the barriers best efforts Once it has been

allowed inside it is assumed to be valid The advantage is that once inside the

database the code doesnt have to bother with successive repetitive checks on

the validity or appropriateness of the data

There is completely different approach possible to protect sensitive software

Instead of keeping bad data out of the system the programmer must make the

system immune to inconsistencies and gaps in the information This method

involves writing much smarter more sophisticated code that can robustly han

dle all permutations of data call this data immunity

Programmers have traditionally used data integrity and have spurned the idea

of data immunity generally because it takes more complex code Programmers

are reluctant to accept the need to write more complex code After all they

have deadlines too

Now before you get too steamed and complain that we cant just let garbage

into our systems let me make it clear that that is not my intention

Data integrity is good concept on paper but it has some severe failings in the

real world Mainly it dumps the burden of entering correct data in the users

lap and it demands that he do this at entry time rather than whenand if

the correct data is actually needed Data immunity doesnt tolerate bad data

when correct data is needed It does though tolerate bad data in the system

when its badness doesnt really matter

0454

450 PART VII THE GUARDIAN

Bad data
Data inlearity

Onty gooidata

inside

Figure 29-4

Underneath the rhetoric of data integritythat there is an objective imperative of protect

ing the user and computer with sanctified datathere is disturbing subtext That subtext

says
that humans are ill-intentioned screwups that users will given the chance enter the

most bizarre garbage possible in deliberate attempt to bring the system to its knees This

is not true Im certainly aware that users can given the chance enter garbage but that is

far
cry

from saying that they do it intentionally Users are very sensitive to subtext

though and they will know that the program doesnt trust them Data integrity not only

hampers the system from serving the user for the dubious benefit of easing the program

mers burden but it also offends the user with its accompanying attitude Its another case

of the user having to adapt to the needs of the computer instead of vice versa The philo

sophy of data integrity is based on scarcity thinking there arent enough precious comput

ing resources to go around so we must protect them from chaotic bad data That just

isnt true anymore Its time we start devoting some of our excess capacity to helping pro
tect the user from chaotic bad user interfaces

Data integrity helps programmers not users

Data integrity is straitjacket placed on software design by programmers and

computers and not by users The user doesnt know or care about how much

work the programmer must do to make things work correctly The user is not

concerned with the difficulties the programmer might have keeping the pro

gram from blowing up if it finds an alphabetic character in numeric field Yes

the user cares about having the program function reliably and about having it

yield good results but that doesnt mean he necessarily wants to have to do the

scut work of correcting the details He also wants his lawn trimmed but it

doesnt follow that he must be the one to personally wield the lawnmower

Data integrity demands that all data be vetted at the door and that all outliers

are detected and bounced back Once in the data is good This is nothing more

0455

CHAPTER 29 MANAGING EXCEPTIONS 451

than performance hack The only reason suspect information is bounced on

entry is to make things easy for the programmer and for the computer The user

doesnt count

An invoice database for example may be used to generate statistical sales

reports for management in addition to printing invoices to mail to customers

The absence of valid postal codes in the customer records might well hamper

the invoice mailing but it wont have any effect on the sales report Data

integrity however demands that the product manager cant get her report

until those postal codes are perfect From systems point of view getting

postal codes perfect once and for all is the most efficient method From the

product managers point of view though the silly program is demanding irrel

evancies with an obnoxious rigidity

The database programmer will counter that it is too difficult for the program

to have to deal with possible bad data at each step of the waythat it is more

efficient for the program to eliminate the bad data at entry time and assume

goodness from then on This is true but not relevant Efficiency is concept

that applies to machinery and central processing units It has little or no applic

ability to human beings and our task as programmers and designers is to

improve the users lot The efficiency demanded by the database programmer

is vestige of the scarcity thinking that infects our entire generation of pro

grammers Today we have plenty of computing power available to protect

against bad data But programmers drag their heels not wanting to do the hard

work It is easier for programmers to invoke data integrity than it is for them to

take the necessary effort to implement data immunity

In particular programmers who work with databases generally consider the

integrity of their databases to be the primary overriding concern of their work

The users concerns rarely penetrate this deeply into the system end of the pro

gram code Programmers may never admit it but their decisions all seem to go

in favor of data integrity at the expense of user considerations Their sympathies

are with the database rather than with the user Users and user interface design

ers are told flatly
we must maintain the integrity of the database with the

same intensity as if the database were sustaining the life-support system on

spacecraft

Data integrity is so widely accepted as good software design that its hegemony

is rarely even questioned Pretty much all of the art and science of database

administration management and programming is based on the assumption that

0456

452 PART VII THE GUARDIAN

data integrity is reliably maintained Programmers who write user-centered

software that happens to rely on databases also unconsciously inculcate the data

integrity principle into their work

The database whether residing on an aging mainframe or on an au courant

client/server platform makes louder more immediate and more strident

demands than users can and so most applications are more sensitive to the

needs of the server program than they are to the user As pragmatic developer

of software know it is vital to address the needs of the platform but also

know that someday vendor will figure Out how to keep the software happy

while simultaneously giving users new and higher levels of interactive satisfac

tion This vendor will cut through the marketplace like scythe It can be you

or it can be your competitor but it is only matter of time As designer my

allegiance is to the future not to the database

Data immunity

To implement data immunity our programs must be trained to look before

they leap and they must be trained to ask for help

Most software blindly performs arithmetic on numbers without actually exam

ining them first The program assumes that number field must contain num
berdata integrity tells it so If the user entered the word nine instead of the

number the program would croak but human reading the form

wouldnt even blink If the program simply looked at the data before it acted

it would see that simple math function wont do the trick

Heres where looking for help comes in Wait know what you are thinking

put up message box asking the user That is precisely the wrong thing to do

We must train our programs to believe that the user will enter what he means

to enter and if the user wants to correct things he will without our paranoid

insistence But the program can look elsewhere in the computer for assistance

Is there module that knows how to make numeric sense of alphabetic text Is

there history of corrections that might shed some light on the users intent

If all else fails the program must add annotations to the data so that when
and ifthe user comes to examine the problem he finds accurate and complete

notes that describe what happened and what steps the program took

Yes if users enter asdf instead of 9.38 the program wont be able to arrive

at satisfactory results But stopping the program to resolve this right now is not

0457

CHAPTER 29 MANAGING EXCEPTIONS 453

satisfactory process either the entry process is just as important as the end

report If the user interface is designed correctly the program issues some

visual feedback when the user enters asdf so the likelihood of the user enter

ing hundreds of bad records is very low Generally users only act stupidly when

programs treat them stupidly

Most often the incorrect data that the user enters is still reasonable for the sit

uation If the program expects two-letter state code the user may enter

TY by accident However that same user enters the city as Louisville and

it doesnt take lot of intelligence to figure out the problem Missing postal

codes can be solved by relatively simple and small program that wont tax our

modern powerful computers In the rare cases where the postal code locator

program fails most humans would have failed too

Data integrity is privilege not right

From computers point of view it doesnt make any difference whether

garbage got into the system intentionally or not This has been used as justi

fication for the autocracy of data integrity However from the human users

point of view the difference between intentionally entering bad postal code

and unintentionally entering it is very great indeed Back when computers cost

millions and were slow and temperamental the users feelings could be justifi

ably snubbed for practical considerations Those days are gone forever hustled

to the door and booted into the street by the information revolution

This is how justify demoting data integrity from its position as guiding prin

ciple of software design When our software shakes down data at the point of

entry when it strip-searches the user to assure that he isnt carrying any con

traband into the high-security depths of the computer it makes very clear

statement that the user is insignificant and that the program is god-like that

the user works for the good of the program and not vice versa This is not the

impression that we want to give We want the user to feel in charge to feel that

the program works for him that the program is doing the work while the user

makes the decisions

Data integrity helps reduce the burden on the programmerwhile saying noth

ing about what it does for the user Programmers who cut their teeth on main

frames with batch-processed COBOL applications did learn the concept of

data integrity early Today the gospel of data integrity is being taught to new

generation of programmers using Visual Basic to access department-level SQL

0458

454 PART VII THE GUARDIAN

databases The computational landscape is completely different than it was

twenty years ago While the power of the host computers has increased ten-

thousand-fold not much else has The quantities of data typically handled

havent changed more than an order of magnitude and the humans who use

them are the same Yet we still put data integrity at the top of our priority list

even though the demand for it is vestigial

Audible feedback

In mass -production data- entry environments professional data- entry clerks

touch-typists allsit for hours in front of video screens and enter data These

users may well be examining source documents and typing by touch instead of

looking at the screen If they enter something erroneous they need to be

informed of it both audibly and visually The clerk can then use his sense of

hearing to monitor the success of his inputs while he keeps his eyes on the doc

ument

Here Im absolutely not- talking about the beep that accompanies an error mes

sage box In fact Im not talking about beep at all When talk about audi

ble feedback as problem indicator Im talking about silence

With the exception of computer software almost every object and system offers

sound to indicate success rather than failure When we close the door we know

that it is latched when we hear the click but silence tells us that it is not yet

secure When we are talking with group of people and they say Yes or

huh we know that we have gotten through to them When they are silent we

know our arguments have slipped off the track somehow When we turn the key

in the ignition and get silence we know weve got problem When we flip the

switch on the copier and it stays coldly silent instead of humming loudly we

know that there is trouble Even things we consider silent make noise Turning

on the stovetop returns sibilant hiss of gas and quietly gratifying whoomp
as the pilot ignites the burner Electric ranges are inherently less friendly and

harder to use because they lack that soundthey have to have indicator lights

to tell us of their status

When success with our tools yields sound that is called positive audible

feedback

Our software tools are mostly silent all we hear is the quiet click of the key

board Hey Thats positive audible feedback Every time you press key you

hear faint but positive sound Keyboard manufacturers could easily make

0459

CHAPTER 29 MANAGING EXCEPTIONS 455

perfectly silent keyboards but they dont because we depend on audible feed

back to tell us how we are doing The feedback doesnt have to be sophisti

catedthose clicks dont tell us muchbut they must be consistent because if

we ever detect silence we know that we have failed to press
the key The true

value of positive audible feedback is that its absence is an extremely effective

problem indicator

The effectiveness of positive audible feedback comes from its human sensitiv

ity Nobodyno human that islikes to be told that they have failed Error

message boxes are negative feedback telling the user that he has done some

thing wrong Ah but silence assures that the user knows this without actually

being told of the failure It is remarkably effective because the software does

nt have to insult the user to accomplish its ends

Our software should give us constant small audible cues just like our keyboards

Our programs would be much friendlier and easier to use if they issued barely

audible but easily
identifiable sounds when user actions were correct The pro

gram could issue soft coo every time the user entered valid input to field

If the program didnt understand the input it would remain silent and the user

would be immediately informed of the problem and be able to correct his input

without embarrassment or ego-bruising Whenever the user starts to drag an

icon the computer would issue short toot-toot then an effervescent hiss

as the object was dragged When it was dragged over pliant areas the hiss

would rise note in pitch When the user finally released the mouse button he

would be rewarded with nearly silent Yeah from the speakers for success

or frigid silence if the drop wasnt meaningful

People frequently counter this argument by telling me how users dont like

audible feedback how they are offended by the sounds that computers make

and how they dont like to have their computer beeping and booping at them

To this say Bunk People are conditioned by two things about computer

sound

Computers have always accompanied erior messages with noises

Computer noises have always been loud monotonous and unpleasant

alarms

Emitting noise when something bad happens is called negative audible

feedback

0460

456 PART VII THE GUARDIAN

On most systems error message boxes are normally accompanied by loud

shrill tinny little beeps and audible feedback has become strongly associated

them That beep is public stigmata of the users failure It coldly announces

to all within earshot that you have done something execrably stupid It is such

hateful silicon sanctimony that most software developers now have an unques

tioned belief that sound is bad and should never again be considered as part

of interface design Nothing could be further from the truth It is just the neg

ative feedback aspect that is bad not the audible aspect

Negative audible feedback has several things working against it Because the

negative feedback is issued at time when problem is discovered it naturally

takes on the characteristics of an alarm Alarms are designed to be purposefully

loud discordant and disturbing They are supposed to wake sound sleepers

from their slumbers when their house is on fire and their lives are at stake They

are like insurance because we all hope that they will never be heard

Unfortunately users are constantly doing things that programs cant handle so

these actions have become part of the normal course of interaction Alarms

have no place in this normal relationship the same way we dont expect our car

alarms to go off whenever we accidentally change lanes without using our turn

indicators Perhaps the most damning aspect of negative audible feedback is the

implication that success must be greeted with silence Humans like to know

when they are doing well They need to know when they are doing poorly but

that doesnt mean that they like to hear about it Negative feedback systems are

guaranteed to be appreciated less than positive feedback systems

Given the choice of no noise versus noise for negative feedback people will

choose the former Given the choice of no noise versus unpleasant noises for

positive feedback people will choose either based on their personal situation

and taste Given the choice of no noise versus soft and pleasant noises for post

itive feedback however my experience tells me that people will almost univer

sally choose the audio We have never given our users chance by putting

high-quality positive audible feedback in our programs so its no wonder that

people associate sound with bad interfaces

The audible feedback must be at the right volume for the situation Most com

puters dont offer volume controls so sound is usually either too loud or too

soft Windows 95 finally offers standard volume control so one obstacle to

beneficial audible feedback has been overcome

0461

CHAPTER 29 MANAGING EXCEPTIONS 457

Using your powers for good

Many programmers believe that it is their duty to inform the user when he has

made an error It is certainly the programs duty to inform other programs when

they make an error but dont believe that this rule should extend to users

The customer is always right so the program must accept whatever the user

tells it regardless of what the program does or doesnt know This is similar to

the concept of data immunity because whatever the user enters is acceptable

regardless of how incorrect the program believes it to be

This doesnt mean that the program can wipe its hands and say
all right he

doesnt want to be protected so Ill just let him crash Just because the pro

gram must act as though the user is always right this doesnt mean that the user

actually is always right Humans are always making mistakes and your users are

no exception can guarantee you that they will screw up It may not be your

fault but its your responsibility How are you going to fix it

Its not your fault but its your

responsibility

The program can erect warning signsas long as they dont stop the proceed

ings with idiocybut if the user chooses to do something suspect the program

can do nothing but accept the fact and work to protect the user from harm

Like faithful guide it must follow its master into the jungle making sure to

bring along an elephant gun and plenty of ammo

The warning signs must use modeless techniques on the surface of the active

window to inform the user of what he has done much like the way the

speedometer silently reports our speed violations It is not reasonable however

for the program to stop the proceedings with modal idiocy just like it is not

right for the speedometer to cut the gas when we edge above 65 miles per hour

Instead of an error message box for example edit fields can have little graphic

simulated LEDs attached to them that change from green to red depending on

how the program evaluates the current input

Once the user has gone ahead and done something that the program is sure is

wrong there is only one way to protect him If we edit his work without telling

0462

	Cooper - ABOUT FACE THE ESSENTIALS OF USER INTERFACE DESIGN Part 3.pdf
	Cooper - ABOUT FACE THE ESSENTIALS OF USER INTERFACE DESIGN_Part7
	Cooper - ABOUT FACE THE ESSENTIALS OF USER INTERFACE DESIGN_Part8
	Cooper - ABOUT FACE THE ESSENTIALS OF USER INTERFACE DESIGN_Part9

