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Preface to the Third Edition 

Designing the User Interface is intended prilnarily for designers, managers, 
and evaluators of interactive systems. It presents a broad survey of design
ing, implementing, managing, maintaining, training, and refining the user 
interface of interactive systems. The book's second audience is researchers in 
human-computer interaction, specifically those who are interested in 
human performance with interactive systems. These researchers may have 
backgrounds in computer science, psychology, information systems, library 
science, business, education, human factors, ergonomics, or industrial engi
neering; all share a desire to understand the c01nplex interaction of people 
with machines. Students in these fields also will benefit from the contents of 
this book. It is my hope that this book will stimulate the introduction of 
courses on user-interface design in all these and other disciplines. Finally, 
serious users of interactive systems will find that the book gives them a more 
thorough understanding of the design questions for user interfaces. My 
goals are to encourage greater attention to the user interface and to help 
develop a rigorous science of user-interface design. 

Since publication of the first two editions of this book in 1986 and 1992, 
researchers in the field of human-computer interaction and practitioners of 
user-interface design have grown more numerous and influential. The qual
ity of interfaces has improved greatly, and the community of users has 
grown dramatically. Researchers and designers could claim success, but user 
expectations are higher and the applications are more demanding. Today' s 
interfaces are good, but novice and expert users still experience anxiety and 
frustration all too often. To achieve the goal of universal access, designers 
will have to continue to work harder. This book is meant to help them keep 
up the momentum, and thus to encouragefurther progress. 

Keeping up with the innovations in human-computer interaction is a 
demanding task. Requests for an update to my second edition began shortly 
after its publication, but I had to wait until a sabbatical year allowed me to 
set aside enough time to complete this third edition. I've gone to the library, 
the World Wide Web, conferences, and colleagues to harvest information, 
and then returned to my keyboard to write. My first drafts were only a start
ing point to generate feedback from colleagues, practitioners, and students. 
The work was intense and satisfying. 

New in the Third Edition 

Comments from instructors who used the second edition were influential in 
my revisions of the structure. Since many courses include design, evaluation, 
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iv Preface 

and construction projects, the chapters on development 1nethodologies, 
evaluation techniques, and software tools were 1noved toward the begin
ning. Since direct manipulation is the dmninant user-interface style, it is pre
sented first, followed by menus, form fillin, and cmnmand languages. The 
material on computer-supported cooperative work has changed dramati
cally as research ideas and prototypes have become commercial tools. Infor
mation visualization is still in its early phases, but vigorous research and 
emerging com1nercial activity are widespread. The closing chapter on the 
rapidly growing World Wide Web is totally new. 

Instructors wanted more guidelines and sum1nary tables; these ele1nents 
are now shown in boxes throughout the book. The Practitioner Summaries 
and Researcher Agendas remain popular; they have been updated. The ref
erences have been expanded and freshened with many new sources, with 
classic papers still included. Because some of the previously cited works 
were difficult to find, a much larger percentage of the references now are 
widely available sources. Figures-especially those showing screen 
designs-age quickly. In this edition, numerous new user interfaces are 
shown, 1nany in full color. 

Readers will see the dynamism of human-computer interaction reflected 
in the substantial changes to this third edition. Controversy continues about 
the future of speech input and output, natural-language interaction, anthro
pomorphic design, and agents. I emphasize empirical reports, try to present 
both sides fairly, and offer my opinions. 

The presence of the World Wide Web has a profound effect on 
researchers, designers, educators, and students. I want to encourage 
intense use of the web by all these groups and to ease integration of the 
web into common practice. However, the volatility of the web is not in 
harmony with the permanence of printed books. Publishing website 
URLs in the book would have been risky, because changes are made 
daily. For these and other reasons, with the cooperation of my publisher 
and Prof. Blaise Liffick (Millersville University), we have established an 
ambitious web site (http:/ /www.aw.com/DTUI) to accompany this 
book. It contains pointers to web sites related to each chapter's topics, 
updates on fast-changing topics, interesting reviews, and instructional 
support. Exercises, homework assignments, projects, and examination 
questions are just a few of the elements of this evolving site. Contribu
tions from professionals, faculty, and students are making this resource 
increasingly valuable, and the community using it is lively and growing. 
I hope that every reader will visit the site, will participate in discussion 
groups, and will contribute to it. Send us your ideas and contributions. 
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Preface v 

Ways to Use This Book 

I hope that practitioners and researchers who read this book will want to 
keep it on their shelves to consult when they are working on a new topic or 
seeking pointers to the literature. 

Instructors may choose to assign the full text in the order that I present it, 
or to make selections fr01n it. The opening chapter is a good starting point for 
1nost students, but instructors may take different paths depending on their 
disciplines. For example, instructors might emphasize the following chap
ters, listed by area: 

• Computer science: 2, 5, 6, 13, 14, 15 

• Psychology:2,4,9, 10,14 

• Library and infonnation science: 2, 4, 12, 15, 16 

• Business and information systems: 3, 4, 14, 15 

• Education technology: 2, 4, 11, 12, 14, 16 

• Communication arts and media studies: 4, 11, 12, 16 

• Technical writing and graphic design: 3, 4, 11, 12, 15, 16 

The book's web site provides syllabi from many instructors, and offers 
supplemental teaching materials. 
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Hutnan Factors of 
Interactive Soft-w-are 

Designing an object to be simple and clear takes at least twice as long as the usual 
way. It requires concentration at the outset on how a clear and simple system would 
work, followed by the steps required to make it come out that way-steps which are 
often 1nuch harder and m.ore c01nplex than the ordinary ones. It also requires relent
less pursuit of that simplicity even when obstacles appear which would seem to 
stand in the way of that simplicity. 

T. H. Nelson, The Home Computer Revolution, 1977 
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1.1 Introduction 
1.2 Goals of System Engineering 
1.3 Goals of User-Interface Design 
1.4 Motivations for Human Factors in Design 
1.5 Accommodation of Human Diversity 
1.6 Goals for Our Profession 
1.7 Practitioner's Summary 
1.8 Researcher's Agenda 

1.1 Introduction 

New technologies provide extraordinary-almost supernatural-powers to 
those people who master them. Computer systems and accessible interfaces 
are still new technologies that are being rapidly disseminated. Great excite
ment spreads as designers provide remarkable functions in carefully crafted 
interactive and networked systems. The opportunities for youthful system 
builders and mature entrepreneurs are substantial, and the impacts on indi
viduals and organizations are profound. 

Like early photography equipment or automobiles, computers have been 
available only to people who were willing to devote effort to mastering the 
technology. Harnessing the cmnputer' s power is a task for designers who 
understand the technology and are sensitive to human capacities and needs. 
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1.1 Introduction 5 

Human performance in the use of cmnputer and information systems will 
remain a rapidly expanding research and development topic in the cOining 
decades. This interdisciplinary journey of discovery combines the data-gath
ering methods and intellectual framework of experimental psychology with 
the powerful and widely used tools developed from computer science. Con
tributions also accrue from educational and industrial psychologists, instruc
tional and graphic designers, technical writers, experts in human factors or 
ergonomics, and adventuresome anthropologists or sociologists. 

Applications developers who apply human-factors principles and processes 
are producing exciting interactive systems. Provocative ideas emerge in the 
pages of the numerous thick cmnputer magazines, the shelves of the proliferat
ing computer stores, and the menus of the expanding computer networks. User 
interfaces produce corporate success stories and Wall Street sensations such as 
Netscape, America Online, or Lycos. They also produce intense competition 
(with Microsoft as a favorite ene1ny), copyright-infringement suits (such as 
Apple's suit against Microsoft covering the Windows interface), mega-1nergers 
(such as Bell Atlantic and NYNEX), takeovers (such as IBM grabbing Lotus), 
and international liaisons (such as British Telecmn's link to MCI). 

At an individual level, user interfaces change many people's lives: doctors 
can make more accurate diagnoses, children can learn more effectively, 
graphic artists can explore more creative possibilities, and pilots can fly air
planes more safely. Some changes, however, are disruptive; too often, users 
must cope with frustration, fear, and failure when they encounter excessive 
complexity, incomprehensible terminology, or chaotic layouts. 

The steadily growing interest in user-interface design spans remarkably 
diverse systems (Figs. 1.1 to 1.7 and Color Plates Al to A6). Word processors 
and desktop-publishing tools are used routinely, and many businesses employ 
photo scanning and image-manipulation software. Electronic mail, computer 
conferencing, and the World Wide Web have provided new communication 
media. Digital image libraries are expanding in applications from 1nedicine to 
space exploration. Scientific visualization and simulator workstations allow 
safe experimentation and inexpensive training. Electronic spreadsheets and 
decision-support systems serve as tools for analysts from many disciplines. 
Educational and public access to information frmn museum kiosks or govern
ment sources is expanding. Commercial systems include inventory, personnel, 
reservations, air traffic, and electric-utility control. Computer-assisted soft
ware-engineering tools and programming environments allow rapid proto
typing, as do computer-assisted design, manufacturing, and engineering 
workstations. Most of us use various consumer electronics, such as VCRs, tele
phones, cameras, and appliances. Art, music, sports, and entertainment all are 
assisted or enhanced by computer systems. 

Practitioners and researchers in many fields are making vital contribu
tions. Academic and industrial theorists in computer science, psychology, 
and human factors are developing perceptual, cognitive, and motor theories 
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Macintosh System 7.5. The active window, which shows stripes in the title bar, is on 
top. Windows can be dragged partially off the display to the left, right, and bottom. 
File and folder icons can be dragged to new folders or to the trashcan for deletion. 
(Used with permission of Apple Computer, Inc., Cupertino, CA.) 

and models of human performance, while experimenters are collecting 
empirical data. 

Software designers are exploring how best to organize information graph
ically. They are developing query languages and visually attractive facilities 
for input, search, and output. They are using sound (such as music and 
voice), three-dimensional representations, anilnation, and video to improve 
the appeal and information content of interfaces. Techniques such as direct 
manipulation, telepresence, and virtual realities may change the ways that 
we interact with and think about computers. 

Hardware developers and system builders are offering novel keyboard 
designs and pointing devices, as well as laFge, high-resolution color displays. 
They are designing systems that both provide rapid response times for 
increasingly complex tasks and have fast display rates and smooth transitions 
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Unix Motif environment. A programmer is shown at work. 

for increasingly cmnplex 3-dilnensional manipulations. Technologies that 
allow speech input and output, gestural input, and tactile or force-feedback 
output increase ease of use, as do input devices such as the touchscreen and 
stylus. 

Developers with an orientation toward educational psychology, instruc
tional design, and technical writing are creating engaging online tutorials, 
training, reference manuals, demonstrations and sales materials, and are 
exploring novel approaches to group lectures, distance learning, personal
ized experiential training, and video presentations. Graphic designers are 
actively engaged in visual layout, color selection, and animation. Sociolo
gists, anthropologists, philosophers, policy makers, and managers are deal
ing with organizational impact, computer anxiety, job redesign, retraining, 
distributed teamwork, computer-supported cooperation strategies, work-at
home schemes, and long-term societal changes. 

We are living in an exciting time for developers of user fnterfaces.· The 
hardware and software foundations for the bridges and tunnels have been 
built. Now the roadway can be laid and the stripes painted to make way for 
the heavy traffic of eager users. 
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Figure 1.3 

AutoCAD R13 for Windows. This design environment has multiple windows and 
palettes for an aircraft landing-gear assembly. (Used with permission of AutoDesk, 
San Rafael, CA.) 

The rapid growth of interest in user-interface design is international in 
scope. In the United States, the Association for Computing Machinery 
(ACM) Special Interest Group in Computer Human Interaction (SIGCHI) 
had more than 6000 members in 1997. The annual CHI conferences draw 
almost 2500 people. The Usability Professionals Association focuses on com
mercial approaches, and the Human Factors & Ergonomics Society, the 
American Society for Information Science, and other professional groups 
attend to research on human-computer interaction. Regular conferences in 
Europe, Japan, and elsewhere draw substantial audiences of researchers and 
practitioners. In Europe, the ESPRIT project devotes approximately 150 per
son-years of effort per year to the topic. In Japan, the Ministry of Interna
tional Trade and Industry promotes commercially-oriented projects and 
consortia among many companies. 

This chapter gives a broad overview of human-c01nputer interaction from 
practitioner and research perspectives. Specific references cited in the chap
ter appear on page 33, and a set of general references begins on page 35. 
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Figure 1.4 

Realistic textures add to this outdoor setting that leads the player to one of the 
islands making up the world of Riven: The Sequel to MYST (Copyright Cyan, Inc.) 
MYST (1994) and Riven (1997), created by Rand and Robyn Miller, are entrancing 
environments that bridge literary styles with video games. (Used with permission of 
Broderbund, Inc.) 

1.2 Goals of System Engineering 

The high-level goal of making the user's quality of life better (see Afterword) 
is ilnportant to keep in mind, but designers have 1nore specific goals. Every 
designer wants to build a high-quality interactive system that is admired by 
colleagues, celebrated by users, circulated widely, and imitated frequently. 
Appreciation c01nes not from flmnboyant promises or stylish advertising, 
but rather from inherent quality features that are achieved through thought
ful planning, sensitivity to user needs, and diligent testing. 

Managers can promote attention to user-interface issues by selection of 
personnel, preparation of schedules and milestones, construction and appli
cation of guidelines documents, and commihnent to testing. Designers then 
propose multiple design alternatives for consideration, and the leading con
tenders are subjected to further develop1nent and testing (see Chapters 3 and 
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File Edit View 
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Youth Record prototype using the Lifelines display to show a case history for the 
Maryland Department of Juvenile Justice. (Used with permission of the University 
of Maryland Human-Computer Interaction Laboratory, College Park, MD.) 

4). User-interface building tools (see Chapter 5) enable rapid implementation 
and easy revision. Evaluation of designs refines the understanding of appro
priateness for each choice. 

Successful designers go beyond the vague notion of "user friendliness," 
probing deeper than simply making a checklist of subjective guidelines. 
They have a thorough understanding of the diverse community of users and 
the tasks that must be accomplished. Moreover, they are deeply committed 
to serving the users, which strengthens their resolve when they face the pres
sures of short deadlines, tight budgets, and weak-willed compromisers. 

Effective systems generate positive feelings of success, competence, mas
tery, and clarity in the user cmnmunity. The users are not encumbered by the 
computer and can predict what will happen in response to each of their 
actions. When an interactive system is well designed, the interface almost 
disappears, enabling users to concentrate on their work, exploration, or plea
sure. Creating an environment in which tasks are carried out ahnost effort
lessly and users are "in the flow" requires a great deal of hard work from the 
designer. 
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Figure 1.6 

U.S. Robotics Pilot 
portable computer. The 
convenient docking 
station allows easy 
synchronization of files 
with a desktop corn
puter. (Used with per
mission of U.S. 
Robotics.) 

Setting explicit goals helps designers to achieve those goals. In getting 
beyond the vague quest for user-friendly systems, managers and designers 
can focus on specific goals that include well-defined system-engineering and 
measurable human-factors objectives. The U.S. Military Standard for Human 
Engineering Design Criteria (1989) states these purposes: 

• Achieve required performance by operator, control, and maintenance 
personnel 

• Minimize skill and personnel requirements and training time 

• Achieve required reliability of personnel-equipment combinations 

• Foster design standardization within and among systems 

1.2.1 Proper functionality 

The first step is to ascertain the necessary functionality-what tasks and sub
tasks must be carried out. The frequent tasks are easy to determine, but the 
occasional tasks, the exceptional tasks for emergency conditions, and the 
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12 1 Human Factors of Interactive Software 

Figure 1.7 

Children's educational game computer (Talking Teacher from Radio Shack, Tandy 
Corp., Ft. Worth, TX 76102), which has voice instructions and feedback with a one
line visual display. Games have three levels of difficulty and include word, nun1.ber, 
and musical exercises. 

repair tasks to cope with errors in use of the system are 1nore difficult to dis
cover. Task analysis is central, because syste1ns with inadequate functionality 
frustrate the user and are often rejected or underutilized. If the functionality 
is inadequate, it does not matter how well the human interface is designed. 
Excessive functionality is also a danger, and providing it is probably the 
more common mistake of designers, because the clutter and cmnplexity 
1nake imple1nentation, maintenance, learning, and usage more difficult. 

1.2.2 Reliability, availability, security, and data integrity 

A vital second step is ensuring proper system reliability: commands must 
function as specified, displayed data must reflect the database contents, and 
updates must be applied correctly. Users' trust of systems is fragile; one 
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experience with 1nisleading data or unexpected results will undermine for a 
long time a person's willingness to use a system. The software architecture, 
hardware components, and network support must ensure high availability. 
If the systen1. is not available or introduces errors, then it does not matter. 
how well the hu1nan interface is designed. Designers also 1nust pay atten
tion to ensuring privacy, security, and data integrity. Protection must be pro
vided frmn unauthorized access, inadvertent destruction of data, or 
1nalicious tampering. 

1.2.3 Standardization, integration, consistency, and portability 

As the nu1nber of users and software packages increases, the pressures for 
and benefits of standardization grow. Slight differences among systems not 
only increase learning times, but also can lead to annoying and dangerous 
errors. Gross differences among systems require substantial retraining and 
burden users in many ways. Incompatible storage formats, hardware, and 
software versions cause frustration, inefficiency, and delay. Designers must 
decide whether the improvements they offer are useful enough to offset the 
disruption to the users. 

Standardization refers to common user-interface features across multiple 
applications. Apple Computers (1987) successfully developed an early stan
dard that was widely applied by thousands of developers, enabling users to 
learn multiple applications quickly. IBM's Common User Access (1989, 1991, 
1993) specifications came later; and when the Microsoft Windows (1995) 
interface became standardized, it became a powerful force. 

Integration across application packages and software tools was one of the 
key design principles in Unix. (Portability across hardware platforms was 
another.) The command language was standard from the beginning (with 
some divergences), but there are now competing graphical user interfaces 
(GUis), many built around the X and Motif standards. 

Consistency primarily refers to common action sequences, terms, units, 
layouts, color, typography, and so on within an application program. Consis
tency is a strong determinant of success of systems. It is naturally extended 
to include compatibility across application programs and compatibility with 
paper or non-computer-based systems. Compatibility across versions is a 
troubling demand, since the desire to accommodate novel functionality or 
improved designs competes with the benefits of consistency. 

Portability refers to the potential to convert data and to share user interfaces 
across multiple software and hardware environments. Arranging for portabil
ity is a challenge for designers who must contend with different display sizes 
and resolutions, color capabilities, pointing devices, data formats, and so on. 
Some user-interface building tools help by generating code for Macintosh, 
Windows, OS/2, Unix, and other environ1nents so that the interfaces are simi
lar in each environment or resemble the style in those environments. Standard 
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text files (in ASCII) can be 1noved easily across environments, but graphic 
images, spreadsheets, video images, and so on are more difficult to convert. 

1.2.4 Schedules and budgets 

Careful planning and courageous managen1.ent are needed if a project is to 
be completed on schedule and within budget. Delayed delivery or cost over
runs can threaten a system because of the confrontational political atmos
phere in a cmnpany, or because the cmnpetitive market environ1nent 
contains potentially overwheln1.ing forces. If an in-house syste1n is delivered 
late, then other projects are affected, and the disruption may cause managers 
to choose to install an alternative syste1n. If a con1.1nercial systen1. is too costly, 
customer resistance may emerge to prevent widespread acceptance, allow
ing cmnpetitors to capture the market. 

Proper attention to human-factors principles and rigorous testing often leads 
to reduced cost and rapid develop1nent. A carefully tested design generates 
fewer changes during imple1nentation and avoids costly updates after release. 
The business case for human factors in con1.puter and infonnation systems is 
strong (Klemmer, 1989; Chapanis, 1991; Landauer, 1995), as demonstrated by 
many successful products whose advantage lay in their superior user interfaces. 

1.3 Goals of User-Interface Design 

If adequate functionality has been chosen, reliability is ensured, standardiza
tion addressed and schedule plus budgetary planning is complete, then 
developers can focus their attention on the design and testing process. The 
multiple design alternatives must be evaluated for specific user communities 
and for specific benchmark tasks. A clever design for one community of 
users may be inappropriate for another community. An efficient design for 
one class of tasks may be inefficient for another class. 

The relativity of design played a central role in the evolution. of informa
tion services at the Library of Congress (Marchionini et al., 1993). Two of the 
major uses of computer systems were cataloging new books and searching 
the online book catalog. Separate syste1ns for these tasks were created that 
optimized the design for one task and made the comple1nentary task diffi
cult. It would be impossible to say which was better because both were fine 
systems, but they were serving different needs. Posing such a question 
would be like asking whether the New York Philharmonic Orchestra was 
better than the New York Yankees baseball team. 

The situation became even rnore complex when Congressional staffers 
and then the public were invited to use the.search systems. Three- to six-hour 
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training courses were appropriate for Congressional staffers, but the first
time public users were overwhelmed by the command language and coln
plex cataloging rules. Eventually a touchscreen interface with reduced 
functionality and better information presentation was developed and 
became a big success in the public reading rooms. The next step in evolution 
was the development of a World Wide Web version of the catalog to allow 
users anywhere in the world to access the catalog and other databases. These 
changing user communities and requirements each led to interface changes, 
even though the database and services remained similar. 

Careful detennination of the user community and of the benchmark set of 
tasks is the basis for establishing hu1nan-factors goals. For each user and each 
task, precise measurable objectives guide the designer, evaluator, purchaser, 
or 1nanager. These five measurable human factors are central to evaluation: 

1. Time to learn How long does it take for typical me1nbers of the user 
community to learn how to use the com1nands relevant to a set of tasks? 

2. Speed of performance How long does it take to carry out the benchmark 
tasks? 

3. Rate of errors by users How many and what kinds of errors do people 
make in carrying out the benchmark tasks? Although time to make and 
correct errors 1night be incorporated into the speed of performance, error 
handling is such a critical con"lponent of system usage that it deserves 
extensive study. 

4. Retention over time How well do users maintain their knowledge after 
an hour, a day, or a week? Retention may be linked closely to time to 
learn, and frequency of use plays an important role. 

5. Subjective satisfaction How much did users like using various aspects 
of the system? The answer can be ascertained by interview or by 
written surveys that include satisfaction scales and space for free-form 
comments. 

Every designer would like to succeed in every category, but there are often 
forced tradeoffs. If lengthy learning is permitted, then task-performance 
times may be reduced by use of complex abbreviations, macros, and short
cuts. If the rate of errors is to be kept extremely low, then speed of perfor
mance may have to be sacrificed. In some applications, subjective satisfaction 
may be the key determinant of success; in others, short learning times or 
rapid performance may be paramount. Project 1nanagers and designers must 
be aware of the tradeoffs and must make their choices explicit and public. 
Requirements documents and marketing brochures should make clear which 
goals are primary. 

After multiple design alternatives are raised, the leading possibilities 
should be reviewed by designers and users. Low-fidelity paper mockups are 
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useful, but high-fidelity online prototypes create a more realistic environ
ment for review. Design temns negotiate the guidelines document to make 
explicit the permissible fonnats, sequences, tenninology, and so on. Then, the 
interface design is created with suitable prototyping tools, and testing can 
begin to ensure that the user-interface design goals are met. The user manual 
and the technical reference manual can be written before the imple1nentation 
to provide another review and perspective on the design. Next, the imple
mentation can be carried out with proper software tools; this task should be a 
modest one if the design is complete and precise. Finally, the acceptance test 
certifies that the delivered syste1n 1neets the goals of the designers and cus
tomers. The development and evaluation process is described in greater 
detail in Chapters 3 and 4. 

1.4 Motivations for Human Factors in Design 

The enormous interest in human factors of interactive systems arises frmn 
the complementary recognition of how poorly designed many current sys
tems are and of how genuinely developers desire to create elegant systems 
that serve the users effectively. This increased concern emanates from four 
primary sources: life-critical syste1ns; industrial and commercial uses; office, 
home, and entertainment applications; and exploratory, creative, and collab
orative systems. 

1.4.1 Life-critical systems 

Life-critical systems include those that control air traffic, nuclear reactors, 
power utilities, staffed spacecraft, police or fire dispatch, military operations, 
and medical instruments. In these applications high costs are expected, but 
they should yield high reliability and effectiveness. Lengthy training periods 
are acceptable to obtain rapid, error-free performance, even when the users 
are under stress. Subjective satisfaction is less of an issue because the users 
are well motivated. Retention is obtained by frequent use of common func
tions and practice sessions for emergency actions. 

1.4.2 Industrial and commercial uses 

Typical industrial and commercial uses include banking, insurance, order 
entry, inventory management, airline and hotel reservations, car rentals, util
ity billing, credit-card management, and point-of-sales terminals. In these 
cases, costs shape many judgments; lower cost may be preferred even if there 
is some sacrifice in reliability. Operator training time is expensive, so ease of 
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learning is important. The tradeoffs for speed of performance and error rates 
are governed by the total cost over the system's lifethne. Subjective satisfac
tion is of modest ilnportance; retention is obtained by frequent use. Speed of 
performance becmnes central for most of these applications because of the 
high volum.e of transactions, but operator fatigue or burnout is a legiti1nate 
concern. Trimming 10 percent off the 1nean transaction time means 10-per
cent fewer operators, 10-percent fewer terminal workstations, and possibly a 
10-percent reduction in hardware costs. A study by developers of a system to 
manage telephone directory assistance indicated that a 0.8-second reduction 
in the 15-second mean tiTTle per call would save $40 million per year 
(Springer, 1987). 

1.4.3 Office, home, and entertainment applications 

The rapid expansion of office, hom.e, and entertainment applications is the 
third source of interest in human factors. Personal-con'lputing applications 
include word processing, autmnated transaction machines, video games, 
educational packages, infonnation retrieval, electronic mail, computer con
ferencing, and s1nall-business management. For these systems, ease of learn
ing, low error rates, and subjective satisfaction are paramount because use is 
frequently discretionary and competition is fierce. If the users cannot suc
ceed quickly, they will abandon the use of a computer or try a competing 
package. In cases where use is intermittent, retention is likely to be faulty, so 
online assistance becomes ilnportant. 

Choosing the right functionality is difficult. Novices are best served by a 
constrained simple set of actions; but as users' experience increases, so does 
their desire for more extensive functionality and rapid performance. A layered 
or level-structured design is one approach to graceful evolution from novice 
to expert usage. Low cost is important because of lively competition, but 
extensive design and testing can be amortized over the large number of users. 

1.4.4 Exploratory, creative, and cooperative systems 

An increasing fraction of computer use is dedicated to supporting human 
intellectual and creative enterprises. Electronic encyclopedias, World Wide 
Web browsing, collaborative writing, statistical hypothesis formation, busi
ness decision making, and graphical presentation of scientific simulation 
results are examples of exploratory environ1nents. Creative environments 
include writer's toolkits or workbenches, architecture or automobile design 
systems, artist or programmer workstations, and music-cmnposition systems. 
Decision-support tools aid knowledgeable users in medical diagnosis, finance, 
industrial-process management, satellite-orbit determination, and military 
command and control. Cooperative systems enable two or more people to 
work together, even if the users are separated by time and space, through use 
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of electronic text, voice, and video mail; through electronic meeting systems 
that facilitate face-to-face 1neetings; or through groupware that enables remote 
collaborators to work concurrently on a docu1nent, spreadsheet, or image. 

In these systems, the users may be knowledgeable in the task dmnain but 
novices in the underlying computer concepts. Their 1notivation is often high, 
but so are their expectations. Benchmark tasks are 1nore difficult to describe 
because of the exploratory nature of these applications. Usage can range 
from occasional to frequent. In short, it is difficult to design and evaluate 
these syste1ns. At best, designers can pursue the goal of having the computer 
vanish as users become completely absorbed in their task dmnain. This goal 
see1ns to be met most effectively when the computer provides a direct
lnanipulation representation of the world of action. Then, tasks are carried 
out by rapid familiar selections or gestures, with im1nediate feedback and a 
new set of choices. 

1.5 Accommodation of Human Diversity 

The remarkable diversity of human abilities, backgrounds, motivations, per
sonalities, and workstyles challenges interactive-system designers. A right
handed fe1nale designer with computer training and a desire for rapid 
interaction using densely packed screens 1nay have a hard time developing a 
successful workstation for left-handed male artists with a more leisurely and 
freeform workstyle. Understanding the physical, intellectual, and personal
ity differences among users is vital. 

1.5.1 Physical abilities and physical workplaces 

Accommodating the diverse human perceptual, cognitive, and motor abilities 
is a challenge to every designer. Fortunately, there is much literature reporting 
research and experience from design projects with automobiles, aircraft, type
writers, hmne appliances, and so on that can be applied to the design of inter
active computer systems. In a sense, the presence of a computer is only 
incidental to the design; human needs and abilities are the guiding forces. 

Basic data about human dimensions comes from research in anthropometry 
(Dreyfus, 1967; Roebuck et al., 1975). Thousands of measures of hundreds of 
features of people-male and female, young and adult, European and Asian, 
underweight and overweight, and tall and short-provide data to construct 
means and 5- to 95-percentile groupings. Head, mouth, nose, neck, shoulder, 
chest, arm, hand, finger, leg, and foot sizes have been carefully cataloged for 
a variety of populations. The great diversity in these static measures reminds 
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us that there can be no image of an "average" user, and that cmnpromises 
must be made or multiple versions of a syste1n must be constructed. 

The choice of keyboard design paran'leters (see Section 9.2) evolved to 
meet the physical abilities of users in tenns of distance between keys, size of 
keys, and required pressure. People with especially large or s1nall hands may 
have difficulty in using standard keyboards, but a substantial fraction of the 
population is well served by one design. On the other hand, since screen
brightness preferences vary substantially, designers must provide a knob to 
enable user control. Controls for chair seat and back heights, or for display
screen angles, also allow individual adjustment. When a single design can
not accmnmodate a large fraction of the population, then multiple versions 
or adjustlnent controls are helpful. 

Physical measures of static human dimensions are not enough. Measures 
of dyna1nic actions-such as reach distance while seated, speed of finger 
presses, or strength of lifting-are also necessary (Bailey, 1996). 

Since so much of work is related to perception, designers need to be aware 
of the ranges of hu1nan perceptual abilities (Schiff, 1980). Vision is especially 
irnportant and has been thoroughly studied (Wickens, 1992). For example, 
researchers consider hu1nan response tilne to varying visual stimuli, or time 
to adapt to low or bright light. They exmnine human capacity to identify an 
object in context, or to determine the velocity or direction of a moving point. 
The visual system responds differently to various colors, and some people 
are color blind. People's spectral range and sensitivity vary. Peripheral vision 
is quite different from perception of images in the fovea. Flicker, contrast, 
and motion sensitivity must be considered, as must the impact of glare and 
of visual fatigue. Depth perception, which allows three-dimensional view
ing, is based on several cues. Some viewing angles and distances make the 
screen easier to read. Finally, designers must consider the needs of people 
who have eye disorders, damage, or disease, or who wear corrective lenses. 

Other senses are also important: touch for keyboard or touchscreen entry, 
and hearing for audible cues, tones, and speech input or output (see Chapter 
9). Pain, temperature sensitivity, taste, and smell are rarely used for input or 
output in interactive systems, but there is ro01n for imaginative applications. 

These physical abilities influence elements of the interactive-system design. 
They also play a prominent role in the design of the workplace or workstation 
(or playstation). The American National Standard for Human Factors Engi
neering of Visual Display Terminal Workstations (1988) lists these concerns: 

• Work-surface and display support height 

• Clearance under work surface for legs 

• Work-surface width and depth 

• Adjustability of heights and angles for chairs and work surfaces 

• Posture-seating depth and angle; back-rest height and lumbar support 
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• Availability of armrests, footrests, and palmrests 

• Use of chair casters 

Workplace design is important in ensuring high job satisfaction, high per
formance, and low error rates. Incorrect table heights, uncomfortable chairs, 
or inadequate space to place documents can substantially ilnpede work. The 
Standard document also addresses such issues as illun1ination levels (200 to 
500 lux); glare reduction (antiglare coatings, baffles, mesh, positioning); luini
nance balance and flicker; equipment reflectivity; acoustic noise and vibra
tion; air temperature, n1ove1nent, and hu1nidity; and equipn1ent temperature. 

The most elegant screen design can be comprmnised by a noisy environ
ment, poor lighting, or a stuffy room, and that cmnpromise will eventually 
lower perfonnance, raises error rates, and discourage even motivated users. 

Another physical-environment consideration involves room_ layout and 
the sociology of hu1nan interaction. With multiple workstations for a class
room or office, alternate layouts can encourage or limit social interaction, 
cooperative work, and assistance with problems. Because users can often 
quickly help one another with minor problems, there may be an advantage 
to layouts that group several terminals close together or that enable supervi
sors or teachers to view all screens at once frmn behind. On the other hand, 
programmers, reservations clerks, or artists may appreciate the quiet and 
privacy of their own workspace. 

The physical design of workplaces is often discussed under the tenn 
ergonomics. Anthropometry, sociology, industrial psychology, organizational 
behavior, and anthropology may offer useful insights in this area. 

1.5.2 Cognitive and perceptual abilities 

A vital foundation for interactive-systems designers is an understanding of 
the cognitive and perceptual abilities of the users (Kantowitz and Sorkin, 
1983; Wickens, 1992). The human ability to interpret sensory input rapidly 
and to initiate complex actions makes modern computer systems possible. In 
milliseconds, users recognize slight changes on their displays iomd begin to 
issue a strea1n of commands. The journal Ergonomics Abstracts offers this clas
sification of human cognitive processes: 

• Short-term memory 

• Long-term memory and learning 

• Problem solving 

• Decision making 

• Attention and set (scope of concern) 

• Search and scanning 

• Time perception 
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They also suggest this set of factors affecting perceptual and motor performance: 

• Arousal and vigilance 

• Fatigue 

• Perceptual (mental) load 

• Knowledge of results 

• Monotony and boredmn 

• Sensory deprivation 

• Sleep deprivation 

• Anxiety and fear 

• Isolation 

• Aging 

• Drugs and alcohol 

• Circadian rhythms 

These vital issues are not discussed in depth in this book, but they have a 
profound influence on the quality of the design of most interactive systems. 
The tenn intelligence is not included in this list, because its nature is contro
versial and 1neasuring pure intelligence is difficult. 

In any application, background experience and knowledge in the task 
domain and the interface dmnain (see Section 2.2) play key roles in learning 
and performance. Task- or computer-skill inventories can be helpful in pre
dicting performance. 

1.5.3 Personality differences 

Some people dislike computers or are made anxious by them; others are 
attracted to or are eager to use computers. Often, me1nbers of these divergent 
groups .disapprove or are suspicious of me1nbers of the other com1nunity. 
Even people who enjoy using computers may have very different prefer
ences for interaction styles, pace of interaction, graphics versus tabular pre
sentations, dense versus sparse data presentation, step-by-step work versus 
all-at-once work, and so on. These differences are important. A clear under
standing of personality and cognitive styles can be helpful in designing sys
tems for a specific community of users. 

A fundamental difference is one between men and wo1nen, but no clear 
pattern of preferences has been documented. It is often pointed out that the 
preponderance of video-arcade game players and designers are young males. 
There are women players of any game, but popular choices among women 
for early videogam.es were Pacman and its variants, plus a few other gmnes 
such as Donkey Kong or Tetris. We have only speculations regarding why 
women prefer these games. One female commentator labeled Pacman "oral 
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aggressive" and could appreciate the female style of play. Other women 
have identified the compulsive cleaning up of every dot as an attraction. 
These games are distinguished by their less violent action and sound track. 
Also, the board is fully visible, characters have personality, softer color pat
terns are used, and there is a sense of closure and completeness. Can these 
infonnal conjectures be converted to n1.easurable criteria and then validated? 
Can designers becmne aware of the needs and desires of won1.en, and create 
video games that will be 1nore attractive to women than to n1.en? 

Turning frmn gmnes to office automation, the largely male designers may 
not realize the effect on women users when the cmnmand nmnes require the 
users to KILL a file or ABORT a progrmn. These and other potential unfortu
nate 1nis1natches between the user interface and the user 1night be avoided by 
more thoughtful attention to individual differences among users. Huff (1987) 
found a bias when he asked teachers to design educational games for boys or 
girls. The designers created gamelike challenges when they expected boys as 
users and used 1nore conversational dialogs when they expected girls as users. 
When told to design for students, the designers produced boy-style games. 

Unfortunately. there is no si1nple taxonon1.y of user personality types. A 
popular technique is to use the Myers-Briggs Type Indicator (MBTI) (Shnei
derman, 1980), which is based on Carl Jung's theories of personality types. 
Jung conjectured that there were four dichotmnies: 

• Extroversion versus introversion Extroverts focus on external sthnuli 
and like variety and action, whereas introverts prefer familiar patterns, 
rely on their inner ideas, and work alone contentedly. 

• Sensing versus intuition Sensing types are attracted to established rou
tines, are good at precise work and enjoy applying known skills, 
whereas intuitive types like solving new proble1ns and discovering 
new relations but dislike taking time for precision. 

• Perceptive versus judging Perceptive types like to learn about new situ
ations, but may have trouble making decisions, whereas judging types 
like to 1nake a careful plan and will seek to carry through the plan even 
if new facts change the goal. 

• Feeling versus thinking Feeling types are aware of other people's feel
ings, seek to please others and relate well to 1nost people, whereas 
thinking types are unemotional, 1nay treat people impersonally and 
like to put things in logical order. 

The theory behind the MBTI provides portraits of the relationships 
between professions and personality types and between people of different 
personality types. It has been applied to testing of user com1nunities and has 
provided guidance for designers. 
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Many hundreds of psychological scales have been developed, including 
risk taking versus risk avoidance; internal versus external locus of control; 
reflective versus i1npulsive behavior; convergent versus divergent thinking; 
high versus low anxiety; tolerance for stress; tolerance for ambiguity, nwti
vation, or compulsiveness; field dependence versus independence; assertive 
versus passive personality; and left- versus right-brain orientation. As 
designers explore con""tputer applications for hmne, education, art, music, 
and entertainment, they will benefit from paying greater attention to per
sonality types. 

1.5.4 Cultural and international diversity 

Another perspective on individual differences has to do with cultural, eth
nic, racial, or linguistic background (Fernandes, 1995). It see1ns obvious that 
users who were raised learning to read Japanese or Chinese will scan a 
screen differently fron'l users who were raised learning to read English or 
French. Users fron'l cultures that have a 1nore reflective style or respect for 
ancestral traditions 1nay prefer interfaces different from those chosen by 
users frmn cultures that are 1nore action oriented or novelty based. 

Little is known about computer users frmn different cultures, but design
ers are regularly called on to make designs for other languages and cultures. 
The growth of a worldwide computer 1narket (1nany U.S. companies have 
1nore than one-half of their sales in overseas 1narkets) 1neans that designers 
must prepare for internationalization. Software architectures that facilitate 
customization of local versions of user interfaces should be emphasized. For 
exmnple, all text (instructions, help, error 1nessages, labels) might be stored 
in files, so that versions in other languages could be generated with no or lit
tle additional programming. Hardware concerns include character sets, key
boards, and special input devices. User-interface design concerns for 
internationalization include the following: 

• Characters, numerals, special characters, and diacriticals 

• Left-to-right versus right-to-left versus vertical input and reading 

• Date and time formats 

• Numeric and currency formats 

• Weights and measures 

• Telephone numbers and addresses 

• Names and titles (Mr., Ms., Mme., M., Dr.) 

• Social-security, national identification, and passport numbers 

• Capitalization and punctuation 
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• Sorting sequences 

• Icons, buttons, colors 

• Pluralization, grammar, spelling 

• Etiquette, policies, tone, formality, metaphors 

The list is long and yet inc01nplete. Whereas early designers were often 
excused fron1. cultural and linguistic slips, the current highly c01npetitive 
ahnosphere 1neans that 1nore effective localization will often produce a 
strong advantage. To pr01note effective designs, companies should run 
usability studies with users froin each country, culture, and language com
munity (Nielsen, 1990). 

1.5.5 Users with disabilities 

The flexibility of computer software makes it possible for designers to pro
vide special services to users who have disabilities (Edwards, 1995; 
McWilliams, 1984; Glinert and York, 1992). The U.S. General Services Admin
istration's (GSA) guide, Managing End User Computing for Users with Disabili
ties (1991), describes effective accom1nodations for users who have low 
vision or are blind, users who have hearing impairments, and users who 
have mobility impairments. Enlarging portions of a display (Kline and Glin
ert, 1995) or converting displays to braille or voice output (Durre and Glan
der, 1991) can be done with hardware and software supplied by many 
vendors. Text-to-speech conversion can help blind users to receive electronic 
mail or to read text files, and speech-recognition devices pennit voice-con
trolled operation of some software. Graphical user interfaces were a setback 
for vision-impaired users, but technology innovations facilitate conversion of 
spatial information into nonvisual modes (Poll and Waterha1n, 1995; 
Thatcher, 1994; Mynatt and Weber, 1994). 

Users with hearing impairments often can use computers with only 
simple change (conversion of tones to visual signals is often easy to 
accomplish), and can benefit from office environments that make heavy 
use of electronic mail and facshnile transmission (FAX). Telecommunica
tions devices for the deaf (TDD) enable telephone access to information 
(such as train or airplane schedules) and services (federal agencies and 
many companies offer TDD access). Special input devices for users with 
physical disabilities will depend on the user's specific impairment; 
numerous assisting devices are available. Speech recognition, eye-gaze 
control, head-mounted optical mouse, and many other innovative devices 
(even the telephone) were pioneered for the needs of disabled users (see 
Chapter 9). 
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Designers can benefit by planning early to accom1nodate users who have 
disabilities, since substantial improve1nents can be made at low or no cost. 
The term computer curbcuts brings up the ilnage of sidewalk cutouts to per
mit wheelchair access that are cheaper to build than standard curbs if they 
are planned rather than added later. Similarly, moving the on-off switch to 
the front of a computer adds a minimal change to the cost of manufacturing 
and helps mobility-impaired users, as well as other users. The n1otivation to 
accommodate users who have disabilities has increased since the enactlnent 
of U.S. Public Laws 99-506 and 100-542, which require U.S. govern1nent 
agencies to establish accessible information environments that accommodate 
e1nployees and citizens who have disabilities. Any con1pany wishing to sell 
products to the U.S. government should adhere to the GSA recommenda
tions (1991). Further information about accmn1nodation in workplaces, 
schools, and the hmne is available from 1nany sources: 

• Private foundations (e.g., the American Foundation for the Blind) 

• Associations (e.g., the Alexander Graham Bell Association for the 
Deaf, the National Association for the Deaf, and the Blinded Veterans 
Association) 

• Government agencies (e.g., the National Library Service for the Blind and 
Physically Handicapped of the Library of Congress and the Center for 
Technology in Hu1nan Disabilities at the Maryland Rehabilitation Center) 

• University groups (e.g., the Trace Research and Development Center 
on Communications and the Control and Computer Access for Handi
capped Individuals at the University of Wisconsin) 

• Manufacturers (e.g., Apple, AT&T, DEC, and IBM) 

Learning-disabled children account for two percent of the school-age pop
ulation in the United States. Their education can be positively influenced by 
design of special courseware with limits on lengthy textual instructions, con
fusing graphics, extensive typing, and difficult presentation formats (Neu
man, 1991). Based on observations of 62 students using 26 packages over 5.5 
months, Neuman's advice to designers of courseware for learning-disabled 
students is applicable to all users: 

• Present procedures, directions, and verbal content at levels and in for
mats that make them accessible even to poor readers. 

• Ensure that response requirements do not allow students to complete 
programs without engaging with target concepts. 

• Design feedback sequences that explain the reasons for students' errors 
and that lead students through the processes necessary for responding 
correctly. 
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• Incorporate reinforcement techniques that capitalize on students' 
sophistication with out-of-school electronic materials. 

Our studies with minin1ally learning-disabled fourth, fifth, and sixth 
graders learning to use word processors reinforce the need for direct manip
ulation (see Chapter 6) of visible objects of interest (MacArthur and Shnei
derman, 1986). The potential for great benefit to people with disabilities is 
one of the unfolding gifts of computing. The Association for Computing 
Machinery (ACM) Special Interest Group on Computers and the Physically 
Handicapped (SIGCAPH) publishes a quarterly newsletter of interest to 
workers in this area and runs the annual conference on Assistive Technology 
(ASSETS). 

1.5.6 Elderly users 

Most people grow old. There can be many pleasures and satisfactions to senior
ity, but there are also negative physical, cognitive, and social consequences of 
aging. Understanding the human factors of aging can lead us to computer 
designs that will facilitate access by the elderly. The benefits to the elderly 
include meeting practical needs for writing, accounting, and the full range of 
computer tools, plus the satisfactions of education, entertainment, social inter
action, cmnmunication, and challenge (Furlong and Kearsley, 1990). Other ben
efits include increased access of the society to the elderly for their experience, 
increased participation of the elderly in society through communication net
works, and improved chances for productive employment of the elderly. 

The National Research Council's report on Human Factors Research 
Needs for an Aging Population describes aging as 

A nonuniform set of progressive changes in physiological and psychological 
functioning .... Average visual and auditory acuity decline considerably with 
age, as do average strength and speed of response .... [People experience] loss 
of at least some kinds of memory function, declines in perceptual flexibility, 
slowing of "stimulus encoding," and increased difficulty in the acquisition of 
complex mental skills, ... visual functions such as static visual acuity, dark 
adaptation, accommodation, contrast sensitivity, and peripheral vision decline, 
on average, with age. (Czaja, 1987) 

This list has its discouraging side, but many people experience only modest 
effects and continue participating in many activities, even through their 
nineties. 

The further good news is that computer-systems designers can do much 
to accommodate elderly users, and thus to give the elderly access to the ben-
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eficial aspects of computing and network cmnmunication. How n1.any young 
people's lives 1night be enriched by electronic-1nail access to grandparents or 
great-grandparents? How 1nany businesses might benefit frmn electronic 
consultations with experienced senior citizens? How many government 
agencies, universities, 1nedical centers, or law firms could advance their 
goals by easily available contact with knowledgeable elderly citizens? As a 
society, how might we all benefit from the continued creative work of senior 
citizens in literature, art music, science, or philosophy? 

As the U.S. population grows older, designers in many fields are adapting 
their work to serve the elderly. Larger street signs, brighter traffic lights, and 
better nighttime lighting can 1nake driving safer for drivers and pedestrians. 
Silnilarly, larger fonts, higher display contrast, easier-to-use pointing 
devices, louder audio tones, and sin1.pler cmninand languages are just a few 
of the steps that user-interface designers can take to improve access for the 
elderly (Tobias, 1987; Christiansen et al., 1989). Many of these adjustinents 
can be made through software-based control panels that enable users to tai
lor the system to their changing personal needs. Syste1n developers have yet 
to venture actively into the potentially profitable world of golden-age soft
ware, in parallel to the growing market in kidware. Let's do it before Bill 
Gates turns 65! 

Electronic-networking projects, such as the San Francisco-based Senior
Net, are exploring the needs of elderly users (anyone over 55 years of age 
may join) for cmnputing services, networking, and training. Computer 
games are also attractive for the elderly because they stimulate social interac
tion, provide practice in sensorimotor skills such as eye-hand coordination, 
enhance dexterity, and improve reaction time. In addition, meeting a chal
lenge and gaining a sense of accomplishment and mastery are helpful in 
improving self-image for anyone (Whitcomb, 1990). 

In our research group's brief experiences in bringing computing to two 
residences for elderly people, we also found that the users' widespread 
fear of computers and belief that they were incapable of using computers 
gave way quickly with a few positive experiences. These elderly users, 
who explored video games, word processors, and educational gmnes, felt 
quite satisfied with themselves, were eager to learn more, and transferred 
their new-found enthusiasm to trying automated bank machines or super
market touchscreen computers. Suggestions for redesign to meet the 
needs of elderly users (and possibly other users) emerged, such as the 
appeal of high-precision touchscreens compared with the mouse (see 
Chapter 9). 

In su1nmary, computing for elderly users provides an opportunity for the 
elderly, for system developers, and for all society. The Human Factors & 
Ergonomics Society has a Technical Group on Aging that publishes a 
newsletter at least twice a year and organizes sessions at conferences. 
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1.6 Goals for Our Profession 

Clear goals are useful not only for syste1n develop1nent but also for educa
tional and professional enterprises. Three broad goals seem attainable: (1) 
influencing academic and industrial researchers; (2) providing tools, tech
niques, and knowledge for com1nercial syste1ns implementors; and (3) rais
ing the cmnputer consciousness of the general public. 

1.6.1 Influencing academic and industrial researchers 

Early research in human-computer interaction was done largely by intro
spection and intuition, but this approach suffered from lack of validity, gen
erality, and precision. The techniques of controlled psychologically-oriented 
experimentation can lead to a deeper understanding of the funda1nental 
principles of human interaction with computers. 

The reductionist scientific method has this basic outline: 

• Understanding of a practical proble1n and related theory 

• Lucid statement of a testable hypothesis 

• Manipulation of a small number of independent variables 

• Measure1nent of specific dependent variables 

• Careful selection and assignment of subjects 

• Control for bias in subjects, procedures, and materials 

• Application of statistical tests 

• Interpretation of results, refine1nent of theory, and guidance for experi
menters 

Materials and methods must be tested by pilot experiments, and results 
1nust be validated by replication in variant situations. 

Of course, the highly developed and structured method of controlled 
experimentation has its weaknesses. It may be difficult or expensive to find 
adequate subjects, and laboratory conditions may distort the situation so 
much that the conclusions have no application. When we arrive at results for 
large groups of subjects by statistical aggregation, extremely good or poor 
performance by individuals may be overlooked. Furthermore, anecdotal evi
dence or individual insights may be given too little emphasis because of the 
authoritative influence of statistics. 

In spite of these concerns, controlled experimentation provides a produc
tive basis that can be modified to suit the situation. Anecdotal experiences 
and subjective reactions should be recorded, thinking aloud or protocol 
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approaches should be employed, field or case studies with extensive perfor
mance data collection should be carried out, and the individual insights of 
researchers, designers, and experimental participants should be captured. 

Within computer science, there is a growing awareness of the need for 
greater attention to human-factors issues. Researchers who propose new 
programming languages or data-structure constructs are n1.ore aware of the 
need to 1natch human cognitive skills. Developers of advanced graphics sys
telns, agile 1nanufacturing equipment, or cmnputer-assisted design syste1ns 
increasingly recognize that the success of their proposals depends on the 
construction of a suitable human interface. Researchers in these and other 
areas are 11.1.aking efforts to understand and 1neasure human perfonnance. 

There is a grand opportunity to apply the knowledge and techniques of 
traditional psychology (and of recent subfields such as cognitive psychol
ogy) to the study of hu1nan-computer interaction. Psychologists are investi
gating h1.unan problen1. solving with cmnputers to gain an understanding of 
cognitive processes and me1nory structures. The benefit to psychology is 
great, but psychologists also have the golden opportunity to influence dra
matically an important and widely used technology. 

Researchers in infonnation science, business and 1nanage1nent, education, 
sociology, anthropology, and other disciplines are benefitting and contributing 
by their study of human-cmnputer interaction (National Research Council, 
1983; Marchionini and Sibert, 1991). There are so 1nany fruitful directions for 
research that any list can be only a provocative starting point. Here are a few. 

• Reduced anxiety and fear of computer usage Although computers are 
widely used, they still serve only a fraction of the population. Many oth
erwise competent people resist use of computers. Smne elderly users 
avoid helpful computer-based devices, such as bank terminals or word 
processors, because they are anxious about-or even fearful of-break
ing the cmnputer or making an embarrassing mistake. Interviews with 
nonusers of con1.puters would help us to detennine the sources of this 
anxiety and to formulate design guidelines for alleviating the fear. Tests 
could be run to detennine the effectiveness of the redesigned systems 
and of improved training procedures. 

• Graceful evolution Although novices 1nay begin their interactions with 
a computer by using menu selection, they may wish to evolve to faster 
or more powerful facilities. Methods are needed to smooth the transi
tion from novice to knowledgeable user to expert. The differing 
requirements of novice and experts in prompting, error messages, 
online assistance, display complexity, locus of control, pacing, and 
informative feedback all need investigation. The design of control pan
els to support adaptation and evolution is also an open topic. 
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• Specification and implementation of interaction User interface building 
tools (Chapter 5) reduce in1ple1nentation times by an order of m.agni
tude when they 1natch the task. There are still1nany situations in which 
extensive coding in procedural languages must be added. Specification 
languages have been proposed, but these are still a long way fro1n 
being cmnplete and useful. Advanced research on tools to aid interac
tive-systems designers and i1nple1nenters might have substantial pay
off in reducing costs and ilnproving quality. Tools for World Wide Web 
designers to enable automatic conversion for different cmnputers, 
screen sizes, or 1noden1 speeds could be substantially in1.proved, 
thereby facilitating universal access. 

• Direct manipulation Visual interfaces in which users operate on a rep
resentation of the objects of interest are extre1nely attractive (Chapter 
6). En1pirical studies would refine our understanding of what is an 
appropriate analogical or metaphorical representation, and of what is 
the role of rapid, incre1nental, reversible operations. Newer fonns of 
direct 1nanipulation-such as visual languages, spatial visualization, 
re1note control, telepresence, and virtual reality-are further topics for 
research. 

• Input devices The plethora of input devices presents opportunities and 
challenges to syste1n designers (Chapter 6). There are heated discus
sions about the relative 1nerits of the high-precision touchscreen; sty
lus, pen, voice, eye-gaze, and gestural input; the 1nouse; the dataglove; 
and the force-feedback joystick. Such conflicts could be resolved 
through extensive experimentation with multiple tasks and user com
munities. Underlying issues include speed, accuracy, fatigue, error cor
rection, and subjective satisfaction. 

• Online assistance Although many systen1s offer some help or tutorial 
information online, we have only limited understanding of what con
stitutes effective design for novices, knowledgeable users, and experts 
(Chapter 12). The role of these aids and of online user consultants could 
be studied to assess effects on user success and satisfaction. The goal of 
just-in-tilne (JIT) training is elusive, but appealing. 

• Information exploration As navigation, browsing, and searching of 
multimedia digital libraries and the World Wide Web beco1ne more 
common, the pressure for more effective strategies and tools will 
increase (Chapter 15). Users will want to filter, select, and restructure 
their information rapidly and with minimum effort, without fear of dis
orientation or of getting lost. Large databases of text, images, graphics, 
sound, and scientific data will become easier to explore with emerging 
information-visualization tools. · 
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1.6.2 Providing tools, techniques, and knowledge for 
systems implementers 

User-interface design and develop1nent are current hot topics, and interna
tional con1petition is lively. There is a great thirst for knowledge, software 
tools, design guidelines, and testing techniques. New user interface building 
tools (see Chapter 5) provide support for rapid prototyping and system 
development while aiding design consistency and simplifying evolutionary 
refine1nent. 

Guidelines docu1nents are being written for general audiences and for 
specific applications. Many projects are taking the productive route of writ
ing their own guidelines, which are specifically tied to the proble1ns of their 
application environinent. These guidelines are constructed fro1n experiinen
tal results, experience with existing non-computer-based systems, review of 
related cmnputer-based syste1ns, and knowledgeable guesswork. 

Iterative usability studies and acceptance testing are appropriate during 
syste1n development. Once the initial systen1 is available, refinements can 
be made on the basis of online or printed surveys, individual or group 
interviews, or more controlled e1npirical tests of novel strategies (see 
Chapter 4). 

Feedback frmn users during the development process and for evolution
ary refinement can provide useful insights and guidance. Online electronic
mail facilities 1nay allow users to send cmnments directly to the designers. 
Online user consultants and telephone hot-line workers can provide not only 
prompt assistance, but also much information about the activities and prob
lems of the user community. 

1.6.3 Raising the computer consciousness of the general public 

The media are so filled with stories about computers that raising public con
sciousness of these tools may see1n unnecessary. In fact, however, many peo
ple are still uncon1fortable with cmnputers. When they do finally use a bank 
machine or word processor, they 1nay be fearful of making mistakes, anxious 
about damaging the equipment, worried about feeling incmnpetent, or 
threatened by the cmnputer "being smarter than I am." These fears are gen
erated, in part, by poor designs that have complex cmnmands, hostile and 
vague error messages, tortuous and unfamiliar sequences of actions, or a 
deceptive anthropomorphic style. 

One of my goals is to encourage users to translate their internal fears into 
outraged action. Instead of feeling guilty when they get a message such as 
SYNTAX ERROR, they should express their anger at the system designer who 
was so inconsiderate and thoughtless. Instead of feeling inadequate or 
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foolish because they cannot reme1nber a complex sequence of commands, 
they should com.plain to the designer who did not provide a more conve
nient mechanis1n or should seek another product that does. 

As examples of successful and satisfying syste1ns become more visible, the 
crude designs will appear increasingly archaic and will become commercial fail
ures. As designers improve interactive syste1ns, s01ne of these fears will recede 
and the positive experiences of competence, mastery, and satisfaction will flow 
in. Then, the images of computer scientists and of data-processing professionals 
will change in the public's view. The machine-oriented and technical ilnage will 
give way to one of personal warn1th, sensitivity, and concern for the user. 

1.7 Practitioner's Summary 

If you are designing an interactive system., a thorough task analysis can pro
vide the information for a proper functional design. You should pay atten
tion to reliability, availability, security, integrity, standardization, portability, 
integration, and the administrative issues of schedules and budgets. As 
design alternatives are proposed, they can be evaluated for their role in pro
viding short learning times, rapid task performance, low error rates, ease of 
retention, and high user satisfaction. As the design is refined and imple
mented, you can test for accomplish1nent of these goals with pilot studies, 
expert reviews, usability tests, and acceptance tests. The rapidly growing lit
erature and sets of design guidelines 1nay be of assistance in developing 
your project standards and practices, and in accommodating the increas
ingly diverse and growing community of users. 

1.8 Researcher's Agenda 

The opportunities for researchers are unlimited. There are so many interest
ing, important, and doable projects that it may be hard to choose a direction. 
Each experiment has two parents: (1) the practical proble1ns facing designers, 
and (2) the fundamental theories based on psychological principles of human 
behavior. Begin by proposing a lucid, testable hypothesis. Then consider the 
appropriate research methodology, conduct the experiment, collect the data, 
and analyze the results. Each experiment ~lso has three children: (1) specific 
recommendations for the practical problem, (2) refinements of your theory of 
human performance, and (3) guidance to future experimenters. Each chapter 
of this book ends with specific research proposals. 
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World Wide Web nesuurces www 
This book is accompanied by an extensive website, prepared by Blaise 
Liffick (http://www.aw.com/DTUI), that includes pointers to addi
tional resources tied to the contents of each chapter. In addition, this 
website contains information for instructors, students, practitioners, 
and researchers. The links for Chapter 1 include general resources on 
human-c01nputer interaction, such as professional societies, govern
ment agencies, c01npanies, bibliographies, and guidelines documents. 

People seeking references to scientific journals and conferences 
now have an online bibliography for human-computer interaction. 
Built under the heroic leadership of Gary Perhnan at Ohio State 
(perlman@turing.aCin.org), it makes available ahnost 8000 journal, 
conference, and book abstracts. S01ne parts are searchable online, 
but 1nost users FTP the files for personal use. 

Three wonderful sets of pointers to World Wide Web resources 
are 1naintained by 

1. Keith Instone (http://usableweb.com/hciel) 

2. Hans de Graaf (http://is.twi.tudelft.nl/hci/) 

3. Mikael Ericsson (http://www.ida.liu.se/labs/aslab/groups/ 
um/hci/) 

An excellent electronic mailing list (chi-announcements@acln.org) 
is maintained by SIGCHI. To subscribe, send electronic mail to 
listserv@acm. org with this line: 

subscribe chi-announcements <your full name>. 

Andrew Cohill (cohill@bev.net) 1naintains severallistservs for the 
Human Factors & Ergonomics Society, including the lively CSTG-L. 
To subscribe, send electronic mail to listserv@listserv.vt.edu with 
this line: 

subscribe cstg-L <your full name>. 

http:/ /www.aw.com/DTUI 
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General information resources 

Prilnary journals include the following: 

ACM Transactions on Computer-Human Interaction. Quarterly, ACM, 1515 Broadway, 
New York, NY 10036. 

ACM Interactions: A Magazine for User Interface Designers. Quarterly, ACM, 1515 
Broadway, New York, NY 10036. 

Behaviour & Information Technology (BIT). Six times per year, Taylor & Francis Ltd, 4 
John Street, London WCIN 2ET, U.K. 

Human-Computer Interaction. Quarterly, Lawrence Erlbaurn Associates, Inc., 365 
Broadway, Hillsdale, NJ 07642. 

Interacting with Computers. Quarterly, Butterworth Heinemann Ltd, Linacre House, 
Jordan Hill, Oxford OX2 8DP U.K. 

International Journal of Human-Computer Studies, formerly International Journal of 
Man-Machine Studies (IJMMS). Monthly, Academic Press, 24-28 Oval Road, 
London NW1 7DX, U.K. . 

International Journal of Human-Computer Interaction. Quarterly, Ablex Publishing Cor-
poration, 355 Chestnut Street, Norwood, NJ 07648. 

Other journals that regularly carry articles of interest are these: 

ACM Computing Surveys 

Communications of the ACM (CACM) 

ACM Transactions on Graphics 

ACM Transactions on Information Systems 

Cognitive Science 

Computer Supported Cooperative Work 

Computers and Human Behavior 

Ergonomics 

Human Factors (HF) 

Hypennedia 
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IEEE Computer 

IEEE Computer Graphics and Applications 
IEEE Software 

IEEE Transactions on Systems, Man, and Cybernetics (IEEE SMC) 

Journal of Visual Languages and Computing 

The Association for Cmnputing Machinery (ACM) has a Special Interest 
Group on Computer & Hu1nan Interaction (SIGCHI) that publishes a quar
terly newsletter and holds regularly scheduled conferences. Other ACM Spe
cial Interest Groups such as Graphics (SIGGRAPH), Computers and the 
Physically Handicapped (SIGCAPH), and hypertext plus multimedia 
(SIGLINK) also cover this topic in their conferences and newsletters. The 
American Society for Infonnation Science (ASIS) has a Special Interest Group 
on Hum.an-Cmnputer Interaction (SIGHCI) that publishes a quarterly 
newsletter and participates by organizing sessions at the annual ASIS con
vention. The International Federation for Information Processing has Techni
cal Committee and Working Groups on human-computer interaction. The 
Human Factors & Ergonmnics Society also has a Com.puter Systems Techni
cal Group with a quarterly newsletter. 

Conferences-such as the ones held by the ACM (the SIGCHI and SIC
GRAPH especially), IEEE (the Visual Languages Sy1nposiu1n especially), 
ASIS, Human Factors & Ergonomics Society, and IFIP-often have relevant 
papers presented and published in the proceedings. The INTERACT, the 
Human-Computer Interaction International, and the Work with Display Units 
series of conferences (held approximately every other year) are also important 
resources with broad coverage of user-interface issues. Several more special
ized ACM conferences may be of interest: User Interfaces Software and Tech
nology, Hypertext, .and Computer-Supported Cooperative Work. 

The list of guidelines documents and books is a starting point to the large 
and growing literature in this area. Gerald Weinberg's 1971 book, The Psy
chology of Computer Programming, is a continuing inspiration to thinking 
about how people interact with computers. James Martin provided a 
thoughtful and useful survey of interactive systems in his 1973 book, Design 
of Man-Computer Dialogues. My 1980 book, Software Psychology: Human Fac
tors in Computer and Information Systems, promoted the use of controlled 
experimental techniques and the reductionist scientific method. Rubinstein 
and Hersh, The Human Factor: Designing Computer Systems for People (1984), 
offered an appealing introduction and many useful guidelines. The first edi
tion of this book, published in 1987, reviewed critical issues, offered guide
lines for designers, and suggested research directions. 

Don Norman's 1988 book, The Psychology of Everyday Things, is a refresh
ing look at the psychological issues in the design of the everyday technology 
that surrounds us. As a reader I was provoked equally by the sections deal
ing with doors or showers and computers or calculators. This book has a 
wonderful blend of levity and great depth of thinking, practical wisdom, and· 
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thoughtful theory. A lively collection of essays was assembled in 1990 by 
Brenda Laurel in close collaboration with Apple, under the title The Art of 
Human-Computer Interface Design. 

Recent recommended books are Hix and Hartson's 1993 Developing User 
Interfaces, Jakob Nielsen's 1993 Usability Engineering, Preece et al.'s 1994 
HUJnan-Computer Interaction, and Landauer's 1995 The Trouble with Comput
ers. Two ambitious collections of papers appeared in 1995: Baecker et al.' s 
thoughtful and thorough comm.entaries enrich their 950 pages of reprints, 
and Perlman et al.'s careful selection of 79 papers on hu1nan-cmnputer inter
action frmn the Human Factors & Ergonomic Society conferences covers 
1nost topics. 

An important development for the field was the creation (in late 1991) of a 
professional group, Usability Professionals Association (UPAdallas@aol.cmn), 
for usability testers, and a newsletter called Conunon Ground. The beginning of 
1994 marked the appearance of ACM' s professional magazine entitled interac
tions, and ACM's academic journal Transactions on Computer-Human Interaction. 

Guidelines documents 

General guidelines 

American National Standard for Human Factors Engineering of Visual Display Terminal 
Workstations, ANSI/HFS Standard No.100-1988, Human Factors Society, Santa 
Monica, CA (February 1988). 

-Carefully considered standards for the design, installation, and use of visual 
display terminals. Emphasizes ergonomics and anthropometries. 

Engel, Stephen E. and Granda, Richard E., Guidelines for Man/Display Interfaces, Tech
nical Report TR 00.2720, IBM, Poughkeepsie, NY (December 1975). 

-An early and influential document that is the basis for several of the other 
guidelines documents. 

Human Engineering Design Criteria for Military Systems, Equipment and Facilities, Mili
tary Standard MIL-STD-1472D, U.S. Government Printing Office, Washington, 
D.C. (March 14, 1989, and later changes). 
ftp:/ /archive.cis.ohiostate.edu/pub/hci/1472/ 

-Almost 300 pages (plus a 100-page index) covering traditional ergonometric or 
anthropometric issues. Later editions pay increasing attention to user-computer 
interfaces. Interesting and thought provoking, but sometimes outdated and diffi
cult to read due to a six-level organization. 

International Standards Organization, ISO 9241. Ergonomic Requirements for Office 
Work with Visual Display Terminals (VDT)s, Available from American National 
Standards Institute, 11 West 42nd Street, New York, NY. 

-General introduction, dialogue principles, guidance on usability, presentation 
of information, user guidance, menu dialogues, command dialogues, direct 
manipulation dialogues, form filling dialogues. 
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NASA User-Interface Guidelines, Goddard Space Flight Center-Code 520, Greenbelt, 
MD (January 1996). http:/ /groucho.gsfc.nasa.gov/Code_520/Code_522/Docu
ments/HCI_Guidelines/ 

-The purpose of this document is to present user-interface guidelines that 
specifically address graphic and object-oriented interfaces operating in either dis
tributed or independent systems environments. Principles and general guidelines 
are given, with many graphic-interface examples for a variety of platforms. 

National Institute of Standards and Technology (NIST), The User Interface Component 
of the Applications Portability Profile (FIPS PUB 158-1). Available from National 
Technical Information Service, U.S. Department of Commerce, Springfield, VA 
22161. 

-This standard is intended for use by computing professionals involved in sys
tem and application software development and implementation for network
based bitmapped graphic systems. This standard is part of a series of 
specifications needed for application portability. It covers the Data Stream Encod
ing, Data Stream Interface, and Subroutine Foundation layers of the reference 
model. 

Smith, Sid L. and Mosier, Jane N., Guidelines for Designing User Interface Software, 
Report ESD-TR-86-278, Electronic Systems Division, MITRE Corporation, Bed
ford, MA (August 1986). Available from National Technical Information Service, 
Springfield, VA. 

-This thorough document, which has undergone several revisions, begins with 
a good discussion of human-factors issues in design. It then covers data entry, 
data display, and sequence control. Guidelines are offered with comments, exam
ples, exceptions, and references. This report is the place to start if you are creating 
your own guidelines. 

Specific guidelines 

Apple Human In-terface Guidelines: The Apple Desktop Interface, Addison-Wesley, Read
ing, MA (1987), 144 pages. 

-The Human Interface Group and the Technical Publications Group teamed up 
to produce this readable, example-filled book that starts with a thoughtful philos
ophy and then delves into precise details. It is required reading for anyone devel
oping Macintosh software, and is an inspiration to people who are designing 
their own guidelines document; it also stimulates interesting reflections for 
researchers. · 

Apple Computer, Inc., Macintosh Human Interface Guidelines, Addison-Wesley, Read
ing, MA (1992), 384 pages. 

-A major expansion of the previous citation, and a beautifully produced color 
book. A well-designed CD-ROM, Making it Macintosh, exemplifies these Mac 
guidelines, Addison-Wesley, Reading, MA (1993). 

Bellcore, Design Guide for Multiplatform Graphical User Interfaces LP-R13, Bellare, Pis
cataway, NJ (December 1995). 

-This document makes a diligent effort to provide guidance for designers of 
interfaces for implementation on several platforms, including Windows and 
Motif. 
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IBM, Object-Oriented Interface Design: IBM Common User Access Guidelines, Que Corp., 
Carmel, IN (Decen1.ber 1992), 708 pages. 

-This book is the comn1.ercially published version of IBM's CUA Guidelines. 

IBM Systems Application Architecture: Common User Access Guide to User Interface 
Design, IBM Docmnent SC34-4289-00, (October 1991), 163 pages. 

-This readable introduction to user-interface design is a textbook for software 
and user-interface designers that covers principles, components, and techniques. 

IBM Systems Application Architecture: Common User Access Advanced Interface Design 
Reference, IBM Document SC34-4290-00, (October 1991), 401 pages. 

-This volume is the latest version of IBM's Guide for application programmers 
who wish to adhere to the CUA design. It identifies what the interface cornpo
nents are and when to use thern. 

IBM System Application Architecture: Common User Access, Advanced Interface Design 
Guide, IBM Docmnent SC26-4582-0, Boca Raton, FL (June 1989), 195 pages. 

-This now-outdated version of the IBM standards shows progress over the 1987 
document. It places heavy ernphasis on graphic interaction, use of pointing 
devices, and windows. International standards for multiple languages are also 
given attention. 

IBM System Application Architecture: Common User Access, Panel Design and User Inter
action, IBM Document SC26-4351-0, Boca Raton, FL (Deceinber 1987), 328 pages. 

-This older version of IBM's standards took years to prepare. It has been highly 
influential in the development of all IBM products, and therefore also of many 
corporate standards. 

Microsoft, The Windows Interface Guidelines for Software Design, Microsoft Press, Red
mond, WA (1995), 556 pages. 

-This thoughtful analysis of usability principles (user in control, directness, con
sistency, forgiveness, aesthetics, and simplicity) gives detailed guidance for Win
dows software developers regarding how to make it happen. 

Open Software Foundation, OSF/Motif Style Guide and OSF/Motif User's Guide, Pren
tice-Hall, Englewood Cliffs, NJ (1990). 

-This book provides readable explanations for designers and for users to create 
or use applications under the OSF /Motif envirom11.ent. Covers menus, windows, 
dialog boxes, and help facilities. 

Books 

Classic books 

Bolt, Richard A., The Human Interface: Where People and Computers Meet, Lifelong 
Learning Publications, Belmont, CA (1984), 113 pages. 

Cakir, A., Hart, D. J., and Stewart, T. F. M., Visual Display Terminals: A Manual Cover
ing Ergonomics, Workplace Design, Health and Safety, Task Organization, John Wiley 
and Sons, New York (1980). 

Card, Stuart K., Moran, Thomas P., and Newell, Allen, The Psychology of 
Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ (1983), 
469 pages. 
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Coats, R. B. and Vlaeminke, I., Man-Computer Interfaces: An Introduction to Software 
Design and Implementation, Blackwell Scientific Publications, Oxford, U.K. (1987), 
381 pages. 

Crawford, Chris, The Art of Computer Game Design: Reflections of a Master Game 
Designer, Osborne/McGraw-Hill, Berkeley, CA (1984), 113 pages. 

Dreyfus, W., The Measure of Man: Human Factors in Design (Second Edition), Whitney 
Library of Design, New York (1967). 

Dumas, JosephS., Designing User Interfaces for Software, Prentice-Hall, Englewood 
Cliffs, NJ (1988), 174 pages. 

Ehrich, R. W. and Williges, R. C., Human-Computer Dialogue Design, Elsevier Science 
Publishers B.V., Amsterdam, The Netherlands (1986). 

Galitz, Wilbert 0., Human Factors in Office Automation, Life Office Management Asso
ciation, Atlanta, GA (1980), 237 pages. 

Galitz, Wilbert 0., Handbook of Screen Format Design (Third Edition), Q.E.D. Infor
mation Sciences, Wellesley, MA (1989), 307 pages. 

Gilmore, Walter E., Gertman, David I., and Blackman, Harold S., User-Computer 
Interface in Process Control: A Human Factors Engineering Handbook, Academic 
Press, San Diego, CA (1989) 436 pages. 

Hiltz, Starr Roxanne, Online Communities: A Case Study of the Office of the Future, 
Ablex, Norwood, NJ (1984), 261 pages. 

Hiltz, Starr Roxanne and Turoff, Murray, The Network Nation: Human Communication 
via Computer, Addison-Wesley, Reading, MA (1978). 

Kantowitz, Barry H. and Sorkin, Robert D., Human Factors: Understanding People-Sys
tem Relationships, John Wiley and Sons, New York (1983), 699 pages. 

Kearsley, Greg, Online Help Systems: Design and Implementation, Ablex, Norwood, NJ 
(1988), 115 pages. 

Martin, James, Design of Man-Computer Dialogues, Prentice-Hall, Englewood Cliffs, 
NJ (1973), 509 pages. 

Mehlmann, Marilyn, When People Use Computers: An Approach to Developing an Inter
face, Prentice-Hall, Englewood Cliffs, NJ (1981). 

Mumford, Enid, Designing Human Systems for New Technology, Manchester Business 
School, Manchester, U.K. (1983), 108 pages. 

National Research Council, Committee on Human Factors, Research Needs for Human 
Factors, National Academy Press, Washington, D.C. (1983), 160 pages. 

Nickerson, Raymond S., Using Computers: Human Factors in Information Systems, MIT 
Press, Cambridge, MA (1986), 434 pages. 

Norman, Donald A., The Psychology of Everyday Things, Basic Books, New York 
(1988), 257 pages. 

Oborne, David J., Computers at Work: A Behavioural Approach, John Wiley and Sons, 
Chichester, U.K. (1985), 420 pages. 

Roebuck, J. A., Kroemer, K. H. E., and Thomson, W. G., Engineering Anthropometry 
Methods, Wiley, New York (1975). 

Rubinstein, Richard and Hersh, Harry, The Human Factor: Designing Computer Sys
tems for People, Digital Press, Maynard, MA (1984), 249 pages. 
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Schiff, W., Perception: An Applied Approach, Houghton Mifflin, New York (1980). 

Sheridan, T. B. and Ferrel, W. R., Man-Machine Systems: Information, Control, and Deci
sion Models of Human Performance, MIT Press, Cambridge, MA (1974). 

Shneiderman, Ben, Software Psychology: Human Factors in Computer and Information 
Systems, Little, Brown, Boston (1980), 320 pages. 

Tichauer, E. R., The Mechanical Basis of Ergonomics, John Wiley and Sons, New York 
(1978). 

Turkle, Sherry, The Second Self: Computers and the Human Spirit, Simon and Schuster, 
New York (1984). 

Weinberg, Gerald M., The Psychology of Computer Programming, Van Nostrand Rein
hold, New York (1971), 288 pages. 

Weizenbaum, Joseph, Computer Power and Human Reason: From Judgment to Calcula
tion, W. H. Freeman, San Francisco (1976), 300 pages. 

Winograd, Terry and Flores, Fernando, Understanding Computers and Cognition, 
Ablex, Norwood, NJ (1986), 207 pages. 

Zuboff, Shoshanna, In the Age of the Smart Machine: The Future of Work and Power, 
Basic Books, New York (1988), 468 pages. 

Recent books 

Bailey, Robert W., Human Performance Engineering: Using Human Factors/Ergonomics to 
Achieve Computer Usability (Third Edition), Prentice-Hall, Englewood Cliffs, NJ 
(1996), 636 pages. 

Barfield, Lon, The User Interface: Concepts & Design, Addison-Wesley, Reading, MA 
(1993), 353 pages. 

Bass, Len and Coutaz, Joelle, Developing Software for the User Interface, Addison-Wes
ley, Reading, MA (1991), 256 pages. 

Brown, C. Marlin "Lin," Human-Computer Interface Design Guidelines, Ablex, Nor
wood, NJ (1988), 236 pages. 

Brown, Judith R. and Cunningham, Steve, Programming the User Interface: Principles 
and Examples, John Wiley and Sons, New York (1989), 371 pages. 

Carroll, John M., The Nurnberg Funnel: Designing Minimalist Instruction for Practical 
Computer Skill, MIT Press, Cambridge, MA (1990), 340 pages. 

Carroll, John, M., Scenario-Based Design: Envisioning Work and Technology in System 
Development, John Wiley and Sons, New York (1995), 406 pages. 

Cooper, Alan, About Face: The Essentials of User Interface Design, IDG Books World
wide, Foster City, CA (1995), 580 pages. 

Dix, Alan, Finlay, Janet, Abowd, Gregory, and Beale, Russell, Human-Computer Inter
action, Prentice Hall, New York (1993), 570 pages. 

Druin, Allison and Solomon, Cynthia, Designing Multimedia Environments for Chil
dren: Computers Creativity and Kids, John Wiley and Sons, New York (1996), 263 
pages. 

Duffy, Thomas M., Palmer, James E., and Mehlenbacher, Brad, Online Help: Design 
and Evaluation, Ablex, Norwood, NJ (1993), 260 pages. 
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Dumas, JosephS. and Redish, Janice C., A Practical Guide to Usability Testing, Ablex, 
Norwood, NJ (1993), 304 pages. 

Eberts, Ray E., User Interface Design, Prentice Halt Englewood Cliffs, NJ (1993), 649 
pages. 

Fernandes, Tony, Global Interface Design: A Guide to Designing International User Inter
faces, Academic Press Professionat Boston, MA (1995), 191 pages. 

Foley, James D., van Dam, Andries, Feiner, Steven K., and Hughes, John F., Computer 
Graphics: Principles and Practice (Second Edition), Addison-Wesley, Reading, MA 
(1990), 117 4 pages. 

Galitz, Wilbert 0., It's Time to Clean Your Windows: Designing GUis that Work, John 
Wiley and Sons, New York (1994), 477 pages. 

Hecket Paul, The Elements of Friendly Software Design (The New Edition), SYBEX, San 
Francisco (1991), 319 pages. 

Hix, Deborah, and Hartson, H. Rex, Developing User Interfaces: Ensuring Usability 
Through Product and Process, John Wiley and Sons, New York (1993), 381 pages. 

Kantowitz, Barry H. Experimental Psychology: Understanding Psychological Research 
(Fifth Edition), West, Minneapolis/St. Paul, MN (1994). 

Kobara, Shiz, Visual Design with OSF/Motif, Addison-Wesley, Reading, MA (1991), 
260 pages. 

Krueger, Myron, Artificial Reality II, Addison-Wesley, Reading, MA (1991), 304 pages. 

Landauer, Thomas K., The Trouble with Computers: Usefulness, Usability, and Productiv
ity, MIT Press, Cambridge, MA (1995), 425 pages. 

Laurel, Brenda, Computers as Theater, Addison-Wesley, Reading, MA (1991), 211 
pages. 

Marchionini, Gary, Information Seeking in Electronic Environments, Cambridge Univer
sity Press, Cambridge, U.K. (1995), 224 pages. 

Marcus, Aaron, Graphic Design for Electronic Documents and User Interfaces, ACM 
Press, New York (1992), 266 pages. 

Mayhew, Deborah J., Principles and Guidelines in Software User Interface Design, Pren
tice Hall, Englewood Cliffs, NJ (1992), 619 pages. 

Mullet, Kevin and Sano, Darrell, Designing Visual Interfaces: Communication Oriented 
Techniques, Sunsoft Press, Englewood Cliffs, NJ (1995), 277 pages. 

Myers, Brad, Creating User Interfaces by Demonstration, Academic Press, New York 
(1988), 320 pages. 

Newman, William M. and Lamming, Michael G., Interactive Systems Design, Addi
son-Wesley, Reading, MA (1995), 468 pages. 

Nielsen, Jakob, Designing User Interfaces for International Use, Elsevier Science Pub
lishers, Amsterdam, The Netherlands (1990). 

Nielsen, Jakob, Multimedia and Hypertext: The Internet and Beyond, Academic Press, 
Cambridge, MA (1995), 480 pages. 

Nielsen, Jakob, Usability Engineering, Academic Press, Boston, MA (1993), 358 pages. 

Norman, Kent, The Psychology of Menu Selection:· Designing Cognitive Control at the 
Human/Computer Interface, Ablex, Norwood, NJ (1991), 350 pages. 
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Olsen, Jr., Dan R., User Interface Management Systems: Models and Algorithms, Morgan 
Kaufmann, San Mateo, CA (1991), 256 pages. 

Preece, Jenny, A Guide to Usability: Human Factors in Computing, Addison-Wesley, 
Reading, MA (1993), 144 pages. 

Preece, Jenny, Rogers, Yvonne, Sharp, Helen, Benyon, David, Holland, Simon, and 
Carey, Tom, Human-Computer Interaction, Addison-Wesley, Reading, MA (1994), 
773 pages. 

Ravden, Susannah and Johnson, Graham, Evaluating Usability of Human-Computer 
Interfaces, Halsted Press Division of John Wiley and Sons, New York (1989), 126 
pages. 

Sanders, M. S. and McCormick, Ernest J., Human Factors in Engineering and Design 
(Seventh Edition), McGraw-Hill, New York (1993). 

Schuler, Douglas, New Community Networks: Wired for Change, ACM Press, New York, 
and Addison-Wesley, Reading, MA (1996), 528 pages. 

Shneiderman, Ben and Kearsley, Greg, Hypertext Hands-On! An Introduction to a New 
Way of Organizing and Accessing Information, Addison-Wesley, Reading, MA 
(1989), 165 pages and two disks. 

Thimbleby, Harold, User Interface Design, ACM Press, New York (1990), 470 pages. 

Thorell, L. G. and Smith, W. J., Using Computer Color Effectively, Prentice-Hall, Engle
wood Cliffs, NJ (1990), 258 pages. 

Tognazzini, Bruce, Tog on Interface, Addison-Wesley, Reading, MA (1992), 331 pages. 

Travis, David, Effective Color Displays: Theory and Practice, Academic Press, Harcourt 
Brace Jovanovich, London, U.K. (1991), 301 pages. 

Turkle, Sherry, Life on the Screen: Identity in the Age of the Internet, Simon and Schuster, 
New York (1995). 

Vaske, Jerry and Grantham, Charles, Socializing the Human-Computer Environment, 
Ablex, Norwood, NJ (1990), 290 pages. 

Wickens, Christopher D., Engineering Psychology and Human Performance: Second Edi
tion, HarperCollins, New York (1992), 560 pages. 

Documentation 

Brockmann, R. John, Writing Better Computer User Documentation: From Paper to Hyper
text: Version2.0, John Wiley and Sons, New York (1990), 365 pages. 

Haramundanis, Katherine, The Art of Technical Documentation, Digital Press, May
nard, MA (1992), 267 pages. 

Horton, William K., Designing and Writing Online Documentation: Help Files to Hyper
text, John Wiley and Sons, New York (1990), 372 pages. 

Price, Jonathan, How to Write a Computer Manual, Benjamin/Cummings, Menlo Park, 
CA (1984), 295 pages. 

Weiss, Edmond H., How to Write a Usable User Manual, lSI Press, Philadelphia, PA 
(1985), 197 pages. 
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Reference resource 

ACM, Resources in Human-Computer Interaction, ACM Press, New York (1990), 1197 
pages. 

Collections 

Proceedings Human Factors in Computer Systems, Washington, D.C., ACM (March 
15-17, 1982), 399 pages. 

The following volumes are available from ACM Order Dept., P. 0. Box 64145, 
Baltimore, MD 21264, or from Addison-Wesley Publishing Co., One Jacob 
Way, Reading, MA 01867. 

Proceedings ACM CHI '83 Conference: Human Factors in Computing Systems, Ann Janda 
(Editor), Boston, MA (December 12-15, 1983). 

Proceedings ACM CHI '85 Conference: Human Factors in Computing Systems, Lorraine 
Borman and Bill Curtis (Editors), San Francisco (April14-18, 1985). 

Proceedings ACM CHI '86 Conference: Human Factors in Computing Systems, Marilyn 
Mantei and Peter Orbeton (Editors), Boston, MA (April13-17, 1986). 

Proceedings ACM CHI+ GI '87 Conference: Human Factors in Computing Systems, John 
M. Carroll and Peter P. Tanner (Editors), Toronto, Canada (April 5-9, 1987). 

Proceedings ACM CHI '88 Conference: Human Factors in Computing Systems, Elliot 
Soloway, Douglas Frye, and Sylvia!B. Sheppard (Editors), Washington, D.C. (May 
15-19, 1988). . ) 

Proceedings ACM CHI '89 Conference: Human Factors in Computing Systems, Ken Bice 
and Clayton Lewis (Editors), Austin, TX (April30-May 4, 1989). 

Proceedings ACM CHI '90 Conference: Human Factors in Computing Systems, Jane Carrasco 
Chew and John Whiteside (Editors), Seattle, WA (April1-5, 1990). 

Proceedings ACM CHI '91 Conference: Human Factors in Computing Systems, Scott P. 
Robertson, Gary M. Olson, and Judith S. Olson (Editors), New Orleans, LA (April 
27-May 2, 1991). 

Proceedings ACM CHI '92 Conference: Human Factors in Computing Systems, Penny 
Bauersfeld, John Bennett, and Gene Lynch (Editors), Monterey, CA (May 3-7, 
1992) 

Proceedings ACM INTERCHI '93 Conference: Human Factors in Computing Systems, 
Stacey Ashlund, Kevin Mullet, Austin Henderson, Erik Hollnagel, and Ted White 
(Editors), Amsterdam, The Netherlands (April24-29, 1993). 

Proceedings ACM CHI '94 Conference: Human Factors in Computing Systems, Beth Adel
son, Susan Dumais, and Judith Olson (Editors), Boston, MA (April24-28, 1994). 

Proceedings ACM CHI '95 Conference: Human Factors in Computing Systems, Irvin R. 
Katz, Robert Mack, and Linn Marks (Editors), Denver, CO (May 7-11, 1995). 

Proceedings ACM CHI '96 Conference: Human Factors in Computing Systems, Michael J. 
Tauber, Victoria Bellotti, Robin Jeffries, JockD. Mackinlay, and Jakob Nielsen 
(Editors), Vancouver, Canada (April13-18, 1996). 
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Proceedings ACM CHI /97 Conference: Human Factors in Computing Systems/ Steven 
Pemberton/ Jennifer J. Preece/ and Mary Beth Rosson (Editors)/ Atlanta/ GA 
(March 22-27/ 1997). 

INTERACT /84: IFIP International Conference on Human-Computer Interaction/ North
Holland, Amsterdam, The Netherlands (1984). 

INTERACT /87: IFIP International Conference on Human-Computer Interaction/ North
Holland, Amsterdam/ The Netherlands (1987). 

INTERACT /90: IFIP International Conference on Human-Computer Interaction/ North
Holland/ Amsterdam, The Netherlands (1990). 

INTERACT /93: IFIP International Conference on Human-Computer Interaction/ North
Holland, Amsterdam, The Netherlands (1993). 

INTERACT /96: IFIP International Conference on Human-Computer Interaction, North
Holland, Amsterdam, The Netherlands (1996). 

INTERACT /97: IFIP International Conference on Human-Computer Interaction/ North
Holland, Amsterdam, The Netherlands (1996). 

Classic collections 

Badre, Albert and Shneiderman, Ben (Editors), Directions in Human-Computer Inter
action, Ablex, Norwood, NJ (1980), 225 pages. 

Blaser, A. and Zoeppritz, M. (Editors), Enduser Systems and Their Human Factors, 
Springer-Verlag, Berlin (1983), 138 pages. 

Carey, Jane (Editor), Human Factors in Management Information Systems, Ablex, Nor
wood, NJ (1988), 289 pages. 

Coombs, M. J. and Alty, J. L. (Editors), Computing Skills and the User Interface, Acade
mic Press, New York (1981). 

Carroll, John M. (Editor), Interfacing Thought: Cognitive Aspects of Human-Computer 
Interaction/ MIT Press, Cambridge, MA (1987!, 324 pages. 

Curtis, Bill (Editor), Tutorial: Human Factors in Software Develop1itent, IEEE Computer 
Society, Los Angeles (1981), 641 pages. 

Durrett, H. John (Editor), Color and the Computer, Academic Press (1987), 299 pages. 

Guedj, R. A., Hagen, P. J. W., Hopgood, F. R. A., Tucker, H. A., and Duce, D. A. (Edi
tors), Methodology of Interaction, North-Holland, Amsterdam, The Netherlands 
(1980), 408 pages. 

Hartson, H. Rex (Editor), Advances in Human-Computer Interaction, Volume 1, Ablex, 
Norwood, NJ (1985), 290 pages. 

Hartson, H. Rex and Hix, Deborah (Editors), Advances in Human-Computer Interac
tion, Volume 2, Ablex, Norwood, NJ (1988),380 pages. 

Helander, Martin (Editor), Handbook of Human-Computer Interaction, North-Holland, 
Amsterdam (1988), 1167 pages. 

Hendler, James A. (Editor), Expert Systems: The User Interface, Ablex, Norwood, NJ 
(1987), 336 pages. 

Klemmer, Edmund T. (Editor), Ergonomics: Harness the Power of Human Factors in Your 
Business, Ablex, Norwood, NJ (1989), 218 pages. 
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Larson, James A. (Editor), Tutorial: End User Facilities in the 1980's, IEEE Computer 
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Addison-Wesley, Reading, MA (1996), 321 pages. 

Videotapes 

Video is an effective medium for presenting the dynamic, graphical, interac
tive nature of modern user interfaces. The Technical Video Progrmn of the 
ACM SIGCHI conferences makes it possible to see excellent de1nonstrations 
of often-cited but seldom-seen systems. 

All CHI videos can be ordered directly through ACM: 
ACM Member Service Department, 1515 Broadway, New York, NY 

10036. Email: acmhelp@acm.org Tel: (800) 342-6626 or (212) 626-0613. 
VHS NTSC and PAL versions are available (http:/ /www.acm.org/sigchi/ 
video): 

Year 

CHI'97 
CHI'96 
CHI'95 

(Location) 

(Atlanta, GA) 
(Vancouver, CA) 
(Denver, CO) 

Older Issues (1994 and before) were published with ACM SIGGRAPH Video 
Review: 

SVR 
Issue Number Year (Location) 

97 CHI'94 (Boston) 
88/89 CHI'93 (Am.sterda1n, Nether lands) 
76/77 CHI'92 (Monterey, CA) 
78/79 CHI'92 Special Videos and Future Scenarios 
63/64/65 CHI'91 (New Orleans, LA) 
55/56 CHI'90 (Seattle, WA) 
57 CHI'90 All the Widgets (Special Instructional Issue) 
45/46 CHI'89 (Austin, TX) 
47/48 CHI'89 (Austin, TX) 
58/59 CHI'88 (Washington, D.C.) 
33/34 CHI+GI'87 (Toronto, Canada) 
26/27 CHI'86 (Boston, MA) 
18/19 CHI'85 (San Francisco, CA) 
12/13 CHI'83 (Boston, MA) 

User-Interface Strategies The University of Maryland Instructional Televi
sion produces a live satellite television ·program and sells the tapes. Tele
phone (301) 405-4905. 
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Email: itv@eng. umd.edu.http: I I www.glue.umd.edul itv 
The programs are coordinated by the author of this book who does at least 

a one-hour opening presentation followed by hour-long guest lectures and a 
discussion hour: 

1996 Charles Kreitzberg and Edward Yourdon 
1995 Frank Stein, Kent Norman, H. Rex Hartson, and Deborah Hix 
1994 Jakob Nielsen, Judith Olson, and Myron Krueger 
1993 Marilyn Mantei, Tmn Furness, and James Martin 
1992 Tmn Landauer, Brad Myers, and Brenda Laurel 
1991 Andries Van Dam, Elliot Soloway, and Bill Curtis 
1990 Aaron Marcus, John Carroll, and Joy Mountford 
1988 Tmn Malone, Don Norman, and James Foley 

Consulting and design companies 

Aaron Marcus and Associates, E1neryville, CA 
American Institutes for Research, Washington, D.C. 
Cognetics Corp., Princeton Junction, NJ; Washington, D.C. 
Dray & Associates, Minneapolis, MN 
Ergo Research Group, Inc., Norwalk, CT 
Human Factors International, Inc., Fairfield, IA 
Preface User Interface Design, Burbank, CA 
Usability Engineering Services, Inc., Kirkland, WA 
Usernmnics, Foster City, CA 
UserWorks, Rockville, MD 
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Theories, Principles, 

and Guidelines 

We want principles, not only developed-the work of the closet-but applied, which 
is the work of life. 

Horace Mann, Thoughts, 1867 

There never comes a point where a theory can be said to be true. The most that any
one can claim for any theory is that it has shared the successes of all its rivals and that 
it has passed at least one test which they have failed. 

A.J. Ayer, Philosophy in the Twentieth Century, 1982 
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2.1 Introduction 
2.2 High-Level Theories 
2.3 Object-Action Interface Model 
2.4 Principle 1: Recognize the Diversity 
2.5 Principle 2: Use the Eight Golden Rules of 

Interface Design 
2.6 Principle 3: Prevent Errors 
2.7 Guidelines for Data Display 
2.8 Guidelines for Data Entry 
2.9 Balance of Automation and Human Control 
2.10 Practitioner's Summary 
2.11 Researcher's Agenda 

2.1 Introduction 

Successful designers of interactive systems know that they can·and must go 
beyond intuitive judgments made hastily when a design problem emerges. 
Fortunately, guidance for designers is beginning to emerge in the form of (1) 
high-level theories and models, (2) middle-level principles, and (3) specific 
and practical guidelines. The theories and models offer a framework or lan
guage to discuss issues that are application independent, whereas the mid
dle-level principles are useful in creating and comparing design alternatives. 
The practical guidelines provide helpful reminders of rules uncovered by 
designers. 

In many contemporary systems, there is a grand opportunity to improve 
the user interface. The cluttered displays, complex and tedious procedures, 
inadequate functionality, inconsistent sequences of actions, and insufficient 
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informative feedback can generate debilitating stress and anxiety that lead to 
poor performance, frequent minor and occasional serious errors, and job dis
satisfaction. 

This chapter begins with a review of several theories, concentrating on the 
object-action interface model. Section 2.4 then deals with frequency of use, 
task profiles, and interaction styles. Eight golden rules of interface design are 
offered in Section 2.5. Strategies for preventing errors are described in Sec
tion 2.6. Specific guidelines for data entry and display appear in Sections 2.7 
and 2.8. Sections 2.9 addresses the difficult question of balancing automation 
and human control. 

2.2 High-Level Theories 

Many theories are needed to describe the 1nultiple aspects of interactive sys
tems. Some theories are explanatory: They are helpful in observing behavior, 
describing activity, conceiving of designs, comparing high-level concepts of 
two designs, and training. Other theories are predictive: They enable designers 
to compare proposed designs for execution time or error rates. Some theories 
may focus on perceptual or cognitive subtasks (time to find an item on a dis
play or time to plan the conversion of a boldfaced character to an italic one), 
whereas others concentrate on motor-task performance times. Motor-task pre
dictions are the best established and are accurate for predicting keystroking or 
pointing times (see Fitts' Law, Section 9.3.5). Perceptual theories have been suc
cessful in predicting reading times for free text, lists, and formatted displays. 
Predicting performance on complex cognitive tasks (combinations of subtasks) 
is especially difficult because of the many strategies that might be employed 
and the many opportunities for going astray. The ratio for times to perform a 
complex task between novices and experts or between first-time and frequent 
users can be as high as 100 to 1. Actually, the contrast is even more dramatic 
because novices and first-time users often are unable to complete the tasks. 

A taxonomy is a part of an explanatory theory. A taxonomy is the result of 
someone trying to put order on a complex set of phenomena; for example, a tax
onomy might be created for input devices (direct versus indirect, linear versus 
rotary) (Card et al., 1990), for tasks (structured versus unstructured, controllable 
versus immutable) (Norman, 1991), for personality styles (convergent versus 
divergent, field dependent versus independent), for technical aptitudes (spatial 
visualization, reasoning) (Egan, 1988), for user experience levels (novice, 
knowledgeable, expert), or for user-interfaces styles (menus, form fillin, com
mands). Taxonomies facilitate useful comparisons, organize a topic for new
comers, guide designers, and often indicate opportunities for novel products. 
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Any theory that could help designers to predict performance for even a 
limited range of users, tasks, or designs would be a contribution (Card, 
1989). For the moment, the field is filled with hundreds of theories compet
ing for attention while being refined by their promoters, extended by critics, 
and applied by eager and hopeful-but skeptical-designers. This develop
ment is healthy for the emerging discipline of human-computer interaction, 
but it means that practitioners must keep up with the rapid developments, 
not only in software tools, but also in theories. 

Another direction for theoreticians would be to try to predict subjective 
satisfaction or emotional reactions. Researchers in media and advertising 
have recognized the difficulty in predicting emotional reactions, so they com
plement theoretical predictions with their intuitive judgments and extensive 
market testing. Broader theories of small-group behavior, organizational 
dynamics, sociology of knowledge, and technology adoption may prove to 
be useful. Similarly, the methods of anthropology or social psychology may 
be helpful in understanding and overcoming barriers to new technology and 
resistance to change. 

There may be "nothing so practical as a good theory," but coming up 
with an effective theory is often difficult. By definition, a theory, taxon
omy, or model is an abstraction of reality and therefore must be incom
plete. However, a good theory should at least be understandable, produce 
similar conclusions for all who use it, and help to solve specific practical 
problems. 

2.2.1 Conceptual, semantic, syntactic, and lexical model 

An appealing and easily comprehensible model is the four-level approach 
that Foley and van Dam developed in the late 1970s (Foley et al., 1990): 

1. The conceptual level is the user's mental model of the interactive system. 
Two conceptual models for text editing are line editors and screen editors. 

2. The semantic level describes the meanings conveyed by the user's com
mand input and by the computer's output display. 

3. The syntactic level defines how the units (words) that convey semantics 
are assembled into a complete sentence that instructs the computer to 
perform a certain task. 

4. The lexical level deals with device dependencies and with the precise 
mechanisms by which a user specifies the syntax. 

This approach is convenient for designers because its top-down nature is 
easy to explain, matches the software architecture, and allows for useful 
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modularity during design. Designers are expected to move from conceptual 
to lexical, and to record carefully the mappings between levels. 

2.2.2 GOMS and the keystroke-level model 

Card, Moran, and Newell (1980, 1983) proposed the goals, operators, methods, 
and selection rules (GOMS) model and the keystroke-level model. They postu
lated that users formulate goals (edit document) and subgoals (insert word), 
each of which they achieve by using methods or procedures (move cursor to 
desired location by following a sequence of arrow keys). The operators are 
"elementary perceptual, motor, or cognitive acts, whose execution is neces
sary to change any aspect of the user's mental stq.te or to affect the task envi
ronment" (Card, et al. 1983, p. 144) (press up-arrow key, move hand to 
mouse, recall file name, verify that cursor is at end of file). The selection rules 
are the control structures for choosing among the several methods available 
for accomplishing a goal (delete by repeated backspace versus delete by plac
ing markers at beginning and end of region and pressing delete button). 

The keystroke-level model attempts to predict performance times for 
error-free expert performance of tasks by summing up the time for key
stroking, pointing, homing, drawing, thinking, and waiting for the system to 
respond. These models concentrate on expert users and error-free perfor
mance, and place less emphasis on learning, problem solving, error han
dling, subjective satisfaction, and retention. 

Kieras and Polson (1985) built on. the GOMS approach and used produc
tion rules to describe the conditions and actions in an interactive text editor. 
The number and complexity of production rules gave accurate predictions of 
learning and performance times for five text-editing operations: insert, 
delete, copy, move, and transpose. Other strategies for modeling interactive
system usage involve transition diagrams (Fig. 2.1). These diagrams are help
ful during design; for instruction; and as a predictor of learning time, 
performance time, and errors. 

Kieras (1988), however, complains that the Card, Moran, and Newell pre
sentation "does not explain in any detail how the notation works, and it 
seems somewhat clumsy to use. Furthermore, the notation has only a weak 
connection to the underlying cognitive theory." Kieras offers a refinement 
with his Natural GOMS Language (NGOMSL) and an analysis method for 
writing down GOMS models. He tries to clarify the situations in which the 
GOMS task analyst must make a judgment call, must make assumptions about 
how users view the system, must bypass a complex hard-to-analyze task 
(choosing wording of a sentence, finding a bug in a program), or must check 
for consistency. Applying NGOMSL to guide the process of creating online 
help, Elkerton and Palmiter (1991) developed method descriptions for their 
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interface, in which the actions necessary to accomplish a goal are broken 
down into steps. They also developed selection rules, by which a user can 
choose among alternative methods. For example, there may be two alterna
tive methods to delete fields and one selection rule: 

• Method 1 to accomplish the goal of deleting the field: 

Step 1: Decide: If necessary, then accomplish the goal of selecting 
the field. 

Step 2: Accomplish the goal of using a specific field-delete 
method. 

Step 3: Report goal accomplished. 

• Method 2 to accomplish the goal of deleting the field: 

Step 1: Decide: If necessary, then use the Browse tool to go to the 
card with the field. 

Step 2: 
Step 3: 

Step 4: 

Choose the Field tool in the Tools menu. 
Note that the fields on the card background are dis
played. 
Click on the field to be selected. 
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Step 5: Report goal accomplished. 

• Selection rule set for goal of using a specific field-delete 1nethod: 

• If you want to paste the field somewhere else, then choose "Cut 
Field" from the Edit menu. 

• If you want to delete the field permanently, then choose "Clear 
Field" from the Edit menu. 

• Report goal accomplished. 

The empirical evaluation with 28 subjects demonstrated that the NGOMSL 
version of help halved the time users took to complete information searches 
in the first of four trial blocks. 

A production-rule-based cognitive architecture called Soar provides a 
computer-based approach to implementing GOMS models. This software 
tool enables complex predictions of expert performance ti1nes based on per
ceptual and cognitive parameters. Soar was used to model learning in the 
highly interactive task of videogame playing (Bauer and John, 1995). John 
and Kieras (1996a, 1996b) compare four GOMS-related techniques and pro
vide ten case studies of practical applications. 

2.2.3 Stages of action models 

Another approach to forming theories is to describe the stages of action that 
users go through in trying to use a system. Norman (1988) offers seven stages 
of action as a model of human-computer interaction: 

1. Forming the goal 

2. Forming the intention 

3. Specifying the action 

4. Executing the action 

5. Perceiving the system state 

6. Interpreting the syste1n state 

7. Evaluating the outcome 

Some of Norman's stages correspond roughly to Foley and van Dam's 
separation of concerns; that is, the user forms a conceptual intention, refor
mulates it into the semantics of several commands, constructs the required 
syntax, and eventually produces the lexical token by the action of moving 
the mouse to select a point on the screen. Norman makes a contribution by 
placing his stages in the context of cycles of action and evaluation. This 
dynamic process of action distinguishes Norman's approach from the other 
models, which deal mainly with the knowledge that must be in the user's 
mind. Furthermore, the seven-stages model leads naturally to identification 
of the gulf of execution (the mismatch between the user's intentions and the 
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allowable actions) and the gulf of evaluation (the mis1natch between the sys
tem's representation and the user's expectations). 

This model leads Nonnan to suggest four principles of good design. First, 
the state and the action alternatives should be visible. Second, there should 
be a good conceptual model with a consistent system image. Third, the 
interface should include good mappings that reveal the relationships 
between stages. Fourth, the user should receive continuous feedback. Nor
man places a heavy e1nphasis on studying errors. He describes how errors 
often occur in moving from goals to intentions to actions and to executions. 

A stages-of-action 1nodel helps us to describe user exploration of an inter
face (Polson and Lewis, 1990). As users try to accomplish their goals, there 
are four critical points where user failures can occur: (1) users can form an 
inadequate goal, (2) users might not find the correct interface object because 
of an incomprehensible label or icon, (3) users 1nany not know how to specify 
or execute a desired action, and (4) users may receive inappropriate or mis
leading feedback. The latter three failures may be prevented by improved 
design or overcome by time-consuming experience with the interface 
(Franzke, 1995). 

2.2.4 Consistency through grammars 

An important goal for designers is a consistent user interface. However, 
the definition of consistency is elusive and has multiple levels that are 
sometimes in conflict; it is also sometimes advantageous to be inconsis
tent. The argument for consistency is that a command language or set of 
actions should be orderly, predictable, describable by a few rules, and 
therefore easy to learn and retain. These overlapping concepts are con
veyed by an example that shows two kinds of inconsistency (A illustrates 
lack of any attempt at consistency, and B shows consistency except for a 
single violation): 

Consistent 

delete I insert character 

delete I insert word 

delete I insert line 

delete/insert paragraph 

Inconsistent A 

delete I insert character 

remove /bring word 

destroy I create line 

kill/birth paragraph 

Inconsistent B 

delete/insert character 

remove I insert word 

delete/insert line 

delete/insert paragraph 

Each of the actions in the consistent version is the same, whereas the 
actions vary for the inconsistent version A. The inconsistent action verbs 
are all acceptable, but their variety suggests that they will take longer to 
learn, will cause more errors, will slow down users, and will be harder for 
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users to remember. Inconsistent version B is s01nehow more malicious 
because there is a single unpredictable inconsistency that stands out so dra
matically that this language is likely to be remembered for its peculiar 
inconsistency. 

To capture these notions, Reisner (1981) proposed an action grammar to 
describe two versions of a graphics-system interface. She demonstrated that 
the version that had a simpler grammar was easier to learn. Payne and Green 
(1986) expanded her work by addressing the multiple levels of consistency 
(lexicat syntactic, and semantic) through a notational structure they call 
task-action grammars (TAGs). They also address s01ne aspects of complete
ness of a language by trying to characterize a complete set of tasks; for exam
ple, up, down, and left constitute an inc01nplete set of arrow-cursor 
movement tasks, because right is missing. Once the full set of task-action 
mappings is written down, the grmnm.ar of the command language can be 
tested against it to demonstrate completeness. Of course, a designer 1night 
leave out something fr01n the task-action mapping and then the grammar 
could not be checked accurately, but it does seem useful to have an approach 
to checking for completeness and consistency. For example, a TAG definition 
of cursor control would have a dictionary of tasks: 

1nove-cursor-one-character-forward [Direction= forward, Unit= char] 

move-cursor-one-character-backward [Direction= backward, Unit= char] 

move-cursor-one-word-forward 

move-cursor-one-word-backward 

[Direction = forward, Unit = word] 

[Direction =backward, Unit = word] 

Then the high-level rule schemas that describe the syntax of the commands 
are as follows: 

1. task [Direction, Unit] -7 symbol [Direction]+ letter [Unit] 

2. symbol [Direction = forward] -7 "CTRL" 

3. symbol [Direction = backward] -7 "ESC" 

4. letter [Unit= word] -7 "W" 

5. letter [Unit= char] -7 "C" 

These schemas will generate a consistent grammar: 

move cursor one character forward 
move cursor one character backward 
move cursor one word forward 
move cursor one word backward 

CTRL-C 
ESC-C 
CTRL-W 
ESC-W 
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Payne and Green are careful to state that their notation and approach are 
flexible and extensible, and they provide appealing examples in which their 
approach sharpened the thinking of designers. 

Reisner (1990) extends this work by defining consistency more for
mally, but Grudin (1989) points out flaws in some arguments for consis
tency. Certainly consistency is subtle and has multiple levels; there are 
conflicting forms of consistency, and sometimes inconsistency is a virtue 
(for example, to draw attention to a dangerous operation). Nonetheless, 
understanding consistency is an important goal for designers and 
researchers. 

2.2.5 Widget-level theories 

Hierarchical decomposition is often a useful tool for dealing with complex
ity, but many of the theories and predictive models follow an extreme reduc
tionist approach, which may not always be valid. In some situations, it is 
hard to accept the low level of detail, the precise numbers that are some
times attached to subtasks, and the validity of simple summations of time 
periods. Furthermore, models requiring numerous subjective judgments 
raise the question of whether several analysts would come up with the same 
results. 

An alternative approach is to follow the simplifications made in the 
higher-level, user-interface building tools (see Chapter 5). Instead of dealing 
with atomic level features, why not create a model based on the widgets 
(interface components) supported in the tool? Once a scrolling-list widget 
was tested to determine user performance as a function of the number of 
items and the size of the window, then future widget users would have 
automatic generation of performance prediction. The prediction would 
have to be derived from some declaration of the task frequencies, but the 
description of the interface would emerge from the process of designing the 
interface. 

A measure of layout appropriateness (frequently used pairs of widgets 
should be adjacent, and the left-to-right sequence should be in harmony with 
the task-sequence description) would also be produced to guide the designer 
in a possible redesign. Estimates of the perceptual and cognitive complexity 
plus the motor load would be generated automatically (Sears, 1992). As wid
gets become more sophisticated and more widely used, the investment in 
determining the complexity of each widget will be amortized over the many 
designers and projects. 

Gradually, higher-level patterns of usage are appearing, in much that way 
that Alexander describes has occurred in architecture (1977). Familiar pat-
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terns of building fireplaces, stairways, or roofs become modular components 
that acquire names and are combined to form still larger patterns. 

2.3 Object-Action Interface Model 

Distinctions between syntax and semantics have long been made by com
piler writers who sought to separate out the parsing of input text from the 
operations that were invoked by the text. A syntactic-semantic model of 
hu1nan behavior was originated to describe progra1nming (Shneiderman, 
1980) and was applied to database-manipulation facilities (Shneiderman, 
1981), as well as to direct manipulation (Shneiderman, 1983). The early syn
tactic-seinantic 1nodel made a major distinction between meaningfully 
acquired semantic concepts and rote-Inemorized syntactic details. Semantic 
concepts of the users's tasks were well-organized and stable in memory, 
whereas syntactic details of command languages were arbitrary and had to 
be rehearsed frequently to be maintained. 

The maturing model described in this book's first edition stressed the sep
aration between task-domain concepts (for example, stock-market portfo
lios) and the computer-domain concepts that represent them (for example, 
folders, spreadsheets, or databases). Then, this book's second edition ampli
fied the ilnportant distinction between objects and actions. By now, the 
objects and actions have become the dominant features. In this third edition, 
the underlying theory of design will be called the object-action interface 
(OAI-let's pronounce it Oo-Ah!) model. 

As GUis have replaced command languages, intricate syntax has given way 
to relatively simple direct manipulations applied to visual representations of 
objects and actions. The emphasis is now on the visual display of user task 
objects and actions. For example, a collection of stock-market portfolios might 
be represented by leather folders with icons of engraved share certificates. Then, 
the actions are represented-by trashcans for deletion, or shelf icons to repre
sent destinations for portfolio copying. Of course, there are syntactic aspects of 
direct manipulation, such as knowing whether to drag the file to the trashcan or 
to drag the trashcan to the folder, but the amount of syntax is small and can be 
thought of as being at the lowest level of the interface actions. Even syntactic 
fonns such as double-clicking, mouse-down-and-wait, or gestures seem simple 
compared to the pages of grammars for early command languages. 

Doing object-action design starts with understanding the task. That task 
includes the universe of real-world objects with which users work to accom
plish their intentions and the actions that they apply to those objects. The 
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universe intention 
metaphor plan 

atoms steps 
pixels clicks 

Objects Actions Objects Actions 

Task Interface 

Figure 2.2 

Task and interface concepts, separated into hierarchies of objects and actions. 

high-level task objects might be stock-market statistics, a photo library, or a 
scientific journal (Fig. 2.2). These objects can be decomposed into informa
tion on a single stock and finally into aton1.ic units such as a share price. Task 
actions start from high-level intentions that are decomposed into intermedi
ate goals and individual steps. 

Once there is agreement on the task objects and actions and their decom
position, the designer can create the metaphoric representations of the inter
face objects and actions. Interface objects do not have weight or thickness; 
they are pixels that can be moved or copied in ways that represent real-world 
task objects with feedback to guide users. Finally, the designer must make 
the interface actions visible to users, so that users can decompose their plan 
into a series of intermediate actions, such as opening a dialog box, all the 
way down to a series of detailed keystrokes and clicks. 

In outline, the OAI model is an explanatory model that focuses on task 
objects and actions, and on interface objects and actions. Because the syntac
tic details are minimal, users who know the task domain objects and actions 
can learn the interface relatively easily (see Chapter 12). The OAI model also 
reflects the higher level of design with which most designers deal when they 
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use the widgets in user-interface-building tools. The standard widgets have 
familiar and simple syntax (click/ double-click, drag, or drop) and simple 
forms of feedback (highlighting, scrolling, or movement), leaving the 
designer more focused on how to use these widgets to create a business-ori
ented solution. The OAI model is in harmony with the software-engineering 
trends toward object-oriented design and programming methods that have 
become popular in the past decade. 

2.3.1 Task hierarchies of objects and actions 

The primary way to deal with large and complex problems is to decom
pose them into several smaller problems in a hierarchical manner until 
each subproblem is manageable. For example, a human body is discussed 
in terms of neural, muscular, skeletal, reproductive, digestive, circulatory, 
and other subsystems, which in turn might be described by organs, tissues, 
and cells. Most real-world objects have similar decompositions: buildings, 
cities, computer programs, and plays, for example. Some objects are more 
neatly decomposed than are others; some objects are easier to understand 
than are others. 

Similarly, intentions can be decomposed into smaller action steps. A 
building-construction plan can be reduced to a series of steps such as sur
veying the property, laying the foundation, building the frame, raising the 
roof, and completing the interior. A symphony performance has movements, 
measures, and notes; a baseball game has innings, outs, and pitches. 

People learn the task objects and actions independently of their imple
mentation on a computer. People learn about buildings or books through 
developmental experiences in their youth, but many tasks require special
ized training, such as in how to manage stock-market portfolios, to design 
buildings, or to diagnose medical problems. It may take years to learn the 
terminology, to acquire the decision-making skills, and to become profi
cient. 

Designers who develop computer systems to support professionals may 
have to take training courses, to read workbooks, and to interview users. 
Then, the designers can sit down and generate a hierarchy of objects and 
actions to model the users' tasks. This model forms a basis for designing the 
interface objects and actions plus their representation in pixels on a screen, in 
physical devices, or by a voice or other audio cue. 

Users who must learn to use computers to accomplish real-world tasks 
must first become proficient in the task domain. An expert computer user 
who has not studied architecture will not be able to use a building-design 
package any more than a computer-savvy amateur can make reliable medical 
diagnoses. 
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In summary, tasks include hierarchies of objects and actions at high and 
low levels. Hierarchies are not perfect, but they are comprehensible and use
ful. Most users accept a separation of their tasks into high- and low-level 
objects and actions. 

2.3.2 Interface hierarchies of objects and actions 

The interface includes hierarchies of objects and actions at high and low lev
els. For example, a central set of interface-object concepts deals with storage. 
Users come to understand the high-level concept that computers store infor
mation. The stored information can be refined into objects, such as the direc
tory and the files of information. In turn, the directory object is refined into a 
set of directory entries, each of which has a name, length, date of creation, 
owner, access control, and so on. Each file is an object that has a lower-level 
structure consisting of lines, fields, characters, fonts, pointers, binary num
bers, and so on. 

The interface actions also are decomposable into lower-level actions. The 
high-level plans, such as creating a text data file, may require load, inser
tion, and save actions. The midlevel action of saving a file is refined into 
the actions of storing a file and backup file on one of 1nany disks, of apply
ing access-control rights, of overwriting previous versions, of assigning a 
name to the file, and so on. Then, there are many low-level details about 
permissible file types or sizes, error conditions such as shortage of storage 
space, or responses to hardware or software errors. Finally, the low-level 
action of issuing a specific command is carried out by clicking on a pull
down menu item. 

Designers craft interface objects and actions based on familiar examples, 
then tune those objects and actions to fit the task. For example, in developing 
a system to manage stock-market portfolios, the designer might consider 
spreadsheets, databases, word processors, or a specialized graphical design 
that allowed users to drag stock symbols to indicate buying or selling. 

Users can learn interface objects and actions by seeing a demonstration, 
hearing an explanation of features, or conducting trial-and-error sessions. The 
metaphoric representation-abstract, concrete, or analogical-conveys the 
interface objects and actions. For example, to explain saving a file, an instructor 
might draw a picture of a disk drive and a directory to show where the file goes 
and how the directory references the file. Alternatively, the instructor might 
describe how the card catalog acts as a directory for books saved in the library. 

When interface objects and actions have a logical structure that can be 
anchored to familiar task objects and actions, we expect that structure to be 
relatively stable in memory. If users remember the high-level concept of sav
ing a file, they will be able to conclude that the file must have a name, a size, 
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and a storage location. The linkage to other objects and the visual presenta
tion support the memorability of this knowledge. 

These interface objects and actions were once novel, known by only a small 
number of scientists, engineers, and data-processing professionals. Now, these 
concepts are taught at the elementary-school level, argued over during coffee 
breaks in the office, and exchanged in the aisles of corporate jets. When educa
tors talk of computer literacy, part of their plans cover these interface concepts. 

The OAI model helps us to understand the multiple complex processes 
that must occur for users to be successful in using an interface to accomplish a 
task. For example, in writing a business letter using computer software, users 
have to integrate smoothly their knowledge of the task objects and actions 
and of the interface objects and actions. They must have the high-level con
cept of writing (task action) a letter (task object), recognize that the letter will 
be stored as a document (interface object), and know the details of the save 
command (interface action). Users must be fluent with the middle-level con
cept of composing a sentence, and must recognize the mechanis1ns for begin
ning, writing, and ending a sentence. Finally, users must know the proper 
low-level details of spelling each word (low-level task object), and must know 
where the keys are for each letter (low-level interface object). The goal of min
imizing interface concepts (such as the syntax of a command language) while 
presenting a visual representation of the task objects and actions is the heart 
of the direct-manipulation approach to design (see Chapter 6). 

Integrating the multiple levels of task and interface concepts is a substan
tial challenge that requires great motivation and concentration. Educational 
materials that facilitate the acquisition of this knowledge are difficult to 
design, especially because of the diversity of background knowledge and 
motivation levels of typical learners. The OAI model of user knowledge can 
provide a guide to educational designers by highlighting the different kinds 
of knowledge that users need to acquire (see Chapter 12) and a guide to web 
site designers (see Chapter 16). 

Designers of interactive systems can apply the OAI model to systematize 
their work. Where possible, the task objects should be made explicit, and the 
user's task actions should be laid out clearly. Then, the interface objects and 
actions can be identified, and appropriate representations can be created. 
These designs are likely to increase comprehensibility to users and indepen
dence of specific hardware. 

2.3.3 The disappearance of syntax 

In the early days of computers, users had to maintain a profusion of 
device-dependent details in their human memories. These low-level syn
tactic details include the knowledge of which action erases a character 
(delete, backspace, CTRL-H, CTRL-G, CTRL-D, rightmost mouse button, 
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or ESCAPE), which action inserts a new line after the third line of a text 
file (CTRL-1, INSERT key, I3, I 3, or 3I), which abbreviations are permis
sible, and which of the numbered function keys produces the previous 
screen. 

The learning, use, and retention of this knowledge are hampered by two 
problems. First, these details vary across systems in an unpredictable man
ner. Second, acquiring syntactic knowledge is often a struggle because the 
arbitrariness of these minor design features greatly reduces the effectiveness 
of paired-associate learning. Rote memorization requires repeated 
rehearsals to reach competence, and retention over time is poor unless the 
knowledge is applied frequently. Syntactic knowledge is usually conveyed 
by example and repeated usage. Formal notations, such as Backus-Naur 
form, are useful for knowledgeable computer scientists, but are confusing to 
most users. 

A further proble1n with syntactic knowledge, in some cases, lies in the dif
ficulty of providing a hierarchical structure or even a modular structure to 
cope with the complexity. For example, how is a user to remember these 
details of using an electronic-mail system: press RETURN to terminate a 
paragraph, CTRL-D to terminate a letter, Q to quit the electronic-mail sub
system, and logout to terminate the session. The knowledgeable computer 
user understands these four forms of termination as com1nands in the con
text of the full system, but the novice may be confused by four seemingly 
similar situations that have radically different syntactic forms. 

A final difficulty is that syntactic knowledge is system dependent. A user 
who switches from one machine to another may face different keyboard lay
outs, commands, function-key usage, and sequences of actions. Certainly 
there may be some overlap. For example, arithmetic expressions might be 
the same in two languages; unfortunately, however, the small differences can 
be the most annoying. One system uses K to keep a file and another uses K to 
kill the file, or s to save versus s to send. 

Expert frequent users can overcome these difficulties, and they are less 
troubled by syntactic knowledge problems. Novices and· knowledgeable 
users, however, are especially troubled by syntactic irregularities. Their bur
den can be lightened by use of menus (see Chapter 7), a reduction in the arbi
trariness of the keypresses, use of consistent patterns of commands, 
meaningful command names and labels on keys, and fewer details that must 
be memorized (see Chapter 8). 

Minimizing these burdens is the goal of most interface designers. Modern 
direct-manipulation styles (see Chapter 6) support the process of presenting 
users with screens filled with familiar objects and actions representing their 
task objects and actions. Modern user interface building tools (see Chapter 5) 
facilitate the design process by making standard widgets easily available. 
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Innovative designers may recognize opportunities for novel widgets that 
provide a closer match between the screen representation and the user's 
workplace. 

2.4 Principle 1: Recognize the Diversity 

When hu1nan diversity (see Section 1.5) is 1nultiplied by the wide range of 
situations, tasks, and frequencies of use, the set of design possibilities 
becmnes enonnous. The designer can respond by choosing fro1n a spectru1n 
of interaction styles. 

A preschooler playing a graphic computer game is a long way from a ref
erence librarian doing bibliographic searches for anxious and hurried 
patrons. Shnilarly, a professional program1ner using a new operating syste1n 
is a long way from a highly trained and experienced air-traffic controller. 
Finally, a student surfing the net for love poems is a long way frmn a hotel
reservations clerk serving customers for many hours per day. 

These sketches highlight the differences in users' background knowl
edge, training in the use of the system, frequency of use, and goals, as well 
as in the impact of a user error. No single design could satisfy all these 
users and situations, so before beginning a design, we must make the 
characterization of the users and the situation as precise and complete as 
possible. 

2.4.1 Usage profiles 

"Know thy user" was the first principle in Hansen's (1971) classic list of user
engineering principles. It is a simple idea, but a difficult and, unfortunately, 
often-undervalued goal. No one would argue against this principle, but 
many designers assu1ne that they understand the users and users' tasks. Suc
cessful designers are aware that other people learn, think, and solve prob
lems in different ways. Some users really do prefer to deal with tables rather 
than with graphs, with words instead of numbers, or with a rigid structure 
rather than an open-ended fonn. 

It is difficult for most designers to know whether Boolean expressions are 
too difficult a concept for library patrons at a junior college, fourth graders 
learning programming, or professional controllers of electric-power utilities. 

All design should begin with an understanding of the intended users, 
including population profiles that reflect age, gender, physical abilities, edu
·cation, cultural or ethnic background, training, motivation, goals, and 
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personality. There are often several co1nn1.unities of users for a syste1n, so the 
design effort is multiplied. Typical user com1nunities-such as high school 
teachers, nurses, doctors, con1.puter progra1nmers, museum patrons, or 
librarians-can be expected to have various combinations of knowledge and 
usage patterns. Users from different countries may each deserve special 
attention, and even regional differences exist within countries. Other vari
ables that characterize users include location (for example, urban vs. rural), 
econmnic profile, disabilities, and attitudes toward using technology. 

In addition to these profiles, users 1night be tested for such skills as com.
prehension of Boolean expressions, knowledge of set theory, fluency in a for
eign language, or skills in human relationships. Other tests might cover such 
task-specific abilities as knowledge of airport city codes, stockbrokerage ter
Ininology, insurance-claims concepts, or map icons. 

The process of getting to know the users is never ending because there is 
so 1nuch to know and because the users keep changing. Every step in under
standing the users and in recognizing them as individuals whose outlook is 
different frmn the designer's own is likely to be a step closer to a successful 
design. 

For example, a generic separation into novice or first-tin1.e, knowledge
able intermittent, and expert frequent users might lead to these differing 
design goals: 

• Novice or first-tilne users True novice users are assu1ned to know little 
of the task or interface concepts. By contrast, first-time users are profes
sionals who know the task concepts, but have shallow knowledge of 
the interface concepts. Both groups of users may arrive with anxiety 
about using cmnputers that inhibits learning. Overcoming these limita
tions is a serious challenge to the designer of the interface, including 
instructions, dialog boxes, and online help. Restricting vocabulary to a 
small number of familiar, consistently used concept terms is essential to 
begin developing the user's knowledge. The number of actions should 
also be small, so that novice and first-ti1ne users can carry out simple 
tasks successfully and thus reduce anxiety, build confidence, and gain 
positive reinforcement. Informative feedback about the accomplish
ment of each task is helpful, and constructive, specific error messages 
should be provided when users make mistakes. Carefully designed 
paper manuals and step-by-step online tutorials may be effective. 

• Knowledgeable intennittent users Many people are knowledgeable 
but intermittent users of a variety of systems. They have stable task 
concepts and broad knowledge of interface concepts, but they will 
have difficulty retaining the structure of menus or the location of fea
tures. The burden on their memories will be lightened by orderly 
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structure in the menus, consistent terminology, and high interface 
apparency, which e1nphasizes recognition rather than recall. Consis
tent sequences of actions, meaningful m.essages, and guides to fre
quent patterns of usage will help knowledgeable intermittent users 
to rediscover how to perform their tasks properly. Protection from 
danger is necessary to support relaxed exploration of features or 
attempts to invoke a partially forgotten action sequence. These users 
will benefit frmn online help screens to fill in 1nissing pieces of task 
or interface knowledge. Well-organized reference manuals also will 
be useful. 

• Expert frequent users Expert "power" users are thoroughly fa1niliar 
with the task and interface concepts and seek to get their work done 
quickly. They demand rapid response tim.es, brief and nondistracting 
feedback, and the capacity to carry out actions with just a few key
strokes or selections. When a sequence of three or four cmnmands is 
performed regularly, the frequent user is eager to create a macro or 
other abbreviated form to reduce the nun1.ber of steps. Strings of coln
mands, shortcuts through 1nenus, abbreviations, and other accelerators 
are require1nents. 

These characteristics of these three classes of usage must be refined for each 
environment. Designing for one class is easy; designing for several is 1nuch 
more difficult. 

When multiple usage classes must be accommodated in one system, the 
basic strategy is to permit a level-structured (some times called layered or spi
ral approach) to learning. Novices can be taught a minilnal subset of objects 
and actions with which to get started. They are 1nost likely to make correct 
choices when they have only a few options and are protected from making 
mistakes-when they are given a training-wheels interface. After gaining con
fidence from hands-on experience, these users can progress to ever-greater 
levels of task concepts and the accompanying interface concepts. The learn
ing plan should be governed by the users' progress through the task con
cepts, with new interface concepts being introduced only when they are 
needed to support a more complex task. For users with strong knowledge of 
the task and interface concepts, rapid progress is possible. 

For example, novice users of a bibliographic-search system might be 
taught author or title searches first, followed by subject searches that require 
Boolean combinations of queries. Their progress is governed by the task 
dmnain, rather than by an alphabetical list of commands that are difficult to 
relate to the tasks. The level-structured approach must be carried out in the 
design of not only the software, but also the user manuals, help screens, error 
messages, and tutorials. 
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Another approach to acc01nmodating different usage classes is to permit 
user control of the density of inform_ative feedback that the syste1n provides. 
Novices want 1nore informative feedback to confirm their actions, whereas 
frequent users want less distracting feedback. Silnilarly, it seems that fre
quent users like displays to be more densely packed than do novices. Finally, 
the pace of interaction may be varied from slow for novices to fast for fre
quent users. 

2.4.2 Task profiles 

After carefully drawing the user profile, the developers must identify the 
tasks. Task analysis has a long, but mixed, history (Bailey, 1996). Every 
designer would agree that the set of tasks 1nust be detennined before design 
can proceed, but too often the task analysis is done infonnally or ilnplicitly. If 
implementers find that another com1nand can be added, the designer is 
often te1npted to include that com1nand in the hope that s01ne users will find 
it helpful. Design or imple1nentation convenience should not dictate system 
functionality or command features. 

High-level task actions can be decomposed into multiple middle-level 
task actions that can be further refined into atomic actions that the user 
executes with a single command, menu selection, and so on. Choosing the 
1nost appropriate set of ato1nic actions is a difficult task. If the atomic 
actions are too small, the users will become frustrated by the large number 
of actions necessary to accomplish a higher-level task. If the atomic actions 
are too large and elaborate, the users will need many such actions with 
special options, or they will not be able to get exactly what they want from 
the system. 

The relative task frequencies will be important in shaping, for example, a 
set of commands or a menu tree. Frequently perfonned tasks should be sim
ple and quick to carry out, even at the expense of lengthening s01ne infre
quent tasks. Relative frequency of use is one of the bases for making 
architectural design decisions. For example, in a text editor, 

• Frequent actions might be performed by special keys, such as the four 
cursor arrows, INSERT, and DELETE. 

• Intermediately frequent actions might be performed by a single letter 
plus CTRL, or by a selection from a pull-down menu-examples 
include underscore, center, indent, subscript, or superscript. 

• Infrequent actions or complex actions might require going through a 
sequence of menu selections or form fillins-for example, to change the 
printing format or to revise network-protocol parameters. 

A matrix of users and tasks can help us to sort out these issues (Fig. 2.3). In 
each box, the designer can put a check mark to indicate that this user carries 
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FREQUENCY OF TASK BY JOB TITLE 

Job title 

Nurse 

Physician 

Supervisor 

Appointment 

personnel 

Medical-record 

1naintainer 

Clinical researcher 

Database programmer 

Figure 2.3 

Query by 
Patient 
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0.06 

0.01 

0.26 

0.07 

Update 
Data 

0.11 

0.04 

0.01 

0.04 

Task 

Query Add 
across Relations 

Patients 

0.04 

0.04 

0.08 

0.02 

0.01 

0.02 

Evaluate 
System 

0.05 

Hypothetical frequency-of-use data for a medical clinic information system. 
Answering queries from appointments personnel about individual patients is the 
highest-frequency task. 

out this task. A more precise analysis would include frequencies instead of 
just simple check marks. 

2.4.3 Interaction styles 

When the task analysis is complete and the task objects and actions have 
been identified, the designer can choose fr01n these primary interaction 
styles: menu selection, form fillin, command language, natural language, 
and direct manipulation (Box 2.1). Chapters 6 through 8 explore these styles 
in detail; here, we give a comparative overview to set the stage. 

Direct manipulation When a clever designer can create a visual representa
tion of the world of action, the users' tasks can be greatly simplified because 
direct manipulation of familiar objects is possible. Examples of such systems 
include the popular desktop metaphor, computer-assisted-design tools, air
traffic-control systems, and video ga1nes. By pointing at visual representa
tions of objects and actions, users can carry out tasks rapidly and can observe 
the results immediately. Keyboard entry of commands or menu choices is 
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Box 2.1 

Advantages and disadvantages of the five primary interaction styles. 

Advantages 

Direct manipulation 

visually present& task concepts 

allows easy learning 

allows easy retention 

allows errors to be avoided 

encourages exploration 

affords high subjective satisfaction 

Menu selection 

shortens learning 

reduces keystrokes 

structures decision making 

permits use of dialog-management 
tools 

allows easy support of error handling 

Formfillin 

simplifies data entry 

requires modest training 

gives convenient assistance 

permits use of form-management tools 

Command language 

is flexible 

appeals to '1power" users 

supports user initiative 

allows convenient creation of user
defined macros 

N aturallanguage 

relieves burden of learning syntax 

Disadvantages 

may be hard to program 

may require graphics display and 
pointing devices 

presents danger of many menus 

may slow frequent users 

consumes screen space 

requires rapid display rate 

consu1nes screen space 

has poor error handling 

requires substantial training and 
memorization 

requires clarification dialog 

may require more keystrokes 

may not show context 

is unpredictable 
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replaced by use of cursor-1notion devices to select frmn a visible set of objects 
and actions. Direct manipulation is appealing to novices, is easy to remem
ber for intennittent users, and, with careful design, it can be rapid for fre
quent users. Chapter 6 describes direct 1nanipulation and its application. 

Menu selection In menu-selection systen'ls, users read a list of items, select 
the one most appropriate to their task, and observe the effect. If the tenninol
ogy and meaning of the ite1ns are understandable and distinct, then users can 
accomplish their tasks with little learning or memorization and just a few 
actions. The greatest benefit 1nay be that there is a clear structure to decision 
making, since all possible choices are presented at one time. This interaction 
style is appropriate for novice and intermittent users and can be appealing to 
frequent users if the display and selection 1nechanisms are rapid. 

For designers, 1nenu-selection systems require careful task analysis to 
ensure that all functions are supported conveniently and that terminology 
is chosen carefully and used consistently. Advanced user interface build
ing tools to support menu selection are an enormous benefit in ensuring 
consistent screen design, validating cmnpleteness, and supporting n1ain
tenance. 

Form fillin When data entry is required, 1nenu selection usually becomes 
cumbersome, and form fillin (also called fill in the blanks) is appropriate. 
Users see a display of related fields, 1nove a cursor among the fields, and 
enter data where desired. With the form-fillin interaction style, users must 
understand the field labels, know the permissible values and the data-entry 
method, and be capable of responding to error messages. Since knowledge of 
the keyboard, labels, and permissible fields. is required, some training may 
be necessary. This interaction style is most appropriate for knowledgeable 
intermittent users or frequent users. Chapter 7 provides a thorough treat
ment of menus and form fillin. 

Command language For frequent users, command languages provide a 
strong feeling of locus of control and initiative. Users learn the syntax and 
can often express complex possibilities rapidly, without having to read dis
tracting prompts. However, error rates are typically high, training is neces
sary and retention may be poor. Error messages and online assistance are 
hard to provide because of the diversity of possibilities plus the complexity 
of mapping from tasks to interface concepts and syntax. Command lan
guages and lengthier query or programming languages are the domain of 
expert frequent users, who often derive great satisfaction from mastering a 
complex set of semantics and syntax. 

Natural language The hope that computers will respond properly to arbitrary 
natural-language sentences or phrases engages many researchers and syste1n 
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developers, in spite of lilnited success thus far. Natural-language interaction 
usually provides little context for issuing the next command, frequently 
requires clarification dialog, and 1nay be slower and more cumbersome than the 
alternatives. Still, where users are knowledgeable about a task domain whose 
scope is limited and where intennittent use inhibits co1n1nand-language train
ing, there exist opportunities for natural-language interfaces (discussed at the 
end of Chapter 8). 

Blending several interaction styles may be appropriate when the required 
tasks and users are diverse. Commands can lead the user to a form fillin where 
data entry is required, or menus can be used to control a direct-manipulation 
envirmunent when a suitable visualization of actions cannot be found. 

2.5 Principle 2: Use the Eight Golden Rules of 
Interface Design 

Later chapters cover constructive guidance for design of direct manipula
tion, menu selection, cmnmand languages, and so on. This section presents 
underlying principles of design that are applicable in 1nost interactive sys
tems. These underlying principles of interface design, derived heuristically 
from experience, should be validated and refined. 

1. Strive for consistency. This rule is the most frequently violated one, but fol
lowing it can be tricky because there are many forms of consistency. Consis
tent sequences of actions should be required in similar situations; identical 
terminology should be used in prompts, menus, and help screens; and con
sistent color, layout, capitalization, fonts, and so on should be employed 
throughout. Exceptions, such as no echoing of passwords or confirmation of 
the delete command, should be comprehensible and limited in number. 

2. Enable frequent users to use shortcuts. As the frequency of use increases, so 
do the user's desires to reduce the number of interactions and to increase 
the pace of interaction. Abbreviations, special keys, hidden commands, 
and macro facilities are appreciated by frequent knowledgeable users. 
Short response times and fast display rates are other attractions for fre
quent users. 

3. Offer informative feedback. For every user action, there should be system 
feedback. For frequent and minor actions, the response can be modest, 
whereas for infrequent and major actions, the response should be more 
substantial. Visual presentation of the objects of interest provides a con-
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venient environment for showing changes explicitly (see discussion of 
direct manipulation in Chapter 6). 

4. Design dialogs to yield closure. Sequences of actions should be organized 
into groups with a beginning, middle, and end. The informative feedback 
at the completion of a group of actions gives operators the satisfaction of 
accomplishment, a sense of relief, the signal to drop contingency plans 
and options fr01n their 1ninds, and an indication that the way is clear to 
prepare for the next group of actions. 

5. Offer error prevention and simple error handling. As much as possible, design 
the system such that users cannot 1nake a serious error; for example, prefer 
1nenu selection to fonn fillin and do not allow alphabetic characters in 
numeric entry fields. If users 1nake an error, the system should detect the 
error and offer simple, constructive, and specific instructions for recovery. 
For exmnple, users should not have to retype an entire command, but 
rather should need to repair only the faulty part. Erroneous actions should 
leave the syste1n state unchanged, or the system should give instructions 
about restoring the state. 

6. Pennit easy reversal of actions. As much as possible, actions should be 
reversible. This feature relieves anxiety, since the user knows that errors 
can be undone, thus encouraging exploration of unfmniliar options. The 
units of reversibility may be a single action, a data-entry task, or a C01TI
plete group of actions such as entry of a name and address block. 

7. Support internal locus of control. Experienced operators strongly desire the 
sense that they are in charge of the system and that the system responds to 
their actions. Surprising system actions, tedious sequences of data entries, 
inability or difficulty in obtaining necessary information, and inability to 
produce the action desired all build anxiety and dissatisfaction. Gaines 
(1981) captured part of this principle with his rule avoid acausality and his 
encouragement to 1nake users the initiators of actions rather than the respon
ders to actions. 

8. Reduce short-term memory load. The limitation of human information pro
cessing in short-term memory (the rule of thumb is that humans can 
remember "seven-plus or minus-two chunks" of information) requires 
that displays be kept simple, multiple page displays be consolidated, 
window-motion frequency be reduced, and sufficient training time be 
allotted for codes, mnemonics, and sequences of actions. Where appro
priate, online access to command-syntax forms, abbreviations, codes, and 
other information should be provided. 

These underlying principles must be interpreted, refined, and extended 
for each environment. The principles presented in the ensuing sections 
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focus on increasing the productivity of users by providing simplified data
entry procedures, comprehensible displays, and rapid informative feed
back that increase feelings of competence, mastery, and control over the 
system. 

2.6 Principle 3: Prevent Errors 

There is no medicine against death, and against error no rule has been found. 

Sigmund Freud (Inscription he wrote on his portrait) 

Users of word processors, spreadsheets, database-query facilities, air-traf
fic-control systems, and other interactive systems make 1nistakes far more 
frequently than might be expected. Card et al. (1980) reported that experi
enced professional users of text editors and operating systems made mis
takes or used inefficient strategies in 31 percent of the tasks assigned to 
them. Brown and Gould (1987) found that even experienced authors 1nade 
errors in almost half their spreadsheets. Other studies reveal the magnitude 
of the problem of-and the loss of productivity due to-user errors. 

One way to reduce the loss in productivity due to errors is to improve the 
error messages provided by the computer system. Shneiderman (1982) 
reported on five experiments in which changes to error messages led to 
improved success at repairing the errors, lower error rates, and increased sub
jective satisfaction. Superior error messages were more specific, positive in 
tone, and constructive (telling the user what to do, rather than merely report
ing the problem). Rather than using vague and hostile messages, such as 
SYNTAX ERROR or ILLEGAL DATA, designers were encouraged to use infor
mative m.essages, such as UNMATCHED LEFT PARENTHESIS or 
MENU CHOICES ARE IN THE RANGE OF 1 TO 6. 

Improved error messages, however, are only helpful medicine. A more 
effective approach is to prevent the errors from occurring. This goal is more 
attainable than it may seem in many systems. 

The first step is to understand the nature of errors. One perspective is that 
people make mistakes or "slips" (Norman, 1983) that designers help them to 
avoid by organizing screens and menus functionally, designing commands 
or menu choices to be distinctive, and making it difficult for users to take 
irreversible actions. Norman offers other guidelines, such as do not have 
modes, do offer feedback about the state of the system, and do design for 
consistency of c01nmands. Norman's analysis provides practical examples 
and a useful theory. 
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Three techniques can reduce errors by ensuring cmnplete and correct 
actions: correct 1natching pairs, cmnplete sequences, and correct c01n1nands. 

2.6.1 Correct matching pairs 

A com.mon proble1n is the lack of correct matching pairs. It has many lnani
festations and several siinple prevention strategies. An exan1.ple is the failure 
to provide the right parenthesis to close an open left parenthesis. If a biblio
graphic-search syste1n allowed Boolean expressions such as 
COMPUTERS AND (PSYCHOLOGY OR SOCIOLOGY) and the user failed to pro
vide the right parenthesis at the end, the syste1n would produce a 
SYNTAX ERROR 1nessage or, 1nore helpfully, a 1nore meaningful message, 
such as UNMATCHED LEFT PARENTHESES. 

Similarly, other marker pairs are required to delin1.it boldface, italic, or 
underscored text in word processors or web progrmnining. If the text file 
contains <B>This is boldface</B>, then the three words between the 
markers appear in boldface. If the righhnost < /B> is missing, additional text 
1nay be inadvertently 1nade bold. 

In each of these cases, a 1natching pair of markers is necessary for operation 
to be complete and correct. The omission of the closing marker can be pre
vented by use of an editor, preferably screen oriented, that puts both the begin
ning and ending components of the pair on the screen in one action. For 
example, typing a left parenthesis generates a left and right parenthesis and 
puts the cursor in between to allow creation of the contents. An attempt to 
delete one of the parentheses will cause the matching parenthesis (and possibly 
the contents as well) to be deleted. Thus, the text can never be in a syntactically 
incorrect form. Some people find this rigid approach to be too restrictive. For 
them a milder form of protection may be appropriate. For example, when the 
user types a left parenthesis, the screen displays in the lower-left corner ames
sage indicating the need for a right parenthesis until that character is typed. 

2.6.2 Complete sequences 

Sometimes, an action requires several steps or com1nands to reach cmnple
tion. Since people may forget to complete every step of an action, designers 
attempt to offer a sequence of steps as a single action. In an autmnobile, the 
driver does not have to set two switches to signal a left turn. A single switch 
causes both (front and rear) turn-signal lights on the left side of the car to 
flash. When a pilot throws a switch to lower the landing gear, hundreds of 
steps and checks are invoked automatically. 

This same concept can be applied to interactive uses of computers. For exam
ple, the sequence of dialing up, setting communication parameters, logging on, 
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and loading files is frequently executed by many users. Fortunately, most com
nmnications-software packages enable users to specify these processes once 
and then to execute then1. by simply selecting the appropriate nmne. 

Users of a word processor should be able to indicate that section titles are 
to be centered, set in uppercase letters, and underlined, without having to 
issue a series of cmnmands each time they enter a section title. Then1 if the 
user wants to change the title style-for exa1nple, to elilninate underlin
ing-a single con11nand will guarantee that all section titles are revised con
sistently. 

As a final example, air-traffic controllers may fonnulate plans to 
change the altitude of a plane fr01n 14,000 feet to 18,000 feet in two incre
lnents; after raising the plane to 16,000 feet, however, the controller may 
get distracted and 1nay thus fail to complete the action. The controller 
should be able to record the plan and then have the computer prompt for 
c01npletion. 

The notion of co1nplete sequences of actions n1.ay be difficult to imple
ment because users 1nay need to issue atomic actions as well as complete 
sequences. In this case, users should be allowed to define sequences of 
their own; the 1nacro or subroutine concept should be available at every 
level of usage. 

Designers can gather information about potential complete sequences by 
studying sequences of com1nands that people actually issue, and the pat
terns of errors that people actually make. 

2.6.3 Correct commands 

Industrial designers recognize that successful products 1nust be safe and 
must prevent the user from 1naking dangerously incorrect use of the prod
uct. Airplane engines cannot be put into reverse until the landing gear has 
touched down, and cars cannot be put into reverse while traveling forward 
at faster than five 1niles per hour. Many simpler cameras prevent double 
exposures (even though the photographer may want to expose a frame 
twice), and appliances have interlocks to prevent tampering while the power 
is on (even though expert users occasionally need to perform diagnoses). 

The same principles can be applied to interactive systems. Consider 
these typical errors made by the users of command languages: They 
invoke commands that are not available, request files that do not exist, or 
enter data values that are not acceptable. These errors are often caused by 
annoying typographic errors, such as using an incorrect c01nmand abbre
viation; pressing a pair of keys, rather than a desired single key; mis
spelling a file name; or making a minor err:or such as omitting, inserting, or 
transposing characters. Error messages range from the annoyingly brief ? 
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or WHAT?, to the vague UNRECOGNIZED COMMAND or SYNTAX ERROR, to 
the conde1nning BAD FILE NAME or ILLEGAL COMMAND. The brief? is suit
able for expert users who have made a trivial error and can recognize it 
when they see the cmnmand line on the screen. But if an expert has ven
tured to use a new co1n1nand and has misunderstood its operation, then 
the brief Inessage is not helpful. They 1nust interrupt their planning to deal 
with correcting the proble1n-and with their frustration in not getting 
what they wanted. 

Smne syste1ns offer autmnatic co1n1nand cmnpletion that allows users to 
type just a few letters of a m_eaningful com1nand. They may request the 
cmnputer to con1.plete the cmn1nand by pressing the space bar, or the com_
puter 1nay cmnplete it as soon as the input is sufficient to distinguish the 
command from others. Autmnatic cmnmand cmnpletion can save key
strokes and is appreciated by 1nany users, but it can also be disruptive 
because the user must consider how many characters to type for each coin
Inand, and 1nust verify that the co1nputer has 1nade the con1.pletion that was 
intended. 

A more effective preventative for errors is to apply direct-1nanipulation 
strategies that e1nphasize selection over cmnmand-language typing. The 
cmnputer presents permissible comn1.ands, menu choices, or file nmnes on 
the screen, and users select their choice with a pointing device. This 
approach is effective if the screen has ample space, the display rate is rapid, 
and the pointing device is fast and accurate. 

2.7 Guidelines for Data Display 

The separation between basic principles and more infonnal guidelines is not 
a sharp line. However, thoughtful designers can distinguish between psy
chological principles (Wickens, 1993; Bridger, 1995) and practical guidelines 
that are gained from experience with a specific application. Guidelines for 
display of data are being developed by many organizations. A guidelines 
document can help by prmnoting consistency among 1nultiple designers, 
recording practical experience, incorporating the results of e1npirical studies, 
and offering useful rules of thumb (see Chapters 3 and 11). The creation of a 
guidelines document engages the design community in a lively discussion of 
input or output formats, command sequences, terminology, and hardware 
devices (Brown, 1988; Galitz, 1993). Inspirations for design guidelines can 
also be taken from graphics designers (Tufte, 1983, 1990, 1997; Mullet and 
Sano, 1995). 
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2.7.1 Organizing the display 

Smith and Mosier (1986) offer five high-level objectives for data display that 
remain vital: 

1. Consistency of data display During the design process, the terminology, 
abbreviations, formats, colors, capitalization, and so on should all be 
standardized and controlled by use of a written (or c01nputer-managed) 
dictionary of these ite1ns. 

2. Efficient information assi1nilation by the user The format should be fmnil
iar to the operator and should be related to the tasks required to be per
formed with these data. This objective is served by rules for neat 
colu1nns of data, left justification for alphanu1neric data, right justifica
tion of integers, lining up of decilnal points, proper spacing, use of com
prehensible labels, and appropriate measurement units and numbers of 
deci1nal digits. 

3. Minimal memory load on user Users should not be required to reme1nber 
information from one screen for use on another screen. Tasks should be 
arranged such that completion occurs with few actions, minimizing the 
chance of forgetting to perform a step. Labels and c01nmon formats 
should be provided for novice or intermittent users. 

4. Compatibility of data display with data entry The format of displayed infor
mation should be linked clearly to the format of the data entry. Where pos
sible and appropriate, the output fields should also act as editable input 
fields. 

5. Flexibility for user control of data display Users should be able to get the 
information from the display in the form most convenient for the task on 
which they are working. For exmnple, the order of columns and sorting 
of rows should be easily changeable by users. 

This c01npact set of high-level objectives is a useful starting point, but 
each project needs to expand these into application-specific and hardware
dependent standards and practices. For example, these generic guidelines 
emerge from a report on design of control rooms for electric-power utilities 
(Lockheed, 1981): 

• Be consistent in labeling and graphic conventions. 

• Standardize abbreviations. 

• Use consistent format in all displays (headers, footers, paging, menus, 
and so on). 

• Present a page number on each display page, and allow actions to call 
up a page via entry of a page number. · 

• Present data only if they assist the operator. 
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• Present infonnation graphically where appropriate by using widths of 
lines, positions of markers on scales, and other techniques that relieve 
the need to read and interpret alphanum.eric data. 

• Present digital values only when knowledge of nu1nerical value is nec
essary and useful. 

• Use high-resolution m.onitors and 1naintain the1n to provide maxilnum 
display quality. 

• Design a display in m.onochrmnatic form using spacing and arrange
Inent for organization and then judiciously add color where it will aid 
the operator. 

• Involve users in the develop1nent of new displays and procedures. 

Chapter 11 further discusses data-display issues. 

2.7.2 Getting the user's attention 

Since substantial information 1nay be presented to users for the normal per
formance of their work, exceptional conditions or time-dependent informa
tion 1nust be presented so as to attract attention (Wickens, 1992). Multiple 
techniques exist for getting attention: 

• Intensity Use two levels only, with limited use of high intensity to 
draw attention. 

• Marking Underline, enclose in a box, point to with an arrow, or use an 
indicator such as an asterisk, bullet, dash, plus, or X. 

• Size Use up to four sizes, with larger sizes attracting more attention. 

• Choice of fonts Use up to three fonts. 

• Inverse video Use inverse coloring. 

• Blinking Use blinking displays (2 to 4 hertz) with great care and in 
limited areas. 

• Color Use up to four standard colors, with additional colors reserved 
for occasional use. 

• Color blinking Use changes in color (blinking from one color to 
another) with great care and in lilnited areas. 

• Audio Use soft tones for regular positive feedback and harsh sounds 
for rare emergency conditions. 

A few words of caution are necessary. There is a danger in creating cluttered 
displays by overusing these techniques. Novices need simple, logically orga
nized, and well-labeled displays that guide their actions. Expert users do not 
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need extensive labels on fields; subtle highlighting or positional presentation 
is sufficient. Display formats must be tested with users for comprehensibility. 

Similarly highlighted items will be perceived as being related. Color cod
ing is especially powerful in linking related items, but this use makes it more 
difficult to cluster items across color codes. User control over highlighting
for example, allowing the operator in an air-traffic-control environment to 
assign orange to images of aircraft above 18,000 feet-may provide a useful 
resolution to concerns about personal preferences. Highlighting can be 
accomplished by increased intensity, blinking, or other 1nethods. 

Audio tones can provide informative feedback about progress, such as the 
clicks in keyboards or ringing sounds in telephones. Alanns for emergency 
conditions do alert users rapidly, but a mechanism to suppress alarms n1ust 
be provided. If several types of alarms are used, testing is necessary to 
ensure that users can distinguish among alarm levels. Prerecorded or syn
thesized voice messages are an intriguing alternative, but since they may 
interfere with communications among operators, they should be used 
cautiously. 

2.8 Guidelines for Data Entry 

Data-entry tasks can occupy a substantial fraction of the operator's time and 
are the source of frustrating and potentially dangerous errors. Smith and 
Mosier (1986) offer five high-level objectives for data entry: 

1. Consistency of data-entry transactions Similar sequences of actions should 
be used under all conditions; similar delimiters, abbreviations, and so on 
should be used. 

2. Minimal input actions by user Fewer input actions mean greater operator 
productivity and-usually-fewer chances for error. Making a choice by 
a single keystroke, mouse selection, or finger press, rather than by typing 
in a lengthy string of characters, is potentially advantageous. Selecting 
from a list of choices eliminates the need for memorization, structures the 
decision-making task, and eliminates the possibility of typographic 
errors. However, if users must move their hands from a keyboard to a 
separate input device, the advantage is defeated because horne-row posi
tion is lost. Experienced users often prefer to type six to eight characters 
instead of moving to a lightpen, joystick, or other selection device. 

A second aspect of this guideline is that redundant data entry should 
be avoided. It is annoying for users to enter the same information in two 
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locations, since the double entry is perceived as a waste of effort and an 
opportunity for error. When the sa1ne infonnation is required in two 
places, the syste1n should copy the infonnation for the user, who still has 
the option of overriding by retyping. 

3. Minimal memory load on users When doing data entry, users should not 
be required to remember lengthy lists of codes and c01nplex syntactic 
command strings. 

4. Conzpatibility of data entry with data display The format of data-entry 
information should be linked closely to the format of displayed infor
mation. 

5. Flexibility for user control of data entry Experienced data-entry operators 
1nay prefer to enter infonnation in a sequence that they can control. For 
example, on s01ne occasions in an air-traffic control environ1nent, the 
arrival time is the prilne field in the controller's mind; on other occasions, 
the altitude is the prilne field. Flexibility should be used cautiously, since 
it goes against the consistency principle. 

2.9 Balance of Automation and Human Control 

The principles described in the previous sections are in harmony with the 
goal of simplifying the user's task-eliminating hu1nan actions when no 
judgment is required. Users can then avoid the annoyance of handling rou
tine, tedious, and error-prone tasks, and can concentrate on critical decisions, 
planning, and coping with unexpected situations (Sanders and McCormick, 
1993). C01nputers should be used to keep track of and retrieve large volumes 
of data, to follow preset patterns, and to carry out compl~x 1nathematical or 
logical operations (Box 2.2 provides a detailed comparison of human and 
machine capabilities). 

The degree of automation will increase over the years as procedures 
become more standardized, hardware reliability increases, and software ver
ification and validation improves. With routine tasks, automation is pre
ferred, since the potential for error may be reduced. However, I believe that 
there will always be a critical human role, because the real world is an open 
system (there is a nondenumerable number of unpredictable events and sys
tem failures). By contrast, c01nputers constitute a closed system (there is only a 
denumerable number of normal and failure situations that can be accomino
dated in hardware and software). Human judgment is necessary for the 
unpredictable events in which some action must be taken to preserve safety, 
to avoid expensive failures, or to increase product quality (Hancock and 
Scallen, 1996). 
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Box 2.2 

Relative capabilities of humans and n<achines. Sources: Compiled fron< Brown, 1988; 
Sanders and McCormick, 1993. 

Humans Generally Better 

Sense low level stimuli 

Detect stimuli in noisy background 

Recognize constant patterns in vary-
ing situations 

Sense unusual and unexpected 
events 

Remember principles and strategies 
Retrieve pertinent details without 

a priori connection 
Draw on experience and adapt deci

sions to situation 
Select alternatives if original 

approach fails 
Reason inductively: generalize from 

observations 

Act in unanticipated emergencies 
and novel situations 

Apply principles to solve varied 
problems 

Make subjective evaluations 

Develop new solutions 
Concentrate on important tasks 

when overload occurs 

Adapt physical response to changes 
in situation 

Machines Generally Better 

Sense stilnuli outside human's 
range 

Count or measure physical quan
tities 

Store quantities of coded infor
mation accurately 

Monitor prespecified events, 
especially infrequent ones 

Make rapid and consistent 
responses to input signals 

Recall quantities of detailed 
information accurately 

Process quantitative data in 
prespecified ways 

Reason deductively: infer from a 
general principle 

Perform repetitive prepro
grammed actions reliably 

Exert great, highly-controlled 
physical force 

Perform several activities silnul
taneously 

Maintain operations under heavy 
information load 

Maintain performance over 
extended periods of time 

For example, in air-traffic control, conlmon actions include changes to alti
tude, heading, or speed. These actions are well understood and can poten
tially be automatable by a scheduling and route-allocation algorithm, but the 
controllers must be present to deal with the highly variable and unpredictable 
emergency situations. An automated system 1night deal successfully with 
high volumes of traffic, but what would happen if the airport manager closed 
two runways because of turbulent weather? The controllers would have to 
reroute planes quickly. Now suppose that there is only one active runway and 
one pilot calls in to request special clearance to land because of a failed engine, 
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while another pilot in a second plane reports a passenger with a potential 
heart attack. Human judgment is necessary to decide which plane should 
land first, and how much costly and risky diversion of normal traffic is appro
priate. Air-traffic controllers cannot just jump into the emergency; they must 
be intensely involved in the situation as it develops if they are to 1nake an 
informed and rapid decision. In short, real-world situations are so complex 
that it is impossible to anticipate and program for every contingency; human 
judgment and values are necessary in the decision-1naking process. 

Another exmnple of the complexity of real-world situations in air-traffic 
control e1nerges frmn an incident on a Boeing 727 that had a fire on board 
near an airport. The controller cleared other traffic from the flight path and 
began to guide the plane in for a landing. The s1noke was so thick that the 
pilot had trouble reading his instrun<ents. Then the onboard transponder 
burned out, so the air-traffic controller could no longer read the plane's alti
tude from the situation display. In spite of these 1nultiple failures, the con
troller and the pilot managed to bring down the plane quickly enough to save 
the lives of many-but not all-of the passengers. A cmnputer could not have 
been programmed to deal with this particular unexpected series of events. 

A tragic outcome of excess autmnation occurred during a 1995 flight to Cali, 
Colombia. The pilots relied on the automatic pilot and failed to realize that the 
plane was making a wide turn to return to a location that they had already 
passed. When the ground-collision alarm sounded, the pilots were too disori
ented to pull up in time; they crashed 200 feet below the mountain peak. 

The goal of system design in many applications is to give operators suffi
cient information about current status and activities, so that, when interven
tion is necessary, they have the knowledge and the capacity to perform 
correctly, even under partial failures. Increasingly, the human role is to respond 
to unanticipated situations, equipment failure, improper human performance, 
and incomplete or erroneous data (Eason, 1980; Sheridan, 1988; Billings, 1997). 

The entire system 1nust be designed and tested, not only for normal situa
tions, but also for as wide a range of anomalous situations as can be antici
pated. An extensive set of test conditions might be included as part of the 
requirements document. Operators need to have enough information that 
they can take responsibility for their actions. 

Beyond performance of productive decision-making tasks and handling 
of failures, the role of the human operator will be to improve the design of 
the system. In complex systems, an opportunity always exists for hnprove
ment, so systems that lend themselves to refinement will evolve via contin
ual incremental redesign by the operators. 

The balance of automation and human control also emerges as an issue in 
systems for home and office automation. Some designers promote the notion 
of autonomous, adaptive, or anthropomorphic agents that carry out the 
users' intents and anticipate needs (Maes, 1994, 1995; Hayes-Roth, 1995; 
Hendler, 1996). Their scenarios often show a responsive, butler-like human 
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being to represent the agent (such as the bow-tied, helpful young man in 
Apple Computer's 1987 video on the Knowledge Navigator), or refer to the 
agent on a first-name basis (such as Sue or Bill in Hewlett-Packard's 1990 
video on future computing). Microsoft's unsuccessful BOB program used 
cartoon characters to create onscreen partners. Other people have described 
knowbots or softbots-agents that traverse the World Wide Web in search of 
information of interest, such as where to find a low price for a Hawaiian tour. 

Many people are attracted to the idea of a powerful functionary carrying 
out their tasks and watching out for their needs. The wish to create an 
autonomous agent that knows people's likes and dislikes, makes proper 
inferences, responds to novel situations, and performs competently with lit
tle guidance is strong for s01ne designers. They believe that human-human 
interaction is a good model for human-computer interaction, and they seek 
to create computer-based partners, assistants, or agents. They promote their 
designs as intelligent and adaptive, and often they pursue anthropomorphic 
representations of the computer (see Section 11.3 for a review) to the point of 
having artificial faces talking to users. Anthropomorphic representations of 
computers have been unsuccessful in bank terminals, computer-assisted 
instruction, talking cars, and postal-service stations; however, these design
ers believe that they can find a way to attract users. 

A variant of the agent scenario, which does not include an anthropomor
phic realization, is that the computer employs a user 1nodel to guide an adap
tive system. The syste1n keeps track of user performance and adapts its 
behavior to suit the users' needs. For example, several proposals suggest 
that, as users make menu selections more rapidly, indicating proficiency, 
advanced menu items or a command-line interface appears. Automatic adap
tations have been proposed for response time, length of messages, density of 
feedback, content of menus, order of menu items (see Section 7.3 for evidence 
against the helpfulness of this strategy), type of feedback (graphic or tabular), 
and content of help screens. Advocates point to video games that increase the 
speed or number of dangers as users progress though stages of the game. 
However, games are notably different from most work situations, where 
users have external goals and motivations to accomplish their tasks. There is 
much discussion of user models, but little empirical evidence of their efficacy. 

There are some opportunities for adaptive user models to tailor system 
responses, but even occasional unexpected behavior has serious negative side 
effects that discourages use. If adaptive systems make surprising changes, 
users must pause to see what has happened. Then users may become anxious 
because they may not be able to predict the next change, interpret what has 
happened, or restore the system to the previous state. Suggestions that users 
could be consulted before a change is made are helpful, but such intrusions 
may still disrupt problem-solving processes and annoy users. 

The agent metaphor is based on the design philosophy that assumes users 
would be attracted to "autonomous, adaptive, intelligent" systems. Designers 
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believe that they are creating a system that is lifelike and smart; however, 
users may feel anxious about and unable to control these systems. Success sto
ries for advocates of adaptive syste1ns include a few training and help systems 
that have been studied extensively and refined carefully to give users appro
priate feedback for the errors that they 1nake. Generalizing from these syste1ns 
has proved to be more difficult than advocates had hoped. 

These difficulties have led 1nany agent proponents to shift to distributed 
World Wide Web searching and collaborative filtering (see Section 15.5). 
There is no visible agent or adaptation in the interface, but the applications 
aggregate information from n1.ultiple sources in smne, often proprietary, way. 
Such blackbox approaches have great entertainn1.ent and even practical value 
in cases such as selecting 1novies, books, or 1nusic. However, in searching for 
antidotes in a toxicology database, physicians may want more predictable 
behavior and more control over what happens as they narrow their search. 

The philosophical alternative to agents is user-control, responsibility, and 
accomplishment. Designers who e1nphasize a direct-1nanipulation style 
believe that users have a strong desire to be in control and to gain mastery 
over the syste1n. Then, users can accept responsibility for their actions and 
derive feelings of accomplislunent (Lanier, 1995; Shneiderman, 1995). Histor
ical evidence suggests that users seek comprehensible and predictable sys
tems and shy away frmn those that are complex or unpredictable; pilots may 
disengage automatic piloting devices if they perceive these systems are not 
performing as they expect. 

Comprehensible and predictable userinterfaces should mask the underlying 
computational complexity, in the same way that turning on an automobile igni
tion is comprehensible to users but invokes complex algorithms in the engine
control computer. These algorithms 1nay adaptto varying engine temperatures 
or air pressures, but the action at the user-interface level remains predictable. 

A critical issue for designers is the clear placement of responsibility for 
failures. Agent advocates usually avoid discussing responsibility, even for 
basic issues as violation of someone' s copyright or for more serious flaws 
such as bugs that cause data destruction. Their designs rarely allow for mon
itoring the agent's performance, and feedback to users about the current user 
1nodel is often given little attention. However, most hu1nan operators recog
nize and accept their responsibility for the operation of the computer, and 
therefore designers of financial, medical, or 1nilitary applications ensure that 
detailed feedback is provided. 

An alternative to agents and user models may be to expand the control
panel metaphor. Users use current control panels to set physical parameters, 
such as the speed of cursor blinking, rate of mouse tracking, or loudness of a 
speaker, and to establish personal preferences such as time and date formats, 
placement and format of menus, or color schemes (Figs. 2.4 and 2.5). Some 
software packages allow users to set parameters such as the speed of play in 
gaines or the usage level as in HyperCard (from browsing to editing buttons, 
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Macintosh MacOS 7.5 control panels, with Date & Time selected. Current control 
panels are used to set physical parameters (such as the speed of cursor blinking, rate 
of mouse tracking, or loudness of a speaker), and to establish personal preferences 
(such as time and date formats, placement and format of menus, or color schemes). 
(Used with permission of Apple Computer, Inc., Cupertino, CA.) 

to writing scripts and creating graphics). Users start at level 1 and can then 
choose when to progress to higher levels. Often users are content remaining 
experts at level 1 of a complex system rather than dealing with the uncer
tainties of higher levels. More elaborate control panels exist in style sheets of 
word processors, specification boxes of query facilities, and information
visualization tools. Similarly, scheduling software may have elaborate con
trols to allow users to execute planned procedures at regular intervals or 
when triggered by other processes. 

Computer control panels, like cruise-control mechanisms in automobiles 
and remote controllers for televisions, are designed to convey the sense of 
control that users seem to expect. Increasingly, complex processes are speci
fied by direct-manipulation programming (see Chapter 6) or by graphical 
specifications of scheduled procedures, style sheets, and templates. 
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Microsoft Windows 95 control panel. (Used with permission of Microsoft Corp., 
Redmond, WA.) 

2.10 Practitioner's Summary 

Designing user interfaces is a complex and highly creative process that 
blends intuition, experience, and careful consideration of numerous techni
cal issues. Designers are urged to begin with a thorough task analysis and a 
careful specification of the user communities. Explicit recording of task 
objects and actions can lead to construction of useful metaphors for interface 
objects and actions that benefit novice and expert users. Extensive testing 
and iterative refinement are necessary parts of every development project. 

Design principles and guidelines are emerging from practical experience 
and empirical studies. Organizations can benefit by reviewing available 
guidelines documents and then constructing a local version. A guidelines 
document records organizational policies, supports consistency, aids the 
application of tools for user-interface building, facilitates training of new 
designers, records results of practice and experimental testing, and stimu
lates discussion of user-interface issues. 
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2.11 Researcher's Agenda 

The central problem for psychologists, human-factors professionals, and 
computer scientists is to develop adequate theories and models of the behav
ior of humans who use interactive systems. Traditional psychological theories 
must be extended and refined to accommodate the complex hu1nan learning, 
memory, and problem-solving required in these applications. Useful goals 
include descriptive taxonomies, explanatory theories, and predictive models. 

A first step might be to investigate thoroughly a limited task for a single 
community, and to develop a formal notation for describing task actions and 
objects. Then the mapping to interface actions and objects can be made pre
cisely. This process would lead to predictions of learning times, performance 
speeds, error rates, subjective satisfaction, or hu1nan retention over time, for 
competing designs. 

Next, the range of tasks and user communities could be expanded to 
domains of interest, such as word processing, information retrieval, or data 
entry. More limited and applied research problems are connected with each 
of the hundreds of design principles or guidelines that have been proposed. 
Each validation of these principles and clarification of the breadth of applic
ability would be a small but useful contribution to the emerging mosaic of 
human performance with interactive systems. 

World Wide Web Resources www 
Websites include theories and information on user models. A major 
topic with many websites is agents, including skeptical views. 
Debates over hot topics can be found in news groups which are 
searchable from many standard services such as Lycos or Infoseek. 

http://www.aw.com/DTUI 
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Managing Design Processes 

Just as we can assert that no product has ever been created in a single m01nent of 
inspiration ... nobody has ever produced a set of requirem.ents for any product in a 
similarly miraculous manner. These requirements may well begin with an inspira
tional moment but, almost certainly, the emergent bright idea will be developed by 
iterative processes of evaluation until it is thought to be worth starting to put pencil 
to paper. Especially when the product is entirely new, the development of a set of 
requirements may well depend upon testing initial ideas in some depth. 

W. H. Mayall, Principles in Design, 1979 

The Plan is the generator. Without a plan, you have lack of order and willfulness. The 
Plan holds in itself the essence of sensation. 

Le Corbusier, Towards a New Architecture, 1931 
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3.1 Introduction 

In the first decades of computer-software development, technically oriented 
programmers designed text editors, programming languages, and applica
tions for themselves and their peers. The substantial experience and motiva
tion of these users meant that complex interfaces were accepted and even 
appreciated. Now, the user population for office automation, home and per
sonal computing, and digital libraries is so vastly different from the original 
that programmers' intuitions may be inappropriate. Current users are not 
dedicated to the technology, their backgrol:!-nd is more tied to workflow, and 
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their use of c01nputers n1.ay be discretionary. Designs should be based on 
careful observation of current users, refined by thoughtful analysis of task 
frequencies and sequences, and validated through early, careful, and thor
ough prototype, usability, and acceptance tests. 

In the best designs, the techno-centric style of the past is yielding to a gen
uine desire to acc01nmodate to the users' skills, goals, and preferences. 
Designers are seeking direct interaction with users during the design phase, 
during the development process, and throughout the syste1n lifecycle. Itera
tive design n1.ethods that allow early testing of prototypes, revisions based on 
feedback fr01n users, and incremental refine1nents suggested by usability
test ad1ninistrators are catalysts for high-quality syste1ns. Around the 
world, usability engineering is bec01ning a recognized discipline with estab
lished practices and s01ne standards. The Usability Professionals Associa
tion, formed in 1991, has become a respected con1.1nunity with active 
participation fr01n large corporations and m.nnerous small design, test, and 
build firms. 

The variety of design situations precludes a comprehensive strategy. Man
agers will have to adapt the strategies offered in this chapter to suit their 
organization, projects, schedules, and budgets. These strategies begin with 
the organizational design that gives appropriate emphasis to support usabil
ity. Next, are the three pillars of successful user-interface develop1nent: 
guidelines document and process, user-interface software tools, and expert 
review and usability testing. The Logical User-Centered Interaction Design 
(LUCID) methodology is a framework for scheduling, on which strategies 
such as ethnographic observation, participatory design, scenario develop
ment, and possibly a Social hnpact Statement review can be hung. Finally, 
legal concerns should be addressed during the design process. 

3.2 Organizational Design to Support Usability 

Corporate-marketing and customer-assistance deparhnents are bec01ning 
more aware of the importance of usability and are a source of constructive 
encouragement. When competitive products provide similar functionality, 
usability engineering is vital for product acceptance. Many organizations 
have created usability laboratories to provide expert reviews and to conduct 
usability tests of products during development. Outside experts can provide 
fresh insights, while usability-test subjects perfonn benchmark tasks in care
fully supervised conditions (Whiteside et al., 1988; Klemmer, 1989; Nielsen, 
1993; Dumas and Redish, 1993). These and other evaluation strategies are 
covered in Chapter 4. 
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Cmnpanies may not yet have a chief usability officer (CUO) or a vice pres
ident for usability, but they often have user-interface architects and usability 
engineering managers. High-level com1nitment helps to prmnote attention 
at every level. Organizational awareness can be stin1ulated by "Usability 
Day" presentations, internal seminars, newsletters, and awards. Of course, 
resistance to new techniques and a changing role for software engineers can 
cause problems in organizations. Organizational change is difficult, but cre
ative leaders blend inspiration and provocation. The high road is to appeal to 
the desire for quality that 1nost professionals share. When they are shown 
data on shortened learning ti1nes, faster performance, or lower error rates on 
well-designed interfaces, they are likely to be more sy1npathetic to applying 
usability-engineering n1ethods. The low road is to point out the frustration, 
confusion, and high error rates due to the current cmnplex designs, while cit
ing the successes of cmnpetitors who apply usability-engineering 1nethods. 

Most large and many s1nall organizations maintain a centralized hulnan
factors group or a usability laboratory as a source of expertise in design and 
testing techniques (Gould et al., 1991; Nielsen, 1994). However, each project 
should have its own user-interface architect who develops the necessary skills, 
manages the work of other people, prepares budgets and schedules, and coor
dinates with internal and external human-factors professionals when further 
expertise, references to the literature, or usability tests are required. This dual 
strategy balances the needs for centralized expertise and decentralized applica
tion. It enables professional growth in the user-interface area and in the appli
cation domain (for exa1nple, in geographic infonnation or imaging syste1ns). 

The field has now matured to the point that many projects have grown 
large in complexity, size, and importance. Role specialization is e1nerging, as 
it has in architecture, aerospace, and book design. Eventually, individuals 
will become highly skilled in specific problems, such as user-interface build
ing tools, graphic-display strategies, voice and audio tone design, and mes
sage, or online tutorial writing. Consultation with graphic artists, book 
designers, advertising copy writers, instructional-textbook authors, or fihn
animation creators is expected. Perceptive system developers r~cognize the 
need to employ psychologists for conducting experimental tests, sociologists 
for evaluating organizational impact, educational psychologists for refining 
training procedures, and social workers for guiding user consultants or cus
tomer-service personnel. 

As design moves to implementation, the choice of user interface building 
tools is vital to success. These rapidly emerging tools enable designers to build 
novel systems quickly and support the iterative design-test-refine cycle. 

Guidelines documents were originally seen as the answer to usability 
questions, but they are now appreciated as a broader social process in which 
the initial compilation is only the first step. The management strategies for 

0117



3.2 Organizational Design to Support Usability 99 

the three Es-enforce1nent, exemption, enhance1nent-are only beginning to 
e1nerge and to become institutionalized. 

The business case for focusing on usability has been made powerfully and 
repeatedly in the past decade (Mantei and Teorey, 1988; Karat, 1990; Chapa
nis, 1991). It apparently needs frequent repetition because traditionallnan
agers and engineers are often resistant to changes that would bring increased 
attention to the users' needs. Karat's (1990, 1994) businesslike reports within 
IBM beca1ne influential docun1ents when they were published externally. 
She reported up to $100 payoffs for each dollar spent on usability, with iden
tifiable benefits in reduced progrmn-developm.ent costs, reduced program.
lnaintenance costs, increased revenue due to higher custmner satisfaction, 
and i1nproved user efficiency and productivity. Other econmnic analyses 
showed fundainental changes in organizational productivity (as 1nuch as 720 
percent ilnproven1.ents) when people kept usability in mind frmn the begin
ning of develop1nent projects (Landauer, 1995). Even 1ninilnal application of 
usability testing followed by correction of 20 of the easiest-to-repair faults 
improved user efficiency frmn 19 percent to as 1nuch as 80 percent. 

Usability engineers and user-interface architects are gaining experience in 
managing organizational change. As attention shifts from software-engi
neering or manage1nent-information syste1ns, battles for control and power 
manifest themselves in budget and personnel allocations. Well-prepared 
1nanagers who have a concrete organizational plan, defensible cost-benefit 
analyses, and practical development methodologies are most likely to be 
winners. 

Design is inherently creative and unpredictable. Interactive system 
designers 1nust blend a thorough knowledge of technical feasibility with a 
1nystical esthetic sense of what attracts users. Carroll and Rosson (1985) char
acterize design in this way: 

• Design is a process; it is not a state and it cannot be adequately repre
sented statically. 

• The design process is nonhierarchical; it is neither strictly bottom-up nor 
strictly top-down. 

• The process is radically transformational; it involves the development of 
partial and interim solutions that may ultimately play no role in the 
final design. 

• Design intrinsically involves the discovery of new goals. 

These characterizations of design convey the dynamic nature of the 
process. But in every creative domain, there can also be discipline, refined 
techniques, wrong and right methods, and measures of success. Once the 
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early data collection and preli1ninary requirements are established, 1nore 
detailed design and early develop1nent can begin. This chapter covers strate
gies for managing early stages of projects and offers design methodologies. 
Chapter 4 focuses on evaluation methods. 

3.3 The Three Pillars of Design 

If standardization can be humanized and made flexible in design and the economics 
brought to the home owner, the greatest service will be rendered to our m.odern way 
of life. It n1.ay be really born-this de1nocracy, I mean. 

Frank Lloyd Wright, The Natural House, 1954 

The three pillars described in this section can help user-interface architects to 
turn good ideas into a successful system (Fig. 3.1). They are not guaranteed 
to work, but experience has shown that each pillar can produce an order-of
magnitude speedup in the process and can facilitate the creation of excellent 
systems. 

3.3.1 Guidelines documents and processes 

Early in the design process, the user-interface architect should generate, or 
require other people to generate, a set of working guidelines. Two people 
might work for one week to produce a 10-page document, or a dozen people 
might work for two years to produce a 300-page document. One component 
of Apple's success with the Macintosh was that machine's early and readable 
guidelines document that provided a clear set of principles for the many 
applications developers to follow and thus ensured a harmony in design 
across products. Microsoft's Windows guidelines have also been refined 
over the years, and they provide a good starting point and an educational 
experience for many programmers. These and other guidelines documents 
are referenced and are described briefly in the general reference section at the 
end of Chapter 1. 

Each project has different needs, but guidelines should be considered for 

• Words and icons 

• Terminology (objects and actions), abbreviations, and capitalization 
• Character set, fonts, font sizes, and·styles (bold, italic, underline) 
• Icons, graphics, and line thickness 
• Use of color, backgrounds, highlighting, and blinking 
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Figure 3.1 

The three pillars of successful user-interface development. 

• Screen-layout issues 

• Menu selection, form fillin, and dialog-box formats 
• Wording of prompts, feedback, and error messages 
• Justification, whitespace, and margins 
• Data entry and display formats for items and lists 
• Use and contents of headers and footers 

• Input and output devices 

• Keyboard, display, cursor control, and pointing devices 
• Audible sounds, voice feedback, touch input, and other special 

input modes or devices 
• Response times for a variety of tasks 

• Action sequences 

• Direct-manipulation clicking, dragging, dropping, and gestures 
• Command syntax, semantics, and sequences 
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• Prograrnrned function keys 
"' Error handling and recovery procedures 

• Training 

• Online help and tutorials 
• Training and reference n1aterials 

Guidelines creation should be a social process within an organization to 
gain visibility and build support. Controversial guidelines (for exarnple, on 
when to use voice alerts) should be reviewed by colleagues or tested empiri
cally. Procedures should be established to distribute the guidelines, to ensure 
enforcement, to allow exernptions, and to permit enhancernents. Guidelines 
documents rnust be a living text that is adapted to changing needs and refined 
through experience. Acceptance may be increased by a three-level approach 
of rigid standards, accepted practices, and flexible guidelines. This approach 
clarifies which items are firmer and which items are susceptible to change. 

The creation of a guidelines docurnent (Box 3.1) at the beginning of an 
hnplementation project focuses attention on the interface design and pro
vides an opportunity for discussion of controversial issues. When the guide
line is adopted by the developrnent tearn, the ilnplementation proceeds 
quickly and with few design changes. For large organizations, there may be 
two or more levels of guidelines to provide organizational identity while 
allowing projects to have distinctive style and local control of terminology. 

3.3.2 User-interface software tools 

One difficulty in designing interactive systems is that customers and users 
may not have a clear idea of what the system will look like when it is done. 
Since interactive systems are novel in many situations, users may not realize 
the implications of design decisions. Unfortunately, it is difficult, costly, and 
time consuming to make major changes to systerns once those systems have 
been irnplemented. 

Even though this problem has no complete solution, sorne of the more 
serious difficulties can be avoided if, at an early stage, the customers and 
users can be given a realistic impression of what the final system will look 
like (Gould and Lewis, 1985). A printed version of the proposed displays is 
helpful for pilot tests, but an onscreen display with an active keyboard and 
mouse is more realistic. The prototype of a menu system may have only one 
or two paths active, instead of the thousands of paths envisioned for the final 
system. For a form-fillin system, the prototype may simply show the fields, 
but may not process them. Prototypes have been developed with simple 
drawing or word-processing tools, but graphical design enviromnents such 
as HyperCard and MacroMind Director are.widely used. Development envi-
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Recommendations for guidelines documents. 

Provides a social process for developers 

Records decisions for all parties to see 

Promotes consistency and completeness 

Facilitates automation of design 

Allows multiple levels 

Rigid standards 
Accepted practices 
Flexible guidelines 

Announces policies for 

Enforcement: who reviews? 
Exemption: who decides? 
Enhancement: how often? 
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ron1nents such as Microsoft's Visual Basic/C++ and Borland's Delphi are 
easy to learn yet powerful. More sophisticated tools such as Visix' s Galaxy 
and Sun's Java provide cross-platform development and a rich variety of ser
vices. These tools are covered in Chapter 5. 

3.3.3 Expert reviews and usability testing 

Theatrical producers know that previews to critics and extensive rehearsals 
are necessary to ensure a successful opening night. Early rehearsals may 
require only one or two perfonners wearing street clothes; but, as opening 
night approaches, dress rehearsals with the full cast, props, and lighting are 
expected. Aircraft designers carry out wind-tunnel tests, build plywood 
mockups of the cabin layout, construct complete simulations of the cockpit, 
and thoroughly flight test the first prototype. Similarly, interactive-system 
designers are now recognizing that they must carry out many small and 
some large pilot tests of system components before release to customers 
(Dumas and Redish, 1993). In addition to a variety of expert review methods, 
tests with the intended users, surveys, and automated analysis tools are 
proving to be valuable. Procedures vary greatly depending on the goals of 
the usability study, the number of expected users, the dangers of errors, and 
the level of investment. Chapter 4 covers expert reviews, usability testing, 
and other evaluation methods in depth. 
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3.4 Development Methodologies 

Many software development projects fail to achieve their goals. Some estimates 
suggest that the failure rate is as high as 60 percent, with about 25 percent of 
projects never being completed and perhaps another 35 percent only achieving 
partial success. Much of this problem can be traced to lack of attention to design 
issues during the initial stages of development. Careful attention to user-cen
tered design issues at the early stages of software development has been shown 
to reduce both develop1nent time and cost dramatically. Well-designed syste1ns 
are less expensive to develop and have lower 1naintenance costs over their life
tim.e. They are easier to learn, produce faster performance, reduce user errors 
substantially, and provide users with a sense of mastery and the confidence to 
explore features that go beyond the minimum required to get by. 

The relationship between software developers and users has not always 
been a smooth one. Software-engineering development 1nethodologies have 
helped developers meet budgets and schedules (Boehm, 1988; Sutcliffe and 
McDermott, 1991; Preece and Rombaugh, 1994; Humphrey, 1995), but have 
not always provided guidance in developing a usable interface (Chapanis 
and Budurka, 1990). A number of acade1nics with consulting experience pro
duced a first generation of design 1nethodologies focused on user interface 
(Hix and Hartson, 1993; Nielsen, 1993). Commercial firms that specialize in 
user-centered design have built on this foundation and created a second gen
eration of design methodologies. 

These business-oriented approaches specify detailed deliverables for the 
various stages of design and incorporate cost/benefit and return on invest
ment (ROI) analyses to facilitate decision making. In addition to the interface 
design elements that were basic to the academic systems, the commercial 
methodologies highlight management strategies used to keep to schedule 
and budget. Any user-centered design methodology must also mesh with 
the software-engineering methodology used. 

The Logical User-Centered Interactive Design Methodology (LUCID, formerly 
Quality Usability Engineering (QUE)) (Kreitzberg, 1996) identifies six stages 
(see Table 3.1): 

Stage 1: Develop product concept 

Stage 2: Perform research and needs analysis 

Stage 3: Design concepts and key-screen prototype 

Stage 4: Do iterative design and refinement 

Stage 5: Implement software 

Stage 6: Provide rollout support 

In the first stage, a product concept is developed. Surprisingly, many soft
ware development efforts are launched without a clear concept of the prod-. 
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Table 3.1 

Logical User-Centered Interaction Design Methodology from Cognetics Corpora
tion, Princeton Junction, NJ (Kreitzberg, 1996). 

Stage 1: Develop product concept 

Create a high concept. 

Establish business objectives. 

Set up the usability design team. 
Identify the user population. 

Identify technical and environmental issues. 
Produce a staffing plan, schedule, and budget. 

Stage 2: Perform research and needs analysis 

Partition the user population into homogeneous segments. 
Break job activities into task units. 

Conduct needs analysis through construction of scenarios and participatory 
design. 

Sketch the process flow for sequences of tasks. 

Identify major objects and structures which will be used in the software interface. 

Research and resolve technical issues and other constraints. 

Stage 3: Design concepts and key-screen prototype 

Create specific usability objectives based on user needs. 
Initiate the guidelines and style guide. 

Select a navigational model and a design metaphor. 

Identify the set of key screens: login, home, major processes. 
Develop a prototype of the key screens using a rapid prototyping tool. 
Conduct initial reviews and usability tests. 

Stage 4: Do iterative design and refinement 

Expand key-screen prototype into full system. 
Conduct heuristic and expert reviews. 

Conduct full-scale usability tests. 

Deliver prototype and specification. 

Stage 5: Implement software 
Develop standard practices. 

Manage late stage change. 
Develop online help, documentation and tutorials. 

Stage 6: Provide rollout support 
Provide training and assistance. 
Perform logging, evaluation, and maintenance. 
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uct. At the center of the LUCID 1nethodology is creation of a "high concept" 
for the product-a brief statem.ent that defines the goals, functionality and 
benefits of the product. For exan1ple, 

The new hon1e banking system will provide customers with unified access to 
their accounts. It will support balance inquiry, management of credit accounts 
and loans, transfer of funds an1ong accounts, electronic bill payn1ent and 
investrnent in the bank's family of mutual funds. The system will provide the 
custmner with year-end accounting for tax purposes. 

As part of the product concept stage, project leaders define business objec
tives, establish the design temn, identify environn1ental, technical or legal 
constraints, specify the user population, and prepare a project plan and bud
get. During the first stage, the product concept is illustrated by sin1.ple screen 
sketches (which may be created on paper or on-screen). The goal of these 
sketches is to convey the systen1 concept to nontechnical users. 

With the project plan in place, the design temn n1eets with users to under
stand their needs and cmnpetencies, the business process to be supported 
and the functional requirements of the systen1. LUCID uses participatory 
design sessions to solicit user input, construct workflow scenarios and 
define the objects that are central to the design. 

A distinctive aspect of LUCID is its focus on a key-screen prototype that 
incorporates the 1najor navigational paths of the system. The key-screen 
prototype is used to show users the design of the proposed syste1n and 
allow then1 to evaluate and refine it. The key-screen prototype is also used 
for usability testing and heuristic review. Key screens usually evoke 
strong reactions, generate early participation, and create mo1nentun1 for 
the project. 

Like 1nost user-centered design methodologies, LUCID employs rapid pro
totyping and iterative usability testing (Chapter 4). Because rapid prototyping 
is key to 1neeting schedule and budget, LUCID relies on user interface building 
tools (Chapter 5). The prototypes are usually developed by a programmer who 
is part of the software engineering temn. One of this programmer's responsibil
ities is to identify interface issues that have implications for the technical archi
tecture of the product. When completed and approved by users, the prototype 
serves as part of the programming specification for the software engineers. 

Finally, LUCID describes a phased rollout approach built on theories of 
organizational change. Project leaders identify barriers to and construct 
incentives for adoption of the software. The goal is to ensure a positive recep
tion by custmners, users, and managers. 

As a manage1nent strategy, LUCID makes the commitment to user-cen
tered design explicit and highlights the role of usability engineering in soft
ware development by focusing on activities, deliverables, and reviews. At 
each of the LUCID stages, 12 areas of activity are evaluated; each is tied to 
specified deliverables and ti1nely feedback through reviews: 
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1. Product definition: high concept for Inanagers and marketers 

2. Business case: pricing, expected revenues, return on investn1.ent, conl.
petition 

3. Resources: duration, effort levels, temn Ineinbers, back-up plans 

4. Physical environment: ergonon1.ic design, physical installation, communi
cation lines 

5. Technical environment: hardware and software for developrnent and 
integration 

6. Users: 1nultiple c01nmunities for interviews, user testing, marketing 

7. Functionality: services provided to users 

8. Prototype: early paper prototypes, key screens, running prototypes 

9. Usability: set 1neasurable goals, conduct tests, refine interface and goals 

10. Design guidelines: Inodification of existing guidelines, imple1nentation of 
review process 

11. Content materials: identification and acquisition of copyrighted text, 
audio, and video 

12. Documentation, training and help: specification, development, and testing 
paper, video, and online versions 

The thoroughness of LUCID c01nes fr01n its validation and refinement in 
Inultiple projects. However, each project has special needs, so any design 
methodology is only a starting point for project management. LUCID is 
designed to pr01note an orderly process, with iterations within a stage and 
predictable progress among stages. The reality is s01netilnes 1nore complex, 
especially for novel projects that may require a return to earlier stages for 
s01ne parts of the design. 

3.5 Ethnographic Observation 

The early stages of 1nost methodologies include observation of users. Since 
interface users fonn a unique culture, ethnographic 1nethods for observing 
the1n in the workplace are likely to become increasingly i1nportant. An 
"ethnographer participates, overtly or covertly, in people's daily lives for an 
extended period of time, watching what happens, listening to what is said, 
asking questions" (Ham1nersley and Atkinson, 1983). As ethnographers, 
user-interface designers gain insight into individual behavior and the orga
nizational context. User-interface designers differ from traditional ethnogra
phers; in addition to understanding their subjects, user-interface designers 
observe interfaces in use for the purpose of changing and improving those 
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interfaces. Whereas traditional ethnographers immerse themselves in cul
tures for weeks or months, user-interface designers need to limit this process 
to a period of days or even hours, and still to obtain the relevant data needed 
to influence a redesign (Hughes et al., 1995). Ethnographic methods have 
been applied to office work (Such1nan, 1983), air-traffic control (Bentley et 
al., 1992), and other domains (Vaske and Grantham, 1989). 

The goal of an observation is to obtain the necessary data to influence inter
face redesign. Unfortunately, it is easy to misinterpret observations, to disrupt 
normal practice, and to overlook important information. Following a validated 
ethnographic process reduces the likelihood of these problems. Guidelines for 
preparing for the evaluation, performing the field study, analyzing the data, 
and reporting the findings might include the following (Rose et al., 1995): 

Preparation 

• Understand organization policies and work culture. 

• Familiarize yourself with the system and its history. 

• Set initial goals and prepare questions. 

• Gain access and permission to observe or interview. 

Field Study 

• Establish rapport with managers and users. 

• Observe or interview users in their workplace, and collect subjective 
and objective quantitative and qualitative data. 

• Follow any leads that emerge from the visits. 

• Record your visits. 

Analysis 

• Compile the collected data in numerical, textual, and multimedia 
databases. 

• Quantify data and compile statistics. 

• Reduce and interpret the data. 

• Refine the goals and the process used. 

Reporting 

• Consider multiple audiences and goals. 

• Prepare a report and present the findings. 

These notions seem obvious when stated but they require interpretation 
and attention in each situation. For example, understanding the differing 
perceptions that managers and users have about the efficacy of the current 
interface will alert you to the varying frustrations that each group will· 
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have. For example, managers may c01nplain about the unwillingness of 
staff to update infonnation promptly, but staff may be resistant to using 
the interface because the login process takes 6 to 8 minutes. In preparing 
for one observation, we appreciated that the manager called to warn us 
that graduate students should not wear jeans because the users were pro
hibited from doing so. Learning the technical language of the users is also 
vital for establishing rapport. It is useful to prepare a long list of questions 
that you can then filter down by focusing on the proposed goals. Aware
ness of the differences am.ong user c01nmunities, such as those mentioned 
in Section 1.5, will help to make the observation and interview process 
more effective. 

Data collection can include a wide range of subjective hnpressions that are 
qualitative or of subjective reactions that are quantitative, such as rating 
scales or rankings. Objective data can consist of qualitative anecdotes or criti
cal incidents that capture user experiences, or can be quantitative reports 
about, for example, the number of errors that occur during a one-hour obser
vation of six users. Deciding in advance what to capture is highly beneficial, 
but remaining alert to unexpected happenings is also valuable. Written report 
summaries have proved to be valuable, far beyond expectations; in most 
cases, raw transcripts of every conversation are too voluminous to be useful. 

Making the process explicit and planning carefully may see1n awkward to 
1nany people whose training stems from computing and information technol
ogy. However, a thoughtful applied ethnographic process has proved to have 
many benefits. It can increase trustworthiness and credibility, since designers 
learn about the complexities of an organization firsthand by visits to the 
workplace. Personal presence allows designers to develop working relation
ships with several end users to discuss ideas;-most important, the users may 
consent to be active participants in the design of their new interface. 

3.6 Participatory Design 

Many authors have urged participatory design strategies (Olson and Ives, 
1981; Mumford, 1983; Ives and Olson, 1984; Gould and Lewis, 1985; Gould 
et al., 1991; Damodaran, 1996), but the concept is controversial. The argu
ments in favor suggest that more user involvement brings more accurate 
information about tasks, an opportunity for users to influence design deci
sions, the sense of participation that builds users' ego investment in suc
cessful implementation, and the potential for increased user acceptance of 
the final system (Baroudi et al., 1986; Greenbaum and Kyng, 1991; Monk et 
al., 1993). 

On the other hand, extensive user involvement may be costly and may 
lengthen the implementation period, build antagonis1n with people who are 
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not involved or whose suggestions are rejected, force designers to compro
mise their design to satisfy incompetent participants, and simply build 
opposition to imple1nentation (Ives and Olson, 1984). 

Participatory-design experiences are usually positive, and advocates can 
point to many important contributions that would have been missed without 
it. People who are resistant might appreciate the somewhat formalized mul
tiple-case-studies plastic interface for collaborative technology initiatives through 
video exploration (FICTIVE) approach (Muller, 1992). Users sketch interfaces, 
then use slips of paper, pieces of plastic, and tape to create low-fidelity early 
prototypes. A scenario walkthrough is then recorded on videotape for pre
sentation to managers, users, or other designers. With the right leadership, 
FICTIVE can effectively elicit new ideas and be fun for all involved (Muller et 
al., 1993). 

Careful selection of users helps to build a successful participatory design 
experience. A cmnpetitive selection increases participants' sense of impor
tance and emphasizes the seriousness of the project. Participants may be 
asked to conunit to repeated meetings and should be told what to expect 
about their roles and their influence. They 1nay have to learn about the tech
nology and business plans of the organization, and to act as a communica
tion channel to the larger group of users that they represent. 

The social and political environment surrounding the implementation of 
cornplex interfaces is not amenable to study by rigidly defined methods or 
controlled experimentation. Social and industrial psychologists are inter
ested in these issues, but dependable research and implementation strategies 
may never emerge. The sensitive project leader must judge each case on its 
merits and must decide what is the right level of user involve1nent. The per
sonalities of the design-team members and of the users are such critical 
determinants that experts in group dynamics and social psychology may be 
useful as consultants. 

The experienced user-interface architect knows that organizational poli
tics and the preferences of individuals may be more important than the tech
nical issues in governing the success of an interactive system. The Warehouse 
managers who see their positions threatened by an interactive system that 
provides senior managers with up-to-date information through desktop dis
plays will ensure that the system fails by delaying data entry or by being less 
than diligent in guaranteeing data accuracy. The interface designer should 
take into account the effect on users, and should solicit their participation to 
ensure that all concerns are made explicit early enough to avoid counterpro
ductive efforts and resistance to change. Novelty is threatening to many peo
ple, so clear statements about what to expect when can be helpful in reducing 
anxiety. 
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3. 7 Scenario Development 

When a current interface is being redesigned or a well-polished manual sys
tem is being automated, there often are available reliable data about the 
range and distribution of task frequencies and sequences. If current data do 
not exist, then logging usage can quickly provide insight. When substantial 
changes are anticipated, such as in business-process re-engineering, or when 
a novel application is planned, identifying the tasks and esti1nating their fre
quencies is more difficult. 

A table with user com1nunities listed across the top and tasks listed down 
the side is helpful. Each box can then be filled in with the relative frequency 
with which each user performs each task. Another representation tool is a 
table of task sequences, indicating which tasks follow other tasks. Often, a 
flowchart or transition diagram. helps designers to record and convey the 
sequences of possible actions. The thickness of the connecting lines indicates 
the frequency of the transitions. 

In less well-defined projects, 1nany designers have found day-in-the-life 
scenarios helpful to characterize what happens when users perform typical 
tasks. During the early design stages, data about current performance 
should be collected to provide a baseline. Infonnation about shnilar systems 
can be gathered, and interviews can be conducted with interested parties, 
such as users and managers (Carroll, 1995). 

An early and easy way to describe a novel system is to write scenarios 
of usage and then, if possible, to act the1n out as a form of theater. This 
technique can be especially effective when 1nultiple users must cooperate 
(for example, in control rooms, cockpits, or financial trading rooms) or 
multiple physical devices are used (for example, at customer-service 
desks, medical laboratories, or hotel check-in areas). Scenarios can repre
sent common or e1nergency situations, with both novice and expert 
users. 

In developing theN ational Digital Library, the design team began by writ
ing 81 scenarios that portrayed typical needs of potential users. Here is an 
example: 

K-16 Users: A seventh-grade social-studies teacher is teaching a unit on the 
Industrial Revolution. He wants to make use of primary source material that 
would illustrate the factors that facilitated industrialization, the manner in 
which it occurred, and the impact that it had on society and on the built envi
ronment. Given his teaching load, he only has about four hours total to locate 
and package the supplementary material for classroom use. 
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Other scenarios 1night describe how users explore a system, such as this 
optimistic vision, written for the U.S. Holocaust Museum and Education 
Center: 

A grandmother and her 10- and 12-year old grandsons have visited the 
museum before. They have returned this time to the Learning Center to explore 
what life was like in her shtetl in Poland in the 1930s. One grandson eagerly 
touches the buttons on the welcome screen, and they watch the 45-second video 
introduction by the museum director. They then select the button on "History 
before the Holocaust" and choose to view a list of towns. Her small town is not 
on the list, but she identifies the larger nearby city, and they get a brief textual 
description, a map of the region, and a photograph of the marketplace. They 
read about the history of the town and view 15-second videos of the market
place activity and a Yiddish theater production. They bypass descriptions of 
key buildings and institutions, choosing instead to read biographies of a 
famous community leader and a poet. Finally, they select "GuestBook" and add 
their names to the list of people who have indicated an affiliation with this 
town. Further up on the list, the grandn1other notices the nmne of a childhood 
friend frmn whom she has not heard in 60 years-fortunately, the earlier visitor 
has left an address. 

This scenario was written to give nontechnical museum planners and 
the Board of Directors an idea of what could be built if funding were pro
vided. Such scenarios are easy for 1nost people to grasp, and they convey 
design issues such as physical installation (room and seats for three or 
more patrons with sound isolation) and development requirements (video 
production for the director's introduction and conversion of archival films 
to video). 

Smne scenario writers take a further step and produce a videotape to 
convey their intentions. There are famous future scenarios, such as 
Apple's Knowledge Navigator, made in 1988, which produced numerous 
controversies. It portrayed a professor using voice commands to talk with 
a bow-tied preppie character on the screen and touch commands to 
develop ecological simulations. Many viewers enjoyed the tape, but 
thought that it stepped over the bounds of reality by having the preppie 
agent recognize the professor's facial expressions, verbal hesitations, and 
emotional reactions. In 1994, Bruce Tognazzini' s Starfire scenario for Sun 
Microsystems gave his elaborate but realistic impression of a large-screen 
work environment that supported rich collaborations with remote users. 
Bill Gates took video scenarios one step further at the November 1994 
Comdex show, screening an hour-long police drama set in 2005 to illus
trate digital wallets, interactive home TV, educational databases, and 
medical co1nmunications. 
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3.8 Social Impact Statement for Early Design Review 

Interactive systen'ls often have a dramatic ilnpact on large nun'lbers of users. 
To minimize risks, a thoughtful statement of anticipated in'lpacts circulated 
among stakeholders can be a useful process for eliciting productive sugges
tions early in the development, when changes are easiest. 

Information systems are increasingly required to provide services by gov
ernments, utilities, and publicly regulated industries. However, some critics 
have strong negative attitudes about modern technologies: "technological 
evolution is leading to smnething new: a worldwide interlocked 1nonolithic, 
technical-political web of unprecedented negative implications. And it is 
surely creating terrible and possibly catastrophic impacts on the earth" 
(Mander, 1991). 

This negative view does not help us to shape n'lore effective technology or 
to prevent damage frmn technology failures. Constructive criticism and 
guidelines for design could be helpful in reversing the long history of dis
ruptions in telephone, banking, or charge-card syste1ns; dissatisfaction with 
privacy protection or incorrect credit histories; dislocation through 
deskilling or layoffs; and deaths from flawed medical instruments. While 
guarantees of perfection are not possible, policies and processes can be 
developed that will more often than not lead to satisfying outcomes. 

A social impact statement, similar to an environmental-impact statement 
(Battle et al., 1994) might help to promote high-quality systems in govern
ment-related applications. Reviews for private-sector corporate projects 
would be optional and self-administered. Early and widespread discussion 
can uncover concerns and enable stakeholders to state their positions openly 
(Ralls, 1994). Of course, there is the danger that these discussions will elevate 
fears or force designers to 1nake unreasonable compromises, but these risks 
seem reasonable in a well-1nanaged project. The practicality of writing 
social ilnpact statements was addressed by Huff (1996), who used them as a 
teaching tool. An outline for a social in'lpact statement might include these 
sections (Shneiderman and Rose, 1996): 

Describe the new system and its benefits 

• Convey the high-level goals of the new system. 

• Identify the stakeholders. 

• Identify specific benefits. 

Address concerns and potential barriers 

• Anticipate changes in job functions and potential layoffs. 
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• Address security and privacy issues. 

• Discuss accountability and responsibility for system misuse and failure. 

• Avoid potential biases. 

• Weigh individual rights versus societal benefits. 

• Assess tradeoffs between centralization and decentralization. 

• Preserve democratic principles. 

• Ensure diverse access. 

• Prmnote sim.plicity and preserve what works. 

Outline the development process 

• Present an estilnated project schedule. 

• Propose process for 1naking decisions. 

• Discuss expectations of how stakeholders will be involved. 

• Recognize needs for 1nore staff, training, and hardware. 

• Propose plan for backups of data and equip1nent. 

• Outline plan for 1nigrating to the new systen1. 

• Describe plan for measuring the success of the new system. 

A social ilnpact statement should be produced early enough in the develop
ment process to influence the project schedule, system requirements, and bud
get. It could be developed by the system design team, which might include 
end users, managers, internal or external software developers, and possibly 
clients. Even for large systems, the social impact statement should be of a size 
and complexity that make it accessible to users with relevant background. 

After the social impact state1nent is written, it is evaluated by the appropriate 
review panel plus managers, other designers, end users, and anyone else who 
will be affected by the proposed system. Potential review panels include federal 
govermnent units (for example, General Accounting Organization, Office Per
sonnel Management), state legislatures, regulatory agencies (for example, Secu
rities and Exchange Commission or Federal Aviation Administration), 
professional societies, and labor unions. The review panel receives the written 
report, holds public hearings, and requests 1nodifications. Citizen groups also 
are given the opportunity to present their concerns and to suggest alternatives. 

Once the social impact statement is adopted, it must be enforced. A social 
impact statement documents the intentions for the new syste1n, and the 
stakeholders need to see that those intentions are backed up by actions. Typ
ically, the review panel is the proper authority for enforcement. 

The effort, cost, and time should be appropriate to the project, while facil
itating a thoughtful review. The process can offer large improvements by 
preventing problems that could be expensive to repair, improving privacy 
protection, minimizing legal challenges, and creating more satisfying work 
environments. Infonnation-system designers take no Hippocratic Oath, but· 
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pledging the1nselves to strive for the noble goal of excellence in design can 
win respect and inspire others. 

3.9 Legal Issues 

As user interfaces have bec01ne pron1.inent, serious legal issues have 
emerged. Every developn1.ent process should include a review of legal issues 
that may affect design, iinplen1.entation, or 1narketing. 

Privacy is always a concern whenever cornputers are used to store data or 
to 1nonitor activity. Medicat legat financiat n1.ilitary, or certain other data 
often have to be protected to prevent unapproved access, illegal tmnpering, 
inadvertent loss, or rnalicious mischief. Physical security toprohibit access is 
fundamental; in addition, privacy protection can involve user-interface 
1nechanis1ns for controlling password access, file-access controt identity 
checking, and data verification. Users at a public workstation or kiosks want 
assurance that their password cannot be seen by other people. Effective pro
tection should provide a high degree of privacy with a minin1.u1n of confu
sion and intrusion into work. Encryption and decryption processes may 
involve complex dialog boxes to specify keys. 

A second concern enc01npasses safety and reliability. User interfaces for 
aircraft, aut01nobiles, medical equip1nent, 1nilitary systems, or nuclear-reac
tor control rooms can affect life-or-death decisions. If an air-traffic controller is 
te1nporarily confused by the contents of the display, that could lead to disas
ter. If the user interface for such a system is demonstrated to be difficult to 
understand, it could leave the designer, developer, and operator open to a law 
suit alleging improper design. Designers should strive to inake high-quality 
and well-tested interfaces that adhere to state-of-the-art design guidelines. 
Documentation of testing and usage should be 1naintained to provide accu
rate data on actual performance. Unlike architecture or engineering, user
interface design is not yet an established profession with clear standards. 

A third issue is copyright protection for software and information (Gilbert, 
1990; C01nputer Science and Telecommunications Board, 1991; Samuelson, 
1995; 1996). Software developers who have spent tilne and money to develop 
a package are frustrated in their attempts to recover their costs and to make a 
profit if potential users pirate (i.e., make illegal copies of) the package, rather 
than buy it. Various technical schemes have been tried to prevent copying, but 
clever hackers can usually circumvent the barriers. It is unusual for a com
pany to sue an individual for copying a program, but cases have been brought 
against corporations and universities. Site-license agree1nents are one solution 
because they allow copying within a site once the fees have been paid. More 
c01nplicated situations arise in the context of access to online information. If a 
customer of an online information service pays for time to access to the data-
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base, does the customer have the right to extract and store the retrieved infor
Ination electronically for later use? Can the custmner send an electronic copy 
to a colleague, or sell a bibliography carefully culled from a large com1nercial 
database? Do individuals, their e1nployers, or network operators own the 
infonnation contained in electronic-mail 1nessages? The emergence of the 
World Wide Web and efforts to build vast digital libraries have raised the tein
perature and pace of copyright discussions. Publishers are seeking to protect 
their intellectual assets, and librarians are torn between their desire to serve 
patrons and their obligations to publishers. If copyrighted works are dissemi
nated freely, then what incentives will there be for publishers and authors? If it 
is illegal to transmit any copyrighted work without pennission or pay1nent, 
then science, literature, and other fields will suffer. The fair-use doctrine of 
limited copying for personal and educational purposes helped cope with the 
questions raised by photocopying technologies, but the perfect rapid copying 
and dissemination permitted by the network de1nands a thoughtful update. 

A fourth issue is freed01n of speech in electronic environn1ents. Do users 
have a right to make controversial or potentially offensive state1nents 
through electronic mail or newsgroups? Are such state1nents protected by 
the First Amend1nent? Are networks like street corners, where freedom of 
speech is guaranteed, or are networks like television broadcasting, where 
community standards 1nust be protected? Should network operators be 
responsible for or prohibited from eliminating offensive or obscene jokes, 
stories, or ilnages? Controversy has raged over whether network operators 
have a right to prohibit electronic-1nail messages that are used to organize a 
rebellion against themselves. Another controversy e1nerged over whether a 
network operator has a duty to suppress racist electronic-mail re1narks or 
postings to a bulletin board. If libelous statements are transmitted, can a per
son sue the network as well as the source? 

Other legal concerns include adherence to laws requiring equal access for 
disabled users and attention to changing laws in countries around the world. 

The most controversial issue for user-interface designers is that of copy
right and patent protection for user interfaces. When user interfaces com
prised coded commands in all-capital letters transmitted via Teletype, there 
was little that could be protected. But the emergence of artistically designed 
GUis with animations and extensive online help has led developers to file 
for copyright protection. This activity has led to many controversies: 

• What material is eligible for copyright? Since fonts, lines, boxes, shading, 
and colors cannot usually be accorded copyrights, some people claim 
that most interfaces are not protectable. Advocates of strong protection 
claim that the ensemble of components is a creative work, just like a song 
that is composed of uncopyrightable notes or a poem of uncopyrightable 
words. Although standard arrangements, such as the rotated-L fonnat of 
spreadsheets, are not copyrightable, collections of words, such as the 
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Lotus 1-2-3 1nenu tree, have been accepted as copyrightable, but such 
decisions have later been overturned by higher courts. Apple lost its 
copyright-infringe1nent suit against Microsoft for the Windows inter
face, in part because the judge insisted on dec01nposing the interface into 
elements rather than looking at the overall look and feel. Maybe the most 
confusing concept is the separation between ideas (not protectable) and 
expressions (protectable). Generations of judges and lawyers have wres
tled with this issue; they agree only that there is "no bright shining line" 
between idea and expression, and that the distinction 1nust be decided in 
each case. Most informed c01nmentators would agree that the idea of 
working on m.ultiple documents at once by showing 1nultiple windows 
simultaneously is not protectable, but that specific expressions of win
dows (border decorations, anilnations for move1nent, and so on) is pro
tectable. A key point is that there should be a variety of ways to express a 
given idea. When there is only one way to express an idea-for example, 
a circle for the idea of a wedding band-the expression is not protectable. 

• Are copyrights or patents more appropriate for user interfaces? Traditionally, 
copyright is used for artistic, literary, and 1nusical expressions, whereas 
patent is used for functional devices. There are interesting crossovers, 
such as copyrights for maps, engineering drawings, and decorations on 
teacups, and patents for software algorith1ns. In the United States, copy
rights are easy to obtain (just put a copyright notice on the user interface 
and file a copyright application), are rapid, and are not verified. Patents 
are complex, slow, and costly to obtain, because they must be verified by 
the U.S. Patent and Trademark Office. Copyrights last 75 years for compa
nies and life plus 50 years for individuals. Patents last for only 17 years but 
are considered more enforceable. The strength of patent protection has 
raised concerns over patents that were granted for what appear to be 
fundamental algorithms for data c01npression and display management. 
Copyrights for printed user manuals and online help can also be obtained. 

• What constitutes copyright infringement? If another developer copies 
your validly copyrighted user interface exactly, that is clearly a case of 
infringement. More subtle issues arise when a c01npetitor makes a user 
interface that has elements strikingly similar, by your judgment, to 
your own. To win a copyright-infringement case, you must convince a 
jury of "ordinary observers" that the competitor actually saw your 
interface and that the other interface is "substantially similar" to yours. 

• Should user interfaces be copyrighted? There are many respected commen
tators who believe that user interfaces should not be copyrighted. They 
contend that user interfaces should be shared and that it would ilnpede 
progress if developers had to pay for permission for every user-inter
face feature that they saw and wanted to include in their interface. 
They claim also that copyrights interfere with beneficial standardiza-
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tion and that unnecessary artistic variations would create confusion 
and inconsistency. Advocates of copyrights for user interfaces wish to 
recognize creative accmnplishments and, by allowing protection, to 
encourage innovation while ensuring that designers are rewarded for 
their works. Although ideas are not protectable, specific expressions 
would have to be licensed from the creator, presumably for a fee, in the 
same way that each photograph in an art book must be licensed and 
acknowledged, or each use of a song, play, or quote must be granted 
permission. Concern over the complexity and cost of this process and 
the unwillingness of copyright owners to share is legithnate, but the 
alternative of providing no protection might slow innovation. 

In the current legal climate, interface designers must respect existing 
expressions and would be wise to seek licenses or cooperative agreements to 
share user interfaces. Placing a copyright notice on the title screen of a sys
tein and in user manuals seems appropriate. Of course, proper legal counsel 
should be obtained. 

3.10 Practitioner's Summary 

Usability engineering is maturing rapidly, and once-novel ideas have 
become standard practices. Usability has increasingly taken center stage in 
organizational and product planning. Development methodologies, such as 
Cognetics' LUCID, help designers by offering a validated process with pre
dictable schedules and meaningful deliverables. Ethnographic observation 
can provide infonnation to guide task analysis and to complement carefully 
supervised participatory design processes. Logs of usage provide valuable 
data about the task sequences and frequencies. Scenario writing helps to 
bring common understanding of design goals and is useful for managerial 
and customer presentations. For interfaces developed by governments, pub
lic utilities, and regulated industries, an early social-impact statement can 
elicit public discussion that is likely to identify problems and produce inter
faces that have high overall societal benefits. Designers and managers 
should obtain legal advice to ensure adherence to laws and protection of 
intellectual property. 

3.11 Researcher's Agenda 

Human-interface guidelines are often based on best-guess judgments rather 
than on experilnental data. More experimentation could lead to refined stan
dards that are more complete and dependable, and to more precise knowl- · 
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edge of how much improve1nent can be expected from a design change. 
Because of changing technology, we will never have a stable and complete set 
of guidelines, but the benefits of scientific studies will be enormous in terms 
of the reliability and quality of decision 1naking about user interfaces. The 
design processes, ethnographic methods, participatory design activities, sce
nario writing, and social impact statements are rapidly evolving. Thoughtful 
case studies of successes and failures would lead to refinement and m_ore 
widespread application. Creative processes are notoriously difficult to study, 
but well-docu1nented examples of success stories might inform and inspire. 

World Wide Web Resources www 
Design 1nethods promoted by com.panies and standards organiza
tions are covered, with information on how to develop style guide
lines. References to guidelines docu1nents are included in Chapter 1. 

http:/ /www.aw.com/DTUI 
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Expert Revie-w-s, Usability 

Testing, Surveys, and 

Continuing Assessinents 

The test of what is real is that it is hard and rough . 

. . . What is pleasant belongs in dreams. 

Simone Weil, Gravity and Grace, 1947 
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Introduction 
Expert Reviews 
Usability Testing and Laboratories 

4.4 Surveys 
4.5 Acceptance Tests 
4.6 Evaluation During Active Use 
4.7 Controlled Psychologically Oriented Experiments 
4.8 Practitioner's Summary 
4. 9 Researcher's Agenda 

4.1 Introduction 

Designers can become so entranced with their creations that they may fail to 
evaluate those objects adequately. Experienced designers have attained the 
wisdom and humility to know that extensive testing is a necessity. If feed
back is the "breakfast of champions," then testing is the "dinner of the gods." 
However, careful choices must be made from the large menu of evaluation 
possibilities to create a balanced meal. 

The determinants of the evaluation plan include (Nielsen, 1993; Hix and 
Hartson, 1993; Preece et al., 1994; Newman and Lamming, 1995) 

• Stage of design (early, middle, late) 

• Novelty of project (well defined versus exploratory) 

• Number of expected users 
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• Criticality of the interface (for example, life-critical medical system 
versus museum-exhibit support) 

• Costs of product and finances allocated for testing 

• Time available 

• Experience of the design and evaluation team 

The range of evaluation plans might be from an ambitious two-year test 
with multiple phases for a new national air-traffic-control system to a three
day test with six users for a sm.all internal accounting system. The range of 
costs might be from 10 percent of a project down to 1 percent. 

A few years ago, it was just a good idea to get ahead of the competition by 
focusing on usability and doing testing, but now the rapid growth of interest in 
usability m.eans that failure to test is risky indeed. The dangers are not only that 
the competition has strengthened, but also that customary engineering practice 
now requires adequate testing. Failure to perform and document testing could 
lead to failed contract proposals or malpractice lawsuits from users when errors 
arise. At this point, it is irresponsible to bypass some form of usability testing. 

One troubling aspect of testing is the uncertainty that remains even after 
exhaustive testing by multiple methods. Perfection is not possible in com
plex human endeavors, so planning must include continuing methods to 
assess and repair problems during the lifecycle of an interface. Second, even 
though problems 1nay continue to be found, at some point a decision has to 
be made about completing prototype testing and delivering the product. 
Third, most testing methods will account appropriately for normal usage, 
but performance with high levels of input such as in nuclear-reactor-control 
or air-traffic-control emergencies is extremely difficult to test. Development 
of testing methods to deal with stressful situations and even with partial 
equipment failures will have to be undertaken as user interfaces are devel
oped for an increasing number of life-critical applications. 

The Usability Professionals Association was founded in 1991 to exchange 
information among workers in this arena. The annual conference focuses 
attention on forms of usability evaluations and provides a forum for 
exchanges of ideas among the more than 4000 members. 

4.2 Expert Reviews 

While informal demos to colleagues or customers can provide some useful 
feedback, more formal expert reviews have proved to be effective (Nielsen 
and Mack, 1994). These methods depend on having experts available on staff 
or as consultants, whose expertise may be in the application or user-interface 
domains. Expert reviews can be conducted on short notice and rapidly. 
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Expert reviews can occur early or late in the design phase, and the out
comes can be a fonnal report with problems identified or recomrnendations 
for changes. Alternatively, the expert review could result in a discussion with 
or presentation to designers or managers. Expert reviewers should be sensi
tive to the design team's ego involvement and professional skilt so sugges
tions should be made cautiously: It is difficult for someone just freshly 
inspecting a system to understand all the design rationale and development 
history. The reviewer notes possible problems for discussion with the 
designers, but solutions generally should be left for the designers to pro
duce. Expert reviews usually entail half day to one week, although a lengthy 
training period may be required to explain the task domain or operational 
procedures. It may be useful to have the same as well as fresh expert review
ers as the project progresses. There are a variety of expert-review methods 
from which to choose: 

• Heuristic evaluation The expert reviewers critique an interface to deter
mine conformance with a short list of design heuristics such as the eight 
golden rules (Chapter 2). It makes an enormous difference if the experts 
are familiar with the rules and are able to interpret and apply the1n. 

• Guidelines review The interface is checked for conformance with the 
organizational or other guidelines document. Because guidelines docu
ments 1nay contain a thousand items, it may take the expert reviewers 
some time to master the guidelines, and days or weeks to review a large 
system. 

• Consistency inspection The experts verify consistency across a family 
of interfaces, checking for consistency of terminology, color, layout, 
input and output formats, and so on within the interface as well as in 
the training materials and online help. 

• Cognitive walkthrough The experts simulate users walking through the 
interface to carry out typical tasks. High-frequency tasks are a starting 
point, but rare critical tasks, such as error recovery, also should be 
walked through. Some form of simulating the day in the life of the user 
should be part of expert-review process. Cognitive walkthroughs were 
developed for interfaces that can be learned by exploratory browsing 
(Wharton et al., 1994), but they are useful even for interfaces that require 
substantial training. An expert might try the walkthrough privately and 
explore, but then there also would be a group meeting with designers, 
users, or managers to conduct the walkthrough and to provoke a discus
sion. This public walkthrough is based on the successful code walk
throughs promoted in software engineering (Yourdon, 1989). 

• Formal usability inspection The experts hold courtroom-style meeting, 
with a moderator or judge, to present the interface and to discuss its 
merits and weaknesses. Design-team members may rebut the evidence 
about problems in an adversarial format. Formal usability inspections 
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can be educational experiences for novice designers and managers, but 
they may take longer to prepare and more personnel to carry out than 
do other types of review. 

Expert reviews can be scheduled at several points in the develop1nent 
process when experts are available and when the design team is ready for 
feedback. The number of expert reviews will depend on the magnitude of 
the project and on the amount of resources allocated. 

Comparative evaluation of expert-review methods and usability-testing 
1nethods is difficult because of the many uncontrollable variables; however, 
the studies that have been conducted provide evidence for the benefits of 
expert reviews (Jeffries et al., 1991; Karat et al. 1992). Different experts tend 
to find different problems in an interface, so three to five expert reviewers 
can be highly productive, as can complementary usability testing. 

Expert reviewers should be placed in the situation 1nost si1nilar to the one 
that intended users will experience. The expert reviewers should take train
ing courses, read manuals, take tutorials, and try the syste1n in as close as 
possible to a realistic work environm_ent, complete with noise and distrac
tions. In addition, expert reviewers may also retreat to a quieter environment 
for detailed review of each screen. 

Getting a bird's-eye view of an interface by studying a full set of printed 
screens laid out on the floor or pinned to walls has proved to be enormously 
fruitful in detecting inconsistencies and spotting unusual patterns. 

The dangers with expert reviews are that the experts may not have an 
adequate understanding of the task domain or user com1nunities. Experts 
come in many flavors, and conflicting advice can further confuse the situa
tion (cynics say, "For every PhD, there is an equal and opposite PhD"). To 
strengthen the possibility of successful expert review, it helps to chose 
knowledgeable experts who are familiar with the project situation and who 
have a long-term relationship with the organization. These people can be 
called back to see the results of their intervention, and they can be held 
accountable. Moreover, even experienced expert reviewers have great diffi
culty knowing how typical users, especially first-time users, will behave. 

4.3 Usability Testing and Laboratories 

The emergence of usability testing and laboratories since the early 1980s is an 
indicator of the profound shift in attention to user needs. Traditional man
agers and developers resisted at first, saying that usability testing seemed like 

·a nice idea, but that time pressures or limited resources prevented them from 
trying it. As experience grew and successful projects gave credit to the testing 
process, demand swelled and design teams began to compete for the scarce 
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resource of the usability-laboratory staff. Managers came to realize that hav
ing a usability test on the schedule was a powerful incentive to complete a 
design phase. The usability-test report provided supportive confirmation of 
progress and specific recomn1.endations for changes. Designers sought the 
bright light of evaluative feedback to guide their work, and managers saw 
fewer disasters as projects approached delivery dates. The remarkable sur
prise was that usability testing not only sped up n1.any projects, but also pro
duced dramatic cost savings (Gould, 1988; Gould et al., 1991; Karat, 1994). 

Usability-laboratory advocates split fron1. their academic roots as these 
practitioners developed innovative approaches that were influenced by 
advertising and 1narket research. While acade1nics were developing con
trolled experiments to test hypotheses and support theories, practitioners 
developed usability-testing methods to refine user interfaces rapidly. Con
trolled experilnents have at least two treatments and seek to show statistically 
significant differences; usability tests are designed to find flaws in user inter
faces. Both strategies use a carefully prepared set of tasks, but usability tests 
have fewer subjects (maybe as few as three), and the outcome is a report with 
rec01n1nended changes, as opposed to validation or rejection of hypotheses. 
Of course, there is a useful spectru1n of possibilities between rigid controls and 
informal testing, and sometimes a combination of approaches is appropriate. 

The movanent toward usability testing stilnulated the construction of 
usability laboratories (Dumas and Redish, 1993; Nielsen, 1993). Many orga
nizations spent modest sums to build a single usability laboratory, while 
IBM built an elaborate facility in Boca Raton, Florida, with 16laboratories in 
a circular arrangement with a centralized database for logging usage and 
recording performance. Having a physical laboratory makes an organiza
tion's commitment to usability clear to employees, customers, and users 
(Nielsen, 1994) (Fig. 4.1). A typical1nodest usability laboratory would have 
two 10- by 10-foot areas, one for the participants to do their work and 
another, divided by a half-silvered mirror, for the testers and observers 
(designers, managers, and customers) (Fig. 4.2). IBM was an early leader in 
developing usability laboratories, Microsoft started later, but e.mbraced the 
idea forcefully, and hundreds of software-development companies have fol
lowed suit. A consulting community that will do usability testing for hire 
also has emerged. 

The usability laboratory is typically staffed by one or more people with 
expertise in testing and user-interface design, who may serve 10 to 15 pro
jects per year throughout the organization. The laboratory staff meet with 
the user-interface architect or manager at the start of the project to 1nake a 
test plan with scheduled dates and budget allocations. Usability-laboratory 
staff participate in early task analysis or design reviews, provide information 
on software tools or literature references, ~nd help to develop the set of tasks 
for the usability test. Two to six weeks before the usability test, the detailed 
test plan is developed, comprising the list of tasks, plus subjective satisfac-
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Figure 4.1 

Usability lab test, with subject and observer seated at a workstation. Video recorders 
capture the user's actions and the contents of the screens, while n'licrophones cap
ture thinking-aloud comments. (Used with permission of Sun Microsystems, Moun
tain View, CA.) 

tion and debriefing questions. The number, types, and source of participants 
are identified-sources, for example, 1night be customer sites, temporary 
personnel agencies, or advertisements placed in newspapers. A pilot test of 
the procedures, tasks, and questionnaires, with one to three subjects is con
ducted one week ahead of time, while there is still time for changes. This 
stereotypic preparation process can be modified in many ways to suit each 
project's unique needs. 

After changes are approved, participants are chosen to represent the 
intended user com1nunities, with attention to background in cmnputing, 
experience with the task, motivation, education, and ability with the natural 
language used in the interface. Usability-laboratory staff also must control 
for physical concerns (such as eyesight, left- versus right-handedness, age, 
and gender), and for other experimental conditions (such as time of day, day 
of week, physical surroundings, noise, room temperature, and level of dis
tractions). 

Participants should always be treated with respect and should be 
informed that it is not they who are being tested; rather, it is the software and 
user interface that are under study. They should be told about what they will 
be doing (for example, typing text into a computer, creating a drawing using 
a mouse, or getting information from a touchscreen kiosk) and how long 
they will be expected to stay. Participation should always be voluntary, and 
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Figure 4.2 

Usability lab control room, with test controllers and observers watching the subject 
through a half-silvered window. Video controls allow zoon1ing and panning to focus 
on user actions. (Used with permission of Sun Microsystems, Mountain View, CA.) 

informed consent should be obtained. Professional practice is to ask all sub
jects to read and sign a state1nent like this one: 

• I have freely volunteered to participate in this experiment. 

• I have been informed in advance what my task(s) will be and what pro
cedures will be followed. 

• I have been given the opportunity to ask questions and have had 1ny 
questions answered to my satisfaction. 

• I am aware that I have the right to withdraw consent and to dis
continue participation at any time, without prejudice to my future 
treatment. 

• My signature below 1nay be taken as affirmation of all the above state
ments; it was given prior to my participation in this study. 

An effective technique during usability testing is to invite users to think 
aloud about what they are doing. The designer or tester should be supportive of 
the participants, not taking over or giving instructions, but prompting and lis
tening for clues about how they are dealing with the interface. After a suitable 
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time period for accomplishing the task list-usually one to three hours-the 
participants can be invited to make general comments or suggestions, or to 
respond to specific questions. The informal ahnosphere of a thinking-aloud 
session is pleasant, and often leads to many spontaneous suggestions for 
improvements. In their efforts to encourage thinking aloud, some usability lab
oratories found that having two participants working together produces 1nore 
talking, as one participant explains procedures and decisions to the other. 

Videotaping participants performing tasks is often valuable for later review 
and for showing designers or 1nanagers the proble1ns that users encounter 
(Lund, 1985). Reviewing videotapes is a tedious job, so careful logging and 
annotation during the test is vital to reduce the time spent finding critical 
incidents (Harrison, 1991). Participants may be anxious about the video cam
eras at the start of the test, but within minutes they usually focus on the tasks 
and ignore the videotaping. The reactions of designers to seeing videotapes 
of users failing with their system_ is s01netimes powerful and may be highly 
motivating. When designers see subjects repeatedly picking the wrong menu 
ite1n, they realize that the label or placement needs to be changed. Most 
usability laboratories have acquired or developed software to facilitate log
ging of user activities (typing, mousing, reading screens, reading 1nanuals, 
and so on) by observers with automatic time stamping. 

At each design stage, the interface can be refined iteratively, and the 
improved version can be tested. It is important to fix quickly even small 
flaws, such as of spelling errors or inconsistent layout, since they influence 
user expectations. 

Many variant forms of usability testing have been tried. Nielsen's (1993) 
discount usability engineering, which advocates quick and dirty approaches to 
task analysis, prototype development, and testing, has been widely influen
tial because it lowered the barriers to newcomers. 

Field tests attempt to put new interfaces to work in realistic environments 
for a fixed trial period. Field tests can be made more fruitful if logging soft
ware is used to capture error, command, and help frequencies, plus produc
tivity measures. Portable usability laboratories with videotaping and 
logging facilities have been developed to support more thorough field test
ing. A different kind of field testing supplies users with test versions of new 
software. The largest field test of all time was probably the beta-testing of 
Microsoft's Windows 95, in which reportedly 400,000 users internationally 
received early versions and were asked to comment. 

Early usability studies can be conducted using paper mockups of screen 
displays to assess user reactions to wording, layout, and sequencing. A test 
administrator plays the role of the computer by flipping the pages while ask
ing a participant user to carry out typical tasks. This informal testing is inex
pensive and rapid, and usually is productive. 

Game designers pioneered the can-you-break-this approach to usability 
testing by providing energetic teenagers with the challenge of trying to beat 
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new games. This destructive testing approach, in which the users try to find 
fatal flaws in the system or otherwise to destroy it, has been used in other 
projects and should be considered seriously. Software purchasers have little 
patience with flawed products and the cost of sending out tens of thousands 
of replacement disks is one that few companies can bear. 

Competitive usability testing can be used to compare a new interface to pre
vious versions or to similar products from competitors. This approach is 
close to a controlled experim.ental study, and staff 1nust be careful to con
struct parallel sets of tasks and to counterbalance the order of presentation of 
the interfaces. Within subjects designs seem more powerful because partici
pants can make c01nparisons between the c01npeting interfaces, so fewer 
participants are needed, although they will each be needed for a longer time 
period. 

For all its success, usability testing does have at least two serious limita
tions: It e1nphasizes first-time usage and has limited coverage of the interface 
features. Since usability tests are usually two to four hours, it is difficult to 
ascertain how performance will be after a week or a 1nonth of regular usage. 
Within the typical two to four hours of a usability test, the participants may 
get to use only a small fraction of the features, menus, dialog boxes, or help 
screens. These and other concerns have led design temns to supplement 
usability testing with the varied forms of expert reviews. 

4.4 Surveys 

Written user surveys are a familiar, inexpensive, and generally acceptable 
companion for usability tests and expert reviews. Managers and users grasp 
the notion of surveys, and the typically large nu1nbers of respondents (hun
dreds to thousands of users) offer a sense of authority compared to the poten
tially biased and highly variable results from small numbers of usability-test 
participants or expert reviewers. The keys to successful surveys are clear 
goals in advance and then development of focused items that help to attain 
those goals. Experienced surveyors know that care is also needed during 
administration and data analysis (Oppenheim, 1992). 

A survey form should be prepared, reviewed among colleagues, and 
tested with a small sample of users before a large-scale survey is conducted. 
Similarly, statistical analyses (beyond means and standard deviations) and 
presentations (histograms, scatterplots, and so on) should also be developed 
before the final survey is distributed. In short, directed activities are more 
successful than unplanned statistical-gathering expeditions (no wild goose 
chases, please). My experience is that directed activities also seem to provide 
the most fertile frameworks for unanticipated discoveries. 
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Survey goals can be tied to the cmnponents of the OAI 1nodel of interface 
design (see Section 2.3). Users could be asked for their subjective ilnpres
sions about specific aspects of the interface, such as the representation of 

• Task domain objects and actions 

• Interface dmnain metaphors and action handles 

o Syntax of inputs and design of displays 

Other goals would be to ascertain the user's 

• Background (age, gender, origins, education, incmne) 

• Experience with con1.puters (specific applications or software packages, 
length of time, depth of knowledge) 

• Job responsibilities (decision-1naking influence, managerial roles, 
motivation) 

• Personality style (introvert versus extravert, risk taking versus risk 
averse, early versus late adopter, systematic versus opportunistic) 

• Reasons for not using an interface (inadequate services, too complex, too 
slow) 

• Familiarity with features (printing, macros, shortcuts, tutorials) 

• Feelings after using an interface (confused versus clear, frustrated ver
sus in control, bored versus excited) 

Online surveys avoid the cost and effort of printing, distributing, and col
lecting paper forms. Many people prefer to answer a brief survey displayed 
on a screen, instead of filling in and returning a printed form, although there 
is a potential bias in the self-selected sample. One survey of World Wide Web 
utilization generated more than 13,000 respondents. So that costs are kept 
low, surveys might be administered to only a fraction of the user community. 

In one survey, users were asked to respond to eight statements according 
to the following commonly used scale: 

1. Strongly agree 

2. Agree 

3. Neutral 

4. Disagree 

5. Strongly disagree 

The items in the survey were these: 

1. I find the system commands easy to use. 

2. I feel competent with and knowledgeable about the system commands. 

3. When writing a set of system commands for a new application, I am 
confident that they will be correct on the first run. 
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4. When I get an error message, I find that it is helpful in identifying the 
proble1n. 

5. I think that there are too many options and special cases. 

6. I believe that the com1nands could be substantially simplified. 

7. I have trouble remembering the commands and options, and must con
sult the manual frequently. 

8. When a problem arises, I ask for assistance fro1n someone who really 
knows the system. 

This list of questions can help designers to identify problems users are 
having, and to demonstrate improvement to the interface as changes are 
made in training, online assistance, com1nand structures, and so on; progress 
is demonstrated by improved scores on subsequent surveys. 

In a study of error messages in text-editor usage, users had to rate the 
messages on 1-to-7 scales: 

Hostile 

Vague 

Misleading 

Discouraging 

1234567 

1234567 

1234567 

1234567 

Friendly 

Specific 

Beneficial 

Encouraging 

If precise-as opposed to general-questions are used in surveys, then 
there is a greater chance that the results will provide useful guidance for tak
ing action. 

Coleman and Williges (1985) developed a set of bipolar semantically 
anchored items (pleasing versus irritating, simple versus complicated, con
cise versus redundant) that asked users to describe their reactions to using a 
word processor. Another approach is to ask users to evaluate aspects of the 
interface design, such as the readability of characters, the meaningfulness of 
command names, or the helpfulness of error messages. If users rate as poor 
one aspect of the interactive system, the designers have a clear indication of 
what needs to be redone. 

The Questionnaire for User Interaction Satisfaction (QUIS) was developed by 
Shneiderman and was refined by Norman and Chin (Chin et al., 1988) 
(http:/ /www.lap.umd.edu/QUISFolder/quisHome.html). It was based on 
the early versions of the OAI model and therefore covered interface details, 
such as readability of characters and layout of displays; interface objects, 
such as meaningfulness of icons; interface actions, such as shortcuts for fre
quent users; and task issues, such as appropriate terminology or screen 
sequencing. It has proved useful in demonstrating the benefits of improve
ments to a videodisc-retrieval program, in.comparing two Pascal program
ming environments, in assessing word processors, and in setting 
requirements for redesign of an online public-access library catalog. We have . 
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since applied QUIS in many projects with thousands of users and have cre
ated new versions that include items relating to website design and video
conferencing. The University of Maryland Office of Technology Liaison 
(College Park, Maryland 20742; (301) 405-4209) licenses QUIS in electronic 
and paper forms to over a hundred organizations internationally, in addition 
to granting free licenses to student researchers. The licensees have applied 
QUIS in varied ways, sometimes using only parts of QUIS or adding 
domain-specific ite1ns. 

Table 4.1 contains the long fonn that was designed to have two levels of 
questions: general and detailed. If participants are willing to respond to 
every ite1n, then the long-form questionnaire can be used. If participants are 
not likely to be patient, then only the general questions in the short form 
need to be asked. 

Other scales include the Post-Study System Usability Questionnaire, 
developed by IBM, which has 48 ite1ns that focus on system usefulness, infor
mation quality, and interface quality (Lewis, 1995). The Software Usability 
Measurement Inventory contains 50 items designed to measure users' per
ceptions of their effect, efficiency, and control (Kirakowski and Corbett, 1993). 

4.5 Acceptance Tests 

For large imple1nentation projects, the customer or manager usually sets 
objective and measurable goals for hardware and software performance. 
Many authors of requirements documents are even so bold as to specify 
1nean time between failures, as well as the mean time to repair for hardware 
and, in some cases, for software. More typically, a set of test cases is specified 
for the software, with possible response-time requirements for the hardware
software combination. If the completed product fails to meet these accep
tance criteria, the system must be reworked until success is demonstrated. 

These notions can be neatly extended to the hu1nan interface. Explicit 
acceptance criteria should be established when the requirements document 
is written or when a contract is offered. 

Rather than the vague and misleading criterion of "user friendly," measur-
able criteria for the user interface can be established for the following: 

• Time for users to learn specific functions 

• Speed of task performance 

• Rate of errors by users 

• User retention of commands over tilne 

• Subjective user satisfaction 
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Table 4.1 

Questionaire for User Interaction Satisfaction(© University of Maryland, 1997) 

Identification number: _______ System: __ Age: Gender: male female 

PART 1: System Experience 

1.1 How long have you worked on this system? 

less than 1 hour 
_1 hour to less than 1 day 
_ 1 day to less than 1 week 

1 week to less than 1 month 

__ 6 months to less than 1 year 
__ 1 year to less than 2 years 
__ 2 years to less than 3 years 
__ 3 years or 1nore 

1 month to less than 6 months 

1.2 On the average, how much time do you spend per week on this system? 

less than one hour 4 to less than 10 hours 
one to less than 4 hours over 10 hours 

PART 2: Past Experience 

2.1 How many operating systems have you worked with? 

none 
1 

3-4 
5-6 

2 more than6 

2.2 Of the following devices, software, and systems, check those that you have personally used 
and are familiar with: 

__ computer terminal 
color monitor 
CD-ROM drive 
track ball 

_graphics tablet 
scanners 

_ spreadsheet software 
__ voice recognition 
__ CAD computer aided design 

PART 3: Overall User Reactions 

_ personal computer 
touch screen 

_keyboard 
_joystick 
_head mounted display 
_word processor 

database software 
video editing systems 
rapid prototyping systems 

__ lap top computer 
_ floppy drive 

mouse 
__ pen based computing 

modems 
graphics software 
computer games 
internet 
e-mail 

Please circle the numbers which most appropriately reflect your impressions about using this 
computer system. Not Applicable= NA. 

3.1 Overall reactions to the system: terrible wonderful 
1 2 3 4 5 6 7 8 9 NA 

3.2 frustrating satisfying 
1 2 3 4 5 6 7 8 9 NA 

3.3 dull stimulating 
1 2 3 4 5 6 7 8 9 NA 

3.4 difficult easy 
1 2 3 4 5 6 7 8 9 NA 

3.5 inadequate power adequate power 
1 2 3 4 5 6 7 8 9 NA 

3.6 rigid flexible 
1 2 3 4 5 6 7 8 9 NA 

0155



4.5 Acceptance Tests 137 

Table 4.1 (continued) 

PART 4: Screen 

4.1 Characters on the computer screen hard to read easy to read 
1 2 3 4 5 6 7 8 9 NA 

4.1.1 Image of characters fuzzy sharp 
1 2 3 4 5 6 7 8 9 NA 

4.1.2 Character shapes (fonts) barely legible very legible 
1 2 3 4 5 6 7 8 9 NA 

4.2 Highlighting on the screen unhelpful helpful 
1 2 3 4 5 6 7 8 9 NA 

4.2.1 Use of reverse video unhelpful helpful 
1 2 3 4 5 6 7 8 9 NA 

4.2.2 Use of blinking unhelpful helpful 
1 2 3 4 5 6 7 8 9 NA 

4.2.3 Use of holding unhelpful helpful 
1 2 3 4 5 6 7 8 9 NA 

4.3 Screen layouts were helpful never always 
1 2 3 4 5 6 7 8 9 NA 

4.3.1 Amount of information that inadequate adequate 
can be displayed on screen 1 2 3 4 5 6 7 8 9 NA 

4.3.2 Arrangement of information illogical logical 
can be displayed on screen 1 2 3 4 5 6 7 8 9 NA 

4.4 Sequence of screens confusing clear 
1 2 3 4 5 6 7 8 9 NA 

4.4.1 Next screen in a sequence unpredictable predictable 
1 2 3 4 5 6 7 8 9 NA 

4.4.2 Going back to the previous screen impossible . easy 
1 2 3 4 5 6 7 ·8 9 NA 

4.4.3 Progression of work related tasks confusing clearly marked 
1 2 3 4 5 6 7 8 9 NA 

Please write your comments about the screens here: 

PART 5: Terminology and System Information 

5.1 Use of terminology throughout system inconsistent consistent 
1 2 3 4 5 6 7 8 9 NA 

5.1.2 Work related terminology inconsistent consistent 
1 2 3 4 5 6 7 8 9 NA 

5.2.3 Computer terminology inconsistent consistent 
1 2 3 4 5 6 7 8 9 NA 
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Table 4.1 (continued) 

5.2 Terminology relates well to the work never always 
you are doing? 1 2 3 4 5 6 7 8 9 NA 

5.2.1 Computer terminology is used too frequently appropriately 
1 2 3 4 5 6 7 8 9 NA 

5.2.2 Terminology on the screen ambiguous precise 
1 2 3 4 5 6 7 8 9 NA 

5.3 Messages which appear on screen inconsistent consistent 
1 2 3 4 5 6 7 8 9 NA 

5.3.1 Position of instructions on inconsistent consistent 
the screen 1 2 3 4 5 6 7 8 9 NA 

5.4 Messages which appear on screen confusing clear 
1 2 3 4 5 6 7 8 9 NA 

5.4.1 Instructions for cmnmands confusing clear 
or functions 1 2 3 4 5 6 7 8 9 NA 

5.4.2 Instructions for correcting errors confusing clear 
1 2 3 4 5 6 7 8 9 NA 

5.5 Computer keeps you informed about never always 
what it is doing 1 2 3 4 5 6 7 8 9 NA 

5.5.1 Animated cursors keep you never always 
informed 1 2 3 4 5 6 7 8 9 NA 

5.5.2 Performing an operation leads to a never always 
predictable result 1 2 3 4 5 6 7 8 9 NA 

5.5.3 Controlling amount of feedback impossible easy 
1 2 3 4 5 6 7 8 9 NA 

5.5.4 Length of delay between unacceptable acceptable 
operations 1 2 3 4 5 6 7 8 9 NA 

5.6 Error messages unhelpful helpful 
1 2 3 4 5 6 7 8 9 NA 

5.6.1 Error messages clarify the problem never always 
1 2 3 4 5 6 7 8 9 NA 

5.6.2 Phrasing of error messages unpleasant pleasant 
1 2 3 4 5 6 7 8 9 NA 

Please write your comments about terminology and system information here: 

PART 6: Learning 

6.1 Learning to operate the system difficult easy 
1 2 3 4 5 6 7 8 9 NA 

6.1.1 Getting started difficult easy 
1 2 3 4 5 6 7 8 9 NA 
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Table 4.1 (continued) 

6.1.2 Learning advanced features difficult easy 
1 2 3 4 5 6 7 8 9 NA 

6.1.3 Time to learn to use the system difficult easy 
1 2 3 4 5 6 7 8 9 NA 

6.2 Exploration of features by trial discouraging encouraging 
and error 1 2 3 4 5 6 7 8 9 NA 

6.2.1 Exploration of features risky safe 
1 2 3 4 5 6 7 8 9 NA 

6.2.2 Discovering new features difficult easy 
1 2 3 4 5 6 7 8 9 NA 

6.3 Remembering names and use of difficult easy 
co1nmands 1 2 3 4 5 6 7 8 9 NA 

6.3.1 Remembering specific rules about difficult easy 
entering commands 1 2 3 4 5 6 7 8 9 NA 

6.4 Tasks can be perfonned in a straight- never always 
forward 1nanner 1 2 3 4 5 6 7 8 9 NA 

6.4.1 Number of steps per task too many just right 
1 2 3 4 5 6 7 8 9 NA 

6.4.2 Steps to complete a task follow never always 
a logical sequence 1 2 3 4 5 6 7 8 9 NA 

6.4.3 Feedback on the completion of unclear clear 
sequence of steps 1 2 3 4 5 6 7 8 9 NA 

Please write your comments about learning here:. 

PART 7: System Capabilities 

7.1 System speed too slow fast enough 
1 2 3 4 5 6 7 8 9 NA 

7.1.1 Response time for most operations too slow fast enough 
1 2 3 4 5 6 7 8 9 NA 

7.1.2 Rate information is displayed too slow fast enough 
1 2 3 4 5 6 7 8 9 NA 

7.2 The system is reliable never always 
1 2 3 4 5 6 7 8 9 NA 

7.2.1 Operations undependable dependable 
1 2 3 4 5 6 7 8 9 NA 

7.2.2 System failures occur frequently seldom 
1 2 3 4 5 6 7 8 9 NA 

7.2.3 System warns you about never always 
potential problems 1 2 3 4 5 6 7 8 9 NA 
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Table 4.1 (continued) 

7.3 System tends to be noisy quiet 
1 2 3 4 5 6 7 8 9 NA 

7.3.1 Mechanical devices such as noisy quiet 
fans, disks, and printers 1 2 3 4 5 6 7 8 9 NA 

7.3.2 Computer generated sounds annoying pleasant 
1 2 3 4 5 6 7 8 9 NA 

7.4 Correcting your mistakes difficult easy 
1 2 3 4 5 6 7 8 9 NA 

7.4.1 Correcting typos complex simple 
1 2 3 4 5 6 7 8 9 NA 

7.4.2 Ability to undo operations inadequate adequate 
1 2 3 4 5 6 7 8 9 NA 

7.5 Ease of operation depends on your never always 
level of experience 1 2 3 4 5 6 7 8 9 NA 

7.5.1 You can accomplish tasks with difficulty easily 
knowing only a few commands 1 2 3 4 5 6 7 8 9 NA 

7.5.2 You can use features/shortcuts with difficulty easily 
1 2 3 4 5 6 7 8 9 NA 

Please write your comments about system capabilities here: 

PART 8: Technical Manuals and On-line help 

8.1 Technical manuals are confusing clear 
1 2 3 4 5 6 7 8 9 NA 

8.1.1 The terminology used in the confusing clear 
manual 1 2 3 4 5 6 7 8 9 NA 

8.2 Information from the manual is never always 
easily understood 1 2 3 4 5 6 7 8 9 NA 

8.2.1 Finding a solution to a problem impossible easy 
using the manual 1 2 3 4 5 6 7 8 9 NA 

8.3 Amount of help given inadequate adequate 
1 2 3 4 5 6 7 8 9 NA 

8.3.1 Placement of help messages confusing clear 
on the screen 1 2 3 4 5 6 7 8 9 NA 

8.3.2 Accessing help messages difficult easy 
1 2 3 4 5 6 7 8 9 NA 

8.3.3 Content of on-line help messages confusing clear 
1 2 3 4 5 6 7 8 9 NA 

8.3.4 Amount of help given inadequate adequate 
1 2 3 4 5 6 7 8 9 NA 
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Table 4.1 (continued) 

8·.3.5 Help defines specific aspects inadequately adequately 
of the system 1 2 3 4 5 6 7 8 9 NA 

8.3.6 Finding specific information difficult easy 
using the on-line help 1 2 3 4 5 6 7 8 9 NA 

8.3.7 On-line help useless helpful 
1 2 3 4 5 6 7 8 9 NA 

Please write your comments about technical manuals and on-line help here: 

PART 9: On-line Tutorials 

9.1 Tutorial was useless helpful 
1 2 3 4 5 6 7 8 9 NA 

9 .1.1 Accessing on-line tutorial difficult easy 
1 2 3 4 5 6 7 8 9 NA 

9.2 Maneuvering through the tutorial was difficult easy 
1 2 3 4 5 6 7 8 9 NA 

9.2.1 Tutorial is meaningfully structured never always 
1 2 3 4 5 6 7 8 9 NA 

9.2.2 The speed of presentation was unacceptable acceptable 
1 2 3 4 5 6 7 8 9 NA 

9.3 Tutorial content was useless helpful 
1 2 3 4 5 6 7 8 9 NA 

9.3.1 Information for specific aspects of never always 
the system were complete and 1 2 3 4 5 6 7 8 9 NA 
informative 

9.3.2 Information was concise and to never always 
the point 1 2 3 4 5 6 7 8 9 NA 

9.4 Tasks can be completed with difficulty easily 
1 2 3 4 5 6 7 8 9 NA 

9.4.1 Instructions given for completing confusing clear 
tasks 1 2 3 4 5 6 7 8 9 NA 

9.4.2 Time given to perform tasks inadequate adequate 
1 2 3 4 5 6 7 8 9 NA 

9.5 Learning to operate the system difficult easy 
using the tutorial was 1 2 3 4 5 6 7 8 9 NA 

9.5.1 Completing system tasks after difficult easy 
using only the tutorial 1 2 3 4 5 6 7 8 9 NA 

Please write your comments about on-line tutorials here: 
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Table 4.1 (continued) 

PART 10: Multimedia 

10.1 Quality of still pictures/photographs bad good 
1 2 3 4 5 6 7 8 9 NA 

10.1.1 Pictures /Photos fuzzy clear 
1 2 3 4 5 6 7 8 9 NA 

10.1.2 Picture/Photo brightness dim bright 
1 2 3 4 5 6 7 8 9 NA 

10.2 Quality of movies bad good 
1 2 3 4 5 6 7 8 9 NA 

10.2.1 Focus of movie images fuzzy clear 
1 2 3 4 5 6 7 8 9 NA 

10.2.2 Brightness of movie images dim bright 
1 2 3 4 5 6 7 8 9 NA 

10.2.3 Movie window size is adequate never always 
1 2 3 4 5 6 7 8 9 NA 

10.3 Sound output inaudible audible 
1 2 3 4 5 6 7 8 9 NA 

10.3.1 Sound output choppy s1nooth 
1 2 3 4 5 6 7 8 9 NA 

10.3.2 Sound output garbled clear 
1 2 3 4 5 6 7 8 9 NA 

10.4 Colors used are unnatural natural 
1 2 3 4 5 6 7 8 9 NA 

10.4.1 Amount of colors available inadequate adequate 
1 2 3 4 5 6 7 8 9 NA 

Please write your comments about multimedia here: 

PART 11: Teleconferencing 

11.1 Setting up for conference difficult easy 
1 2 3 4 5 6 7 8 9 NA 

11.1.1 Time for establishing the too long just right 
connections to others 1 2 3 4 5 6 7 8 9 NA 

11.1.2 Number of connections possible too few enough 
1 2 3 4 5 6 7 8 9 NA 

11.2 Arrangement of windows showing confusing clear 
connecting groups 1 2 3 4 5 6 7 8 9 NA 

11.2.1 Window with view of your own never always 
group is of appropriate size 1 2 3 4 5 6 7 8 9 NA 
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Table 4.1 (continued) 

11.2.2 Window(s) with view of connecting never always 
group(s) is of appropriate size 1 2 3 4 5 6 7 8 9 NA 

11.3 Determining the focus of attention confusing clear 
during conference was 1 2 3 4 5 6 7 8 9 NA 

11.3.1 Telling who is speaking difficult easy 
1 2 3 4 5 6 7 8 9 NA 

11.4 Video image flow choppy smooth 
1 2 3 4 5 6 7 8 9 NA 

11.4.1 Focus of video image fuzzy clear 
1 2 3 4 5 6 7 8 9 NA 

11.5 Audio output inaudible audible 
1 2 3 4 5 6 7 8 9 NA 

11.5.1 Audio is in sync with video images never always 
1 2 3 4 5 6 7 8 9 NA 

11.6 Exchanging data difficult easy 
1 2 3 4 5 6 7 8 9 NA 

11.6.1 Transmitting files difficult easy 
1 2 3 4 5 6 7 8 9 NA 

11.6.2 Retrieving files difficult easy 
1 2 3 4 5 6 7 8 9 NA 

11.6.3 Using on-line chat difficult easy 
1 2 3 4 5 6 7 8 9 NA 

11.6.4 Using shared workspace difficult easy 
1 2 3 4 5 6 7 8 9 NA 

Please write your comments about teleconferencing here: 

PART 12: Software Installation 

12.1 Speed of installation slow fast 
1 2 3 4 5 6 7 8 9 NA 

12.2 Customization difficult easy 
1 2 3 4 5 6 7 8 9 NA 

12.2.1 Installing only the software confusing clear 
you want 1 2 3 4 5 6 7 8 9 NA 

12.3 Informs you of its progress never always 
1 2 3 4 5 6 7 8 9 NA 

12.4 Gives a meaningful explanation never always 
when failures occur 1 2 3 4 5 6 7 8 9 NA 

Please write your comments about software installation here: 
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An acceptance test might specify the following: 

The subjects will be 35 secretaries hired from an employment agency. They 
have no word-processing experience, but have typing skills in the range of 35 
to 50 words per minute. They will be given 45 minutes of training on the basic 
features. At least 30 of the 35 secretaries should be able to complete, within 30 
minutes, 80 percent of the typing and editing tasks in the enclosed benchmark 
test correctly. 

Another testable require1nent for the smne system 1night be this: 

After four half-days of regular use of the system, 25 of these 35 secretaries 
should be able to carry out, within 20 minutes, the advanced editing tasks in 
the second benchmark test, and should n1ake fewer than six errors. 

This second acceptance test captures performance after regular use. The 
choice of the benchmark tests is critical and is highly syste1n dependent. The 
test materials and procedures must also be refined by pilot testing before use. 

A third item in the acceptance test plan 1night focus on retention: 

After two weeks, at least 15 of the test subjects should be recalled and should 
perform the third benchmark test. In 40 minutes, at least 10 of the subjects 
should be able to complete 75 percent of the tasks correctly. 

In a large system, there may be eight or 10 such tests to carry out on dif
ferent components of the interface and with different user communities. 
Other criteria such as subjective satisfaction, output comprehensibility, sys
tem response time, installation procedures, printed documentation, or 
graphics appeal may also be considered in acceptance tests of complete com
mercial products. 

If they establish precise acceptance criteria, both the customer and the 
interface developer can benefit. Argu1nents about the user friendliness are 
avoided, and contractual fulfillment can be demonstrated objectively. Accep
tance tests differ from usability tests in that the atmosphere may be adver
sarial, so outside testing organizations are often appropriate to ensure 
neutrality. The central goal of acceptance testing is not to detect flaws, but 
rather to verify adherence to requirements. 

Once acceptance testing has been successful, there may be a period of field 
testing before national or international distribution. In addition to further refin
ing the user interface, field tests can improve training methods, tutorial materi
als, telephone-help procedures, marketing methods, and publicity strategies. 

The goal of early expert reviews, usability testing, surveys, acceptance 
testing, and field testing is to force as much as possible of the evolutionary 
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developm.ent into the prerelease phase, when change is relatively easy and 
inexpensive to accmnplish. 

4.6 Evaluation During Active Use 

A carefully designed and thoroughly tested system is a wonderful asset, but 
successful active use requires constant attention frotn dedicated managers, 
user-services personnel, and maintenance staff. Everyone involved in sup
porting the user cotntnunity can contribute to system refinements that pro
vide ever higher levels of service. You cannot please all of the users all of the 
tilne, but earnest effort will be rewarded by the appreciation of a grateful 
user comn1.unity. Perfection is not attainable, but percentage in1.prove1nents 
are possible and are worth pursuing. 

Gradual systetn dissetnination is useful so that problems can be repaired 
with minilnal disruption. As more and n1.ore people use the system, major 
changes should be limited to an annual or semiannual system revision that is 
announced adequately. If system users can anticipate the change, then resis
tance will be reduced, especially if they have positive expectations of 
ilnprovetnent. More frequent changes are expected in the rapidly developing 
World Wide Web environment, but a balance between stable access to key 
resources even as novel services are added may be the winning policy. 

4.6.1 Interviews and focus-group discussions 

Interviews with individual users can be productive because the inter
viewer can pursue specific issues of concern. After a series of individual 
discussions, focus-group discussions are valuable to ascertain the universal
ity of comments. Interviewing can be costly and time consutning, so 
usually only a small fraction of the user community is involved. On the 
other hand, direct contact with users often leads to specific, constructive 
suggestions. 

A large corporation conducted 45-minute interviews with 66 of the 4300 
users of an internal message system. The interviews revealed that the users 
were happy with some aspects of the functionality, such as the capacity to 
pick up messages at any site, the legibility of printed messages, and the con
venience of after-hours access. However, the interviews also revealed that 
23.6 percent of the users had concerns about reliability, 20.2 percent thought 
that using the system was confusing, and 18.2 percent said convenience and 
accessibility could be improved, whereas only 16.0 percent expressed no 
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concerns. Later questions in the interview explored specific features. As a 
result of this interview project, a set of 42 enhancements to the system was 
proposed and implemented. The designers of the system had earlier pro
posed an alternate set of enhance1nents, but the results of the interviews led 
to a changed set of priorities that more closely reflected the users' needs. 

4.6.2 Continuous user-performance data logging 

The software architecture should make it easy for syste1n Inanagers to collect 
data about the patterns of syste1n usage, speed of user performance, rate of 
errors, or frequency of requests for online assistance. Logging data provide 
guidance in the acquisition of new hardware, changes in operating proce
dures, improvements to training, plans for system expansion, and so on. 

For example, if the frequency of each error message is recorded, then the 
highest-frequency error is a candidate for attention. The message could be 
rewritten, training materials could be revised, the software could be changed 
to provide 1nore specific information, or the command syntax could be sim
plified. Without specific logging data, the system-maintenance staff has no 
way of knowing which of the many hundreds of error-1nessage situations is 
the biggest problem for users. Similarly, staff should examine 1nessages that 
never appear, to see whether there is an error in the code or whether users 
are avoiding use of some facility. 

If logging data are available for each command, each help screen, and 
each database record, then changes to the human-cmnputer interface can be 
made to simplify access to frequently used features. Managers also should 
examine unused or rarely used facilities to understand why users are avoid
ing those features. Logging of the Thomas system for access to U.S. Congress 
legislation revealed high-frequency terms, such as abortion, gun control, and 
balanced budget that could be used in a browse list of hot topics (Croft et al, 
1995). Logging in an educational database identified frequently used as well 
and rarely used paths and features (Marchionini and Crane, 1994). 

A major benefit of usage-frequency data is the guidance that they provide 
to system maintainers in optimizing performance and in reducing costs for 
all participants. This latter argument may yield the clearest advantage to 
cost-conscious managers, whereas the increased quality of the interface is an 
attraction to service-oriented managers. 

Logging may be well intentioned, but users' rights to privacy deserve to 
be protected. Links to specific user names should not be collected, unless 
necessary. When logging aggregate performance crosses over to monitoring 
individual activity, managers must inform users of what is being monitored 
and how the information will be used. Although organizations may have a 
right to ascertain worker performance, workers should be able to view the 
results and to discuss the implications. If monitoring is surreptitious and is 
later discovered, resulting worker mistrust of management could be more · 
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damaging than the benefits of the collected data. Manager and worker coop
eration to improve productivity, and worker participation in the process and 
benefits, are advised. 

4.6.3 Online or telephone consultants 

Online or telephone consultants can provide extremely effective and personal 
assistance to users who are experiencing difficulties. Many users feel reassured 
if they know that there is a hun1.an being to whmn they can turn when prob
lenl.S arise. These consultants are an excellent source of infonnation about prob
lems users are having and can suggest improve1nents and potential extensions. 

Many organizations offer a toll-free nu1nber via which the users can reach a 
knowledgeable consultant; others charge for consultation by the minute. On 
son1.e network systems, the consultants can 1nonitor the user's computer and 
see the same displays that the user sees while maintaining telephone voice con
tact. This service can be extremely reassuring: Users know that smneone can 
walk them through the correct sequence of screens to cmnplete their tasks. 

America Online provides live (real-time) chat romns for discussion 
of user problems. Users can type their questions and get responses 
promptly. Many groups maintain a standard electronic-mail address of 
staff@<organization> that allows users to get help from whomever is on 
duty. My several successful experiences of getting quick help late at night 
fro1n our departmental staff have re1nained firmly in my memory. On one 
occasion, they helped me to unpack a file in an unfamiliar format; on 
another, they recovered an inadvertently deleted file. 

4.6.4 Online suggestion box or trouble reporting 

Electronic mail can be employed to allow users to send messages to the 
maintainers or designers. Such an online suggestion box encourages some 
users to make productive comments, since writing a letter may be seen as 
requiring too much effort. 

A Library of Congress website that invites comments gets 10 to 20 per day, 
including thoughtful ones such as this: 

I find as I get searching through the various Web pages ... that I am left with an 
unsatisfied feeling. I have been sitting in front of the PC for close to an hour ... 
and have been stopped and/ or slowed due to items that can be directly related 
to web server design. 

First off, the entry pages are too big and disorganized. Those links that do exist 
do not have adequate enough descriptions to direct a user to the information they 
desire. In addition, the use of a search engine would greatly facilitate sifting 
through the abundance of information that is thrown at the user with any one of 
these links. Links should be short, sweet, and specific. Large amounts of material 
should not be included in one document on a busy server .... 
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Breaking up these larger documents into s1naller, well organized docmnents 
may seern to create an additional burden on programming. However, if intelli
gence is used in the creation of such systems, it would not take n1.uch ... 

In fact, the search engine that this user wanted was available, but he could 
not find it, and larger docum.ents were broken into smaller segn1.ents. A reply 
helped to get this user what he was seeking, and his 1nessage also led to 
design changes that n1.ade the interface features more visible. · 

An internet directory service for personal names, Knowbot Information 
Service, offers a gripe command with the invitation "Place a complilnent or 
cmnplaint in the KIS log file." Another service simply has a button labeled 
"Tell us what you think." 

A large corporation installed a full-screen, fill-in-the-blanks form for user 
proble1n reports, and received 90 comments on a new internal syste1n within 
three n1.onths. The user's identification number and nmne were entered auto
matically, and the user moved a cursor to indicate which subsystem was 
causing a problem and what the proble1n's seriousness was (showstopper, 
annoyance, improvement, other). Each problem report received a dated and 
signed response that was stored on a file for public reading. 

4.6.5 Online bulletin board or newsgroup 

Some users may have a question about the suitability of a software package for 
their application, or may be seeking someone who has had experience using an 
interface feature. They do not have any individual in mind, so electronic mail 
does not serve their needs. Many interface designers offer users an electronic 
bulletin board or newsgroup (see Section 14.3) to permit posting of open messages 
and questions. These newsgroups cover programming languages, software 
tools, or task domains. There are also mailing lists for interface designers, such 
as the one established on the internet by the Human Factors and Ergonomics 
Society's Computer Systems Technical Group (send electronic 1nail to list
serv@listserv.vt.edu with this line: subscribe cstg-L <your full name>) 

Smne professional societies offer bulletin boards by way of networks such 
as America Online, Prodigy, and CompuServe. These bulletin boards may 
offer information services or permit downloading of software. 

Bulletin-board software systems usually offer a list of item headlines, 
allowing users the opportunity to select items for display. New items can be 
added by anyone, but usually someone monitors the bulletin board to ensure 
that offensive, useless, or repetitious items are removed. 

4.6.6 User newsletters and conferences 

When there is a substantial number of users who are geographically dis
persed, managers may have to work harder to create a sense of community. 
Newsletters that provide information about novel interface facilities, sugges-
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tions for improved productivity, requests for assistance, case studies of suc
cessful applications, or stories about individual users can promote user satis
faction and knowledge. Printed newsletters are more traditional and have 
the advantage that they can be carried away from the workstation. A printed 
newsletter has an appealing air of respectability. Online newsletters are less 
expensive and 1nore rapidly dissem_inated. World Wide Web or CD-ROM 
newsletters are appealing if collections of images are included or large 
datasets are anticipated. 

Personal relationships established by face-to-face 1neetings also increase 
the sense of co1n1nunity among users. Conferences allow workers to exchange 
experiences with colleagues, prmnote novel approaches, stimulate greater 
dedication, encourage higher productivity, and develop a deeper relation
ship of trust. Ultimately, it is the people who 1natter in an organization, and 
hu1nan needs for social interaction should be satisfied. Every technical sys
tem is also a social syste1n that needs to be encouraged and nurtured. 

By soliciting user feedback in any of these ways, managers can gauge user 
attitudes and elicit useful suggestions. Furthermore, users may have 1nore 
positive attitudes toward the interface if they see that the m.anagers gen
uinely desire cmnments and suggestions. 

4. 7 Controlled Psychologically Oriented Experiments 

Scientific and engineering progress is often stilnulated by improved tech
niques for precise measurement. Rapid progress in the designs of interfaces 
will be stimulated as researchers and practitioners evolve suitable human
performance measures and techniques. We have come to expect that auto
mobiles will have miles-per-gallon reports pasted to the window, appliances 
will have energy-efficiency ratings, and textbooks will be given grade-level 
designations; soon, we will expect software packages to show learning-time 
esti1nates and user-satisfaction indices from appropriate evaluation sources. 

Academic and industrial researchers are discovering that the power of the 
traditional scientific 1nethod can be fruitfully employed in the study of inter
faces (Barnard, 1991). They are conducting numerous experiments that are 
uncovering basic design principles. The outline of the scientific method as 
applied to human-cmnputer interaction m.ight include these tasks: 

• Deal with a practical problem and consider the theoretical framework. 

• State a lucid and testable hypothesis. 

• Identify a small number of independent variables that are to be 
manipulated. 

• Carefully choose the dependent variables that will be measured. 
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• Judiciously select subjects, and carefully or randmnly assign subjects to 
groups. 

• Control for biasing factors (nonrepresentative sample of subjects or 
selection of tasks, inconsistent testing procedures). 

• Apply statistical methods to data analysis. 

• Resolve the practical problem, refine the theory, and give advice to 
future researchers. 

The classic experimental methods of psychology are being enhanced to 
deal with the cmnplex cognitive tasks of human perfonnance with infonna
tion and computer systems. The transformation from Aristotelian introspec
tion to Galilean experimentation that took two 1nillennia in physics is being 
accomplished in two decades in the study of human-computer interaction. 

The reductionist approach required for controlled experi1nentation yields 
narrow but reliable results. Through multiple replications with similar tasks, 
subjects, and experimental conditions, reliability and validity can be 
enhanced. Each small experilnental result acts like a tile in the mosaic of 
human performance with computer-based information systems. 

Managers of actively used systems are also cmning to recognize the power 
of controlled experiments in fine tuning the human-computer interface. As 
proposals are 1nade for new menu structures, novel cursor-control devices, 
and reorganized display formats, a carefully controlled experiment can pro
vide data to support a management decision. Fractions of the user population 
could be given proposed improvements for a limited tilne, and then perfor
mance could be compared with the control group. Dependent measures 
could include performance times, user-subjective satisfaction, error rates, and 
user retention over time. 

Experimental design and statistical analysis are complex topics (Hays, 
1988; Cozby, 1996; Runyon and Haber, 1996; Winer et al., 1991.) Novice 
experimenters would be well advised to collaborate with experienced social 
scientists and statisticians. 

4.8 Practitioner's Summary 

Interface developers evaluate their designs by conducting expert reviews, 
usability tests, surveys, and rigorous acceptance tests. Once systems are 
released, developers perform continuous performance evaluations by inter
views or surveys, and by logging user performance in a way that respects the 
privacy of users. If you are not measuring;you are not doing human factors! 

Successful system managers understand that they must work hard to 
establish a relationship of trust with the user community. In addition to pro-
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viding a properly functioning system, computer service managers and infor
mation-systems directors recognize the need to create social mechanisms for 
feedback, such as online surveys, interviews, discussions, consultants, sug
gestion boxes, bulletin boards, newsletters, and conferences. 

4.9 Researcher's Agenda 

Researchers can contribute their experience with experimentation to devel
oping techniques for system evaluation. Guidance in conducting pilot stud
ies, acceptance tests, surveys, interviews, and discussions would benefit 
commercial development groups. Experts in constructing psychological tests 
would be extremely helpful in preparing a validated and reliable test instru
ment for subjective evaluation of interactive systems. Such a standardized 
test would allow independent groups to compare the acceptability of their 
systems. In addition, assessment 1nethods for user skill levels with software 
would be helpful in job-placement and training programs. 

Clinical psychologists, psychotherapists, and social workers could con
tribute to training online or as telephone consultants-after all, helping trou
bled users is a human-relationship issue. Finally, 1nore input from 
experimental, cognitive, and clinical psychologists would help computer 
specialists to recognize the importance of the human aspects of cmnputer 
use. What techniques can reduce novice user anxiety? How can life-critical 
applications for experienced professionals be tested reliably? 

World Wide Web Resources www 
Prototyping and usability testing methods are covered with some 
information on evaluation methods, such as surveys. The full text of 
our QUIS is available online. 

http:/ /www.aw.com/DTUI 
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Soft"W"are Tools 

There is great satisfaction in building good tools for other people to use. 

Freeman Dyson, Disturbing the Universe, 1979 
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CH7 

Log cabins were often built by settlers for personal housing on the American 
frontier, just as early user interfaces were built by programmers for their own 
use. As housing needs changed, windows and rooms were added in a process 
of iterative refinement, and dirt floors gave way to finished wood. Log cabins 
are still being built according to personal taste by rugged individualists, but 
modern private homes, apartment buildings, schools, hospitals, and offices 
require specialist training, careful planning, and special equipment. 

The emergence of user-interface architects, design and specification meth
ods, standard components, and automated tools for construction are indica
tors of the maturation of our field. There will always be room for the 
innovator and the eccentric, but the demands of modern life require user-
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interface architects to build reliable, standard, safe, inexpensive, effective, 
and widely acceptable user interfaces on a predictable schedule (Carey, 1988). 

Building and user-interface architects must have simple and quick meth
ods of sketching to give their clients a way to identify needs and preferences. 
Then, they need precise methods for working out the details with the clients 
(detailed floorplans become transition diagrams, screen layouts, and menu 
trees), for coordinating with specialized colleagues (plumbers and electri
cians become graphic designers and technical writers), and for telling the 
builders (or software engineers) what to do. 

Like building architects, successful user-interface architects know that it 
1nakes good sense to complete the design before they start building, even 
though they know that, in the process of construction, some changes will have 
to be made. With large projects, multiple designers (structural engineers for 
the steel framework, interior designers for space planning, and decorators for 
the esthetics) will be necessary. The size and importance of each project will 
determine the level of design effort and the number of participants. Just as 
there are specialists for airports, hospitals, and schools, there are user-inter
faces specialists for air-traffic-control, medical, and educational applications. 

This chapter begins with user-interface specification methods, moves to 
software tools to support design and software engineering, and then closes 
with evaluation and critiquing tools. These tools are increasingly graphical 
in their user interfaces, enabling designers and programmers to build inter
faces rapidly by dragging components and linking functions together. User
interface building tools have matured rapidly in the past few years, and have 
radically changed the nature of software development. Productivity gains of 
50 to 500 percent above previous methods have been documented for many 
standard GUis. But, even as the power tools for established styles improve 
and gain acceptance, program1ners will always have to· handcraft novel 
interface styles. 

5.2 Specification Methods 

The first asset in making designs is a good notation to record and discuss 
alternate possibilities. The default language for specifications in any field is 
the designer's natural language, such as English, and a sketchpad or black
board. But natural-language specifications tend to be lengthy, vague, and 
ambiguous, and therefore often are difficult to prove correct, consistent, or 
complete. Formal and semiformal languages have proved their value in many 
areas, including mathematics, physics, circuit design, 1nusic, and even knit
ting. Formal languages have a specified grammar, and effective procedures 
exist to determine whether a string adheres to the language's grammar. 
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Grammars for cmnn1.and languages are effective, but for GUis the amount of 
syntax is sn1.all. In GUis, a gra1nmar might be used to describe sequences of 
actions, but these grammars tend to be short, making transition diagrams 
and graphical specifications more appealing. 

Menu-tree structures are popular, and therefore specifying menu trees by 
simply drawing the tree and showing the menu layouts deserves attention. 
The more general method of transition diagrams has wide applicability in 
user-interface design. Improvements such as statecharts have features that are 
attuned to the needs of interactive systems and for widget specification. New 
approaches such as the user action notation (UAN) (Hartson et al., 1990; Chase 
et al., 1994) are helpful in characterizing user behavior and some aspects of 
system responses. 

5.2.1 Grammars 

In cmnputer programming, Backus-Naur form (BNF) also called (Backus nor
Jnal form) is often used to describe programming languages. High-level com
ponents are described by nonterminals, and specific strings are terminals. 
Let us use the example of a telephone-book entry. The nonterminals describe 
a person's name (composed of a last name followed by a comma and a first 
name) and a telephone number (composed of an area code, exchange, and 
local number). Names consist of strings of characters. The telephone number 
has three components: a three-digit area code, a three-digit exchange, and a 
four-digit local number. 

<Telephone book entry> ::=<Name> <Telephone number> 
<Name> : := <Last name>, <First name> 
<Last name> : := <string> 
<First name> ::=<string> 
<string> ::= <character>l<character><string> 
<character> : : = 

AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ 
<Telephone number> : := (<area code>) <exchange>-<local number> 
<area code> : := <digit><digit><digit> 
<exchange> : := <digit><digit><digit> 
<local number> : := <digit><digit><digit><digit> 
<digit>::= Ol112l3l4l5l6l718l9 

The left-hand side of each specification line is a nonterminal (within angle 
brackets) that is defined by the right-hand side. Vertical bars indicate alter
natives for nonterminals and terminals. Acceptable-telephone-book entries 
include the following: 

WASHINGTON, GEORGE (301) 555-1234 
BEEF, STU (726) 768-7878 
A, Z (999) 111-1111 
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BNF notation is used widely, even though it is incomplete and must be 
supplemented by ad hoc techniques for specifying the sernantics, such as 
permissible names or area codes. The benefits are that some aspects can be 
written down precisely, and that software tools can be employed to verify 
some aspects of completeness and correctness of the grarnn1.ar and of strings 
in the language. On the other hand, grammars are difficult to follow as they 
grow and are confusing for rnany users. 

Command languages are nicely specified by BNF-like grammars, such as 
the task-action gramrnar (Section 2.2.4). Reisner (1981) expanded the idea of 
BNF to sequences of actions, such as pushing a button, selecting a color, or 
drawing a shape. 

Variant forms of BNF have been created to accmnn1.odate specific situa
tions. For example, the Unix comn1.and for copyii'lg files or directories is 
summarized by this extract from the online rnanual: 

cp [ -ip ] filenamel filename2 
cp -rR [ -ip ] directoryl directory2 
cp [ -iprR ] filename . . . directory 

where the square brackets indicate that zero or more options can be 
included, and the -rR indicates that one of these options for recursive copy
ing is required for copying directories. 

To accommodate the richness of interactive software, multiparty grammars 
(Shneiderman, 1982) have nonterrninals that are labeled by the party that 
produces the string (typically the user, U, or the computer, C). Nonterminals 
acquire values during parsing for use by other parties, and therefore error
handling rules can be included easily. This grammar describes the opening 
steps in a login process: 

<Session>::= <U: Opening> <C: Responding> 
<U: Opening> : := LOGIN <U: Name> 
<U: Name> : := <U: string> 
<C: Responding> ::=HELLO [<U: Name>] 

Here, square brackets indicate that the value of the user's name should be 
produced by the computer in responding to the login command. 

Multiparty grammars are effective for text-oriented command sequences 
that have repeated exchanges, such as a bank terminal. Unfortunately, two
dimensional styles, such as form fillin or direct manipulation and graphical 
layouts, are more difficult to describe with multiparty grammars. Menu 
selection can be described by multiparty grammars, but the central aspect of 
tree structure and traversal is not shown conveniently in a grammar-based 
approach. 
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5.2.2 Menu-selection and dialog-box trees 

For many applications a menu-selection tree is an excellent selection style 
because of the simple structure that guides designers and users alike. Guide
lines for the contents of the m_enu trees are covered in Chapter 7. Specifica
tion 1nethods include online tools to help in the construction of menu trees 
and simple drawing tools that enable designers and users to see the entire 
tree at one time. 

Menu trees are powerful as a specification tool since they show users, 
managers, i1nple1nenters, and other interested parties the con1plete and 
detailed coverage of the system. Like any 1nap, a 1nenu tree shows high-level 
relationships and low-level details. With large syste1ns, the Inenu tree may 
have to be laid out on a large wall or floor, but it is ilnportant to be able to see 
the entire structure at once to check for consistency, completeness, and lack 
of mnbiguity or redundancy. 

Similar cmnments apply for dialog boxes. Printing out the dialog boxes 
and showing their relationships by 1noLmting them on a wall is enormously 
helpful in gaining an overview of the entire system to check for consistency 
and cmnpleteness. 

5.2.3 Transition diagrams 

Menu trees are incomplete because they do not show the entire structure of 
possible user actions, such as returns to the previous 1nenu, jumps to the 
starting 1nenu, or detours to error handling or to help screens. However, 
adding all these transitions would clutter the clean structure of a menu 
tree. For so;ne aspects of the design process, more precise specification of 
every possible transition is required. Also, for many nonmenu interaction 
styles, there is a set of possible states and permissible transitions muong the 
states that may not form a tree structure. For these and other circum
stances, a more general design notation known as transition diagrams has 
been used widely. 

Typically, a transition diagram has a set of nodes that represents system 
states and a set of links between the nodes that represents possible transi
tions. Each link is labeled with the user action that selects that link and pos
sible computer responses. The simple transition diagram in Fig. 5.1 
(Wasserman and Shewmake, 1985) represents a numbered menu-selection 
system for restaurant reviews that shows what happens when the user 
selects numbered choices: 1 (add a restaurant to the list), 2 (provide a review 
of a restaurant), 3 (read a review), 4 (get help, also accessed by a?), 5 (quit), 
or any other character (error message). Figure 5.2 shows its text form. Figure 
5.3 shows another form of transition diagram that displays frequencies 
along the links. 

Many forms of transition diagrams have been created with special nota
tions to fit needs of application areas, such as air-traffic control or word pro:-
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+ -------------------------------

<add new> 

,
1

, I <giverev> 

'2'~ 
'3' II!IJ l,__<_r_e_a_d_r_e_v_> __ -;_ ____ 1 

'4' '?' 

·s·~··.........._ 

G 
Figure 5.1 

Transition diagram for a simple menu system. (Wasserman and Shewmake, 1985.) 

cessing. Tools for creating and maintaining transition diagrams, dataflow 
diagrams, and other graphical displays are part of most computer-assisted 
software engineering (CASE) environments, such as the Software Through Pic
tures (Interactive Development Environments, Inc., http:/ /www.ide.com). 
In 1nost systems, the diagram is created by direct-manipulation actions, but 
designers can get a textual output of the transition diagram as well. 

Unfortunately, transition diagrams get unwieldy as syste1n cmnplexity 
grows, and too 1nany transitions can lead to complex spaghetti-like displays. 
Improvements are to replace a state transition node with a screen print to 
give readers a better sense of movement through the displays and dialog 
boxes. Such overviews are helpful in design and in training. 

Designs for interfaces with hundreds of dialog boxes, or for websites with 
hundreds of screens, are easier to study when hung on the wall. In a lnemo
rable encounter, 350 screens of a satellite-control system were pasted on 

. three walls of a conference room, quickly revealing the disparate styles of the 
design teams of the six modules. Compressed overview diagrams may be 
squeezed onto a single sheet of paper for user manuals, or printed as a poster 
to hang on users' walls. 
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node start 
cs, 
r6, 
r+2, 
r+2, 
r+2, 
r+2, 

node help 
CS, 

r+l, 
r+l, 
r+l, 
r+l, 

r+2, 

r2, rv, c_' Interactive Restaurant Guide', sv, 
c5, 'Please make a choice: 

c10, '1: Add new restaurant to database', 
c10, '2: 
c10, '3: 
c10, '4: 

Give review of a restaurant 
Read reviews for a given restaurant', 
Help', r+2, c10, '5: Quit', r+3,c5, 'Your choice: 

r5, cO, 'This program stores and retrieves information on', 
cO, 'restaurants, with emphasis on San Francisco.', 
cO, 'You can add or update information about restaurants', 
cO, 'already in the database, or obtain information about', 
cO, 'restaurants, including the reviews of others.', 
cO, 'To continue, type RETURN.' 

node error 
r$-1, rv, 'Illegal command.', sv, 
r$, 'Press RETURN to continue.' 

node clean 
r$-1, cl,r$,cl 

node wakeup 

'Please type a number from 1 to 5.', 

r$,cl,rv,'Please make a choice',sv, tomark_A 
node quit 

cs, 'Thank you very much. Please try this program again', 
nl, 'and continue to add information on restaurants.' 

arc start single_key 
on '1' to <addnew> 
on '2' to <giverev> 
on \3 I to <readrev> 
on '4'' \?I to help 
on '5' to quit 
alarm 30 to wakeup 
else to error 

arc error 
else to start 

arc help 
skip to clean 

arc clean 
else to start 

arc <addnew> 
skip to start 

arc <readrev> 
skip to start 

arc <giverev> 
skip to start 

Figure 5.2 

mark_A 

Text form of Fig. 5.1. Additional information is provided by the comment lines. 

5.2.4 Statecharts 

Although transition diagrams are effective for following flow or action and 
for keeping track of the current state plus current options, they can rapidly 
become large and confusing. Modularity is possible if nodes are included 
with subgraphs, but this strategy works well with only orderly, one-in, one
out graphs. Transition diagrams also becom.e confusing when each node must 
show links to a help state, jumps back to the previous or start state, and a quit 
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OK 

Start 

Cancel J 
Figure 5.3 

Sample transition diagram for file-manipulation actions. Link labels indicate how 
frequently each transition is made. 

state. Concurrency and synchronization are poorly represented by transition 
diagrams, although some variations such as petri-nets can help. An appealing 
alternative is statecharts (Barel, 1988), which have several virtues in specify
ing interfaces. Because a grouping feature is offered through nested round
tangles (Fig. 5.4), repeated transitions can be factored out to the surrounding 
roundtangle. Extensions to statecharts-such as concurrency, external inter
rupt events, and user actions-are represented in Statemaster, which is a 
user-interface tool based on statecharts (Wellner, 1989). 

Statecharts can also be extended with dataflow and constraint specifica
tion, plus embedded screen prints to show the visual states of graphical wid
gets (Carr, 1994). For example, in the si1nple case of a secure toggle switch, 
there are five states, so showing the visual feedback on the statechart with 
user-action notation (see Section 5.2.5) on the arcs helps readers to under
stand what is happening (Fig. 5.5). 

5.2.5 User-action notation (UAN) 

~he grammar or diagram approaches to specification are suited for menus, 
commands, or form fillin, but they are clumsy with direct-manipulation inter
faces, because they cannot cope conveniently with the variety of permissible 
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Bank transactions 

ID # Help 

Quit 

Figure 5.4 

Statechart of a simplified bank transaction system showing grouping of states. 

Secure Switch 

Static States 

Figure 5.5 

Interaction-object graphs extend statecharts with dataflow features and the user
action notation. This example shows a secure switch with bitmaps of the states at 
each node. (Carr, 1994) 
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actions and visual feedback that the system provides. In addition, direct
manipulation interfaces depend heavily on context to determine the meaning 
of an input. For example, a mouse-button click can mean select a file, open a 
window, or start an application, depending on where the cursor is when the 
click is applied. Similarly, it is difficult to characterize the results of dragging 
an icon, since they will depend on where the icon is dropped. 

To cope with the rich world of direct-m.anipulation interfaces, high-level 
notations that focus on the users' tasks, that deal with pointing, dragging, 
and clicking, and that describe the interface feedback are more likely to be 
helpful. For example, to select an icon, the user 1nust n1.ove the cursor to the 
icon location and click and release on the 1nouse button. The movement to an 
icon is represented by a - [ icon] and the 1nouse-button n1.otion is repre
sented by Mv (mouse-button depress) followed by MA (mouse-button 
release). The system response, which is to highlight the icon, is represented 
by icon! The sequencing is shown by a complete user-action notation (UAN) 
description (Hartson et al., 1990; Hix and Hartson, 1993): 

TASK: Select an icon 

User Actions 

-[icon] Mv 

M" 

Interface Feedback 

icon! 

A more complex task might be to delete a file; that task requires user 
actions of dragging a file icon around the display to a trash icon while hold
ing down the mouse button. The interface feedback is to highlight the file 
that is selected and to dehighlight (file-! indicates dehighlight the file) 
other files, then to drag an outline of the file icon to the trash icon 
(outline (file) > - means that the outline is dragged by the cursor). 
Then, the user drops the file-icon outline on the trash icon, the file icon is 
erased, and the trash icon blinks. The selected file is shown in the interface
state column: 

TASK: Select an icon 

User Actions Interface Feedback 

-[file] Mv file!, forall(file!): file-! 

-[x,y]* outline(file) >-

-[trash] 

M" 

outline(file) > - trash! 

erase(file), trash!! 

Interface State 

selected = file 

selected = null 

The UAN has interface-specific symbols for actions (such as moving the 
cursor, pressing a button, entering a string, or setting a value), and for con
currency, interrupts, and feedback (such as highlighting, blinking, dragging, 
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rubberbanding, and erasing). The symbols were chosen to mimic the 
actions-such as v for button depress,"' for button release, and- for cursor 
movement-but it still takes time to get used to this novel notation. Also, 
UAN does not conveniently specify rich graphics, such as drawing pro
grams or anilnations, relationships across tasks, and interrupt behavior. 
Nonetheless, UAN is a compact, powerful, and high-level approach to spec
ifying syste1n behavior and describing user actions (Chase et al., 1994). 

5.3 Interface-Building Tools 

Specification methods are important for the design of cmnponents of a sys
tem such as command languages, data-entry sequences, and widgets. 
Screen-transition diagrams drawn or printed on paper are an excellent 
means to provide an overview of the system. They allow user-interface archi
tects, designers, managers, users, and software engineers to sit around a 
table, discuss the design, and prepare for the big job that lies ahead. Paper
based designs are a great way to start, but the detailed specification of com
plete user interfaces requires software tools. 

The good news is that there has been a rapid and remarkable proliferation 
of software tools to accmnmodate 1nost designers and software engineers in 
accomplishing many design goals. These tools come in colorful shrink
wrapped boxes that emphasize convenient and rapid building of onscreen 
prototypes. They generally allow visual editing, so designers can immedi
ately assess the "look" of the system and can easily change color, fonts, and 
layout. These direct-1nanipulation design tools have enabled large numbers 
of task-domain experts who have only modest technical training to become 
user-interface designers. 

Other tools are powerful programming languages that include extensive 
toolkits that enable experienced software engineers to build a richer variety 
of features, but that often require twice or 20 times as much code and work. 
Of course, there will always be special designs that require progr~mming in 
languages, such as C or C++, or even in assembly language to deal with pre
cise timing or special hardware features. 

The terminology for products varies depending on the vendor. Popular 
terms include Rapid Prototyper, User Interface Builder, User Interface Manage
ment System, User Interface Development Environment, Rapid Application 
Developer. A key distinction is how extensively the system uses convenient 
visual programming, a relatively simple scripting language (event or object ori
ented), or a more powerful general-purpose. programming language. 

Use of these software tools brings great benefits (Box 5.1), and is spread
ing widely, even as the tools are rapidly improved in successive versions. 
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Box 5.1 

Features of user-interface-building tools. 

User-interface independence 

• Separate interface design from internals 

• Enable multiple user-interface strategies 

• Enable multiple-platform support 

• Establish role of user-interface architect 

• Enforce standards 

Methodology and notation 

• Develop design procedures 

• Find ways to talk about design 

• Create project manage1nent 

Rapid prototyping 

• Try out ideas very early 

• Test, revise, test, revise, ... 

• Engage end users, 1nanagers, and customers 

Software support 

• Increase productivity 

• Offer constraint and consistency checks 

• Facilitate team approaches 

• Ease maintenance 
, 

The central advantage stems from the notion of user-interface independence
decoupling of the user-interface design from the cmnplexities of program
ming. This decoupling allows the designers to lay out sequences of displays 
in just a few hours, to make revisions in minutes, and to support the expert
review and usability-testing processes. The programming needed to com
plete the underlying system can be applied once the user-interface design 
has been stabilized. The user-interface prototypes can serve as specifications 
from which writers create user manuals, and frmn which software engineers 
build the system using other tools. The latter are required to produce a sys
tem that works just like the prototype. In fact, prototypes can be the specifi
cation in government or commercial contracts for novel software. 

Some early tools were limited to doing prototyping only, but most modern 
tools allow for quick prototyping and then system development. The design 
tools enable construction of complete systems but they may run slowly, lhnit 
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the database size, or restrict users in rnany ways. The software-engineering 
tools allow construction of rnore robust systerns, but the cmnplexity, cost, and 
developrnent tilne are usually greater. 

An important consideration in choosing tools is whether they support 
cross-platform developrnent, a strategy in which the interface can run on 
rnultiple environments such as Windows or Unix. There is a great benefit if 
only one progrmn needs to be written and maintained, but the product is 
available on rnultiple platfonns. 

Another important consideration is whether the application allows the user 
interface to run under a web browser such as Netscape Navigator or Microsoft 
Internet Explorer. Since these browsers are written for nmltiple platforms, the 
cross-platfonn goal is autornatically met. The World Wide Web is such a pow
erful force that web-oriented tools are likely to have the brightest future. 

5.3.1 Design tools 

User-interface architects recognize that creating quick sketches is important 
during the early stages of design to explore rnultiple alternatives, to allow 
comrnunication within the design tearn, and to convey to clients what the 
product will look like. User-interface rnockups can be created with paper and 
pencil, word processors, or slide-show presentation software (Adobe Persua
sion or Microsoft PowerPoint). Resourceful designers have also built user
interface prototypes with cornputer-assisted-instruction software, such as 
Authorware, IconAuthor, or Quest, and with rn.ultimedia construction tools, 
such as Apple Hypercard, MacroMind Director, or Asymetrix Toolbook. 

In the simplest case, designers create a slide show of still images, which 
are switched at a user-controlled pace. Most tools support more complete 
prototyping that allows users to select from rnenus, click on buttons, use 
scrolling lists, and even drag icons. Users can navigate through screens and 
go back to previous screens. The prototype may not have a full database, 
help, or other facilities, but it offers a carefully chosen path that gives a real
istic presentation of what the interface will do. 

Visual editing tools usually permit designers to lay out displays with cur
sor movements or mouse clicks, and to mark regions for selection, highlight
ing, or data entry. Then, designers can specify which button selection is 
linked to a related display or dialog box. Prototypes are excellent aids to 
design discussions and are effective in winning contracts, because clients can 
be given a rough idea of what the finished systern will be like. 

The early success Apple's HyperCard stimulated many competitors. 
These systems combine visual editing-by allowing designers to include 
buttons and other fields-with simple interface actions provided automati
cally (for example, clicking on a back-arrow would take the user to the previ-
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ous card). For more cmnplex actions, the innovative HyperTalk scripting lan
guage enables many users to create useful interfaces with only moderate 
training. Designers can write programs with easy-to-understand terms: 

on mouseUp 
play "boing" 
vvai t for 3 seconds 
visual effect wipe left very fast to black 
click at 150,100 
type "goodbye" 

end mouseUp 

Of course, program1ning in such languages can becom.e cmnplex as the nuln
ber of short code segments grows and their interrelationships becmne diffi
cult to fathom. 

Visual programming tools with direct rnanipulation, such as Prograph (Pic
torius Syste1ns), are an intriguing alternative. Prograph allows users to edit, 
execute, debug, and 1nake changes during execution, with flowchart-like 
visual-programn'ling tools that e1nphasize dataflow and have a deeply 
nested modular structure (Fig. 5.6). Visual progrmnming for laboratory 
instru1nents was the 1notivating influence for LabVIEW (National Instru
Inents) (Fig. 5.7), which has a flat structure of function boxes (arithmetic, 
Boolean, and 1nore) linked with wires (Green and Petre, 1996). 

Contemporary visual development tools such as Microsoft Visual Basic 
(Fig. 5.8), Borland Delphi (Fig. 5.9), and Sy1nantec Cafe (Fig. 5.10) have easy
to-use design tools for dragging buttons, labels, data-entry fields, combo 
boxes, and 1nore onto a workspace to assemble the visual interface. Then, 
users write code in a scripting language that is an extension of Basic, object
oriented Pascal, or Java to implement the actions. The visual editors in these 
products reduce design time for user interfaces dramatically, if designers are 
content to use the supplied widgets, such as labels, data-entry boxes, scroll 
bars, scrolling lists, or text-entry areas. Adding new widgets takes program
ming skill, but there are large libraries of widgets for sale. Delphi's compiled 
Pascal code runs faster than the interpreted Basic, and Delphi also provides 
good support for database access, but newer versions of each product are 
likely to challenge each other. 

5.3.2 Software-engineering tools 

Experienced programmers often build user interfaces with general-purpose 
programming languages such as Cor C++, but this approach is giving way 

. to using facilities that are especially tuned to user-interface development and 
web access (Olsen, 1991; Myers, 1995). 
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Figure 5.6 

Enter temperature 

r'l.: k · ·:~< 
I::Z:: ask~ 1.8 

II 0 
·~.... ....-

........ _ .--·--
~Iii%] 32 

'r' ________ .!.-• 
I I 

.. Celsius= .. W+:::< .. Fahrenheit-
1...1___ I I _....!-1 

---- ) -----
;:.:~~:-:-;-;q ' . ,.!, .g;;,-
~show@ 

Prograph CPX, a visual language that uses object-oriented programming techniques, 
including inheritance, encapsulation, and polymorphism. This simple example 
shows a cmnmon programrnjng proble1n. (Used with permission of Pictorius Inc., 
Halifax, Nova Scotia, Canada.) 

Some products provide user-interface program libraries, often called 
toolkits, that offer common widgets, such as windows, scroll bars, pull-down 
or pop-up menus, data-entry fields, buttons, and dialog boxes. Program
ming languages with accompanying libraries are familiar to experienced 
programmers and afford great flexibility. However, toolkits can become 
complex, and the programming environments for those, such as Microsoft 
Windows Developer's Toolkit, Apple Macintosh MacApp, and Unix X-Win
dows toolkit (Xtk), require months of learning for programmers to gain pro
ficiency. Even then, the burden in creating applications is great, and 
maintenance is difficult. The advantage is that the programmer has extensive 
control and great flexibility in creating the interface. Toolkits have become 
popular with programm_ers, but they provide only partial support for consis-
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Ciic:k on the Uqht Bulb above bJ 
turn on E:-:ecution Highlighting to 
see hJ:3V-.1 the program e:..;ecute:s:. 
Click again to run at full speed. 

Digital 
Thermometer. vi 

Lab VIEW enables users to develop virtual instruments in a visual-programming 
environment. In this simple demo program, the virtual instrument on the left is con
trolled by the program on the right, which can show an animation of its execution. 
(Reprinted with permission of copyright owner, National Instruments Corporation 
(Austin,TX). Lab VIEW is a registered trademark of National Instruments.) 

tency, and designers and managers must still depend heavily on experienced 
programmers. The Motif example in Fig. 5.11 conveys the challenge of pro
gramming user interfaces in X. 

To lighten the burden of programming, Ousterhout developed a simpler 
scripting language called Tel and an accompanying toolkit called Tk (Ouster
hout, 1994). Their great success was due to the relative ease of use of Tel and 
the useful widgets in Tk, such as the text and canvas. Tel is interpreted, so 
development is rapid, and its cross-platform capabilities are further attrac
tions. The absence of a visual editor discourages some users, but Tel's conve
nience in gluing together components has overcome the objections of most 

· critics. This sample menu-construction program illustrates Tel scripting (Mart
land, 1994, http:/ /http2.brunel.ac.uk:8080/ ~csstddm/TCL2/TCL2.html): 
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Private Sub Form 

End Sub 

Pr:·ivate ~3ub 

End Sub 

Private Sub sendButt 

Figure 5.8 

This Microsoft Visual Basic design shows a mock-up of a CelPhone interface with a 
text box for the phone number and two action buttons. The palette of tools on the 
left includes a Label, TextBox, Frame, CommandButton, CheckBox, RadioButton, 
ComboBox, ListBox, and scroll bars. The code window is in the bottom center and 
the properties window at the right allows users to set object properties. (Figures 5.8, 
5.9 and 5.10 prepared by Stephan Greene, University of Maryland.) (Used with per
mission of Microsoft Corp., Redmond, WA.) 
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interface 

uses 
5ysUtils, WinTypes, WinProcs, 
Forms, Dialogs, 5tdCtrls; 

type 
TCelPhone = class(TForm) 

5endButton: TButton; 
RecallButton: TButton; 
Number: TLabel; 
Edi U·Iurnl)er: TEcl.i t; 
Action: TLabel; 

private 

{ Private dec2arationa 
public 

This Borland Delphi design shows the same mock-up of a CelPhone as in Fig. 5.8. 
The palette of tools, which is across the top, includes MainMenu, PopupMenu, 
Label, Edit, Men1.o Button, CheckBox, RadioButton, ListBox, ComboBox, ScrollBar, 
Group Box, RadioGroup, and Panel. The Object Inspector window, which allows set
ting of properties, is at the left, and the code window is at the lower right. (Used 
with permission of Borland International, Inc., Scotts Valley, CA) 
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send Button 
F8.ca:tft:hitio:r:;1 
: ................................. ; 
numb ertextFie ld 1 

0 nlostF ocus 
OnKeyAction 
0 nKey.6.ctionR 

OnKeyPress 
0 nKeyR elease 
OnMouseUp 
OnMouseDown 
OnMouseDrag 
OnMouseEnter 
OnMouseE~:it 

0 nM ouset·ll ove 
0 nV./indowD estory 
0 n\.1/indov·!l conify 
0 riv./indo 1ND eiconify 
0 nV./indowM oved 

Figure 5.10 

impDrt java .. aT,;rt . *; 

public cl.':f.ss CelPhCine 

public CelPhCine() { 

./ .. ··· { ·f IlHT CONTROIS 
setLayCiut(null); 
addNCitify(); 
resize(insets().lef 
number-Label = new j, .. 
number-Label. resha.pe' 
add ( number-La.bel) ; 
act iDnL3.bel = neT,;r j 
actiDnLabel.reshape 
add ( a.ct iDnLa.bel); · 
sendBu t tCin = ne':i' j 
sendButtCin.reshape( 
.':f.dd ( sendBu t t Clll) ; 

reca.llBu. t tCin = 
recallButtCin. 

This Symantec Visual Cafe design shows the same mock-up of a CelPhone as in Fig. 
5.8. The palette of tools, which is across the top, includes Button, RadioButton, 
CheckBox, Label, Panel, Choice, MenuBar, TextArea, TextField, List, Vertical Scroll
bar, and Horizontal Scrollbar. The object hierarchy in the form is at the upper left, 
the code in the lower left, the properties window on the upper right, and the object 
library on the lower right. (Used with permission of Symantec Corp., Cupertino, 
CA.) 
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XI* Written by Dan Heller. Copyright 1991, O'Reilly & Associates. 
X * This program is freely distributable without licensing fees and 
X * is provided without guarantee or warrantee expressed or implied. 
X * This program is -not- in the public domain. 
======================================================================= 
X /* main window contains a MenuBar and a Label displaying a pixmap 
*I 
X main_w = XtVaCreateManagedWidget ( "main_window", 
X xMainWindowWidgetClass, toplevel, 
X xmNscrollBarDisplayPolicy, xmAS_NEEDED, 
X xmNscrollingPolicy, xmAUTOMATIC, 
X NULL); 
X 
X /* Create a simple MenuBar that contains three menus */ 
X file XmStringCreateSimple ("File") ; 
X edit= XmStringCreateSimple("Edit"); 
X help = XmStringCreateSimple ("Help") ; 
X menubar = XmVaCreateSimpleMenuBar(main_w, "menubar", 
X XmVaCASCADEBUTTON, file, 'F', 
X 
X 

X 

XmVaCASCADEBUTTON, edit, 'E' 
XmVaCASCADEBUTTON, help, 'H', 
NULL); 

X XmStringFree(file); 
X XmStringFree(edit); 
X /* don't free "help" compound string yet- reuse it for later */ 
X 
X /* Tell the menubar which button is the help menu */ 
X if (widget- XtNameToWidget(menubar, "button_2")) 
X XtVaSetValues(menubar, xmNmenuHelpWidget, widget, NULL); 

Figure 5.11 

Programming of user interfaces in Motif. 

#First make a menu button 
menubutton .menul -text "Unix commands" -menu .menul.m 
-underline 0 

#Now make the menu, and add the lines one at a time 
menu . menul . m 
.menul.m add command -label "List Files" -command {ls} 
.menul.m add command -label "Get date" -command {date} 
.menul.m add command -label "Start calendar" -command {xcalendar} 

pack .menul 

A well-developed commercial alternative is Galaxy (Visix, Reston, VA), 
which offers cross-platform capability by emulating GUis on Macintosh, Win
dows, Motif, and other platforms. The visual editor has rich functionality that 
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allows users to specify layouts with springs and struts to preserve the 
designer's intent even when screen sizes or widget sizes are changed (Hud
son and Mohamed, 1990). Galaxy has rich object-oriented libraries that can be 
invoked from Cor C++ programs, plus tools for managing network services 
and file directories. It requires software-engineering skills to use, but the 
visual editor enables prmnpt construction of prototypes. 

Sun Microsystems has created the largest tremors on the web with its 
offerings of Java and Javascript. Java is a complete system-progrmnn1.ing lan
guage that is specially designed for the World Wide Web. It is compiled on 
the server and is sent to clients as bytecodes that are interpreted by the 
browser on whatever platform the browser resides, thereby obtaining cross
platform capability. Java can be used to create complete applications that are 
distributed like any progrmn, but one of its charms is its capacity to create 
"applets." These s1nall program frag1nents can be downloaded from a web 
page and executed on the user's machine. This aspect enables programmers 
easily to make web pages dynmnic and provide animations or error checking 
on data-entry forms. This extreme form of modularity allows software pack
ages to be updated by way of the World Wide Web, and permits users to 
acquire only the components that they use. 

Java is object oriented but eliminates some of the complexity of C++, such 
as operator overloading, multiple inheritance, pointers, and extensive auto
matic coercions. Automatic garbage collection and the absence of pointers 
eliminate common sources of bugs. Security and robustness goals were 
achieved by techniques such as strong typing, which requires explicit data 
declarations, and static binding, which means that references must be made 
during compilation. Software engineers have celebrated Java, because of its 
features and its familiar programming-language style, as indicated in this 
brief example from the online manual: 

class Test { 

} 

public static void main(String[] args) { 
for (int i = 0; i < args.length; i++) 

System.out.print(i == 0 ? args[i] 
System.out.println(); 

} 

" " + args [ i ] ) ; 

Javascript is a much simpler scripting language that is embedded in the 
Hypertext Markup Language (HTML) code that generates web pages. It 
achieves the goals of network distribution and cross-platform capability, 
since it is distributed within the HTML for a web page and is interpreted by 
the client's browser on the local machine-Macintosh, Windows, or Unix. It 
is relatively easy to learn, especially for someone who has learned HTML, 
and it supplies common features. This example shows a script to square the 
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value of a user-entered number: 

<HEAD> 
<SCRIPT LANGUAGE= 11 JavaScript 11 > 
<!-- to hide script contents from old browsers 

function square(i) { 

} 

document.write( 11 The call passed", i ,"to 
the function. 11 ,<BR>) 

return i * i 

document. write ("The function returned II, square (5), II. II) 
II end hiding contents from old browsers --> 
</SCRIPT> 
</HEAD> 
<BODY> 
<BR> 
All done. 
</BODY> 

On loading the web page, it produces this output: 

The call passed 5 to the function. 
The function returned 25. 
All done. 

Although the original Java and Javascript did not contain visual editors, 
other developers will supply those tools. Security proble1ns have arisen, but 
Java seems likely to provide adequate security to encourage develop1nent of 
commercial processes, such as funds transfer, credit-card charges, or personal 
data sharing. Execution speed of Java is a concern, because the bytecodes 
must be interpreted, but compilation techniques are promised to support 
rapid perfonnance, and even hardware changes have been suggested. 

The rapid pace of change on the Internet is stimulated by the easy sharing 
of code and the capacity to build quickly on top of the work of other pro
grammers. The frenzy is smnetimes alanning, but is usually irresistible. The 
importance of the World Wide Web has led developers of many tools
including Tcl/Tk, Galaxy, MacroMind Director, and Visual Basic-to enable 
their programs to run on the web. 

5.4 Evaluation and Critiquing Tools 

Software tools are natural environments in which to add procedures to eval
uate or critique user interfaces. Simple metrics that report numbers of dis
plays, widgets, or links between displays capture the size of a user-interface 
project. But the inclusion of more sophisticated evaluation procedures can 
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allow us to assess whether a menu tree is too deep or contains redundancies, 
whether widget labels have been used consistently, whether all buttons have 
proper transitions associated with then1., and so on (Olsen and Halversen, 
1988). Even straightforward tools such as spell checkers or concordances of 
tenns would be a benefit. 

A second set of tools is run-time logging software, which captures the users' 
patterns of activity. Simple reports-such as on the frequency of each error 
message, menu-item selection, dialog-box appearance, help invocation, form
field usage, or web-page access-are of great benefit to maintenance personnel 
and to revisers of the initial design. Experimental researchers can also capture 
performance data for alternative designs to guide their decision making. Soft
ware to analyze and summarize the performance data will be welcome. 

An early example is Tullis' Display Analysis Program, which takes 
alphanumeric screen designs (no color, highlighting, separator lines, or 
graphics) and produces Tullis's display-cmnplexity metrics plus smne 
advice, such as this (Tullis, 1988): 

Upper-case letters: 77% The percentage of upper-case letters 
is high. 

Consider using more lower-case letters, since text printed 
in normal upper- and lower-case letters is read about 13% 
faster than text in all upper case. Reserve all upper-case 
for items that need to attract attention. 

Maximum local density= 89.9% at row 9, column 8. 
Average local density= 67.0% 

The area with the highest local density is identified 
... you can reduce local density by distributing the 
characters as evenly as feasible over the entire 
screen. 

Total layout complexity= 8.02 bits 
Layout complexity is high. 

This means that the display items (labels and data) are 
not well aligned with each other ... Horizontal complexity 
can be reduced by starting items in fewer different 
columns on the screen (that is, by aligning them verti
cally) . 

The movement toward GUis with richer fonts and layout possibilities has 
reduced interest in Tullis's metrics, but better analyses of layouts seem possi
ble (see Section 11.4). Evaluations based on formal user-task descriptions 
using NGOMSL (Byrne et al., 1994) or simpler task sequences and frequen
cies (Sears, 1993; 1995) are possible. Task-dependent metrics are likely to be 
more accurate, but the effort and uncertainty in collecting sequences and fre
quencies of tasks may discourage potential users. 
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Task-independent 1neasure1nent and evaluation tools can be easily applied 
at low cost, early in the develop1nent process (Mahajan and Shneidern1.an, 
1996). Simple n1.easures such as the nuinber of widgets per dialog box, widget 
density, nonwidget areas, aspect ratio, and balance of top to bottom or left to 
right are useful to gain smne idea of the designer's style, but they have lhn
ited value in detecting anmnalies. Reports on the top, bottom, left and right 
1nargins, and the list of distinct colors and typefaces often produced unrea
sonable variations in four systen1.s developed using Visual Basic. Separate 
tools to perform spell checking and to produce interface concordances were 
helpful in revealing errors and inconsistencies. Software tools to check button 
size, position, color, and wording also revealed inconsistencies that were pro
duced because 1nultiple Ine1nbers of design tean1.s failed to coordinate on a 
co1nn1.on style. An e1npirical study with 60 users den1.onstrated that increased 
variations in terminology-for exmnple, switching frorn search to browse to 
query-slowed perfonnance thnes by 10 to 25 percent. 

Web-page and web-site analyzers also offer designers sorne guidance. 
Doctor HTML (http:/ /imagiware.cmn/RxHTML/)provides link and spell 
checking; examines fonns, tables, and in<ages; and gives code evaluation 
with comments such as this: 

Did not find the required open and close HEAD tag. You should 
open and close the HEAD tag in order to get consistent per
formance on all browsers. Found extra close STRONG tags in 
this document. Please remove them. 

5.5 Practitioner's Summary 

There will always be a need to write some user interfaces with traditional 
progra1nming tools, but the advantages of specialized user-interface soft
ware tools for designers and software engineers are large. They include an 
order-of-1nagnitude increase in productivity, shorter development sched
ules, support for expert reviews and usability testing, ease in making 
changes and ensuring consistency, better 1nanage1nent control, and reduced 
training necessary for designers. 

The profusion of current tools and the prmnises of improved tools 
requires that managers, designers, and programmers stay infonned, and that 
they make fresh choices for each project. This educational process can be 
enlightening, since the benefits of in1.proved and appropriate tools are enor
mous if the right tools are selected (Hix and Schuhnan, 1991) (Box 5.2). 

Fron1. the tool1naker' s viewpoint, there are still great opportunities to create 
effective tools that handle more user-interface situations, that produce output 
for multiple software and hardware platfonns, that are easier to learn, that are 
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Box 5.2 

Factors in choosing an:wng user-interface-building tools. 

Widgets supported 

• Windows and dialog boxes 

• Pull-down or pop-up menus 

• Buttons (rectangles, roundtangles, etc.) 

• Radio buttons and switches 

• Scroll bars (horizontal and vertical) 

• Data-entry fields 

• Field labels 

• Boxes and separator lines 

• Sliders, gauges, meters 

Interface features 

• Color, graphics, im.ages, anhnation, video 

• Varying display size (low to high resolution) 

• Sounds, music, voice input-output 

• Mouse, arrow keys, touchscreen, stylus 

Software architecture 

• Prototype only, prototype plus application-programming support, 
user-interface development environment 

• Interface style (command language, menu, form fillin, or direct 
manipulation) 

• Levels and strength of user-interface independence 

• Programming language (specialized, standard (C, Pascal, etc.), visual) 

• Evaluation and documentation tools 

• Easy interface with database, graphics, networking, spreadsheets, etc. 

• Logging during testing and use 

Managenrrentissues 

• Number of satisfied users of the tool 

• Supplier reliability and stability 

• Cost 

• Documentation, training, and technical support 

• Project-management support 

• Integration with existing tools and pro.cesses 
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1nore powerful, and that provide more useful and accurate evaluation. Exist
ing CASE tools could be expanded to include user-interface features. 

5.6 Researcher's Agenda 

The narrow focus of fonnal1nodels of user interfaces and specification lan
guages means that these 1nodels are beneficial for only s1nall components. 
Scalable fonnal methods and autmn.atic checking of user-interface features 
would be a major contribution. Innovative methods of specification involv
ing graphical constraints or visual progrmnming seem to be a natural1natch 
for creating GUis. Improved software architectures are needed to ease the 
burden during revision and maintenance of user interfaces. Cooperative 
computing tools 1nay provide powerful authoring tools that enable multiple 
designers to work together effectively on large projects. Other opportunities 
exist to create tools for designers of interfaces in novel environ1nents using 
sound, anilnation, video, and virtual reality, and 1nanipulating physical 
devices as in flexible manufacturing systems or h01ne aut01nation. Other 
challenges are to specify dynamic processes (gestural input), to handle con
tinuous input (datastreams from a sensor), and to synchronize activities (to 
pop up a reminder box for 10 seconds, if a file has not been saved after 30 
minutes of editing). As new interface styles emerge, there will always be a 
need to develop new tools to facilitate their construction. Metrics and evalu
ation tools are still open topics for user-interface and website developers. 
Specification by demonstration is an appealing notion (Myers, 1992), but 
practical application remains elusive. 

world Wide Web Resources www 
User interface tools are widely promoted on the web by companies 
and others. The World Wide Web is a great resource here because the 
technology changes so rapidly that books are immediately out of 
date. Online white papers, manuals, and tutorials are often effective 
and enable contact with developers. An imaginative idea is to have 
websites that will critique your website. Such online services are 
likely to expand in the coming years. 

http:/ /www.aw.com/DTUI 
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Direct Manipulation and 
Virtual Environtnents 

Leibniz sought to make the form of a sy1nbol reflect its content. "In signs," he wrote, 
"one sees an advantage for discovery that is greatest when they express the exact 
nature of a thing briefly and, as it were, picture it; then, indeed, the labor of thought is 
wonderfully diminished." 

Frederick Kreiling, "Leibniz," 
Scientific American, May 1968 
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6.1 Introduction 

Certain interactive systems generate a glowing enthusiasm among users that 
is in marked contrast with the more com1non reaction of grudging accep
tance or outright hostility. The enthusiastic users report the following posi
tive feelings: 

• Mastery of the interface 

• Competence in performing tasks 

• Ease in learning the system originally and in assimilating advanced 
features 

• Confidence in the capacity to retain mastery over time 
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6.2 Examples of Direct-Manipulation Systems 187 

• Enjoyment in using the system 

• Eagerness to show off the system to novices 

• Desire to explore more powerful aspects of the system 

These feelings convey an image of the truly pleased user. The central ideas in 
the systems that inspire such delight are visibility of the objects and actions of 
interest; rapid, reversible, incre1nental actions; and replacement of complex 
command-language syntax by direct manipulation of the object of interest 
(Shneiderman, 1983). The objects-actions interface (OAI) 1nodel provides a 
sound foundation for understanding direct manipulation since it steers design
ers to represent the task domain objects and actions while 1ninimizing the inter
face concepts and the syntax-me1norization load. Direct-manipulation thinking 
has spawned the new strategies of information visualization (see Chapter 15) 
that present thousands of objects on the screen with dynamic user controls. 

6.2 Examples of Direct-Manipulation Systems 

No single system has every admirable attribute or design feature-such a 
system might not be possible. Each of the following examples, however, has 
sufficient nu1nbers of them to win the enthusiastic support of many users. 

My favorite exmnple of using direct manipulation is driving an automo
bile. The scene is directly visible through the front window, and performance 
of actions such as braking or steering has become common knowledge in our 
culture. To turn left, the driver simply rotates the steering wheel to the left. 
The response is immediate and the scene changes, providing feedback to 
refine the turn. Imagine trying to turn by issuing a command LEFT 30 
DEGREES and then another command to see the new scene; but that is the 
level of operation of many office-automation tools of today! Another well
established example is air-traffic controt in which users see a representation 
of the airspace with brief data blocks attached to each plane. Controllers 
move a trackball to point at specific planes and to perform actions. 

6.2.1 Command-line versus display editors versus word processors 

It may be hard for new users of word processors to believe, but in the early 
1980s, text editing was done with line-oriented command languages. Users 
might see only one line at a time and typed commands were needed to move 
the view window or to make any changes. The users of novel full-page display 
editors were great advocates of their systems. A typical comment was, "Once 
you've used a display editor, you will never want to go back to a line editor-
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Hope 
'Hope' is the tiring with feathers 
That perches in the soul 
And sings the hmes without the \Vorcls 
And never stops - at all. 

Emily Dickinson, American poet, 1830-86. 
Amherst, l'vlA 

Figure 6.1 

An example of a WYSIWYG (What You See Is What You Get) editor: Microsoft Word 
for Office 97. (Used with permission of Microsoft Corp., Redmond, WA.) 

you'll be spoiled." Similar comments came from users of early personal-com
puter word processors, such as WORDSTAR, or display editors such as emacs 
or vi (for visual editor) on the Unix system. A beaming advocate called emacs 
"the one true editor." In these systems users viewed up to a full screen of text 
and could edit by using backspace or insert directly by typing. 

Researchers found that performance was improved and training times 
were reduced with display editors so there was evidence to support the 
enthusiasm of display-editor devotees. Furthermore, office-automation eval
uations consistently favored full-page display editors for secretarial and exec
utive use. There are some advantages to command-language approaches, 
such as that history keeping is easier, 1nore flexible markup languages are 
available (for exan1ple, SGML), macros tend to be more powerful, and some 
tasks are simpler to express (for example, change all italics to bold). Strategies 
for accommodating these needs are finding their way into modern direct
manipulation word processors. 

By the early 1990s, what you see is what you get (WYSIWYG) word proces
sors had become standard. Microsoft Word has become dominant on the 
Macintosh and IBM PC compatibles, with Lotus Word Pro and Corel's 
WordPerfect taking second place (Fig. 6.1). The advantages of WYSIWYG 
word processors include the following: 
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• Display a full page of text Showing 20 to 60 lines of text simultaneously 
gives the reader a clearer sense of context for each sentence, while per
mitting simpler reading and scanning of the document. By contrast, 
working with the one-line-at-a-tilne view offered by line editors is like 
seeing the world through a narrow cardboard tube. Smn_e large dis
plays can support two full pages of text, set side by side. 

• Display the document in the fonn that it will appear when the final printing is 
done Eliminating the clutter of formatting com1nands also simplifies 
reading and scanning of the document. Tables, lists, page breaks, 
skipped lines, section headings, centered text, and figures can be 
viewed in their final form. The annoyance and delay of debugging the 
format con:nnands are ahnost elilninated because the errors are usually 
apparent immediately. 

• Show cursor action to the user Seeing an arrow, underscore, or blinking 
box on the screen gives the operator a clear sense of where to focus 
attention and to apply action. 

• Control cursor motion through physically obvious and intuitively natural 
means Arrow keys or cursor-1notion devices-such as a mouse, joy
stick, or graphic tablet-provide natural physical mechanisms for mov
ing the cursor. This setup is in marked contrast to commands, such as 
UP 6, that require an operator to convert the physical action into a cor
rect syntactic form that may be difficult to learn and hard to recall, and 
thus may be a source of frustrating errors. 

• Use labeled icons for actions Most word processors have labeled icons in 
a toolbar for frequent actions. These buttons act as a permanent menu
selection display to re1nind users of the features and to provide rapid 
selection. 

• Display the results of an action immediately When the user presses a but
ton to move the cursor or center text, the results are shown immedi
ately on the screen. Deletions are apparent immediately: the character, 
word, or line is erased, and the remaining text is rearranged. Similarly, 
insertions or text movements are shown after each keystroke or func
tion-key press. In contrast, with line editors, users must issue print or 
display commands to see the results of changes. 

• Provide rapid response and display Most display editors operate at high 
speed; a full page of text appears in a fraction of a second. This high 
display rate coupled with short response time produces a satisfying 
sense of power and speed. Cursors can be moved quickly, large 
amounts of text can be scanned rapidly, and the results of actions can 
be shown almost instantaneously. Rapid response also reduces the 
need for additional commands and thereby simplifies design and 
learning. Line editors with slow display rates and long response times 
bog down the user. Speeding up line editors would add to their attrac-
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tiveness, but they would still lack such features as direct overtyping, 
deletion, and insertion. 

• Offer easily reversible actions When users enter text, they repair an 
incorrect keystroke by merely backspacing and overstriking. They can 
make simple changes by moving the cursor to the problem area and 
overstriking, inserting, or deleting characters, words, or lines. A useful 
design strategy is to include natural inverse operations for each opera
tion (for example, to increase or decrease type sizes). An alternative 
offered by many display editors is a simple UNDO command to return 
the text to the state that it was in before the previous action or action 
sequence. The easy reversibility reduces user anxiety about making a 
mistake or destroying the file. 

So many of these issues have been studied empirically that someone joked 
that the word processor is the white rat for researchers in human-computer 
interaction. Switching metaphors, for commercial developers, we might say 
the word processor is the root for many technological sprouts: 

• Integration of graphics, spreadsheets, animations, photographs, and so 
on is done in the body of a document. Advanced designs, such as the 
OpenDoc, even permit "hot links" so that, if the graphic or spreadsheet 
is changed, the copy in the document also will be changed. 

• Desktop-publishing software produces sophisticated printed formats with 
multiple columns and allows output to high-resolution printers. Multi
ple fonts, grayscales, and color permit preparation of high-quality doc
uments, newsletters, reports, newspapers, or books. Examples include 
Adobe PageMaker and QuarkXPress. 

• Slide-presentation software produces color text and graphic layouts for 
use as overhead transparencies, 35-millimeter slides, or directly from 
the computer with a large-screen projector to allow animations. 

• Hypermedia environments with selectable buttons or embedded menu 
items allow users to jump from one article to another. Links among doc
uments, bookmarks, annotations, and tours can be added by readers. 

• Improved macro facilities enable users to construct, save, . and edit 
sequences of frequently used actions. A related feature is a style sheet 
that allows users to specify and save a set of options for spacing, fonts, 
margins, and so on. Another feature is the saving of templates that 
allows users to take the formatting work of colleagues as a starting point 
for their own documents. Most word processors come with dozens of 
standard templates for business letters, newsletters, or brochures. 

• Spell checkers and thesauri are standard on most full-featured word 
processors. Spell checking can also be set to function while the user is 
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typing, or to make automatic changes for com1non mistakes, such as 
changing "teh" to "the." 

• Grammar checkers offer users comments about potential proble1ns in 
writing style, such as use of passive voice, excessive use of certain 
words, or lack of parallel construction. Some writers-both novices 
and professionals-appreciate the comments and know that they can 
decide whether to apply the suggestions. Critics point out, however, 
that the advice is often inappropriate and therefore wastes time. 

111 Document assemblers allow users to compose complex documents, such 
as contracts or wills, from standard paragraphs using appropriate lan
guage for 1nales or females; citizens or foreigners; high, 1nedium, or 
low income earners; renters or ho1ne owners, and so on. 

6.2.2 The VisiCalc spreadsheet and its descendants 

The first electronic spreadsheet, VisiCalc, was the product of a Harvard Busi
ness School student, Dan Bricklin, who became frustrated when trying to 
carry out repetitious calculations for a graduate course in business. He and a 
friend, Bob Frankston, built an "instantly calculating electronic worksheet" 
(as the user manual described it) that permitted computation and immediate 
display of results across 254 rows and 63 columns. 

The spreadsheet can be programmed so that column 4 displays the sum of 
columns 1 through 3; then, every time a value in the first three colu1nns 
changes, the fourth column changes as well. Complex dependencies among 
manufacturing costs, distribution costs, sales revenue, com1nissions, and 
profits can be stored for several sales districts and for various months, so that 
the effects of changes on profits can be seen immediately. 

This simulation of an accountant's spreadsheet makes it easy for 
novices to comprehend the objects and permissible actions. Spreadsheet 
users can try out alternate plans and see the effects on sales or profit. The 
distributor of VisiCalc explained the syste1n' s appeal as "it jumps/' refer
ring to the user's delight in watching the propagation of changes across 
the screen. 

Cmnpetitors to VisiCalc emerged quickly; they made attractive improve
ments to the user interface and expanded the tasks that were supported. 
LOTUS 1-2-3 dominated the market in the 1980s (Fig. 6.2), but the current 
leader is Microsoft's Excel (Fig. 6.3), which has a large number of features 
and specialized additions. Excel and other modern spreadsheets offer inte
gration with graphics, three-dimensional representations, multiple win
dows, and database features. The features are invoked easily with command 
menus or toolbars, and can be used within powerful macro facilities. 
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Figure 6.2 

Early version of Lotus 1-2-3, 
the spreadsheet program 
that was dominant through 
the 1980s. (Printed with 
permission of Lotus 
Develop1nent Corporation, 
Cambridge, MA.) 

6.2.3 Spatial data management 

In geographic applications, it seems natural to give a spatial representation 
in the fonn of a map that provides a fan1iliar Inodel of reality. The developers 
of the prototype Spatial Data Management System (Herot, 1980; 1984) 
attribute the basic idea to Nicholas Negroponte of MIT. In one early scenario, 
the user was seated before a color-graphics display of the world and could 
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Figure 6.3 

Microsoft Excel spreadsheet for Office 97. (Used. with permission of Microsoft Corp., 
Redmond, WA.) 
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zoo1n in on the Pacific Ocean to see n'larkers for convoys of military ships 
(Fig. 6.4). By 1noving a joystick, the user caused the screen to be filled with 
silhouettes of individual ships; zooming displayed detailed data, such as, 
ulthnately, a full-color picture of the captain. 

In another scenario, icons representing such different aspects of a cor
poration as personnel, an organizational chart, travel information, pro
duction data, and schedules were shown on a screen. By moving the joystick 
and zooming in on objects of interest, the user could travel through complex 
information spaces (!-spaces) to locate the iten'l of interest. A building floorplan 
showing departments might be displayed; when a departrnent was chosen, 
individual offices beca1ne visible. As the cursor was moved into a romn, 
details of the occupant appeared on the screen. If users chose the wrong romn, 
they n'lerely backed out and tried another. The lost effort was miniinal, and 
there was no stig1na attached to error. The recent Xerox PARC Information 
Visualizer is an ensen'lble of tools that pennit three-di1nensional anilnated 
explorations of buildings, cone-shaped file directories, organization charts, a 
perspective wall that puts featured ite1ns up front and centered, and several 
two- and three-dilnensional infonnation layouts (Robertson et al., 1993). 

ArcView (ESRI, Inc.) is a widely used geographic-infonnation syste1n that 
offers rich, layered databases of map-related infon-p.ation (Fig. 6.5). Users can 
zoo1n in on areas of interest, select the kinds of infonnation they wish to 
view (roads, population density, topography, rainfall, political boundaries, 
and much 1nore), and do lilnited searches. Much silnpler but widely popular 
highway maps are available for the entire United States on a single CD
ROM. Map servers on the World Wide Web are increasingly popular for tak
ing tours of cities, checking weather reports, or buying a hmne. 

The success of a spatial data-manage1nent syste1n depends on the skill of 
the designers in choosing icons, graphical representations, and data layouts 
that are natural and comprehensible to the user. The joy of zooming in and 
out, or of gliding over data with a joystick, entices even anxious users, who 
quickly demand additional power and data. 

6.2.4 Video games 

For many people, the most exciting, well-engineered, and comn'lercially suc
cessful application of the concepts that we have been discussing lies in the 
world of video games (Provenzo, 1991). The early but simple and popular 
game PONG required the user to rotate a knob that 1noved a white rectangle 
on the screen. A white spot acted as a ping-pong ball that ricocheted off the 
wall and had to be hit back by the movable white rectangle. Users developed 
speed and accuracy in placing the "paddle" to keep the increasingly speedy 
ball from getting past, while the computer speaker e1nitted a ponging sound 
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Figure 6.4 

The Spatial Data Management System. Three displays to show multiple levels of 
detail or related information. The user moves a joystick to traverse information 
spaces or to zoom in on a map to see more details about ship convoys. (Courtesy of 
the Computer Corporation of America, Cambridge, MA.) 
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Figure 6.5 

Arc View® geographic information system (GIS), which provides cmnprehensive 
mapping functions and management of related data. This n1.ap of the northeast 
United States shows color coding by population density for each zip code, ethnic 
makeup of large cities, and a photo of New York City. (Graphic image supplied cour
tesy of Environmental Systems Research Institute, Inc., Redlands, CA. Copyright 
1996.) 

when the ball bounced. Watching someone else play for 30 seconds is all the 
training that a person needs to become a competent novice, but 1nany hours 
of practice are required to become a skilled expert. 

Later games, such as Missile Com1nand, Donkey Kong, Pac Man, Teln
pest, TRON, Centipede, or Space Invaders, were much more sophisticated in 
their rules, color graphics, and sound effects. Recent games include multi
person competitions in tennis or karate, three-dimensional graphics, still 
higher resolution, and stereo sound. The designers of these games provide 
stimulating entertainment, a challenge for novices and experts, and many 
intriguing lessons in the human factors of interface design-somehow, they 
have found a way to get people to put quarters in the sides of computers. 
Forty-million Nintendo ga1ne players reside across 70 percent of those Amer
ican households that include 8 to 12 year olds. Brisk sales of the Mario series 
testify to the games' strong attraction, in marked contrast to the anxiety 
about and resistance to office-autmnation equipment that many users have 
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Figure 6.6 

Home videogames are a huge success and employ advanced graphics hardware for rapid 
movement in rich three-dimensional worlds. The Nintendo 64 player can be used with a 
variety of games including the popular Super Mario® series(© 1997 Nintendo. Images 
courtesy of Nintendo of America Inc.) 

shown (Fig. 6.6). The SEGA game player, Nintendo 64, and Sony Playstation 
have brought powerful three-dimensional graphics hardware to the home 
and have created a remarkable international market. Small hand-held game 
devices, such as the Game Boy®, provide portable fun for kids on the street 
or executives in their 30,000-foot-high offices. 

These games provide a field of action that is visual and compelling. The 
commands are physical actions-such as button presses, joystick motions, or 
knob rotations-whose results are shown immediately on the screen. There 
is no syntax to remember, and therefore there are no syntax-error messages. 
If users move their spaceships too far left, then they merely use the natural 
inverse operation of moving back to the right. Error messages are unneces
sary, because the results of actions are obvious and can be reversed easily. 
These principles can be applied to office automation, personal computing, or 
other interactive environments. 

Most games continuously display a numeric score so that users can mea
sure their progress and compete with their previous performance, with 
friends, or with the highest scorers. Typically, the 10 highest scorers get to 
store their initials in the game for public display. This strategy provides 
one form of positive reinforcement that encourages mastery. Malone's 
(1981), Provenzo's (1991), and our studies with elementary-school children 
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have shown that continuous display of scores is extremely valuable. 
Machine-generated feedback-such as "Very good" or "You're doing 
great!"-is not as effective, since the san1.e score carries different 1neanings 
for different people. Most users prefer to make their own subjective judg
ments and perceive the machine-generated messages as an annoyance and 
a deception. 

Many educational gmnes use direct manipulation effectively. Elemen
tary- or high-school students can learn about urban planning by using Sim
City and its variants, which show urban environments visually and let 
students build roads, airports, housing, and so on by direct-manipulation 
actions. 

The esthetically appealing MYST and its successor Riven (Broderbund) 
have drawn widespread approval even in some literary circles, while the 
more violent but wildly successful DOOM series has provoked controversy 
over its psychological effects on teens. Studying game design is fun, but 
there are limits to the applicability of the lessons. Garne players seek enter
tainment and focus on the challenge of 1nastery, whereas applications users 
focus on their task and 1nay resent too many playful distractions. The ran
dOln events that occur in most games are 1neant to challenge the user; in 
nongame designs, however, predictable syste1n behavior is preferred. Gan1.e 
players are engaged in competition with the system or with other players, 
whereas applications-systems users prefer a strong internal locus of control, 
which gives them the sense of being in charge. 

6.2.5 Computer-aided design 

Many computer-aided design (CAD) systems for automobiles, electronic cir
cuitry, architecture, aircraft (see Fig. 1.3), or slide layout (Fig. 6.7) use princi
ples of direct manipulation. The operator may see a circuit sche1natic on the 
screen and, with mouse clicks, be able to move resistors or capacitors into or 
out of the proposed circuit. When the design is complete, the computer can 
provide information about current, voltage drops, and fabrication costs, and 
warnings about inconsistencies or manufacturing problems. Similarly, news
paper-layout artists or automobile-body designers can easily try multiple 
designs in minutes, and can record promising approaches until they find 
even better ones. 

The pleasures in using these systems stem fr01n the capacity to manipu
late the object of interest directly and to generate multiple alternatives 
rapidly. Some systems have complex c01nmand languages; most have 
moved to using cursor action and graphics-oriented commands. 

Related applications are computer-aided manufacturing (CAM) and process 
control. Honeywell's process-control system provides the manager of an oil 
refinery, paper 1nill, or power-utility plant with a colored schematic view of 
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Figure 6.7 

Presentation graphics or slide programs, such as Microsoft's PowerPoint for 
Office 97, have multiple toolbars and palettes that support a direct-manipulation 
style of selecting objects, moving them, and resizing them. (Used with permission 
of Microsoft Corp., Redmond, WA.) 

the plant. The schematic may be displayed on eight displays or on a large 
wall-sized map, with red lines indicating a sensor value that is out of normal 
range. With a single click, the operator can get a more detailed view of the 
troubling component; with a second click, the operator can examine individ
ual sensors or can reset valves and circuits. 

A basic strategy for this design is to eliminate the need for complex com
mands that the operator would need to recall during a once-a-year emer
gency. The visual overview provided by the schematic facilitates problem 
solving by analogy, since the linkage between the screen representations and 
the plant's temperatures or pressures is so close. 
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6.2.6 Office automation 

Designers of advanced office-automation systems used direct-manipulation 
principles. The pioneering Xerox Star (Smith et al., 1982) offered sophisti
cated text-formatting options, graphics, multiple fonts, and a high-resolu
tion, cursor-based user interface (Fig. 6.8). Users could move (but not drag) a 
document icon to a printer icon to generate a hardcopy printout. The Apple 
Lisa system elegantly applied many of the principles of direct manipulation; 
although it was not a commercial success, it laid the groundwork for the suc
cessful Macintosh. The Macintosh designers drew from the Star and Lisa 
experiences, but made 1nany simplifying decisions while preserving ade
quate power for users (Fig. 6.9). The hardware and software designs sup
ported rapid and continuous graphical interaction for pull-down menus, 
window manipulation, editing of graphics and text, and dragging of icons. 
Variations on the Macintosh appeared soon afterward for other popular per
sonal computers, and by now Windows 95 dmninates the office-automation 
market (Color Plate 1). The Windows 95 design is still a close relative of the 
Macintosh design, and both are candidates for substantial improvements in 
window management (Chapter 13), with simplifications for novices and 
increased power for sophisticated users. 

Studies of users of direct-manipulation interfaces have confirmed the 
advantages for at least some users and tasks. In a study of 30 novices, MS
DOS commands for creating, copying, renaming, and erasing files were con
trasted with Macintosh direct-manipulation actions. After user training and 
practice, average task times were 5.8 minutes versus 4.8 minutes, and aver
age errors were 2.0 versus 0.8 (Margono and Shneiderman, 1987). Subjective 
preference also favored the direct-manipulation interface. In a study of a 
command-line versus a direct-manipulation database interface, 55 "com
puter naive but keyboard literate" users made more than twice as many 
errors with the com1nand-line format. No significant differences in time were 
found (Morgan et al., 1991). These users preferred the direct-manipulation 
interface overall, and rated it as more stimulating, easier, and more ade
quately powerful. Both reports caution about generalizing their results to 
more experienced users. A study with novices and experienced users was 
cosponsored by Microsoft and Zenith Data Systems (Temple, Barker, and 
Sloane, Inc., 1990). Although details about subjects, interfaces, and tasks 
were not reported, the results showed ilnproved productivity and reduced 
fatigue for experienced users with a GUI, as compared with a character
based user interface. The benefits of direct manipulation were confirmed in 
other studies (Benbasat and Todd, 1993); one such study also demonstrated 
that the advantage was greater for experienced than for novice users (Ulich 

· et al., 1991). 
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The Xerox Star 8010 with the ViewPoint system enables users to create documents 
with multiple fonts and graphics. This session shows the Text Frame Properties 
sheet over sample bar charts, with a document in the background and many desktop 
icons available for selection. (Prepared by Steve Miller, University of Maryland.) 
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Figure 6.9 

The original Apple Macintosh MacPaint. This program offers a command menu on 
the top, a menu of action icons on the left, a choice of line thicknesses on the lower 
left, and a palette of texture on the bottom. All actions can be accomplished with 
only the mouse. (Photo courtesy of Apple Computer, Inc., Cupertino, CA) 

6.2.7 Further examples of direct manipulation 

The trick in creating a direct-manipulation system is to come up with an 
appropriate representation or 1nodel of reality. Some designers may find it 
difficult to think about infonnation problems in a visual form; with practice, 
however, they may find it more natural. With many applications, the jump 
to visual language may be difficult; later, however, users and designers can 
hardly imagine why anyone would want to use a complex syntactic notation 
to describe an essentially visual process. In fact, it is hard to think of new 
command languages developed after 1990. It is hard to conceive of learning 
the commands for the vast nu1nber of features in modern word processors, 
drawing programs, or spreadsheets, but the visual cues, icons, menus, and 
dialog boxes make it possible for even intennittent users to succeed. 

Several designers applied direct manipulation using the metaphor of a 
stack of cards to portray a set of addresses, telephone numbers, events, and 
so on. Clicking on a card brings it to the front, and the stack of cards moves to 
preserve alphabetic ordering. This simple card-deck metaphor, combined 
with other notions (Heckel, 1991) led to Bill Atkinson's innovative develop
ment of HyperCard stacks in 1987 (see Section 15.4). Billed as a way to "cre
ate your own applications for gathering, organizing, presenting, searching, 
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and customizing information," HyperCard quickly spawned variants, such 
as SuperCard and ToolBook. Each has a scripting langu.age to enable users to 
create appealing graphics applications. 

Direct-manipulation checkbook-maintenance and checkbook-searching 
interfaces, such as Quicken (Intuit, Inc.) display a checkbook register with 
labeled colu1nns for check nu1nber, date, payee, and amount. Changes can be 
made in place, new entries can be n1.ade at the first blank line, and a check
Inark can be made to indicate verification against a Inonthly report or bank 
statement. Users can search for a particular payee by filling in a blank payee 
field and then typing a ? . 

Why not have web-based airline-reservations syste1ns show the user a 
n1.ap and proinpt for cursor Inotion to the departing and arriving cities? Then 
the user can select the date frmn a calendar and a time from a clock. Showing 
the seating plan of the plane on the screen, with a diagonal line to indicate an 
already-reserved seat, would enable seat selection. 

"Direct manipulation" is an accurate description of the program1ning of 
certain industrial robot tools. The operator holds the robot "hand" and 
guides it through a spray painting or welding task while the controlling cmn
puter records every action. The control computer can then operate the robot 
autmnatically, repeating the precise action as 1nany tilnes as is necessary. 

Why not teach students about polynomial equations by letting the1n 1nove 
sliders to set values for the coefficients and watch how the graph changes, 
where they-axis intercept occurs, or how the derivative equation reacts. Siln
ilarly, direct 1nanipulation of sliders for red, green, and blue is a satisfying 
way to explore color space. Slider-based dynmnic queries are a powerful tool 
for information exploration (see Section 15.4). 

Direct manipulation has the power to attract users because it is compre
hensible, rapid, and even enjoyable. If actions are silnple, reversibility is 
ensured, and retention is easy, then anxiety recedes, users feel in control, and 
satisfaction flows in. 

6.3 Explanations of Direct Manipulation 

Several authors have attempted to describe the cmnponent principles of 
direct manipulation. An imaginative and early interactive system designer, 
Ted Nelson (1980), perceived user excitement when the interface was con
structed by what he calls the principle of virtuality-a representation of reality 
that can be manipulated. Rutkowski (1982) conveyed a similar concept in his 
principle of transparency: "The user is able t.o apply intellect directly to the 
task; the tool itself seems to disappear." Heckel (1991) laments that "Our 
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instincts and training as engineers encourage us to think logically instead of 
visually, and this is counterproductive to friendly design." His description is 
in hannony with the popular notions of logical symbolic sequential left
brain and the visual artistic all-at-once right-brain problem.-solving styles. 

Hutchins et al. (1986) review the concepts of direct manipulation and offer 
a thoughtful decomposition of concerns. They describe the "feeling of 
involvement directly with a world of objects rather than of cmnm.unicating 
with an intermediary," and clarify how direct n1.anipulation breaches the gulf 
of execution and the gulf of evaluation. 

These writers and others (Ziegler and Fahnrich, 1988; Thiinbleb:ft 1990; 
Phillips and Apperle:ft 1991; Frohlich, 1993) support the recognition that a new 
fonn of interactive systen1. had en1.erged. Much credit also goes to the individual 
designers who created systems that exe1nplify aspects of direct manipulation. 

Another perspective on direct 1nanipulation con1.es fron1. the psychology 
literature on problem-solving and learning research. Suitable representations of 
proble1ns have been clearly shown to be critical to solution finding and to 
learning. Polya (1957) suggests drawing a picture to represent mathematical 
proble1ns. This approach is in hannony with Maria Montessori's teaching 
1nethods for children (Montessori, 1964). She proposed use of physical 
objects, such as beads or wooden sticks, to convey such n1.athematical princi
ples as addition, multiplication, or size cmnparison. The durable abacus is 
appealing because it gives a direct-1nanipulation representation of numbers. 

Bruner (1966) extended the physical-representation idea to cover polyno
lnial factoring and other 1nathen1.atical principles. Carroll, Thmnas, and Mal
hotra (1980) found that subjects given spatial representation were faster and 
more successful in proble1n solving than were subjects given an isomorphic 
problem with a te1nporal representation. Si1nilarly, Te'eni (1990) found that 
the feedback in direct-manipulation designs was effective in reducing users' 
logical errors in a task requiring statistical analysis of student grades. The 
advantage appears to stem from having the data entry and display com
bined in a single location on the display. 

Physical, spatial, or visual representations also appear to be easier to retain 
and 1nanipulate than are textual or nu1neric representations (Arnheim, 1972; 
McKim, 1980). Wertheimer (1959) found that subjects who 1nemorized the for
mula for the area of a parallelogram, A= h x b, rapidly succeeded in doing such 
calculations. On the other hand, subjects who were given the structural under
standing of cutting off a triangle frmn one end and placing it on the other end 
could more effectively retain the knowledge and generalize it to solve related 
problems. In plane-geometry theorem proving, spatial representation facili
tates discovery of proof procedures over a strictly axiomatic representation of 
Euclidean geometry. The diagram provides heuristics that are difficult to 
extract frmn the aximns. Similarly, students are often encouraged to solve alge
braic word proble1ns by drawing pictures to represent those problems. 
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Papert's (1980) LOGO language created a mathematical microworld in 
which the principles of geometry are visible. Based on the Swiss psycholo
gist Jean Piaget' s theory of child developn1ent, LOGO offers students the 
opportunity to create line drawings easily with an electronic turtle displayed 
on a screen. In this environment, users derive rapid feedback about their pro
grams, can determine what has happened easily, can spot and repair errors 
quickly, and can gain satisfaction from creative production of drawings. 
These features are all characteristic of a direct-manipulation environn"lent. 

6.3.1 Problems with direct manipulation 

Spatial or visual representations are not necessarily an ilnprove1nent over 
text, because they may be too spread out, causing off-page connectors on 
paper or tedious scrolling on displays. In professional programming, use of 
high-level flowcharts and database-sche1na diagrams can be helpful for 
smne tasks, but there is a danger that they will be confusing. Silnilarly, 
direct-manipulation designs may consume valuable screen space and thus 
force valuable information offscreen, requiring scrolling or multiple actions. 
Studies of graphical plots versus tabular business data and of flowcharts 
versus program text de1nonstrate advantages for graphical approaches 
when pattern-recognition tasks are relevant, but disadvantages when the 
graphic gets too large and the tasks require detailed information. For experi
enced users, a tabular textual display of 50 document names may be more 
appropriate than only 10 graphic document icons with the names abbrevi
ated to fit the icon size. 

A second problem is that users must learn the meaning of components of 
the visual representation. A graphic icon may be meaningful to the designer, 
but may require as much or more learning tilne than a word. Some airports 
that serve multilingual com1nunities use graphic icons extensively, but the 
meanings of these icons may not be obvious. Similarly, some computer ter
minals designed for international use have icons in place of nmnes, but the 
meaning is not always clear. Icons with titles that appear when the cursor is 
over them offer only a partial solution. 

A third problem is that the visual representation may be misleading. 
Users may grasp the analogical representation rapidly, but then may draw 
incorrect conclusions about permissible actions. Users may overestilnate or 
underestimate the functions of the computer-based analogy. Ample testing 
must be carried out to refine the displayed objects and actions and to mini
mize negative side effects. 

A fourth problem is that, for experienced typists, taking your hand off the 
keyboard to move a mouse or point with a finger 1nay be slower than typing 
the relevant command. This problem is especially likely to occur if the user is 
familiar with a compact notation, such as arithmetic expressions, that is easy 
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to enter fro1n a keyboard, but that 1nay be more difficult to select with a 
mouse. The keyboard remains the 1nost effective direct-manipulation device 
for certain tasks. 

Choosing the right objects and actions is not necessarily an easy task. Sim
ple metaphors, analogies, or 1nodels with a minimal set of concepts are a 
good starting point. Mixing 1netaphors frmn two sources may add cmnplex
ity that contributes to confusion. The e1notional tone of the 1netaphor should 
be inviting rather than distasteful or inappropriate (Carroll and Thomas, 
1982)-sewage-disposal systems are an inappropriate metaphor for elec
tronic-message systems. Since the users 1nay not share the m.etaphor, anal
ogy, or conceptual 1nodel with the designer, a1nple testing is required. For 
help in training, an explicit statement of the n:wdet of the assumptions, and 
of the limitations is necessary. 

6.3.2 The OAI model explanation of direct manipulation 

The attraction of direct manipulation is apparent in the enthusias1n of the 
users. The designers of the examples in Section 6.2 had an innovative 
inspiration and an intuitive grasp of what users would want. Each exmn
ple has features that we could criticize, but it will be 1nore productive for 
us to construct an integrated portrait of direct manipulation with three 
principles: 

1. Continuous representation of the objects and actions of interest with 
meaningful visual metaphors 

2. Physical actions or presses of labeled buttons, instead of cmnplex syntax 

3. Rapid incremental reversible operations whose effect on the object of 
interest is visible immediately · 

Using these three principles, it is possible to design systems that have 
these beneficial attributes: 

• Novices can learn basic functionality quickly, usually through a 
demonstration by a more experienced user. 

• Experts can work rapidly to carry out a wide range of tasks, even defin-
ing new functions and features. 

• Knowledgeable intermittent users can retain operational concepts. 

• Error messages are rarely needed. 

• Users can immediately see whether their actions are furthering their 
goals, and, if the actions are counterproductive, they can simply change 
the direction of their activity. 

• Users experience less anxiety because the system is comprehensible 
and because actions can be reversed easily. 
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• Users gain confidence and mastery because they are the initiators of 
action, they feel in control, and they can predict the system responses. 

The success of direct manipulation is understandable in the context of the 
OAI model. The object of interest is displayed so that interface actions are 
close to the high-level task domain. There is little need for the mental decom
position of tasks into multiple interface commands with a complex syntactic 
form. On the contrary, each action produces a comprehensible result in the 
task domain that is visible in the interface immediately. The closeness of the 
task domain to the interface domain reduces operator problem-solving load 
and stress. This basic principle is related to stimulus-response compatibility, 
as discussed in the hu1nan-factors literature. The task objects and actions 
dominate the users' concerns, and the distraction of dealing with a tedious 
interface is reduced (Fig. 6.10). 

In contrast to textual descriptors, dealing with visual representations of 
objects may be more "natural" and closer to innate human capabilities: 
Action and visual skills emerged well before language in hu1nan evolu
tion. Psychologists have long known that people grasp spatial relation-

universe intention metaphor plan 

atoms steps 
pixels clicks 

Objects Actions Objects Actions 

Task Interface 

Figure 6.10 

Direct-manipulation systems may require users to learn substantial task knowledge. 
However, users must acquire only a modest amount of interface knowledge and 
syntactic details. 
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ships and actions more quickly when those people are given visual rather 
than linguistic representations. Furthermore, intuition and discovery are 
often promoted by suitable visual representations of formal mathematical 
syste1ns. 

The Swiss psychologist Jean Piaget described four stages of development: 
sensorimotor (from birth to approximately 2 years), preoperational (2 to 7 
years), concrete operational (7 to 11 years), and formal operations (begins at 
approximately 11 years) (Copeland, 1979). According to this theory, physical 
actions on an object are comprehensible during the concrete operational 
stage, and children acquire the concept of conservation or invariance. At about 
age 11, children enter the formal-operations stage, in which they use symbol 
manipulation to represent actions on objects. Since mathematics and pro
gramming require abstract thinking, they are di:tficult for children, and 
designers must link symbolic representations to actual objects. Direct Inanip
ulation brings activity to the concrete-operational stage, thus making certain 
tasks easier for children and adults. 

6.4 Visual Thinking and Icons 

The concepts of a visual language and of visual thinking were promoted by 
Arnheim (1972), and were embraced by commercial graphic designers (Ver
plank, 1988; Mullet and Sano, 1995), semiotically oriented academics 
(semiotics is the study of signs and symbols), and data-visualization gurus. 
The computer provides a remarkable visual environment for revealing struc
ture, showing relationships, and enabling interactivity that attracts users 
who have artistic, right-brained, holistic, intuitive personalities. The increas
ingly visual nature of computer interfaces can sometimes challenge or even 
threaten the logical, linear, text-oriented, left-brained, compulsive, rational 
programmers who were the heart of the first generation of hackers. 
Although these stereotypes-or caricatures-will not stand up to scientific 
analysis, they do convey the dual paths that computing is following. The 
new visual directions are sometimes scorned by the traditionalists as WIMP 
(windows, icons, mouse, and pull-down menu) interfaces, whereas the com
mand-line devotees are seen as inflexible, or even stubborn. 

There is evidence that different people have different cognitive styles, and 
it is quite understandable that individual preferences may vary. Just as there 
are multiple ice-cremn flavors or car models, so too there will be 1nultiple 
interface styles. It may be that preferences will vary by user and by tasks. So 
respect is due to each community, and the designer's goal is to provide the 
best of each style and the means to cross over when desired. 
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The conflict between text and graphics becomes most heated when the 
issue of icons is raised. Maybe it is not surprising that the dictionary defin
itions of icon usually refer to religious images, but the central notion in 
c01nputing is that an icon is an image, picture, or symbol representing a 
concept (Rogers, 1989; Marcus, 1992). In the computer world, icons are 
usually small (less than l-inch-square or 64- by 64-pixel) representations of 
an object or action. Smaller icons are often used to save space or to be inte
grated within other objects, such as a window border or toolbar. It is not 
surprising that icons are often used in painting progra1ns to represent the 
tools or actions (lasso or scissors to cut out an image, brush for painting, 
pencil for drawing, eraser to wipe clean), whereas word processors usually 
have textual1nenus for their actions. This difference appears to reflect the 
differing cognitive styles of visually and textually oriented users, or at 
least differences in the tasks. Maybe, while you are working on visually 
oriented tasks, it is helpful to "stay visual" by using icons, whereas, while 
you are working on a text document, it is helpful to "stay textual" by using 
textual menus. 

For situations where both a visual icon or a textual ite1n are possible-for 
exmnple, in a directory listing-designers face two interwoven issues: how 
to decide between icons and text, and how to design icons. The well-estab
lished highway signs are a useful source of experience. Icons are unbeatable 
for showing ideas such as a road curve, but sometin1es a phrase such as ONE 
WAY!-DO NOT ENTER is 1nore c01nprehensible than an icon. Of course, 
the s1norgasbord approach is to have a little of each (as with, for example, 
the octagonal STOP sign), and there is evidence that icons plus words are 
effective in computing situations (Nonnan, 1991). So the answer to the first 
question (deciding between icons and text) depends not only on the users 
and the tasks, but also on the quality of the icons or the words that are pro
posed. Textual menu choices are covered in Chapter 7; many of the princi
ples carry over. In addition, these icon-specific guidelines should be 
considered: 

• Represent the object or action in a fmniliar and recognizable manner. 

• Limit the number of different icons. 

• Make the icon stand out from its background. 

• Consider three-dimensional icons; they are eye catching, but also can 
be distracting. 

• Ensure that a single selected icon is clearly visible when surrounded by 
unselected icons. 

• Make each icon distinctive from every other icon. 

• Ensure the harmoniousness of each icon as a member of a family of icons. 
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• Design the movement animation: when dragging an icon, the user 
might move the whole icon, just a frame, possibly a grayed-out or 
transparent version, or a black box. 

• Add detailed information, such as shading to show size of a file (larger 
shadow indicates larger file), thickness to show breadth of a directory 
folder (thicker means more files inside), color to show the age of a doc
ument (older might be yellower or grayer), or animation to show how 
much of a document has been printed (a document folder is absorbed 
progressively into the printer icon). 

• Explore the use of combinations of icons to create new objects or 
actions-for example, dragging a document icon to a folder, trashcan, 
outbox, or printer icon has great utility. Can a .document be appended 
or prepended to another document by pasting of adjacent icons? Can a 
user set security levels by dragging a docu1nent or folder to a guard 
dog, police car, or vault icon? Can two database icons be intersected by 
overlapping of the icons? 

Marcus (1992) applies semiotics as a guide to four levels of icon design: 

1. Lexical qualities Machine-generated marks-pixel shape, color, bright
ness, blinking 

2. Syntactics Appearance and movement-lines, patterns, modular parts, 
size, shape 

3. Semantics Objects represented-concrete versus abstract, part versus 
whole 

4. Pragmatics Overall legible, utility, identifiable, memorable, pleasing 

He recommends starting by creating quick sketches, pushing for consistent 
style, designing a layout grid, simplifying appearance, and evaluating the 
designs by testing with users. We might consider a fifth level of icon design: 

5. Dynamics Receptivity to clicks-highlighting, dragging, combining 

The dyna1nics of icons might also include a rich set of gestures with a mouse, 
touchscreen, or pen. The gestures might indicate copy (up and down), delete 
(a cross), edit (a circle), and so on. Icons might also have associated sounds. 
For example, if each document icon had associated with it a tone (the lower 
the tone, the bigger the document), then, when a directory was opened, each 
tone might be played simultaneously or sequentially. Users might get used 
to the symphony played by each directory and could detect certain features 
or anomalies, just as we often know telephone numbers by tune and can 
detect misdialings as discordant tones. 

Icon design becomes more interesting as computer hardware improves 
and as designers become more creative. Animated icons that demonstrate 
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their function i1nprove online help capabilities (see Section 12.4.2). Beyond 
sin1ple icons, we are now seeing increasing numbers of visual progrmnming 
languages (see Section 5.3.1) and specialized languages for 1nechanical engi
neering, circuit design, and database query. 

6.5 Direct-Manipulation Programming 

Performing tasks by direct manipulation is not the only goal. It should be 
possible to do program1ning by direct manipulation as well, at least forcer
tain problems. People sometiines program robots by 1noving the robot ann 
through a sequence of steps that are later replayed, possibly at higher speed. 
This exa1nple seems to be a good candidate for generalization. How about 
moving a drill press or a surgical tool through a cmnplex series of motions 
that are then repeated exactly? In fact, these direct-Inanipulation-program
ming ideas are implemented in Inodest ways with auton1obile radios that 
users preset by tuning to their desired station and then pressing and holding 
a button. Later, when the button is pressed, the radio tunes to the preset fre
quency. Smne professional television-camera supports allow the operator to 
progra1n a sequence of pans or zooms and then to replay it smoothly when 
required. 

Progra1nming of physical devices by direct manipulation seems quite nat
ural, and an adequate visual representation of information may Inake direct
manipulation progrmnming possible in other domains. Several word 
processors allow users to create 1nacros by siinply performing a sequence of 
co1n1nands and storing it for later use. WordPerfect enables the creation of 
macros that are sequences of text, special function keys such as TAB, and 
other WordPerfect commands. emacs allows its rich set of functions, includ
ing regular expression searching, to be recorded into macros. Macros can 
invoke one another, leading to complex programming possibilities. These 
and other systems allow users to create progrmns with nonvarying action 
sequences using direct manipulation, but strategies for including loops and 
conditionals vary. e1nacs allows macros to be encased in a loop with simple 
repeat factors. e1nacs and WordPerfect also allow users to attach more gen
eral control structures by resorting to textual programming languages. 

Spreadsheet packages, such as LOTUS 1-2-3 and Excel, have rich pro
gramining languages and allow users to create portions of programs by car
rying out standard spreadsheet operations. The result of the operations is 
stored in another part of the spreadsheet and can be edited, printed, and 
stored in a textual form. 

Macro facilities in GUis are more challenging to design than are macro 
facilities in traditional command interfaces. The MACRO command of Direct 
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Manipulation Disk Operating System (DMDOS) (Iseki and Shneiderman, 
1986) was an early attempt to support a limited form of programming for file 
1novement, copying, and directory commands. 

Smith (1977) inspired work in this area with his Pygmalion system that 
allowed arithmetic programs to be specified visually with icons. A nu1nber 
of early research projects have attempted to create direct-manipulation pro
gramming syste1ns (Rubin et al., 1985). Maulsby and Witten (1989) devel
oped a system that could induce or infer a program from examples, 
questioning the users to resolve mnbiguities. In constrained domains, infer
ences become predictable and useful, but if the inference is occasionally 
wrong, users will quickly distrust it. 

Myers (1992) coined the phrase demonstrational programming to character
ize the technique of letting users create macros by simply doing their tasks 
and having the system construct the proper generalization automatically. 
Cypher (1991) built and ran a usability test with seven subjects for his 
EAGER system that 1nonitored user actions within HyperCard. When 
EAGER recognized two similar sequences, a s1nall smiling cat appeared on 
the screen to offer the users help in carrying out further iterations. Cypher's 
success with two specific tasks is encouraging, but it has proved to be diffi
cult to generalize this approach. 

It would be helpful if the computer could recognize repeated patterns reli
ably and create useful macros automatically, while the user was engaged in 
performing a repetitive interface task. Then, with the user's confirmation, 
the computer could take over and could carry out the remainder of the task 
automatically. This hope for automatic program1ning is appealing, but a 
more effective approach may be to give users the visual tools to specify and 
record their intentions. Rule-based programming with graphical conditions 
and actions offers a fresh alternative that may be appealing to children and 
adults (Fig. 6.11) (Smith et al., 1994). The screen is portrayed as a set of tiles, 
and users specify graphical rewrite rules by showing before-and-after tile 
exmnples. Another innovative environment conceived of initially for chil
dren is ToonTalk (Kahn, 1996), which offers anilnated cartoon characters 
who carry out actions in buildings using a variety of fanciful tools. 

To create a reliable tool that works in many situations without unpre
dictable automatic programming, designers must meet the five challenges of 
programming in the user interface (PITUI) (Potter, 1993): 

1. Sufficient computational generality (conditionals, iteration) 

2. Access to the appropriate data structures (file structures for directories, 
structural representations of graphical objects) and operators (selectors, 
booleans, specialized operators of applications) 

3. Ease in programming (by specification, by example, or by demonstration, 
with modularity, argument passing, and so on) and in editing programs 
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Figure 6.11 
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Cocoa display showing the Flower Garden world, with the control panel, the garden 
data types, and the graphical rules for the rain falling down and getting absorbed by 
any object. (Used with permission of Apple Computers, Inc., Cupertino, CA.) 

4. Simplicity in invocation and assignment of arguments (direct manipula
tion, simple library strategies with meaningful names or icons, in-con
text execution, and availability of results) 

5. Low risk (high probability of bug-free programs, halt and resume facili
ties to permit partial executions, undo operations to enable repair of 
unanticipated damage) 

The goal of PITUI is to allow users easily and reliably to repeat automatically 
the actions that they can perform manually in the user interface. Rather than 
depending on unpredictable inferencing, users will be able to indicate their 
intentions explicitly by manipulating objects and actions. The design of 
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direct-manipulation syste1ns will undoubtedly be influenced by the need to 
support PITUI. This influence will be a positive step that will also facilitate 
history keeping, undo, and online help. 

The cognitive-dimensions framework may help us to analyze design issues of 
visual-programming environments, such as those needed for PITUI (Green 
and Petre, 1996). The framework provides a vocabulary to facilitate discus
sion of high-level design issues; for example, viscosity is used to describe the 
difficulty of making changes in a program, and progressive evaluation 
describes the capacity for execution of partial programs. Other dimensions 
are consistency, diffuseness, hidden dependencies, pre1nature cmnmitment, 
and visibility. 

Direct-manipulation programming offers an alternative to the agent sce
narios (see Section 2.9). Agent promoters believe that the computer can 
ascertain the users' intentions automatically, or can take action based on a 
vague statements of goals. I doubt that user intentions are so easily deter
mined or that vague statements are usually effective. However, if users can 
specify what they want with comprehensible actions selected from a visual 
display, then they can often and rapidly accomplish their goals while pre
serving their sense of control and accomplishment. 

6.6 Home Automation 

Internationally, many companies predict a large market in extensive controls 
in homes, but only if the user interfaces can be made simple. Remote control 
of devices (either from one part of the home to another, froin outside, or by 
programmed delays) is being extended to channel audio and video through
out the house, to schedule lawn watering as a function of ground moisture, 
to offer video surveillance and burglar alarms, and to provide multiple-zone 
environmental controls plus detailed maintenance records. 

Some designers promote voice controls, but commercially successful sys
tems use traditional pushbuttons, remote controllers, telephone keypads, and 
touchscreens, with the latter proving to be the most popular. Installations 
with two to 10 touchscreens spread around the house should satisfy most 
homeowners. Providing direct-manipulation controls with rich feedback is 
vital in these applications. Users are willing to take training, but operation 
must be rapid and easy to remember even if the option is used only once or 
twice per year (such as spring and fall adjustments for daylight-savings time). 

Studies of four touchscreen designs, all based on direct manipulation, 
explored scheduling operations for VCR recording and light controls 
(Plaisant et al., 1990; Plaisant and Shneiderman, 1991). The four designs were 
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Figure 6.12 
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This scheduler shows two calendars for start and stop dates, plus two 12-hour circu
lar clocks with hands that the user can drag to set start and stop times. (Used with 
permission of University of Maryland, College Park, MD.) 

1. A digital clock that users set by pressing step keys (similar to onscreen 
programming in current videocassette players) 

2. A 24-hour circular clock whose hands users can drag with fingers 

3. A 12-hour circular clock (plus A.M.-P.M. toggle) whose hands users can 
drag with fingers (Fig. 6.12) 

4. A 24-hour time line in which ON-OFF flags can be placed to indicate 
start-stop times (Fig. 6.13) 

The results indicated that the 24-hour time line was easiest to understand 
and use. Direct-manipulation principles were central to this design; users 
selected dates by touching a monthly calendar, and times by moving the ON 
or OFF flags on to the 24-hour time line. The flags were an effective way of 
representing the ON or OFF actions and of specifying times without use of a 
keyboard. The capacity to adjust the flag locations incrementally, and the 
ease of re1noving them, were additional benefits. We are extending the 
design to accommodate more cmnplex tasks, such as scheduling and syn
chronization of multiple devices, searching through schedules to find dates 
with specific events, scheduling repeated events (close curtains every night 
at dusk, turn lights on every Friday night at 7 P.M., record status monthly), 
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Figure 6.13 

This 24-hour time-line scheduler was most successful in our usability studies. The 
users select a date by pointing on the calendar and then dragging ON and OFF flags 
to the 24-hour time lines. The feedback is a red line on the calendar and the time 
lines. (Used with permission of University of Maryland, College Park, MD.) 

and long-duration events. A generalization of the flags-on-a-line idea was 
applied to heating control, where users specified upper and lower bounds by 
dragging flags on a thermometer. 

Since so much of home control involves the room layouts and floorplans, 
many direct-manipulation actions take place on a display of the floorplan 
(Fig. 6.14), with selectable icons for each status indicator (such as burglar 
alarm, heat sensor, or smoke detector), and for each activator (such as curtain 
or shade closing and opening motors, airconditioning- or heating-vent con
trollers, or audio and video speaker or screen). People could route sound 
from a CD player located in the living room to the bedroom and kitchen by 
merely dragging the CD icon into those rooms. Sound-volume control 
would be accomplished by having the user move a marker on a linear scale. 

The simple act of turning a device ON or OFF proved to be an interesting 
problem. Wall-mounted light switches typically show their status by up for 
ON and down for OFF. Most people have learned this standard and can get 
.what they want on the first try, if they know which switch to throw to turn 
on a specific light. Laying out the switches to reflect the floorplan does solve 
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Figure 6.14 

Floorplan of a private home, used to set temperatures. Direct-manipulation designs 
emphasize task-domain graphics. (Courtesy of Custom Command Systems, College 
Park, MD.) 

the problem nicely (Nonnan, 1988). Visitors may have problems because, in 
some countries, ON and OFF are reversed or the up-down switches have 
been replaced by push buttons. To explore possibilities, we constructed six 
kinds of touchscreen ON-OFF buttons with three-dimensional animation 
and sound (Fig. 6.15). There were significant differences in user preferences, 
with high marks going to the simple button, the rocker, and multiple-level 
pushbuttons. The multiple pushbuttons have a readily comprehensible 

Figure 6.15 

Varying designs for toggle button1 
using three-dimensional graphic 
characteristics. Designed by 
Catherine Plaisant. 
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visual presentation, and they generalize nicely to multiple state devices 
(OFF, LOW, MEDIUM, HIGH). 

Controlling complex home equipment from a touchscreen by direct 
manipulation reshapes how we think of homes and their residents. New 
questions arise, such as whether residents will feel safer, be happier, save 
more money, or experience more relaxation with these devices. Are there new 
notations, such as petri-net variants or role-task diagrams, for describing 
home automation and the social relations among residents? The benefits to 
users who have disabilities or are elderly were often on our minds as we 
designed these systems, since these people may be substantial beneficiaries 
of this technology, even though initial implementations are designed for the 
healthy and wealthy. 

6.7 Remote Direct Manipulation 

There are great opportunities for the teleoperation or remote control of 
devices if acceptable user interfaces can be constructed. If designers can pro
vide adequate feedback in sufficient time to permit effective decision making, 
then attractive applications in office automation, computer-supported collab
orative work, education, and information services may become viable. 
Remote-controlled environments in medicine could enable specialists to pro
vide consultations more rapidly, or allow surgeons to conduct more complex 
procedures during operations. Home-automation applications could extend 
remote operation of telephone-answering machines to security and access 
systems, energy control, and operation of appliances. Scientific applications 
in space, underwater, or in hostile environments can enable new research pro
jects to be conducted economically and safely (Uttal, 1989; Sheridan, 1992). 

In traditional direct-manipulation systems, the objects and actions of 
interest are shown continuously; users generally point, click, or drag, 
rather than type; and feedback, indicating change, is immediate. However, 
when the devices being operated are remote, these goals may not be realiz
able, and designers must expend additional effort to help users to cope 
with slower response, incomplete feedback, increased likelihood of break
downs, and more complex error recovery. The problems are strongly con
nected to the hardware, physical environment, network design, and the 
task domain. 

A typical remote application is telemedicine: medical care delivered over 
. communication links (Satava and Jones, 1996). In one scenario, the physician 
specialist being consulted and the patient's primary physician or a techni
cian are in different locations. Then, for example, an effective telepathology 
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Control 
Screen 

ADD DO ODD 
DO 

Figure 6.16 
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A simplified diagram of a telepathology system showing control actions sent by tele
phone and images sent by satellite. 

system (Weinstein et al., 1989) allows a pathologist to examine tissue sam
ples or body fluids under a remotely located microscope (Figs. 6.16 and 6.17). 
The transmitting workstation has a high-resolution camera mounted on a 
motorized light microscope. The image is transmitted via broadband satel
lite, microwave, or cable. The consulting pathologist at the receiving work
station can manipulate the microscope using a keypad, and can see a 
high-resolution image of the magnified smnple. The two care givers talk by 
telephone to coordinate control and to request slides that are placed manu
ally under the microscope. Controls include 

• Magnification (three or six objectives) 

• Focus (coarse and fine bidirectional control) 

• Illumination (bidirectional adjustment continuous or by step) 

• Position (two-dimensional placement of the slide under the microscope 
objective) 

The architecture of remote environments introduces several complicating 
factors: 

• Time delays The network hardware and software cause delays in send
ing user actions and receiving feedback: a transmission delay, or the time 
it takes for the command to reach the microscope (in our example, 
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Microscojiif 

Figure 6.17 

Telepathology components include a microscope with a camera attached to a work
station. This setup enables a pathologist to use remote control to examine the slides. 
(Used with permission of William J. Chimiak and Robert 0. Rainer, The Bowman 
Gray School of Medicine of Wake Forest University, Winston Salem, NC.) 

transmitting the command through the modem), and operation delay, or 
the time until the microscope responds (Van de Vegte et al., 1990). 
These delays in the system prevent the operator from knowing the cur
rent status of the system. For example, if a positioning command has 
been issued, it may take several seconds for the slide to start moving. 
As the feedback appears showing the motion, the users may recognize 
that they are going to overshoot their destination, but a few seconds 
will pass before the stopping com1nand takes effect. 

• Incomplete feedback Devices originally designed for direct control may not 
have adequate sensors or status indicators. For instance, the microscope 
can transmit its current position, but it operates so slowly that it cannot be 
used continuously. Thus, it is not possible to indicate on the control screen 
the exact current position relative to the start and desired positions. 

• Feedback from multiple sources Incomplete feedback is different from 
no feedback. The image received on the high-resolution screen is the 
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main feedback to evaluate the result of an action. In addition, the 
microscope can occasionally report its exact position, allowing recali
bration of the status display. It is also possible to indicate the esti
mated stage position during the execution of a 1novement. This 
estimated feedback can be used as a progress indicator whose accu
racy depends on the variability of the time delays. To cmnply with the 
physical incompatibility between the high-resolution feedback (ana
log image) and the rest of the system (digital), we spread the multiple 
feedbacks over several screens. Thus, the pathologists are forced to 
switch back and forth between multiple sources of feedback, increas
ing their cognitive load. 

• Unanticipated interferences Since the devices operated are remote, and 
may be also operated by other persons in this or another remote loca
tion, unanticipated interferences are more likely to occur than in tradi
tional direct-manipulation environments. For instance, if the slide 
under the microscope were moved (accidentally) by a local operator, 
the positions indicated n1.ight not be correct. A breakdown n1.ight also 
occur during the execution of a remote operation, without a good indi
cation of this event being sent to the remote site. Such breakdowns 
require increased status information for remote users and additional 
actions that allow for correction. 

One solution to these problems is to 1nake explicit the network delays and 
breakdowns as part of the system. The user sees a 1nodel of the starting state of 
the system, the action that has been initiated, and the current state of the syste1n 
as it carries out the action. It may be preferable to provide spatially parameter
ized positioning actions (for example, move by a distance +x, +y, or move to a 
fixed point (x, y) in a two-dimensional space), rather than providing temporal 
commands (for example, start moving right at a 36° angle frmn the horizontal). 
In other words, the users specify a destination (rather than a motion), and wait 
until the action is completed before readjusting the destination if necessary. 

Remote direct manipulation is rooted in two domains that, so far, have 
been independent. The first root grows from direct manipulation in personal 
computers and is often identified with the desktop metaphor and office 
automation. The second root is in process control, where human operators 
control physical processes in complex environments. Typical tasks are oper
ating power or chemical plants, controlling manufacturing, flying airplanes, 
or steering vehicles. If the physical processes take place in a remote location, 
we talk about teleoperation or remote control. To perform the control task, the 
human operator may interact with a computer, which may carry out some of 
the control tasks without any interference by the human operator. This idea 
is captured by the notion of supervisory control (Sheridan, 1992). Although 
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supervisory control and direct manipulation stem from different problem 
domains and are usually applied to different system architectures, they carry 
a strong resemblance. 

6.8 Virtual Environments 

Flight-simulator designers use many tricks to create the most realistic experi
ence for fighter or airline pilots. The cockpit displays and controls are taken 
frmn the same production line that create the real ones. Then, the windows 
are replaced by high-resolution computer displays, and sounds are choreo
graphed to give the impression of engine start or reverse thrust. Finally, the 
vibration and tilting during climbing or turning are created by hydraulic 
jacks and intricate suspension systems. This elaborate tech:n.ology may cost 
almost $100 1nillion, but even then it is a lot cheaper, safer, and more useful 
for training than the $400-million jet that it simulates. Of course, home 
videogame players have purchased millions of $30 flight simulators that run 
on their personal cmnputers. Flying a plane is a complicated and specialized 
skill, but simulators are available for more common-and for some surpris
ing-tasks under the alluring name of virtual reality or the more descriptive 
virtual environments. 

High above the office desktop, 1nuch beyond multimedia, and farther out 
than the hype of hypermedia, the gurus and purveyors of virtuality are pro
moting immersive experiences (Fig. 6.18). Whether soaring over Seattle, 
bending around bronchial tubes to find lung cancers, or grasping complex 
molecules, the cyberspace explorers are moving past their initial fantasies to 
create useful technologies. The imagery and personalities involved in virtual 
reality are often colorful (Rheingold, 1991), but many researchers have tried 
to present a balanced view by conveying enthusiasm while reporting on 
problems (MacDonald and Vince, 1994; Bryson, 1996). 

Architects have been using computers to draw three-dilnensional repre
sentations of buildings for two decades. Most of their design systems show 
the building on a standard or slightly larger display, but adding a large
screen projector to create a wall-sized image gives prospective clients a more 
realistic impression. Now add animation that allows clients to see what hap
pens if they move left or right, or approach the image. Then enable clients to 
control the animation by walking on a treadmill (faster walking brings the 
building closer more quickly), and allow them to walk through the doors or 

. up the stairs. Finally, replace the large-screen projector with a head-mounted 
display, and monitor head movement with Polhemus trackers. Each change 
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Figure 6.18 

In the goggles-and-gloves approach to vir
tual reality, the system tracks the user's hand 
and head motions, plus finger gestures, to 
control the scene's movement and manipula
tion. To enter this virtual environment you 
need special gear. Any of several types of 
stereoscopic devices transform otherwise 
two-dimensional image data into three
dimensional images. Some three-dimen
sional viewers, called head-mounted 
displays, resemble helmets with movie 
screens where the visor would be. (NCSA/ 
University of Illinois.) 

takes users a bit farther along the range from "looking at" to "being in." 
Bumping into walls, falling (gently) down stairs, meeting other people, or 
having to wait for an elevator could be the next variations. 

The architectural application is a persuasive argument for "being in," 
because we are used to "being in" buildings and moving around them. On 
the other hand, for many applications, "looking at" is often more effective, 
which is why air-traffic-control workstations place the viewer above the sit
uation display. Similarly, seeing movies on the large wraparound screens 
that put viewers "in" race cars or airplanes are special events compared to 
the more common "looking at" television ~xperience. The Living Theater of 
the 1960s created an involving theatrical experience and "be-ins" were popu-
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lar, but most theatergoers prefer to take their "suspension of disbelief" expe
riences from the "looking at" perspective (Laurel, 1991). 

It remains to be seen whether doctors, accustomed to "looking at" a patient, 
really want to crawl through the patient's lungs or "be in" the patient's brains. 
Modern surgical procedures and technology can benefit by "looking at" video 
images from inside a patient's heart taken through fiber-optic cameras and 
from use of re1note direct-manipulation devices that minimize the invasive 
surgery. Surgery plam1.ing can also be done with three-dimensional "looking 
at" visualizations shown on a traditional desktop display and guided by hand
held props (Hinckley et al., 1994). There are more mundane applications for 
such video and fiberoptic magic; imagine the benefits to household plumbers 
of being able to see lost wedding rings around the bends of a sink drain or to see 
and grasp the child's toy that has fallen down the pipes of a now-clogged toilet. 

Other concepts that were sources for the current excitement include 
artificial reality, pioneered by Myron Krueger (1991). His VideoPlace and 
VideoDesk installations with large-screen projectors and video sensors com
bined full-body movement with projected images of light creatures that 
walked along a performer's arm or of multicolored patterns and sounds gen
erated by the performer's movement. Similarly, Vincent Vincent's demonstra
tions of the Mandala system carried performance art to a new level of 
sophistication and fantasy. The CAVE, a room with several walls of high-reso
lution rear-projected displays with three-dimensional audio, can offer satisfy
ing experiences for several people at a time (Cruz-Neira et al., 1993) (Fig. 6.19). 

The telepresence aspect of virtual reality breaks the physical limitations of 
space and allows users to act as though they are somewhere else. Practical 
thinkers immediately grasp the com1.ection to remote direct manipulation, 
remote control, and remote vision, but the fantasists see the potential to 
escape current reality and to visit science-fiction worlds, cartoonlands, previ
ous times in history, galaxies with different laws of physics, or unexplored 
emotional territories. Virtual worlds can be used to treat patients with fear of 
height by giving them an immersive experience with control over their view
point, while preserving their sense of physical safety (Fig. 6.20) (Hodges et 
al., 1995). 

The direct-manipulation principles and the OAI model may be helpful to 
people who are designing and refining virtual environments. Users should 
be able to select actions rapidly by pointing or gesturing, with incremental 
and reversible control, and display feedback should occur immediately to 
convey the sense of causality. Interface objects and actions should be simple, 
so that users view and manipulate task-domain objects. The surgeon's 
instruments should be readily available or easily called up by spoken com
mand or gesture. Similarly, an interior designer walking through a house 
'with a client should be able to pick up a window-stretching tool or pull on a 
handle to try out a larger window, or to use a room-painting tool to change 
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Figure 6.19 

The CAVE™, a multiperson, room-sized, high-resolution, 3D video and audio envi
ronment at the University of Illinois at Chicago. The CAVE is a 10- x 10- x 9-foot the
ater, made up of three rear-projection screens for walls and a down-projection screen 
for the floor. Projectors throw full-color workstation fields (1024 x 768 stereo) onto 
the screens at 96Hz.(© 1992. Image courtesy of Lewis Siegel and Kathy O'Keefe, 
Electronic Visualization Laboratory, University of Illinois at Chicago.) 

the wall colors while leaving the windows and furniture untouched. Naviga
tion in large virtual spaces presents further challenges, but overview maps 
have been demonstrated to provide useful orientation information (Darken 
and Sibert, 1996). 

Alternatives to the immersive environment, often called desktop or fish tank 
virtual environments (both references are to "looking at" standard displays), 
are becoming more common and more accepted. The long-standing active 
work on three-dimensional graphics has led to user interfaces that support 
user-controlled exploration of real places, scientific visualizations, or fantasy 
worlds. Many applications run on high-performance workstations capable 
of rapid rendering, but some are appealing even over the web using the pop
ular Virtual Reality Modeling Language (VRML) (Goralski, 1996). 

Graphics researchers have been perfecting image display to simulate 
lighting effects, textured surfaces, reflections, and shadows. Data structures 
and algorithms for zooming in or panning.across an object or room rapidly 
and smoothly are becoming practical on common computers. In an innova-
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Figure 6.20 

Virtual-reality therapy for users who have acrophobia. These users can accommo
date to heights by going up in this virtual elevator with a guard rail located at waist 
level. The controls for the elevator are located on the guard rail: a green up arrow, a 
green down arrow, and a red stop square. (Hodges et al., 1995.) (Used with permis
sion of Larry F. Hodges, Rob Kooper, and Torn Meyer, Georgia Tech, Atlanta, GA.) 

tion called "augmented reality," users see the real world with an overlay of 
additional information; for example, while users are looking at the walls of a 
building, their semitransparent eyeglasses show where the electrical wires or 
plumbing are located. Augmented reality could show users where and how 
to repair electrical equipment or automobile engines (Feiner et al., 1993). 

Another variant, called situational awareness, uses a palmtop computer 
with a location sensor to control the display. As the user moves the palmtop 
around a map, museum, or a piece of machinery, the display shows informa
tion about the city neighborhoods, the paintings, or the history of repairs 
(Fitzmaurice, 1993). Shopping carts with displays that advertise products as 
you walk down the supermarket aisle have already been installed. 

Successful virtual environments will depend on smooth integration of 
multiple technologies: 
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• Visual display The normal-size (12 to 15 inches diagonally) computer 
display at a normal viewing distance (70 centimeters) subtends an 
angle of about 5 degrees; large-screen (15- to 22-inch) displays can 
cover a 20- to 30-degree field, and the head-mounted displays cover 
100 degrees horizontally and 60 degrees vertically. The head-mounted 
displays block other images, so the effect is more dramatic, and head 
motion produces new images, so the users can get the impression of 
360 degree coverage. Flight siinulators also block extraneous images, 
but they do so without forcing the users to wear smnetimes-cumber
some head-mounted displays. Another approach is a boom-mounted 
display that senses the users' positions without requiring that they 
wear heavy goggles (Fig. 6.21). 

As hardware technology improves, it will be possible to provide 
m.ore rapid and higher-resolution ilnages. Most researchers agree that 
the displays must approach real time (probably under 100 1nillisecond 
delay) in presenting the i1nages to the users. Low-resolution displays 
are acceptable while users or the objects are moving, but when users 
stop to stare, higher resolution is necessary to preserve the sense of 
"being in." hnproved hardware and algorithms are needed to display 
rough shapes rapidly and then to fill in the details when the motion 
stops. A further requirement is that m.otion be smooth; both incremen-

Figure 6.21 

A full-color head-coupled stereoscopic display. The Fakespace BOOM3C (Binocular 
Omni-Orientation Monitor) provides high-quality visual displays and tracking inte
grated with a counterbalanced articulated arm for full six-degree of freedom motion 
(x, y, z, roll, pitch, yaw). Pictured here is a computer model of the Basilica of St. Fran
cis of Assisi, complete with fourteenth century frescoes by Giotto. (Composite photo 
of BOOM3C® courtesy of Fakespace, Inc. (241 Polaris Avenue, Mountain View, CA 
94043) and Infobyte.) · 
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tal changes and continuous display of the objects of interest are 
required (Hendrix and Barfield, 1996). 

• Head-position sensing Head-mounted displays can provide differing 
views depending on head position. Look to the right, and you see a for
est; look to the left, and the forest gives way to a city. The Polhemus 
tracker requires mounting on the user's head, but other devices em.bed
ded in a hat or eyeglasses are possible. Video recognition of head posi
tion is possible. Sensor precision should be high (within 1 degree) and 
rapid (within 100 milliseconds). Eye tracking to recognize the focus of 
attention 1night be useful, but it is difficult to accomplish while the user 
is moving and is wearing a head-mounted display. 

• Hand-position sensing The DataGlove is a highly innovative invention; 
it surely will be refined and im.proved beyond its current low resolu
tion. Bryson (1996) cmnplains that "the proble1ns with glove devices 
include inaccuracies in measurement and lack of standard gestural 
vocabulary." It 1nay turn out that accurate measurem.ent of finger posi
tion is required only for one or two fingers or for only one or two joints. 
Hand orientation is provided by a Polhe1nus tracker 1nounted on the 
glove or wrist. Sensors for other body parts such as knees, arms, or legs 
may yet find uses. The potential for sensors and tactile feedback on 
more erotic body parts has been referred to by more than one journalist. 

• Force feedback Hand-operated remote-control devices for performing 
experilnents in chemistry laboratories or for handling nuclear 1naterials 
provide force feedback that gives users a good sense of when they grasp 
an object or bump into one. Force feedback to car drivers and pilots is care
fully configured to provide realistic and useful tactile inJormation. Silnu
lated feedback frmn software was successful in speeding dockil1.g tasks 
with complex 1nolecules (Brooks, 1988). It might be helpful for surgeons to 
receive force feedback as they practice difficult operations. A palmtop dis
play mounted on a boom was shown to produce faster and more accurate 
performance on a remote manipulation task when haptic (touch and force 
feedback) feedback was added (Noma et al., 1996). Remote handshakil1.g 
as part of a video conference has been suggested, but it is not clear that the 
experience could be as satisfying as the real thing. 

• Sound input and output Sound output adds realism to bouncing balls, 
beating hearts, or dropping vases, as videogame designers found out long 
ago. Making convincing sounds at the correct moment with full three
dimensional effect is possible, but it too is hard work. The digital sound 
hardware is adequate, but the software tools are still inadequate. Music 
output from virtual instruments is promising; early work simulates exist
ing instruments such as a violin, but novel instruments have emerged. 
Speech recognition may complement hand gestures in some applications. 
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• Other sensations The tilting and vibration of flight simulators might 
provide an inspiration for some designers. Could a tilting and vibrat
ing virtual roller coaster become popular if users could travel at 60, 600, 
or 6000 miles per hour and crash through mountains or go into orbit? 
Other effects such as a throbbing disco sound and strobe lights could 
also amplify son1.e virtual experiences. Why not include real gusts of 
air, made hot or cold to convey the virtual weather? Finally, the power 
of smells to evoke strong reactions has been understood by writers 
from Proust to Gibson. Olfactory computing has been discussed, but 
appropriate and practical applications have yet to be found. 

• Cooperative and competitive virtual reality Computer-supported cooper
ative work (see Chapter 14) is a lively research area, as are cooperative 
virtual environments, or as one developer called it, "virtuality built for 
two." Two people at remote sites work together, seeing each other's 
actions and sharing the experience. Competitive games such as virtual 
racquetball have been built for two players. Software for training Army 
tank crews took on a much more compelling atmosphere when the 
designs shifted from playing against the computer to shooting at other 
tank crews and worrying about their attacks. The realistic sounds cre
ated such a sense of engagement that crews experienced elevated heart 
rates, more rapid breathing, and increased perspiration. Presumably, 
virtual environments could also bring relaxation and pleasant encoun
ters with other people. 

6.9 Practitioner's Summary 

Among interactive systems that provide equivalent functionality and reliabil
ity, some systems emerge to dominate the competition. Often, the most appeal
ing systems have an enjoyable user interface that offers a natural representation 
of the task objects and actions-hence the term direct manipulation (Box 6.1). 
These systems are easy to leam, to use, and to retain over time. Novices can 
acquire a simple subset of the commands, and then progress to more elaborate 
operations. Actions are rapid, incremental, and reversible, and can be per
formed with physical actions instead of complex syntactic forms. The results of 
operations are visible immediately, and error messages are needed less often. 

Just because direct-manipulation principles have been used in a system 
does not ensure that system's success. A poor design, slow implementation, 
or inadequate functionality can undermine acceptance. For some applica
tions, menu selection, form fillin, or command languages may be more 
appropriate. However, the potential for direct-manipulation programming, 
remote direct manipulation, and virtual reality and its variants is great. Many 
new products will certainly emerge. Iterative design (see Chapter 3) is espe~ 
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Box 6.1 

Definition, benefits, and drawbacks of direct manipulation 

Definition 

• Visual representation (metaphor) of the "world of action" 

Objects and Actions are shown 

Analogical reasoning is tapped 

• Rapid, incremental, and reversible actions 

• Replacement of typing with pointing and selecting 

• Immediate visibility of results of actions 

Benefits over commands 

• Control-display compatibility 

• Less syntax reduces error rates 

• Errors are more preventable 

• Faster learning and higher retention 

• Encourages exploration 

Concerns 

• Increased system resources, possibly 

• Some actions may be cumbersome 

• Macro techniques are often weak 

• History and other tracing may be difficult 

• Visually impaired users may have more difficulty 

cially important in testing direct-manipulation systems, because the novelty 
of this approach may lead to unexpected problems for designers and users. 

6.10 Researcher's Agenda 

We need research to refine our understanding of the contribution of each fea
ture of direct manipulation: analogical representation, incremental opera
tion, reversibility, physical action instead of syntax, immediate visibility of 
results, and graphic form. Reversibility is easily accomplished by a generic 
UNDO command, but designing natural inverses for each action may be 
nore attractive. Complex actions are well-represented with direct manipula

·. ion, but level-structured design strategies for graceful evolution from 
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novice to expert usage would be a major contribution. For expert users, 
direct-manipulation programming is still an opportunity, but good methods 
of history keeping and editing of action sequences are needed. Software tools 
to create direct-manipulation environments are sorely needed to encourage 
exploratory development. 

Beyond the desktops, and laptops, there is the allure of telepresence, vir
tual environments, augmented realities, and situationally aware devices. The 
playful aspects will certainly be pursued, but the challenge is to find the 
practical designs for being in and looking at three-dimensional worlds. 
Novel devices for walking through museums or supermarkets and teleoper
ation for repair seem good candidates for entrepreneurs. 

world Wide Web Resources I www I 
Some creative direct manipulation services and tools are linked to, 
but the majority of links cover direct manipulation programming, 
teleoperation, and virtual environments. The web-based Virtual 
Reality Modeling Language enables creation of three-dimensional 
environments on web pages and there are numerous visually 
appealing websites. 

http://www.aw.com/DTUI 
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