
PATENT OWNER

EXHIBIT 2034

PATENT OWNER

EXHIBIT 2034

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Designing and Implementing Asynchronous
Collaborative Applications with Bayou

W. Keith Edwards, Elizabeth D. Mynatt, Karin Petersen,
Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

{kedwards, mynatt, petersen, spreitzer, terry, theimer}@parc.xerox.com

Asynchronous systems, however, present a number of
unique challenges to designers and builders of collaborative
systems, from both the human and the technological
perspectives. Asynchronous systems are appealing because
they allow their users to manipulate time and space to their
own advantage—users can work when and where they
please, without being constrained by the schedules or
locations of others. This style of work, and the settings
where asynchronous systems are deployed, have
implications for the design of infrastructure and applications.
Asynchronous systems must accommodate groups of largely
autonomous users, perhaps only loosely connected to each
other at any given time.

This paper explores design issues for collaborative systems
in general, and asynchronous systems in particular. We
examine the reasons that users opt for asynchronous
interaction, and the implications of those choices for
designers of collaborative infrastructure and applications.
We also present a system, called Bayou, designed to support
data sharing by groups of individuals working together.

Bayou is an infrastructure for supporting distributed and
collaborative applications in which all user interaction
involves reading and writing a shared, replicated database.
Unlike many infrastructures for collaboration, Bayou is
capable of operating over a range of connectivity
parameters, from high-bandwidth and constant connectivity,
to low-bandwidth and only occasional or unreliable
connectivity, as in the case of mobile users. Bayou is a true
distributed system—meaning that there is no single
centralized location at which data is stored—with weak
consistency among replicated data.

Bayou provides mechanisms for application builders to
describe the semantic constraints of their applications to the
system. These mechanisms allow applications to supply their
own data-integrity constraints, conflict detection and
resolution procedures, and data propagation policies.

In the following section, we discuss some of the
characteristics of asynchronous work, and the properties of
asynchronous work that make it desirable for many forms of
collaboration. Next, we examine the impact of these
characteristics on infrastructure and application design—of
necessity, any system for supporting asynchronous work
must be informed by the properties of such work.

ABSTRACT
Asynchronous collaboration is characterized by the degree
of independence collaborators have from one another. In
particular, collaborators working asynchronously typically
have little need for frequent and fine-grained coordination
with one another, and typically do not need to be notified
immediately of changes made by others to any shared
artifacts they are working with. We present an infrastructure,
called Bayou, designed to support the construction of
asynchronous collaborative applications. Bayou provides a
replicated, weakly-consistent, data storage engine to
application writers. The system supports a number of
mechanisms for leveraging application semantics; using
these mechanisms, applications can implement complex
conflict detection and resolution policies, and choose the
level of consistency and stability they will see in their
databases. We present a number of applications we have
built or are building using the Bayou system, and examine
how these take advantage of the Bayou architecture.

KEYWORDS: computer-supported cooperative work,
asynchronous interaction, distributed systems, Bayou.

INTRODUCTION
Collaboration involves sharing: the sharing of data, artifacts,
context, and ultimately ideas. The CSCW community has
often categorized collaborative systems based on the
temporal aspect of sharing: applications in which users share
some “thing” at the same time are called synchronous.
Applications in which the users share that thing at different
times are called asynchronous.

Synchronous applications, typified by such systems as
ShrEdit [15][18] and SASSE [1], are highly-interactive,
“real-time” systems in which a group of possibly distributed
users interact together to achieve some result. Much of the
recent research into collaboration, with the exception of
electronic mail [7] and occasionally group editing studies
[17] has focused on new tools and techniques to support
synchronous collaboration.

Copyright © 1997, Association for Computing
Machinery. Published in Proceedings of Tenth
ACM Symposium on User Interface Software and
Technology (UIST’97), Banff, Alberta, Canada.
October 14-17, 1997.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Then, we describe the Bayou infrastructure. We detail the
goals of the system, how it works, and the implications of
Bayou for application builders. To demonstrate how Bayou
supports the design of asynchronous systems, we describe a
set of applications built on top of Bayou. These applications
span a range of complexity and interactivity, and each
presents a set of lessons for infrastructure builders and
application writers.

CHARACTERIZING ASYNCHRONOUS COLLABORATION
Asynchronous collaboration is typically characterized as
“different place/different time” collaboration. This
characterization is often too simplistic, however. For many
asynchronous systems, the defining characteristic is not the
fact that the collaborationdoesn’thappen at the same time,
rather that itneedn’t necessarilyhappen at the same time.
This distinction is not simply a pedantic one—it has
implications for designers of applications and infrastructure.

In an asynchronous setting, the reason that collaboration can
happen at different times is because the users do not need to
coordinate with one another interactively, and do not need to
be notified in “real time” of each other’s changes to the
artifacts they are sharing. Certain collaborations may lend
themselves to this style of interaction because of the nature
of the task itself, the work practices of the participants, or the
state of the technology at hand.

Tasks that are suitable for this style of work often require
little interactive coordination and sharing of work.
Collaborators typically can work independently for periods
of time, and there is little need for instantaneous propagation
of results.

Work practices that favor asynchrony are characterized by
people exploiting time and space to work at their
convenience and with limited disruption. Such practices may
come about because of setting (time zones that prevent
collaborators from working at the same time, for instance),
or personal desire (minimization of interruption by letting
telephone calls “roll over” to voice mail for example).

Technological constraints may also favor asynchrony.
Common examples of these include limited network
bandwidth that prevents fine-grained or timely sharing of
information, and disconnected use (such as using a laptop on
an airplane) that separates collaborators.

Independence is perhaps the key trait of asynchronous work.
In asynchronous interaction, collaborators, while still
operating on some shared set of data, context, information,
or artifacts, do so largely independently of one another.

In such work, the need for coordination—communication
about the collaboration—is lessened, or at least less frequent
than it is in synchronous work. For example, collaborative
paper writing—at least in the non-computer mediated case—
typically involves fairly infrequent coordination. Authors
work largely independently, “syncing up” only when
necessary to integrate results, or to reaffirm goals or plans
[17].

Further, asynchronous tasks that center around some shared
artifact do not typically require that all participants
immediately know about changes to that artifact. In fact, in
some cases such knowledge may be detrimental because it
disrupts individual efforts and may incur coordination
overhead, when such operations may be more profitably
deferred to later.

SUPPORTING ASYNCHRONOUS COLLABORATION
The properties of tasks, work practice, and technology that
lend themselves to asynchronous interaction point to
infrastructure traits that can support applications for
asynchronous tasks.

Independence points to the need to “insulate” collaborators
from the actions of others—collaborators should be able to
operate with limited interference from or coordination with
others. In particular, they should be able tocontinue
working, regardless of the actions taken by coworkers.
Replication of data is often a useful means for achieving
independence of work. Replication can separate the actions
of users from their colleagues, providing performance, fault-
tolerance, and the ability to locally integrate changes before
releasing them to the world at large.

One of the strongest forms of independence is the ability to
work completely disconnected from the network and, by
implication, other users. The desire to support disconnected
use means that users must be able to view, update, and add to
their own private replicas of data even when they are not on
the network. This constraint requires us to support replicas
that are only weakly consistent with one another. If we
required strong consistency then all parties would have to be
connected at all times, and users would lose a degree of
independence from one another.

While eventual consistency of replicas is desirable, users
also need to control when information is shared with other
users. Applications such as word processing or software
development might require explicit control over information
propagation. For example, in the case of collaborative
software development, users often wish to ensure that
updates are withheld until a complete, coherent, and stable
picture of the code is available.

Finally, since asynchronous interaction often relies on the
fact that collaboration can be achieved even in the face of
minimal coordination among users, support for automatic
resolution of conflicts can help reduce the need for
coordination. If we can mechanically deal with conflicts, we
can relieve uses of the burden of “by hand” coordination
about their shared artifacts. To be usable by a range of
applications, the conflict facilities must be able to implement
application-specific policies about how to deal with
conflicts. Succinctly, applications must be able to provide
their own semantics about how to resolve conflicts
automatically.

In the following section we describe a system called Bayou
that satisfies these requirements for supporting asynchronous
collaboration.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

BAYOU OVERVIEW
Bayou is a replicated, weakly consistent storage system
designed to support collaborative applications in distributed
computing environments with varying network connectivity
[22]. A typical example of such an environment is a system
with mobile hosts that may disconnect over periods of time,
connect only through low-bandwidth radio networks, or
connect occasionally with expensive cellular modems. Its
model for replication and weak consistency—allowing
disconnection of servers from the network—is designed to
support extreme scalability, up to “world wide” applications.
Bayou relies only on pair-wise communications between
computers, which allows the system to cope with arbitrary
network connectivity.

Bayou applications can read from and write to any available
replica without the need for explicit coordination with other
replicas. Every replica eventually receives updates from all
other replicas through a chain of pair-wise exchanges of
data. To handle the update conflicts that naturally arise in
such a weakly consistent system, Bayou allows applications
to specify how to detect and resolve these conflicts. In
addition, Bayou allows applications to select or specify a
number of other policies that control how and where read
and write operations get executed.

These characteristics make Bayou well suited for building
wide-area asynchronous collaborative systems.

The Bayou System Model
In Bayou, replication is managed by Bayou servers. Each
server holds a complete replica of the data. The data model
provided by the current implementation of Bayou is a
relational database, although other data models could be
used as well. We chose a relational model because of its
power and flexibility. In particular, it naturally supports fine-
grained, structured access to the data, which is useful for the
application-specific conflict detection and resolution
mechanisms described below. Higher-level application-
defined data constructs can be created in terms of the data
model provided by the relational database.

As mentioned above, Bayou replicas are weakly consistent.
That is, at any point in time different servers may have seen
different sets of updates and therefore hold different data in
their databases. Weak consistency distinguishes Bayou from
many of the replicated systems designed in the CSCW
community [3][10]. Some collaborative and distributed
systems infrastructures use fairly strong forms of
consistency, usually based on pessimistic locking. That is,
before data can be modified it must be locked to ensure that
its access is serialized. Such strongly-consistent schemes
ensure that applications always see a consistent picture of the
data. However, they do not support weakly-connected
applications, and do not scale to the global applications
envisioned by Bayou.

Much like Lotus Notes [13], Bayou applications are free to
read and update replicas at will, without locking. Bayou
guarantees that the distributed storage system will move
toward eventual consistency by imposing a global order on

write operations and by providing propagation guarantees.
Each write carries enough information so that a Bayou server
can apply the writes it has received in the correct order
without coordinating with any other server.

Bayou’s Mechanisms for Application Semantics
One feature that distinguishes Bayou from previous
replicated storage systems including Ficus [12], Coda
[14][21], and Lotus Notes [13] is that applications can
impose their own semantics on the operations executed at a
replica. To this end, Bayou reads and writes are not the
simple operations supported by most databases. Instead they
include additional application-supplied information, which
ensures that applications will receive the required level of
service from the system.

Bayou’s mechanisms for supporting application semantics
fall into six categories:

• Application-defined conflict detection.

• Application-defined conflict resolution.

• Selection of session guarantees.

• Selection of committed or tentative data.

• Replica selection.

• Selectable anti-entropy (data propagation) policies.

Conflict Detection and Resolution. The first two semantic
categories are provided through the Bayou write operation,
and are designed to detect and resolve the conflicts that arise
in a weakly-consistent system. In Bayou, awrite consists of
three components:

• Dependency Check

• Update Set

• Merge Procedure

Thedependency checkspecifies a set of conditions that must
hold so that theupdate setcan be applied to the replica’s
database. A dependency check consists of a query to be
performed at the database and the expected result of that
query. If the actual result matches the expected result, then
the update set in the write is applied to the database. The
update set consists of insertions, deletions, or modifications
of tuples in a relation.

If the dependency check fails, an application-specific
conflict has been detected and the merge procedure is
executed. Themerge procedure, or “mergeproc” in short, is a
fragment of code in a high-level interpreted mergeproc
language intended to generate an alternate update set to be
applied to the database. Mergeprocs support application-
defined conflict resolution, meaning that conflicts are
essentially handled through application code, even though
that code is executed by the Bayou infrastructure itself. We
shall see some examples of mergeprocs in our discussion of
applications.

Bayou’s use of mergeprocs differs from systems like Coda
[14][21] and Ficus [12], which also support application-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

supplied conflict resolution, in that Bayou allows different
resolution procedures to be associated with each individual
write. Thus, Bayou provides applications with more fine-
grained control over conflict handling. Furthermore, because
the conflict resolution procedure propagates with the write it
is available at each server when needed.

The mechanisms for automated conflict detection and
resolution are important for supporting asynchronous
collaboration, because they eliminate situations where users
would otherwise be required to interact closely when faced
with data conflicts. Hence, Bayou allows users to act more
independently.

Session Guarantees. The session guarantees mechanism is
used by an application to establish a required level of
consistency for its own operations. That is, while a set of
Bayou servers maintain data that is only weakly-consistent, a
running instance of an application can request that its view
of the world maintain a particular level of consistency.
Different applications may have different requirements for
their desired level of consistency, and Bayou supports a
range of applications needs through this mechanism.

A session is an abstraction for a sequence of reads and writes
performed during the execution of the application, and
session guarantees are implemented by constraining the
replicas that may be selected by the application during that
session.

Four session guarantees are supported by Bayou:

• Read Your Writes ensures that the effects of any writes
made within a session are visible to later reads within that
session. In other words, reads are restricted to replicas of
the database that include all previous writes in the
session.

• Monotonic Reads permits users to observe a database that
stays up-to-date over time. It ensures that reads are only
made to database replicas containing all writes whose
effects were seen by previous reads within the session.

• Writes Follow Reads ensures that traditional write/read
dependencies are preserved in the ordering of writes at all
servers. That is, at every replica of the database, writes
made during the session are ordered after any writes
whose effects were seen by previous reads in the session.

• Monotonic Writes says that writes must follow previous
writes within the session. In other words, a write is only
incorporated into a replica’s database copy if the copy
includes all previous writes from that session, and the
write is ordered after these previous writes.

Session guarantees are described in more detail in [23], and
are not intended to ensure atomicity or serializability.
Instead, users of collaborative applications use session
guarantees to maintain a self-consistent view of the database,
even though they may read from and write to various,
potentially inconsistent, replicas over time.

Stable vs. Tentative Data. Bayou provides a mechanism that
establishes when a write isstable at a given server. That is,

when no new writes will ever be received by the server that
will have to be ordered before that write. When a write
becomes stable at a server, its conflict detection and
resolution mechanisms will not be executed again, which
means that its final effect on the database is known. On the
other hand, a write that is not yet stable at a server is deemed
tentative. Tentative writes may need to be re-executed if
other writes with earlier write-stamps are received by the
server, and thus have a possibly changing effect on the
database.

The distinction between tentative and stable data is
important from the application’s perspective. An application
can be designed with a notion of “confirmation” or
“commitment” that corresponds to Bayou’s notion of
stability. For example, color codes can be used in a graphical
user interface to indicate whether a displayed item is
tentative, that is, may change later because of conflict, or is
stable and will not change due to conflict.

Bayou also allows clients to choose whether they will read
from the database when tentative data has been applied, or
only from the view of the database that corresponds to
applying only stable writes. This ability allows clients to
trade data availability for assurance of data stability—
applications that can tolerate data that has not fully stabilized
can read it immediately, without waiting for it to become
stable.

Although stability does not equate with consistency, when a
collaborative application reads only the results of stable
writes, its users will perceive a different “sense” of
consistency than if the application also reads tentative data.

Replica Selection. Another important feature that Bayou
provides to an application is the ability to select which
replica it will use for its operations. The ability to select from
several replicas over the life-span of an application is
particularly important to collaboration:

• A particular replica can be selected to optimize certain
communication requirements. In particular, autonomous
users with a disconnected laptop can run a server for a
local replica on that laptop. Applications can choose this
server, thus ensuring access to the database.

• Applications operating on behalf of different users on
different machines can be connected to thesame replica,
which enables all the application instances connected to
that replica to see updates as soon as they occur. In
essence, the applications can work together in a tightly-
integrated, strongly-consistent, synchronized fashion.
The ability of applications to connect to a single replica,
and later split apart and communicate with different
replicas, can be used to support transitions between
synchronous and asynchronous styles of collaboration.

Anti-entropy Policies. Anti-entropy is the pair-wise process
by which the servers of two replicas bring each other’s
databases up to date. During the anti-entropy process two
servers exchange the sets of writes known to one server but

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

