
0279
IBG 1038 (Part 2 of 3)

CBM of U.S. Patent No. 7,212,999

D~
I CHROtlll I

Figure 8-22. Changing the hue by clicking in the Co/ormap Scale area

The Hue Bar will display a range of hues. (A shorter representation of the same spectrum
will also be added to the second vertical bar in the Colormap Scale area.) You can select one
of the hues in the bar to edit in the color area in several ways:

• Click the first pointer button on the color you want in the Hue Bar.

Click the first pointer button on either the up or down arrow (the slider echoes this
motion). This action causes the color area to display the next shade above or below the
current shade in the bar. (Press and hold down the pointer button to browse several
shades.)

• Use the slider in the vertical bar to the right of the arrows to select a hue. See the instruc
tions for using the xterm scrollbar's "thumb" in Chapter 5.

Note that you don't have to fill the Hue Bar in order to adjust the hue using any of these
methods. (You can even click on the blank Hue Bar, though this "blind" method is not par
ticularly desirable.) The color area and the numeric values will be updated to match the
shade you choose regardless.

If you select a hue by any of the mechanisms in the Hue Bar, you can then adjust the color
using the Hue Leaf or by the less intuitive method of changing the numeric values.

If you fill the Hue Bar and then try to select a hue from the Colormap Area, there may occa
sionally be minor problems allocating color cells for the xtici application. In such cases, a
dialog box will request your input. See "Problems Allocating Color Cells" for more informa
tion.

Other Clients 255

0280

Adjusting the Color with the Hue Leaf

The Hue Leaf represents a range of possibilities for the current hue. The hue can vary in
value (lightness to darkness) and in chroma (the amount of the hue present; also known as
saturation or intensity)-and within the Hue Leaf, it varies dramatically. For instance, the
lightest possible shade of any hue is white; the darkest is black. (That is, the spectrum of
possible values always spans white to black.) The range of chroma or saturation is more reli
ant on the actual hue. For example, in most cases, a red hue can exist in a wider range of
intensities than a yellow hue. '

The Hue Leaf is always triangular, but the shape of the triangle depends on the possibilities
of varying the hue. The triangular Hue Leaf is turned on its side, so that the base is actually
vertical-flush against the left side of the box containing the leaf. The range of value is rep-_.·
resented along this vertical edge (white is at the top; black at the bottom). The range of
chroma (saturation) is represented horizontally, with least to most saturation appearing from
left to right. The Hue Leaf is intended to represent all possible variations of the hue in ques
tion.

When you first run xtici, the Hue Leaf appears blank and contains a small square dot cursor.
This cursor marks the place in the leaf that corresponds to the current version of the hue. To
get a better idea of the range of possibilities for the hue, you can fill the leaf:

1. Display the Options menu by clicking the first pointer button on the menu command box.

2. Click on the Fill Leaf item.

The Hue Leaf will display the range of possibilities for the current hue. Variations between
shades create a sort of striped or checkerboard pattern.

The Hue Leaf allows you to fine tune the hue in question. Notice the arrow keys beside the
Value and Chroma labels bordering the leaf. You can adjust the value and chroma by click
ing on these arrows. For example, you would click on the up arrow next to Value to make the
hue lighter (white is at the top of the value range). The dot cursor will move up within the
leaf and the color area and numeric values will be updated to reflect the changes.

Click on the right arrow next to Chroma to get a more intense hue. The dot cursor will move
to the right within the leaf and the color area and numeric values will be updated to reflect
the changes.

As an alternative to using the arrow keys, you can use the pointer to move the square dot
within the leaf. Either click on the shade you want within the leaf or hold down the pointer
on the dot and drag it within the leaf.

As is the case with the Hue Bar, you don't have to fill the Hue Leaf to adjust the color using
any of these methods. The color area and the numeric values will be updated regardless.

If you fill the Hue Leaf and then try to select a hue from the Colormap Area, xtici may have
trouble allocating color cells and a dialog box with be displayed. See "Problems Allocating
Color Cells" for more information.

256 X Window System User's Guide, Motif Edition

0281

Selecting and Pasting the Numeric Color Value

Once you have the color you want in the color area, you can select the numeric description of
that color to paste on the command line, in a resource file, in a color database file, etc. To
make the color value the PRIMARY text selection:

1. Display the Edit menu by clicking the first pointer button on the menu command box.

2. Click on the Copy Color-> item. A submenu is displayed.

3. Click on the format (color space) you want. The TekHVC and CIE u'v'Y items select por
table color values; the RGB item selects the non-portable RGB color format.

TekHVC is a good choice. You can then paste the color value by clicking the second pointer
button. For example, you might enter:

% xbiff -fg

and then click the second button to specify the color (and run the process in the background):

% xbiff -fg TekHVC:223.93036/72.45283/29.67013 &

On our display, this color value produces a deeper version of the sky blue from our original
example. If you intend to use a color multiple times, it's a good idea to pair the numeric
value with a name in an Xcms database.

Note that xtiei handles RGB values in an unusual way. The window displays RGB values in
decimal notation; however, if you select RGB from the Edit menu, the output is in hexade
cimal notation! This can be a bit confusing, particularly if you want to place RGB values in
an RGB or Xcms database. An RGB database requires decimal values; an Xcms database
recognizes RGB values (among others), but they must be in hexadecimal notation. If you
have the decimal numbers to input to xtici, the editor can in effect perform the conversion to
hex; or you can use the UNIX be(1) utility to convert numbers from one notation to another.
See Chapter 12 for instructions on using be and on creating color databases.

Working with the Numeric Color Values

We've seen several ways to edit color specifications using xtiei's graphic elements: bars,
sliders, arrow buttons, etc. When you change a color using one of these methods, the
numeric values corresponding to the color are updated dynamically. However, you can also
interact with xtiei by entering numeric values yourself.

Thus far we've only seen the default Hue, Value, and Chroma number displays. (These pro
vide a number in the portable TekHVC color space.) But remember that xtici can interpret
and output two additional color spaces: the portable CIE u'v'Y format and the non-portable
RGB format. You can display the specification for the current color in any of these formats
by using the Options menu.

1. Display the menu by clicking the first pointer button on the Options command button.

2. Click on the Coordinates-> item. A submenu is displayed revealing two options: RGB
and CIE u'v'Y.

Other Clients 257

0282

3. These menu items are toggles between the color space named and the default TekHVC
color space. Thus, selecting RGB once toggles the decimal values for RED, GREEN, and
BLUE. Selecting RGB a second time recalls the TekHVC values. Click on the format
(color space) you want.

Let's consider a couple of ways you might work with xtici using numbers. Keep in mind that
all of the numeric values are contained in small text windows. Use the editing commands
described under "The xedit Text Editor" (earlier in this chapter) to change the values.

Suppose you want to edit a color from the standard RGB database. To place that color in the
xtici color area:

1. Check the RGB decimal values in rgb.txt. (See Chapter 12.)

2. Using the Coordinates submenu of the Options menu, toggle the RGB numeric values.

3. Place the values from rgb.txt in the RED, GREEN, and BLUE text windows to the right of
the color area.

As soon as you move the pointer out of the text window area, a dialog box will prompt:

Apply last keyboard input?

If you've entered the correct figures, select OK and the color area will be updated; otherwise,
Cancel and continue editing.

As another example, say you've created a color using another editor, such as xcoloredit, that
outputs values in the non-portable RGB format. If you enter the decimal versions of these
values in the xtici window (as described in the previous example), xtici provides the portable
color space equivalents.

Problems Allocating Color Cells

Because of the nature of colormaps and the way color cells are allocated, certain problems
may arise in working with xtici. One is a simple, albeit confusing "technicolor" effect.
Depending on where the input focus is, applications may appear to swap colors and the shade
in the xtici color area may not appear accurate. You're liable to get a more precise picture
when the xtici window has the input focus, however.

Another potential problem: you may not be able to select a color in one area of the xtici win
dow if it is being used in another area. If such a conflict arises, a dialog box will inform you.
For example, say you select a color in the Colormap Area that is also being used in the Hue
Bar, you may get a dialog to the effect that:

This color cell is used to fill the Hue Bar.
Hues will be removed to edit this cell.

The box provides the possible responses OK and Cancel. The safest course of action is to
click on Cancel and then try to select the hue by another method. Clicking on the shade you
want in the Hue Bar should work; or you might turn the Hue Bar off (the menu item is a
toggle) and try to select the color by dragging the Hue Bar slider; or you could enter the
appropriate numeric values, etc.

258 X Window System User's Guide, Motif Edition

0283

If you click on OK, the Hue Bar (and possibly the leaf and part of the Colormap Scale area)
will be blanked out and the colors xtici is displaying will be changed. In such a case, try
clicking on any visible color in the Colormap Scale area to begin editing again.

A similar conflict can arise if you select a hue in the Colormap Scale area that is also being
used in the Hue Leaf:

This color cell is used to fill the leaf.
Fill will be removed to edit this cell.

Again, it's a good idea to click on Cancel and then try to select the hue by another method.
Clicking on the shade you want on the Hue Bar or Leaf should work; or you might tum either
or both the bar and leaf off (the menu items are toggles) and try to select the color by another
method.

Selecting OK will blank out the leaf (and possibly the bar and part of the Colormap Scale
area) and change the colors the xtici window is displaying. Again, try clicking on any visible
color in the Colormap Scale area.

Various other colormap conflicts can arise. Use the dialog boxes-and your own experi
ence-for guidance.

Quitting xtici

To quit the application, click the first pointer button on the Quit command button-the left-
most one on the menu bar. ·

Other Clients 259

0284

Part Two:

Customizing X

X has been designed to put the user in the driver's seat. Everything from the
colors and sizes of windows to the contents of mwm menus can be custom
ized by the user. This part of the book tells you how to reshape X to your
liking.

Command-line Options
Setting Resources
Specifying Color
Customizing mwm
Setup Clients

0285

Working with Motif Applications

This chapter examines some of the features common to applications written
with the Motif Toolkit.

In This Chapter:

Pointer Button Usage ... 265
The Periodic Table of Motif Widgets ... 266
Menus ... 267

Pull-down Menus ... 267
Pop-up Menus ... 269
Option Menus .. 269
Tear-off Menus .. 270

Push Buttons ... 272
Radio Boxes and Toggle Buttons ... 274
The Motif Scrollbar ... 276
Text Windows .. 277
Dialog Boxes ... 279

Prompt Dialog .. 281
Selection Dialog ... 282
File Selection Dialog .. 283

Selecting a File from the Files Box ... 284
Choosing a File from another Directory in the Directories Box 284
Choosing a File from Another Directory on the System 285

Command Box ... 285
Scale ... 287
Drag and Drop ... 289

..II
0286

9
orking with Motif Applications

The Athena widget set provides X Toolkit applications with certain common features, many
of which have been described in Chapter 8. An application coded using the Motif widget set
has a slightly different look and feel.

In the remainder of this chapter, we 'lllook at some of the features you're liable to encounter.
in a Motif application and learn how to use them. Some of these features are provided in a
slightly different flavor by the Athena widget set; others are unique to Motif.

Many of the sample components we're using are taken from the Motif periodic demo pro
gram, which is a "periodic table" of the Motif widgets. You can play with periodic to begin
learning to use many common features of Motif applications. However, since the program
simply demonstrates the various widgets without actually performing any practical action,
you'll probably need to use some real applications as well. If you've been running mwm, you
already know how to use several Motif features.

The following sections mention the comparable Athena widgets where appropriate. Some of
the Athena widgets are illustrated using the standard MIT clients in Chapters 5, 7, and 8.

Before examining the various Motif features, however, let's consider some basics of using
the pointer with a Motif application.

Pointer Button Usage

When you're working with an application coded using the Motif toolkit, you can generally
rely on the pointer buttons to work as follows:

Button one:

Button two:

Referred to in program internals as "BSelect" (for "Button Select"), the
first button enables you to "select" or activate graphical components. For
example, you would use the first button to direct focus, to select text, to
respond to a dialog box, etc.

Referred to as "BTransfer" (for "Button Transfer"), the second button is
used to "drag" text, graphic images, etc., from one widget and "drop" them
into· another widget. As we'll see later, this "drag and drop" capability is
one of the major improvements of Motif 1.2.

Working with Motif Applications 265

0287

Button three: Referred to as "BMenu" (for "Button Menu"), the third button is used to
post pop-up menus. For example, you post the mwm Root Menu by press
ing and holding the third pointer button on the root window.

Now that you understand the basics of pointer actions, let's consider the various application
components you're liable to encounter.

The Periodic Table of Motif Widgets

The periodic demo program (pictured in Figure 9-1) provides a compact and comprehensive
survey of the Motif 1.2 widget set.

Figure 9-1. The periodic table of Motif widgets

Widgets are the building blocks of applications coded using Xt-based toolkits, such as the
Motif toolkit. From a user's perspective, this definition of "widget" is not particularly signif
icant. What is significant is that widgets create graphical elements like scrollbars, text win
dows, and push buttons, which you use to work with an application.

266 X Window System User's Guide, Motif Edition

0288

Keep in mind that some widgets don't help you do anything. For instance, the Separator
widget (in the upper-left comer of the periodic table) is simply a divider line, often used
below menu titles. Other widgets represented in the table are composites: several simpler
widgets combined for a particular purpose. For example, the FileSelectionBox widget con
tains two text input fields, two scrollable lists (each also a composite!), and four or more push
buttons, the sum total of which help you select a file from a directory hierarchy. The file
selection box is a particularly complicated example. However, in most cases, when you
know how to use the various components, you can deal with them in any combination.

We mention the names of the various widgets discussed in this chapter, but unless you're
interested in programming, this sort of classification is probably superfluous. (If you want to
set resources at the widget level, the names will be more relevant. See Appendix G, Widget
Resources, for more information.) When you're running an application, it doesn't matter
what a feature is called-only how it's used. Now let's learn how to use some of the most
important Motif features. After reading this chapter and playing with a client or two, these
skills will become intuitive.

Menus

Motif applications may feature three types of menus, the first two of which you have already
encountered:

• Pull-down menus, such as mwm's Window Menu.

• Pop-up menus, such as mwm's Root Menu.

Option menus.

The following sections describe these three types of menus. Keep in mind that each of these
menus can also be what is known as a "tear-off' menu: that is, you can choose to post the
menu and "tear off' an image of it that remains posted (in its own window) until you remove
it. We'll take a closer look at tear-off menus after considering the three basic menu types.

Pull-down Menus

You display a pull-down menu from a graphical element on an application window. The
mwm Window Menu is a pull-down, which is displayed from a button in the upper-left comer
of the frame. More often, though, a pull-down is displayed from a horizontal bar known as a
menu bar. Figure 9-2 illustrates the menu bar on the periodic window.

Working with Motif Applications 267

0289

Figure 9-2. PeriorJic menu bar

Each word on the bar is a menu title; you display the m~nu by placing the pointer on its title
and clicking the first pointer button. The title becomes raised and highlighted by a box, the
menu is displayed and the first selectable item is also raised and boxed. Figure 9-3 shows
periodic's File pull-down menu.

Figure 9-3. Periodic File menu

Notice that one letter of each menu item is underlined. As explained in Chapter 4, that letter
represents a unique abbreviation, or mnemonic, for the menu item, which can be used to
select the item.

Some menus (such as mwm's Window Menu) may also provide a keyboard shortcut, or accel
erator, for each item. These shortcuts generally appear in a right-hand column, opposite the
item labels. An accelerator can be used to invoke the action without displaying the menu at
all (though they also work while the menu is displayed).

When you've displayed a menu by placing the pointer on the title and clicking the first but
ton, you can select an item by:

• Placing the pointer on the item and clicking the first button.

• Typing the mnemonic abbreviation for the menu item.

268 X Window System User's Guide, Motif Edition

0290

Typing the accelerator key combination, if available. (Though these are intended to save
you the trouble of displaying the menu, they also work when it is displayed.)

• To select the boxed item (the first available for selection), you can alternatively press
either the Return key or the space bar.

You can also display a menu from a menu bar by placing the pointer on the title and pressing
the first pointer button. The menu is displayed as long as you continue to hold the pointer
button down. To select an item, drag the pointer down the menu (each item is highlighted by
a box in turn), and release the button on the item you want.

Notice the apparant "perforation" below the File menu title. This dotted line indicates that
the menu has "tear-off' functionality -that is, you can keep the menu displayed in its own
window and access it whenever you like. We'll discuss tear-off menus a bit later.

Pop-up Menus

The mwm Root Menu is a typical pop-up menu. Depending on the application, you pop up a
menu by placing the pointer in a particular context (that is, on a particular graphical element)
and either:

• Pressing and holding the third pointer button. (This is how mwm's Root Menu is
displayed.)

Clicking the third pointer button.

When you display a menu by the former method, you make a selection by dragging the
pointer down the menu and releasing the button on the item you want.

When you display a menu by the latter method, you select an item by clicking on it with
either the first or third pointer button. You can pop the menu down by clicking either of these
buttons off the menu.

Keep in mind that pop-up menus generally provide shortcuts for functions that can be per
formed in other ways. Since there are no labels to indicate that a pop-up menu exists, you'll
have to rely on the individual program documentation.

Option Menus

You display an option menu from a button that shows the last item chosen-rather than from
the menu title. You can display an option menu by either:

Clicking the first pointer button on the option menu button.

Pressing and holding the first pointer button down on the option menu button.

The periodic demo provides a dummy "Days of the Week" option menu. Figure 9-4 shows
the option menu button and the menu itself. (You can always tell an option menu button by
the small rectangle that decorates it.)

Working with Motif Applications 269

0291

Figure 9-4. Sample option button and option menu

If you display an option menu by the former method, you can select an item by clicking on it
with the first pointer button. If you display the menu using the latter method, drag the pointer
down the menu and release on the item you want or type the mnemonic abbreviation (the
underlined letter).

When you select an item, the menu disappears and the option menu button then displays your
selection. To remove an option menu without making a selection, click elsewhere or release
the pointer off of the menu, as appropriate.

Tear-off Menus

Pull-down, pop-up, and option menus may also be "tear-off' menus, which you can post in
subwindows that remain on the display until you remove them. This feature is very handy if .
you use a menu frequently. If a menu is not tom off, it disappears after you select an item.

If a menu can be tom off, it will have a "perforated" line as the first item on the menu.
Regardless of the menu type, you tear off a menu by clicking or releasing the pointer on this
dotted line. For example, to tear off a pull-down menu, you could:

1. Post the menu by clicking the first pointer button. In Figure 9-5, we've again posted peri
odic's File menu. The perforation below the title indicates that the menu can be tom off.

2. To tear the menu off, click the first pointer button on the perforation. Figure 9-6 shows
the tom off File menu.

270 X Window System User's Guide, Motif Edition

0292

Figure 9-5. Perforation means you can tear off menu

Figure 9-6. Click on the perforation and the tear-off is displayed

To tear off a pop-up menu:

1. Display thepop-up menu. In many cases, you do this by pressing and holding down the
third pointer button.

2. Drag the pointer down the menu, highlighting the perforated line.

3. Release the pointer button. The menu is tom off.

Once you tear off a menu, you can work with it much as you would with any application win
dow, with a few limitations. These limitations are borne out by the File tear-off menu's modi
fied mwm frame. It has no Minimize or Maximize buttons and no resize handles. The frame
does offer a Window Menu button. However, if you display the Window Menu from the

Working with Motif Applications 271

0293

tear-off window, you'll see that it offers only three items: Move, Lower, and Close. Basi
cally, you can move the tear-off window, lower it in the stack, and remove it-and that's all.
In Figure 9-7, we've moved the menu out of the way of the periodic application window.

Figure 9-7. Moving a tear-off to a convenient place

There are several ways to remove a tear-off menu. First, direct the input focus to the menu
and then perform any one of the following actions:

• Press the key that performs the Cancel function (often Escape).

• Double-click the first pointer button on the menu's own Window Menu button.

• Display the menu's Window Menu and select the Close or type its mnemonic abbrevia
tion, c.

• Use the keyboard accelerator for the Close item, Alt-F4.

Push Buttons

Many Motif applications feature push buttons (PushButton widgets). Commonly, a push but
ton has a text label corresponding to some function. You invoke the function by clicking the
first pointer button on the push button widget. Figure 9-8 shows the sample push button from
the periodic demo.

272 X Window System User's Guide, Motif Edition

0294

Figure 9-8. Click on a push button to invoke the function

In a real application, clicking on the push button causes some action to occur. Unless James
Bond has been working on the periodic demo, we can safely assume this button is a dummy!
However, you can click on it to get an idea what a push button looks like when pressed.

A dialog box always contains one or more push buttons that allow you to respond to the mes
sage in the box, but push buttons are also used in other applications. Regardless of the appli
cation, in many cases one push button will be highlighted, generally by outlining. If
click-to-type focus is in effect, you can push the highlighted push button simply by pressing
the Return key on your keyboard. To push another button, you must place the pointer on it
and click the first pointer button. (With pointer focus, you need to click on any choice.)

Note that if you press the first pointer button on a push button and then change your mind
about invoking the function, there is an escape hatch. Simply move the pointer off the push
button before you release the pointer button. (The action of releasing the pointer is actually
what invokes the push button.)

An Athena widget set provides a command button with virtually the same functionality as a
Motif push button. The most obvious difference is that you must click on an Athena com
mand button to invoke it. The Return key shortcut only works with a Motif push button
(click-to-type focus must also be in effect). See "Dialog Boxes and Command Buttons" in
Chapter 7, Graphics Utilities.

We'll come back to Motif push buttons later, in the discussion of dialog boxes. But before
moving on, let's take a quick look at another type of button, called a drawn button (Drawn
Button widget). From a user's perspective, a drawn button is a push button decorated with a
pixmap rather than a text label. You invoke a drawn button just as you do a push button-by
clicking the first pointer button on it.* Figure 9-9 shows a drawn button from the periodic
window. (Note that you can toggle the image on this button on and off using the sample
ToggleButton widget in the periodic window, which is illustrated in the next section.)

*Push buttons and drawn buttons actually differ from a programming perspective, but a user can expect to interact
with them in the same way.

Working with Motif Applications 273

0295

Figure 9-9. A drawn button

The drawn button from the periodic demo is simply illustrative -it does nothing. Generally,
however, the image on a drawn button will signal its function. If an application uses drawn
buttons effectively, they can transcend language barriers, as well as enhance the program's
aesthetics. For example, a button decorated with the image of a paint brush might invoke
graphics capabilities, a button decorated with the image of a keyboard might open a text edi
tor, etc.

Note that some applications may dynamically change the image on a drawn button to signal
some change in the state of the program.

Radio Boxes and Toggle Buttons

A radio box is made up of a column of mutually exclusive choices, each represented by a
toggle button (ToggleButton widget). Figure 9-10 shows a radio box from the periodic demo
program.

Figure 9-10. A radio box

The column is a single radio box. Several radio boxes may appear side by side in an applica
tion. Typically, a radio box contains several diamond-shaped toggle buttons. The radio box

274 X Window System User's Guide, Motif Edition

0296

from the periodic demo features three buttons, in this case corresponding to-what
else-three radio stations. You push a toggle button by placing the pointer on the diamond
symbol (or the corresponding text label) and clicking the first pointer button. The toggle but
ton becomes darker (appearing as if it's been pressed). Actually, if you examine the button
closely, the highlighting has just switched from the bottom edge to the top edge of the button.
In our example, the button next to WFNX is currently selected.

When you first make a selection, the button and the accompanying text label are highlighted
by a box. When you make another selection in the same or another column (radio box), the
highlighting box appears around that item (and disappears from the previous one).

Toggles in the same radio box are mutually exclusive. If you select one and then select
another from the same column, the first one is toggled off. (The button appears to pop
up-i.e., the highlighting switches back to the bottom edge of the button; also the highlight
ing box appears around the latest selection.)

In addition to appearing in radio boxes, toggle buttons may also appear in columns known as
check boxes. In a check box, toggle buttons are not mutually exclusive. You can "check"
multiple items in the same column by toggling the corresponding buttons (or labels). The
toggle buttons in a check box appear square-shaped to distinguish a check box from a radio
box (in which the toggles appear diamond-shaped).

Figure 9-11 shows one such toggle button, the sample from periodic, as it appears both off
and on. Notice that toggling the button on switches the highlighting from the lower-right
comer (it appears to be raised) to the upper-left comer (it appears to have been pushed).

Figure 9-11. Lights off, lights on

Note also that toggle buttons are sometimes labeled with graphic images rather than text.
One image represents "on" and another represents "off."

Working with Motif Applications 275

0297

The Motif Scrollbar

Each of the list boxes in the file selection box features both a horizontal and a vertical
scrollbar. A vertical scrollbar is c·ommonly used to review text that has scrolled off the top of
a window or extends past the bottom. In the case of the Files box in periodic's file selection
dialog, the vertical scrollbar is used to scan a list of files too long to fit in the window at one
time. A horizontal scrollbar is commonly used to view text or graphics that are too wide to
fit in the viewing area. You'll probably encounter vertical scrollbars most often.

Both the Motif and Athena widget sets provide scrollbar widgets. A Motif scrollbar differs
in both appearance and operation from an Athena scrollbar, such as the one used by xterm.
As you know, an Athena scrollbar is simple in design-just a rectangular thumb within a rec
tangular scroll region. Both parts are flat; the thumb is distinguished from the scroll region
only by its (generally) darker color. While a Motif scrollbar has separate parts to invoke dif
ferent types of scrolling, the Athena scrollbar moves text according to which pointer button
you use and how you use it. (See Chapter 5, The xterm Terminal Emulator, for instructions
on how to use xterm's scrollbar.)

Take another look at the Files box from periodic's file selection box, which is bordered by
two scrollbars. A Motif scrollbar is comprised of four parts: two arrows (one at either end of
the bar), the scroll region between the arrows, and the slider (analogous to the Athena
scrollbar's "thumb"), the raised area that moves within the scroll region. The slider displays
the position and amount of text currently showing in the window relative to the amount
saved. If text does not extend beyond the window, the slider fills the entire scroll region. In
Figure 9-17, the sliders in both scroll bars indicate that text extends beyond the bounds of the
window.

Let's consider the pointer commands used to operate a vertical scrollbar. (You'll probably
use a vertical scrollbar most often.) To scroll the text forward one window, place the pointer
below the slider and click the first button. To scroll the text back one window, place the
pointer above the slider and click the first button. In text-based applications, clicking on one
of the arrows scrolls the text one line at a time: each click on a down arrow lets you view
one more line of text at the bottom of the window; each click on an up m.Tow lets you view
one more line of text at the top of the window.

A horizontal scrollbar lets you view the remaining part of lines that are too wide to fit in a
single window. You use the same pointer commands to use a horizontal scrollbar as you do a
vertical scrollbar; obviously the orientation of text and directions of movement are different.
Clicking to the right of the slider scrolls the text horizontally to the right. Clicking to the left
of the slider scrolls the text horizontally to the left. In Figure 9-17, the Files box is displaying
filenames only-the earlier parts of the pathnames are not in view. Notice that the horizontal
scrollbar's slider is all the way to the right of the scroll region. If you place the pointer to the

· left of the slider and click the first button, the text is scrolled to the left to reveal the earlier
parts of the pathname. In text-based applications, clicking on either arrow of the horizontal
scrollbar moves the text one character to the left or right, depending on the direction of the
arrow.

276 X Window System User's Guide, Motif Edition

0298

Regardless of the orientation of the scrollbar, you can drag the slider by placing the pointer
on it and holding down the second pointer button. The text in the window follows the motion
of the slider. Release the pointer button when the window displays the text you want.

A final note: the unit scrolled when you click on an arrow varies by application. For
instance, scrollbars are sometimes featured on application windows that contain graphic ele
ments rather than text. Obviously, such a window cannot be scrolled by text characters or
lines. For example, clicking the pointer on a scrollbar arrow in the mwm icon box (described
in Chapter 13), scrolls the box the height or width of one icon.

Text Windows

We've already seen several instances of the Athena Text widget, which allows you to enter
text in standard X clients like xedit, xman, bitmap, etc. Many Motif applications also provide
areas in which you can enter text. A text window may be as small as a single line (many dia
log boxes provide one-line text windows) or it may accommodate a file of any length.
Regardless of the size of a Motif text window, there are various commands you can use to
enter text. This section explains some of the more useful commands.

As you may recall, in most standard X applications, the text cursor is a caret. In Motif text
windows, the text cursor is the I-beam symbol. (We've encountered the I-beam cursor
before, in a different context: the root window pointer becomes an I~beam when it rests in an
xterm window.)

Figure 9-12 shows the sample text window from the periodic demo. (This is a simple win
dow; in many cases, text windows will also have scrollbars.)

Figure 9-12. Sample text window

The I-beam cursor in the text window marks the point at which text can be inserted. When
the window has the input focus, you can begin to enter text simply by typing. Backspace
over characters to erase them. To erase multiple characters at once, do the following steps:

Working with Motif Applications 277

0299

1. Select the text by holding the first pointer button and dragging (as you would in any
xterm window). If the text you want to highlight extends beyond the bounds of the text
window, move the pointer outside the window; the window will scroll and additional text
will be highlighted. Once you've selected the text you want, release the pointer button.

2. Press the Delete key to erase the selected text.

You can move the I-beam cursor to another insertion point in the text by moving the root
window pointer (often represented by an arrow) and clicking the first pointer button. You
can also move the cursor within the text using various keyboard commands, summarized in
Table 9-1.

Table 9-1. Keyboard Commands to Move the Text Cursor

Keystrokes

Left arrow
Right arrow
Uparrow
Down arrow
Control-Left arrow
Control-Right arrow
Control-Up arrow
Control-Down arrow
Page Up
PageDown

Cursor movement .

Back one character
Forward one character
Back one line
Forward one line
Back one word
Forward one word
Back one paragraph
Forward one paragraph
Back one window
Forward one window

The location of the Page Up and PageDown keys may vary per site. In some cases, these keys
may be clearly marked. If not, these functions may or may not be assigned to keys and you'll
have to perform a little detective work if you want to use them. First, find out if your system
administrator has copied a file called .motifbind to your home directory. This file maps func
tions commonly used in Motif applications to convenient keys on your keyboard. If you have
a .motifbind file, you can use it (along with the xev client, described in Chapter 14) to deter
mine the location of keys like PageUp and PageDown. Note, however, that in most cases,
you can either fall back on the less powerful Control key combinations-or use scrollbars, if
they are provided.

You can copy (or cut) and paste text within a Motif text window or between windows using a
few different methods. We'll describe two of them here. See the section "Drag and Drop"
for instructions on transferring text using a more graphic interface.

The first method is virtually the same as one of the xterm copy and paste methods. We've
already explained the selection method under number 1 in the instructions to delete a pas
sage.

1. Select text by pressing and holding down the first pointer button, dragging, and releasing.

2. Move the pointer to the place at which you want to insert the selected text.

278 X Window System User's Guide, Motif Edition

0300

3. Click the second pointer button to insert a copy of the text. Press Shift and click the sec
ond button to move the text to this position (i.e., the text is cut from the initial selection
and copied to this place).

If you've copied the text, so long as it remains highlighted in the first position, it will be
pasted when you click the second pointer button. To remove the highlighting, move the
pointer outside the highlighted area (but keep it within the same text window) and click the
first button again. This action will also move the text cursor. If you want to move the cursor
without removing the highlighting, press Control and click the first button in the position you
want.

A second copy (or cut) and paste method works in the opposite manner. First you select the
destination, then the text to be placed there.

1. Move the pointer to the place you want the text to be inserted and click the first button.
(The I-beam moves there.)

2. Select the text you want to copy by pressing the Alt (or Meta) key, holding down the sec
ond pointer button, and dragging. Text selected in this manner is underlined rather than
highlighted in reverse video. (If you begin by pressing and holding the Shift key in addi
tion, the text will be cut rather than copied.)

3. Release the second pointer button and the selected text appears at the insertion point.

Motif provides many ways to perform most functions. See "Drag and Drop" for a discussion
of still another text transfer method.

Dialog Boxes

If you've tried to restart mwm from the window manager's Root Menu, you've already
encountered a Motif dialog box. When you select the Restart menu item, the dialog box pic
tured in Figure 9-13 is displayed.

Figure 9-13. Typical Motif dialog box with two push buttons

Working with Motif Applications 279

0301

This sample is a "message" dialog: it displays a message relevant to the application and
requires a response from the user. In this case, the dialog box queries whether you really
want to Restart mwm?.

The periodic demo program provides nine sample dialog boxes, which you can display by
clicking on one of the buttons in Figure 9-14.

Figure 9-14. Nine push buttons to display periodic's sample dialogs

The first six dialog boxes listed (if you're reading left to right) are all message dialogs, each
with a slightly different purpose. The dialog in Figure 9-13 fits into the category of "Ques
tion" dialogs. The appropriate response to any message dialog should be obvious. We don't
have to consider all six samples here, but browse through them if you like. To display any of
the sample dialogs, simply click the first pointer button on the box corresponding to its name.

Regardless of the purpose of a Motif dialog box, it always contains one or more push buttons
that allow you to respond to the message. When a dialog is displayed and the default
click-to-type focus is in effect, the input focus is usually switched to the dialog window.
Until you respond to the dialog box, the application cannot continue. Once you respond to
the dialog, the focus should switch back to the main application window.

Whether the dialog box contains one push button or multiple buttons, one button is always
highlighted, generally by outlining. If click-to-type focus is in effect, you can activate the
highlighted push button simply by pressing the Return key on your keyboard. To push
another button, you must place the pointer on it and click the first pointer button. (With
pointer focus, you need to click on any choice.)

A response might be a simple acknowledgment that you've seen the message: some dialogs
feature only one button that reads OK. For instance, say you invoke a text editor on a particu
lar file and that file does not exist. The program may display a dialog with a message similar
to the following:

Couldn't open /home/val/vacation.

280 X Window System User's Guide, Motif Edition

0302

with an OK button. When a dialog has only one button, the button is always highlighted.
Pressing Return or clicking the first pointer button on the OK button informs the client that
you've seen the message and removes the dialog window.

Some responses request an action, such as proceeding with a previously invoked process,
cancelling the process, or even exiting the program. The dialog box in Figure 9-13 contains
two push buttons labeled OK and Cancel. Pushing the OK button tells mwm to proceed with
the restart process. The Cancel button gives you a chance to avert the restart process in case
you invoked the command by mistake or have changed your mind. Since Cancel is high
lighted, you can push it either by pressing Return or by using the pointer.

Whatever the message or potential responses, you react to a dialog box either by pressing
Return (to push the highlighted push button) or by placing the pointer on one of the push but
tons and clicking the first pointer button. Action will be taken if requested and the dialog
box will be removed.

The Athena widget set provides comparable widgets to the Motif dialog box and push button.
An Athena dialog box provides virtually the same functionality as a Motif dialog. The most
obvious difference is that, in an Athena dialog, you must click on a command button to
invoke it. The Return key shortcut only works with a Motif push button (click-to-type focus
must also be in effect). See "Dialog Boxes and Command Buttons" in Chapter 7, Graphics
Utilities, for more information about Athena dialogs.

In the next few sections, we'll consider some more specialized Motif dialog boxes.

Prompt Dialog

Typically, a prompt dialog box asks the user to supply some small item of information, such
as a filename. Figure 9-15 shows the sample prompt dialog provided by periodic.

Figure 9-15. A prompt dialog box

In this mock prompt dialog, you enter the "name" you want in the one-line text window. To
confirm your entry, you can either press Return or click on OK push button. Click on Cancel
to pop down the dialog box without specifying a name.

Working with Motif Applications 281

0303

Selection Dialog

A selection box (SelectionBox widget) is a composite dialog that provides a list of items
from which you can make a selection. Figure 9-16 shows periodic's sample selection box.

Figure 9-16. A selection dialog box

Using a selection box is fairly simple. (Things become slightly more complicated with a file
selection box, described in the next section.) A selection box is generally composed of a list
box (in this case labeled Items), a one-line text window labeled Selection, and a few push but
tons.

Notice that the list box has a vertical scrollbar, which allows you to view text that is currently
outside the box. A list box and its accompanying scrollbar(s) form what is known as a
ScrolledWindow. (This composite widget is contained in the even more complicated
SelectionBox widget!) The Motif ScrolledWindow is comparable to the Athena Viewport
widget, discussed in the section "Browsing Reference Pages: xman" in Chapter 8.

You want to place the name of your selection in the one-line Selection window. To do this,
you can:

1. Place the pointer on the item you want in the Items list box. (You can use the scrollbar to
view additional possibilities.)

2. Click the first pointer button. The item is highlighted and appears in the Selection win
dow.

282 X Window System User's Guide, Motif Edition

0304

(Of course, since the Selection window is a text window, you might instead choose to type
the name yourself.) Then you can confirm your selection by pressing Return or clicking on
the appropriate push button (in this case, OK); or pop down the box without making a selec
tion by clicking on the Cancel push button.

File Selection Dialog

Several Motif applications feature a rather complicated type of dialog called a file selection
box (FileSelectionBox widget), which allows you to browse a directory structure and select a
file. A file selection box is similar to a selection box, but is a bit more complicated.

Using a file selection box is not exactly difficult, but it's not particularly obvious either.
Let's consider the file selection box that is displayed when you click on periodic's File
SelectionDialog button. The box appears in Figure 9-17.

Figure 9-17. A file selection dialog box

Working with Motif Applications 283

0305

As in the selection box, the file selection features a window labeled Selection near the bottom
of the box. You want to place the name of the file to select in this window. Initially this win
dow contains an incomplete pathname-a directory is specified but no file. You can specify
a file in a variety of ways.

Notice the two areas labeled Directories and Files. These are list boxes that are contained
within the larger window. The Directories box lists the directories from· which you can
choose a file; the first directory is usually highlighted. The Files box lists the files within the
highlighted directory. (In your version of periodic, this box may be labeled List, but this is
anomalous; virtually all applications have a Files box instead.)

Notice that the list boxes are bordered by both horizontal and vertical scrollbars, which allow
you to view text that is currently outside the box. These list boxes are ScrolledWindow
widgets contained in the more complicated FileSelectionBox widget.

The file selection box allows you to select a file from any directory on the system, using vari
ous procedures. You can select a file from the list currently in the Files box; you can list the
files in another directory currently displayed in the the Directories box and select one of those
files; or you can list the contents of an entirely different directory and select a file from that
directory.

Selecting a File from the Files Box

To select a file currently in the Files box:

1. Place the pointer on the filename.

2. Click the first pointer button. The filename is highlighted by a dark bar; the letters appear
in reverse video.

The Selection window will be updated to reflect the filename; and the push button to con
firm the selection (OK in many applications) will be highlighted, indicating that you can
select the file by pressing Return.

3. Select the filename either by pressing Return or by placing the pointer on the OK or other
appropriate push button and clicking the first pointer button.

When you select a file, the file selection box disappears.

Choosing a File from Another Directory in the Directories Box

To list the files in another directory in the Directories box and select one of those files:

1. Place the pointer on the directory name and click the first button. The directory name is
highlighted. Notice that the box labeled Filter is updated to reflect the new pathname and
the Filter push button at the bottom of the box is highlighted for selection.

2. Then, to display the contents of the highlighted directory in the Files box either:

• Press Return; or

• Click on the Filter push button.

284 X Window System User's Guide, Motif Edition

0306

3. To select a file from the updated Files box, follow the steps outlined previously in
"Selecting a File from the Files Box."

Choosing a File from Another Directory on the System

You can specify an alternative directory from which a file can be selected by changing the fil
ter, that is, the path in the Filter window (near the top of the file selection box). Initially the
Filter window reflects the current working directory. In Figure 9-17, the filter is
/usr/export/homelvall* and the Directories box lists several directories:

/usr/export/home/val/.
/usr/export/home/val/ ..
/usr/export/home/val/.NexT
/usr/export/home/val/Mail
/usr/export/home/val/R3arch
/usr/export/home/val/R3notes

\"the current directory
\"previous directory in the tree
\"subdirectories
\"
\"
\"

The vertical scrollbar indicates that there are several more directories in the list (which you
can browse using the Motif scrollbar commands). To specify another filter, place the pointer
within the Filter window and double click the first pointer button. The window becomes
highlighted with a black bar (the text is visible in reverse video); now whatever you type will
replace the current text.

When you type a pathname and hit Return (or click on the Filter push button at the bottom of
the file selection box), the Directories box will be updated to reflect the filter you've specified.
For example, if you enter the following pathname in the Filter window:

/usr/export/home/paula/*

and hit Return or click on the Filter push button, the Directories box will be updated to reflect
the directory /usrl export/ home/paula, its subdirectories, and the directory above it in the tree.
The first directory in the Directories box, /usr/export/home/paula/., will be highlighted and
the files in that directory will appear in the Files box.

You can then choose any of the files in the Files box using the steps outlined previously in
"Selecting a File from the Files Box."

Command Box

A command box (Command widget) is a composite widget that operates something like a
selection box-only in the reverse. You enter a command (presumably to be invoked) in a
one~ line text field at the bottom of the box; that command is then echoed in a larger text win
dow above the command field. (The larger text window maintains a history of the commands
you enter. You cannot edit this history.) Figure 9-18 illustrates periodic's sample command
box. Although periodic uses a command box in the main application window, they are often
used in dialog boxes. (The Command widget could legitimately appear as a tenth sample
dialog; thus, we've included it here.)

Working with Motif Applications 285

0307

Figure 9-18. A command box

The command entry window is at the bottom of the box; it is generally introduced by a
prompt, in this case:

periodic >

Direct the input focus to the small text window, type the name of a command, and press
Return. The command window is cleared and the command name appears in the history win
dow above, as in Figure 9-19. (In a functioning application, the command would also be exe
cuted.)

Figure 9-19. Command entered in small text window appears in history window

When you enter subsequent commands, they appear on subsequent lines in the history win
dow. Figure 9-20 illustrates entering a second command.

286 X Window System User's Guide, Motif Edition

0308

Figure 9-20. Entering another command: before and after

If you click on any item in the history window, it will be highlighted and the text will appear
in the smaller command window. This provides a way to repeat commands without retyping.
You can then edit the command in the small command window, if you want. Remember,
however, that you cannot edit text in the history window.

Scale

A scale (Scale widget) displays a numeric value within a range of values. A scale consists of
a narrow; rectangular trough that contains a slider. The slider's position marks the current
value within the range. Typically, the slider is bordered by labels that indicate the unit of
measure (which remains static) and the current value (which is updated dynamically). Figure
9-21 shows the scale provided by the periodic demo, which represents a range of radio
bandwidth in megahertz.

Figure 9-21. Scale widget

Working with Motif Applications 287

0309

In the sample, the unit of measure is mHZ (megahertz); the current value is 88.5. In some
implementations, the user can adjust the value by moving the slider. In other cases, the scale
simply registers changes to the numeric value (presumably tracked by the program)-the
user cannot modify it. The periodic sample allows you to change the value. You can move
the slider (and change the value) in the following ways:

Clicking the first pointer button within the trough on either side of the slider increases or
decreases the value by one unit.

Clicking the second pointer button anywhere within the trough causes the slider to move
to that position and the value to be changed accordingly.

Holding the first pointer button down on the slider allows you to drag the slider within the
trough. (You release the pointer button when you've positioned the slider where you
want it.)

Try dragging the slider by holding down the first pointer button. As you move the slider,
notice that the value changes. In Figure 9-22 we've dragged the slider to the right and the
value has increased to 100.1.

Figure 9-22. When you move the slider, the value changes

In our example, the scale is horizontal, but a scale may also be vertical. Some scales have
"tick marks"-labels that indicate values within the range. In some cases, a scale will also
have arrow buttons at either end (similar to the scrollbar). Clicking the first pointer button on
either arrow increases or decreases the value by one unit.

288 X Window System User's Guide, Motif Edition

0310

Drag and Drop

Motif 1.2 provides an additional way to transfer information within an application and
between applications: "drag and drop." Basically, you select an element (text, graphics, etc.)
from one place, drag a copy of it (or sometimes the original) to another place, and drop it in.
In many applications, drag and drop simply transfers information, but in some cases, you
might drag an image and drop it to invoke an action.

When used to transfer information, drag and drop presumes that the two windows interpret
data in the same format. You can't drag a graphic image and drop it in a text window, for
instance. Keep in mind that drag and drop greatly depends on application-specific factors.
Some elements in an application may be available for selection (and transfer), but others
won't. Without considering application-specific enhancements, you can assume that the fol
lowing data can be dragged:

• Text within text windows

• Labels (on push buttons, toggle buttons, etc.)

• One or more items within a list

The only default "drop site" for this data is a Motif text field.

As of the publication of this guide, commercial applications had not yet taken advantage of
drag and drop functionality, so our discussion is necessarily limited. This section gives an .
overview and some examples from the periodic program. These guidelines should help when
you begin using commercial applications that support drag and drop, but also consult the
individual program documentation.

In our discussion of the Text widget, we considered two methods of transferring text. Drag
and drop represents a third method. To drag text from one place to another:

1. Select (highlight) the text using the first pointer·button (as described in the "Text Win
dows" section).

2. Place the pointer on the selected text and press and hold the second pointer button. An
icon representing the information being dragged is displayed. (If you additionally press
the Shift key, the text will be moved, rather than copied. If you press Control or no key,
the text will be copied.)

3. Drag the icon to the position you want to place the text (within the same or another text
window). Note that the text cursor in that window should be at the proper insertion point.

4. Release the second pointer button. (If you're holding any modifier keys, continue to hold
them until the button is released.) If you've selected a valid drop site, the icon disappears
and the text is inserted. If the drop site is not valid, the icon appears to spring back to its
source.

The so-called "drag icon" varies depending on the application and the type of information
being dragged. It may also change dynamically to indicate whether the pointer is over a
valid drop site.

Working with Motif Applications 289

0311

You can also drag items from a list and drop them in a Text widget, using virtually the same
steps. If you want to drag a single item, there's no need to select it first; just follow steps two
through four above. To drag multiple list items:

1. Select the items you want. (Press and hold the first pointer button and drag to select mul
tiple items in a row.)

2. Complete the drag and drop using steps two through four from the procedure to transfer
text.

Finally, you can drag a label and drop it in a Text widget. There's no need to select it first.
Simply follow steps two through four from the procedure to transfer text.

To cancel a drag operation, while you continue to hold the second pointer button, press the
key that invokes the Cancel function (often the Escape key). The drag icon appears to spring
back to its source.

As we've said, application developers will undoubtedly implement drag and drop in addi
tional ways. Motif 1.2 includes a program called DNDDemo that allows you to drag one of
six colors into a rectangle. If you have a color monitor, playing with this demo might give
you a better idea of the possibilities of drag and drop.

Once you run the program, you must first draw the rectangle within a white space in the
application window. To do so, press and hold the first pointer button, drag, and release (much
as you would draw a rectangle using the standard bitmap client). Initially, the rectangle is
black. To color it, move the pointer into one of six colored squares arranged along the bot
tom of the window. Then press and hold the second pointer button to drag the color. The
drag icon is an artist's palette in the chosen color.

When you drag the icon over an invalid drop source (anywhere except the rectangle), a red
international negation symbol is superimposed over the palette, indicating that you cannot
make the transfer. When the icon is over the rectangle, the palette appears normal. Release
the pointer over the rectangle and the shape is redrawn in the selected color. You can change
the color as many times as you like. Of course, this is only mildly diverting, but it will give
you an idea how drag and drop might be implemented in the future-in more graphically
oriented applications.

290 X Window System User's Guide, Motif Edition

0312

10

Command-line Options

This chapter describes command-line options that are common to most cli
ents. Some arguments to command-fine options can also be specified as the
values of resource variables, described in Chapter 11, Setting Resources.
For example, the format of a geometry string or a color specification is the
same whether it is specified as an argument to an option or as the value of a
resource definition.

In This Chapter:

Display and Geometry ... 294
Window Title and Application Name ... 295
Starting a Client Window as an Icon ... 297
Specifying Fonts on the Command Line ... 298
Reverse Video ... 298
Border Width ... 298
Specifying Color .. 299

0313

Command-line
10

ptions

As explained in Chapter 3, Working in the X Environment, X allows the user to specify
numerous (very numerous!) command-line options when starting most clients. The com
mand-line options for each client are detailed on the reference pages in Part Three of this
guide.

As a general rule, all options can be shortened to the shortest unique abbreviation. For
example, -display can be shortened to -d if there is no other option beginning with "d."
(Note that while this is true for all the standard MIT clients, it may not be true of any random
client taken off the net.)

Irt addition to certain client-specific options, all applications built with the X Toolkit (or a
toolkit based on the Xt Intrinsics, such as the Motif Toolkit) accept certain standard options,
which are listed in Table 10-1. (Some non-Toolkit applications may also recognize these
options.) The first column contains the name of the option, the second the name of the
resource to which it corresponds (see Chapter 11, Setting Resources), and the third a brief
description of what the option does.

This chapter discusses some of the more commonly used Toolkit options and demonstrates
how to use them. (For the syntax of the other Toolkit options, see the X reference page in
Part Three of this guide.)

Table 10-1. Standard Options

Option Resource

-bg background

-background background

-bd borderColor

-bordercolor borderColor

-bw borderWidth

-borderwidth borderWidth

-display display

-fn font

-font font

Command-line Options

Description

Background color of window.
Background color of window.

Color of window border.
Color of window border.

Border width of window in pixels.
Border width of window in pixels.

Display on which client is run.

Font for text display.
Font for text display.

293

0314

Table 10-1. Standard Options (continued)

Option

-fg

-foreground

-geometry

-iconic

-name

-rv

-reverse

+rv

-selectionTimeout

-synchronous

+synchronous

-title

-xnllanguage

-xrm

Resource

foreground

foreground

geometry

name

reverse Video

reverse Video

reverseVideo

selectionTimeout

synchronous

synchronous

title

xnlLanguage

value of next arg

Description

Foreground (drawing or text) color of window.
Foreground (drawing or text) color of window.

Geometry string for window size and placement.

Start the application in iconified form.

Specify a name for the application being run.

Reverse foreground and background colors.
Reverse foreground and background colors.
Don't reverse foreground and background.

Timeout in milliseconds within which two com
municating applications must respond to one
another for a selection request.

Enable synchronous debug mode.
Disable synchronous debug mode.

Specify a window title (e.g., to be displayed in a
title bar).

The language, territory, and codeset for National
Language Support; this information helps resolve
resource and other filenames.

Next argument is a quoted string containing a
resource manager specification, as described in
Chapter 11, Setting Resources.

Though all Toolkit options are preceded by a minus sign, client-specific options may or may
not require it. See the reference page for each client in Part Three of this guide for the syntax
of all options.

Display and Geometry

Perhaps the most useful of the Toolkit options are -display and -geometry, which
allow you to specify the display on which a client window should appear, and the size and
position of that window, respectively. See Chapter 3, Working in the X Environment, for
detailed instructions on using these options. In the remainder of this chapter we'll discuss
some of the other useful Toolkit options.

294 X Window System User's Guide, Motif Edition

0315

Window Title and Application Name

You can specify the title of a window (as it appears in the titlebar) and the name of the pro
gram (as known to the server) using the -title and -name options, respectively.

The -tit 1 e option allows you to specify a text string as the title of the application's win
dow. If your application has a titlebar or if the window manager you are using puts titlebars
on windows, this string will appear in the titlebar. (Note that most applications use the name
of the program as the default title.)

Window titles can be useful in distinguishing multiple instances of the same application. For
example, say you're running three xterm windows, each on a different system in the network.
You can give each of the windows a title that matches the system on which the client is run
ning:

% xterm -title jersey -geometry +0+0 &
% rsh manhattan xterm -title manhattan -display jersey:O.O -geometry -0+0 &
% rsh bronx xterm -title bronx -display jersey:O.O -geometry -0-0 &

In this case, the user is working on a workstation named jersey. She is running an xterm on
the local machine and giving it a title to match (-title jersey). She is also running
xterm windows on the remote systems manhattan and bronx, displaying the windows on jer
sey (using -display), and titling each window to match its system. (The -geometry
option allows her to provide convenient placement for all three windows. See Chapter
3, Working in the X Environment, for a complete discussion of the -display and -geom
etry options.) The resulting three windows appear in the display in Figury 10-1.

Figure 10-1. Window titles showing client's host system

Command-line Options 295

0316

Specifying the machine name as the title string is just one use of -tit 1 e. You might choose
to title a window based on any number of factors, perhaps even its intended function. For
instance, you might have windows titled editing, mail, sales, book project, etc. If you want to
specify a title that is composed of multiple words, enclose the title in quotation marks:

% xterm -title "X Window System User's Guide, Motif Edition" &

The -name option actually changes the name by which the server identifies the program. If
a name string is defined for an application, that string will appear as the application name in
its icon. More significantly, using -name to change the name of the application itself affects
the way the resource definitions are applied. By renaming one instance of a client, you can
specify resources that apply only to that renamed version. Because the new name can be
used in resource definitions, it should be limited to a single word. The -name option is dis
cussed further in Chapter 11, Setting Resources.

If you display information about a currently running window using the xwininfo client (with
out optiof.ls), title strings will appear in parentheses after the associated window ID numbers.
If there is no title string but there is a name string, the name string will be displayed. If you
use the -tree option (to list information about the window tree), both title and name strings
are returned.

You can also use the xwininfo client to request information about a particular window by
title, or name, if no title string is defined, using that application's own -name option. See
the xwininfo reference page in Part Three of this guide and the section "Window and Display
Information Clients" in Chapter 8, Other Clients, to learn more about this client.

Displaying the Current Directory in an xterm Titlebar

Without customization, an xterm window's titlebar will display simply the program
name ("xterm"). Of course, you can specify alternative text to be displayed in the
title bar using the - t it 1 e option.

You can use a somewhat fancier trick-employing a special escape sequence-to get
the titlebar to display the current working directory. If you're running the UNIX C shell,
you can do this by writing an alias for cd(1):

alias cd 'chdir \!*;echo -n "Escape]2;$cwdControl-G"'

With this alias, each time you change directory (with cd), an escape sequence is echoed
to the xterm shell. The escape sequence tells the xterm to update the titlebar text to
reflect the cwd environment variable (which contains the current working directory).
(See Appendix E, xterm Control Sequences, for a complete list of valid sequences.)

In the example above, the escape sequence is represented by the literal keys you type,
which are:

Escape] 2 ; $cwd Control-G

(continued on next page)

296 X Window System Users Guide, Motif Edition

0317

Displaying the Current Directory in an xterm Titlebar (continued)

Be aware, however, that when you type these keys as specified, the command line will
not look exactly like this. Certain keys, such as Escape, and key combinations, such as
Control-G, are represented by other symbols on the command line. When you type the
previous key sequence (without spaces), the command line will actually look like this:

alias cd 'chdir \!*;echo -n ""'[]2;$cwd"'G"'

Pressing the Escape key generates the A[symbol; typing the Control-G key combination
generates AG.

You can specify this alias on the command line or add it to your .cshrc file. We rec
ommend entering it in your .cshrc file. If you enter it in the file, you'll probably need
to preface the special keys Escape and Control-G with other keys to get them to appear.
If you're using the vi text editor, type Control-V before a special key or key combina
tion. If you're using emacs, type Control-Q first. If you're using another text editor, see
your documentation or your system administrator for details.

If you're using another UNIX shell or are working in an entirely different environment,
consult your system administrator for the proper way to supply the escape sequence to
the xterm window.

Starting a Client Window as an Icon

The -iconic command-line option starts the client window in iconified form. To start an
xterm window as an icon, type:

% xterm -iconic &

This can be especially useful for starting the login xterm window. As described in Chapter
3, Working in the X Environment, terminating the login xterm window kills the X server and
all other clients that are running. It's always possible to terminate a window inadvertently by
selecting the wrong menu option or typing the wrong key sequence. If your login xterm win
dow is automatically iconified at startup, you are far less likely to terminate the window inad
vertently and end your X session.

Normally, mwm handles icon placement, so you shouldn't have to worry about it. By default,
icons are displayed in the bottom left corner of the root window. mwm can also be set up to
place icons in another location, to allow you to place them interactively using the pointer, or
to organize icons within an icon box. Chapter 13, Customizing mwm, describes the specifi
cations necessary to set up an icon box. See the mwm reference page in Part Three of this
guide for additional information on icon placement.

Command-line Options 297

0318

Specifying Fonts on the Command line

Many clients allow you to specify the font to be used when displaying text in the window.
(These are known as screen fonts and are not to be confused with printer fonts.) For clients
written with the X Toolkit, the option to set the display font is - fn. For example, the com
mand line:

% xter.m -fn fontname &

creates an xterm window in which text will be displayed with the font named fontname.

Chapter 6, Font Specification, describes the available screen fonts and font naming
conventions.

Reverse Video

There are three options to control whether the application will display in reverse video-that
is, with the foreground and background colors reversed. The -rv or -reverse option is
used to request reverse video.

The +rv option is used to override any reverse video request that might be specified in a
resource file. (See Chapter 11, Setting Resources.) This is important, because not all clients
handle reverse video correctly, and even those that do usually do so only on black and white
displays.

Border Width

Many clients accept a - bw option that is intended to specify the width of the window border
in pixels. However, if you're using the mwm window manager, this customization is gener
ally useless because the mwm frame effectively replaces most window borders.

As an alternative, you can change the width of the frame by specifying resources for mwm in
a .Xresources or .X defaults file in your home directory. For more information, see Chapter
11, Setting Resources, and the frameBorderWidth and resizeBorderWidth
resources on the mwm reference page in Part Three of this guide.

298 X Window System User's Guide, Motif Edition

0319

Specifying Color

Many clients accept standard options that allow you to specify the color of the window back
ground, foreground (the color in which text or graphic elements will be displayed), and bor
der. These options generally have the form:

-bg color

-fg color

-bd color

Sets the background color.

Sets the foreground color.

Sets the border color.

By default, the background of an application window is usually white and the foreground
black, even on color workstations. The -bg and -fg options allow you to specify alterna
tives.

Many clients accept the - bd option that is intended to specify the color of the window bor
der. However, as in the case of the - bw (border width) option, if you're using the mwm win
dow manager, this customization is generally useless: the mwm frame effectively replaces
most window borders. As an alternative, you can change the color of the frame by specifying
resources for mwm in a .Xresources or .Xdefaults file in your home directory. For more infor
mation, see Chapter 11, Setting Resources, and the mwm reference page in Part Three of this
guide.

You can name another color on the command line in a variety of ways, which are described
in Chapter 12, Specifying Color. Some color specifications are simply names (blue, green,
hot pink); others are symbolic "names"-actually numeric values that signify a particular
shade. (As you're probably guessing, this can get complicated.) For now, suffice it to say
that you can keep color specification as simple as you want-and most color names you can
think of are probably valid.

Let's consider the syntax of a command line specifying an xterm to be displayed in two
colors:

% xter.m -bg lightblue -fg darkslategray &

This command creates an xterm window with a background of light blue and foreground of
dark slate gray.

At the command line, you should either type a color name as a single word (for example,
darkslategray) or enclose the separate words in quotes, as in the command line:

% xter.m -bg "light blue" -fg "dark slate gray" &

As we'll see in Chapter 12, if you specify colors using these "standard" names X allows for a
range of spelling, spacing, and capitalization.

Some clients allow additional options to specify color for other elements, such as the Cl,lrsor,
highlighting, and so on. See the appropriate client reference pages in Part Three of this guide
for details.

See Chapter 12, Specifying Color, for more about the standard color names and customized
color values.

Command-Nne Options 299

0320

11

Setting Resources

This chapter describes how to set resource variables that determine applica
tion features such as color, geometry, fonts, and so on. It describes the syn
tax of resource definition files such as .Xresources, as well as the operation
of xrdb, a client that can be used to change resource definitions dynamically,
and make resources available to clients running on other machines.

In This Chapter:

Resource Naming Syntax .. 304
Syntax of Toolkit Client Resources ... 305
Tight Bindings and Loose Bindings .. 306
Instances and Classes ... 307
Wildcarding a Component Name with ? .. 308
Precedence Rules for Resource Specification 309
Some Common Resources .. 311

Event Translations ... 312
The Syntax of Event Translations ... 313

xterm Translations to Use xclipboard .. 315
Entering Frequently Used Commands with Function Keys 316
Other Clients that Recognize Translations 318

How to Set Resources ... 319
A Sample Resources File ... 320
Specifying Resources from the Command Line 321

The -xrm Option ... ;-., 321
How -name Affects Resources .. 322

Setting Resources with xrdb .. 323
Querying the Resource Database .. 323
Loading New Values into the Resource Database 324
Saving Active Resource Definitions in a File 324
Removing Resource Definitions ... 325
Listing the Current Resources for a Client: appres 325

0321

Other Sources of Resource Definition .. 327
Setting Resources for Color vs. Monochrome Screens 328

Loading Custom Application Defaults Files 328
Setting Screen-specific Resources ... 330

Testing and Editing Resources with editres .. 331
What Widget Is That, Anyway? .. 332

edit res Menus .. 333
Displaying the Widget Tree .. 334
Tracking Down the Widgets .. 335
Using the Resource Box to Create a Specification 336
Other Ways to Specify the Same Resource 340

0322

Other Sources of Resource Definition 327

Setting Resources for Color vs. Monochrome Screens 328

Loading Custom Application Defaults Files 328

Setting Screen—specific Resources 330

Testing and Editing Resources with editres 331

What Widget is That, Anyway? 332
editres Menus 333

Displaying the Widget Tree 334

Tracking Down the Widgets 335

Using the Resource Box to Create a Specification 336

Other Ways to Specify the Same Resource 340

0322

11
Setting Resources

Virtually all X clients are customizable. You can specify how a client looks on the screen
its size and placement, its border and background color or pattern, whether the window has a
scrollbar, and so on. Some applications even allow you to redefine the keystrokes or pointer
actions used to control the application.

Traditional UNIX applications rely on command-line options to allow users to customize the
way they work. As we've already discussed in Chapter 10, Command-line Options, X appli
cations support command-line options too, but often not for all features. Also, there can be
so many customizable features in an application that entering a command line to set them all
would be completely impractical. (Imagine the aggravation of misspelling an option in a
command that was three lines long!)

X offers an alternative to customizing an application on the command line. Almost every
feature of a program can be controlled by a variable called a resource; you can change the
behavior or appearance of a program by changing the value associated with a resource vari- ·
able. (All of the standard X Toolkit Command-line Options described in Chapter 10 have
corresponding resource variable names. See Table 9-1 for more information.)

Resource variables may be Boolean (such as scrollBar: True) or take a numeric or
string value (borderWidth: 2 or foreground: blue). What's more, in applications
written with the X Toolkit (or an Xt-based toolkit such as the Motif toolkit), resources may
be associated with separate objects (or "widgets") within an application. There is a syntax
that allows for separate control over both a class of objects in the application and an individ
ual instance of an object. This is illustrated by these resource specifications for a hypotheti
cal application called xclient:

xclient*Buttons.foreground: blue
xclient*help.foreground: red

The first resource specification makes the foreground color of all buttons in the xclient appli
cation (in the class Buttons) blue; the second resource specification makes the foreground
color of the help button in this application (an instance of the class Buttons) red.
Resource settings can be simpler than this. If you want to set very simple resources, read the
next section, "Resource Naming Syntax." You can delve more deeply into a client's widget
hierarchy to set more complicated and precise resources. The editres client (described later
in this chapter) helps you determine a client's hierarchy and set the resources you want.

Setting Resources 303

0323

The values of resources can be set as application defaults using a number of different mecha
nisms, including resource files in your home directory and a program called xrdb (X resource
database manager). As we'll see, the xrdb program stores resources directly in the server,
making them available to all clients, regardless of the machine the clients are running on.

Placing resources in files allows you to set many resources at once, without the restrictions
encountered when using command-line options. In addition to a primary resource file (often
called .Xdefaults, .Xresources, xrdb) in your home directory, which determines defaults for
the clients you yourself run, the system administrator can create system-wide resource files to
set defaults for all instances of the application run on this machine. It is also possible to cre
ate resource files to set some resources only for the local machine, some for all machines in a
network, and some for one or more specific machines.

The various resource files are automatically read in and processed in a certain order within
an application by a set of routines called the resource manager. The syntax for resource
specifications and the rules of precedence by which the resource manager processes them are
intended to give you the maximum flexibility in setting resources with the minimum amount
of text. You can specify a resource that controls only one feature of a single application,
such as the red help button in the hypothetical xclient settings above. You can also specify
a resource that controls one feature of multiple objects within multiple applications with a
single line.

As of Release 5, the resource manager also allows you to specify different resources for color
and monochrome screens. In addition, you can invoke predefined color defaults for an appli
cation by using the new customization resource variable.

It is important to note that command-line options normally take precedence over any prior
resource settings; so you can set up the files to control the way you normally want your appli
cation to work and then use command-line options to specify changes you need for only one
or two instances of the application.

In this chapter, we'll first look at the syntax of resource specifications. Then we'll consider
some methods of setting resources, primarily some special command-line options and the
xrdb program. Finally, we'll take a brief look at other sources of resource definition, addi
tional files that can be created or edited to set application resources.

Resource Naming Syntax

The basic syntax of a resource definition file is fairly simple. Each client recognizes certain
resource variables that can be assigned a value. The variables for each client are documented
on its reference page in Part Three of this guide.

Most of the common clients are written to use the X Toolkit. As described in Chapter 1, An
Introduction to the X Window System, toolkits are a mechanism for simplifying the design
and coding of applications and making them operate in a consistent way. Toolkits provide a
standard set of objects, or widgets, such as menus, command buttons, dialog boxes,

304 X Window System User's Guide, Motif Edition

0324

scroll bars, and so on. As we '11 see, the naming syntax for certain resources parallels the
object hierarchy that is built into X Toolkit programs.*

The most basic line you can have in a resource definition file consists of the name of a client,
followed by a period or an asterisk, and the name of a variable. A colon and whitespace sep
arate the client and variable names from the actual value of the resource variable. The fol
lowing line specifies that all instances of the xterm application have a scrollbar:

xtenn*scrollBar: True

If the name of the client is omitted, the variable applies to all instances of all clients (in this
case, all clients that can have a scrollbar). If the same variable is specified as a global vari
able and a client-specific variable, the value of the client-specific variable takes precedence
for that client. Note, however, that if the name of the client is omitted, the line should gener
ally begin with an asterisk.

Be sure not to inadvertently omit the colon at the end of a resource specification. This is an
easy mistake to make and the resource manager provides no error messages. If there is an
error in a resource specification (including a syntax error such as the omission of the colon or
a misspelling), the specification is ignored. The value you set will simply not take effect. To
include a comment in a resource file or comment out one of the resource specifications, begin
the line in question with an exclamation point(!). If the last character on a line is a backslash
(\),the resource definition on that line is assumed to continue on the next line.

Syntax of Toolkit Client Resources

As mentioned above, X Toolkit applications (and Xt-based toolkit applications) are made up
of predefined components called widgets. There can be widgets within widgets (e.g., a com
mand button within a dialog box). The syntax of resource specifications for Toolkit clients
parallels the levels of the widget hierarchy. Accordingly, you should think of a resource
specification as having this format:

object.subobject[.subobject ...].attribute: value

where:

object is the client program or a specific instance of the program. (See "The
-name Option" later in this chapter.)

subobj ects correspond to levels of the widget hierarchy (usually the major structures
within an application, such as windows, menus, scrollbars, etc.).

*If a client was built with the X Toolkit, this should be noted on the reference page. In addition to certain applica
tion-specific resource variables, most clients that use the X Toolkit recognize a common set of resource variables,
listed in Table 10-1. ·

In addition, X Toolkit clients recognize a set of Core resource variables, listed in Table G-1. However, though all
Toolkit applications recognize these variables, not all applications make use of them. This fine distinction is ad
dressed in Appendix G, Widget Resources, which gives a more technical discussion of how widgets use resources,
and how applications use widgets. Appendix G also gives a detailed listing of the resources defined by each of the
Athena widgets.

Setting Resources 305

0325

attribute is a feature of the last subobj ect (perhaps a command button), such as
background color or a label that appears on it.

value is the actual setting of the resource attribute, i.e., the label text, color,
or other feature.

The type of value to supply is often evident from the name of the resource or from the
description of the resource variable on the reference page. Most of these values are similar to
those used with the command-line options described in Chapter 10.

For example, various resources, such as borderColor or background, take color speci
fications; geometry takes a geometry string, font takes a font name, and so on. Logical
values, such as the values taken by scrollBar, can generally be specified as: on or off;
yes or no; or True or False.

Tight Bindings and Loose Bindings

Binding refers to the way in which components of a resource specification are linked
together. Resource components can be linked in two ways:

• By a tight binding, represented by a dot (.).

• By a loose binding, represented by an asterisk (*).

A tight binding means that the components on either side of the dot must be next to one
another in the widget hierarchy. A loose binding is signaled by an asterisk, a wildcard char
acter which means there can be any number of levels in the hierarchy between the two sur
rounding components (including none).

If you want to sp~cify tight bindings, you must be very familiar with the widget hierarchy:
it's easy to use tight bindings incorrectly.

For example, this resource specification to request that xterm windows be created with a
scrollbar doesn't work:

xterm. scrollBar: True

The previous specification ignores the widget hierarchy of xterm, in which the VT102 win
dow is considered to be one widget, the Tektronix window another, and the menus a third.
This means that if you want to use tight bindings to request that xterm windows be created
with a scrollbar, you should specify:

xterm.vtlOO.scrollBar: True

Of course rather than decipher the widget hierarchy (which may even change with subse
quent versions of an application), it is far simpler just to use the asterisk connector in the first
place:

xterm*scrollBar: True

Note that the asterisk is interpreted very differently in resource syntax than in the UNIX C
shell. In the shell, the asterisk is a wildcard that can represent zero or more characters. In a
resource file, the asterisk represents zero or more complete components in the resource name.

306 X Window System User's Guide, Motif Edition

0326

(Zero refers to the case in which the asterisk simply connects the previous and subsequent
components.) Don't make the mistake of trying to use the asterisk to match partial compo
nent names. If you want to set the same specification for clients with similar names, you can
not use a common abbreviation. For example, if you would like xcalc, xclock, and xclip
board to display in reverse video, you can't write:

xc*reverseVideo: True

In an application that supports multiple levels of widgets, you can mix asterisks and periods.
In general, though, the developers of X recommend always using the asterisk rather than the
dot as the connector even with simple applications, since this gives application developers
the freedom to insert new levels in the hierarchy as they produce new releases of an applica
tion.

Instances and Classes

Each component of a resource specification has an associated class. Several different widg
ets, or widget attributes, may have the same class. For example, in the case of xterm, the
color of text (foreground), the pointer color, and the text cursor color are all defined as
instances of the class Foreground. This makes it possible to set the value of all three with
a single resource specification. That is, if you wanted to make the text, the pointer, and the·
cursor dark blue, you could specify either:

or:

xterm*foreground:
xterm*cursorColor:
xterm*pointerColor:

xterm*Foreground:

darkblue
darkblue
darkblue

darkblue

Initial capitalization is used to distinguish class names from instance names. By convention,
class names always begin with an uppercase letter, while instance names always begin with a
lowercase letter. Note, however, that if an instance name is a compound word (such as
cursorColor), the second word is usually capitalized.

The real power of class and instance naming is not apparent in applications such as xterm that
have a simple widget hierarchy. In complex applications written with the X Toolkit or the
Motif Toolkit, class and instance naming allows you to do such things as specify that all but
tons in dialog box be blue but that one particular button be red. For example, in the hypo
thetical xclient application, you might have a resource file that reads:

xclient*buttonbox*Buttons*foreground: blue
xclient*buttonbox*delete*foreground: red

where Buttons is a class name and the delete button is an instance of the Buttons
class. This type of specification works because an instance name always overrides the corre
sponding class name for that instance. Class names thus allow default values to be specified
for all instances of a given type of object. Instance names can be used to specify exceptions
to the rules outlined by the class names. Note that a class name can be used with a loose

Setting Resources 307

0327

binding to specify a resource for all clients. For example, this specification would say that
the foreground colors for all clients should be blue:

*Foreground: blue

The reference page for a given program should always give you both instance and class
names for every resource variable you can set. You'll notice that in many cases the class
name is identical to the instance name, with the exception of the initial capital letter. Often
(but not always) this means that there is only one instance of that class. In other cases, the
instance with the same name is simply the primary or most obvious instance of the class.

Wildcarding a Component Name with ?

As of Release 5, you can use a question mark (?) to represent any single component in a
resource specification. (Naturally, you can't use a question mark as the final component, the
resource variable itself.) The use of the question mark wildcard is a bit confusing and is best
learned by example.

xclient.?.?.Background: whitesmoke

The preceding line sets the background color for all widgets that are two subobjects below
the application level. (You can also think of these subojects/widgets as the grandchildren of
the top level window in the client's own window hierarchy. Typical "grandchildren" might
be dialog boxes, menus, etc.)

Note also that the specification sets the background color for only those widgets. (The tight
bindings ensure this.) A loose binding between the second question mark wildcard and the
resource variable (Background) expands the coverage to include the second subobject
level and also all further subobects:

xclient.?.?*Background: whitesmoke

The use of the question mark requires a bit of finesse, but it simplifies specifications that have
previously been very involved. Prior to Release 5, if you wanted to set the background color
for grandchildren of the top level application window, you would have to provide a resource
line for each one. Our first example line:

xclient.?.?.Background: whitesmoke

does the same thing.

The use of the question mark and the asterisk wildcards together may confuse you, but there
is an important distinction between them. The question mark always represents a single com
ponent. Thus, unless it is the first component, it must always be bracketed by connectors.
(You'll generally use periods as the connectors between question mark wildcards to indicate
a tight binding, but as we saw in the second example, sometimes an asterisk is the appropriate
connector.) The most important thing to remember is that the presence of a question mark
specifies that a component exists (though it does not specify the name of the component).

The asterisk specifies that zero or more (adjacent) components have been omitted from the
resource. In effect, it is both a wildcard (that may represent adjacent components) and a con
nector.

308 X Window System User's Guide, Motif Edition

0328

The following section explains how the question mark wildcard is interpreted in determining
the precedence of resource specifications. The section "Other Ways to Specify the Same
Resource" (at the end of the editres tutorial) gives additional examples of how to use the
question mark wildcard.

Precedence Rules for Resource Specification

Even within a single resource file, such as .Xresources, resource specifications often conflict.
For instance, recall the example from the first page of the chapter involving the hypothetical
xclient application:

xclient*Buttons.foreground: blue
xclient*help.foreground: red

The first resource specification makes the foreground c;olor of all buttons (in the class But
tons) blue. The second resource specification overrides the first in one instance: it makes
the foreground color of the help button (an instance of the class Buttons) red. In the
event of conflicting specifications, there are a number of rules that the resource manager fol
lows in deciding which resource specification should take effect.

We've already seen two of these rules, which are observable in the way the resource manager
interprets definitions in a user-created resource file. (The first rule applies in the previous
xclient example.)

• Instance names take precedence over class names.

Tight bindings take precedence over loose bindings.

From just these two rules, we can deduce a general principle: the more specific a resource
definition is, the more likely it is to be honored in the case of a conflict.

However, for cases in which you want to set things up very carefully, you should know a bit
more about how programs interpret resource specifications.

For each resource, the program has both a complete, fully specified, tightly bound instance
name and class name. In evaluating ambiguous specifications, the program compares the
specification against both the full instance name and the full class name. If a component in
the resource specification matches either name, it is accepted. If it matches more than one
element in either name, it is evaluated according to these precedence rules:

1. The levels in the hierarchy specified by the user must match the program's expecta
tions or the entry will be ignored. For example, if the program expects either:

xterm.vtlOO.scrollBar:

or:

XTerm.VTlOO.ScrollBar:

the resource specification:

xterm.scrollBar:

Setting Resources

True

value instance name

value class name

309

0329

won't work, because the tight binding is incorrect. The objects xterm and scroll
Bar are not adjacent in the widget hierarchy: there is another widget, vt100,
between them. The specification would work if you used a loose binding, however:

xterm*scro11Bar: True

(Note that the class name of xterm is XTerm, not Xterm as you might expect.) You
might instead use the question mark wildcard to represent vt 1 0 0 in the widget hierar
chy:

xterm.?.scrollBar: True

This specification is perfectly valid. Note also that this line is more specific than (and
thus takes precedence over) xterm*scrollBar: True.

2. Tight bindings take precedence over loose bindings. That is, entries with instance or
class names prefixed by a dot are more specific than entries with names prefixed by an
asterisk, and more specific entries take precedence. For example, the entry
xterm.vt100.geometry will take precedence over the entry xterm*geome
try.

3. Similarly, instances take precedence over classes. For example, the entry *scroll
Bar will take precedence over the entry *Scrollbar.

4. Left components carry more weight than right components. For example, the entry
xterm*background will take precedence over *background.

5. An instance or class name that is explicitly stated takes precedence over one repre
sented by the question mark wildcard, which in tum takes precedence over an omitted
component. Thus, the specification xterm*scrollbar is more specific than
?*scrollBar, which is still more specific than *scrollBar.

To illustrate these rules, let's consider the following resource specifications (shown in
Example 11-1) for the hypothetical Toolkit application xclient.

Example 11-1. Sample resources

xclient.toc*Cornmand.activeForeground:
*Command.Foreground: green

black

Each of these lines specifies a foreground color.· Both specifications are valid. Now, apply
ing the rules of precedence, let's try to figure out what foreground color would be used for
the xclient application's include command button. To determine how conflicting specifi
cations are applied, the program tries to match these specifications against the complete
tightly bound instance and class specifications. In this case, say the complete specifications
are:

xclient.toc.messageFunctions.include.foreground
Xclient.Box.SubBox.Command.Foreground

instance name
class name

Note that these specifications are the instance and class names for the same resource-which
determines the foreground color of the include button. Each component of the instance
name belongs to the class in the corresponding component of the class name. Thus, the
instance toe occurs in the class Box, the messageFunctions instance name is from the
class Sub Box, etc. The inc 1 ude button is an instance of the Command class.

310 X Window System User's Guide, Motif Edition

0330

Both resource specification in Example 11-2 matches these instance and class names. How
ever, with its tight bindings and instance names, xclient. toc*Command. foreground
matches more explicitly (i.e., with higher precedence). The resource is set: the fore
ground color of the include button is black.

The specification *Command. Foreground also matches the instance and class names but
is composed entirely of class names which are less specific; thus, it takes lower precedence
than the first line in Example 11-2 (which sets the include button to black).

However, since the second line is also an acceptable specification, hypothetically it would set
the foreground color of other objects in the Command class. Thus, if there were other xclient
command buttons comparable to the include button in the hierarchy, this second line
would set the foreground color of these buttons to green. Note that, since the line begins
with the asterisk wildcard, the resource would be set for xclient, as well as any other applica
tion with a Command class.

Now let's consider some actual conflicting resource specifications and apply the rules of pre
cedence. All three of the resources in Example 11-2 are valid specifications for the font of all
instances of the class Command (without the jargon, the font for the labels on command but
tons).

Example 11-2. What takes precedence?

*Cammand*Font: -*-helvetica-bold-r-normal--*-120-*-*-*-*-iso8859-1
?*Command*Font: 7x14
XClipboard*Command*Font: 6x10

We've listed the resources in Example 11-2 in increasing order of specificity. Because of the
initial loose binding, the first specification applies to any client with a command widget. The
second specification also applies to any client with a command widget, but the introductory
question mark (representing all clients) makes it more specific. Thus, the second line over
rides the first and specifies that the font for command buttons for all applications is 7xl4.

The third line is even more specific because it begins with an actual class name (XC lip
board) rather than the question mark wildcard. The third line specifies that the font for
xclipboard command buttons is 6xl 0. Note, however, that the second line still applies to all
other clients-they will use the font 7xl4 for command buttons. The third line simply
introduces an exception.

If you want a more detailed description of how resource precedence works, see Chapter 9 of
Volume Four, X Toolkit Intrinsics Programming Manual.

Some Common Resources

Each Toolkit command-line option (listed in Table 9-1) has a corresponding resource vari
able. Most X Toolkit (and Motif Toolkft) applications recognize some subset of these
resources.

Table 11-1 lists the resource variables recognized by most Toolkit clients.

Setting Resources 311

0331

Table 11-1. Common Toolkit Resources

Instance Name Class Name Default Description

background Background White Background color
foreground Foreground Black Foreground color
borderColor BorderColor Black Border color
borderWidth BorderWidth ,1 pixel Border width

Note that in a complex Toolkit application these values can occur at every level in a widget
hierarchy. For example, our hypothetical xclient application might support these complete
instance names:

xclient.background
xclient.buttonBox.background
xclient.buttonBox.comrnandButton.background
xclient.buttonBox.quit.background

These resources would specify the background color for the application window, the button
box area, any command buttons, and the quit command button, respectively.

Of course, the specification:

xclient*background

would match any and all of them.

Appendix G lists resources for each of the Athena widgets.

Event Translations

We've discussed the basics of resource naming syntax. From the sample resource settings, it
appears that what many resource variables do is self-evident or nearly so. Among the less
obvious resource variables, there is one type of specification, an event translation, that can be
used with many clients and warrants somewhat closer examination.

User input and several other types of information pass from the server to a client in the form
of events. An event is a packet of information that tells the client something it needs to act
on, such as keyboard input. As mentioned in Chapter 1, An Introduction to the X Window
System, moving the pointer or pressing a key, etc., causes input events to occur. When a pro
gram receives a meaningful event, it responds with some sort of action.

For many clients, the resource manager recognizes mappings between certain input events
(such as a pointer button click) and some sort of action by the client program (such as select
ing text). A mapping between one or more events and an action is called a translation. A
resource containing a list of translations is called a translation table.

312 X Window System User's Guide, Motif Edition

0332

Many event translations are programmed into an application and are invisible to the user.*
For our purposes we are only concerned with very visible translations of certain input events,
primarily the translation of keystrokes and pointer button clicks to particular actiqns by a cli
ent program.

The Syntax of Event Translations

The operation of many clients, notably xterm, is partly determined by default input event
translations. For example, as explained in Chapter 5, The xterm Terminal Emulator, select
ing text with the first pointer button (an event) saves that text into memory (an action).

In this case, the input "event" is actually three separate X events:

1. Pressing the first pointer button.

2. Moving the pointer while holding down the first button.

3. Releasing the button.

Each of these input events performs a part of the action of selecting text:

1. Unselects any previously selected text and begins selecting new text.

2. Extends the selection.

3. Ends the selection, saving the text into memory (both as the PRIMARY selection and
CUT_BUFFERO).

The event and action mappings would be expressed in a translation table as:

<BtnlDown>: select-start(}\n\
<BtnlMotion>: select-extend()\n\
<BtnlUp>: select-end(PRIMARY,CUT_BUFFERO)

where each event is enclosed in angle brackets (< >) and produces the action that follows the
colon(:). A space or tab generally precedes the action, though this is not mandatory:

<event>: action

A translation table must be a continuous string. In order to link multiple mappings as a con
tinuous string, each event-action line should be terminated by a newline character (\n),
which is in tum followed by a backslash (\)to escape the actual newline.

These are default translations for xterm. t All of the events are simple, comprised of a single
button motion. As we'll see, events can also have modifiers: i.e., additional button motions
or keystrokes (often Control or Meta) that must be performed with the primary event to pro-

*For more information on events and translations, see Volume Four, X Toolkit lntrinsics Programming Manual.
tThey are actually slightly simplified versions of default translations. Before you can understand the actual transla
tions listed on the xterm reference page in Part Three of this guide, you must learn more about the syntax of transla
tions. In addition to the current chapter, read Appendix F, Translation Table Syntax.

Setting Resources 313

0333

duce the action. (Events can also have modifiers that must not accompany the primary event
if the action is to take place.)

As you can see, the default actions listed in the table are hardly intuitive. The event-action
mappings that can be modified using translation resources are usually described on the refer
ence page for the particular client.

You can specify non-default translations using a translation table (a resource containing a list
of translations). Since actions are part of the client application and cannot be modified, what
you are actually doing is specifying alternative events to perform an action.* Keep in mind
that only applications written with the X Toolkit (or an Xt-based toolkit such as the Motif
Toolkit) recognize translation table syntax.

The basic syntax for specifying a translation table as a resource is:

[object*[subobject ...]]*translations:
[modifier]<event>: action

#override\

The first line is basically like any other resource specification with a few exceptions. First,
the final argument is always translations, indicating that one (or more) of the event
action bindings associated with the [object*[subobject . ..]] are being modified.

Second, note that #override is not the value of the resource; it is literal and indicates
that what follows should oven·ide any default translations. In effect, #override is no more
than a pointer to the true value of the resource: a new event-action mapping (on the fol
lowing line), where the event may take a modifier.t

A not-so-obvious principle behind overriding translations is that you only literally "override"
a default translation when the event(s) of the new translation match the event(s) of a default
translation exactly. If the new translation does not conflict with any existing translation, it is
merely appended to the defaults.

In order to be specified as a resource, a translation table must be a single string. The
#override is followed by a backslash (\) to indicate that the subsequent line should be a
continuation of the first.

In the previous basic syntax example, the value is a single event-action mapping. The
value could also be a list of several mappings, linked by the characters "\n\'' to make the
resource a continuous string.

The following xterm translation table shows multiple event-action mappings linked in this
manner:

*VTlOO.Translations: #override\
<BtnlDown>: select-start()\n\
<BtnlMotion>: select-extend()\n\
<BtnlUp>: select -end (PRIMARY, CUT_BUFFERO)

*As we'll see, in certain cases you may be able to supply an alternative argument (such as a selection name) to an ac
tion. These changes are interpreted by the resource manager.
tThe use of modifiers can actually become quite complicated, sometimes involving multiple modifiers. For our pur
poses, we'll deal only with simple modifiers. For more information on modifiers, see Appendix Fin this guide and
Volume Four, X Toolkit lntrinsics Programming Manual.

314 X Window System User's Guide, Motif Edition

0334

xterm Translations to Use xclipboard

As explained in Chapter 5, the xclipboard client provides a window in which you can store
text selected from other windows. You can also paste text from the xclipboard window into
other windows. See the discussion of xclipboard in Chapter 5 before proceeding.

You can specify translations for xterm so that text you copy with the pointer is made the
CLIPBOARD selection. The CLIPBOARD selection is the property of the xclipboard client. If
you are running xclipboard and you copy text to be made the CLIPBOARD selection, this text
automatically appears in the xclipboard window.

Some sample translations that would allow you to use the xclipboard in this way are:

*VTlOO.Translations: #override\
Buttonl <Btn3Down>: select -end (PRIMARY I CUT_BUFFERO 1 CLIPEOARD) \n \
!Shift <Btn2Up>: insert-selection(CLIPBOARD)\n\
-Shift -ctrl -Meta <Btn2Up>: insert-selection(PRIMARY~CUT_BUFFERO)

According to this translation table, while selecting text with Buttonl (the modifier), the
event of pressing the third pointer button (Btn3Down), while continuing to hold down the
first button, produces the action of making the text the CLIPBOARD selection (as well as mak
ing it the PRIMARY selection and saving it to CUT_BUFFERO). Basically, we've taken the
default select-end translation-which uses the first pointer button and the arguments
PRIMARY, CUT_BUFFERO-and added the Btn3Down action and the CLIPBOARD argument.

The second line specifies a way to paste the CLIPBOARD selection: by holding the Shift key
and clicking the second pointer button.

The third line modifies the way the contents of the PRIMARY selection or CUT_BUFFERO are
pasted into a window. As described in Chapter 5, by default pressing the second pointer but
ton pastes the contents of the PRIMARY selection. If there is no PRIMARY selection, the con
tents of the cut buffer are pasted. The default translation that sets this behavior is the follow
ing:

-ctr l -Meta <Btn2Up>: insert-selection(PRIMARYICUT_BUFFERO)

This translation specifies that clicking (actually releasing) pointer button 2 (while pressing
any modifier button or key other than Control or Meta) performs the insert-selection
action. The arguments to insert-selection indicate that this action inserts text from
the PRIMARY selection or, if the selection is empty, from cut buffer 0. Excluding the Control
and Meta keys is intended to prevent conflict with other action mappings.* We've added
-Shift to prevent a conflict with the action that pastes the CLIPBOARD selection.

Thus, according to the translations in the example, if you select text as usual with the first
pointer button, and then additionally press the third button (while continuing to hold down
the first button), the text becomes the CLIPBOARD selection and appears automatically in the
xclipboard window, as shown in Figure 11-1.

*-Ctrl is specified to keep this translation from conflicting with the translations that invoke the xterm menus;
-Meta prevents a conflict with twm functions. (As you may recall, twm is the window manager MIT ships with the
standard version of X.)

Setting Resources 315

0335

Figure 11-1. Selected text appears automatically in the xclipboard window

Since our first translation specifies a different event/action mapping than the default transla
tion for selecting text (discussed in the previous section), the default translation still applies.
If you select text with the first pointer button alone, that text is still made the PRIMARY selec
tion and fills CUT_BUFFERO. To send text to the xclipboard, you would need to press the
third pointer button as well; thus, not all selected text needs to be made the CLIPBOARD
selection (and sent automatically to the xclipboard).

There are advantages to making only certain selections CLIPBOARD selections. You can
keep xclipboard running and make many text selections by the default method (first pointer
button), without filling up the xclipboard window. And chances are you don't want to save
every piece of text you copy for an extended period of time, anyway.

The CLIPBOARD selection and the xclipboard client also get around the potential problems
of selection ownership discussed in Chapter 5. Once text becomes the CLIPBOARD selection,
it is owned by the xclipboard client. Thus, if the client from which text was copied (the orig
inal owner) goes away, the selection is still available, owned by the xclipboard, and can be
transferred to another window (and translated to another format if necessary).

Entering Frequently Used Commands with Function Keys

The sample xterm translations to use the xclipboard client involve just a few of the actions
xterm recognizes. Among the more useful translations you can specify for xterm are function
key mappings that allow you to enter frequently used commands with a single keystroke.
This sort of mapping involves an action called string, which passes a text string to the
shell running in the xterm window.

The translation table syntax for such a function key mapping is fairly simple. The following
line maps the text string "lpq -Pprinterl" (the BSD 4.3 command to check the queue for the
printer named printerl) to the Fl function key:

<Key>Fl: string ("lpq - Pprinterl")

316 X Window System User's Guide, Motif Edition

0336

Notice the quotes surrounding the text string. If the argument to string includes spaces or
non-alphanumeric characters, the whole argument must be enclosed in one pair of double
quotes. (Don't make the mistake of quoting individual words.)

The translation table would be:

*VTlOO.Translations: #override\
<Key>Fl: string (11 lpq - Pprinterl 11

)

This sample translation causes lpq -Pprinterl to be passed to the command line in the
active xterm window when you press the F1 function key, as in Figure 11-2.

Figure 11-2. Pushing F1 passes command text to xterm shell

Notice, however, that the command is not invoked because there has been no carriage return.
The sample translation does not specify a return. You can add a return as the argument to
another string action within the same translation.

To specify the Return (or any) key, use the hexadecimal code for that key as the argument to
string. Keycodes and the procedure for determining them are explained in Chapter
14, Setup Clients. The letters "Ox" signal a hexadecimal key code. If you want to enter a

Setting Resources 317

0337

key as an argument to string, use "Ox" followed by the specific code. The code for the
Return key is "d" or "Od."* The following translation table specifies that pressing Fl passes
the line lpq - Pprinterl followed by a carriage return to an xterm window:

*VTlOO.Translations: #override\
<Key>Fl: string (11 lpq - Pprinterl 11

) string (OxOd)

Remember, you can list several translations in a single table. The following table maps func
tion keys Fl through F3:

*VTlOO.Translations:
<Key>Fl:
<Key>F2:
<Key>F3:

#override\
string ("lpq - Pprinterl 11

) string (OxOd) \n \
string(11 Cd - /bit.:nap; ls") string(OxOd) \n\
string (11 cd /usr I lib/Xll 11

) string (OxOd)

According to these translations, pressing F2 inserts the command string c d - I bitmap ; 1 s,
which changes directory to -/bitmap and then lists the contents of that directory. Notice that
you can issue multiple commands (cd, ls) with a single key. Pressing F3 changes directory to
lusr/lib/Xll.

Keep in mind that all the translations for an application can appear in the same table. For
example, we can combine the xterm translations to use the xclipboard with the translations to
map function keys.

*VTlOO.Translations: #override\
Buttonl <Btn3Down>: select-end(PRIMARY,CUT_BUFFERO,CLIPBOARD)\n\
!Shift <Btn2Up>: insert-selection(CLIPBOARD)\n\
-shift Ttrl -Meta <Btn2Up>: insert-selection(PRIMARY,CUT_BUFFERO)
<Key>Fl: string (11 lpq - Pprinterl") string (OxOd) \n \
<Key>F2: string(11 Cd -/bitmap; ls 11

) string(OxOd) \n\
<Key>F3 : string (II cd /usr /lib/Xll") string (OxOd)

The order of the translations is not important. However, it is necessary to end all but the final
line with the sequence "\n\" to make the resource a continuous string.

Other Clients that Recognize Translations

xterm is not the only client whose operation can be modified by specifying event translations
as resources (though it is probably the client you'll be most interested in modifying). Among
the standard clients, xbiff, xcalc, xdm, xman, and xmh all recognize ce1tain actions that can be
mapped to particular keys or key combinations using the translation mechanism. See the rel
evant client reference pages in Part Three of this guide for complete lists of actions.

You can also modify the operation of the Text widget used by xedit, xmh, and other X Toolkit
applications. See the xedit reference page in Part Three for a list of actions recognized by the
Text widget. Keep in mind, however, that the default Text widget recognizes dozens of com-

*As explained in Chapter 14, Setup Clients, the command xmodrnap -pk returns a long listing of all keycodes.
The codes have the either of the following forms:

Oxffab
OxOOab

where ab represents two alphanumeric characters. To specify a key as an argument to string, you can omit the
"ff'' or "00" in the xmodmap listing.

318 X Window System User's Guide, Motif Edition

0338

mands, which are summarized in the discussion of xedit in Chapter 8, Other Clients. It may
not be practical or desirable to modify them all.

If you choose to modify the Text widget, you can do so for all relevant clients by introducing
the translations with the line:

*Text*Translations: #override\

You can also specify different translations for different clients that use the widget by
prepending the client's name. To affect the operation of the Text widget only under xedit,
introduce the translation table with the line:

Xedit*Text*Tra~slations: #override\

In modifying the operation of the Text widget, keep in mind that insert mode is the default.
In other words, like emacs, most of the individual keystrokes you type are added to the text
file; .an exception is Backspace, which predictably deletes the preceding character. The com
mands to move around in a file, copy and delete text, etc., involve a combination of keys, one
of which is generally a modifier key. If you want to modify a command, you should use an
alternative key combination, rather than a single key.

For example, the following table offers two suitable translations:

*Text*Translations: #override\
Meta<Key>f: next-page()\n\
Meta<Key>b: previous-page()

The first translation specifies that pressing the key combination Meta-f moves the cursor
ahead one page in the file (scrolls the file forward one window); the second translation speci
fies that Meta-b moves the cursor back one page. The actions performed are fairly obvious
from their names. For a complete list of actions recognized by the Text widget, see the xedit
reference page.

For more information about events, actions, and translation table syntax, see Appendix
F, Translation Table Syntax, and Volume Four, X Toolkit Programming Manual.

Though mwm does not provide actions that can be modified using a translation table, you can
change the key and pointer button events used to invoke window manager functions by edit
ing a special file called .mwmrc in your home directory. See Chapter 13, Customizing mwm,
for details.

How to Set Resources

Learning to write resource specifications is a fairly manageable task, once you understand the
basic rules of syntax and precedence. In contrast, the multiple ways you can set
resources-for a single system, for multiple systems, for a single user, for all users-can be
confusing. For our purposes, we are primarily concerned with specifying resources for a
single user running applications both on the local system and on remote systems in a net
work.

Setting Resources 319

0339

As we've said, resources are generally specified in files. A resource file can have any name
you like. Resources are generally "loaded" into the X server by the xrdb client, which is nor
m<:!.lly run from your startup file or run automatically by xdm when you log in. (See Appendix
A, Managing Your Environment, for information about startup files and xdm.) Prior to
Release 2 of X, there was only one resource file called .Xdefaults, placed in the user's home
directory. If no resource file is loaded into the server by xrdb, the .Xdefaults file will still be
read.

Remember that X allows clients to run on different machines across a network, not just on
the machine that supports the X server. The problem with the older .Xdefaults mechanism
was that users who were running clients on multiple machines had to maintain multiple .Xde
faults files, one on each machine. By contrast, xrdb stores the application resources directly
in the server, thus making them available to all clients, regardless of the machine on which
the clients are running. As we'll see, xrdb also allows you to change resources without edit
ing files.

Of course, you may want certain resources to be set on all machines and others to be set only
on particular machines. See the section "Other Sources of Resource Definition" later in this
chapter for information on setting machine-specific resources. This section gives an over
view of additional ways to specify resources using a variety of system files.

In addition to loading resource files, you can specify defaults for a particular instance of an
application from the command line using two options: -xrm and -name.

First we'll consider a sample resources file. Then we'll take a look at the use of the -xrm
and -name command-line options. Finally, we'll discuss various ways you can load
resources using the xrdb program and consider other sources of resource definition, later in
this chapter:

A Sample Resources File

Figure 11-3 shows a sample resources file. This file sets the border width for all clients to a
default value of two pixels, and sets other specific variables for xclock and xterm. The mean
ing of each variable is obvious from its name (for example, xterm* scrollBar: True
means that xterm windows should be created with a scroll bar.

Note that comments are preceded by an exclamation point(!).

For a detailed description of each possible variable, see the appropriate client reference
pages in Part Three of this guide.

320 X Window System User's Guide, Motif Edition

0340

*borderWidth:

! xclock resources

xclock*borderWidth:
xclock*geomet:r:y:

! xterm resources

xterm*curses:
xterm*cursorColor:
xterm*pointerShape:
xterm*jumpScroll:
xterm*saveLines:
xterm*scrollBar:
xterm*scrollKey:
xterm*background:
xterm*borderColor:
xter.m*borderWidth:
xter.m*foreground:
xter.m*font:

2

5
64x64

on
skyblue
pirate
on
300
True
on
black
blue
3
white
8x13

Figure 11-3. A sample resources fife

Specifying Resources from the Command line

Two command-line options supported by all clients written with the X Toolkit can be useful
in specifying resources.

The -xrm Option

The -xrm option allows you to set on the command line any specification that you would
otherwise put into a resources file. For example:

% xterm -xrm •xter.m*Foreground: blue• &

Note that a resource specification on the command line must be quoted using the single
quotes in the line above.

The -xrm option only specifies the resource(s) for the current instance of the application.
Resources specified in this way do not become part of the resource database.

The -xrm option is most useful for setting classes, since most clients have command-line
options that correspond to instance variable names. For example, the - fg command-line
option sets the foreground attribute of a window, but -xrm must be used to set Fore
ground.

Note also that a resource specified with the -xrm option will not take effect if a resource that
takes precedence has already been loaded with xrdb. For example, say you've loaded a
resource file that includes the specification:

xter.m*pointerShape: pirate

Setting Resources 321

0341

The command-line specification of another cursor will fail:

% xterm -xrm '*pointerShape: guroby' &

because the resource xterm*pointerShape is more specific than the resource
*pointerShape. Instead, you'll get an xterm with the previously specified pirate cursor.

To override the resource database (and get the Gumby cursor), you'd need to use a resource
equally (or more) specific, such as the following:

% xterm -xrm 'xter.m*pointerShape: guroby' &

How -name Affects Resources

The -name option lets you name one instance of an application; the server identifies the
single instance of the application by this name. The name of an application affects how
resources are interpreted.

For example, the following command sets the xterm instance name to bigxterm:

% xterm -name bigxter.m &

When this command is run, the client uses any resources specified for bigxterm rather than
forxterm.

The -name option allows you to create different instances of the same application, each
using different resources. For example, you could put the following entries into a resource
file such as .Xresources:

XTer.m*Font: 8x13
smallxter.m*Font: 6x10
smallxterm*Geometry: 80x10
bigxterm*Font: 9x15
bigxterm*Geometry: 80x55

You could then use these commands to create xterms of different specifications:

% xterm &

would create an xterm with the default specifications, while:

% xterm -name bigxterm &

would create a big xterm, 80 characters across by 55 lines down, displaying in the font 9x15.
The command:

% xter.m -name smallxterm &

would create a small xterm, 80 characters across by 10 lines down, displaying in the font
6x10.

322 X Window System User's Guide, Motif Edition

0342

Setting Resources with xrdb

The xrdb program saves you from the difficulty of maintaining multiple resource files if you
run clients on multiple machines. It stores resources in the X server, where they are acces
sible to all clients using that server. (Technically speaking, the values of variables are stored
in a data structure referred to as the RESOURCE_MANAGER property of the root window of
screen 0 for that server. From time to time, we may refer to this property simply as the
resource database.)

The appropriate xrdb command line should normally be placed in your .xinitrc file or .xses
sion file to initialize resources at login, although it can also be invoked interactively. It has
the following syntax:

xrdb [options] [filename]

The xrdb client takes several options, all of which are documented on the reference page in
Part Three of this guide. Several of the most useful options are discussed in subsequent sec
tions. (Those that are not discussed here have to do with xrdb's ability to interpret C prepro
cessor-style defined symbols; this is an advanced topic. For more information, see the xrdb
reference page in Part Three of this guide, and the cpp(l) reference page in your UNIX Refer
ence Manual.)

The optional filename argument specifies the name of a file from which the values of client
variables (resources) will be read. If no filename is specified, xrdb will expect to read its data
from standard input. That is, the program will appear to hang, until you type some data, fol
lowed by an end-of-file (Control-D on many UNIX systems). Note that whatever you type
will override the previous contents of the RESOURCE_MANAGER property, so if you inadver
tently type xrdb without a filename argument, and then quit with Control-D, you will delete
any previous values. (You can append new settings to current ones using the -merge option
discussed later in this chapter.)

The resource f i 1 ename can be anything you want. Two commonly used names are
.Xresources and .Xdefaults.

You should load a resource file with the xrdb -load option. For example, to load the con
tents of your .Xresources file into the RESOURCE_MANAGER, you would type:

% xrdb -load .Xresources

Querying the Resource Database

You can find out what options are currently set by using the -query option. For example:

% xrdb -query
XTerm*ScrollBar:
bigxterm*font:
bigxterm*Geometry:
smallxterm*Font:
smallxterm*Geometry:
xterm*borderWidth:

Setting Resources

True
9x15
80x55
6x10
80x10
3

323

0343

If xrdb has not been run, this command will produce no output.

loading New Values into the Resource Database

By default, xrdb reads its input (either a file or standard input) and stores the results into the
resource database, replacing the previous values. If you simply want to merge new values
with the currently active ones (perhaps by specifying a single value from standard input), you
can use the -merge option. Only the new values will be changed; variables that were
already set will be preserved rather than overwritten with empty values.

For example, let's say you wanted to add new resources listed in the file new.values. You
could say:

% xrdb -merge new.values

As another example, if you wanted all subsequently run xterm windows to have scrollbars,
you could use standard input, and enter:

% xrdb -merge
xterm*scrollBar: True

and then press Control-D to end the standard input. Note that because of precedence rules
for resource naming, you may not automatically get what you want. For example, if you
specify:

xtem*scrollBar: True

and the more specific value:

xtem*vtlOO.scrollBar: False

has already been set, your new, less specific setting will be ignored. The problem isn't that
you used the -merge option incorrectly-you just got caught by the rules of precedence.

If your specifications don't seem to work, use the -query option to list the values in the
RESOURCE_MANAGER property and look for conflicting specifications.

Note also that when you add new specifications, they won't affect any programs already run
ning, but only programs started after the new resource specifications are in effect. (This is
also true even if you overwrite the existing specifications by loading a new resource file.
Only programs run after this point will reflect the new specifications.)

Saving Active Resource Definitions in a File

Assume that you've loaded the RESOURCE_MANAGER property from an .Xresources or
other file. However, you've dynamically loaded a different value using the -merge option
and you'd like to make the new value your default.

You don't need to edit the file manually (although you certainly could.) The -edit option
allows you to write the current value of the RESOURCE_MANAGER property to a file. If the
file already exists, it is overwritten with the new values. However, xrdb is smart enough to

324 X Window System User's Guide, Motif Edition

0344

preserve any comments and preprocessor declarations in the file being overwritten, replacing
only the resource definitions.

For example:

% xrdb -edit -/.Xresources

will save the current contents of the RESOURCE_MANAGER property in the file .Xresources
in your home directory.

If you want to save a backup copy of an existing file, use the -backup option:

% xrdb -edit .mydefaults -backup old

The string following the -backup option is used as an extension to be appended to the old
filename. In the prior example, the previous copy of .mydefaults would be saved as .myde
faults.old.

Removing Resource Definitions

You can delete the definition of the RESOURCE_MANAGER property from the server by cal
ling xrdb with the -remove option.

There is no way to delete a single resource definition other than to read the current xrdb val
ues into a file. For example:

% xrdb -query > filename

Use an editor to edit the file, deleting the resource definitions you no longer want and save
the file:

% vi filename

Then read the edited values back into the RESOURCE_MANAGER with xrdb:

% xrdb -load filename

Listing the Current Resources for a Client: appres

The appres (application resource) program lists the resources that currently might apply to a
client. These resources may be derived from several sources, including the user's
.Xresources file and a system-wide application defaults file. The directory !usr!lib!Xll/app
defaults contains application default files for several clients. The function of these files is
discussed in the next section. For now, be aware that all of the resources contained in these
files begin with the class name of the application.

Also be aware that appres has one serious limitation: it cannot distinguish between valid and
invalid resource specifications. It lists all resources that might apply to a client, whether or
not the resources are correctly specified.

Setting Resources 325

0345

appres lists the resources that apply to a client having the class_name and/or
instance_name you specify. Typically, you would use appres before running a client
program to find out what resources the client program will access.

For example, say you want to run xterm but you can't remember the latest resources you've
specified for it, whether you've loaded them, or perhaps what some of the application
defaults are, etc. You can use the appres client to check the current xterm resources. If you
specify only a class name, as in this command line:

% appres XTerm

appres lists the resources that any xterm would load. In the case of xterm, this is an extensive
list, encompassing all of the system-wide application defaults as well as any other defaults
you have specified in a resource file.

You can additionally specify an instance name to list the resources applying to a particular
instance of the client, as in:

% appres XTerm bigxterm

If you omit the class name, xappres assumes the class -NoSuchClass-, which has no
defaults, and returns only the resources that would be loaded by the particular instance of the
client.

Note that the instance can simply be the client name, for example, xterm. In that case none
of the system-wide application defaults would be listed, since all begin with the class name
XTerm. For example, the command:

% appres xterm

might return resources settings similar to these:

xterm.vtlOO.scrollBar: True
xterm*PhonyResource: youbet
xterm*pointerShape: gurnby
xterm*iconGeometry: +50+50
*VTlOO.Translations: #override\

Buttonl <Btn3Down>: select-end(CLIPBOARD)\n\
-Ctrl -Meta <Btn2Up>: insert-selection(PRIMARY,CLIPBOARD)

Most of these resources set obvious features of xterm. The translation table sets up xterm to
use the xclipboard. Notice also that appres has returned an invalid resource called Phony
Resource that we created for demonstration purposes. You can't rely on appres to tell you
what resources a client will actually load because the appres program cannot distinguish a
valid resource specification from an invalid one. Still, it can be fairly useful to jog your
memory as to the defaults you've specified in your .Xresources file, as well as the system
wide application defaults.

326 X Window System User's Guide, Motif Edition

0346

Other Sources of Resource Definition

If xrdb has not been run, the RESOURCE_MANAGER property will not be set. Instead, the
resource manager looks for a file called .Xdefaults in the user's home directory. As we dis
cussed earlier, resources found in this way are only available to clients running on the local
machine.

Whether or not resources have been loaded with xrdb, when a client is run these sources of
resource definition are consulted in this order:

1. The client's application defaults file(s) (if any), which usually reside in the directory
iusr!lib!Xll lapp-defaults, will be loaded into the resource manager. (Note that the path
can be reset with the XFILESEARCHPATH environment variable.) Application-specific
resource files generally have the name Class, where Class is the class name of the client
program.

Any other applkation-specific resource files: a resource file named by the variable
XUSERFILESEARCHPATH; or if this variable is not set, a file in the directory named by
the environment variable XAPPLRESDIR.

2. Resources loaded into the RESOURCE_MANAGER property of the root window with
xrdb; these resources are accessible regardless of the machine on which the client is run
ning.

If no resources are loaded in this way, the resource manager looks for an .Xdefaults file in
the user's home directory; these resources are only available on the local machine.

3. Screen-specific resources loaded into the SCREEN_RESOURCES property of the root win
dow with xrdb. The resource manager will sort and place the resources in
RESOURCE_MANAGER (where they will apply to all screens) or in
SCREEN_RESOURCES (where they will apply to the appropriate screen).

4. Next, the contents of any file specified by the shell environment variable XENVIRON
MENT will be loaded.

If this variable is not defined, the resource manager looks for a file named .Xdefaults
hostname in the user's home directory, where hostname is the name of the host where the
client is running.

These methods are used to set user- and machine-specific resources.

5. Any values specified on the command line with the -xrm option will be loaded for that
instance of the program.

The resource specifications from these various sources will be loaded and merged according
to the precedence rules described earlier in the section "Precedence Rules for Resource Spec
ification."

The client will then merge these various defaults specified by the user with its own internal
defaults, if any.

Setting Resources 327

0347

Finally, if the user has specified any options on the command line (other than with the -xrm
option), these values will override those specified by resource defaults, regardless of their
source.

Setting Resources for Color
Versus Monochrome Screens

Chances are you would specify different resources for a client running on a color screen than
for a client running on a monochrome screen. Prior to Release 5, the resource manager could
not apply different sets of color resources for different screen types. Release 5 offers two
innovations to help users specify resources for both color and monochrome displays:

1. A resource variable called customization (class Customization), which can be
used to invoke a special set of application defaults for coior or monochrome screens.

2. Screen-specific resource databases. The xrdb program has been updated to sort resources
according to screen specifics, making certain resources available on a per screen basis
and other available globally.

The first innovation relies on the existence of customized application defaults files. A few of
the standard Release 5 clients come with additional defaults files suitable for color screens;
the system administrator would have to create them for other clients.

You can apply these customized application defaults files-or specify your own special
defaults-on a per screen basis (number 2 above) using a particular syntax in your
.Xresources file.

The following two sections explain how to access the available customized app-defaults files
and how to set your own resource file so that custom defaults (the system's or your own) are
applied in the appropriate circumstances.

loading Custom Application Defaults Files .

As introduced in Chapter 3, Working in the X Environment, several clients have so-called
application defaults files that provide resource definitions for certain client features. The
defaults used on a particular system combine with other factors (program internals, user-sup
plied resources, and command-line options, etc.) to determine how the client looks and
behaves.

Application defaults files are generally kept in the directory /usrllib!Xll!app-defaults. (This
path can be reset using the XFILESEARCHP ATH environment variable, but setting up and
maintaining the app-defaults directory is usually the system administrator's responsibility.)
App-defaults files are often named Class to match the class name of the client, but there are
exceptions.

328 X Window System User's Guide, Motif Edition

0348

In order to deal with the limitations of having a single app-defaults file when clients might be
displayed on either a color or monochrome screen, X developers have added the customi
zation resource in R5. You can use this resource to specify an alternative application
defaults file. Commonly this alternative file will be a list of color resources. The naming
convention for a color app-defaults file is the name of the standard app-defaults file (gener
ally the class name) followed by a hyphen and the word "color" (i.e., Class-color). A few
standard R5 clients come with both a standard app-defaults file and also an alternative color
file:

• bitmap

• editres

• xcalc

• xlogo

The oclock client comes with only one app-defaults file-called Clock-color. Note that this
is an exception to the naming convention. Clock is the class name of the widget around
which the oclock client is built

With the exception of oclock, all of the app-defaults filenames follow the conventions out
lined previously. Thus, the standard app-defaults file for bitmap is called Bitmap and the
color file is called Bitmap-color. xcalc is shipped with two files called XCalc and XCalc
color, etc.

You invoke the color defaults for a single instance of a client program by using the -cus
tomizationresource with the -xrm option and supplying the resource value -color, as
in the following example:

bitmap -xnn "*customization: -color" &

This command creates a bitmap window that uses the color defaults in Bitmap-color. This
file provides the most vivid defaults of all the files currently included in the standard distribu
tion.

The "color" defaults for xcalc are particularly uninteresting-all black, white and gray! Run
the following command if you want to see for yourself.

xcalc -xnn "*customization: -color" &

Depending on the particular defaults, if you run a "colorized" version of a client on a mono
chrome (or grayscale) screen, you may not be able to see all of the window's features. xcalc
seems to be an exception. Even with color defaults, it should work fine on most screens.

When a client has both a standard and a custom defaults file, they usually do not have any
conflicting specifications. In many cases, the custom file will begin with a line that invokes
the Standard file, which contains the more "global" defaults that can be applied regardless of
the screen. The following line appears as the first specification in Bitmap-color, invoking the
standard app-defaults:

#include "Bitmap"

It is possible for the system administrator to create files with defaults intended for mono
c]:l.rome screens. These files should generally be called Class-mono. You can then supply

Setting Resources 329

0349

-mono as the value to the customization resource:

bitmap -xnn "*customization: -mono" &

A monochrome defaults file might be simply a symbolic link to the regular app-defaults file
or it might provide other specifications. Note, however, that Release 5 of X provides no such
"-mono" files.

Thus far, we've shown you how to access the customized resource files on your system from
the command line. The next section describes how to make certain resources apply depend
ing on the kind of screen you're using.

Setting Screen-specific Resources

If you would like certain color (or mono) defaults to be used whenever you're working on a
color (or mono) screen, you can edit your .Xresources file so this happens. These screen-spe
cific resources may be accessed from custom defaults files or may be settings you write your
self.

The following lines specify that bitmap should be run using the color app-defaults file when
the screen is color. (The line #ifdef COLOR establishes this condition; #endif marks
the end of the conditional.)

#ifdef COLOR
bitrnap*customization: -color
#endif

Remember that the file Bitmap-color begins by "including" the standard defaults file (Bit
map). When you use xrdb to load a resource file that conditionally calls Bitmap-color, the
resource manager sorts those resources that rely on a color monitor from those that can be
applied regardless of the monitor (i.e., globally). When you subsequently run the client, you
get the defaults appropriate for the monitor you are using!

If you want all existing "-color" app-defaults files to be used, omit the client name:

#ifdef COLOR
*customization: -color
#endif

Note that you're not limited to using the customized files in the app-defaults directory. You
can also use #ifdef conditionals with your own resource specifications. The following
example introduces another level of the conditional (using #else) that allows you to specify
resources that only apply on a monochrome screen.

330

#ifdef COLOR
! Place your own color resource specifications here
*Background: whitesmoke
*Foreground: darkorchid
xclock*background: lightseagreen
xclock*foreground: navy
#else
! Place your own monochrome settings here
xclock*reverseVideo: True
#endif

X Window System User's Guide, Motif Edition

0350

Note that you can include your own specifications and custom color files in the same condi
tional:

#ifdef COLOR
! Use any customized color app-defaults files
*customization: -color
! And your own definitions
*Background: whitesmoke
*Foreground: darkorchid
xclock*background: lightseagreen
xclock*foreground: navy
#endif

Or you can have multiple conditionals in the same .Xresources file:

! You might place your own settings in one conditional
#ifdef COLOR
*Background: whitesmoke
*Foreground: darkorchid
xclock*backgrotmd: lightseagreen
xclock*foreground: navy
#endif

! And place any customized app-defaults files in another conditional
#ifdef COLOR
*customization: -color
#else
*customization: -mono
#endif

Note that the preceding example invokes app-defaults files ending in "-mono" when the
screen is not color. Unless these files exist, the color defaults will be applied regardless of
the screen and you may not be able to see all of the window's features.

Testing and Editing Resources with editres

The editres (resource editor) client is another welcome Release 5 innovation. By now you
have an idea of the potential complexities surrounding resource settings and how they are
intrepreted. editres is most useful in helping you to examine the often complicated hierarchy
of a client's widgets and to devise correct resource specifications. Using editres you can:

• Display and scan through the client's widget hierarchy.

o Display what resources may be set for a particular widget.

Create resource specifications.

o Dynamically apply the new specifications to a client already running on the display!

• Write the new definitions to your own resource file.

Setting Resources 331

0351

editres can be incredibly helpful, but it is not simple to use. In the following sections, we
provide a tutorial that gives you an idea of what editres can do, but we will not cover every
feature.

Note that the usefulness of the program will be limited somewhat by your understanding of
widgets and the resources that can be applied to them. editres will show you all the
resources that can be set for a widget, but it will not differentiate between those you can set
at the user level and those that must be set by programming routines. Use the client reference
pages in Part Three and Appendix G, Widget Resources, to get a better idea of what
resources you can set yourself.

Note also that editres can only work with certain clients-those that understand the so-called
editres protocol. Most clients built using the Athena widget set will work with editres. A
Motif Toolkit client may not be compatible. If you try to use editres with an incompatible
client, the following message will be displayed in the editres window:

It appears that this client does not understand
the Editres Protocol.

What Widget Is That, Anyway?

Let's consider a scenario in which editres would be helpful to a user. This case happens to be
actual and we won't even change the names. One of my co-workers, Jerry, was trying to
make screen dumps of the xmh client,* but he found that the default font being used for the
menus was too small. He wanted to change· the font for menu text only, leaving the default
font for command buttons, etc. The specification:

xmh*font: bigger_font

would change the font in every widget for which a font could be set. We used editres to
determine the particular widgets for which to set the font.

In order for editres to examine a client's widget hierarchy, the client must be running, so we
ran both xmh and editres:

% xmh &
% editres &

Figure 11-4 shows the clients.

*xmh is the X version of the mh mail handler. Part Three of this guide includes a reference page for xmh. For further
information, see the Nutshell Handbook Using mh and xmh, written by Jerry Peek and also published by O'Reilly &
Associates, Inc.

332 X Window System User's Guide, Motif Edition

0352

xmh: inbox

(folder) (Table of Contents) (ttessage) (Sequence)~ (Options)

inboH

J.lelcon.e to the X Resource Editor version 1.0

Figure 11-4. editres and xmh

editres Menus

editres provides two menus: Commands and Tree. To display a menu, place the pointer on
the appropriate command button and press and hold down the first pointer button. Select an
item by dragging the pointer down the menu and releasing on the item you want.

The most important things the Commands menu allows you to do are:

• Display a client's widget tree (Get Widget Tree);

• Access a subwindow (called the resource box) from which you can test, set, and save
resource specifications (Show Resource Box);

• Quit editres.

Setting Resources 333

0353

The Tree menu helps you:

• Determine the correspondence between the widget tree and the actual widgets in the eli
ent (Select Active Widget; Flash Active Widgets).

Select groups of widgets (parents, children, etc.) for subsequent operations (e.g., showing
the widget in the actual client with Flash Active Widgets).

Displaying the Widget Tree

Now, how do we figure out what resource line to use to specify the font for xmh menus?
First, we must display xmh's widget tree. Select Get Widget Tree from the Commands menu
and you will be prompted to

Click the mouse pointer on any Xaw client.

in the message window below and to the right of the menu buttons. Then click the cross
pointer anywhere on the xmh window and the client's widget hierarchy is displayed in tree
format in the editres window. xmh has a very complex hierarchy and only part of the tree can
be viewed in the editres window, as shown in Figure 11-5.

~idget Tree for client MHh<Xnh>.

HenuBoM

folderTitlebar

Figure 11-5. editres displays xmh's widget tree

334 X Window System User's Guide, Motif Edition

0354

Notice that the box beneath the menu command buttons has become smaller. This box is
called the panner and it is actually a tool that allows you to scan the entire tree. The size and
location of the panner in the larger square surrounding it suggests the portion of the widget
tree that is visible-in this case, approximately the top third of the tree. To view the rest of
the tree, place the pointer on the panner, hold the first pointer button and drag. The editres
window scrolls to reveal the remaining widgets.

Tracking Down the Widgets

We're trying to set the font for xmh menu items like Open Folder on the Folder menu. Figure
11-5 displays a few widgets that sound as if they might be part of the menus. The menuBox
widget and its children (to the right of it and connected to it by lines) seem promising. We
can determine where the menuBox widget appears in the xmh application by performing the
following actions:

1. Place the pointer on the menuBox square in the editres tree and click the first button.
This action highlights the widget (which appears in reverse video); certain menu actions
will affect only the highlighted widget(s).

2. Then select Flash Active Widgets from the Tree menu. The widget highlighed in the edi
tres window will be "flashed" in the xmh window.

This action shows that the menuBox is the entire top portion of the xmh window-not even
an individual menu. A look at the names of the widget's children, all of which end in But
t on, suggests that these are merely the menu command buttons and we have to examine the
tree further to find the actual menu definitions.

Before scrolling, it's important to deselect the menuBox widget by clicking on it again. edi
tres allows you to select multiple objects in order to perform certain operations, but we're
only interested in one right now.

Figure 11-6 shows the editres window after we pan down to the more promising widget name
folderMenu, the children of which seem to approximate this menu's choices.

Setting Resources 335

0355

editres

~idget Tree for client x~h<X~h}.

· Figure 11-6. Middle portion of xmh 's widget tree reveals menu items

Using the Resource Box to Create a Specification

Now we can try to write a resource to specify the font. First, select the folderMenu widget
in the tree. Then select Show Resource Box from the Commands menu. The resource box
subwindow appears on top of the main editres application window, as in Figure 11-7.

The resource box is fairly complicated, but we can determine one disappointing fact quickly.
Neither list of resources it provides (Normal Resources and Constraint Resources) includes a
font resource! Seems we're on the wrong track.

Click on the Popdown Resource Box button that appears in the lower righthand corner of the
resource box. The box goes away. Now let's deselect folderMenu on the widget tree and
instead try selecting one of its children, open, the widget of the first Folder menu item. Then
select Show Resource Box from the Commands menu again. This time the resource box
includes font under the list of Normal Resources (there are no constraint resources).

336 X Window System User's Guide, Motif Edition

0356

~I resource Box I
.xmh.xmh.folderMenu.unknovvn: -111 Ill Ill Iii

* Xnh * Paned * Sinpletlenu *
Rn9 J.lidget Rn9 J.lidget Rn9 J.lidget

Rn9 J.lidget Chain Rn9 J.lidget Chain Rn9 J.lidget Chain '
Nonnal Resources \

accelerators cursor popupCallback
allouShellResize depth popupOnEntr!J
ancestorSensitive destroljCallback rouHeight
background geonetr!J saveUnder
backgroundPiHnap height screen

' backingStore insertPosition sensitive
' borderColor label topl1argin

labelClass translations
'

borderi>ixnap
:: borderJ.Iidth nappedJ.Ihenl1anaged visual

bottonl1argin nenuOnScreen .. idth ;
children nut~Children H

; colornap overrideRedirect ll !
createPopupChildProc popdounCallback

; Constraint Resources
l allo11Resize position shouGrip
, naH preferredPaneSize skipRdjust
! Min resizeToPreferred

' ' '
Enter Resource Value: i

i ;

• I
~ I Set Save File II Save II Apply II Save and Rppl!J II Popdmm Resource Box I !

< '"',"''''' ,,,,,,,,, ,,,,,, < ,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ,,, < ,,,,,,,, ,,, ,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,'''"'''""''''''' < '"'

Figure 11-7. The editres resource box

Across the top of the resource box is a template resource specification for the selected
widget, which at this stage shows the tightly bound instance name ending with an unknown
resource variable. You can select the resource you want from the list in the box by highlight
ing it in the same way you did a widget in the tree-simply click the pointer on it. When we
click on font, the unknown variable in the template is changed to font.

We still have to supply a value (a readable font), but first let's look at the specification more
closely .

. xmh.xmh.folderMenu.open.font:

(Don't be confused by the two instances of xmh beginning the specification; the first repre
sents the client and the second represents the next level widget in the client, which in this
case has the same name! This is fairly unusual.) The folderMenu and open widgets sug
gest that this line would set the font for the Open Window item on the Folder Menu. But we
need to specify a resource that will cover all menu items. At this point, you might be
tempted to highlight the other menu item widgets in the tree, but if you do so and try to dis
play the resource box again, you '11 discover that the box can only be used when a single
widget is highlighted.

Instead, editres provides a way for you to edit the template resource specification. Notice
that below the template are four lines of text, the first one of which matches the full instance
name in the template, with each component (including connectors) highlighted. The next

Setting Resources 337

0357

line down shows the full class name with loose bindings. (We '11 discuss the third and fourth
lines in the next section.) As you can see, the four lines are spaced so that the components
and connectors fall into columns. These lines provide four sets of alternatives for each of the
components in the template resource specification. As you move the pointer around among
the various choices, notice that a box highlights each one in tum. You can change any part of
the template specification by clicking on an alternative in the same column.

For instance, to switch any tight binding in the template to a loose binding, you would simply
click on the corresponding loose binding on the class name line. The highlighting for that
column will be switched to loose binding on the class name line and the template will be
redrawn to include the asterisk.

You can also replace any component in the template by clicking on the alternative compo
nent you want. Since we want to specify a font resource that applies to all menus, perhaps
we should select the class name that corresponds to the folderMenu widget, Simple
Menu. When we click the pointer on SimpleMenu, that class name is highlighted and
replaces folderMenu in the template line (folderMenu is also unhighlighted), as in Fig
ure 11-8.

.xmh.xmh.SimpleMenu.open.font:
II II folderl1enu II

Xnh

An9 IUdget

An9 ~idget Chain

"

Enter Resource Value:

Paned "
An9 ~idget

Any ~idget Chain

Any ~idget

Any ~idget Chain

Nonnal Resources
leftl1argin uidth
rightBitnap x
rightHargin y
sensitive
vertSpace

" SneBSB

Any ~idget

Any ~idget Chain

Jset Save FileJJsaveiJApplyJJsave and App!yJJPopdoun Resource BoxJ

Figure 11-8. Edit the template resource by clicking on another component

Now we're close to the solution, but the open widget is still too specific. We then click on
the corresponding class name, SmeBSB to produce the template line:

.xmh.xmh.SimpleMenu.SmeBSB.font:

If we move the resource box away from the main editres window, we'll see that all of the
widgets covered by this specification (i.e., those corresponding to the menu items) are now
highlighted.

Now we must enter a value for this resource (a font name) in the text window near the lower
right comer of the editres window. The phrase "Enter Resource Value:" appears to the left of
the text window. To enter a value, place the pointer in the text window and type. (The text

338 X Window System User's Guide, Motif Edition

0358

window is an instance of the Athena Text widget. To learn the valid editing commands, see
"The xedit Text Editor" in Chapter 8, Other Clients.) We enter a fixed width font with the
alias 7x14.

Here's where editres comes in very handy. We can test our specification on the currently
running xmh client. Just click on Apply, the third of five command buttons that appear along
the bottom of the resource box. If the template resource can be applied successfully to the
client in question, the message area to the right of the panner will display:

SetValues was Successful.

We verify that our new font resource has been incorporated into the running client by dis
playing one of the xmh menus and 7x14 seems large enough to reproduce well in the screen
dump Jerry wants to make. Figure 11-9 shows one of the resulting screen dumps, borrowed
from Jerry's book, Using mh and xmh.

Questions r the last week<<Donna, Ruth poin
test of sending<<Jerry, this is· a test. There's
More news about next week<<Hi. When you're here

e: Wed, 9 Dec 1992 08:22:31 -0400
ssage-Id: <199207228389.AA15299@mysun.xyz.edu>

To: al@phlabs.ph.com
cc: angelac
Subject: More news about next week

Hi_ When you're here next week, we need to talk about some budget
problems_ Sorry to have to tell this way. I'll send details soon.

la

Figure 11-9. Custom font makes xmh menus readable in screen dump

All of the command buttons at the bottom of the resource box help you either "Apply" the
custom resource specification to the running client or "Save" the specification in a resource
file. Set Save File prompts you to specify the resource filename:

Enter file to dump resources into:

If you select any command with "Save" in it and haven't previously provided the filename,
you will be prompted in the same way before the command proceeds.

Setting Resources 339

0359

Other Ways to Specify the Same Resource

Our sample resource line:

.xmh.xmh.SimpleMenu.SrneBSB. font: 7x14

will do for our purposes, but the following resources would accomplish the same result:

.xmh.xmh.?.SrneBSB.font: 7x14

.xmh.xmh*SrneBSB.font: 7x14

These resource specifications illustrate the use of the alternative components in the third and
fourth lines below the template in the resource box. If you look back at Figure 10-5, you'll
see that these lines offer the phrases Any Widget and Any Widget Chain as alternatives at
every level in the resource specification.

Selecting Any Widget replaces the component with the question mark wildcard, which repre
sents exactly one widget level. (See "Wildcarding a Component Name with?" earlier in this
chapter.) If you go back to our example in the last section and select Any Widget in the third
column, the question mark replaces the menu widget in the template:

.xmh.xmh.?.SrneBSB.font: 7x14

If you apply this resource specification, you'll find it accomplishes the same thing our com
plete specification does.

Selecting Any Widget Chain removes the component from the template line and elides the
surrounding components using an asterisk wildcard (loose binding). (See "Tight Bindings
and Loose Bindings" earlier in this chapter.) Again, go back to our example in the last sec
tion and this time select Any Widget Chain in the third column. An asterisk replaces the menu
widget in the template and the surrounding tight bindings are removed .

. xmh.xmh*SmeBSB.font: 7x14

Again, this resource accomplishes the same thing.

Of course, there are several other alternative resource specifications you could also use. We
won't get into them here. The most important thing to remember is that editres (and the
resource manager itself) allow you to do a bit of experimenting.

340 X Window System User's Guide, Motif Edition

0360

12

Specifying Color

This chapter gives an overview of the color names you can use in virtually
any X environment. These names specify so-called RGB colors, which look
different on different monitors. Release 5 introduces support for device-inde
pendent color. This chapter explains the principles behind these two "color
models" and describes how to specify colors according to each model. It
also explains how to create your own color database.

In This Chapter:

What Color Names Can I Use? .. 343
Available RGB Colors .. 345

Surveying the RGB database: rgb.txt .. 346
Alternative Release 5 RGB Color Databases 348
Specifying RGB Colors as Hexadecimal Numbers 348

The Xcms Color Spaces .. 349
A Mixed Bag: Using both RGB and Xcms ... 351
Beyond the Rainbow: Inside the Color Models 351

The RGB Color Model .. 351
The X Color Management System ... 353

How Many Colors are Available on My Screen? 354
Adding New Color Names .. 356

Changing the RGB Color Name Database 356
Finding the Color Values .. 356
Editing and Compiling the Database .. 357
Fixing a Corrupted RGB Database ... 358
Creating an Xcms Color Database ... 359
Device-Specific Tuning .. 360

0361

What Color Names Can I Use?

12
Specifying Color

As mentioned in Chapter 10, Command-line Options, specifying colors can become rather
complicated, but you can also keep it simple. The next section ("Available RGB Colors")
gives an overview of the basic color names you should be able to use in virtually any envi
ronment-without any system customization. If you think the set of predefined colors will be
sufficient for your needs, you shouldn't have to read more than that section (and its subsec
tions).

If you want to know more about color (including how to create a private database of your
own colors), you'll need a little more background. X actually recognizes two "color mod
els": a server-side (non-portable) RGB color model (primarily a database) and a client-side
(device-independent) X Color Management System (Xcms). Keep in mind that you can use
take advantage of both color models. (See "A Mixed Bag: Using both RGB and Xcms" for
an explanation of precedence.) Xcms has been introduced in Release 5; if you are satisfied
with the older RGB functionality, you can ignore Xcms. However, it does have many inter
esting and powerful capabilities. In the remainder of this section, we'll give you an overview
of both of these models.

The RGB color model includes a database of color names which can be accessed by the
server. This database exists in a readable form in a system file called rgb.txt, which generally
lives in the directory lusr/lib/Xll. (Most of the color names you can think of-plus many
esoteric names-are included in this database.) Within the rgb.txt file, each color name is
associated with three numeric values, corresponding to the amount of red, green, and blue in
the shade. The display hardware uses these values to produce a color. (For a more technical
discussion of this color model, see "Beyond the Rainbow: Inside the Color Models" later in
this chapter.)

The RGB model accepts color values in two different formats: color names from the data
base (which pairs names with decimal values for red, green, and blue); numeric color values
in hexadecimal notation. (You can use either of these on command lines, in resource files,
etc.) As we'll see later in this chapter, the hex values allow you to specify a wider spectrum
of colors than is covered by the database.

Specifying Color 343

0362

From a user's standpoint, the advantages of the RGB database are:

• It provides a wide range of colors whose names you can simply plug in to command lines
and resource specifications;

It requires no customization, but allows customization if you're ambitious enough to
want to come up with your own colors or tune existing ones. (Note, however, that since it
is available on a system-wide basis, the RGB database is generally the private preserve of
the system administrator.)

The primary disadvantage of the RGB database (and the model itself) is that the colors it
defines can look very different on different types of display hardware. This is because the
server accesses the database (or the numeric hex specifications) and simply applies the color
values, without any tuning for the type of monitor, the platform, etc. Certain intensities of
red, green, and blue might produce orange on one display and pink on another. In other
words, RGB colors are hardware-specific and thus, non-portable.

We speculate that most users won't care too much if their "pink" is too "orangy" and will just
experiment with other colors in the rgb.txt file to find shades they like. (The public domain
xcol program, described in Chapter 8, will help you preview the rgb.txt colors for your moni
tor.)

If you are interested in coming up with your own colors, there are several public-domain
"color editors" available. See Chapter 8, Other Clients, for instructions on using two of
these clients, xcoloredit and xtici. Once you come up with your own shade, the RGB model
allows you to either add the color name/value pair to the database (see "Changing the RGB
Color Name Database" later in this chapter); or to specify the alternative color on the com
mand line (or in a resource file) by providing its value in hexadecimal notation (see "Specify
ing RGB Colors as Hexadecimal Numbers"). Keep in mind, however, that a color in RGB
format is not portable. If you use a variety of monitors, an RGB color (even one you create
with a color editor) will look different on each of them.

If you're not entirely satisfied with the hardware-specific RGB model, an additional, more
precise color model has been made available in Release 5. The X Color Management System
(Xcms), developed by Tektronix (and now adopted by the X Consortium), is intended to
overcome the limitations of the (still available) RGB model by providing device-independent
color. Under Xcms, colors are based upon internationally recognized standards. The idea
behind Xcms is that color relies upon human vision. Simply put, red should look basically
the same on any monitor, under any platform.

Xcms accepts color values in several different formats, called color spaces (outlined later in
this chapter). Most of these color spaces describe color in a device-independent manner,
using scientific terms and values commonly applied to color. (For more information, see
"The Xcms Color Spaces" later in this chapter.) Note, however, that Xcms will recognize an
ROB color space-only the values are not portable.

From a user's standpoint, the primary advantages of Xcms are:

• It recognizes several types of color specification (color spaces), which can be supplied on
the command line or in resource files.

344 X Window System User's Guide, Motif Edition

0363

• It enables. you to make a database of colors you "mix" yourself, using a color editor.
(While the server-side RGB model allows for a single system-wide database, Xcms
allows any user to have a private database.) In the Xcms database, you pair a name with
a value in any of the accepted color spaces (formats). The Xcms database can then serve
as an alternative to the default RGB database (you can specify colors from either).

• Xcms can "tune" colors to display more accurately on specific hardware. (Some X termi
nals are configured to do this automatically; on most other displays, you need to install a
special file to perform this tuning. For more information, see "The X Color Management
System" later in this chapter.)

• Xcms allows users to take advantage of sophisticated color printer technology.

If you're at all interested in coming up with your own colors, it's worth reading more about
Xcms (later in this chapter) and learning how to create your own database. Your system
administrator might also want to create a system-wide Xcms database. (See "Creating an
Xcms Color Database" later in this chapter for details.)

But before we go any deeper into the technology of color, let's take a look at the simplest
source of color specifications: the RGB database. Then we'll consider the Xcms color
spaces (formats), which have been made available in Release 5; Finally, we'll take a more
technical look behind the color models and learn how to make additional color names avail
able under either model. If you want to customize the RGB database or possibly create an
Xcms database of your own, read the relevant sections.

Available RG 8 Colors

As previously mentioned, the server-side RGB color model allows you to specify colors
using either:

o Text names from the standard database (rgb.txt file);

o Numeric color values in hexadecimal notation.

The simplest way to specify colors for your display is to look over the rgb.txt file and pick
some names. The many colors defined in this file are probably more than most users will
need.

Specifying a color as a hexadecimal number comes in handy when you've used a color edi
tor, such as xcoloredit, to create a new shade and the program gives its output in hex. Chap
ter 8, Other Clients, describes how to use xcoloredit. The section "Changing the RGB Color
Name Database" later in this chapter describes how to add one of these new colors to the
rgb.txt file so that you can access it by a name.

The following sections give you an idea what colors are available in the RGB database.
Then we'll take a look at specifying a color as a hex value.

Specifying Color 345

0364

Surveying the RGB Database: rgb.txt

The rgb.txt file, usually located in /usrllib!Xll, is supplied with the standard distribution of X
and consists of predefined color values (in decimal notation) assigned to specific text names.
Corresponding compiled files called rgb.dir and rgb.pag contain the definitions used by the
server; these machine-readable files serves as a color name database. The rgb.txt file is the
human-readable equivalent.

The default rgb.txt file shipped with Release 5 of X contains 738 color name definitions.
This number is slightly deceptive, since a number of the color names are merely variants of
another color name (differing only in spelling, spacing, and capitalization). Still others are
shades of the same color:

light sea green
sea green
medium sea green
dark sea green
SeaGreenl
SeaGreen2
SeaGreen3
SeaGreen4
DarkSeaGreenl
DarkSeaGreen2
DarkSeaGreen3
DarkSeaGreen4

Each of these names corresponds to a color definition (of three RGB values). (This list does
not include the variant syntax names SeaGreen, LightSeaGreen, MediumSeaGreen, and
DarkSeaGreen, which also appear in the file.) As you can see, some of these shades are dis
tinguished in the fairly traditional way of being called "light," "medium," and "dark." The
light, medium, and dark shades of a color can probably be distinguished from one another on
virtually any monitor.

Beyond this distinction, there are what might be termed "sub-shades": gradations of a partic
ular shade identified by number (SeaGreenl, SeaGreen2, etc.). Numerically adjacent sub
shades of a color may not be clearly distinguishable on all monitors. For example, Sea
Green! and 2 may look very much the same. (You certainly would not choose to create a
window with a SeaGreenl background and SeaGreen2 foreground! On the other hand, sub
shades a couple of numbers apart are probably sufficiently different to be used on the same
window.)

By supplying many different shades of a single, already fairly precise color like sea green, X
developers have tried to provide definitions that work well on a variety of commonly used
monitors.* You may have to experiment to determine which colors (or shades) display best
on your monitor. (For device-independent color, use the Xcms color model.)

*The color database shipped with prior releases of X was originally designed to display optimally on the vt240 series
terminals manufactured by Digital Equipment Corporation.

346 X Window System User's Guide, Motif Edition

0365

The color names in the rgb.txt file are too numerous to list here. Although there are no literal
dividers within the file, it can roughly be considered to fall into three sections:

Section 1:

Section 2:

Section 3:

A standard spectrum of colors (red, yellow, sea green, powder blue, hot
pink, etc.), which seem to be ordered roughly as: off-whites and other
pale colors, grays, blues, greens, yellows, browns, oranges, pinks, reds,
and purples.

Sub-shades of Section 1 colors (such as Sea Green 1 through 4). These
sub-shades make up the largest part of the file.

One hundred and one additional shades of gray, numbered 0 through
100. This large number of precisely graduated grays provides a wide
variety of shading for grayscale displays.

Rather than list every color in the rgb.txt file, we've compiled this table of representative
colors. We've chosen some of the more esoteric color names. Naturally all of the primary
and secondary colors are also available.

Section 1:

ghost white
slate gray
dodger blue
lawn green
khaki
sienna
tomato
magenta

Section 2:

snowl - 4
azurel - 4
PaleTurquoisel - 4
SpringGreenl -4
chocolatel - 4
DeepPinkl - 4

Section 3:

peach puff lavender blush
midnight blue cornflower blue
powder blue turquoise
chartreuse olive drab
light yellow goldenrod
sandy brown salmon
hot pink maroon
medium orchid blue violet

bisquel - 4 cornsilkl - 4
SteelBluel - 4 DeepSkyBluel - 4
aquamarinel - 4 PaleGreenl - 4
goldl - 4 RosyBrownl - 4
firebrickl - 4 DarkOrangel - 4
PaleVioletRedl - 4 pluml - 4

grayO (greyO) ilirough graylOO (greylOO)

lemon chiffon
medium slate blue
pale green
lime green
peru
coral
violet red
purple

honeydewl -4
LightCyanl - 4
DarkOliveGreenl - 4
burlywoodl - 4
OrangeRedl - 4
DarkOrchidl - 4

If you want to look more closely at the rgb.txt file, you can open it with any text editor. As
an alternative, you can display the contents of the file using the showrgb client. showrgb
seems to do nothing more than cat(1) the file to your terminal window. In fact, it consults the
database (dbm) version of the file. Given the size of the database, it's necessary to pipe the
command's output to a paging program, such as pg(1) or more(1), as shown below:

% showrgb I more

Be aware that showrgb will display the color names in a different order than they appear in
rgb.txt. See "Changing the RGB Color Name Database" for information on customizing the
RGB color name definitions.

Keep in mind that RGB colors look different on different monitors. (Later in this chapter,
we'll take a closer look at the Xcms Color Management System, which provides device-inde
pendent color capabilities.) The xcol client, from the user-contributed distribution, allows

Specifying Color 347

0366

you to display the colors defined in the rgb.txt file. xcol can also be used to edit the color
specifications in a resource file. See Chapter 8, Other Clients, and the xcol client reference
page in Part Three of this guide.

Alternative Release 5 RGB Color Databases

In addition to the standard color database described previously, Release 5 also includes three
other databases your system administrator can compile. These files can be found in the gen
eral release in the directory mitlrgblothers.

raveling.txt

thomas.txt

old-rgb.txt

Designed by Paul Raveling, this database rivals the default database in
size and scope but was tuned to display optimally on Hewlett-Packard
monitors.

Based on the Release 3 database, this file has been modified by John
Thomas of Tektronix to approximate the colors in a box of Crayola
Crayons.

This is nothing more than the Release 3 database.

Specifying RGB Colors as Hexadecimal Numbers

Each RGB color has a numeric value associated with it. In the rgb.txt file, these values are in
decimal notation-the base 10 numbering system with which most of us are familiar-and
they are paired with a color name. But the RGB model also allows you to specify a color
using only a number-in an alternative format known as hexadecimal notation. Hex is a base
16 numbering system used in many scientific disciplines. We'll discuss the system in more
depth in "The RGB Color Model" later in this chapter.

Being able to specify a color by a numeric value means that you can be very precise. It also
means that you can define virtually an infinite number of shades--certainly far more than is
practical to define in a database like rgb.txt. Of course, it's also only practical to use a cer
tain number of colors and hardware provides its own limitations. (See "How Many Colors
Are Available?" for a clearer idea.)

Being able to supply hex values comes in very handy if you're using a color editor, such as
xcoloredit (described in Chapter 8). When you "mix" your own color using xcoloredit, the
program outputs the numeric color value in hexadecimal notation. For example, in Chapter 8
we came up with a bright shade of blue with the hex value:

09e5fb

348 X Window System User's Guide, Motif Edition

0367

We can then supply this number on the command line or in a resource file, prefixed with a
pound sign (#), as in the following example:

xbiff -fg #09e5fb &

On our Sun monitor (remember, RGB values are hardware-specific), this command line pro
duces an xbiff window with a bright blue mailbox. The following line from a resource file
would have the same effect.

xbiff*foreground: #09e5fb

See "Changing the RGB Color Name Database" for instructions on converting hex to deci
mal and pairing these values with names in the rgb.txt file. For more about the RGB model
and how hex numbering works, see "The RGB Color Model" later in this chapter.

The Xcms Color Spaces

As of Release 5, you are not limited to supplying colors from the rgb.txt file or providing hex
equivalents of RGB colors. The X Color Management System recognizes color specifica
tions in many different formats called color spaces. Most of these formats reflect interna
tional standards. (Xcms also recognizes RGB decimal values, though these remain device
specific). This section gives an overview of the valid color spaces.

As with the server-side RGB model, you can supply the Xcms color spaces on the command
line and in resource files. You can also create a custom color database. (Note that the stan
dard colors from rgb.txt will still be available.) See "Creating an Xcms Color Database" for
instructions.

Under Xcms, each color specification has a prefix (some shorthand for the color space) and a
numeric value. Table 12-1 summarizes the valid color spaces and their prefixes.

Table 12-1. Xcms Color Spaces

Name

Tektronix HVC
various CIE formats
RGB
RGB Intensity

Prefix

TekHVC
CIEXYZ, CIEuvY, CIExyY, CIELab, CIELuv
RGB
RGBi

Tektronix is the developer of the X Color Management System. The initials HVC refer to
hue, value, and chroma, scientific characteristics of color. (See "Creating Your Own Colors:
xcoloredit and xtici" in Chapter 8, Other Clients, for more information.) CIE stands for
Commission Internationale de l' Eclairage or International Commission on Illumination, an
international standards organization.

Of the valid color spaces, the Tektronix HVC and the various CIE formats specify color in a
device-independent manner. The RGB color spaces specify color that is hardware-specific.
To take advantage of the portability of the X Color Management System, you will want to

Specifying Color 349

0368

use TekHVC or any of the CIE formats. Xcms recognizes RGB specifications for compatibil
ity with the older RGB color model.

When you create a shade with a color editor, such as xcoloredit or xtici, the program supplies
you with a numeric color value in one or sometimes multiple f01mats. To specify the color
under Xcms, you combine the numeric value with the appropriate prefix for the color
space/format. The syntax is:

prefix:valuel/value2/value3

The following are sample Xcms color specifications:

CIEuvY:0.15259/0.40507/0.44336
TekHVC:223.93036/72.45283/29.67013
RGB:6a/bb/d8

These three sample values were derived from xtici (being run on a Sun 3/60 workstation); the
values all define the deeper version of sky blue from the tutorial in Chapter 8, each using a
different notation.* Keep in mind that the RGB value is specific to the monitor used, while
the TekHVC and CIEuvY values are portable. We can supply any of these color spaces on
our Sun 3/60 and get the same color. Thus, the following command lines should produce
identical xbiff windows:

xbiff -fg CIEuvY:0.15259/0.40507/0.44336 &
xbiff -fg TekHVC:223.93036/72.45283/29.67013 &
xbiff -fg RGB:6a/bb/d8 &

(Note that the Xcms color spaces are case insensitive. Thus, rgb: 6a /bb I d8 and
RGB: 6A/BB/D8 are equivalent.) If we want to display this shade of blue on another moni
tor, we would have to use either of the portable specifications:

CIEuvY:0.15259/0.40507/0.44336 &
TekHVC:223.93036/72.45283/29.67013 &

You can also use any valid color space as the value of a resource variable:

xbiff*foreground: TekHVC:223.93036/72.45283/29.67013

It's handy to be able to plug these numbers into a command line or resource specification, but
if you want to use your own colors on a regular basis, it's a good idea to pair them with
names in your own Xcms database. First read a bit more about Xcms later in this chapter.
Then see "Creating an Xcms Color Database" for instructions.

*xtici outputs each of the three color spaces (CIEuvY, TekHVC, and RGB) in a format Xcms understands, but
handles RGB values in a somewhat confusing manner. It accepts input (and displays the RGB values) in decimal no
tation, but outputs RGB hex values (when you request the RGB values via the Edit menu). You can use decimal num
bers in the RGB server-side color database (rgb.txt file; see "Changing the RGB Color Name Database"); however,
you should use hexadecimal notation for Xcms to recognize the values on the command line, in a resource file, or in
an Xcms database (described in "Creating an Xcms Color Database"). "Finding the Color Values" provides instruc
tions on performing this conversion exclusive of the color editor-using the UNIX bc(l) utility.

350 X Window System User's Guide, Motif Edition

0369

A Mixed Bag: Using Both RGB and Xcms

All this talk of color models can get pretty confusing. But take heart. Even if you use both,
in practice you shouldn't have to think too much about it. You can supply color specifica
tions in any form acceptable to either color model and X will resolve any possible conflicts.

X searches to match a color specification in this order:

1. If it begins with the pound sign (#), the subsequent number is interpreted as a hexade
cimal RGB value.

2. If it contains a colon (:), the prefix is checked to see if it matches a valid color space; if it
does, the subsequent number is interpreted as a value in that color space. All currently
valid color spaces recognize the forward slash (!) as the delimiter between numeric val
ues. (Each color space defines its own delimeter, so hypothetically new formats may
recognize other delimeters.)

3. If the color specification contains neither a pound sign or a colon, it is assumed to be a
color name that should appear in either an Xcms database or the RGB server database.
(The Xcms database is checked first, so if a color name appears in both databases, the
Xcms color value is applied.)

Beyond the Rainbow: Inside the Color Models

The following sections take a more technical look at the two color models. If you want to
edit the RGB database or create an Xcms database of your own, this information might be
helpful. Keep in mind, however, that the X Color Management System is far beyond the
scope of this guide. For some additional information, see Volume Eight, X Window System
Administrator's Guide.

The RGB Color Model

Most color displays on the market today are based on the RGB color model. Each pixel on
the screen is actually made up of three phosphors: one red, one green, and one blue. Each of
these three phosphors is illuminated by a separate electron beam, called a color gun. These
color guns can be lit to different intensities to produce different colors on the screen.

When all three phosphors are fully illuminated, the pixel appears white to the human eye.
When all three are dark, the pixel appears black. When the illumination of each primary
color varies, the three phosphors generate a subtractive color. For example, equal portions of
red and green, with no admixture of blue, makes yellow.

Specifying Color 351

0370

enlarged pixel

Figure 12-1. Red, green, and blue color guns

As you might guess, the intensity of each primary color is controlled by a numeric value. In
the rgb.txt file, each color is associated with a decimal number between 0 and 255. Consider
the following line from the rgb.txt file:

173 216 230 light blue

The three numbers make up what is known as an RGB triplet. As we've seen, the rgb.txt file
contains 738 mappings of RGB triplets to color names. Inherent in this system is a limita
tion: a color name is associated with hard-coded intensities of red, green, and blue; these
intensities may look different on different displays and under different implementations of
the X server. (The X Color Management System transcends these limitations.)

An RGB triplet can also be supplied in hexadecimal notation, which can afford greater preci
sion than the decimal values in rgb.txt. Depending on the underlying hardware, different
servers may use a larger or smaller number of bits (from 4 to 16) to describe the intensity of
each primary. To insulate you from this variation, most clients are designed to take color val
ues containing anywhere from 4 to 16 bits (1 to 4 hex digits), and the server then scales them
to the hardware. As a result, you can specify hexadecimal values in any one of these formats:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

where R, G, and B represent single hexadecimal digits and determine the intensity of the red,
green, and blue primaries that make up each color.

When fewer than four digits are used, they represent the most significant bits of the value.
For example, #3a6 is the same as #3000a0006000.*

*If you are unfamiliar with hexadecimal numbering, see the Glossary for a brief explanation or a basic computer text
book for a more extended discussion.

352 X Window System User's Guide, Motif Edition

0371

What this means concretely is perhaps best illustrated by looking at the values that corre
spond to some colors in the color name database. We'll use 8-bit values-two hexadecimal
digits for each primary. These definitions are the hexadecimal equivalents of the decimal
values for some of the colors found in the rgb.txt file:

#000000 black
#FFFFFF white
#FFOOOO red
#OOFFOO green
#OOOOFF blue
#FFFFOO yellow
#OOFFFF cyan
#FFOOFF magenta
#5F9EAO cadet blue
#6495ED cornflower blue
#ADD8E6 light blue
#BOC4DE light steel blue
#OOOOCD medium blue
#000080 navy blue
#87CEED sky blue
#6A5ACE slate blue
#4682B4 steel blue

As you can see from the colors previously given, pure red, green, and blue result from the
corresponding bits being turned on fully. Turning all primaries off yields black, while turn
ing all nearly full on produces white. Yellow, cyan, and magenta can be created by pairing
two of the other primaries at full intensity. The various shades of blue shown previously are
created by varying the intensity of each primary-sometimes in unexpected ways.

Of course, fiddling with the numbers is fairly unintuitive. If you want to play with color, use
a color editor. xcoloredit supplies its output in hex. See Chapter 8, Other Clients, for
instructions.

The X Color Management System

As previously described, the X Color Management System is intended to provide device
independent color. There are actually two components to the system:

• The color spaces or formats (which should look the same on any system);

Device Color Characterization (DCC) data that "tunes" color specifications for a particu
lar hardware display.

We've already taken a look at some of the valid color spaces. If you specify a color using
one of the portable Xcms color spaces, you should get the same color regardless of the moni
tor, server, etc.

Application developers may choose to fine tune Xcms colors for a particular hardware dis
play by additionally installing a Device Color Characterization (DCC) file (also called a
Device Profile). This tuning is an optional part of the system. You would probably need two
adjacent monitors to see the difference between a system accessing DCC data and one not.
The color spaces alone should be sufficient for most users. If you are interested in installing

Specifying Color 353

0372

DCC data, the section "Device-Specific tuning" offers some tips. See Volume Eight, X Win
dow System Administrator's Guide, for more information.

How Many Colors Are Available on My Screen?

Regardless of the "model" you use to specify colors, the number of distinct colors available
on the screen at any one time depends on the amount of memory available for color specifica
tion. (The xdpyinfo client provides information about a display, including the number of
colors available at one time. See Chapter 8, Other Clients, and the xdpyinfo reference page
in Part Three of this guide for details.)

A color display uses multiple bits per pixel (also referred to as multiple planes or the depth of
the display) to select colors. Programs that draw in color use the value of these bits as a
pointer to a lookup table called a colormap, in which each entry (or colorcell) contains the
RGB values for a particular color.* (Xcms translates its device-independent values into the
equivalent RGB values appropriate for the particular monitor.) As shown in Figure 12-2, any
given pixel value is used as an index into this table-for example, a pixel value of 16 will
select the 16th colorcell.

Frame
Buffer

Figure 12-2. Multiple planes used to index a colormap

Colormap

R G B

"-.......--.-
0

0

225

16
15
14
13
12
11
10

9
8 ____ _,

7
6
5
4
3
2
1

Why is this technical detail important? Because it explains several issues that you might
encounter in working with color displays.

*There is a type of high-end display in which pixel values are used directly to control the illumination of the red,
green, and blue phosphors. But far more commonly the bits per pixel are used indirectly with the actual color values
specified independently.

354 X Window System User's Guide, Motif Edition

0373

First, the range of colors possible on the display is a function of the number of bits available
in the colormap for RGB specification. If 8 bits are available for each primary, then the
range of possible colors is 256 3 (more than 16 million colors). This means that you can: cre
ate incredibly precise differences between colors.

However, the number of different colors that can be displayed on the screen at any one time
is a function of the number of planes. A four-plane system can index 2 4 colorcells (16 dis
tinct colors); an 8-plane system can index 2 8 colorcells (256 distinct colors); and a 24-plane
system can index 2 24 colorcells (more than 16 million distinct colors).

If you are using a 4-plane workstation, the fact that you can precisely define hundreds of dif
ferent shades of blue is far less significant than the fact that you can't use them all at the
same time. There isn't space for all of them to be stored in the colormap at one time or any
mechanism for them to be selected even if they could be stored.

This limitation is made more significant by the fact that X is a multi-client environment.
When X starts up, usually no colors are loaded into the colormap. As clients are invoked,
certain of these cells are allocated. But when all of the free colorcells are used up, it is no
longer possible to request new colors. When this happens, you will usually be given the
closest possible color from those already allocated. However, you may instead be given an
error message and told that there are no free colorcells.

In order to minimize the chance of running out of colorcells, many programs use shared
colorcells. Shared colorcells can be used by any number of applications but they can't be
changed by any of them. They can only be deallocated by each application that uses them,
and when all applications have deallocated the cell, it is available for setting one again.
Shared cells are most often used for background, border, and cursor colors.

Alternately, some clients have to be able to change the color of graphics they have already
drawn. This requires another kind of cell, called private, which can't be shared. A typical
use of a private cell would be for the palette of a color-mixing application, such as
xcoloredit. This program has three bars of each primary color and a box that shows the
mixed color. The primary bars use shared cells, while the mixed color box uses a private cell.

In summary, some programs define colorcells to be read-only and sharable, while others
define colorcells to be read/write and private.

To top it off, there are even clients that may temporarily swap in a private colormap of their
own. If this happens, all other applications will be displayed in unexpected colors because of
the way color is implemented.

In order to minimize such conflicts, you should request unique numerical colors only when
necessary. By preference, use color names or numerical specifications that you've given for
other applications.

Specifying Color 355

0374

Adding New Color Names

Both the server-side RGB color model and the X Color Management System allow you to
specify a color as a numeric value. Since it's much simpler to use a color name, both models
also allow for a database in which numeric values are paired with names.

We've already considered the advantages and limitations of the RGB and Xcms color mod
els. Most importantly, Xcms offers the advantage of portability: the color specifications are
intended to be device-independent (i.e., they should look the same on any display hardware).

When you come up with your own color using a color editing program, such as xtici or
xcoloredit, you '11 know how that shade is going to look on your screen. If the value you
come up with is a one of the portable Xcms color spaces, the color should look the same on
any screen. If you intend to use that color multiple times, you '11 probably want to pair it with
a name in a database. The following sections describe how to edit the default RGB database
or to create an Xcms database.

Although creating a color database can be very useful, keep in mind one less than obvious
limitation: no color database can be accessed across the network. In other words, if you cre
ate an Xcms color database on your own workstation, you can't use any of those color
definitions in a remote process. This limitation has nothing to do with whether a particular
color specification is portable. A portable color should look the same on any system-but
you have to specify the color on that system or have access to the color definition in a data
base local to the client.

Changing the RGB Color Name Database

The X Window System comes with a predefined set of colors, listed in the file
!usrllib!Xll/rgb.txt. As we've seen, you can use these color names to specify colors either on
the command line or in a resource file. If you have access to a color editing program, such as
xtici or xcoloredit, you can also come up with your own colors and add them to the RGB
database.

Finding the Color Values

Each color in the RGB database has a name and a three-component numeric value, in deci
mal form. The fact that xtici displays the RGB values in the necessary decimal form is at
least one advantage to using this program to come up with your own color(s). (See Chapter
8, Other Clients, for instructions on using xtici.) If you have a color value consisting of
three decimal numbers, you can skip to the next section "Editing and Compiling the RGB
Database."

xcoloredit outputs the color value in hexadecimal numbers. If you use xcoloredit (or a simi
lar program), you must convert the numbers to decimal before adding the color to the rgb.txt
file. An easy way to perform this conversion is with the UNIX bc(l) program, as in the fol
lowing example.

356 X Window System User's Guide, Motif Edition

0375

Say we have a bright shade of blue with the hex value #09E5FB.

• Enter be and press Return.

% be

• You can now enter the commands to do the conversion. Set the base of input to 16 (hexa
decimal notation has base 16; be's output defaults to base 10, i.e., decimal).

ibase=l6

• Then enter the hex numbers you want to convert, separated by semicolons; the letters in
the hex notations must be in uppercase.

09;E5;FB

When you press Return, be gives the decimal values for the three color components
(RGB):

9
229
251

• Type Control-D to quit be.

Note that to convert decimal to hexadecimal, you would skip the ibase line; instead specify
output as base 16 (obase=16); enter the decimal numbers (as you did the hex above); and
press Return.

Perhaps a more roundabout way to convert decimal to hex involves the xtici client. xtici
accepts RGB input in decimal notation, but outputs RGB values in hex. See Chapter 8 for
details.

Editing and Compiling the Database

Once you have the decimal values for red, green, and blue, you pair them with a color
name-we'll call our color tropical blue-and add the color definition to the rgb.txt source
file. This file is located in the directory mitlrgb in the Xl1 source tree. (Note that you must
have write permission for the source files. If you're working on a multi-user system, you'll
probably need to speak to the system administrator. If you don't have the source files, con
sult Volume Eight, X Window System Administrator's Guide, for instructions on obtaining
them.)

The format of a line in the rgb.txt file is:

red green blue color_name

where red, green, and blue are integers in the range 0 to 255; the color_name is case
insensitive but must not include any special characters or symbols. There must be a tab
separating the values from the name.

Specifying Color 357

0376

If the color name is composed of two or more words, the color should have two entries, one
as multiple words and one as a single word. For example:

124 252
124 252

0
0

lawn green
Lawn.Green

These entries allow you to use either a one- or two-word color name on the command line or
in a resource file. (When you use multiple words, they must be surrounded by double quotes.
See Chapter 10, Setting Resources, for more information about color specifications.)

To update the RGB database, use the following steps:

1. Edit the rgb.txt source file (from mit/rgb) to add the new color specification(s) (or change
existing ones). The new line(s) can go anywhere in the file. Our new color requires the
entries:

9 229 251
9 229 251

tropical blue
TropicalBlue

If we used a one-word name, a single line would do:

9 229 251 caribbean

2. Run the rgb program using the makefile also located in the mit/rgb directory. This pro
gram converts the text file (rgb.txt) to the UNIX dbm(l) format files (rgb.dir and rgb.pag),
which are the files actually used as the color database. Just type:

%make
m -f rgb.pag rgb.dir
./rgb rgb < rgb.txt

3. Then install the new files in /usr/lib!Xll by typing:

% make install
install -c -m 0644 rgb.txt /usr/lib/X11
install -c -m 0644 rgb.dir /usr/lib/X11
install -c -m 0644 rgb.pag /usr/lib/X11
install -c -s showrgb /usr/lib/X11
install in ./rgb done

Any colors you've added (or edited) should now be available.

Three alternative color databases are available in the Xll source in the subdirectory
mitlrgblothers. See "Alternative Release 5 ROB Color Databases" earlier in this chapter and
the README file in the source directory for details.

Fixing a Corrupted RGB Database

If the color name database gets corrupted in some way (e.g., written to accidentally), the
server may not be able to find any colors with which to display. On a monochrome display,
you may get error messages similar to the following:

X Toolkit Warning:
X Toolkit Warning:

358

Cannot allocate colormap entry for White
Cannot allocate colormap entry for Black

X Window System User's Guide, Motif Edition

0377

X Toolkit Warning:
X Toolkit Warning:

Cannot allocate colormap entry for white
Cannot allocate colormap entry for black

If you get errors of this sort, perform steps 2 and 3 in the procedure described above. This
will overwrite the corrupted rgb database files.

Creating an Xcms Color Database

Once you have some valid color spaces, creating a Xcms color database is easy-much
simpler than editing the RGB database. See Chapter 8, Other Clients, for instructions on
using the xtici color editor, and "The Xcms Color Spaces" earlier in this chapter.

The format of the Xcms database file is:

XCMS_COLORDB_START 0 .1
color_name<tab>color_space

XCMS_COLORDB_END

The first and last lines are literal. Don't forget the 0. 1 at the end of the first line; it's impor
tant. Between the first and last lines you can put any number of color definitions. The text
name goes in the first column, followed by a tab (this is also important), and then a valid
color space. Note that the arrangement of the columns is the opposite of that in the rgb.txt
file, in which the numeric values come first and the text name second.

A system administrator might choose to create an Xcms database that all users can access in
the directory !usrllib/Xll (where rgb.txt also generally lives). In this case, the database file
should be named Xcms.txt. (As we'll see, a user's own Xcms database can have any name.)

Here is a sample database file:

XCMS_COLORDB_START 0 .1
orchid
cobalt
tropical blue
beach glass
Im.lstard
XCMS_COLORDB_END

TekHVC:315.8/83.8/24.5
TekHVC:238.3/68.3/30.6
CIEuvY:0.140/0.412/0.615
TekHVC:158.2/86.0/15.6
CIEuvY:0.227/0.538/0.608

The color names are case-insensitive (for example, "orchid," "Orchid," "ORCHID," and
"ORchid" are equivalent).

In our sample database, we've used all portable color specifications, but you can include
RGB color spaces as well. (Of course, the RGB specifications will be subject to hardware
differences.)

Once Xcms.txt is set up, you can specify any of the color names it contains. (Unlike the
rgb.txt file, no compilation is necessary.) Thus, you can immediately enter the command
line:

% xsetroot -solid beachglass &

Multiple word color names must be specified as a single word or be surrounded by quotes.

Specifying Color 359

0378

By default, Xcms looks for !usr!lib!Xll!Xcms.txt. You can specify an alternative database
file by setting the XCMSDB environment variable. This enables every user to have a private
color database. Note, however, that Xcms will check only one database. If you set XCMSDB
to another file, Xcins will not check !usrllib!Xll!Xcms.txt. (In other words, you cannot spec
ify your own private colors and also take advantage of system-wide Xcms definitions.)

You can call your private Xcms database any name you like; then set the XCMSDB environ
ment variable to the full pathname of the file. For example, say you create some colors you
like to use in your normal X session (for the root window, window frames, etc.). You might
put these into an Xcms file called .xcolors. Then specify:

% setenv XCMSDB -/.xcolors

If you're going to be logging on to the same machine consistently, you can put this line in
your session file (generally .xsession or .xinitrc). Of course, you can set XCMSDB to another
file any time you like.

Device-Specific Tuning

The X Color Management System provides for display-specific fine tuning in the form of a
Device Color Characterization (DCC) file (also known as a Device Profile). The data pro
vided in this file should be specific to the manufacturer, model, size, and screen type of your
color monitor. For most users, this fine tuning will be unnecessary. You would probably
need two adjacent monitors to perceive the fine adjustments DCC can provide. However, an
application developer might choose to install a DCC file.

The DCC data is stored in properties on the screen's root window. Some servers are able to
automatically load the properties with data appropriate to the attached display(s). For servers
that are built .from MIT source, you will probably have to load the DCC data by hand. The
xcmsdb client that comes with the MIT source distribution will load the DCC data from a text
file you specify.

There are two sample DCC files in the directory mitlclients!xcmsdb!datafiles, for two types of
Tektronix monitors. If you have the MIT Xl1R5 user-contributed source code available, the
directory contriblclients!xcrtca/monitors contains additional DCC files for many commer
cially available displays:

Apollo19.dcc
Apple13 . dec
HP98782A.dcc

NWP-513.dcc Sparc2-19.dcc
SGI-PI19.dcc Sun3-60.dcc
Sparc1-19.dcc Trini19.dcc

VR290.dcc VR299.dcc
VR297-0.dcc
VR297-1.dcc

In addition to these DCC files, the directory contains files with .cal 00 extensions. These files
represent an intermediary step between raw color data and the actual DCC files. See Volume
Eight, X Window System Administrator's Guide, for more information.

The top portion of a DCC file (following some comments) gives a description of the monitor.
The following lines appear in the file Sparcl-19.dcc:

360

SCREENDATA_BEGIN 0. 3

NAME
PART_NUMBER
MODEL

SUn SPARCstation 1 19" color monitor
3
Hitachi HM-4119-S-AA-0, July 1989

X Window System User's Guide, Motif Edition

0379

SCREEl'LCLASS
REVISION

VIDEO_RGB
2.0

The remainder of the file provides data about the monitor's color capabilities. This data is
loaded into the root window properties and then plugged into Xcms functions, allowing each
device-independent color value to be converted into a device-specific value. You load a
DCC file using the program xcmsdb. For example, if you have a Hitachi 19" color monitor
on your Sun SparcStation 1, you would use the command:

% xcmsdb Sparc1-19.dcc

You would typically want to load the DCC file in your startup script (commonly .xinitrc or
.xsession). See Appendix A, System Management, for guidelines on writing a startup script.

Keep in mind that this type of color correction may be completely unnecessary for you. For
more information, see Volume Eight, X Window System Administrator's Guide.

Specifying Color 361

0380

13

Customizing mwm

This chapter describes the syntax of the .mwmrc startup file that can be used
to customize the operation of the mwm window manager. It describes how to
bind functions to keys and how to define your own mwm menus. This chap
ter also explains how to set up mwm to use an icon box, a window in which
icons on the display can be organized.

In This Chapter:

Activating Changes to the Window Manager 366
Switching between Custom Version and System Defaults 366
The system.mwmrc File ... 368

mwm Functions ... 371
Menu Specifications ... 371
Key Bindings ... 373
Button Bindings ... 375
Customizing the Root Menu ... 376
Creating New Menus ... 378
Cascading Menus .. 378

Setting mwm Resources' ... 380
Component Appearance Resources ... 381
mwm-specific Appearance and Behavior Resources 382
Client-specific Resources ... 383
Setting the Focus Policy .. 384
Using an Icon Box ... 385

0381

13
Customizing mwm

The Motif window manager is one of the more flexible window managers available in the X
market today. As we saw in Chapter 3 and Chapter 4, mwm provides a wide variety of meth
ods for managing windows (i.e., moving, resizing, iconifying, etc.). In addition, virtually
every feature of mwm can be customized. You can change the appearance of window frames,
icons, and menus, the functions available on the Root Menu and the Window Menu, the key
board focus policy, how icons are arranged on the display, as well as the appearance of client
applications running with mwm. As we'll see, you can also create additional menus,
displayed from the root window, to perform actions on the display as a whole.

Customization of mwm is controlled in two ways:

• Through a special file, called .mwmrc, in your home directory.

• Through mwm resources you can enter in your .Xresources file (or other sources of
resource specification).

The default operation of mwm is largely controlled by a system-wide file, called
system.mwmrc, which establishes the contents of the Root Menu and Window Menu, how
menu functions are invoked, and what key and button combinations can be used to manage
windows. To modify the behavior of mwm, you can edit a copy of this file in your home
directory. The version of this file in your home directory should be called .mwmrc. We'll
take a look at the system.mwmrc and ways to edit your· own .mwmrc file to make the window
manager work more effectively for you.

In addition to the flexibility provided by the .mwmrc file, mwm provides dozens of applica
tion resources that you can set! It's neither practical nor necessary to discuss all of those
resources here. (You could spend quite a long time customizing mwm, if you had the time
and inclination.) We'll just consider some basic categories into which mwm resources can be
divided and also look at some of the more useful resources. See Chapter 11 for syntax rules
and information about loading resources into the server so that they will be accessible to cli
ent programs. See the mwm reference page in Part Three of this guide for descriptions of all
available resources.

In the remainder of this chapter, we're going to demonstrate the basics of customizing mwm
and suggest what we think are helpful modifications. (This is still quite a lot to absorb.) To
illustrate, we'll discuss how to customize the following features of mwm:

Customizing mwm 365

0382

• The menus and how menu functions are invoked.

• The keyboard focus policy.

• How icons are organized (namely, how to set up a window known as an icon box, in
which icons on the display can be organized).

Before we can customize the mwm menus or the ways in which their functions are invoked,
we need to take a closer look at the system.mwmrc file. First, however, let's consider an
important topic: how to make the window manager aware of customizations.

Activating Changes to the Window Manager

Be aware that if you edit your .mwmrc or .Xresources file to change the way mwm works, the
changes will not take effect automatically. Whether you change resource settings, edit your
.mwmrc file, or both,. you must restart mwm for the changes to take effect.

If you edit your resources file, you must first make the server aware of the new resource spec
ifications by using the xrdb client. Generally, you will enter the following command at the
prompt in an xterm window:

% xrdb -load .Xresources

The settings in the current version of your .Xresources file will replace the resource settings
previously stored in the resource database. You can merely append new settings to the old
ones using the xrdb -merge option. See Chapter 11, Setting Resources, for more informa
tion.

Once you've loaded the new resource settings, you can restart mwm. This can be done using
the Restart item of the Root Menu, as described in Chapter 4. When mwm has been restarted,
it should reflect any changes made to the .mwmrc and .Xresources files.

Switching Between Custom Version and System Defaults

If you customize any feature of mwm and decide you don't like the result, you can restart the
window manager with the default settings for your system by typing the keystroke combina
tion:

Shift-Control-Meta-!

This somewhat involved combination invokes a predefined mwm function called
f. set_behavio:r, which is a toggle, or switch, between your customized version of mwm
and the standard system version. If you've customized mwm, f. set_behavior restarts
the window manager using the system defaults. If you then invoke f. set_behavior
again, the window manager is restarted using your previous customizations.

366 X Window System User's Guide, Motif Edition

0383

In either case, a dialog box will ask you to OK or Cancel the process. Click on the appropri
ate choice with the first pointer button or press Return to select the highlighted button (OK).
Figure 13-1 shows the two possible dialog boxes.

Figure 13-1. Dialog boxes to toggle custom and default mwm environments

The section "mwm Functions" later in this chapter gives an overview of how predefined
functions such as f. set_behavior work. All of the available functions are described on
the rnwrn reference page in Part Three.

The default Root Menu definition (in the standard .mwmrc file) includes an item called Toggle
Behavior, which invokes f. set_behavior. This item is commented out in the standard
specification. If you want this item to be available on the Root Menu, it's a simple matter of
removing the comment mark from your .rnwmrc file and restarting the window manager (as
described in the preceding section). See the sections "Menu Specifications" and "Customiz
ing the Root Menu" for more information.

A final note: To be truly useful, the Toggle Behavior menu item must be added both to your
own .mwmrc file and to the system.rnwrnrc file. If it only appears in your own .rnwmrc file,
when you select it your environment will be changed to reflect the standard Root
Menu-which doesn't offer Toggle Behavior! Then the only way to toggle back is to use the
Shift-Control-Meta-! keystroke combination.

Customizing mwm 367

0384

The system.mwmrc File

Example 13-1 shows the system.mwmrc file shipped with OSF/Motif Release 1.2. If you've
used other window managers, this file may seem a bit more complicated than other configura
tion files, but the complexity is deceptive. A line beginning with an exclamation mark(!) or
a number sign (#) is treated as a comment. If a line ends with a backslash (\), the subsequent
line is considered a continuation of that line.

If you wish to change the operation of mwm, you shouldn't change the system.mwmrc file.
Instead, copy it to your home directory, under the name .mwmrc, and make changes to that
copy.

Example 13-1. The system.mwmrc file, Release 1.2

(c) Copyright 1989, 1990, 1991, 1992 OPEN SOFTWARE FOUNDATION, INC.
ALL RIGHTS RESERVED

Motif Release 1.2

! !

! ! DEFAULT Mwm 1.2 RESOURCE DESCRIPTION FILE (system.mwmrc)
! !

!! NOTE: To personalize this file, copy this file before editing it.
! ! Personalize copies of the Mwm resource file typically
! ! reside as :
! !

! !

! !

! !

$HOME/ .mwmrc

! ! Root Menu Description (this menu must be explicitly posted via f .menu)
! !

Menu DefaultRootMenu
{

"Root Menu"
"New Window"
"Shuffle Up"
"Shuffle Down"
"Refresh"
"Pack Icons"
"Toggle Behavior ... "
no-label

"Restart ... "
"Quit ... "

Menu RootMenu_l.l

368

"Root Menu"
"New Window"
"Shuffle Up"
"Shuffle Down"
"Refresh"

f.title
f.exec "xterrn &"

f.circle_up
f.circle_down
f.refresh
f.pack_icons
f.set_behavior
f.separator
f.restart
f.quit_rnwrn

f. title
f.exec "xterrn &"

f.circle_up
f.circle_down
f.refresh

X Window System User's Guide, Motif Edition

0385

Example 13-1. The system.mwmrc file, Release 1.2 (continued)

! !

"Pack Icons"
"Toggle Behavior"
no-label
"Restart ... "

f.pack_icons
f.set_behavior
£.separator
f.restart

!! Default Window Menu Description
! !

Menu DefaultWindowMenu
{

}

! !

Restore
Move
Size
Minimize
Maximize
Lower
no-label
Close

_R

J1
_s
_n
_x
_L

_c

!! Key Binding Description
! !

Keys DefaultKeyBindings
{

! !

Shift<Key>Escape
Alt<Key>space
Alt<Key>Tab
Alt Shift<Key>Tab
Alt<Key>Escape
Alt Shift<Key>Escape
Alt Shift Ctrl<Key>exclam
Alt<Key>F6
Alt Shift<Key>F6
Shift<Key>FlO
Alt Shift<Key>Delete

!! Button Binding Description(s)
! !

Buttons DefaultButtonBindings

<BtnlDown>
<Btn3Down>
<Btn3Down>

Buttons ExplicitButtonBindings
{

<BtnlDown>
<Btn3Down>
<Btn3Down>
<BtnlUp>

Customizing mwm

Alt<Key>F5
Alt<Key>F7
Alt<Key>F8
Alt<Key>F9
Alt<Key>FlO
Alt<Key>F3

Alt<Key>F4

window! icon
window! icon
rootliconlwindow
rootliconlwindow
rootliconlwindow
rootliconlwindow
rootliconlwindow
window
window
icon
rootliconlwindow

f.raise

f.restore
f.move
f.resize
f.minimize
f.maximi:ze
f.lower
f.separator
f.kill

f. post_wmenu
f .post_wmenu
f.next_key
f.prev_key
f.circle_down
f.circle_up
f.set_behavior
f. next_key transient
f.prev_key transient
f .post_wmenu
f.restart

icon! frame
icon! frame
root

f .post_wmenu

frame Iicon
frame Iicon
root
icon

f.menu DefaultRootMenu

f.raise
f .post_wmenu
f.menu DefaultRootMenu
f.restore

369

0386

Example 13-1. The system.mwmrc file, Release 1.2 (continued)

Buttons
{

! !

Alt<BtnlDown>
Al t<Btn2Down>
Al t<Btn3Down>

PointerButtonBindings

<BtnlDown>
<Btn3Down>
<Btn3Down>
<BtnlDown>
<BtnlUp>
Alt<BtnlDown>
Al t<Btn2Down>
Al t<Btn3Down>

window! icon
window I icon
window! icon

frame Iicon
frame Iicon
root
window
icon
window! icon
window! icon
window! icon

!! END OF mwm RESOURCE DESCRIPTION FILE
! !

f.lower
f.resize
f.move

f.raise
f .post_wmenu
f.menu DefaultRootMenu
f.raise
f.restore
f.lower
f.resize
f.move

The system.mwmrc file can be divided into three sections:

• Menu specifications.

• Key bindings.

• Button bindings.

The menu section of the system.mwmrc file defines the contents of the Root Menu and the
Window Menu. Menu item labels are paired with predefined mwm functions.

A binding is a mapping between a user action (such as a keystroke) and a function, in this
case a window manager function. The key bindings section specifies keyboard keys that can
be used to invoke some of the predefined window manager functions. The button bindings
section specifies pointer buttons or key/button combinations that can be used to invoke vari
ous functions.

Each section of the system.mwmrc file matches the following basic template:

Section_~e Section_Title
{

definitions

}

For example, the basic syntax of a menu specification is as follows:

Menu menu_name
{

menu items defined

}

370 X Window System User's Guide, Motif Edition

0387

Menu is the Section_Type. The other possible section types are Keys and Buttons.
The Section_Title is somewhat arbitrary. In this case, it corresponds to the title of a
menu. In the key and button sections, it is simply a title assigned to a group of bindings.

However, the Section_Ti tle can be very significant. As we'll see, a section title can be
used as the value of a resource variable in your .Xresources file. Menu titles are often refer
enced elsewhere in the .mwmrc file. The menu_name is generally paired with a pointer but
ton action (in the button bindings section of the .mwmrc file) to allow you to use a particular
button to display the menu.

The syntax of the actual menu items, key bindings, and button bindings requires further
explanation. But first, let's take a look at some of the predefined window manager functions.

mwm Functions

mwm has a number of predefined functions. Each of these functions has a name beginning
with "f.". Several functions appear in the system.mwmrc file, paired with the method by
which the function can be invoked: by menu item, pointer button action, keystroke(s), or key
and pointer button combinations.

The meaning of most of these functions should be fairly obvious to you from the name, if not
from your experience using the window manager. For example, f. resize is used to resize
a window, f .move to move a window, and f .minimize to change a window to an icon.

Others are less obvious. The function f. post_wmenu is used to display (or post) the Win
dow Menu. Notice the function f. separator, which appears in the menu definition
coupled with the instruction no-label rather than with a menu item. This line in the
.mwmrc creates a divider line on a menu. For example, such a divider line is used to isolate
the Restart item from the other items on the Root Menu.

As we'll see, the function f .menu is used to associate a menu with the key or button binding
that is used to display it. The f . menu function takes a required argument: the menu name.
This function can also be used to define a submenu.

Each of the functions is described in detail on the reference page for mwm in Part Three of
this guide.

Menu Specifications

The first section of the system.mwmrc file contains specifications for the Root Menu and Win
dow Menu. As we've said, the basic syntax of a menu specification is as follows:

Menu menu_name
{

menu items defined

}

As you may notice, the system.mwmrc file defines two different "Root Menus." The first ver
sion has the menu_name DefaultRootMenu and the second has the name Root
Menu_l. 1. The Defaul tRootMenu is just that-the Root Menu you get by default and

Customizing mwm 371

0388

the one described in Chapter 4, More about the mwm Window Manager. As we'll see, the
menu_name is paired with either a pointer button action or a keystroke combination-in the
button or key bindings section of the .mwmrc file-to allow you to use the button or key to
display the menu. As described in Chapter 4, the Defaul tRootMenu is displayed by plac
ing the pointer on the root window and holding down the third pointer button.

The RootMenu_l. 1 reiterates the Root Menu definition provided with mwm 1.1. The
system.mwmrc file does not bind this menu to a key or button, so there is no way to display it
without customization. Hypothetically, you could edit your .mwmrc to be able to display the
RootMenu_l.l using a different key than the one bound to the DefaultRoot
Menu-and thus, have access to both versions. However, since the default version provides
all of the functionality of the earlier one, there isn't much point. For the purposes of our dis
cussion, we'll just consider the default Root Menu.

Menu items are defined in slightly different ways for the Root Menu and the Window Menu.
The following text in the system.mwmrc file creates the default Root Menu:

Root Menu Description
Menu Defaul tRootMenu
{

}

"Root Menu"
"New Window"
"Shuffle Up"
"Shuffle Down"
"Refresh"
"Pack Icons"
"Toggle Behavior •.. "
no-label

"Restart ... "
"Quit ... 11

f. title
f.exec "xtem &"
f.circle_up
f.circle_down
f.refresh
f.pack_icons
f.set_behavior
f.separator
f.restart
f.quit_mwm

The syntax for defining Root Menu items is very simple. Each item is defined by a line of this
format:

"label" function

When you pair a label with a menu function, that label appears as a menu item. You can
invoke the function by selecting the item from the menu using the pointer. For example, the
line:

"Refresh" f.refresh

sets up the Refresh menu item, which can be selected from the Root Menu as discussed in
Chapter 4. (Again, the function performed is obvious from the function name.) As we'll see
later, it's easy to add items to the Root Menu by adding lines of label/function pairs. (You
can also use a bitmap image rather than a text label, if you like.)

Notice that two Root Menu items are commented out.

"Toggle Behavior ... " f. set_behavior
"Quit ... " f.quit_mwm

These items will not appear on your Root Menu. We'll discuss adding these items in the sec
tion "Customizing the Root Menu" later in this chapter.

372 X Window System User's Guide, Motif Edition

0389

Because Window Menu items can be invoked in a variety of ways, the syntax for defining
items is more complicated. The following text defines the Window Menu:

Default Window Menu Description

Menu DefaultWindoWMenu
{

Restore _R Alt<Key>F5 f.restore
Move _M Alt<Key>F7 f.move
Size _s Alt<Key>F8 f.resize
Minimize _n Alt<Key>F9 f.minimize
Maximize _x Alt<Key>FlO f.maximize
Lower _L Alt<Key>F3 f.lower
no-label f.separator
Close _c Alt<Key>F4 f.kill

}

The syntax of each menu item is as follows:

"label" mnemonic accelerator function

(The mnemonic and accelerator fields are optional.) Like the Root Menu, each item on the
Window Menu can be invoked by selecting its label with the pointer. In addition, there are
two shortcuts defined for invoking the function: a mnemonic and an accelerator. As you
may recall, a mnemonic is a unique letter abbreviation for the menu item label. On the menu,
mnemonic abbreviations are underlined; thus an underscore precedes each mnemonic defini
tion in the system.mwmrc file. Once the Window Menu is displayed, you can select an item by
typing its mnemonic abbreviation. Similarly, you can invoke the function without displaying
the menu, simply by typing the accelerator keys (by default, the Alt key plus a function
key).*

Now let's see how one of the Window Menu definition lines fits this template:

Move _M Alt<Key>F7 f.move

The menu item. label is Move. Selecting the item invokes the f. move function. The
mnemonic "m" or the accelerator key combination Alt-F7 can also be used to invoke the
function.

Key Bindings

The second section of the system.mwmrc file binds keystroke combinations to window man
ager functions.

Like the menu definition section, the key bindings section of the file is titled and bracketed:

Keys Section_Title
{

key bindings defined

}

*If your keyboard does not have an FlO function key, you cannot use the accelerator for the Maximize item without
doing some customization. A possible workaround is to edit the line defining the Maximize menu item in your
.mwmrc file. Changing FlO to F2 will suffice in most cases.

Customizing mwm 373

0390

The section type is Keys. The section title in the system.mwmrc file is Defaul tKey
Bindings. This title can also be specified as the value of the mwm resource key
Bindings in your .Xresources file. However, since these bindings are used by default, this
is not necessary.

Using the section title as a resource becomes significant when you want to create an alterna
tive set of bindings. Hypothetically, you could add another set of bindings with a different
title to your .mwmrc file. Then specify this title as the value of the keyBindings resource
in your .Xresources file. If you add the following resource specification to your .Xresources
file, MyButtonBindings replace DefaultButtonBindings for all client applications
running with mwm:

Mwm*keyBindings: MYButtonBindings

If you want to use different sets of bindings for different applications, you can add an appli
cation name between the parts of the resource specification. For example, if you want My
ButtonBindings to apply only to xterm windows running with mwm, you could enter the
following resource line:

Mwm*xterm*keyBindings: MYButtonBindings

Then Defaul tBut tonBindings would still apply to all applications other than xterm.

A non-obvious principle behind a key/function (or button/function) binding is that in order
for the keys (or buttons) to invoke the function, the pointer must be in a certain location.
This location is known as the context. For key bindings, the useful contexts are: root,
window, and icon. The window context refers to the entire window, including the frame.
(There are other more specific contexts, such as border, explained under "Button Bind
ings," but when specifying key bindings, these contexts are all equivalent to window.)

Some functions can be invoked if the pointer is in more than one context. For example, as
we saw in Chapter 4, you can display the Window Menu from either a window or an icon
using the keyboard shortcuts Meta-space or Shift-Escape. The action involved is
f. post_wmenu and the window and the icon are the pointer contexts from which this
action can be performed. These keyboard shortcuts are defined in the key bindings section of
the system.mwmrc file as follows:

Shift<Key>Escape windowlicon f.post_wmenu
Meta<Key>space windowlicon f.post_wmenu

Upon examining these lines, we can discern the template for a key binding:

[modifier_ keys]<Key> key_ name context function

Each binding can have one or more modifier keys (modifiers are optional) and must have a
single primary key (signaled by the word <Key> in angle brackets) to invoke the function. In
the first specification, Shift is the modifier and Escape is the primary key. In the second spec
ification, Meta is the modifier and space is the primary key. Both specifications have two
acceptable pointer contexts: either a window or an icon. And both bindings are mapped to
the same action, f. post_wmenu, which displays the Window Menu.

374 X Window System User's Guide, Motif Edition

0391

Button Bindings

The key bindings section of the file is also titled and bracketed:

Buttons Section_Title
{

button bindings defined

}

The section type is But tons. The system.mwmrc file contains three sets of button bindings
with the section titles:

DefaultButtonBindings
ExplicitButtonBindings
PointerButtonBindings

Button bindings clearly illustrate the need to coordinate your .Xresources and .mwmrc files.
The three sets of button bindings coiTespond to three possible settings for the resource
buttonBindings. The default setting for the resource is:

Mwrn*buttonBindings: DefaultButtonBinclings

specifying that the DefaultButtonBindings are used.

You can specify that one of the other sets of button bindings is to be used by setting this
resource in your .Xresources file. For example, if you add the following specification to your
resource file:

Mwrn*buttonBindings: ExplicitButtonBindings

mwm will use those bindings that come under the heading ExplicitButtonBindings in
the .mwmrc file.

Be aware that if you do specify different button bindings, the value of the resource must
exactly match the title associated with the bindings, or the bindings will not take effect.

The syntax for a button binding specification is very similar to that of a key binding:

[modifier_ key]<button _event> context function

Each button binding can have one or more modifier keys (modifiers are optional) and must
have a single button event (enclosed in angle brackets) to invoke the function. The motion
that comprisys each button event should be fairly obvious. (Lists of acceptable button events
and modifier keys appear on the mwm reference page in Part Three of this guide.)

For button bindings. the valid contexts are root, window, icon, title, border,
frame, and app. The title context refers to the title area of the frame. border refers to
the frame exclusive of the titlebar. frame refers to the entire frame (thus it encompasses
title and border). The app context refers to the application window proper (i.e., exclu
sive of the frame). The window context includes the application window and the frame
(thus it encompasses app, frame, border, and title).

Customizing mwm 375

0392

Now let's see how the button binding syntax relates to the default button bindings in the
system.mwmrc file:

Buttons DefaultButtonBindings
{

<BtnlDown>
<Btn3Down>
<BtnlDown>

icon I frame f.raise

}

icon
root

f. post_wmenu
f.menu RootMenu

The first specification is familiar. It indicates that the event of pressing down the first pointer
button while the pointer is in a window frame or an icon performs the action of raising the
window or icon, respectively.

The second binding reveals still another way to display the Window Menu, by pressing the
third pointer button on an icon.

The third binding is also familiar and illustrates the use of the f . menu function. As previ
ously mentioned, the f . menu function is used to associate a menu with the key or button
binding that is used to display it. The following binding specifies that the Root Menu is
displayed by pressing and holding down the first pointer button on the root window:

<BtnlDown> root f.menu RootMenu

Notice that the function requires an argument, the menu name (RootMenu), which also
appears in the first line of the menu definition. This correspondence is required-f. menu
needs to know which menu to display.

Customizing the Root Menu

You can add items to the Root Menu simply by adding lines of the format:

"label" function

within the menu definition section of your .mwmrc file (and then restarting the window man
ager).

The f . exec function allows you to execute system commands from a menu. In the default
Root Menu, the New Window command uses the f . exec function to execute the system
command xterm &, as shown below:

376

Root Menu Description
Menu DefaultRootMenu
{

}

"Root Menu"
"New Window"
"Shuffle Up"
"Shuffle Down"
"Refresh"
"Pack Icons"
"Toggle Behavior ... "
no-label

"Restart ... "
"Quit ... "

f.title
f.exec "xterm &"
f.circle_up
f.circle_down
f.refresh
f.pack_icons
f.setJ>eha,vior
f.separator
f.restart
f.quit_mwm

X Window System User's Guide, Motif Edition

0393

To create a menu item labeled Clock that opens an xclock window on your display, simply
add a line to your .mwmrc file, as shown here:

Root Menu Description
Menu DefaultRootMenu
{

}

"Root Menu"
"New Window"
"Clock"
"Shuffle Up"
"Shuffle Down"
"Refresh"
"Pack Icons"
"Toggle Behavior ... "
no-label

"Restart ... "
"Quit ... "

f. title
f .exec "xterm &"
f.exec "xclock &"
f.circle_up
f.circle_down
f.refresh
f.pack_icons
f.set_behavior
f.separator
Lrestart
f.quit_mwm

In most cases, the label is a text string. However, you can use a bitmapped image instead by
preceding it with an "at" symbol (@). The following line lets you run xbiff by selecting the
bitmap image of a full mailbox (filename flag up) from the menu.

@flagup f.exec "xbiff &"

Unless a full pathname is given for the bitmap file, mwm looks for bitmap files in a system
wide directory, generally lusrlinclude!Xll !bitmaps. (jlagup is a standard bitmap available in
/usr!include/Xll /bitmaps. It's the image xbiff uses for its full mailbox window.) You can
also specify an alternate standard bitmap directory using the bi tmapDirectory resource.
If a bitmap is not found in the standard bitmap directory and the XBMLANGPATH environ
ment variable is set, mwm checks that directory.

You can also edit (or remove) existing menu items. As we pointed out earlier, two items
(Toggle Behavior and Quit) are commented out. Toggle Behavior invokes f. set_behav
ior, which toggles between your own customized version of mwm and the standard version
for your environment. (You can also invoke this function using the key combination Shift
Control-Meta-!. See the section "Switching between Custom Version and System Defaults"
earlier in this chapter for more information.) Quit causes the window manager to exit (it is
not restarted). You might invoke Quit before starting another window manager, such as twm.

To add either Toggle Behavior or Quit to the Root Menu, just delete the initial exclamation
mark, which comments out the line (and restart the window manager, as usual).

You might also want to change what an existing menu item does. Say you want to run the
hpterm terminal emulator (developed by Hewlett-Packard) rather than xterm. You would edit
the New Window line in your menu specification to look like this:

Root Menu Description
Menu DefaultRootMenu
{

"Root Menu"
"New Window"
"Clock"
"Shuffle Up"
"Shuffle Down"
"Refresh"

Customizing mwm

f. title
f.exec "hpterm &"
f.exec "xclock &"
f.circle_up
f.circle_down
f.refresh

377

0394

"Pack Icons"
"Toggle Behavior ... "
no-label

f.pack_icons
f.set_behavior
f.separator
f.restart
f.quit__].TlVVffi

"Restart ... "
"Quit ... "

}

Creating New Menus

Keep in mind that mwm also allows you to specify entirely new menus in your .mwmrc file.
A new menu can be separate from all existing menus, or it can be a submenu of an existing
menu. (Submenus are described in the following section, "Cascading Menus.")

If you want to create a new, independent menu, it must conform to the menu spe'cification
syntax discussed earlier. Items must invoke predefined window manager functions.

The .mwmrc file must also specify how the menu will be displayed and in what context. This
involves associating a key or button with the f. menu function. Say you've specified a new
menu, titled GamesMenu, that runs various game programs, each in its own window. (The
f. exec function would be used to define each item.) The following button binding speci
fies that pressing the second pointer button on the root window displays the Games Menu:

<Btn2DoWil> root f.menu GamesMenu

Cascading Menus

mwm also allows you to create submenus, generally known as cascading menus because they
are displayed to the right side of (and slightly lower than) another menu. You define a sub
menu just as you would any other, using the syntax rules discussed earlier. The following
lines create a Utilities Menu that invokes several "desktop" clients and one game:

Menu UtilitiesMenu
{

}

"Utilities Menu"
"Clock"
"System Load"
"Calculator"
"Manpage Browser"
"Tetris"

f.title
f.exec "xclock &"
f.exec "xload &"
f.exec "xcalc &"
f.exec "xman &"
f.exec "xtetris &"

In order to make the Utilities Menu a submenu of the Root Menu, you need to add an f . menu
function to the Root Menu. This f . menu function must be coupled with the correct submenu
title:

378

Root Menu Description
Menu DefaultRootMenu
{

"Root Menu"
"New Window"
"Shuffle Up"
"Shuffle Down"
"Refresh"

f.title
f.exec "hpterm &"
f.circle_up
f.circle_down
f.refresh

X Window System User's Guide, Motif Edition

0395

}

"Pack Icons"
"Utilities"
"Toggle Behavior ... "
no-label

"Restart ... "
"Quit ... If

f.pack_icons
f.menu
f.set_behavior
f.separator
f.restart
f. qui t_rnwm

UtilitiesMenu

After you specify the preceding menus in your .mwmrc file (and restart mwm), display the
Root Menu. It will feature a new item, labeled Utilities. Since this item is actually a pointer to
a submenu, it will be followed by an arrowhead pointing to the right, as in Figure 13-2.

Figure 13-2. An arrowhead pointing to the right indicates a submenu

If you drag the pointer down the Root Menu to the Utilities item, the submenu will appear to
cascade to the right. Figure 13-3 shows it appearing.

Figure 13-3. Utilities submenu of the Root Menu

Customizing mwm 379

0396

If you release the pointer button, both menus will remain displayed arid the Utilities item and
the first item on the Utilities Menu will be highlighted by a box. You can then select an item
from the Utilities Menu by moving the pointer to the item and clicking the first button.

Keep in mind that you can create several submenus beneath a single menu and that menus
can cascade several levels, though such complexity is not necessarily desirable.

Note also that if you pair a label with an invalid function (or with f. nop, which specifies no
operation), or with a function that doesn't work in the current context, the label appears in a
lighter typeface. This "graying out" indicates that the menu item is not available for selec
tion.

Setting mwm Resources

The Motif window manager provides dozens of resources that control the appearance and
functionality of the window manager, its component features, and other clients running with
it. mwm resources should be entered in your .Xresources file and will take effect when the
resources have been loaded into the server and mwm has been started or restarted. See Chap
ter 11, Setting Resources, for syntax information and instructions on how to load resources
using the xrdb client. See "Activating Changes to the Window Manager" earlier in this chap
ter for information about running mwm with the new resource settings.

mwm resources are considered to fall into three categories:

1. mwm component appearance resources. These resources set the characteristics of mwm's
component features, such as the window frame, menus, and icons.

2: mwm-specific appearance and behavior resources. These resources set characteristics of
the window manager client, such as focus policy, key and button bindings, and so forth.

3. Client-specific resources. These mwm resources can be used to set the appearance and
behavior of a particular client or class of clients.

Under these categories fall dozens of mwm resources. The sheer number of resources makes
it impractical for all of them to be discussed here. In the following sections, we discuss the
three categories of resources in somewhat greater detail. We'll then take a look at two of the
more powerful and useful resources, keyboardFocusPolicy and useiconBox, which
set the focus policy and set up mwm to use an icon box, respectively. For a comprehensive
list of available resources, see the mwm reference page in Part Three of this guide. Note that
the reference page groups the resources according to the categories we've listed.

380 X Window System User's Guide, Motif Edition

0397

Component Appearance Resources

The Motif window manager can be considered to be made up of components: client window
frames, menus, icons, and what are known as feedback or dialog boxes. An example of a
feedback box is the box that appears so that you can confirm or cancel a Restart command
from the Root Menu. (See "The Root Menu" section in Chapter 4, More about the mwm
Window Manager.)

Certain resources allow you to specify the appearance of one or all of these mwm component
features. In specifying the resource setting, you can use the name of one of the features as
part of the resource name. For example, one of the most useful component appearance
resources is background, which, as we know from Chapter 11, specifies the background
color. You can specify a resource that sets the background color of any of the mwm compo
nents. The following resource specification sets the background color of all client window
frames to light blue:

Mwm*client*background: lightblue

Table 13-1 summarizes the resource name that corresponds to each of the mwm components.

Table 13-1. Resource Names Corresponding to mwm Components

Component

Menu
Icon
Client window frame
Feedback/dialog box
Titlebar

Resource name

menu
icon
client
feedback
title

Thus, to set the background color of feedback boxes to sea green, you'd use the following
resource:

Mwm*feedback*background: seagreen

Of course, if you omit any specific component from the resource specification, it applies to
all components. Thus, the following specification sets the background color of all window
frames, feedback boxes, icons, and menus to light grey:

Mwm*background: lightgrey

Since the titlebar is actually part of the client window frame, the title resource is a special
case. (Technically speaking, tit 1 e comes at a different level in the widget hierarchy than
client and the other component resources.) The title resource allows you to specify
characteristics for the titlebar alone (including the command buttons), while you can specify
characteristics for the rest of the frame (the resize border) using client. Thus, you might
have the resource specifications:

Mwm*client*title*background: lightblue
Mwm*client*background: aquamarine

Customizing mwm 381

0398

These lines would create two-tone window frames with aquamarine borders and light blue
titlebars (perhaps too vivid a combination). (Note that these colors do not apply to the active
(focus) window. To change these characteristics for the focus window, you would need to
specify the activeBackground resource. See the mwm reference page in Part Three of
this guide for more information.)

Similarly, you can specify resources for individual menus, by using the menu component
with the menu name, as in the following example:

Mwm*menu*UtilitiesMenu*background: seagreen

This line gives the Utilities Menu we added to our .mwmrc file a sea green background. (See
"Cascading Menus" earlier in this chapter for information about creating submenus.)

mwm-specific Appearance and Behavior Resources

The mwm-specific resources control aspects of what you probably think of as the window
manager application itself, features such as the focus policy, whether windows are placed on
the display automatically or interactively, which set(s) of button and key bindings are used,
whether an icon box is used, and so forth.

The syntax of mwm-specific resource specifications is very simple-the mwm class name
connected by a loose binding to the resource variable name, as shown here:

Mwm*clientAutoPlace: false

This resource establishes the behavior that the user will interactively place client windows on
the display. (The default is true, meaning mwm places them automatically.)

Two of the mwm-specific resources bring up an issue of coordination between the
.Xresources and .mwmrc files. Remember, the default .mwmrc file contains three sets of but
ton bindings:

DefaultButtonBindings
ExplicitButtonBindings
PointerButtonBindings

These three sets of button bindings correspond to three possible settings for the resource vari
able buttonBindings. If your resource file contains the following setting:

Mw.m*buttonBindings: ExplicitButtonBindings

mwm will use those bindings that come under the heading ExplicitButtonBindings in
the .mwmrc file.

Similarly, the resource variable keyBindings should be coordinated to match the key
bindings in the .mwmrc file. Since the default .mwmrc file has only one set of key bindings,
named Defaul tKeyBindings, and the keyBindings resource also sets this by default,
coordination should not be an issue unless you create a new set of key bindings with a differ
ent name.

Two of the most useful and powerful mwm-specific resources set the keyboard focus policy
and specify that icons be stored in an icon box. We '11 discuss the use and advantages of these
resources later in this chapter.

382 X Window System User's Guide, Motif Edition

0399

Client-specific Resources

Some mwm resources can be set to apply to certain client applications or classes of applica
tions. These resources generally have the form:

Mw.m*application*resource_variable:

where application can be an instance name or a class name. Be aware that the applica
tion name is optional. If you omit an application name, the resource applies to all clients.
(Client-specific resource specifications take precedence.)

In rare cases, an application might not have instance and class resource names that are known
to the window manager. To see if the window manager knows these names, run xprop and
click the pointer on the application window. The property WM_CLASS should contain both
names. You can specify resources for clients that have unknown instance and class names by
using the literal parameter defaults in place of a particular application.

Mwm*defaults*resource_variable:

Many of the client-specific resources provide what might be considered advanced customiza
tion. For example, a combination of resources allows you to specify your own bitmap as the
image for a client icon. Other resources allow you to suppress certain features of the window
frame for particular clients. For instance, you may choose to omit the Maximize button from
the frame surrounding xterm windows. Still others allow you to specify extra window deco
ration in the form of a matte which lies between the application window and the frame. This
matte is purely aesthetic; it provides no functionality. The average user will probably not
need most of these client-specific resources.

One client-specific resource users might be interested in is called focusAutoRaise. This
resource causes a window to be raised to the top of the stack when it is selected as the focus
window. When the focus policy is explicit (click-to-type), focusAutoRaise is true for all
clients by default. When the focus policy is pointer (real-estate-driven), focusAutoRaise
is false for all clients by default.

These defaults are very sensible. If you are using the default click-to-type focus, focus
AutoRaise is clearly very desirable. You click on a window to focus input and the window
is raised to the top of the stack so that you can work with it easily. However; if you change
the focus policy to pointer focus (as we'll describe in the following section), turning focus
AutoRaise on can make the display seem chaotic.

When pointer focus is active as you move the pointer across the display, the focus changes
from window to window based on the location of the pointer, often a desirable feature. How
ever, if focusAutoRaise is set to be true, each time the pointer moves into a window, the
window will be moved to the front of the display. Simply moving the pointer across a
screenful of windows can create a distracting shuffling effect! If you set the focus policy to
pointer, we suggest you leave focusAutoRaise set to false.

Of course, using pointer focus without focusAutoRaise is just our preference. You may
want to experiment awhile to see how you like working with it.

Hypothetically, you can turn autoFocusRaise behavior on or off only for particular
clients, but this is not necessarily desirable, with either focus policy. For instance, say you're
using the default mwm settings so that explicit focus is in effect and focusAutoRaise is

Customizing mwm 383

0400

true for all clients. You can suppress the auto-raise feature only for the class of xterm win
dows by specifying:

Mwm*XTerm*focusAutoRaise: false

But what is the point? In most cases, you want to raise the focus window so that you can
work with it more easily.*

When pointer focus is in effect, setting focusAutoRaise differently for different clients
can have tedious and unnecessary complications. It becomes fairly easy to "bury" one win
dow beneath another inadvertently. For example, say focusAutoRaise is turned on for
xterm windows only, and turned off for xbiff. If an xbiff window appears on top of an xterm
and you move the pointer into the xterm, the xterm is raised automatically, covering the xbiff
window.

You can send the xterm to the back using the Lower item of the Window Menu. Although the
xterm retains the focus, it is not raised. focusAutoRaise specifies that a window is raised
when the focus is moved to a window (retaining the focus is a different matter). However, if
you move the pointer to another window and back to the xterm, the xbiff window will be bur
ied again. In order to avoid such a situation, you would have to arrange all windows so that a
part of the frame is exposed at all times. No window should ever appear entirely on top of
another.

Given the limitations and potential problems, we discourage setting focusAutoRaise
differently for different applications, regardless of the focus policy.

See the mwm reference page in Part Three for descriptions of all of the client-specific
resources.

Setting the Focus Policy

The most common resource users will probably want to set controls mwm' s keyboard focus
policy. By default, mwm has explicit (or click-to-type) focus, which is set using the follow
ing resource:

Mwm*keyboardFocusPolicy: explicit

To change the keyboard focus policy from explicit to pointer focus (that is, focus follows the
movement of the pointer), enter the following line in your .Xresources file:

Mwm*keyboardFocusPolicy: pointer

*Note that even if you tum off the auto-raise feature for xterm, it is still possible to raise an xterm and select it to re
ceive input simultaneously, but in a more restricted way. Clicking anywhere on a window selects that window to re
ceive the focus. Clicking on the frame, exclusive of the command buttons, raises a window. Thus, by clicking this
part of the frame, you can perform both actions simultaneously. However, why restrict yourself to using only a part
of the frame, when you can use the entire window?

384 X Window System User's Guide, Motif Edition

0401

Using an Icon Box

One of the most interesting (and desirable) features mwm can provide is a window in which
icons can be organized on the display. This window is known as an icon box, and is pictured
in Figure 13-4. As we'll see, in addition to organizing icons neatly on the display, the icon
box also provides a few window management functions.

You can set up mwm to provide an icon box automatically by specifying the following
resource in your .Xresources file:

Mwm*useiconBox: true

If this resource is included in your .Xresources file (and the resources have been loaded as
described in Chapter 11) mwm will provide an icon box when it is started (or restarted).
Other resources can be used to customize the size, appearance, and location of the icon box,
as well as the window's title. By default, the icon box is six icons wide by one icon high and
is located in the lower-left corner of the display.

Figure 13-4. An icon box

The horizontal and vertical scrollbars within the icon box suggest a significant, albeit not an
obvious, feature. Icons can extend beyond the visible bounds of the icon box. If more than
six icons are present in the default size box, you can view them using the scrollbars. (See
Chapter 9, Working with Motif Applications, for instructions on using a Motif scrollbar.)
Keep in mind that if icons do extend beyond the visible bounds of the box, the appearance of
the scrollbars will indicate it.

The presence of an icon box changes the way icons are used on the display. If you are using
mwm without an icon box, only those windows that have been iconified are represented by
icons on the display. If you are using mwm with an icon box, all windows on the display are
represented by icons that are stored in the box, whether or not the windows are in an iconified
state.

When a client window is started, the window appears on the display and a corresponding
icon appears in the icon box. However, an icon that represents a window currently visible on
the display has a different appearance than an actual icon (that is, an iconified window). An

Customizing mwm 385

0402

icon corresponding to a window currently on the display appears flatter and less defined than
the image of an iconified window. The former probably has fewer lines in its outer border. If
you set up mwm to use an icon box, the differing appearance of these two types of icons
should be obvious.

Somewhat similar to a menu item in a lighter typeface, the flatter, less defined icon suggests
that it is not available to be chosen. In a sense, this is true. Since the flat icon is not an iconi
fied window, but merely an image, it is not available to be converted back to a window. The
icon box in Figure 13-4 contains two iconified windows (xclock and the first xterm) and four
icons representing windows currently visible on the display.

You can perform some window management functions by clicking on icons in the icon box.
If you double click on an iconified window using the first pointer button, the icon is con
verted back to a window (and is raised to the top of the stack). If you double click on an icon
representing an active window on the display, the corresponding window is raised to the front
of the display. (We find this latter function to be not particularly useful.) When you raise a
window by clicking on its icon, the icon box retains the focus.

When performing either function, between the first and second clicks you'll probably notice
that the Window Menu is displayed for an instant above the icon. If you pause too long
between the two clicks in either of these functions, the action you intend (either deiconifying
or raising) will fail and the Window Menu will remain on the screen.

If you get stuck on the Window Menu when trying to convert an icon to a window, place the
pointer on the Restore menu item and click the first pointer button.

If you get stuck on the Window Menu when trying to raise a window on the display (by click
ing on its icon), the menu affords no item to complete the action. Instead you should move
the pointer onto the root window and click the first button-the menu will be removed. Then
try double clicking again. Or raise the window simply by clicking the first pointer button on
the window's frame (exclusive of the frame's command buttons).

As these actions suggest, you can display the Window Menu from any of the icons in the box
by clicking the first pointer button on the icon image.* (You can also display the Window
Menu from and manage the icon box itself, as we discuss later on.) Depending on whether
you click on an iconified window or an icon representing an active window on the display,
different Window Menu items are available for selection.

When you display the Window Menu from an iconified window within the icon box, the items
Restore, Move, Maximize, and Close are available for selection. Be aware that the Move
menu item only allows you to move the icon itself-to another location within the icon box.
The other available items perform their standard functions, which are described in the section
"Using the Window Menu on Icons" in Chapter 4.

Displaying the Window Menu from an icon representing an active window on the display is
not particularly useful: only the items Move and Close are available for selection. And
again, the Move menu item only allows you to move the icon within the icon box.

*The 1.0 version of rnwrn was documented to display the Window Menu from an icon within the icon box, but the pro
gram did not seem to work according to the specifications. The 1.1 version of rnwrn does provide this functionality.

386 X Window System User's Guide, Motif Edition

0403

When you display the Window Menu from the icon box, the menu commands apply to the box
itself (which is actually a window). You can display the menu from the icon box using any of
the methods described in the section "Using the Window Menu" in Chapter 4. For example,
if you use the keyboard shortcut Meta-space, the menu is displayed above the Window Menu
command button in the upper-left comer of the icon box frame.

When displayed from the icon box, the Window Menu Close item is replaced by an item
called Pack Icons (mnemonic "p", accelerator Shift+Alt+F7). Pack Icons rearranges the
icons in the box to fill in empty slots. This is useful when icons are removed from the box or
the box is resized.

When you remove a window, the corresponding icon is removed from the box, leaving an
empty slot. Pack Icons will move any icons that are to the right of the slot one space to the
left to fill the hole. If you resize the icon box, Pack Icons will arrange the icons to fit the new
window in an optimal way. For instance, say we resize the icon box in Figure 13-4 so that it
is only three icons wide, but twice as high, as in Figure 13-5. The first three icons from the
box appear; the second three are obscured.* Notice the horizontal scroll bar at the bottom of
the window, indicating that the other three icons are still to the right of these and thus not
viewable in the resized box. If you place the pointer on the scrollbar, hold down the first but
ton and drag the scrollbar to the right, the hidden icons will be revealed.

In order to rearrange the icons to better fill the new shape box, use the Pack Icons menu item.
Figure 13-5 shows the icon box after you've selected Pack Icons.

Figure 13-5. In the resized icon box, only three icons are visible

*When you resize the icon box, you'll notice the resize action has a tendency to jump the width or height of an icon
at a time. mwm only allows the box to be resized exactly to fit a number of icons wide and a number high, though
there are no obvious limitations as to the numbers. Basically, you can have an icon box of any size, even one icon
high and wide, and display the other icons using the scrollbars. As you resize the box, the small rectangular window
in the center of the screen assists you: it shows the dimensions in the number of icons wide by the number of icons
high.

Customizing mwm 387

0404

If you want to reorganize icons in the box yourself, without Pack Icons, this is also possible.
You can actually move icons into adjacent empty slots using the pointer. Just hold down the
first pointer button on the icon and drag it into the next slot. If you first make the icon box
larger, so that there are several empty spaces, you'll find you can radically reorganize icons.
Once you've arranged them as you like, you resize the box to fit the icons-or perhaps make
it even smaller and view the obscured icons using the scrollbars.

Figure 13-6. Pack Icons menu item rearranges icons in resized box

Keep in mind that the next time you log in, the icon box will be brought up at its default size.
To specify alternate dimensions, set the variable iconBoxGeometry in your .Xresources
file. For example, if you want an icon box three icons wide by two icons high, use the speci
fication:

Mwm* iconBoxGeometry: 3x2+0- 0

which creates a box of the desired size in the lower-left comer of the display. (This is the
default location; you could omit the + 0- 0 from the geometry string and get the same result.)

The following specification creates an icon box four icons wide by three icons high in the
lower-right comer of the display:

Mwm*iconBoxGeometry: 4x3-0-0

388 X Window System User's Guide, Motif Edition

0405

1

Setup Clients

This chapter describes three useful setup clients that can be used to custom
ize the appearance and operation of your display, and the operation of your
keyboard and pointer.

In This Chapter:

When Should I Set Preferences? ... 391
Setting Display and Keyboard Preferences: xset 393

Keyboard Bell .. 393
Bug Compatibility Mode (Release 4) .. 394
Keyclick Volume .. 394
Enabling or Disabling Autorepeat ... 395
Changing or Rehashing the Font Path ... 395
Keyboard LEOs ... 395
Pointer Acceleration ... 396
Screen Saver ... 396
Color Definition .. 397
Help with xset Options ... 397

Setting Root Window Characteristics: xsetroot 398
Setting Root Window Patterns ... 398
Foreground Color, Background Color, and Reverse Video 399
Changing the Root Window Pointer .. 400

Modifier Key and Pointer Customization: xmodmap 401
Keycodes and Keysyms ... 403
Procedure to Map Modifier Keys ... ; 404
Displaying the Current Modifier Key Map 404
Determining the Default Key Mappings .. 405
Matching Keysyms with Physical Keys Using xev 406
Changing the Map with xmodmap .. 407

Expressions to Change the Key Map ... 408
Key Mapping Examples ... 409

Displaying and Changing the Pointer Map 411

0406

14
Setup Clients

This chapter discusses how to set up certain features of your working environment, using
these clients:

xset To set certain characteristics of the keyboard, pointer, and display.

xsetroot To set root window characteristics.

xmodmap To change pointer and key mappings.

When Should I Set Preferences?

First, let's make one thing clear: you may never have to specify any user preferences at all.
The default settings for your system may be sufficient for your needs.

In addition, some of the customizations you can make to your environment are purely aes
thetic. The xsetroot client allows you to change what your root window looks like and what
pointer shape is displayed on the root window. It has nothing to do with how X works.

On the other hand, both xset and xmodmap are primarily intended to control how your envi
ronment operates. You probably don't think about many of the features you can control
using xset-features like pointer speed and how loud the keyboard bell is. xset allows you to
fine tune fairly subtle aspects of your working environment, but in most cases, the system
defaults will probably be sufficient. Perhaps more importantly, xset allows you to specify the
font path-the directories in which the X server searches for fonts called by a client.

xmodmap is by far the most complicated and confusing of the setup clients. It allows you to
change keyboard and pointer button "mappings," i.e., what a key or pointer button is
assigned to do. For example, you might map a Delete function to the key marked "Back
space" on your keyboard. Chances are you'll want the so-called "Meta" function, which is
used in many mwm window manager operations, to be mapped to a convenient key. (It may
already be.) A left-handed person might want the rightmost button on the pointer to function
as "pointer button one." (Generally, the leftmost button is pointer button one by default).

As you might imagine, pointer mappings are fairly simple. Most pointers have two or three
physical buttons and the only thing you can change is their "logical" order, i.e., which is con
sidered "first," etc. By contrast, some key mappings can seem like complex equations. Per-

Setup Clients 391

0407

haps the most confusing mappings involve the so-called "modifier" key functions (Control,
Caps Lock, Meta, etc.), introduced in Chapter 4, More about the mwm Window Manager.

It's very possible that you may never have to specify any key or pointer customizations. The
default assignments may be fine. If not, you can reassign functions using xmodmap. Later in
this chapter, we discuss some of the issues you should be aware of before assigning key and
pointer button functions and also show some typical mappings using xmodmap.

Although you can run setup commands at any time, as a general rule it's a good idea to put
xset and xsetroot in your login session script. (This file is often called .xinitrc or .xsession.
See Appendix A, Managing Your Environment, for details.) xmodmap is something of a spe
cial case. We'll come back to that.

The reasons for running xset and xsetroot at startup vary somewhat based on the display and
server-but don't change the overall strategy.· In most environments, user preferences are
reset to the system defaults when you log out. It makes sense to specify your preferences in 'a
session file that executes when you log in again.

In other cases, whatever preferences have been set for the server running the particular dis
play (say an X terminal) will be carried over to the next login session on that display. (Some
X terminals can be configured to retain settings between logins.) Hypothetically, another
user could log in at your X terminal and get your preferences! If you use one display exclu
sively, this "inheritance" might seem more like an advantage than a problem. Keep in mind,
however, that if the X server is restarted for some reason (and that will happen sooner or
later), your preferences will be cleared and you'll have to run your setup commands next
time you log in anyway. The simplest way to avoid problems like these is to run xset and
xsetroot at startup.

Most of the settings controlled using xset and xsetroot will work on any display, with any
server. Virtually the worst thing that can happen is that a server won't support a particular
option and your command will simply be ignored. xmodmap is a special case because key
boards differ and thus many key assignments are not portable. If you always work at the
same terminal, running xmodmap at startup should be no problem. If you're inclined to log
in at different types of terminals, xmodmap can create problems. You should have a better
idea of the possible complications after reading the section on xmodmap later in this chapter.

Now you might want to glance over the next few pages to get an idea of the types of features
you can control using xset and xsetroot. Most of them are simple to specify and they can
enhance your working environment. If you have problems with how the keyboard or pointer
works (or think you'd like to improve it), read the section on xmodmap."

392 X Window System User's Guide, Motif Edition

0408

Setting Display and Keyboard Preferences: xset

You can specify many different "behaviors" of the display, pointer, and keyboard using the
xset client. xset takes a variety of options that allow you to fine tune many features of your
environment, including:

• The font search path

• The keyboard bell (margin bell)

• The keyclick (the noise each key makes when you type it)

• Keyboard autorepeat (the feature that causes a key to be typed. multiple times if you hold
it down)

• Pointer speed

• Screen saver

The command-line syntax for xset can be confusing. Some xset options are followed by on
or off to set or unset the particular feature. Some options take a preceding dash to indicate
that a feature be disabled, while the use of the option alone (without a dash) indicates that the
feature be enabled. This can be confusing to users accustomed to seeing a dash as an intro
ductory symbol on all options (as is the case with other UNIX and X programs).

Although you can run xset at any time, as a general rule it's a good idea to put it in your login
session script. (This file is often called .xinitrc or .xsession. See Appendix A, Managing
Your Environment, for details.)

The following sections describe the various options used to set pointer, keyboard, and screen
features. Keep in mind that not all X implementations are guaranteed to honor all of these
options.

Keyboard Bell

The b option controls bell volume (as a percentage of its maximum), pitch (in hertz), and
duration (in milliseconds). It accepts up to three numerical parameters:

b volume pitch duration

If no parameters are given, the system defaults are used. If only one parameter is given, the
bell volume is set to that value. If two values are listed, the second parameter specifies the
bell pitch. If three values are listed, the third one specifies the duration.

Volume as a percentage of the maximum is fairly easy to understand. A specification of 7 0
means that the volume will be "turned up" 70% of the way. The second and third argu
ments-pitch in hertz and duration in milliseconds-probably don't mean much to most
users. One hundred milliseconds seems like a reasonable length beep. I don't notice much
difference in pitch on my Sun workstation. I use the following settings:

% xset b 50 1000 100

Setup Clients 393

0409

This command sets the volume of the keyboard bell to 50 percent of the maximum, the pitch
to 1000 hertz, and the duration to 100 milliseconds. ·

Note that bell characteristics vary with different hardware. The X server sets the characteris
tics of the bell as closely as it can to the user's specifications.

The b option also accepts the parameters on or off. If you specify xset b on, the sys
tem default for volume is used. (Pitch and duration retain their previous settings.)

The command xset b off resets the volume to zero. (Again, pitch and duration retain
their previous settings, but since the volume is turned all the way down, the bell is effectively
disabled.) You can also tum off the bell by explicitly setting the volume parameter to 0
(xs et b 0) or by using the - b option.

Bug Compatibility Mode (Release 4)

Some Release 3 clients were written to work with "features" of the R3 server, which could
more accurately be called bugs. (Many of these bugs were eliminated in Release 4.) In order
to allow certain R3 clients to work under R4, the R4 server has a bug compatibility mode that
can be enabled using xset.

Bug compatibility mode is particularly important if you're running the R3 version of xterm
under R4. Applications based on Version 1.0 of OSF/Motif (including Version 1.0 of mwm)
also require that bug compatibility mode be enabled.

To enable bug compatibility mode, use the command xset be; to disable it, use the com
mandxset -be.

Keyclick Volume

The e option sets the volume of the keyboard's keyclick-a sound generated by the server
when you type each key (not to be confused with the noise the physical key makes). To spec
ify a particular level of key click, use the option:

c volume

volume can be a value from 0 to 100, indicating a percentage of the maximum volume. For
example:

% xset c 75

sets a moderately loud keyclick. The X server sets the volume to the nearest value that the
hardware can support.

Thee option also accepts the parameters on or off. If you specify xset e on, the system
default for volume is used.

The keyclick can also be turned off with the option -e or by setting the volume parameter to
0 (xset e 0).

On some hardware, a volume of 0 to 50 turns the keyclick off, and a volume of 51 to 100
turns the keyclick on. Note also that in some cases, the keyclick cannot be turned on.

394 X Window System User's Guide, Motif Edition

0410

Enabling or Disabling Autorepeat

The r option controls the keyboard's autorepeat feature. Autorepeat causes a keystroke to be
repeated over and over when the key is held down. (Multiple events are produced.) Use
xset r or xset r on to enable key repeat. Use xset -r or xset r off to disable
key repeat. On some keyboards (notably Apollo) only some keys repeat regardless of the
state of this option.

Changing or Rehashing the Font Path

As discussed in Chapter 6, Font Specification, by default the X server looks for fonts in four
subdirectories of lusrllib!Xll!fonts: mise, Speedo, 75dpi, and JOOdpi.

You change the font path using xset with the fp (font path) option. See Chapter 6 for some
examples.

Note that the fp option with the rehash parameter causes the server to reread the fonts.dir
andfonts.alias files in the current font path. You need to do this every time you edit an alias
file to make the server aware of the changes (also discussed in Chapter 6). You also have to
do this if you edit a fonts.dir file. See Volume Eight, X Window System Administrator's
Guide, for more information.

Keyboard LEOs

The led option controls the enabling or disabling of one or all of the keyboard's LEDs. It
accepts the parameters on or off to enable or disable all of the LEDs. A preceding dash
also disables all of the LEDs (-led).

You can also enable or disable individual LEDs by supplying a numerical parameter (a value
between 1 and 32) that corresponds to a particular LED. The led option followed by a
numerical parameter enables that LED. The led option preceded by a dash and followed by
a numerical parameter disables that LED. For example:

% xset led 3

would enable LED #3, while:

% xset -led 3

would disable LED #3.

Note that the particular LED values may refer to different LEDs on different hardware.

Setup Clients 395

0411

Pointer Acceleration

The m (mouse) option controls the rate at which the mouse or pointer moves across the
screen. This option takes two parameters: acceleration and threshold. They must
be positive integers. (The acceleration can also be written as a fraction, with the numerator
and denominator separated by a slash, for example, 5/4.)

The mouse or pointer moves acceleration times as fast when it travels more than the
threshold number of pixels in a short time. This way, the pointer can be used for precise
alignment when it is moved slowly, yet it can be set to travel across the screen by a flick of
the wrist when desired. If only one parameter is given, it is interpreted as the acceleration.

For example, the command:

% xset m 5 10

sets the pointer movement so that if you move the pointer more than 10 pixels, the pointer
cursor moves five times as many pixels on the screen as you moved the pointer on the pad.

If no parameter or the value default is used, the system defaults will be set.

If you want to change the threshold and leave the acceleration unchanged, enter the value
default for the acceleration parameter and then specify the threshold you want:

% xset m default 20

Screen Saver

X supports a screen saver to blank or randomly change the screen when the system is left
unattended for an extended period. This screen saver avoids the "bum in" that can occur
when the same image is displayed on the screen for a long time. The s (screen saver) option
to xset determines how long the server must be inactive before the screen saver is started.

The s option takes two parameters: time and cycle. The screen goes blank if the server
has not received any input for the time interval specified by the time parameter. The con
tents of the screen reappear upon receipt of any input. If the display is not capable of blank
ing the screen, then the screen is shifted a pixel in a random direction at time intervals set by
the cycle parameter. The parameters are specified in seconds.

For example, the command:

% xset s 600

sets the length of time before the screen saver is invoked to 600 seconds (10 minutes).

For a display not capable of blanking the screen, the command:

% xset s 600 10

sets the length of time before the screen saver is invoked to 10 minutes and shifts the screen
every 10 seconds thereafter, until input is received.

396 X Window System User's Guide, Motif Edition

0412

The s option also takes the parameters:

default Resets the screen save option to the default.

blank Turns on blanking and overrides any previous settings.

noblank Displays a background pattern rather than blanking the screen; overrides any
previous settings.

off Turns off the screen saver option and overrides any previous settings.

expose Allows window exposures (the server can discard window contents).

noexpose Disables screen saver unless the server can regenerate the screens without
causing exposure events (i.e., without forcing the applications to regenerate
their own windows).

Color Definition

On color displays, every time a client requests a private read/write colorcell, a new color def
inition is entered in the display's colormap. The p option sets one of these colormap entries
even though they are supposed to be private. The parameters are a positive integer identify
ing a cell in the colormap to be changed and a color name:

p ent~_number color_name

The root window colors can be changed on some servers using xsetroot. An error results if
the map entry is a read-only color.

For example, the command:

% xset p 3 blue

sets the third cell in the colormap to the color blue but only if some client has allocated this
cell read/write.

The client that allocated the cell is likely to change it again sometime after you try to set it,
since this is the usual procedure for allocating a read/write cell.

Help with xset Options

The q option lists the current values of all xset preferences.

Setup Clients 397

0413

Setting Root Window Characteristics: xsetroot

You can use the xsetroot client to tailor the appearance of the background (root) window on a
display running X.

The xsetroot client is primarily used to specify the root window pattern: as a plaid-like grid,
tiled gray pattern, solid color, or a bitmap. You can also specify foreground and background
colors (defaults are black and white), reverse video, and set the shape of the pointer when it's
in the root window.

If no options are specified, or the -def option is specified, xsetroot resets the root window to
its default state, a gray mesh pattern, and resets the pointer to the X pointer. The -def
option can also be specified with other options; those characteristics that are not set by other
options are reset to the defaults.

Although xsetroot can be run at any time, we suggest you run it from a startup shell script, as
described in Appendix A, Managing Your Environment. See "When Should I Set Prefer
ences?" earlier in this chapter for the reasoning behind this suggestion.

For a complete list of options, see the xsetroot reference page in Part Three of this guide. Not
all X implementations are guaranteed to support all of these options. Some of the options
may not work on certain hardware devices.

The -help option prints all the xsetroot options to standard output. The options you'll prob
ably use most frequently are explained in the next section. Since only one type of back
ground pattern can be specified at a time, the -solid, -gray, -grey, -bitmap and
-mod options are mutually exclusive.

Setting Root Window Patterns

The default root window pattern is called a "gray mesh." On most displays, it is fairly dark.

The xsetroot client allows you to specify an alternative gray background with the -grey (or
-gray) option. This tiled gray pattern is slightly lighter than the default gray mesh pattern.

The xsetroot client also allows you to create a root window made up of repeated "tiles" of a
particular bitmap, using the option:

-bitmap filename

where filename is the bitmap file to be used as the window pattern.

You can choose any of the standard bitmaps (generally found in the directory
/usrlinclude/Xll /bitmaps) or make your own bitmap files using the bitmap client (see Chap
ter 7, Graphics Utilities).

For example, the command:

% xsetroot -bitmap /home/paula/gumby -fg red -bg blue

fills the root window with a tiling of the bitmap fiwme/paula/gumby (a virtual army of Gum
bys!), using the colors red and blue.

398 X Window System User's Guide, Motif Edition

0414

The -mod option sets a plaid-like grid pattern on the root window. You specify the horizon
tal (x) and vertical (y) dimensions in pixels of each square in the grid. The syntax of the
option is:

-mod x y

where the parameters x andy are integers ranging from 1 to 16 (pixels). (Zero and negative
numbers are taken as 1.)

The larger the x andy values you specify, the larger (and more visible) each square on the
root window grid pattern. Try the command:

% xsetroot -mod 16 16

for the largest possible grid squares. Then test different x and y specifications.

The xsetroot option:

-solid color

sets the color of the root window to a solid color. You can use a name from a color name
database or a numeric color specification.

The command:

% xsetroot -solid lightblue

sets the color of the root window to light blue.* See Chapter 12, Specifying Color, for more
about color possibilities.

Foreground Color, Background Color, and Reverse Video

In addition to specifying a solid color for the root window pattern, xsetroot allows you to
specify foreground and background colors if you set the pattern with -bitmap or -mod.
The standard Toolkit options are used to set foreground and background colors: - fg and
- bg. The defaults are black and white.

Colors can be specified. as names from a color name database, or as numeric values. See
Chapter 12, Specifying Color for more instructions on how to specify color.

If you specify reverse video (-rv), the foreground and background c;olors are reversed.

Foreground and background colors also take effect when you set the root window pointer, as
described in the next section.

*For technical reasons, colors set with xsetroot -solid may change unexpectedly. When you set a color with
the -solid option to xsetroot, the client allocates a colorcell, sets the color, and deallocates the colorcell. The root
window changes to that color. If another client is started that sets a new color, it allocates the next available color
cell-which may be the same one xsetroot just deallocated. This results in that color changing to the new color. The
root window also changes to the new color. If this happens, you can run xsetroot again and if there are other color
cells available, the root window changes to the new color. If all colorcells are allocated, any call to change a colorcell
results in an error message.

While this behavior may seem to be a serious bug, it is actually an optimization designed to ensure applications don't
run out of colors unnecessarily. Free colorrnap cells can be a scarce resource. See Volume One, Xlib Programming
Manual, for more information.

Setup Clients 399

0415

Changing the Root Window Pointer

By default, the pointer is an X when it's in the root window. You can change the shape of the
root window pointer to one of the standard X cursor shapes or to any bitmap, using these
options:

-cursor_name standard_cursor_name

-cursor cursorfile maskfile

The first option allows you to set the root window pointer to one of the standard cursor sym
bols, which are generally listed in the file !usrlinclude/Xll!cursorfont.h. We've provided a
list of the standard cursors (as well as pictures of them) in Appendix D, Standard Cursors.
To specify a standard cursor on a command line or in a resource file, strip the XC_ prefix
from the name. Thus, to set the root window pointer to the pirate cursor symbol, you would
enter:

% xsetroot -cursor_name pirate

The second option is intended to allow you to set the root window pointer to a bitmap, per
haps one you create. The parameters cursorfile and maskfile are bitmaps. The cur
sorfile sets the bitmap for the pointer shape. In effect, the maskfile is placed behind
the cursorfile bitmap to set it off from the root window. The maskfile should be the
same shape as the cursorfile but should generally be at least one pixel wider in all direc
tions.*

For the cursorfile, you can use any of the standard bitmaps (generally found in
/usr/include/Xll /bitmaps) or you can make your own with the bitmap client (see Chapter
7, Graphics Utilities).

Every standard cursor has an associated mask. To get an idea of what masks look like, dis
play the cursor font using the command:

% xfd -fn cursor

If you are using your own bitmap as the cursorfile, until you get used to the way masks
work, create a maskfile that is a copy of the cursorfile with all bits set, i.e., the
maskfile should be all blackt (or the foreground color). Then edit the maskfile to
make it wider than the cursorfile by at least one pixel in all directions.

To specify a root window pointer made from the smiling Gumby bitmap we created for Fig
ure 7-2, first copy the bitmap to make a mask file:

% cp gumby gumby.rnask

*Technically speaking, the mask determines the pixels on the screen that are disturbed by the cursor. It functions as a
sort of outliner or highlighter for the cursor shape. The mask appears as a white (or background color) border around
L'IJ.e cursor (black or another foreground color), making it visible over any root window pattern. This is especially im
portant when a black cursor appears on a black root window.

With the xsetroot defaults, you can observe the effect of a mask. When you move the X pointer onto the dark gray
root window, the X should have a very thin white border, which enables you to see it more clearly.
tDon't be confused by the idea of a black cursor with a black mask on a black root window. Remember, the mask
determines the pixels that are disturbed by the cursor-in effect creating an outline around the cursor. The outline
appears in white (o~ specified background color), regardless of the color of the maskf i 1 e.

400 X Window System User's Guide, Motif Edition

0416

Then edit the gumby.mask file using the bitmap client, setting all squares inside the Gumby.
(You can use the bitmap Flood Fill command to set all the empty squares at once.) Continue
to edit the bitmap, making it one pixel wider in all directions.

Then specify the new pointer with xsetroot:

% xsetroot -cursor gumby gumby.mask

See Chapter 7, Graphics Utilities, for more information on using bitmap.

Modifier Key and Pointer Customization: xmodmap

Mapping keys is one of the more confusing tasks you might find the need to accomplish.
When does key mapping become an issue? Here's a typical case. Say the key labeled "Con
trol" is in a very awkward position for you and you have to use it all the time. Another key
(labeled "Option") is in a very convenient position on the keyboard and you never use it.
You can assign (or map) the Control function to the physical key labeled "Option" using
xmodmap.

The xmodmap client is generally used to map key functions to physical keys on the keyboard.
Primarily, xmodmap is used to assign so-called "modifier" key functions to physical keys.
But it can also change the way other keys (and even pointer buttons) function. (Basically,
xmodmap can be used to specify what character is generated when you press a key or what
action happens when you press a pointer button. You '11 probably use it more often to map
modifier key functions.)

As described in Chapter 3, Working in the X Environment, keys with labels such as Shift,
Control, Caps Lock, etc. are called "modifier" keys because they modify the action of other
keys. The number and names of modifier keys differ from workstation to workstation. Every
keyboard is likely to have a Shift, Caps Lock, and Control key but after that, the confusion
begins. One workstation might have an Alt key, another might have a Funct key, and yet
another a Gold key. On the Sun-3 keyboard, there are no less than three additional modifier
keys, labeled Alternate, Right, and Left.

Because of the differences between keyboards, X programs are designed to work with logical
modifier keynames. The logical keynames represent functions recognized by X programs.
These modifier keynames can be mapped by the user to any physical key on the keyboard
with the xmodmap client.

The logical keynames that X recognizes are:

• Shift
• Lock
• Control
• Modl (Meta in mwm)
• Mod2

Setup Clients 401

0417

• Mod3
• Mod4
• ModS

These keynames are case-insensitive.

Of these X modifier keys, only Shift, Caps Lock, Control, and Meta are in common use.

The primary function of xmodmap is to allow you to assign these important modifier key
name functions (Shift, Control, Meta, etc.) to convenient keys on the keyboard. For
example, you could choose to map the Shift function to a single key called "Shift," to two
"Shift" keys (one on either side of the keypad), to an "Alt" key, or to any other convenient
key or keys on the physical keyboard. A left-handed person might choose to map modifier
keys that more often are found on the left side, such as Control, to the right side of the key
board.

In practical terms, each server will have a default keyboard configuration. The Shift, Caps
Lock, and Control modifier keynames will be mapped to obvious keys. The assignment of
the Meta key might be less obvious.

The xmodmap client allows you to print out the current assignments of modifier keyname
functions to physical keys and/or to change the assignments.

xmodmap also has two other functions that you will probably use less frequently. In addition
to mapping modifier keyname functions to physical keys, xmodmap also allows you to assign
the function of any key on the keyboard to any other key. For instance, you can make the
Backspace key and the Delete key both function as Delete keys. (This may be helpful if the
Backspace key is easier to reach.)

Also, in addition to keyboard mappings, xmodmap can be used to display or change the
pointer button assignments. Many X clients recognize logical pointer button commands. For
example, holding down and dragging the first logical pointer button in an xterm window
copies the text into memory. (In many default pointer maps, the first logical button is the
leftmost button, designed to be pressed by the right index finger.) Each logical button is asso
ciated with a button code. The first logical button generates button code 1, the second logical
button generates button code 2, etc. xmodmap allows you to reassign logical buttons to dif
ferent physical buttons on the pointer.

Thus, basically, xmodmap can perform three types of mappings:

1. Assign modifier keyname functions (such as Shift, Control, Meta) recognized by X to
physical keys.

2. Make any key on the keyboard function as any other key (for example, making Back
space function like Delete).

3. Reassign logical pointer button functions to other physical buttons (for example, making
the rightmost physical button function as the first logical button).

In the following sections, we discuss key mapping, with an emphasis on the first type of map
ping, of modifier keyname functions. Chances are, you'll have relatively little call to map
other key functions (such as Backspace), though we have included an example of one such
mapping, just in case.

402 X Window System User's Guide, Motif Edition

0418

After considering key mapping, we'll take a look at the much simpler issues involved in map
ping pointer button functions. As you might expect, when you're changing the functionality
of (up to) three pointer buttons, it's fairly simple to keep track of what you're doing.

On the other hand, mapping modifier key functions to physical keys can be more than a little
confusing. In order to understand the mechanics of mapping keys, we first need to take a
look at some terms used to describe keyboard keys.

Keycodes and Keysyms

Each key on a physical keyboard can be identified by a number known as a keycode. (Tech
nically speaking, a keycode is the actual value that the key generates.) Keycodes cannot be
mapped to other keys. No matter what functions you assign to various keys with xmodmap,
the keycode associated with each physical key remains the same.

In addition to a keycode, each physical key is associated with a name known as a keysym. A
keysym (key symbol name) is a name that represents the label on a key (theoretically) and
corresponds to its function.

Alphanumeric keys generally have obvious keysyms, corresponding to the label on the key:
for example, the keysym for the key labeled "H" is h. Unfortunately, a keysym does not
always correspond to the key label. For example, on a Sun-3 workstation, though the keysym
for the key labeled "Return" is Return, the keysym for the key labeled "Alternate" is Break,
and the keysym for the key labeled "Right" is Meta_ R.

While each keycode is tied to a physical key, each keysym corresponds to afunction-and
the keysym/function is mapped to a particular physical key (key code). Every keyboard has a
default assignment of keysyms to keycodes. In most cases, each physical key on the key
board will be associated with a different keysym. As we '11 see, however, the keysym (func
tion) associated with a parti<::ular physical key (keycode) can be changed. This is done by
assigning the keysym of one key to the keycode of another.

The modifier keynames recognized by X are not to be confused with keysyms. The X modi
fier keys are limited to the eight keynames discussed previously and are assigned in addition
to the regular keysym/keycode pairings. In other words, when a physical key is mapped to
function as the X Control key, it already has a default functionality (keysym) and keycode.

By default, most modifier keyname functions are mapped to keys having keysyms represent
ing the same function. For example, the X Control keyname is probably mapped to the key
labeled Control and having the keysym Control.

The Meta modifier keyname is probably also assigned to a key having the keysym Meta.
However, determining which physical key has the keysym Meta can be something of a
puzzle. Later in this chapter, we'll consider a program called xev, which can be used to
determine the keysym and keycode of any physical key.

With this background information in mind, we can now tackle a procedure to map modifier
keynames.

Setup Clients 403

0419

Procedure to Map Modifier Keys

In order to change modifier key mappings with a minimum of confusion, you should perform
these steps:

1. Display the current modifier key mappings using xmodmap.

2. Then print out the default assignments of keysyms to keycodes for all keys, using xmod
map with the -pke option. Save this list of the default key assignments in a file as a ref
erence.

3. Experiment with the xev client to determine the keysyms associated with certain physical
keys. This will help you find the key(s) assigned as the Meta modifier key (which proba
bly also has the keysym Meta).

4. Once you're familiar with the current assignments, you can remap modifier keys using
xmodmap.

Displaying the Current Modifier Key Map

Before mapping any modifier keynames, you should take a look at the current assignments.
With no options, xmodmap displays the current map of X modifier keynames to actual keys.
Type xmodmap and you get a display similar to this:

xrnodmap: up to 2 keys per modifier, (keycodes in parentheses):

shift
lock
control
modl
mod2
mod3
mod4
mod5

Shift_L (0x6a), Shift_R (Ox75)
Caps_Lock (Ox7 e)
Control_L (Ox53)
Meta_L (Ox7 f) , Meta_R (Ox81)

For each logical keyname (on the left), xmodmap lists one or more keysyms, each followed in
parentheses by an actual hardware keycode. The keycodes displayed by xmodmap are repre
sented in hex. (As we'll see, the equivalent decimal and octal keycodes are also accepted as
arguments to xmodmap.)

404 X Window System User's Guide, Motif Edition

0420

Logical modifier keyname
Keysym

Key code
recognized by X (hex version)

Shift Shift_L (Ox6a)
Shift_R (Ox75)

Lock Caps_Lock (Ox7e)
Control Control_L (Ox53)

Mod1 Meta_L (Ox7f)
Meta_R (Ox81)

In this mapping, two keys are assigned as Meta (mod1) keys: keys having the keysyms
Meta_L and Meta_R (for left and right, apparently one on each side of the keyboard). Unfor
tunately, as you can see, this doesn't really tell you which keys these are on the physical key
board. You still need to know which physical keys (keycodes) have the keysyms Meta_L and
Meta_R You can determine this using the xev client, described later in this chapter.

Determining the Default Key Mappings

Before you start mapping keys, you should display and save a map of the default assignments
of keysyms to keycodes. Running xmodmap with the -pke option prints a current map of all
keyboard keys to standard output. This map, called a keymap table, lists the decimal key
code on the left and the associated keysym(s) on the right. (The "e" in -pke refers to
"expression." This option specifies that each line in the map will be in the form of an expres
sion that can in tum be supplied to xmodmap-to recover the original settings, if necessary.)
Example 14-1 shows a portion of a typical keymap table returned by xmodmap -pke, for a
Sun-3 keyboard.

Example 14-1. Partial keymap table with valid xmodmap expressions

keycode 109 = C
keycode 110 = V
keycode 111 = B
keycode 112 = N
keycode 113 = M
keycode 114 = comma less
keycode 115 = period greater
keycode 116 = slash question
keycode 117 = Shift_R
keycode 118 = Linefeed
keycode 119 = F33
keycode 120 = Down F34
keycode 121 = F35

keycode 126 = Caps_Lock
keycode 127 = Meta_L
keycode 128 = space
keycode 129 = Meta_R

Setup Clients 405

0421

As you can see, the keymap table lists regular keyboard keys (C, V, comma, slash, space,
etc.) and function/numeric keypad keys (F33, Down <Arrow>, F35, etc.), as well as modifier
keys (Caps_Lock, Meta_L and Meta_R). Some keys generate two keysyms, the first when
you press the key alone, the second when you hold Shift and then press the key. For
example, the key with keycode 115 can generate a period (.) or (with Shift) the greater than
symbol(>):

keycode 115 = period greater

If you map several keys, you may get confused as to the original assignments. Before you
map any keys, we suggest you redirect the keymap table to a file to save and use as a refer
ence:

% xmodmap -pke > keytable

You can recover the original mappings by supplying the relevant lines from the keymap to
xmodmap using the -e option (explained later in this chapter).

The keysyms recognized by your server are a subset of a far greater number of keysyms
recognized internationally. The file keysym.h (generally in the directory !usrlinclude!Xll)
lists the keysym families that are enabled for your server. The file keysymdefh (also gener
ally in the directory !usrlinclude/Xll) lists the keysyms in each of the families enabled for
your server, as well as the keysyms in several other families. See Appendix H, Keysyms, of
Volume Two, Xlib Reference Manual, for more information on keysyms and tables of the
most common ones.

Matching Keysyms with Physical Keys Using xev

The keysym and key code for any key can be determined with the xev client.* This is particu
larly useful for finding the Meta key(s). The xev client is used to keep track of events, pack
ets of information that are generated by the server when actions occur and are interpreted by
other clients. Moving the pointer or pressing a keyboard key cause input events to occur.

To use xev, enter the command:

% xev

in an xterm window, and then use the pointer to place the xev window, as in Figure 14-1.

*xev is a Release 3 standard client. Since Release 4, it has lived in the demos directory. If an executable version does
not exist on your system, ask your system administrator.

If you cannot use xev, you must rely on the keymap table and a little deductive reasoning. Since certain mwm func
tions have keyboard shortcuts involving the Meta key, testing these shortcuts should help you locate this key. See
Chapter 4, More about the mwm Window Manager, for more information.

406 X Window System User's Guide, Motif Edition

0422

Figure 14-1. xev window

Within the xev window is a small box. Move the pointer inside this box. When you type a
key inside the box, information about the key, including its keysym and keycode, will be
displayed in the xterm window from which you started xev. The relevant information will
look like this:

... keycode 127 (keysym Oxffe7, Meta_L) ...

Notice that the keycode is given as a decimal number. You can use the decimal keycode as
an argument to xmodmap. The keysym is listed by name, Meta_L, and value, Oxffe7. (This
value cannot be supplied as a keysym argument to xmodmap.)

To find the Meta key, type a few likely keys in the xev window. Type Control-C in the win
dow from which you invoked xev to terminate the program. (If you ran xev in the back
ground, you'll have to kill the xev window. See Chapter 8, Other Clients, for ways to kill a
client window.)

Changing the Map with xmodmap

xmodmap executes an expression or list of expressions that is interpreted as instructions to
modify the key (or pointer) map. The expressions that can be interpreted by xmodmap are
described in the next section.

xmodmap has this syntax:

:x:modmap [options] [filename]

An expression can be executed in either one of two ways:

• From the command line, using the -e expression option. This option specifies an
expression to be executed (as an instruction to modify the map). Any number of expres
sions may be specified from the command line. An expression should be enclosed in
quotes.

• Entered in a file that is used as an argument to xmodmap. Several expressions can be
entered in one file.

Setup Clients 407

0423

See the xmodmap reference page in Part Three of this guide for a complete list of options.
Other than-e expression, the most important options for our purposes are listed below.

-n

-verbose

Indicates that xmodmap should not change the key mappings as specified in
the filename or command-line expression but should display what it
would do. A handy test. (Only works with key mappings, not with expres
sions that change the pointer map.)

Indicates that xmodmap should print information as it parses its input.

filename specifies a file containing xmodmap expressions to be executed (as instructions
to modify the map). This file is usually kept in the user's home directory with a name like
.xmodmaprc.

Exp.ressions to Change the Key Map

The expressions interpreted by xmodmap can be used to perform these types of key map
pings:*

1. Assign and remove keysyms as modifier keynames recognized by X.

2. Map any keysym (function) to any physical key (key code).

This list shows allowable expressions, divided by function. (Using xmodmap with the
-grammar option returns a help message with much of this information.) Those expressions
that include an equal sign require a space before and after the sign.

1. To assign and remove keysyms as modifier keynames:

clear MODIFIERNAME

Removes all entries in the modifier map for the given modifier, where valid mod
ifier names are: shift, lock, control, modl, mod2, mod3, mod4, and modS (case
does not matter in modifier names, although it does matter for all other names).
For example, the expression clear Lock will remove all keys that were
bound to the lock modifier.

add MODIFIERNAME = KEYSYMNAME

Adds the given keysym to the indicated modifier map. For example, you could
make the Alt key an additional shift modifier key. The keysym name is
evaluated after all input expressions are read to make it easy to write expressions
to swap keys.

*Expressions to change the pointer map are discussed in the section "Displaying and Changing the Pointer Map," lat
er in this chapter.

408 X Window System User's Guide, Motif Edition

0424

remove MODIFIERNAME = KEYSYMNAME

Removes the given keysym from the indicated modifier map (unmaps it). For
example, remove Caps_Lock as the lock modifier key. Unlike with the add
expression, the keysym names are evaluated as the line is read in. This allows
you to remove keys from a modifier without having to worry about whether they
have been reassigned.

2. To map any keysym(s) to any physical key (keycode):

keycode NUMBER = KEYSYMNAME

Assigns the keysym to the indicated keycode (which may be specified in deci
mal, hex, or octal). Usually only one keysym is assigned to a given code.

keysym KEYSYMNAME = KEYSYMNAME

Assigns the keysym on the right to the keycode of the keysym on the left. Note
that if you have the same keysym bound to multiple keys, this might not work.

Key Mapping Examples

Expressions can be used on the xmodmap command line or entered in a file that is then used
as an argument to xmodmap. (The section "When Do I Set Preferences?" discusses some
issues regarding when to run xmodmap.) The current section includes three examples, corre
sponding to the three types of mappings you can perform.

Remember that including the -n option on the xmodmap command line allows you to see
what the new mappings would be, without actually performing them. This can be very use
ful, particularly while you're learning to use xmodmap and getting used to the syntax of
expressions. (Note, however, that -n cannot be used with expressions to change the pointer
map.)

First, the xmodmap client allows you to assign logical modifier keynames to physical keys. A
not so obvious feature of xmodmap is that to change the mapping of a modifier key, you must
first remove that key from the current modifier map.

For example, to swap the left Control and (Caps) Lock keys, you would first need to unmap
both physical keys (Caps_Lock, Control_L) from their respective modifier keynames (lock,
control):

remove lock = Caps_Lock
remove control = Control_L

And then reverse the mappings:

add lock = Control_L
add control = Caps_Lock

If you then type xmodmap without options, you see the new map:

xmodmap: up to 2 keys per modifier, (keycodes in parentheses):

shift
lock
control

Setup Clients

Shift_L (Ox6a), Shift_R (0x75)
Control_L (Ox53)
Caps _Lock (Ox7 e)

409

0425

rnodl Meta_L (Ox7 f) , Meta_R (Ox81)
rnod2
rnod3
rnod4
modS

The key with the keysym Control_L functions as a Lock key and the key with the keysym
Caps_Lock functions as a Control key.

Second, xmodmap allows you to assign any keysym to any other key. For example, you
might make the Backspace key function as a Delete key:

% xmodmap -e 'keysym BackSpace = Delete'

Then when you display the keymap table and grep for the Delete keysym, you'll see that it is
assigned twice. On the command line of an xterm window, type:

% xmodmap -pke I grep Delete

and you'll get two lines from the current keymap table, similar to these:

keycode 50 = Delete
keycode 73 = Delete

The 50 and 73 are keycodes representing two physical keys. As you can see, both of these
keys now function as Delete keys.

This example suggests some of the confusion you can experience using xmodmap. We know
that one of these keys previously functioned as the Backspace key. But how can we tell
which one? Here is an instance when our default keymap table comes in handy. If you've
run xmodmap -pke and redirected it to a file before changing any mappings, you can check
the file for the keysyms originally associated with the keycodes 50 and 73. In this case, the
file tells us 50 originally was Backspace and 73 was Delete.

Of course, you could also figure out the original assignments by remapping one of the key
codes to Backspace. Then, if the key marked Backspace functions as marked, you know
you've mapped the keysym to the original keycode. But, as you can see, the default keymap
table can greatly simplify matters.

This example also implies that there are advantages to using expressions of the form:

keycode number = keysymname

This expression syntax requires you to be aware of default keycode/keysym assignments.
Also, if you explicitly assign a keysym to a particular keycode, it's much easier to keep track
of what you're doing and retrace your steps if necessary. On the down side, though keysyms
are portable, keycodes may vary from server to server. Thus, expressions using this syntax
cannot be ported to other systems.

410 X Window System User's Guide, Motif Edition

0426

Displaying and Changing the Pointer Map

If you want to change the assignment of logical pointer buttons to physical buttons, you
should first display the current pointer map with the -pp option to xmodmap. A typical
pointer map appears in Figure 14-2.

There are 3 pointer buttons defined.

Physical
Button

1
2
3

Figure 14-2. Pointer map

Button
Code.

1
2
3

This is a fairly simple map: the physical buttons are listed on the left and the corresponding
logical functions (button codes) are listed on the right.

These are typical assignments for a right-handed person: the first logical button is the left
most button, designed to be pressed by the right index finger. The xmodmap client allows
you to reassign logical buttons-typically so that the pointer can be more easily used with
the left hand.*

There are two relevant xmodmap expressions: one to assign logical pointer buttons (button
codes) to physical buttons; and another to restore the default assignments. The syntax of the
expressions is:

pointer = nl n2 n3

Sets the first, second, and third physical buttons to the button codes nl, n2, and n3.

pointer = default

Sets the pointer map back to its default settings (button 1 generates a code of 1, but
ton 2 generates a code of 2, etc.).

Being able to change the pointer button assignments is very useful if you happen to be left
handed and would like the rightmost physical button to function as the first logical button
(that is, generate button code 1). To configure the pointer for a southpaw:

% xmodmap -e 'pointer = 3 2 1'

Then if you display the pointer mappings with xmodmap -pp, you get this:

There are 3 pointer buttons defined.

Physical
Button

1
2
3

Button
Code

3
2
1

*Remember that the -n option, which allows you to see what xmodmap would do without performing the changes,
cannot be used with expressions to change the pointer mapping.

Setup Clients 411

0427

You can then push the first logical button (button code 1) with the index finger of your left
hand.

You can return to the default pointer button assignments by entering:

% xmodmap -e •pointer = default•

412 X Window System User's Guide, Motif Edition

0428

Part Three:

Client Reference Pages

This part of the guide provides UNIX-style "man-pages" for each of the stan
dard X programs, as well as the mwm window manager. These pages are
arranged alphabetically for ease of reference, and they contain detailed infor
mation (such as all options to a program) that is not covered in other parts of
this guide.

0429

The following reference pages appear in this section:

lntro xdm
X xdpr
Xserver xdpyinfo
appres xedit
bdftopcf xev
bdftosnf xfd
bitmap xfontsel
editres xhost
fs xinit
fsinfo xkill
fslsfonts xload
fstobdf xlogo
listres xlsatoms
mkfontdir xlsclients
mwm xlsfonts
oclock xlswins
resize xmag
sessreg
showfont
showrgb
showsnf
viewres
xauth
xbiff
xcalc
xclipboard
xclock
xcmsdb
xcol
xcoloredit
xconsole
xcrtca
xditview

xman
xmh
xmodmap
xpr
xprop
xrdb
xrefresh
xsccd
xset
xsetroot
xstdcmap
xterm
xtici
xwd
xwininfo
xwud

0430

-Introduction----------~ lntro

Name
Intro - overview of reference page format.

Syntax
This section describes the command-line syntax for invoking the client. Anything in bold
type should be typed exactly as shown. Items in italics are parameters that should be
replaced by actual values when you enter the command. Anything enclosed in brackets is
optional. For example:

bitmap [options] filename

means to type the command bitmap followed by zero or more options (from the list of options
on the reference page), followed by the name of the file containing the bitmap to be edited.

Description
This section explains the operation of the client. In some cases, additional descriptive sections
appear later on in the reference page.

Options
This section lists available command-line options. In some cases, reference is made to "all of
the standard X Toolkit command-line options." These X Toolkit options are listed in Chapter
10 of this guide, as well as in the first reference page in this section, which is simply labeled X.

Resources
This section lists the resource variable names that can be specified in an .Xresources or other
resource file. In some cases, reference is made to "all the core resource names and classes." A
list of the core names and classes appears in Appendix G, Widget Resources. Syntax rules and
examples appear in Chapter 11, Setting Resources. For complete information, see Volume
Four, X Toolkit lntrinsics Programming Manual.

Widget Hierarchy
Applications written with the X Toolkit are comprised of widgets, which are predefined user
interface components or objects. Typical widgets create graphical features such as menus,
command buttons, dialog boxes, and scrollbars. Applications composed of widgets are always
window-based (such as xterm, xclock, and xman). X also provides clients that are not window
based (such as xlsfonts, xwininfo, and xlsclients) and thus do not use widgets.

If present on a reference page, the section "Widget Hierarchy" diagrams the relationship of the
widgets within the application. The widget hierarchy is significant in specifying client
resources. Most Toolkit clients accept both application-specific resources (listed in the
"Resources" section) and resources for the component widgets. Appendix G lists the user
settable resources for the Athena widgets and explains the somewhat complicated mechanisms
by which resources are interpreted.

Reference Pages 417

0431

lntro (continued) Introduction

Files
If present, this section lists the system and/or application-specific files relevant to the appli
cation.

Environment
If present, this section lists shell environment variables used by the client. This section does
not list the DISPLAY and XENVIRONMENT variables, which are used by all clients. These
variables are used as follows:

DISPLAY
To get the default display name (specifically, the host, server/display, and screen).
The DISPLAY variable typically has the form:

hostname:server.screen

(for example, is 1 a : 0 . 0). See X for more information about display name syntax.

XENVIRONMENT
To get the name of a resource file containing host-specific resources. If this variable is
not set, the resource manager will look for a file called .Xdefaults-hostname (where
hostname is the name of a particular host) in the user's home directory. See the X ref
erence page for more information.

See Also
This section lists other reference pages in Part Three of this guide that may also be of interest.
Note that versions of these pages may have been installed in the usual online manual page
directories, and may be available via the UNIX man(1) command. References such as stat(2)
can be found in the standard UNIX documentation. This section may also include references to
documentation on Xlib, the X Toolkit, various widgets, etc.

Bugs
If present, this section lists areas in which the author of the program thinks it could be
improved. In a few instances, we've listed additional bugs we've noted.

Author

418

The authors of the program and (generally) of the reference page as well. Most of the refer
ence pages are subject to the copyright provisions in the "Copyright" section of the X refer
ence page. Where appropriate, additional copyrights are noted on individual pages.

Note, however, that those portions of this document that are based on the original Xll docu
mentation and other source materials have been revised, and that all such revisions are copy
right© 1987, 1988, 1989, 1990, 1991, 1992 O'Reilly & Associates, Inc. Inasmuch as the pro
prietary revisions can't be separated from the freely copyable MIT source material, the net
result is that copying of this document is not allowed. Sorry for the doublespeak!

X Window System User's Guide

0432

-The X Window System--------~ X

Name
X- a portable, network-transparent window system.

Description
X is a network-transparent window system developed at MIT that runs on a wide range of com
puting and graphics machines. It should be relatively straightforward to build the MIT soft
ware distribution on most ANSI C and POSIX compliant systems. Commercial implementations
are also available for a wide range of platforms.

The X Consortium requests that the following names be used when referring to this software:

X
X Window System
X Version 11
X Window System, Version 11
Xll

The name "X Windows" should not be used. X Window System is a trademark of the Mas
sachusetts Institute of Technology.

X Window System servers run on computers with bitmap displays. The server distributes user
input to and accepts output requests from various client programs through a variety of different
interprocess communication channels. Although the most common case is for the client pro
grams to be running on the same machine as the server, clients can also be run transparently
from other machines, including machines with different architectures and operating systems.

X supports overlapping hierarchical subwindows, and text and graphics operations, on both
monochrome and color displays. For a full explanation of the functions that are available, see
Volume One, Xlib Programming Manual, and Volume Two, Xlib Reference Manual.

The number of programs that use X is quite large. Programs provided in the core MIT distribu
tion include: a terminal emulator (xterm), a window manager (twm), a display manager (xdm),
a console redirect program (xconsole), mail managing utilities (xmh and xbijf), a manual page
browser (xman), a bitmap editor (bitmap), a resource editor (editres), a ditroff previewer
(xditview), access control programs (xauth and xhost), user preference setting programs (xrdb,
xcmsdb, xset, xsetroot, xstdcmap, and xmodmap), a load monitor (xload), clocks (oclock and
xclock), a font displayer (xfd), utilities for listing information about fonts, windows, and dis
plays (xlsfonts, xfontsel, xstdcmap, xwininfo, xdpyinfo, xis clients, and xprop), a diagnostic for
seeing what events are generated and when (xev), screen image manipulation utilities (xwd,
xwud, xpr, and xmag), and various demos (xeyes, ico, xllperf, xgc, etc.)

Many other utilities, window managers, games, toolkits, and so on, are included as user-contri
buted software in the MIT distribution, or are available using anonymous ftp on the Internet.
For more information, see the Preface of this guide, Volume Eight, X Window System Adminis
trator's Guide; and Volume One, Xlib Programming Manual.

Reference Pages 419

0433

X (continued) The X Window System

Starting Up
There are two ways of starting the X server and an initial set of client applications. The partic
ular method used depends on which operating system you are running and on whether or not
you use other window systems in addition to X. The methods are:

xdm (the X Displ~y Manager)
If you want to have X running on your display at all times, your site administrator can
set up your machine to use the X Display Manager xdm. This program is typically
started by the system at boot time and takes care of keeping the server running and
getting users logged in. If you are running xdm, you will see a window on the screen
welcoming you to the system and asking for your usemame and password. Simply
type them in as you would at a normal terminal, pressing the Return key after each. If
you make a mistake, xdm will display an error message and ask you to try again. Af
ter you have successfully logged in, xdm will start up your X environment. By de
fault, if you have an executable file named .xsession in your home directory, xdm will
treat it as a program (or shell script) to be run. to start up your initial clients (such as
terminal emulators, clocks, a window manager, user settings for things like the back
ground, the speed of the pointer, etc.). Your site administrator can provide details.

xinit (run manually from the shell)
Sites that support more than one window system might choose to use the xinit pro
gram for starting X manually. If this is true for your machine, your site administrator
will probably have provided a program named "xll", "startx", or "xstart" that will do
site-specific initialization in a nice way (such as loading convenient default resources,
running a window manager, displaying a clock, and starting several terminal emula
tors). If not, you can build such a script using the xinit program. This utility simply
runs one user-specified program to start the server, runs another to start up any desired
clients, and then waits for either to finish. Since either or both of the user-specified
programs may be a shell script, this gives substantial flexibility at the expense of a
nice interface. For this reason, xinit is not intended for end users.

Display Names

420

From the user's perspective, every X server has a displayname of the form:

host:server.sc+een

This information is used by the application to determine how it should connect to the server
and which screen it should use by default (on displays with multiple monitors):

host The host name of the physical display. If the host name is not given, the most effi
cient way of communicating to a server on the same machine will be used.

server
The server (or display) number. The phrase "display" is usually used to refer to a
collection of monitors that share a common keyboard and pointer (mouse, tablet, etc.).
Most workstations have only one keyboard, and therefore only one display. Larger,
multi-user systems, however, will frequently have several displays so that more than

X Window System User's Guide

0434

The X Window System X (continued)

one person at a time can be doing graphics work. To avoid confusion, each display on
a machine is assigned a server number (beginning at 0) when the X server for that
display is started. The server number must always be given in a display name. In
this guide, the server number is also referred to as the display number (referring
to the phrase display server).

screen
The screen number. Some displays share a single keyboard and pointer among two
or more monitors. Since each monitor has its own set of windows, each screen is as
signed a screen number (beginning at 0) when the X server for that display is start
ed. If the screen number is not given, then screen 0 will be used.

On POSIX systems, the default display name is stored in your DISPLAY environment variable.
This variable is set automatically by the xterm terminal emulator. However, when you log into
another machine on a network, you'll need to set DISPLAY by hand to point to your display.
For example:

% setenv DISPLAY myws:O (C Shell)
(Bourne Shell) $ DISPLAY=myws: 0; export DISPLAY

The xon script can be used to start an X program on a remote machine. It automatically sets
the DISPLAY variable correctly. Finally, most X programs accept a command-line option of
-display displayname to temporarily override the contents of DISPLAY. This is most
commonly used to pop windows on another person's screen or as part of a "remote shell" com
mand to start an xterm pointing back to your display. For example:

% xeyes -display joesws:O -geometry 1000x1000+0+0
% rsh big xterm -display myws:O -ls </dev/null &

X servers listen for connections on a variety of different communications channels (network
byte streams, shared memory, etc.). Since there can be more than one way of contacting a
given server, the host name part of the display name is used to determine the type of channel
(also called a transport layer) to be used. X servers generally support the following types of
connections:

local The host part of the display name should be the empty string. For example: : 0, : 1,
and : 0 • 1. The most efficient local transport will be chosen.

TCP/IP The host part of the display name should be the server machine's IP address name.

DEC net

Full Internet names, abbreviated names, .and IP addresses are all allowed. For ex
ample: expo.lcs.mit.edu:O, expo:O, 18.30.0.212:0, bigmachine:1,
and hydra: 0 . 1.

The host part of the display name should be the server machine's nodename fol
lowed by two colons instead of one. For example: myws:: 0, big:: 1, and hy
dra:: 0 .1.

Reference Pages 421

0435

X (continued) The X Window System

Access Control
An X server can use several types of access control. Mechanisms provided in Release 5 are:

Host Access Simple host-based access control.
MIT-MAGIC-COOKIE-1 Shared plain-text "cookies".
XDM-AUTHORIZATION-1 Secure DES based private-keys.
SUN-DES-1 Based on SUn's secure rpc system.

xdm initializes access control for the server, and also places authorization information in a file
accessible to the user and the server. Normally, the list of hosts from which connections areal
ways accepted should be empty, so that only clients that are explicitly authorized can connect
to the display. When you add entries to the host list (with xhost), the server no longer performs
any authorization on connections from those machines. Be careful with this.

The file from which Xlib extracts authorization data can be specified with the environment
variable XAUTHORITY, and defaults to the file .Xauthority in the home directory. xdm uses
$HOMEI.Xauthority and will create it or merge in authorization records if it already exists when
a user logs in.

If you use several machines, and share a common home directory across all of the machines by
means of a network file system, then you never really have to worry about authorization files;
the system should work correctly by default. Otherwise, as the authorization files are machine
independent, you can simply copy the files to share them. To manage authorization files, use
xauth. This program allows you to extract records and insert them into other files. Using this,
you can send authorization to remote machines when you login, if the remote machine does not
share a common home directory with your local machine. Note that authorization information
transmitted "in tlie clear" through a network file system or usingftp or rep can be "stolen" by a
network eavesdropper, and as such may enable unauthorized access. In many environments
this level of security is not a concern, but if it is, you need to know the exact semantics of the
particular authorization data to know if this is actually a problem.

For more information on access control, see the Xsecurity manual page.

For more information on access control, see Appendix A, Managing Your Environment, Vol
ume One, Xlib Programming Manual, and the Xsecurity reference page in the MIT source dis
tribution.

Geometry Specifications

422

One of the advantages of using window systems instead of hardwired terminals is that appli
cations don't have to be restricted to a particular size or location on the screen. Although the
layout of windows on a display is controlled by the window manager that the user is running
(described below), most X programs accept a command-line argument of the form -geome
try widthxheight±xoff±yoff (where width, height, xoff, and yoff are num
bers) for specifying a preferred size and location for this application's main window.

The width and height parts of the geometry specification are usually measured in either
pixels or characters, depending on the application. The xoff and yoffparts are measured in

/

X Window System User's Guide

0436

The X Window System X (continued)

pixels and are used to specify the distance of the window from the left or right and top and bot
tom edges of the screen, respectively. Both types of offsets are measured from the indicated
edge of the screen to the corresponding edge of the window. The x offset may be specified in
the following ways:

+ xo f f The left edge of the window is to be placed xo f f pixels in from the left edge of the
screen (i.e., the x coordinate of the window's origin will be xoff). xoff may be
negative, in which case the window's left edge will be off the screen.

-xoff The right edge of the window is to be placed xoffpixels in from the right edge of the
screen. xoff may be negative, in which case the window's right edge will be off the
screen.

The y offset has similar meanings:

+yoff The top edge of the window is to be yoff pixels below the top edge of the screen
(i.e., they coordinate of the window's origin will be yoff). yoffmay be negative,
in which case the window's top edge will be off the screen.

-yoff The bottom edge of the window is to be yoff pixels above the bottom edge of the
screen. yoff may be negative, in which case the window's bottom edge will be off
the screen.

Offsets must be given as pairs; in other words, in order to specify either xoff or yoff, both
must be present. Windows can be placed in the four comers of the screen using the following
specifications:

+0+0 The upper-left comer.

-0 + 0 The upper-right comer.

-0- 0 The lower-right comer.

+0'-0 The lower-left comer.

In the following examples, a terminal emulator will be placed in roughly the center of the
screen and a load average monitor, mailbox, and clock will be placed in the upper-right comer:

% xter.m -fn 6x10 -geometry BOx24+30+200 &
% xclock -geometry 4Bx4B-0+0 &
% xload -geometry 4Bx4B-96+0 &
% xbiff -geometry 4Bx4B-4B+0 &

Window Managers
The layout of windows on the screen is controlled by special programs called window manag
ers. Although many window managers will honor geometry specifications as given, others
may choose to ignore them (requiring the user to explicitly draw the window's region on the
screen with the pointer, for example).

Since window managers are regular (albeit complex) client programs, a variety of different
user interfaces can be built. The MIT distribution comes with a window manager named twm,

Reference Pages 423

0437

X (continued) The X Window System

which supports overlapping windows, popup menus, point-and-click or click-to-type input
models, titlebars, nice icons (and an icon manager for those who don't like separate icon win
dows).

See the user-contributed software in the MIT distribution for other popular window managers.

Font Names

424

Collections of characters for displaying text and symbols in X are known as fonts. A font typi
cally contains images that share a common appearance and look nice together (for example, a
single size, boldness, slant, and character set). Similarly, collections of fonts that are based on
a common type face (the variations are usually called roman, bold, italic, bold italic, oblique,
and bold oblique) are called families.

Fonts come in various sizes. The X server supports scalable fonts, meaning it is possible to
create a font of arbitrary size from a single source for the font. The server supports scaling
from outline fonts and bitmap fonts. Scaling from outline fonts usually produces significantly
better results than scaling from bitmap fonts.

An X server can obtain fonts from individual files stored in directories in the file system, or
from one or more font servers, or from a mixture of directories and font servers. The list of
places the server looks when trying to find a font is controlled by its font path. Although most
installations will choose to have the server start up with all of the commonly used font direc
tories in the font path, the font path can be changed at any time with the xset program. How
ever, it is important to remember that the directory names are on the server's machine, not on
the application's.

The default font path for the X server contains four directories:

lusr/lib!Xlllfontslmisc
This directory contains many miscellaneous bitmap fonts that are useful on all sys
tems. It contains a family of generic fixed-width fonts, a family of fixed-width fonts
from Dale Schumacher, several Kana fonts from Sony Corporation, two JIS Kanji
fonts, two Hangul fonts from Daewoo Electronics, two Hebrew fonts from Joseph
Friedman, the standard cursor font, two cursor fonts from Digital Equipment Corpo
ration, and cursor and glyph fonts from Sun Microsystems. It also has various font
name aliases for the fonts, including fixed and variable.

!usr/ lib/Xll /fonts/Speedo
This directory contains outline fonts for Bitstream's Speedo rasterizer. A single font
face, in normal, bold, italic, and bold italic, is provided, contributed by Bitstream,
Inc.

lusr/ lib/Xll lfontsl75dpi
This directory contains 75 dots per inch display bitmap fonts contributed by Adobe
Systems, Inc.; Digital Equipment Corporation, Bitstream, Inc.; Bigelow and Holmes,
and Sun Microsystems, Inc. An integrated selection of sizes, styles, and weights are
provided for each family.

X Window System User's Guide

I

0438

The X Window System X (continued)

/usr/lib/XII !fonts/ I OOdpi
This directory contains 100 dots per inch versions of some of the fonts in the 75dpi
directory.

Font databases are created by running the mkfontdir program in the directory containing the
source or compiled versions of the fonts. Whenever fonts are added to a directory, mkfontdir
should be rerun so that the server can find the new fonts. To make the server reread the font
database, reset the font path with the xset program. For example, to add a font to a private di
rectory, the following commands could be used:

% cp newfonts.pcf -/myfonts
% mkfontdir -/myfonts
% xset fp rehash

The xfontsel and xlsfonts programs can be used to browse through the fonts available on a
server. Font names tend to be fairly long as they contain all of the information needed to
uniquely identify individual fonts. However, the X server supports wildcarding of font names,
so the full specification:

-adobe-courier~medium-r-normal--10-100-75-75-m-60-iso8859-1

might be abbreviated as:

-courier-medium-r-normal---100-*

Because the shell also has special meanings for * and ? , wildcarded font names should be
quoted:

% xlsfonts -fn '*-courier-meditim-r-normal--*-100-*'

The xlsfonts program can be used to list all of the fonts that match a given pattern. With no ar
guments, it lists all available fonts. This will usually list the same font at many different sizes.
To see just the base scalable font names, try using one of the following patterns:

-*-*-*-*-*-*-0-0-0-0-*-0-*-*
-*-*-*-*-*-*-0-0-75-75-*-0-*-*
-*-*-*-*-*-*-0-0-1 00-1 00-*-0-*-*

To convert one of the resulting names into a font at a specific size, replace one of the first two
zeros with a nonzero value. The field containing the first zero is for the pixel size; replace it
with a specific height in pixels to name a font at that size. Alternatively, the field containing
the second zero is for the point size; replace it with a specific size in decipoints (there are 722.7
decipoints to the inch) to name a font at that size. The last zero is an average width field, mea
sured in tenths of pixels; some servers will anamorphically scale if this value is specified.

If more than one font in a given directory in the font path matches a wildcarded font name, the
choice of which particular font to return is left to the server. However, if fonts from more than
one directory match a name, the returned font will always be from the first such directory in the
font path. The example given above will match fonts in both the 75dpi and I OOdpi directories;

Reference Pages 425

0439

X (continued) The X Window System

if the 75dpi directory is ahead of the 100dpi directory in the font path, the smaller version of
the font will be used.

Font Server Names
One of the following forms can be used to name a font server that accepts TCP connections:

tcp/hostname:port
tcp/ host name :port/catalo guelist

The hostname specifies the name (or decimal numeric address) of the machine on which the
font server is running. The port is the decimal TCP port on which the font server is listening
for connections. The cataloguelist specifies a list of catalogue names, with '+' as a separator.

Examples: tcp/expo.lcs.mit.edu:7000, tcp/18.30.0.212:7001/all.

One of the following forms can be used to name a font server that accepts DECnet connec
tions:

dec net/ node name: :font$ob jname
decnet/nodename::font$objname/cataloguelist

The nodename specifies the name (or decimal numeric address) of the machine on which the
font server is running. The objname is a normal, case-insensitive DECnet object name. The
cataloguelist specifies a list of catalogue names, with '+' as a separator.

Examples: DEC net/ SRVNOD: :FONT$D EF AULT, decnet/44. 70: .font$speciall symbo ls.

Color Names

426

Most applications provide ways of tailoring (usually through resources or command-line argu
ments) the colors of various elements in the text and graphics they display.

X supports the use of abstract color names, for example, "red", "blue." A value for this ab
stract name is obtained by searching one or more color name databases. Xlib first searches zero
or more client-side databases; the number, location, and content of these databases is imple
mentation dependent. If the name is not found, the color is looked up in the X server's data
base. The text form of this database is commonly stored in the file /usrllib/Xll lrgb.txt.

A color can be specified either by an abstract color name, or by a numerical color specification.
The numerical specification can identify a color in either device-dependent (RGB) or device
independent terms. Color strings are case-insensitive meaning that red, Red, and RED all refer
to the same color.

A numerical color specification consists of a color space name and a set of values in the fol
lowing syntax:

<color _space _name>: <value>l .. .l<value>

X Window System User's Guide

0440

The X Window System X (continued)

An RGB Device specification is identified by the prefix "rgb:" and has the following syntax:

rgb: <red>l<green>l<blue>

<red>, <green>, <blue> : = h I hh I hhh I hhhh
h := single hexadecimal digits

Note that h indicates the value scaled in 4 bits, hh the value scaled in 8 bits, hhh the value
scaled in 12 bits, and hhhh the value scaled in 16 bits, respectively. These values are passed di
rectly to the X server, and are assumed to be gamma corrected.

The eight primary colors can be represented.as:

black
red
green
blue
yellow
magenta
cyan
white

rgb:0/0/0
rgb:ffff/0/0
rgb: 0/ffff/0
rgb:0/0/ffff
rgb:ffff/ffff/0
rgb:ffff/0/ffff
rgb:O/ffff/ffff
rgb:ffff/ffff/ffff

For backward compatibility, an older syntax for RGB Device is supported, but its continued
use is not encouraged. The syntax is an initial sharp sign character followed by a numeric
specification, in one of the following formats:

#rgb
#rrggbb
#rrrgggbbb
#rrrrggggbbbb

(4 bits each)
(8 bits each)
(12 bits each)
(16 bits each)

The r, g, and b represent single hexadecimal digits indicating how much red, green, and blue
should be displayed (zero being none and ffff being on full). Each field in the specification
must have the same number of digits (e.g., #rrgb or #gbb are not allowed). When fewer than
16 bits each are specified, they represent the most significant bits of the value (unlike the
"rgb:" syntax, in which values are scaled). For example, #3a7 is the same as #3000a0007000.

An RGB intensity specification is identified by the prefix "rgbi:" and has the following syntax:

rgbi: <red>l<green>l<blue>

The red, green, and blue are floating point values between 0.0 and 1.0, inclusive. They repre
sent linear intensity values, with 1.0 indicating full intensity, 0.5 half intensity, and so on.
These values will be gamma corrected by Xlib before being sent to the X server. The input for
mat for these values is an optional sign, a string of numbers possibly containing a decimal
point, and an optional exponent field containing an E or e followed by a possibly signed integer
string.

The standard device-independent string specifications have the following syntax:

CIEXYZ: <X>I<Y>I<Z>
CIEuvY:<u>l<v>I<Y>
CIExyY:<x>l<y>I<Y>

Reference Pages

(none, 1, none)
(-.6, -.6, 1)
(-.75, -.85, 1)

427

0441

X (continued) The X Window System

CIELab: <L>I<a>l
CIELuv: <L>I<u>l<v>
TekHVC: <H>I<V>I<C>

(100, none, none)
(100, none, none)
(360, 100, 100)

All of the values (C, H, V, X, Y, Z, a, b, u, v, y, x) are floating point values. Some of the values
are constrained to be between zero and some upper bound; the upper bounds are given in pa
rentheses above. The syntax for these values is an optional '+' or '-' sign, a string of digits
possibly containing a decimal point, and an optional exponent field consisting of an 'E' or 'e'
followed by an optional '+'or'-' followed by a string of digits.

For more information on device independent color, see Volume Two, X lib Reference Manual.

Keys

428

The X keyboard model is broken into two layers: server-specific codes (called keycodes),
which represent the physical keys; and server-independent symbols (called keysyms), which
represent the letters or words that appear on the keys. Two tables are kept in the server for
converting keycodes to keysyms:

modifier list
Some keys (such as Shift, Control, and Caps Lock) are known as modifier keys and are
used to select different symbols that are attached to a single key (such as Shift-a gen
erates a capital A, and CTRL-L generates a control character AL). The server keeps a
list of keycodes corresponding to the various modifier keys. Whenever a key is
pressed or released, the server generates an event that contains the keycode of the in
dicated key as well as a mask that specifies which of the modifer keys are currently
pressed. Most servers set up this list to initially contain the various shift, control, and
shift lock keys on the keyboard.

keymap table
Applications translate event keycodes and modifier masks into keysyms using a key
map table which contains one row for each keycode and one column for each of the
modifiers. This table is initialized by the server to correspond to normal typewriter
conventions. The exact semantics of how the table is interpreted to produce keysyms
depends on the particular program, libraries, and language input method used, but the
following conventions for the first four keysyms in each row are generally adhered to.

The first four elements of the list are split into two groups of keysyms. Group 1 con
tains the first and second keysyms; Group 2 contains the third and fourth keysyms.
Within each group, if the first element is alphabetic and the the second element is the
special keysym NoSymbol, then the group is treated as equivalent to a group in which
the first element is the lowercase letter and the second element is the uppercase letter.

Switching between groups is controlled by the keysym named MODE SWITCH, by at
taching that keysym to some key and attaching that key to any one of the modifiers
Mod1 through ModS. This modifier is called the "group modifier." Group 1 is used
when the group modifier is off, and Group 2 is used when the group modifier is on.

X Window System User's Guide

0442

The X Window System X (continued)

Options

Within a group, the modifier state determines which keysym to use. The first keysym
is used when the Shift and Lock modifiers are off. The second keysym is used when
the Shift modifier is on, when the Lock modifier is on and the second keysym is upper
case alphabetic, or when the Lock modifier is on and is interpreted as ShiftLock.
Otherwise, when the Lock modifier is on and is interpreted as CapsLock, the state of
the Shift modifier is applied first to select a keysym; but if that keysym is lowercase
alphabetic, then the corresponding uppercase keysym is used instead.

Most X programs attempt to use the same names for command-line options and arguments. All
applications written with the X Toolkit Intrinsics automatically accept the following options:

-display [host]: server[. screen]
Specifies the name of the display to use. host is the hostname of the physical dis
play, server specifies the display server number, and screen specifies the screen
number. Either or both of the host and screen elements to the display specifica
tion can be omitted. If host is omitted, the local display is assumed. If screen is
omitted, screen 0 is assumed (and the period is unnecessary). The colon and (display)
server are necessary in all cases.

For example, the following command creates an xclock window on screen 1 on server
0 on the display hardware named by your_node.

% xclock -display your_node:O.l

The -display option can be abbreviated as -d, unless the client accepts another op
tion that begins with "d."

-geometry geomet~
Specifies the initial size and location of the application window. The -geometry
option can be (and often is) abbreviated to-g, unless the client accepts another option
that begins with "g." The argument (geomet~) is referred to as a "standard geome- ·
try string," and has the form widthxheight±xoff±yoff.

-bg color, -background color
Either option specifies the color to use for the window background.

-bd color, -bordercolor color
Either option specifies the color to use for the window border.

-bw pixels, -borderwidthpixels
Either option specifies the width in pixels of the window border.

-fg color, -foreground color
Either option specifies the color to use for text or graphics.

-fn font, -font font
Either option specifies the font to use for displaying text.

Reference Pages 429

0443

X (continued) The X Window System

-iconic
Indicates that the user would prefer that the application's windows initially not be vis
ible, as if the windows had been immediately iconified by the user. Window managers
may choose not to honor the application's request.

-name app_name
Specifies the name under which resources for the application should be found. This
option is useful in shell aliases to distinguish between invocations of an application,
without resorting to creating links to alter the executable filename.

-rv,-reverse
Either option indicates that the program should simulate reverse video if possible, of
ten by swapping the foreground and background colors. Not all programs honor this
or implement it correctly. It is usually used only on monochrome displays.

+ rv Indicates that the program should not simulate reverse video. This is used to override
any defaults since reverse video doesn't always work properly.

-selectionTimeout milliseconds
Specifies the timeout in milliseconds within which two communicating applications
must respond to one another for a selection request.

-synchronous
Indicates that requests to the X server should be sent synchronously, instead of asyn
chronously. Since Xlib normally buffers requests to the server, errors are not neces
sarily reported immediately after they occur. This option turns off the buffering so
that the application can be debugged. It should never be used with a working pro
gram.

-title string
Specifies the title to be used for this window. This information is sometimes used by a
window manager to provide some sort of header identifying the window.

-xnllanguage languageLterri to.ry][. codeset]
Specifies the language, territory, and codeset for use in resolving resource and other
filenames.

-xrm resourcestring
Specifies a resource name and value to override any defaults. It is very useful for set
ting resources that don't have explicit command line arguments.

Resources

430

To make the tailoring of applications to personal preferences easier, X provides a mechanism
for storing default values for program resources (e.g., background color, window title, etc.).
Resources are specified as strings of the form:

appname*subname*subsubname ... :value

X Window System User's Guide

0444

The X Window System X (continued)

and are read in from various places when an application is run. Program components are
named in a hierarchical fashion, with each node in the hierarchy identified by a class and an in
stance name. At the top level is the class and instance name of the application itself.

By convention, the class name of the application is the same as the program name, but with the
first letter capitalized (e.g., Bitmap or Emacs), although some programs that begin with the
letter "x" also capitalize the second letter for historical reasons.

The precise syntax for resources is:

ResourceLine
Comment
IncludeFile
FileName
ResourceSpec
ResourceName
Binding
WhiteSpace
Component
ComponentName
NameChar

=
=
=
=

=
=
=
=
=
=

Comment I IncludeFile I ResourceSpec I <empty line>
11 ! 11 {<any character except null or newline>}
11 #" WhiteSpace "include" WhiteSpace FileName WhiteSpace
<Valid filename for operating system>
WhiteSpace ResourceName WhiteSpace " :" WhiteSpace Value
[Binding] {Component Binding} ComponentName
II .u I "*11
{<space> I <horizontal tab>}
"? " I ComponentName
NameChar {NameChar}
"a"-nzn I IIAU_uzn I uon_ngn I n_n I n_n

Value = {<any character except null or unescaped newline>}

Note that elements separated by a vertical bar (I) are alternatives. Elements enclosed in curly
braces ({ ... }) indicate zero or more occurrences of the enclosed elements. Square brackets
([...])indicate that the enclosed element is optional. Quotes (" ... ")are used around literal char
acters.

IncludeFile lines are interpreted by replaCing the line with the contents of the specified file.
The word "include" must be in lowercase. The filename is interpreted relative to the directory
of the file in which the line occurs (for example, if the filename contains no directory or con
tains a relative directory specification).

If a ResourceName contains a contiguous sequence of two or more Binding characters, these
quence will be replaced with a single"." character if the sequence contains only"." characters;
otherwise, the sequence will be replaced with a single "*" character.

A resource database never contains more than one entry for a given ResourceName. If are
source file contains multiple lines with the same ResourceName, the last line in the file is used.

Any whitespace character before or after the name or colon in a ResourceSpec is ignored. To
allow a Value to begin with whitespace, the two-character sequence ''\space" (backslash fol
lowed by space) is recognized and replaced by a space character, and the two-character se
quence ''\tab" (backslash followed by horizontal tab) is recognized and replaced by a horizon
tal tab character. To allow a Value to contain embedded newline characters, the two-character
sequence ''\n" is recognized and replaced by a newline character. To allow a Value to be bro
ken across multiple lines in a text file, the two-character sequence ''\newline" (backslash fol
lowed by newline) is recognized and removed from the value. To allow a Value to contain ar
bitrary character codes, the four-character sequence ''\nnn", where each n is a digit character in

Reference Pages 431

0445

X (continued) The X Window System

432

the range of "0"-"7", is recognized and replaced with a single byte that contains the octal value
specified by the sequence. Finally, the two-character sequence "\\"is recognized and replaced
with a single backslash.

When an application looks for the value of a resource, it specifies a complete path in the hierar
chy, with both class and instance names. However, resource values are usually given with only
partially specified names and classes, using pattern matching constructs. An asterisk (*) is a
loose binding and is used to represent any number of intervening components, including none.
A period (.) is a tight binding and is used to separate immediately adjacent components. A
question mark (?) is used to match any single component name or class. A database en:try can
not end in a loose binding; the final component (which cannot be"?") must be specified. The
lookup algorithm searches the resource database for the entry that most closely matches (is
most specific for) the full name and class being queried. When more than one database entry
matches the. full name and class, precedence rules are used to select just one.

The full name and class are scanned from left to right (from highest level in the hierarchy to
lowest), one component at a time. At each level, the corresponding component and/or binding
of each matching entry is determined, and these matching components and bindings are com
pared according to precedence rules. Each of the rules is applied at each level, before moving
to the next level, until a rule selects a single entry over all others. The rules (in order of prece
dence) are:

1. An entry that contains a matching component (whether name, class, or "?") takes prece
dence over entries that elide the level (that is, entries that match the level in a loose bind
ing).

2. An entry with a matching name takes precedence over both entries with a matching class
and entries that match using "?". An entry with a matching class takes precedence over en
tries that match using''?".

3. An entry preceded by a tight binding takes precedence over entries preceded by a loose
binding.

Programs based on the X Toolkit rntrinsics obtain resources from the following sources (other
programs usually support some subset of these sources):

RESOURCE_MANAGER root window property
Any global resources that should be available to clients on all machines should be
stored in the RESOURCE_MANAGER property on the root window of the first screen
using the xrdb program. This is frequently taken care of when the user starts up X
through the display manager or xinit.

SCREEN_RESOURCES root window property
Any resources specific to a given screen (e.g., colors) that should be available to
clients on all machines, should be stored in the SCREEN_RESOURCES property on the
root window of that screen. The xrdb program will sort resources automatically and
place them in RESOURCE_MANAGER or SCREEN_RESOURCES, as appropriate.

X Window System User's Guide

0446

The X Window System X (continued)

application-specific files
Directories named by the environment variable XUSERFILESEARCHPATH or the envi
ronment variable XAPPLRESDIR, plus directories in a standard place (usually under
lusr!lib!Xll!, but this can be overriden with the XFILESEARCHPATH environment
variable) are searched for application-specific resource files. Files are generally
named Class-for the class name of the application.

XAPPLRESDIR . configuration files are actually loaded before
SOURCE_MANAGER property, so that the property can override the values.
ume Four, X Toolkit Intrinsics Programming Manual, for details.

XENVIRONMENT

the RE
See Vol-

Any user- and machine-specific resources may be specified by setting the XENVIRON,
MENT environment variable to the name of a resource file to be loaded by all appli
cations. If this variable is not defined, a file named $HOME!.Xdefaults-hostname is
looked for instead, where hostname is the name of the host where the application is
executing.

-xrm resourcestring
Resources can also be specified from the command line. The resourcestringis a
single resource name and value as shown above. Note that if the string contains char
acters interpreted by the shell (e.g., asterisk), they must be quoted. Any number of
-xrm arguments may be given on the command line.

Program resources are organized into groups called classes, so that collections of individual re
sources (each of which is called an instance) can be set all at once. By convention, the in
stance name of a resource begins with a lowercase letter and class name with an uppercase
letter. Multiple word resources are concatenated with the first letter of the succeeding words
capitalized. Applications written with the X Toolkit Intrinsics will have at least the following
resources:

background (class Background)
Specifies the color to use for the window background.

borderWidth (class BorderWidth)
Specifies the width in pixels of the window border.

borderColor (class BorderColor)
Specifies the color to use for the window border.

Most applications using the X Toolkit Intrinsics also have the resource foreground (class
Foreground), specifying the color to use for text and graphics within the window.

By combining class and instance specifications, application preferences can be set quickly and
easily. Users of color displays will frequently want to set Background and Foreground
classes to particular defaults. Specific color instances, such as text cursors, can then be over
ridden without having to define all of the related resources. For example,

Reference Pages 433

0447

X (continued) The X Window System

bitmap*Dashed: off
XTenn*cursorColor: gold
XTenn*multiScroll: on
XTenn*jumpScroll: on
XTenn*reverseWrap: on
XTenn*curses: on
XTenn*Font: 6x10
XTenn*scrollBar: on
XTenn*scrollbar*thickness: 5
XTenn*multiClickTime: 500
XTenn*charClass: 33:48,37:48,45-47:48,64:48
XTenn*cutNewline: off
XTenn*cutToBeginningOfLine: off
XTenn*titeinhibit: on
XTenn*ttyModes: intr Ac erase A? kill Au
XLoad*Background: gold
XLoad*Foreground: red
XLoad*highlight: black
XLoad*borderWidth: 0
emacs*Geometry: 80x65-0-0
emacs*Background: rgb:5b/76/86
emacs*Foreground: white
emacs *CUrsor: white
emacs*BorderColor: white
emacs*Font: 6x10
xmag*geometry: -0-0
xmag*borderColor: white

If these resources were stored in a file called .Xresources in your home directory, they could be
added to any existing resources in the server with the following command:

% xrdb -merge $HOME/.Xresources

This is frequently how user-friendly startup scripts merge user-specific defaults into any site
wide defaults. All sites are encouraged to set up convenient ways of automatically loading re
sources. See Chapter 11, Setting Resources, for more information.

Examples

434

The following is a collection of sample command lines for some of the more frequently used
commands. For more information on a particular command, please refer to that command's
reference page.

% xrdb -load $HOME/.Xresources
% xmodmap -e 'keysym BackSpace = Delete'
% mkfontdir /usr/local/lib/Xll/otherfonts
% xset fp+ /usr/local/lib/X11/otherfonts
% xmodmap $HOME/.keymap.km
% xsetroot -solid 'rgbi:.8/.8/.8'
% xset b 100 400 c 50 s 1800 r on

X Window System User's Guide

I

0448

The X Window System

% xset q
% twm
% xmag

% xclock -geometry 48x48-0+0 -bg blue -fg white
% xeyes -geometry 48x48-48+0
% xbiff -update 20
% xlsfonts '*helvetica*'
% xwininfo -root
% xdpyinfo -display joesworkstation:O
% xhost -joesworkstation
% xrefresh
% xwd I .xwud
% bitmap companylogo.bm -size 32x32
% xcalc -bg blue -fg magenta
% xterm -geometry 80x66-0-0 -name myxterm
% xon filesysmachine xload

Diagnostics

X (continued)

A wide variety of error messages are generated from various programs. The default error han
dler in Xlib (also used by many toolkits) uses standard resources· to construct diagnostic mes
sages when errors occur. The defaults for these messages are usually stored in
!usrllib/Xll!XErrorDB. If this file is not present, error messages will be rather terse and cryp
tic.

When the X Toolkit Intrinsics encounter errors converting resource strings to the appropriate
internal format, no error messages are usually printed. This is convenient when it is desirable
to have one set of resources across a variety of displays (e.g., color versus monochrome, lots of
fonts versus very few, etc.), although it can pose problems in trying to determine why an appli
cation might be failing. This behavior can be overridden by setting the String
Convers ionWarning resource.

To force the X Toolkit Intrinsics to always print string conversion error messages, the follow
ing resource should be placed at the top of the file that is loaded onto the RE
SOURCE_MANAGER property using the xrdb program (frequently called .Xresources or .xrdb
in the user's home directory):

*StringConversionWarnings: on

To have conversion messages printed for just a particular application, the appropriate instance
name can be placed before the asterisk:

xterm*StringConversionWarnings: on

Reference Pages 435

0449

X (continued) The X Window System

See Also
XConsortium(1), XStandards(1), Xsecurity(1), appres, auto_box(1), bdftopcf, beach_ball(l),
bitmap, editres, fs, fsinfo, fslsfonts, fstobdf, ico(1), imake(1), listres, lndir(l), makedepend(l),
maze(l), mkdirhier(l), mkfontdir, mwm, oclock, plbpex(l), puzzle(1), resize, showfont,
showrgb, twm, viewres, xllperf(1), xllperfcomp(l), xauth, xbiff, xcalc, xclipboard, xclock,
xcmsdb, xcmstest(l), xconsole, xcutsel, xditview, xdm, xdpr, xdpyinfo, xedit, xev, xeyes, xfd,
xfontsel, xgas(l), xgc(1), xhost, xinit, xkill, xload, xlogo, xlsatoms, xlsclients, xlsfonts, xmag,
xman, xmh, xmkmf(l), xmodmap, xon(1), xpr, xprop, xrdb, xrefresh, xset, xsetroot, xstdcmap,
xterm, xwd, xwininfo, xwud, Xserver, Xdec(l), Xmacii(l), Xmips(l), Xqdss(l), Xqvss(l),
Xsun(1), X386(1), kbd_mode(1), Volume One, Xlib Programming Manual; Volume Two, Xlib
Reference Manual; Volume Four, X Toolkit Intrinsics Programming Manual; Volume Five, X
Toolkit Intrinsics Reference Manual; Volume Eight, X Window System Administrator's Guide.

Copyright
The following copyright and permission notice outlines the rights and restrictions covering
most parts of the standard distribution of the X Window System from MIT. Other parts have
additional or different copyrights and permissions; see the individual source files.

Copyright 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991 Massachusetts Institute ofTechnol
ogy.

Permission to use, copy, modify, and distribute this software and its documentation for any pur
pose and without fee is hereby granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission notice appear in supporting doc
umentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. M.I.T. makes no repre
sentations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Trademarks
X Window System is a trademark of MIT.

Authors

436

A cast of thousands, literally. The MIT Release 5 distribution is brought to you by the MIT X
Consortium. The names of all people who made it a reality will be found in the individual doc
uments and source files. The staff members at MIT responsible for this release are: Donna
Converse (MIT X Consortium), Stephen Gildea (MIT X Consortium), Susan Hardy (MIT X
Consortium), Jay Hersh (MIT X Consortium), Keith Packard (MIT X Consortium), David
Stemlicht (MIT X Consortium), Bob Scheifler (MIT X Consortium), and Ralph Swick (Digi
tal/MIT Project Athena).

X Window System User's Guide

I

0450

-X Window System Server ___ ___,/ Xserver

Name
X- X Window System server.

Syntax
X[: displaynumber] [options] [ttyname]

Description
X is the generic name for the X Window System server. It is frequently a link to or a copy of
the appropriate server binary for driving the most frequently used server on a given machine.

Starting the Server
The server is usually started from the X Display Manager program, xdm. This utility is run
from the system boot files and takes care of keeping the server running, prompting for user
names and passwords, and starting up user sessions. It is easily configured for sites that wish to
provide consistent interfaces for novice users .(loading convenient sets of resources, starting up
a window manager, clock, and a wide selection of terminal emulator windows).

Installations that run more than one window system will still need to use the xinit utility. How
ever, xinit is to be considered a tool for building startup scripts and is not intended for use by
end users. Site administrators are strongly urged to use xdm, or to build more friendly inter
faces for novice users.

When the X server starts up, it takes over the display. If you are running on a workstation
whose console is the display, you cannot log into the console while the server is running.

Network Connections
The X server supports connections made using the following reliable byte-streams:

TCP/IP The server listens on port (6000+n), where n is the display number.

UNIX Domain
The X server uses ltmp/.Xll-unix/Xn as the filename for the socket, where n is the dis
pl~y number.

DECnet
The server responds to connections to object X$Xn, where n is the display number.

Options
All of the X servers accept the following command-line options:

-a number
Sets pointer acceleration (i.e., the ratio of how much is reported to how much the user
actually moved the pointer).

-auth authorization_file
Specifies a file that contains a collection of authorization records used to authenticate
access. See also xdm and xsecurity.

Reference Pages 437

0451

Xserver (continued) X Window System Server

438

be Disables certain kinds of error checking, for bug compatibility with previous releases
(e.g., to work around bugs in Release 2 and Release 3 versions of xterm and the toolk
its). Use of this option is discouraged.

- bs Disables backing store support on all screens.

-c Turns off key-click.

c volume
Sets key-click volume (allowable range: 0-8).

-cc class
Sets the visual class for the root window of color screens. The class numbers are as
specified in the X protocol. Not obeyed by all servers.

-co filename
Sets the name of the RGB color database.

-dpi resolution
Sets the resolution of the screen, in dots-per-inch. To be used when the server cannot
determine the screen size from the hardware.

-f volume
Sets beep (bell) volume (allowable range: 0-7).

-fc cursor_font
Sets the default cursor font.

-fn font
Sets the default font.

-fp font_path
Sets the search path for fonts. This path is a comma-separated list of directories that
the X server searches for font databases.

-help Prints a usage message.

-I Causes all remaining command-line arguments to be ignored.

-ld kilobytes
Sets the data space limit of the server to the specified number of kilobytes. A value of
zero makes the stack size as large as possible. The default value of -1 leaves the stack
space limit unchanged. (Not available in all operating systems.)

-lf files
Sets the number-of-open-files limit of the server to the specified number. A value of
zero makes the limit as large as possible. The default value of -1 leaves limit
unchanged. This option is not available in all operating systems. (Available as of
Release 5.)

X Window System User's Guide

/

0452

X Window System Server Xserver (continued)

-ls kilobytes
Sets the stack space limit of the server to the specified number of kilobytes. A value
of zero makes the stack size as large as possible. The default value of -1 leaves the
stack space limit unchanged. (Not available in all operating systems.)

-logo Turns on the X Window System logo display in the screen saver. There is currently
no way to change this from a client.

no logo
Turns off the X Window System logo display in the screen saver. There is currently
no way to change this from a client.

-p minutes
Sets screen saver pattern cycle time, in minutes.

- r Turns off auto-repeat.

r Turns on auto-repeat.

-s minutes.
Sets screen saver timeout, in minutes.

- su Disables save under support on all screens.

-t numbers
Sets pointer acceleration threshold, in pixels (i.e., after how many pixels pointer
acceleration should take effect).

-to seconds
Sets default screen saver timeout, in seconds.

v Sets video-off screen saver preference.

-v Sets video-on screen saver preference.

-wm Forces the default backing-store of all windows to be WhenMapped; a cheap-trick
way of getting backing-store to apply to all windows.

-x extension
Loads the specified extension at init. (Not supported in most implementations.)

XDMCP-specific Options
You can also have the X server connect to xdm using XDMCP. Although this is not typically
useful, because it doesn't allow xdm to manage the server process, it can be used to debug
XDMCP implementations, and servers as a sample implementation of the server side of
XDMCP. For more information on this protocol, see the X Display Manager Control Protocol
specification (available in the MIT source in doc/XDMCP/xdmcp.ms). The following options
control the behavior of XDMCP:

-query hos t_name
Enables XDMCP and sends Query packets to the specified host.

Reference Pages 439

0453

Xserver (continued) X Window System Server

-broadcast
Enables XDMCP andbroadcasts BroadcastQuery packets to the network. The first
responding display manager will be chosen for the session.

-indirect host_name
Enables XDMCP and sends IndirectQuery packets to the specified host.

-port port_num
Specifies an alternate port number for XDMCP packets. Must be specified before any
-query, -broadcast, or -indirect options.

-once Makes the server exit after the first session is over. Normally, the server keeps starting
sessions, one after the other.

-class display_class
XDMCP has an additional display qualifier used in resource lookup for display-spe
cific options. This option sets that value; by default, it is "MIT-Unspecified" (not a
very useful value).

-cookie xdm_auth_bi ts
When testing XDM-AUTHENTICATION-1, a private key is shared between the
server and the manager. This option sets the value of that private data (not that it's
very private, being on the command line).

-displayiD display_ID
Yet another XDMCP-specific value, this one allows the display manager to identify
each display so that it can locate the shared key.

Many servers also have device-specific command-line options. For more details, see the man
ual pages for the individual servers.

Security

440

The X server implements a simplistic authorization protocol, MIT-MAGIC-COOKIE-I, which
uses data private to authorized clients and the server. This is a rather trivial scheme; if the cli
ent passes authorization data which is the same as the data the server has, it is allowed access.
This scheme is worse than the host-based access control mechanisms in environments with
unsecure networks because it allows any host to connect, given that it has discovered the pri
vate key. But in many environments, this level of security is better than the host-based scheme,
because it allows access to be controlled per-user instead of per-host.

In addition, the server provides support for a DES-based authorization scheme, XDM
AUTHORIZATION-1, which is more secure (given a secure key distribution mechanism).
This authorization scheme can be used in conjunction with XDMCP's authentication scheme,
XDM-AUTHENTICATION-1, or in isolation.

The authorization data is passed to the server in a private file named with the -auth com
mand-line option. Each time the server is about to accept the first connection after a reset (or
when the server is starting), it reads this file. If this file contains any authorization records, the
local host is not automatically allowed access to the server, and only clients which send one of

/

X Window System User's Guide

0454

X Window System Server Xserver (continued)

the authorization records contained in the file in the connection setup information will be
allowed access. Maintenance of this file, and distribution of its contents to remote sites for use
there, is left as an exercise for the reader.

The server also provides support for SUN-DES-1, using Sun's Secure RPC. It involves
encrypting data with the X server's public key. See the Xsecurity reference page in the MIT
source distribution.

The X server also uses a host-based access control list for deciding whether or not to accept
connections from clients on a particular machine. If no other authorization mechanism is being
used, this list initially consists of the host on which the server is running as well as any
machines listed in the file /etc!Xn.hosts, where n is the display number of the server. Each line
of the file should contain either an Internet hostname (e.g., expo.lcs.mit.edu) or a DECnet host
name in double colon fonnat (e.g., hydra::). There should be no leading or trailing spaces on
any lines. For example:

joesworkstation
corporate.company.com
star::
bigcpu::

Users can add or remove hosts from this list and enable or disable access control using the
xhost command from the same machine as the server.

The X protocol intrinsically does not have any notion of window operation permissions or
place any restrictions on what a client can do; if a program can connect to a display, it has full
run of the screen. Sites that have authentication and authorization systems (such as Kerberos)
might wish to make use of the hooks in the libraries and the server to provide additional secu
rity.

Signals
The X server attaches special meaning to the following signals:

SIGHUP Causes the server to close all existing connections, free all resources, and restore
all defaults. It is sent by the display manager whenever the main user's primary
application (usually an xterm or window manager) exits to force the server to
clean up and prepare for the next user.

SIGTERM Causes the server to exit cleanly.

SIGUSRl This signal is used quite differently from either of the above. When the server
starts, it checks to see if it has inherited SIGUSRl as SIG_IGN instead of the usual
SIG_DFL. In this case, the server sends a SIGUSRl to its parent process, after it
has set up the various connection schemes. xdm uses this feature to recognize
when it is possible to connect to the server.

Reference Pages 441

0455

Xserver (continued) X Window System Server

Fonts
Fonts are usually stored as individual files in directories. The X server can obtain fonts from
directories and/or from font servers. The list of directories in which the server looks when try
ing to open a font is controlled by the font path. Although most sites will choose to have the X
server start up with the appropriate font path (using the -fp option mentioned above), it can be
overridden using the xset program.

The default font path for the X server contains four directories:

!usrllib!Xll /fonts/mise
This directory contains several miscellaneous bitmap fonts that are useful on all sys
tems. It contains a family of fixed-width fonts, a family of fixed-width fonts from
Dale Schumacher, several Kana fonts from Sony Corporation, two JIS Kanji fonts,
two Hangul fonts from Daewoo Electronics, two Hebrew fonts from Joseph Friedman,
the standard cursor font, two cursor fonts from Digital Equipment Corporation, and
cursor and glyph fonts from Sun Microsystems. It also has font name aliases for the
fonts, including fixed and variable.

!usr!lib/Xll /fonts/Speedo
This directory contains outline fonts for Bitstream's Speedo rasterizer. A single font
face, in normal, bold, italic, and bold italic, is provided, contributed by Bitstream, Inc.

!usr! lib/XI I !fonts/75dpi
This directory contains bitmap fonts contributed by Adobe Systems, Inc., Digital
Equipment Corporation, Bitstream, Inc., Bigelow and Holmes, and Sun Microsystems,
Inc. for 75 dots per inch displays. An integrated selection of sizes, styles, and
weights is provided for each family.

!usr! lib!Xll /fonts/ I OOdpi
This directory contains 100 dots per inch versions of some of the fonts in the 75dpi
directory.

Font databases are created by running the mkfontdir program in the directory containing the
compiled versions of the fonts (the .pcf files). Whenever fonts are added to a directory,
mkfontdir should be rerun so that the server can find the new fonts. If mkfontdir is not run, the
server will not be able to find any fonts in the directory.

Diagnostics
Too numerous to list them alL If run from init(8), errors are typically logged in the file
!usr!adm!Xnmsgs.

442 X Window System User's Guide

0456

X Window System Server Xserver (continued)

Files
I etc! X n.hosts Initial access control list.

!usrllib!Xll !fonts/mise, !usrllib!XII !fonts!75dpi, !usr/lib!XII /fonts/ I OOdpi
Font directories.

!usr!liblxii !fonts!Speedo
Outline font directory

!usr! lib/XI I /fonts/ P EX
PEX font directory.

!usr!lib!XII!rgb.txt Color database.

ltmp/.XII-unix!Xn UNIX domain socket.

lusrladm!Xnmsgs · Error log file.

See Also
X, bdf to pcf, mkfontdir, fs, xauth, xdm, xhost, xinit, xset, xsetroot, xterm, ttys(5), init(8); Vol
ume Zero, X Protocol Reference Manual; the following papers in the source distribution: Defi
nition of the Porting Layer for the X vii X Server; Strategies for Porting the X vii X Server;
and Godzilla' s Guide to Porting the X VII X Server.

Bugs
The option syntax is inconsistent with itself and xset.

The acceleration option should take a numerator and a denominator like the protocol.

If X dies before its clients, new clients won't be able to connect until all existing connections
have their TCP TIME_ WAIT timers expire.

The color database is missing a large number of colors.

Authors
The X server was originally written by Susan Angebranndt, Raymond Drewry, Philip Karlton,
and Todd Newman, of Digital Equipment Corporation, with support from a large cast. It has
since been extensively rewritten by Keith Packard and Bob Scheifter of MIT.

/

Reference Pages 443

0457

appres \ ___ List Application Resources-

Name
appres -list application resource database.

Syntax
appres [[class_name] [instance_name]] [options]

Description

444

The appres client prints the resources seen by an application (or a subhierarchy of an appli
cation) with the specified class_name and instance_name. It is used to help determine
which resources a particular program would load from the various sources of resource specifi
cations.

Note that appres doesn't really know anything about classes and instances as they may be
defined by the client itself. As a result, it takes no account of conflicts between different
resource settings, or their correctness. It simply loads the resource database into a temporary
file and does a string comparison on the strings:

[*.]

class_name[*.]
instance_name[*.]

(where [*.] means either * or .) and then prints out the lines that match. Basically, appres
searches for occurrences of any class and/or instance name supplied to it. In addition, appres
searches for resources not assigned to a particular client-i.e., resources beginning with an
asterisk or a dot. (These resources may or may not apply to the client whose class and instance
names you supply.)

For example:

% appres XTerm

would list the resources that include the classname XTerm, as well as any resources beginning
with an asterisk or dot.

'Fo also match a particular instance name, you can enter both a class and an instance name, as
in the following:

% appres XTer.m myxter.m

In this case, appres would list the resources that include any of the following terms: the
classname XTerm; the instance name myxterm; or an initial asterisk or dot.

As of Release 5, appres recognizes the X Toolkit option -name. Thus, the alternative syntax:

% appres XTer.m -name myxter.m

is also acceptable and will produce the same output as the preceding example.

If no application class is specified, the class -AppResTest- (which has no defaults) is used.
(Prior to Release 5, this dummy class name was -NoSuchClass-.)

X Window System User's Guide

0458

List Application Resources appres (continued)

Keep in mind the limitations of supplying only one argument (either a class name or an
instance name). For example, if resources are specified in the database for the instance name
xterm, typing appres XTerm will not list them; and if they are specified for class name
XTerm, typing appres xterm will not list them. To be safe, you should specify both the
class name and the instance name.

As of Release 5, appres also accepts hierarchical class and instance names as input. Hypothet
ically, this allows you to list the resources that match a particular sublevel of an application's
widget hierarchy. (This could be very useful with a complex application.)

To list the resources that may apply to part of the widget hierarchy, you provide appres with
both a hierarchical class and an instance name. The number of class and instance components
must be equal. (Note that the instance name should not be specified with the toolkit -name
option.) For example, the command:

% appres Xman.TopLevelShell.Form xman.topBox.form

will list the resources that may apply to widgets within xman's topBox hierarchy.

Note that in attempting to match hierarchical class and instance names, appres suffers from the
same limitations it does when attempting to match single class and/or instance names. The
appres client simply compares text strings; it does not distinguish valid from invalid resources.
If you supply multiple components, appres returns any resource that includes any one of the
components; or any resource not assigned to a particular client (i.e., any resource beginning
with an asterisk or a dot.)

You can limit the matching to resources that apply to a specific widget in the hierarchy by
using the -1 option. For example, the command:

% appres XTerm.VTlOO xterm.vtlOO -1

will list the resources that may match the xterm vt100 widget.

In practice, use of the -1 option limits the matching to resource names having the same num
ber of components, or fewer, as the names the user specifies. In the preceding example, the
matching is limited to resources of two components or fewer. (This practice has nothing to do
with the digit 1 in the -1 option; this number is a literal, not a variable.) Note, however, that
limiting the resources that can be matched does not eliminate the problem of appres returning

/

inapplicable resources.

For more information on the use of appres, see Chapter 11, Setting Resources.

Options
Note that options should follow the class_name (and instance_name if any). appres
accepts the following application-specific option:

-1 Lists only the resources matching a specific level in the widget hierarchy (the level
given on the command line). (Available as of Release 5.)

Reference Pages 445

0459

appres (continued) List Application Resources

As of Release 5, appres also recognizes all of the standard X Toolkit options (i.e., the program
will run); however, since appres is not a window-based application, it uses only the following
options:

-name app_name
Specifies the instance name under which resources for the application should be
found. (Available as of Release 5.)

-xrm resource
Specifies that, in addition to the current application resources, appres should return
the resource specified as an argument to -xrm, if that resource would apply to the
class_name or instance_name. You must specify both a class_name and an
instance_name in order to use the -xrm option. (Note that -xrm does not actu
ally load any resources.)

Without any arguments, appres returns those resources that might apply to any application (for
example, those beginning with an asterisk in your .Xresources file).

See Also
X, xrdb, editres, listres; Chapter 11, Setting Resources.

Author
Jim Fulton, MIT X Consortium.

446 X Window System User's Guide

0460

-Convert BDF to PCF Font----) bdftopcf

Name
bdftopcf- convert font from Bitmap Distribution Format to Portable Compiled Format.

Syntax
bdftopcf[options]fontfile.bdf

Description
bdftopcf is the Release 5 font compiler. It converts Bitmap Display Fonts (BDF) to Portable
Compiled Format (PCF), which can be read by any architecture.· Note, however, that the PCP
file is structured to allow one particular architecture to read them directly without reformatting.
This allows fast reading on the appropriate machine, but the files are still portable (albeit read
more slowly) on other machines. See Volume Eight, X Window System Administrator's Guide,
for more information.

Options
- i Inhibits the normal computation of ink metrics. When a font has glyph images which

do not fill the bitmap image (i.e., the "on" pixels don't extend to the edges of the met
rics) bdftopcf computes the actual ink metrics and places them in the .pcf file; the -t
option inhibits this behavior.

-1 Sets the font bit order to LSB (least significant bit) first. The left most bit on the
screen will be in the lowest valued bit in each unit.

- L Sets the font byte order to LSB first. All multi-byte data in the file (metrics, bitmaps
and everything else) will be written least significant byte first.

-m Sets the font bit order to MSB (most significant bit) first. Bits for each glyph will be
placed in this order; i.e., the left most bit on the screen will be in the highest valued bit
in each unit.

-M Sets the font byte order to MSB first. All multi-byte data in the file (metrics, bitmaps,
and everything else) will be written most significant byte first.

-o output_filename
By default bdftopcf writes the pcf file to standard output; this option gives the name of
a file to be used instead.

-pn Sets the font glyph padding. Each glyph in the font will have each scanline padded in
to a multiple of n bytes, where n is 1, 2, 4, or 8.

- t When this option is specified, bajtopcf will convert fonts into "terminal" fonts when
possible. A terminal font has each glyph image padded to the same size; the X server
can usually render these types of fonts more quickly.

-un Sets the font scanline unit. When the font bit order is different from the font byte
order, the scanline unit n describes what unit of data (in bytes) are to be swapped; the
unit n can be 1, 2 or 4 bytes.

Reference Pages 447

0461

bdftopcf (continued) Convert BDF to PCF Font

See Also
X; Chapter 6, Font Specification; Volume Eight, X Window System Administrator's Guide;
Appendix M, Logical Font Description Conventions, in Volume Zero, X Protocol Reference
Manual. Also see the document Bitmap Distribution Format, in the MIT distribution.

Author
Keith Packard, MIT X Consortium.

448 X Window System User's Guide

0462

- BDF to SNF Font Compiler-----~ bdftosnf

Name
bdftosnf- BDF to SNF font compiler for X11.

Syntax
bdftosnf [options]bdf_file

Description
As of Release 5, this program is no longer supported as part of the standard distribution
of X. Use bdftopcfinstead. The bdftosnfreference page is included merely for continuity.

bdftosnf reads a Bitmap Distribution Format (BDF) font from the specified file (or from stan
dard input if no file is specified) and writes an X11 Server Natural Format (SNF) font to stan
dard output. See Volume Eight, X Window System Administrator's Guide, for more informa
tion.

Options
bdftosnf accepts the following options:

-pnumber
Forces the glyph padding to a specific number. The legal values are 1, 2, 4, and 8.

-unumber

-m

-1

-M

-L

-w

-w
/

-t

-i

See Also

Forces the scanline unit padding to a specific number. The legal values are 1, 2, and
4.

Forces the bit order to most significant bit first.

Forces the bit order to least significant bit first.

Forces the byte order to most significant byte first.

Forces the byte order to least significant byte first.

Prints warnings if the character bitmaps have bits set to one outside of their defined
widths.

Prints warnings for characters with an encoding of -1; the default is to silently ignore
such characters.

Expands glyphs in "terminal-emulator" fonts to fill the bounding box.

Suppresses computation of correct ink metrics for "terminal-emulator" fonts.

X, Xserver; Volume Eight, X Window System Administrator's Guide; Appendix M, Logical
Font Description Conventions, in Volume Zero, X Protocol Reference Manual. Also see the
document Bitmap Distribution Format, in the MIT distribution.

Reference Pages 449

0463

bitmap
_Bitmap Editor & Conversion Tools-

Name
bitmap, bmtoa, atobm - bitmap editor and conversion utilities.

Syntax
bitmap [options] [filename] [basename]

bmtoa [options] [filename]

atobm [options] [filename]

Description

450

bitmap allows you to create and edit small bitmaps that you can use as backgrounds, clipping
regions, tile and stipple patterns, icons, and pointers. A bitmap is a grid of pixels, or picture
elements, each of which is white, black, or, in the case of color displays, a color. See Chapter
7, Graphics Utilities, for instructions on using bitmap.

The bmtoa and atobm filters convert bitmap files to and from ASCII strings. They are most
commonly used to print out bitmaps quickly and to generate versions for inclusion in text.
Chapter 7 describes how to convert a font character to a bitmap using atobm.

The window that bitmap creates has three sections (see Figure 7-1 in Part One of this guide).
The checkerboard grid is a magnified version of the bitmap you are editing. Each square repre
sents a single bit in the picture being edited. Squares on the grid can be set, cleared, or
inverted directly with the buttons on the pointer. Command buttons to perform higher-level
operations, such as drawing lines and circles, are provided to the left of the grid. You can
invoke these command buttons by clicking on them with the first pointer button. Across the
top of the window is a menu bar that provides a File menu and an Edit menu.

You can display an actual size representation of the bitmap image (as it would appear both nor
mally and inverted) by pressing the Meta-l key combination. You are free to move the image
popup out of the way to continue editing. Clicking the first pointer button in the popup win
dow or typing Meta-l again will remove the actual size bitmap image.

If the bitmap is to be used for defining a cursor, one of the squares in the image may be desig
nated as the hot spot. This determines where the cursor is actually pointing. For cursors with
sharp tips (such as arrows or fingers), this is usually at the end of the tip; for symmetric cursors
(such as crosses or bullseyes), this is usually at the center.

Bitmaps are stored as small C code fragments suitable for including in applications. They pro
vide an array of bits as well as symbolic constants giving the width, height, and hot spot (if
specified) that may be used in creating cursors, icons, and tiles. A selection of commonly-used
bitmaps is generally stored in /usrlinclude/Xll /bitmaps on UNIX systems.

You give the size in pixels of the bitmap to be created (and consequently, the number of cells
in the bitmap editing area) using the -size option. Existing bitmaps should be edited at their
current size. The default size for new bitmaps is 16 x 16. (This is a little small-an icon such
as the mailbox displayed by xbiff is 48 x 48 pixels.) See Chapter 7 for a discussion of bitmap
window and image size issues.

X Window System User's Guide

0464

Bitmap Editor & Conversion Tools bitmap (continued)

When you run bitmap without a filename or with a new filename, the window will display a
blank image area, suitable for you to begin editing. To edit a bitmap image, you can use one of
the editing command buttons or use the pointer commands to change individual grid squares.
(Chapter 7 describes both ways of editing; also see "Command Buttons for Drawing" and
"Changing Grid Squares Using the Pointer" later in this reference page.)

Options: bitmap
bitmap accepts all of the standard X Toolkit command-line options, which are listed on the X
reference page. In addition, bitmap accepts the following application-specific options:

-axes,+axes
Turns the major axes on or off.

-dashed,+dashed
Turns dashing for the frame and grid lines on or off.

-dashes filename
Specifies the bitmap to be used as a stipple for dashing.

-fr color
Specifies the color used for the frame and grid lines.

-grid, +grid
Turns the grid lines on or off.

-gt pixels
Grid tolerance. If the square dimensions fall below the specified value, grid will be
automatically turned off. The default is 8 (pixels square).

-hl color
Specifies the color to be used for highlighting.

-proportional,+proportional
Turns proportional mode on or off. If proportional mode is on, square width is equal
to square height. If proportional mode is off, bitmap will use the smaller square
dimension, if they were initially different.

-sh pixels
/ Specifies the height of squares in pixels.

-size WIDTHxHEIGHT

Specifies size of the grid in squares. WIDTHxHEIGHT are two numbers, separated by
the letter "x", which specify the dimensions of the checkerboard grid within the bit
map window (e.g., 9x13). The first number is the grid's width; the second number is
its height. The default is 16x16.

-stipple filename
Specifies the bitmap to be used as a stipple for highlighting.

-stippled,+stippled
Turns stippling of highlighted squares on or off.

Reference Pages 451

0465

bitmap (continued) Bitmap Editor & Conversion Tools

-sw pixels
Specifies the width of squares in pixels.

The bitmap editor also accepts the following arguments:

basename
Specifies the basename to be used in the C code output file. If it is different than the
basename in the working file, bitmap will change the name of the file when saving.

filename
Specifies the bitmap to be initially loaded into the program. If the file does not exist, bit
map will assume it is a new file.

Options: bmtoa
The bmtoa (bitmap to array) conversion program accepts the following option:

-chars cc
Specifies the pair of characters to use in the string version of the bitmap. The first
character is used for 0 bits and the second character is used for 1 bits. The default is
to use dashes(-) for Os and number signs(#) for ls.

Options: atobm
The atobm (array to bitmap) conversion program accepts the following options:

-chars cc
Specifies the pair of characters to use when converting string bitmaps into arrays of
numbers. The first character represents a 0 bit and the second character represents a 1
bit. The default is to use dashes(-) for Os and number signs(#) for ls.

-name variable
Specifies the variable name to be used when writing out the bitmap file. The default is
to use the basename of the filename command-line argument or leave it blank if
the standard input is read.

-xhot number
Specifies the X coordinate of the hot spot. Only positive values are allowed. By
default, no hot spot information is included.

-yhot number
Specifies the Y coordinate of the hot spot. Only positive values are allowed. By
default, no hot spot information is included.

Resources

452

For a table of settable resources, see the section "Bitmap Widget Resources" later in this refer
ence page. Appendix G, Widget Resources, describes the resources that can be set for other
widgets in the application. (See "Widget Hierarchy" later in this reference page.)

X Window System User's Guide

0466

Bitmap Editor & Conversion Tools bitmap (continued)

Changing Grid Squares Using the Pointer
You can set, clear, or invert grid squares by pointing to them and clicking or dragging using
one of the buttons as indicated below. Setting a grid square corresponds to setting a bit in the
bitmap image to 1. Clearing a grid square corresponds to setting a bit in the bitmap image to 0.
Inverting a grid square corresponds to changing a bit in the bitmap image from 0 to 1 or 1 to 0,
depending upon its previous state. You can change multiple squares at once by holding the
button down and dragging the cursor across them. The default behavior of pointer buttons is:

Button 1 (usually the left)
Sets one or more grid squares to the foreground color and sets the corresponding bits
in the bitmap to 1.

Button 2 (usually the middle)
Inverts one or more grid squares. The corresponding bit or bits in the bitmap are
inverted (ls become Os and Os become 1s).

Button 3 (usually the right)
Clears one or more grid squares (sets them to the background color) and sets the cor
responding bits in the bitmap to 0.

For pointers with additional buttons, the fourth and fifth also clear the grid square(s).

This default behavior can be changed by setting the button function resources:

bitmap*buttonlFunction: Set
bitmap*button2Function: Clear
bitmap*button3Function: Invert

Note that the button function applies to all drawing commands, including copying, moving and
pasting, flood filling and setting the hot spot.

Command Buttons for Drawing
bitmap provides 27 command buttons to assist you in drawing. The buttons are located to the
left of the editJng grid and their functions are summarized below. See Chapter 7 for more com
plete instructions. Note that most of the actions can also be performed using keyboard
shortcuts (accelerators) while the pointer rests inside the editing grid or the surrounding whi-

/ tespace.

Clear Clears all bits in the bitmap image. Sets all of the grid squares to the background
color. Typing c while the pointer rests inside the grid or the surrounding whitespace
has the same effect.

Set Sets all bits in the bitmap image. Sets all of the grid squares to the foreground color.
Typing s has the same effect.

Invert Inverts all bits in the bitmap image. The grid squares will be inverted appropriately.
Typing i has the same effect.

Mark Allows you to mark an area of the grid by dragging out a rectangular shape in the
highlighting color. Once the area is marked, you can perform a number of other

Reference Pages 453

0467

bitmap (continued) Bitmap Editor & Conversion Tools

operations on it. (See Up, Down, Left, Right, Rotate, Flip, Cut, etc.) Only one marked
area can be present at any time. If you attempt to mark another area, the old mark will
vanish. The same effect can be achieved by pressing the Shift key and the first pointer
button simultaneously and then dragging to highlight a rectangle in the grid window.
Press Shift and click the second pointer button to mark the entire grid area.

Unmark Causes the marked area to vanish. You can perform the same action by pressing Shift
and clicking the third pointer button.

Copy Allows you to copy an area of the grid from one location to another. If there is no
marked grid area displayed, Copy first behaves just like Mark. Once there is a marked
grid area displayed in the highlighting color, Copy has two alternative behaviors. If
you press a pointer button inside the marked area, you can drag a rectangle represent
ing the marked area to the desired location. When you release the pointer button, the
area is copied. If you click outside the marked area, Copy will assume that you wish
to mark a different region of the bitmap image and it will behave like Mark again.

Move Allows you to move an area of the grid from one location to another. Its behavior
resembles the behavior of Copy command, except that the marked area will be moved
instead of copied.

Flip Horizontally
Flips the bitmap image with respect to the horizontal axes. If a marked area of the
grid is highlighted, it will operate only inside the marked area. Pressing h has the
same effect.

Up Moves the bitmap image one pixel up. If a marked area of the grid is highlighted, it
will operate only inside the marked area. Pressing the up arrow key has the same
effect.

Flip Vertically
Flips the bitmap image with respect to the vertical axes. If a marked area of the grid
is highlighted, it will operate only inside the marked area. Pressing v has the same
effect.

Left Moves the bitmap image one pixel to the left. If a marked area of the grid is high
lighted, it will operate only inside the marked area. Pressing the left arrow key has
the same effect.

Fold Folds the bitmap image so that the opposite corners become adjacent. This is useful
when creating bitmap images for tiling. Pressing f has the same effect.

Right Moves the bitmap image one pixel to the right. If a marked area of the grid is high
lighted, it will operate only inside the marked area. Pressing the right arrow key has
the same effect.

454 X Window System User's Guide

0468

Bitmap Editor & Conversion Tools bitmap (continued)

Rotate Left
Rotates the bitmap image 90 degrees to the left (counterclockwise.) If a marked area
of the grid is highlighted, it will operate only inside the marked area. Pressing 1 has
the same effect.

Down Moves the bitmap image one pixel down. If a marked area of the grid is highlighted,
it will operate only inside the marked area. Pressing the down arrow has the same
effect.

Rotate Right
Rotates the bitmap image 90 degrees to the right (clockwise). If a marked area of the
grid is highlighted, it will operate only inside the marked area. Pressing r has the
same effect.

Point Changes the grid squares underneath the pointer according to the guidelines explained
in "Changing Grid Squares Using the Pointer." If you press a button and drag the
pointer, the line may not be continuous depending on the speed of your system and
frequency of pointer motion events.

Curve Changes the grid squares underneath the pointer according to the guidelines explained
in "Changing Grid Squares Using the Pointer." The Curve command ensures that
when you press a pointer button and drag, the line will be continuous. However,if
your system is slow or bitmap receives very few pointer motion events, it might
behave erratically.

Line Allows you to draw the straightest possible line between two grid squares. Once you
press a pointer button in the grid window, bitmap will highlight the line from the
square where the pointer button was initially pressed to the square where the pointer is
located. When you release the pointer button, the highlighting will disappear and the
actual line will be drawn.

Rectangle
Allows you to draw a rectangle. Once you press a pointer button in the grid window,
bitmap will highlight the rectangle from the square where the pointer button was ini
tially pressed to the square where the pointer is located. When you release the pointer

/ button, the highlighting will disappear and the actual rectangle will be drawn.

Filled Rectangle
Performs the same function as Rectangle, except that the rectangle is filled (rather
than outlined).

Circle Allows you to draw a circle. When you press a pointer button in the grid, that square
becomes the center of the circle. You continue to hold the pointer button down and
drag the pointer away from the center point to indicate a point on the circumference.
An outline follows the pointer. When you release the pointer button, the highlighting
will disappear and the actual circle will be drawn.

Reference Pages 455

0469

bitmap (continued) Bitmap Editor & Conversion Tools

Filled Circle

Flood Fill

Performs the same function as Circle, except that the circle is filled (rather than out
lined).

Fills any closed shape you click on. If a shape is open, you will "flood" a larger area
than you intend. Diagonally adjacent squares are not considered to form a single
shape.

Set Hot Spot
Designates one square in the grid as the hot spot if this bitmap image is to be used for
defining a cursor. Pressing a pointer button in the desired square causes a diamond
shape to be displayed.

Clear Hot Spot
Removes any designated hot spot from the bitmap image.

Undo Undoes the last executed command. You can only recover the last action performed;
thus, pressing Undo after Undo will toggle the last action on and off.

File Menu
You can access .the File menu commands by pressing the File button and selecting the appropri
ate menu entry or by pressing the Control key with another key. These commifnds deal with
files and global bitmap parameters, such as size, basename, filename, etc. See Chapter 7 for
more information.

New Clears the window so you can create a new image; prompts for a name for the new
file. If you haven't saved the current file, the changes will be lost.

Load Dynamically loads another bitmap file into the editing window; if you haven't saved
the current file, prompts you as to whether to save before loading the next file. The
bitmap editor can edit only one file at a time. If you need interactive editing, run a
number of editors and use cut and paste mechanism as described below.

Insert Inserts a bitmap file into the image currently being edited. After being prompted for
the filename, click inside the grid window and drag the outlined rectangle to the loca
tion where you want to insert the new file.

Save Saves the bitmap image. It will not prompt for the filename unless it is said to be
<none>. If you leave the filename undesignated or-, the output will be piped to stan
dard output.

Save As
Saves the bitmap image after prompting for a new filename. Use this menu item if
you want to change the filename.

Resize Changes the dimensions of the editing grid to match dimensions you supply
(widthxheight), without changing the size of the image. Thus, specifying a larger
grid gives you more room to edit. Specifying a smaller grid may cause part of the cur
rent image to be truncated.

456 X Window System User's Guide

0470

Bitmap Editor & Conversion Tools bitmap (continued)

Rescale Changes the dimensions of the grid to match dimensions you supply (widthx
height) and changes the image so that the proportions (the ratio of the image to the
grid) remain the same. Thus, if you specify a grid twice the size of the current one,
both the grid and the image will be doubled. Rescale will not do antialiasing and
specifying a smaller grid may cause part of the current image to be truncated. Feel
free to add your own algorithms for better rescaling.

Filename
Lets you change the filename of the current file without changing the basename or
saving the file. If you specify - for a filename, the output will be piped to standard
output.

Base name
Lets you change the basename of the current file if you want one different from the
filename.

Quit Terminates the bitmap application. If changes have been made and not saved, a dialog
box will ask whether to save before quitting. This command is preferable to killing
the process. ·

Edit Menu
The Edit menu commands can be accessed by pressing the Edit button and selecting the appro
priate menu entry, or by pressing Meta key with another key. These commands deal with edit
ing facilities such as the grid, axes, zooming, cut and paste, etc.

Image Displays a window showing what the bitmap being edited looks like at its actual size
(both as it appears and in reverse video). You can move the window away to continue
editing. Clicking the first pointer button on this window pops it down.

Grid Controls the grid in the editing area. If the grid spacing is below the value specified
by the gridTolerance resource (8 by default), the grid will be automatically
turned off. You can tum the grid on by selecting this menu item.

gashed Controls the stipple for drawing the grid lines. Select this menu item to toggle the
stipple (specified by the dashes resource or the -dashes option).

Axes Toggles diagonal axes. The axes simply assist in drawing; they are not part of the
image. Off by default.

Stippled Toggles a stipple pattern to be used for highlighting within the editing area. The
stipple specified by the stipple resource can be turned on or off by activating this
command.

Proportional
Toggles proportional mode which forces proportional grid squares, regardless of the
dimensions of the bitmap window. On by default.

Zoom Toggles zoom mode, which focuses in on a marked area of the image. (You can mark
before or after selecting Zoom.) You can use all the editing commands and other utili
ties in the zoom mode. When you zoom out, Undo will undo the whole zoom session.

Reference Pages 457

0471

bitmap (continued) Bitmap Editor & Conversion Tools

Cut Cuts the contents of any marked area into the internal (application local) cut and paste
buffer. The marked area is deleted from the current image, but is available to be
pasted from the buffer. (If this was the last area marked, it is also available to be
pasted into other applications via a global buffer.)

Copy Copies the contents of any marked area into the internal (application local) cut and
paste buffer. The marked area remains a part of the current image and is also avail
able to be pasted from the buffer. (If this was the last area marked, it is also available
to be pasted into ,other applications via a global buffer.)

Paste Pastes the contents of the global buffer (the marked area in any bitmap or xmag appli
cation); if the global buffer is empty, this item pastes a copy of the contents of the
internal cut and paste buffer. To place the copied image, press and· hold the first
pointer button in the editing area, drag the outlined image to the position you want,
and then release the button.

Cut and Paste
bitmap supports two cut and paste mechanisms: an internal cut and paste buffer and the global
X selection cut and paste buffer. The internal cut and paste is used when executing Copy and
Move drawing commands and also Cut and Copy commands from the Edit menu. The global X
selection cut and paste is used whenever there is a highlighted area of a bitmap image
displayed anywhere on the screen. To copy a part of image from another bitmap editor, simply
highlight the desired area by using the Mark command or pressing the Shift key and dragging
the area with the first pointer button. When the selected area becomes highlighted, any other
applications (such as xterm, etc.) that use the PRIMARY selection will discard their selection
values and unhighlight the appropriate information. Now, use the Paste command from the
Edit menu or press Control and any pointer button to copy the selected part of image into
another (or the same) bitmap application. If you attempt to do this without a visible high
lighted image area, the bitmap will fall back to the internal cut and paste buffer and paste
whatever is stored there at the moment.

Widget Hierarchy

458

Below is the widget structure of the bitmap application. Indentation indicates hierarchical
structure. The widget class name is given first, followed by the widget instance name. All
widgets except the bitmap widget are from the standard Athena widget set. See Appendix
G, Widget Resources, for a list of resources that can be set.

Bitmap bitmap
TransientShell image

Box box
Label normalimage
Label inverted.Image

TransientShell input
Dialog dialog

Cormnand okay
Cormnand cancel

X Window System User's Guide

0472

Bitmap Editor & Conversion Tools

Reference Pages

TransientShell error
Dialog dialog

Command abort
Command retry

TransientShell qsave
Dialog dialog

Command yes
Command no
Command cancel

Paned parent
Form fo:rnw

MenuButton
SirnpleMenu

SIDeBSB
SIDeBSB
SIDeBSB
SIDeBSB
SmeBSB
SIDeBSB
SIDeBSB
SIDeBSB
SIDeBSB

fileButton
fileMenu
neil
load
insert
save
saveAs
resize
rescale
filename
basename

SIDeLine line
SIDeBSB quit

MenuButton editButton
SirnpleMenu editMenu

SIDeBSB image
SIDeBSB grid
SIDeBSB dashed
SIDeBSB axes
SIDeBSB stippled
SIDeBSB proportional
SIDeBSB zoom
SIDeLine line
SIDeBSB cut
SIDeBSB copy
SIDeBSB paste

Label status
Pane pane

Bitmap bitmap
Fonn fonn

Command clear
Cormnand set
Command invert
Toggle mark
Command unmark
Toggle copy
Toggle move

bitmap (continued)

459

0473

bitmap (continued) Bitmap Editor & Conversion Tools

Command flipHoriz
Command up
Command flipVert
Command left
Command fold
Command right
Command rotateLeft
Command down
Command rotateRight
Toggle point
Toggle curve
Toggle line
Toggle rectangle
Toggle filledRectangle
Toggle circle
Toggle filledCircle
Toggle floodFill
Toggle setHotSpot
Command clearHotSpot
Command undo

Bitmap Widget Resources

460

The Bitmap widget is a stand-alone widget for editing raster images. It is not designed to edit
large images, although it may be used in that purpose as well. It can be freely incorporated
with other applications· and used as a standard editing tool.

Header file
Class
Class Name
Superclass

Bitmap.h
bitmapWidgetClass
Bitmap
Bitmap

The following
resources plus:

are the resources provided by the Bitmap widget. All the Simple widget

Name Class Type Default Value

foreground Foreground Pixel XtDefaultForeground
highlight Highlight Pixel XtDefaultForeground
framing Framing Pixel XtDefaultForeground
gridTolerance GridTolerance Dimension 8

size Size String 32x32
dashed Dashed Boolean True
dashes Dashes Bitmap unspecified
grid Grid Boolean True
stipple Stipple Bitmap unspecified
stippled Stippled Boolean True
proportional Proportional Boolean True

X Window System User's Guide

0474

Bitmap Editor & Conversion Tools bitmap (continued)

Name Class Type Default Value

axes Axes Boolean False
squareWidth SquareWidth Dimension 16
squareHeight SquareHeight Dimension 16
margin Margin Dimension 16
xHot XHot Position Not Set (-1)
yHot YHot Position Not Set (-1)

button1Function Button1Function DrawingFunction Set
button2Function Button2Function DrawingFunction Invert
button3Function Button3Function DrawingFunction Clear
button4Function Button4Function DrawingFunction Invert

buttonS Function Button5Function DrawingFunction Invert
filename Filename String none
basename Basename String none

Color
If you would like bitmap to be viewable in color, include the following in the #ifdef COLOR
section of the file you read with xrdb:

*customization: -color

This line will cause bitmap to pick up the colors in the app-defaults color customization file,
/usrllib!Xll/app-defaults!Bitmap-color. See Chapter 11, Setting Resources, for more informa
tion.

Files
lusrllib/Xll lapp-defaults/Bitmap

Specifies required resources.

I usr/ lib lXII I app-defaults/ Bitmap-color
Color customization file.

lusr/include!Xll !bitmaps
On many systems, standard bitmaps can be found in this directory.

Bugs
bitmap should really be implemented with a scrollable editing area, so that the size of the
application can be completely independent of the size of the bitmap being edited.

If you move the pointer too fast while holding a pointer button down, some squares may be
missed. This is caused by limitations in how frequently the X server can sample the pointer
location.

Reference Pages 461

0475

bitmap (continued) Bitmap Editor & Conversion Tools

See Also
xmag; Chapter 7, Graphics Utilities.

Author
Release 5 bitmap by Davor Matic, MIT X Consortium; Previous releases of bitmap by Ron
Newman, MIT Project Athena; bmtoa and atobm by Jim Fulton, MIT X Consortium.

462 X Window System User's Guide

0476

-Dynamic Resource Editor------~ edit res

Name
editres - a dynamic resource editor for X Toolkit applications.

Synopsis
editres [options]

Description
editres is a tool that allows you to view the full widget hierarchy of any X Toolkit client that
speaks the editres protocol. In addition, editres will help you construct resource specifications
and allow you to apply the resources to the application and view the results dynamically. Once
you're happy with a resource specification, you can request that editres append the specifica
tion to a resource file. See Chapter 11, Setting Resources, for instructions on using editres.

Using editres
editres provides a window consisting of the following four areas:

Menu Bar A set of popup menus that allows you full access to the program's features.

Panner The panner allows a more intuitive way to scroll the application tree display.

Message Area Displays information to the user about the action that editres expects of her.

Application Widget Tree
This area will be used to display the selected client's widget tree.

To begin an editres session, select the Get Widget Tree menu item from the command menu.
This will change the pointer cursor to cross hair. You should now select the application you
wish to look at by clicking on any of its windows. If this application understands the editres
protocol, then editres will display the client's widget tree in its tree window. If the application
does not understand the editres protocol, editres will inform you of this fact in the message
area after a few seconds delay.

\
Once you have a widget tree you may now select any of the other menu options. The effect of
each of these is described below.

Commands Menu
Get Widget Tree

Allows the user to click on any client that speaks the editres protocol, and receive its
widget tree.

Refresh Current Widget Tree
editres only knows about the widgets that exist at the present time. Many applications
create and destroy widgets "on-the-fly." Selecting this menu item will cause editres to
ask the application to resend its widget tree, thus updating its information to the new
state of the application.

For example, xman only creates the widgets for its topbox when it starts up. None of
the widgets for the manual page window are created until the user actually clicks on
the Manual Page button. If you retrieved xman's widget tree before the manual page

Reference Pages 463

0477

editres (continued) Dynamic Resource Editor

is active, you may wish to refresh the widget tree after the manual page has been
displayed. This will also allow you to edit the manual page's resources.

Dump Widget Tree to a File
For documenting applications, it is often useful to be able to dump the entire appli
cation widget tree to an ASCII file. This file can then be included in the manual page.
When this menu item is selected, a popup dialog is activated. Type the name of the
file in this dialog, and either select okay, or press Return. editres will now dump the
widget tree to this file. To cancel the file dialog just select the cancel button.

Show Resource Box
This command will popup a resource box for the current client. This resource box
(described in detail below) will, allow the user to see exactly which resources can be
set for the widget that is currently selected in the widget tree display. Only one
widget may be currently selected, if greater or fewer are selected editres will refuse to
pop up the resource box, and put an error message in the Message Area.

Set Resource
This command will popup a simple dialog box for setting an arbitrary resource on all
selected widgets. You must type in the resource name, as well as the value. You can
use the Tab key to switch between the resource name field and the resource value
field.

Quit Exits editres.

Tree Menu Commands

464

The Tree menu contains several commands that allow operations to be performed on the widget
tree.

Select Widget in Client
This menu item allows you to select any widget in the application; editres will then
highlight the corresponding element in the widget tree display. Once this menu item
is selected, the pointer cursor will again tum to a crosshair, and you must click any
pointer button in the widget you wish to have displayed. Since some widgets m:e fully
obscured by their children, it is not possible to get to every widget this way, but this
mechanism does give very useful feedback between the elements in the widget tree
and those in the actual client.

Select All
Unselect All
Invert All

These functions allow the user to select, unselect, or invert all widgets in the widget
tree.

Select Children
Select Parents

These functions select the immediate parent or children of each of the currently
selected widgets.

X Window System User's Guide

0478

Dynamic Resource Editor

Select Descendants
Select Ancestors

editres (continued)

These functions select all parents or children of each of the currently selected widgets.
This is a recursive search.

Show Widget Names
Show Class Names
Show Widget IDs
Show Widget Windows

When the tree widget is initially displayed, the labels of each widget in the tree corre
spond to the widget names. These functions will cause the label of all widgets in the
tree to be changed to show the class name, ID, or window associated with each widget
in the application. The widget IDs, and windows are shown as hex numbers.

In addition, there are keyboard accelerators for each of the Tree operations. If the input focus
is over an individual widget in the tree, then that operation will only effect that widget. If the
input focus is in the Tree background it will have exactly the same effect as the corresponding
menu item.

The translation entries shown may be applied to any widget in the application. If that widget is
a child of the Tree widget, then it will only affect that widget, otherwise it will have the same
effect as the commands in the Tree menu.

Flash Active Widgets
This command is the inverse of the Select Widget in Client command, it will show the user
each widget that is currently selected in the widget tree by flashing the corresponding
widget in the application numFlashes three (by default) times in the flashColor.

Key Option Translation Entry

space Unselect Select(nothing)
w Select Select(widget)
s Select Select(all)
i Invert Select(invert)
c Select Children Select(children)
d Select Descendants Select(descendants)
p Select Parent Select(parent)
a Select Ancestors Select(ancestors)
N Show Widget Names Relabel (name)
c Show Class Names Relabel (class)
I Show Widget IDs Relabel (id)
w Show Widget Windows Relabel (window)
T Toggle Widget/Class Name Relabel (toggle)

Clicking button 1 on a widget adds it to the set of selected widgets. Clicking button 2 on a
widget deselects all other widgets and then selects just that widget. Clicking button 3 on a
widget toggles its label between the widget's instance name the widget's class name.

Reference Pages 465

0479

editres (continued) Dynamic Resource Editor

Using the Resource Box

466

The resource box contains five different areas. Each of the areas, as they appear on the screen
from top to bottom, will be discussed.

The Resource Line
This area at the top of the resource box shows the current resource name exactly as it
would appear if you were to save it to a file or apply it.

The Widget Names and Classes ,
This area allows you to select exactly which widgets this resource will apply to. The area
contains four lines, the fil'St contains the name of the selected widget and all its ancestors,
and the more restrictive dot (.) separator. The second line contains less specific Class
names of each widget, as well as the less restrictive star(*) separator. The third line con
tains a set of special buttons called Any Widget, which will generalize this level to match
any widget. The last line contains a set of special buttons called Any Widget Chain, which
will tum the single level into something that matches zero or more levels.

The initial state of this area is the most restrictive, using the resource names and the dot
separator. By selecting the other buttons in this area you can ease the restrictions to allow
more and more widgets to match the specification. The extreme case is to select all the
Any Widget Chain buttons, which will match every widget in the application. As you
select different buttons, the tree display will update to show you exactly which widgets
will be effected by the current resource specification.

Normal and Constraint Resources
The next area allows you to select the name of the normal or constraint resources you wish
to set. Some widgets may not have constraint resources, so that area will not appear.

Resource Value
This next area allows you to enter the resource value. This value should be entered
exactly as you would type a line into your resource file. Thus, it should contain no unes
caped newlines. There are a few special character sequences for this file:

\n This will be replaced with a newline.

\### Where # is any octal digit. This will be replaced with a single byte that contains this·
sequence interpreted as an octal number. For example, a value containing a NULL
byte can be stored by specifying \000.

\<new-line>
This will compress to nothing.

\\ This will compress to a single backslash.

Command Area
This area contains several command buttons that I will describe in this section.

X Window System User's Guide

0480

Dynamic Resource Editor editres (continued)

Set Save File
This button allows the user to modify the file that the resources will be saved to. This but
ton will bring up a dialog box that will ask you for a filename; once the filename has been
entered, either hit carriage return or click on the okay button. To popdown the dialog box
without changing the save file, click the cancel button.

Save
This button will append the resource line described above to the end of the current save
file. If no save file has been set the Set Save File dialog box will pop up to prompt the user
for a filename.

Apply
This button attempts to perform an XtSetVal ues call on all widgets that match the
resource line described above. The value specified is applied directly to all matching
widgets. This behavior is an attempt to give a dynamic feel to the resource editor. Since
this feature allows users to put an application in states it may not be willing to handle, a
hook has been provided to allow specific clients to block these SetValues requests (see
"Blocking editres Requests" below).

Unfortunately due to design constraints imposed on the widgets by the X Toolkit and· the
Resource Manager, trying to coerce an inherently static system into dynamic behavior can
cause strange results. There is no guarantee that the results of an apply will be the same as
what will happen when you save the value, and restart the application. This functionality
is provided to try to give you a rough feel for what your changes will accomplish, and the
results obtained should be considered suspect, at best. Having said that, this is one of the
neatest features of editres; I strongly suggest that you play with it, and see what it can do.

Save and Apply
This button combines the Save and Apply actions described above into one button.

Popdown Resource Box
This button will remove the resource box from the display.

Blocking editres Requests
The editres protocol has been built into the Athena Widget set. This allows all applications
that are linked against Xaw to be able to speak to the resource editor. While this provides great
flexibility and can be a useful tool, it can quite easily be abused. It is therefore possible for any
Xaw client to specify a value for the editresBlock resource described below, to keep edi
tres from divulging information about its internals, or to disable the Set Values part of the
protocol. ·

Reference Pages 467

0481

editres (continued) Dynamic Resource Editor

edi tresBlock (class Edi tresBlock)
Specifies which type of blocking this client wishes to 1mpose on the editres protocol.
The accepted values are:

all

setValues

none
/

Block all requests.

Block all setVal ues requests (the only editres request that actu
ally modifies the application); in effect, the application is read-only.

Allow all editres requests.

Remember that these resources are set on any Xaw client, not on editres. They allow individ-
ual clients to keep all or some of the requests editres makes from ever succeeding. Of course,
editres is also an Xaw client, so it may also be viewed and modified by editres (rather recur
sive, I know). These commands can be blocked by setting the edi tresBlock resource on
editres itself.

Options
editres accepts all of the standard X Toolkit command-line options. For a description of the
Toolkit options, see Chapter 10, Command-line Options.

editres accepts no application-specific options.

Note, however, that if you supply editres with an invalid option, you '11 get the following mis
leading syntax message:

Usage: editres [-vspace <value>] [-hspace <Value>

This is a bug. -vspace and -hspace are not valid options.

Resources

468

editres understands all of the Core resource names and classes. (See Appendix G, Widget
Resources, for more information.) In addition, editres recognizes the following application
specific resources:

flashTime (class FlashTime)
Amount of time between the flashes described above.

flashColor (class FlashColor)
Specifies the color used to flash client widgets. A bright color should be used that will
immediately draw your attention to the area being flashed, such as red or yellow.

numFlashes (class NumFlashes)
Specifies the number of times the widgets in the client application will be flashed when the
Show Active Widgets command is invoked.

saveResourcesFile (class SaveResourcesFile)
This is the file the resource line will be append to when the Save button is activated in the
resource box.

X Window System User's Guide

0482

Dynamic Resource Editor editres (continued)

Widgets
In order to specify resources, it is useful to know the hierarchy of the widgets which compose
editres. In the notation below, indentation indicates hierarchical structure. The widget class
name is given first, followed by the widget instance name.

Editres editres
Paned paned

Box box

Reference Pages

MenuButton commands
SirnpleMenu menu
SmeBSB sendTree
SmeBSB refreshTree
SmeBSB dumpTreeToFile
SmeLine line
SmeBSB getResourceList
SmeLine line
SmeBSB quit

MenuButton treeCommands
SirnpleMenu menu

Paned hPane

SmeBSB showClientWidget
SmeBSB selectAll
SmeBSB unselectAll
SmeBSB
SmeLine
SmeBSB
SmeBSB
SmeBSB
SmeBSB
SmeLine
SmeBSB
SmeBSB
SmeBSB
SmeBSB
SmeLine
SmeBSB

invertAll
line

selectChildren
select Parent
selectDescendants
selectAncestors
line

showWidgetNames
showClassNames
showWidgetiDs
showWidgetWindows
line

flashActiveWidgets

Panner panner
Label userMessage
Grip grip

Porthole porthole
Tree tree

Toggle <name of widget in client>

TransientShell resourceBox
Paned pane
Label resourceLabel

469

0483

editres (continued)

/

Grip grip

Files
I usr! lib/Xll I app-defaultsl Editres
Specifies required resources.

See Also

Form namesAndClasses
Toggle dot
Toggle star
Toggle aey
Toggle name
Toggle class

Label namesLabel
List names List
Label constraintLabel
List constraintList
Form valueForm
Label valueLabel
Text valueText
Box commandBox
Command setFile
Command save
Command apply
Command saveAndApply
Command cancel
Grip grip

Dynamic Resource Editor

X, xrdb; Chapter 11, Setting Resources; Appendix G, Athena Widget Resources.

Bugs
editres prints a usage line listing two invalid options: -vspace and - hspace.

Restrictions
This is a prototype; there are lots of nifty features I would love to add, but I hope this will give
you some ideas about what a resource editor can do.

Author
Chris D. Peterson, formerly of the MIT X Consortium.

470 X Window System User's Guide

0484

-X Window System Font Server_J fs

Name
fs - X font server.

Syntax
fs [options]

Description
fs is the X Window System font server, introduced in Release 5. It supplies fonts to X Window
System display servers. The font server makes it possible to use fonts on more than one host
on the network.

The server is usually run by a system administrator, and started via boot files like !etc/rc.local.
Users may also wish to start private font servers for specific sets of fonts. For more informa
tion, see Chapter 6, Font Specification, and Volume Eight, X Window System Administrator's
Guide.

Options
-config configuration_file

Specifies the configuration file the font server will use.

-ls listen_socket
Specifies a file descriptor which is already set up to be used as the listen socket. This
option is only intended to be used by the font server itself when automatically spawn
ing another copy of itself to handle additional connections.

-port tcp_port
Specifies the TCP port number on which the server will listen for connections.

Signals
SIGTERM

Causes the font server to exit cleanly.

SIGUSRl
Used to cause the server to reread its configuration file.

SIGUSR2
Used to cause the server to flush any cached data it may have.

SIGHUP Used to cause the server to reset, closing all active connections and rereading the con
figuration file.

Configuration File
The configuration file is a list of keyword and value pairs. Each keyword is followed by an
equal sign (=) and then the desired value.

Reference Pages 471

0485

fs (continued) X Window System Font Server

Recognized keywords include:

catalogue (list of string)
Ordered list of font path element names. Use of the keyword catalogue is very
misleading at present; the current implementation only supports a single catalogue
(all), containing all of the specified fonts.

ililternate-::;ervers (list of string)
List of alternate servers for this font server.

client-limit (cardinal)
Number of clients this font server will support before refusing service. This is useful
for tuning the load on each individual font server.

clone-self (boolean)
Whether this font server should attempt to clone itself when it reachs the client-limit.

default-point-size (cardinal)
The default pointsize (in decipoints) for fonts that don't specify.

default-resolutions (list of resolutions)
Resolutions the server supports by default. This information may be used as a hint for
prerendering, and substituted for scaled fonts which do not specify a resolution.

error-file (string)
Filename of the error file. All warnings and errors will be logged here.

port (cardinal)
TCP port on which the server will listen for connections.

use-syslog (boolean)
Whether syslog(3) (on supported systems) is to be used for errors.

Example

472

sample font server configuration file

allow a max of 10 clients to connect to this font server
client-limit = 10

when a font server reaches its limit, start up a new one
clone-self = on

alternate font servers for clients to use
alternate-servers = hansen:7001,hansen:7002

where to look for fonts
the first is a set of Speedo outlines, the second is a set of
mise bitmaps and the last is a set of 100dpi bitmaps

X Window System User's Guide

0486

X Window System Font Server

catalogue = /usr/lib/fonts/speedo,
/usr/lib/X11/ncd/fonts/misc,
/usr/lib/X11/ncd/fonts/100dpi/

in 12 points, decipoints
default-point-size = 120

100 X 100 and 75 X 75
default-resolutions= 100,100,75,75

Font Server Names

fs (continued)

One of the following forms can be used to name a font server that accepts TCP connections:

tcp/hostname:port
tcp/hostname:port/catalogue_list

The hostname specifies the name (or decimal numeric address) of the machine on which the
font server is running. The port is the decimal TCP port on which the font server is listening
for connections. The catalogue_list specifies a list of catalogue names, with a plus sign
(+) as a separator.

Examples:

tcp/expo.lcs.mit.edu:7000, tcp/18.30.0.212:7001/all

One of the following forms can be used to name a font server that accepts DECnet con
nections:

decnet/nodename::font$object_name
decnet/nodename::font$object_name/catalogue_list

The nodename specifies the name (or decimal numeric address) of the machine on which the
font server is running. The obj ect_name is a normal, case-insensitive DECnet object name.
The catalogue_list specifies a list of catalogue names, with a plus sign (+)as a separator.
Some examples follow:

DECnet/SRVNOD::FONT$DEFAULT, decnet/44.70::font$special/~ls

See Also
X; Chapter 6, Font Specification; Volume Eight, X Window System Administrator's Guide;
Also see the document Font server implementation overview in the MIT source.

Bugs
Multiple catalogues should be supported.

Copyright
Copyright 1991, Network Computing Devices, Inc.
Copyright 1991, Massachusetts Institute of Technology.
See X for a full statement of rights and permissions.

Reference Pages 473

0487

fs (continued)

Authors

474

Dave Lemke, Network Computing Devices, Inc.;
Keith Packard, Massachusetts Institute of Technology.

X Window System Font Server

X Window System User's Guide

0488

-Display Font Server Info-----~ fsinfo

Name
fsinfo - font server information utility.

Syntax
fsinfo[-server server_name]

Description
The fsinfo program (introduced in Release 5) is a utility for displaying information about an X
font server. (See the fs reference page, Chapter 6, Font Specification, and Volume Eight, X
Window System Administrator's Guide.) fsinfo is used to examine the capabilities of a server,
the predefined values for various parameters used in communicating between clients and the
server, and the font catalogues and alternate servers that are available.

Options
-serverserver_name

Specifies a particular font server. The server_name generally has the form
transport/ host :port. If the FONTSERVER environment variable is not
defined, this option must be given.

Example
The following shows a sample produced by fsinfo.

name of server:hansen:7000
version number:l
vendor string:Font Server Prototype
vendor release number:17
maximum request size:16384 longwords (65536 bytes)
number of catalogues:l

all
Number of alternate servers: 2

#Ohansen:7001
#lhansen:7002

number of extensions:O

Environment Variables
FONTSERVER

To get the default font server.

See Also
fs, fslsfonts; Chapter 6, Font Specification; Volume Eight, X Window System Administrator's
Guide.

Reference Pages 475

0489

fsinfo (continued)

Copyright
Copyright 1991, Network Computing Devices, Inc.
See X(1) for a full statement of rights and permissions.

Author
Dave Lemke, Network Computing Devices, Inc.

476

Display Font Server Info

X Window System User's Guide

0490

-list Font Server Fonts-------~ fslsfonts

Name
fslsfonts -list X font server fonts.

Syntax
fslsfonts [options] [-fn pattern]

Description
fslsfonts lists the fonts from a font server that match the given pattern.

The wildcard character "*"may be used to match any sequence of characters (including none),
and "?" to match any single character. If no pattern is given, "*" is assumed.

The "*" and "?" characters must be quoted to prevent them from being expanded by the shell.

fslsfonts has been added to the standard distribution of Xll in Release 5 and is intended to be
run with the X font server. (For more information, see the fs reference page, Chapter 6, Font
Specification, and Volume Eight, X Window System Administrator's Guide.)

Options
-1

-c
Indicates that listings should use a single column. This is the same as -n 1.

Indicates that listings should use multiple columns. This is the same as -n 0.

-fnpattern
Lists only those fonts matching the given pattern.

-l[l[l]]
Indicates that medium, long, and very long listings, respectively, should be generated
for each font.

-m Indicates that long listings should also print the minimum and maximum bounds of
each font.

-n columns
Specifies the number of columns to use in displaying the output. By default, it will
attempt to fit as many columns of font names into the number of characters specified
by -w width.

-server server_name ·
Specifies a particular font server. The server_name generally has the form
transport/ host :port. If the FONTSERVER environment variable is not
defined, this option must be given.

-u Indicates that the output should be left unsorted.

-w width
Specifies the width in characters that should be used in figuring out how many col
umns to print. The default is 79.

Reference Pages 477

0491

fslsfonts (continued) List Font Server Fonts

See Also
fs, fsinfo, showfont, xlsfonts; Chapter 6, Font Specification; Volume Eight, X Window System
Administrator's Guide.

Environment Variables
FONTSERVER

To get the default font server.

Bugs
Running fslsfonts -1 can tie up your server for a very long time. This delay is really a
bug with single-threaded, non-preemptable servers, not with the fslsfonts client.

Copyright
Copyright 1991, Network Computing Devices, Inc.
See X(1) for a full statement of rights and permissions.

Author
Dave Lemke, Network Computing Devices, Inc.

478 X Window System User's Guide

0492

-Font Server to BDF Converter----~ fstobdf

Name
fstobdf- Convert font server font to BDF format.

Syntax
fstobdf -fn fontname[-server server_name]

Description
The fstobdf program reads a font from a font server and prints a BDF file on the standard output
that may be used to recreate the font. This is useful in testing servers, debugging font metrics,
and reproducing lost BDF files.

fstobdf has been added to the standard distribution of X11 in Release 5 and is intended to be
used with the X font server. (For more information, see the fs reference page and Volume
Eight, X Window System Administrator's Guide.)

Options
-fn fontname

Specifies the font for which a BDF file should be generated.

-server server_name
Specifies a particular font server. The server_name generally has the form
transport/ host :port. If the FONTSERVER environment variable is not
defined, this option must be given.

Environment Variables
FONTSERVER

To get the default font server.

See Also
bdftosnf, fs, fsinfo, fslsfonts; Volume Eight, X Window System Administrator's Guide; Appen
dix M, Logical Font Description Conventions, in Volume Zero, X Protocol Reference Manual.
Also see the document Bitmap Distribution Format, in the MIT distribution.

Copyright
Copyright 1990, Network Computing Devices.
Copyright 1990, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

Authors
Olaf Brandt, Network Computing Devices.
Dave Lemke, Network Computing Devices.
Jim Fulton, MIT X Consortium.

Reference Pages 479

0493

list res
\-----List Widget Resources-

Name
listres - list resources in widgets.

Syntax
listres [options] [widget . ..]

Description
The listres client generates a list of each specified widget's resource database. The list
includes the class in which each resource is first defined, the instance and class name, and the
type of each resource.

If no widgets are specified (or the -all option is used), a two-column list of known widget
names and their class hierarchies is printed. In the MIT distribution, this includes the intrin
sics-defined widget classes Core, Composite, Constraint, and Shell (and Shell's six subclas.ses),
plus the Athena widgets.

Case is not significant when specifying the name of the widget or widgets whose resources are
to be printed. For example:

% listres Core

is equivalent to:

% listres CORE

Options

480

listres accepts the following application-specific options:

-all Indicates that listres should print information for all known widgets and objects.

-format printf_string
Specifies the printf-style format string to be used to print out the name, instance, class,
and type of each resource.

-no super
Specifies that resources inherited from a superclass should not be listed. This is useful
for determining which resources are new to a subclass.

-top name
Specifies the name of the widget to be treated as the top of the hierarchy. Case is not
significant, and the name may match either the class variable name or the class name.
The default is core.

-tree Specifies that all widgets and objects be listed in a tree.

-variable
Indicates that 'widgets should be identified by the names of the class record variables
rather than the class name given in the variable. This is useful for distinguishing
subclasses that have the same class name as their superclasses.

X Window System User's Guide

0494

List Widget Resources listres (continued)

listres also recognizes all of the standard X Toolkit options (i.e., the program will run); how
ever, since listres is not a window-based application, it does not use them.

Resources
resourceFormat (class ResourceFormat)

Specifies the printf-style format string to be used to print out the name, instance, class,
and type of each resource.

showSuper (class ShowSuper)
If false, resources inherited from a superclass are not listed. This is useful for deter
mining which resources are new to a subclass. The default is true.

showTree (class Show'I'ree)
If true, specifies that all widgets and objects be listed in a tree. The default is false.

showVariable (class ShowVariable)
If true, widgets are identified by the names of the class record variables rather than the
class name given in the variable. This is useful for distinguishing subclasses that have
the same class name as their superclasses. The default is false.

topObject (class TopObject)

See Also

Specifies the name of the widget to be treated as the top of the hierarchy. Case is not
significant, and the name may match either the class variable name or the class name.
The default is core.

X, xrdb, appres, editres; Chapter 11, Setting Resources; Appendix G, Widget Resources; Vol
ume Four, X Toolkit Intrinsics Programming Manual; Volume Five, X Toolkit Intrinsics Refer
ence Manual.

Bugs
On operating systems that do not support dynamic linking of run-time routines, this program
must have all of its known widgets compiled in. The sources provide several tools for automat
ing this process for various widget sets.

Author
Jim Fulton, MIT X Consortium.

Reference Pages 481

0495

mkfontdir
\ ------Create fonts.dir Files-

Name
mkfontdir- creates afonts.dir file for each specified directory of font files.

Syntax
mkfontdir [directory_names]

Description
For each directory argument, mkfontdir reads all of the font files in the directory and searches
for properties named "FONT", or (failing that) the name of the file stripped of its suffix. These
are used as font names, which are written out to the filefonts.dir in the directory, along with the
name of the font file.

The kinds of font files read by mkfontdir depend on configuration parameters, but typically
include PCP (suffix .pcf), SNF (suffix .snf), and BDF (suffix .bdf). For more information, see
Volume Eight, X Window System Administrator's Guide. If a font exists in multiple formats,
mkfontdir will first choose PCP, then SNF, and finally BDF.

Scalable Fonts
Because scalable font files do not usually include the X font name, the fonts.dir file in direc
tories containing such fonts must be edited by hand to include the appropriate entries for those
fonts. However, be aware that when mkfontdir is subsequently run, all of those additions will
be lost. (It might be advisable to maintain an additional list of scalable fonts that can be read
into the fonts.dir file each time mkfontdir is run.)

Font Name Aliases
The file fonts .alias, which can be put in any directory of the font path, is used to map new
names to existing fonts, and should be edited by hand. The format is straightforward enough:
two white-space separated columns, the first containing aliases and the second containing font
name patterns.

When a font alias is used, the name it references is searched for in the normal manner, looking
through each font directory in tum. This means that the aliases need not mention fonts in the
same directory as the alias file.

To embed white space in either name, simply enclose the name in double-quote marks. To
embed double-quote marks (or any other special character), precede it with a backslash:

"magic-alias with spaces"
regular-alias

"\"fontname\" with quotes"
fontname

Searching the Font Path

482

Both the X server and the font server (js) look for fonts.dir and fonts.alias files in each direc
tory in the font path each time the font path is set (see xset).

X Window System User's Guide

0496

Create fonts.dir Files mkfontdir (continued)

See Also
X, Xserver, fs, xset; Volume Eight, X Window System Administrator's Guide; Appendix M,
Logical Font Description Conventions, in Volume Zero, X Protocol Reference Manual.

Reference Pages 483

0497

mwm ~-------Motif window manager-

Name
mwm- the Motif window manager.

Syntax
mwm [options]

Description

484

The Motif window manager, mwm, provides all of the standard window management functions.
It allows you to move, resize, iconify/deiconify, maximize, and close windows and icons, focus
input to a window or icon, refresh the display, etc. mwm provides much of its functionality via
a frame that (by default) is placed around every window on the display. The mwm frame has
the three-dimensional appearance characteristic of the OSF/Motif graphical user interface.

Chapters 3 and 4 of this guide discuss input focus, the components of the mwm frame, and the
various window management functions you can perform using the pointer on the frame. In
addition, Chapter 4 describes how to perform window /icon management functions using
mwm's Window Menu (as well as keyboard shortcuts for menu functions). Chapter 4 also
describes the Root Menu, which provides commands that can be thought of as affecting the dis
play as a whole.

By default, mwm manages only screen 0. (You can specify an alternate screen by setting the
DISPLAY environment variable or using the -display option.) If you want mwm to manage
all screens on the display, use the -mul tiscreen option or set the mul tiScreen resource
to True. (See "mwm-specific Appearance and Behavior Resources.")

You can customize dozens of mwm features by editing a startup file (.mwmrc) and/or by speci
fying resources for the mwm client. You can place mwm resources in your regular resource file
(often called .Xresources) in your home directory; or you can create a file called Mwm (also in
your home directory) for mwm resources only. If you place conflicting specifications in both
files, the resources in .Xresources (presuming they are loaded into the RESOURCE_MANAGER)
take precedence. (These files are generally kept in the user's home directory. Note, however,
that the actual location of resource files may depend on certain environment variables. See the
section "Environment Variables" for more information.)

Chapter 13 of this guide describes the syntax of the .mwmrc file and of mwm resource specifi
cations. Chapter 13 also describes how to use an icon box, which can be set up to organize
icons on the display.

The current reference page primarily describes the actions and resources by mwm. This refer
ence page should assist you in customizing mwm, according to the guidelines specified in
Chapter 13.

X Window System User's Guide

0498

Motif window manager mwm (continued)

Options
-display [host]: server[. screen]

Specifies the name of the display on which to run mwm. host is the hostname of the
physical display, server specifies the server number, and screen specifies the
screen number. Either or both of the host and screen elements can be omitted. If
host is omitted, the local display is assumed. If screen is omitted, screen 0 is
assumed (and the period is unnecessary). The colon and (display) server are neces
sary in all cases.

For example, the following command runs mwm on screen 1 on server 0 on the display
named your_node.

mw.m -display your_node:O.l

-multi screen
Specifies that mwm should manage all screens on the display. The default is to man
age only screen 0. You can specify an alternate screen by setting the DISPLAY envi
ronment variable or using the -display option.

You can also specify that mwm manage all screens by assigning a value of True to
the multiScreen resource variable. See "mwm-specific Appearance and Behavior
Resources."

-name app_name
Specifies the name under which resources for the window manager should be found.

-screens screen_name [screen_name] ...
Assigns resource names to the screens mwm is managing. (By default, the screen
number is used as the screen_name.) If mwm is managing a single screen, only the
first name in the list is used. If mwm is managing multiple screens, the names are
assigned to the screens in order, starting with screen 0. If there are more screens than
names, resources for the remaining screens will be retrieved using the first
screen_name.

-xrm resourcestring
Specifies a resource name and value to override any defaults. This option is very use
ful for setting resources that don't have explicit command-line arguments .

. mwmrc Startup File
The default operation of mwm is largely controlled by a system-wide file, called
system.mwmrc, which establishes the contents of the Root Menu and Window Menu, how menu
functions are invoked, and what key and button combinations can be used to manage windows.
To modify the behavior of mwm, you can edit a copy of this file in your home directory. The
version of this file in your home directory should be called .mwmrc. (You can specify an alter
nate startup file using the configFile resource variable.)

The syntax of the system.mwmrc file is described in Chapter 13 of this guide. Chapter 13 also
examines how to create menus, how to modify existing menus, and how to bind window
manager functions to keystrokes, pointer button actions, or a combination of keys and buttons.

Reference Pages 485

0499

mwm (continued) Motif window manager

In describing the syntax of button and key bindings, Chapter 13 refers to the variables
modifier_key and button_event. Acceptable values for modifier_keyare: Ctrl,
Shift, Alt, Meta, Lock, Modl, Mod2, Mod3, Mod4, and Mod5. mwm considers Alt and
Meta to be equivalent. See Chapter 14, Setup Clients, for a discussion of modifier keys and
key mapping.

The acceptable values for button_event are:

BtnlDown
BtnlUp
BtnlClick
Btn1Click2
Btn2Down
Btn2Up
Btn2Click
Btn2Click2

Btn5Down
Btn5Up
Btn5Click
Btn5Click2

Most of these button actions are obvious. (A specification ending in Click2 refers to a
double click. Thus, Button1Click2 means to double click button 1.) Note that the list
indicates a range between button 1 and button 5 (i.e., the same button events can be specified
for buttons 2, 3, and 4).

mwm Functions
This section describes the functions you can specify in an mwm startup file.

Unless otherwise noted, you can specify that each action is invoked:

• In any of the following contexts: root, window, and icon.

• Using button bindings, key binding, or menu items.

When a function is specified with the context icon I window and you invoke the function
from the icon box, the function applies to the icon box itself (rather than to any of the icons it
contains).

A function is treated as f . nop when it is:

• Not a valid function name.

• Specified inappropriately (e.g., mapped to a button when the function cannot be invoked
using button bindings).

• Invoked in an invalid context. (For example, you cannot invoke f . minimize on a win
dow that is already iconified.)

486 X Window System User's Guide

0500

Motif window manager mwm (continued)

See Chapter 13 for a discussion of context, bindings, and menus.

mwm recognizes the following functions:

f.beep
Causes a beep from the keyboard.

f. circle_down [icon I window]
Causes the window or icon on the top of the stack to be lowered to the bottom of the
stack. If the icon argument is specified, the function applies only to icons. If the
window argument is specified, the function applies only to windows.

This function is invoked by the Shuffle Down item on the default Root Menu.

f. circle_up [icon I window]
Causes the window or icon on the bottom of the stack to be raised to the top. If the
icon argument is specified, the function applies only to icons. If the window argu
ment is specified, the function applies only to windows.

This function is invoked by the Shuffle Up item on the default Root Menu.

f . exec [command]

[command]
Executes command using the shell specified by the MWMSHELL environment vari
able. (If MWMSHELL isn't set, the command is executed using the shell specified by
the SHELL environment variable; otherwise, the command is exec1,1ted using /bin/sh.)

f.focus_color
Sets the colormap focus to a client window. If this function is invoked in the root
context, the default colormap (specified by X for the screen where mwm is running) is
installed and there is no specific client window colormap focus. For the
f. focus_color function to work, the colormapFocusPolicy should be speci
fied as explicit; otherwise the function is treated as f .nop.

f.focus_key

f. kill

Sets the input focus to a window or icon. For the f. focus_key function to work,
the keyboardFocusPolicy should be specified as explicit. If keyboard
FocusPolicy is not explicit, or if the function is invoked in the root context,
it is treated as f . nop.

Terminates a client. Specifically, sends the WM_DELETE_ W1NDOW message to the
selected window if the client application has requested it through the
WM_PROTOCOLS property. The application is supposed to respond to the message by
removing the indicated window. If the WM_SAVE_YOURSELF protocol is set up and
the WM_DELETE_ WINDOW protocol is not, the client is sent a message, indicating
that the client needs to prepare to be terminated. If the client does not have the
WM_DELETE_ WINDOW or WM_SAVE_ YOURSELF protocol set, the f . ki 11 function

Reference Pages 487

0501

mwm (continued) Motif window manager

488

causes a client's X connection to be terminated (usually resulting in termination of the
client).

This function is invoked by the Close item on the default Window Menu. The
f. kill function can only be invoked in the contexts window and icon.

See also qui tTimeout in the "Resources" section; see the WM_PROTOCOLS prop
erty in Volume Two, Xlib Reference Manual.

f.lower [-client I within I freeFamily]
Without arguments, lowers a window or icon to the bottom of the stack. (By default,
the context in which the function is invoked indicates the window or icon to lower.) If
an application window has one or more transient windows (e.g., dialog boxes), the
transient windows are lowered with the parent (within the global stack) and remain on
top of it. (The within and freeFamily arguments allow you to control how tran
sient windows are affected by the f .lower action.) f .lower is invoked (without
arguments) by the Lower item on the default Window Menu.

If the -client argument is specified, the function is invoked on the named client.
(client must be the instance or class name of a program.)

The within argument is used to lower a transient window within the application's
"local" window hierarchy; all transients remain above the parent window (usually the
main application window) and that window remains in the same position in the global
window stack. In practice, this function is only useful when there are two or more
transient windows and you want to shuffle them.

The freeFamily argument is used to lower a transient below its parent-in effect,
to free transient windows from the local hierarchy. Again, the parent is not moved in
the global window stack. (Note, however, that if you use this function on the parent,
the entire family stack is lowered within the global stack.)

f.maximize
Causes a window to be redisplayed at its maximum size. The f .maximize function
is invoked by the Maximize item on the default Window Menu. This function cannot
be invoked in the context root or on a window that is already maximized.

f .menu menu_name
Associates a cascading (i.e., pull-right) menu with a menu item (from which the cas
cading menu is displayed); or associates a menu with a button or key binding. The
menu_name argument specifies the menu.

£.minimize
Causes a window to be minimized (i.e., iconified). When no icon box is being used,
icons are placed on the bottom of the stack (generally in the lower-left comer of the
screen. See also iconPlacement in "mwm-specific Appearance and Behavior
Resources)." If an icon box is being used, icons are placed inside the box.

X Window System User's Guide

0502

Motif window manager mwm (continued)

f.move

The f .minimize function is invoked by the Minimize item on the default Window
Menu. This function cannot be invoked in the context root or on an iconified win
dow.

Allows you to move a window interactively, using the pointer. This function is
invoked by the Move item on the default Window Menu.

f.next_cmap
Installs the next colormap in the list of colormaps for the window with the colormap
focus. (See f. focus_color.)

f. next_key [icon I window I transient]
Without any arguments, this function advances the input focus to the next window or
icon in the stack. You can specify only icon or window to make the function apply
only to icons or windows, respectively.

Generally, the focus is moved only to windows that do not have an associated secon
dary window that is application modal. (An active dialog box is application modal.)
If the transient argument is specified, transient (secondary) windows are also tra
versed. Otherwise, if only window is specified, focus is moved only to the last win
dow in a transient group to have the focus.

For this function to work, keyboardFocusPolicy must be explicit; other
wise, the function is treated as f . nop. See Chapter 4 for the default key combina
tions to move the focus.

f. nop Specifies no operation. (In other words, it does nothing.)

f.normalize
Causes a client window to be displayed at its normal size. The f. normalize func
tion is invoked by the Restore item on the default Window Menu. This function can
not be invoked in the context root or on a window that is already at its normal size.

f.normalize_and_raise
Causes the client window to be displayed at its normal size and raised to the top of the
stack. This function cannot be invoked in the context root or on a window that is
already at its normal size.

f.pack_icons
Rearranges icons in an optimal fashion (based on the layout policy being used), either
on the root window or in the icon box. See iconPlacement in "mwm-specific
Appearance and Behavior Resources." (See Chapter 13 for instructions on using an
icon box.)

f.pass_keys
Toggles processing of key bindings for window manager functions. When key bind
ing processing is disabled, all keys are passed to the window with the keyboard input
focus and no window manager functions are invoked. If the f. pass_keys function

F?eterence Pages 489

0503

mwm (continued) Motif window manager

490

is set up to be invoked with a key binding, the binding can be used to toggle
(enable/disable) key binding processing.

f.post_wmenu
Displays the Window Menu. If a key is used to display the menu and a Window Menu
command button is present, the upper-left comer of the menu is placed at the lower
left comer of the command button. If no Window Menu command button is present,
the menu is placed in the upper-left comer of the window.

f.prev_cmap
This function installs the previous colormap in the list of colormaps for the window
with the colormap focus. (See f. focus_color.)

f .prev_key [icon I window I transient]
Without any arguments, this function moves the input focus to the previous window or
icon in the stack. You can specify only icon or window to make the function apply
only to icons or windows, respectively.

Generally, the focus is moved only to windows that do not have an associated secon
dary window that is application modal. (An active dialog box is application modal.)
If the transient argument is specified, transient (secondary) windows are also tra
versed. Otherwise, if only window is specified, focus is moved only to the last win
dow in a transient group to have the focus.

For this function to work, keyboardFocusPolicy must be explicit; other
wise, the function is treated as f . nop. See Chapter 4 for the default key combina
tions to move the focus.

f.quit_mwm
Stops the mwm window manager. Note that this function does not stop the X server.
This function cannot be invoked from a non-root menu.

f. raise [-client I within I freeFamily]
Raises a window or icon to the top of the stack. By default, the context in which the
function is invoked indicates the window or icon to raise. Ifthe -client argument
is specified, the function is invoked on the named client. (client must be the
instance or class name of a program.)

Without arguments, raises a window or icon to the top of the stack. (By default, the
context in which the function is invoked indicates the window or icon to raise.) If an
application window has one or more transient windows (e.g., dialog boxes), the tran
sient windows are raised with the parent (within the global stack) and remain on top
of it. (The within and f reeF ami ly arguments allow you to control how transient
windows are affected by the f. raise action.)

If the -client argument is specified, the function is invoked on the named client.
(c 1 i en t must be the instance or class name of a program.)

X Window System User's Guide

0504

Motif window manager mwm (continued)

The within argument is used to raise a transient window within the application's
"local" window hierarchy; all transients remain above the parent window (usually the
main application window) and that window remains in the same position in the global
window stack. In practice, this function is only useful when there are two or more
transient windows and you want to shuffle them.

The freeFamily argument raises a transient to the top of the family stack (in effect,
transient windows are freed from the local hierarchy) and also raises the parent win
dow to the top of the global stack.

f. raise_lower [within I freeFamily]
Raises a primary application window to the top of the stack or lowers a window to the
bottom of the stack, as appropriate to the context.

The within argument is intended to raise a transient window within the appli
cation's "local" window hierarchy (if the transient is obscured); all transients remain
above the parent window (usually the main application window); the parent window
should also remain in the same position in the global window stack. If the transient is
not obscured by another window in the local stack, the transient window is lowered
within the family.

The preceding paragraph describes how f. raise_lower within should work.
However, we have found that the parent window does not always remain in the same
position in the global window stack.

The freeFamily argument raises a transient to the top of the family stack (in effect,
transient windows are freed from the local hierarchy) and also raises the parent win
dow to the top of the global stack. If the transient is not obscured by another window,
this function lowers the transient to the bottom of the family stack and lowers the fam
ily in the global stack.

f.refresh
Redraws all windows. This function is invoked by the Refresh item on the default
Root Menu.

f.refresh_win
Redraws a single window.

f.resize
Allows you to resize a window interactively, using the pointer. This function is
invoked by the Size item on the default Window Menu.

f.restart
Restarts the mwm window manager. (Specifically, this function causes the current
mwm process to be stopped and a new mwm process to be started.) This function is
invoked by the Restart ... item on the default Root Menu. It cannot be invoked from a
non-root menu.

Reference Pages 491

0505

mwm (continued) Motif window manager

492

f.restore
Causes the client window to be displayed at its previous size. If invoked on an icon,
f. restore causes the icon to be converted back to a window at its previous size.
Thus, if the window was maximized, it is restored to this state. If the window was
previously at its normal size, it is restored to this state. If invoked on a maximized
window, the window is restored to its normal size. The f. restore function is
invoked by the Restore item on the default Window Menu. This function cannot be
invoked in the context root or on a window that is already at its normal size.

f.restore_and_raise
Causes the client window to be displayed at its previous size and raised to the top of
the stack. This function cannot be invoked in the context root or on a window that
is already at its normal size.

f. screen [next I prev I back I screen_number]
Causes the pointer to be warped to (i.e., redrawn at) another screen, determined by
one of four mutually exclusive parameters:

The next argument means skip to the next managed screen. The prev argument
means skip back to the previous managed screen. The back argument means skip to
the last screen visited (regardless of its position in the numeric order).

Screens are normally numbered beginning at 0. screen_number specifies a partic
ular screen.

f . send_msg message_number
Sends a message of the type _MOTIF_ WM_MESSAGES to a client; the message type is
indicated by the message_number argument. The message is sent only if the cli
ent's _MOTIF_ WM_MESSAGES property includes message_number.

If a menu item is set up to invoke f . send_msg and the message_number is not
included in the client's _MOTIF_WM_MESSAGES property, the menu item label is
greyed out (indicating that it is not available for selection).

f.separator
Creates a divider line in a menu. Any associated label is ignored.

f.set_behavior
Restarts mwm, toggling between the default behavior for the particular system and the
user's custom environment. In any case, a dialog box asks the user to confirm or can
cel the action. By default this function is invoked using the following key sequence:
Shift Ctrl Meta ! .

f. title
Specifies the title of a menu. The title string is separated from the menu items by a
double divider line.

X Window System User's Guide

0506

Motif window manager mwm (continued)

Resources
mwm resources are considered to fall into three categories:

• mwm component appearance resources. These resources set the characteristics of mwm's
component features, such as the window frame, menus, and icons.

• mwm-specific appearance and behavior resources. These resources set characteristics of
the window manager client, such as focus policy, key and button bindings, and so forth.

• Client-specific resources. These mwm resources can be used to set the appearance and
behavior of a particular client or class of clients.

The following sections simply describe the valid resources. For a discussion of mwm resource
syntax, see Chapter 13 in this guide. (For more information about basic resource syntax and
the precedence of resource specifications, see Chapter 11.)

Note that Mwm is the class name. You can specify resources for multiple screens using the
names supplied to the -screens command-line option in place of mwm or Mwm in the
resource line. (See "Options.")

mwm Component Appearance Resources
The Motif window manager can be considered to be made up of the following components:
client window frames, menus, icons, and feedback (dialog) boxes. Some component appear
ance resources can be set for all of these components; others can be set only for the frame and
icons.

Unless a default is specified, the default varies based on system specifics (such as screen type,
color resources, etc.).

The following component appearance resources apply to all window manager components:

background (class Background)
Specifies the background color.

backgroundP ixmap (class BackgroundP ixmap)
Specifies the background pixmap of the mwm decoration when the window does not
have the input focus (i.e., is inactive).

bottomShadowColor (class Foreground)
Specifies the color to be used for the lower and right bevels of the window manager
decoration.

bottomShadowPixmap (class BottomShadowPixmap)
Specifies the pixmap to be used for the lower and right bevels of the window manager
decoration.

fontList (class FontList)
Specifies the font to be used in the window manager decoration. The default is
fixed.

foreground (class Foreground)
Specifies the foreground color.

Reference Pages 493

0507

mwm (continued) Motif window manager

saveUnder (class SaveUnder)
Specifies whether save unders are used for mwm components. By default (False),
save unders will not be used on any window manager frames.

Save unders must be implemented by the X server for this function to to take effect.
When save unders are implemented, the X server saves the contents of windows
obscured by other windows that have the save under attribute set. If the saveUnder
resource is True, mwm will set the save under attribute on the frame of any client that
has it set.

topShadowColor (class Background)
Specifies the color to be used for the upper and left bevels of the window manager
decoration.

topShadowPixmap (class TopShadowPixmap)
Specifies the pixmap to be used for the upper and left bevels of the window manager
decoration.

The following component appearance resources apply to the window frame and icons:

act i veBackground (class Background)
Specifies the background color of the mwm decoration when the window has the input
focus (i.e., is active).

acti veBackgroundPixmap (class Acti veBackgroundPixmap)
Specifies the background pixmap of the mwm decoration when the window has the
input focus (i.e., is active).

activeBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the mwm decoration when the window has the
input focus (i.e., is active).

activeBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the mwm decoration when the window has the
input focus (i.e., is active).

acti veForeground (class Foreground)
Specifies the foreground color of the mwm decoration when the window has the input
focus (i.e., is active).

acti veTopShadowColor (class Background)
Specifies the top shadow color of the mwm decoration when the window has the input
focus (i.e., is active).

acti veTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow Pixmap of the mwm decoration when the window has the
input focus (i.e., is active).

mwm-specific Appearance and Behavior Resources

494

The mwm-specific resources control aspects of what you probably think of as the window
manager application itself, features such as the focus policy, whether windows are placed on

X Window System User's Guide

0508

Motif window manager mwm (continued)

the display automatically or interactively, which set(s) of button and key bindings are used,
whether an icon box is used, and so forth.

The following mwm-specific appearance and behavior resources can be specified:

autoKeyFocus (class AutoKeyFocus)
If True (the default), when the focus window is withdrawn from window manage
ment or is iconified, the focus bounces back to the window that previously had the
focus. This resource is available only when keyboardFocusPolicy is expli
cit. If False, the input focus is not set automatically. autoKeyFocus and
startupKeyFocus should both be True to work properly with tear off menus.

autoRaiseDelay (class AutoRaiseDelay)
Specifies the amount of time (in milliseconds) that mwm will wait before raising a
window after it receives the input focus. The default is 50 0. This resource is avail
able only when focusAutoRaise is True and the keyboardFocusPolicy is
pointer.

bi tmapDirectory (class Bi tmapDirectory)
Identifies the directory to be searched for bitmaps referenced by mwm resources (if an
absolute pathname to the bitmap file is not given). The default is lusrlinclude/Xlllbit
maps, which is considered the standard location on many systems. Note, however,
that the location of the bitmap directory may vary in different environments. If a bit
map is not found in the specified directory, XBMLANGPATH is searched.

buttonBindings (class ButtonBindings)
Identifies the set of button bindings to be . used for window management functions;
must correspond to a set of button bindings specified in the mwm startup file. Button
bindings specified in the startup file are merged with built-in default bindings. The
default is DefaultButtonBindings.

cleanText (class CleanText)
Specifies whether text that appears in mwm title and feedback windows is displayed
over the existing background pattern. If True (the default), text is drawn with a clear
(no stipple) background. (Only the stippling in the area immediately around the text
is cleared.) This enhances readability, especially on monochrome systems where a
backgroundPixmap is specified. If False, text is drawn on top of the existing
background.

clientAutoPlace (class ClientAutoPlace)
Specifies the location of a window when the user has not specified a location. If
True (the default), windows are positioned with the upper-left corners of the frames
offset horizontally and vertically (so that no two windows completely overlap).

If False, the currently configured position of the window is used.

In either case, mwm will attempt to place the windows totally on screen.

Reference Pages 495

0509

mwm (continued) Motif window manager

496

colormapFocusPolicy (class ColormapFocusPolicy)
Specifies the colormap focus policy. Takes three possible values: keyboard,
pointer, and explicit. If keyboard (the default) is specified, the input focus
window has the colormap focus. If explicit is specified, a colormap selection
action is done on a client window to set the colormap focus to that window. If
pointer is specified, the client window containing the pointer has the colormap
focus.

configFile (class ConfigFile)
Specifies the pathname for the mwm startup file. The default startup file is .mwmrc.

mwm searches for the configuration file in the user's home directory. If the config
F i l e resource is not specified or the file does not exist, mwm defaults to an imple
mentation-specific standard directory (the default is /usr/lib/Xll/system.mwmrc).

If the LANG environment variable is set, mwm looks for the configuration file in a
$LANG subdirectory first. For example, if the LANG environment variable is set to Fr
(for French), mwm searches for the configuration file in the directory $HOME/Fr
before it looks in $HOME. Similarly, if the configFile resource is not specified or
the file does not exist, mwm defaults to /usrllib/Xlli$LANG!system.mwmrc before it
reads /usr/ lib/Xll I system.mwmrc.

If the configFile pathname does not begin with "T', mwm considers it to be rela
tive to the current working directory.

deiconifyKeyFocus (class DeiconifyKeyFocus)
If True (the default), a window receives the input focus when it is normalized
(deiconified). This resource applies only when the keyboardFocusPolicy is
explicit.

doubleClickTime (class DoubleClickTime)
Specifies the maximum time (in milliseconds) between the two clicks of a double
click. The default is the display's multi-click time.

enableWarp (class EnableWarp)
If True (the default), causes mwm to warp the pointer to the center of the selected
window during resize and move operations invoked using keyboard accelerators.
(The cursor symbol disappears from its current location and reappears at the center of
the window.) If False, mwm leaves the pointer at its original place on the screen,
unless the user explicitly moves it.

enforceKeyFocus (class EnforceKeyFocus)
If True (the default), the input focus is always explicitly set to selected windows
even if there is an indication that they are "globally active" input windows. (An
example of a globally active window is a scrollbar that can be operated without set
ting the focus to that client.) If the resource is False, the keyboard input focus is not
explicitly set to globally active windows.

X Window System User's Guide

0510

Motif window manager mwm (continued)

fadeNormalicon (class FadeNormalicon)
If True, an icon is greyed out when it has been normalized. The default is False.

feedbackGeometry (class FeedbackGeometry)
Specifies the position of the small, rectangular feedback box that displays coordinate
and size information during move and resize operations. By default, the feedback
window appears in the center of the screen. This resource takes the argument:

[=]±xoffset±yoffset

With the exception of the optional leading equal sign, this string is identical to the
second portion of the standard geometry string. See the section "Window Geometry:
Specifying Size and Location" in Chapter 3, Working in the X Environment, for more
information. Note that feedbackGeometry allows you to specify location only.
The size of the feedback window is not configurable using this resource. Available as
of mwm version 1.2.

frameBorderWidth (class FrameBorderWidth)
Specifies the width in pixels of a window frame border, without resize handles. (The
border width includes the three-dimensional shadows.) The default is determined
according to screen specifics.

iconAutoPlace (class IconAutoPlace)
Specifies whether the window manager arranges icons in a particular area of the
screen or places each icon where the window was when it was iconified. If True (the
default), icons are arranged in a particular area of the screen, determined by the
iconPlacement resource. If False, an icon is placed at the location of the win
dow when it is iconified.

iconBoxGeometry (class IconBoxGeometry)
Specifies the initial position and size of the icon box. Takes as its argument the stan
dard geometry string:

widthxheight±xoff±yoff

where width and height are measured in icons. The default geometry string is
6x1+0-0, which places an icon box six icons wide by one icon high in the lower-left
comer of the screen.

You can omit either the dimensions or the x and y offsets from the geometry string
and the defaults apply. If the offsets are not provided, the iconPlacement
resource is used to determine the initial placement.

The actual screen size of the icon box depends on the iconimageMaximum and
iconDecoration resources, which specify icon size and padding. The default
value for size is (6 x icon_width + padding) wide by (1 x icon_height +padding)
high.

Reference Pages 497

0511

mwm (continued) Motif window manager

iconBoxName (class IconBoxName)
Specifies the name under which icon box resources are to be found. The default is
iconbox.

iconBoxSBDisplayPolicy (class IconBoxSBDisplayPolicy)
Specifies what scrollbars are displayed in the icon box. The resource has three pos
sible values: all, vertical, and horizontal. If all is specified (the default),
both vertical and horizontal scrollbars are displayed at all times. vertical specifies
that a single vertical scrollbar is displayed (this also sets the orientation of the icon
box to horizontal-regardless of the-iconBoxGeometry specification). hori
zontal specifies that a single horizontal scrollbar is displayed in the icon box (this
also sets the orientation of the icon box to vertical-regardless of the iconBox
Geometry specification).

iconBoxTitle (class IconBoxTitle)
Specifies the name to be used in the title area of the icon box. The default is Icons.

iconClick (class IconClick)
If True (the default), the Window Menu is displayed when the pointer is clicked on an
icon.

iconDecoration (class IconDecoration)
Specifies how much icon decoration is used. The resource value takes four possible
values (multiple values can also be supplied): label, which specifies that only the
label is displayed; image, which specifies that only the image is displayed; and
activelabel, which specifies that a label (not truncated to the width of the icon) is
used when the icon has the focus.

The default decoration for icons in an icon box is label image, which specifies
that both the label and image parts are displayed. The default decoration for individ
ual icons on the screen proper is acti vel abel label image.

i conimageMaximum (class I conimageMaximum)
Specifies the maximum size of the icon image. Takes a value of widthxheight
(e.g., 80x80). The maximum size supported is 128 x 128. The default is 50x50.

iconimageMinimum (class IconimageMinimum)
Specifies the minimum size of the icon image. Takes a value of widthxheight
(e.g., 3 6x48). The minimum size supported is 16 x 16 (which is also the default).

iconPlacement (class IconPlacement)
Specifies an icon placement scheme. Note that this resource is only useful when
useiconBox is False (the default). The iconPlacement resource takes a value
of the syntax:

primary_layout secondary_layout [tight]

498 X Window System User's Guide

0512

Motif window manager mwm (continued)

There are four possible layout policies:

top, which specifies that icons are placed from the top of the screen to the bottom;
bottom, which specifies a bottom-to-top arrangement; left, which specifies that
icons are placed from the left to the right; right, which specifies a right-to-left
arrangement.

The primary_layout specifies whether icons are placed in a row or a column and
the direction of placement. The secondary_layout specifies where to place new
rows or columns. For example, a value of top right specifies that icons should be
placed from top to bottom on the screen and that columns should be added from right
to left on the screen.

A horizontal (vertical) layout value should not be used for both the pri
mary_layout and the secondary_layout. For example, don't use top for the
primary_layout and bottom for the secondary_layout.

The default placement is left bottom (i.e., icons are placed left to right on the
screen, with the first row on the bottom of the screen; and new rows are added from
the bottom of the screen to the top of the screen).

The optional argument tight specifies that there is no space between icons.

iconPlacementMargin (class IconPlacementMargin)
Sets the distance from the edge of the screen at which icons are placed. (The value
should be greater than or equal to 0. A default value is used if an invalid distance is
specified.) The default value is equal to the space between icons as they are placed on
the screen (which is is based on maximizing the number of icons in each row and col
umn).

interacti vePlacement (class Interacti vePlacement)
If True, specifies that new windows are to be placed interactively on the screen using
the pointer. When a client is run, the pointer shape changes to an upper-left corner
cursor; move the pointer to the location you want the window to appear and click the
first button; the window is displayed in the selected location. If False (the default),
windows are placed according to the initial window configuration attributes.

keyBindings (class KeyBindings)
Identifies the set of key bindings to be used for window management functions; must
correspond to a set of key bindings specified in the mwm startup file. Note that key
bindings specified in the startup file replace the built-in default bindings. The default
is DefaultKeyBindings.

keyboardFocusPolicy (class KeyboardFocusPolicy)
If explicit focus is specified (the default), placing the pointer on a window
(including the frame) or icon and pressing the first pointer button focuses keyboard
input on the client. If pointer is specified, the keyboard input focus is directed to
the client window on which the pointer rests (the pointer can also rest on the frame).

Reference Pages 499

0513

mwm (continued) Motif window manager

500

limitResize (class LimitResize)
If True (the default), the user is not allowed to resize a window to greater than the
maximum size.

1 owe rOn I coni fy (class LowerOni coni fy)
If True (the default), a window's icon is placed on the bottom of the stack when the
window is iconified. If False, the icon is placed in the stacking order at the same
place as its associated window.

maximumMaximumSize (class MaximurnMaximumSize)
Specifies the maximum size of a client window (as set by the user or client). Takes a
value of widthxheight (e.g., 1024x1024) where width and height are in pix
els. The default is twice the screen width and height.

moveThreshold (class MoveThreshold)
Controls the sensitivity of dragging operations (such as those used to move windows
and icons on the display). Takes a value of the number of pixels that the pointing
device is moved while a button is held down before the move operation is initiated.
The default is 4. This resource helps prevent a window or icon from moving when
you click or double click and inadvertently jostle the pointer while a button is down.

moveOpaque (class MoveOpaque)
If False (the default), when you move a window or icon, its outline is moved before
it is redrawn in the new location. If True, the actual (and thus, opaque) window or
icon is moved. Available as of mwm version 1.2.

multiScreen (class MultiScreen)
If False (the default), mwm manages only a single screen. If True, mwm manages
all screens on the display. (See "Options.")

passButtons (class PassButtons)
Specifies whether button press events are passed to clients after the events are used to
invoke a window manager function (in the client context). If False (the default),
button presses are not passed to the client. If True, button presses are passed to the
client. (Note that the window manager function is done in either case.)

passSelectButton (class PassSelectButton)
Specifies whether select button press events are passed to clients after the events are
used to invoke a window manager function (in the client context). If True (the
default), button presses are passed to the client window. If False, button presses are
not passed to the client. (Note that the window manager function is done in either
case.)

positionisFrame (class PositionisFrame)
Specifies how mwm should interpret window positiOn information (from the
WM_NORMAL_HINTS property and from configuration requests). If True (the
default), the information is interpreted as the position of the mwm client window

X Window System User's Guide

0514

Motif window manager mwm (continued)

frame. If False, it is interpreted as being the position of the client area of the win
dow.

positionOnScreen(cla~PositionOnScreen)

If True (the default), specifies that windows should initially be placed (if possible) so
that they are not clipped by the edge of the screen. (If a window is larger than the size
of the screen, at least the upper-left comer of the window is placed is on the screen.)
If False, windows are placed in the requested position even if totally off the screen.

quitTimeout (class QuitTimeout)
Specifies the amount of time (in milliseconds) that mwm will wait for a client to
update the WM_COMMAND property after mwm has sent the WM_SAVE_YOURSELF
message. The default is 1000. (See the f. kill function for additional informa
tion.)

raiseKeyFocus (class RaiseKeyFocus)
If True, specifies that a window raised by means of the f. normal
ize_and_raise function also receives the input focus. This function is available
only when the keyboardFocusPolicy is explicit. The default is False.

resizeBorderWidth (class ResizeBorderWidth)
Specifies the width in pixels of a window frame border, with resize handles. (The bor
der width includes the three-dimensional shadows.) The default is determined accord
ing to screen specifics.

resizeCursors (class ResizeCursors)
If True (the default), the resize cursors are always displayed when the pointer is in
the window resize border.

screens (class Screens)
Assigns resource names to the screens mwm is managing. If mwm is managing a
single screen, only the first name in the list is used. If mwm is managing multiple
screens, the names are assigned to the screens in order, starting with screen 0. (See
also "Options.")

showFeedback (class ShowFeedback)
Specifies whether mwm feedback windows and confirmation dialog boxes are
displayed. (Feedback windows are used to display: window coordinates during
interactive placement and subsequent moves; and dimensions during resize opera
tions. A typical confirmation dialog is the window displayed to allow the user to
allow or cancel a window manager restart operation.)

showFeedback accepts a list of options, each of which corresponds to the type of
feedback given in a particular circumstance., Depending on the syntax in which the
options are entered, you can either enable or disable a feedback option (as explained
later).

The possible feedback options are: all, which specifies that mwm show all types of
feedback (this is the default); behavior, which specifies that feedback is displayed

. Reference Pages 501

0515

mwm (continued) Motif window manager

502

to confirm a behavior switch; ki 11, which specifies that feedback is displayed on
receipt of a KILL signal; move, which specifies that a box containing the coordinates
of a window or icon is displayed during a move operation; placement, which speci
fies that a box containing the position and size of a window is displayed during initial
(interactive) placement; quit, which specifies that a dialog box is displayed so that
the user can confirm (or cancel) the procedure to quit mwm; resize, which specifies
that a box containing the window size is displayed "~during a resize operation;
restart, which displays a dialog box so that the user can confirm (or cancel) an
mwm restart procedure; the none option specifies that no feedback is shown.

By default, mwm supplies feedback in all cases. (all encompasses all of the other
options-with the exception of the none option.)

To limit feedback to particular cases, you can use one of two syntaxes: with the first
syntax, you disable feedback in specified cases (all other default feedback is still
used); with the second syntax, you enable feedback only in specified cases.

Initially, the syntax may be confusing, but it is actually quite simple. You supply this
resource with a list of options to be enabled or disabled. If the first item is preceded
by a minus sign, feedback is disabled for all options in the list. (Any option not listed
remains enabled.)

If the first item is preceded by a plus sign (or no sign is used), feedback is enabled
only for options in the list.

For example, the following resource specification:

MWm*showFeedback: resize placement restart

enables the feedback options resize, placement, and restart. What this
means is the following: size information is displayed when a window is resized; coor
dinates are displayed when a window is placed interactively on the screen; and a dia
log box is displayed so that the user can confirm or cancel a window manager restart
request. Feedback is supplied in these circumstances only, overriding the default all
option.

The following line specifies the same characteristics using the alternate syntax:

MWm*showFeedback: -move kill behavior quit

This line disables the feedback options move, kill, behavior, and quit. The
other options encompassed by the default all (resize, placement, and
restart) remain enabled.

startupKeyFocus (class StartupKeyFocus)
If True (the default), the input focus is transferred to a window when the window is
mapped (i.e., initially managed by the window manager). This function is available
only when keyboardFocusPolicy is explicit. startupKeyFocus and
autoKeyFocus should both be True to work properly with tear off menus.

X Window System User's Guide

0516

Motif window manager mwm (continued)

transientDecoration (class TransientDecoration)
Specifies the amount of decoration mwm puts on transient windows. The decoration
specification is exactly the same as for the clientDecoration (client-specific)
resource. Transient windows are identified by the WM_TRANSIENT_FOR property,
which is added by the client to indicate a relatively temporary window. The default is
menu title, which specifies that transient windows have resize borders and a
titlebar with a Window Menu command button.

If the client application also specifies which decorations the window manager should
provide, mwm uses only those features that both the client and the transient
Decoration resource specify.

transientFunctions (class TransientFunctions)
Specifies which window management functions are applicable (or not applicable) to
transient windows. The function specification is exactly the same as for the
clientFunctions (client-specific) resource. The default is -minimize maxi
mize.

If the client application also specifies which window management functions should be
applicable, mwm provides only those functions that both the client and the
transientFunctions resource specify.

useiconBox (class UseiconBox)
If True, icons are placed in an icon box. By default, the individual icons are placed
on the root window.

wMenuButtonClick (class WMenuButtortClick)
If True (the default), a pointer button click on the Window Menu button displays the
Window Menu and leaves it displayed.

wMenuButtonClick2 (class WMenuButtonClick2)
If True, double clicking on the Window Menu command button removes the client
window (actually invokes the f. kill function).

Client-specific Resources
Some mwm resources can be set to apply to certain client applications or classes of appli
cations. Many of the client-specific resources provide what might be considered advanced cus
tomization.

The following client-specific resources can be specified:

clientDecoration (class ClientDecoration)
Specifies the amount of window frame decoration. The default frame is composed of
several component parts: the titlebar, resize handles, border, and three command but
tons (Minimize, Maximize, and Window Menu). You can limit the frame decoration
for a client using the clientDecoration resource.

Reference Pages 503

0517

mwm (continued) Motif window manager

504

clientDecoration accepts a list of options, each of which corresponds to a part
of the client frame. Depending on the syntax in which the options are entered, you
can either enable or disable an option (as explained later).

The options are: maximize (button); minimize (button); menu (the Window
Menu button); border; title (titlebar); resizeh (resize handles); all, which
encompasses all decorations previously listed (this is the default); and none, which
specifies that no decorations are used.

Some decorations require the presence of others; if you specify such a decoration, any
decoration required with it will be used automatically. Specifically, if any of the com
mand buttons is specified, a titlebar is also used; if resize handles or a titlebar is speci
fied, a border is also used.

By default, a client window has all decoration. To specify only certain parts of the
default frame, you can use one of two syntaxes: with the first syntax, you disable cer
tain. frame features (all other default features are still used); with the second syntax,
you enable only certain features. (The syntax is virtually the same as that described
for showFeedback.)

You supply clientDecoration with a list of options to be enabled or disabled. If
the first item is preceded by a minus sign, the features in the list are disabled. (Any
option not listed remains enabled.)

If the first item is preceded by a plus sign (or no sign is used), only those features
listed are enabled.

For example, the following resource specification:

Mwm*XCalc*clientDecoration: -minimize maximize menu

removes the three command buttons from xcalc window frames. (The window will
still have the titlebar, resize handles, and border.)

The following line specifies the same characteristics using the alternate syntax:

Mw.m*XCalc*clientDecoration: title resizeh border

clientFunctions (class ClientFunctions)
Specifies whether certain mwm functions can be invoked on a client window. (See
"mwm Functions" earlier in this reference page.) The only functions that can be con
trolled are those that are executable using the pointer on the default window frame.

clientFunctions accepts a list of options, each of which corresponds to an mwm
function. Depending on the syntax in which the options are entered, you can either
allow or disallow a function (as explained later).

The options (and the functions to which they correspond) are: resize
(f. resize); move (f .move); minimize (f .minimize); maximize (f .max-

X Window System User's Guide

0518

Motif window manager mwm (continued)

imize); close (f. kill); all (encompasses all of the previously listed func
tions); none (none of the default functions is allowed).

By .default, a client recognizes all functions. To limit the functions a client recog
nizes, you can use one of two syntaxes: with the first syntax, you disallow certain
functions (all other default functions are still allowed); with the second syntax, you
allow only certain functions. (The syntax is virtually the same as that described for
clientDecoration.)

You supply clientFunctions with a list of options (corresponding to functions)
to be allowed or disallowed. If the first item is preceded by a minus sign, the func
tions in the list are disallowed. (Any option not listed remains allowed.)

If the first option is preceded by a plus sign (or no sign is used), only those functions
listed are allowed.

A less than obvious reprecussion of disallowing a particular function is that the client
window frame will be altered to prevent your invoking that function. For instance, if
you disallow the f. resize function for a client, the client's frame will not include
resize borders. (Features of the frame can also be suppressed using the client
Decoration resource.) In addition, the Window Menu Size item, which invokes the
f. res;i.ze function, will no longer appear on the menu. (You cannot affect the Win
dow Menu using clientDecoration.)

For example, the following resource line:

Mw.m*xfd*clientFunctions: -resize maximize

specifies that you cannot invoke the f . resize and f . maximize functions on an
xfd window. As a result, the resize borders and Maximize command button will not
appear on the frame, and the Size and Maximize items will not appear on the Window
Menu.

The following line specifies the same characteristics using the alternate syntax:

Mw.m*xfd*clientFunctions: minimize move close

focusAutoRaise (class FocusAutoRaise)
If True, a window is raised when it receives the input focus. Otherwise, directing
focus to a window does not affect the stacking order.

The default depends on the value assigned to the keyboardFocusPolicy
resource. If the keyboardFocusPolicy is explicit, the default for focus
AutoRaise is True. If the keyboardFocusPolicy is pointer, the default
furfocusAutoRaiseisFalse.

If the client application also specifies which window management functions should be
applicable, mwm provides only those functions that both the client and the client
Functions resource specify.

Reference Pages 505

0519

mwm (continued) Motif window manager

506

iconimage (class Iconimage)
Specifies the pathname of a bitmap file to be used as an icon image for a client. (For
example, you might specify: Mwm*xclock*iconimage: ~/bitmaps/big

ben.) The default is to display an icon image supplied by the window manager.

If the useClienticon resource is set to True, an icon image supplied by the client
takes precedence over an icon image supplied by the user.

iconimageBackground (class Background)
Specifies the background color of the icon image. The default is the color specified by
Mwm*backgroundorMwm*icon*background.

iconimageBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the icon image. The default is the color speci
fied by Mwm*icon*bottomShadowColor.

iconimageBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the icon image. The default is the pixmap
specified by Mwm*icon*bottomShadowPixmap.

iconimageForeground (class Foreground)
Specifies the foreground color of the icon image. The default varies based on the icon
background.

iconimageTopShadowColor (class Background)
Specifies the top shadow color of the icon image. The default is the color specified by
Mwm*icon*topShadowColor.

iconimageTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow Pixmap of the icon image. The default is the pixmap speci
fied by Mwrri.*icon*topShadowPixmap.

matteBackground (class Background)
Specifies the background color of the matte. The default is the color specified by
Mwm*background or Mwm*client*background. This resource is only rele
vant ifmatteWidth is positive.

matteBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the matte. The default is the color specified by
Mwm*bottomShadowColor or Mwm*client*bottomShadowColor. This
resource is only relevant ifmatteWidth is positive.

matteBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the matte. The default is the pixmap specified
by Mwm*bottomShadowPixmap or Mwm*client*bottomShadowPixmap.
This resource is only relevant ifmatteWidth is positive.

X Window System User's Guide

0520

Motif window manager mwm (continued)

mat teForeground (class Foreground)
Specifies the foreground color of the matte. The default is the color specified by
Mwrn*foreground or Mwrn*client*foreground. This resource is only rele
vant ifrnatteWidth is positive.

rnatteTopShadowColor (class Background)
Specifies the top shadow color of the matte. The default is the color specified by
Mwrn*topShadowColor or Mwrn*client *topShadowColor. This resource is
only relevant ifrnatteWidth is positive.

rnatteTopShadowPixrnap (class TopShadowPixrnap)
Specifies the top shadow pixmap of the matte. The default is the pixmap specified by
Mwrn*topShadowPixrnap or Mwrn*client *topShadowPixrnap. This resource
is only relevant ifrnatteWidth is positive.

rnatteWidth (class MatteWidth)
Specifies the width of the matte. The default is 0 (thus, no matte is used).

rnaxirnurnc lien t size (class Maxirnurnc lien t size)
Specifies how a window is to be maximized, either to a specific size (widthx
height), or as much as possible in a certain direction (vertical or horizon
tal). If the value is of the form widthxheight, the width and height are inter
preted in the units used by the client. For example, xterm measures width and height
in font characters and lines.

IfrnaxirnurnClientSize is not specified, and the WM_NORMAL_HINTS property is
set, the default is obtained from it. If WM_NORMAL_HINTS is not set, the default is
the size (including borders) that fills the screen.

If rnaxirnurnClientSize is not specified, mwm uses any value supplied to
rnaxirnurnMaxirnurnSize.

useClienticon (class UseClienticon)
If True, an icon image supplied by the client takes precedence over an icon image
supplied by the user. The default is False.

usePPosition (class UsePPosition)
Specifies whether mwm uses initial coordinates supplied by the client application. If
True, mwm always uses the program specified position. If False, mwm never uses
the program specified position. The default is nonzero, which means that mwm will
use any program specified position except 0,0. Available as of mwm version 1.2.

windowMenu (class WindowMenu)
Specifies a name for the Window Menu (which must be defined in the startup file). The
default is DefaultWindowMenu. See the section ".mwmrc Startup File" earlier in
this reference page and Chapter 13 of this guide.

Reference Pages 507

0521

mwm (continued) Motif window manager

Environment Variables
The following environment variables are used by mwm:

HOME The user's home directory.

LANG The language to be used for the mwm message catalog and the mwm startup file.

XBMLANGPATH
Used to search for bitmap files.

XFILESEARCHPATH
Used to determine the location of system-wide class resource files. If the LANG vari
able is set, the $LANG subdirectory is also searched.

XUSERFILESEARCHPATH, XAPPLRESDIR
Used to determine the location of user-specific class resource files. If the LANG vari
able is set, the $LANG subdirectory is also searched.

MWMSHELL, SHELL
MWMSHELL specifies the sheil to use when executing a command supplied as an
argument to the f. exec function. (See "mwm Functions" earlier in this reference
page.) IfMWMSHELL is not set, SHELL is used.

Files
lusrllibiXll I$LANGisystem.mwmrc
I usrl lib lXII I system.mwmrc
I usrl lib lXII I app-defaultsl Mwm
$HOMEIMwm
$HOMEI$LANGI.mwmrc
$HOME/.mwmrc
$HOMEI.motifbind-Used to install the virtual key bindings property on the root window.

See Also

508

X, Xserver, xdm, xrdb; Chapter 3, Working in the X Environment; Chapter 4, More about the
mwm Window Manager; Chapter 13, Customizing mwm.

X Window System User's Guide

0522

-Analog Clock----------~ oclock

Name
oclock - display time of day in analog form.

Syntax
oclock [options]

Description
oclock displays the current time on an analog display. The clock face is smaller and more styl
ized than that for xclock. For example, there are no tick-marks, save for a "jewel" at the 12
o'clock position. The chief virtue of oclock, and the one thing that has made it popular, is that
it makes use of the X shape extension, which supports non-rectangular windows. The default
oclock window is round, but it can be resized into all kinds of interesting ovals.

Chapter 8, Other Clients, describes how to use the oclock client.

Options
oclock accepts all of the standard X Toolkit command-line options, which are listed on the X
reference page. (We've included some of the more commonly used Toolkit options later in this
section.) In addition, oclock accepts the following application-specific options:

-backing level
Specifies an appropriate level of backing store. 1 evel is one of WhenMapped,
Always, or NotUseful.

-hour color
Specifies a color for the hour hand of the clock.

-jewel color
Specifies a color for the jewel of the clock.

-minute color
Specifies a color for the minute hand of the clock.

-noshape

-shape

Causes the clock not to use the shape extension for non-rectangular windows; in short,
with -noshape, you get a square or rectangular clock. Note that the behavior is still
different from xclock -analog. If you resize xclock so that its window is rectangular,
the round clockface image is centered in the rectangle. With oclock, the border of the
window is always the shape of the clock.

Causes the clock to use the shape extension, which allows non-rectangular windows.
You get the standard round clock face; this is the default.

-transparent
Creates a transparent clock consisting only of the jewel, hands, and clock border. This
creates an interesting visual effect: i.e., the background on which the oclock is placed
can be seen through the clock.

Reference Pages 509

0523

oclock (continued) Analog Clock

The following standard X Toolkit options are commonly used with oclock:

-bg color
Specifies a color for the background.

-bw pixels
Specifies a width in pixels for the window border. As the Clock widget changes its
border around quite a bit, this is most usefully set to zero.

-fg color
Specifies a color for both the hands and the jewel of the clock.

Resources

510

You can specify the following nonstandard resources for oclock. Note that you can use either
the clock widget or oclock in the resource specification. If you use the clock widget, you must
precede it with a loose binding; if you use oclock, you must follow it with a loose binding. For
example, these two resources would both produce an oclock with a red hour hand:

*clock.hour: red
oclock*hour: red

Since the latter resource is more specific, it has precedence. Thus, if a resource file contained
both of the following:

*clock.hour: red
oclock*hour: blue

any subsequent instance of oclock would have a blue hour hand. See Chapter 11, Setting
Resources, for more information.

Here are the resources you can set:

backingStore (class BackingStore)
Specifies an appropriate level of backing store. Allowable values are WhenMapped,
Always, or Not Useful.

hour (class Foreground)
Specifies a color for the hour hand.

jewel (class Foreground)
Specifies a color for the jewel of the clock.

minute (class Foreground)
Specifies a color for the minute hand.

shapeWindow (class ShapeWindow)
When false, causes the clock not to use the shape extension for non-rectangular win
dows. (See the -noshape option above.) The default is true (the shape extension is
used and you get the default round clock face).

X Window System User's Guide

0524

Analog Clock oclock (continued)

transparent (class Transparent)
If true, creates a transparent clock consisting only of the jewel, hands, and clock bor
der. See also the -transparent option above. The default is false.

Colors
Although the default colors for the Clock widget are black and white, the widget was designed
in color. Release 5 sees the addition of an application defaults file specifying colors for the
various features of the oclock. (The Release 4 version of oclock requires you to specify every
desired color in your own resources file.) If you would like your clock to be viewable in the
prescribed colors, include the following resource definition in the #ifdef COLOR section of
your .Xresources file (or whatever file you read with xrdb):

Clock*custamization: -color

On a color display, this will cause oclock to use the colors specified in the application defaults
color customization file (generally lusrllibiXll I app-defaultsiC lock-color). The default colors
specified are:

Clock*Background: grey
Clock*BorderColor: light blue
Clock*hour: yellow
Clock*jewel: yellow
Clock*minute: yellow

Of course, you can opt to specify alternative colors in your own resource file.

For instructions on specifying resources, see Chapter 11 of this guide.

Files
I usrl lib lXII I app-defaultsiC lock-color -Specifies color resources (as of Release 5).

See Also
X; Chapter 8, Other Clients; Chapter 11, Setting Resources; Volume Four, X Toolkit Intrinsics
Programming Manual; Volume Five, X Toolkit Intrinsics Reference Manual.

Author
Keith Packard, MIT X Consortium.

Reference Pages 511

0525

resize L Reset Terminal for Window Size-

Name
resize -utility to set TERMCAP and terminal settings to the current window size.

Syntax
resize [options]

Description
The resize client is provided for use with systems that lack the ability to automatically notify
processes of window size changes. Normally, on operating systems that support terminal resiz
ing, xterm sends a signal (e.g., SIGWINCH on BSD 4.3-derived UNIX systems) to notify
processes running in the window that the window size has changed. These programs can adjust
their behavior if necessary.

On systems that don't support terminal resizing, you can use the resize client. resize prints a
shell command for setting the TERM and TERMCAP environment variables to indicate the cur
rent size of the xterm window from which the command is run. For this output to take effect,
resize must either be evaluated as part of the command line (usually done with a shell alias or
function) or else redirected to a file which can then be read in. From the C shell (usually
known as /binlcsh), the following alias could be defined in the user's .cshrc:

%alias rs •set noglob; eval 'resize'; unset noglob'

After resizing the window, the user would type:

% rs

Users of versions of the Bourne shell (usually known as /binlsh) that don't have command
functions will need to send the output to a temporary file and then read it back in with the "."
command:

$ resize >/tmp/out
$. /tmp/out

See Chapter 5, The xterm Terminal Emulator, for more information.

Options

512

resize accepts the following options:

-u Indicates that Bourne shell commands should be generated even if the user's current
shell isn't /bin/sh.

-c Indicates that C shell commands should be generated even if the user's current shell
isn't lbin/csh.

-s [rows colwm:zs]
Indicates that Sun console escape sequences will be used instead of the special xterm
escape code. If rows and columns are given, resize will ask the xterm to resize itself.
However, the window manager may choose to disallow the change.

X Window System User's Guide

0526

Reset Terminal for Window Size

The -u or -c must appear to the left of -s if both are specified.

Files
/etc/termcap

For the base termcap entry to modify.

-/.cshrc User's alias for the command:

See Also
csh(l), tset(l), xterm; Chapter 5, The xterm Terminal Emulator.

Bugs

resize (continued)

There should be some global notion of display size; termcap and terminfo need to be rethought
in the context of window systems. (Fixed in BSD 4.3 and Ultrix-32 1.2.)

Authors
Mark Vandevoorde, MIT Project Athena, and Edward Moy Berkeley.
Copyright © 1984,.1985 by Massachusetts Institute of Technology.
See X for a complete copyright notice.

Reference Pages 513

0527

sessreg \ __ Manage uutmp/wtmp entries-

Name
sessreg- manage utmp/wtmp entries for non-init clients.

Syntax
sessreg -a I -d [options] user_name

Description
sessreg is a simple program for managing utmp/wtmp entries for xdm sessions.

System V has a better interface to /etc/utmp than BSD; it dynamically allocates entries in the
file, instead of writing them at fixed positions indexed by position in /etc/ttys.

To manage BSD-style utmp files, sessreg has two strategies. In conjunction with xdm, the -x
option counts the number of lines in /etc/ttys and then adds to that the number of the line in the
Xservers file which specifies the display. The display name must be specified as the
line_name using the -1 option. This sum is used as the slot_number in letclutmp that
this entry will be written at. .In the more general case, the - s option specifies the slot number
directly. If for some strange reason your system uses a file other that /etc/ttys to manage init,
the -t option can direct sessreg to look elsewhere for a count of terminal sessions.

Conversely, System V managers will not ever need to use these options (-x, -s, and -t). To
make the program easier to document and explain, sessreg accepts the BSD-specific flags in
the System V environment and ignores them.

BSD also has a hostname field in the utmp file which doesn't exist in System V. This option is
also ignored by the System V version of sessreg.

Options

514

-a Add this session to utmp or wtmp. Either -a or -d must be specified.

-d Delete this session from utmp or wtmp. Either -a or -d must be specified.

-h host_name
For BSD hosts, this is set to indicate that the session was initiated from a remote host.
In typical xdm usage, this option is not used.

-1 1 ine_name
Describes the "line" name of the entry. For terminal sessions, this is the final path
name segment of the terminal device filename (for example, ttydO). For X sessions, it
should probably be the local display name given to the users session (for example, :0).
If none is specified, the terminal name will be determined with ttyname(3) and
stripped of leading components.

-s slot_number
Each potential session has a unique slot number in BSD systems; most are identified
by the position of the line_name in the letc/ttys file. This option overrides the
default position determined with ttyslot(3). It is inappropriate for use with xdm; the
-x option is more useful.

X Window System User's Guide

0528

Manage uutmp/wtmp entries sessreg (continued)

-t ttys_file
Specifies an alternate file which the -x option will use to count the number of termi
nal sessions on a host.

-u. utmp_file
Specifies an alternate utmp file, instead of /etc/utmp. The special name none disables
writing records to I etc/ utmp.

-w wtmp_file
Specifies an alternate wtmp file, instead of lusr!admlwtmp for BSD or /etc/wtmp for
System V The special name none disables writing records to lusr/adm/wtmp.

-x Xservers_file
As X sessions are one-per-display, and each display is entered in this file, this options
sets the slot_number to be the number of lines in the ttys_file plus the index
into this file that the 1 ine_name is found.

Usage
In Xstartup, place a call like:

sessreg -a -1 $DISPLAY -x /usr/1ib/Xll/xdm/Xservers $USER

and in Xreset:

sessreg -d -1 $DISPLAY -x /usr/1ib/Xll/xdm/Xservers $USER

See Also
xdm.

Author
Keith Packard, MIT X Consortium.

Reference Pages 515

0529

showfont
'_Display Font Data under Font Server-

Name
showfont - font dumper for the X font server.

Syntax
showfont ~server server_name[options]-fn pattern

Description
showfont displays data about the font that matches the given pattern. This client is new in
Release 5 and is intended to be run with the font server (js).

The wildcard character"*" may be used to match any sequence of characters (including none),
and "?" to match any single character. If no pattern is given, "*" is assumed.

The "*" and "?" characters must be quoted to prevent them from being expanded by the shell.

showfont displays the contents of font files in the Portable Compiled Font format produced by
bdftopcf. The information displayed includes the value of each of the font properties. (For
more information, see Appendix M, X Logical Font Description Conventions, in Volume Zero,
X Protocol Reference Manual. See also information on font metrics in Section 6.2.3, "Charac
ter Metrics," of Volume One, Xlib Programming Manual.)

Options

516

-bitmap_pad padding_unit
Specifies the bitmap padding unit of the font. Acceptable values are 0, 1, or 2, where
0 is ImageRectMin, 1 is ImageRectMaxWidth and 2 is ImageRectMax
Width.

-end character_number
Specifies that the range of the characters displayed should end with charac
ter_number (a decimal number).

-extents_only
Indicates that only the font's extents should be displayed.

-1 Indicates that the bit order of the font is least significant bit first.

- L Indicates that the byte order of the font is least significant byte first.

-m Indicates that the bit order of the font is most significant bit first.

- M Indicates that the byte order of the font is most significant byte first.

-pad scanpad_uni t
Specifies the scanpad unit of the font. Acceptable values are: 1, 2, 4, or 8.

-server server_name
Specifies a particular font server. The server_name generally has the form
transport/ host :port. If the FONTSERVER environment variable is not
defined, this option must be given.

X Window System User's Guide

0530

Display Font Data under Font Server showfont (continued)

-start character_number
Indicates the range of the characters to display should start with character_
number (a decimal number).

-unit scanline_unit
Specifies the scanline unit of the font. Acceptable values are: 1, 2, 4, or 8.

See Also
fs, showsnf, xlsfonts; Chapter 6, Font Specification; Chapter 7, Graphics Utilities; Appendix
M, X Logical Font Description Conventions, in Volume Zero, X Protocol Reference Manual;
Section 6.2.3, "Character Metrics," in Volume One, Xlib Programming Manual.

Environment Variables
FONTSERVER

To get the default font server.

Copyright
Copyright 1991, Network Computing Devices, Inc.
See X(1) for a full statement of rights and permissions.

Author
Dave Lemke, Network Computing Devices, Inc.

Reference Pages 517

0531

showrgb
. __ Display RGB Color Database-

Name
showrgb - uncompile an RGB color name database.

Syntax
showrgb [database]

Description
The showrgb program reads an RGB color name database compiled for use with the dbm data
base routines and converts it back to source form, printing the result to standard output. The
default database is the one that X was built with, and may be overridden on the command line.
Specify the database name without the .pag or .dir suffix.

Files
!usrllib/Xll lrgb.txt

Text version of the default database.

!usrllib/Xll lrgb.dir

/usr/lib/Xll/rgb.pag
Machine-readable database files.

See Also
The discussion of color in Chapter 12, Specifying Color.

518 X Window System User's Guide

0532

-Print SNF File----------~ showsnf

Name
showsnf- print contents of an SNF file to standard output.

Syntax
showsnf [options]snf_file

Description
This client has been removed from the standard distribution in Release 5. If you are run
ning the font server (js), use the showfont client instead.

showsnf displays the contents of font files in the Server Natural Format produced by bdftosnf.
The information displayed includes the value of each of the font properties (see Appendix M,
X Logical Font Description Conventions, Release 5, in Volume Zero, X Protocol Reference
Manual), as well as information on font metrics (see Section 6.2.3, Character Metrics, in Vol
ume One, Xlib Programming Manual).

showsnf is usually used only to verify that a font file hasn't been corrupted or to convert the
individual glyphs into arrays of characters for proofreading or for conversion to some other
format.

Options
showsnf accepts the following options:

-g Indicates that character glyph bitmaps should be printed.

-1 Indicates that the bit order of the font is least significant bit first.

- L Indicates that the byte order of the font is least significant byte first.

-m Indicates that the bit order of the font is most significant bit first.

-M Indicates that the byte order of the font is most significant byte first.

-pnumber
Specifies the glyph padding of the font.

-unumber
Specifies the scanline unit of the font.

-v Indicates that bearings and sizes should be printed for each character in the font.
(These are in an ASCIT format similar to that produced by bmtoa. They can be con
verted to standard X bitmaps using atobm, and then edited with bitmap.)

See Also
X, Xserver, bdftosnf, showfont, bitmap; Chapter 6, Font Specification.

Bugs
There is no way to print out only a single glyph.

Reference Pages 519

0533

viewres ~--------View Widget Tree-

Name
viewres - Athena widget class browser.

Syntax
viewres [option]

Description
The viewres program (available as of Release 5) displays a tree showing the widget class hier
archy of the Athena Widget Set. Each node in the tree can be expanded to show the resources
that the corresponding class adds (i.e., does not inherit from its parent) when a widget is
created. This application allows the user to view the structure and inherited resources for the
Athena Widget Set.

Options
viewres accepts all of the standard X Toolkit command-line options, as well as the following
additional options:

-top name
Specifies the name of the highest widget in the hierarchy to display. This is typically
used to limit the display to a subset of the tree. The default is Object.

-variable
Indicates that the widget variable names (as declared in header files) should be
displayed in the nodes rather than the widget class name. This is sometimes useful to
distinguish widget classes that share the same name (such as Text).

-vertical
Indicates that the tree should be displayed top to bottom rather than left to right. See
also the Layout Vertical item in the "View Menu" section following.

View Menu

520

The way in which the tree is displayed may be changed through the entries in the View menu:

Layout Horizontal
Causes the tree to be laid out from left to right. This operation may also be performed
with the SetOrientation (West) translation.

Layout Vertical
Causes the tree to be laid out from top to bottom. This operation may also be per
formed with the SetOrientation (North) translation. (To specify a vertical lay
out: on the command line, run viewres with the -vertical option; or in a resource
file, use *Tree. Gravity: north.)

Show Variable Names
Causes the node labels to be set to the variable names used to declare the correspond
ing widget class. This operation may also be performed with the SetLabel
Type (variable) translation.

X Window System User's Guide

0534

View Widget Tree viewres (continued)

Show Class Names
Causes the node labels to be set to the class names used when specifying resources.
This operation may also be performed with the SetLabel Type (class) transla
tion.

Show Resource Boxes
Expands the selected nodes (see next section) to show the new widget and constraint
resources. This operation may also be performed with the Resources (on) transla
tion.

Hide Resource Boxes
Removes the resource displays from the selected nodes (usually to conserve space).
This operation may also be performed with the Resources (off) translation.

Select Menu
Resources for a single widget class can be displayed by clicking the second pointer button But
ton2 on the corresponding node, or by adding the node to the selection list with Buttonl and
using the Show Resource Boxes entry in the View menu. Since Buttonl actually toggles the
selection state of a node, clicking on a selected node will cause it to be removed from the
selected list.

Collections of nodes may also be selected through the various entries in the Select menu:

UnselectAII
Removes all nodes from the selection list. This operation may also be performed with
the Select (nothing) translation.

Select All

Invert All

Adds all nodes to the selection list. This operation may also be performed with the
Select (all) translation.

Adds unselected nodes to, and removes selected nodes from, the selection list. This
operation may also be performed with the Select (invert) translation.

Select Parent
Selects the immediate parents of all selected nodes. This operation may also be per
formed with the Select (parent) translation.

Select Ancestors
Recursively selects all parents of all selected nodes. This operation may also be per
formed with the Select (ancestors) translation.

Select Children
Selects the immediate children of all selected nodes. This operation may also be per
formed with the Select (children) translation.

Select Descendants
Recursively selects all children of all selected nodes. This operation may also be per
formed with the Select (descendants) translation.

Reference Pages 521

0535

viewres (continued) View Widget Tree

Select Has Resources
Selects all nodes that add new resources (regular or constraint) to their corresponding
widget classes. This operation may also be performed with the Select
(resources) translation.

Select Shown Resource Boxes
Selects all nodes whose resource boxes are currently expanded (usually so that they
can be closed with the Hide Resource Boxes) menu option. This operation may also
be performed with the Select (shown) translation.

Resources
viewres defines the following application-specific resources:

showVariable (class showVariable)
If true, indicates that the widget variable names (as declared in header files) should be
displayed in the nodes rather than the widget class names. This is sometimes useful to
distinguish widget classes that share the same name (such as Text). The default is
false.

topObj ect (class TopObj ect)
Specifies the name of the highest widget in the hierarchy to display. This is typically
used to limit the display to a subset of the tree. The default is Object.

Note that you can specify the direction the tree goes using the Tree widget and Gravity
resource. For a vertical (top to bottom) orientation, use:

*Tree.Gravity: north

The default orientation is west (horizontal, read left to right). You can also specify south
for a bottom to top tree, or east for right to left, but neither of these orientations is particu
larly intuitive in English.

Actions

522

The following application actions are provided:

Quit ()
Causes viewres to exit.

Resources(option)
Turns on, off, or toggles the resource boxes for the selected nodes. If invoked
from within one of the nodes (through the keyboard or pointer), only that node is used.

SetLabelType(type)
Sets the node labels to display the widget variable or class names, according to the
argument type.

SetOrientation(direction)
Sets the root of the tree to be one of the following areas of the window: West,
North, East, or South.

X Window System User's Guide

0536

View Widget Tree viewres (continued)

Select (what)
Selects the indicated nodes, as described in the View Menu section: nothing
(unselects all nodes), invert, parent, ancestors, children, descendants,
resources, shown.

Widgets
Resources may be specified for the following widgets:

Viewres viewres
Paned pane

Box buttonbox
Ca:nmand quit
MenuButton view

SimpleMenu viewMenu
SmeBSB layoutHorizontal
SmeBSB layoutVertical
SmeLine linel
SmeBSB namesvariable
SmeBSB namesClass
SmeLine line2
SmeBSB viewResources
SmeBSB vieWNoResources

MenuButton select
SimpleMenu selectMenu

Form treeform

SmeBSB unselect
SmeBSB selectAll
SmeBSB selectinvert
SmeLine linel
SmeBSB selectParent
SmeBSB selectAncestors
SmeBSB selectChildren
SmeBSB selectDescendants
SmeLine line2
SmeBSB selectHasResources
SmeBSB selectShownResources

Porthole porthole
Tree tree

Fanner panner

Box variable_name
Toggle variable_name
List variable_name

where variable_name is the widget variable name of each node.

Reference Pages 523

0537

viewres (continued)

Files
I usrl lib lXII I app-defaultsiViewres

Specifies required resources.

See Also

View Widget Tree

X, appres, editres, listres, xrdb; Chapter 11, Setting Resources; Volume Four, X Toolkit Intrin
sics Programming Manual; Volume Five, X Toolkit Intrinsics Reference Manual.

Author
Jim Fulton, MIT X Consortium.

524 X Window System User's Guide

0538

-Authority File Utility--------~ xauth

Name
xauth -X authority file utility.

Syntax
xauth [options] [command arguments]

Description
The xauth program is used to edit and display authorization information used when connecting
to the X server. xdm can be configured to generate this authorization information when a user
logs on. xauth is then used to extract authorization records from one machine and merge them
in on another (as is the case when using remote logins or to grant access to other users). Note
that this program does not contact the X server.

For an introduction to user-based access control and the xauth program, see Appendix
A, Managing Your Environment. Volume Eight, X Window System Administrator's Guide,
provides a more detailed discussion of these and other security-related topics.

Options
The following options may be used with xauth. They may be given individually (for example,
-q -i) or may be combined (for example, -qi).

- b Indicates that xauth should attempt to break any authority file locks before proceeding
and should only be used to clean up stale locks.

-f authfile
Specifies the name of the authority file to use. By default, xauth will use the file
specified by the XAUTHORITY environment variable or .Xauthority in the user's home
directory.

-i Indicates that xauth should ignore any authority file locks. Normally, xauth will
refuse to read or edit any authority files that have been locked by other programs
(usually xdm or another xauth).

-q Indicates that xauth should operate quietly and not print unsolicited status messages.
This is the default if an xauth command is given on the command line or if the stan
dard output is not directed to a terminal.

-v Indicates that xauth should operate verbosely and print status messages indicating the
results of various operations (for example, how many records have been read in or
written out). This is the default if xauth is reading commands from its standard input
and its standard output is directed to a terminal.

Commands
Commands may be entered interactively, on the xauth command line, or in scripts. The follow
ing commands may be used to manipulate authority files (or obtain information):

? A short list of the valid commands is printed on the standard output.

Reference Pages 525

0539

xauth (continued) Authority File Utility

526

add displayname protocolnaine hexkey
An authorization entry for the indicated displayname using the given proto
colname and hexkey data is added to the authorization file.

At present, three protocolnames are supported in the standard X distribution:
MIT-MAGIC-COOKIE-1, XDM-AUTHORIZATION-1, and SUN-DES-1. Note that xauth
will not give you an error if you specify an invalid protocol name. A protocol name
consisting of just a single period is treated as an abbreviation for MIT -MAGIC
COOKIE-I. (See Volume Eight, X Window System Administrator's Guide, for more
information.)

The hexkey data is specified as an even-lengthed string of hexadecimal digits, each
pair representing one octet. The first digit of each pair gives the most significant 4
bits of the octet and the second digit of the pair gives the least significant 4 bits. For
example, a 32 character hexkey would represent a 128-bit value.

exit If any modifications have been made, the authority file is written out (if allowed), and
the program exits. An end-of-file is treated as an implicit exit command.

help [string]
A description of all commands that begin with the given string(or all commands, if
no string is given) is printed on the standard output.

info Information describing the authorization file, whether or not any changes have been
made, and from where xauth commands are being read is printed on the standard out
put.

[n]extract filename displayname . ..
Authorization entries for each of the specified displays are written to the indicated
file. If the nextract command is used, the entries an~ written in a numeric format
suitable for non-binary transmission (such as secure eleccronic mail). The extracted
entries can be read back in using the merge and nmerge commands. If the filename
consists of just a single dash, the entries will be written to the standard output.

[n]list [displayname ...]
Authorization entries for each of the specified displays (or all, if no displays are
named) are printed on the standard output. If the nlist command is used, entries
will be shown in the numeric format used by the nextract command; otherwise,
they are shown in a textual format. Key data is always displayed in the hexadecimal
format given in the description of the add command.

[n]merge [filename ...]
Authorization entries are read from the specified files and are merged into the authori
zation database, superceding any matching existing entries. If the nmerge command
is used, the numeric format given in the description of the extract command is
used. If a filename consists of just a single· dash, the standard input will be read if it
hasn't been read before.

X Window System User's Guide

0540

Authority File Utility xauth (continued)

quit The program exits, ignoring any modifications. This may also be accomplished by
pressing the interrupt character.

remove displayname ...
Authorization entries matching the specified displays are removed from the authority
file.

source filename
The specified filename is treated as a script containing xauth commands to execute.
In such a file, blank lines and lines beginning with a sharp sign (#) are ignored. A
single dash may be used to indicate the standard input, if it hasn't already been read.

Display Names
Display names for the add, [n]extract, [n]list, [n]merge, and remove commands use
the same format as the DISPLAY environment variable and the common -display command
line option. Display-specific information (such as the screen number) is unnecessary and will
be ignored. Same-machine connections (such as local-host sockets, shared memory, and the
Internet Protocol hostname localhost) are referred to as hostname/unix:
displaynumber so that local entries for different machines may be stored in one authority
file.

Example
The most common use for xauth is to extract the entry for the current display, copy it to another
machine, and merge it into the user's authority file on the remote machine:

% xauth extract - $DISPLAY I rsh other xauth merge -

Environment Variables
This xauth program uses the following environment variables:

XAUTHORITY
To get the name of the authority file to use if the - f option isn't used. If this variable
is not set, xauth will use .X authority in the user's home directory.

HOME To get the user's home directory ifXAUTHORITY isn't defined.

Bugs
Users that have unsecure networks should take care to use encrypted file transfer mechanisms
to copy authorization entries between machines. Similarly, the MIT-MAGIC-COOKIE-1 proto
col is not very useful in unsecure environments. Sites that are interested in additional security
may need to use encrypted authorization mechanisms such as Kerberos.

Spaces are currently not allowed in the protocol name. Quoting could be added for the truly
perverse.

Reference Pages 527

0541

xauth (continued) Authority File Utility

See Also
X, Xserver, xdm; Appendix A, Managing Your Environment; Volume Eight, X Window
System Administrator's Guide.

Author
Jim Fulton, MIT X Consortium.

528 X Window System User's Guide

0542

-Mail Notification _______ __./ xbiff

Name
xbiff- mail notification program for X.

Syntax
xbiff [options]

Description
The xbiff program displays a little image of a mailbox. When there is no mail in the user's
mailbox, the flag on the mailbox is down. When mail arrives, the flag goes up and the mailbox
beeps. By default, pressing any pointer button in the image forces xbiff to remember the cur
rent size of the mail file as being the "empty" size and to lower the flag.

This program is nothing more than a wrapper around the Athena Mailbox widget.

The default mailbox is 48 pixels on each side and is centered in. the window. If you are using
mwm without customization, the size of the xbiff image will be slightly largely to allow for the
frame. To suppress part or all of this window decoration, see Chapter 13, Customizing mwm,
and the mwm reference page.

See Chapter 8, Other Clients, for instructions on using xbiff.

Options
xbiff accepts all of the standard X Toolkit command-line options, which are listed on the X ref
erence page. (We've included some of the more commonly used Toolkit options later in this ·
section.) In addition, xbiff accepts the following application-specific options:

-file filename
Specifies the name of the file that should be monitored. By default, xbiff watches
/usrlspool/mail/username, where username is your login name.

-help Indicates that a brief summary of the allowed options should be printed on the stan
dard error.

-shape
Indicates that the mailbox window should be shaped if masks for the empty or full
images are given.

-update seconds
Specifies the frequency in seconds at which xbiff should update its display. If the
mailbox is obscured and then exposed, it will be updated immediately. The default is
30 seconds.

-volume percentage
Specifies how loud the bell should be rung when new mail comes in.

Reference Pages 529

0543

:xbiff (continued) Mail Notification

Resources

530

xbiff is implemented using a simple widget, the Mailbox widget from the Athena Widget Set.
The application class name is XBiff. xbiff understands all of the Core resource names and
classes as well as those from the Mailbox widget. The resources you might want to set are
listed below:

checkCommand (class CheckCommand)
Specifies a shell command to be executed to check for new mail rather than examin
ing the size of file. The specified string value is used as the argument to a system(3)
call and may therefore contain I/0 redirection. An exit status of 0 indicates that new
mail is waiting; 1 indicates that there has been no change in size; and 2 indicates that
the mail has been cleared. By default, no shell command is provided.

emptyPixrnap (class Pixrnap)
Specifies a bitmap to be shown when no new mail is present. The default is flag
down.

emptyPixrnapMask (class PixrnapMask)
Specifies a mask for the bitmap to be shown when no new mail is present. The default
is none.

file (class File)
Specifies the name of the file to monitor. The default is to watch /usr/spool/mail/user
name, where username is your login name.

flip (class Flip)
Specifies whether or not the image that is shown when mail has arrived should be
inverted. The default is true.

foreground (class Foreground)
Specifies the color for the foreground.

fullPixrnap (class Pixrnap)
Specifies a bitmap to be shown when new mail has arrived. The default is flagup.

fullPixrnapMask (class PixrnapMask)
Specifies a mask for the bitmap to be shown when new mail has arrived. The default
is none.

height (class Height)
Specifies the height of the mailbox. The default is 48 pixels.

onceOnly (class Boolean)
Specifies that the bell is rung only the first time new mail is found and is not rung
again until at least one interval has passed with no mail waiting. The window will
continue to indicate the presence of new mail until it has been retrieved. The default
is false.

reverseVideo (class ReverseVideo)
Specifies that the foreground and background should be reversed.

X Window System User's Guide

0544

Mail Notification xbiff (continued)

shapeWindow (class ShapeWindow)
Specifies whether or not the mailbox window should be shaped to the given full
PixrnapMask and emptyPixrnapMask. The default is false.

update (class Interval)
Specifies the frequency in seconds at which the mail should be checked. The default
is 30.

volume (class Volume)
Specifies how loud the bell should be rung. The default is 33 percent.

width (class Width)
Specifies the width of the mailbox. The default is 48 pixels.

Widget Hierarchy
xbiff is implemented using a single widget, the Athena Mailbox widget. All applicable
resources of the widget are listed above. The class and instance hierarchy is shown below:

:xbiff xbiff
Mailbox mailbox

See Appendix G, Widget Resources, for a list of resources that can be set for the Athena widg
ets.

Actions
The Mailbox widget provides the following actions for use in event translations:

check()
Causes the widget to check for new mail and display the flag appropriately.

unset ()
Causes the widget to lower the flag until new mail comes in.

set () Causes the widget to raise the flag until the user resets it.

The default translation is:

<ButtonPress>:unset()

See Also
X, xrdb, stat(2); Chapter 8, Other Clients; Appendix G, Widget Resources.

Author
Jim Fulton, MIT X Consortium;
Additional hacks by Ralph Swick, DEC/MIT Project Athena.

Reference Pages 531

0545

xcalc
\ __ X-Based Scientific Calculator-

Name
xcalc - scientific calculator for X.

Syntax
xcalc [options]

Description
xcalc is a scientific calculator desktop accessory that can emulate a TI-30 or an HP-lOC. The
number in the calculator display can be selected, allowing you to paste the result of a calcula
tion into text. See Chapter 8, Other Clients, for instructions on using the calculator.

Since Release 4, the xcalc buttons have been an oval shape (they are rectangular in earlier ver
sions) and the window is somewhat smaller overall than it was in previous releases. For those
of you who like the size of the calculator under R3, try a geometry specification of approxi
mately 167 x 222 and specify rectangular buttons using the resource setting:

xcalc* shapeStyle: rectangular

shapeStyle is a resource of the Athena Command widget. See "Widget Hierarchy" later in
this reference page for a diagram of xcalc 's structure and Appendix G for a list of the resources
you can set for various widgets.

Options
xcalc accepts all of the standard X Toolkit command-line options, which are listed on the X ref
erence page. In addition, xcalc accepts the following application-specific options:

-rpn Indicates that Reverse Polish Notation should be used. In this mode, the calculator
will look and behave like an HP-lOC. Without this flag, it will emulate a TI-30.

-stip,-stipple
Indicates that the background of the calculator should be drawn using a stipple of the
foreground and background colors. On monochrome displays, this improves the
appearance.

Calculator Operations
Pointer Usage

Operations may be performed with pointer button 1 (usually the leftmost button), or in many
cases, with the keyboard. Many common calculator operations have keyboard equivalents,
which are called accelerators, because they facilitate data entry. There are several ways to
cause xcalc to exit: pressing the AC key of the TI calculator or the ON key of the HP calcula
tor with pointer button 3 (usually the rightmost button), and typing q, Q, or CTRL-C while the
pointer is in the xcalc window.

Calculator Key Usage (TI Mode)

532

The number keys, the +1- key, and the +, -, *, /, and = keys all do exactly what you would
expect them to. It should be noted that the operators obey the standard rules of precedence.

X Window System User's Guide

0546

X-Based Scientific Calculator xcalc (continued)

Thus, entering "3 +4 * 5=" results in 23, not 35. Parentheses can be used to override this. For
example," (1+2+3) * (4+5+6) ="is evaluated as "6*15=" which results in 90.

The action associated with each function is given below. These are useful if you are interested
in defining a custom calculator. The action used for all digit keys is digit (n), where n is
the corresponding digit, 0-9.

The keys are described below:

1 /x Replaces the number in the display with its reciprocal. The corresponding action is
reciprocal () .

xA2 Squares the number in the display. The corresponding action is square ().

SORT Evaluates the square root of the number in the display. The corresponding action is
squareRoot () .

CE/C When pressed once, clears the number in the display without clearing the state of the
machine. Allows you to re-enter a number if you make a mistake. Pressing it twice
clears the state also. The corresponding action is clear ().

AC Clears everything: the display, the state, and the memory. Pressing it with the third
(usually the right) button "turns off' the calculator, in that it exits the program. The
corresponding action to clear the state is off () ; to quit, the action is quit () .

INV Inverts the meaning of the function keys. See the individual function keys for details.
The corresponding action is inverse ().

sin Computes the sine of the number in the display, as interpreted by the current DRG
mode (see DRG, below). If inverted, it computes the arcsine. The corresponding
action is sine ().

cos Computes the cosine, or arccosine when inverted. The corresponding action is
cosine ().

tan Computes the tangent, or arctangent when inverted. The corresponding action is
tangent ().

DRG Changes the DRG mode, as indicated by DEG, RAD, or GRAD at the bottom of the calcu
lator "liquid crystal" display. When in DEG mode, numbers in the display are taken
as being degrees. In RAD mode, numbers are in radians, and in GRAD mode, numbers
are in gradians. When inverted, the DRG key has the handy feature of converting
degrees to radians to gradians and vice versa. For example, put the calculator into
DEG mode and type "45 INV DRG". The calculator should display approximately
.785398, which is 45 degrees converted to radians. The corresponding action is
degree ().

e The constant "e" (2.7182818 ...). The corresponding action is e ().

Reference Pages 533

0547

xcalc (continued) X-Based Scientific Calculator

534

EE Used for entering exponential numbers. For example, to enter "-2. 3E-4" you
would type "2 3 +I - EE 4 + I-". The corresponding action is sci en-
tific().

log Calculates the log (base 10) of the number in the display. When inverted, it raises
10.0 to the number in the display. For example, entering "3 INV log" should result
in 1000. The corresponding action is logari tbm () .

In Calculates the log (base e) of the number in the display. When inverted, it raises "e"
to the number in the display. For example, entering "e ln" should result in 1. The
corresponding action is naturalLog ().

yAx Raises the number on the left to the power of the number on the right. For example,
"2 y"'x 3 ="resultsin8,whichis2A3. Also,"(1+2+3) y"'x (1+2)="is
evaluated as "6 y"'x 3=" which results in 216. The corresponding action is
power ().

PI The constant "pi". (3.1415927) The corresponding action is pi ().

x! Computes the factorial of the number in the display. The number in the display must
be an integer in the range 0-500, though depending on your math library, it might
overflow long before that. The corresponding action is factorial ().

I

*

+

=
STO

RCL

SUM

EXC

Left parenthesis. The corresponding action forTI calculators is leftParen ().

Right parenthesis. The corresponding action forTI calculators is rightParen ().

Division. The corresponding action is divide () .

Multiplication. The corresponding action is multiply ().

Subtraction. The corresponding action is subtract ().

Addition. The corresponding action is add ~) .

Perform calculation. The TI-specific action is equal ().

Copies the number in the display to the memory location. The corresponding action is
store ().

Copies the number from the memory location to the display. The corresponding
action is recall () .

Adds the number in the display to the number in the memory location. The corre
sponding action is sum ().

Swaps the number in the display with the number in the memory location. The corre
sponding action is exchange () .

X Window System User's Guide

0548

X-Based Scientific Calculator xcalc (continued)

+1- Negate (change sign). The corresponding action is negate ().

Decimal point. The corresponding action is decimal ().

Calculator Key Usage (RPN mode)
The number keys, CHS (change sign),+,-,*,/, and ENTR keys all do exactly what you would
expect them to. Many of the remaining keys are the same as inTI (default) mode. The differ
ences are detailed below. The action for the ENTR key is enter ().

<- Backspace key that can be used while entering a number. It will erase digits from the
display. (See "Bugs.") Inverse backspace clears the X register. The corresponding
action is back ().

ON Clears everything: the display, the state, and the memory. Pressing it with the third
(usually the right) pointer button "turns off' the calculator, in that it exits the program.
The corresponding action to clear the state is off ();to quit, the action is quit ().

INV Inverts the meaning of the function keys. This would be the "f" key on an HP calcu
lator, but xcalc does not display multiple legends on each key. See the individual
function keys for details.

1 OAx Raises 10.0 to the number in the top of the stack. When inverted, it calculates the log
·(base 10) of the number in the display. The corresponding action is tenpower () .

eAx Raises "e" to the number in the top of the stack. When inverted, it calculates the log
(base e) of the number in the display. The corresponding action is epower ().

STO Copies the number in the top of the stack to one of ten memory locations. The desired
memory is specified by pressing this key and then pressing a digit key.

RCL Pushes the number from the specified memory location onto the stack.

SUM Adds the number on top of the stack to the number in the specified memory location.

x:y Exchanges the numbers in the top two stack positions, the X andY registers. The cor
responding action is XexchangeY ().

R v Rolls the stack downward. When inverted, it rolls the stack upward. The correspond
ing action is roll ().

Blank keys were used for programming functions on the HP-10C. Their functionality has not
been duplicated in xcalc.

Reference Pages 535

0549

xcalc (continued) X-Based Scientific Calculator

Keyboard Equivalents (Accelerators)

536

If you have the pointer in the xcalc window, you can use the keyboard to enter numbers and
other keys. Almost all of the calculator keys have keyboard equivalents, which are known as
accelerators because they speed entry. The number keys, the operator keys, and the parenthe
ses all have the obvious equivalents. The accelerators defined by xcalc are listed in the follow
ing table:

TIKey HPKey
Keyboard

TI Function HP Function
Accelerator

SQRT SQRT r squareRoot () squareRoot ()
AC ON space clear () clear ()
AC <- Delete clear () back ()
AC <- Backspace clear () back ()
AC <- Control-H clear () back ()
AC Clear clear ()
AC ON q quit() quit()
AC ON Control-C quit() quit()
INV 1 i inverse () inverse ()
sin s s sine () sine ()
cos c c cosine () cosine ()
tan t t tangent () tangent ()
DRG DRG d degree () degree ()
e e e()
In In 1 naturalLog () naturalLog ()
yAx yAx A power () power ()
PI PI p pi(} pi()
x! x! ! factorial() factorial ()
((leftParen ()
)) rightParen ()
I I I divide () divide ()

* * * multiply () multiply ()
- - - subtract () subtract ()
+ + +. add() add()

= = equal ()
0 ... 9 0 ... 9 0 ... 9 digit () digit ()

decimal () decimal ()
+I- CHS n negate () negate ()

x:y X Xexchange Y ()
ENTR Return enter ()
ENTR Line feed enter ()

X Window System User's Guide

0550

X-Based Scientific Calculator xcalc (continued)

Resources
The application class name is XCalc.

xcalc defines the following application resources:

cursor (class Cursor)
The name of the symbol used to represent the pointer. The default is hand2. See
Appendix D for a list of cursor names.

rpn (class Rpn)
A Boolean value that specifies whether or not the rpn mode should be used. The
default is off-that is, the calculator will be used in TI mode.

stipple (class Stipple)
A Boolean value that indicates whether or not the background should be stippled. The
default is on for monochrome displays, and off for color displays.

Widget Hierarchy
In addition, you can specify resources for each of the widgets that make up xcalc. In the nota
tion below, indentation indicates the hierarchical structure of the widgets. The widget class
name is given first, followed by the widget instance name.

XCalc xcalc
Form ti or hp

Form bevel
Form screen

Label M
Toggle LCD
Label INV
Label DEG
Label RAD
Label GRAD
Label p

Command buttonl
Command button2
Command button3

Command button38
Command button39
Command button40

(The name depends on the mode)

(The memory indicator on the screen)
(Where the data is displayed)
(The inverted indicator on the display)
(The degrees indicator on the display)
(The radians indicator on the display)
(The gradians indicator on the display)
(The Parenthesis indicator on the display)

(The actual calculator buttons)
(Buttons are numbered from right to left)
(See the app-defaults file for associations
and so on ...)

(Between widget names and default labels)

(Only 39 buttons in HP mode)

See Appendix G, Widget Resources, for a list of resources that can be set for the Athena widg
ets.

Customization
xcalc has an enormous application defaults file, which specifies the position, label, and func
tion of each key on the calculator. It also gives translations to serve as keyboard accelerators.
Because these resources are not specified in the source code, you can create a customized cal
culator by writing a private application defaults file, using the Athena Command and Form

Reference Pages 537

0551

xcalc (continued) X-Based Scientific Calculator

widget resources to specify the size and position of buttons, the label for each button, and the
function of each button.

The foreground and background colors of each calculator key can be individually specified.
For the TI calculator, a classical color resource specification might be:

XCalc.ti.Cammand.background:
XCalc.ti.Cornmand.foreground:

For each of buttons 20, 25, 30, 35, and 40, specify:

XCalc.ti.button20.background:
XCalc.ti.button20.foreground:

grey50
white

black
white

For each of buttons 22, 23, 24, 27, 28, 29, 32, 33, 34, 37, 38, and 39:

XCalc.ti.button22.background:
XCalc.ti.button22.foreground:

white
black

Colors
As of Release 5, you can opt to use a predefined set of colors for the TI calculator. These
colors are provided in a second application defaults file. If you would like your calculator to
be viewable in the standard colors, include the following resource definition in your
.Xresources file (or whatever file you read with xrdb):

*customization: -color

This will cause xcalc to pick up the colors in the app-defaults color customization file (gener
ally lusr/libiXII lapp-defaultsiXCalc-color).

Files
lusrl libiXII I app-defaultsiXCalc

Specifies required resources.

lusrl lib lXII I app-defaultsiXCalc-color
Specifies color resources for the TI calculator (as of Release 5).

See Also
X, xrdb; Chapter 8, Other Clients; Appendix G, Widget Resources.

Bugs
In HP mode, a bug report claims that the sequence of keys 5, ENTR, and <- should clear the
display, but it doesn't.

Authors

538

John Bradley, University of Pennsylvania;
Mark Rosenstein, MIT Project Athena.

X Window System User's Guide

0552

-X Clipboard Client--------) xclipboard

Name
xclipboard - X clipboard client.

Syntax
xclipboard[options]

Description
The xclipboard program is used to collect and display text selections that are sent to the CLIP
BOARD by other clients. It is typically used to save CLIPBOARD selections for later use.
Chapter 5, The xterm Terminal Emulator, describes how to use the xclipboard client. See
Chapter 11, Setting Resources, for instructions on customizing xterm to send selections to the
CLIPBOARD.

Since xclipboard uses a Text widget to display the contents of the clipboard, text sent to the
CLIPBOARD may be reselected for use in other applications. The contents may also be edited,
using any of the editing commands built into the Text widget. (See the reference page for xedit
for details.)

xclipboard stores each CLIPBOARD selection as a separate string, each of which can be
selected. Each time CLIPBOARD is asserted by another application, xclipboard transfers the
contents of that selection to a new buffer and displays it in the text window. Buffers are never
automatically deleted, so you'll want to use the delete button to get rid of useless items.

xclipboard also responds to requests for the CLIPBOARD selection from other clients by send
ing the entire contents of the currently displayed buffer.

An xclipboard window has the following buttons across the top:

Quit

Delete

New

Save

Next

Previous

Exits xclipboard.

Deletes current buffer and displays the next one.

Creates a new buffer with no contents. Useful in constructing a new CLIPBOARD
selection by hand.

Saves the currently displayed selection to a file. Available as of Release 5.

Displays the next buffer in the list.

Displays the previous buffer.

To the right of these command buttons is a small box displaying a number corresponding to the
selection being displayed. The box has been added in Release 5.

Options
xclipboard accepts all of the standard X Toolkit command-line options, which are listed on the
X reference page. In addition, xclipboard accepts the following application-specific options:

-nw Indicates that long lines of text should not wrap around. This is the default behavior.

-w Indicates that lines of text that are too long to be displayed on one line in the clip-
board should wrap around to the following lines.

Reference Pages 539

0553

xclipboard (continued) X Clipboard Client

Resources
xclipboard understands all of the Core resource names and classes, as well as the following
application-specific resource:

wrap (class Wrap)
If True, lines of text that are too long to be displayed on one line in the clipboard will
wrap around to the following lines. If False (the default), long lines will not wrap.

Sending and Retrieving Clipboard Contents
Text is copied to the clipboard whenever a client asserts ownership of the CLIPBOARD selec
tion. Text is copied from the clipboard whenever a client requests the contents of the CLIP
BOARD selection. This doesn't necessarily happen automatically; you must add translations
for each application that you want to have work with xclipboard. Examples of event bindings
that a user may wish to include in a resource configuration file to use the clipboard from xterm
are:

*VT100.Translations: #override \n\
Buttonl <Btn3Dawn>: select-end(PRIMARY,CUT_BUFFERO,CLIPEOARD) \n\
!Shift <Btn2DP>: insert-selection(CLIPBOARD)\n\
-Shift -Ctrl -Meta <Btn2Up>: insert-selection(PRIMARY,CUT_BUFFERO)

The first translation, Buttonl <Btn3Down>: select-end(CLIPBOARD,CUT_BUF
FERO, CLIPBOARD) , specifies that if button 3 is pressed while button 1 is held down, the selec
tion will be made the PRIMARY selection, copied to CUT_BUFFERO, and added to the CLIP
BOARD. If button 3 isn't pressed while button 1 is held down, the default xterm translation,
namely to add the selection to the PRIMARY selection and CUT_BUFFERO on any key up, takes
effect instead.

The second translation line specifies a way to paste the CLIPBOARD selection (the current con
tents of the xclipboard window): by holding the Shift key and clicking the second pointer but
ton.

The third translation pastes the contents of the PRIMARY selection, or if that is empty,
CUT_BUFFERO. -Ctrl is specified to keep this translation from conflicting with the transla
tions that invoke the xterm menus; -Meta prevents a conflict with twm functions. We've
added -Shift to prevent a conflict with the action that pastes the CLIPBOARD selection.

Widget Hierarchy
In order to specify resources, it is useful to know the hierarchy of the widgets that compose
xclipboard. In the notation below, indentation indicates hierarchical structure. The widget
class name is given first, followed by the widget instance name. The first line shows the appli
cation class and instance names:

XClipboard xclipboard
Form form

Command quit
Command delete
Command new

540 X Window System User's Guide

0554

X Clipboard Client xclipboard (continued)

Cormnand next
Cormnand prev
Text text

For information on the resources available in each of the Athena widgets, see Appendix
G, Widget Resources.

Files
/usr!lib/Xll !app-defaults!XC!ipboard Specifies required resources.

See Also
X, xterm; Chapter 5, The xterm Terminal Emulator; Chapter 11, Setting Resources; individual
client reference pages for the appropriate translations to send selections to the CLIPBOARD.

Authors
Ralph R. Swick, DEC/MIT Project Athena;
Chris Peterson, MIT X Consortium;
Keith Packard, MIT X Consortium.

Reference Pages 541

0555

xclock
\------Analog/Digital Clock-

Name
xclock - continuously display the time in either analog or digital form.

Syntax
xclock [options]

Description
xclock continuously displays the time of day, either in digital or analog form. In digital form,
xclock displays the time using a 24-hour clock. It also displays the day, month, and year. In
analog form, xclock displays a standard 12-hour clock face. You can set up more than one
clock simultaneously.

!

The default clock is an analog clock with a black foreground on a white background. If you
want to change the clock's appearance, type in the appropriate options. For example,

% xclock -bd slateblue -fg navyblue -hl darkslategray &

sets up a conventional 12-hour clock with a slate blue window border, navy blue tick marks,
and dark slate gray hands.

By default, the clock is positioned in the upper-left corner of your background window. If you
are running the default version of mwm, the window manager will place the clock in the upper
left quadrant of the screen, offset from the corner.

Options

542

xclock accepts all of the standard X Toolkit command-line options, which are listed on the X
reference page. (We've included some of the more commonly used Toolkit options later in this
section.) In addition, xclock accepts the following application-specific options:

-help Displays a brief summary of xclock's calling syntax and options.

-analog
Draws a conventional 12-hour clock face with tick marks for each minute and stroke
marks for each hour. This is the default.

-digital or -d

-chime

Displays the date and time in digital format. Note that -display must be used to
specify a display.

Indicates that the clock should chime once on the half hour and twice on the hour.

-hd color
Specifies the color of the hands on an analog clock. The default is black.

-hl color
Specifies the color of the edges of the hands on an analog clock. Only useful on color
displays. The default is black.

X Window System User's Guide

0556

Analog/Digital Clock xclock (continued)

-padding pixels
Specifies the width in pixels of the space between the window border and any portion
of the xclock display. The default is 10 pixels in digital mode and 8 pixels in analog
mode.

-update seconds
Specifies the frequency in seconds with which xclock updates its display. If the xclock
window is obscured and then exposed, xclock overrides this setting and redisplays
immediately. A value of less than 30 seconds will enable a second hand on an analog
clock. The default is 60 seconds.

The following standard X Toolkit options are commonly used with xclock:

-bw pixels
Specifies the width in pixels of the border around the xclock window. The default is 2
pixels.

-fg color
Determines the color of the text in digital mode, and the color of the tick and stroke
marks in analog mode. The default is black.

-fn font
Specifies the font to be used in digital mode. Any fixed-width font may be used. The
default is 6xl 0.

-geometry geometry
Sets xclock window size and location according to the geometry specification. The
-geometry option can be (and often is) abbreviated to -g, unless there is a conflict
ing option that begins with "g". The argument to the geometry option (geometry) is
referred to as a "standard geometry string," and has the form widthx
height±xoff±yoff.

In digital mode, height and width are determined by the font in use, unless otherwise
specified. In analog mode, width and height defaults are 164 pixels, unless otherwise
specified. The default value for any unspecified x or y offset is - 0. All values are in
pixels. If you do not specify the geometry, the window manager may place the win
dow; if not, xclock will ask you for placement when it starts up.

-display [host]: server[. screen]
Allows you to specify the physical display, server, and screen on which to create the
xclock window. See "Options" on the X reference page for an example of usage.

Note that -display cannot be abbreviated to -d, which is shorthand for xclock's
-digital option.

-xrm resourcestring
Specifies a resource string to be used. This is especially useful for setting resources
that do not have separate command-line options.

Reference Pages 543

0557

xclock (continued) Analog/Digital Clock

Resources

544

xclock uses the Athena Clock widget. It understands all of the Core resource names and
classes as well as the new resources defined by the Clock widget. Resources you may want to
set in user resource files include:

analog (class Boolean)
Specifies whether or not an analog clock should be used instead of a digital one. The
default is true.

chime (class Boolean)
Specifies whether or not a bell should be rung on the half hour and on the hour. The
default is false.

hands (class Foreground)
Specifies the color of the insides of the clock's hands. The default is the fore
ground color.

highlight (class Foreground)
Specifies the color used to highlight the clock's hands. The default is the fore
ground color.

padding (class Margin)
Specifies the amount of internal padding in pixels to be used. The default is 8.

update (class Interval)
Specifies the frequency in seconds at which the time should be redisplayed.

You may also want to set the following X Toolkit resources:

background (class Background)
Determines the background color. The default is white.

font (class Font)
Specifies the font to be used for the digital clock. Note that variable-width fonts cur
rently will not always display correctly.

foreground (class Foreground)
Specifies the color for the tick marks and stroke marks. Using the class specifies the
color for all things that normally would appear in the foreground color. The default is
black since the core default for background is white.

height (class Height)
Specifies the height of the clock.

reverseVideo (class ReverseVideo)
Specifies that the foreground and background colors should be reversed.

width (class Width)
Specifies the width of the clock.

X Window System User's Guide

0558

Analog/Digital Clock xclock (continued)

Widget Hierarchy
In order to specify resources, it is useful to know the hierarchy of the widgets which compose
xciock. In the notation below, indentation indicates hierarchical structure. The widget class
name is given first, followed by the widget instance name.

XClock xclock
Clock clock

Files
!usr!lib!Xll!app-defaults/XC!ock

Bugs
xclock believes the system clock.

Specifies default resources.

When in digital mode, the string should be centered automatically.

There should be a way to exit the program.

See Also
X, oclock, xrdb, time(3C); Chapter 8, Other Clients; Appendix G, Widget Resources.

Authors
Tony Della Fera (MIT-Athena, DEC);
Dave Mankins (MIT-Athena, BBN);
Ed Moy (UC Berkeley).

Reference Pages 545

0559

xcmsdb _ ___ Edit Screen Color Properties-

Name
xcmsdb - Xlib screen color characterization data utility.

Syntax
xcmsdb [options] [filename]

Description
xcmsdb is used to load, query, or remove Screen Color Characterization Data stored in proper
ties on the root window of the screen. Screen Color Characterization Data is an integral part of
Xlib, necessary for proper conversion between device-independent and device-dependent color
specifications. Xlib uses the XDCCC_LINEAR_RGB_MATRICES and
XDCCC_LINEAR_RGB_CORRECTION properties to store color characterization data for color
monitors. It uses XDCCC_GRAY_SCREENWWHITEPOINT and XDCCC_GRAY_CORRECTION
properties for gray scale monitors. Because Xlib allows the addition of Screen Color Charac
terization Function Sets, added function sets may place their Screen Color Characterization
Data on other properties. This utility is unaware of these other properties; therefore, you will
need to use a similar utility provided with the function set, or use the xprop utility.

The ASCII readable contents of filename (or the standard input if no input file is given) are
appropriately transformed for storage in properties, provided the -query or -remove
options are not specified.

Options
xcmsdb accepts the following options:

-query Specifies that the XDCCC properties be read off of the screen's root window. If
successful, this transforms the data into a more readable format, then sends the
data to standard output.

-remove Attempts to remove the XDCCC properties on the screen's root window.

-color Sets the query and remove options to only check for the
XDCCC_LINEAR_RGB_MATRICES and XDCCC_LINEAR_RGB_CORRECTION
properties. If the -color option is not set then the query and remove options
check for all the properties.

-format 32 I 16 I 8
Specifies the property format (32, 16, or 8 bits per entry) for the
XDCCC_LINEAR_RGB_CORRECTION property. Precision of encoded floating
point values increases with the increase in bits per entry. The default is 32 bits
per entry.

See Also

546

xprop; Chapter 12, Specifying Color; Volume One, Xlib Programming Manual; Volume Two,
Xlib Reference Manual.

X Window System User's Guide

0560

Edit Screen Color Properties xcmsdb (continued)

Copyright
Copyright 1990, Tektronix Inc.

Author
Chuck Adams, Tektronix Inc.

Reference Pages 547

0561

xcol
"_Display/Change Color Preferences-

Name
xcol - display colors and change color entries in resource files.

Syntax
xcol [options] [filename]

Description
The public domain xcol program displays the colors defined in the rgb.txt file of the X server.
The colors are sorted by their names and their ROB-values and shown in a cube in the Color
View window (The positions represent the ROB-values). Since there usually are more colors
defined in the file than cells in the colormap, entries with the same name, but different ROB
values for different intensities, are grouped together.

If a filena~e is given as a parameter, all occurrences of color names in that file are shown in a
second window, called the TextView window. To change the colors specified in the file, a text
line has to be made active. Then a new color can be selected in the Color View window.

To get a better impression of the color, a help (highlight/background) color can be selected for
each text line. If two lines define a foreground and a background color, an association can be
made and the colors of both lines can be selected together.

Note that as of the printing of this guide, xcol had not been updated for Release 5, but our test
ing showed it could run under the standard X11R5 server. See Chapter 8, Other Clients, for a
tutorial.

Pointer Commands
In the ColorView window, pointer clicks have the following effects:

First button: Selects color for the active resource line in the Text View window.

Second button:

Third button:

Selects help (i.e., highlight) color for the active resource line in the Text
View window.

Moves pointer to the pixel of the color specified by the active resource
line in the TextView window.

In the TextView window, pointer clicks have the following effects:

First button: Selects the text line as the active line.

Second button:

Third button:

Toggles reverse video mode or connects/disconnects two associated lines
(e.g., background and foreground color specifications for the same
resource).

Highlights the line in the text file.

Options
-rv

548

Color positions are reversed in the cube. Some new colors can become visible in the area
of the very bright colors.

X Window System User's Guide

0562

Display/Change Color Preferences xcol (continued)

-bnumber
The size of color blocks is set to the constant number. By default, it depends on the size
of the Color View window.

-grannumber
Sets the maximum number of associated colors to number. By default, this value is 11.
(You can see the effect when reaching the grey field, where 101 associated entries are pos
sibly available.)

-darknumber
Sets the percentage of the intensity of other colors. The default is 50. It's easier to select
a color if the screen is darkened a little bit.

+char_list
Adds characters in char_l is t to list of "space" characters. A color string in the text file
must occur between 2 'space' characters to be recognized. By default, these characters are
" ", "\t", "\n", ":", """.

-strings
Specifies that names of colors in the file are only recognized when used in a string (useful
for C source code). This means that the list of "space" characters is set to '""' only.

-case
Specifies that all occurrences of color names in the wrong case are replaced by the appro
priate color names from the rgb.txt file.

-help
Prints some instructions (e.g., on the usage of buttons).

-file filename
Specifies an alternative file to the rgb.txt file.

Files
/usr/lib/Xl1/rgb.txt

See Also
X; Chapter 8, Other Clients; Chapter 12, Specifying Color.

Bugs
The author wanted the program to work with the selection mechanism used in xterm (when no
text file is given), but it seems to be too complicated. So, the current version always stores the
string of the color in CUT_BUFFERO. If anyone has an easy way to use the correct selection
mechanism, please contact the author.

Reference Pages 549

0563

xcol (continued) Display/Change Color Preferences

Copyright
Copyright 1990, University of Kaiserslautem.

Permission to use, copy, modify, and distribute this software for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies.

Author
Helmut Hoenig (hoenig@informatik.uni-kl.de).

550 X Window System User's Guide

0564

- RGB Color Editor-------- xcoloredit

Name
xcoloredit - find RGB color values by graphical color mixing.

Syntax
xcoloredit [options] [{0-255} ..]

Description
xcoloredit is a public domain client that provides a graphical method of mixing the three pri
mary colors available on a color workstation. This mixing can be done using the Red, Green,
and Blue slider controls on the left of the window or using the Hue, Saturation, and Value
slider controls on the right.

The three boxes above the Red; Green, and Blue slider controls are used for linking the con
trols together via the fourth slider to the right of the blue slider. While in the slider controls the
first mouse button increments the color components value, the third mouse button decrements
the value (this only works with the Red, Green, Blue, and Linked sliders). The middle mouse
button allows the user to continually change the value.

The results of the color mixing is shown in the four central squares. The three smaller squares
shows the intensities of the red, green, and blue components. The hexidecimal value below
these squares is the corresponding color value which can be used in defaults files. This value is
also placed in the PRIMARY_COLOR selection property. If the user presses the color value but
ton, the button is highlighted and the color value is placed in PRIMARY selection as well (use
ful for pasting into defaults files).

At the bottom of the main window are 36 color cells. The current color cell is highlighted by a
box drawn around it. By clicking with the first mouse button in another cell this new cell's
current value can be edited (if the cell has no defined value, the current cells value is copied to
it and the cell is highlighted with a dashed box). These color cells can be connected to cells in
the default colormap of the display. To do this the user must give the colormap entry num
ber(s) (pixel number) as command-line argument(s).

The text shown in the mixed color window can be displayed in one of the 36 color cell colors.
Typing "c" or "t" in this window changes the color of the text to that of the currently selected
color cell. This can be used to see what text will look like with different foreground and back
ground colors. The example text can be modified using the -text command-line option.

Options
xcoloredit accepts the standard X Toolkit options, which are listed on the X reference page. In
addition, xcoloredit accepts the following application-specific options:

-format
Specifies the format used to display the RGB value of the color. This format is used by the
printf(2) function call. By default the format is set to "#%02x%02x%02x" which is the
standard RGB format for X.

Reference Pages 551

0565

xcoloredit (continued) RGB Color Editor

-silent
. Specifies that the edited color values are not printed out when xcoloredit quits.

-text
Sets the example text to display in the mixed color window. Newlines are allowed in this
string.

Selection Atoms
The following selection atoms are used/defined:

PRIMARY_COLOR
Current color selection value.

PRIMARY
Current color selection value when highlighted.

See Also
xtici; Chapter 8, Other Clients; Chapter 12, Specifying Color.

Author

552

Richard Hesketh, University of Kent at Canterbury, March 1989.
rlh2@ukc.ac.uk

X Window System User's Guide

0566

-Console Message Monitor---~~ xconsole

Name
xconsole - monitor system console messages.

Syntax
xconsole [options]

Description
xconsole displays system messages that are usually sent to ldev/console. See Appendix
A, Managing Your Environment, for an example of usage.

Options
xconsole recognizes all of the standard X Toolkit options, which are listed on the X reference
page. (See Chapter 10, Command-line Options, for more information.) xconsole also recog
nizes the following application-specific options:

-daemon
Causes xconsole to place itself in the background, using fork/exit.

-exitOnFail
When set, this option directs xconsole to exit when it is unable to redirect the console
output.

-file filename
To monitor some other device, use this option to specify the device name. This does
not work on regular files as they are always ready to be read from.

-notify or -nonotify
When new data is received from the console and the notify option is set, the icon
name of the application has"*" appended, so that the occurrence of a message is evi
dent even though the application is iconified. -notify is the default, although this
feature does not seem to work reliably in all environments.

Note that if you're running mwm and using an Icon Box, the asterisk cannot be
appended to the icon name.

-stripNonprint
Causes nonprinting characters from the console output to be stripped before messages
appear in the xconsole window. This is the default.

-verbose
When set, this option directs xconsole to display an informative message in the first
line of the text buffer.

Reference Pages 553

0567

xconsole (continued) Console Message Monitor

Resources
xconsole recognizes the Core resource names and classes. (See Appendix G, Widget
Resources, for more information.) In addition, xconsole defines the following application
resources:

daemon (class Daemon)
If True, causes xconsole to place itself in the background, using fork/exit. False by
default.

exitOnFail (class ExitOnFail)
If True, directs xconsole to exit when it is unable to redirect the console output.
False by default.

file (class File)
To monitor some other device, use this resource to specify the device name. This does
not work on regular files as they are always ready to be read from.

notify (class Notify)
When new data is received from the console and the notify resource is True, the
icon name of the application has "*" appended, so that it is evident even when the
application is iconified. False suppresses this behavior. True by default. (Note,
however, that this feature does not seem to work reliably in all environmentG.)

stripNonprint (class StripNonprint)
When True, causes nonprinting characters from the console output to be stripped
before messages appear in the xconsole window. True by default.

verbose (class Verbose)
When True, directs xconsole to display an informative message in the first line of the
text buffer. False by default.

Widget Hierarchy
In order to specify resources, it is useful to know the hierarchy of the widgets that compose
xconsole. In the notation below, indentation indicates hierarchical structure. The widget class
name is given first, followed by the widget instance name:

XConsole xconsole
XConsole text

Notice that xconsole uses the Athena Text widget. See Appendix G, Widget Resources, and
the Athena Widget Set documentation in the standard distribution.

Files

554

/usr! lib lXII I app-defaults!XC onsole
Specifies required resources.

X Window System User's Guide

0568

Console Message Monitor xconsole (continued)

See Also
X, xrdb; Appendix A, Managing Your Environment; Appendix G, Widget Resources.

Bugs
When xconsole is iconified (and program defaults apply), an asterisk should be appended to the
icon name (see -notify and the notify resource), but this does not happen consistently in
every environment.

Author
Keith Packard (MIT X Consortium).

, Reference Pages 555

0569

xcrtca "-----Create Xcms Database-

Name
xcrtca -CRT color analyzer driver.

Syntax
xcrtca [options]

Description
xcrtca is used in conjunction with xsccd to create a color database for the Xcms Color Manage
ment System using either the Minolta CA-l 00 (default) or Tektronix J17, low cost color
imeters.

The Minolta CA-100 in use at the MIT X Consortium includes the Low Luminance option
which is necessary to get the required accuracy for readings at low luminance levels. The
CA-l 00 outputs measurements in the CIExy Y color space at a baud rate of 9600.

The output format for the Tektronix J17 is selectable on the device as well as the baud rate.
Select either CIExy Y or CIEXYZ format for use with this program. The default baud rate for
the J17 is 2400. Note that the default baud rate for this program is 9600; therefore, unless you
select 9600 on the J17, you will need to specify the baud rate with the -baud option.

Options

556

-baud baudrate
Baud rate of the colorimeter. Default for this program is 9600.

-delay seconds
The amount of delay between the change of the color patch and the first reading of
each primary color. Default is 4 seconds.

-device device_name
Specifies the name of the colorimeter. Acceptable values: either calOO (the default)
or j 17.

-file filename
Specifies the filename for the results; otherwise results are sent to standard output.

-format [xyYI XYZ]
Format of measurements received from the colorimeter.

-input pa thname
Specifies the pathname of the tty. Default for this program is I dev/ttya.

-modelmodel_string
Specifies the model of the CRT.

-name name_string
Specifies the name (e.g., manufacturer) to be associated with the CRT.

X Window System User's Guide

0570

Create Xcms Database xcrtca (continued)

Caveats
This program has been coded for a Sun SparcStation and for a default visual with 8
bits_per_rgb.

See Also
xcmsdb, xsccd; Chapter 12, Specifying Color.

Authors
Dave Stemlicht, Keith Packard, MIT X Consortium;
Al Tabayoyon, Chuck Adams, Tektronix Inc.

Aeterence Pages 557

0571

xditview ~-------Display ditroff Files-

Name
xditview - display ditroff DVI files.

Syntax
xditview [options] [filename]

Description
The xditview program displays ditroff output on an X display. As of Release 5, it uses no spe
cial font metrics and automatically converts the printer coordinates into screen coordinates,
using the user-specified screen resolution, rather than the actual resolution so that the appropri
ate fonts can be found. If"-" is given as the filename, xditview reads from standard input.
If "I" is the first character of the filename, xditview forks sh to run the rest of the
f i 1 ename and uses the standard output of that command.

Options
xditview accepts all of the standard X Toolkit command-line options, which are listed on the X
reference page. (We've included one of the more commonly used Toolkit options later in this
section.) In addition, xditview accepts the following application-specific options:

-backingStorebacking_store_type
Redisplay of the DVI window can take up to a second or so. This option causes the
server to save the window contents so that when it is scrolled around the viewport, the
window is painted from contents saved in backing store. backing_store_type
can be one of Always, WhenMapped, or NotUseful.

-noPolyText
Some X servers incorrectly implement PolyText with multiple strings per request.
This option suppresses the use of this feature in xditview. (Available as of Release 5.)

-pagepage_number
Specifies the page number of the document to be displayed when the client is started.

-resolution dots_per_inch
Specifies the desired screen resolution to use. Fonts will be opened by requesting this
resolution field in the XLFD names. (Available as of Release 5.)

The following standard X Toolkit option is commonly used with xditview:

-fn font
Specifies the font to be used for displaying widget text. The default is fixed.

Resources

558

This program uses a Dvi widget. It understands all of the core resource names and classes as
well as the following:

font (class Font)
Specifies the font to be used for error messag~s.

X Window System User's Guide

0572

Display ditroff Files xditview (continued)

fontMap (class FontMap)
To associate the ditroff fonts with appropriate X fonts, this string resource contains a
set of newline-separated specifications, each of which consists of a ditroffname, some
white space and an XLFD pattern with wildcard (*) characters in appropriate places to
allow all sizes to be listed. This resource has been added in Release 5. The default
fontMap is:

R -*-times-medium-r-normal--*-*-*-*-*-*-iso8859-1\n\

I -*-times-medium-i-normal--*-*-*-*-*-*-iso8859-l\n\
B -*-times-bold-r-normal--*-*-*-*-*-*-iso8859-1\n\

F -*-times-bold-i-normal--*-*-*-*-*-*-iso8859-1\n\
BI -*-times-bold-i-normal--*-*-*-*-*-*-iso8859-1\n\

C -*-courier-medium-r-normal--*-*-*-*-*-*-iso8859-1\n\
co -*-courier-medium-o-normal--*-*-*-*-*-*-iso8859-1\n\

CB -*-courier-bold-r-normal--*-*-*-*-*-*-iso8859-1\n\
CF -*-courier-bold-o-normal--*-*-*-*-*-*-iso8859-1\n\

H -*-helvetica-medium-r-normal--*-*-*-*-*-*-iso8859-1\n\
HO -*-helvetica-medium-o-normal--*-*-*-*-*-*-iso8859-1\n\

HB -*-helvetica-bold-r-normal--*-*-*-*-*-*-iso8859-l\n\
HF -*-helvetica-bold-o-normal--*-*-*-*-*-*-iso8859-1\n\
N schoolbook-medium-r-normal--*-*-*-*-*-*-iso8859-1\n\ -*-new century

NI schoolbook-medium-i-normal--*-*-*-*-*-*-iso8859-1\n\ -*-new century

NB schoolbook-bold-r-normal--*-*-*-*-*-*-iso8859-1\n\ -*-new century

NF schoolbook-bold-i-normal--*-*-*-*-*-*-iso8859-1\n\ -*-new century

A -*-charter-medium-r-normal--*-*-*-*-*-*-iso8859-1\n\
AI -*-charter-medium-i-normal--*-*-*-*-*-*-iso8859-1\n\

AB -*-charter-bold-r-normal--*-*-*-*-*-*-iso8859-1\n\
AF -*-charter-bold-i-normal--*-*-*-*-*-*-iso8859-1\n\

S -*-syrnbol-medium-r-normal--*-*-*-*-*-*-adobe-fontspecific\n\
82 -*-syrnbol-medium-r-normal--*-*-*-*-*-*-adobe-fontspecific\n

foreground (class Foreground)
Specifies the default foreground color.

pageNumber (class PageNumber)
Specifies the page number to be displayed at startup.

Reference Pages 559

0573

xditview (continued) Display ditroff Files

Using xditview with ditroff
You can use any DVI file with xditview, although DVI files that use the fonts appropriate to the
fontMap will look more accurate on the screen. On servers that support scaled fonts, all
requested font sizes will be accurately reflected on the screen; for servers that do not support
scaled fonts, xditview will use the closest font from the same family.

Files
I usrl lib lXII I app-defaultsiXditview

Specifies required resources.

lusrl lib lXII I app-defaults!Xditview-chrtr
Specifies the default fontMap.

See Also
X, xrdb, ditroff(l); the paper entitled "X Logical Font Description Conventions."

Authors
Portions of this program originated in xtroff which was derived from suntroff.

560

Keith Packard (MIT X Consortium);
Richard L. Hyde (Purdue);
David Slattengren (Berkeley);
Malcom Slaney (Schlumberger Palo Alto Research);
Mark Moraes (University of Toronto).

X Window System User's Guide

0574

-X Display Manager---------~ xdm

Name
xdm - X display manager.

Syntax
xdm [options]

Description
xdm manages a collection of X displays that may be on the local host or remote servers. The
design of xdm was guided by the needs of X terminals as well the X Consortium standard
XDMCP, the X Display Manager Control Protocol. xdm provides services similar to those pro
vided by init, getty, and login on character terminals: prompting for login name and password,
authenticating the user, and running a "session."

A session is defined by the lifetime of a particular process; in the traditional character-based
terminal world, it is the user's login shell process. In the xdm context, it is an arbitrary session
manager. This is because, in a windowing environment, a user's login shell process does not
necessarily have any terminal-like interface with which to connect. When a real session man
ager is not available, a window manager or terminal emulator is typically used as the "session
manager," meaning that termination of this process terminates the user's session.

When the session is terminated, xdm resets the X server and (optionally) restarts the whole pro
cess.

When xdm receives an Indirect query via XDMCP, it can run a chooser process to perform an
XDMCP BroadcastQuery (or an XDMCP Query to specified hosts) on behalf of the display, and
offer a menu of possible hosts that offer XDMCP display management. This feature is useful
with X terminals that do not offer a host menu themselves.

Because xdm provides the first interface that users will see, it is designed to be simple to use
and easy to customize to the needs of a particular site. xdm has many options, most of which
have reasonable defaults. Browse through the various sections, picking and choosing the
things you want to change. Pay particular attention to "The Xsession Program," which will
describe how to set up the style of session desired.

Options
Note that all of these options, except -config, specify values that can also be specified in the
configuration file as resources.

-config configuration_file
Specifies the configuration file which specifies resources to control the behavior of
xdm parameters. The default is !usr/lib/Xll lxdm/xdm-config.

-daemon
Specifies true as the value for the DisplayManager. daemonMode resource.
This makes xdm close all file descriptors, disassociate the controlling terminal, and
put itself in the background when it first starts up (just like the host of other daemons).
It is the default behavior.

Reference Pages 561

0575

xdm (continued) X Display Manager

-debug debug_l evel
Specifies the numeric value for the DisplayManager. debugLevel resource. A
non-zero value causes xdm to print lots of debugging statements to the terminal; it
also disables the DisplayManager. daemonMode resource, forcing xdm to run
synchronously. To interpret these debugging messages, a copy of the source code for
xdm is almost a necessity. No attempt has been made to rationalize or standardize the
output.

-error error_log_file
Specifies the value for the DisplayManager. errorLogFile resource. This file
contains errors from xdm as well as anything written to standard error by the various
scripts and programs run during the progress of the session.

-nodaemon
Specifies false as the value for the DisplayManager. daemonMode resource.
This suppresses the normal daemon behavior, which is for xdm to close all file
descriptors, disassociate itself from the controlling terminal, and put itself in the back
ground when it first starts up.

-resources resource_file
Specifies the value for the DisplayManager*resources resource. This file is
loaded using xrdb to specify configuration parameters for the authentication widget.

-server server_entry
Specifies the value for the DisplayManager. servers resource. (See the section
"Server Specification.")

-udpPort port_number
Specifies the value for the DisplayManager. request Port resource. This sets
the port number which xdm will monitor for XDMCP requests. As XDMCP uses the
registered well-known UDP port 177, this resource should probably not be changed
except for debugging.

-session session_program
Specifies the value for the DisplayManager*session resource. This indicates
the program to run as the session when the user logs in.

-xrm resource_specification
Allows an arbitrary resource to be specified, just as most toolkit applications.

Resources

562

At many stages the actions of xdm can be controlled through the use of the configuration file,
which is in the X resource format. See Chapter 11 for a description of the resource file fonnat.
Some resources modify the behavior of xdm on all displays, while others modify its behavior
on a single display. Where actions relate to a specific display, the display name is inserted into
the resource name between "DisplayManager" and the final resource name segment. For
example, DisplayManager. expo_O. startup is the name of the resource that defines
the startup shell file on the "expo:O" display. Because the resource manager uses colons to

X Window System User's Guide

0576

X Display Manager xdm (continued)

separate the name of the resource from its value and dots to separate resource name parts, xdm
substitutes underscores for both dots and colons when generating the resource name.

DisplayManager.authDir
Names a directory in which xdm stores authorization files while initializing the
session. The default value is /usr/lib/Xlllxdm.

DisplayManager.errorLogFile
Error output is normally directed at the system console. To redirect it, set this
resource to any filename. A method to send these messages to syslog should be devel
oped for systems that support it; however the wide variety of interfaces precludes any
system-independent implementation. This file also contains any output directed to
standard error by X setup, X startup, Xsession, and Xreset, so it will contain descriptions
of problems in those scripts as well.

DisplayManager.debugLevel
If the integer value of this resource is greater than zero, reams of debugging informa
tion will be printed. It also disables daemon mode, which would redirect the informa
tion into the bit-bucket and allows non-root users to run xdm, which would normally
not be useful.

DisplayManager.daemonMode
Normally, xdm attempts to make itself into a daemon process unassociated with any
terminal. This is accomplished by forking and leaving the parent process to exit, then
closing file descriptors and releasing the controlling terminal. When attempting to
debug xdm, this is quite bothersome. Setting this resource to false will disable this
feature.

DisplayManager.pidFile
The filename specified will be created to contain an ASCII representation of the pro
cess ID of the main xdm process. xdm also uses file locking on this file to attempt to
eliminate multiple daemons running on the same machine, which would cause quite a
bit of havoc.

DisplayManager.lockPidFile
Controls whether xdm uses file locking to keep multiple display managers (xdm
processes) from running amok. On System V, this uses the foe/if library call, while on
BSD it uses flock.

DisplayManager.autoRescan
This Boolean controls whether xdm rescans the configuration, access control, and
authentication keys files after a session terminates and the files have changed. By
default it is True. You can force xdm to reread these files by sending a SIGHUP to the
main process.

DisplayManager.removeDomainname
When computing the display name for XDMCP clients, the name resolver will typi
cally create a fully qualified hostname of the terminal. Since this is sometimes

Reference Pages 563

0577

xdm (continued) X Display Manager

564

confusing, xdm will remove the domain name portion of the hostname if it is the same
as the domain name for the local host when this variable is set. By default the value is
True.

DisplayManager.keyFile
XDM-AUTHENTICATION-1 style XDMCP authentication requires that a private key
be shared between xdm and the terminal. This resource specifies the file containing
those values. Each entry in the file consists of a display name and the shared key. By
default, xdm does not include support for XDM-AUTHENTICATION-1 as it requires
DES, which is not generally distributable because of United States export restrictions.

DisplayManager.accessFile
To prevent unauthorized XDMCP service and to allow forwarding of XDMCP Indirect
Query requests, this file contains a database of hostnames which are either allowed
direct access to this machine, or have a list of hosts to which queries should be for
warded. The format of this file is described in the section "XDMCP Access Control."
(Available as of Relea.se 5.)

DisplayManager.exportList
A whitespace-separated list of additional environment variables to pass on to the
Xsetup, Xstartup, Xsession, and Xreset programs. (Available as of Release 5.)

DisplayManager.randomFile
A file to checksum to generate the seed of authorization keys. This should be a file
that changes frequently. The default is /dev/mem. (Available as of Release 5.)

DisplayManager.DISPLAY.resources
Specifies the name of the file to be loaded by xrdb as the resource database onto the
root window of screen 0 of the display. The X setup program, the Login widget, and
chooser will use the resources set in this file. This resource database is loaded just
before the authentication procedure is started, so it can control the appearance of the
"login" window. See "Authentication Widget Resources," which describes the vari
ous resources which are appropriate to place in this file. There is no default value for
this resource, but the conventional name is !usr/ lib lXII lxdm!Xresources.

DisplayManager.DISPLAY.chooser
Specifies the program run to offer a host menu for Indirect queries redirected to the
special hostname CHOOSER. /usrllib!Xll/xdm/chooser is the default. See the sec
tions "XDMCP Access Control" and "Chooser." (Available as of Release 5.)

DisplayManager.DISPLAY.setup
This specifies a program which is run (as root) before offering the Login window.
This may be used to change the appearance of the screen around the Login window or
to put up other windows (e.g., you may want to run xconsole here). By default, no
program is run. The conventional name for a file used here is Xsetup. See the section
"The Setup Program." (Available as of Release 5.)

X Window System User's Guide

0578

X Display Manager xdm (continued)

DisplayManager.DISPLAY.xrdb
Specifies the program used to load the resources. By default, xdm uses
/usrlbin/Xlllxrdb.

DisplayManager.DISPLAY.cpp
Specifies the name of the C preprocessor used by xrdb.

DisplayManager.DISPLAY.openDelay,
DisplayManager.DISPLAY.openRepeat,
DisplayManager.DISPLAY.openTimeout,
DisplayManager.requestPort

Indicates the UDP port number that xdm uses to listen for incoming XDMCP requests.
Unless you need to debug the system, leave this with its default value of 177.

DisplayManager.DISPLAY.reset
Specifies a program which is run (as root) after the session terminates. Again, by
default, no program is run. The conventional name is Xreset. See "The Xreset Pro
gram" below.

DisplayManager.servers
Specifies either a filename full of server entries, one per line (if the value starts with a
slash), or a single server entry. See the section "Server Specification" for a descrip
tion of this resource.

DisplayManager.DISPLAY.session
Specifies the session to be executed (not running as root). By default,
lusrlbin/Xlllxterm is run. The conventional name is Xsession. See "The Xsession
Program."

DisplayManager.DISPLAY.startAttempts
Numeric resources control the behavior of xdm when attempting to open intransigent
servers. openDelay is the length of the pause (in seconds) between successive
attempts. openRepeat is the number of attempts to make. openTimeout is the
amount of time to wait while actually attempting the open (i.e., the maximum time
spent in the connect system call). startAttempts is the number of times this
entire process is done before giving up on the server. After openRepea t attempts
have been made, or if openTimeout seconds elapse in any particular attempt, xdm
terminates and restarts the server, attempting to connect again. This process is
repeated startAttempts times, at which point the display is declared dead and
disabled. Although this behavior may seem arbitrary, it has been empirically devel
oped and works quite well on most systems. The default values are 5 for open
Delay, 5 for openRepeat, 30 for openTimeout, and 4 for startAttempts.

DisplayManager.DISPLAY.startup
Specifies a program which is run (as root) after the authentication process succeeds.
By default, no program is run. The conventional name for a file used here is Xstartup.
See "The Xstartup Program" below.

Reference Pages 565

0579

xdm (continued) X Display Manager

566

DisplayManager.DISPLAY.pinginterval
DisplayManager.DISPLAY.pingTimeout

To discover when remote displays disappear, xdm occasionally "pings" them, using an
X connection and sending XSync calls. pinginterval specifies the time (in min
utes) between each ping attempt; pingTimeout specifies the maximum amount of

I

time (in minutes) to wait for the terminal to respond to the request. If the terminal
does not respond, the session is declared dead and terminated. By default, both are set
to 5 minutes. If you frequently use X terminals that can become isolated from the
managing host, you may wish to increase this value. The only worry is that sessions
will continue to exist after the terminal has been accidentally disabled. xdm will not
ping local displays. Although it would seem harmless, it is unpleasant when the
workstation session is terminated as a result of the server hanging for NFS service and
not responding to the ping.

DisplayManager.DISPLAY.terminateServer
Specifies whether the X server should be terminated when a session terminates
(instead of resetting it). This option can be used when the server tends to grow with
out bound over time in order to limit the amount of time the server is run. The default
value is false.

DisplayManager.DISPLAY.userPath
xdm sets the PATH environment variable for the session to this value. It should be a
colon separated list of directories; see sh(l) for a full description. The default value
can be specified at build time in the X system configuration file with DefUserPath;
:lbin:lusrlbin:/usr/bin/Xll :/usr/ucb is a common value.

DisplayManager.DISPLAY.systemPath
xdm sets the PATH environment variable for the startup and reset scripts to the value
of this resource. The default for this resource is specified at build time with the
DefaultSystemPath entry in the system configuration file; a common choice is
/etc:/bin:lusr/bin:/usr/bin/Xll :/usr/ucb. Note the absence of"." from this entry. This
is a good practice to follow for root; it avoids many common Trojan horse system pen
etration schemes.

DisplayManager.DISPLAY.systemShell
xdm sets the SHELL environment variable for the startup and reset scripts to the value
of this resource. By default, it is lbinlsh.

DisplayManager.DISPLAY.failsafeClient
If the default session fails to execute, xdm will fall back to this program. This pr~
gram is executed with no arguments, but executes using the same environment van
abies as the session would have had. See "The Xsession Program." By default,
/usr/bin/Xlllxterm is used.

X Window System User's Guide

0580

X Display Manager

DisplayManager.DISPLAY.grabServer
DisplayManager.DISPLAY.grabTimeout

xdm (continued)

To improve security, xdm grabs the server and keyboard while reading the login name
and password. The grabServer resource specifies if the server should be held for
the duration of the login name and password reading: when false, the server is
ungrabbed after the keyboard grab succeeds; otherwise, the server is grabbed until just
before the session begins. The default is false. The grabTimeout resource
specifies the maximum time xdm will wait for the grab to succeed. The grab may fail
if some other client has the server grabbed, or possibly if the network latencies are
very high. This resource has a default value of 3 seconds; you should be cautious
when raising it, as a user can be spoofed by a look -alike window on the display. If the
grab fails, xdm kills and restarts the server (if possible) and the session.

DisplayManager.DISPLAY.authorize
DisplayManager.DISPLAY.authName

authorize is a Boolean resource that controls whether xdm generates and uses
authorization for the local server connections. If authorization is used, authName is
a whitespace-separated list of authorization mechanisms to use. XDMCP connections
dynamically specify which authorization types are supported, so authName is
ignored in this case. When authorize is set for a display and authorization is not
available, the user is informed by having a different message displayed in the login
widget. By default, authorize is True and authName is MIT-MAGIC
COOKIE-I.

DisplayManager.DISPLAY.authFile
This file is used to communicate the authorization data from xdm to the server, using
the -auth server command-line option. It should be kept in a directory which is not
world-writeable, as it could easily be removed, disabling the authorization mechanism
in the server.

DisplayManager.DISPLAY.authComplain
If set to False, disables the use of the unsecureGreeting in the login window.
See the section "Authentication Widget." The default is True. (Available as of
Release 5.)

DisplayManager.DISPLAY.resetSignal
The number of the signal xdm sends to reset the server. See the section "Controlling
the Server." The default is 1 (SIGHUP). (Available as of Release 5.)

DisplayManager.DISPLAY.termSignal
The number of the signal xdm sends to terminate the server. See the section "Control
ling the Server." The default is 15 (SIGTERM). (Available as of Release 5.)

DisplayManager.DISPLAY.resetForAuth
The original implementation of authorization in the sample server rereads the authori
zation file at server reset time, instead of when checking the initial connection. As
xdm generates the authorization information just before connecting to the display, an

Reference Pages 567

0581

x:dm (continued) X Display Manager

old server would not get up-to-date authorization information. This resource causes
xdm to send SIGHUP to the server after setting up the file, causing an additional server
reset to occur, during which time the new authorization information will be read. The
default is false, which will work for all MIT servers.

DisplayManager.DISPLAY.userAuthDir
When xdm is unable to write to the usual user authorization file ($HOME!.Xauthority),
it creates a unique filename in this directory and points the environment variable
XAUTHORITY at the created file. By default, it uses ltmp.

XDMCP Access Control

568

The database file specified by the DisplayManager. accessFile provides information
that xdm uses to control access from displays requesting XDMCP service. This file contains
three types of entries: entries which control the response to Direct and Broadcast queries,
entries which control the response to Indirect queries, and macro definitions.

The format of the Direct entries is simple, either a hostname or a pattern. A pattern is dis
tinguished from a hostname by the inclusion of one or more meta characters. ("*" matches any
sequence of 0 or more characters, and"?" matches any single character.) The pattern is then
compared against the hostname of the display ·device. If the entry is a hostname, all compari
sons are done using network addresses, so any name which converts to the correct network
address may be used. For patterns, only canonical hostnames are used in the comparison, so
ensure that you do not attempt to match aliases. Preceding either a hostname or a pattern with
a "!" character causes hosts that match that entry to be excluded.

An Indirect entry also contains a hostname or pattern, but follows it with a list of hostnames or
macros to which indirect queries should be sent.

A macro definition contains a macro name and a list of hostnames and other macros that the
macro expands to. To distinguish macros from hostnames, macro names start with a"%" char
acter. Macros may be nested.

Indirect entries may also specify to have xdm run chooser to offer a menu of hosts to connect
to. See the section "Chooser."

When checking access for a particular display host, each entry is scanned in tum and the first
matching entry determines the response. Direct and Broadcast entries are ignored when scan
ning for an Indirect entry and vice-versa.

Blank lines are ignored; "#" is treated as a comment delimiter causing the rest of that line to be
ignored, and "\newline" causes the newline to be ignored, allowing indirect host lists to span
multiple lines.

Here is an example Xaccess file:

Xaccess - XDMCP access control file

X Window System User's Guide

0582

X Display Manager xdm (continued)

Direct/Broadcast query entries

!xtra.lcs.mit.edu
bambi. ogi. edu
*.lcs.mit.edu

Indirect query entries

%Hosrs

extract.lcs.mit.edu
!xtra.lcs.mit.edu
*.lcs.mit.edu

Chooser

disallow direct/broadcast service for xtra
allow access from this particular display
allow access from any display in LCS

expo.lcs.mit.edu xenon.lcs.mit.edu \ \e
excess.lcs.mit.edu kanga.lcs.mit.edu

xenon.lcs.mit.edu #force extract to contact xenon
dummy #disallow indirect access
%HOSTS #all others get to choose

For X terminals that do not offer a host menu for use with Broadcast or Indirect queries, the
chooser program can do this for them. (The chooser is available as of Release 5.) In the Xac
cess file (another Release 5 innovation), specify CHOOSER as the first entry in the Indirect host
list. chooser will send a Query request to each of the remaining hostnames in the list and offer
a menu of all the hosts that respond.

The list may consist of the word BROADCAST, in which case chooser will send a Broadcast
instead, again offering a menu of all hosts that respond. Note that on some operating systems,
UDP packets cannot be broadcast, so this feature will not work.

Here's an example Xaccess file using chooser:

extract.lcs.mit.eduCHOOSER %HOSTS#offer a menu of these hosts
xtra.lcs.mit.eduCHOOSER BROADCAST#offer a menu of all hosts

The program to use for chooser is specified by the DisplayManager. DISPLAY. chooser
resource. Resources for this program can be put into the file named by Display
Manager.DISPLAY.resources.

Server Specification
The resource DisplayManager. servers gives a server specification, or, if the values start
with a slash (/), the name of a file containing server specifications, one per line.

Each specification indicates a display which should constantly be managed, and which is not
using XDMCP. Each consists of at least three parts: a display name, a display class, a display
type, and (for local servers) a command line to start the server. A typical entry for local dis
play number 0 would be:

:0 Digital-QV local /usr/bin/Xll/X :0

Reference Pages 569

0583

xdm (continued) X Display Manager

The display types are:

local
foreign

Local display: xdm must run the server
Remote display: xdm opens an X connection to a running server

The display name must be something that can be passed in the -display option to an X pro
gram. This string is used to generate the display-specific resource names, so be careful to
match the names (e.g., use : 0 local /usr /bin/Xll/X : 0 instead of localhost: 0
local /usr /bin/Xll/X : 0 if your other resources are specified as Display
Manager. _0 . session). The display class portion is also used in the display-specific
resources, as the class of the resource. This is useful if you have a large collection of similar
displays (like a corral of X terminals) and would like to set resources for groups of them.
When using XDMCP, the display is required to specify the display class, so the manual for your
particular X terminal should document the display class string for your device. If it doesn't,
you can run xdnz in debug mode and look at the resource strings which it generates for that
device, which will include the class string.

Setup Program
The Xsetup file is run after the server is reset, but before the Login window is offered. The file
is typically a shell script. It is run as root, so it should be careful about security. This is the
place to change the root background or bring up other windows that should appear on the
screen along with the Login widget.

In addition to any specified by DisplayManager. exportList, the following environ
ment variables are passed:

DISPLAY
PATH
SHELL
XAUTHORITY

The associated display name
The value of DisplayManager. DISPLAY. systemPath
The value ofDisplayManager .DISPLAY. systemShell
May be set to an authority file

Note that since xdm grabs the keyboard, any other windows will not be able to receive key
board input. They will be able to interact with the mouse; however, beware of potential secu
rity holes here. If DisplayManager. DISPLAY. grabServer is set, Xsetup will not be
able to connect to the display at all. Resources for this program can be put into the file named
by DisplayManager. DISPLAY. resources.

Authentication Widget Resources

570

The authentication widget reads a name/password pair from the keyboard. Nearly every imag
inable parameter can be controlled with a resource. Resources for this widget should be put
into the file named by DisplayManager. DISPLAY. resources. All of these resources
have reasonable default values, so it is not necessary to specify any of them.

X Window System User's Guide

0584

X Display Manager xdm (continued)

xlogin.Login.width, xlogin.Login.height, xlogin.Login.x,
xlogin.Login.y

The geometry of the Login widget is normally computed automatically. If you wish to
position it elsewhere, specify each of these resources.

xlogin.Login.foreground
The color used to display the typed-in user name.

xlogin.Login.font
The font used to display the typed-in user name.

xlogin.Login.greeting
A string which identifies this window. The default is "X Window System".

xlogin.Login.unsecureGreeting
When X authorization is requested in the configuration file for this display and none is
in use, this greeting replaces the standard greeting. The default is "This is an unsecure
session".

xlogin.Login.greetFont
The font used to display the greeting.

xlogin.Login.greetColor
The color used to display the greeting.

xlogin.Login.namePrompt
The string displayed to prompt for a user name. xrdb strips trailing white space from
resource values, so to add spaces at the end of the prompt (usually a nice thing), add
spaces escaped with backslashes. The default is "Login:".

xlogin.Login.passwdPrompt
The string displayed to prompt for a password. The default is "Password:".

xlogin.Login.promptFont
The font used to display both prompts.

xlogin.Login.promptColor
The color used to display both prompts.

xlogin.Login.fail
A message which is displayed when the authentication fails. The default is "Login
incorrect".

xlogin.Login.failFont
The font used to display the failure message.

xlogin.Login.failColor
The color used to display the failure message.

xlogin.Login.failTimeout
The number of seconds that the fail message is displayed. The default is 30.

Reference Pages 571

0585

xdm (continued) X Display Manager

572

xlogin.Login.translations
This specifies the translations used for the login widget. See Chapter 11, Setting
Resources, and Appendix F, Translation Table Syntax, for more information on trans
lations. The default translation table for xdm is:

Ctrl<Key>H:
Ctrl<Key>D:
Ctrl<Key>B:
Ctrl<Key>F:
Ctrl<Key>A:
Ctrl<Key>E:
Ctrl<Key>K:
Ctrl<Key>U:
Ctrl<Key>X:
Ctrl<Key>C:
Ctrl<Key>\\:
d<ey>BackSpace:
<Key>Delete:
<Key>Return:
<Key>:

delete-previous-character() \n\
delete-character() \n\
move-backward-character() \n\
move-forward-character() \n\
move-to-beginning() \n\
move-to-end() \n\
erase-to-end-of-line() \n\
erase-line() \n\
erase-line() \n\
restart-session() \n\
abort-session() \n\
delete-previous-character() \n\
delete-previous-character() \n\
finish-field() \n\
insert-char() \

The actions that are supported by the widget are:

delete-previous-character
Erases the character before the cursor.

delete-character
Erases the character after the cursor.

move-backward-character
Moves the cursor backward one character.

move-forward-character
Moves the cursor forward one character.

move-to-beginning
Moves the cursor to the beginning of the editable text.

move-to-end
Moves the cursor to the end of the editable text.

erase-to-end-of-line
Erases all text after the cursor.

erase-line
Erases the entire text.

X Window System User's Guide

0586

X Display Manager xdm (continued)

finish-field
If the cursor is in the name field, proceeds to the pas sword field; if the cursor is in
the password field, checks the current name/password pair. If the name/password
pair is valid, xdm starts the session. Otherwise, the failure message is displayed and
the user is prompted again.

abort-session
Terminates and restarts the server.

abort-display
Terminates the server, disabling it. This is a rash action and is not accessible in the
default configuration. It can be used to stop xdm when shutting the system down or
when using xdmshell.

restart-session
Resets the X server and starts a new session. This can be used when the resources
have been changed and you want to test them, or when the screen has been overwrit
ten with system messages.

insert-char
Inse1ts the character typed.

set-session-argument
Specifies a single word argument which is passed to the session at startup. See the
sections "The Xsession Program" and "Typical Usage."

allow-all-access
Disables access control in the server. This can be used when the .Xauthority file can
not be created by xdm. Be very careful when using this; it might be better to discon
nect the machine from the network first.

The Startup Program
The Xstartup file is typically a shell script. It is run as root, and so you should be very careful
about security. This is the place to put commands that add entries to /etclutmp, mount users'
home directories from file servers, display the message of the day, or abort the session if logins
are not allowed. Various environment variables are set for the use of this script:

DISPLAY The associated display name.

HOME The home directory of the user.

USER The user name.

PATH The value of DisplayManager. DISPLAY. systemPath.

SHELL The value ofDisplayManager .DISPLAY. systemShell.

XAUTHORITY May be set to an authority file.

Reference Pages 573

0587

xdm (continued) X Display Manager

No arguments are passed to the script. xdm waits until this script exits before starting the user
session. If the exit value of this script is non-zero, xdm discontinues the session and starts
another authentication cycle.

The Session Program
The Xsession file is the script that is run as the user's session. It is run with the permissions of
the authorized user and has several environment variables specified:

DISPLAY The associated display name.

HOME The home directory of the user.

USER The user name.

PATH The value of DisplayManager. DISPLAY. userPath.

SHELL The user's default shell (from getpwnam).

XAUTHORITY May be set to a nonstandard authority file.

At most installations, Xsession should look in $HOME for a file .xsession, which contains com
mands that each user would like to use as a session. Xsession should also implement a system
default session if no user-specified session exists. See "Typical Usage."

An argument may be passed to this program from the authentication widget using the "set
session-argument" action. This can be used to select different styles of session. One very good
use of this feature is to allow the user to escape from the ordinary session when it fails. This
would allow users to repair their own .xsession if it fails, without requiring administrative
intervention. The section "Typical Usage" demonstrates this feature.

The Reset Program
Symmetrical with Xstartup, the Xreset script is run after the user session has terminated. Run
as root, it should contain commands that undo the effects of commands in Xstartup, removing
entries from !etclutmp or unmounting directories from file servers. The environment variables
that were passed to Xstartup are also passed to Xreset.

Typical Usage

574

Actually, xdm is designed to operate in such a wide variety of environments that "typical" is
probably a misnomer. First, the xdm configuration file should be set up. Make a directory
(commonly /usr!lib!Xlllxdm) to contain all of the relevant files. Here is a reasonable confi
guration file for Release 5, which could be named xdm-config:

DisplayManager.servers:
DisplayManager.errorLogFile:
DisplayManager*resources:
DisplayManager*startup:
DisplayManager*session:
DisplayManager.pidFile:
DisplayManager._O.authorize:
DisplayManager*authorize:

/usr/lib/Xll/xdm/Xservers
/usr/lib/Xll/xdm/xdm-errors
/usr/lib/Xll/xdm/Xresources
/usr/lib/Xll/xdm/Xstartup
/usr/lib/Xll/xdm/Xsession
/usr/lib/Xll/xdm/xdm-pid
true
false

X Window System User's Guide

0588

l

X Display Manager xdm (continued)

As you can see, the xdm-config file primarily contains references to other files. Note that some
of the resources are specified with an asterisk (*) separating the components. These resources
can be made unique for each different display by replacing the"*" with the display name, but
normally this is not very useful. See the "Resources" section for a complete discussion.

The first file, /usr/lib/Xll lxdm/Xservers, contains the list of displays to manage that are not
using XDMCP. Most workstations have only one display, numbered 0, so the file will look
something like this:

:0 Local local /usr/bin/Xll/X :0

This will keep /usr/bin/Xll IX running on this display and manage a continuous cycle of
sessions.

The file /usr/lib/Xll/xdmlxdm-errors will contain error messages from xdm and anything out
put to standard error by Xsetup, Xstartup, Xsession, or Xreset. When you have trouble getting
xdm working, check this file to see if xdm has any clues to the trouble.

The next configuration entry; lusrllib/Xll lxdm/Xresources, is loaded onto the display as a
resource database using xrdb. As the authentication widget reads this database before starting
up, it usually contains parameters for that widget:

xlogin*login.translations: #override\\e
<Key>Fl: set-session-argument(failsafe) finish-field()\\en\\e
<Key>Return: set-session-argument() finish-field()

xlogin*borde:r:Width: 3
#ifdef COLOR
xlogin*greetColor:
xlogin*failColor:
#endif

CadetBlue
red

Please note the translations entry; it specifies a few new translations for the widget, which
allows users to escape from the default session (and avoid troubles that may occur in it). Note
that if #override is not specified, the default translations are removed and replaced by the
new value, not a very useful result, as some of the default translations are quite useful (such as
<Ke.Y>: insert-char (),which responds to normal typing!).

The Xstartup file used here simply prevents login while the file /etc/nologin exists. As there is
no provision for displaying any messages here (there isn't any core X client which displays
files), the user will probably be baffled by this behavior. The following sample Xstartup file is
not a complete example, simply a demonstration of the available functionality:

#! /bin/sh

Xstartup

This program is run as root after the user is verified

if [-f /etc/nologin]; then

exit 1

Reference Pages 575

0589

