
IBG 1029 (Part 4 of 4)
CBM of U.S. Patent No. 7,212,999

CHAPTER 29 MANAGING EXCEPTIONS 459

do We have choice We can either demand that humans also die or we can

make our programs smarter know which method choose the one that

makes the most money

What about thegasplost data

Yes realize that it is counter to everyones wishes if information is lost The

data-entry clerk who fails to key in the invoice amount and then discards the

invoice is creating real problem But is it really the righteous duty of the pro

gram to stop the user and point out this failure No it isnt You have to con

sider the situation If the application is desktop productivity one the user will

be interacting with the program and the results of his error will likely become

apparent In any case the user will be driving the program like car and wont

take kindly to having the steering wheel lock up because the stupid Chevy dis

covered it was low on windshield-washer fluid

On the other hand lets say the user is full-time data-entry clerk keying forms

into corporate data-entry program Our clerk does this one job for living

and he will have spent hundredsmaybe thousandsof hours using the pro

gram He will have sixth sense for what is happening on the screen and will

know with glance whether he has entered bad data particularly if the program

is using subtle modeless visual and audible cues to keep him informed of the

status of the data

Remember the program will be helping out It wont demand that the user

enter bounded information into unbounded gizmos Things like part numbers

that must be valid arent going to be typed in anyway but will be entered

through picklist of some sort Things like addresses and phone numbers will

be entered into extraction gizmos so that he can enter information more natu

rally And the program will constantly give the user positive audible feedback

so the program begins to act as partner helping him stay aware of the status

of his work

So how serious is the loss of data

In data-entry situation missing field can be serious but the field will usu

ally
be entered incorrectly rather than just omitted The program can easily

help the clerk detect the problem and change it to valid entry without stop

ping the proceedings If the clerk is determined to omit necessary fields the

problem is the clerk and not the program The percentage of clerks who fail

because of either lack of ability or sociopathic tendencies is likely quite low It

0464

460 PART VII THE GUARDIAN

isnt the job of the data-entry program to treat all data-entry clerks as though

they cant be trusted to do simple job just because one out of hundred cant

Windows 95 actually offers reasonable example of audit dont edit in its

installation procedure The program is not only smart enough to adapt to

unexpected situations but it also keeps copious internal notes on its progress

If it ever crashes it leaves behind record of its progress up until the problem

the way bomb-disposal expert telephones her every move to the team so that

if the bomb goes off they will know what not to do next time When the user

runs the install program again the program reads those notes and uses them to

succeed The notes tell it what it has already done successfully so it doesnt

have to do those items over The last entry in the notes also tells it the thing

that didnt work The install program will either omit the offending task this

time around or take different tack at solving it

Most of our information processing systems are really very tolerant of missing

information missing name code number or price can almost always be

reconstructed from other data in the record If not the data can always be

reconstructed by asking the various parties involved in the transaction

Businesses do this all the time and its cost is high but not as high as the cost

of Novells technical help lines for example Actually our information pro

cessing systems can work just fine with missing data The programmers who

write these systems just dont like all of the extra work involved in dealing with

missing data so they invoke data integrity as an unbreakable deified law and

thousands of clerks must interact with rigid fascistware to keep databases from

crashingnot to prevent their business from failing

This book isnt about worker productivity or job psychology but it is counter

productive to treat all of your workers like idiots to protect against those few

who are It lowers everyones productivity encourages rapid expensive and

error-causing turnover and decreases morale which increases the uninten

tional error rate of the clerks who want to do well It is self-fulfilling prophecy

to assume that your information workers are untrustworthy

The moguls of the industrial age know that what just said is true but mar

ginal Oppression clearly worked well enough for them to grow and prosper so

counter-argument can be made However the stereotypical role of the data

entry clerk mindlessly keypunching from stacks of paper forms while sitting in

boiler room among hundreds of identical clerks doing identical jobs is dying

Out very rapidly The task of data entry is becoming less mass-production job

0465

CHAPTER 29 MANAGING EXCEPTIONS 461

and more productivity desktop job performed by intelligent capable profes

sionals and even directly by the customers In other words the population

interacting with data-entry software is increasingly less tolerant of being treated

like an unambitious uneducated unintelligent clerk The imperatives of the

industrial age are giving way to the imperatives of the information age and

users wont tolerate stupid software that insults them not when they can just

push button and net surf for another few milliseconds until they find ven

dor of similar goods or services that offers software interface that treats them

with respect

Fudging

In the real world missing information and extra information that doesnt fit

into standard field is an important tool for success Information processing

systems rarely handle this real-world data They only model the rigid repeat

able data portion of transactions sort of skeleton of the actual transaction

which may involve dozens of meetings travel and entertainment names of

spouses and kids golf games and favorite sports figures Maybe transaction

could only be completed if the termination date was extended two weeks

beyond the official limit Most companies would rather fudge on the termi

nation date than see million-dollar deal go up in smoke In the real world

limits are fudged all of the time

While entry systems are working to keep bad data out of the system they

almost never allow the user to fudge There is no way to make marginal com

ments or to add an annotation next to field For example maybe vitally nec

essary item of data is missing an interest rate say If the system wont allow the

transaction to be entered without valid interest rate it stops the company

from doing business What if the interest rate field on the loan application had

penciled note next to it initialed by the bank president that said prime plus

three the day the cash is delivered The system working hard to maintain per

fection fails the reality test

If the automated data-processing system is too rigid it doesnt allow fudging

In other words it wont model the real world system that rejects reality is

not good thing even if it doesnt have any invalid fields You must ask

yourself the question what is more important Your database or your busi

ness The propeller-heads who manage the database and create the data-entry

programs that feed it serve the CPU as master and neither the needs of the user

nor the needs of your business can overcome that There is significant

0466

462 PART VII THE GUARDIAN

conflict of interest that oniy software design knowledgeable in but detached

from the development process can resolve

If the program is used in professional setting and information is actually lost

this is bad thing but not big bad thing because it only happens very occa

sionally If however the interface protects against losing data it will be obnox

ious to every entry clerk all of the time and this is big bad thing Its kind of

Zen-like if you trust your data-entry clerks they will perform better with the

increased responsibility

Besides the amount of lost data will be insignificant and probably recoverable

More importantly all of the software that have seen that had rigid validation

to guarantee data integrity was as full of holes as Swiss cheese The bottom line

is that all of that data integrity stuff doesnt work against determined invader

anyway so you might as well try different approach

Imagine how nice it would be if when user finished editing he could request

dialog box that listed the details of suspected errors he had made along with

some suggestions as to why and possibly some hints on fixing them There is

usually plenty of information that an auditing program can gather when it sus

pects problems and most of our computers have space for it Its good invest

ment

Failing gracefully

Ive already said what think about error messages but Im under no illusions

about the impact it will have on an industry that is chock-full of error messages

Facing reality accept that programs are going to issue error messages so now

Id like to talk about how to fail with grace

Digital computers are absolute in their behavior They either work or they

dont Good programmers are sensitive to this nature and tend to create pro

grams that reflect it When programs detect errorsreally nasty internal

errorsthey tend to crash absolutely Lets say program is merrily computing

along say downloading your email from server when it runs out of memory

at some procedure buried deep in the internals of the program Most of the

software know and use issues message that says in effect You are com

pletely hosed and then shuts down the entire program You restart the

computer only to find that the program lost your email and when you

interrogate the server find that it has also erased your mail because it had

already handed it to your program

0467

CHAPTER 29 MANAGING EXCEPTIONS 463

This is not good

When program discovers fatal problem it knows it will die Before it goes

however it can follow one of two strategies It can just go ahead and crash or

it can take the time and effort to prepare for its death without hurting the user

In other words it can go out like disgruntled psychotic ex-employee taking

dozen coworkers with him in blaze of automatic machine pistol fire or it

can tidy up its affairs assuring that its will is complete and all of its insurance

policies bank accounts and safe deposit boxes are identified and recorded for

its heirs before it peacefully goes to meet its silicon god

Most programs are filled with data and settings When they crash that infor

mation is normally just discarded The user is left holding the bag In our email

example the program accepted email from the serverwhich then erased its

copybut didnt assure that the email was properly recorded locally The email

program surely didnt crash because of its own incompetencenawwwwit

was brought down by the foolishness of some irresponsible screen saver pro

gram running in the background but the email program was the victim No

you are the victim If the email program had made sure that those messages

were promptly written to the local disk even before it informed the server that

the messages were successfully downloaded the problem would never have

arisen even if the stupid screen saver then crashed things

constantly see the unwillingness of software to dismantle itself benignly

before it crashes Even if it doesnt crash the attitude is still there particularly

in dialog boxes dialog will come up and the user will enter several complex

inputs and settings On the tenth or eleventh field the dialog rejects the users

input and shuts down the dialog The user then calls the dialog back up and

lo the first ten valid entries were inconsiderately discarded Remember Mr

Jones that incredibly mean geography teacher in high school who ripped up

your entire report on South America and threw it away because you handed it

in in pencil instead of ink Why couldnt he have just asked you to transcribe it

instead of forcing you to do it over Dont you hate South America to this day

Mr Jones could easily have been programmer

0468

Undo

ndo is that remarkable facility that lets us reverse

previous action Simple and elegant the feature is of obvious

value Yet when we examine undo from goal-directed

point of view there appears considerable variation in pur

pose and method Undo remains important but its not as

simple as you might think

Assisting the exploration

Undo is the facility traditionally thought of as the rescuer of

users in distress the knight in shining armor the cavalry gal

loping over the ridge the superhero swooping in at the last

second

As computational facility
undo has no merit It contributes

nothing to the world of computer software Mistake-free as

they are computers have no need for undo Human beings

on the other hand make mistakes all of the time and undo

is facility that exists for their exclusive use This singular

465

0469

466 PART VII THE GUARDIAN

observation should immediately tell us that of all the facilities in program

undo should be modeled the least like its construction methodsits imple

mentation modeland the most like the users mental model

Not only do humans make mistakes they make mistakes as part of their every

day behavior From the standpoint of computer false start misdirected

glance pause hiccup sneeze cough blink laugh an uh you
know are all errors But from the standpoint of the human user they are per

fectly normal Human mistakes are so quotidian that if you think of them as

errors or even as abnormal behavior you will screw up the design of your

software

The users mental model of mistakes

Saying that the user doesnt imagine himself as making mistakes is another way

of saying that his mental model doesnt include an error on his part Following

the users mental model means absolving the user of blame The implementa

tion model of course is based on the error-free CPU Following the imple

mentation model means acknowledging that all culpability has to be the users

The typical programmer normally blames the user before he blames the soft

ware Wooop Wooop Wooop Model conflict Most software assumes that it

is blameless and any problems are purely the fault of the user

The solution is for the user interface designer to completely abandon any shred

of thought that the user could make mistake Users dont make mistakes in

their own minds so the program shouldnt contradict them in its user inter

face

Users dont make mistakes
vs

If we design software from the point of view that users never make mistakes we

immediately begin to see things differently We cease to imagine the user as

module of code or peripheral that drives the computer and we begin to imag

ine him as an explorer probing the unknown We understand that exploration

involves inevitable forays into blind alleys and box canyons down dead ends

0470

CHAPTER 30 UNDo 467

and into dry holes It is natural for humans to experiment to vary their actions

to probe gently against the veil of the unknown to see where their boundaries

lie How can he know what he can do with tool unless he experiments with

it Of course the degree of willingness to experiment varies widely from person

to person but most people experiment at least little bit

From the implementation model the programmers point of view such gentle

innocent probing is just continuous series of mistakes From our more-

enlightened mental model point of view his actions are natural and normal

The program has the choice of either rebuffing those perceived mistakes or

assisting him in his explorations

Undo is for exploration not mistakes

Undo is the primary tool for supporting exploration in software user interfaces

It allows the user to reverse one or more previous actions if he decides to

change his mind

The secret to designing successful undo system is to create it from the

assumption that it supports normal part of the everyday working set of the

programs tools avoiding any hint that undo is tacit acknowledgment of fail

ure by the user The key to this is to design it so that it is less tool for revers

ing errors and more one for supporting exploration Primarily errors are single

incorrect and unintentional actions Exploration by contrast is long series of

probes and steps some of which may be keepers and others of which need to

be abandoned Most existing undo systems treat things as single incorrect

actions but this model is less helpful

Undo is distastefully human

Undo is one of the more difficult exercises in practical software development

It isnt very tough algorithmicallyyou wont find much discussion of it in

computer science textbooksbut it necessitates adding non-trivial facility to

the program and putting lot of convoluted code into virtually every other part

of it This difficulty of construction is big reason why undo is often omitted

or implemented poorly

Probably an equally significant barrier to the adequate implementation of undo

is psychological one Undo is not very computer-like Computers never make

mistakes and this is one of the programmers main career attractions

Programmers as group really appreciate the deterministic behavior of

0471

468 PART VII THE GUARDIAN

computers large part of what makes programming so appealing to them is

the ability to create self-contained self-consistent world of logical rational

behaviora world of squared-off corners and clean-room streets Undo on the

other hand is all about rough edges and discards inconsistencies and miscon

strued artifacts Undo is human thing not computer thing and because it

deals with human fallibility it represents an unpleasant and vaguely distasteful

part of the programmers job

Undo reassures

significant contribution that undo makes to the user is purely psychological

it reassures him It is much easier to enter cave if you are confident that you

can get back out of it at any time The undo function is that comforting rope

ladder to the surface supporting the users willingness to explore further by

assuring him that he can back out of any dead-end caverns

Curiously users often dont think about undo until they need it in much the

same way that homeowners dont think about their insurance policies until

some disaster strikes Users will frequently charge half-prepared into the cave

and only start looking for the rope ladderfor undoafter they have encoun

tered trouble

Users mental model of undo

The users mental model of undo is predictably variable for the simple reason

that although users need undo it doesnt directly support goal they bring to

the task Rather it supports necessary conditiontrustworthinesson the

way to real goal It doesnt contribute positively to attaining the users goal

but keeps some negative occurrence from spoiling the effort

The user will visualize the undo facility in many different ways depending on

the situation and his expectations If the user is very computer-naive he might

see it as an unconditional get-me-out-of-here buttonan escape valve or

ejector-seat lever for extricating himself from hopelessly tangled misadven

ture more experienced computer user might visualize undo as storage facil

ity for deleted data computer-sympathetic user with logical mind

might see it as 1àtii aiii or LIFO stack of procedures that can be

undone one at time

In order to create an effective undo facility we must satisfy as many of these

mental models as we expect our users will bring to bear

0472

CHAPTER 30 UNDO 469

The undo language gap

As is so common in the software industry there is no adequate terminology to

describe the types of undo that existthey are uniformly called undo and left

at that This language gap contributes to the lack of innovation in new and bet

ter variants of undo have created taxonomy for undo and show the spe

cific names for undo variants and define them as each one is discussed

Lets first talk about what undo operates on the users actions typical user

action in typical application has procedure componentwhat the user did

and an optional data componentwhat information was affected When the

user requests an undo function the procedure component of the action is

reversed and if the action had an optional data componentthe user added or

deleted datathat data will be deleted or added back respectively Cutting

pasting drawing typing and deleting are all actions that have data compo

nent so undoing them involves removing or replacing the affected text or

image parts call functions with both procedure and data component

rnciemectIOorn
Many undoable functions are dataless transformations such as paragraph

reformatting operation in word processor or rotation in drawing program

Both of these operations act on data but neither of them adds or deletes data

call functions like these that have lust procedure component e4urç
ur1ulr1

actions or nreduraIs Most existing undo functions don discriminate

between procedurals and incrementals but simply reverse the most recent

action

The two most-familiar types of undo in common use today are single undo and

multiple undo is the most basic variant non-repeatably reversing

out the effects of the most recent user action whether procedural or incre

mental

This facility is very effective because it is so simple to operate The user inter

face is simple and clear easy to describe and remember The user gets precisely

one free lunch This is by far the most frequently implemented undo and it is

certainly adequate if not optimal for many programs For some users the

absence of this simple undo is sufficient grounds to abandon product entirely

The user generally notices most of his command mistakes right away some

thing about what he did doesnt feel or look right so he pauses to evaluate the

situation If the representation is clear he sees his mistake and selects the undo

0473

470 PART VII THE GUARDIAN

function to set things back to the previously correct state then proceeds from

there

Multiple undo is iepeatableit can revert more than one previous operation

in reverse temporal order

Normally undo is invoked by menu item or buttcon with an unchanging

label The user knows that triggering the idiom will undo the last operation

but there is no indication of what that operation is call this blind undo

On the other hand if the idiom includes textual or visual description of the

particulat operation that will be undone call it explanatory undo

If for example the users last operation was to type in the word design an

explanatory undo function on the menu would say undo typing design

Explanatory undo is generally much more pleasant feature than blind undo

It is fairly easy to put on menu item but more difficult to put on buttcon

although putting the explanation in ToolTip is good compromise

The trouble with single undo

The biggest limitation of single-level incremental undo is when the user acci

dentally short-circuits the ability of the undo facility to rescue him This prob

lem crops up when the user doesnt notice his mistake immediately For

example assume he deletes six paragraphs of text then deletes one word then

decides that the six paragraphs were erroneously deleted and should be

replaced Unfortunately performing undo now merely brings back the one

word and the six paragraphs are lost forever The undo function has failed him

by behaving literally rather than practically Anybody can clearly see that the six

paragraphs are more important than the single word yet the program freely

discarded those paragraphs in favor of the one word The programs blindness

caused it to keep quarter and throw away fifty-dollar bill simply because the

quarter was offered last

In some programs any click of the mouse however innocent of function it

might be causes the single undo function to forget the last meaningful thing

the user did This can be really frustrating if you expect undo help from the

program Although multiple undo solves these problems it introduces some

significant problems of its own

0474

CHAPTER 30 UNDo 471

Multiple undo

The response to the weaknesses of single-level undo has been to create mul

tiple-level implementation of the same incremental undo The program saves

each action the user takes By selecting undo repeatedly each action can be

undone in reverse order of its original invocation In the above scenario the

user can restore the deleted word with the first invocation of undo and can

restore the precious six paragraphs with second invocation Having to redun

dantly re-delete the single word is small price to pay for being able to recover

those six valuable paragraphs The excise of the word re-deletion tends to not

be noticed the way we dont notice the cost of ambulance trips we dont quib

ble over the little stuff when lives are at stake But this doesnt change the fact

that the undo mechanism is built on faulty model and in other circumstances

undoing functions in strict LIFO order can make the cure as painful as the

disease

Imagine again our user deleting six paragraphs of text then calling up another

document and performing global find-and-replace function In order to

retrieve the missing six paragraphs the user must first unnecessarily undo the

rather complex global find-and-replace operation This time the intervening

operation was not the insignificant single-word deletion of the earlier example

The intervening operation was complex and difficult and having to undo it is

clearly an unpleasant excise effort It would sure be nice to be able to choose

which operation in the queue to undo and to be able to leave interveningbut

validoperations untouched

Any program with undo must remember the users last operation and if applic

able cache any changed data If the program implements multiple undo it

must maintain stack of operations the depth of which may be settable by the

user as an advanced preference Each time undo is invoked it performs an

incremental undo reversing the most recent operation replacing or removing

data as necessary and discarding the restored operation from the stack

The model problems of multiple undo

The problems with multiple undo are not due to its behavior as much as to its

manifest model Most undo facilities are constructed in an unrelentingly func

tion-centric manner They remember what the user does function-by-function

and separate the users actions by individual function In the time-honored way

0475

472 PART VII THE GUARDIAN

of creating manifest models that follow implementation models undo systems

tend to model code and data structures instead of user goals Each press
of the

undo button reverses precisely one function-sized bite of behavior Reversing

on function-by-function basis is very appropriate mental model for solving

most simple problems caused by the user making an erroneous entry Users

sense it right away and fix it right away usually within two- or three-function

limit The new Paint program in Windows 95 for example has fixed three-

action undo limit However when the problem grows more convoluted the

incremental multiple undo model doesnt scale up very well

You bet your LIIFO

When the user goes down logical dead end rather than merely mis-keying

data he can often proceed several complex steps into the unknown before real

izing that he is lost and that he needs to get bearing on known territory At

this point however he may have performed several interlaced functions that

are not all bad He may well want to keep some actions and nullify others not

necessarily in strict reverse order What if the user entered some text then

edited it then decided to undo the entry of that text but not undo the editing

of it Sort of like dividing by zero such an operation is undefined and prob

lematic to implement and explain Neil Rubenking offered me this pernicious

example suppose the user did global replace changing tragedy to cata

strophe then another changing cat to dog To undo the first without the

second can the program reliably fix all of the dogastrophes

In this more complex situation the simplistic representation of the undo as

single straight-line LIFO stack of incrementals doesnt satisfy the way it does

in simpler situations The user may be interested in studying his actions as

menu and choosing discontiguous subset of them for reversion while keep

ing some others This demands an explanatory undo with more robust pre

sentation than might otherwise be necessary for normal blind multiple undo

Additionally the means for selecting from that presentation must be more

sophisticated Representing the operation in the queue to clearly show the user

what he is actually undoing is problem of some difficulty

Redo

If you dont believe that programmers are designing our software the redo

function should convince you beyond shadow of doubt By adhering rigor

ously to the implementation model for undo whereby functions are literally

0476

CHAPTER 30 UNDo 473

undone in reverse sequence the inability to select the particular operation to

undo without first undoing all of the valid intervening operations has caused

the redo function to come into being Redo essentially undoes the undo

Redo mostly exists because it is easy to implement if the programmer has

already gone to the effort to implement undo Many programs that implement

single undo treat the last undone action as an undoable action In effect this

makes second invocation of the undo function redo function

The real purpose of redo ends up being to avoid diabolical situation in mul

tiple
undo If the user wants to back out of half-dozen or so operations he

presses the undo buttcon few times waiting to see things return to the

desired state It is very easy in this situation to press
undo one time too many

He immediately sees that he has undone something desirable Redo solves this

problem by allowing him to undo the undo putting back the last good action

Redo is really nothing more than substitute for better visualization tools in an

explanatory undo

Special undo functions

Incremental undo

The backspace key is really an undo function albeit special one When the

user mis-types the backspace key undoes the erroneous characters If the

user mis-types something then enters an unrelated function such as paragraph

reformatting then presses the backspace key repeatedly the mis-typed charac

ters are erased and the reformatting operation is ignored Depending on how

you look at it this can be great
flexible advantage giving the user the ability

to undo discontiguously at any selected location or this can be trap for the

user as he can move the cursor and then inadvertently backspace away charac

ters that were not the last ones keyed in

Logic says that this latter case is problem Empirical observation says that it

never bothered anybody Such discontiguous incremental undoso hard to

explain in wordsis so natural and easy to actually use because everything is

visible The user can clearly see what will be backspaced away Backspace is

classic example of an incremental undo reversing only data while ignoring

other intervening actions Yet if described to you an undo facility that had

pointer that could be moved and that undid the last function that occurred

where the pointer points youd probably tell me that such feature would be

0477

474 PART VII THE GUARDIAN

patently unmanageable and would confuse the bejabbers out of typical user

Experience tells us that backspace does nothing of the sort It works as well as

it does because its behavior is consistent with the users mental model of the

cursor because it is the source of added characters it can also reasonably be the

locus of deleted characters

Using this same knowledge we could create different categories of incremen

tal undos like format-undo function that would only undo preceding format

commands call this category-specific undo If the user entered some text

changed it to italic entered some more text increased the paragraph indenta

tion entered some more text then pressed the format-undo key only the

indentation increase would be undone second press of the format-undo key

would reverse the italicize operation But neither invocation of the format-

undo would affect the content of what the user typed in

What are the implications of category-specific undo in non-text program In

graphics drawing program for example we could have separate undo com

mands for pigment application tools transformations and cut-and-paste

There is really no reason why we couldnt have independent undo functions for

each particular class of operation in program

Pigment application tools include all drawing implementspencils pens fills

sprayers brushesand all shape toolsrectangles lines ellipses arrows

Transformations include all image- manipulation toolsshear sharpness hue

rotate contrast line weight Cut-and-paste tools include all lassos marquees

clones drags and other repositioning tools Unlike the backspace function in

the word processor undoing pigment application in draw program would

be temporal and would work independent of selection That is the pigment

that is removed first would be the last pigment applied regardless of the cur

rent selection In text there is an implied order from the upper left to the lower

right Deleting from the lower right to the upper left maps to strong intrin

sic mental model so it seems natural In drawing no such conventional order

exists so any deletion order other than one based on entry sequence would be

disconcerting to the user

better alternative would be to undo within the current selection only The

user selects graphic object for example and requests transformation-undo

The last transformation to have been applied to that selected object would be

reversed

0478

CHAPTER 30 UNDo 475

Most software users are familiar with the incremental undo and would find

category-specific undo novel and possibly disturbing However the ubiqui

tousness of the backspace key shows that incremental undo is not intrinsic to

the idiom but is rather learned behavior If more programs had modal undo

tools users would soon adapt to them They would even come to expect them

the way we expect to find the backspace key on our word processors

Deleted data buffer

As the user works on document for an extended time the desire for repos

itory of deleted text grows It is not that he finds the ability to incrementally

undo commands useless but rather that reversing actions can cease to be so

function-specific Take for example our six missing paragraphs If separated

from us by dozen complex formatting commands they can be as difficult to

reclaim by undoing as they are to re-key The user is thinking if the program

would just remember the stuff deleted and keep it in special place could

go get what want directly

What the user is imagining is repository of the data components of his actions

rather than merely LIFO stack of incrementals call this deleted data

buffer

His mental model wants the missing text without regard to which function

elided it The usual manifest model forces him to not only be aware of every

intermediate step but to reverse each of them in turn To create facility more

amenable to the user we can create in addition to the normal undo stack an

independent buffer that collects all deleted text or data The user can open this

buffer at any time as document and use standard cut-and-paste or click-and-

drag idioms to examine and recover the desired text If the entries in this dele

tion buffer were headed with simple date stamps and document names

navigation would be very simple and visual

The user could browse the buffer of deleted data at will randomly rather than

sequentially Finding those six missing paragraphs would be simple visual

procedure regardless of the number or type of complex intervening steps he

had taken deleted data buffer should be offered in addition to the regular

incremental multiple undo because it complements it and besides the data

must be saved in buffer anyway This feature would be quite useful in all pro

grams too whether spreadsheet drawing program or invoice generator

0479

476 PART VII THE GUARDIAN

Other manifest models

The manifest model of undo in its simplest formsingle---conforms to the

users mental model just did something now wish didnt do want to press

button and undo that last thing did Unfortunately this manifest model

rapidly diverges from the users mental model as the complexity of the situation

grows The need for an incremental undo remains but discerning the individ

ual components of more than the last few operations is overkill in most cases

The user wants to back up long distances occasionally but when he does the

granular actions will not be terrifically important to him

Miles toning

There are yet other ways to implement undo One of the most powerful is what

call milestoning discussed in Chapter Milestoning simply makes copy of

the entire document the way camera taking snapshot makes an image frozen

in time Because milestoning involves the entire document it is always imple

merited by directly using the file system The biggest difference between mile-

stoning and other undo systems is that the user must explicitly request the

milestonethe saving of the document Once he has done this he can proceed

to safely modify the original If he later decides that his changes were unde

sired he can return to the saved copy to previous version

The milestoning concept is an excellent one and many tools exist to support it

for source code Unfortunately no program that know of supports it

directly to the user Instead they all rely on the file systems interface which

as we have seen is difficult for many users to understand If milestoning were

rendered in non-file-system user model implementation would be quite easy

and its management would be equally simple single buttcon would save off

the entire document in its current state The user could save as many versions

at any interval that he desires

The step for returning to previously milestoned version is what call

reversion

The reversion facility shown in Chapter is extremely simpletoo simple

actually Its menu item merely says Revert to Milestone and this was suffi

cient for discussion of the file system but when considered as part of undo

it should really offer more information Typically it should show list of the

available saved versions of that document along with some information about

each one like the time and day it was recorded the name of the person who

0480

CHAPTER 30 UNDo 477

recorded it the length and some optional user-entered notes The user could

choose one of these versions and the program would back down to it discard

ing any intervening changes

relative of milestoning and reveision is variant that call freezing

Sort of the opposite of milestoning freezing involves locking the data in doc

ument so that it cannot be changed Anything that has been entered becomes

unmodifiable although new data can be added Existing paragraphs are

untouchable but new ones can be added between older ones

This method is much more useful on graphic than on text document It is

much like an artist spraying drawing with fixative All marks made up to that

point are now permanent yet new marks can be made at will Images already

placed on the screen are locked down and cannot be changed but new images

can be freely superimposed on the older ones Fractal Design Painter offers

similar feature with its wet and dry paint commands

Comparison What would this look like

The redo function isnt useful without the undo function so the two have to

be evaluated together to be meaningful Besides providing robust support for

the terminally indecisive the undo-redo function is convenient comparison

tool Say youd like to compare the visual effect of ragged-right margins against

justified right margins Beginning with ragged-right you invoke JUSTIFICA

TION Now you press UNDO to see ragged-right and now you press REDO to see

justified margins again In effect pressing UNDO and then REDO implements

comparison function it just happens to be rendered in its implementation

model If this same function were to be added to the interface following the

users mental model it might be manifested as COMPARISON buttcon This

function would let you repeatedly take one step forward or backward to visu

ally compare two states

On my television remote control is function labeled Jump mytelevision is

Sony the function is present on other manufacturers controls as well where

it has other names which switches between the current channel and the pre

vious channelvery convenient for viewing two programs concurrently The

jump function provides the same usefulness as the undo-redo function pair with

single commanda 50% reduction in excise for the same functionality

When used as comparison functions undo and redo are really one function not

two One says apply this change and the other says
dont apply this change

0481

478 PART VII THE GUARDIAN

single COMPARE button might more accurately represent the action to the

user Although we have been describing this tool in the context of text-

oriented word processing program compare function might be most useful

in graphic manipulation or drawing program where the user is applying suc

cessive visual transformations on images The ability to see the image with the

transformation quickly and easily compared to the image without the transfor

mation would be great help to the digital artist

Doubtlessly the compare function would remain moderately advanced func

tion Just as the jump function like the one on my TV remote is probably not

used by majority of TV users the compare button would remain one of those

niceties for frequent users This shouldnt detract from its usefulness however

because drawing programs tend to be used very frequently by those who use

them at all For programs like this catering to the frequent user is reasonable

design choice

Undo is global facility and should

not be managed by local controls

We dont have individual undo functions on dialog boxes Instead the undo is

global program-wide function that undoes the last action regardless of

whether it was done by direct manipulation or through dialog box

This makes undo problematic for embedded objects that use the OLE model

If the user makes changes to spreadsheet embedded in Word document

then clicks on the Word document then invokes undo the most recent Word

action will be undone instead of the most recent spreadsheet action believe

that users will have difficult time with this It fails to render the juncture

between the spreadsheet and the word processing document seamlessly the

undo function ceases to be global and becomes modal This is not an undo

problem however but an OLE problem

Undo-proof operations

Some operations simply cannot be undone because they involve some action

that triggers device that is not under the direct control of the program Once

an email message has been sent for example there is no undoing it Once

computer has been turned off without saving data there is no undoing it Many

operations however masquerade as undo-proof but are easily reversible For

example when you save document for the first time in most programs it lets

0482

CHAPTER 30 UNDo 479

you choose the name for the file But almost no programs let you rename that

file Sure you can Save As.. under another name but that just makes another

file under the new name leaving the old file untouched under the old name

Why Changing the name of file is frequently desired undo feature

Because it doesnt fall into the traditional view of undo as reversing procedures

one at time we generally dont provide an undo function for setting file

name

Explanatory undo

Microsoft Word for Windows Version 6.0 has an unusual undo call it group

multiple undo

It is multiple-level showing textual description of each operation in the undo

stack in toolbar combobox You can examine the list of past operations and

select some point down in the list to undo however you are not undoing that

one operation but rather all operations back to that point inclusive

Essentially you cannot recover the six missing paragraphs without first revers

ing all of the intervening operations Once you select one or more operations

to undo the list of undone operations is now available in reverse order in the

redo combobox Redo works exactly the same way as undo works You can

select as many operations to redo as desired and all operations up to that spe

cific one will be redone

The program offers two visual cues to this fact If the user selects the fifth item

in the list that item and all four items previous to it in the list are highlighted

Also the text legend says
Undo actions The fact that they had to add that

text legend tells me that regardless of how the programmers constructed it the

users were applying different mental model The users imagined that they

could go down the list and select single action from the past to undo The

program didnt offer that option so the signs were posted This is like that

door with the very pullable handle pasted with Push signs and everybody

still pulls on it anyway

0483

Part VIII The Teacher

Education on Demand

Learning to use software should be as easy as learning the way

around new office little benign exploration couple of

interesting side trips fortuitous meeting in the hallway this

is how we get oriented in real life 1% should expect

nothing less from our software The user should be reassured

at every step
and generouslv rewarded for his curiosity In

todays information age creativity excitement and sense of

adventire are more important ultimately than correctness

There are no mistakes only opportunities to learn

0484

Good at What You Do

much emphasis has been placed on making it easy for

new users to get acquainted with software that an essential

point is often missed Users spend more time as average

u.sers than they do as beginners Software shouldnt be pur

posefully difficult for new users of course but it is even

more important that the software makes everyday users

powerful and satisfied If software is part of your life or

your job it has to make you good at whatever you do

The time users spend

Most computer users know all too well that opening the

shrink-wrap on new software product usually augurs sev

eral days of frustration and disappointment in learning the

new interface On the other hand many experienced users

of program may find themselves continually frustrated

because the program always treats them like rank begin

ner It seems impossible to find the right balance between

catering to the needs of the first-timer and the needs of the

expert
483

0485

484 PART VIII THE TEACHER

Most developers arenaturallyexpert users of their programs and they tend

to create interfaces that are best suited for other experts Unfortunately for any

program no matter how popular there arent going to be too many expert

users out there Prodded by complaints from customers or the marketing

department the developers add pedantic aids to the interface to lend beginners

helping hand Unfortunately these aids often condescend to the first-time

users ignorance Besides most users dont spend much time as raw beginners

so the training aids quickly turn offensive It seems that the well-intentioned

developer is cursed either way The solution to this predicament lies in under

standing the time users spend with software

Intermediate users

Most users remain in perpetual state of adequacy striving for fluency with

their skills ebbing and flowing like the tides depending on how frequently they

use the program call this state of ppetuaUntermedicy and such users

are perpetual intermediates

Imagine software users as skiers All skiers spend time as beginners but those

who find they dont rapidly progress beyond more-falling-than-skiing quickly

abandon the sport The rest soon move off the bunny slopes onto the regular

runs Only few ever make it onto the double-black diamond runs for

experts Most skiers live in the cities and only come up to the mountains few

times year The first
trip

of the season they are very rusty slowly and con

sciously recalling the little tips that they learned last year to keep themselves

moving smoothly By the last
trip

of the year they have integrated all of those

consciously recalled tips into their technique so they no longer need to think

about them They are getting pretty good boldly pushing into new territory

and trying new moves They dont have the time money or inclination to quit

their day jobs and spend all season on the slopes becoming real hot dogs but

they arent beginners either They are perpetual intermediates

well-rounded ski resort has gentle slope for learning and few expert runs

to really chJlenge the serious skier But that resort also has an order of magni

tude more runs for average skiers than any other If the resort wants to stay in

business it will cater to the perpetual intermediate skier without scaring off the

beginner or insulting the expert The beginner must find it easy to matriculate

into the world of intermediacy and the expert must not find his vertical runs

obstructed by aids for bewildered perpetual intermediates

0486

CHAPTER 31 GooD AT WHAT You Do 485

Every software user passes through the beginner phase Some users eventually

become experts too but they will always be small minority Most users

rapidly pass
the beginner state but will never become experts with particular

program Just like recreational skiers they will spend the majority of their time

as intermediate users

well-balanced software user interface takes the same approach as the success

ful ski resort It doesnt cater to the beginner or to the expert but rather

devotes the bulk of its efforts to satisring the perpetual intermediate At the

same time it avoids offending either of its smaller constituencies recognizing

that they are both vital

Most users in this middle state would like to learn more about the program but

they usually dont have the time Occasionally the opportunity to do so will

surface Sometimes these intermediates will use the product extensively for

weeks at time to complete big project During this time they learn new

things about the program Their knowledge grows beyond its previous bound

aries

Sometimes however they do not use the program for months at time and for

get significant portions of what they knew When they return to the program

they are not beginners again but they will need reminders to jog their memory

back to its former state

P-3 Nobody wants to remain

beginner

As percentage of hours spent with program beginning hours are very few

possibly less than one percent If user finds himself not satisfactorily pro

gressing beyond the beginner stage after only few hours he will often aban

don the program altogether and find another to take its place No one is willing

to remain incompetent at his job

One of the most frequent mistakes committed by the design community is

striving to make beginners happy Beginnings are undeniably sensitive times

and it is easy to demoralize first-timer but keep in mind that the state of

beginner-hood is never an objective Nobody wants to remain beginner It is

0487

486 PART VIII THE TEACHER

merely rite of passage everyone must pass through Good software shortens

that passage without bringing attention to it

Those who cant move beyond the beginner stage soon tire of the game

because there isnt much reward in it for them The person who never gets off

the bunny slope will quickly tire of skiing so trying to make him happy there

will be waste of effort Instead we should determine ways to quickly hustle

him out of beginner-dom into the intermediate state Our goal should be to get

him and keep him with the pack as perpetual intermediate

Experts are also vital group because they have disproportionate influence on

less-experienced users When prospective buyer considers your product he

will trust the experts opinion more than an intermediates If the expert says

its not very good she may mean its not very good for experts but the

beginner doesnt know that and will take the experts advice even though it

may not apply

Perpetual intermediates usually know that advanced features exist even though

they may not need them or know how to use them But the knowledge that

they are there is reassuring to the perpetual intermediate convincing him that

he made the right choice investing in this program The average skier may find

it reassuring to know that there is really hairy black diamond expert run just

beyond those trees even if she never intends to use it It gives her something

to aspire to and dream about

Optimize for intermediates

Our goal is neither to pander to beginners nor to rush intermediates into exper

tise Our goal is threefold to rapidly and painlessly get beginners into inter

mediacy to avoid putting obstacles in the way of those intermediates who want

to become experts and most of all to keep perpetual intermediates happy as

they stay firmly in the middle of the skill spectrum

Command vectors

In Chapter 19 introduced the design term command vector to describe

different classes of control idioms For example menus are one command

0488

CHAPTER 31 GooD AT WHAT You Do 487

vector while keyboard mnemonics are another Buttcons and direct-manipula

tion idioms are two other command vectors Some command vectors offer lot

of support to new users typically menus and dialog boxes offer the most

which is why call them the pedagogic vector Beginners will avail them

selves of the pedagogy of menus as they get oriented in new program but per

petual intermediates often want to leave them behind to find slimmer quicker

vectors

I-lead and world vectors

describe pedagogic vectors using Don Normans phrase information in the

world By this Norman means that there is sufficiency of information avail

able just by looking kiosk showing printed map of the campus for exam

ple is information in the world We dont have to bother remembering where

Norman Hall is but can find it just by reading Opposing this is Normans

phrase information in your head which refers to knowledge that you have

learned or memorized like the shortcut through Alexander Hall that isnt

printed on any map Information in your head is much faster and easier to use

than information in the world but you are responsible for assuring that you

learn it that you dont forget it and that it stays up-to-date Information in the

world is slower and more cumbersome but very dependable pedagogic vec

tor is necessarily filled with information in the world which is why call it

world vector

Conversely keyboard commands constitute head vector because using them

requires the user to have filled his head with information about the functions

and their commands

It is mistake to impute values for these two types of command vectors World

vectors are neither better nor worse than head vectors Either ones usefulness

depends entirely on the situation When you first moved into your neighbor

hood you probably had to use mapa world vector After living there

couple of days you abandoned the map because you had learned how to get

homea head vector On the other hand even though you know your house

intimately when you had to adjust the temperature setting on the water heater

you needed to read the instructionsa world vectorbecause you didnt

bother to memorize them when you moved in

Our relationship to our software works the same way We find ourselves easily

memorizing facilities and commands that we use frequently and ignoring the

details of commands that we use only rarely This means that any operation that

0489

488 PART VIII THE TEACHER

is used frequently will automatically become candidate for head vector After

daily use for example we no longer really read the menus but find what we

need by recognizing patterns pull down the second menu and select the bot

tom-most item in the next-to-last section We read only to verify our choice

Because each user unintentionally memorizes commands that are used fre

quently perpetual intermediates memorize moderate subset of commands

and features This subset is called working set and the mix of commands in

it is unique to each individual

In any particular program the working set for all perpetual intermediates will

include many commands in common In Excel for example most every user

will enter formulas and labels specify fonts and print But Sallys working set

might include goal-seeking while Elliots working set includes linked spread

sheets From designers point of view there is no such thing as standard

working set Although programs mainstreamfunctions will certainly be part

of each users working set his individual preferences and job requirements will

dictate which additional features will be included Even custom software writ

ten for corporate operations offer range of features from which each user will

pick and choose

Any command is working set

candidate

The commands in any persons working set will be those used frequently The

user wants those commands to be especially quick and easy to invoke This

means that the designer must provide multiple command vectors for all com

mands because there is no way to know in advance which ones might get used

over and over

Programs that decide for the user which functions are going to be frequently

used and which arent will almost always be incorrect for plurality of their

users The program must allow the user himself to choose his own working set

Having said that Ill now backpedal to say that really dangerous commands

like erase all clear undo abandon changes and so on should not have easy

parallel command vectors Instead they need to be protected with menus and

0490

CHAPTER 31 GooD AT WHAT You Do 489

dialog boxes However if you have more than one or two dangerous corn-

mands in your program you have way too rnany of them

New users are happy with world vectors but as they progress to become per-

petual intermediates they begin to develop their own working set and the

world vectors begin to seem tedious Each user wants to find head vectors for

the contents of their working set This is natural and appropriate user desire

and if our software is to be judged easy-to-use we must satisfy it The solution

consists oftwo components First we must provide head vector in parallel to

the world vector and second we must provide path from the world vector

to the head vector This path of course is vector itself and call it the

graduation vector

There are several ways to provide graduation vector The worst way is by writ-

ing it up in the programs documentation The second worst is through the

programs main online help system These methods not only put the onus of

finding the graduation vector on the user but they leave it up to the user to

realize that he needs to find it Superior graduation vectors are either sublimi

nally built into the interface or are at least offered in the programs interface by

way of their own world vector The latter can be implemented very easily just

by adding menu item to the standard HELP menu called SHORTCUTS This item

takes the user directly to section of help that describes available shortcuts

This method has the benefit of being explicit and therefore pedagogic New

users can see that multiple command vectors exist and that there is an easy-to-

find resource for learning them All programs should have this shortcut item

Design tip Offer shortcuts omthe HELP rrIenu

Adding subliminal graduation vectors is less problematic than it sounds There

are already two on the menus of most programs As defined by Microsoft typ

ical Windows application has two keyboard head vectors Mnemonics and

accelerators For example in Word the mnemonic for SAVE is ALT-F and the

visual graduation vector for it is the underlining of the and in the menu

name and the menu item respectively The accelerator for SAVE is CTRL-S

CTRL-S is noted explicitly on the right side of the menu on the same line as the

SAVE item which acts as graduation vector

Neither of these vectors intrudes on the new user He may not even notice their

existence until he has had the opportunity to use the program at some length

that is until he becomes an intermediate user Eventually he will notice these

0491

490 PART VIII THE TEACHER

visual hints and will wonder about their meaning Most reasonably intelligent

peoplemost userswill get the accelerator connection without any help The

mnemonic vector is slightly tougher but once the user is clued into the use of

the ALT meta-key either by direction or accident the idiom is extremely easy to

remember and use wherever it occurs

If you turn back to Figure 20-4 you can see another excellent technique where

small icons are used to form graduation vector from menus to buttcons This

repetitive use of visual images helps build the visual fugue mentioned in

Chapter The icon identifying each function or facility
should be shown on

every artifact of the user interface that deals with it each menu each buttcon

each dialog box every mention in the help text every mention in the printed

documentation This graduation vector formed of visual symbols is the

strongest and best technique yet it is tragically unexploited

ToolTips are another place where visual symbols can be used to good effect in

indicating parallel command vectors tiny symboljust dot or triangle for

examplecould be shown on every ToolTip that accompanied buttcons with

synonymous direct-manipulation idioms

What beginners need

Lets get one thing straight Beginners are not stupid As software designer

find it best to imagine that users are simultaneously very intelligent and very

busy They need some instruction but not very much and the process has to

be very rapid It cant get bogged down in training or explanation If the ski

instructor begins lecturing on meteorology and alpine ecology he will lose his

students regardless of their aptitude for skiing Just because user needs to

learn how to operate program doesnt mean that he needs or wants to learn

how it works inside

Imagine users as very intelligent

but very busy

On the other hand intelligent people always learn better when they understand

cause and effect so you must give them an understanding of why things are

working the way they are It may seem like contradiction to say they dont

0492

CHAPTER 31 GooD AT WHAT You Do 491

have the patience for explanations but that they must understand why and

suppose it is but most of real life is minestrone of contradictions Get over it

We use mental models to bridge the contradiction The mental model provides

all the explanation the user needs without forcing him to plumb the depths of

the implementation model The user can ignore the physical functions but will

need to know the scope the benefits and the risks

Getting beginners on board

To get beginners into state of intermediacy requires extra help from the pro

gram but this extra help will quickly get in their way as they become interme

diates This means that the extra help you provide must not be fixed into the

interface It must know how to go away Generally beginner-level assistance is

designed as add-ons to the product

This beginner information should not be permanently built into the programs

interface Our new user will either grasp the concepts and scope of the program

right away or he will abandon it He may not recall from use to use exactly

which command was needed to fratz the veeblefetzer but he will definitely

remember that the veeblefetzer needs fratzing if it is consistent with his men

tal model

Online help is really bad tool for providing such add-ons Well talk more

about help later in this chapter but its main purpose is as reference and

beginners dont need reference information they need understanding What

they really need is guided tour

And that is precisely the way beginners should be indoctrinated with guide

separate facilitya dialog box springs to mindis fine tool for communi

cating overview scope and purpose It doesnt necessarily have to be tightly

connected to the actual controls that invoke functions because those controls

already have ToolTips they have to to satisfy perpetual intermediates As the

user begins the program dialog box can appear that states the basic goals and

tools of the program naming the main features This dialog can be quite

sophisticated or simple it doesnt really matter as long as it stays focused on

beginner issues like scope and goals and avoids perpetual intermediate and

expert issues

Beginners rely heavily on the menu to give commands Menus may be slow and

clunky but they are thorough and wordy so they offer reassurances Also the

dialog boxes they usually bring up are expository and explanatory and come

0493

492 PART VIII THE TEACHER

with convenient CANCEL button The toolbar is bit too drastic for

newcomers

What perpetual intermediates need

Perpetual intermediates need access to tools They dont need scope and pur

pose explained to them because they already know these things ToolTips are

the perfect perpetual intermediate idiom ToolTips say nothing about scope

and purpose and meaning they only state function in the briefest of idioms

consuming the least amount of video space in the process

Perpetual intermediates know how to use reference materials They are moti

vated to dig deeper and learn as long as they dont have to tackle too much at

once This means that online help is perpetual intermediate tool They will

use it by way of the index so that part of help must be very comprehensive

Perpetual intermediates will be establishing the functions that they use with

regularity and those that are only used rarely The user may experiment with

obscure features but he will soon identifyprobably subconsciouslyhis

frequently used working set The user will demand that the tools in his work

ing set are placed front-and-center in the user interface easy to find and to

remember

What experts need

Experts will occasionally look for esoteric features and they might make heavy

use of few of them However they primarily demand faster access to their

working set of tools which may be quite large In other words they want

shortcuts to everything

Any person who uses program for hours day will very quickly internalize the

nuances of its interface It isnt so much that users want to cram frequently

used commands into their heads as much as it is unavoidable Their frequency

of use both justifies
and requires the memorization If they were perpetual

intermediates they would be remembering only to forget again by the next

time

The expert is constantly aggressively seeking to learn more and to see more

connections between his actions and the programs behavior and representa

tion Experts appreciate new features Their mastery of the program insulates

them against becoming disturbed by the added complexity

0494

CHAPTER 31 GooD AT WHAT You Do 493

Beginning User Perpetual Intermediate User Expert User

What does the What new features How do

program
do are in the upgrade automate this

What is the forgot how What are the shortcuts

programs scope to import
for this command

Where do start What is this gizmo for Can this be changed

How do print Qops Can undo What is dangerous

How do find Is there keyboard

facility equivalent

What was the command How can customize

for this

Remind me what this does

Figure 31-1

The demands users place on software varies considerably with their experience The tools

presented to the user need to reflect this disparity It wont be appreciated much if your

program is very easy
for first-timers to learn if most users are going to be perpetual inter

mediates Similarly if only professional full-time experts
will use the product the interface

needs to cater to their unique needs

Idiosyncratically modal behavior

Many times user population divides rather cleanly on the effectiveness of an

idiom Half of the users like one idiom while the other half strongly prefer

another Ive seen development shops emotionally split on issues like this One

group becomes the menu item camp while the rest of the developers are the

buttcon camp They wrangle and argue over the relative merits of the two

methods while the real answer is staring them in the face Use both

When population splits like this on preferred idioms the software designers

must offer both idioms Both groups must be satisfied It is no good to satisfy

one half of the population while angering the other half regardless of which

particular group you align yourself with

0495

494 PART VIII THE TEACHER

Im not saying that every individual preference needs to be accommodated

Many individuals have amusing design suggestions that should be adamantly

ignored Ive heard developers state unequivocally that dialog boxes are bad

and that sticky menus are hateful things These fringe voices reflect only per

sonal taste and must be ignored But if in development or user testing you

find that significant group of users has similar preference you must satisT

it even if there are three or four conflicting groups When see this clear divi

sion of populations preferences into two or more large groups say that the

users preferences aie idiosyncratically modal

Windows offers an excellent example of how to cater to idiosyncratically modal

desires in its menu implementation Some people like menus that work the way

they do on the Macintosh you press the mouse button on menu bar item to

make the menu appear thenwhile still holding down the buttondrag down

the menu and release the mouse button on your choice Other people find this

procedure difficult and prefer way to accomplish it without having to awk

wardly hold the mouse button down while they drag Windows neatly satisfies

this by letting the user click-and-release on the menu bar item to make the

menu appear Then the user can move the mousebutton releasedto the

menu item of his choice Another click-and-release selects the item and closes

the menu Just as on the Macintosh interface the user can still click-and-drag

to select menu item The brilliance of these idioms is that they coexist quite

peacefully with each other Any user can freely intermix the two idioms or stick

consistently with one or the other and the program requires no change There

are no preferences or options to be set it just works

In Windows 95 Microsoft has added third idiosyncratically modal idiom to

the menu behavior with their new menu mode The user clicks-and-releases

as before but now he can drag the mouse along the menu bar and the other

menus are triggered in turn Amazingly now all three idioms are accommo

dated seamlessly and integrally Its as though the lion lay down with the lamb

and the hyena

If you are writing transient posture application that wont be used frequently

go ahead and provide just one command vector If you are creating sovereign

application that will be used frequently by broad spectrum of users however

you must expect idiosyncratically modal behavior along with very individual

working sets The only solution is multiple command vectors for all functions

0496

CHAPTER 31 GOOD AT WHAT You Do 495

Commensurate effort

There is principle that grants some measure of relief to overburdened inter

face designers call it the piinciple of commensurate effort and although it

applies to all users it is particularly pertinent to perpetual intermediates and

experts

The principle merely states that people will willingly work harder for something

that is more valuable to get If really want something will work hard to get

it The catch of course is that value is in the eye of the beholder It has noth

ing to do with how technically difficult feature was to implement If person

wants to become good tennis player for example he will get out on the court

and play very hard To someone who doesnt like tennis any amount of the

sport is tedious effort If user reallywants to format beautiful documents with

multiple columns several fonts and fancy headings he will be highly motivated

to explore the recesses of the program to learn how He will be putting com

mensurate effort into the project If some other user just wants to print plain

old documents in one column and one font no amount of inducement will get

him to learn those more-advanced formatting features

Users make commensurate effort

This means that if you add features to your program that are necessarily com

plex to manage users will be willing to tolerate that complexity only if the

rewards are worth it This is why programs user interface cant be complex if

its being used to achieve simple results Of course as users get more experi

enced with the feature they search for shortcuts and you must provide them

When software follows commensurate effort the learning curve doesnt go

away but it disappears from the users mind which is just as good

The typers versus the pointers

Beginners like to point gingerly with the mouse the way they might dip their

toe in the surf Frequent users like to remember and use keyboard idioms that

speed up their work Everybody uses both and surprisingly many people tend

0497

496 PART VIII THE TEACHER

to use an unorthodox combination of keyboard and mouse idioms to select and

manipulate information in Windows The truth is that we use both inter

changeably and often within single object-verb operation This situation was

not well understood by the GUI inventors and it was summarily rejected by

the original Macintosh though they eventually added arrow keys in deference

to it

IBMs PC was very influential in the 80s dictating many of our still-extant

standards IBM made the indefensible argument that the mouse wasnt neces

sary an argument equivalent to saying that the rear view mirrors on your car

arent necessary for driving Strictly true but counterproductive cant prove

it but suspect that IBM thought this whole GUI thing was just passing fad

and were unwilling to commit to it Even after events proved them wrong IBM

remained ambivalent about the mouse refusing to adopt it wholeheartedly in

both their hardware and their software

CUA
IBMs ambivalence affected the development of their user interface standard

for all IBM software which was called Common User Access or CUA

Notably CUA included both the mouse and the keyboard as co-equal com

mand vectors Back when Microsoft was pals with IBM Windows was man

dated to be CUA compliant about the time of Windows 3.0 The CUA

requirement was obnoxious because IBM was unable to define it precisely or

completely yet their world-class bureaucracy was very skilled at assuring that it

wasnt ignored As soon as Bill Gates and IBM ceased their intimate relation

ship most talk of CUA was abandoned at Microsoft However the seeds had

been sown the advantages made visible and Windows today wisely supports

the notion that users may wish to use the keyboard or the mouse in any mix and

that well-behaved Windows applications will support them

Apple was the opposite of IBM very sympathetic to the beginning computer

user They envisioned touch-typists as corporate-drones and thumbed their

noses at them Apple treated the keyboard as significantly less important and

less useful command vector adamantly refusing to put special function keys and

arrow keys on it for several years This choice was as silly in its way as IBMs

insistence that software work totally without mice

The argument between the Macintosh pointers and the PC typers has

raged loudly and inconclusively for many years The truth as might be

expected eluded both camps and involves compromise

0498

CHAPTER 31 GooD AT WHAT You Do 497

The big problem with CUA is its demand that the keyboard must be capable of

doing everything that computers will normally not be equipped with mouse

This demand and the expectation it is based on have been proven incorrect

Today the mouse is omnipresent as is the keyboard Many tasks are very easy

and natural with mouse and very difficult and unnatural with the keyboard

For example moving pluralized window from one position on the desktop to

another is trivial with the mouse but demands tortuous evolution when done

with the keyboard dont know of anybody who moves windows around with

the keyboard do you

CUAs all-or-nothing attitude is wrong and the omnipresence of mice can now

be taken for granted Operations that are simple and direct with mouse and

complex and indirect with the keyboard can safely be supported only by the

mouse idiom It is waste of time to implement them with the keyboard

Having said that should emphasize that such idioms are not common and

this shouldnt be used as an excuse for dropping keyboard support of actions

that are not clearly better in every respect with the mouse

The diamond

In the 70s and early 80s computer users mastered either CP/M or DOS
both command-line operating systems The programs that ran on these operat

ing systems were also structured with command-line interfaces and the learn

ing curve for these programs was steep indeed However the rewards were

great for undergoing the initial torture of learning Now Im not advocating

return to WordStar or VisiCalc but there was much of value in those old pro

grams that shouldnt be tossed out indiscriminately

Without mouse those old programs could only provide head vectorsthe

user had to memorize all commandson the only input device commonly

available at the time the keyboard Even though beginners couldnt be accom

modated with world vectors the perpetual intermediates and experts were

happy with the high-productivity keyboard command vectors and they were

willingcommensurate effort rememberto memorize them if they had to

Software designers took full advantage of the ten later twelve special function

keys that IBM made standard They also made extensive and effective use of

the two meta-keys CTRL and ALT

WordStar in particular had powerful influence over microcomputer users

who were touch-typists By holding down the CTRL key with your left pinkie

0499

498 PART VIII THE TEACHER

and simultaneously pressing letter key with your left fore- or middle-finger

you could navigate your document with incredible speed and ease That is if

you were touch-typist and after you memorized the idiom WordStar called it

the diamond because the salient keys were arranged in the slightly mnemonic

diamond shape shown in Figure 31-2 Beginners and hunt-and-peck typists

hated WordStar used WordStar and its predecessor WordMaster for at least

dozen years My fingers still remember that diamond even though couldnt

consciously tell you any of the commands still find myself fruitlessly typing

CTRL-SOMETHING to move up and down in Word and Excel

Qj
CtrI

Shift

jM

Figure 31-2

The basic diamond in WordStar was the and You held the Ctrl key down with

your pinkie then pressed the to move the cursor up one line the to move down one

line the to move left one character the to move right one character Ctrl-A moved

the cursor left one word and Ctrl-F moved right one word Ctrl-W scrolled the screen up

one line and Ctrl-Z scrolled the screen down one line Ctrl-R scrolled the screen up one

page and Ctrl-C scrolled it down one page The diamond could be mastered in few

hours of practice it was and still is the fastest way to move around in document if you

are touch-typist blame IBM for destroying this wonderful idiom They moved the Ctrl

key away from the pinkie position and forced all navigation functions onto the ten-key

pad to the right of the regular keyboard Now you have Hobsons choice between two

typist-hostile navigation methods IBMs ten-key or Apples mouse

WordStar owned some ninety percent of the word processor market in the late-

seventies and early-eighties but in the late-eighties lost virtually all of its clien

tele to the GUI-based word processors like Microsoft Word WordPerfect and

Lotuss Ami Pro These new products made it easy
for beginners but unfortu

nately the baby got tossed out with the bath water You can point-and-click in

Word and there are parallel keyboard commands for navigating but they are

all based on the numeric keypad and require you to move your right hand away

from the home row to use them This doesnt sit well with touch-typists nor

with me Im reasonably skilled touch-typist thanks Dad for insisting learn

when was 13 years old and would still like to use that old WordStar

0500

CHAPTER 31 GooD AT WHAT You Do 499

diamond in all of my contemporary programs dont want to return to the

days when the diamond was forcibly inflicted on users but perpetual interme

diates and experts can still benefit from such high-speed high-productivity

command vectors despite their high demands

Standards

It has been said that the great scientific disciplines are examples of giants stand

ing on the shoulders of other giants It has also been said that the software

industry is an example of midgets standing on the toes of other midgets This

old joke seems particularly relevant with respect to standards

Nothing is more paradoxical in the software industry than standards Standards

are easily the biggest aid to interface designers Standards are also the biggest

obstacle for user interface designers The lack of standards is the biggest aid to

interface designers The lack of standards is also the biggest obstacle for user

interface designers

If this were the business of making soap or paper or drinking glasses we would

have well-established standards and they would be slowly so slowly creeping

forward decade by decade The solidity of standards allows producers and con

sumers alike to depend on quality features and price There are no great tech

nological changes in the world of soap or paper or drinking glasses so their

respective apple-carts remain upright In software though new technologies

and techniques appear monthly In the world of user interface design we des

perately need all the advances we can get Naturallyit seemswe should

immediately discard the old for the new except that users and vendors hate

moving targets

Standards allow us to consolidate our technological gains and exploit our col

lective accomplishments Standards are plateau in the steep climb of inven

tion They may hinder innovation but they allow commercial products to build

base of customers This commercial success in turn funds more invention

The big standards like interface paradigms and platforms are set de factoby

the market Only now after twenty years is Microsoft powerful enough to

establish standards de jureby declaration And even there Microsoft is only

effective on the fringe standards like MAPI and TAPI while standards on cen

ter stage like ODBC and OLE are fiercely contended by others

IBMs foolish CUA was last-gasp attempt by the fading giant to set standard

de jure in an area where none was wanted plus they had virtually no expertise

0501

500 PART VIII THE TEACHER

CUA failed because it was too much too soon and too much of lowest com

mon denominator Calculated to offend no one it offended all

On the other hand designers and inventors hate standards because they cramp

their style
and obstruct their pushing out of the boundaries of the envelope

hear amateur user interface designers and programmers speak of user interface

standards all the time as though they are codicils recorded in big book some

where Its though Apple or Microsoft had figured out the right methods for

all time and it is our duty to perpetuate them Sure both companies actually

have published user interface guidelines but both companies freely break them

and then update the guidelines

In the Windows world we really dont have standards as much as we have big

examples Our standards are what Excel does or what Word does Every

time Microsoft proposes something as standard they willfully go ahead and

change it for something better in the next version And they should Interface

design is today in its infancy and it is silly to think that there is benefit in chis

eling our baby steps in granite

Windows 1.0 violated the standards set by MS-DOS Windows 2.0 violated the

standards of 1.0 Windows 3.0 3.1 and Windows 95 each stepped on their pre

decessors in turn The Macintosh was such spectacular achievement because

it absolutely abandoned all of Apples previous platforms

Conversely much of the strength of the Mac came from the fact that vendors

all followed Apples lead and made their interfaces look work and act alike

Similarly many successful Windows programs have been unabashedly modeled

after Word or Excel You should be getting sense for where Im going by now

as keep goring user interface design on the horns of the standard dilemma

When we find two otherwise true propositions in direct opposition the answer

is to rephrase the question Instead of asking whether we should follow stan

dards the question must be articulated more like this When should we violate

standards The answer to this question is simple but difficult We should vio

late standards whenever we have darn good reason to

dIr
Obey standards unless youve

got darn good reason

0502

CHAPTER 31 GooD AT WHAT You Do 501

Of course this begs the question What makes darn good reason Personal

preference is out including those of your client or user-test subjects Id like to

answer when new idiom is measurably better but am deeply suspicious of

the objectivity of contemporary measurement approaches The real answer is

the de facto answer when the idiom can be seen to be manifestly better go

ahead and use it This is how the toolbar came into existence along with

buttcons outlines tabbed dialogs and many other idioms Scientists and acad

emics may have been examining these artifacts in their labs but it was their

presence in real-world software that showed the way Your reason may ulti

mately prove to not be darn good and your product will sufferpossibly die

but designers will learn from its lack of merit This is what Christopher

Alexander in Notes on the Synthesis of Form Harvard University Press 1964

calls the unselfconscious process an indigenous and unexamined process of

slow and tiny forward increments as individuals attempt to improve solutions

Like art

Online help

Online help is not part of good user interface design Online help is really the

same as and not significantly better than printed documentation and in many

ways it is lot worse Both forms of documentation are largely useless for any

thing other than reference tool for perpetual intermediates Ultimately online

help is not important the way that the user manual of your car is not impor

tant If you find yourself needing it it means that your car is badly designed

The design is what is important

complex program with many features and functions should come with ref

erence document place where users who wish to expand their horizons with

product can find definitive answers This document can be printed manual

or it can be online help The printed manual is comfortable browsable and

friendly and can be carried around The online help is searchable semi

comfortable very lightweight and cheap Online help could be improved

somewhat

The index

Because you dont read manual like novel the key to successful and effec

tive reference document is the quality of the tools for finding what you want in

it Essentially this means its index printed manual has an index in the back

that you use manually Online help has an automatic index search facility It is

0503

502 PART VIII THE TEACHER

often said by the defenders of online help that the automatic search facility
is

more powerful than manual hardcopy version This is theoretically true but

not relevant The difference between good index and bad index is the qual

ity of its entries and not of its search tools

suspect that few if any of the online help facilities Ive seen were indexed by

professional indexer Certainly can never find what need in the help sys

tems Ive used and can find dozens of entries whose presence would seem

totally reasonable and obvious that are missing from any help system Even the

help system in Word for example which has really superb index offered up

these omissions in about five minutes of random probing lost cant find video

sound report backspace escape enter page down page up However many

entries are in your programs index you could probably benefit from doubling

the number

Whats more the index has to be generated by examining the program and all

of its features not by examining the help text This is not easy because it

demands that highly skilled indexer be intimately familiar with all of the fea

tures of the program suspect its easier to rework the interface to improve it

than to create really good index

The list of index entries is arguably more important than the text of the entries

themselves The user will forgive poorly written entry with more alacrity than

he will forgive missing entry The index must have as many synonyms as pos

sible for topics Prepare for it to be huge The user who needs to solve prob

lem will be thinking how do turn this cell black not how can set the

shading of this cell to 100% If the entry is listed under shading the index fails

the user The more goal-directed your thinking is the better the index will map

to what might possibly pop into the users head when he is looking something

up The index model that like is the one in The Joy of Cooking by Irma

Rombaur Marion Rombaur Becker Bobbs-Merrill 1962 That index is one

of the most complete and robust of any Ive used

Shortcuts

One of the features missing from every help system Ive seen is an option call

Shortcuts In my designs place this option prominently on the help menu

It is graduation vector showing in digest form all of the head vectors for the

programs various features It is very necessary component on any online help

system because it provides what perpetual intermediates need the most access

0504

CHAPTER 31 GooD AT WHAT You Do 503

to features They need the tools and commands more than they need detailed

instructions

The other missing ingredient from online help systems is overview want to

know how the Enter Macro command works and the help system explains

uselessly that it is the facility
that lets me enter macros into the system What

need to know is scope effect power up-side down-side and why might want

to use this facility both in absolute terms and in comparison to similar products

from other vendors

Not for beginners

see many help systems that assume that their role is to provide assistance to

beginners This is not true Beginners stay away from the help system because

it is generally just as complex as the program Besides any program whose basic

functioning is too hard to figure out just by experimentation is unacceptably

bad and no amount of help text will resurrect it Online help should ignore

first-time users and concentrate on those people who are already successfully

using the product but who want to expand their horizons the perpetual inter

mediates

About boxes are an excellent idiom for offering basic assistance to users

though it is rarely done

Better help

ToolTips are modeless online help and they are incredibly effective Why cant

we have more idioms like these Our standard help systems are implemented

in separate program that covers up most of the program for which it is offer

ing help If asked human about some feature chances are excellent that he

would use his finger to point to something on the screen to augment his expla

nation separate help program that obscures the main program cannot do

this The basic form of current online help systems is weak Id rather see the

help presented transparently over the program or built right into the face of it

Wizards

are new idiom unleashed on the world by Microsoft and they are

rapidly gaining popularity among programmers and erstwhile user interface

designers have big reservations about their popularity among users

0505

504 PART VIII THE TEACHER

Basically wizard is series of dialogs that attempt to guarantee success in

using feature by stepping the user through series of dialog boxes These

dialogs parallel complex procedure that is normally used to manage fea

ture of the program For example wizard helps the user create presentation

in PowerPoint 4.0

Programmers really like wizards because they get to treat the user like periph

eral device Each of the wizards dialogs asks the user question or two and in

the end the program performs whatever task was requested They are fine

example of interrogation tactics on the programs part

Wizards are written as step-by-step procedures rather than as informed con

versations between user and program The user tends to feel like the conductor

of robot orchestra swinging the baton to set the pace but otherwise having

no influence on the proceedings In this way wizards rapidly devolve into exer

cises in confirmation messaging The user learns that he merely presses the

NEXT button on each screen without critically analyzing why

There is place for wizards in actions that are very rarely used like installation

or deinstallation They are too demeaning to the user to be used in daily ser

vices though

better way to create wizard is to make simple automatic function that asks

no questions of the user but that just goes off and does the job If it creates

presentation for example it should create it and then let the user have the

option using standard tools to later change the presentation The interroga

tion tactics of the typical wizard are not friendly reassuring or particularly help

ful The wizard often doesnt explain to the user what is going on

Id much rather see the effort that is going into wizards go into designing bet

ter user interfaces Wizards are having the opposite effect though They are

giving programmers license to put raw implementation model interfaces on

complex features with the bland assurance that well make it easy with wiz

ard This is all too reminiscent of the well be sure to document it well in the

manual cry of years past

The inverted meta-question

In Chapter 13 introduced the concept of the meta-question where the user

must ask the program for permission to ask question This is pure excise and

0506

CHAPTER 31 GOOD AT WHAT You Do 505

should never be used but its opposite can be useful in certain circumstances

call this the inverted meta-question

Instead of forcing the user to ask to ask the inverted meta- question tells dia

log to go away and not ask again In this way user can make an unhelpful dia

log box stop badgering him even though the program mistakenly thinks it is

helping For example every time ask my drawing program to insert clipart it

asks me what directory to search in It would be great if could check box on

that dialog telling it to never come back again From now on it would only

look for clipart in the last directory which is always correct If were to change

the directory could get the dialog back by requesting the function in spe

cial way such as with meta-key If beginner inadvertently dismisses dialog

box and cant figure out how to get it back he may benefit from an easy-to

identify safety net idiom in some prominent place help menu item saying

Bring back all dismissed dialogs for example may be just the ticket

We need to spend more time making our programs powerful and easy to use for

perpetual intermediate users We must accommodate beginners and experts

too but not to the discomfort of the largest segment of users

0507

Installation

Configuration and

Personalization

M05
user interface designers find themselves facing

conundrum regarding whether to make their products

user-customizable It is easy to be torn between the users

need to have things done his way and the clear problem

this creates when the program becomes hard to navigate

because familiar elements of it arc either gone or moved

The solution is not to choose one or the other of these

options but to cast the problem in different light

Navigation is by reference to

permanent objects

The user must be able to navigate through the features and

facilities of complex and powerful program He must be

able to stay oriented in the program as he moves from

screen to screen

user can navigate program if he always understands

what he has to do next knows what state the program is in

and knows how to find the tools he needs

507

0508

508 PART VIII THE TEACHER

One of the most important aids to navigation is simple interface without lot

of places to navigate to By places mean modes forms and major dialogs If

the number of modes is kept to minimum like one or two the users ability

to stay oriented in them increases dramatically Similarly if the number of forms

or views is never more than one or two the user can make sense out of them

Programs with thirty forty or more forms are not navigable under any circum

stances

Beyond reducing the number of navigable places the only way to enhance the

users ability to find his way around in the program is by providing better points

of reference In the same way that sailors navigate by reference to shorelines or

stats useis navigate by ieference to permanent objects placed in the piogiams

user interface

These permanent objects in GUI world always include the programs win

dows Each program will most likely have main top-level window Also con

sidered permanent objects are the salient features of that window things like

menu-bars toolbars and other palettes or visual features like status bars and

rulers Generally each window of the program has distinctive look that will

soon become instantly recognizable

Depending on the application the contents of the client area of the programs

main window will also be easily and permanently recognizable Some programs

may offer few different views of their data so the overall aspect of their screen

will change depending on the view chosen Generally though programs dis

tinctive look will come from its unique combination of menus palettes and

toolbars This means that menus and toolbars must be considered permanent

objects and aids to navigation You dont need lot of permanent objects to

navigate successfully They just need to be visible Needless to say permanent

objects cant aid navigation if they are removed

On the other hand people like to change things around to suit themselves

Even beginners not to mention perpetual intermediates like to put their own

personal stamp on program changing it so that it looks or acts uniquely their

own You can see this in any office where even though everyone has an iden

tical little gray cubicle you can tell them apart by the pictures of spouses and

kids plants favorite paintings or quotes and Dilbert cartoons

Actually those pictures and cartoons are serious aids to navigation because

although they may not be permanent objects themselves they are decorations

placed on permanent objects Decorating the permanent objectsthe walls

0509

CHAPTER 32 INSTALLATION CONFIGURATION AND PERsONALIZATION 509

gives them individuality without removing them It allows you to recognize

one hallway as being different from dozens of identical hallways because it is

the one with the big poster of Christie Brinkley Brad Pitt or Opus use the

term persoiialization to describe the decoration of permanent objects

Personalization makes the places in which we work more likable and familiar It

makes them more human and pleasant to be in The same is true of software

and giving the user the ability to decorate his personal program is good both

for fun and for practical purpose

On the other hand actually moving permanent object around can really ham

per navigation If the facilities people come into your office over the weekend

and rearrange all of the cubicles Dilbert cartoons notwithstanding finding

your office again on Monday morning will be tough

Is this an apparent contradiction Not really Adding decoration to permanent

objects helps navigation while moving the permanent objects hinders naviga

tion use the term to describe adding moving or deleting per

manent objects

Configuration is desirable for experienced users Perpetual intermediates when

they have established working set of functions will want to configure the

interface to make those functions easier to find and use They will also want to

tune the program itself for speed and ease They wont do excessive configura

tion but they will Want to make couple of changes and the ability to do so

can make the difference between liking the program and not liking it

Configuration is necessity for expert users They are already well beyond the

need for more traditional navigation aids because they are so familiar with the

product Experts may use the program for several hours every day in fact it is

probably their main application for accomplishing the bulk of their job the way

Word is my constant companion as write this book have gone ahead and

configured the toolbar for my version of Word so that it fits my style of work

ing There are cryptic-looking tools present that only know about and have

removed some standard tools that other users might expect

What are typical permanent objects

The most prominent permanent object in program is the main window and

its caption and menu bars Part of the pedagogic benefit of the menu comes

from its reliability and consistency Unexpected changes to programs menus

0510

510 PART VIII THE TEACHER

can deeply reduce the users trust in them This is true for menu items as well

as for individual menus It is okay to add items to the bottom of menu but

the standard suite of items in the main part of it should change only for clearly

demonstrable need

If the program has toolbar it should also be considered recognizable per

manent object Because toolbars are idioms for perpetual intermediates rather

than for beginners the strictures against changing menu items dont apply

quite as strongly to individual buttcons Removing the toolbar itself is certainly

significant motion of permanent object and although the ability to do so

should be there it shouldnt be offered casually and the user should be pro

tected against accidentally triggering it Ive seen programs that had buttcons

on the toolbar that made the toolbar disappear This is completely inappropri

ate

Status bars tool palettes and fixed areas of the screen where data is displayed

or edited should also be considered permanent objects that cannot be changed

without penalty

Pull at your own risk

Configuring software can be dangerous It is double-edged sword offering

power and flexibility but demanding in turn that its user understand the poten

tial danger of his actions Command vectors that control configuration are

what

In the cockpit of every jet fighter is brightly painted lever that when pulled

fires small rocket engine underneath the pilots seat blowing the pilot seat

and all out of the aircraft to parachute safely to earth Ejector seat levers can

only be used once and their consequences are catastrophic The jet will be

destroyed the pilot may be injured by the sudden and violent acceleration and

depending on where and how she lands she may not even survive On the other

hand damaged out-of-control
jet airplane headed for certain disaster is not

healthy place for pilots to remain either

Just like jet fighter needs an ejector seat lever complex business programs

need configuration facilities The vagaries of business and the demands placed

on the software force it to adapt to specific situations and it had better be able

to do so Companies that pay millions of dollars for custom software or site

licenses for thousands of copies of shrink-wrapped products will not take kindly

to programs inability to adapt to the way things are done in that particular

0511

CHAPTER 32 INSTALLATION CONFIGURATION AND PERSONALIZATION 511

company The program must adapt but such adaptation can be considered

one-time procedure or something done oniy by the corporate IS staff on very

rare occasions In other words ejector seat levers may need to be used but they

shouldnt be used very often After all the pilots seat is normally considered

permanent object in the airplane

Hide the ejector seat levers

Programs must have ejector seat levers so that users canoccasionallymove

permanent objects around But the one thing that must never happen is acci

dental deployment of the ejector seat See Figure 32-1 The interface design

must assure that the user can never inadvertently fire the ejector seat when all

he wants to do is make some minor adjustment to the program

II

liii

Figure 32-1

Ejector seat levers have catastrophic results One minute the pilot is safely ensconced in

her jet and the next she is tumbling end-over-end in the wild blue yonder while her jet

goes on without her The ejector seat is necessary for the pilots safety but lot of design

work has gone into assuring that it never gets fired inadvertently Allowing an unsuspect

ing user to configure program by changing permanent objects is comparable to firing the

ejection seat by accident Hide those ejector seat levers

0512

512 PART VIII THE TEACHER

Ejector seat levers come in two basic varieties those that cause large visual

dislocation in the program and those that perform some irreversible action

Both of these functions should be hidden from inexperienced users In

PowerPoint for example you can switch views between drawing outline and

slide sorter Going between any of these particularly from drawing to outline

can be shocking to user who is unfamiliar with the feature If the user is in

draw mode and accidentally presses the outline button for example all of those

nice graphic images that he has been working on immediately disappear to be

replaced by list of the slide text Both views are excellent tools and frequent

switching between them is normal for perpetual intermediate users We dont

want to remove this functionactually we want to make it quite prominent and

easy to reach we do however want to assure that it doesnt get used inadver

tently Microsoft has solved this problem by putting buttcons that control

changes in the view at the bottom of the screenon the left end of the hori

zontal scroll-barand kept them off of the main toolbar at the top of the

screen where new users are more likely to experiment first-timer may find

the view buttcons at the bottom of the screen but their segregated presence

clearly and visually indicates that they are special

Moving buttcons around on the toolbar is form of personalization However

the leftmost three buttcons on many programs which correspond to File New

File Open and File Save are now so common that they can be considered per

manent objects user who moves these around is configuring his program as

much as he is personalizing it Thus you can see that there is gray boundary

between configuration and personalization

Changing the color of objects on the screen is clearly personalization chore

and one that is appreciated by many users Windows has always been very

accommodating in this respect allowing users to independently change the

color of each component of the windows interface including the color and pat

tern of the desktop itself Windows 95 finally gives users practical ability to

change the system font too Personalization is one of those idiosyncratically

modal things People either like it or dont have shown new users how to

configure their screens colors only to have them plead with me to put it back

as though were dangling them out the door of an airplane also know users

who change every color on the screen as their first task when installing new

system You must accommodate both of these categories of users

Personalization isnt just system-wide activity You can add the ability to do it

to your own program It is easy to find opportunities for personalization just

0513

CHAPTER 32 INSTALLATION CONFIGURATION AND PERsONALIZATION 513

ask around your company People will say things like think this should be

over here or dont like this shade of yellow These are good indicators of

areas for allowing personalization in your application

The tools for personalizing must be simple and easy to use giving the user

visual preview of their selections Above all they must be easy to undo dia

log box that lets users change colors should offer function that returns every

thing to the factory settings

Users really like personalization It allows them to feel part of the computing

process to buy into the task being performed If you want users to like your

program offer them little perquisites like personalization and they will really

appreciate it user that appreciates your program will tell his friends and as

marketing people know there is no more convincing form of advertising than

word of mouth

Conversely most users wont squawk if they cant configure your program as

long as it does its job well Some really expert users may feel slighted but they

will still use and appreciate your program if it works the way they expect

Corporate MIS managers really like configuration It allows them to subtly

coerce corporate users into using common methods The MIS manager or the

equivalent person whose task it is to purchase and configure PC software for

the entire corporation will really appreciate the ability to add special macros

and commands to menus and toolbars that make the off-the-shelf software

work more intimately with established company products and standards An

MIS manager who appreciates your program will tell his friends and as mar

keting people know there is no more convincing form of advertising than word

of mouth

Many companies base their buying decisions on the configurability of pro

grams They figure that they are buying ten or twenty thousand copies of pro

gram and they should be able to adapt it to their particular style of work It is

not whim of the programming staff that has made the programs in Microsoft

Office among the most configurable shrink-wrapped applications available

The corporate look

Following visual standards is great but this doesnt mean that your program

has to have the exact pixel-for-pixel look of the big guys There is lot to be

said for establishing your own identity your own look

0514

514 PART VIII THE TEACHER

The same way that an individual user improves navigation by personalizing his

program as software publisher you can personalize your entire application

By putting identifying marks on all of the components of the program you help

in creating branded product one that the user subconsciously recognizes and

imputes value to

If all of the windows in your program particularly all of the dialog boxes have

consistent family appearance the user can navigate more easily among the

welter of windows on the screen Im talking only about decoration here not

behavioral divergence All of the dialog boxes in Microsofts Office suite for

example use the 3-D conservative gray corporate etched look Borland uses

the 3-D mottled-steel big-bright-bit-mapped button look Many users can

identify the publisher of program from just glance at dialog box

Unfortunately many application developers think this means that their dialogs

should look exactly pixel-for-pixel like Microsoft Lotus or Borland dialog

box

Im not sure why they believe this Most companies want to establish propri

etary look in all other corporate artifacts so why would the boss insist on such

slavish similarity on the screen If every envelope sheet of paper and business

card has the company logo printed prominently on it why shouldnt it also be

present on each dialog box Admittedly it seems that logos consume pixels

only to serve the publisher but there are some collateral benefits for the user

in better navigation and trust

Users like brands They buy Kleenex Nike and Ralph Lauren because it lets

them feel they are part of an exclusive club Brands indicate quality in the prod

uct and discrimination and taste in the user Indicating your company brand on

product can reassure users The visual recognition afforded by logos can also

help users find their way around crowded screen

There are several easy ways to create standard yet visually unique dialog boxes

You can change the background color of all dialog boxes from the common

gray to gentle but different huesay light yellow or light blue Or instead

of changing the background to color change it to an image You must be sub

tle here but try taking your companys logo rendering it in single hue

screened back 80% on background of the same color screened back 90% Place

the gizmos directly on that image The gentle shading wont intrude on the

work at hand but the pattern will be easily recognizable

0515

CHAPTER 32 INsTALLATION CONFIGURATION AND PERSONALIZATION 515

If you are more adventurous you can try using the ownerdraw capability of

push-buttons and slightly alter their shape For example add tiny tab on the

top snip off one corner or round off all of the corners You must be very care

ful not to affect the basic shape and shading of the button so that it doesnt

change its affordance as button but the uniquely modified shape also whis

pers your companys name

There is no reason that your dialogs cant say you instead of them and still

be just as usable and consistent as though you copied the big guys verbatim It

will help the user navigate visually and will contribute positively to the branded

look of your product

Installation

Whether you install software off CD-ROM several floppies file server

or the Internet the process you go through is basically the same consisting of

two steps First the software must be copied or loaded onto your local hard

disk Second the software generally requires some initial configuration so that

both you and it can work smoothly

The installation process is necessary evil There is no constructive need for an

installation processit doesnt help the user to achieve his goals it doesnt

help the program to perform its functions In fact most software development

teams dont really give the installation process much thought at all The effect

is that most installation programs are written as afterthoughts They are rarely

designed and almost never designed well Some clever vendors have developed

market selling installation-program-making tools These have tended to insti

tutionalize the drawbacks of bad installation procedures The dreary sameness

of most installation programs somehow lends an unwarranted credibility to

them But installation should be treated as an opportunity to excel Instead of

the normal demoralizing test of user patience installation can be chance for

your program to show off its good manners and consideration for the user

Most software development managers are fooled by the unproductive nature of

installation programs so that they fail to see this as an opportunity Installation

programs are the first part of the program that the user sees and they give the

user his first impression of your product If your installation program is show

case of effective user interface design the user will be in fine frame of mind

as he begins to use your program in earnest Conversely if your installation

program is given the same afterthought-design that most of them get your user

0516

516 PART VIII THE TEACHER

will be disinclined to tolerate anything less than instant perfection in the bal

ance of your product

Some modern installation programs have been given visual once-over by

graphic artist so they look pretty spiffi But little consideration has been given

to the interaction and certainly not from goal-directed point of view The

nature of installation programs remains one of blindly interrogating the user

forcing him to make uninformed decisions and of the program making selfish

assumptions about the way the computer is used

What is wrong with installation

Possibly the biggest failure of most installation programs is their blind refusal

to see that the user may wish to uninstall the program at some time Very few

installation programs also know how to uninstall themselves so the option is

rarely offered The installation process often includes writing dozens or hun

dreds of command lines of code into various configuration files It forces the

Program Manager to create special windows and icons to accommodate it It

may add or modifr files in the operating systems private directories but it has

no facilities for even remembering what it did let alone facility for reversing

its actions Complicating the problem is the difficultyin many cases the

impossibilityoffully uninstalling program

The typical installation program is usually quite stupid in the way it does its job

For example an installation program might create new icon in the Program

Manager and then when it is rerun after failure will create new redundant

icon The installation program assumes that it is flawless and that mistakes or

misapprehensions will never happen It assumes that it only needs to be run

once and no thought is ever given to the possibility that it might have to be

run subsequently The program doesnt even bother to look around and see its

own spoor

Klingon battle-cruiser mode

Installation piograms usually behave in what call Klingon battle-cruiser

mode Klingon battle-cruiser mode is characterized by the program behaving

like shoot-em-up arcade game You grab the joystick and the program puts

diabolical Klingon battle-cruiser of dialog box up on the screen The dialog

0517

CHAPTER 32 INsTALLATION CONFIGURATION AND PERSONALIZATION 517

demands that you make an arbitrary and usually irreversible decision about

something of which you are completely ignorant If you answer correctly the

installation program gives you ten thousand points and another Klingon bat

tle-cruiser dialog box appears This time it asks you which interrupt vector is

not conflicted with your SCSI adapter and if you choose right the dialog box

disintegrates into space dust and you can proceed to the next Klingon battle-

cruiser dialog box in the sequence You never know how many Klingon battle-

cruiser dialog boxes you are going to get and you dont get much chance to

go back and ponder You never know when you might answer one incorrectly

and the pesky Klingons will format your hard disk scramble all of your TNT files

or just unceremoniously dump you at the prompt All you see is seemingly

endless sequence of cryptic dialog boxes asking you for information you dont

have and dont want to know

Edward Tufte author of The Visual Display of Quantitative Information

Graphics Press 1983 detests the Klingon battle-cruiser mode calling it one

damn thing after another The program metaphorically pushes you into the

hard-backed chair aims the bare light bulb right into your eyes menacingly

slaps its palm with rubber hose and then proceeds to demand answers to dif

ficult questions This hyperbole may seem little thick to those of you who

work with computers on daily basis particularly you programmers out there

but this is really what it feels like to most users It isnt pleasant It isnt nice

It doesnt generate customer loyalty and customer loyalty is what generates

word-of-mouth sales and repeat buys and upgrades In other words it costs you

money You can always sell your product once if it does the job but you wont

last in this business if your product and your company dont generate customer

loyalty The industry is littered with companies that owned the market but

failed to claim their customers loyalty Ive already mentioned WordStar nØe

MicroPro whose WordStar word processor dominated the market in the early

80s As soon as WordPerfect and Microsoft Word became available WordStar

hit the skids faster than you can say Lotus Symphony Digital Researchs CP/M

operating system had well over 90% of the microcomputer market in 1981

Within four years the company was on the ropes and CP/M was just fading

memory

Most but by no means all big manufacturers of shrink-wrapped software have

at least attacked these problems in the last few years Notably the installation

of Windows 95 shows quantum leap forward in installation design

0518

518 PART VIII THE TEACHER

The most common problems exhibited by installation programs are micro

cosm of some of the nastiest software interface design problems in general

Most installation programs exhibit at least several of these design errors

Demanding responses without informing you of the consequences of your

actions

Not informing you of the scope of your actions

Asking you questions about things to which you are unlikely to know the

answer

Asking you for answers that the program can determine for itself

Acting really stupidly

Not failing giacefully

Not providing for uninstallation

Ignoring evidence of their previous activity

Abusing system-wide INI files

Putting files where they dont belong

Overwriting shared files

Not offering you any information about the program

Confusing installation with configuration

Demanding your active participation

Ill now discuss each of these transgressions in detail

Demanding responses without informing

you of the consequences of your actions

Without doubt this is the most common of all of the transgressions of instal

lation programs It is the essence of Klingon battle-cruiser mode The installa

tion program puts up dialog box that looks something like the one in

Figure 32-2

0519

CHAPTER 32 INsTALLATION CONFIGURATION AND PERsONALIZATION 519

Welcome to the Microllhitz PIM-Meister setup program

Installs all of the MicroBlitz FTh1-Mthter components onto

Full
Installation

the selected hard drive

Custom Installation Installs onI9 the files you select onto the selected hard drive

Minimum Installation Installs minimum set of files onto the selected hard drive

Exit Setup

Figure 32-2

This is typical installation programs first dialog box Like playing video game you

have only your wits to guide you Is full installation too much for me to handle Am

smart enough to customize this program Does it make me wimp if choose minimum

installation

The program starts right off by asking you question that will clearly have

global consequences is probably not reversible and of which you have no

understanding of the effects Some more-advanced installation programs

notably those from Microsoft make pretty good disclosure of the effects of

your choice on how much disk space will be consumed However you are still

guessing about the meaning of the choice What the user needs to know is

exactly what functionality he will be sacrificing if he chooses minimal instal

lation It isnt enough to merely know the disk space implications he must

know the usefulness implications of his choice too

Some versions of this question deal with system-level resources such as inter

rupts communications ports video drivers and the like These are particularly

vexing because making the wrong choice can instantly lock up the computer

system crash other running programs lose data and sometimes even require

rebooting the computer from boot diskette and manually fixing the damage

0520

520 PART VIII THE TEACHER

done by the installation program Although the consequences for making

wrong choice are severe the user is rarely made aware that this is not the time

for guessnot even an educated guess To counter user interactions with this

kind of pioblem softwaie should be imbued with quality call informed

consent The user should only be asked questions about which he understands

the consequences In particular he must understand the consequences to him

not just to his computer If the program offers configuration choices the user

must be well-informed about how the various configurations affect the pro

grams ability to help him achieve his goals

For example an appropriate way to create an atmosphere of informed consent

would be to offer an itemized list of the features expressed in terms of what

they do for the user that are either included or excluded from the various

choices Additionally prose description of the big picture from the users

point of view would be necessary Something like the following would be nice

minimal configuration is designed for laptop and notebook computers with

available disk space of less than 100 megabytes The MiçroBlitz PIM-Meister

will consume about 40% less space on your hard disk without sacrificing any

critical functions What you will sacrifice includes most but not all online help

text the tutorial program for beginners four out of seven Wizards and most

of the more obscure import and export utilities If you want the minimal con

figuration but feel that you must have one or more of the excluded facilities

you can easily request the minimal configuration with special options and add

the desired facilities back in Also you can always easily change your existing

configuration by running the installation program second time

First this statement describes the main reason why the user might want to

choose the minimuminstallation option Second it describes in some detail

exactly what is sacrificed to get it Third it informs the user how and why he

can override the setting if he wants to Fourth it reassures the user by inform

ing him how he can change things if he later changes his mind This is informed

consent and the user will be able to make intelligent choices and feel good

about them Can you write the corresponding paragraphs for the other two

installation choices

Not informing you of the scope of your actions

typical installation program wastes no time on what programmer considers

idle chit-chat with the user but that chit-chat is important to dispel the users

0521

CHAPTER 32 INSTALLATION CONFIGURATION AND PERS0NALIZATION 521

uneasiness Imagine if an appliance repair person arrived at your house and

without word to you started wrenching apart your plumbing and dismantling

your refrigerator You would feel much better if the repair person gave you the

big picture first

The compressor on your refrigerator is completely dead because the motor has

seized will have to replace it completely have the replacement motor in my

truck and it will take about an hour-and-a-half to make the repair including

recharging the system with coolant in an environmentally friendly way Your

warranty will cover the cost of the parts but not my labor charge $45 per

hour The plumbing will need some minor work because the icemaker is

directly connected to your pipes Any time existing iron-pipe plumbing is dis

turbed there is slight risk of starting leaks elsewhere in the system will make

every effort to keep the pipes from moving to reduce that chance

You are flow informed of how much time the operation will take how much

money it will cost and what the risks of failure are You are aware of the scope

of the operation

Wouldnt it be nice if our install program told us something like this

am going to install MicroBlitz PIM-Meister on your system This means

copying the program from the distribution floppy diskettes onto your hard

disk decompressing the files and then configuring the program for your spe

cific needs will need you to place the seven diskettes into the floppy drive one

at time as read them will ask you for each one by the name shown on the

diskette label Judging from the speed of your processor estimate the entire

process will take about 17 minutes fOr full install and as little as 11 minutes

for minimal installation The program will occupy between and 14

megabytes on your hard disk depending on which configuration you choose

In other words it will take between 2.7 and 4.7 percent of your total capacity

Your disk is currently less than half full so the available space will be reduced

by 4.6 to percent

will place all parts of the program and all associated information in special

directory that will create new You will be given the choice of where that

directory is located and what it will be called but you can also just keep the

default of PIMMEIST By necessity must make at least one entry in your sys

tem files in WIN.INI This entry will be restricted to single parameter line

0522

522 PART VIII THE TEACHER

that will have absolutely no effect on the system or any other program even if

you later decide to uninstall PIM-Meister If you select the checkbox will also

create an icon for launching PIM-Meister in the Main group of the Program

Manager

This installation program maintains an internal status log so that in the

unlikely event it crashes it will know how to pick up the pieces intelligently if

you merely re-run it

You can uninstall this entire program at any time simply by pushing the unin

stall button The program will be removed from your system leaving as few

traces as possible but leaving any data files you created with PIM-Meister

untouched If desired you may request the space-saver uninstall where the pro

gram is removed but all of your personal settings are saved subsequent exe

cution of the install program can put PIM-Meister back exactly the way it was

This monologue is pretty prolix and experienced users wont want to read it

But new users will find it very reassuring to hear from the horses mouth what

the implications of the installation process are They will understand the scope

of the process they are about to undergo

Asking you questions about things

to which you are unlikely to know the answer

typical installation program question for communications program asks the

user to specify the desired serial port Most users dont know what serial port

is or how many they have let alone which one is best for this program Game

and sound-card installation programs frequently ask users about available inter

rupt vectors question that cant be adequately answered by most computer

engineers let alone typical home user Business software installations can be

expected to ask about network support and the type of mouse in use Most

users are completely unaware of the answers to such questions

Asking the user question to which he is unlikely to know the answer is very

bad practice First it doesnt get the program the answer it needs Instead it

gets guess Second it makes the user feel badafter all he just failed test

and proved himself inadequate in front of machine How embarrassing

Third it shows the program to be pretty stupid Its like seeing somebody

wandering on the street asking strangers how many ergs are there to joule
What dufus Nobody knows the answer and nobody cares and there are bet

ter ways to find out stuff like that

0523

CHAPTER 32 INsTALLATION CONFIGURATION AND PERsONALIZATION 523

If the program needs to know about serial ports it should test them and see

which ones are occupied It can search in various configuration files for clues as

to how they are currently being used It can even ask the user to move the

mouse and look for activity on the various ports to eliminate that possibility

If the program needs to know about interrupts it can examine them or listen

to them to determine whether they are in use or available The installation pro

gram can make very good guess and probably much more reliable guess

than the users about what interrupts are available by deduction and by look

ing at system information files By recording its findings and then telling the

user it is about to do something that might lock up the system the user can

close all other running programs and be prepared for the programs error If

one occurs he can then rerun the program and it will find its earlier notes It

now knows what didnt work which should be enough to enable it to deduce

the correct choice Dont force this choice onto user who cannot be expected

to know the answer

Asking you for answers that the

program can determine for itself

This is common problem in all software but the authors of installation pro

grams are deservedly notorious for it The program asks you what type of dis

play device your computer has when it can easily check inside Windows for the

answer to that question The program asks you how much disk space is avail

able when it can interrogate the file system to get the exact answer The pro

gram asks you where another program or file is located when it can easily

search the disk to find it The program asks you which hard disk you want to

install on when you only have one hard disk

The computers job is to remove unnecessary trivia from our lives Questions

like these only add more pointless trivia and are offensive Most information

needed by any program can and should be determined without asking the

human user

Acting really stupidly

wish didnt have to write this paragraph but do There are many installa

tion programs that begin the process of copying the program from the floppy

0524

524 PART VIII THE TEACHER

to the hard disk without first checking for sufficient amount of free disk space

on the destination drive The program then blows up on disk-full error This

is tantamount to walking into post

There are other ways that installation programs can get really stupid like

installing Windows application on system that doesnt have Windows or

blindly configuring program for color on monochrome system

One of the most obnoxious ways an installation program can behave is by not

being aware of its own existence The installation program goes ahead blithely

installing an identical copy of program that already exists The installation

program doesnt know that it is being used just to change configuration so

it goes ahead and copies files from floppy to hard disk that are already there

The installation program doesnt realize that it blew up previously and is being

re-run so it mindlessly retraces its steps until it blows up again in the same way

The designer of an installation program should write list of all of the envi

ronmental givens that the program needs including such things as RAM
video disks microphones joysticks mice modems or speakers The installa

tion program should then check that these assumptions are indeed true before

proceeding The program should perform commonsense examination of the

system before it starts working It should look for previous copies of itself it

should look for other required software it should check for fatal or dangerous

conditions like lack of memory or disk storage

Just yesterday installed program from major vendor that offered me the

opportunity to put the program in either default directory or one of my

choosing chose one different from the default Unfortunately after had

installed the system found that significant portions of the program wouldnt

work because the program would only look in the default directory had

hard time figuring out which was more stupid That they couldnt find files on

hard disk or that they offered me an option that would cause fatal problems

if should choose to use it

It isnt that hard for program to find files on disk If there is name collision

the program can easily open the file and look inside to see if it is in the expected

format For any program to not be able to find its own files is just plain stupid

Not failing gracefully

Because installation programs are often built as afterthoughts they dont get

the polishing testing and refining that the main program gets In particular

0525

CHAPTER 32 INsTALLATION CONFIGURATION AND PERSONALIZATION 525

installation programs have penchant for crashing in very catastrophic ways

Where regular application will report to the user that it is running out of

memory before gently and safely divesting itself of unnecessary functions fea

tures and data in order to continue the average install program is very brittle

When it runs out of memory it is not aware of the problem and merely dies

usually taking the rest of the system with it

First the memory requirements of an installation program are usually very sta

tic and predictable so running out of memory is usually very avoidable But if

the program does run out it should be sufficiently robust to detect the prob

1cm make permanent note of its current position so it can resume its task

then inform the user of the problem and give him the opportunity to adjust

things and give the program another chance

Most installation programs can only do an entire install process from scratch If

the installation consists of decompressing and copying the contents of ten flop

pies Onto the hard disk and the program crashes on disk ten it usually requires

that the user pointlessly recopy the first nine floppies The program should be

smart enough to before it begins copying check to see if the copy process is

really needed

Not providing means for uninstallation

Although many software vendors seem unaware of the fact customers often

want to remove software from their computers customer would remove soft

ware because it is needed on another computer because it is not needed on this

computer any longer because it takes up space needed by other more impor

tant programs and even because the user has decided that the program is not

good enough to keep

Every vendor should provide tool for removing their program just as they

provide tool for installing it The uninstallation tool should be just as robust

and full-featured as the installation tool It should follow the principle of

informed consent telling the user what the scope and consequences of the pro

gram are

The uninstallation program should remove all traces of the program where pos

sible including any entries made into system files such as WIN.INI and

AUTOEXEC.BAT If entries to these files areor might beshared with other

programs they must remain untouched If the installation procedure created

directories and if no user-created files are in them those directories and their

0526

526 PART VIII THE TEACHER

contents should be deleted Those directories should be deleted from the

PATH variable too If the program put anything in any directories outside of

its own very bad practice those items should be hunted down and deleted

The uninstallation process should also remove all files and directories created

by the application program and not just those created by the installation pro

gram Of course dont mean any files created by the program for the user like

documents Thoseand their directoriesmust stay around for whatever plans

the user has

If the installation program loaded any dynamic link libraries DLL that are

shared resources it shouldnt delete them unless it can absolutely confirm that

no other programs depend on them The uninstallation program should alert

the user if it leaves DLLs behind but cant confirm whether they are used by

other applications If the user knows he can then do it manually In the current

state of the system it is usually impossible to know whether it is safe to delete

DLL so this must remain just goal for now

It is reasonable to assume that the user does not hate your program but is

removing it because he merely wishes to regain some disk space by removing

no-longer-needed tutorial or some subsystems that have proven unnecessary

The uninstallation program should give the user the ability to remove

individual pieces of your program without affecting the main function of the

application

The user may wish to move the application to different hard disk or to dif

ferent place on the same hard disk The uninstallation program should know

how to make the transfer so that all references are updated and the program

works smoothly despite the transition Such references include the WTIN.INI

file references including the file association for that extension the GRP file ref

erences used by the Program Manager and the Registration Database

If user needed to temporarily reclaim the space on disk occupied by the pro

gram say he needed additional free space for two-week business trip the

uninstallation program should make this easy to do It should remove all of the

big space-consuming files but leave behind all of the directories configuration

files and entries in other system files When he returns from his business trip

the installation program can be used to put the big files back on his disk with

out overwriting or forgetting about his personal settings The program would

be reinstalled just as before

0527

CHAPTER 32 INSTALLATION CONFIGURATION AND PERSONALIZATION 527

Some programs such as networks peripheral drivers and printer-sharing soft

ware are not only installed on the hard disk but are also activated by the

AUTOEXEC.BAT or CONFIG.SYS files at boot time thus becoming per

manent part of the operating system Software like this makes special demand

on its uninstallation program It must be able to disable the program without

physically removing it If the user wants to for example run game program

that demands absolutely all available memory the user should be able to dis

able the network drivers for the duration without physically removing them

from disk

Ignoring evidence of their previous activity

Installation programs should keep log of their activity on the users hard disk

This log tells the program what it has done before and what it is doing now If

the program learns anything from previous execution either by testing the

system or by asking the user it should be recorded here so reprocessing can be

speeded up and the user doesnt have to be bothered again The new installa

tion facility
for Windows 95 has this feature that Microsoft calls

SrnartRecovery and it works well hope it sets standard for the entire

industry

Abusing system-wide TNT files

Application software programs should limit themselves to no more than two or

three lines of information in system-wide files such as WIN.INI

AUTOEXEC.BAT and CONFIG.SYS If the program needs more information

it should create its own INI file and store the information there In almost all

cases there is no need whatsoever to put anything at all in the system files and

if this is the case in your situation please refrain from doing so

Putting files where they dont belong

The application should operate in its own directory If it requires multiple

directories they should be made subordinate to the programs main directory

The program should never put files in any other directories particularly the

WINDOWS directory or any of its subdirectories the DOS directory and the

root directory If the user were to install new version of Windows or DOS for

example the applications files might very well be deleted in the process The

resultant malfunctioning and confusion would be very unpleasant and com

pletely avoidable

0528

528 PART VIII THE TEACHER

Application programs often ignore the possibility that the operating system will

be reinstalled or upgraded The program is often inextricably dependent on

entries in system files that when the OS is reinstalled will disappear Most pro

grams then require complete reinstallation including redundantly re-copying

the files when all it really needed to do was rewrite line or two in the

WIN.INI file Better yet the program should work without any entry in that

or any equivalent-file

Overwriting shared files

Many applications use run-time libraries of some sort Visual Basic applications

in particular use the VBRUN dynamic link library DLL and usually few VBX

or OCX DLLs for each of the installable controls used in the program When

program installs the DLL or VBX it may overwrite one with the same name

already installed by another program For example if program uses com

mercially available VBX grid control named GRTD.VBX and program

from another vendor uses proprietary VBX grid control that is also named

GRID.VBX the installation process will cause problems Even though the

names are the same the functionality and interfaces may be quite different

When program is installed it must ensure that it doesnt just overwrite the

GRID .VBX file by assuming that it is an earlier version of itself If it makes this

assumption program will crash violently and mysteriously The ensuing con

fusion will leave the user perplexed and angry

similar problem arises if two different programs use different versions of the

same DLL Imagine that both programs and use Version 1.0 of DLL
called DATBASE.DLL The user then purchases the newest release of program

which includes the newest release of DATBASE.DLL Version 2.0 The

installation program for likely assumes that it can blithely replace Version 1.0

of DATBASE.DLL with Version 2.0 But program wont know how to deal

with the new version of the library and tragic crash is unavoidable Crashes

like this are particularly insidious because the user could install the new release

of program in January and not get around to running program until June

He will have no clue as to what caused the problem If anything he will blame

the completely innocent program Because this problem can affect any ven

dor even though they are not strictly at fault it means that you must take

defensive action to keep the problem from happening to you

0529

CHAPTER 32 INsTALLATION CONFIGURATION AND PERSONALIZATION 529

The problem can be avoided by following two simple guidelines First use

names that arent likely to collide with those from other vendors Instead of

naming library GRID try using XGRID GRD or even G7QL The

user will likely never see these names so they dont have to be mnemonic

Second append unique number indicating the version of the library Name

the first release XGRD1 the second release XGRD2 and so on

Just yesterday this problem happened to Alice our seminar manager She

installed brand new copy of Adobe PhotoShop on her plain vanilla IBM

Aptiva computer the computer crashed and now she cannot get Windows to

run at all The installation program diddled evilly with something in the sys

temnone of us in the office can figure out whatbut there is no recovery

path

Not offering you any information about the program

The installation program should keep the user informed at all times of what it

is doing and what remains to be done Many contemporary installation pro

grams put dialog box on the screen with small completion meter showing

the amount done expressed as percentage Most of these meters are frustrat

ing and confusing however because they dont explain what it is they are say

ing Does the meter show the progress for this file This section This floppy

The copy process but not the configuration process The entire installation Is

it expressed as time or as bytes copied Users have become used to being

burned by meaningless meters and they know enough to ignore them They

know that the installation program is just being stupid

Confusing installation with configuration

Because most programs need some rudimentary configuration before they can

run well the installation procedure usually includes configuration step This

is reasonable but the configuration process is one that may need to be per

formed more than once whereas the copying of files from the floppy is usually

just one-time thing Installation designers frequently forget this and inter

twine the two processes so that reconfiguration cannot be done without an

unnecessary re-copy operation The installation program should be smart

enough to recognize that it is being rerun and offer the user the option of just

reconfiguring the existing instance of the program without incurring all of the

unnecessary overhead of re-copying

0530

530 PART VIII THE TEACHER

Demanding your active participation

Some installation programs make unreasonable demands on your time and

attention They require that you actively participate in the installation process

even though you would just as soon delegate the job to the software The

WordPerfect for Windows installation program for example intersperses ques

tions for the user with the actual copying of the program onto the hard disk In

other words it asks you question then installs few files then asks you

another question then installs few more files The effect of this is incredibly

annoying because you are forced to consciously baby-sit the entire process It

should just ask you all of the questions at the beginning then let you get up

and walk away while the installation proceeds If the install is from floppies

instead of from CD-ROM or file server you still must stick around and feed

it disks every few minutes but at least you can let your mind roam read or

think about something else Of course it should also issue an audible alert

every time new floppy disk needs to be inserted releasing you from having to

watch the screen

0531

Shouldering the Burden

ecause every instruction in every program must pass

single-file through the CPU we tend to optimize our code

for this needles eye Programmers work hard to keep the

number of instructions to minimum assuring snappy per

formance for the user What we often forget though is

that as soon as the CPU has hurriedly finished all of its

work it just waits idling doing nothing until the user

issues another command We invest enormous efforts in

reducing the computers reaction time but we invest little

or no effort in putting it to work proactively when it is not

busy reacting to the user Our software commands the

CPU as though it were in the army alternately telling it to

hurry up and wait The hurry up part is great but the wait

ing has got to stop

The division of labor in the computer age is very clear The

computer does the work and the user does the thinking

Computer scientists have focused our attention on artificial

intelligence tantalizing us with visions of computers that

531

0532

532 PART VIII THE TEACHER

think for themselves This pursuit is rewarding intellectual exercise for com

puter scientists but users dont really need much help in the thinking depart

ment They do however need lot of help with the work of information

management activities like finding and organizing information but the actual

decisions made from that information can best be made by the wetwarereal

people

The computer does the work and

the user does the thinking

There is some confusion about smart software Some naive observers think

that smart software is actually capable of behaving intelligently but what the

term really means is that these programs are capable of working hard even when

conditions are difficult Essentially smart software is lot less brittle than other

software When we create smart bombs after all we create bombs that will hit

our targets with great precision under trying circumstances not bombs that

make their own decisions about which target to hit

The opportunity is in work not in thinking

Regardless of our dreams of thinking computers there is much greater and

more immediate opportunity simply in getting our computers to work harder

Id like to see us give our software the virtue of conscientiousness conscien

tious person has larger idea of what it means to perform task Instead of just

washing the dishes for example conscientious person also wipes down the

counters and empties the trash because those tasks are also related to the over

all goal cleaning up the kitchen Instead of just drafting report conscien

tious person puts handsome cover page on it and makes enough photocopies

for the entire department

Most of our existing software regardless of the power it can bring to bear on

given task is not conscientious It has very narrow understanding of the scope

of most problems It may willingly perform difficult work but oniy when given

the precise command at precisely the correct time If for example you ask the

inventory query system to tell you how many widgets are in stock it will duti

fully ask the database and report the number as of the time you ask But what

0533

CHAPTER 33 SHouLDERING THE BURDEN 533

if twenty minutes later someone in the Dallas office cleans out the entire stock

of widgets You are flow operating under potentially embarrassing miscon

ception while your computer sits there smugly idling away billions of wasted

instructions It is not being conscientious It doesnt have to be intelligent

artificially or otherwise to help you out here If you want to know about wid

gets once isnt that good clue that you probably will want to know about

widgets again You may not want to hear widget status reports every day for the

rest of forever but maybe youll want to get them for the rest of the week It

doesnt take neural network to lend helping hand

In our current computing systems the user has to remember the names he

gives to files and where he puts them If he wants to find that spreadsheet with

the quarterly projections on it again he must either remember its name or go

browsing Meanwhile the processor is sitting there wasting billions of cycles

without even bothering to lift register to help Software just doesnt seem to

want to work very hard or help out When the user is struggling with partic

ularly difficult spreadsheet on tight deadline for example the program offers

precisely as much help as it offers when he is just noodling with numbers in his

spare time All of the users human colleagues know that the job is critical so

they help if they can or at least stay out of his way But not the program It just

plods along oblivious to the storm brewing over its head

This model has to stop There is lot of work to be done and the software can

no longer in good cOnscience spend so much time twiddling its digits while the

user works It is time for our computers to begin to shoulder more of the bur

den of work in our day-to-day activities

Lets put those idle cycles to work

Software is designed to perform sequentially one action after another and as

each chunk of code talks to other chunks of code they wait for the response

This is fine for code because the wait is few millionths of second If theres

peripheral involved the wait might be few thousandths of second but its

still quite fast However if the program tosses the ball into the users court

things are dramatically different

Most normal users in normal situations cant do diddlysquat in less than few

seconds That is enough time for typical computer to execute few dozen

million instructions Almost without fail those interim cycles are dedicated to

idling The processor does nothing except wait The argument against putting

0534

534 PART VIII THE TEACHER

those cycles to work has always gone something like this We cant make

assumptions those assumptions might be wrong Our computers today are so

powerful that although the argument is still true it is frequently irrelevant

Simply put it doesnt matter if the programs assumptions are wrong it has

enough spare power to make several assumptions and merely toss the results of

the bad ones out as soon as the user makes his choice

Now with Windows 95s preemptive threaded multi-tasking you can perform

extra work in the background without affecting the performance the user sees

The program can launch search for file and if the user begins typing merely

abandon it until the next hiatus Eventually the user stops to think and the pro

gram will have time to scan the whole disk The user wont even notice

Every time the program puts up dialog box it goes into an idle waiting state

doing no work while the user struggles with the dialog This should never hap

pen It would not be hard for the dialog box to hunt around and find ways to

help What did the user do last time Maybe the program could offer the pre

vious choice as suggestion for this time Maybe the program could count and

display the number of occurrences of widgets in the program Maybe it could

report on the history of the widget Maybe it could find out if other users had

accessed the widgets If it stayed up for several seconds without activity it could

offer more assistance

Memory

In Chapter 14 talked at length about giving your program memory This is

the primary tool for making your program shoulder more of the burden of

work Everything that happens should be remembered There is plenty of stor

age on our big hard disk drives and memory for your program is good

investment of storage space We tend to think that programs are wasteful of

disk space because big horizontal application might consume 30 or 40 MB

of space That is typical usage for program but not for user data If your word

processor saved off KB of execution notes every time you ran it it still

wouldnt amount to much Lets say that you use your word processor ten

times every business day There are approximately 200 work days per year so

you run the program 2000 times year The net consumption is still only

MB and that gives an exhaustive recounting of the entire year Most screen

savers take ten times that much storage

0535

CHAPTER 33 SHoULDERING THE BURDEN 535

All file-open facilities should remember where the user gets his files Most users

only access files from few directories for each given program The program

should remember these source directories and offer them on combobox on

the file-open dialog The user should never have to step through the tree to

given directory more than once

And dont just remember the explicit things also remember what can be

deduced from explicit things If the program remembers the number of bytes

changed in the file each time it is opened it can help the user with some rea

sonableness checks Imagine that the changed-byte-count for file was 126

94 43 74 81 70 110 92 If the user calls up the file and changes 100 bytes

nothing would be out of the ordinary But imagine if the number of changed

bytes suddenly shoots up to 5000 The program might suspect that something

was amiss Although there is significant chance that the user has inadvertently

done something about which he will be sorry when compared to the other

edits the actual chance of problem is low so it isnt right to bother him with

confirmation dialog It is however very reasonable for the program to make

sure to keep milestone copy of the file before the 5000 bytes were changed

just in case The program probably wouldnt need to keep it beyond the next

time the user accessed that file because the user would likely spot any mistake

that glaring the next time he accessed the file and would demand an undo

For that matter most programs discard their stack of undo actions when the

user closes the document or the program This is short-sighted on the pro

grams part Instead the program could write the undo stack to file When

the user reopens the file the program could reload its undo stack with the

actions the user performed the last time the program was runeven if it were

over week ago These actions are likely not needed but in the rare case where

they are its certainly better to have them than not to and the processor was

just idling anyway

Stamp out foolish software behavior

want to tell you about my imaginary secretary Rodney If hand Rodney

manila folder and tell him to file it away he checks the writing on the folders

tablets say it reads MicroBlitz Contractand proceeds to find the correct

place in the filing
cabinet for it Under he finds to his surprise that there

is manila folder already there with the identical MicroBlitz Contract leg

end Rodney notices the discrepancy and investigates He finds that the

0536

536 PART VIII THE TEACHER

already-filed folder contains contract for 17 Doppelgangers that were deliv

ered to MicroBlitz four months ago The new folder on the other hand is for

32 Relativity-Podensers slated for production and delivery in the next quarter

Conscientious Rodney changes the name on the old folder to read MicroBlitz

Doppelganger Contract 7/97 and then changes the name of the new folder

to read MicroBlitz Relativity-Podenser Contract 11/97 This type of initia

tive is why like the conscientious Rodney

My former imaginary secretary Elliot was complete idiot He was not con

scientious at all and if he were placed in this same situation he would have just

dumped the new MicroBlitz Contract folder into the cabinet next to the old

MicroBlitz Contract without second thought Sure he got it filed safely

away but things could have been done better Thats why Elliot isnt my imag

inary secretary anymore

If on the other hand rely on software my word processor to draft the new

Relativity-Podenser contract and then try to save it away in the MicroBlitz

directory the program offers me Hobsons choice of overwriting and destroy

ing the old Doppelganger contract or just not saving it at all The program not

only isnt as capable as Rodney it isnt even as capable as Elliot It is stupider

than complete idiot Even Elliot didnt come unglued when he found the old

identically named folder Even Elliot figured out how to make do on his own

initiative small though it might have been without having to bother me with

silly
demands and pointless details Only the software is dumb enough to make

the assumption that because they have the same name meant to throw the old

one away The choices the software offers are terrible There is simply no excuse

for behavior this dumb

The program should have at the very least taken the same action that Elliot

did and merely marked the two files with different dates and saved them away

Even if the program refuses to take this drastic actionunilaterally it could at

least show me the old file letting me rename that one before saving the new

one There are numerous actions that the program can take that arent as

insultingly stupid as what it currently does They are easy to think of too All

you have to do is pretend the software is human

Things your program can do in the background

Each application could leave small thread of itself running between invoca

tions This little program could keep an eye on the files it worked on It could

0537

CHAPTER 33 SHOULDERING THE BURDEN 537

track where they go and who reads and writes to them This information might

be helpful to the user when he next runs the application When he tries to open

particular file the program can help him find it even if it was moved The

program could keep the user informed about what other functions were per-

formed on his file like whether or not it was printed or faxed to someone Sure

this information might not be needed but the computer can easily spare the

time and its only bits that have to be thrown away after all

Microsofts new Plug-and-Play standard is move in this direction because it

demands that programs be cognizant of the changing world around them If

the user plugs in sound card or tape drive programs should notice the dif

ference immediately

If the user resizes pluralized application the program can take the time to

quickly rearrange gizmos on the toolbar and items on the menu so that they

make better use of the new more-restricted space Even better if the program

keeps track of the frequency of each gizmos use the ones very rarely used can

be omitted to make more space for the more needed ones

Galleries

Many programs offer tools to users That is fine as far as it goes but why cant

the program offer complete solutions too program that lets you configure

your own personalized newspaper from information on the Internet is nice

Some users will really appreciate being able to put sports at the top of page one

Most users however will probably want more traditional view with world

news at the top and sports at the back Even these more-traditional users will

appreciate the configurability though so they can add their local news and

news concerning topics of particular personal interest Typically though con

figurable program offers the user blank slate and suite of tools for filling it

Our sports enthusiast wont see this as drawback since she planned on mak

ing extensive changes anyway but most other users will If they want something

standard but with few differences they shouldnt have to start from scratch

to get it They should be able to pick pre-made newspaper and then make the

few small changes to it needed to get their custom version The user should be

allowed to choose starting design from gallery of likely designs

Design tip Offer the user gallery of good solutions

0538

538 PART VIII THE TEACHER

Some programs already offer galleries of pre-designed work but many more

should do so Most users are intimidated by blank slates and they shouldnt

have to deal with one if they dont want to gallery of good basic designs is

fine solution

Natural language output

There are some functions found in software that are really difficult for users to

control For example querying database is always tough because it calls for

Boolean algebra talked about the problems with Boolean notation in Chapter

Just because the program needs Boolean queries users shouldnt have to use

it too

An alternative is to use natural language processing where the user can key in

his request in English The big problem with this method is that it is not pos

sible for todays run-of-the-mill computers to effectively understand natural

language queries It might work in the laboratory under tightly controlled cir

cumstances but not in the real world where it is subject to whim dialect col

loquialism and misunderstanding

One approach that have used successfully is what call natra11ua
output Using this technique the piogram proffers to the user an array of

bounded gizmos to choose from The gizmos line up so that they can be read

as an English sentence Notice in this case the user is merely choosing from

valid alternatives and only the output is natural Figure 33-1 shows how it

works

Remember English isnt Boolean so the English clauses arent joined with

AND and OR but rather with English phrases like all of the following apply

or not all of the following apply The user finds that making the choices is

easy because they are very clear and bounded and when he is done he can read

it like sentence to check its validity

Extraction gizmos

In Chapter 27 introduced the concept of extraction gizmostext gizmos that

are smart enough to recognize their contents They are very consistent with the

idea of having computers shoulder the burden because they are willing to do

more than just pass ASCII characters between the user and the program They

are willing to put some effort into breaking those strings of characters into

meaningful pieces

0539

CHAPTER 33 SHOuLDERING THE BURDEN 539

Include records in the report where all of the blowing apply

data field custorrier.STAI none equal to text CA

not all

data field customer cITY is equal to text Palo Mo

data fieldj custorner.FIRST_NAME is equal to text jo

Figure 33-1

Here is sketch of dialog box that produces natural language as output rather than

attempting to accept natural language as input Each button is actually drop-down with

list of selectable options Essentially the user constructs sentence from dynamic series

of choices that always guarantees valid result The user can enter text or numbers into

the white fields

There are dozens of types of extraction gizmos that could be written to handle

dates distances currencies and similar things There are probably several that

would be uniquely beneficial just for your companys software they could

tackle input like employee numbers job titles part numbers or divisions

See if you can design algorithms for processing input for other types of extrac

tion fields It seems daunting at first but it is actually quite easy if you remem

ber the simple fact that you dont have to decipher 100% of the information It

is okay to be 80 or 90% accurate If the user enters information that is indeci

pherable it means by definition that you cant decipher it The user certainly

cannot blame the software in this case On the other hand if the software

doesnt even try the user can will and should blame the software

Visual richness

Sid Meier is the genius designer at MicroProse who created the best-selling

games Railroad Tycoon and Civilization among others love his games

Civilization in particular is addictive strongly recommend that every soft

ware designer spend time learning from Meiers work

Sid Meiers programs are instantly recognizable because of the visual richness

he gives them Visual richness in games is no big thing in these days of

0540

540 PART VIII THE TEACHER

CD-ROMs and lush graphics but Meier creates this richness with dynamic

rather than staticoutput that represents changing values In Civilization for

example he uses little icons that resemble sheaves of wheat to represent the

food output of your civilization the more sheaves the more food There is no

specific number shown but you can always count the sheaves if youd like The

sheaves are displayed in horizontal line in fixed-size box about two inches

across When your civilization is young there may only be five or ten sheaves

in row and they are easy to count As time passes
and your civilization

matures the sheaves may number 50 or more There simply isnt room to dis

play that many in the space allotted Meiers solution is brilliantly simple he

merely overlaps one sheaf on another in the space available Yes they are harder

to count when they overlap but when they overlap who needs to count He

puts short gap in the line of sheaves between the amount of food that is nec

essary for survival and the amount of food that goes towards future growth

With glance the length and density of the line of sheaves tells you how well

your civilization is doing and the relative position of the gap or its absence

tells you your rate of expansion

The sheaves are just one of the measures Next to them are arrows for trade

shields for productivity light bulbs for intellectual achievement and more

Meier crams an enormous amount of quantitative information into very small

space completely symbolically Any beginner can intuit that more symbols are

better without needing to understand the details to successfully play the game

However if you find that you like the game and who wouldnt you will play

it more and more and will inevitably find yourself wondering about those lit

tle lines of symbols quick check of the manual points out the secret of the

gap and how they are counted and you will immediately become much

better player

Another of Sid Meiers masterpieces is Railroad Tycoon In this game you cre

ate commercial railroad empiresetting up routes and running trains to earn

revenue The game has pleasant sound effects with locomotive whistles blow

ing and bells ringing After playing the game for many hours discovered that

the whistles and bells werent random but that one sounded every time train

passed through station After more hours became curious about why there

would sometimes be bell and sometimes be whistle quick check of the

documentation commensurate effort made me very motivated to read the

manual explained that bell rings if the train makes money at that station and

the whistle blows if there is no revenue Wow Immediately could tell the

0541

CHAPTER 33 SHOULDERING THE BURDEN 541

financial health of my railroad just by listening If the bell rang constantly with

just few toots was doing okay but if there was lot of whistle blowing with

just few dings could tell that needed to reassign my trains and alter their

cargoes

Hot simple and deep

Game publisher Trip Hawkins used to say that good games are hot simple and

deep They are hot if they are interactive and fun They are simple if they are

easy to understand and use right away And they are deep if they offer contin

ual learning and challenge to the persistent user This is fine axiom for all soft

ware not just games The same way that Sid Meier densely crams dynamic

information into the interface of his games you can cram useful information

into yours Youre not going to have sheaves of wheat but you will have lines

of little symbols indicating the number of cells your spreadsheet refers to in

other sheets for example Or the number of records in the database could be

indicated with tiny little dots The number of updates to the current record

could be shown with row of tiny icons None of these values are critical for

the users success but as the users become more experienced with the program

they will appreciate the depth of its feedback Dont disappoint them

Get our software talking to our hardware

Some process dialogs just tease the poor user with their CANCEL buttons In

typical print operation for example the program begins sending the 20 pages

of report to the printer and simultaneously puts up print process dialog box

with CANCEL button If the user quickly realizes that he forgot to make an

important change he presses the CANCEL button just as the first page emerges

from the printer The program immediately cancels the print operation But

unbeknownst to the user while the printer was beginning to work on page

the computer has already sent 15 pages into the printers buffer The program

cancels the last five pages but the printer doesnt know anything about the can

cellation it just knows that it was sent 15 pages so it goes ahead and prints

0542

542 PART VIII THE TEACHER

them Meanwhile the program smugly tells the user that the function was can

celed The program lies as the user can plainly see

The user isnt very sympathetic to the communication problems between the

application and the printer He doesnt care that the communications are one

way All he knows is that he decided not to print the document before the first

page appeared in the printers output basket pressed the CANCEL button and

then the stupid program continued printing for 15 pages even though he acted

in plenty of time to stop it and it even acknowledged his CANCEL command As

he throws the 15 wasted sheets of paper in the trash he growls at the stupid

program

Imagine what his experience would be if the application could communicate

with the print driver and the print driver could communicate with the printer

If the software were smart enough the print job could easily have been aban

doned before the second sheet of paper was wasted The printer certainly has

cancel functionits just that the software is too indolent to use it because its

programmers were too indolent to make the connection

Too much software takes the attitude that it isnt my responsibility When it

passes job along to some hardware device it washes its hands of the action

leaving the stupid hardware to finish up Any user can see that the software isnt

being conscientious that the software isnt shouldering its part of the burden

for helping the user become more effective

0543

Where Do We
Go from Here

oftware marketing consultant Seymour Merrin says

We found it easier to convince people that software was

easy to use than it was to actually make it easy to use

There is sad wisdom in this observation The power inher

ent in computers is forcing them into every industry and

practice whether they are easy to use or not It is up to us

as users to demand better The economics will force us to

use them but only acting on our conscience will make it

pleasant and really effective

Software sucks

In general the software we use here in my office frustrates

us intensely We dont have complex setup here just

half-dozen relatively new computers running Windows 95

or Windows for Workgroups 3.1 on some vanilla network

Right now Wayne is meandering the halls mutte

himself because the server is down again Poor Way

really Macintosh guy at heart but hes reduced to pe

ing obscure text commands to the format prog

543

0544

544 PART VIII THE TEACHER

trying to resurrect the servers hard disk Geetha down the hail is trying to

learn Canvas drawing program Shes user interface designer and finds

Canvas personally and professionally insulting because its interface is so hor

rendously bad She would rather use PhotoShop except that it doesnt let her

draw good screen images for several reasons mostly because its designed for

photo manipulation and not for screens with buttons and gizmos Ive got

problem on my computer too where the neat new power-saving features of the

software are in conflict with the neat new power-saving features of the hard

ware The net effect is that every few minutes my computer goes completely

stupid for few seconds while the disk wakes up again The other result is that

cant turn the screen saver off but when the screen saver runs it crashes the

system completely If leave my computer for more than an hour it will die

Just few minutes ago my seven-and-a-half-year-old son Marty telephoned me

in tears from home He is trying to make his new Kid Cad drawing program

work but he cant make all of the windows go away The File Manager and

the Program Manager are making his life miserable with meaningless excise

Im not making this up Its just typical day with computers

Not all of these are user interface problems but all of them are problems that

users must grapple with and solve Frankly dont understand how non-

computer-professional people can make computers work This situation is really

not acceptable Its certainly not acceptable in the long run for the computer

industry The vendor who can solve the problem will surely win customers

Until then bad software is our own fault because we buy it even though it

makes fools of us

Saved by the Net Not

People who should know better are getting excited about the potential of the

Internet the World Wide Web and Interactive Television to change the user

interface landscape Why should things be any differentjust because there are

some underlying hardware and bandwidth changes am very enthusiastic

about the potential of the Web but dont see much progress on the user

interface front reflected there see the same old problems of stupid rude

inappropriate software that hardly lifts finger for the user It just happens to

be wired and have high cool-quotient

Ultimately we will make good software by examining and satisfying the users

goals We will not make it by moving to new platforms or by improving the

0545

CHAPTER 34 WHERE Do WE Go FROM HERE 545

technology Our technology is superb What it lacks is some consideration of

the human

We know lot about old technology
We now have more than decade of refinements to the PARC paradigm We

know how to create good error messages confirmation dialog boxes and

buttcons We dont have anywhere near as much experience in creating rich

visual unified interfaces that work hard to support users We have years of

experience building systems with robust data integrity and sophisticated hier

archical file systems but we dont yet have experience creating systems with

data immunity and associative storage systems

The problem is quite simple Everything we know about computers is wrong

Forty years ago there was less computing power on the entire planet than is in

your wristwatch today There is literally more computing power in your family

car than there is in the space shuttle Just twenty years ago computers were

precious commodities that were extremely expensive limited and weak In

1974 when began working with computers cut my teeth on an IBM

370/135 mainframe that was absolutely brand new and state of the art It had

144 KB of main memory Yes KB It had two 100 MB hard disk drives each

the size of big refrigerator It had card reader and card punch and chain

printer It resided in its own room nestled deep inside its own building The

room had mostly glass walls raised floor powerful air conditioning three

full-time operators and an IBM systems engineer who came around every two

weeks to perform preventive maintenance learned the hard way that com

puting resources were always very scarce In fact all of the senior programmers

and computer scientists in business or academia today learned this attitude

which call scarcity thinking

We all knew deep in the fabric of our thinking that there was never enough

memory never enough storage never enough cycles and never enough band

width We all wanted to be good at what we did so we worked hard to maxi

mize the scarcest resource We made sure that the CPU got all of the breaks

We developed systems to maximize the use of disks of RAM even of punched

cards If you are too young today to be of this group doubtlessly you were

taught by this group and the senior developers at your shop are probably mem
bers of this group and most of the software you use was designed by this

group The men and women who know deep down in their guts that

0546

546 PART VIII THE TEACHER

computer resources are scarce are running the show and setting the pace in the

software industry today

My mother and father grew up during the Great Depression To them steady

well-paying job was luxury and they had learned this lesson the hard way

They could never understand my entrepreneurial tendencies and my disdain for

traditional employment It was as though disdained oxygen When you have

lived with real scarcity you can never unlearn the lessons they bury you with

their scars

Today by comparison our computing power is an embarrassment of riches My

little aging desktop computer has 16 megabytes of main memory 1.7 giga

bytes of hard disk and processor that can execute 66 million instructions per

second It has an order of magnitude more memory on its video card than that

old 370 had in its main memory Within couple of years the state-of-the-mar

ket computer will have processor ten times faster with ten times more mem

ory and storage than even todays fastest and biggest It will be connected to

every other computer in the world by digital phone lines that pass data at tens

of thousands of bits per second We have within short score of years left

behind world of scarcity and entered world of abundance with even greater

realms of abundance just beyond the horizon Our computers are as powerful

as we want them to be We have all of the bits and bytes and cycles we need to

design software that really serves humans

The opposite of scarcity thinking is abundance thinking and good software

designers will have this sense in their minds instead Abundance thinking frees

designers from worrying about memory storage or cycles They must worry

instead about users and they have the design sense and training to provide

those users with interfaces and features that make them more effective

The trouble is that we have constructed the entire industry in the image of that

old obsolete scarcity thinking At the top of the heap are programmers who

can work close to the metal who can create software that maximizes the per

formance of the scarce hardware At the bottom of the pyramid are unskilled

users who havent become computer-literate We sweep these people under

the rug because they arent as important as smoothing the way for the precious

struggling CPU

0547

CHAPTER 34 WHERE Do WE Go FROM HERE 547

The very fabric of our thinking is strongly and powerfully colored by this

scarcity thinking All of the software technologies we prize so much are really

tools for relaxing the demands on memory on storage on processor cycles

This includes databases networks and even the way we write files For example

most human beings who handle paper forms file away filled-out form yet

almost every computer program that files away filled-out forms first eliminates

the form It just files away the answers This storage techniqueused by virtu

ally every program ever writtenmakes it easier for the disk drive The fact that

it simultaneously reduces the softwares capacity to adjust to adapt to conform

to the idiosyncratic behavior of humans is considered merely necessary cost

of doing business In world of computer scarcity this is reasonable com

promise with users We ask users to tolerate the compromise because they are

strong and computers are weak But we dont live in this world of scarcity any

longer We live in world of abundant computing resources and computers are

strong and users are weak

Dont ask programmers to

design while they code

Programmers are squeezed into conflict of interest between serving the CPU

and serving the user They cannot successfully be asked to design for users

because good coding demands that the CPU be serviced with single-minded

commitment Inevitably they will make judgments based on the difficulty of

coding and not on the users real needs This is not to say that any given pro

grammer cant make the right choice just that programmers cant make the

right choice while they are actively employed producing the code that results

from their choice These tasks must be separated for the user design part to

have chance Some of the greatest design ideas have come from programmers

but this is happy accident If we want good design industry-wide we will not

get it by accident

great basketball player can either play or be referee but he cannot be both

simultaneously My doctor has doctor he doesnt self-diagnose The NFL

wisely doesnt let players bet on games Venture capitalists
cant invest their

personal money in companies Politicians must put their investments in blind

trusts Judges cannot adjudicate cases for their friends and neighbors We rec

ognize the ethical quandaries created by conflict of interest in most of our

other activities We just seem to ignore them in software development

0548

548 PART VIII THE TEACHER

Even when the designer creates solution the programmer might go away and

edit it independently Anyone who has worked for while with programmers

has had this experience the team meets and everyone agrees on the course of

action Everyone acknowledges their tasks and what the program will look like

Two weeks later when the group reconvenes programmer sayswithout any

trace of ironyyeah decided to do it this way instead thought it was bet

ter while the rest of the team gnashes their collective teeth Even if it is bet

ter it is still wrong to change things unilaterally when team is depending on

you If marketing-communications junior executive for example came back

after two weeks with the same outrageous claim about brochure he would

likely be fired Generally technical managers are protective of their program

mers and refuse to call them on their willful behavior

Solving the problem
One area where the software industry including Microsoft is making headway

is with usability Usability is science consisting mostly of empirical testing

and observation of users interacting with software or prototypes of software

Those observations illustrate problem areas which can then be addressed

Usability testing has been adopted by many companies in the last few years

The chief drawback of usability is that it sidesteps actual design The process of

testing is very different from the process of design Design springs directly from

the knowledge of goals Usability derives from specific objects Usability testers

refine what programmers create rather than fabricating solutions from first

principles There is merit to this refinementif Microsofts recent efforts are

any evidencebut limited post facto influence cannot change software down to

its roots And good user interface begins way down deep not on the surface

The other drawback of usability testing is that it leaves the programmers in

charge If you want to create beautifully cut diamond you cannot begin with

lump of coal No amount of chipping chiseling and sanding will turn that

coal into diamond At best the gentle sanding and polishing that results from

usability testing will only give you an attractively carved lump of coal

Programmers have had unchallenged say over the software for too long and

usability testing leaves untouched the assumption that programmers should

devise the point of departure

One of the central tenets of usability engineering is that design should be

user-centered This certainly sounds good but it has serious problems The

0549

CHAPTER 34 WHERE Do WE Go FROM HERE 549

biggest problem is that it is widely interpreted to mean that your users can tell

you how to design software Saying user-centered software design is like say

ing fish-centered aquarium design You wouldnt ask the fish would you

Although most usability professionals understand the distinction and dont let

themselves get jerked back and forth by the results of focus groups and user

tests many others believe that what users say is gospel What users say is gen

erally goofy They can only give faint indications of places where problems may

exist They do not have the training necessary to actually solve the problems

Nathaniel Borenstein in his book Programming as if People Mattered

Princeton University Press 1991 says Listen to your users but ignore what

they say This is very accurate instruction for software designers Users are

filled with raw information What they lack is wisdom sense of design an

understanding of the medium willingness to break Out of the box of existing

solutions language to express their desires and any experience in delivering

software solutions Borenstein goes on to say about those who ignore his

advice The world is full accordingly of bad user interfaces that were essen

tially designed or redesigned by nontechnical people with no real idea of what

they were doing and implemented uncritically by programmers who were like

Adolf Eichmann scheduling deportations to the Nazi death camps just fol

lowing orders really admire his gutsy willingness to state this in such

extreme terms The key to good user interface design is not users but user

interface designers

Anyone who has argued with programmer knows how difficult it is They are

very intelligent and are only swayed by logic and reason Unfortunately you

cant defend the users needs very well with mere logic and reason They arent

bad tools just inappropriate ones for the problem at hand Programmers will

always design logically and rationally and they will rarely produce good design

After all those logical tools got us into this predicament

More than few of the usability professionals have met resist the idea of soft

ware design because it is done without much user testing suspect that these

people are too used to fighting with recalcitrant programmers Programmers

fight desperately against the insistence that their creations cant be valid until

they are tested by users and usability professionals seem to have retreated to

the empirical as their only way to convince the logical rational engineering

mind that there is another better approach to designing the user interface

0550

550 PART VIII THE TEACHER

They drag programmers into dark rooms where they watch through one-way

mirrors as hapless users struggle with their software At first the programmers

suspect that the test subject has brain damage They cannot believe that any

user could be so stupid as to not understand their program Finally after much

painful observation the programmers are forced to bow to empirical evidence

They admit that their interface design needs work and they vow to fix it

But empiricism is not method of design it is method of verification of

design It is one thing to use blind testing as an indicator of problems It is

quite another to use it as source of solutions Forcing programmers to watch

users struggle is good therapy for the programmerbut it doesnt do heckuva

lot for the user or for the software The programmers go right back to their

computers and apply bit more logic and reason to the user interface We will

only get significant quantities of well-designed software when its design is in

the hands of software designers and not programmers not even programmers

assisted by user testing

have seen usability professionals run rigorous user tests tests that were con

ducted with superb methodology Upon reviewing the results they said things

like Well Id prefer to see those gizmos lined up better or guess we could

move this button over here User interface design is not guesswork When

good user interface designers create dialog box they know why When they

populate it with gizmos they understand the purpose that each of them serves

And just as important they know when to not create dialog box

User interface design

is not guesswork

Most programmers design in one of two ways they make guesses based on their

programming expertise or they copy from existing programs Either way they

usually end up rendering the implementation model and trapping the user in

prison of technology Usability testing responds to this guesswork with empir

ical observation This testing ends up being guesswork too because the

insights tend to come from users and not from designers User testing is to user

interface design what market research is to sales You can dispense with one but

0551

CHAPTER 34 WHERE Do WE Go FROM HERE 551

not the other and market research can never substitute for sales Likewise user

testing can never substitute for user interface design

User testing can never substitute

for user interface design

User testing can tell an observer when program is too complex too mislead

ing or too confusing Armed with this information it is possible for pro

grammer to reduce its complexity and confusion but it takes designer to

synthesize proper solution from scratch That solution will conform to the

users natural mental model giving him what he needs in terms he understands

Designers have an understanding of how users think and also know how soft

ware is built They bridge the two worlds with their natural design sense In the

same way that programmer is born with sense for how to imagine complex

procedural systems or an artist is born with sense for creative expression

designer is born with the vision to see what technology can offer in human

terms

This is power struggle Programmers have dominated all aspects of software

development for decades and for the first time they find themselves up against

problemdesigning for usersthat their trusty logical tools are failing to

vanquish Designers are stepping into the fray and succeeding in their place

This is certain to be seen as threat to programmers but it need not be

Programming takes great skill talent and creativity It is not diminished by

design it is exalted by it Programming wont diminish in importance any

more than surgery is diminished by epidemiology If the technical management

in our industry understands this they can make place in the development

process for design and much of the rancor in the struggle can be avoided In

sequence design comes first then user testing then programming then more

design and more user testing then more programming Design leads the

parade Programming brings up the rear Programmers sense that they have

lot to lose they dont like it and they will fight it dont blame them but they

must relinquish seat at the table in order to continue eating well

User interface designers will not come from the ranks of programmers but will

be very technically savvy people Non-technical people cannot imagine the

0552

552 PART VIII THE TEACHER

wonderful new things that computers can do for us Non-technical people will

not understand the delicate balance between CPU with time on its hands and

one rushing to complete ten million instructions before the users next key

stroke The non-technical people will have our computers treating us in the

same lousy way they already do but with prettier pictures It is not obvious what

computers can do for us It takes natural talent skill training and experience

Well now that Ive said that you are probably asking trained where and

must admit dont have ready answer Academia has hard time with

processes that cannot be tested scientifically so design doesnt compete well in

ivy-covered halls against usability testing This is why believe that the major

ity of tomorrows software design leaders will come from industry rather than

from college

Most universities that am familiar with are teaching empirical user-centered

usability testing more than they are creativity-based design But things are

bound to change and more and more designers are appearing every day Many

of them come from the ranks of technical support people quality assurance

testers technical writers and other professions that are often viewed as subor

dinate to programming User interface design is not an art like painting and

sculpture but its beating heart is creativity Ironically so is programmings

Im mad as hell and Im
not gonna take it anymore
In the early 70s Detroit said that they gave the American consumer just what

they wanted big heavy powerful gas-guzzling chrome-encrusted fin-

studded symbols of post-war largesse Then Japanese and German cars built

with very different sensibilities became available The American public bought

them by the millions and Detroit was devastated by the foreign invasion To

their credit American auto manufacturers cleaned up their act But one thing

you never hear from Detroit anymore is that old saw about what the consumer

wants Weve learned not to trust statement like that

The conundrum is that the American automobile consumer of the early 70s

was perfectly happy with those gas-guzzling behemoths from Detroit They

didnt realize that they could do better until they had their noses rubbed in it

by the availability of something better cheaper and more environmentally kind

0553

CHAPTER 34 WHERE Do WE Go FROM HERE 553

The American software consumer today is just like the typical auto consumer of

the 70s The quality and usability of all of the software available is about the

same Big monolithic implementation model only available from one or two

sources who make design decisions based on what is good for the CPU instead

of what is good for the consumer

want to show todays software consumer that things can be different want

him to see the potential for software that is designed to help him reach his goals

instead of programmed for the convenience of his computer dont want the

domestic software industry to undergo the same painful upheaval that Detroit

did in the 70s dont want to see the wind banging through the Microsoft

campus like it does in abandoned Rust Belt steel mills Before that happens

want consumers to get angry and demand better would like to see the user

community rise up in protest at the sorry state of software Id like to hear them

protesting in the streets and picketing Oracle Novell Lotus Apple and

Microsoft chantingas viewers did in Paddy Chayevskys classic screenplay

NetworkIm mad as hell and Im not gonna take it anymore

0554

Reference Section

Axioms-P

dialog box is another room Have good reason to go there

gallon of oil wont make bicycle pedal itself

multitude of gizmo-laden dialog boxes doth not good user interface

make

rich visual interaction is the key to successful direct manipulation

visual interface is based on visual patterns

Accepting bounded data into unbounded gizmos is an important source

of user dissatisfaction

All idioms must be learned Good idioms only need to be learned once

Allow input wherever you output

Any command is working set candidate

Ask forgiveness not permission

Audit dont edit

Consistency is not necessarily virtue

Directly offer enough information for the user to avoid mistakes

Disks and files make users crazy

Disks are hack not design feature

Do dont ask

Dont hamper primary markets by serving secondary markets

Dont make the user look stupid

Dont put might on will

Dont stop the proceedings with idiocy

Good user interfaces are invisible

Hide the ejector seat levers

Hot simple and deep

555

0555

556 REFERENCE SECTION

If its worth asking the user its worth the program remembering

Imagine users as very intelligent but very busy

Its not your fault but its your responsibility

Make errors impossible

Make everything reversible

Never bend your interface to fit metaphor

Never make the user ask to ask

No crisis inside computer is worth humiliating human

No matter how cool your interface is less of it would be better

Nobody wants to remain beginner

Obey standards unless youve got darn good reason

One users excise task is another users revenue task

Optimize for intermediates

Provide an escape from dragging and inform the user

Purchase the right software then buy the computer that runs it

Put pumary interaction on the primary window

Questions arent choices

Show dont tell

Sovereign users are experienced users

The computer does the work and the user does the thinking

The customer is always right

The goal of all software users is to be more effective

Things that behave different should look different

Transliterated mechanical models are always worse on computers

User interface design is not guesswork

User interface is not just skin deep

User interfaces that conform to implementation models are bad

User testing can never substitute for user interface design

Users dont make mistakes

Users get humiliated when software tells them they failed

Users make commensurate effort

Users would rather be successful than knowledgeable

Visually hint at pliancy

Visually show what textually show which

0556

Design Tips

All dialog boxes should have caption bars

Any program that demands precise alignment must offer vernier

Any scrollable drag-and-drop target must autoscroll

Build function controls into the window where they are used

Build the program to run on only one platform

Button-down means propose action button-up means commit to action

over gizmos

Button-down means select over data

Cancel drags on chord-click

Debounce all drags

Dialogs break flow

Dialogs should be as small as possible but no smaller

Disable menu items when they are moot

Dont put close boxes on modal dialogs

Dont stack tabs

Dont use bang menu items

Dont use dialogs to report normalcy

Double-click means single-click plus action

Eliminating excise makes the user more effective

Error message boxes stop the proceedings with idiocy

Every text item in list should have an identifying graphic icon next to it

Give modeless dialog boxes consistent terminating commands

Have reason for each idiom

Indicating pliancy is the most important role of cursor hinting

Make selection visually bold and unambiguous

557

0557

558 REFERENCE SECTION

Menus and dialogs are the pedagogic vector

Never change terminating button captions

Never create system modal dialog box

Never scroll text horizontally

Never use sustaining dialogs as error messages or confirmations

Never use terminating words in dialogs

Offer bounded gizmos for bounded input

Offer OK and CANCEL buttons on all modal dialog boxes

Offer shortcuts from the help menu

Offer the user gallery of good solutions

Parallel visual symbols on parallel command vectors

Prepare for the probable case

Put terminating buttons on untabbed area

Show validated entry gizmos with different border

Single-click selects data or changes the gizmo state

The drag cursor must visually indtjie master object

The drop candidate must visuaiij its dropabihty

The program must inform the iitgets stupid

The program should be designed expressly for the target platform

The program should perform optimally on hardware that doesnt exist yet

Toolbars provide experienced users with fast access to frequently used

functions

Use COLOR_HIGHLIGHT and COLOR_HIGHLIGHTTEXT to show selection

Use cursor hinting to show meta-key meanings

Use object names in property dialog caption bars

Use verbs in function dialog caption bars

Users dont understand boolean

Visually differentiate modeless dialogs from modal dialogs

0558

Index

slash 274-276 tabbed dialog boxes and anthropology

332 anthropomorphism 30

286 processor 22 169
After Dark screen savers 161 aphorisms basic use of

386 processor 22 115 aircraft 18 22 API application program

486 processor 22
cockpits of 131 155 interface 234 305 313

510-513 335 370 409

metaphor selection and Apple Computer See also

ABANDON button 318
54 Macintosh

ABC Flowcharter 231 alarms 456 lawsuits and 71

Abort Retry Fail error
alerts 441-444 PARC and 67-69

message 426 Alexander Christopher 501 published guidelines 230

About boxes 357-362 algebra Boolean 34-35 225 standards and 500

364-365
538 APPLE key 214

abundance thinking 546 algorithms 22 34 467 application modal 303

accelerator keys 87 155
cursor hinting and 212 Apply button 306 329

295-296 297 349 dispatching 212 Aptiva 528

ACD automatic call
graphic input and archetypes 38 99 230

distribution See call
14 1-142 architects See also

distribution programs
listboxes and 388 architecture

actions performing
saving changes and 87 design of houses by vs by

definition of 257
the technology paradigm structural engineers 22

additive selection 222-223
and 55 regulation of 23

address book software
alignment offering precise software 24

39-40 63 430-431 453
266 architecture See also

Adobe
ALT key 202 214-215 245 architects

Illustrator 179-182
258-259 267 412 497 Metabolist 55

214 257 258
See also ALT key of modern desktop

PhotoShop 31-32
combinations computers 114-116

227-228 231 528 ALT7 296 of nineteenth-century

544
ALTF 489 farms 357

affordances
ALTHYPREN 297 archiving 90-9

definition of 64-65
ALTSPACE 297 arithmetic 452

hinting and 208-209
ALTTAB 164-166 215 arrowing 244-245

manual 65 Alto 67 68 204 arrow keys 159 267

the mouse and 196
Ami Pro 498 artificial intelligence 531

overview of 53-65
AND operation 34-35 538 ASCII format 94 108-109

animation 158 419 252 256 538

559

0559

560 INDEX

Association of Software Basic 435 processing of
patterns by

Design 24 Becker Marion Rombaur 42-46

associative retrieval 103 502
braking action in

105-7 beep sound 454-456 automobiles 30 129

audible feedback 454-456 beginners 20 54 See also branding 59-60 514

auditing vs editing learning configuration and Brooks Frederick 49

458-461 509 buffers deleted data

AUTOEXEC.BAT 525 526 dialog boxes and 301 475-476

527 direct manipulation and bugs 19 22-23 359 See

automobiles 457 459 201 252 also error message boxes

accelerating/decelerating excise tasks and 174 175 errors

33 file
systems and 1-83 bulletin dialog boxes

after being rolled down 85-86 313-3 15 320 325

cliff metaphor of 125 help systems and 503 blocking 425

braking action in 30 129 as intermediate users in eliminating errors and
consumer market and the making 484-486 424-425

552-553 491-492 sustaining 425

dashboards of 129 131 needs of overview of business goals 13 17

design of by professional 490-492 buttcons

automobile designers posture and 152-155 advantages of 343-344

22 splash screens and bang menu items and

driving decision-set 363-364 294

streamlining and 191 toolbars and 342 347 customizing toolbars and

minivans development of treating experts like 35 1-354

99 483-484 definition of 154

payments for 191-192 bicycle pedals 77 development of toolbars

race cars 129 258 biology and 341-342

radios in 379-380 bitmaps direct manipulation and
rental-car fleets half- Drag Cancelled 23 1-239

life of 115 234-235 disabling 345

revenue/excise tasks and on extra large buttcons dragging 204

172 322
ejector seat levers and

steering 186 body See human body 512

transition from manual to bomb-disposal experts 460 extra-large 322

automatic bombardier 259-260 as gizmos 374-375

transmissions bombsight 259-260 images on purpose of

in 39 books storage/retrieval of 343-344

well-engineered vs well- 102-107 indicating states and

engineered and well Boolean algebra 34-35 225 349-350

designed 538 latching 349 376-378

autoscroll 260-262 Borders dialog box 417 modeless dialog boxes

Avis car rentals 115 Borenstein Nathaniel 549 and 308

axioms basic use of boring the user 13 momentary 349

Borland International 148 offering choices and 184

201 322 514 pedagogic vectors and

Backspace key 473-474 bounding-entry gizmos 279-280

backup systems 173 394-397 398 posture and 155 157

Bailmer Steve 365 brain radio 381

balloon help 346-348 ability of to make reverse-out 189

band menu items 294-295 inferences 56-57 ToolTips and 346-348

bar charts 139-140 idioms and 58

0560

INDEX 561

CDs compact discs 39 manipulating gizmos and

high-level language 234 cellular telephones 28 437 231-239

370 435 charts 139-140 244 restricting input

high-level language Chayevsky Paddy 553 vocabulary and 47 48

234 check boxes selection and 220

calculator Windows 160 basic description of 222-224

calendars digital vs non- 376-379 clip art 76 167-168

digital 37-39 direct manipulation and Clipboard 61

call-distribution systems 17 231-239 Clock Windows 162

162 earmarking and 386-387 clone-programming

cancel operation See also square shape of 380 120-12

CANCEL button restricting input close boxes

dialog boxes and vocabulary and 48 basic description of

30 1-302 306-307 space efficiency and 322 327-328

311-312 317-318 check-writing programs 191 as idioms 58 59 60

320 322 325-328 children 42 57 184 193 system menu and 298

331 336 child windows 156 177 CLOSE button 306 307

making sure to offer 187 close operations 15-16

211-212 choices 86-90 96

CANCEL button 280 offering vs interrogation clothing designers 22

301-302 306-307 mode 144 CLOVER key 214

311-312 317-318 320 preference thresholding
clue boxes 400-401

322 325-328 331 336 and 19 1-192 CMOS memory 97

387 442 446 541 544 task coherence and COBOL 217 453

canonical vocabulary 47-49 187-188 190-191 cockpits of aircraft 131

66 202 chord-click 203 205 155 510-513

Canvas 544 233-234 See also direct cognitive psychology 25

capitalization 42 47 manipulation 230

caption bars Chrysler Corporation 99 cold validation gizmos 400

design tips for 320-321 Civilization 539 collation model 36

domain knowledge and clerks 12-13 430 454 color

49 459-462 adjustments in dialog

draggability of 238 click See also click-and-drag boxes 31

as idioms 58 double-click direct background 188 226

indicating active programs manipulation 227 514

with 212 213 basic description of caption bar and 238

mini- 309-310 203-204 combuttcons and

title strings and 356 chord-click 203 205 382-383

captive phase 245-246 233-234 corporate identity and

capture
as an idiom 60 514

definition of 232 manipulating gizmos and dialog boxes and 322

escaping from 233-234 231-239 331 334-335

Caravan 99 restricting input as hint of draggability

carets blinking 221 vocabulary and 47 48 238

cars See automobiles click-and-drag See also click personalization and 512

cascading
direct manipulation posture and 154 158

dialog boxes 335-337 basic description of 159

menus 237-238 291-293 203-204 selection and 224

cause and effect 129 490 bounded gizmos and 225-228

CD-ROMs 23 83 515 409-411

530 539-540

0561

562 INDEX

value of pixels edge scarcity thinking and creating milestone copies

coherence and 545-547 92 94 5-96

186-187 Computers as Theater 476-477

COLOR HIGHLIGHT Laurel 63 file systems and 82-83

226 385 conceptual mode See mental 84-85 92-96

COLORHIGHLIGHTTEX model finesse and 133-134

226 concrete data definition of MDI and 169

COMports 174 219-220 process dialog boxes for

combo boxes CONFIG.SYS 526 527 217-218

basic description of configuration 512 513 520 copyrights 358

39 1-392 confusing installation corebound definition of

bounded entry
fields and with 518 529 182

402-403 definition of 509 Core1DRAW 231

specifying file formats confirmation messages 177 corporate look 513-515

with 94 314 423 425 441 CP/M 41 271-272 497

toolbars and 349 444-448 458 517

combuttcons basic conflict of interest 547 CPUs central processing

description of 381-383 conscientious actions units 15 56-57 315-316

command line 47 497 532-533 461 466 531 546-547

excise tasks and 173-174 consent informed 518 552

176 consistency as design trait efficiency and 451

interface definition of 377 error messages and 426

272 constrained drag 243-244 431

menus and 271-272 274 consumer market MDI and 169

command vectors 279 automobile industry and mental model of 31

486-490 494 499 552-553 processing involving disks

510-5 13 customer is always right and slow speed of 97

commensurate effort 495 principle and 184 serious bugs in 22

COMPARE 478 438-439 XOR operation and 225

comparison functions high expectations in 23 crashes 86 316-317 321
477-478 policing of software 457 460 463 522 528

compilers 118 design and 22-23 CSV format 252

compounds definition of 48 task coherence and 187 CTRL key 202 214-2 15

CompuServe Navigator content as variant of direct 223 246 258 296 365

77-79 170 322-323 manipulation 231 497

computer age See context See also CTRL key

information age isolating functions from combinations

computer literacy 14-15 27 149-150 CTRL key combinations

84 testing user interfaces in CTRLC 296

computers See also human- 17-18 CTRLF 328

computer interaction visual processing of CTRLP 296

as consumables 113-114 symbols and 44 CTRLR 328

115 Control Panel 161 226 CTRLS 296 489

half-life of 114-116 334 336 CTRLV 296

interaction problems with CONTROL.EXE 161 CTRLS 87

116 copy operations 33 82-83 CUA common user access

mainframes 114-116 See also archiving copying 496-497 499-500

118 271 545 disks command-line cultural differences 57

optimal sell-off dates for interface and 272 cursors

117 basic description of

outdated 113-114 208-212

0562

INDEX 563

charged 258-259 process dialog boxes for reporting to users

drag 253 217-218 through 143-144

hinting 209-212 215 undo actions and rude software and

239-240 245-246 469-471 474-476 14-15

253 316 373 479 shading 330-331

indirect manipulation and DELETE key 138 size of 322

196-197 Delphi 259 suspension of normal

restricting input Delrina See WinFax LITE action and 299-301

vocabulary and 48 DeMarco Tom 128 tabbed multi-pane

custo1mr is always right dependencies 357 328-333 336

principle 184 438-439 Depression 546 as tactical tools

Customize dialog box 338 design See software design thinking of as rooms 74

353 design terms basic use of 442

cycles idle 533-541 desktop as the tool that simplified

Macintosh 56 63 the menu 278

metaphor developmental which dont need to exist

data origins of 67 150

buffers deleted 475-476 tiling and 71 zone dialog boxes

concrete data 219-220 visual metaphor excise 417-418

discrete data 219-220 and 175-177 dialog boxes listed by name

immunity 449 452-453 Dewey decimal system 104 Borders dialog box 417

457 dialog boxes See also dialog Customize dialog box

integrity 17 449-554 boxes listed by name 338 353

invalid data 426-427 basics 302 Display Settings dialog

lost data 459-463 borders 330-331 boxes 395

show the data dictum bulletin 313-315 320 Document Statistics

and 139-140 325 423-440 dialog box 131-132

databases 12 13 35 142 cascading 335-337 File Open dialog box

435 that are complex but not 134 150

data integrity and powerful 133-134 File Rename dialog box

451-454 directed 337-339 150

directed dialogs and etiquette 319-339 Find dialog box 304 310

338-339 expanding 334-335 Font dialog box 311

purging 75 function 313 323 330 Insert Picture dialog box

query systems 532-533 gizmos-laden 370 313-314

DATBASE.DLL 528 goal-directed example of Modify Style dialog

decimal systems 104 19 boxes 387

decision-set streamlining interrogation mode and Open File dialog box 89

definition of 191 144-146 92

default settings 188 189 Macintosh 68 Options dialog box 332

deleted data buffers Milestone 95-96 Page Setup dialog boxes

475-476 modal 302-303 325-328 378-379 396 420

DELETE key 138 modeless 303-312 Save As dialog box

delete operations overview of 299-318 88-89 90-91 93-94

confusing probability with pedagogic vectors and 134 150 479

possibility and 280 Save Changes dialog box

137-138 process 315-318 320 81-83 85-86 88 92

finesse and 133-134 properties and 329 Style dialog box 447

permanent objects and property 311-312 321 Summary Info dialog box

509 reducing excise and 13 1-132

322-325 diamond idiom 497-499

0563

564 INDEX

diesel locomotives 276 concept of 101 problems/solutions

Digital Research 517 independent support for 260-267

digital technology new 104 program-to-program in

conceptual models and 36 management file systems OLE 167

Dijkstra Edsgar 435 and 84 92-99 selection and 222

Dilbert cartoons 508-509 most recently used tool manipulation and

DIN connectors 116 MRU list 287 256-259

direct manipulation See also 288-289 twitchiness and 262-265

specific forms storage/retrieval systems dragging See also direct

basic description of and 101-111 manipulation drag-and-

229-246 visual metaphors for 60 drop

choices vs questions and documentation writers anatomy of 232-233

186 Document menu 286-288 button-down events and

cursor hinting and 210 Document Statistics dialog 207

indirect manipulation and box 131-132 double-dragging 203

197 doorbells 64 206-207

repositioning and 231 doors informing users and

238-239 garage 171-172 234-236

resizing/reshaping and pushing/pulling 65 restricting input

231 239-244 DOS Disk Operating vocabulary and 47 48

rich visual interaction as System 41 104 121-123 terminating with chord-

key to 229-230 224 497 clicking 205

245 -246 double-click See also direct dragrect definition of

three elements of 229 manipulation 223-224

two variants of 231 basic description of 203 drag reduction 127

visual feedback methods 204-205 drawing programs 76-77

and 245-246 middle mouse button as direct manipulation and

directories See also file shortcut for 202 231-232 243-244

systems restricting input 246-247 256-259

installation and 524 526 vocabulary and 47 48 265-268

527 double-dragging 203 drop shadows and 74

navigating 88-89 206-207 410

programs with good drag-and-drop See also direct ejector seat levers and

memory and 188 manipulation dragging 512

storage/retrieval systems basic description of modes and 69

105-107 247-268 orientation settings and

discrete data definition of completing 255-256 379

219-220 dragging data to functions selection and 223

disks See floppy diskettes with 250-25 undo actions and 474

hard drives dragging functions to data 475-476

dislocating use of the term with 25 1-252 use of for software

300 drag pliancy/drop design 23

Display Settings dialog candidacy and drop candidates 252-255

boxes 395 254-255 drop-shadow settings 74

DLLs dynamic link drag thresholds and 410

libraries 234 371 526 263-266

528-529 listboxes and 387-388

doctors 23 173 547 392 earmarking 385-387

documents See also file master-and-target ease of use See also

systems 249-256 259 learnability

-centric
systems vs file- meta-kºys and 215 goal-directed design and

centric systems 101 negotiated 251 17

107-111 156-157 GUIs and 41

0564

INDEX 565

military software and 18 ineffectiveness of working sets in 488

reducing implementation 437-438 exceptions

models and 29 making them impossible announcing the obvious

use of the term intuitive 431-433 and 443-444

and 57 peoples reaction to definition of 441-442

easter eggs 364-366 427-429 managing 441-464

edge coherence 186-187 vs positive feedback excise 172-178

edit-in-place mode 390-391 433-435 definition of 172

Edit menu 283-285 304 protecting programs and minimizing in dialog box

accelerators and 296 449 design 322-325

basic description of 288 as result of the program programs with good

education See learning getting confused memory and 188

efficiency 451 429-43 pure 174-175

Egyptian hieroglyphics 139 stopping the proceedings traps list of 177-178

Eichmann Adolf 549 and 179-180 visual metaphor 175-177

Einstein Albert 48 235-233 experienced users See also

elephants 200 204-205 validation gizmos and intermediate users

234 237 401 402 commensurate effort and

e-mail 36 77-79 462-463 what they should look 495

embedded systems like 438-439 configuration and 509

empiricism 550 why we have so many dialog boxes and 301

engineering software 426-427 excise tasks and 173-174

mathematical thinking errors 321 326 See also frustration among

and 34-35 bugs error message boxes because of programs

reasons for disks and 97 undo action that treat

software design and extraction gizmos and them like beginners

separation of 3-4 414 483-484

547-548 installation and 518 524 intermediate users and

the technology paradigm modem 116 484-486

and 55 ESC key 233-234 273 needs of 492-493

English language 47 218 Ethernet 67 posture and 152-153

219 538 etiquette dialog box providing sufficient depth

ENTER key 224 266 319-339 for 20

entrepreneurs 546 euphoria 128 toolbars and 342 347

envelopes 39 43 514 evolutional solution to the experimentation 66 348

epidemiology 551 modeless dialog box 467 503

eraser mode 257 problem 305-306 experts See experienced users

ergonomics 25 See also Excel 226 251-252 500 exploration 467

human body complexity of from Explorer 33 84 89-90

error message boxes 14 design standpoint 22 140 141 144 150 157

177 See also errors cursor changes in 246 208

auditing vs editing and cursor hinting and 210 direct manipulation and

458 211 246254

as bulletin dialog boxes deleting cells in 137-138 listboxes and 388

314 MDI and 168 170 390-391

eliminating 423-440 menus and 284 process dialog boxes and

file systems and 90 92 mouse actions and 214 317-318 320

flow-inducing interfaces Multiplan as the program icons and 357

and 129-130 forerunner of 68 treeview gizmos and 390

GOTO instructions and posture and 151 160 392

435-436 440 title strings and 356

0565

566 INDEX

eye processing
of

patterns filenames 150 176-177 finesse 133-134

by 42-46 213 See also rename first-time users See beginners

operations flip-flop controls 378-379

File Open dialog box 134 flip-flop menu items 293

failing gracefully 462-463 150 floater floating toolbar

518 524-525 File Rename dialog box 150 309-3 10

failure alerting the user to file servers 29 182 515 floppy diskettes 56 83 142

149 530 See also networks 198 515 523-524 530

farms nineteenth-century file systems See also File flow 127-150 178 300

357 Manager definition of 127-28

fax machine icons 175 abandoning all changes directing vs discussing

fax transmissions 32-33 74 and 92 94-95 128 129-130

142 160 archiving and 90-91 following mental models

features designing software with and 128-129

help systems and proper models and idiocy and 178

501-503 85-88 keeping tools close at

thinking in terms of dispensing with the disk hand and 128

limitations of 18-19 model and 85-86 130-131

feedback document management less equals more maxim

audible 454-456 and 92-99 and 132-133

positive 433-435 error message boxes and modeless feedback and

figure skating 168 90 92 131-133

files See also file systems excise tasks and 177 flying windows 60

-centric
systems vs implementation model flyover rollover facility 346

document-centric and focus basic description of

101 107-111 84-85 86 91 95 212-214

extensions 134 148 188 memory and 81 84-87 focus groups use of 24

folders 60 91 97 folder systems 56

formats 108-111 mental model and 84 Font dialog box 311

icons 49 56 85-86 89 92-99 fonts 311 337 349 385

ownership 109-110 menus and 85-86 93 print operations and 145

File Manager 83 84 248 94-96 system 512

251 254 356 405-406 naming/renaming files visual processing and

544 and 42-43

See also file systems 89-93 96 forgiveness 143

isolating function from overview of 1-100 formats

context and 149-150 placing files in 89 92 93 ASCII format 94

mouse actions and 213 problems caused by disks 108-109 252 256

208 and 83-84 538

presenting quantitative profound effect of disks CSV format 252

information in and 96-99 file basic description of

139-140 141 programs with good 108-111

renaming files in memory and 188 SYLK format 252

146-147 reversing changes and 88 Format menu 290

File menu 5-86 5-96 92 94 forms definition of 79

131-132 283-285 287 saving files and 81-83 FORTRAN 217 404

290 5-88 90-94 Fractal Design Painter 76

About boxes and 358 storage/retrieval systems 477

basic description of 288 and 101-111 FrameMaker 110

teaching graphics and filtered views 134 free phase basic description

294 Find dialog box 304 310 of 245-246

0566

INDEX 567

freezing 477 rich text 404 copying/moving files and

FU File Unavailable error rubberweeks 411-412 33

messages 426 selection 369-392 giving your program

fudging 461-462 six classes of 372 memory and 534-535

function keys sun 410-411 412 mental vs manifest

F2 key 296 328 text-edit 397-398 models of 29

F3 key 296 328 403-404 representation of files on

F4 key 296 text vs edit 405-406 by file icons 56

functions text-entry 412-413 417 space installation options

building windows and validation 398-403 412 and 15 523-524

73-77 visual 416-419 space visual presentation

dragging data to/from goal-directed design See also of 139-140 144

250-252 users goals
time and complexity

effective organization of About boxes and 362 penalty for using

20 basic description of 97-98

the technology paradigm 11-20 hard-hat items 290

and 55 building windows and hardware See also computers

tendency to think in 73-74 76-79 hard drives printers

terms file systems and 92-99 getting software to talk

of 19 improving already finely- to 541-542

undo actions and honed products with scarcity thinking and

471-472 545-547

furniture arrangements 16 mechanical taxonomy testing 116

and 37 Hawkins Trip 541

orchestrating user heartbeat processes that

galleries 537-538 interactions and 144 regulate 160-161

games 209 522 539-541 preference thresholding
HELP button 322 328

garage doors 171-172 and 192 Help menu 283-285 See

Gates Bill 67-68 71 87 GOTO instructions also help systems

361 364 365 496 435-436 440 About boxes and 358

gauges 394 gracefully failing 462-463 basic description of

Geary Mike 369 518 524-525 288-289

General Magic 61-63 graphical input enabling offering shortcuts from

German language 108 140-142 489

gizmos graphicalness 41 positioning 285

adding visual richness to grapples definition of help systems See also Help

419-420 241-242 menu

advantages/disadvantages Great Depression 546 balloon help 346-348

of 367 421 GRID.VBX 528 beginners and 491

bounded 394-396 398 Group menu 287 graduation vectors and

402-403 409-411 guilt screens 362 489

431-432 improving 501-505

definition of 369-370 obscure software and 15

direct manipulation of hammers actions with 34 shortcut features in 328

23 1-239 129-130 433-434 489 502-503

entry/display 393-407 handhelds Hertz car rentals 115

extraction 412-416 hands 65 195-196 See also hieroglyphics 139

538-539 motor skills highlighting

liberation of 370-372 handshakes 74-75 caption bars 212 213

new 409-420 hard drives 83-84 96-99 manual affordances and

overview of 367-420 65

0567

568 INDEX

restricting input humiliation 434-435 verb-object orders and

vocabulary and 48 218

hinting idiosyncratically modal

active visual 209 IBM International Business behavior 493-494

captive cursor 246 Machines 164 271 idle cycles 533-541

cursor 209-212 215 496-500 528 545 if-else statements 119

239-240 245-246 icons Illustrator 179-182 214

253 316 373 buttcons and 154 257 258

dynamic visual 373 domain knowledge and implementation model

free cursor 246 49 basic description of

menus and 281 file 49 56 27-40

meta-keys and 215 as idioms 58 59 beginners and 491

at pliancy 208-209 next to text items in lists confirmations and 445

static visual 208 210 384 conformance of software

visual 208 210 239 posture and 159 161 to 30 31-33

253 255 373 predesigned in Word consumer market and

wait cursor 210-212 344 553

hot simple and deep program 357 359 definition of 27

axiom 541 screen savers and 161 file systems and 84-85

hotspots 208 253 373 visual processing and 44 86 91 95 102

hot validation gizmos 398 identity retrieval 103 modes based on 69

hourglass cursor 210-212 idiocy 171 178-182 426 the technology paradigm

316 460 and 54-55

household appliances 27 28 idioms undo and 466 467

houses See also architecture basic description of in-focus click definition of

rooms 53-65 213-214

design of by architects cursor hinting and 210 inappropriate behavior

22 23 212 software with 15-16

imagining programs as flow-inducing interfaces incrementals 469 471 472

73-77 and 130 473-475

HIJD heads-up display idiomatic paradigm and identity boxes 358

131 54 58-60 indexes

human body idiosyncratically modal as associative 104-105

brain 42-46 56-58 550 behavior and 493-494 in libraries and books

eye 42-46 learning and 54 58-60 forms of 102 104-

hands 65 195-196 197 107

heart 160-161 meta-keys and 214-215 in online help 50 1-502

motor skills and 155 mouse and 197 200 in printed manuals

158 196-200 204-205 501-502

human-computer interaction overlapping windows and industrial age 460-461

25 70 industrial designers 22

division of labor in posture and 153 industrialization 35

between the user and practical limits of 333 Industrial Revolution 35

the computer product branding and inference 56-57

531-532 59-60 information age

examples of instinct in radio buttons as 381 the authority of the user

57-58 reasons for making sure in 184

the taxonomy of software you have 150 bringing mechanical
age

design and 4-6 restricting nput models into 35-39

human factors engineering vocabulary and 48 49 definition of 21

25

0568

INDEX 569

division of labor in intermediate vectors 279 keystroke combinations 328

between the user and Internet 437 515 544-545 489 See also accelerators

the computer interoperability 121-124 ALT7 296

531-532 interrogation mode ALTF 489

as dominated by vast 144-146 432-433 ALTHYPHEN 297

amounts of software intuition See also instincts ALTSPACE 297

22 affordances and 66 ALTTAB 164-166 215

informed consent 518 definition of 56 CTRLC 296

.INI files 189 517 518 idiomatic learning and 59 CTRLF 328

522 527 metaphor paradigm and CTRLP 296

input See also keyboards 54 56-58 CTRLR 328

vocabulary intuitive use of the term CTRLS 296 489

changing modes in order 57 CTRLV 296

to enter 69 invalid data concept of CTRLS 87

focus and 12-214 426-427 kiosks 18 487

rejection of error inversion definition of 225 Klingon battle-cruiser mode

messages and 426-427 inverted meta-questions 516-520

-versus-output viewpoint 504-505 knobs 394

176-177 invisibility 128 134-135 knowledge 56 86

insertion basic description invoicing programs 12 13 domain definition of 49

of 220-222 40 96 189 273-274 metaphor paradigm and

insertion point definition of 429-430 451 475 56-57

221 IRQs interrupt requests vs success 55

Insert menu 290 174

Insert Picture dialog box IRS Internal Revenue

313-314 Service 115 labor division of between

installation ITALIC buttcon 308 the user and the computer

auditing 460 531-532

Klingon battle-cruiser language See also taxonomy

mode and 516-520 JCL job control language vocabulary

options choosing 15 271 273 English language 47

185 518-520 jet fighters See aircraft 218 219 538

overview of 15-530 Jobs Steve 67-68 German language 108

revenue/excise tasks and Joy of Cooking The Becker inclusive

172-173 and Rombaur 502 mechanical-age models

uninstallation and 518 jump function 477 and 35 36-37

525-527 Justified text buttcon 204 natural language output

whats wrong with 516 538

instincts 57 65 66 See also for types of undo actions

intuition keyboards 469-470

Intel 22-23 113 audible feedback and launch button 356

Interactive Television 544 454-45 Laurel Brenda 63

Interleaf 110 diamond idiom and lawnmowers 428

intermediate users 484-486 497-499 lead follow or get out of

commensurate effort and as idioms 59 the way principle

495 input eliminating errors 142-143

configuration and 509 and 43 1-432 learnability See i1lso learning

help systems and 503 interface posture and metaphors and 54

perpetual 484 492-493 155 159 reducing by closely

495 509 vs the mouse 200 following

working sets and 488 495-499 implementation

0569

570 INDEX

models 29 marching ants definition of

testing user interfaces McDonalds 60 227

and 17 Macintosh 41 See also Mark Finger 195

learning 481-552 See also Apple Computer marketing departments 11

beginners experienced About box 358 122 428 484 548

users choosing platforms and markets See also consumer

intermediate users 113 market marketing

learnability clone-programming and departments

affordances and 64-66 121 primary vs secondary

by demonstration vs direct manipulation and 120-122

words 193 230 237 238 master-and-target 249-256

excise tasks and 175 239-240 259

idioms and 54 58-60 248 250 255 master objects 253 255

197 file
systems and 104 256

instinct and 57-58 Finder 250 255 bombardier and 259-260

menus and 345-346 idiosyncratically modal definition of 232

metaphors and 60-64 behavior and 494 mathematical thinking

radio buttons and 380 interoperability and 34-35

LEDs 457 122-123 135-136

letter-writing software introduction of maximized windows

19-20 See also word enormous influence of 163-168

processors 68 69 70 71 500 definition of 163

libertarianism 22 inversion techniques and MDI and 170

libraries 62 102-104 See 225 posture and 156

also DLLs dynamic link MacPaint 69 227 running sovereign

libraries meta-keys and 214 programs as 154 164

LIFO last-in-first-out 468 modes and 69 165-166 167-168

471 472 475 multiplatform MDI multiple document

Lion King CD-ROM 23 development and interface 166 187

Lisa 68 119-120 basic description of

listboxes 49 383-391 PARC and 56 67 159-160 168-170

entering data in 390-391 published guidelines 230 menus and 288 297
multi-column options for single-button mouse 298

390 200-20 204 mechanical age

ordering 388-389 trashcan 250 definition of 21

selection and 222-223 MacNeil Corporation 60 models 35-40 63

visual interface design macros 337 503 mechanical objects design

and 45-46 MagiCap 61-62 of 21-23

Lister Timothy 128 mahlsticks 196 Meier Sid 539-541

listviews 384 386 388 mainframes 114-116 118 memory

locomotives 276 271 545 CMOS memory 97

Logitech mouse 202 Make Snapshot Copy 93 96 giving your program

logos 514 management as variant of 143 159-160

lost data 459-463 direct manipulation 231 183-186 534-535

Lotus 498 514 manifest models definition of 28

Lotus 1-2-3 88-89 108 basic description of excise tasks and 177

274-276 27-31 file systems and 81

LucasArts 209 undo and 476-478 84-89 1-99

Luddites 435 MAPI 499 inducing/maintaining

flow and 128-129

0570

INDEX 571

installation and 523-524 pedagogic vectors and CUA and 496

525 278-281 flyingwindows60

modes based on 69 as permanent objects lawsuits and 71

out of memory 508 509-5 10 PARC and 67-68

messages 179 popup 277-278 294 standards and 499-500

process dialog boxes and posture and 154 user testing at 70

317-318 program 286 might-on-will presence of

RAM random-access pulidown 58 59 67-68 137-138

memory 95-98 183 345 349 Microsoft Office 108

524 545 standard 283-285 284 294 296 331 351

scarcity thinking and systems 285-287 356 377 514

545-546 toolbars and comparison milestone copies 92 94-96

solid-state vs disks 97 of 342-344 476-477

upgrades 179 types of summary of definition of 95

mental model 27-40 283-298 steps
for creating 95-96

466-467 468 visible hierarchical mind See also brain

beginners and 491 274-276 learning psychology

file systems and 84 Merrin Seymour 543 idioms and 58

85-86 89 92-99 MessageBox 313 unconscious and 43-45

flow and 128-129 Metabolist architecture 55 minimized windows

user testing and 551 meta-keys 233 239 257 definition of 163

menus 490 497-498 MDI and 170

beginners and 491-493 altering mouse actions reasons for 164-166

cascading 237-238 with 202-203 MIS managers 513

291-293 arrowing and 245 Mitsubishi 60

correct set of 28 5-287 basic description of mnemonics 45 155

dialog boxes and kinship
214-215 296-297 341 375 498

between 301 mnemonics and 297 modal tools basic

dragging 236-238 variants description of 256-258

file systems and 85-86 resizing/reshaping modeless dialog box

93 94-96 243-244 problem

graphics on 293-294 metaphors 68 230 344 305-306

hierarchical menu bending your interface to models See also

interfaces and fit 61-62 implementation model

272-273 excise tasks and 175-177 mental model

items bang 294-295 global 63-64 69 72 paradigms

items disabling 291 myth of 53-64 basic diagram of 29

items flip-flop 293 overlapping windows and collation model 36

item variants 29 1-297 70 file systems and 84-88

meaning of 271-281 paradigm 54 55-58 91 95

mechanical-age models problems with using manifest model 27-31

and 40 60-64 476-478

mnemonics 29 6-297 as showstoppers 60-64 mathematical thinking

mode Windows 95 494 meta-questions 176 178 and 34-35

monocline grouping and 504-505 mechanical age models

276-277 278 291 MicroBlitz 520-522 35-40 63

optional 289-290 535-536 unified file model 86

overlapping windows and MicroPro 517 88-89 95 99

70 MicroProse 539-540 modems 116 182 198 436

pedagogical purpose of Microsoft See also specific
modes

345-346 509-510 software

0571

572 INDEX

changing in order to metaphor paradigm and by reference to permanent

enter input 69 56 objects 507-510

definition of 69 middle mouse button restricting input

edit-in-place mode 202 vocabulary and 47

390-391 mouse-down/mouse-up tiling and 71

eraser mode 257 points 232 Navigator CompuServe

Klingon battle-cruiser move operations process 77-79 170 322-323

mode 16-520 dialog boxes for Nazi death camps 549

insert/overtype mode 217-218 neologisms basic use of

404 in the movie Star Trek IV Network Chayevsky 553

interrogation mode 59 196 networks 436-437

144-146 432-433 near/far motions with abundance thinking and

menu mode 494 198-200 546

running the result oversensititive 263 configuring

mode 163 posture and 155 revenue/excise tasks

vernier mode 267 replacement of by pens and 173

Modify Style dialog boxes and flat-panel displays file servers 29 182 515

387 198 530

monitors See screens restricting input getting stupid and 182

morphing video effects 28 vocabulary and 47 mental vs manifest

morphing toolbars 350-353 48 202 models of 29

most recently used list right mouse button transporting data with vs

287 288-289 201-202 removable disks 97

Motif 65 380 single-button 200-201 new-focus click definition

motion picture projectors 204 of 213-214

27-28 things you can do with NeXT 65

motor skills 202-207 normalcy reporting 144

indirect manipulation and vernier 265-267 Normal View 155

196-197 why we use 195-196 Norman Donald 25 64

near/far motions with MSDOS.EXE 248 65 230 277 424 487

198-200 MSPAINTEXE 248 Norton Utilities 224

posture and 155 158 Multiplan 68 notebook metaphor 62

mouse See also click cursor multiple command vectors Notes on the Synthesis of Form

direct manipulation 279 Alexander 501

dragging multi-tasking preemptive novelists 135 163

button-down/button-up 211-212 315-316 534 Novell 460

events and 207-208 multi-threading 34 numeric information

combuttcons and music 133 presentation of 139-140

381-383 mutual exclusion definition

debouncing 263-264 of 222

focus and 212-214 mutually exclusive behavior objects

indirect manipulation and mux/mutex 380 387 multi-colored selecting

196-197 227-228

interaction problems with in object-verb grammar
116 natural language output 538 204 217-219 496

keyboard vs 200 natural science permanent navigation by

495-499 navigation 16 514 reference to 507-510

learning to use idioms definition of 507 object-list-termination

and 59 of file systems 88 commands 218 219

left mouse button minimizing windows and object-oriented programming

200-201 165-166 OOP origins of 67

0572

INDEX 573

OCX interface 371 409 pictographs 344

528 Page Layout View 155 pie charts 139-140 141

ODBC Open Database Page Setup dialog boxes pile cabinet 277

Connectivity 499 378-379 396 420 pilots See aircraft

Office Manager Microsoft paint programs 231-232 pixels 239 392

162 247 256-258 caption bars and 238

OK button 49 219 302 MacPaint Macintosh corporate look and

306312-313322 69227 513-514

325-328 432 442 446 Paint Microsoft 231 cursors and 208

OLE object linking and 244 257 472 debounce thresholds and

embedding 110 167 palettes 69-70 76 25 8-259 263-265

189 248-249 371 409 510 edge coherence and

478 499 flow-inducing interfaces 186-187

Olympics 60 and 130 hotspot 208

online services connecting posture and 154 inverting 225

to 173 panes basic description of latching buttcons and

Open File dialog box 89 92 330-332 377-378

OpenWindows 71 paradigms 37 40 54-59 Mac doctrine and 123

operands selection and 217 122 273 See also models overlapping windows and

218 PARC Palo Alto Research 70 72

Options dialog box 332 Center 55-56 64 67-72 pliancy and 208 222

OR operation 34-35 538 406 545 posture and 155 158

orchestration Pascal 435 162 164

basic description of passwords 182 338-339 program icons and 357

127-150 patents 71 96 sovereign programs and

definition of 133 PATH variable 526 153-154

finesse and 133-134 patterns visual processing of spacing
of clickable areas

interrogation mode and 42-46 and 199

144-146 Pendaflexes 277 tiling and 71-72

invisibility and 128 pens ToolTips and 347

134-135 flat-panel displays and transient programs and

isolating function from 198 322

context and 149-150 as idioms 59 twitchiness and 262-263

possibility vs probability using mouse vs vernier mode and 267

and 135-138 195-196 plane on step experience

preparing for probable Peopleware Productive of 127-28

cases and 148-149 Projects platforms

presenting quantitative
and Teams DeMarco and choosing 113-124

information and Lister 128 myth of interoperability

139-140 permanent objects 507-510 and 121-124

reporting to users and permission 143 simultaneous

143-144 perpetual intermediacy 484 multiplatform

orientation settings 492-493 495 509 development and

180-182 192 378-379 personalization 509 119-121

OS/2 512-514 pliancy 254 373

OSs operating system PERT charts 244 buttcons and 345

software 118 phones See telephones
definition of 235

Outline View 155 PhotoShop 31-32 227-228 hinting at 208-210

overhead 171-182 231 528 544 selection and 222

overtype handling of 404 physical science Plug-and-Play 436 537

picklists 383-391 pluralized
windows

0573

574 INDEX

definition of 163-164 printers See also printing psychology 25 230 460
reasons for 166-168 drivers 160-161 337 467-468

Startbar and 165-167 541-542 push-buttons 207-208

pointing basic description eliminating errors and 23 1-239

of 203 See also direct 436-437 439 affordances and 64-66

manipulation mouse getting stupid and 182 154

polygons 141 243 icons 347 developmental origins of

polylines definition of 242 visual metaphors for 60 67 374

portability testing user printing 15-16 145-146 hinting and 209

interfaces and 17 179-182 192 301 identification of by their

positional retrieval definition asking questions vs raised aspect 373

of 103 offering choices and as idioms 59

positive feedback 433-435 185 mouse actions and 207

possibility vs probability changing modes and 69 208

135-138 confusing probability with ownerdraw capability

posture 51-163 See also possibility and 136 of 515

sovereign programs interrogation mode and pliancy of 373

daemonic 160-161 145 146 restricting input

definition of 152 orientation settings for vocabulary and 48

parasitic 152 161-162 180-182 192 as tactical tools

transient 152 157-161 378-379

166 168 176 322 records in retrieval

494 systems 107 quantitative information

power failures 86-87 probability 135-138 presentation of 139-140

PowerPoint 101 152 148-149
questions

221 procedurals 469 asked during installation

About Box 359 364 product branding 59-60 518 522-523

autoscrolling in 262 514 meta-questions 176 178

charged cursor and 258 productivity 460-461 vs offering choices

259 Program Manager 251 254 184-185

color and 227 263 544 Quicken 56

combuttcons and easter eggs and 365 quit operations 82-83 88

382-383 installation and 516 526

constrained drags and minimizing windows and
244 166 race cars 129 258

Insert Picture dialog mouse actions and 213 radio buttons 231-239
boxes in 313-314 248 250 378-381

menus and 284 as transient program basic description of

rendering object with 159 379-38

polylines in 243 Programming as ifPeople as idioms 59

slide-sorter view 260 Mattered Borenstein 549 mutually exclusive

switching views in 512
progress meters 316 behavior mux/mutex

teaching graphics and project management of 380

294-295 programs 244 vs visual gizmos
vernier mode and 267 property dialog boxes 416-417

wizards and 504 311-3 12 321 Railroad Tycoon 539

preemptive multi-tasking protecting programs RAM random-access

211-212 315-316 534 448-450 memory 95-98 183 524
preference thresholding protocols 251 252 253 545

191-192 prototypes 23 120-121 recursion 34

primitives definition of 48 548 Recycle Bin 250 444

0574

INDEX 575

redo function 472-473 confusing probability with thumb 406-407

477-478 possibility and 136 scrolling See also scrolibars

refrigeration technology 98 file systems and 81-83 autoscroll and 260-262

rename operations 89-93 85-88 90-91 93-94 through digital calendars

96 posture and 156 37-38

133-134 146-150 479 Save As dialog box and excise tasks and 178

replacement basic 88-89 90-91 93-94 horizontal 389-390

description of 220-222 134 150 479 mental vs manifest model

report generation programs Save Changes dialog box of 30

260 264-265 and 81-83 85-86 88 restricting input

representation
visual 92 vocabulary and 48

interface design and 44-45 shortcuts for 489 selection and 222-223

responsibility 457 541 scarcity thinking 545-547 SDI single document

restaurant management Schwartz Richard 148 interface 169 170

software 44-46 science the taxonomy of security 182 See also

retrieval systems 101-111 software design and 4-6 passwords

associative retrieval and screens selections

103-107 flat-panel displays 198 additive 222-223

definition of 102-103 indicating selection and basic description of

file formats and 108-111 225-226 217-219

for finding spreadsheets mental model of as the concrete 220 221 223

103 533 heart of the discrete 219-222

storing vs finding files in computer 30-31 gizmos 369-392

10 1-107 monochrome 225 group 223-224

revenue tasks definition of overlapping windows and insertion-point 221-222

172 174 70 71 of multi-colored objects

reversion 476-477 See also posture and 157 227-228

milestone copies resolution 167 274 mutual exclusion and 222

Rombaur Irma 502 savers 161 replacement and 220-222

rooms splash screens 362-364 undo actions within

imagining dialog boxes as -splitters 58 154 210 current 474-475

74 442 task coherence and verb-object 204

imagining program as 186-187 217-219 496

series of 74-77 tiling and 71-72 visual indication of

rubberbanding 244-245 using mouse with 224-228

rubberweeks 411-412 advantages of sensible interaction 146-149

Rubenking Neil 147-148 195-196 serial numbers 359

472 screenwriters 163 553 Settings menu 290

rulers 154 scrollbars See also scrolling SGML Standard

running the result mode address book software Generalized Markup

163 and 40 Language 109 111

affordances and 65-66 shading manual affordances

bounded gizmos and 396 and 65

sailboat racing 127-128 developmental origins of shadow-depth settings 74

save operations 15-16 77 67 410

288 ejector seat levers and shangles definition of 239

asking questions vs 512 shapes definition of 257

offering choices and listboxes and 384 Shapeware 141

185 mouse movements and shared files overwriting

automatic 87 199 518 528-529

posture and 154 158

0575

576 INDEX

shareware splash screens user interface design as program icons and 357

362-364 subset of 24 Start menu 92

shell programs 134 248 sorting restricting input
Star Trek IVfllm 59 196

SHIFT-click 223 259 vocabulary and 48 states

SHIFT key 202 214-215 sound 28 183 419 indicating 349-350

223 243 257-259 365 audible feedback window basic description

Shneiderman Ben 229 454-456 of 163-170

show the data dictum cards 173 522 status indicators 142 144

139-140 sovereign programs storage systems 101-Ill See

Shrink button 334 basic description of also file systems

sign painters 196 152-157 definition of 102

silicon sanctimony 426-427 excise tasks and 175 176 file formats and 108-111

simpler is better principle idiosyncratically modal storing vs finding files in

160 behavior and 494 101-107

single-click 220 221 mouse actions and strategic tools 1-2

sinister-circle 253 206-207 streamlining decision-set

skating figure 168 parasitic programs and 191

sking 484-486 490 161 street signs 49

slash 274-276 pluralized programs and stupid

sliders 394 166 making the user look 13

SmartRecovery 527 radio buttons and 380 16 17

snapshot copies 93 96 running as maximized when the program gets

476-478 154 164 165-166 182 210-212 316

software design See also 167-168 426 518 523-524

goal-directed design transient programs and Style dialog box 447

models 157-160 322 stylus vs the mouse

specific elements user spinners 394 396-397 195-196

interface design splash screens 362-364 Summary Info dialog box

basic description of spreadsheets 2-6 219-221 131-132

21-25 226541 sun gizmos 410-411 412

definition of 24 adjustable grid patterns surgery 551

design tools vs in 37 switching applications

programming tools copying cells from 169 164-165

and 23 file systems and 86 96 SYLK format 252

disciplines wifich support 103 553 syllables 42

24-25 menus and 274 symbols

goal-directed design and retrieval methods for idioms and 60

11-20 finding 103 533 product branding and

lack of in the past 21-23 undo and 475 478 59-60

most important questions SQL statements 290 visual interface design

of 19-20 453-454 and 44-46

profession of 2-3 24 stacked tabs 333 synonyms 106

new ways of thinking and standards 499-501 system information in the

190-192 Star 68 204 About box 361-362

prototyping and 23 Startbar 70-72 92 170 system menu 297-290

software engineering and 215 system modal 303 321

separation of 3-4 cascading menus in 237
547-548 292-293

user interface design and launch button on 356 tabs 35 330-331 333

fundamental difference pluralized windows and tactical tools 1-2

between 3-4 165-167 target objects 250-25

0576

INDEX 577

task coherence 186-190 items in lists 384 multiplatform

taxonomy 4-6 37-39 labels vs buttcons development and

teachers See learning 343-344 119-120

technical support 31 restricting input
number of determining

359 460 vocabulary and 48 153-154

technology paradigm visual processing of overview of 341-345

definition of 54-5 42-46 pedagogical purpose of

learning and 58 thickframes 240-241 309 menus and 345-346

vs the metaphor Things That Make Us Smart pedagogic vectors and

paradigm 57 Norman 277 278-281

telephones threat-detection software 18 as permanent objects

call-distribution systems three-dimensional effects 65 508 510

17 162 66 373 376 405 514 positioning of 155

cellular 28 437 thumbnail images 61 posture and 153-155

icons 175 thumbs scrollbar 406 print operations and 146

invention of 36 tiling 71-72 167 187 ToolTips and 346-348

lines transporting data time-management software 353 375 377 381

with vs removable 37-39 401 490-492 503

disks 97 Tip of the Day dialog visual interface design

software global 363-366 and 45

metaphors and 63-64 title strings 355-356 in Word for Windows

systems canonical tools 155 310 350-351

vocabulary of 49 design vs programming 509

televisions 477-478 544 23 tool palettes 70 76

tennis 495 flow-inducing interfaces 258-259

terminating commands 302 and 128 129 modes and 69

306 325-326 331 328 130-131 as permanent objects 510

termination phase basic manipulation inherent Tools menu 290-29

description of 245-246 instinct for 65-66 touch-typists 200 272 454

terminology See also prototyping 23 497-498

vocabulary Visual Basic 163 toy designers 22

that describes toolbars See also buttcons transparent interfaces 128

professionals who tool palettes 134-13

design software 24 comboboxes and 392 trash can 442

taxonomy of software customizing 35 1-354 treeview 390 392-393

design and 4-6 the development of push- triple-click 203 205-206

Tesler Larry 69 buttons and 374 Tufte Edward 139 517

testing docked 351 Tylenol 60

for the chord-click action ejector seat levers and typewriters 35

234 512 typists 200 272 454

hardware 116 floating
309 497-498

the quality of user flow-inducing interfaces

interface contextual and 128 130-131

17-18 indicating states and unbounded-entry gizmos

usability 548 549-552 349-350 394-398

user 70 200-201 invention of 374 unconscious mind 43-45

text See also word
processors

menus and comparison understanding

-edit fields 146-149 of 342-343 the learning process and

-edit gizmos 397-398 modeless dialog boxes 58

-entry gizmos 412-413 and 308 the technology paradigm

417 morphing 350-353 and 54-55 58

0577

578 INDEX

undo actions 88 94 190 taxonomy of software using in function dialog

307 350 design and 4-6 caption bars 321

basic description of usability testing and 548 verification of software

465-479 549-552 design 550

category-specific undo users goals See also goal- version numbers in About

474 directed design boxes 359-360

comparison functions and basic description of vertex grapples definition of

477-478 12-14 242

explanatory 479 the definition of software video drivers 225

as global facility 478 design and 24 View menu 289

incremental 469 471 of effectiveness 17-18 views

472 473-475 173 in PowerPoint 512

keeping records of 525 excise tasks and 175 in Word for Windows
manifest models and feature-centric vs goal- 155

476-478 centric software and virtual communities creation

mental model and 18-20 of 36

466-467 468 file systems and 85-86 VisiCalc 497

multiple 470 471-472 focusing on vs focusing Visio 141 231 265

479 on technology and Visual Basic YB 79 234

procedurals 469 tasks examples of 259

redo function and 14-16 About box 361

472-473 477-478 orchestration and data integrity and

stop-and-undo command 131-133 453-354

447 pivotal importance of gizmos and 371

undo-proof operations
11-12

posture and 62 163

and 478-479 programs with good toolbar 309-310

unified file model 95 99 memory and 190 Visual Display of

definition of 86 taxonomy of software Quantitative Information

manual saving and 88-89 design and 4-6 The

University of California at vs technical capability 17 Tufte 517

San Diego 25 utopian visions 109-111 visual fugues 45-46 490

UNIX 41 71 visual interface design

choosing platforms and basic description of

113 validation gizmos 398-403 41-49

file systems 107 108 412 creating visual richness

109 VBX interface 371 409 and 229-230

untabbed areas 331 528 245-246 419-420

usability 24 173 vectors 539-541

548-552 command 279 486-490 definition of 42

usability professionals 24 487 494 499 software vocabulary and

549-550 510-513 41 47-49

USER.EXE 370 372 graduation 489 502 visual processing and

user interface design See also head 487-490 502 42-46

users goals pedagogic 278-281 487 vocabulary 41

data integrity and 451 parallel command 293 affordances and 66

definition of 16-18 24 world 487-490 canonical 47-49 66 202

interface paradigms and verbs volume controls 456

54-59 definition of 217 VUIs visual user interfaces

software engineering and im5erative gizmos and 42

fundamental difference 372-373

between 3-4 object-verb selection and

204 217-219 496 warning signs 14 457-462

0578

INDEX 579

wastebasket icons 56 58 right mouse button and Master Document feature

Websters Dictionary 56 202 110

133 switching applications in MDI and 168 170

wetware 532 164-165 menus and 284

widgets 534 title strings in 355-356 modeless feedback and

windows Windows 95 Chicago See 131-132

forcing the user to move Explorer Startbar Modify Style dialog boxes

178 specific subjects in 387

as idioms 58 60 Windows for Workgroups mouse and 204

limiting the number of 543 205-207 213-214

79 Windows menu basic Options dialog boxes in

main 73 description of 288 332

overlapping 68 70-72 WinFax 74 Page Setup dialog boxes

overview of 73-79 WinFax LITE 32-33 74 in 378-379 396

pollution 77-79 WIN.INI 522 525-528 posture and 152

primary placing primary wizaxds 503-504 155-157

actions in 300 Word for DOS 234 predesigned icons in 344

rectangular Word for Windows 304 print operations in 137

developmental origins 322 498 500 517 146 325

of 67-68 advantages of programs renaming files and 90

resizing 177-178 with good memory saving documents in 87

states 163-170 and 188 189 94 325

subordinate 73 Alert dialog box in 443 selection and 222

top-level 163 alignment gizmos and 223-224 226

two basic kinds of 73 381 storage/retrieval systems

Windows 1.0 71 154 313 bulletin dialog boxes in 110

384 500 313-314 Style dialog box 447

Windows 2.0 500 Customize dialog box tabbed dialog boxes and

Windows 3.0 226 373 374 338 330

384 496 500 directed dialog boxes and title strings 356

Windows 3.1 37 365 337 toolbars and 155 310

405-406 500 direct manipulation and 350-35 509

Windows 3.x 83 297 234 239 246 251 undo actions and 478

384 259 260-262 visual gizmos and 416

About box 358 361 displaying word counts in 417

direct manipulation and 131-132 WordPerfect 108 498 517

236 239 251 253 document-centric systems
WordPerfect for Windows

263 and 108 530

expanding dialog boxes error messages in 401 word processors See also

in 334-335 as feature-centric 18-19 Word for Windows

File Rename dialog boxes file format 94 WordPerfect Wordstar

in 150 file systems and 87 90 addressing envelopes and

hinting in 210 92 94 110 39

posture and 159 Font dialog boxes in document-centric systems

presenting quantitative
311-312 and 108-109

information in free cursor hinting in 246 feature-centric vs goal

139-140 141 function dialog boxes in centric 18-19

program icons 357 324 file systems and 86 92

renaming files in Justified text buttcon in insert/overtype mode

146-147 204 and 404

list boxes and 387 388

0579

580 INDEX

maximized programs and use of for software X-Wing 209

167468 design 23

mechanical models and WordStar 153 497
35 498-499517 Zen462

overlapping windows and working sets 488-489 zone dialog boxes 417-418

70 World Wide Web 544 See

posture and 152-153 also Internet

saving changes and

81-83 87 94 325

setting tabs/indentations Xerox PARC Palo Alto

in 140 Research Center 55-56
task coherence and 186 64 67-72 406 545

undo actions and 478 XOR operation 225-226

479 x/y coordinates 141

0580

Dear Reader

Please write or e-mail

me and tell me what you thought about this book and about software design in general Let me know

your contact information by returning this form and will keep you informed about our products

services nd activities

My consulting company Cooper Software mc designs state-of-the-art user interfaces for companies

large and small We help our clients to improve their existing products or to create new ones

Cooper Software also offers seminars and training in user interface and conceptual software design

look forward to hearing from you

Put me on your mailing list

want to know more about your seminars and training

Tell me about your consulting services

Keep me posted about future publications

Name
Title

company

Address

City
State Zip

Phone
Fax

e-mail

How can Cooper Software help you

Cooper Software Inc designcooper.com ____________________________

Menlo Park CA 94025 ______________________

0581

WHAT

COOPER SOFT\VARE
--

User Interface Design

Gonceptual Software Design

Sminars

Training

Inspiration

PLEASE

PLACE

FT \A IN 1OSTAGE

HERE

Cooper Software Inc

POB 4026

Menlo Park CA 94025

Cooper Software Inc

POB 4026

Menlo Park CA 94025

0582

Title of this book About Face The Essentials of User Interface Deisgn

My overall rating of this book Li Very good ii

Li Good
121

Li Satisfactory 131

Li Fair
141

Li Poor

How first heard about this book

LiCatogioi
Li Word of mouth heard about book from friend co-worker etc 101

Li Other ni

What liked most about this book

What woud chanje add delete etc in future editions of this book

Other comments

Number of computer books purchase in year Li 11121
Li 2-5 131

Li 6-10 14
Li More than 10 mi

would characterize my computer skills as Li Beginner 10 Li Intermediate 17
Li Advanced oi

Li Professional 101

use Li DOS 20
Li Windows 213

Li OS/2 221

Li Unix 23
Li Macintosh 1241

Li Other 25

please specify

would be interested in new books on the following subjects

please check all that apply and use the spaces provided to identify specific software

Li Word processing 20

Li Spreadsheets 27

Li Data bases 203

Li Desktop publishing 29

Li File Utilities 30
Monent 313

Li Networking 321

Li Programmin languages ii

Li Other 1341

use PC at please check all that aply Li home 35
Li work 30

Li school 371
Li other 301 ____________________

The disks prefer to use are Li 5251391 Li 3.5140 Li other
iou _________________

have CE ROM Li yes 42
Li no 43

plan to buy or upgrade computer hardware this year Li yes 443
Li no 45

plan to buy or upgrade computer software this year Li yes 401
Li no 1471

Name Business title 401 Type of Business 491

Address Li home soi
Li work 51/Company name

Street/Suite

ç2l/State 1531/Zip
code 1541

Country 1551

Li liked this book You may quote me by name in future

lOG Books Worldwide promotional

materials

IDG
My daytime phone number is ____________________________ BOOKS

WORLDWIDE

THE WORLD OF

COMPUTER
KNOWLEDGE

0583

DYES
Please keep me informed about IDG Books Worldwides

World of Computer Knowledge Send me your latest catalog

7TM
TECIIIVICAL BDDKS

FROM IDG

NO POSTAGE
NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL ______
ARSICLASS MAIL PERMIrNO.2605 FOSTER CrrYCAIJFORNIA

IDG Books Worldwide _______
919 Hilisdale BIvd Ste 400
Foster City CA 94404-9691 _______

0584

II

Is
the basis

OU

TJeclt
eaaet

ieViflg
tbe jset

the user IS PPY

has
spXe ptem

be
sat1S

This
boOk

then
re iset

will be sUCCes 1nost
Of us

set
tere eS1gfl

oney
tjefl we

qhich
1udes and

he Vi gladlY jjgued by
tie tecbfl00

to
t1nk in

teLctioti by

To those we share
tt0flg

we bthla so

re
Developers

are

arthe iTtngthe tflOst
1portaflt

quest1

Ot

deSi phSe
progt

thCPffectively otga1

-1ow
tograflS

ftCUOfl userS
on

flo1ogy

110w
tePtogta

jtt0 itsel

c1able
anC1

ono11able
ce

About the AUthor

1ow
ogt put

1jn1etsti Alan Cooper is one ofthe

IovJ
ca11

te
deal

ob1etfl
come ote expert most respected

software

rogra setS

1ow cafl
ue

help
jnfreqUet epett

seVS designers ofour time He is

1Iow
the pt0g sfft depth the winner of the Microsoft

the ptogm
pro11

work 1th everY ndoc 1j1ee1 Award

fLoW Cafl

eW
teal

for his work in designing

eXt10te he rea Wol Visual Basic He is also one

you joTS Ifl

In Ab014t
te

workable
ueS of the most outspoken crit

tocre
1etfl

et

ics of how the software

siae
real buug industry goes

about building

the interface between prod-

SincetelY
ucts and people His ten-

4/ year-old software design

consulting company

1an Cooper Cooper Software Inc is

presidt re flC
based in Menlo Park CA

Cooper
So

Tehnicul Review by

Ieadingth

tleil Rubenking Technico

Knwtde RovclUo

Editor PC Magazine

IDG Books Worldwide Inc

Company

.7 rnT
\l\l\l\l\lll\\l\\I1\\lll\llt\\

Ul\

lvlicrosoft and WiflIOWS re registered

trademarks ofMicrosoft Corporation
X000IV6IZP

TheProgrammersPresstogo
About Face The Essentials of User

the JOG Books Worldwide logos md
2n

ii Intetlace Design

LeadingtheKnowledgeRevoIutioiire
CHAI

tndenaks under exclusive license to $39 99 Canada
Used Very Good ship

IDO Books Workiwide Inc from ____________________________________

International Data Group Inc 28.99 UK .- o.t

0585

	Pages from 1029 - Cooper About Face, 4 of 4
	1029 - Cooper About Face, 4 of 4
	Cooper - ABOUT FACE THE ESSENTIALS OF USER INTERFACE DESIGN Part 4.pdf
	Cooper - ABOUT FACE THE ESSENTIALS OF USER INTERFACE DESIGN_Part10
	Cooper - ABOUT FACE THE ESSENTIALS OF USER INTERFACE DESIGN_Part11

