-

ABOUT FACE

THE ESSENTIALS OF
USER INTERFACE DESIGN

5

v

"Eather of Visual Basic”
Microsoft Windows® Pioneer Award H

Foreword by Andrew Singer

¢2e%8,65558

V-CTC-¥8895-1 NASI

0002

Praise for Alan Cooper’s About Face...

“Alan Cooper is a software god. With Visual Basic, he designed
one of the key tools for designing new software. Now he’s
sharing his wisdom about how to make that software useable.
This is a landmark book.”

—Stewart Alsop, Editor in Chief, InfoWorld

“ About Face defines a new interface design vocabulary that
speaks to programmers in their own terms. We have come a
long way from the time when there were just modal (bad) and
modeless (good) interfaces, and this book reflects that
progress.”

—Charles Simonyi, Chief Architect, Microsoft Corp.

“Alan Cooper’s mind harbors a deep, compelling model of soft-
ware-human interaction, which he presents clearly and applies
systematically to real-world design problems in About Face.
This book is fast-paced, irreverent, and no-nonsense. I would

recommend it to any software development executive or
designer.” ‘

—John Chisholm, President, Decisive Technology Corp.,
& Columnist, UNIX Review

0003

“About Face introduces, in common language, many new ideas and pearls of wis-
dom on how to design software that really is for the user. It will help any software
designer or programmer understand how to make the user feel good about using
the product and at the same time maximize his/her productivity.”

—Mike Maples, EVP, Worldwide Products, Microsoft Corp.

“Alan Cooper popularized the idea of software design as a separate and important
discipline. In About Face, he passes along both the Big Picture strategy of good
design, as well as myriad examples that bring his principles to life. For your sake
and the sake of your users, don’t leave the DOS prompt without it.”

—Jesse Berst, Columnist, PCWeek, & Editorial Director,
Windows Watcher Newsletter

“About Face contains fresh ideas that are a must for the toolset of anyone who is
creating an interactive product—from software to interactive Web sites.”
—Dave Carlick, Senior EVP, Poppe-Tyson Advertising

“About Face has no fluff: Cooper provides just the information necessary for a soft-
ware designer to improve their interfaces and programs right now. The anecdotes
and examples are excellent, and the axioms make it easy to remember specific
issues. If this book doesn’t help people improve their interfaces, nothing will.”
—Larry Marine, Usability Engineer, Intuitive Design Engineering

“Alan Cooper is the ‘Miss Manners’ of software design, translating his deep exper-
tise into practical information instantly useful to developers attempting to tame
the Windows interface. My advice is to buy two copies—autograph the second,
and send it to an engineer at Microsoft.”

—Paul Saffo, Director, Institute for the Future

“I thoroughly enjoyed Cooper’s writing style. Programmers and designers in all,
business domains will find this book insightful.”
—Ann Winblad, Software Venture Capitalist

“As a Visual Basic consultant, I find Cooper’s practical design principles and goal-
directed approach have helped me improve the quality and usability of my user
interface designs and put the best face on my software.”

—Deborah Kurata, Author & Consultant

“About Face is a concise and articulate explanation of user-centered design princi-
ples. This is the kind of information that takes years for user interface profession-
als to accumulate on their own. This book will surely become a classic.”
—Penny Bauersfeld, Human Interface Design Consultant,

& Author, Software by Design

0004

About Face

The Essentinls of User Interface Design

Alan Cooper

About Face: The Essentials of User Interface Design
Published by

IDG Books Worldwide, Inc.

An International Data Group Company

919 East Hillsdale Boulevard, Suite 400

Foster City, CA 94404

Copyright

Copyright © 1995 by IDG Books Worldwide, Inc. All rights reserved. No
part of this book (including interior design, cover design, and illustrations)
may be reproduced or transmitted in any form, by any means, (electronic,
photocopying, recording, or otherwise) without the prior written permission
of the publisher. For authorization to photocopy items for internal corporate
use, personal use, or for educational and/or classroom use, please contact:
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923
USA, Fax 508-750-4470.

Library of Congress Catalog Card No.: 95-75055
ISBN 1-56884-322-4

Printed in the United States of America

First Printing, August, 1995

1098765

Distributed in the United States by IDG Books Worldwide, Inc.

Limit of Liability /Disclaimer of Warranty

The author and publisher of this book have used their best efforts in prepar-
ing this book. IDG Books Worldwide, Inc., International Data Group, Inc.,
and the author make no representation or warranties with respect to the accu-
racy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for any particular purpose,
and shall in no event be liable for any loss of profit or any other commercial
damage, including but not limited to special, incidental, consequential or
other damages.

Trademarks
All brand names and product names used in this book are trademarks, regis-
tered trademarks, or trade names of their respective holders. IDG Books

Worldwide, Inc., is not associated with any product or vendor mentioned in
this book.

Published in the United States

0006

Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world’s largest publisher of
computer-related information and the leading global provider of information services on information
technology. IDG was founded more than 25 years ago and now employs more than 7,700 people worldwide.
IDG publishes more than 250 computer publications in 67 countries (see listing below). More than 70
million people read one or more IDG publications each month. '

Launched in 1990, IDG Books Worldwide is today the #1 publisher of best-selling computer books in the
United States. We are proud to have received 8 awards from the Computer Press Association in recognition
of editorial excellence and three from Computer Currents’ First Annual Readers’ Choice Awards, and our
best-selling ... For Dummies® series has more than 19 million copies in print with translations in 28 languages.
IDG Books Worldwide, through a joint venture with IDG’s Hi-Tech Beijing, became the first U.S. publisher
to publish a computer book in the People’s Republic of China. In record time, IDG Books Worldwide has
become the first choice for millions of readers around the world who want to learn how to better manage
their businesses.

Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are written by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and journalism —
experience which we use to produce books for the '90s. In short, we care about books, so we attract the
best people. We devote special attention to details such as audience, interior design, use of icons, and
{llustrations. And because we use an efficient process of authoring, editing, and desktop publishing our
books electronically, we can spend more time ensuring superior content and spend less time on the
technicalities of making books.

You can count on our commitment to deliver high-quality books at competitive prices on topics you want
1o read about. At IDG Books Worldwide, we continue in the IDG tradition of delivering quality for more
than 25 years. You'll find no better book on a subject than one from IDG Books Worldwide.

John Kilcullen
President and CEO
IDG Books Worldwide, Inc.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world's lar%est publisher of computer-related information and the leading global
provider of information services on information technology. International Data Group publishes over 250 computer publications in 67 countries. Seventy million
people read one or more International Data Group publications each month. International Data Group's publications include: ARGENTINA: Computerworld
Argentina, GamePro, Infoworld, PC World Argentina; AUSTRALIA: Australian Macworld, Clienv/Server Journal, Computer Living, Computerworld, Digital News,
Newwork World, PC World, Publishing Essentials, Reseller; AUSTRIA: Computerwelt, PC TEST, BELARUS: PC World Belarus; BELGIUM: Data News, BRAZIL:
Annudrio de Informatica, Computerworld Brazil, Connections, Super Game Power, Macworld, PC World Brazil, Publish Brazil, SUPERGAME; BULGARIA:
Computerworld Bulgaria, Networkworld/Bulgaria, PC & MacWorld Bulgaria; CANADA: CIO Canada, ComputerWorld Canada, InfoCanada, Network World
Canada, Reseller World; CHILE: Computerworld Chile, GamePro, PC World Chile; COLUMBIA: Computerworld Colombia, GamePro, PC ‘World Colombia;
COSTA RICA: PC World Costa Rica/Nicaragua; THE CZECH AND SLOVAK REPUBLICS: Computerworld Czechoslovakia, Elektronika Czechoslovakia, PC
World Czechoslovakia; DENMARK: Communications World, Computerworld Danmark, Macworld Danmark, PC World Danmark, PC World Danmark Supglements,
TECH World; DOMINICAN REPUBLIC: PC World Republica Dominicana; ECUADOR: PC World Ecuador, GamePro; EGYPT: Computerworld Middle East,
PC World Middle East; EL SALVADOR: PC World Centro America; FINLAND: MikroPC, Tietoverkko, Tietoviikko; FRANCE: Distributique, Golden, Info PC,
Le Guide du Monde Informatique, Le Monde Informatique, Reseaux & Telecoms; GERMANY: Computer Business, Computerwoche, Computerwoche Exira,
Computerwoche Focus, Electronic Entertainment, GamePro, /M Information Management, Macwelt, PC Welt; GREECE: GamePro, Macworld & Publish;
GUATEMALA: PC. World Centro America; HONDURAS: PC World Centro America; HONG KONG: Computerworld Hong Kong, PCWorld Hong Kong, Publish
in Asia; HUNGARY: ABCD CD-ROM, Computerworld Szamitastechnika, PC & Mac World Hungary, PC-X Magazine; INDIA: Computerworld India, PC World
India, Publish in Asia; INDONESIA: InfoKomputer PC World, Komputek Computerworld, Publish in Asia; IRELAND: ComputerScope, PC Live!; ISRAEL: PC
World 32 BIT, People & Computers; ITALY: Computerworld Italia, Computerworld ltalia Special Editions, Lotus ltalia, Macworld Italia, Networking ltalia, PC
Shopping, PC World ltalia, PC World/Walt Disney; JAPAN: Macworld Japan, Nikkei Personal Computing, SunWorld Japan, Windows World Japan; KENYA:
East African Computer News; KOREA: Hi-Tech Information/Computerworld, Macworld Korea, PC World Korea; MACEDONIA: PC World Macedonia; MALAYSIA:
Computerworld Malaysia, PC World Malaysia, Publish in Asia; MEXICO: Computerworld Mexico, GamePro, Macworld, PC World Mexico; MYANMAR: PC
Wods Myanmar; NETHERLANDS: Computable, Computer! Totaal, LAN Magazine, Macworld, Net Magazine; NEW ZEALAND: Computer Buyer, Computerworld
New Zealand, MTB, Network World, PC World New Zealand; NICARAGUA: PC World Costa Rica/Nicaragua; NIGERIA: PC World Africa; NORWAY:
Computerworld Norge, Computerworld Privat, CW Rapport Klient/Tjener, CW Rapport Nettverk & Telecom, CW Rapport Offentlig Sektor, IDG's KURSGUIDE,
Macworld Norge, Multimedia World, PC World Ekspress, PC Wor{d Nettverk, PC World Norge, PC World's Produkiguide, Windows Spesial; PAKISTAN:
Compulerworlg Pakistan, PC World Pakistan; PANAMA: GamePro, PC World Panama; PARAGUAY: PC World Paraguay; P R. OF CHINA: China Computerworld,
China Infoworld, Computer & Communication, Electronic Product World, Electronics Today, Game Camp, PC World China, Popular Computer Week, Software
World, Telecom Product World; PERU: Computerworld Peru, GamePro, PC World Profesional Peru, PC World Peru; POLAND: Computerworld Poland,
Computerworld Special Report, Macworld, Neworld, PC World Komputer; PHILIPPINES: Computerworld Philippines, PC Digest, Publish in Asia; PORTUGAL:
Cerebro/PC World, Correio Informatico/Computerworld, MacIn/PC+In Portugal, PUERTO RICO: PC World Puerto Rico; ROMANIA: Computerworld Romania,
PC World Romania, Telecom Romania; RUSSIA: Computerworld Rossiya, Network World Russia, PC World Russia; SINGAPORE: Computerworld Singapore,
PC World Singapore, Publish in Asia; SLOVENIA: MONITOR; SOUTH AFRICA: Computing S.A., Network World S.A., Software World; SPAIN: Computerworld
Espafia, COMUNICACIONES WORLD, Dealer World, Macworld Espatia, PC World Espana; SWEDEN: CAP&Design, Computer Sweden, Corporate Computing,
MacWorld, Maxi Data, MikroDatorn, Natverk & Kommunikation, PC/Aktiv, PC World, Windows World; SWITZERLAND: Computerworld Schweiz, Macworld
Schweiz, PCtip; TAIWAN: Computerworld Taiwan, Macworld Taiwan, PC World Taiwan, Publish Taiwan, Windows World; THAILAND: Thai Computerworld,
Publish in Asia; TURKEY: Computerworld Monitor, MACWORLD Turkiye, PC WORLD Turkiye; UKRAINE: Computerworld Kiev, Computers & Software
Magazine, PC World Ukraine; UNITED KINGDOM: Acorn User, Amiga Action, Amiga Computing, Amiga, Appletalk, CD Powerplay, CD-ROM Now, Computing,
Connexion, GamePro, Lotus Magazine, Macaction, Macworld, Open Computing, Parents and Computers, PC Home, PC Works, The WEB; UNITED STATES:
Cable in the Classroom, CD Review, CIO Magazine, Computerworld, Computerworld Clienu/Server Journal, Digital Video Magazine, DOS World, Electronic,
InfoWorld, 1-Way, Macworld, Maximize, MULTIMEDIA WORLD, Network World, PC World, PUBLISH, SWATPro Magazine, Video Event, WebMaster; URUGUAY:
PC World Uruguay; VENEZUELA: Computerworld Venezuela, GamePro, PC World Venezuela; and VIETNAM: PC World Vietnam. 10/17/95b

0007

For More Information

For gencral information on IDG Books Worldwide’s books in the U.S., please
call our Consumer Customer Service department at 800-762-2974. For
reseller information, including discounts and premium sales, please call our
Reseller Customer Service department at 800-434-3422.

For information on where to purchase IDG Books Worldwide’s books
outside the U.S., contact IDG Books Worldwide at 415-655-3021 or
fax 415-655-3295.

For information on translations, contact Marc Jeffrey Mikulich, Director,
Foreign & Subsidiary Rights, at IDG Books Worldwide, 415-655-3018 or
fax 415-655-3295.

For sales inquiries and special prices for bulk quantities, write to the address
above or call IDG Books Worldwide at 415-655-3200.

For information on using IDG Books Worldwide’s books in the classroom, or
ordering examination copies, contact the Education Office at 800-434-2086
or fax 817-251-8174.

For authorization to photocopy items for corporate, personal, or educational
use, please contact Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 508-750-4470.

About Face: The Essentinls of User Interface Design is distributed in Canada by -
Macmillan of Canada, a Division of Canada Publishing Corporation; by
Computer and Technical Books in Miami, Florida, for South America and the
Caribbean; by Longman Singapore in Singapore, Malaysia, Thailand, and
Korea; by Toppan Co. Ltd. in Japan; by Asia Computerworld in Hong Kong;
by Woodslane Pty. Ltd. in Australia and New Zealand; and by Transword
Publishers Ltd. in the U.K. and Europe.

0008

About the Author

Aﬂan Cooper, the “Father of Visual YBasic,” is an award-winning user inter-
face consultant and software designer. His company, Cooper Software, Inc, has
worked with a broad range of clients to improve their products and help them
create exciting and successful new software products. His experiences in imple-
menting his unique approach to creating better software through goal-directed
design led him to write this book. -

Since 1976, Alan Cooper has designed and developed software, lncludmg
SuperProject (Computer Associates), MicroPhone II for Wmdowsf(Softwalc
Ventures), and the visual programming interface for Visual Basic (Mlcfosoft)
In 1976 he founded Structured Systems Gloup, Wh1ch FLClberger and Swame

Bill Gates presented Cooper with a Wmdows Pioneer awar
World confcrencc in 1994 This rare and coveted award

Windows developer group in the world. He
engaging industry speaker and writer on the topics:
ceptual software design.

0009

Credits

Senior Vice President
and Group Publisher
Brenda McLaughlin

Publishing Director
John Osborn

Senior Acquisitions Manager
Amorette Pedersen

Managing Editor
Kim Field

Editorial Director
Anne Marie Walker

Editorial Assistant
Dan Hilldale

Production Director
Beth Jenkins

Production Assistant
Jacalyn L. Pennywell

Supervisor of
Project Coordination
Cindy L. Phipps

Supervisor of Page Layout
Kathie S. Schnorr

Supervisor of Graphics and Design
Shelley Lea

Reprint Coordination
Tony Augsburger
Theresa Sinchez-Baker
Todd Klemme

Blueline Coordinator
Patricia R. Reynolds

0010

Project Editor
Elizabeth Rogalin

Manuscript Editor
Karen Goeller

Technical Reviewer
Neil J. Rubenking

Graphics Coordination
Gina Scott
Angela F. Hunckler

Media/Archive Coordination
Leslie Popplewell
Melissa Stauffer

Jason Marcuson

Production Page Layout
Benchmark Productions, Inc.
Elizabeth Céardenas-Nelson

Proofreaders
Dwight Ramsey
Carl Saff

Indexer
Liz Cunningham

Book & Cover Design

Donald Maurer, Benchmark
Productions, Inc.

TonBo Design

To Sue,
for your love and patience
while I was submerged

Acknowledgments

TlOSﬁ who have tackled big writing projects know that there are few other
tasks that require such a single-minded, non-stop outpouring of effort.
Although this is my first book, I’ve written big software programs before, so I
am well-acquainted with the immense demands a project of this scope makes.
My friend Gary Kratkin says a big solo writing project is like having a hungry
and bad-tempered monster chained up in your basement: You can go out and
have fun, but eventually you must return home and feed the lluﬁgry beast.
There are many people who have helped me feed this beast over the past year
who deserve my sincere thanks for their patience, their contributions, or both.

Without a doubt, the people who sacrificed the most hayg: been my farmlyMy
lovely wife (and business partner), Sue, has supported me and reassured me and
read all of my drafts throughout the monster-feeding pf(’)’fc»”(;s'

m hank yo
lighting up my life. My two sons, Scott and Marty, missed man

quality and content of this book. Wayne Greenwood
designer, carefully read all of the chapters and made many inval
tions to the manuscript. In many cases, he was the first p
and theories. He also helped with most of the illust
another skilled interface designer, read many of the draff
out my successes and failures. Alic ir’s \

straightening out somcdodgypros

ACKNOWLEDGMENTS

Several people read an early draft of the book and provided worthwhile com-
ments and guidance that had a major effect on the eventual shape of the man-
uscript. I would like to deeply thank Deborah Kurata (good luck on your own
book), Mike Nelson (your moderating voice culled some too-hot flames),
Diana Nelson (your insights were valuable throughout) and Frank Cohen (for
your unique viewpoint). '

Several other people read chapters, sent email, contributed ideas or generally
helped to shovel monster food. Thank you Carl Quinn, Andrew McCarthy,
Geoff Faraghan, Peter Rosberg, Janell Bandy, Liz Cunningham, Nanci
Kavanagh, Andrew Singer, Mike Geary, Fran Finnegan, John Zicker, Steven
List, Cynthia Lewis, Geoff Nicholls, Jeff Prosise, David Rygmyr, Paul Yao, Jim
Fawcette, Gregg Irwin, Ted Young, Constance J. Petersen, Rowan
Hutchinson, Harmon Rogers, Dan Barclay, J. D. Evans, Jr., Joe McGinn, Cam
Marshall, Mark Pruett, Dick Grier, David K. Headley, and my best friend David
Carlick for the “March of Paradigms.”

At Programmers Press, several individuals made enormous contributions to the
quality of the book. Both Chris Williams and Trudy Neuhaus were the first to
see the potential of this book. Anne Marie Walker stepped into this project at
the eleventh hour and injected a much-needed dose of enthusiasm and energy.
Amy Pedersen offered consistent support with the care and feeding of captive
monsters. I owe a huge debt of thanks to my skilled editor Karen Goeller and
my technical editor Neil J. Rubenking. Their comments and queries con-
tributed materially to the final quality of the book. They both kept me from
putting my foot in my mouth many times. Any mistakes that slipped by them
are my responsibility. I’d also like to thank Bill Gladstone and Matt Wagner at
Waterside, and John Kilcullen at IDG Books for helping to pull About Face out
of the ordinary mass of technical books.

The publisher would like to give special thanks to Patrick McGovern, without
whom this book would not have been possible.

0012

Table of Contents

INtrodUCtION .« v v v v v vttt e e ettt it et 1
Who should read thisbook 2

" Why I wrote thisbook i 3
A taxonomy of software design 4
Conventions used in thisbook it 6
Let’s deSIZN . .« . v oottt t e e 8
Part I: The Goalt iiinennn 9
Chapter 1: Goal-Directed Design 11
Theuser’s goals 12
The essence of user interface designooonon... 16
A fresh look at features oo 18

Chapter 2: Software Designt 21 -

Software isn’t designed, ... 21
Conflict Of INTEIESt . . . v v e e et e e e 23
The profession of software design 24
Supporting software design disciplines 24
Chapter 3: The Three Models 27
& The manifest model 27
Bringing mechanical age models into the information age 35
It’s WOIrse ON @ COMPULET . . o vt v vt v e e e e e e 39
xi

0013

xii CONTENTS

Chapter 4: Visual Interface Design0vvveenn.. 41
Restricting the vocabulary 47
The Canonical Vocabulary 48
Designing forusers 49

PartII: The Form 51

Chapter 5: Idioms and Affordancesc..... 53
The Myth of Metaphor 53
Manual affordances L 64
Understanding whatitmeans 65

Chapter 6: An Irreverent History of Rectangles on the Screen .. .67
Xerox PARC 67

Chapter 7: Windows-with-a-Small-w 73
Unnecessary TOOMS . . .o v vttt e it e e 73
NECESSAIY FOOMS « o v v vt et e e e e et e e e 75
Windows pollution 77

Chapter 8: Lord of the Files .. .o vvvvnernrneneenennnn.. 81
The tragedy of the file system 81
Designing software with the proper model 86
Unify the filemodel 91
Document management 92
Howdid we gethere? 96)

Chapter 9: Storage and Retrieval Systems 101
Storing versus finding 1017
It ain’t document-centrict 107

Chapter 10: Choosing Platformsc0.u... 113
Software is the expensive part 113
The half-life of a desktop computer e 114% ﬁ
Choosing a development platform 116
Simultaneous Multiplatform Development 119
The Myth of Interoperability 121
Part III: The Behavior v 1

Chapter 11: Orchestrationand Flow 127

Planing on the step e 127

0014

CONTENTS X1il

Where were you on the night of the sixteenth? 144
Sensible INTEraction vt v vt vt e 146
Chapter 12: Posture and Stateo 151
POSTUIC « o v e oot e e e e e e e 151
TWANAOWS STALES . o o v v e et et e e et et e e 163
ML . 168
Chapter 13: Overhead and Idiocycvvvvnnnnn 171
Overhead vt 171
LAiOCY © o oot e 178
Chapter 14: The Secret Weapon of Interface Design 183
Get a memory e 183
Task CONEIENCE . . vt it e 186

A new way of thinking [P 190
Part IV: The Interactioncooeeennn 193
Chapter 15: Elephants, Mice and Minnjes 195
Why we use a mouse instead of apen 195
Indirect manipulationo 196
Mice are not here to stayot 197
Mousing around 198
The left mouse button 200
Right mouse button 201
Middle mouse button S 202
Things you can do withamouse 202
Up and dOWn €VENLS .. oot e e 207
THE CUISOT « v o v o et e e et e e e e e e e e e 208
FOCUS .+ o it et e e e 212
MEta-KEYS . . v v oottt 214
Chapter 16: Selectionc.iviiiiinenn 217
Object-verb . ..o 217
Concrete and discrete data o 219
Insertion and replacement 220
Additive selection 222
Group SEleCtiont v it 223
Visual indication of selection 224
Chapter 17: Direct Manipulationcooveennn 229

0015

X1v

CONTENTS

Manipulating gizmos 231
RepoSitioning 238
Resizing and reshaping 239
ATTOWING . . oo 244
Direct-manipulation visual feedback 245
Chapter 18: Drag-and-Drop i, 247
Whither drag-and-drop? 247
Dragging where? 249
Master-and-target 249
How master-and-target works 252
Tool-manipulation drag-and-drop 256
Bomb sighting 259
Drag-and-drop problems and solutions 260
Part V:The Cast 0. 269
Chapter 19: The Meaningof Menus 271
The command-line interface, 271
The hierarchical menu interface 272
The Lotus 1-2-3 interface 274
Monocline grouping 276
The popupmenu 277
The pedagogic vector 278
Chapter 20: MENUS . . v v vt v vt vt ettt it et eeeeenneennnenn 283
Standard menus 283
The correctmenus 285
Meanwhile, back on Planet Earth 288
Optional menus B 289
Menu item Variants 291
The system menuottt 297
Chapter 21: Dialog BoXes v vttt ittt it i ieene e 299
Suspension of normal interaction 299
Dialog box basics 302
Modal dialog boxes 302
Modeless dialog boxes i 303
The modeless dialog problemy 304

0016

CONTENTS XV

TWO SOLIEIOMS « + v v v v v et et e e e 305

A more radical, but better, solution e 307
Property dialog DOXeso 311
Function dialog boXest 313
Bulletin dialog boXeso 313
Process dialog boxes 315
Chapter 22: Dialog Box Btiquettecovouvnenrnee e 319
YOU FANZ? + v o vev e e e e e 319
The caption bar ovvv v 320
TranSIENt POSTUIE . . o o v vv v e v e e s 322
Reduce excise A 322
Terminating commands for modal dialog boxes 325
Keyboard ShOrtCutso vvvvvv e 328
Tabbed dialogsot 328
Expanding dialogso 334
Cascading dialogs 335
Directed dialogs oo 337
Chapter 23: Toolbarsc.ovvuircntinueeeneee s 341
Visible and immediateo 341
The toolbar freed the menutoteach 345
Beyond the DULICON ...\ vt vvv i 349
Toolbar MOrPhilTg . . .« v e 350
Chapter 24: Roll the Credits, Pleaseocvvveenee.s 355
Your program’s name e 355
Your program’s iCOM . . . oo v v vv e 357
Dependencieso e 357
ADBOUE DOXES o v vttt et 358
Splash SCIEENS . ..ottt 362
BaSter €ZES « « « v v v e e e e 364
Part VI: The Gizmos e e .. .367
Chapter 25: Imperative and Selection Gizmos 369
Gizmo-laden dialog boxes 370
Gizmo HDEration oot vt 370
The gizmos that Mother givesyou 372

0017

XVi

CONTENTS

Imperative gIzmos 372
Selection GIZmMOSo 375
Combobox 391
Treeview IZMO . .. o v e 392
Chapter 26: Entry and Display Gizmos 393
Entry gizmosot 393
Bounding 394
Unbounded entry fields 397
Validation e 398
Using an edit field for output 403
Display gizmos 405
Those darned scrollbars 406
Chapter 27: New GizZmos oo v vt it ittt it ennenn 409
Directly manipulable toolso oL 409
Extraction gizmosttt 412
Visual izmos 416
Adding visual richness o o 419
Part VII: The Guardian oo, 421
Chapter 28: The End of Errors, 423
Eliminating the error message box 423
Bulletin Dialog Boxes 424
Stopping the proceedings oL 425
Positive feedback 433
Treat error messages like GOTOs 435
EXCEPLIONS? . . v ittt 436
Dotheywork? B 437
What error message dialog boxes should look like 438
Theendoferrors e 439
Chapter 29: Managing Exceptionsccovveennn 441
AlETtS .o 441
Confirmationsttt 444
Who are we protecting, anyway?c..v ot 4438
Audible feedback L L 454
Using your powers forgoodo L 457

0018

CONTENTS

Failing gracefully i 462
Chapter 30: Undo . ..ot vttt 465
Assisting the exploration 465
The trouble with singleundo i 470
REdO o v e e e e 472
Special undo functions 473
Deleted data buffer 475
Other manifest models 476
Undo is a global facility and should
not be managed by local controlso 478
Undo-proof operationsot 478
Part VIII: The Teacher e e et 481
Chapter 31: Good at What YouDocoovvinennnn 483
The time users spendot 483
Command VECTOIS . o v v v v et e e e e et e e e 486
What beginners need 490
What perpetual intermediates need 492
What experts needov i 492
Idiosyncratically modal behavior 493
Commensurate effOrtottt e 495
The typers versus the pointers 495
Standards TR 499
Online help [P 501
The inverted meta-quUEStiONottt 504

Chapter 32: Installation, Configuration and Personalization507

Navigation is by reference to permanent objects 507
Pull at your own risk 510
The corporate loOKot 513
InStallation . . v vt e e e e 515
Chapter 33: Shouldering the Burdencovvvennnen 531
Let’s put those idle cycles to work e 533
Get our software talking to our hardware 541
Chapter 34: Where Do We Go from Here?o0onnn 543
SOFEWAre SUCKS « o v v v e et et e e e 543

0019

xvii

xviii

CONTENTS

We know a lot about old technology 545
Don’t ask programmers to design while theycode 547
Solving the problem 548
“I’m mad as hell, and I’m not gonna take it anymore” 552

0020

Foreword

1876 saw the construction of many bridges, and the completion of the
Brooklyn Bridge. One out of every four of those new bridges, however, failed.
It is hard for us now to imagine how the outcome of so basic a construction
project could be so unpredictable. It would be an extraordinary event for a
bridge built today to fail. But every aspect of our understanding of the world
begins with ignorance and uncertainty.

For nearly a half a century, a new field of construction, that of information
technology, has been emerging. Using the most insubstantial materials, elec-
tromagnetic fields and electrons, and software — the abstract description of
pure processes — we can build structures for our minds to inhabit and create
fabulous tools that extend our mental reach. But this field is still very much in
its infancy, and in our ignorance, many of the things we have built thus far fail.

and express thc purpose of a partlcular tool or structure, or to shape something
that fits the mind that must use it, can make even the most elaborate construc-

tion efforts worthless.

rstand and i;%p
are, thus far I
esign, the process whereby it is gwen

though there have already been significant

Xix

0021

XX

FOREWORD

This book represents one of the first attempts to address this problem. As such,
it constitutes an important contribution to the nascent literature on software
design, especially as it is expressed in a way that is useful to the practicing
designer rather than the theoretician.

You may not agree with everything presented in this book, but thoughtful soft-
ware designers will undoubtedly find the issues raised to be relevant and stim-
ulating. Unlike a number of books from the human-computer-interaction
(HCI) community, it addresses issues like functionality that go beyond mere
interface design.

In all likelihood, Alan Cooper will always be known principally for his role in
the development of Visual Basic, but I think this book may be his greater con-

tribution to our field. For now, it stands virtually alone on the software design
bookshelf.

Andrew Singer
June, 1995

Brography of Andrew Singer
Andrew Singer is best known for his work on programming environments and work-

group tools at Think Technologies, a company he co-founded in 1982, and whose
product development efforts he led until its acquisition by Symantec in 1987.

He chairs the board of the Assoc1at10n for Software Design, a non-profit professional
society he orgamzed in 1992 with Mitchell Kapor

Interval Research Corporation
1801 Page Mill Road
Palo Alto, CA 94304

<singer@interval.com>

H ¥

0022

Introduction

his book is intended to provide you with effective and
practical tools for designing user mtexfaces These tools
come in ﬂtwo distinct varietie ‘ :

,1ty depends on the situation:
hat his background and goals are.

{.

OeSR.
hﬁkfu°qc&
Dsiad
2. USABLITY

INTRODUCTION

Merely applying a set of tactical dictums will make user interface creation
easier, but it won’t make the end result better. Just thinking beautiful thoughts
about how users “should” interact with your system won’t improve the soft-
ware, either. What will work is maintaining a strategic sensitivity for how users
interact with specific software. This will enable you to correctly choose the
appropriate tactics to apply in a particular situation.

The first three parts of this book stress strategy, but you’ll find tactics interwo-
ven throughout.

There are two step on, and the

ty, while the form 1te
There is a significant and growmg body of usability hterature but there is very
little in print about user interface design synthesis—the invention of user inter-
faces from direct analysis of the tasks, the technology and the user’s goals.
Accordingly, I will focus exclusively on the design of user interface solutions
and ignore the processes of testing those solutions. However, this is not a slur
on usability: You will always achieve the best results by combining the two dis-
ciplines in a harmonious relationship.

Who should read this book @

I wish I could say this book is for user interface designers and legit go at that.
Most user 1nterfaces are still designed by programmers, an increasing number

needed for softw \ :
Documentation erters, trainers and technical support people increasingly
share this same worry. It is for this growing community of design-aware devel-
opers that this book is written. ‘

Eighty years ago, the automobilej industry came to, understand that a well-
; hat §§ both fell.
A gir Untﬂ the software industry comes to the same
conclusmn the burden of quality design will fall largely on conscientious soft-
ware engineers.

To the industry’s credit, a small but growing cadre of software and user inter-
face designers is beginning to make its presence felt. It is finally possible for
software developers to hire people trained in the art of software design, both in
the cauldron of industry and in forward-thinking universities. Eventually, we

0024

INTRODUCTION

will see a bifurcation in the industry: Designers will design the software and
engineers will build it. This is currently considered a luxury by those develop-
ment shops that haven’t realized the fiscal and marketing advantages that come
with professional software design.

Why I wrote this book

Since 1976 T have been creating successful software for personal computers. In
the early days of the industry, I invented, designed, coded, documented, mar-
keted, sold, supported and revised retail products including accounting, word
processing, spreadsheet, project management and visual programming lan-
guages. During the 1980s, I was an independent software author—much like a
freelance inventor. I identified problems and created innovative software solu-
tions for them. Then, working alone or with a small team, I completed them
for sale to a software publisher who brought them to market. For all these
years, I designed my software without reflecting much on the process. More
recently, I have offered my services as a software design consultant, helping
other companies to design new products and improve their existing ones.

When I became a consultant, I discovered that I had to articulate to my clients
the reasons why a certain design solution was better. I knew the answer, but I
had no words with which to say it. In response to my own needs, I began to
formulate the axioms, ideas and terms that are in this book. Many of my clients
and people I%gave spoken with have requested that I record my thinking in a
book; About Face is the result.

My twenty years of software design and development have taught me that the
i fundamentallymf tfrom ngineer:.

ting, Most of the writing available on user interface desrgn approaches it from
an engineering or a user-testing point of view. There is little on the shelves that
addresses the creation of user interface design dxrectly fro

h statement of

yok derive ffof L Where I have krto{%f—
ingly adopted the thinking of others, I have said so in the text. Where my

contained "

0025

Aty,” “bug-free,” and «

INTRODUCTION

thinking may seem to echo the work of others without credit, it is because we
have independently arrived at similar views and I am ignorant of their work. It
does not represent a desire to appropriate their vision or to negate their efforts.

A taxonomy of software design

Webster defines taxonomy like this:

Tax-on-o-my \tak-'sin-e-mee\ # 1 : the study of the general principles of
scientific classification: CLASSIFICATION; specif : orderly classification of
plants and animals according to their presumed natural relationships

Biologists, anthropologists and natural scientists of all stripes use a taxonomy
as their primary tool, both for their ease in communicating concepts and as a
mental model of the purposes and relationships of things in the real world.
Although a taxonomy is a more formal dialect within a broader language, all
language is taxonomic. Our perceptions of the way the world works are colored
and influenced by the structure and usage of our language.

Physical scientists spend extravagant amounts of time learning the terms spe-
cific to their discipline. These terms not only illuminate the specific process or
object at hand, but they influence how we think about them in relationship to
life. Doctors must learn the names of every bone, muscle, nerve and organ in
the human body as well as terms that indicate their direction, orientation and
condition, in health, trauma or illness. How else could one doctor express to
another a question, a concern or a discovery? A thorough taxonomy is the cor-
nerstone of each science, from the study of spiders to the behavior of printing

presses.

1stry is no exception. We have a rich and complex [a;
be the nuances of [d—words like “concurrency,” «
” But the completeness and eff 4

i really just im. The language of programmmg
is too new and evolvmg too fast to yet have a firm foundatlon While the nat-
' and animals was dé rs, the

recur SlOD.

but there is an ocean o

fic e”—or that have meanings so
bowdlerized, so bastardized, as to be useful only for resumes and bull-sessions

0026

INTRODUCTION

around the water cooler—words like “standard,” “object-oriented,” “macro,”
and “client/server.”

I’ve heard and read countless discussions about the relative “efficiency” or
“elegance” of some software artifact. But eak

to the gizmo-count? to the
ese are real

Get that quack away from me!:

All of this brings us to user interface design. Our discipline is less than half the
age of the computer science field. Little of our work has been tested in the
modern crucible of personal computing in which, for the first time, the major-
ity of computer-human interaction is with non-computer-professionals.

The terms we have to work with are so weak and ill-defined that they make the
computer science taxonomy seem robust by comparison.’ In user interface
design we are dealinlg with so man§ new concepts—concepts that hdve no
parallel in the non-digital world—that there are no terms to borrow from. We
find ourselves performing functions daily that we could never imagine before
we had persoﬁal computers.

The lack of consistent, specific terminology in the world of software design
frustrates interface designers enormously. Without precise terminology, we are
forced to speak in vague generalities and hand-waving. Without clearly differ-
entiated terms, we accidentally group things in the wrong places, overlook
significant facts and inadvertently mistake the bad for the good.

Language defines our perceptions. The words we use influence our mental pic-
: for the 1nformat10n

des1gn will not become a real science or art or craft until we create our own tax-
onomy. It will not become a successful practice until we develop accurate ways
of thinking and talking about what we do; until we develop a taxonomy.

0027

6 INTRODUCTION

) rds, and many of today’s computer practi-
tioners are reluctant to neologize. They imagine that having more words com-
plicates things and makes communications more difficult. When speaking of
familiar things in the familiar world, this is true, but in the mostly new world
of computer-human interaction, old, ambiguous or inaccurate words hurt us
more than they help. Our mental image%é also color our thinking.

= (oM me Any discipline that wants to be practiced ser;ously and effectively must develop
LD ch%gjséa powerful, descriptive and discriminative language. User interface design is a
R epo%L Deyasprime example of this imperative. Not only can we'not function effectively, but
W WO our credibility to the outside world, particularly to the world of software engi-
neering, is threatened unless we can agree on terms to describe what we do,
what we care about and how to judge our relative success at achieving our
goals. In this spirit, I try to contiﬂuously fill the vacuum with neologisms—
words that I have created to describe common ideas, things, principles, actions

or conditions that relate to our practice.

This book is about user interface design {§ing MicrosofE Witidows.
ity of today’s PCs run Windows and, as a result, that is where the greatest
need exists for an understanding of how to create effective, goal-directed user
interfaces.

Having said that, I believe that most of the material in this book transcends
platforms. It is equally applicable to all desktop platforms—Macintosh, Motif,
NeXT, OS/2, and others—and the majority of it is relevant even for more
divergent platforms such as kiosks, handhelds, embedded systems and more.

As 1 write this, Microsoft is preparing Windows 95 for release. This is the fifth
major release of Windows in its decade of life, and it promises to ratchet the
industry forward another much-needed notckﬁ Because of the newness of
Windows 95, some of my examples come from the older Windows 3.x.
However, the principles of user interface design transcend the artifacts of any
particular release or platform.

The examples

I use several programs as examples. Mostly, I’ve used the Microsoft Office suite
of Word, Excel and PowerPoint; a little Adobe Illustrator and some

0028

INTRODUCTION

CompuServe Navigator, because these are the programs I use most. I have tried
to stay with mainstream programs for most examples for two reasons. First,
most readers will likely be at least slightly familiar with the examples. Second,
it’s important to show that the user interface design of even the most finely
honed products can be significantly improved with a goal-directed approach.

Pronouns

It is my sincere desire to be nor-sexist in my writing. I have wrestled with
clumsy constructions like “s/he,” “she/he” and “his or her” which seem like
inkspots or thumbprints on the page to me—TI have, therefore, abandoned
them. I also tried the dreaded genderless plurals, “they,” “their” and “them.”
In this case, the cure seemed worse than the disease to me.

The solution I finally adopted was to use feminine pronouns exclusively, and
that was how the manuscript was originally drafted. Many focus groups and
reviews later, my editor and publisher—both female—insisted that I return to
the masculine form so as to avoid offending my readers. I want to change the
world of user interface design, not rattle the world of book publishing, so I
reluctantly agreed. I apologize for the male pronouns, and sincerely hope that
you will read them merely as placeholders for intelligent and capable people of
cither sex.

Special notations

As I study software design, I find it powerful and effective to encapsulate my
discoveries as axioms. These bricf aphorisms encapsulate a great deal of wisdom

and are easy to remember. In this book[faxioms are: <of soft-
ware : A Each one represents a guiding principle
thatis a Pose these axioms to yourself as design tests when you find .

yourself stuck on tough problems.
the text as shown here.

0029

INTRODUCTION

Some fa ren’t as general as axioms, but they’re just as useful in their

specific area. When you are working with a particular design element, the
design tips from that area can help to unstick your creative mind. A complete

listing of all axioms and design tips can be found in the Reference Section at
the back of the book.

When mentioned for the first time, terms with specific meanings for the user
interface design practitioner are highlighted in the text in | Most of
these terms are my own neologisms, but many of them were coined by others
or are in common use. If the term is one of my own, I will introduce it by
saying “I call this....” All of the design terms are mentioned in the index, with
the page number where they are first mentioned indicated.

Let’s design

I hope this book informs you and intrigues you, but most of all, I hope it makes
you think about software design in new ways. The practice of user interface
design is not only constantly changing, it is also big and varied enough to seem
different to disparate observers. If you have a different opinion or just want to
discuss things with me, I’d like to hear from you at alan@cooper.com.

That’s enough preliminary stuff; let’s design.

0030

Part I: The Goal
Designing for Users

Technology i th’é engine that drives usev interface
design. This synergy is & two-edged sword, because
15 the power of the technology frees us to per-
vm great feats of invention, it simultaneonsly
ties us to ways of thinking that ave contrary to the
natural divection of buman bebavior. Almost all
ith modern software user inter-

users strive, even if they themselves ave sometimes

of th B

0031

b

12

PART I: THE GOAL

4s an Jutomated

While it is the user’s job to focus on tasks the des1gner S]ob is to look beyond
the task to identify the user’s goals. Therein lies the key to creating the most
effective software solutions.

The well-tempered software designer must be sensitive to and aware of the
users’ goals amid the pressures and chaos of the software development process.
This isn’t as hard as you might think, as long as you know how, but it certainly
isn’t formulaic.

Keep in mind
If you teach him how to fish, yoirfeed him for life % In this book, I’m going to
teach you how to fish in these waters. s’ : %

We will talk a lot about the techniques and tools of interaction, but no matter

how far we stray we will aly
upon which all good design is founded.

F

So, what are the user’s goals? How can we identify them? How do we know that
they are real? Are they the same for all users? Do they change over time?

The user’s goals are often very different from what we might guess them to be.
& 5 e s
;, ,thn@ th%t an accounting € "Tér,,,@

If you think about it, those are pretty common goals. Regardless of the work
we do, and the tasks we must accomplish, most of us share those very basic,

0033

CHAPTER 1: GOAL-DIRECTED DESIGN 13

wmu N

simple goals. Evcn if you have much highei asp

still more pers

o © 0O 0

Hide my perfidy

Discover the original recipe for

However, many of t;ne books on user interface that I’ve read assume that the
user’s goals have something to do with the program’s business purpose.
Software designed to achieve purely business goals will fail, but if it is designed
with the personal goals of the user in mind, it will also achieve its business
goals. Of course, the program must satisfy the business problem at hand, but
the people who use it cannot and will not behave like invoices, database records
or modules of code.

If you examine most commerc1ally available f ; yday, you will find user

Most of that same software is equally bad at achieving its business purposes.
Invoices don’t get processed all that well. Customers don’t get serviced on
time. Decisions don’t get properly supported. I see a connection here.

0034

14 PAarT I: THE GoAL

This is a sad and preventable situation, but not a surprising one, because the
authors of these packages are focusing on the wrong things. Most of us pay far
too much attention to the technology used to implement computer solutions,

which distracts us from the user. S _pay.too
e 3 e M .
entio ngag 2 fiough attentiongto,

heir goals. Software can be technologically superbkand perform each business
task with diligence, yet still be a critical and commercial failure. To create suc-

242

cessful, effective software, we must see that it achieves the user’s goals. an’t/

gy or tasks, b e salton

Let me give you some examples of the results of focusing on technology and
tasks instead of on the user and his goals.

Software is often rude to the user. It
are not the user’s fault, or should not be. E
Figure 1-1 pop up like weeds dnf ing that thef?

r message boxes like the one in
iser has performed yet

another dunderheaded stunt. The all idemand that the 7

Figuve 1-1

Thank you so much for sharing that pithy observation with us. Why didn’t you notify the
library? What did you want to notify it about? Why are you telling me? What do I care?
Maybe you’d like to comment on what I’m wearing, too? And besides, what am I
“OK”ing? It is not OK with me that this failure occurred!

S%ftv{z{aifé”tédfféquent y'assumes tha
when a user is finished editing a document, he closes it, and the |

0035

CHAPTER 1: GOAL-DIRECTED DESIGN

—it has to

Software frequently interrogates the user, peppering him with a strin of terse

q y g peppering g
questions that he is neither inclined nor prepared to answer: “Where did you
hide that file?” “What interrupt request line is free?”

by tangent1al 1nterrupt1ons thatirequir acknowledgment, by managmg dlalog
boxes that forget what he did just moments ago or by fo

{fé'youisire?” and “Did you really want to delete

Patronizing que .
that file or did you have some other reason for pressing the delete key?’

Software that is obscure

Software is frequently obscure, hiding meaning, intentions and actions from
the user. Programs often express themselves in incomprehensible jargon that
cannot be fathomed by normal users (“How many stop bits?”) and sometimes
even by experts (“Please specify IRQ.”).

Features are hidden behind a veil of menus and dialogs and windows. How can‘
the user know that the answer lies in the help system if he can’t find the help
system? Even when the user finds the right dialog, he might find it populated
with terse abbrev1at10ns obscure commands and inscrutable icons.

example, how can a user poss1bly dec1de between a full installation, custom

installation and laptop installation if he isn’t told what each of them means in
terms of functionality as well as disk space?

Software with inappropriate behavior

selves, leave shoes in the middle of the living room floor, and can’t remember
what you told them only five mmutes earher In rapld sequence I save a docu-
‘ s me if I want to.sa

0036

15

16

ParT I: THE GOAL

first! Evidently the act of printing caused the program to thmk I had changed
it. Sorry, Mom, I didn’t hear you.

Programs often require us to step out of the main flow of tasks to p%rform func-
tions that should fall immediately to hand. Dangerous instructions, though, are
right up front where they can be accidentally triggered and frighten unsuspect-
ing users.

The overall appearance of @
withpopips popping up
¢

Another irritant is the “settings” that programs offer for our confirmation
without allowing us to change the values we disagree with. We’re forced to
leave the task at hand and fight our way through thickets of dialog boxes and
approvals to get to where we can enter the new values.

Let’s go back to our earlier list of user goals. We can reliably say that we will
make the user look stupid if we let him make big mistakes, keep him from
getting an adequate amount of work done or boring him. Stating this axiomat-
ically:

- ; ‘ ~ , . In the course! of this
book we will examine numerous ways in which ex1st1ng software makes the user
look stupid and explore ways to avoid that trap.

The essence of user interface design

The practice of user interface design is not formulaic. There is no such thing as
a “good user interface,” just as there is no such thing as a good furniture
arrangement.” A 4 *

the living room would be somewhat uncomfortable and 1nappropnate

3 | ;

0037

oy

CHAPTER 1: GOAL-DIRECTED DESIGN

The only true test of the quality of a user interface is in context: How will the
software be used? Who will use it? How frequently? For how long? How impor-
tant are considerations of data integrity? Learnability? Portability? The answers
to these questions vary widely and are not consistent from application to appli-
cation. The first task of the software designer hasn’t much to do with software:
it is seeking and finding answers to these and other, user-centered questions.

The source for determining whether or not a feature shonld be included in a
product shouldn’t rest solely on the technological underpinnings of that fea-
ture. The driving force behind the decision should not be that “we have the
technical capability to do this.” The primary factor should always be the goals
of the user.

Let me illustrate: One of my clients sells an automated call-distribution system.
The people who use their product are paid based on how many calls they
handle, not by the hour. Their most important consideration is not ease of
learning, but the efficiency with which calls can be routed to the answerer and
the rapidity with which they can be completed. Ease of learning is important,
as it affects the happiness and ultimately the turnover rate of employees, so
both ease and throughput should be accommodated where possible. But there
is no doubt that throughput is the dominant demand placed on the system and,
if necessary, ease of learning takes the back seat. A program that walks the user
through step-by-§tep will merely frustrate him once he’s learned;the ropes.

it

¥
We assume that makmg thmgs easier is the target But if all we want is easy, we!

test this phonc -call distribution product W1th a dozen first-time users, you’ll
find ways to improve the learnability of the product. However, if you test the
more-learnable version with a dozen experienced users, you’ll find them impa-
tient with the intermediate steps. You can’t create good design by following
rules disconnected from the goals of the user.

A more concise Way to state this is to say

Wlth any particular goals of business throughput or ease of use that are rclevant
in this situation.

0038

17

18

ParT I:. THE GOAL

The goal of all software users
is to be more effective

It is up to you as a designer to determine how “effectiveness” manifests itself
in the circumstances. If the software is a kiosk in a corporate lobby helping vis-
itors find their way around, ease of use for first-time users is clearly the goal. If
the software is a threat-detection and monitoring display on board an AWACS
radar airplane operated by a highly trained soldier, ease of use for first-timers is
a distant second consideration. The design of this is moot if the soldier cannot
clearly and easily distinguish a hostile aircraft from a sky crowded with com-
mercial and friendly aircraft. The recent incident in the Mid-East where
controllers aboard an AWACS plane directed jet fighters to shoot down two
friendly helicopters is evidence that their support software failed them, and that
some software designer wasn’t focusing on the user’s goal. Whatever the soft-
ware on board that plane was, it wasn’t “effective.”

A fresh look at features

= coscsteman

é that we run on our personal computers today“is feat
rather thang e, A wildly successful program like Microsoft Word for
§7V1ndows offers me hundreds of functions (I’m writing this book with it). It
offers functions like paragraph formatting, field insertion, page layout view and
toolbar conﬁgurauon I could easﬂy be considered an expert user of Word, and’
I know how to use each of these tools in creatmg the m%ny different documents
needed in my writing and my business. But, none of the functions are goal-cen-
tered. If I want to write a letter, the program comes with a template for a busi-
ness letter, but what if I want to write a personal letter to my Aunt Mary Lee?
Rather than a canned template, I’d like to see a dialog box like the one in
Figure 1-2. ‘

With this dialog box I wouldn’t have to worry about finding the right template,
nor would I have to fret over the margins, typeface, clip art and other aspects
of the letter. Id just say what I had to say to Aunt Mary Lee, and the program
would take care of the rest. I would tell the program my goals, and it would tell
each little feature how to behave to achieve them.

0039

CHAPTER 1: GOAL-DIRECTED DESIGN

Figure 1-2

This is a “goal-directed” dialog box. It doesn’t give me tools, it gives me answers: I get to
select the amount of formality, humor and cleverness in the presentation of the letter I'm
typing. It would govern such things as the typeface, its regularity, its style and its arrange-
ment on the page. It would have an effect on the margins, the spacing, the colors and addi-
tional visual elements like rules and clip art. Sure, I could control each aspect individually
and get the same result, but that’s what programmers like to do, not what users like to do.

This example is purposefully overstated, but regardless of what all of us
control-freak-programmer-types think about it, if someone created a letter-
writing-specific word processor with dialog boxes like this one, it would be a
big success. Goal-directed design is compelling to everyone, even those who
aren’t intrigued by technology.

includes most of usfpro-

To those who are intrigued by the technology, which
r types, we share a strong tendency to fhinksi
ures. This is only natural, as this is how we build software: function by
function. The problem is that this isn’t how users want to use it.LDe:
frequently ‘ S, ince it requires us to think in an unfamiliar way,
but after the initial strangeness wears off, goal-directed design is a boon—it is
a powerful tool for answering the most important questions that crop up dur-
ing the design phase:

0040

19

20 ParT I: THE GOAL

O What should be the form of the program?

O How will the user interact with the program?

O How can the program’s functions be most effectively organized?

O How will the program intr o first-time users?

O How can the program pu aﬁdablc and controllable face on
technology? e

O How can the program deal w hp blems?

How will the program help infrequent users become more expert?

How can the program provide sufficient depth for expert users?

We will answer these questions and more in the remainder of the book.

0041

Software Design

-» » hen we think about complex mechanical devices, we
take for granted that they have been carefully designed and
engineered. Software is usually far more complex than
most mechanical objects, but

is rarely consciously

21

0042

22

ParT I: THE GOAL

1,000,000 lines of code, including many thousands of variables, conditions and
comparisons—the software equivalent of moving parts. Compare this to a
mechanical artifact of almost overwhelming complexity like the Navy’s swing-
wing supersonic F-14 fighter jet. That jet probably has about 10,000 parts,
and “only” about 1,000 of them might be moving parts.

Most artifacts of the mechanical age are designed by professionals. Our cars are
designed by trained, professional automobile designers, not by mechanical
engineers. Our houses are designed by professionally trained and certified
building designers—architects—not by structural engineers. Our toys and
clothes and bookcases are designed by toy designers, clothes designers and
industrial designers.

The process of determining what software will do and how it will communicate
with the user is closely intertwined with its construction. Most software is built
like crazy Mrs. Winchester’s house, who thought that she’d die if she ever
stopped building. Rooms and stairs and cupboards and walls are added in manic
confusion as the need and opportunity presents itself during construction.
Programmers, deep in their thoughts of algorithms and coding arcana, design
user interfaces the way miners design the landscape with their cavernous pits
and enormous tailing piles. The software design process alternates between the
accidental and the non-existent.

As we move deeper into the information age, the overwhelming majority of
“manufactured” artifacts will be software. Since our future will be dominated
by vast amounts of software, the idea that it isn’t consciously and conscien-
tiously designed by trained professionals generates some justifiable unease.

Software creators have been policing their own profession since programming
began. Some of us have been warning of the inevitability of the regulation of
our industry. Possibly because of the libertarian leanings of many in the pro-
gramming community, these warnings are widely ignored. Unfortunately, the
consumer market won’t tolerate this lack of order for very long.

The Intel Pentium bug scandal of 1995 made headlines and became rich fod-
der for talk-show monologues. The fact that there were equally serious bugs in
the 286, 386 and 486 processors lulled Intel into a false sense of security. The
difference was that the Pentium was the first CPU widely advertised on prime-
time TV. Intel failed to realize that when you sell directly to consumers, they
apply their own standards, which are often enormously different from those of

0043

CHAPTER 2: SOFTWARE DESIGN

industry insiders. The family of programmers will forgive minor bugs in a CPU
chip because they know how complex it is and understand what the potential
impact of the bug will be. The consumer doesn’t care. He expects perfection
and, in today’s litigious, consumer-advocate climate, will get it.

Another story in the news lately tells of parents who purchased CD-ROM-
equipped computers for their families, only to learn firsthand of the
nightmarish difficulties getting them to work as advertised. Assembling bi-
cycles on Christmas Eve was a cakewalk compared to getting The Lion King
CD-ROM to work.

This state of affairs cannot continue for long. Either the software industry will
regulate itself like doctors and architects do, or the government will regulate it
like hairdressers and taxi-drivers. The choice is in the industry’s hands.

slopment because the

) theégrt of

< ity sthesuser. An
equ1va1ent role in the world of software has not fully developed yet, although
several groups are eyeing it jealously.

Many software tools are available to describe software, but almost all of them
double as programming tools. There is a real danger in using programming
tools as design tools. Programming has a life of its own, and once something
has been set into code, even if it’s just hack code in a prototyping tool, it tends
to exhibit a powerful inertia. Any code, even prototype code, tends to never be
thrown away. It’s as though the scaffolding is so labor-intensive that the urge
to incorporate it into the finished house is irresistible. If designers give coding
tools a wide berth—including prototyping tools—they will avoid the conflict
of interest between the practices of design and development.

All of the designers at my company work on paper with a pencil. We also use
computers, but only word processors and drawing programs. Prototyping is
useful for design verification, but we are very wary of mixing the design process
with the prototyping process.

0044

23

24

PArT I: THE GOAL

The profession of software design

Thankfully, there is a growing awareness of this conflict in the software indus-
try. More and more developers are thinking about design and viewing it as a
separate discipline from programming. Many observers of digital technology
sense the increasing pervasiveness-of software in every aspect of our lives. They
are also beginning to see the need for professional software designers, and this
trend is very encouraging.

There is some confusion over the correct terminology to refer to those who
design software. The term “software architect” is a good one, and it benefits
from the fairly accurate analogy with building architects. However, that term
has long been appropriated by the software engineers who build system inter-
nals. The term “software designer” is the one I and many others have settled
on (including the Association of Software Design). Unfortunately, this term
also is losing some of its value because it is widely used as a boutique term for
senior programmers,

I define gn as that portion of the dcvelopment process that is
responsible for determmmg how the program will acﬁieve the user’s goals. The
questions answered by this phase include

1. What the software program will do
2. What it will look like

3. How it will communicate with the user

u {5 esign n is a subset of software design that encompasses items 2
and 3 although it is often difficult to separate them from item 1. This book
focuses on user interface design, so it emphasizes interactive visual communi-

cations more than application problem solving.

Supporting software design disciplines

Members of another rapidly growing group call themselves “usability profes-
sionals.” These people do not necessarily come from the ranks of programmers.
Rather, they specialize in the study of how people interact with software. They
primarily conduct interviews and focus groups with users, observe them using
software, and then evaluate the quality of user interfaces and make recommen-
dations. Their efforts are a great help in both weeding out bad user interfaces

0045

CHAPTER 2: SOFTWARE DESIGN

and in raising the awareness—inside and outside the industry—of the crisis in
software design.

Another discipline, called variously “human factors engineering,” “human-
computer interaction” or “ergonomics,” researches the behavior of people as
they interact with computers and other technological artifacts. It provides
significant insight into the nuances of how we relate to our technical devices.

Another growing academic specialty is cognitive psychology, popularized at the
University of California (San Diego) by Donald Norman. This discipline looks
at how people think and understand the world around them, particularly the
technical artifacts they work with.

0046

25

The Three Models

Pcoplc in the computer industry frequently toss around
the term “computer literacy.” They talk about how some
people have it and some don’t; about how those who have
ceed in the information age and those who lack it
tween the soc1al and economic cracks of the new

nothing more than abemmmgé%gw&l?mg

at I call its

0047

28 ParT I: THE GOAL

From the movie-goer's point of view, it is easy to forget the nuance of
sprocket holes and light-interrupters while watching an absorbing drama. The
viewer imagines that the projector merely throws onto the big screen a pic-

il
el

1. or sometimes

uuct,

People don’t need to know all of the details of how some complex process actu-
ally works in order to use it, so they create a mental shorthand for explaining
it, one that is powerful enough to cover all instances, but that is simple and
easy. For example, many people imagine that when they plug their vacuums and
blenders into outlets in the wall, electricity travels up to them through little
black tubes. This mental model is perfectly adequate for using all household
appliances. The fact that the implementation model of household electricity
involves nothing actually travelling up the cord or that there is a reversal of
electrical potential 120 times per second is irrelevant to the user, although the
power company needs to know these details.

In the digital world, however, the differences between a user’s mental model
and an actual implementation model may be stretched far apart. We ignore
the fact that a cellular telephone might swap connections between a dozen
different cell antennas in the course of a two-minute phone call. Knowing this
doesn’t help us to understand how to work our car phones. This is particularly
true for computer software, where the complexity of implementation can make
it nearly impossible for the user to see the connections between his action and
the program’s reaction. When we use the computer to digitally edit sound or
display video effects like morphing, we are bereft of analogy to the mechanical
world, so our mental models are necessarily different from the implementation
model. Even if the connections were visible, they would remain inscrutable.

Computer software has a behavioral face it shows to the world, one made up by
the programmer or designer. This posture is not necessarily an honest repre-
sentation of what is really going on inside the computer, although it frequently
is. This ability to represent the computer’s functioning independent of its
true actions is far more pronounced in software than in any other medium. It
allows a clever designer to hide some of the more unsavory facts of how the
software is really getting the job done. This disconnection between what is real
and what is offered as explanation gives rise to a third model in the digital

world, which I call the %ﬁ%{%

It is the way the program represents

0048

CHAPTER 3: THE THREE MODELS 29

In the world of software, a program’s manifest model can be quite divergent
from the actual processing structure of the program. For example, an operat-
ing system can make a network file server look as though it were a local disk.
The fact that the physical disk drive may be miles away is not made i
the mq i t of thefm

The relationship between the three models is shown

in Figure 3;1.

Implementation Worse Better Mental Model
Model reflects Closer to Implementation Closer to Mental reﬂec.ts. user's
technology Model . Model vision
Manifest Models

Figuve 3-1

The way the engineer must build the program is usually a given. We call this the imple-
mentation model. The way the user perceives the program is usually beyond our control.
He will conjure up a likely image that we call the mental model. The way the designer
chooses to render the program we call the manifest model; this is the one aspect of the
program that we can change significantly. If we use logic and reason to make the manifest
model follow reality—the implementation model—shown on the left, we will create a bad
interface. On the other hand, if we abandon logic and make the manifest model follow
the ufser’s imagination—the mental model—shown on the right, we will create a good
interface.

Although software developers have absolute control over a program’s manifest
model, considerations of efficiency will strongly dictate their choice. Designers,
on the other hand, have considerable leeway in their choice of manifest model.
"The closer our manifest model comes to the user’s mental model, the easier he
will find the program to use and to understand. Generally, offering a manifest
model that closely follows the implementation model will reduce the user’s
ability to use and learn the program.

0049

30

ParT I: THE GOAL

We tend to form mental models that are simpler than reality, so creating mani-
fest models that are simpler than the actual implementation model can help the
user achieve a better understanding. Pressing the brake pedal in your car, for
example, may conjure a mental image of pushing a lever that rubs against the

“wheels to slow you down. The actual mechanism includes hydraulic cylinders,

tubing and metal pads that squeeze on a perforated disk, but we simplify all of
that in our minds, creating a more effective, albeit less accurate, mental model.
In software, we imagine that a spreadsheet “scrolls” new cells into view when
we click on the scrollbar. Nothing of the sort actually happens. There is no
sheet of cells out there, but a tightly packed heap of cells with various pointers
between them, and the program synthesizes a new image from them to display
in real-time.

The ability to tailor the manifest model is a powerful lever that the software
designer can use positively or negatively. If the manifest model takes the trou-
ble to closely represent the implementation model, the user can get confused
by useless facts. Conversely, if the manifest model closely follows a likely men-
tal model, it can take much of the complexity out of a user interface.

When we interact with computer software, we tend to create anthropomorphic
mental models. My program “reads” what I type in and “answers” me back
with an appropriate response. It doesn’t really do anything of the sort, but this
mental model is still a very effective tool to manage the complexity of a system.
If the software manifests this same anthropomorphic model, it will be easier for
the user to relate to.

Even hard-core propeller-heads anthropomorphize computers in order to
better understand them. This mental model isn’t “real,” but it is analogically
and symbolically valid, and very practical. Programmers often curse at their
recalcitrant computers, even though they know they aren’t listening. We do this
partly because our bodies have a mechanical structure. Our limbs, hands and
fingers are levers, so we think of automobile suspension systems as arms or
ankles, even though they are much more complex than that.

A mental model doesn’t necessarily have to be true or accurate, but it enables
the user to work effectively with the modeled process. For example, most non-
technical computer users imagine that their video screen is the heart of their
computer. This is only natural because the screen is what they stare at all the
time and is the place where they see what the computer is doing. If you point
out that the computer is actually a little chip of silicon in that big steel box

0050

CHAPTER 3: THE THREE MODELS

sitting under their desk, they will probably shrug and ignore this pointless fac-
toid. The fact that the CPU isn’t actually in the video display doesn’t help them
think about how they work with their computer, even though it is a more tech-
nically accurate concept. The industry doesn’t invest a lot of effort in disabus-
ing people of this mental model because it so clearly helps and it doesn’t seem
to get in anybody’s way.

ned by en s who know exactly
are with a manifest model very con-
sistent with its implementation model. This is logical and truthful, but not very
effective. The user doesn’t care all that much about how a program is actually
implemented. Of course, he cares about any problems that arise because of the
difference between the models, but the difference itself is of no particular
interest. There is a real communication gap between technical people who
understand implementation models and non-technical users who think purely
in terms of mental models. Any time a user telephones a software company’s
technical support hotline, he will probably fall into that gap.

Understanding how software actually works will always help someone to use it,
but this understanding usually comes at a significant cost. The manifest model
allows software creators to solve the problem by simplifying the apparent way
the software works. The cost is entirely internal, and the user never has to
know. User interfaces that abandon implementation models to follow mental
models more closely are better.

In Adobe PhotoShop the user can adjust the color balance of an illustration. A
small dialog box, instead of offering a numeric setting—the implementation
model—shows a series of small, sample images, each with a different color
balance. The user can click on the image that best represents the desired color
setting. Because the user is thinking in terms of colors, not in terms of num-
bers, the dialog more closely follows his mental model.

User interfaces that conform to
implementation models are bad

0051

31

32

ParT I: THE GoAL

A prime example of a user interface conforming to the implementation model
instead of to the user’s mental model can be found in Delrina’s WinFax LITE
product. Every step of the process is agonizingly wrought in discrete steps that
the user must laboriously control, and none of which are necessary from the
user’s point of view. The interaction with the user is rendered in perfect con-
formance with the internal logic of the software. Every possible user action is
duly represented by a separate dialog box. You can see some of this in Figure
3-2. The user is prompted for information when it is convenient for the pro-
gram to receive it—not when it is natural for the user;to provide it. The mani-
fest model of the WinFax program closely follows the implementation model
and ignores the user’s mental model. Instead of imagining the steps the user
might take to create and send a fax, the designer imagined what the program
had to do. This is typical of a user interface designed by programmers.

~Recipient

To: |Annette Server !

Number : |555-1212 i

Prefix : I:'

| Time to send ~Date to send
08 :28 :55 07 /25 } 94
~Resolution rFiles
@ High (200X200) [] save to file... = ARnete Server i
O Low (100%X200) [Attach...
~Cover Page . 0 Entry added to phonebook!

U] Send Cover...

Figure 3-2

Delrina’s WinFax LITE is a great study in aggravating users. Even in an application as
simple as this one, they can’t seem to resist adding complications. For most people on this
planet, there are only two options: selecting an existing number or entering a new one.
They have to ask for both options explicitly, and both options force a secondary dialog.
Even though you can add a new number to the phonebook in place, they force a com-
pletely extraneous dialog box on you just to make sure that any ease-of-use you might be
experiencing is destroyed. :

0052

CHAPTER 3: THE THREE MODELS

When I want to send a fax, it will either be to a person whose name I haven’t
yet entered into the program or one I already have. The code that performs
these functions is encased in separate modules inside the program, so the pro-
gram encases these functions in separate dialog boxes. To either select or enter
names, I have to sidestep the main program, even though selecting and enter-
ing names is the program’s primary function. Similar logic in automobile
design would have us manually setting the spark advance lever as we accelerated
and manually flipping the brake light switch when we decelerated.

Here’s a better way to manage the WinFax problem: Whenever I enter a new
fax name and number, the program should automatically record it. WinFax’s
main window should display a list of the names of previous fax recipients, allow-
ing me to quickly choose one from the list if I want.

Even Windows 95 misses this point. The Explorer attempts to show all of the
storage devices on the computer as a unified system, but to successfully com-
municate that to the user, their behavior must also be unified. Instead, their
behavior depends on the physical nature of the particular storage device. If you
drag a file between directories on the same hard drive, the program interprets
this as a MOVE, that is, the file is removed from the old directory and added to
the new directory, closely following the mental model. However, if you drag a
file from hard drive C to hard drive D, the action is interpreted as a COPY; that
is, the file is added to the new directory but not removed from the old
directory. This is consistent with the implementation model—the way the
underlying file system actually works. When the operating system moves a file
from one directory to another on the same drive, it merely relocates the file’s
entry in the disk’s table of contents. It never actually erases and rewrites the
file. But when it moves a file to another physical drive, it must physically copy
the data onto the new drive. To conform to the user’s mental model, it should
then erase the original, even though that contradicts the implementation
model. Microsoft’s programmers evidently couldn’t bring themselves to mani-
fest it in any terms other than the physical ones. Actually, this behavior can be
desirable, especially when copying files from a hard drive to a floppy drive, so
many people aren’t aware that it is just a terrifically inconsistent side effect. As
computers mature and logical “volumes” represent more than just physical
drives, the side effects stop being useful and become merely irritating because
you have to memorize the idiosyncratic behavior.

0053

33

34

ParT I: THE GoOAL

Mathematical thinking

The interface designer must shield the user from the implementation models
that the software engineer used to solve the internal problems of the software.
Just because a certain tool is well-suited to attacking a problem in software con-
struction doesn’t necessarily mean that it is well-suited as a mental model for
the user. In other words, just because your house is constructed of two-by-four
studs and sixteen-penny nails, it doesn’t mean that you should have to be
skilled with a hammer to live there.

Most of the data structures and algorithms used to represent and manipulate
information in software are logic tools based on mathematical models. All
programmers are fluent in these models, including such things as recursion,
hierarchical data structures and multi-threading. The problem arises when the
user interface manifests the concepts of recursion, hierarchical data or multi-
threading.

Mathematical thinking is an implementation model trap that is particularly easy
for programmers to fall into. They solve programming problems by thinking
mathematically, so they naturally see these mathematical models as appropriate
terms for inventing user interfaces. Nothing could be further from the truth.

For example, one of the most durable and useful tools in the programmer’s
toolbox is Boolean algebra. It is a compact mathematical system that
conveniently describes the behavior of the strictly on-or-off universe that exists
inside all digital computers. There are only two main operations: AND and OR.
The problem is that the English language also has an “and” and an “or,” and
they are usually interpreted—by non-programmers—as the exact opposite of
the Boolean AND and OR. If the program expresses itself with Boolean notation,
the user can be expected to misinterpret it.

For example, this problem crops up frequently when querying databases. If I
want to extract from a file of employees those who live in Arizona along with
those who live in Texas, I would say, in English, “get employees in Arizona and
Texas.” To say that properly in Boolean algebraic terms, I would say “get
employees in Arizona OR Texas.” No employee lives in two states at once, so
saying “get employees in Arizona AND Texas” is nonsensical in Boolean and will
always return the empty set as an answer. If you want to extract from that

0054

CHAPTER 3: THE THREE MODELS

database all of the employees who started work between January lst and
February 28th, it seems natural to say, in English, “get employees with start
dates of January and February.” In Boolean, you would say “get employees
with start dates of January OR February.”

A database query program—or any other program, for that matter—that inter-
acts with the user in Boolean is doomed to suffer severe user interface prob-
lems. It is unreasonable to expect users to penctrate the confusion. They
are well-trained in English, so why should they have to express things in an
unfamiliar language that—annoyingly—redefines key words.

Bringing mechanical age
models into the information age

We are experiencing an incredible transformation from a mechanical age to an
information age. The change has only begun, and the pace is accelerating rap-
idly. The upheaval that society underwent as a result of industrialization will be
dwarfed by that associated with the information age.

It is only natural for us to drag the imagery and taxonomy of the earlier era into
the new one. As the history of the Industrial Revolution shows, the fruits of
new technology can often only be expressed at first with the language of an ear-
lier technology. For example, we called railroads “iron horses,” automobiles
“horseless carriages,” and radio “wireless.” Unfortunately, this imagery and
taxonomy colors our thinking more than we might admit.

Importing linguistic or mental images directly from the pre-digital world is an
example of what I call mechan i

We use old representations in the new environment. Sometimes, the usage is
valid since the function is identical, even if the underpinning technology is dif-
ferent. For example, when we translate the process of typewriting with a type-
writer into word processing on a computer, we are doing mechanical-age
modeling of a common task. Typewriters used little metal tabs to slew the car-
riage rapidly over several spaces and come to rest on a particular column. The
process, as a natural outgrowth of the technology, was called “tabbing” or “set-
ting tabs.” Word processors also have tabs because their function is the same:
whether you are working on paper rolled around a platen or on images on a
video screen, you need to rapidly slew to a particular margin offset.

0055

35

36

PART I: THE GOAL

Sometimes, however, the mechanical-age model can’t make the cut into the
digital world. We don’t use reins to steer our cars, or even a tiller, although
both of these older models were tried in the early days of autos. It took many
years to develop an idiom that was unique to and appropriate for the car.

When technology changes dramatically, we often find that the nature of the
tasks we perform generates what I call 1

These are tasks, processes or concepts that arise solely because the new tech-
nology makes them possible for the first time. With no reason to exist in the
non-digital version, they were not conceived of in advance. When the tele-
phone was first invented, for example, it was touted solely as a business tool. Its
use as a personal tool wasn’t conceived of until it had been in use for 40 years.
Today, of course, the phone is used at least as much for personal reasons as it is
for business. When your teenage son spends an hour on the phone, it is a usage
model that was invisible from the older world.

New conceptual models are not exclusive to the digital world; they are part of
any rapidly shifting context, and technology is our current context. Digital
technology is the most rapidly shifting context humankind has witnessed so far,
so new and surprising information-age models are and will be plentiful.

An interesting thing about information-age models is that we have a hard time
seeing them with our mechanical-age mindset. Often, the real advantages of the
software products we create remain invisible until they have a sizable popula-
tion of users. For example, the real advantage of e-mail isn’t that it’s faster mail,
but rather the flattening and democratization that it promotes in the modern
business organization—the information-age advantage. The real advantage of
making it possible for everybody to communicate online isn’t cheaper and
more-efficient communications—the mechanical-age viewpoint. Instead, it is.
the creation of virtual communities—the information- age advantage that was
revealed only after it materialized in our grasp.

The language we bring to the new environment creates a problem because it is
always derived from mechanical-age models. Forty years ago, the computer was
envisioned as a big collating machine, and we applied the collation model to it.
We saw it as a “unit-record” device for 80-column-wide keypunch cards. Today,
when computers are ubiquitous personal productivity machines, we still find
vestigial indications of that 80-column, unit-record world.

0056

CHAPTER 3: THE THREE MODELS

The taxonomy of the mechanical-age model tends to obscure the recognition
of information-age models. The mechanical taxonomy hinders invention and
goal-directed design by focusing our thinking on old-paradigm goals. For
example, in the non-digital world calendars are made of paper and are usually
divided up into a one-month-per-page format. This is a reasonable compromise
based on the size of paper, file folders, briefcases and desk drawers.

Now that we have desktop computers, we frequently see programs with
graphic representations of calendars, and they almost always show one month
at a time. Why? Paper calendars showed a single month because they were lim-
ited by the size of the paper, and a month was a convenient breaking point.
Computer screens are not so constrained, but they copy the mechanical-age
artifact faithfully. On a computer, the calendar could easily be a continuously
scrolling sequence of days, weeks or months as shown in Figure 3-4, rather than
a series of discrete pages, as in Figure 3-3. Scheduling something from April
28th to May 4th would be simple if weeks were contiguous instead of broken
up by the arbitrary monthly division.

Tuesday, April 25, 1995
April 1995
T woT

Figure 3-3

The ubiquitous calendar is so familiar that we rarely stop to apply our information-age
design sensibilities to it, but that old calendar was designed for small pieces of paper, not
for computer screens. The one shown here is from the Calendar in Windows 3.1. How
would you redesign it? What aspects of the calendar are artifacts of its old, mechanical-age
platform?

0057

37

38

ParT I: THE GOAL

5 6 7 8 9 10 1
12 13 14 15 16 17 18
En
X |19 20 21 22 &3 24 25
26 27 28 29 30 31 1

Figure 3-4

Scrolling is an idiom extremely familiar to computer users. Why not add scrolling to the
calendar to create a better one? This perpetual calendar can do everything the old one
can, and it also solves the mechanical-age problem of scheduling things across monthly
boundaries. Why drag old limitations onto new platforms just out of habit? What other
improvements can you think of?

Similarly, the grid pattern in digital calendars is almost always of a fixed size.
Why couldn’t the width of columns of days or the height of rows of weeks be
adjustable like a spreadsheet? Certainly you’d want to adjust the sizes of your
weekends to reflect their relative importance over your weekdays. Likewise,
your vacation-week calendar would demand more space than a working week.
The idioms are as well known as spreadsheets—that is to say, universal—but the,
mechanical-age models are so firmly set in our taxonomy that we rarely see soft-
ware publishers deviate from the trajectory of the past. We have the tools, we
just don’t have the language.

The designer of the software thought of calendars as a canonical image—one
that couldn’t be altered from the familiar. This calendar software often exhibits
interesting new information-age features, like the ability to page instantly for-
ward and backward months or years at a time, or to add graphic representations
of holidays to the little day rectangles. These same calendars rarely break the
one-month-per-screen archetype, though, and it is this one thing that really
holds digital calendars back. Surprisingly, most time-management software

0058

CHAPTER 3: THE THREE MODELS

probably handles time internally—its implementation model—as a continuum,
and only renders it as discrete months in its user interface—its manifest model!

Sometimes people counter that the one-month-per-page calendar is better
because it is familiar and unthreatening to users. I doubt it. Most people’s
mental models don’t break time into monthly chunks, but rather see it as a
continuum of days. Nor do people find it difficult to adapt to newer, simpler
manifestations of familiar systems. We adapted to electric from gas stoves with-
out a hitch. Similarly, the transition from manual transmissions to automatics,
from AM radio to FM, from conventional to microwave ovens and from vinyl
records to compact discs was simple and painless.

All of those paper-style calendars on various personal information managers
(PIMs) and schedulers are mute testimony to how our taxonomy-—our lan-
guage—influences our designs. If we depend on words from the mechanical
age, we will build software from the mechanical age. Better software is based
on information-age thinking.

It’s worse on a computer

We encounter another big problem when we bring our familiar mechanical-age
models over to the computer. Simply put, mechanical-age processes are a lot
worse when computerized. Procedures are easier by hand than they are with
computers. Try to type someone’s address on an envelope with a computer.
The only time it gets easier is if you have 500 envelopes to address.

Transliterated mechanical models
are always worse on computers

Another example, a name and address list on a computer—if it is faithfully ren-
dered like a little bound book—will be much more complex, inconvenient and
difficult to use than the actual book. The name and address book, for example,
stores names in alphabetical order by last name, but what if you want to find
someone by his first name? The mechanical-age artifact doesn’t help you: you
have to scan the pages manually. So, too, does the computerized version: it
can’t search by first name either. The difference is that, on the computer screen,
you lose many subtle visual cues offered by the paper-based book. The

0059

39

40

ParT I: THE GOAL

scrollbars and dialog boxes are harder to use, to visualize and to understand
than flipping pages. They are rocks thrown at your feet.

Whenever you take a mechanical process and put it on a computer, the user of
that process will suffer. The only situation where transliterated processes yield
an advantage is if the sheer quantity of items to be processed is large enough to
justify doing the task en masse. Early data-processing systems did this with
applications like invoicing and billing. Most of our desktop computing jobs
don’t involve sufficiently large quantities of information for this to remain true.

But there is another, bigger problem with transliterated mechanical models.
The old mechanical method will always have the strengths and weaknesses of
its medium, like pen and paper. Software has a completely different set of
strengths and weaknesses, yet when those old models are brought across with-
out change, they combine the weaknesses of the old with the weaknesses of the
new. In our address book example, the computer could easily search for an
entry by first name, but, by storing the names in the same paradigm as the
mechanical artifact, we deprive ourselves of new ways of searching. We limit
ourselves to not much more than what we could do in the world of paper and
ink, but this time we have to do it through dialog boxes and menus.

When designers rely on mechanical-age paradigms to guide them, they are
blinded to the far greater potential of the computer to do information man-
agement tasks in a better, albeit different, way.

0060

Visual Interface Design

The commonly accepted wisdom of the post-Macintosh
era is that graphical user interfaces, or GUIs, are better than
character-based user interfaces. This is generally a true state-

ment but; while there are certainly GUI programs that
dazzle us with their ease of use, the vast majority of GUI
programs irritate and annoy .us in spite of their graphic

41

0061

42

ParT I: THE GoAL

Most humans process information better visually than they do textually. Sure,
we learn by reading, but we learn much more, much faster by seeing things
whole and in context. In order to realize the advantages of the technology, the
interaction with the user must become visual. The issue isn’t the graphic nature
of the program, it’s the visualness of the interaction. Instead of GUI, it’s a
visual user interface—a VUI—that we are looking for. Software that recognizes
this is called When done well, a VUT has a feeling of

e

fluency, of Virig along smoothly and effortlessly towards the user’s goals
without hitching or stopping on confusing little problems of comprehension.

Visual processing

The human brain is a superb pattern-processing computer. It uses this strength
to make sense of the dense quantities of visual information we are bombarded
with from the moment we open our eyes in the morning. The acuity of the
human eye is tremendous, and if our brain couldn’t impose some management
system on what our eyes report, we would collapse from overload. Look out the
window. See the trees, the water, the waves, the clouds, the people, the win-
dows, the people in the windows, the guy carrying the box, the name printed
on the box, the letters in the name... If we had a difficult time with visual com-
plexity, the sheer quantity of visual information we take in when we look out
the window would put us in a state of shock. But we clearly aren’t bothered by
this visual complexity. When we look out the window, our eyes encompass a
huge scene filled with constantly changing terabytes of complex information.
Our brain manages the input by unconsciously discerning patterns, and by
using these patterns to manage what we are looking at. Our brains establish a
system of priorities for the things we see that allow us to consciously analyze
the visual input.

Text, when viewed from a distance, forms a recognizable pattern and shape that
our brains categorize. This is a different act from reading, where we scan the indi-
vidual words and interpret them. Even then, we use pattern-matching more than
we actually sound out each syllable the way we did as children. Each word has a
recognizable shape, and this is why WORDS TYPED IN ALL CAPITAL LET-
TERS ARE HARDER TO READ than upper/lower case—our familiar pattern-
matching hints are absent in all capitals, so we must pay much closer attention to
decipher what is written. This same pattern-processing talent explains why body
text in books is always in a relatively standard, serif typeface like the one you are
looking at now. However, if this book were printed wsing & sans serif font, or & fout with
wnhshal proportions, you would find it not & strain on the eyes, but 4 strain on the brain.

0062

[

CHAPTER 4: VISUAL INTERFACE DESIGN

When we look at the complex scene out the window, our brain gathers big
chunks of the view into manageable pieces—building, street, ocean, sky—and
lets our conscious processes grapple with higher-level issues.

If, for example, we find ourselves taking a second look at one person in the
crowd on the street below, it is because our subconscious pattern-matching
equipment got a hit. We next study the person’s face, searching for details in
order to make a positive identification. We go through the identical process
when we read documents. Our unconscious mind is constantly reducing visual
input to patterns, and our conscious mind is constantly ordering those patterns
into hierarchies. When our eye-brain-pattern system reports an “envelope,” our
brain-hierarchy system isolates it and examines it for our name. The pattern sys-
tem detects the envelope pattern; then the conscious system disambiguates that
pattern into either a letter for us or a letter for someone else.

 Visually show what,
Textually show which

If our unconscious mind could not classify the pattern as an envelope, we would
have to get our conscious mind involved in the preliminary processing. It is
much faster when our unconscious mind provides the first cut because pattern-
matching is so much faster and more efficient than having to think about it.

Visual patterns

If our conscious mind had to grapple with every detail of what our eyes saw, we
would be overwhelmed with meaningless detail. The ability of our unconscious
mind to group things into patterns based on visual cues is what allows us to
process visual information so quickly and efficiently. Understanding and apply-
ing this model of how the human mind processes visual information is one of
the key elements of visual interface design. The philosophy is to present the
program’s components on the screen as recognizable visual patterns with
accompanying text as a descriptive supplement. The user can choose, on a
purely pattern-matching, unconscious level, which objects to consider
consciously. The accompanying text only comes into play once the user has
decided it’s important.

0063

43

44

PAarT I: THE GOAL

You build an effective visual interface from visual patterns. Notice that I did not
say pictures or images or icons. Representational images are useful, but patterns
are the engine of unconscious recognition. For the user to discern a particular
icon from a screenful of similar but different icons is just as difficult as dis-
cerning a particular word from a screenful of similar but different words. Icons
that must be consciously recognized or deciphered are no better—and possibly
much worse—than plain text.

A visual interface is based
on visual patterns

The pecking order of visual understanding always regards visual pattern-
matching as superior to verbal or pictographic reading. Pattern-matching is
unconscious and reading is conscious. Our visual user interface must create
readily recognizable patterns. It will certainly include text, but only in a sec-
ondary role of distinguishing between objects with similar patterns.

We create patterns in very simple ways. Possibly the simplest is by creating
recognizable graphic symbols and giving them value by association. As you
drive down the highway, you read all of the signs you see. After a while, you
begin to notice a pattern. Every time the highway you are on is identified, its
number is accompanied or even enclosed by the symbol “).” You probably
don’t pay much attention to this trivial detail, and why should you? You are
usually well aware of what highway you are on. Your unconscious mind filters
out the {J signs. Then one day you are on an unfamiliar highway and you want
to know exactly which one you are on. Your conscious mind wants to know
this, so your unconscious mind alerts you to the presence of each () it sees.
Your conscious mind then reads the numbers on the sign to separate it from all
of the other (Js you have seen. The () is not representational. It is not
metaphoric. It is idiomatic: you learn the shape from the context in which it is
used, and from then on it represents its context.

This is exactly what you do with visual interface design. You create symbols for
the objects in the interface. If the program you are creating manages a restaurant,

0064

GCHAPTER 4: VISUAL INTERFACE DESIGN

for example, you will find that tables, checks, orders, specials, and waitpersons
are the fundamental elements—the building blocks—with which you must
create the interface. In other words, these are the objects that the users will
manipulate to achieve their goals. What you need to do is create a recognizable
visual symbol for each of these primary types:

ed Tables
& Checks
4 Orders
* Specials

R4l Waitpersons

The symbols don’t have to be representational, but it doesn’t hurt. If you do
choose a representational image, don’t kid yourself about its value as a teach-
ing tool. On the other hand, don’t ignore the value of mnemonics. Each user
can form his own mental cues to help him remember what the symbols repre-
sent: factories and tables both produce value; ducks and waitpersons both fly
from place to place.

In order to drive home the connection between symbol and object, you must
use the symbol everywhere the object is represented on the screen. Whether the
object is an item in a listbox, an entire dialog box, a mention in text, or a gizmo
on the toolbar, it must be accompanied by the visual symbol. You don’t have
to spell this out to the user: you are teaching it to his unconscious mi
its presence alone over time is sufficient to do that. I call this

If you have a list of waitpersons, prefix each one with the 7 symbol as in
Figure 4-1.

The power of this technique is even greater if you have a listbox filled with
heterogeneous objects. Imagine a similar listbox filled with both tables and
orders as shown in Figure 4-2.

Our minds differentiate each line—each object—Dby its visual symbol, and once
we have identified the type we are interested in, we read the text to separate it
from its siblings. We don’t have to read about objects we are not interested
in. This type of processing is very natural to humans and we can perform it
rapidly and with little effort.

0065

45

46 ParT I: THE GOAL

7 Jennifer
T Wally

7 Raoul

7 Sally

7 Quentin
7 Randy
7 Margarita

Figuve 4-1

This listbox is filled with several objects of one type. You can see that unconsciously,
because your mind discerns the identical symbols associated with each entry. It will proba-
bly take some additional reading to disambiguate which object is which, but without the
symbols, we’d have to read them all just to know what they are and that they are all the
same type. Symbols should always be associated with text in visual user interfaces.

31
31
38
41
42
41
46

i
L3

ESEEEDME

Figure 4-2

This listbox is filled with objects of two different types. Without the symbols to differen-
tiate between tables and orders, it would be impossible to make sense of the list. We would
have to label each entry with text, “Table 31,” “Order 31,” and so on. The symbols are
much faster, letting our unconscious minds recognize the patterns before our relatively
slow conscious minds even have to pay attention.

0066

CHAPTER 4: VISUAL INTERFACE DESIGN

Restricting the vocabulary

When graphical user interfaces were first invented, they were so clearly
superior that many observers credited their success to their graphics. This was
a natural reaction, but it was only part of the story. One of the most important
reasons why those first GUIs were better was that they were the first user inter-
faces to restrict the range of their vocabulary for communicating with the user.
In particular, the input they could accept from the user went from a virtually
unrestricted command line to a tightly restricted set of mouse-based actions. In

2 command line interface, the user can enter any combination of characters in -

the language—a virtually infinite number. In order for the user’s entry to be
correct, he needs to know exactly what the program expects. He must remem-
ber the letters and symbols with exacting precision. The sequence can be
important. The capitalization can be vital.

In the GUI, the user can point to images or words on the screen with the
mouse cursor. Using the buttons on the mouse, the user can click, double-click
or click-and-drag. That is it. The keyboard is used for data entry, not for com-
mand entry or navigation. Instead of 26 letters, 10 digits and a couple of dozen
other keys available in an infinite number of combinations in the command line
interface, the user has just three basic actions to choose from. The number of
atomic elements in the user’s input vocabulary dropped from millions to just
three, even though the range of tasks that could be performed by GUI pro-
grams wasn’t restricted any more than that of command-line systems.

The more atomic elements there are in a communications vocabulary, the more
time-consuming and difficult the learning process is. Vocabularies like the
English language take at least ten years to learn thoroughly, and its complexity
requires constant use to maintain fluency. Of course, English is a fantastically
expressive language and, in the hands of an artist, can be a most compelling
medium. Our users aren’t artists, though, and they shouldn’t have to invest
that much effort in becoming effective with our software. Merely restricting
the number of elements in the vocabulary reduces the expressiveness of it, so
that alone is not the solution. The answer lies in the way we build our vocabu-
laries—some parts are restricted in size, while others can be huge.

A properly formed vocabulary is shaped like an inverted pyramid. All easy-to-
learn communications systems obey this pattern. It is so fundamental that I call
' al ve y. You can see a picture of it in Figure 4-3.

0067

47

48 ParT I: THE GOAL

The Canonical Vocabulary

Idioms

Application-specific commands and feedback Scrolling, Sortng

Dialogs

Delete, Create,
Draw

Compounds

Generic input and output Edit fields, Checkboxes,

Double Click,
actions and symbols Highlighting

Buttonclick,
Selection

Primitives
Smallest
Indivisible actions
and feedhack

mechonisms

(lick, Drag,
Keypress

Cursor,
Text

Input c > Output
Figure 4-3

The main reason GUIs are so much easier to use is that they were the first platform to
enforce a canonical vocabulary. It has very little to do with graphics. All vocabularies
follow this archetypal form.

At the lowest level is a set of primitives from which all else is constructed. Generally, the
set of primitives shouldn’t exceed four elements. The middle layer consists of more com-
plex constructs built from combinations of the primitives. The upper-level idioms are
compounds with the addition of domain knowledge.

The bottom segment contains what I call the f ves, the atomic elements

of which everything in the language is comprised.

Paraphrasing Albert Einstein, this set should be as small as possible, but no
smaller. In a GUI, it consists of pointing, clicking and dragging. A set of
primitives of two to four items is about right. More than that leads to trouble.

7

The middle trapezoid contains what I call the ¢

These are more complex constructs created by combining one or more of the
primitives. Nothing else is added; they are built exclusively from elements below
them in the pyramid. In a GUI, it contains such actions as double-clicking,
click-and-dragging and manipulable objects like push-buttons and checkboxes.

0068

CHAPTER 4: VISUAL INTERFACE DESIGN

The uppermost layer of the pyramid contains what I call the
combine compounds with knowledge of the problem under con81derat10n
known as .

the user’s apphcat10n area and not specifically to the computerized solution.
The set of idioms opens the vocabulary to information about the particular
problem the program is trying to address. In a GUI, it would include things
like OK buttons, caption bars, listboxes and file icons.

Any language that does not follow the canonical form will be very hard to learn.
Many effective communications systems outside of the computer world follow
canonical vocabularies. Street signs follow a simple pattern of shapes and
colors: Yellow triangles are cautlonaly, red octagons are imperatives and green
rectangles are informative.

Our telephone system has a tiny set of primitives consisting of simple audio
tones. Hearing a buzz—a dial tone—means the system is available. When the
buzz alternates with silence, it means the number is busy. A warble means the
phone is ringing. Silence means we have failed to enter valid numbers, or there
is some other problem and we should try again.

Designing for users

Successful user interfaces are those that focus on the user’s goals even if they
have to ignore the technology of the implementation. Professional software
designers are the primary group today acting as advocates for the user.

To create effective visual interfaces, designers must create interaction from a
canonically formed vocabulary that is expressed visually. This vocabulary fol-
lows the user’s mental model, even if it diverges from the physically correct
model. As Frederick Brooks says, “The [designer] sits at the focus of forces
which he must ultimately resolve in the user’s interest.”

0069

49

Part II: The Form
The March of Paradigms

erface design begins well-below the suv-
fAice of onr systems and applications. Imagining
" that we can create a good user interface for our
the program’s internals have been

desigmers must fully understand why our comput-
ers work the way they do. They must make

niques of software development is a seduction that

designers must vesist. It is all too easy to become

%ﬂﬁuthetic to the needs of the computer, which

0070

Idioms and Affordances

of “finding the right
tflcir interface design. They

put metaphor selection as
d most important tasks. ‘

nterface design. Searching

an elusive: guiding metaphor is like searching for the

53

0071

54

PART II: THE FOrRM

correct steam engine to power your airplane, or searching for a good dinosaur
on which to ride to work.

Basing a user interface design on a metaphor is not only unhelpful, it can often
be quite harmful. The idea that good user interface design relies on metaphors
is one of the most insidious of the many myths that permeate the software com-
munity.

Metaphors offer a tiny boost in learnability to first-time users, but at a tremen-
dous cost. By representing old technologies, most metaphors firmly nail our
conceptual feet to the ground, forever limiting the power of our software. They
have a host of other problems as well, including the simple facts that there
aren’t enough metaphors to go around, they don’t scale well, and the ability of
users to recognize them is questionable.

The three interface paradigms

There are thrce domlnant paradlgms in the design of user interfaces. I call these
three the chnology paradigm, e igm and the |

SIS,

work—a difficult proposition. The metaphor paradigm is based on intuiting
how things work—a risky method. The idiomatic paradigm, however, is based
on learning how to accomplish things—a natural, human process.

The field of user interface design has progressed from an orientation focused

on technology, into one that focuses overmuch on metaphor. We are just now

becoming aware of idiomatic design. There is ample evidence of all three para-

digms in contemporary software design, even though the metaphor paradigm

is the only one that has been named and described. We pay metaphors lots of
lip service and, all too often, hamper the creation of really good interfaces by
following their false trail.

The technology paradigm

The 1 of user interface design is simple and incredibly
widespread in the computer industry. The technology paradigm merely means
that the interface is expressed in terms of its construction—of how it was built.
In order to successfully use it, the user must understand how the software
works. Following the technology paradigm means user interface design based
exclusively on the implementation model.

0072

CHAPTER 5: IDIOMS AND AFFORDANCES

There was a genre of building architecture, popular in the 1960s, called
Metabolist. In Metabolist architecture, the elevator shafts, air conditioning
ducts, cable runs, steel beams and other construction impedimenta are left
uncovered and visible. The muscles, bones and sinews of the building are
exposed—even emphasized—without any hint of modesty. The idea was that
the building is a machine for living and its form should follow its implementa-
tion details. The overwhelming majority of software programs today are
Metabolist in that they show us, without any hint of shame, precisely how they
are built. There is one button per function, one function per module of code,
and the commands and processes precisely echo the internal data structures and
algorithms.

We can see how a technology program ticks merely by learning how to run it;
The problem is that the reverse is also true: We maust learn how it ticks in order
to run it. '

Users would rather be successful
than knowledgeable

Engineers want to know how things work, so the technology paradigm is very
satisfying to them (which, of course, is why so much of our software follows it).
Engineers prefer to see the gears and levers and valves because it helps them
understand what is going on inside the machine. That those artifacts needlessly
complicate the interface seems a small price to pay. Engineers may want to
understand the inner workings, but most users don’t have either the time or
desire. They’d much rather be successful than be knowledgeable, a state that is
often hard for engineers to understand.

The metaphor paradigm

In the 1970s, the modern graphical user interface was invented at Xerox Palo
Alto Research Center (PARC). It has swept the industry, but what, exactly, is
it? The GUI—as defined by PARC—consisted of many things: windows, but-
tons, mice, icons, metaphors, pull-down menus. Some of these things are good
and some are not so good, but they have all achieved a kind of holy stature in
 the industry by association with the empirical superiority of the ensemble.

0073

55

56

ParT II: THE FORM

In particular, the idea that metaphors are a firm foundation for user interface
design is a very misleading -proposition. It’s like worshipping 5.25" floppy
diskettes because so much good software once came on them.

The first commercially successful implementation of the PARC GUI was the
Apple Macintosh, with its desktop, wastebasket, overlapping sheets of paper
and file folders. The Mac didn’t succeed because of these metaphors, however,
but because it was the first computer that defined a tightly restricted vocabu-
lary—a canonical vocabulary based on a very small set of mouse actions—for
communicating with users. It also offered richer visual interaction. The
metaphors were just nice paintings on the walls of a well-designed house.

Metaphors don’t scale very well. A metaphor that works well for a simple
process in a simple program will often fail to work well as that process grows in
size or complexity. File icons were a good idea when computers had floppies or
10 MB hard disks with only a couple of hundred files, but in these days of multi-
gigabyte hard disks and thousands of files, file icons can get pretty clumsy.

When we talk about metaphors in the user interface design context, we really
mean visual metaphors: a picture of something used to represent that thing.
Users recognize the imagery of the metaphor and, by extension, can under-
stand the purpose of the thing. Metaphors range from the tiny images on tool-
bar buttons to the entire screen on some programs. They can be a tiny scissors
on a button indicating “cut,” or a full-size checkbook in Quicken. We under-
stand metaphors intuitively. Webster’s defines intuition like this:

in-tu-i-tion \in-'tu-wi-shen\ # 1 : quick and ready insight 2 a: immediate
apprehension or cognition b: knowledge or conviction gained by intuition
c: the power or faculty of attaining direct knowledge or cognition without
evident rational thought and inference

The dictionary highlights the magical quality of intuition, but it doesn’t say how
we intuit something. Intuition works by inference, where we see connections
between disparate subjects and learn from these similarities while not being dis-
tracted by their differences. We grasp the meaning of the metaphoric controls
in an interface because we mentally connect them with other processes or
things we have already learned. This is an efficient way to take advantage of the
awesome power of the human mind to make inferences, something that CPUs
are incapable of. But this method also depends on the creaky, cantankerous,
idiosyncratic human mind, which may not have the requisite language,

0074

CHAPTER 5: IDIOMS AND AFFORDANCES

knowledge or inferential power necessary to make the connection. Metaphors
are not dependable in the way that understanding is. Sometimes the magic
works, sometimes it doesn’t.

Metaphors rely on associations perceived in similar ways by both the designer
and the user. If the user doesn’t have the same cultural background as the
designer, it is easy for metaphors to fail. Even in the same or similar cultures,
there can be significant misunderstandings. Does a picture of an airplane mean
“send via airmail” or “make airline reservations”?

The metaphor paradig n relies on intuitive connections in which there is no
need to understand the mechanics of the software, so it is a step forward from
the technology paradigm, but its power and usefulness has been inflated to

unrealistic proportions.

Recall from our definition of intuition that no rational thought is evident in the
process. I think it is silly to imagine that we can base good user interface design
on a kind of mental magic that thumbs its nose at thinking. In the computer
industry, and particularly in the user interface design community, the word
intuitive is often used to mean easy-to-use or easy-to-understand. I’m a big fan
of easy-to-use, but it doesn’t promote our craft to attribute its success to meta-
physics. Nor does it help us to devalue the precise meaning of the word. There
are very real reasons why people understand certain interfaces and not others.

There are certain sounds, smells and images that make us respond without any
previous conscious learning. When a small child encounters an angry dog, she
instinctively knows that bared fangs are a sign of great danger, even without any
previous learning. The encoding for such recognition goes deep. Instinct is a
hard-wired response that involves no conscious thought. Intuition is one step
above instinct because, although it also requires no conscious thought, it is
based on a web of knowledge learned consciously.

Examples of instinct in human-computer interaction include the way we are
startled and made apprehensive by gross changes in the image on the screen, or

react to sudden noises from the computer or the smell of smoke rising from the
CPU.

Intuition is a middle ground between having consciously learned something
and knowing something instinctively. If we have learned that things glowing
red can burn us, we tend to classify all red-glowing things as potentially dan-
gerous until proven otherwise. We don’t necessarily know that the particular

0075

57

58

ParT II: THE FORM

red-glowing thing is a danger, but it gives us a safe place to begin our
exploration.

What we commonly refer to as intuition is actually a mental comparison
between something and the things we have already learned. You instantly intuit
how to work a wastebasket icon, for example, because you once learned how a
real wastebasket works, thereby preparing your mind to make the connection
years later. But you didn’t intuit how to use the original wastebasket. It was
just an extremely easy thing to learn. This brings us to the third paradigm,
which is based on the fact that the human mind is an incredibly powerful
learning machine, and that learning isn’t hard for us.

The idiomatic paradigm

The idiomatic method of user interface design solves the problems of both of
the previous two. I call it the g 0! ' because it is based on the
way we learn and use idioms, or figures of speech, like “beat around the bush”
or “cool.”

These idiomatic expressions are easily understood but not in the same way
metaphors are. There is no “bush” and nobody is beating anything. We under-
stand the idiom simply because we have learned it and because it is distinctive,
not because we understand it or because it makes subliminal connections in our
minds.

This is where the human mind is really outstanding: learning and remembering
idioms very easily without relying on comparisons to known situations or an
understanding of how they work. This is a necessity, because many idioms don’t
have any metaphoric meaning at all, and the stories behind most others were
lost ages ago.

Most of the elements of a GUI interface are idioms. Windows, caption bars,
close boxes, screen-splitters and drop-downs are things we learn idiomatically
rather than intuit metaphorically.

We are inclined to think that learning is hard because of our conditioning from
the technology paradigm. Those old interfaces were very hard to learn because
you also had to understand how they worked. Most of what we know we learn
withouwt understanding: things' like faces, social interactions, attitudes, the
arrangement of rooms and furniture in our houses and offices. We don’t
“understand” why someone’s face is composed the way it is, but we “know” his
face. We recognize it because we have looked at it and automatically (and
casily) memorized it.

0076

CHAPTER 5: IDIOMS AND AFFORDANCES

The familiar mouse is not metaphoric of anything, but rather is learned
idiomatically. There is a scene in- Star Trek IV where Scotty returns to
twentieth-century Earth and tries to speak into a mouse. It is one of the few
parts of that movie that is not fiction. There is nothing about the physical
appearance of the mouse that indicates its purpose or use, nor is it comparable
to anything else in our experience, so learning it is not intuitive. However,
learning to point at things with a mouse is incredibly easy. Someone probably
spent all of three seconds showing it to you the first time, and you mastered it
from that instant on. We don’t know or care how mice work, and yet even small
children can operate them just fine. That is idiomatic learning.

Not only can you not intuit an idiom, neither can you reason it out. Our lan-
guage is filled with idioms that, if you haven’t been taught them, make no
sense. If I say my Uncle Joe “kicked the bucket,” you know what I mean even
though there is no bucket or kicking involved. You can’t know this because you
have thought through the various permutations of smacking pails with your
feet. You can only learn this from context in something you read or by being
consciously taught it. You remember this obscure connection between buckets,
kicking and dying only because humans are good at remembering stuff like this.

‘All idioms must be learned. Good
“idioms only need to be learned once

The key observation about idioms is that although they must be learned, good
ones only need to be learned once. It is quite easy to learn idioms like “neat”
or “politically correct” or “the lights are on but nobody’s home” or “in a
pickle” or “inside the Beltway” or “take the red-eye” or “grunge.” The human
mind is capable of picking up idioms like these from a single hearing. It is sim-
ilarly easy to learn idioms like check-boxes, radio buttons, push-buttons, close-
boxes, pulldown menus, icons, tabs, comboboxes, keyboards, mice and pens.

Branding
Marketing professionals know this idea of taking a simple action or symbol and

imbuing it with meaning. After all, synthesizing idioms is the essence of prod-
uct branding, whereby a company takes a product or company name and

0077

59

60

PART II: THE FORM

imbues it with a desired meaning. Tylenol is, by itself, a meaningless word, an
idiom, but the McNeil company has spent millions to make you associate that
word with safe, simple, trustworthy pain relief. Of course, idioms are visual,
too. The golden arches of McDonalds, the three diamonds of Mitsubishi, the
five interlocking rings of the Olympics, even Microsoft’s flying window are
non-metaphoric idioms that are instantly recognizable and imbued with
common meaning. The example of idiomatic branding shown in Figure 5-1
illustrates its power.

Ironically, many of the familiar GUI elements that are often thought of as
metaphoric are actually idiomatic. Artifacts like window close boxes, resizable
windows, infinitely nested file folders and clicking and dragging are non-
metaphoric operations—they have no parallel in the real world. They derive
their strength only from their easy idiomatic learnability.

The showstoppers

If we depend on metaphors to create user interfaces, we encounter not only the
minor problems already mentioned, but also two more major problems:
metaphors are hard to find and they constrict our thinking.

Figure 5-1

Here is a randomly chosen idiomatic symbol that has been imbued with meaning from use
rather than from any inherent metaphoric value. For anyone who grew up in the *50s or
’60s, this otherwise meaningless symbol has the power to cause a small shiver of fear to
touch our backs. Idioms are just as powerful as metaphors. The power comes from how
we use them and how we associate them, rather than from any innate imagery.

0078

CHAPTER 5: IDIOMS AND AFFORDANCES

It may be easy to discover visual metaphors for physical objects like printers and
documents. It can be difficult or impossible to find metaphors for processes,
relationships, services and transformations—the most frequent uses of soft-
ware. It can be extremely daunting to find a useful visual metaphor for buying
a ticket, changing channels, purchasing an item, finding a reference, setting a
format, rotating a tool or changing resolution, yet these operations are pre-
cisely the type of processes we use software to perform most frequently.

The most insidious problem with metaphors, the real showstopper, is that they
tie our interfaces to mechanical age artifacts. It is easy to intuit how to use the
clipboard, for example, because it is a metaphor. But if we adhere strictly to the
clipboard metaphor, the facility is incredibly weak. It won’t hold more than one
thing, it doesn’t have a memory of what it held before, it can’t identify where
the images came from, it can’t show you thumbnails of what it holds and it
doesn’t save its contents from run to run. All of these actions are non-
metaphoric and have to be learned. Following the metaphor gives users a
momentary boost the first time they use the clipboard, but it costs them
greatly after that in the arbitrary weakness of the facility.

Another really outrageous example is MagiCap, a communications interface
from General Magic. It relies on metaphor for every aspect of its interface. As
you can see in Figure 5-2, you metaphorically walk down a street lined with
buildings representing services. You enter a building to begin a service, which
is represented as a walk down a hallway that is lined with doors representing
functions. This heavy reliance on metaphor means that you can intuit the basic
functioning of the software, but its downside is that the metaphor restricts all
navigation to a very rudimentary, linear path. You must go back out onto the
street to go to another service. This may be normal in the physical world, but
there is no reason for it in the world of software. Why not abandon this slavish
devotion to metaphor and give the user services they can’t get out on the
street?

For all the limitations of metaphors, there is nothing bad about using one if it
fits the situation. If I see a twenty-dollar bill lying on the sidewalk, of course
’ll pick it up: I’d be a fool not to! But I’d be a bigger fool if I decided to make
my living finding misplaced twenty-dollar bills. Metaphors are like that: use ’em
if you find em, but don’t bend your interface to fit some arbitrary metaphoric
standard.

0079

61

62

PArT II: THE FORM

@ Downtown Wednesday, June 15, 1994

& Hallway

Figuve 5-2

This is the MagiCap interface from General Magic. It is the acme of the expression of the
metaphoric paradigm. Nothing in the program is done without a thorough metaphoric
rationalization. I am in awe of its designers: the program is a tour de force of metaphor-
finding above and beyond the call of duty. All ofP the interaction has been subordinated to
the maintenance of these metaphors. I’'m sure it was a lot of fun to design. I’ll betitisa
real pain to use. Once you have learned that the substantial-looking building with the big
“AT&T” on its facade is the phone company, you must forever live with going in and out
of that building to call people. This most-modern, information-age software drags all of
the limitations of the mechanical age into the future and forces us to live with them yet
again. Is this progress?

Never bend your interface
to fit a metaphor

On a design project for a library management system, we had to present a
screen with multiple parts. Some gizmos were common to all of the parts, while
others came and went depending on the active part. We made part of the screen
look like a wire-bound notebook. The pages could flip like a notebook while
the rest of the screen remained stationary. The gizmos on the flipping pages
came and went while the gizmos outside of the notebook stayed still and
worked globally. The notebook metaphor drew the user’s attention to the dif-
ference and offered some visual help in understanding the scope of the
controls. The metaphor fit naturally into the design of the overall product, so
we used it. ‘

0080

CHAPTER 5: IDIOMS AND AFFORDANCES

General Magic’s interface relies on what is called a %” ' This is
a single, overarching metaphor that provides a framework for all of the
other metaphors in the system. The desktop of the original Macintosh is also
considered a global metaphor.

A hidden problem of global metaphors is the mistaken belief that other little
daughter metaphors consistent with them enjoy cognitive benefits by associa-
tion. The temptation is irresistible to stretch the metaphor beyond simple func-
tion recognition: That little software telephone also lets you “dial” with
buttons just like those on our desktop telephones. We see software that has
“address books” of phone numbers just like those in our pockets and purses.
Wouldn’t it be better to go beyond these confining technologies and deliver
some of the real power of the computer? Why can’t our communications
software allow multiple connections or. make connections by organization or
affiliation, or just hide the use of phone numbers altogether?

It may seem clever to represent your dial-up service with a picture of a tele-
phone sitting on a desk, but it actually imprisons you in a bad design. The orig-
inal makers of the telephone would have been ecstatic if they could have
created one that let you call your friends just by pointing to pictures of them.
They couldn’t because they were restricted by the dreary realities of electrical
circuits and Bakelite moldings. On the other hand, today we have the luxury of
rendering our communications interfaces in any way we please—showing
pictures of our friends is completely reasonable—yet we insist on holding these
concepts back with little pictures of obsolete technology.

There are two snares herc; one for the user and one for the designer. Once the
user depends on the metaphor for recognition, he expects consistency. This
causes the snare for the designer, who will now be tempted to render the soft-
ware in terms of the mechanical-age metaphor. As we saw in Part I, transliter-
ating mechanical processes onto the computer just makes them worse than they
were before.

Brenda Laurel says in her book Computers as Theatre (Addison-Wesley, 1991),
“Interface metaphors rumble along like Rube Goldberg machines, patched
and wired together every time they break, until they are so encrusted with the
artifacts of repair that we can no longer interpret them or recognize their ref-
erents.” It amazes me that software designers, who can finally create that
dream-phone interface, give us the same old telephone simply because they were
taught that a strong, global metaphor is a prerequisite to good user interface

0081

63

64

ParT II: THE FORM

design. Of all the misconceptions to emerge from Xerox PARC, the global
metaphor myth is the most debilitating and unfortunate.

Idiomatic design is the future of user interface design. Using this paradigm, we
depend on the natural ability of humans to learn easily and quickly as long as
we don’t force them to understand how and why. There is an infinity of idioms
waiting to be invented, but only a limited set of metaphors waiting to be dis-
covered. Metaphors give first-timers a penny’s worth of value but cost them
many dollars’ worth of problems as they continue to use the software. It is
always better to design idiomatically, only using metaphors when one falls in
our lap.

Manual affordances

Donald Norman, in The Psychology of Everyday Things (Basic Books, 1988),
has given us the fine term atford which he defines as “the perceived and
actual properties of the thing, primarily those fundamental properties that
determine just how the thing could possibly be used.”

This definition is fine as far as it goes, but it omits the key connection: sow do
we know what those properties offer us? If you look at something and under-
stand how to use it—you comprehend its affordances—you must be using some
method for making the mental connection.

I would alter Norman’s definition by omitting the phrase “and actual.” By
doing this, affordance becomes a purely cognitive term, referring to what we
think the object can do rather than what it can actually do. If a push-button is
placed on the wall next to the front door of a residence, its affordances are
100% doorbell. If, when we push it, it causes a trapdoor to open beneath us and
we fall into it, it turns out that it wasn’t a doorbell, but that doesn’t change its
affordance as one.

So how do we know it’s a doorbell? Simply because we have learned about
doorbells and door etiquette and push-buttons from our complex and lengthy
socialization and maturation process. We have learned about this class of push-
able things by exposure to electrical and electronic devices in our environs and
because—years ago—we stood on doorsteps with our parents, learning how to
approach another person’s abode.

But there is another force at work here, too. If we see a push-button in an
unlikely place like the hood of a car, we cannot imagine what its purpose is, but

0082

CHAPTER 5: IDIOMS AND AFEFORDANCES

we can recognize that it is a finger-pushable object. How do we know this? I
don’t think we know it instinctively, because a small child wouldn’t necessarily
recognize it as such; certainly not the way she would recognize claws or fangs.
I believe that we recognize it as a pushable object because of our tool-manip-
ulating nature. We, as a species (genus, actually), see things that are finger-
sized, placed at finger-height, and we automatically push them. We see things
that are long and round, and we wrap our fingers around them and grasp them
like handles. I think this is what Norman was getting at with his “affordance.”
For clarity, though, I call this instinctive understanding of how things are
manipulated with our hands When things are clearly
shaped to fit our hands or feet, we recognize that they are directly manipulable
and we need no written instructions.

In fact, Norman makes much of how [manual] affordances are much more
compelling than written instructions. A typical example he uses is a door that
must be pushed open with a metal bar for a handle. The bar is just the right
shape, height and position to be grasped by the human hand. The manual affor-
dances of the door scream “pull me.” No matter how often someone uses this
diabolical door, he will always attempt to pull it open, because the affordances

are strong enough to drown out any number of signs affixed to the door say-
ing “PUSH.”

There are only a few manual affordances. We pull handle-shaped things with
our hands and, if they are small, we pull them with our fingers. We push flat
plates with our hands or fingers. If they are on the floor we push them with our
feet. We rotate round things, using our fingers for small ones—like dials—and
both hands on larger ones, like steering wheels. Such manual affordances are
the basis for much of our visual user interface design.

The popular three-dimensional design of systems like Windows 95, NeXT and
Motif rely on shading and highlighting to make screen images appear to “pop
out.” These images offer manual affordances of button-like images that say
“push me” to our tool-manipulating natures.

Understanding what it means

What is missing from a manual affordance is any idea of what the thing really
does. We can see that it looks like a button, but how do we know what it will
accomplish when we press it? For that we begin to rely on text and pictures, but
most of all we rely on previous learning. The manual affordance of the scroll-
bar clearly shows that it is manipulable, but the only things about it that tell us

0083

65

66

ParT I1: THE FORM

what it does are the arrows, which hint at its directionality. In order to know
that a scrollbar controls our position in a document, we have to either be
taught or learn by ourselves through experimentation.

In the canonical vocabulary (described in Chapter 4), manual affordances have
no meaning in the uppermost tier, in idioms. This is why gizmos must have
writing on them to make sense. If the answer isn’t written directly on the
gizmo, we can only learn what it does by one of two methods: experimentation
or training. Either we try it to see what happens, or someone who has already
tried it tells us. We get no help from our instinct or intuition. We can only rely
on the empirical.

Fulfilling the contract

In the real world, a thing does what it can do. A saw can cut wood because it
is sharp and flat and has a handle. However, in the digital world, a thing does
what it can do because some programmer imbued it with the power to do
something. Our tool-using nature can tell us a lot about how a saw works
merely by inspection, and it can’t easily be fooled by what it sees. On a com-
puter screen, though, we can see a raised, three-dimensional rectangle that
clearly wants to be pushed like a button, but this doesn’t necessarily mean that
it should be pushed. We can be fooled because there is no natural connection—
as there is in the real world—between what we see on the screen and what lies
behind it. In other words, we may not know how to work a saw, and we may
even be frustrated by our inability to manipulate it effectively, but we will never
be fooled by it. It makes no representations that it doesn’t manifestly live up
to. On computer screens, canards and false impressions are very easy to create.

When we render a button on the screen, we are making a contract with the user
that that button will visually change when we push it: that it will appear to
depress when the mouse button is clicked over it. Further, the contract states
that the button will perform some reasonable work that is accurately described
by its legend. This may sound obvious, but I am constantly astonished by the
number of programs I see that offer bait-and-switch visual affordances. This is
relatively rare for push-buttons, but extremely common for text fields.

0084

An Irreverent History
of Rectangles on

the Screen

e %W,;,m e
(%eﬁ 1

istinction without a difference, since the

he scrollbar, the push-
top metaphor,” ob]ect—orlentéd}'program—
us.and Ethernet. T

and contemporary computing
1d Bill Gates, chairmen of

67

0085

63

PART II: THE FORM

Apple Computer and Microsoft, respectively, saw the Alto at PARC and were
indelibly impressed.

Xerox tried to commercialize the Alto with a computer system called Star, but
it was expensive, complex, agonizingly slow and a commercial failure. The brain
trust at PARC, realizing that "Xerox had blown an opportunity of
legendary proportions, began an exodus that greatly enriched other software
companies, particularly Apple and Microsoft.

Steve Jobs and his PARC refugees immediately tried to duplicate the Alto/Star
with the Lisa. In many ways they succeeded, including copying the Star’s
failure to deal with reality. The Lisa was remarkable, accessible, exciting, too
expensive and frustratingly slow. Even though it was a decisive commercial fail-
ure, it ignited the imagination of many people in the small but booming micro-
computer industry. ’

Bill Gates was less impressed by the sexy “graphicalness” of the Alto/Star than
he was by the more systemic advantages of an object-oriented presentation and
communication model. Software produced by Microsoft in the early eighties,
notably the spreadsheet Multiplan (the forerunner of Excel), reflected this
thinking.

Steve Jobs wasn’t deterred by the failure of the Lisa. He was convinced that its
lack of success was due to compromises in its design and that PARC’s vision of
a truly graphical personal computer was an idea whose time had come. He
added to his cadre of PARC refugees by raiding Apple’s various departments for
skilled and energetic individuals, then set up a “skunk works” to develop a
commercially viable incarnation of the Alto. The result was the legendary
Macintosh, a machine that has had enormous influence on our computing tech-
nology, design and culture. The Mac single-handedly brought an awareness of"
design and aesthetics to the industry. It not only raised the standards for user-
friendliness, but it also enfranchised a whole population of skilled individuals
from disparate fields who were previously locked out of computing because of
the industry’s self-absorption in techno-trivia.

The almost-religious aura surrounding the Macintosh was also associated with
many aspects of the Mac’s user interface. The pull-down menus, metaphors,
dialog boxes, rectangular overlapping windows and other elements all became
part of the mystique. Unfortunately, because its design has acquired these
heroic proportions, its failings have often gone unexamined.

0086

CHAPTER 6: AN IRREVERENT HISTORY OF RECTANGLES ON THE SCREEN

PARC’s Principles

One of the ideas that emerged from PARC was the visual metaphor. At PARC,
the global visual metaphor was considered critical to the user’s ability to under-
stand the system, and thus critical to the success of the product and its concept.
In the last chapter I wrote at length about the problems of such metaphoric
design.

Modes

Another pr1nc1ple associated with the modern GUI is the notion that modes are
mode e is a state the program can enter where the effects of a user’s action
changes from the norm—essentially a behavioral detour.

For example, older programs would demand that you shifted into a special state
to enter records, then shift into another state to print them out. These behav-
joral states are modes, and they can be extremely confusing and frustrating.
Former PARC staffer and current Chief Scientist at Apple, Larry Tesler, was an
early advocate of eliminating modes from software and was pictured in an influ-
ential magazine wearing a T-shirt with the bold legend “Don’t mode me in.”
His license plate reads “NOMODES.” In a command-line environment, modes
are indeed poison. However, in the object-verb world of a GUI, they aren’t
inherently bad. Unfortunately, the don’t-mode-me-in principle has become an
unquestioned part of our design vernacular.

Arguably, the most influential program on the Macintosh was MacPaint, a pro-
gram with a thoroughly modal interface. This program enables the user to draw
pixel-by-pixel on the computer screen. The user selects one tool from a palette
of a dozen or so and then draws on the screen with it. Each tool is a mode,
because it restricts the program to behave in one way. When a tool is selected,
the behavior of the program conforms, modally, to the attributes of that tool.

Of course, the PARC researchers weren’t wrong, just misunderstood. The user
interface benefits of MacPaint compared with contemporary programs were
great, but they didn’t accrue from its imagined modelessness. Rather, they
resulted from the ease with which the user could see which mode the program
was in and the effortlessness of changing that mode.

Generally, modes based on the implementation model are confusing modes.
“Edit” mode versus “Print” mode is convenient only for the program, not the
user. But modes based on the user’s mental model are often harmless. The
“Spray can” mode or the “Paint brush” mode, for example.

0087

69

70

ParT II: THE FORM

Overlapping Windows

Another Mac fundamental that emerged from PARC (and which has metasta-
sized in Microsoft Windows) is the idea of overlapping rectangular windows.
The rectangular theme of modern GUIs is so dominating and omnipresent that
it is somehow seen as vital to the success of visual interaction. Actually, it is a
by-product of the technology: of our TV-screen-like video display terminals.
They are excellent devices for showing rectangles, but much less efficient for
manipulating non-orthogonal shapes. Rectangles are an effect rather than a
cause of GUI design.

Overlapping windows demonstrated clearly that there are other, and better,
ways to transfer control between concurrently running programs than typing in
obscure commands.

Overlapping rectangular windows were intended to represent overlapping
sheets of paper on the user’s desktop. Okay, I’ll buy that, but why? The stated
reason is that it makes it easy to see which programs are running and to shift
between them, but if this were true, Microsoft wouldn’t be offering us the
button-lined, program-changer tool called the Startbar in Windows 95. The
overlapping window concept is good, but its execution is impractical in the real
world. The number of pixels on today’s video screens is way too small and users
can’t afford to waste them. Leaving an edge of one application’s rectangle
peeking out from behind the active window is an egregious waste of precious
pixels.

The overlapping-sheets-of-paper metaphor starts to suffer when you get three
or more applications on the screen—it just doesn’t scale up well. The idiom has
other problems, too. A user who clicks the mouse just one pixel away from
where he thought he was can find his program disappearing, to be replaced by
another one. User testing at Microsoft has shown that a typical user might
launch the same word processor several times in the mistaken belief that he has
somehow “lost” the program and must start over.

Part of the confusion regarding overlapping windows comes from several other
idioms that happen to be implemented using an overlapping window. The
familiar dialog box is one, as are all menus and tool palettes. Such overlapping
within a single application is completely natural and a well-formed idiom. It
even has a faint metaphoric trace: that of your faithful secretary handing you an
important note.

0088

CHAPTER 6: AN IRREVERENT HISTORY OF RECTANGLES ON THE SCREEN

We have windows largely because rectangular objects are very easy to draw and
to manage on a raster scan device—a video screen. We have rectangular win-
dows because they are the easiest to program, not because they offer cognitive
superiority or information-management leverage.

In the grand tradition of focusing on a trivial aspect of the new PARC GUI, Bill
Gates named his hastily cobbled together response to the Macintosh’s success
“Windows.” Ever since then, the eponymous rectangle has dominated the
development of our commercial products. It has been taken for granted in
many circles that would otherwise be questioning such accidental dominance.

Tiling

The first version of Microsoft Windows diverged somewhat from the pattern
established by Xerox and Apple. Instead of using overlapping rectangular
windows to represent the overlapping sheets of paper on one’s desktop,
Windows 1.0 relied on what was called “tiling” to allow the user to have more
than one application on screen at a time. Tiling meant that applications would
divide up the available pixels in a uniform, rectilinear tessellation, evenly pars-
ing out the available space to running programs. I suspect that tiling was
invented as an idealistic way to solve the orientation and navigation problems
caused by overlapping windows. Navigation with tiled windows is much easier
than with overlapped ones, but the cost in pixels is horrendous. Tiling died as
a mainstream idiom; although it can still be found in the most interesting
places: try right clicking on the Windows 95 Startbar. No doubt tiling will stage
a comeback when computer screens grow to six feet square and cost $50.

Overlapping windows fail to make it easy to navigate between multiple,
running programs, so other vendors continue to search for new ways. For
example, the “virtual desktop” on the UNIX-based OpenWindows platform
extends the desktop to six times the size of the visible window. In the upper left
corner of the screen is a small superimposed, black-and-white image of all six
desktop spaces, all of which can be running different things simultaneously and
each of which can have many open windows. You switch between these virtual
desktops by clicking on the one you want to make active.

Microsoft braved a double-barreled breach-of-contract and patent infringe-
ment lawsuit from Apple to add overlapping to Windows 2.0. In all of this con-
troversy, the basic problem seems to have been forgotten: How can the user
easily navigate from one program to another? Multiple windows sharing a small

0089

71

72

ParT II: THE FORM

screen—whether overlapping or tiled—is not a good solution. We are moving
rapidly to a world of full-screen programs. Each application occupies the entire
screen when it is “at bat.” A tool like the Startbar borrows the minimum quan-
tity of pixels from the running application to provide a visual method of chang-
ing the lineup. This solution is much more pixel-friendly, and the day of the
overlapping main window is waning fast.

Much contemporary software design begins with the assumption that the user
interface will consist of a series of overlapping windows, without modes,
informed by a global metaphor. The PARC legacy is a strong one. Most of what
we know about modern graphical user interface design came from these ori-
gins, whether right or wrong. But the well-tempered designer will push
the myths aside and approach software design from a fresh viewpoint, using
history as a guide, not as a dictator.

0090

Windows-with-
a-Small-w

74

Part II: THE FORM

someone’s hand at your front door, but it will probably have quite different con-
notations (or goals) than shaking someone’s hand in the kitchen or bedroom.

If I held out my hand and asked you to shake, you would certainly think it odd
if I suddenly jerked it away and said, “Wait! Let’s go into this other room to
shake.” It doesn’t matter what room we are in, since we both understand the
motivations behind the handshake, but having to move to another room to do
it is incongruous. There can be no good reason for changing rooms just to
shake hands because, regardless of where we are, the task can be performed just
as well. It is especially ridiculous if] after shaking in the other room, we trudge
back into the first room to continue what we’re doing.

If you think of dialog boxes as rooms, you can easily find examples of programs
that change rooms to shake hands. The WinFax program you saw back in
Figure 3-2 is one. When I use the program, it is certain that I am going to send
a fax, but it sends me to another room to select a previously recorded fax num-
ber, and to yet another room to record a new fax number. WinFax LITE is a
one-room program, but it divides its interface into several unnecessary rooms.

A dialog box is another room.
Have a good reason to go there

In most drawing programs, for example, the depth of a drop-shadow is usually
set by selecting a menu item that triggers a dialog box. A winder, text field or
similar gizmo on the dialog then sets the shadow depth. After the setting is
made, the program returns to the main screen that contains the drawing. This
sequence is so commonplace that it is completely unremarkable, and yet it is
undeniably bad design. In a drawing program, changing the image is the pri-
mary task. The image is in the main window, so that’s where the tools that
affect it should be also. Setting the depth of a drop-shadow isn’t a tangential
task but one quite integral to the drawing process. If the drawing were being
done with pencil on paper, the artist might bring a new tool to bear—an
eraser—but he would not shift to a different table or sheet of paper just to
change the depth of the drop-shadow. The drop-shadow depth could be set
with a gizmo right on the toolbar, for example, or—better yet—the user could
click on the shadow with the mouse and just drag it to a new position.

0092

CHAPTER 7; WINDOWS-WITH-A-SMALL-W

Putting functions in a dialog box emphasizes their separateness from the main
task. Putting the drop-shadow adjustment in a dialog box works just fine, but
it creates an interaction that is stilted and rough. Going into an adjacent room
to shake hands works fine, too, but it is a distracting waste of effort.

From the programmer’s point of view, changing the drop-shadow is a separate
function, so it seems natural to treat it like one. From the user’s point of view,
however, it is an integral function and should be integrated into the main
window.

This is one of the most frequently violated tips in user interface design. Because
the construction of programs is so function-centric, the user interface is often
constructed in close parallel. Combine this with the incredible ease with which
we can build dialog boxes, and the result is one (or more) dialog box per func-
tion. Our modern GUI-building tools tend to make dialogs easy to create, but
adding gizmos to the surface of a document window or creating direct-
manipulation idioms is generally not supported by these handy tools. The
developer who wants to create a better user interface often must roll-his-own
without much help from the tool vendors.

Necessary rooms

When it is time to go swimming, you’ll think it odd if I offer you the crowded
living room to change your clothes. Decorum and modesty are excellent
reasons for you to want a separate room in which to change. It is entirely inap-
propriate for me not to provide a separate room when one is needed.

When I want to perform a function that is out of the normal sequence of events
for a particular program, that program should provide a special place in which
to perform it. For example, purging a database is not a normal activity. It
involves setting up and using features and facilities that are not part of the nor-
mal operation of the database program. The more prosaic parts of the program
will support daily tasks like entering and examining records, but erasing records
en masse is not an everyday occurrence. The purge facility correctly belongs in
a separate dialog box. It is entirely appropriate for the program to shunt me
into a separate room—a window—to handle that function.

0093

75

76

PAarT II: THE FORM

Using goal-directed thinking, we can examine each function to good effect. If
the user is using a graphics program to develop a drawing, his goal is to create
an appealing and effective image. All of the drawing tools are directly related to
this goal, but the various pencils and sprayers and erasers are the most tightly
connected functions. These tools should be intimately integrated into the
workspace itself in the same way that the conventional artist will arrange his
pencils, pens, knives, tweezers, erasers and other drawing equipment right on
his drawing board, close at hand. The tools are ready for immediate use with-
out having to reach far, let alone having to get up and walk into the next room.
In the program, equivalent drawing tools should be arrayed on the edges of the
drawing space, available with a single click of the mouse. The user shouldn’t
have to go to the menu or to dialog boxes to accomplish these tasks. The new
Version 3 of Fractal Design Painter arranges artists’ tools in trays, and lets you
move the things that you use frequently to the front of the tray. While you can
hide the various trays and palettes if you want, they appear as the default and
are part of the main drawing window. They can be positioned anywhere on the
window, as well. And if you create a brush that is, for example, thin charcoal in
a particular shade of red that you’re going to need again, you simply “tear it
off” the palette and place it wherever you want on your workspace—just like
laying that charcoal in the tray on your easel. This tool selection design closely
mimics the way we manipulate tools while working with most software.

If the user decides to import a piece of clip art, the function is still closely
related to the goal of ending up with a good drawing, but the tools to be used
are different and somewhat unrelated to drawing. Clip art is usually held in a
directory of pre-recorded art and may include a facility for previewing and
selecting the desired piece. The clip art directory is clearly not congruent with
the user’s goal of drawing—it is only a means to an end. The conventional artist
probably does not keep a book of clip art right on his drawing board, but you
can expect that it is close by, probably on a bookshelf adjacent to the drawing
board and available without even getting up. In the program, the clip art facil-
ity should be very easy to access but, because it involves-a whole suite of tools
that aren’t normally needed, should be placed in a separate facility: a dialog
box.

When the user is done creating the artwork, he has now achieved his initial goal
of creating an effective image. At this point, his goals change. His new goal is
to preserve the picture, protect it, and communicate with it. The need for pens
and pencils is over. The need for clip art is over. Leaving these tools behind now

0094

CHAPTER 7: WINDOWS-WITH-A-SMALL-W

is no hardship. The conventional artist would now unpin the drawing from his
board, take it into the hall and spray it with fixative, then roll it up and put it
in a mailing tube. He purposely leaves behind his drawing tools—he doesn’t
want them affected by fixative overspray and doesn’t want accidents with paint
or charcoal to mar the finished work. Mailing tubes are used infrequently and
are sufficiently unrelated to the drawing process that he stores them in a closet.
In the software equivalent of this process, the user ends the drawing program,
puts away his drawing tools, finds an appropriate place on the hard disk to store
the image, and sends it to someone else via electronic mail. These functions are
clearly separated from the drawing process by the goals of the user and are well-
suited to residing in their own dialog box.

By examining the user’s goals, we are naturally guided to an appropriate form
for the program. Instead of merely putting every function in a dialog box, we
can see that some functions shouldn’t be enclosed in a dialog at all, others
should be put into a dialog that is integral to the main body of the interface,
and still other functions should be completely removed from the program.

Windows pollution

Some designers take the approach that each dialog box should embody a single
function. It is un
some call windows

Achieving many user goals involves executing a series of functions. If there is a
single dialog box for each function, things can quickly get visually crowded and
navigationally confusing. The CompuServe Navigator (Version 1 .0.1) pro-
gram, shown in Figure 7-1, is a case in point.

Adding a squirt of oil to my bicycle makes it pedal easier, but it doesn’t mean
that dumping a gallon of oil all over it will make it pedal itself. It seems to me
as though the designer of Navigator was on a mission to put more windows in
our lives in the mistaken belief that windows are inherently good. He certainly

~ A gallon of oil won’t make
a bicycle pedal itself

0095

77

78 ParT II: THE FORM

b | &9 Session Settings |

%2 Session Settings - [Rob's fast nu
i |CampuServe Help{FRE 1 Login: Alan Cooper, {70461,1227)
d [CSNav-Win Support{F . | CompuServe Mall]
&= [PaveNet 3 0

GENERAL [T rownh

i |General Cori[] @NE]l djok g
=i Humor
deless t
= ModelNet
i;g'g(icnmal Computing
(= Threads/Messa
No new messages
(> Message Send
Npﬂﬁ::weﬂw A conputer progranner happens across a frog in the road. The frog pipes
i, TrainNet Forum up, “I'n really a beautiful princess and if you kiss me, I'11 stay with
[Thieads/Mezsy you for a week™. The programmer shrugs his sholders and puts the frog in
No new messages his pocket.
(2> Message Send . .
Nomessagas foun A few ninutes later, the frog says “OK, 0K, if you kiss me, I'11 give you
i ¢ great sex for a week™. The programmer nods and puts the frog back in his
i ModelNet Forum acket
& Thieads/Messd P N
No new messages A few minutes later, "Turn me back inte a princess and I'1l give you great E
(= Message Send sex for a whole yeart". The programmer smiles and walks on. &
Ho message: fow 3
Qg Disconnecting at Finally, the frog says, “What's wrong with you? I‘'ve promised you g
Disconnecting fror, great sex for a year from a beautiful princess and you won't even kiss
Disconnecting Fror ! a frog?" "I1'm a programmer,” he replies. "I don't have time for
sex.... But a talking frog is pretty neat

Figuve 7-1

Version 1.0.1 of CompuServe Navigator suffers from tragic windows pollution. Just
normal downloading of my mail requires that three windows be open. To examine a filed
message demands that I open three more windows in turn. First, I get the “Filing
Cabinet”; then I call up the “GENERAL” window. Finally, I can open a particular mail
message in its own separate window. This is all one integral function and should occupy
one integral window. But the worst is yet to come: I must put each window away
separately in the reverse order of opening them.

succeeded in putting lots of windows in my life, but he didn’t make things any:
better.

From the user’s point of view, examining a saved piece of email is not three
functions, but one. One dialog would not only be perfectly sufficient to accom-
plish this task, it would also more closely correspond to the user’s goal of
“viewing an email.” It would also correspond more closely to the user’s men-
tal model of what is happening inside the computer. The designer has instead
faithfully rendered the actual processing to the user, sort of like forcing the
driver to turn two steering wheels, one for each front wheel, instead of com-
bining the two functions into a single, conceptual whole.

0096

CHAPTER 7: WINDOWS-WITH-A-SMALL-W

A much better solution to the Navigator problem would have been to create a
single “mail” box, with tools strategically positioned along the top row—a
toolbar would be perfect—for managing searches. Intermediate results of the
search could be shown in the window along with the final message itself. One
goal—finding and reading a message—should be implemented as one dialog
box.

There is no way to show the connections between lots of windows, so don’t
create lots of windows. Modal dialogs, however, always get you back immedi-
ately to the point of departure, so they don’t count against you. This is a
particularly annoying problem with Visual Basic (VB) where it is easy to create
“forms.” Forms are independent, top-level windows. In terms of behavior, they
are the same as modeless dialog boxes. Creating applications as collections of
several modeless dialog boxes is a questionable strategy that was never very
common until VB made it easy to do. And, as I’ve said before, just because it’s
easy to do doesn’t mean it is good design.

Each added window contributes more to the user’s burden of window man-
agement excise. This overhead can grow to be really obnoxious if the program
is used daily. If your program has a couple of dozen windows because you
honestly feel that each of those windows moves the user towards that many dif-
ferent goals, then you should divide up your program into several smaller ones,
each one true to its own goal. A program shouldn’t have more than two or
three goals, which means it shouldn’t have more than two or three windows.

A VB programmer once explained to me proudly that his program was
especially difficult to design because it had 57 forms. No program can be used
effectively with 57 forms. Each form may be excellent in its own right, but col-
lectively, it’s simply too many. It’s like saying you’re going to taste 57 vintage
Chardonnays at a sitting, or test-drive 57 sedans on Saturday.

0097

79

Lord of the Files

m—to know the difference. Every pro-

% . o
s.at once: in memory and on disk. g

81

0098

82

PART II: THE FORM

shown in Figure 8-1, comes up, they just suppress a twinge of fear and confu-
sion and press the YES button out of habit#A dialo

e

The Save Changes dialog box is based on a bad assumption. The very presence
of the dialog assumes that saving and not saving are equally probable. The dia-
log gives equal weight to these two options, even though the YES button is
pressed orders of magnitude more frequently than the NO button. As I discuss
in Chapter 11, this is a case of putting/might . The fuser might say.
il

L Hi}tmsuﬂ"’-limd

Figure 8-1

This is the question Word asks me when I close a file after I have edited it. Yes, of course
I want to save it; otherwise, I wouldn’t have made the changes in the first place. The ori-
gin of this dialog box is not the user’s mental model, but rather the programmer’s mani-
festation of the implementation model. In other words, the physical characteristics of the
disk system are imposed on the user’s work habits. This dialog is so unexpected for new
users that they often say “No” inadvertently.

¢ :
There is another odd thing about the dialog, and Mom will probably wonder
about it. Why does it ask about saving changes when you are all done? Why
didn’t it ask when you actually made them? The connection between closing a
document and saving changes isn’t all that natural, even though we power-
users have gotten quite familiar with it.

Mom is thinking 't want 7ES dor
f61 ago? To her, the question is absurd. The program issues the dialog box
when the user requests CLOSE or QUIT because that is the time when it has to
reconcile the differences between the copy of the document in memory with

0099

CHAPTER 8: LORD OF THE FILES

the copy on disk. The way the technology actually implements the facility asso-
ciates changes with the CLOSE and QUIT operations, but the user doesn’t natu-
rally see the connection. When we leave a room, we don’t consider discarding
all of the changes we made while we were there. When we put a book back on
the shelf, we don’t first erase any comments we wrote in the margins.

Computer geeks are very familiar with the connection between saving changes
and closing or quitting. They don’t want to lose this ability because it is famil-

iar to them, butfamili a reallysbad: ionale. We don’t want to
keep repairing our car just because we are familiar with the shop. We don’t want
to keep getting root canals just because we are familiar with the drill.

As experienced users, we have learned to use this dialog box for purposes for
which it was never intended. There is no other easy way to undo massive
amounts of changes, so we just use the Save Changes dialog and answer it with
a No. If you discover yourself making big changes to the wrong file, you use
this dialog as a kind of escape valve to return things to the status quo.

The problems caused by disks

The computer’s file system is the tool it uses to manage data and programs
stored on disk. This means the big hard disks where most of your information
resides, but it also includes your floppy drives and your CD-ROM if you have
one. The File Manager program in Windows 3.x and the Explorer in Windows
95 graphically represent the file system. Without a doubt, the file system—and
the disk storage facility it manages—is the primary cause of disaffection with
computers for non-computer-professionals.

lity uldn’+—by all rights—
; reates alarg because the influence of the file
system on the mterface of most programs is very deep. The most intractable
problems facing user mterface designers usually concern the file system and its
demands. It affects our menus, our dialogs, even the procedural framework of

g s

0100

83

84

ParT II: THE FORM

our programs, and this influence is likely to continue indefinitely unless we
make a concerted effort to stop it.

Currently, most software treats the file system in much the same way that the
operating system shell does (Explorer, File Manager). This is tantamount to
vith® oes. Even though this
approach is txaglcally bad it is an established, de facto standard and there is
considerable resistance to improving it.

Following the nnplementatmn model

Before I go any further, let me make clear that the file systems on modern per-
sonal computer operating systems, like Windows 95, are technically excellent.
I have no gripe with the way they are implemented. The problem stems from
the simple mistake of rendering that implementation model to the user.

The implementation model of the file system runs contrary to the mental
model almost all users bring to it. In other words, they picture files or docu-
ments as typical documents in the real world, and they imbue them with the
behavioral characteristics of those real objects. In the simplest terms, users
visualize two salient facts about all documents: First, there is only one docu-
ment, and second, it belongs to the user. The file system’s implementation
model violates both of these rules: There are always at least two copies of the
document, and both belong to the program.

Saying that someone is “computer literate” is really a euphemism meaning that
he has been indoctrinated and trained in the irrational and counter-intuitive
way that file systems work, and once you have been properly subverted into
thinking like a computer nerd, the obvious ridiculousness of the way the file
system presents itself to the user doesn’t seem so foolish.

Every data file, every document and every program, while in use by the com-
puter, exists in a minimum of two places at once: on disk and in main memory.
The user, though, imagines his document as a book on a shelf. Let’s say it is a
journal he is keeping. Occasionally, it comes down off the shelf to have some
words added to it There is only one journal, and it either resxdcs on the shelf
or it resides in the user’s hands. On the corrfputer the d%sk derC is the shelf,
and main memory is the place where editing takes place, equivalent to the
user’s hands. But in the computer world, the journal doesn’t come “off the
shelf.” Instead a copy is made, and that copyis what resides inside the comput-
er. As the user makes changes to the document, he is actually making changes

0101

CHAPTER 8: LORD OF THE FILES:

to the in-memory copy, while the original remains untouched on disk. When
the user is done and closes the document, the program is faced with a decision.
It must decide whether to replace the original on disk with the changed copy
from memory. From the programmer’s point of view, equally concerned with
all possibilities, this choice could go either way. From the software’s imple-
mentation model point of view, the choice is the same either way. However,
from the user’s point of view, there is rarely a decision to be made at all. He
made his changes already; now he is just putting the document away. If this
were happening with a paper journal in the physical world, the user would have
pulled it off the shelf, pencilled in some additions, and is now replacing it on
the shelf. It’s as if the shelf suddenly spoke up, asking if he really wants to keep
those changes!

Right now, the seriously computer-holic readers are beginning to squirm in
their seats. They are thinking that I’m treading on holy ground, and a pristine

his mental model. I’ll show you how. '

Dispensing with the disk model

If we begin to render the file system according to the user’s mental model, we
achieve a significant advantage. The primary one is that we can all teach our
Moms how to use computers. We won’t have to answer her challenging ques-
tions about the inexplicable behavior ‘of the interface. We can show her the
program and explain how it allows her to work on the document and, upon

85

completion, she can store the document oft the disk as though ith

nal on a shelf. Our sensible explanation won’t be interrupted by that “Save *

changes?” dialog. Not to put too fine a point on this, but I’m just using Mom
as a surrogate representing the mass market of computer buyers.

We no longer need to call the left-most menu the “File” menu. This older
nomenclature is a bold reminder of how the technology pokes through the
facade of our programs. We can label this menu after the type of document we

0102

86

PART II: THE FORM

are processing—for example, we can call it “Spreadsheet,” “Invoice,” or
“Picture.” Alternatively, we can give it a more generic name like “Document,”
which is a reasonable choice for horizontal programs like word processors or
spreadsheets.

Changing the name and contents- of the “File” menu violates an established
standard. I recognize the impact of this proposal and don’t make it lightly. I
have tremendous respect for standards, unless they are wrong. This one is
wrong, and it’s existence makes life more difficult than it has to be for every
user of computers, particularly newcomers and casual users. The benefits will
far outweigh any dislocation the change might cause. There will certainly be an
initial cost as experienced users get used to the new presentation, but it will be
far less than you might suppose. This is because these power-users have already
shown their ability and tolerance by learning the implementation model. For
them, learning the better model will be a slam-dunk, and there will be no loss
of functionality.

The advantage for new users will be immediate and big. We computer profes-
sionals forget how tall the mountain is once we’ve climbed it, but everyday
newcomers approach the base of this Everest of knowledge we sit atop and are
severely discouraged. Anything we can do to lower the height can make a big
difference, and this step removes a considerable obstacle.

Designing software with the proper model

Properly designed software will always treat documents as smgle 1nstances
never as a copy on disk and a copy in memory. I call this the unified file model.

Saving

One of the most important functions every computer user must learn is how to
“save.”. Invoking this function means taking whatever changes the user has
made to the in-memory copy and writing them onto the on-disk copy of the
document. In the unified model, we abolish all user-interface recognition of
the two copies, so the “save” function disappears completely from the main-
stream interface. Of course, that doesn’t mean that it disappears from the pro-
gram. It is still a chy necessary operation.

The program will automatically save the document. At the very least, when the
user is done with the document and requests the close function, the program
will merely go ahead and write the changes out to disk without stopping to ask
for confirmation with the “Save Changes” dialog box.

In a perfect world, that would be enough, but computers and software can
crash, power can fail, and other unpredictable, catastrophic events can conspire

0103

CHAPTER 8: LORD OF THE FILES

to erase your work. If the power fails before you have pressed CLOSE, all of your
changes will be lost as the memory containing them scrambles. The original
copy on disk will be all right, but hours of work can still be lost. To keep this
from happening, the program must also save the document at intervals during
the user session. Ideally, the program will save every single little change as soon
as the user makes it. In other words, after each keystroke. For most programs
on modern computers, this is quite feasible. Only certain programs—word
processors leap to mind—would find difficulty with this level of saving (but the
solution would still not be impossible). Most documents can be saved to the
hard disk in just a fraction of a second, so generally this is not a problem. Still,
this is a sensitive area, because the program will hesitate noticeably in a very dis-
turbing way. Word has a facility for automatically saving files to disk, and I
never use it for that reason. The problem is caused by the save facility’s logic,
not because the principle of automatic saving is bad. Word automatically saves
the file according to a countdown clock, and you can set the delay to any num-
ber of minutes. If you ask for a save every two minutes, for example, after
precisely two minutes the program stops accepting your input to write your
changes out to disk, regardless of what you are doing at the time. If you are
typing when the save begins, it just clamps shut in a very realistic and discon-
certing imitation of a broken program. It is a yery unpleasant experience. If the
algorithm would pay attention to the user instead of the clock, the problem
would disappear. Nobody types continuously. Everybody stops to gather his
thoughts, or flip a page, or take a sip of coffee. All the program needs to do is
wait until the user stops typing for a couple of seconds and then save.

This automatic saving every few minutes and at CLOSE time will be adequate for
everybody except the really twisted computer-freaks who have been using com-
puters since Bill Gates was just a thousandaire. I include myself in this group.
I’m so paranoid about my computer crashing and losing data that I habitually
press the CTRL-S key after every paragraph I type, and sometimes after every
sentence. (Pressing CTRL-S is the keyboard accelerator for the SAVE function.)
I’ll typically save a document—Ilike a chapter in this book—more than 1,000*
times before it’s done! There is no way in the world I would even use a pro-
gram that didn’t provide such manual save capabilities, and all programs should
have them. I just don’t think that my compulsive behavior should be forced on
new or occasional users who are writing the occasional letter or spreadsheet and
haven’t begun writing a book yet.

* Using the revision number feature of Microsoft Word, I print the exact number of
saves at the bottom of all of my drafts. I’'m not exaggerating.

0104

87

88

PAarT II: THE FORM

Right now in Word, the sAVE function is prominently placed in-your-face on the
primary program menu. The saVE dialog is forced on all users when they ask to
close the document or to QUIT or EXIT the program. These artifacts must go
away, but the SAVE functionality can remain in place exactly as it is now.

Closing

There is no inherent connection between closing and saving in my unified
model because there is no concept of saving.

We computer geeks are conditioned to think that CLOSE is the time and place
for abandoning unwanted changes if we made some error or were just what-if-
ing. This is not correct, though, because the proper time to reject changes is
when the changes are made. We even have a well-established idiom to support
this. The UNDO function is the proper facility for eradicating changes. We have
bent and contorted our thinking so much to accommodate the implementation
model that I often hear people bleat in protest over losing the ability to refuse
a request to “save changes.”

In Chapter 30, “Undo,” I’ll talk about some more sophisticated variants of
undo that allow us to create multiple versions of a document. Currently, savvy
computer users who understand the technology can accomplish this by work-
ing cleverly with the file system. A better interface could offer these desirable
features directly and explicitly.

When you answer YES to the Save changes dialog, virtually every program then
presents you with the “Save As” dialog box. A typical example is shown in
Figure 8-2.

Neither the typical user nor the unified file model recognizes the concept of
manual saving, so, from their point of view, the name of this dialog box doesn’t
make much sense. Functionally, this dialog offers the user two things. It lets
you name your file, and it lets you choose which directory you wish to place it
in. Both of these functions demand intimate knowledge of the file system. The
user must know how to formulate a file name and how to navigate through the
directory tree. I know of many users who have mastered the name portion but
who have completely given up on understanding the directory tree. They put
all their documents in whatever directory the program chooses for a default. All
of their files associated with a particular program are stored in a single directory.
Occasionally, some action will cause the program to forget its default directory,
and these users must call in an expert to find their files for them. My next door
neighbor, Bill, calls me about every six months to help him find his Lotus 1-2-3

0105

CHAPTER 8: LORD OF THE FILES

eflstng doc
ervicel doc | &= cooper

grvice? doo v :
erviced doc £ artwork

erviced. doc i CObkscrns

sersices doc (7 brochure
ghrthiol _doc C‘ numpendw
softdrug. doc
solarsys. wmf
_rabes. zls
aglinesz_ doc
if

Word Document

Figure 8-2

The Save As dialog box offers two functions: It lets you name your file, and it lets you
place it in the directory of your choice. From the user’s perspective, remember, he has no
concept of “saving,” so the name of this dialog is incorrect. Also, if a dialog enables me to
name and place a document, shouldn’t it also allow me to rename and replace the docu-
ment? I certainly think so.

files. The first time he called, I asked him where he normally keeps his spread-
sheets. He answered innocently “In 1-2-3.” Bill’s mental model is very differ-
ent from the software’s implementation model and, ultimately, Bill is right.

The Save As dialog needs to decide what its purpose is. If it exists to name and
place files, then it does a very bad job of it. Once the user has named and placed
a file, he cannot then change its name or directory. At least he can't with this
dialog that purports to offer naming and placing privileges. Nor with any other
tool in the application itself.

Beginners are out of luck, but experienced users learn the hard way that they
can close the document, change to the Explorer, rename the file, return to the
application, summon the Open File dialog, and reopen the document. In case
you were wondering, the Open File dialog doesn’t allow renaming or reposi-
tioning either.

Forcing the user to go to the Explorer to rename the document is a minor hard-
ship, but therein lies a hidden trap; its teeth sharp and its spring strong. The

0106

89

90

ParT II: THE FORM

bait is the fact that Windows easily supports several applications running
simultaneously. Attracted by this feature, the user tries to rename the file in the
Explorer without first closing the document in the application. This very rea-
sonable action triggers the trap, and the steel jaws clamp down hard on his leg.
He is rebuffed with a rude error message box shown in Figure 8-3. He didn’t
first close the document—how would he know? Trying to rename an open file
is a sharing violation, and the operating system summarily rejects it with a truly
frightening and unhelpful error message box.

Figuve 8-3

If the user attempts to rename a file using the Explorer while it is still being edited by
Word, the Explorer is too stupid to get around the problem and make it work. It is also
too stupid to figure out what happened so it can report it correctly. It is also too rude to
be nice about it, and it puts up this frightening error message box. Rebuffed by both the
program and the Explorer, it is easy for a new user to imagine that a document cannot be
renamed at all.

The innocent user is merely trying to name his document, and he finds himself
lost in an archipelago of operating-system arcana. Ironically, the one program
that has both the authority and the responsibility to change the document’s
name while it is still open is the application itself, yet it refuses to even try.

Archiving
There is no explicit function for making a copy of, or archiving, a document.
The user must accomplish this with the Save As dialog, and doing so is as clear

as mud. Even if there were a “Copy” command, users visualize this function in
different ways. If we are working, for example, on a document called “Alpha,”

0107

CHAPTER 8: LORD OF THE FILES

some people imagine that we would create a file called “Copy of Alpha” and

store it away. Others imagine that we put Alpha away and continue work on
Copy of Alpha.

I suspect that the latter option will only occur to those who are already experi-
enced with the implementation model of file systems. That is, of course, how
we would do it today with the Save As dialog: you have already saved the file as
Alpha; then you explicitly call up the Save As dialog and change the name.
Alpha will be closed and put away on disk, and the new copy will be the version
being edited. This action makes very little sense from the single-document
viewpoint of the world, and it also offers a really nasty trap for the user.

Here is the completely reasonable scenario that leads to trouble: Let’s say that
I have been editing Alpha for the last twenty minutes and now wish to make an
archival copy of it on disk so I can make some big, but experimental, changes
to the original. I call up the Save As dialog box and change the file name to
“New Alpha.” The program puts Alpha away on disk leaving me to edit New
Alpha. Ahhh, but Alpha was never “Saved,” so it gets written to disk without
the changes I made in the last twenty minutes! Those changes only exist in the
“New Alpha” copy that is currently in memory—in the program. As I begin
cutting and pasting in New Alpha—trusting that my handiwork is backed up by
“Alpha”—I am actually trashing the sole copy of this information.

Everybody knows that you can use a hammer to drive a screw or a pliers to bash
in a nail, but any skilled craftsperson knows that using the wrong tool for the
job will eventually catch up with you. The tool will break or the work will be
hopelessly ruined. The Save As dialog is the wrong tool for making and man-
aging copies, and it is the user who will eventually have to pick up the pieces
caused by the developer’s laziness.

Unify the file model

The application program refuses to rename and reposition the file out of
respect for the file system. The file system is the facility whose job it is to man-
age information that is not in main memory, and it does so by maintaining a
second copy on disk. This method is correct, but it is an implementation detail
that only confuses the user. Application software should conspire with the file
system to hide this unsettling detail from the user.

If the file system is going to show the user a file that cannot be changed because
it is in use by another program, the file system should indicate this to the user.

0108

91

92

ParT I1: THE FORM

Showing the file name in red, or with a special icon next to it would be suffi-
cient. A new user might still get that awful message in Figure 8-3, but at least
some visual clues would be present to show him that there is a 7eason why that
error cropped up.

Not only are there two copies of all data files but, when they are running, there
are two copies of all programs. When I go to the Startbar’s Start menu and
launch my word processor, a button corresponding to Word appears on the
Startbar. But if I return to the Start menu, Word is still there! From the user’s
point of view, I have pulled my hammer out of my toolbox, only to find that
my hammer is still in my toolbox!

I’m not saying that this should not be the case. After all, one of the great
strengths of the computer is its ability to have multiple copies of software run-
ning simultaneously. I do think that the software should help the user to under-
stand this very non-intuitive action, however. Maybe the Start menu could
make some reference to the already-running program.

Document management

The established standard suite of file management for most applications con-
sists of the Save As dialog, the Save Changes dialog, and the Open File dialog.
Collectively, these dialogs are, as I’ve shown, confusing for some tasks, and
completely incapable for others. Here is how I would design an application that
really managed documents according to the user’s mental model.

Besides rendering the document as a single entity, there are several goal-directed
functions that the user may need, and each one should have its own
corresponding function.

Creating a copy of the document

Creating a milestone copy of the document

Naming and renaming the dc

Placing and repositioning tl
Specifying the stored format o

Reversing some changes

O 0 O O O 0O O

Abandoning all changes

0109

CHAPTER 8: LORD OF THE FILES

Creating a copy of the document

This should be an explicit function called “Make Snapshot Copy.” The word
“snapshot” makes it clear that the copy is identical to the original, while also
making it clear that the copy is not tied to the original in any way. That is, sub-
sequent changes to the original will have no effect on the copy. The new copy
should be given a name with a standard form like “Copy of Alpha,” where
“Alpha” is the name of the original document. If there is already a document
with that name, the new copy should be named “Second Copy of Alpha.” The
copy should be placed in the same directory as the original.

It is very tempting to envision the dialog box that accompanies this command,
but there should be no such interruption. The program should take its action
quietly and efficiently and sensibly, without badgering the user with silly ques-
tions. Make a copy. In the user’s mind, it is a simple command. If there are
any anomalies, the program should make a constructive decision on its own
authority.

Naming and renaming the document

The name of the document should be shown right on the application’s toolbar.
If the user decides to rename the document, he can just click on it and edit it
in place. What could be simpler and more direct than that?

Placing and repositioning the document

Most documents that are edited already exist. They are opened, rather than
created from scratch. Thi$ means that their position in the file system is already
established. Although we think of establishing the home directory for a docu-
ment at either the moment of creation or the moment of first saving, neither of
these events is particularly meaningful outside the implementation model. The
new file should be put somewhere reasonable where the user can find it again.

If the user wants to explicitly place the document somewhere in the file-system
hierarchy, he can request this function from the menu. A relative of the Save As
dialog appears with the current document highlighted. The user can then move
the file to any desired location. Essentially, all files are placed automatically by
the program, and this dialog is used only to reposition them.

0110

93

94

ParT II: THE FORM

Specifying the stored format of the document

There is an additional function implemented on the Save As dialog in Figure 3-2.
The combobox at the bottom of the dialog allows the user to specify the phys-
ical format of the file. This function should not be located here. By tying the
physical format to the act of saving, the user is confronted with additional,
unnecessary complexity. Saving should be a very simple act. In Word, if the user
innocently changes the format, both the save function and any subsequent
close action are accompanied by a frightening and unexpected confirmation
box.

From the user’s point of view, the physical format of the document—whether
it is rich text, ASCII, or Word format, for example—is a characteristic of the
document rather than of the disk file, so specifying the format shouldn’t be
associated with the act of saving the file to disk. It belongs more properly in a
“Document Properties” dialog.

Overriding the physical format of a file is a rare occurrence. Saving a file is a
very common occurrence. These two functions should not be combined.

The physical format of the document should be specified by way of a small dia-
log box callable from the main menu. This dialog box should have cautions
built into its interface to make it clear to the user that the function can involve
significant data loss.

Reversing some changes

If the user inadvertently makes changes to the document that must be reversed,
the tool already exists for correcting these actions: undo. The file system should
not be called in as a surrogate for undo. The file system may be the mechanism
for supporting the function, but that doesn’t mean it should be rendered to the
user in those terms. The concept of going directly to the file system to undo
changes merely undermines the undo function.

The milestone function (description follows) tells how a file-centric vision of
undo can be implemented so that it works well with the unified file model.

Abandoning all changes

It is not uncommon for the user to decide that he wants to discard all of the
changes he has made since opening or creating a document, so this action
should be explicitly supported. Rather than forcing the user to understand the
file system to achieve his goal, a simple “Abandon” function on the main menu

0111

CHAPTER 8: LORD OF THE FILES

would suffice. Because this function involves significant data loss, it should be
protected by clear warning signs. Additionally, making this function undoable
for a week or two would be relatively easy to implement and appreciated more
than you might imagine.

Creating a milestone copy of the document

is very similar to using the copy command.

The difference between them is that the milestone copy is managed by the
application after it is made. The user can call up a “Milestone” dialog box that
lists each milestone copy along with various statistics about it, like the time it
was recorded and its length. With a click, the user can select a milestone copy
and, by doing so, immediately return to it as the active document. The version
that was current at the time of the reversion will be milestoned itself, for exam-
ple, under the name “Displaced by Milestone of Alpha 12/17/97, 13:53.”

The new menu

Our new File menu now looks like the one shown in Figure 8-4.

Figure 8-4

The revised File menu now reflects the user’s mental model instead of the programmer’s
implementation model. There is only one file and the user owns it. If he wants, he can
clone it, discard any changes he has made to it or change its format. He doesn’t have to
worry about the copy in RAM and the copy on disk.

0112

95

96

PART II: THE FOrRM

“New” and “Open” function as before, but “Close” will just quietly close the
document without a dialog box or any fuss, after assuring that it is completely
saved. “Rename/Reposition...” brings up a small dialog box that lets the user
rename the current file and /or move it to another directory. “Make Snapshot
Copy” quietly creates a new file that is a copy of the current document. “Make
Milestone” does the same thing, except that the program manages these copies
by way of the dialog box summonable with the “Revert to Milestone” item.
“Document Properties” also brings up a dialog box that lets the user change
the physical format of the document. The final item is “Abandon Changes” and
it discards all changes made to the document since it was opened or created.

File menu?

Of course, now that we are manifesting a monolithic model of storage instead
of the bifurcated implementation model of disk and RAM, we no longer need
to call the left-most menu the “File” menu. This older nomenclature is a bold
reminder of how the technology has been inflicted on the user instead of the
user’s model being reflected in the technology. There are two pretty good alter-
natives to solving this problem.

As I said earlier, we can label the menu after the type of document we are pro-
cessing. For example, a spreadsheet might label its left-most menu “Sheet.” An
invoicing program might label it “Invoice.” I designed a patent management
program for a client, and in that program we called it “Patent.”

Alternatively, we can give the left-most menu a more generic label like
“Document.” This is certainly a reasonable choice for broad programs like
word processors and spreadsheets, but is less appropriate for narrower pro-
grams like the patent manager.

Conversely, those few programs that do represent the contents of disks as
files—generally operating system shells and utilities—shou/d have a “File”
menu, because they are addressing files with a studied ignorancé of their con-
tents.

How did we get here?

If you are still not convinced that disks and their file system are the cause of
great user interface confusion, I’d like to show how our disks came to have such
a profound effect on our software.

0113

CHAPTER 8: LORD OF THE FILES

From the user’s point of view, there is no rea
computer engineer’s point of view, there are three:

1. Disks are cheaper than solid-state memory. !
2. Once written to, disks don’t forget when the power is off.

3. Disks provide a physical means of moving information from one computer
to another. °

Reasons number two and three are certainly useful but are not the exclusive
domain of disks. Other technologies work as well or better. There are varieties
of RAM that don’t forget their data when the power is turned off. CMOS
memory is solid state, yet it retains its setting without external power.

™~
Networks and phone lines can be used to physically transport data to other
sites, often more easily than with removable disks.

Reason number one—£¢cos] lot
more éxpensiverthan disk drwes Reliable, h1gh bandwxdth networks haven t

A

been around as long as removable disks, and they are still more expensive.

Disk drives have many drawbacks when compared to RAM. Dj
always been muchss an solid-state memory. They are much
too, since they depend o !
ke Up moré

.

is that computers thc actual
first betbrou; ingsolid-state miemi

CPU can work with it. When the processor is done the helpers must once again
step in to move the data back out to the dlsk' Thls means that all¥processing

~Disks are a hack,
not a design feature

The time and complexity penalty for using disks is so severe that nothing short
of enormous cost-differential could compel us to rely on them. Disk drives are

0114

97

98

* Instead, they make computels weaker, slower and more complex. The

ParT II: THE FORM

a cost-saving hack. Mind you, there is nothing wrong with using this sophisti-
cated technology to save money, but keep in mind that the technology isn’t
there to provide us with services we couldn’t get in other ways. This means that
any changes we make to our interfaces to adjust to the disk technology are
likely to be inappropriate from a goal-directed point of view.

e; they are not architectural fea-

, more powerful, faster or easier to use.

T

compromise, a dilution, an adulteration, a corruption of the pure architecture
of digital computers. If early computer designers could have economically used
RAM instead of disks, they would have done so without hesitation. Whatever
other problems RAM exhibited could have been overcome with technologies
simpler than the complexity of disk drives.

The difference between RAM and disk is merely a matter of economics, much
like the way you go to a lending library instead of personally owning copies of
every book. This means that wherever disk technology has left its mark on the
design of our software, it has done so purely for implementation purposes and
not for any goal-directed design rationale. While this difference should be of
interest only to programmers, in reality, it is imposed on nearly every program
and users are forced to master it. Any construction’ ‘that supports disks is for the
convenience of the programmer and the computer, and not to help the aser.

The pervasivéness of the file system in our thinking and our design of software
is as though refrigeration technology dominated the design of every roém in
our houses. Certainly, the invention of cheap mechanical refrigeration affected
our domestic lives, but we don’t turn our houses into shrines to Freon. Yet this
is largely what we have done on our desktop computers.

It is one thing to weave a technology invisibly into our lives. It is another thing
altogether to allow our lives to be dominated by that technology. Refrigeration
plays a big part in our lives in many ways, including food preparation, the pro-
duction and storage of some medicines and air conditioning, yet we don’t
usually find ourselves expressing our desires in terms of it. We don’t go into a
restaurant and say, “I’ll have the salmon. It’s been refrigerated, hasn’t it?” We
don’t say, “You’ll love working here, it’s air conditioned.” Omnipresent tech-
nologies don’t have to intrude on our conscious thoughts to work well for us.
Unfortunately, this realization hasn’t yet dawned on the computer industry,
and we remain sadly dependent on the file-system model.

0115

CHAPTER 8: LORD OF THE FILES

The last gasp

There are only two arguments that can be mounted in favor of application soft-
ware implemented in the file-system model: Our software is already designed
and built that way, and users are used to it.

. Neither of these arguments holds water, though. The first one is irrelevant
because new programs written with a unified file model can freely coexist with
the older implementation model applications. The underlying file system doesn’t
change at all. In much the same way that toolbars have invaded the interfaces
of most Windows applications in the last few years accompanied only by cheers
and encouragement, the unified file model could also be implemented.

The second argument is more insidious, because its proponents are placing the
user community in front of them like a shield. What’s more, if you ask the users
themselves, they will reject the new solution because they abhor change, par-
ticularly when that change affects something they have already worked hard to
master—like the file system. In the *80s, the Chrysler company showed car-
buyers early sketches of a dramatically new automobile design: the minivan.
The buyers were asked if they would be interested in this new vehicle, and the
public uniformly gave a thumbs-down to the new design. Chrysler went ahead
and produced the Caravan anyway, convinced that the design was superior.
They were right, and those same people who rejected the design have not only
made the Caravan the best-selling minivan, but have made the minivan the
most popular new automotive archetype since the convertible.

People will gladly give up painful, poorly designed software for easier, better
software even if they don’t understand the explanations. After all, users aren’t
software designers and they cannot be expected to visualize the larger effect of
the change. Saying that users want to keep their familiar file-system model is
like saying you want to break your leg again so you can return to the hospital
because the food was so good the last time you were in there.

0116

99

Storage and
Retrieval Systems

a well- estabhshed concept in the
tis an objec that can be read by those
often can be mampulated with writing or

0117

102

ParT II: THE FORM

m is a tool for placing goods into a repository for safekeeping.
Tt is composed of a physical container and the tools necessary to put objects in
and take them back out again.

| is a method for finding goods in a repository. It is a logical
system that allows the goods to be located according to some abstract value,
like its name, position or some aspect of its contents.

As we saw in the last chapter, disks and files are usually rendered in implemen-
tation terms, rather than in accord with the user’s mental model of how infor-
mation is stored. This is even more true in the methods we use for finding
information after it has been stored. This is extremely unfortunate, because the
computer is the one tool capable of providing us with significantly better
methods of finding information than is physically possible from mechanical
systems.

In the real world of books and paper on library shelves, we have at least three
indices: author, subject and title. Although our desktop computers can handle
hundreds of different indices, we ignore this capability and have no indices at
all pointing into the files stored on our disks. Instead, we have to remember
where we put our files and what we called them before we can find them again.
This omission is one of the most destructive backward steps in modern software
design. This failure can be attributed to the interdependence of files and the
organizational systems in which they exist, an interdependence that doesn’t
exist in the mechanical world.

We can own a book or a hammer without giving it a name or a permanent place

of residence in our houses. A book can be identified by characteristics other

than a name—a color or a shape, for example. Even if we do assign a “proper

place” for a physical tool, it often resides away from that place for stretches of -
time. A volume may properly reside on our bookshelf, but when it is being

read, it may be left on night stands and coffee tables, or stuffed into briefcases

or purses, and it still serves us well. Of course, these places merely act as tem-

porary locations for the book. ‘

For the book or the hammer, it is important that there be a proper place for
them, because that is how we find them when we need them. We can’t just
whistle and expect them to find us; we must know where they are, then go there
and fetch them. In the physical world, the actual location of a thing is the
means to finding it. In the real world, where the systems of storage and retrieval
are the same, remembering where we put something—its address—is vital both

0118

CHAPTER 9: STORAGE AND RETRIEVAL SYSTEMS

to putting it away and to finding it again. When we want to find a spoon, for
example, we go to the place where we keep our spoons. We don’t find the
spoon by referring to any inherent characteristic of the spoon itself. Similarly,
when we look for a book, we either go to where we left the book, or we guess
that it is stored with other books. We don’t find the book by association. That
is, we don’t find the book by referring to its contents.

Retrieval methods

There are three fundamental ways to find a document. You c4n find it by
remembering where you left it, which I call 1
it by remembering its identifying name which I call identity
third method, which T call } _
search for a document based on some 1nherent quwhty of the document itself.

For example, if I wanted to find a book with a red cover, or one that discusses
light rail transit systems, or one that contains photographs of steam locomo-
tives, or one that mentions Theodore Judah, the method I must use is
associative.

Both positional and identity retrieval are methods that also function as storage
systems. Associative retrieval is the one method that is not also a storage sys-
tem. If our retrieval system is based solely on storage methods, we deny our-
selves any associative searching and we must depend on the user’s memory. He
must know what information he wants and where it is stored in order to find it.
To find the spreadsheet in which he calculated the amortization of his home
loan, he has to know that he stored it in the directory called “home” and that
it was called “amort1.” If he doesn’t remember either of these factoids, finding
the document can become quite difficult.

The document and the system it lives in

In the physical world, a complex case like a library might have many thousands
or millions of objects to store. To handle this, we assign books proper places
somewhere on the shelves and then concoct other schemes for finding them
based on some associative value: a characteristic of the book itself.

A book doesn’t have to have a place on a shelf in order to exist. Books and the
physical systems we store them in, shelves, are not physically dependent on each
other. The book can just as easily exist without participating in any storage
system.

0119

Uigass TLeeT I sy e Conep

103

104

ParT II: THE FORM

A file on a disk, on the other hand, is not separate from the organizational
structure of its filing system. What defines that file is not its contents but its
presence in the filing system. A disk file cannot exist outside of the filing system
in which it lives.

We can own, read and pass a book between us without ever entering it into a
book filing system such as the Dewey Decimal system or a specific library. In
order to own, read or pass on a computer “document,” it must first be entered
into the computer’s file system.

There is no such concept as a collection of data—a document—other than as a
participant in the host file system. The file systems in Windows, DOS,
Macintosh and UNIX are the same in this respect: None support the existence
of independent documents, only the existence of files tied intimately to their
storage systems.

An independent book or document in the physical world doesn’t need to have
any identifying information; its physical presence is sufficient. Usually each
book or document is given a title, but this is not a requirement for its existence.
In order to be stored in a manual or electronic filing system, however, it must
have a unique identifier (usually its name, though bigger collections require
more specific identifiers).

Indexing

In libraries, where names can be too disparate or insufficiently unique or oth-
erwise confusing, each book is also assigned a unique serial number, called a
Dewey Decimal number. The book is then stored in sequence according to this
number. This numbering scheme is very convenient for storing the books but,
by itself, doesn’t help in their retrieval. For that, we need a separate index: the
traditional card catalog.

Libraries usually provide three indices: author, subject and title. Each index is
associative, allowing the user to find the book according to an inherent prop-
erty of the book other than its identifying number or its location on the shelf.
When the book is entered into the library system and assigned a number, three
index cards are created for the book, including all particulars and the serial
number. Each card is headed by either the author’s name, the subject or the
title. These cards are then placed in their respective indices in alphabetical
order. When you want to find a book, you look it up in one of the indices and
find its number. You then find the row of shelves that contain books with

0120

CHAPTER 9: STORAGE AND RETRIEVAL SYSTEMS

numbers in the same range as your target, by examining signs. You then search
those particular shelves, narrowing your view down by the lexical order of the
numbers until you find the one you want.

You actually, physically retrieve the book by participating in the system of stor-
age, but you conceptually, logically find the book you want by participating in a
system of retrieval. The shelves and numbers are the storage system. The card
indices are the retrieval system. You identify the desired book with one and
fetch it with the other. In a typical university or professional library, customers
are not allowed into the stacks. As a customer, you identify the book you want
by using only the retrieval system. The librarian then fetches the book for you
by participating only in the storage system. The unique serial number is the
bridge between these two interdependent systems. In the physical world, both
the retrieval system and the storage. system may be very labor intensive.
Particularly in older, non-computerized libraries, they are both inflexible.
Adding a fourth index based on acquisition date, for example, would be pro-
hibitively difficult in the library.

Conversely, it’s not all that hard to add an index in the computer. Ironically, in
a system where easily implementing dynamic, associative retrieval mechanisms

is at last possible, we often don’t implement any retrieval system. Astonishingly,
we don’t use indices at all.

In most of today’s computer systems, there is no retrieval system other than the
storage system. If you want to find a file on disk, you need to know its name
and its place. It’s as if we went into the library, burned the card catalog, and
told the patrons that they could easily find what they want by just remember-
ing the little numbers painted on the spines of the books. We have put 100% of
the burden of file retrieval on the user’s memory while the CPU just sits there
idling, executing billions of NOP instructions.

An associative retrieval system

We have rendered the retrieval system in strict adherence to the implementa-
tion model of the storage system, ignoring the power and ease-of-use of a sys-
tem for finding files that is distinct from the system for keeping files.

An associative retrieval system would enable us to find documents by their con-
tents. For example, we could find all documents that contain the text string
“superelevation.” For such a search system to really be effective, it should know
where all documents can be found, so the user doesn’t have to say “Go look in

0121

105

106

ParT II: THE FORM

such-and-such a directory and find all documents that mention supereleva-
tion.” This system would, of course, know a little bit about the domain of its
search, so it wouldn’t try to search the entire Internet, for example, for “super-
elevation” unless we insisted.

An associative retrieval system would also help the user create temporary or
permanent groups of documents and use them as the basis for searches. For
example, I frequently like to search for passages in the manuscript for this book,
which is stored as dozens of small text files. I would like to first search for all
documents containing the phrase “About Face” and have the program remem-
ber that set of files as the book set. Then, when I wanted to find the discussion
of associative file retrieval systems, I could search the book set for occurrences
of the phrase “associative” and gain the performance advantage of a restricted
search without knowing anything about where my chapters were physically
stored.

A well-crafted associative retrieval system would also enable the user to browse
by synonym or related topics or by assigning attributes to individual docu-
ments. The user can then dynamically define sets of documents having these
overlapping attributes. For example, imagine a consulting business where each
potential client is sent a proposal letter. Each of these letters is different and is
naturally grouped with the files pertinent to that client. However, there is a def-
inite relationship between each of these letters because they all serve the same
function: proposing a business relationship. It would be very convenient if a
user could find and gather up all such proposal letters while each one can still
retain its uniqueness and association with its particular client. A file system
based on place—on its single storage location—must, of necessity, store each
document by a single attribute rather than multiple characteristics.

The system can learn a lot about each document just by keeping its eyes and
ears open. If the associative retrieval system remembered some of this informa-
tion, much of the setup burden on the user would be made unnecessary. The
program could, for example, easily remember such things as

O The program that created the document

The type of document: word ,-tables, graphics

gocument

O

O The program that last opene o¢
By,

O

If the document is exceptionally large or small

0122

)

O

CHAPTER 9: STORAGE AND RETRIEVAL SYSTEMS 107

If the document has been untouched for a long time

The length of time the document was last open

The amount of information that was added or deleted during the last edit
Whether the document has been edited by more than one type of program

Whether the document contains embedded objects from other programs

Whether the document was. om scratch or cloned from another

If the document is frequently
If the document is frequently viewed but rarely edited
Whether the document has been printed and where

How often the document has been printed, and whether changes were
made to it each time immediately before printing

Whether the document has-been faxed and to whom

Whether the document has been emailed and to whom

The retrieval system could find documents for the user based on these facts
without the user ever having to explicitly record anything in advance. Can you

think of other useful attributes the system could remember?

There is nothing wrong with the disk file storage systems we have created for
ourselves. The only problem is that we have failed to create disk file retrieval
systems. Instead we hand the user the storage system and call it a retrieval sys-
tem. This is like handing him a bag of groceries and calling it a gourmet din-
ner. There is no reason to change our file storage systems. The UNIX model is
fine. Our programs can easily remember the names and locations of the files
they have worked on, so they aren’t the ones who need a retrieval system:
That’s just for us human users.

It ain’t document-centric

The purveyors of GUIs, Microsoft Windows included, often allow themselves
the conceit that we have a “document-centric” view of the world. It would be
more accurate to say that we have a “file-centric” view of the world. Our
so-called documents behave exactly like files and not much like documents.

0123

108

ParT II: THE FORM

When software vendors claim to have a “document-based” product, I interpret
it to mean that their software supports documents independent of the sup-
porting file system. None of the software I have seen does this.

Some programs, like those in Microsoft’s Office suite, implement an associative
searching system that operates outside of, and in parallel to, the normal file sys-
tem, but it doesn’t replace the need to work within the file system. Microsoft’s
solution is weak because it still demands so much advance effort by the user.

In a document-centric world, documents are naturally at the center of things,
and are independent of any particular program. Instead of Word documents or
Word Perfect documents or I-2-3 documents, we would have generic documents
that could be worked on by any spreadsheet or word processor program.

Of course, vendors have developed a myriad of proprietary file formats that
make exchanging data problematic. But the divergence of file formats is an
effect, not a cause, of the failure of document-centricity. The file systems of our
popular operating systems have so punted on the issue of retrieval (and man-
agement) of documents, that vendors felt unconstrained to use any kind of
common form or format ... even on UNIX which actually did have a common
format: ASCII. The only elements that remain common from file to file are
those two lowest common denominator retrieval tools that are part of the stor-
age system, too: name and position.

It isn’t even necessary for a company to abandon its own custom file formats.
In just the same way that I can hold and own a book written in German—even
though I can’t read German—WordPerfect should be able to own and hold a
1-2-3 file without necessarily having the ability to read it.

In a document-centric world, applications would be less monolithic. Instead of
a giant word processor with hundreds of built-in functions, we’d have pro-
grams with more tightly targeted feature sets: chartwriters and graphwriters
and tablewriters and CADwriters and animationwriters. In fact, we would find
that programs could get even smaller and more specialized, yet still work well
together. Imagine a heterogeneity of inventive tools like pencils, inks, erasers,
animators, sound recorders, fonts, undo-ers, margin controllers, spraypainters
and rubber stamps that could be freely applied to any of our documents. We
wouldn’t have to wait for Microsoft or WordPerfect to think of it and decide to
include it in the next release of their program. Nor would we be constrained to
work on words in one program and images in another. We could combine these
tools in one program based on our work habits rather than on one vendor’s

0124

CHAPTER 9: STORAGE AND RETRIEVAL SYSTEMS

specialties. We would buy each tool from a different vendor, choosing the one
whose product was best for the desired function. The result would be a pro-
gram containing all of our favorite tools, all working together the way we want
them to. We wouldn’t be forced to use the tools from someone else’s toolbox.

A utopian vision?

For this happy situation to occur, we’d have to have a standard document for-
mat independent of any one particular program. This would mean that the
industry would have to reach a general agreement on the characteristics of a
document—not an easy task in our competitive buisness world, where each
player thinks the world should rally around its particular flag. SGML is an
emerging standard that many vendors have adopted. It is gaining momentum
as a common format, and this is a significant contribution to the industry. It
may even grow into the utopian vision someday. Actually, we have an excellent
model of an independent document standard in the UNIX world where stream-
ing ASCII files are considered a generic, common file format that hundreds of
programs know how to read, process and write.

In UNIX, any program can read or write an ASCII file regardless of which pro-
gram created the file. The format of the file is common, rather than proprietary.
UNIX is justifiably famous for the benefits of this standard. Programs are
smaller and more powerful because they can concentrate on the function they
do best. The system is egalitarian and open, and the suite of available tools
comes from a wide variety of sources, both commercial and non-profit.
Streaming ASCII files on UNIX are a model of what a true document-centric
environment can produce. ' '

Unfortunately, streaming ASCII is a pretty weak file format. It is a lowest-
common-denominator format, lacking an internal structure of any kind.
Vendors, in their endless quest to achieve a market edge with their product,
abandon standards and create files in a proprietary format, but this has the
effect of removing them from the ranks of open systems. From that point on,
if they want to add functionality to their system, they must do it themselves and
they will not be able to count on competitors adapting to their format. They
have pretty-much closed off the avenue for third party add-ons.

The bottom line is whether a vendor owns the file format or if it is a common
format owned by no one in particular. If the format is common, a
document-centric architecture exists. If the format is proprietary, it is not
document-centric. The issue hinges on the ownership of files. If a program

0125

109

110

PArT II: THE FORM

“owns” a file because of its format, the system is closed. According to this def-
inition, only SGML ranks as a document-centric design. Almost every applica-
tion currently running on Windows uses proprietary file formats, including all
of those from Microsoft. We have seen over the years how open systems thrive.
The only closed systems that avoid a swift and painful death in the open mar-
ketplace are those which can offer significantly better value than the competi-
tion. This is why Microsoft is working towards a common document architec-
ture with its OLE standard.

Unfortunately, OLE is just a baby-step in this direction, and it comes with
some significant flaws. In particular, OLE doesn’t address the file-ownership
problem. With OLE, other objects can be embedded in a document, or it can
be embedded in others, but it remains strictly cast according to its type—its
owner. OLE attempts to create an interchange standard by defining complex
methods for programs to talk and work with each other, instead of defining a
common document architecture and letting the programs do as they please.
Instead of creating a network of roads, OLE tries to connect everybody’s
houses with one long hallway.

There are other problems with the file-centric model besides file ownership.
There are countless cases where a user wants to organize his information in
groups other than documents. For example, this book is a “document,” but it
is composed of dozens of smaller documents, each represented by a file. The
word processor that I used to create each document in the book understands
how to deal with each one, but it is quite weak when it comes to handling the
bigger “document,” the book itself. There are no global commands, so I can’t
change the phrase “abysmally bad design” to “dunderheaded design” through-
out the book by using a single command. Neither is there a way to tell what
number this page will have when it is part of the full book. Microsoft is aware
of the problem but can’t seem to solve it decently. The “Master Document”
feature in Word is a game attempt, but anyone who has used it on a large doc-
ument will immediately see how inadequate it is. Of course, my point isn’t that
word processor manufacturers can’t solve this problem. Programs like Interleaf
or FrameMaker can handle it. It is just that our file-centric vision tends to blind
us to cross-file or multi-file problems, and they usually don’t receive the atten-
tion they deserve.

System designers don’t seem to be aware of these tradeoffs and, consequently,
many of our most cherished notions about system design are based on tradition

0126

CHAPTER 9: STORAGE AND RETRIEVAL SYSTEMS 111

rather than on sensible design. We have been doing files the same way for so
long that nobody questions our methods. And these methods shape our think-
ing and, ultimately, shape our user interfaces.

0127

Choosing Platforms

ery dlfﬁcult because they com-
”rld cons1dcrat1ons

0128

114

PART II: THE FORM

interaction problems detract significantly from productivity. Keeping older
desktop computers in critical roles in your mainstream business environment
any longer than appropriate is like making your employees take the bus on
their cross-country business trips instead of flying: it is penny-wise and pound-
foolish.

Every aspect of software is more expensive than hardware. You might think this
isn’t true because you have 1,000 computers but only have to develop an appli-
cation once. Let’s say it takes $350,000 to develop a program and those com-
puters cost $3,000 each for a total of $3,000,000; it seems like your point is
proven. But the comparison is not really between $350,000 and $3,000,000.
Yes, the cost of the hardware is $3,000,000, but the cost of the software also
includes the cost of installing, training and supporting 1,000 users of it. It may
take a week to get each person up to speed on the program. If we assume that
each employee makes $200 per day, their combined salary for the week is
$1,000,000. Then you add about $500 per user for the teaching costs. Now
don’t forget the opportunity cost! While each person is learning about the pro-
gram, he is mot generating income for the company. If each employee
normally generates $5,000 worth of business for the company each week, that
revenue is lost. So far, the cost of implementing the software is hovering around
$6,500 per user. You can get a pretty classy computer for that much money.
The software cost of installing our 1,000 computers is now $6,500,000!

The half-life of a desktop computer

Much of today’s business wisdom regarding computers was learned in the *60s
and ’70s in the data-processing centers with their giant mainframes. Those
machines were large, long-term, corporate assets tended to by dozens of tech-
nicians. The technicians came and went, but the mainframe was permanent..
The modern desktop computer is architecturally very similar to the mainframe,
but in every other respect is quite a different animal.

The desktop PC is to the mainframe as a wild lion is to a house cat. The capa-
bility and flexibility of the PC make it the king of the jungle, while the main-
frame was weak as a pussycat unless it had hordes of technicians working to
keep it purring. They share many physical characteristics, but one is a domesti-
cated animal and the other is a savage beast. To treat them the same would be
dangerous. The desktop PC came from a different branch of the evolutionary
tree than mainframes did, and it has dramatically different purposes, goals,
usage and responsibilities. Those who treat PCs as durable goods are persisting

0129

CHAPTER 10: CHOOSING PLATFORMS

in thinking of them as little mainframes; as permanent investments that support
operations or generate revenue. But desktop PCs are, as I’ve said before, con-
sumables, not investments. To be economically efficient, they must be treated
as such. I’'m not suggesting that you wrangle with the IRS over it (although
someone should), but this is the way you should consider computers in your
planning.

Think of your desktop PCs the way that Hertz thinks of their cars: certainly cars
are a fundamental part of their business, but Hertz doesn’t get sentimental
about them. Instead, they do the math. The half-life of the price of a fleet car
is about two years. That is, a car that cost $20,000 new can be resold for
$10,000 in 24 months. I would guess that a modern desktop PC that can be
purchased for $3,000 today can be sold for $1,500 within 12 months, because
the pace of computer technology is faster than automotive technology. Hertz
sells off the bulk of its fleet before they have reached their price half-life, yet
most businesses won’t sell off their personal computers for as long as four years;
400% of their price half-life. Are desktop computers less important for con-
ducting your business than Hertz’s cars are to them? I doubt it.

That Hertz or Avis sells its fleet cars after a year isn’t an accident. These com-
panies have performed detailed financial studies to determine the optimum
amount of time to keep their cars so that their yield from resale is best with
respect to the amount of rental revenues they can generate from each one. Just
because Hertz sells off their fleet cars after a year doesn’t mean that you can’t
get ten or more good years out of your family car, but it takes a considerable
amount of care and attention to do so. Care and attention is expensive in
business, and in today’s service economy they are more effectively lavished on
customers than on inanimate objects. Similarly, you can keep your family’s old
386,16 with 640x480x16 VGA monitor going for several years past its prime,
and it will still serve you well. You can devote the time and attention to it that
it needs. In the business environment, however, you can’t afford to lavish that
time and attention on your office equipment. Opportunity cost is extremely
expensive in modern business, and while you are baby-sitting
cantankerous hardware, your competition is out stealing your market share.

Personal computers are not cars, and the dislocation involved in upgrading
from one model to another is much greater than just buying a new car—it’s
more akin to buying a new office—so the analogy isn’t precise. The point,
though, is that we must begin to regard our desktop computers more like fleet
cars and less like mainframes.

0130

115

116

PART II: THE FORM

PCs are not little mainframes; they are unique business tools that don’t age
gracefully. There are enormous costs associated with keeping computers
beyond their useful and most productive times. The main costs arise from inter-
action problems. A typical PC will have dozens of major hardware and software
components, and the probability for incompatibilities between them grows
exponentially as the system ages and new components are added. When you
buy a brand-new computer, you start the clock ticking again at zero, and the
probability for interaction problems is reduced again to a manageable level.

The potential for error inside a given modem, for example, is really small. Most
hardware vendors are reputable and test their product well. However, the odds
that the particular brand of modem you own is fully tested with a particular ser-
ial communications chip and a particular serial communications driver software
decreases as these three products diverge in time.

Almost any mouse sold in 1995 will work with almost any computer sold in
1995. But the chances of strange, unpredictable interaction problems between
that mouse and an otherwise perfectly functional computer sold in 1992 are
quite high. Even the standard plugs for mice have changed between 1992 and
1995, from a seven pin DIN connector to a five-pin mini-DIN. How much will
it cost your company in lost productivity to have an executive stopped from
doing her job while a technician hunts down the proper connector? Is it more
or less than the cost to replace her computer with a more modern one?

If the cost of keeping older desktop PCs in service is higher than their replace-
ment cost, it makes good business sense to upgrade them. If, based on resale
value, the optimal sell-off date for a computer is 10 months, you can expect
that the residual value will reach zero sometime before four years have elapsed.
I contend that the optimal interval to keep a computer before replacing it is
roughly 24 to 30 months from the initial purchase. Before that, you pay too
much in disruption. After that, you pay too much in obsolescence.

Choosing a development platform

The computer industry often makes a further miscalculation that makes keep-
ing old computers around past their prime seem harmless by comparison. I’'m
referring, of course, to the decisions regarding target platforms for software
development. Many development teams create software that will accommodate
all existing hardware. Their management usually colludes in this error by
encouraging them to support the five-, six- or seven-year-old computers that

0131

CHAPTER 10: CHOOSING PLATFORMS

are still ticking away in corporate offices, arguing that it would be too expen-
sive to replace all of those computers. This ignores the fact that the cost of
developing software to support both old and new hardware is generally
significantly greater than the cost of purchasing and supporting the more pow-
erful new hardware. This means that, if the software is written to accommodate
those old computers, it will save money on the hardware just to spend it on the
software, resulting in much stupider software at greater cost. It should be the
responsibility of management to assure that the computers on desktops
throughout the company are as modern as can be when the new software is
ready.

To develop software for modern platforms, you must design for hardware that

will be readily available six to twelve months after the product first ships. Don’t
forget that it might take a year to develop the software, and another six months
for it to penetrate your organization, and the state-of-the-market computers
will be even more powerful than today.

If you develop software for a target hardware platform that is any older than
next year’s standard, you are firmly anchoring your business in the past. If any
of your competitors make the more intelligent choice, you will be quickly over-
taken. The cost of programming is extremely high compared to the cost of
hardware, but you will have to accept this development cost regardless of the
hardware platform you write for, so this isn’t the real problem. Instead, the
problem lies in the desire to fully amortize the investment in the software by
assuring that it covers all platforms. The trap is that by covering all existing
platforms, you reach backwards, shutting yourself out of future platforms. And
only the future platforms have, well, a future.

Just like the desire to fully amortize your investment in the hardware caused the
problem, it also compounds the problem by forcing you into building weaker,
less-effective software and then insisting on getting your money’s worth from
it, too. The unsuspecting businessperson can be trapped by his own parsimony
into weakening the company’s ability to perform its fundamental business.

The insight here is to never let software decisions be swayed significantly by the
limitations of existing hardware. The software should, of course, be able to run
on state-of-the-art computers when it is released, but it should have to stoop a

0132

117

118

. Purchase the right software; then

PART II: THE FORM

bit to do so. The product should be designed to behave optimally with the
hardware that will be state-of-the-art 6 to 12 months after the software is first
released.

This is a lot less important for operating system software (OSs) or language
compilers, where the performance leverage is enormous and always works
against you. But in the world of applications, where user interaction is intense
and performance is usually measured by how productive users feel rather than
by more objective measures, don’t compromise software for hardware.

Controlling the hardware

If you are creating specialized software or vertical-market programs that will be
sold to customers for several thousands of dollars or more, you can certainly
dictate the hardware it should run on. A larger proportion of the user’s budget
will go for software than for hardware.

Users will inevitably argue this point. Since the beginning of the microcom-
puter revolution, no axiom has been truer yet more frequently violated than
this one:

buy the computer that runs it

Most users will buy a computer and then look for software that solves their
problem and—by the way—also runs on their computer hardware. This atti-
tude is a carryover from the mainframe days, and often informs the thinking of
software developers as much as it influences software buyers. To make a sale,
developers are quick to adapt to a specific hardware platform. Yes, the realities
of business sometimes dictate such choices and an adulteration of our practices,
but this doesn’t for a minute mean that these decisions make for good design.
Software is the key, not the hardware. In a few more years, when the cost of
computing machinery drops by another couple of orders of magnitude, this
natural order will be apparent to all. Good designers will anticipate it.

0133

CHAPTER 10: CHOOSING PLATFORMS

Simultaneous Multiplatform Development

As tantalizing as it is to want to kill two birds with one stone, don’t do simul-
taneous multiplatform development. It isn’t worth it. Instead, develop only for
your primary market. Then use the revenue from this product to port to your
secondary platforms.

There are two ways to do simultaneous multiplatform development and
both of them are bad. You can make the code more complicated, or you can
homogenize the interface.

Anything that increases the complexity of source code should be avoided at all
costs.” It will magnify the time it takes both to write and to debug. The main
job of the software development manager is to avoid uncertainty and delay.
Simultaneous multiplatform development generates more uncertainty
and delay than any other tactic you might use. The compromises and confusion
will ultimately result in the quality of your product suffering.

In the quiet of the office it seems so harmless, so easy to add a few “if-else”
statements to the source code and magically reap the benefits of supporting
an extra hardware platform. Don’t be fooled. Everything in the already-
problematic discipline of software development becomes harder and more com-
plex. Each design decision must now be made for two platforms. Compromises
slip into the product to account for the disparity between the two. If writing
for dual platforms increases the amount of code by only 5%, it can increase the
time to market by a zhird. This is an incredibly costly bad decision that is
easily avoided.

There are several commercially available libraries of code that will let you de-
velop on multiple platforms simultaneously. In order to do so, they demand
that you design for a “generic” GUI, which the library then runs on each plat-
form. This may be good for the development team, but the users will dislike it
intensely. They will immediately detect the homogenization of the interface
and will not appreciate it. Macintosh users prefer programs with a Mac sensi-
bility. Windows users won’t settle for anything but a Windows application. For
example, Windows users are very comfortable with multiple, complex toolbars
running horizontally across the top of the program just beneath the menubar.

0134

119

120

ParT II: THE FORM

Many Mac aficionados consider this idiom to be about as desirable as a shark in
a swimming pool.

The programming staff will probably be game to do multiplatform develop-
ment. They may even be the ones pushing for it. They see it as an intellectual
challenge; multiplatform development is a tournament in which to compete
and win. Just remember that programmers frequently don’t give a hoot about
deadlines—they’re in it for the brain exercise.

Finessing the problem

A much simpler, safer and more effective way to solve the problem is by devel-
oping for a single platform first: your main market. This will typically be
Windows, the market leader by a wide margin. You completely avoid the com-
plexities of multiplatform development, finish the first version with the great-
est possible speed and ship it to the largest possible market.

Once you’ve finished the Windows version, you are generating revenue while
you begin development for other platforms. Development managers take note:
This is your most compelling argument for convincing others that single-
platform development is the proper course to take. The needs of secondary
markets shouldn’t delay the needs of primary markets.

Don’t hamper primary markets
by serving secondary markets

This doesn’t mean that you need to abandon the secondary market. On the
contrary, at this point you will have a fully articulated, working model of the
product—running on Windows—to use as a prototype for the versions to run
on other platforms. You can hire a team of programmers with proven skills on
the new platform and tell them “go forth and clone.” When programmers are
working from a clearly visible model, the development time can be compressed
significantly because there is little time wasted going down blind design alleys.
You can also hire programmers who are less experienced—and therefore less
expensive—to do clone-programming because there is less design work
involved. Much of the code will likely be reusable, but you now treat this as a
bonus rather than as an expectation. '

0135

CHAPTER 10: CHOOSING PLATFORMS

When I say clone, however, I mean clone functionality but not dialect. The
Windows prototype will demonstrate how the program should interact with the
user, but the Macintosh version must behave like a Mac program at the detail
level. For that, you need local expertise. The problem is conceptually similar to
localization.

The Myth of Interoperability

Windows developers often face programs with legacies as successful DOS pro-
grams. Many applications are brought to Windows after they have had a long
and lucrative run in a DOS, character-based, command-line environment.
Common wisdom holds that the Windows program should emulate the DOS
program as closely as possible. “Thousands of satisfied customers want to move
to Windows,” goes the logic, “and they will be sorely disappointed if the pro-
gram is different from what they already know and love.” Besides, “Many of
our corporate users work in heterogeneous environments and they want the
Windows version to work the same way as their DOS-only systems.”

This concept is called Believers in interoperability will tell
you that your DOS customers are faithful to your product because of the way
your program behaves, because they have already learned your DOS product
and because they can’t afford the retraining costs of moving their people to a
new Windows version. They will draw the irresistible word picture of the happy
user entering data at a- DOS machine, then cheerfully switching to the Windows

computer and performing an identical task.

As compelling as this logic is, it is dead wrong. If you are going to create a
Windows version of a program, go ahead and create a Windows version—don’t
implement a DOS version on the Windows platform. If you try for interoper-
ability, you will only hurt your product. You will find that no one is happy, least
of all you and the development staff. Your job will become increasingly difficult
as you try to reconcile fundamentally irreconcilable differences.

Simply stated, Windows users use Windows because they like it and because
they don’t like DOS. On the other hand, DOS users use DOS because they like
it and because they don’t like Windows. If your program acts like DOS on
Windows, DOS users will be unhappy because they’d rather be using the gen-
uine article on DOS, and nothing you do to simulate DOS on Windows will
make them happy. Conversely, all of the Windows aficionados will turn up their
noses at the pathetic DOS-ness of your program and its lack of understanding
of how to behave appropriately in a Windows world.

0136

121

122

ParT II: THE FORM

Your DOS customers are faithful because your DOS version is sensitive to the
particular needs of DOS users. They like it because it has adapted to the local
customs of the DOS environment. Given the limitations of that environment,
it is a satisfactory solution. It exhibits familiar DOS-like behavior that makes
users experienced in a DOS environment feel warm and fuzzy. Extrapolating
this to mean that the behavior of the program itself is warm and fuzzy can be
fatal when you move to another platform, particularly when exercising a para-

digm shift as dramatic as moving from a character-based to a graphical
platform.

Most Windows users like Windows because they were dissatisfied with the level
of usability available in DOS. They are here because they want something dif-
ferent and better; not something similar and status quo. They came here
because they wanted to leave the limitations of DOS behind, and they want you
to have done the same.

Windows users expect your program to conform to the local standards in ex-
actly the same way that DOS users expected your DOS program to conform to
DOS standards. Windows users will want your Windows version to look and act
like other Windows applications, not like DOS applications. They will expect
your program to take advantage of the tools provided by the new platform.
They will expect your program to deliver something better to justify the dislo-
cation they had to invest in order to move from DOS to Windows.

Those people who clamor for interoperability are often motivated by fear. They
are afraid of the new system; of their ability to learn it and to adapt to it. They
are afraid mostly of the learning curve. They worked so hard and absorbed 50
much pain to learn the DOS version that they fear going through the process
again on Windows. By demanding interoperability, they hope that they will be
able to take their hard-earned expertise straight across to the new system.

The answer for these people, of course, is that it won’t be anywhere near as diffi-
cult to learn in Windows than it was in DOS. They won’t believe this, so you
will just have to do the right thing despite their pleas. It’s like telling a child
that a tetanus shot is less painful than tetanus—all the child can see is the
needle. Extending the metaphor, you must be the adult even if the frightened
users hold the purse strings. It is not a good career move to make your

0137

CHAPTER 10: CHOOSING PLATFORMS

customer happy all through the development process only to eventually
deliver a dud.

Of course, you have to deliver on your promises and make a graphical user
interface that really is significantly easier to learn and use than the DOS version.
I have no doubt that you can do it, as long as you abandon interoperable think-
ing and become a Windows native.

Often, the people who clamor the Joudest for interoperability are the product
managers, marketing managers and programmers who worked long and hard
on the DOS version. They will insist that the Windows version be designed
in the image of the DOS version, the company’s cash cow. I have seen this
situation several times. The DOS-centric forces-of-evil have the upper hand
because their product makes money for the company and, for a while at least,
your product merely costs the company money. They make their compelling
arguments to upper management, who can’t really be expected to know better,
and the dictum is handed down: “Make it like the DOS version.” At this point,
all of the really smart people quit, the program is written, haltingly, to worship
twin operating-system gods and, when it finally ships, the market emits a loud
yawn. The DOS faithful remain faithful to DOS, snickering all the while about
how they told you the Windows version would flop. The Windows hopefuls are
very disappointed with the product because it retained its clunkiness in spite of
Windows. Your competitor will release a native Windows product that was
designed and written with a “when in Rome, do as the Romans do” attitude, it
will begin robbing you of sales, and your company will begin its long, agoniz-
ing slide into Chapter 11. Don’t let this happen to you!

The picture that I have just painted of crossing the gulf from DOS to Windows
is also very true when going from the Macintosh platform to Windows. In spite
of their numerous visual similarities, Mac and Windows are different cultures,
and moving from one to another is not the bed of roses you might expect. If
you want to sell something to Mac users and have them appreciate it, sell it to
them on the Mac. Attempting to do it on a PC will just irritate Windows peo-
ple and generate a yawn from the Mac folks. Macintosh users believe deeply
that Macs are better than Windows. There is not much that you can do on a PC
that will impress the Mac crowd, even if you adhere slavishly to Mac doctrine.
The president of a prominent Mac software company once told me that “the
pixels on a Mac are better than the pixels on a PC.” He actually believed this,

even though you can take a typical Sony or NEC video screen and plug it into
either computer.

0138

123

124 ParT II: THE FOrRM

Management will make the same arguments about interoperability they always
do, but the fact remains that although compamcs may have thousands of Macs
%uelspelscd with thousands of PCs Ve 3

ually spend time

are few companies who make interoperable applications successful on both
platforms. They generally have a loyal customer base on only one platform—
their native one, while their customers on the other platform are just marking
time waiting for an easier-to-use product native to their platform.

0139

havior

that has previously been rolled down a cliff: You have to
Limb in throuwgh the window; none of the lights seem to
‘the engine makes o suspicious clunking noise;
g?ed“ﬁff%]
MOMENLS.
factured avtifucts in our lives must become increasingly
havder to use and understand as they incorporate more
and more technology? Most software designers won’t
admit to themselves the scope of their collective igno-
ance about what veally works in the field of interface
lesign. We have many noble experiments, and many
successes and failures, to observe—we even have a smat-
teving of books to vewd—but we can bavely agree on the

details, let alone the lavger issues. I

passes f ‘

’ : <oramatation. The frustrating thing is, it doesn’t have

ALl A

to be that way.

0140

more-productive, we must make its
U.CthC To make users more productwe we

ience is exhilarating. A minute or two longer on the
an spell the difference between winning and losing a

B svmw;,

e on the step, too, whetithey really,

he state is; gench;wl'lyr called

s SR

127

0141

128

ParT III: THE BEHAVIOR

Tom DeMarco and Timothy Lister in their book Peopleware, Productive Projects
and Teams (Dorset House, 1987) define flow as a “condition of deep, nearly
meditative involvement.” Flow often induces a “gentle sense of euphoria” and
can make you unaware of the passage of time. Most significantly, a person in a
state of flow can be extremely productive, especially when engaged in process-
oriented tasks such as “engineering, design, development and writing.” All of
these tasks are typically performed on computers while interacting with soft-
ware. Therefore, it behooves us to create a software interaction that promotes
and enhances flow, rather than one that includes potentially flow-breaking or
flow-disturbing behavior.

When a sailor makes a lubberly tack—changes the position of the sail clum-
sily—the dingy falls off the plane and slows like it hit a wall. The sailor now has
to carefully accelerate until the boat can once again get on the step. Good
sailors tack so smoothly that the boat is undisturbed, and the hull stays on the
step. In the same way, we want our program’s interaction to be so smooth that
the user is undisturbed and can remain in the state of flow. If the program rat-
tles the user out of flow, it may take several minutes to regain that productive
state.

Techniques for inducing and maintaining flow

To create flow, our interaction with software must become transparent. There
are several excellent ways to make our interfaces recede into invisibility. They
are

1. Follow mental models
2. Direct, don’t discuss

3. Keep tools close at hand
4

Give modeless feedback

There are other important tools for designing transparent interfaces that we
will discuss in the next couple of chapters. These include “not stopping the pro-
ceedings with idiocy” (Chapter 13), and “questions aren’t the same as choices”
(Chapter 14). We’ll tackle the others right here.

Follow mental models

I introduced the concept of mental models in Chapter 3. Different users will
have different mental models of a process, but they will rarely visualize them in

0142

CHAPTER 11: ORCHESTRATION AND FLOW
\

terms of the detailed innards of the computer process. Each user naturally
forms a mental image of how the software performs its task. The mind looks for
some pattern of cause and effect to gain insight into the machine’s behavior.

Creators of race cars place gauges on their dashboards so they follow the dri-
ver’s mental model, which goes like this: “straight up is good. Anything else is
bad.” The engineer twists the gauges in their mounts so that every needle
points straight up when everything is normal. The gauges won’t look right to
tyros, but the racer understands: her peripheral vision monitors the gauges eas-
ily while staying in flow to drive. If any needle deviates from the vertical, it
demands the driver’s conscious attention to the problem; otherwise, up means
OK, just like that thumb’s-up from her pit crew.

Direct, don’t discuss

Many developers imagine the ideal interface to be a two-way conversation with
the user. However, most users don’t see it that way. Most users would rather
interact with the software in the same way they interact with, say, their car.
They open the door and get in when they want to go somewhere. They press
on the accelerator when they want the car to move forward and the brake when
it is time to stop; they turn the wheel when they want the car to turn.

This ideal interaction is not a dialog—it’s more like using a tool. When a car-
penter hits nails, she doesn’t discuss the nail with the hammer; she directs the
hammer onto the nail. In a car, the driver—the user—gives the car direction
when he wants to change the car’s behavior. The driver expects direct feedback
from the car and its environment in terms appropriate to the device: the view
out the windshield, the readings on the various gauges on the dashboard, the
sound of rushing air and tires on pavement, the feel of lateral g-forces and
vibration from the road. The carpenter expects similar feedback: the feel of the
nail sinking, the sound of steel striking steel, the heft of the hammer’s weight.

The driver certainly doesn’t expect the car to interrogate him with a dialog box,
nor would the carpenter appreciate one appearing on her hammer like the one
in Figure 11-1.

One of the main reasons software often aggravates and upsets users is that it
doesn’t act like a car or a hammer. Instead, it has the temerity to try to engage
us in a dialog—to inform us of our shortcomings and to demand answers from
us. From the user’s point of view, the roles are reversed: it should be the user
doing the demanding and the software doing the answering.

0143

129

130

PART IIl: THE BEHAVIOR

Figure 11-1

Just because programmers are accustomed to seeing messages like this doesn’t mean that
people from other walks of life are. Nobody wants their machines to scold them. If we
guide our machines in a dunderheaded way, we expect to get a dunderheaded response.
Sure, they can protect us from fatal errors, but scolding isn’t the same thing as protecting.

With direct manipulation, we can point to what we want. If we want to move
an object from A to B, we click on it and drag it there. As a general rule, the
better, more flow-inducing interfaces are those with plentiful and sophisticated
direct-manipulation idioms.

Keep tools close at hand

Most programs are too complex for one mode of direct manipulation to cover
all of their features. Consequently, most programs offer a set of different tools
to the user. These tools are really different modes of behavior that the program
enters. Offering tools is a compromise with complexity, but we can still do a lot
to make tool manipulation easy and to prevent it from disturbing the flow.
Mainly, we must ensure that tool information is plentiful and easy to see and
attempt to make transitions between tools quick and simple. '

Tools should be close at hand, preferably on palettes or toolbars. This way, the
user can see them easily and can select them with a single click. If the user must
divert his attention from the application to search out a tool, his concentration
will be broken. It’s as if he had to get up from his desk and wander down the
hall to find a pencil. And he should never have to put tools away manually.

As we manipulate tools, it’s usually desirable for the program to report on their
status, and on the status of the data we are manipulating with the tool. This

0144

CHAPTER 11: ORCHESTRATION AND FLOW

information needs to be clearly posted and easy to see without obscuring or
stopping the action.

Modern jet fighter designers go the race car designers one better in cockpit
design—this is critically important when the job involves yanking and banking
40 tons of titanium at 600 miles per hour. Jet fighters have a heads-up display,
or HUD, that superimposes the readings of critical instrumentation onto the
forward view of the cockpit’s windscreen. The pilot doesn’t even have to use
peripheral vision but can read vital gauges while keeping her eyes glued on the
opposing fighter.

Our software should display information like a jet fighter’s HUD. The program
could use the edges of the display screen to show the user information about
the action in the center that is being directly manipulated.

Modeless feedback

When the program has information or feedback for the user, it has several ways
to present it. The most common method is to pop up a dialog box on the
screen. This technique is modal: it puts the program into a mode that must be
dealt with before it can return to its normal state, and before the user can

continue with his task. A better way to inform the user is with

—RoLLinG Paca CasnT
—ANIX e e

Feedback is modeless whenever information for the user is built into the nor-
mal interface and doesn’t stop the normal flow of system activities and interac-
tion. In Word, you can see what page you are on, what section you are in, how
many pages are in the current document, what position the cursor is in and
what time it is modelessly just by looking at the status bar at the bottom of the
screen.

If you want to know how many words are in your document, however, you have
to call up the Summary Info dialog from the File menu; then you have to press
a button to summon the Statistics dialog to see a word count (see Figure
11-2). I refer to the word count figure frequently when I write magazine arti-
cles (It’s hard to get them short enough!). I sure wish the word count were
offered modelessly.

Orchestration

If the user could achieve his goals without the program, he would. By the same
token, if the user needed the program but could achieve his goals without

0145

131

132

~aesthetic experience. It is a pragmatic exercis

ParT II1: THE BEHAVIOR

going through its user interface, he would: Interacting with software is not an
that is best kept to a minimum.

Don’t kid yourself about your sexy new multimedia, interactive, online, social,
point-and-click program. The user would rather just snap his fingers or say
“abracadabra.” No matter how cool your interface is; less of it would be better.

Figuve 11-2

In Word, if you want to know the number of words in your document, you must first
request the Summary Info dialog from the File menu. Then, by pressing the Statistics but-
ton, you call up the Document Statistics dialog box. Down 1n the corner, buried among
other useless (for me) numbers is the one I want. After I’ve read it, I must press the Close
key and then the Cancel key...or was it the other way around? This is the opposite of mod-
eless feedback, and it brings whatever flow I might have had going to a screeching halt.

Directing your attention to the interaction itself puts the emphasis on the side
effects of the tools rather than on the user’s goals. A user interface is an arti-
fact, not something directly related to the goals of the user. Next time you find
yourself crowing about what cool interaction you’ve designed, just remember
that the ultimate user interface is no interface at all.

0146

CHAPTER 11: ORCHESTRATION AND FLOW

No matter how cool your interface
is, less of it would be better

It looks to me like the dialog boxes in Figure 11-2 were written by two differ-
ent programmers. Maybe they didn’t talk much with each other, but I can guar-
antee you that they never spoke with a designer—someone whose job it was to
coordinate all of the user interface elements. The results look like what you’d
get if the orchestra lacked a conductor. Each musician might know his part
well, but when all seventy of them get together, they won’t sound in accord.

It is vital that all of the elements work together towards a single goal. I call this
process of achieving a coherent interface o

Webster’s defines orchestration as “harmonious organization,” a very reason-
able phrase for what we should expect from interacting with software.
Harmonious organization doesn’t yield to fixed rules. You can’t create guide-
lines like “five buttons on a dialog box are good” and “seven buttons on a dia-
log box are too many.” Yet it is casy to see that a dialog box with 35 buttons is
usually bad. The major difficulty with such analysis is that it treats the problem
in vitro. Tt doesn’t take into account the problem being solved; it doesn’t
take into account what the user is doing at the time or what he is trying to
accomplish.

Finesse

In many things, the more there are, the better things are. In the world of inter-
face design, the contrary is true, and we should constantly strive to reduce the
number of elements in the interface without reducing the power of the
program. In order to do this, we must do more with less; this is where careful
orchestration becomes important. We must coordinate and control all of the
power of our program without letting the interface become a gaggle of win-
dows and dialogs, covered with a scattering of unrelated gizmos.

I often see dialog boxes that are complex but not very powerful. They typically
allow the user to perform a single task without providing access to related tasks.
For example, most programs allow the user to name and save a data file, but
they never let him delete, rename or make a copy of that file while he is
at it. The dialog leaves that task to the operating system. It may not be

0147

133

134

ParT I1I: THE BEHAVIOR

trivial to add these functions to the program, but isn’t it better that the pro-
grammer go through the non-trivial activities than for the user to be forced to?
Today, if the user wants to do something simple like edit a new copy of file
“foo,” he must go through a non-trivial sequence of actions: going to the shell,
selecting foo, requesting a copy from the menu, changing its name, returning
to the program and then opening the new file. I’d much rather see the pro-
grammer work harder and give the user a break.

It’s not as hard as it looks, actually. Orchestration doesn’t mean bulldozing
your way through problems. It means finessing the problems, wherever possi-
ble. Instead of adding the copy and rename functions to the File Open dialog
box of every apphcatlon why not)us; discard that same slightly retarded File

Open dialog box from every application and replace it with the shell program,

itself. When the user wants to open a file, the program calls the shell—which
conveniently has all of those collateral file-munging functions built in—and the
user can double-click on the desired document. That’s pretty much what the
File Open dialog does, except it doesn’t do it so well.

Yes, the application’s File Open dialog does show the user a filtered view of files
(like only .DOC files in Word), but there are certainly ways to do that in the
shell. I can think of several ways to do it better and easier in the shell than that
old dialog does with its clunky combobox.

Following on this logic, we can also dispense with the Save As dialog, which is
really the logical inverse of the File Open dialog. If every time we requested the
Save As... function from our application, it wrote our file out to a temporary
directory under some reasonable temporary name and then transferred control
to the shell, we’d have all of those nice shell tools at our disposal to move things
around or rename them. & S

N

Yes, there are access problems, but nothing that a little inter-process commu-
nicating wouldn’t solve. Yes, there would be a chunk of coding that program-
mers would have to do, but look at the upside: Countless dialog boxes could
be completely discarded. The user interfaces of thousands of programs would
become more V1sually and functionally consistent, and all with a single design
stroke. That is orchestration!

Invisibility

So much of today’s software has stilted, jerky and inappropriate interactions.
There seems to have been little attempt at orchestration anywhere.

0148

