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We also need the power through the 3-02 resistor. Since we know
its voltage v,

=

i the total voliage v after

Note that we found v by superposition and then use
superposition of voliage components to compute the power. 1

through the resistor in the component problems separately and tried to superpose them,
this would have given us a different and erroneous result. since the sum of component
POWErS,
s!‘}:'{’? o

and current do.

s noi the same as the power due 10 the sum of components,

Even in linear circuits, power does not superpose; only voliage
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{a) : ! 4.2.1.  Solve Exercise 4.1.1 using superposition.
=4 (3 o e i = o ;
f/,:" ‘ 4.2.2. Find v and ¢; by superposition. Check by Thevenin-Norton trans-
FEY formations. o
_ Answer 11V, —4g
= . 3
]. 4.2.3. Replace the 8 V by 44; in Exercise 4.2.2, converting an indepen-
R dent source o a dependent source. Find v /1 by superposition.
Angsier 8 Vi —1 A
EXERCISE 4.2.2
at . o e i e e e W e e i =
1wch "

4.3 NODAL ANALYSIS |

In this section we develop a general method of circuit analysis in which voltages are the
unknowns to be found. A convenient choice of voltages for many networks is the set of
node voltages. Since a voltage is defined as existing between two nodes, it is convenient
to select one node in the network to be a reference node and then associate a voltage at
each of the other nodes. The voltage of each of the nonreference nodes with respect 1o the
reference node is defined to be a node voltage. Tt is common practice o select reference
directions for these voltages so that the plus ends are all at the nonreference nodes and
the minus ends all at the reference node. For a circuit containing N nodes, there will be
N - 1 nonreference nodes and thus N — | node voltages. Nodal analvsis is a method in
which we will break the circuit. that is. solve for a key set of circuit variables, by finding

current or voltage will follow casily once

the node voltages themselves. Any other
A i cireuit is broken.

The reference node is often chosen to be the node to which the largest number of
branches are connected. Many practical circuits are built on a metallic base or chassis,
and usually a number of elements are connecled to the chassis, which becomes a logical
choice for the reference node. In many cases, such as in electric power systems, the
chassis is shorted to the earth itself, becoming part of a single chassis—earth node. For
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FIGURE 4.8 Reference
and nonreference nodes.,

this reason, the reference node is frequently referred 1o as ground or the ground node.

“The reference node is thus at grourk! potential or zero potential, and each other node may

be considered to be at some potential above or below zero specified by the value of its

node voltage.

The equations of nodal analysis are obtained by applying KCL at the nodes. Recall
that each termn in & KCL equation is an element current. For a resistor, this current is
proportional to its voliage. This voltage. like any element voltage, is equal 1o a node
voltage (if one end of the element is tied to the reference node) or the difference of two
node voltages (if both ends are tied to nonreference nodes). For exumple, in Fig. 4.8 the
reference node is node 3 with zero or ground potential. The symbol shown attached to
node 3 is the standard symbol for ground, as noted in Chapter 3. The nonreference nodes
1 and 2 have node voltages v; and vo. Thus the clement voltage vz with the polarity
shown is

p ==ty — 82

The other element voltages shown are

Vs = W — {(} = vy

These equations may be established by applying KVL around the loops (real or imagined).
Cvidently. if we know all the node voltages, we may find all the element voltages and
thence all the e¢lement currents.

The application of KCL at a node, expressing each unknown current in terms of the
node voltages, results in a node equarion. Clearly, simplification in writing the resulting
equations is possible when the reference node 18 chosen to be a node with a large number
of elements connected to it. As we shall see, however, this is not the only criterion
for selecting the reference node, although it is frequently the gverriding one. Since we
are going to apply KCL systematically at circuit nodes, the most straightforward case to
consider is that of circuits whose ouly sources are independent current sources. We begin
wilh examples of this type.

In the network shown in Fig. 4.9(a). there are three nodes, dashed and numbered
as shown. [This may be casier to see in the redrawn version of Fig, 4.9(b).] Since there
are four elements connected to node 3. we select it as the reference node, identifying it
By the ground symbol shows,

FIGURE 4.9  Circuit containing independent current sources,




de Before writing the node equations, consider the element shown in Fig. 4.10, where
v; and v, are node voltages. The element voltage v is given by
i
-ail and thus by Ohm’s law we have
i 1

Wie " e~ :% 1
e FIGURE 4,10 : ve ’

FIGU or i= Gy — )

. element.

o L where G = 1/R is the conductance. That is. the current from node | 10 node 2 through
a resistor is the difference of the node voltage at node ] and the node voltage ai node 2
divided by the resistance R. or muliiplied by the conductance ;. This relation will aliow
us to write the node equations rapidly by inspection directly i terms of the node voltages.

Now returning to the circuit of Fig. 4.9, the sum of the currents leaving node |
must be zero, or
Fpbdy = 5:_{;'3 == ()
In terms of the node voltages. this equation becomes
Gy + Galyy — 1) — iy =0
i We could have obtained this equation directly using the procedure of the preceding
ul paragraph. Applying KCL at node 2 in a similar manner. we obtain
bl g
or Galta — 1)+ G i =0

er Instead of summing currents leaving the node to zero, we ~ould have used the form

on - of KCL that equates the sum of currents leaving the nade to the sum of currents entering

»e . the node. Had we done so, the terms i,y and iy would have appeared on the right-hand

t side:

in (ryvy + Gafyy —vy) = f_.;]

. Galwm- v+ Gavy = =iy
Rearranging these two equations results in
it . ;
{Gi e G;:}'i‘; -~ (J:‘l'g = lgy
....A(;_Ei;‘i + (Ga + G !}t‘:: e 3;72 (<4 8y
These equations exhibit a symmetry that may be used to write the equations in
the rearranged form (4.8) directly by inspection of the circuit diagram. In (4.8a) the

- . coefficient of vy is the sum of conductances of the elements connected to node 1, while

: the coefficient of vs is the negative of the conductance of the clement connecting node |
to node 2. The same statement holds for (4.8b} if the numbers | and 2 are interchanged,

0 Thus node 2 plays the role in (4.8b) of node 1 in (4.8a). That is, it is the node at which
KCL is applied. In each equation the right-hand side is the current from the current
sources that enters the corresponding node.

In general, in networks containing onty conductances and curreni SOuUrces, KCL
applied at the kth node. with node voltage v, may be written as follows. On the left
129




Example 4.6

130

side of the node k equation, the coefficient of the kih-node voitage is the swmn of ihe
conductances connected to node k, and the coefficients of the other node voltages are the
negatives of the conductances between those nodes and node k. The right side of this
equation consists of the net current flowing into node k due to currenl sources.

This predictable pattern makes it easy to write down the node equations. Note that
the signs, positive on the left-hand side for ue terms and negative [or other node voltage
terms. and positive on the right-hand side for curent sources flowing into node k, are
4 conseguence of the form of KCL chosen. While other forms could be used quite as
correctly, we advocate sticking o the form recommended, with the payolT that the terms

will always fall in this patiern. It helps to make the patlern of signs fixed and predictable.
so we can focus our atiention on the larger issues when analyzing a circuit.

Nodal analysis consists in writing KCL node equaiions described above at all non-
reference nodes in the cirendf. This yields N — | linear equations in a similar number of
unkniowns (the node voltages). As discussed in Appendix C, these equations are linearly
independent and thus are guaranieed (0 possess a unique solution. The node voltages
may be found by a variety of means, including Gauss elimination, Cramer’s rule, and
mairix inversion,

Consider the cireuit of Fig. 4.11, The botom node has been selected
as the reference node since so many elements connect t it. The
resistors are labeled according to their conductances.

= omeeas =
1 P
= _"
152 1$ ?\f
g _,‘r_.-__ T R e e E.

reuit for Example 4.6,

Since there are three nonreference nodes, there will be three
equations in three unknown node voltages. At node v;, we nole
that the sum of conductances 1s == 4, the negaiive of the
conductance connecting node v; to node vy is — 1, and the net source
current entering node 1 is 7— 5 = 2. Thus the first node equation 1s

"UI —v«—:"‘ (4.9

Similarly, at nodes vz and vs. we have
1y 4 bz — 203 = § (H10a
—2yy 4 Tug =17 5 10D}

We may solve (4.9) and (4.10) for the node voltages using
any one of a variety of methods for solving simultaneous equa-
tions. Three such methods are matrix inversion, Cramer’s rule, and

Ex




he Gaussian elimination. For the reader who is not familiar with these
he methods, a discussion is given in Appendix A. Selecting Cramer’s
s rule. first find the determinant of the coefficient matrix, given by
! o4 =t 0}
= A=lwl 6 ~2]=145 (.11
ol L 3 -2 71
a8 . To determine vy, we replace the first colummn of the coefficient
s trix by the vector of constants on the right-hand side of (4.9)-{4.10).
le compute its determinant, and divide by the determinant of the coel-
fictent matrix already found.
Ti- F 2 {
of . i
1y |
‘S 8 .
o , vy is found by replacing the second and vy the third column of the
] coefticient matrix and calculating as above, yielding vy = 2 V and
ol . 4 "1’ v'
i Now that we have broken the circuit by finding the node voli-
o ages, we may easily find any other voltage or current. For exampl,
if we want the current ¢ in the 2-8 element, it is given by
fue 2vy — ) = 22 =3) = -2 A
Note that the coefficient matrix shown in (4.11) is symmetric [the (7, /) and (j, /)
A elements are equal]. This follows from the fact that the conductance between nodes
{ and j is that between nodes f and i Symmetry further simplifies writing the node
equations. While symmetry will hold as a general rule for all circuits not containing
dependent sources, symmeltry of the coefficient matrix cannot be counted on in that case,
as we shall see in the next example.

Exampie 4.7 Consider the L‘i.rcuil ;.a_i‘ Fig, 4[2 which contains cftepcndcm uirent
ap ! sources. We will hegin by writing the node equations exactly as if
e the sources were independent. At node 1.
® (v + (D) + @)vy =) =5 = i
;Z and at node 2,

Liwy) = (2)(vm -1y} = 50 + 20

We next express the controlling variables for the dependent souices.
i and v in these equations, in terms of the node voltages. By Ohun =

faw,

R )

and by inspection
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Substituting the last two equations into the preceding two,
(D) + D) + Q) —v2) =5~ 5
L) + Qv — v) = S + 2w — va)

These two equations in [wo unknowns can be solved by Cramer’s
rule, maurix inversion, or Gauss elimination. as desired. Selecting
natrix inversion, we first rewrite as

G e

The determinant of the coefficient matrix is (9) {L‘} — (=9)(~2) =
4572 and the inverse is

4 8 a7l T
..7_1:“.‘- 'HJ |3 #
4519 9 :
Then
ﬂ bk ol [l [z'ﬁ
va | - i % RS MZJ

FIGURE 4.12 Circuit containing dependent sources.

From Bxample 4.7 we see that the presence of dependent sources destroys the
symmetry in the coefficient matrix [see (4.12)] and that in such circuits the elements
of this matrix may no longer simply be interpreted as sums of conductances, since the
dependent sources also contribute. On the other hand, the presence of dependent sources

has not significantly complicated nodal analysis, requiring only an additional substitution
step, replacing controlling variables by node voltages.
e A 0 AR o T AN ST TR e T T -
431, Tuke all resistors in Fig. 4.9 to be | © and both current source

functions to be 1 A. Using nodal analysis, find the node voitages and the

three fabeled currents.
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Answer my =1 Vi =1V A =2Ah=—1A

4.3.2. Using nodal analysis, find vy, v, and 1.
Ansiver 4V 36 VI 4 A
4.3.3.  Write the nodal equations directly in vector-matrix form. Do nof
ner's solve.
sting Answer
| ) =& 3 =& 0
/}_\ -3 6 0 -1
b ( T Yas  Sag pes® |- 1 G 4 =l
N 0 -1 -1 6
Sy g 0 <2 § i
5 . La _
Cl_._'_“______ ..... — Ji"‘\,\r.\ o R
EXERCISE 4.3.2 g esa Wr— o —Seneey
"g‘: = 28w /)\',\l\r‘ g =3%
= 2 Vsl 14 :
N, Uy }V\’\{ / ”. T f\\,ﬁ\,r’\‘, 7 v\-\gl"_‘_i 3
i i - I
3a(1) \ el ) i )w
L AMA — o \
U N O g S
I ¢ 5‘: ./ i - /'T\ —2A < 1
222 (Lha 392 ([)a 238
L <o I gt o |
ey . i o ad
TR TR
EXERCISE 4.3.3
44 CIRCUITS CONTAINING VOLTAGE SOURCES
At first glance it may seem that the presence of voltage sources in a circuit complicates
nodal analysis. We can no longer write the KCL node equations. since there is no way
to express the currents through these circuit elements in terms of their node voltages. As
discussed in Chapter 2, the element law for a voltage source does not relate its current
s the to its voltage, so we cannot use it to replace a current unknown by a voltage unknown

Lans & | in the node equation.

¢ the However, as we shall see, nodal analysis in the presence of voltage sources proves

HILES no more complicated, requiring only a small modification to the basic method for writing

wuge the equations of nodal analysis presented in Section 4.3. In fact. we will come to welcome
voltage sources, since they reduce the number of simultaneous node equations that must
be solved, yielding one less equation per voltage source.

To illustrate the procedure, let us consider the circuit of Fig. 4.13.
For convenience we have labeled the resistors by their conductances.
_ Note that we have enclosed voltage sources in separate regions indi-
il the cated by dashed lines. Recalling that the generalized form of KCL
states that all currents entering a closed region must sum 10 2ero

%'fxa'r_nple 4.8
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4
the ! The basic building blocks of digital systems are fogic elrouits and memory circuits. We
A shall study both in this book, beginning in Section 1.7 with the most fundamental digital
. _ circuit, the digital logic inverer.
3 One final remark: Although the digital processing of signals is at present all-pervasive.
the & there remain many signal processing functions that are best performed by analog circuits.
Uy ¢ o Indeed, many clectronic systems include both analog and digital parts. It follows that a good
% electronics engincer must be proficient in the design of both analog and digital circoits,
& Such is the aim of this book.

the

and

o

Exercise

1.4 Consider 4 4-bit digital word D = bibzbh by (see Eg. 1.3} used to represent an analog signal uy that varics
Y

L ; berwaen OV and +15 V.

the ; i

e i3 {a) Give D comesponding to gy = 0V, 1 V.2V, and [5V,

the : (h) What change in 1y causes @ change from (0 to 1in: 413 by, (0 by, Gils ba, and (v ba!

3.2V, what do vou expect D to be? What is the resulting error in representanion?

Ans. ta) 00000001, 0010, 1H1Y; ) +1 V. 2V, 44V, +8V, () 0101, ~4%

¢

1.4 AMPLIFIERS

I introduce a fundamental signal-processing funciion thar is employed

in this section, we sho

in some form in almost every electronic system, namely, signal amplification.

s e b e

signal Amplification

From a conceptual point of view the simplest signal-processing task 18 that of signal am-
plification. The need for amplification arises because transducers provide signals that are
said to be “weak.)” that is, in the microvolt (V) or millivelt (mV) range and possessing
little energy. Such signals are too small for reliable processing. and processing is much
casier if the signal magnitude is made larger. The functional biock that accomplishes this
task is the signal amplifier.

it is appropriate al this peint to discuss the need for linearity in amplifiers. When
amplifying a signal, care must be exercised so that the information contained in the signal
is not changed and no new information is introduced. Thus when feeding the signal shown
in Fig. 1.2 to an amplifier, we want the output signal of the amplifier o be an exact replica
of that at the input, except of course for having larger magnitude. In other words, the
“wiggles” in the outpur waveform must be identical to those 1n the input waveform. Any
change in waveform is considered to be distortion and is obviously undesirable.

An amplifier that preserves the details of the signal wavelorm is characterized by the
relationship

1Y Al 14



where w; and w, are the input and output signals, respectively. and A is a constant repre-
senting the magnitude of amplification. kaown as amplifier gain. Equation (1.4) is a lincar
refutionship; hence the amplifier it describes is a Hnear amplifier. [t should be easy w see
that if the relatiouship between v, and z; conains higher powers of v, then the waveform
of v, will no longer be identical to that of v,. The amplitier is then said to exhibit nonlinear
distortion.

The

nplifiers discussed so far are primarily intended to operate on very small input
signals, Thair purpose is o make the signal magnitude larger and therefore are thought of
as voltage amplifiers. The preamplifier in the home stereo system is an example of &
vollage amplifier. However. it usually doces more i?z:-.n just amplify the signal; specifically,
il performs some shaping of the frequency specirum of the input signal. This topic, however,
is beyor A.Z our need at this moment,

At this thne we wish to mention another type of amplifier, namely, the power araifﬂéfécr
Such an :13?:})%;{15'“ may provide only a modest amount of voltage gain but substantial curre
gain. Thus while absorbing little power from the input signal source to which itis cum‘-.ccead.
oiten a preamplifier, it delivers large amounts of power to its load. An example is found in
the pvm r amplifier of the home stereo system. whose purpese is to provide sufficient power
1o drive the loudspeaker. Here we should note that the loudspeaker is the output transducer

steren system: it converts the electric output signal of the systemn inte an acoustic
i, A further appreciation of the need for linearity ¢an be acquired by reflecting «
power amplifies. A linear power umplifier causes both soft and loud music passages o be

reproduced without distoition.

Amplifier Circuit symbol

The signal amplifier is obviously a two-port network, Iis function is conveniently repre-
sented by the circuit symbol of Fig. 1. in)m% This symbol clearly distinguishes the input and
putput ports and indicates the direction of sn»;n.;l flow. Thus, in subsequent diagrams it will
pot be pecessary 1o label the two perts “input”™ and “output.” For generality we have shown
the amplifier 1o have two input terminals that are distinet from the two output terminals. A
more common situation is illustrated in Fig. 1.10¢b). where a commeon terminal exists be-
tween the inpur and outpul ports of the amplifier. This commuoen terminal is used as &
reference point ead is called the cireunit ground.

Input Cuipat Input V CAITpat

{a) {

Big. 1,10 () Circuit symbol for amplifier. {b) An amplifier with a common terminal (ground)
berween the input and outpul posts,
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Voltage Gain

A linear amplifier accepts an input signal 1,() and provides at the ouput. across 4 load
istance R; (see Fig. 1.1#{a}), an output signal u,(f) that is & magnified replica of win,
The voltage gain of the amplificr is defined by

1
i

Voltage gain (4,

Fig. 1.11{b) shows the transfer characteristic of a linear amplifier. If we apply to the input
of this amplifier a sinusoidal voltage of amplitude V. we obtain at the output a sinusoid of
amplitude A,V

{al (b

Fig 171 (@) A voltage amplifier fed with a signal w(r) and connected to a load resistance
Ry {b) Transfer characteristic of a linear voltage amplifier with voltage gain A,

Power Gain and Current Gain

An amplifier increases the signal power, an important feature that di stinguishes an amplifier
from a transformer. In the case of a transformer, al-f,ou;, h{, voltage delivered to the load
could be greater than the voltage feeding the in put side (the prit the power delivered
to the load (from the wansformer secondary) is Tess than or at most equal to the power
supplied by the signal source. On the other hand, an amplifier provides the load with power
greater than that obtained f:'om the signal source. That is. amplifiers bave power gain. The
power gain of the amplifier in n Fig. 1.1 Ha) is defined a

foud power {(£;)
Power gain (4,) = — : (1.6
input power (F)




where i is the current that the amplifier delivers w the load (R,), ip = vg/Ry, and i is
the current the amplifier draws from the signal source. The current gain of the amphjm
is defined as
. o iy .
Current gain (4} = — (1.8)

trom Egs. (1.3} o {1.8) we note that

& (.9

Expressing Gain in Decibels

The amplifier gains defined above are ratios of similarly dimensioned quantities. Thus they
will be expressed either as dimensionless numbers or, for emphasis, as V/V for the voltuge
gain, A/A for the current gain, and W/W {or the power gain, Alternatively, for a number
of reascns, some of them historic, electronics engineers express amp;;ﬁer gain with a log-
arithmic measure, Specifically the voltage gain A, can be expressed as

Voltage gain in decibels = 20 loglA,) dB
and the current gain A; can be expressed as
Current gain in decibels = 20 logid,| dB

Since power is related 10 voltage {or current) squared, the power gain A, can be expressed
in decibels as follows:

Power gain in decibe

0log4, 4B

The ubsolute values of the voltage and current gains are used because in some cases
A, or A; mayv be negative numbers., A negative gain A, simply means thut there 1s a 180°
;hawc difference between input and output signals; it does not hmply that the amplifier
is altenuating fin, signal. On the other hand, an amplifier whose volisge gain is. say,
-2 dB is in fuct attenuating the input signal by a factor of 10 ghat is, A, = 0.1 V/V}

The Amplifier Power Supplies

Since the power delivered to the load is greater than the power drawn from the signal
source, the guestion arises as to the source of this additional power. The answer is found
by observing that amplifiers need dc power supplies for their operation. These de sources
supply the extra power delivered to the load as well as any power that might be dissipated
in the interpal circuit of the amplifier (such power is converted to heat). in Fig. L1la) we
have not explicitly shown these de sources.

Figure |.12(a) shows an amplifier that requires two dc sources: one positive ¢
¥, and one negative of value V. The amplifier hus two terminals. labeled V7 and V7, for
connection 1o the do supplies. For the amplifier to operate, the terminal labeled V7 has to
be connected 1o the positive side of a do source whose voltage is V. and whose negative
side is connected to the circuit ground. Also, the terminal labeled V7 has to be connected
to the negative side of a de source whose voltage is Va and whose positive side is connected
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Fig. 112 An amplifier that requires two de supplies (shown as bateries) for operation,

to the circuit ground. Now, if the current drawn from the positive supply is denoted £, and

that from the negative supply is b (see Fig. 1.12(a)), then the de power delivered 1o the
amplifier ig

Be = Vil + V£,

If the power dissipated in the amplifier circuit is denoted B,

sipate» the power-balance
squation for the amplifier can be written as

Boe + Bt = P+ Pipy

sipate

where £ is the power drawn from the signal source, and £, is the power delivered Lo the
load. Since the power drawn from the signal source is usually small. the amplifier efficiency
is defined as

7=~ % 100 {140
de

The power efficiency is an important performance parameter for amplifiers that handle large
amounts of power. Such amplifiers, called power amplifiers, are used. for example. as output
amplifiers of stereo systems.

In order to simplify circuit diagrams, we shall adopt the convention illustrated in Fig.
LLIZ(b). Here the V" terminal is shown connected to an arrowhead pointing upward and
the V™ terminal to an arrowhead pointin g downward. The corresponding voltage is indicated
next to each arrowhead, Note that in many cases we will not explicitly show the connections
of the amplifier to the de power sources, Finally, we note that some amplifiers require only
one power supply.

EXAMPLE 1.1

Consider an amplifier operating from +10-V power supplies. It is fed with a sinusoidal
voltage having 1V peak and delivers a sinusoidal voltage output of 9V peak (0 a 1-k{)
load. The amplifier draws a current of 9.5 mA from each of its two power supplies. The




input current of the amplifier i3 found o be sinuseidal with 0.1 mA peak. Find the voltage
ar drawn from the de supplies. the power

gain. the current gain. the power gain, the pow
dissipated in the smplifier, and the amplifier efficiency.

ar
Ay = 20i0g 9 == 19.1 dB
- g9V i
1y = — = 0mA
[ kL)
i
_;lh. - R s {}{\3 AlA
{1
O
A; = 20l 90 = 381 dB
9 9
PL=V 1, =
st i) V32
B = Vol = 005 mW
w300 S 10 WIW
. Toos
Qar

A, = 10log 810 = 29.1 dB
Pioe= 10 X085+ 10X095= 190mW

Phisiipated = fae + Pr — P
@ 190 + .08 — 405 = 145.6 mW
[.3{_ ! :
o ,\ L
i P,

e

ahove example we observe that the amplifier converts some of the de power
s power supplies to signal power that it delivers w the load.

MY A

it draws ¢

Amplifier Saturation
Practically speaking. the amplifier transfer characteristic remains linear over only a limited
: of input and output voltages. For an amplifier operated from two power supplies the

e 3
output voltage cannot exceed o specified positive limit and cannot decrease below a specifiad

LOO0
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negative {imit. The resulting transfer chuaracteristic is shown in Fig. 113, with the positive
and negative saturation levels denoted L, and respectively, Each of the two saturation
levels is usually within T or 2 volts of the vo of the corresponding power supply.

Obviously, in order to avoid distorting the ouiput al waveform, the mput signal
swing must he kept within the linear range of operation.

Figure 1.13 shows two input waveforms and the corresponding cutput waveforms. We note
that the peaks of the larger waveform have been clipped off because of amplifier saturation.

Yo A

iy

5 i

L £ i ¥ : : i3

— F i | % %

4 / : F A

v i Fhts i =

1 i -
i
r &
B
it

Foem o,
Corse A < T
i B e . |
! gd%«w”"?' = 3
i ]

Fiz, 1,12 An amplifier tansfer characteristic that is linear except tor outpu saniration.
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Nonlinear T: teristics and Biasing
Except for the output saturation effect discussed above. the ampiifier transfer characteristics
i .

have been assumed to be perfectly linear. In practical amplifiers the transfer characten




ties of varivus magnitudes, depending on bow elaborate the amplifier
siveuit is, and on how much effort has been expended in the design o ensure linear oper-
an example the wansfer characteristic depicted in Fig. 1.14. Such a char-

may exhibit nonlineari

ation. Consider as
acteristic s typical of simpie amplifiers that are operated from a single (positive} power

istic is obviously nonlinear and. because of the single-supply

supply. The transter character

operation. is
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R
5 |// ;
i)
by e |
b 5
(b

i that shows econsiderable nonlinearity. (b)) To

aperation the amplifier 1s biased as shown, und the signal amplitude 15 xept smal
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not centered around the origin. Fortunaely, a simple technique exists for obtaining lincar
amplification from an amplifier with such a nonlinear wransfer characteristic,

The technique consists of first biasing the circuit © operate 4t a point near the middle
of the transfer characteristic, This is achieved pplying a de veitage V. as indicated in
Fig. 1.14, where the operating point is labeled Q and the comresponding de voltage at the
output is Y. The point @ is known as the quiescent point, the de bias point, or simply
the operating point. The time-varying signal o be ampilified. v(2). is then superimposed |
on the de bias voltage V7 as indicated in Fig. 1.14. Now. as the wtal instantaneons input

varies wround V., the instantaneous operating point moves up and dowa the transfer curve
around the operating point (. In this way, one can determine the waveform of the total
nstantancous output voltage wein). It can be seen that by Keeping the amplitude of w0
sufficiently small, the znbtzlr;i‘mmas operaling point can be confined o an atmost linear
segment of the transfer curve centered about ¢, This in tarn results in the LHme-varying
portion of the output being proportional to w:(1); that is.

vplf) = Vo + win

with

where A, is the slope of the almost linear segment of the transter curve: that is.

d'{,‘o !
Lc"in E;;zr_}

i

A=

In this manner, linear amplification is achieved. Of course i.|crc is a limitation: The input
signal must be kept sufficiently small. Increasing the am i de of the input signal can cause
the operation to be no longer restricted 1o an almost immzz segment of the transfer curve.
This in turn results in a distorted output signal waveform. Such nonlinear distortion is
undesirable: The output signal contains additional spurious informatien that is not part of
the input. We shall use this biasing technique and the associated small-signal approximation ;
frequently in the design of transistor amplifiers. E

EXAMPLE 12

A transistor amplifier has the transfer characteristic
v = 10 = 107 e (.11

which applies for v = 0V and vp = 0.3 V. Find the limits L_ and L. and the correspornd-
ing values of v Also, find the value of the de biss voltage ¥ that results in ¥, = S Vand
the voliage gain al the corresponding operating point.

he limit L. is obviously 0.3 V. The corresponding value of v is obtained by substiuting
vy = 0.3V in Eq. (1.10); that is,

i = (.690 V




is determined by ¢y = 0 and is thus given by

L, = 10 - 107H = 10V

The hmit L,

T bias the device s0 that ¥y = 3V we require a de input ¥y whose value is obtained by
substituting v = 3V in Eq. (1.10) to find:

operating point is obtained by evaluating the derivative dvy wldzy at vy
wsull is

The gain ul
0673V,
A, = —200WV
which indicutes that this amplifier in an inverting one, that is, the output is 180° out of
the input. A sketch of the amplifier transfer characteristic (not to scale) is shown

m which we observe the inverting nature of the amplifier.

! of the i
| \ ¢ of the
| A g ~~ i 4
amplitier of Example 1.2, i
—— Note that this amplifier 18 i
inverting {(that is, with &
it gain that is negatives. A
i A
3 i
i %
i |.._w§‘.w,,._._..._..._...._ S
i 0.673 0.690 WAV )
A
Onee an amplifier is properly biased and the input signal is kept sufficiently small, the th:
operation is assumed to be linear. We can then employ the techniques of linear circuit 1
yze the signal operation of the amplifier circuit. The following two sections £r:

i th

eview and applicaiion of these analysis wechnigues.

i
nbol Convention

we draw the reader’s attention to the terminology used above and which we 1.8
s are denoted by a lowercase -

throughout the book. Totw instantuneous quantitie
i uppercase subscript, for example. (7). velf). Direct-current (de) quantities

il be denoted by an uppercase symbol with an uppercase subscript, for example, iy, Voo
Finally, incremental signal guantities will be denoted by a lowercase symbol with a low-
ercase subscript, for example ,(0, w(7). This notation is ilustrated in Fig. 1.16.
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Fig, 116 Symbol convention empioved throughout the book,

< and

An amplifier has a veltage gain of 100 V/V and a current gain of 1000 AJA. Express the veliag
s and find the po ]

sl faing in de

Ars, 40 dB: 60 dB: 50 dB

1.6 An amplifier operating from a single 15-V supply provides a 12-V peak-to-peak sine-wave signal to & 1-k{)
load, and draws negligible input current from the signal source. The de current drawn from the 13-V supply is
8 mA. What is the power dissipated in the amplifier and what is the amplifier efficiency?

Ans, 102 mW; 1

wl approximation. Consider

as voltage V. Find

ation of the small-s
I mV superimposed on the de b

1.7 The objective of this exercise is to investigate the lim
the amplifier of Example 1.2 with a positive input signal of
the corresponding signal at the output for two situations:  (a) Assume the amplifier is linear around the op-
erating point that is, use the vaiue of gain evaluaed in Example 1.2, (b) Use the transfer characreristic of

ithe ampiifier. Repeut for input signals of SmV and 10 mV,

Ans, ~02¥, ~0204V: -1V, —LI07V; =2V, <2450V

S S e s e . . R R e

IRCUIT MODELS FOR AMPLIFIERS

A good part of this book is concerned with the design of amplifier circuits using tran
of various types. Such circuits will vary in complexity from those using a single trazs:sio
o those with 20 or more devices. In order {0 be able to apply the resulting amplifier o
as a building block in a system, one musl be able to characterize, or model, its tern
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amp has characteristics that closely approach the assumed ideal. This 1m;ﬂm that it is goie
cusy 1o design cireuits using the 1C op amp. Also, op amp circuits work at levels thy are
quite close to their predicted theoretical performance. [t is for this reason that we are
ing op amps at this carly stage. It is expected that by the end of this chapter the reader
should he able o design pontrivial cireuits successfully using op amps.
As already img E ed, an IC op amp is made up of a large number of transistors, resistors,
and {usually} one capacitor connected in a rather complex circnit. Since we have not yet
studied transistor circuits, the circuit inside the op amp will not be discussed in i?:f% chapter.
Rather, we will treat the op amp as & cireuil building block and study its w@rminal ‘E.cm\,-
teristics and its applications. This approach i quite satisfactory in many op-amp applica
tions. Nevertheless, for the more difficult and aszzzammg applications it is guite useful to
know what is inside the op-amp package. This topic will be studied in Chapter 10, Finally,
it should be mentioned that more advanced applications of op amps will appear in later
st : chapters.

2.1 THE OP-AMP TERMINALS

: From a signal point of view the op amp has three terminals: two input terminals and one
D £ ] output terminal. Figure 2.1 shows the symbol we shall use to represent the op amp. Ter-
minals 1 and 2 are input werminals, and terminal 3 is the output terminal. As explained in
Section .4, amplifiers require de power to operate. Most IC op amps require two de power
supplies. as shown in Fig. 2.2. Two terminals. 4 and 5. arc brought out of the op-amp
package and connected to a positive voltage V' and a negative voltage V7. respectively.
In Fig. 2.2(by we explicitly show the two dc power supplies as batteries with a common
ground. It is interesting to note that the reference grounding point in op-amp circuils is just
the common terminal of the two power supplics; that is. no terminai of the op ump package

Fig. 2.1  Cirguit symbol for
the op amp.

Jiges o
dCiep ._:

i
1her of > s

CW OFa

power supphies.

3 o i
3 Fig. 1.2 The op amp
O] l,_, shown connected to de

shortly
1C op . : ey (b)




is phyvsic

Iy connected to ground. In what follows we will not explicitly show the op-amp
POWeEr § e,

In addition to the three signal terminals and the two power-supply terminals, an op amp
oy have other terminals for specific purposes. These other terminals can jnclude erminals
for frequency compensation and terminals for offset nuiling: both functions will be explained

in laier sections.

Exercise

2.3 W

af termi

ANS 5t

L eiR

is the minimum number of terminals required by a single op amp? What is the minimum number
§ required on an integraied-cirenit package containing four op amps (called & quad op amp}?

1s¢ the

- the cireuit function of the op amp. The op amp is designed 1o se
ween the voltage signals applied at its two input terminals (that is, the quantity
v; = vy, multiply this by a number A, and cause the resuiting voltage Age vy ) to appear
at output ’,::tmznm 3. Here it should be emphasized that when we alk about the voluge ut
tinal we mean the voltage between that terminal and ground: thus v means the voltage
en terminal 1 and ground.
al op amp 18 not supposed w draw any inpot current: that is, the signal current
I and the signal current into terminal 2 are both zero. In other words. the

into ter
input impedance of an ideal op amp is supposed to be infinite.

How about the output terminal 37 This terminal is supposed to act as the output terminal
of an idm{ voltage source. That is, the voltage between terminal 3 and ground will always
A{wa — wy) and will be independent of the current that may be drawn {rom
inal 3 nto 4 load impedance. In other words, the output impedance of an ideal op amp

is supposed 1o be zero,
Putting [.,\”[h.\- all of the above. we 1ve s he eguivale o
uian SIS il 01 e above, we arnve al the equivaient ¢
2. . Note that the output is in phase with (has the same sign as
with (has H:: apposite sign of) vy, Por this regson, input terminat 1 is called the inverting

is called the

uit maode! shown in
vy and out of phase

o
HC

o
}

input terminal and is distinguished by a =" sign. while input erminal
noninverting input terminal and is distunguished by a 47 sign.

As can be seen from the above descripuon, the op amp responds only 1o the difference
! Thay s, if H =

1y common-mode

nal corminon to hoth in

! hence ignores any

d
i

then the output will—ideally-—be zero. We call this prope
i we conclude that an ideal op wmp has infinite common-mode rejection. We

> Lo say about this point luter. For the time being note that the op amp is a

rejection,
will have mo
differential-input, single-ended-ouiput umplifier, with the latter term referring (0 the fact
t the output appedars between terminal 3 and ground. Furthermore. gain A iy called the

differential gain. for obvious reasons, Perhaps not so obvious is unother name tézm we will

;i

Exerci:

22 Cym
Circuit an
CASCS, US
and  wy
N

—3aVa

Ans. ()




at which the

shown that

(11.25)

lter becomes more

enjugate locations
.. Thus 2 noteh in
frequency. Thice
ained when o,
peh and the high-
verify the response
¢in all notch cases
re no transmission

ong of any order.)
cies: the Oat

vity of the all-pass

T

magnitude

S radfs, a

n 10 be

16 Consider a low-pass noteh with g

RESONATOR

Pradfs, @ = 10, @, = 1.27ad/s, and a de gain of unity, 7

requency and magniwde of the wansmission peak, Also find the high-frequency trinsmission,

ANs. 0.986 rad/s; 3.17: 0.69

11.5 THE SECOND-ORDER LCR RESONATOR

In this section we shall study the second-order LOR resonator shown in Fig. 1 (a). The
use of this resonator to derive circuit realizations for the various second-order filter functions
will be demonstrated. Also. it will be shown in the next section that replacing the inductor
4. by a simulated inductance obtained using an op amp-RC circuit results in an op amp-
RC resonator. The latter forms the hasis of an important class of active-RC filters to he
studied in the next section.

Fid

The Resonator Natural Modes

The natural modes of the parallel resonance circuit of Fig. 11.17{a) can be determined hy
applying an excirarion thar does nor chunge the natural structire of the circuir. Two possible
ways of exciting the circuit are shown in Figs. 11.17(b} and (¢, In Fig. 11.17(b) the res-
onator is excited with a current source / connected in paraliel. Since as far as the natural

;‘»g Tor—— : : ' '
_ ! s@ § = :
i L 2ok 5
(a) {b}

Fig. 1117  (a) The second-order parallel LCR resonator. (b) and (¢) Two ways for exciting the
resonator of (i) without changing its narural struciure. The resonator poles are the poles of 1,/ wnd

0.

27



response of @ circuit is concerned, an independent ideal current source Is equivalent 0 g
open circuit. the excitation of Fig. 11.17(b) does not alter the natural structure of the g
onator. Thus the ¢ircuit in Fig, 11.17(b) can be used to determine the natural modes iii.".hi.“‘v
resongtor by simply finding the poles of any response function. We can for instance ke
the voltage V), across the resonator as the response and thus obtain the response function
V,/f = Z, where £ is the impedance of the parallel resonance circuit. It is obviously moy
convenient, however, to work in terms of the admittance ¥ thus
Yo o1 I

T ¥ (sl + sC + AR
3 .
2% s(UCRY + (/LG

. = i T ¥ iy 3 g -
Equating the denominator to the standard form s + siwa/Q) + wg leads o

P e A
and

wpl/ = HECR 4t
Thus,

wy = UNLC (113

0 = wy CR {1135

These expressions should be familiar w the reader from earlier studies of parullel resonande &

circuits in -"‘ii,\,iii,’iﬂf'}’ coursgs on circuit theory.

An alternative way of exeiting the parallel LCR resonator for the {alimese of determining |
its natural modes is shown in Fig. 11.17(¢). Here, node x of inductor L has been disconnecieds
from ground and connected (o an ideal voltage source V.. Now, since as far as the naur
response of 4 cireuit is concerned. an ideal independent voliage scurce is equivalent 1o
short circuit, the excitation of Fig. 11.17(c) does not alter the natural structure of the &
omator. Thus we can use the circuit in Fig. 11.17{c} o determine the natural modes of e
resonator. These are the poles of any response function. For instance, we cun seleet ¥ @
the response variable and find the transfer function V,/V,. The reader cun easily venfy hat
this will lead to the natural modes determined above.

In a design problem, we will be given wy and ¢ and will be asked to determine L, G
and R. Equations (11L.34) and (11.35) are two cquations in the three unknowns. The u
available degree of freedom can be utilized to set the impedance level of the circuit o g

results i practical component values,

fransmission Zeros

Having selected the component values of the LCR resonator so as to realize o given p
of complex-conjugate nawral mmodes, we now censider the gse of the resonator {o
desired filter type (e.g., LP, HP, etc.}. Specifically, we wish w find out where to izj
input voltage signal ¥ so that the transfer function V.7V is the desired ong. Tow
end. note that in the resonator circuit in Fig. 11.17(a) any of the nodes labeled x. 3, 1@
cun be disconnected from ground and connected w V; without altering the circuit’ '

2]
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modes. When this is done the circuit takes the form of a voltage divider, as shown in Fa
11.180a). Thus the munsfer function realized 15

We observe that the transnussion zeros are the vaiues of s at which Za(8) is zero, provided

that 2y is not simudtaneously zero. and the values of s o which Zy(s) is infintite, provided
ense: The ouls

sical

that Z-(83 iy not simuitaneousiy infinite. This staement makes pl
will be zero either when Za(s) behaves as a short circuit or when Z:{s) behaves as an

s s

cireuit. If there s a value of 5 al which both Z; and 4y are zero. then VUV will be

4

and no transmission zero is obtained. Similarly, if there is & value of v at which both £,
and Z- are infinite, then ¥V will be finite and no transmission zoro 18 realized:

Realization of the Low-Pass Function

Using the scheme outlined above we see that o realize a low-pass function, node x is
disconnected from ground and connected o Vi, as shows in Fig. 11.18{b} The transmission
zeros of this circuit will be at the value of s for which the series impedance bocomes |
{s. becomes infinite at s = o) and the value of & at which the shunt impec
zero {1sC + (1/R)] becomes zero at s = ). Thus this circuit has owo ransmission
at s = o0, as an LP is suppesed to. The transfer function can be written either by inspectuion
or by using the voltage-divider rule. Pollowing the latter approach, obtain

o

sC 4+ (1/R)

Realization of the High-Pass Function

vied

To realize the second-order high-pass function, noede v is disconnected from ground and
connected to Vi, as shown in Fig. 11,18(¢). Here the series capacitor introduces a transimis-
sion zero at s = { (dej, and the shunt inductor introduces another transmission zero o
g o= 0 {de), Thus, by inspection, the transfer funciion may be written as

Ty

where wy and ( are the nawral mode parameters given by Hgs, (11.34) and i1}
a- is the high-frequency transmission. The value of gz can be determined from the cirent

by observing that as s approaches o, the capacitor approaches & short circulr and ¥, ap-
proaches Vi, resulting in ¢s = L

Realization of the Bandpass Funcition

The bandpass function is realized by disconnecting node £ from ground and connedt
to V. as shown in Fig. 1LI18td). Here the series impedance is resistive, and thus does
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11.5  THE SECOND-ORDER LCR HESONATOR 413

introduce any transmission zeros. These are obtained as follows: One zero at ¢ = 0 iy
reaiized by the shunt inductor, and one zero ats = o is realized by the shunt capacitor, At
the center-frequency wy. the parailel LC mned circuit mf‘:i*zsx an inf znzte impedance, and
thus no current flows in the cireuit, It foliows that at @ = wy, ¥V, = 4 In other words, the
center-frequency gain of the bandpass filter is unity. [ts transfer 1 m.ziozz can be obtained
as follows:

TR +
5 (/CR)
st + s(/CR) + (ILC)

Realizalion of the Notch Functions

To obtain a pair of transmission zeros on the jw-axis we use a paralle] resonance circuit in

the series anm, as shown in Fig. 11.18(e). Observe that this circuit is obtained by discon

necting both nodes x and y from ground and connecting them together to V. The impedance

of the LC circuit becomes infinite at o = wo = INLC, thus causing zero transmission at

this frequency. The shunt impedance is resistive and thus does not introduce transmission
zeros. It follows that the circuit in Fig. 11.18(e) will realize the noteh transfer function

2 g

. 5 = (L’U . iy

Tig) = (ly — e {1].40

5+ 8 I'(x)g.:"’{)] g3 1

The value of the high-frequency gain a; can be found from the circuit 0 be unity.

To obtain a notch filter realization in which the notch frequency w, is arbitrarily placed
relative to wy, we adopt a variation on the above scheme. We still use a parallel LC circuit
in the series branch, as shown iy Fig. 11.18(f) where L, and €, are selected so that

4 Cy o= !, {1141
Thus the L, tank circuit will introduce a pair of transmission zeros at % jw,, provide

that the L,C5 tank is not resenant at ®,. Apart from this restriction, the values of Ly and
Cy must be selected so as to ensure that the natural modes have not been altered; thus

Ci+Cy= ¢ (14
Lol = L, {314

in other words, when Vi is replaced by a short circuit, the cireuit should reduce to the
original LCR resonator. Another » way of thinking about the circuir of “Fig, TLIR() is that
it is obteined from the original LCR resonator by lifiing part of L and part of € off ground
and connecting them to V.

It should be noted that in the circuit of T Fig. 11181, L does nor introduce a zero at

= 0 because at s = 0, the L.C; circuit also has a zero, In fact, at 5 = 0 the circait

reduces 1o an inductive vo liage r"\qdm with the de transmission being Lol + L2} Sim-
ilar comments can be made about O 2 and the fact that it does not introduce a zero at
§ oo

The LPN and HPN filter realizations are special cases of the general noteh circuit of
Fig. 11.18(f). Specifically. for the LPN.

Wy = (o,




w4 FILTERS AND TUI

thus

LG < (Ll e + €3)

s condition can be satisfied with 2, eliminated (Lo, Le = wand L, = L), i
the LPN cireuit in Fig. 11.18(2). The wansfer function can be wrilten by inspection 43

where w; = VLC,, wi = VL, L/CR, and a» is the high-frequency gain
Froni the circuit we see that a8 § — @, th; circuit rfcdlia.‘,s to that in Fig. 11.18(h}, for which

Thus

To obizin an HPN realization we starl with the cireuit of Fig. 11.18(f) and use the fact

Exercis

thatl @, < @ o obtain

which can be sutisticd while selecting € = 0 fe., € = 3 Thus we obtain the reduced

-
nin Fig. PG, th ve ii'lau TS O ezrr_;:)‘ aches ¥ and thus the g

cireuit shov

frequency gain is unity, ”
171.18 ¢
at a 60-H
3 dB ovey
10 k8

¢ Ans. ¢ -

& practical b

Realiza f the All-Pass Function
The all-pass transfer function

{1147

1}

cun be written a

5

"The second term on the right-hand side s o bandpass function with a center-irequency
of 2. We alrewly have a bandpass circuit {Fig. 11.18d) but with a center-frequency
unity, We shall therefore attempt an ali-pass rcalzmmn with a flat gain of 0.3, thut

This function can be reulized using a voliage divider with a transmission ratio of 0.5 together
with the bandpass circuit of Fig. 11.18(d). To cffect the subtraction, the output of the ul-*



. resulting in

w}tion as

(11443

quency gain.

h), for which

11145y ;

! nse the fact

i the reduced

s the high-

[ 1.3 together |

ut of the all

ABS. O = 1.6 uF ang /

S BASED ON INDUCTOR REPLACEMENT His

g 1119 Reatization of
the second-order all-pass
transfer function using a
voltage divider and an LCR

? rREgnator.
. TS

pass circuit is taken between the output terminal of the voltage divider and that of the
bandpass filter. as shown in Fig. 11.19. Unfortunately this circuit has the disadvantage of
lacking a common ground terminal between the input and the output. An op amp~RC
realization of the all-pass function will be presented in the next section.

e

Exercises

L7 Use the cireuit of Fig. 11.18(b) to realize a second-order low-pass function of the maximally flat type
with a 3-dB frequency of 100 kHz.

ARS. Selecting R = 1 kQ), we obtain ¢ = 1125 pFand L = 225 mH.

v dinnd

1118 Use the circuit of Fig. 11.18{e} o design 2 notch filter to eliminate a bothersome powear-supply hum
at 2 80-Hz frequency. The filter is to have a 3-dB bandwidth of 10 Hz (i, the attenuntion is greater than

3 dB over a 10-Hz band around the 80-Hz center frequency: see Exercise 11.15 and Fig. 11.16d). Use R =

e o |

.+ 442 H (Note the large inductor required. This is the reason passive filters are not
practical in low-irequency applications.)

s

116 SECOND-ORDER ACTIVE FILTERS BASED ON INDUCTOR REPLACEMENT

In this section, we study a family of op amp-RC circuits that reaiize the various second-
order filter functions. The circuits are based on an op amp-RC resonator obtained by re-
placing the inductor L in the LCR resonator with an op amp-RC eircuit that has an inductive
input impedance.

The Antoniou inductance-Simulation Circuit

Gver the vears, many op amp—RC circuits have been proposed for simulating the operation
of an inducior, Of these, one circuit invented by A. Antoniou (see Antoniou, 1969) has
proved to be the “best.,” By “best” we mean that the operation of the circuit is very tolerant
w the nonideal properties of the op amps. in particular their finite gain and bandwidth.
Figure 11.20(a) shows the Antoniou inductance simulation circnit, If the circuit is fod at its



