
Page 01313

10

15

20

WO 98/37526 PCT/GB98/0053 1

More specifically, this public key stored on the card will allow the

individual card to verify data signed with the CA’s private key. The public key of the

CA, which is stored on the card, is used only for determining if the data sent to the card

was signed with the proper CA private key. This allows the card to verify the source of

any message coming from the CA.

Step 205 inserts a card enablement key in a secure portion of EEPROM in

the card to facilitate card specific confidentiality during enablement, and step 207 inserts

a card identifier in EEPROM of the card. The identifier, which can be accessed by any

terminal, will allow the system to determine the identity of the card in later processes.

The identifier is freely available and will not be used to authenticate messages.

Step 209 stores the operating system code in ROM on the card including

any primitives which are called or supported by the operating system. The primitives are

written in native language code (e.g., assembly language) and are stored in ROM. The

primitives are subroutines which may be called by the operating system or by

applications residing on the card such as mathematic functions (multiply or divide), data

retrieval, data manipulation or cryptographic algorithms. The primitives can be executed

very quickly because they are written in the native language of the processor.

Afier the IC cards are manufactured, they are sent to a personalization bureau

(“PB”) to enable and personalize the card by storing card personalization data in the

memory of the card. The terms enablement and personalization are used interchangeably

herein to indicate the preparatory steps taken to allow the card to be loaded securely with

-10..

SUBSTITUTE SHEET (RULE 26)

Page 01313

Page 01314

10

15

20

W0 98/37526 PCT/GB98/0053 1

an application. The individual cards are preferably manufactured in batches and are sent

to a personalization bureau in a group for processing.

flag Eggblgmgnt/PersgnalizgtjQ1;

Figure 3 shows the steps of the card enablement process when the card

arrives at a personalization bureau. The personalization bureau may be the card issuer

(e.g., a bank or other financial institution) or may be a third party that performs the

service for the card issuer. The personalization bureau configures the card to a specific

user or user class.

Figure 3 specifically shows the steps taken to enable and personalize each

IC card which will work within the system. The cards can be placed in a terminal which

communicates with IC cards and which reads the card identifier data (previously placed

on the card during the manufacturing process -- see step 207). This card identification

data is read from the card in step 301. The terminal will effectively send a “get

identification data" command to the card and the card will return the identification data to

the terminal.

The PB typically processes a group of cards at the same time, and will first

compile a list of IC card identification data for the group of cards it is personalizing. The

PB then sends electronically (or otherwise) this list of identification data to the

Certification Authority ("CA”) which creates a personalization (or enablement) data

block for each card identifier. The data block includes the card personalization data

organized in a number of identity fields and an individual key set for the card, discussed

below. These data blocks are then encrypted and sent to the PB in step 302. By using the

_ 11 -

SUBSTITUTE SHEET (RULE 26)

Page 01314

Page 01315

10

15

20

WO 98/37526 PCT/GB98/00531

card identification data, the PB then matches the cards with the encrypted data blocks and

separately loads each data block onto the matched card. To insure that the CA controls

the identity of the card and the integrity of the system, the PB never obtains knowledge of

the content of the data blocks transferred. Some aspects of the personalization are

requested by the card issuer to the CA in order to affect their preferred management of

the cards they issue. The following additional steps are performed.

Step 303 first checks to see if an enablement bit stored in EEPROM of the

card has been already set. If it already has been set, the card has already been configured

and personalized and the enablement process will end as shown in step 304. A card

cannot be enabled and personalized twice. If the bit has not been set, then the process

continues with step 305.

In step 305, the individualized card key set for the card being enabled

(which key set is generated at the CA) is stored on the card. The keys can be used later in

off—card verification (i.e., to verify that the card is an authentic card). This verification is

necessary to further authenticate the card as the one for which the application was

intended.

Step 307 generates four different MULTOS Security Manager (MSM)

characteristic data elements (otherwise referred to herein as personalization data) for the

card at the CA which are used for securely and correctly loading and deleting applications

fi'om a particular card. The MSM characteristics also allow for the loading of

applications on specific classes of identified cards. (These MSM characteristics are

further described in connection with Figure 5.)

-12-

SUBSTITUTE SHEET (RULE 26)

Page 01315

Page 01316

10

15

20

WO 98/37526 PCT/GB98/0053 1

Other data can also be stored on the card at this time as needed by the

system design such as an address table or further subroutines.

Step 311 sets the enablement bit in EEPROM of the card which indicates

that the enablement process has been completed for the particular card. When this bit is

set, another enablement process cannot occur on the card. This ensures that only one

personalization and enablement process will occur to the card thus preventing illegal

tampering of the card or altering the card by mistake. In the preferred embodiment, the

enablement bit is initially not set when the card is manufactured and is set at the end of

the enablement process.

Figure 4 shows an example of a block diagram of an IC card chip which

has been manufactured and personalized. The IC card chip is located on an IC card for

use. The IC card preferably includes a central processing unit 401, a RAM 403, a

EEPROM 405, a ROM 407, a timer 409, control logic 411, an I/O ports 413 and security

circuitry 415, which are connected together by a conventional data bus.

Control logic 411 in memory cards provides sufficient sequencing and

switching to handle read-write access to the cards memory through the input/output

ports. CPU 401 with its control logic can perform calculations, access memory locations,

modify memory contents, and manage input/output ports. Some cards have a coprocessor

for handling complex computations like cryptographic algorithms. Input/output ports

413 are used under the control of a CPU and control logic alone, for communications

between the card and a card acceptance device. Timer 409 (which generates or provides a

clock pulse) drives the control logic 411 and CPU 401 through the sequence of steps that

_ 13 _

SUBSTITUTE SHEET (RULE 26)

Page 01316

Page 01317

10

15

20

WO 98/37526 PCT/GB98/0053 1

accomplish memory access, memory reading or writing, processing, and data

communication. A timer may be used to provide application features such as call

duration. Security circuitry 415 includes fusible links that connect the input/output lines

to internal circuitry as required for testing during manufacture, but which are destroyed

(“blown”) upon completion of testing to prevent later access. The personalization data to

qualify the card is stored in a secured location of EEPROM 405. The comparing of the

personalization data to applications permissions data is performed by the CPU 401.

Figure 5 shows the steps of generating and loading the four elements of

the card personalization data into the memory of the IC cards, and Fig. 5A shows a

schematic of bit maps for each identity field residing in the memory of an IC card

containing personalization data in accordance with the present invention. Each data

structure for each identity field has its own descriptor code. Step 501 loads the data

structure for the identity field “card ID" called “msm_mcd_permissions_mcd_no." This

nomenclature stands for MULTOS system manager _ MULTOS card device _

petmissions__ MULTOS card device number. Although this number is typically 8 bytes

long as shown in Fig. 5A, the data could be any length that indicates a unique number for

the card. In the preferred embodiment, 2 bytes are dedicated as a signal indicator, 2 bytes

comprise a MULTOS Injection Security Module ID (MISM ID) indicating which security

module injected the card with its injected keys when it was manufactured, and 4 bytes

comprise an Integrated Circuit Card (ICC) serial number which identifies the individual

card produced at the particular MISM.

-14-

SUBSTITUTE SHEET (RULE 26)

Page 01317

Page 01318

10

15

20

\V()98t37526 PCT/GB98/0053 1

Step 503 loads the data structure for the identity field “issuer ID” called

“msm_mcd_permissions_ mcd_issuer_id.” This nomenclature stands for a MULTOS

card device issuer identification number. Each card issuer (such as a particular bank,

financial institution or other company involved with an application) will be assigned a

unique number in the card system. Each IC card in the MULTOS system will contain

information regarding the card issuer which personalized the card or is responsible for the

card. A card issuer will order a certain number of cards fi'om a manufacturer and perform

or have performed the personalization process as described herein. For example, a

regional bank may order 5,000 cards to be distributed to its customers. The

“mcd_issuer_id” data structure on these cards will indicate which issuer issued the cards.

In the preferred embodiment, the data structure is 4 bytes long (as shown in Fig. 5A at

503A) to allow for many different issuers in the system although the length of the data

structure can vary with the needs of the card system.

Step 505 loads the data structure for the identity field “product ID” called

“msm_mcd_perrnissions_mcd_ issuer_product_id.” This nomenclature stands for

l\/IULTOS card device issuer product identification number. Each card issuer may have

different classes of products or cards which it may want to differentiate. For example, a

bank could issue a regular credit card with one product ID, a gold credit card with another

product ID and a platinum card with still another product ID. The card issuer may wish

to load certain applications onto only one class of credit cards. A gold credit card user

who pays an annual fee may be entitled to a greater variety of applications than a regular

credit card user who pays no annual fee. The product ID field identifies the card as a

-15-

SUBSTITUTE SHEET (RULE 26)

Page01318

Page 01319

10

15

20

W0 98/37526 PCT/GB98/0053 1

particular class and will later allow the card issuer to check the product ID and only load

applications onto cards which match the desired class.

Another way to differentiate products is by application type, such as by

categorizing the application as financial, legal, medical and/or recreational, or by

assigning particular applications to a group of cards. For example, one card issuer may

have different loyalty programs available with different companies to different sets of

card users. For example, a bank may have an American Airlines® loyalty program and a

British Airways® loyalty program for different regions of the country dependent on

where the airlines fly. The product type allows the issuer to fix the product classification

of the card during the personalization process. When loading applications onto the card,

the product type identification number on each card will be checked to make sure it

matches the type of card onto which the issuer desires to load. The product type data

structure is preferably an indexing mechanism (unlike the other personalization data

structure) of 8 bits (as shown at 505A in Fig. 5A) but could be any length depending

upon the needs of the card system. In the illustrated embodiment, the resulting

instruction would be to locate the second bit (since the byte’s indicated value is 2) in the

array to be searched (see discussion of step 809 below).

Step 507 loads the data structure for the identity field data called

“msm_mcd_permissions_mcd_ controls_data_ date.” This nomenclature stands for the

MULTOS card device controls data date or, in other words, the date on which the card

was personalized so that, for example, the application loader can load cards dated only

after a certain date, load cards before a certain date (e.g., for application updates) or load

15

SUBSTITUTE SHEET (RULE 26)

Page 01319

Page 01320

10

15

20

WO 98/37526 PCT/GB98/0053 1

cards with a particular data date. The information can include the year, month and day of

personalization or may include less information, if desired. The data_date data structure

is preferably 1 byte in length (see 507A in Fig. 5A) although it could be any length

depending upon the needs of the particular card system used.

Once all of the personalization data structures are loaded and stored in the

card, the card has been identified by issuer, product class, date and identification number

(and other data fields, if desired), and the card cannot change its identity; these fields

cannot be changed in the memory of the card. If a card user wants to change the

product_id stored in the card to gain access to different applications available to another

product type, a new card will have to be issued to the user containing the correct

personalization data. This system is consistent with a gold card member receiving a new

card when the classification is changed to platinum.

Afler the card has been enabled and personalized by storing its individual

card key set, MSM personalization characteristics and enablement bit as described in Fig.

3, the card is ready to have applications loaded into its memory.

Loading Applications

The application loading process contains a number of security and card

configuration checks to ensure the secure and proper loading of an application onto the

intended IC card. The application loading process is preferably performed at the

personalization bureau so that the card will contain one or more applications when the

card is issued. The card may contain certain common applications which will be present

_on every card the issuer sends out, such as an electronic purse application or a credit/debit

-17-

SUBSTITUTE SHEET (RULE 26)

Page 01320

Page 01321

W0 98/37526 PCT/GB98/00531

application. Alternatively, the personalization bureau could send the enabled cards to a

third party for the process of loading applications. The multiple application operating

system stored in the ROM of each card and the card MSM personalization data is

designed to allow future loading and deleting of applications after the card has been

5 issued depending upon the desires of the particular card user and the responsible card

issuer. Thus, an older version of an application stored on the IC card could be replaced

with a new version of the application. An additional loyalty application could also be

added to the card after it has been initially sent to the card user because the application is

newly available or the user desires to use the new application. These loading and deleting

10 functions for applications can be performed directly by a terminal or may be perfonned

over telephone lines, data lines, a network such as the lntemet or any other way of

transmitting data between two entities. In the present IC card system, the process of

transmitting the application program and data ensures that only IC cards containing the

proper personalization data and which fit on application permissions profile will be

15 qualified and receive the corresponding application program and data.

Figure 6 shows the preferred steps perfonned in loading an application

onto an IC card in the MULTOS IC card system. For this example, the personalization

bureau is loading an application from a terminal which enabled the same card. Step 601

performs an “open command” initiated by the terminal which previews the card to make

20 sure the card is qualified to accept the loading of a specific application. The open

command provides the card with the application’s permissions data, the application’s

size, and instructs the card to determine (1) if the enablement bit is set indicating the card

-13-

SUBSTITUTE SHEET (RULE 25)

Page 01321

Page 01322

10

15

20

W0 9'8/37526 PCT/GB98/0053 1

has been personalized; (2) whether the application code and associated data will fit in the

existing memory space on the card; and (3) whether the personalization data assigned to

the application to be loaded allows for the loading of the application onto the particular

card at issue. The open command could also make additional checks as required by the

card system. These checking steps during the open command execution will be described

in detail in conjunction with Figure 7.

Afier the open command has been executed, the application loader via the

terminal will be advised if the card contains the proper identification personalization data

and if enough room exists in the memory of the card for the application code and related

data. If there is insufficient memory, then a negative response is returned by the card and

the process is abended (abnormally ended). If the identification personalization data does

not match the applications permissions data, a warning response is given in step 603, but

the process continues to the load and create steps. Alternatively, if there is no match, the

process may automatically be abended. If a positive response is returned by the card to

the terminal in step 605, the application loader preferably proceeds to next steps. The

open command allows the application to preview the card before starting any transfer of

the code and data.

Step 607 then loads the application code and data onto the IC card into

EEPROM. The actual loading occurs in conjunction with create step 609 which

completes the loading process and enables the application to execute on the IC card afier

it is loaded. The combination of the open, load and create commands are sent by the

terminal, or another application provider source, to the IC card to perform the application

_ 19 _

SUBSTITUTE SHEET (RULE 26)

Page 01322

Page 01323

10

15

20

WO 98/37526 PCT/GB98/00531 _ A

loading process. The operating system in the IC cards is programmed to perform a

specific set of instructions with respect to each of these commands so that the IC card will

communicate with and properly carry out the instructions from the terminal.

Step 609 performs the create command which at least: (1) checks if an

application load certificate is signed (encrypted) by the CA and therefore authenticates

the application as a proper application for the system; and (2) checks the card

personalization data stored on the card against the permissions profile for the application

to be loaded to qualify the card for loading. It may do other checks as required. If one of

the checks fails, then a failure response 610 is given and the process aborts. The

application afier it has passed these checks will be loaded into the memory of the card.

Figure 7 shows the various steps of the open step 601 of Fig. 6 in more

detail. Step 701 determines if the enablement (i.e., control) bit is set. This bit is set when

the card has completed its personalization process and has been assigned its

personalization data. An application can be loaded on an IC card in the card system only

if the card contains the personalization data. If the enablement bit is not set, the card has

not been personalized and therefore the card returns a negative response 703 to the

terminal. If the enablement bit is set, then the card has been enabled and the test

conditions continue with step 711.

Step 711 checks if there is sufficient space in the memory on the card to

store the application code and its associated data. Applications will typically have

associated data related to their functions. This data will be used and manipulated when

the applicationis run. Storage space in the memory of an IC card is a continuing concern

_ 20 _

SUBSTITUTE SHEET (RULE 26)

Page 01323

Page 01324

WO 98/37526 PCT/GB98/00531 _ ‘

due to the relatively large physical space required for EEPROM and how it fits in the

integrated circuit which is desired to be small enough to fit on a credit card sized card.

An example of the size of a preset EEPROM on an IC card is 16K bytes although the

actual size varies. Applications can range from 1K byte or less for a very simple

5 application up to the size of available memory for a more sophisticated application.i The

data associated with an application can range from no data being stored in the card

memory to a size constrained by the amount of available memory. These varied sizes of

application code and data continually increase as applications become more advanced and

diverse.

10 MULTOS as an operating system is not limited by the number of

applications and associated data it can store on the card. Thus, if five applications can fit

in the available memory of the card, the card user will have greatly increased

fiinctionality than if one or two applications were stored on the card. Once a card’s

memory is filled to its capacity, however, a new application cannot be loaded onto the

15 card unless another application including its code and data of sufficienr size can be

deleted. Therefore, checking the amount of available space on the card is an important

step. If there is not sufficient space, then an insufficient space response 713 will be

retumed to the terminal. The application loader can then decide if another existing

application on the card should be deleted to make room for the new application. Deletion

20 depends upon the card issuer having an application delete certificate from the CA. If

there is sufficient space on the card, then the process continues with step 715.

-21-

SUBSTITUTE SHEET (RULE 26)

Page 01324

Page 01325

10

15

20

wo 9'8/37526 PCT/GB98/0053 1

An example of the testing of memory spaces in step 711 is now described.

The numbers used in this example in no way limit the scope of the invention but are used

only to illustrate memory space requirements. An IC card may have 16K available

EEPROM when it is first manufactured. The operating system data necessary for the

operating system may take up 2K of memory space. Thus, 14K would remain. An

electronic purse application’s code is stored in EEPROM and may take up 8K of memory

space. The purse application’s required data may take up an additional 4K of memory

space in EEPROM. The memory space which is free for other applications would thus be

2K (16K-2K-8K-4K=2K). If a card issuer wants to load a credit/debit application whose

code is 6K bytes in size onto the card in this example, the application will not fit in the

memory of the IC card. Therefore, the application carmot load the new application

without first removing the purse application from the card. If a new credit/debit

application was loaded into EEPROM of the IC card, then it would have to overwrite

other application’s code or data. The application loader is prevented from doing this.

Figure 8 shows the steps performed in determining whether the card’s

personalization data falls within the permissible set of cards onto which the application at

issue may be loaded. These steps are preferably performed during the execution of the

“create” command. However, these steps may be performed at any time during the

loading or deleting of an application. As described previously, the card is personalized

by storing data specific to the card (MSM personalization data) including: a card ID

designation specific to an individual card, the card issuer number indicating the issuer of

the card, the product type of the card, such as a gold or platinum card, and the date the

-22..

SUBSTITUTE SHEET (RULE 26)

Page 01325

Page 01326

10

15

20

W0 98/37526 PCT/GB98/00531

card was personalized. This data uniquely identifies the card apart from all other IC cards

in the system.

Accordingly, applications can be selectively stored on individual cards in

the IC card system on virtually any basis, including the following. An application can be

loaded selectively to cards containing one or more specific card numbers. An application

can be selectively loaded on one or more cards containing a specified card issuer ID.

Moreover, an application can be loaded only upon one type of product specified by the

particular card issuer, and/or the application can be loaded only on cards which have a

specified date or series of dates of personalization. Each of the personalization data

allows an application to be selectively loaded onto certain cards or groups of cards and

also ensures that cards without the prop er permissions will not receive the application.

Personalization data types in addition to the four described can also be used as needed.

The selection of IC cards upon which a particular application may be

loaded is made possible by the use of “applications permissions data” which is assigned

to the application and represents at least one set of cards upon which the application may

be loaded. The set may be based on virtually any factor, including one or more of the

following: card numbers, card issuers, product types or personalization dates. Although

the individual card’s personalization data typically identify one specific number, one card

issuer, one product type and one date, the application’s permissions data may indicate a

card numbers or a blanket permission, a card issuer or a blanket permission, and a

number of product types and dates.

_ 23 _

SUBSTITUTE SHEET (RULE 26)

Page 01326

Page 01327

10

15

20

W0 9+8/37526 PCT/GB98/00531

For example, a fi'equent loyalty program may be configured to allow its

loading and use on cards in different product classes belonging to one card issuer. In

addition, the application permissions data may indicate that the loyalty program can be

used on gold and platinum product types if the card was issued afier May, 1998. Thus,

the MSM permissions check will determine if the card’s individual personalization data is

included in the allowed or permissible set of cards upon which the application may be

loaded. If it is, the application will be loaded.

To expedite the comparison process, an alternative embodiment may

include setting one or more permissions data at zero representing a blanket permission for

that particular data. For instance, by placing a zero for the “card number" entry in the

application permissions data or some other value indicating that all cards may be loaded

regardless of their number, the system knows not to deny any cards based on their card

number. Moreover, if a zero is placed in the application’s permissions data “issuer ID,”

then all cards similarly will pass the “issuer” test comparison. This feature allows greater

flexibility in selecting groups of cards. The zero indicator could also be used for other

permissions data, as required.

Referring to Figure 8, each of the permissions data is checked in the order

shown, but other orders could be followed because if any one of the permissions fails, the

application will be prevented fi'om being loaded on the IC card being checked. The

permissions are preferably checked in the order shown. Step 801 checks if the

application permissions product type set encompasses the card’s product type number

stored in the memory of the card. Each card product type is assigned a number by the

_ 24 ..

SUBSTlTUTE SHEET (RULE 26)

Page 01327

Page 01328

10

15

20

W0 >98/37526 PCT/GB98/00531

system operator. The product types are specified for each card issuer because different

card issuers will have different product types. The cards are selectively checked to ensure

that applications are loaded only on cards of authorized product type. The application

permissions product type set can be 32 bytes long which includes multiple acceptable

product types or can be a different length depending upon the needs of the system. Using

data structure 505A as an example, the operating system would check bit number 2 in the

256 bit array (32 bytes x 8 bits per byte) resulting from the 32 byte long application

permissions data structure. If the permissions check fails, then the card returns a failure

message to the terminal in step 803. If the product type check passes (for example, the

value of bit no. 2 being 1), then the process continues with step 805.

Step 805 checks if the application permissions allowable card issuer

number set encompasses the card’s issuer number stored in the memory of the card or if

the application permissions issuer data is zero (indicating all cards pass this individual

permissions check). Each card issuer is assigned a number by the system operator and

the cards are selectively checked to ensure that applications are loaded only on cards

distributed by authorized card issuers. The application permissions card issuer number

set can be 4 bytes long if one issuer is designated or can be longer depending upon the

needs of the system. If the issuer check fails, then the card returns a failure message to

the terminal in step 807. If the check passes, then the process continues with step 809.

Step 809 checks if the application permissions date set encompasses the

card’s data date stored in the memory of the card. The date that the IC card was

personalized will be stored and will preferably include at least the month and year. The

-25 ._.

SUBSTITUTE SHEET (RULE 26)

Page 01328

Page 01329

10

15

20

WO 98/37526 PCT/GB98/00531

cards are selectively checked to ensure that applications are loaded only on cards with the

authorized personalization date. The application permissions date set can be 32 bytes

long which includes multiple dates or can be a different length depending upon the needs

of the system. If the date permissions check fails, then the card returns a failure message

to the terminal in step 81 1. If the date check passes, then the process continues with step

813.

Step 813 checks if the application permissions allowable card number set

encompasses the card’s ID number stored in the card memory or if the application

permissions allowable card number data is zero (indicating all cards pass this individual

permissions check). The testing of the permissions is performed on the card during the

execution of the open, load and create commands. The application permissions card

number data set can be 8 bytes long if one number is designated or can be longer

depending upon the needs of the system. If the card number check fails, then the card

returns a failure message to the terminal in step 815. If the check passes, then the process

continues with step 817.

ma of rd ste ’s oce

Figure 9 shows the components of the system architecture for the card

initialization process of an IC card in a secure multiple application IC card system. The

system includes a card manufacturer 102, a personalization bureau 104, an application

loader 106, the IC card 107 being initialized, the card user 109 and the certification

authority 111 for the entire multiple application secure system. The card user 131 is the

_.26..

SUBSTITUTE SHEET (RULE 25)

Page 01329

Page 01330

10

15

20

WO 98/37526 PCT/GB98/00531

person or entity who will use the stored applications on the IC card. For example, a card

user may prefer an IC card that contains both an electronic purse containing electronic

cash (such as MONDEXTM) and a credit/debit application (such as the MasterCard®

EMV application) on the sa.me IC card. The following is a description of one way in

which the card user would obtain an IC card containing the desired applications in a

secure manner.

The card user would contact a card issuer 113, such as a bank which

distributes IC cards, and request an IC card with the two applications both residing in

memory of a single IC card. The integrated circuit chip for the IC card would be

manufactured by manufacturer 102 and sent to the card issuer 113 (or an entity acting on

its behalf) in the form of an IC chip on a card. As discussed above (see steps 201-209),

during the manufacturing process, data is transmitted 115 via a data conduit from the

manufacturer 102 to card 107 and stored in IC card 107's memory. (Any of the data

conduits described in this figure could be a telephone line, Internet connection or any

other transmission medium.) The certification authority 111, which maintains

encryption/decryption keys for the entire system, transmits 117 security data (i.e., global

public key) to the manufacturer over a data conduit which is placed on the card by the

manufacturer along with other data, such as the card enablement key and card identifier.

The card’s multiple application operating system is also stored in ROM and placed on the

card by the manufacturer. After the cards have been initially processed, they are sent to

the card issuer for personalization and application loading.

-27..

SUBSTITUTE SHEET (RULE 26)

Page 01330

Page 01331

10

15

20

WO 98/37526 PCT/GB98/00531

The card issuer l 13 performs, or has performed by another entity, two

separate functions. First, the personalization bureau 104 personalizes the IC card 107 in

the ways described above, and second, the application loader 106 loads the application

provided the card is qualified, as described.

Regarding personalization, an individualized card key set is generated by

the CA and stored on the card (see Fig. 3). The card is further given a specific identity

using MSM personalization (see Fig. 3, step 307 and Fig. 5) including a card ID number,

an issuer ID number identifying the card issuer which processed the card, a card product

type number which is specified by the card issuer and the date upon which the

personalization took place. After the card has been personalized, applications need to be

loaded onto the card so that the card can perform desired fimctions.

The application loader 106, which could use the same terminal or data

conduit as personalization bureau 104, first needs to have determined if the card is

qualified to accept the application. This comparison process takes place on the card itself

(as instructed by its operating system) using the permissions information. The card, if it

is qualified, thus selectively loads the application onto itself based upon the card’s

identity and the card issuer’s instructions. The application loader communicates 1 19 with

the IC card via a terminal or by some other data conduit. After the applications have been

loaded on the card, the card is delivered to the card user 109 for use.

The secure multiple application IC card system described herein allows for

selective loading and deleting of applications at any point in the life cycle of the IC card

after the card has been personalized. Thus, a card user could also receive a personalized

_ __

SUBSTITUTE SHEET (RULE 26)

Page 01331

Page 01332

10

15

20

WO 93/37526 PCT/GB98/00531

card with no applications and then select a desired application over a common

transmission line such as a telephone line or Internet connection.

Figure 10 is a system diagram of entities involved with the use of an IC

card once it has been personalized. The system includes an IC card 151, a terminal 153,

an application load/delete entity 155, the certification authority 157, a card issuer 171 and

other IC cards 159 in the system. The arrows indicate communication between the

respective entities. The CA 157 facilitates loading and deleting of applications. Afier

providing the MSM permissions data and card specific keyset to the card during card

enablements, the CA allows applications to be later loaded and deleted preferably by

issuing an application certificate. Application specific keys are required to authenticate

communication between a card and terminal. The IC card 151 also can communicate

with other IC cards 159. Card issuer 171 is involved with all decisions of loading and

deleting applications for a card which it issued. All communications are authenticated

and transmitted securely in the system.

For instance, IC card 151 will use the following procedure to load a new

application onto the card. IC card 101 is connected to terminal 153 and the terminal

requests that an application be loaded. Terminal 153 contacts application load/delete

entity 155 which, as a result and in conjunction with card issuer 171, sends the

application code, data and application permissions data (along with any other necessary

data) to terminal 153. Terminal 153 then queries card 151 to ensure it is the correct card

onto which the application may be loaded. If IC card passes the checks discussed above,

the application is loaded onto card 151. The CA 157 provides the application load or

-29-

SUBSTITUTE SHEET (RULE 26)

Page 01332

Page 01333

10

15

20

WO 98/37526 PCT/CB98/00531

delete certificate that enables the application to be loaded or deleted from the card. This

example shows one way to load the application, but other variations using the same

principles could be performed, such as directly loading the application at the application

load/delete entity 155.

The foregoing merely illustrates the principles of the invention. It will

thus be appreciated that those skilled in the art will be able to devise numerous systems

and methods which, although not explicitly shown or described herein, embody the

principles of the invention and are thus within the spirit and scope of the invention.

For example, it will be appreciated that the MSM personalization and

permissions data may not only be used for loading applications onto IC cards but also for

deleting applications from said cards. The same checks involving MSM permissions and

loading applications are made for deleting applications. A delete certificate from the CA

authorizing the deletion of an application will control from which cards the application

may be deleted. This is accomplished through the personalization data stored on each IC

card and the permissions check as described herein.

Moreover, the data may also be applicable to personal computers or other

units onto which applications may be loaded which are not physically loaded on cards. In

addition, the application’s permissions data may actually include data representative of a

set or sets of cards to be excluded, instead of included -- cards that cannot be loaded with

the application.

-30-

SUBSTITUTE SHEET (RULE 26)

Page 01333

Page 01334

wo 9'8/37526 PCT/GB98/00531 »

The scope of the present disclosure includes any novel feature or combination

of features disclosed therein either explicitly or implicitly or any generalisation thereof

irrespective ofwhether or not it relates to the claimed invention or mitigates any or all

of the problems addressed by the present invention. The applicant hereby gives notice

that new claims may be formulated to such features during the prosecution of this

application or of any such further application derived therefrom In particular, with

reference to the appended claims, features from dependent claims may be combined

with those of the independent claims in any appropriate manner and not merely in the

specific combinations enumerated in the claims.

-31-

SUBSTITUTE SHEET (RULE 26)

Page 01334

Page 01335

IK)

WO 98/37526 PCT’/GB98/00531

CLAIMS :

1. An IC card system comprising at least one IC card, an application

to be loaded onto said card and means for determining whether said card is qualified to

accept the loading of said application onto said card.

2. The IC card system of claim 1, wherein said IC card contains card

personalization data, and said application is assigned application pennissions data

representing at least one set of IC cards upon which said application may be loaded.

3. The IC card system of claim 2, wherein said determining means

compares said card personalization data with said application permissions data.

4. The IC card system of claim 3, wherein whether said application is

loaded onto said IC card depends on the result of said comparison, such that in the event

the card personalization data matches said pennissions data set the card is qualified and

the application is loaded.

5. The IC card system of any of claims 2 to claim 4, wherein said

personalization data comprises data representative of a unique card identification

designation.

-32-

SUBSTITUTE SHEET (RULE 26)

Page 01335

Page 01336

U:

W0 93/37526 PCT/GB98/00531

6. The IC card system of any of claims .2 to claim 5, wherein said

personalization data compiises data representative of a card issuer.

7. The IC card system of any of claims 2 to claim 6, wherein said

personalization data comprises data representative of a product class.

8. The IC card system of any of claims 2 to claim 7, wherein said

personalization data comprises data representative of a date.

9. An IC card system comprising at least one IC card and an

application, wherein said IC card contains personalization data representative of that card

and said application is assigned a permissions data set representing at least one IC card

upon which said application may be loaded. said system further comprising means for

determining whether said personalization data falls within said permissions data set.

10. The IC card system of claim 9 wherein said application is loaded

onto said IC card in the event said determining means determines that said

personalization data falls within said set.

11. The IC card system of claim 9 or claim 10 wherein said personalization

data comprises data representing a card identification designation, and an issuer of said

card.

-33..

SUBSTITUTE SHEET (RULE 26)

Page 01336

Page 01337

W0 9.8/37526 PCT/GB98/00531 _ '

12. The IC card system of any of claims 9 to claim 1 1 wherein said

personalization data comprises data representing a product class and a date.

13. The IC card system of any of claims 9 to 12 wherein said permissions

data set includes a plurality of card identification designations.

14. The IC card system of any of claims 9 to 13 wherein said permissions

data set includes one or more issuers of IC cards.

15. The IC card system of any of claims 9 to 14 wherein said permissions

data set includes one or more product classes.

16. The IC card system of any of claims 9 to 15 wherein said permissions

data set includes a plurality range of dates.

17. The IC card system of any of claims 9 to 16 wherein said permissions

data set includes all IC cards which attempt to load the application.

18. An IC card system comprising at least one IC card, an application

to be loaded onto said card and means for enabling said card to be loaded with said

application.

34

SUBSTITUTE SHEET (RULE 26)

Page 01337

Page 01338

Ix)

wo 98/37526 PCT’/GB98/00531

19. The IC card system of claim 18 wherein said enabling means

comprises means for storing personalization data onto said card.

20. The IC card system of claim 18 wherein said enabling means

comprises means for setting an enablement bit.

21. The IC card system of claim 19 wherein said enabling means

comprises means for setting an enablement bit.

22. The IC card system of claim 20 further comprising means for

checking the enablement bit prior to enabling said IC card to determine whether or not

said card has already been enabled.

23. The IC card system of claim 21 further comprising means for

checking the enablement bit prior to enabling said IC card to determine whether or not

said card has already been enabled.

24. A process for loading an application onto an IC card comprising

the step of determining whether said IC card is qualified to accept the loading of said

application onto said card.

-35-

SUBSTITUTE SHEET (RULE 26)

Page 01338

Page 01339

W0 98/375245 PCT/GB98/00531 - *

25. The process of claim 24 wherein said determining step includes the

steps of: providing said card with personalization data;

assigning to said application permissions data representing at least

one set of IC cards upon which said application may be loaded;

comparing said personalization data with said permissions data;

and

loading said application onto said IC card provided said

personalization data falls within said set of cards upon which said application may be

loaded.

26. The process of claim 25, wherein said personalization data

comprises data representative of a card identification designation.

27. The process of claim 25 or claim 26, wherein said personalization data

comprises data representative of a card issuer.

28. The process of any of claims 25 to claim 27, wherein said

personalization data comprises data representative of a product class.

29. The process of any of claims 25 to claim 28, wherein said

personalization data comprises data representative of a date.

-36-

SUBSTITUTE SHEET (RULE 26)

Page 01339

Page 01340

WO 98/37526 PCT/GB98/00531 —

1 30. The process of any of claims 25 to claim 29 fiirther comprising the first

2 step of enabling said card to be loaded with said application.

1 31. The process of claim 30 wherein said enabling step includes the

2 step of storing personalization data onto said card.

1 32. The process of claim 30 wherein said enabling step includes the

2 step of setting an enablement bit indicating that the card has been enabled.

1 33. The process of claim 31 wherein said enabling step further includes

2 the step of setting an enablement bit indicating that the card has been enabled.

1 34. The process of claim 32 wherein prior to said enabling step a

2 checking step is performed to determine whether said card has been enabled.

1 35. The process of claim 33 wherein prior to said enabling step a

2 checking step is performed to determine whether said card has been enabled.

1 36. A process for deleting an application from an IC card comprising

2 the step of determining whether said IC card is qualified to delete said application based

3 upon permissions data associated with said application.

-37-

SUBSTITUTE SHEET (RULE 26)

Page 01340

Page 01341

WO 98/37526 PCT/GB98/00531 — ‘

37. The process of claim 36 wherein said determining stepincludes the

steps of:

providing said card with personalization data;

assigning to said application permissions data representing at least

one set of IC cards from which said application may be deleted;

comparing said personalization data with said pemiissions data;

and

deleting said application fi'om said IC card provided said

personalization data falls within said set of cards from which said application may be

deleted.

38. The process of claim 37, wherein said personalization data

comprises data representative of a card identification designation.

39. The process of claim 37 or claim 38, wherein said personalization data

comprises data representative of a card issuer.

40. The process of any of claims 37 to claim 39, wherein said

personalization data comprises data representative of a product class.

41. The process of any of claims 37 to claim 40, wherein said

personalization data fiirther comprises data representative of a date.

-33-

SUBSTITUTE SHEET (RULE 26)

Page 01341

Page 01342

[Q

wo 98/37526 PCT/GB98/00531 —

42. An IC card system comprising at least one IC card, an application

to be deleted from said card and means for determining whether said card is qualified to

delete said application from said card.

43. The IC card system of claim 42, wherein said IC card contains card

personalization data, and said application is assigned application permissions data set

representing at least one set of IC cards fi'om which said application may be deleted.

44. The IC card system of claim 43, wherein said determining means

compares said card personalization data with said application permissions data.

45. The IC card system of claim 44, wherein whether said application

is deleted from said IC card depends on the result of said comparison, such that in the

event the card personalization data matches said permissions data set the card is qualified

and the application is deleted.

-39-

SUBSTITUTE SHEET (RULE 26)

‘ Page 01342

Page 01343

W0 '93/37525 PCT/GB98/00531 - . A

START

MANUFACTURING

PERSONALIZATION 103

APPLICATION

LOADING
END

FK3.1

Page01343

Page 01344

WO 98/37526

MANUFACTURE

SILICON CHIP ‘ 2°‘

STORE GLOBAL _2O3
PUBLIC KEY

INSERT CARD

ENABLEMENT KEY 205

INSERT CARD IDENTIFIER

INTO CARD MEMORY

STORE OPERATING

SYSTEM 209

IN ROM WITH PRIMITIVES

PCT/GB98/00531 - I

FIG. 2

Page 01344

Page 01345

W098/37526

I

3/11

READ IDENTIFIER '

DATA

I RETRIEVE PERSONALIZATION
DATA

 ENABLEMENT

BIT SET?

No

STORECARD I__w5
KEYSET .

I___._.:____I

I

I

STOREMSM ' 307

CHARACTERISTICS ‘T

SET ENABLEMENT 1.. 311

I-301

I

- 302

YES

PCT/GB98/00531 — ‘ '

304

ABEND

END \

//

HG.3

Page 01345

Page 01346

WO-498/37526 PCT/GB98/00531 ‘ ‘ I
4/11

401 415

I/O “3
4H CONTROL

LOGIC CPU

409 TIMER

ROM EEPROM RAM

407 405 403

FIG. 4

Page01346

Page 01347

WO -98/37526 PCT/GB98/00531 — ‘ I

5/11

START

i

501 _ STORE MSM__MCD_PERMlSSlONS_MCD__NO
ON CARD

5o3_' STORE MSM_MCD_PERMlSSlONS_MCD_lSSUER_ID
ON CARD

STORE MSM_MCD_PERM|SSlONS_ISSUER_PRODUCT_lD
ON CARD

5o7_ STORE MSM_MCD_PERMlSSIONS_MSM_CONTROLS_DATA_DATE
ON CARD

FIG.-5

Page 01347

Page 01348

W0"98/37526 PCT/GB98/00531 -

6/ 1 1

501A 8 bytes

Signal MSM ID ICC Serial Number
Indication 2 bytes 4 bytes
2 bytes

503A

1 byte

FK3.5A

Page01348

Page 01349

7/11

Execute Open Command
Check attributes

601 ’

warning

response

, 603

Successful

response

605

607’ Execute load command

Negative

609 / failure
Execute create command

response
610

FIG. 6

Page 01349

Page 01350

WO"98/37526

 IS MSM

Control bit set

NO

YES

711

 is there sufficient

memory available
on the card?

NO

YES

715

Are MSM Permissions

correct?

NO

YES

719

Permissible to load

application

8/11

703

failure

response

713

lnsufficient

memory

response

717

failure

response

PCT/GB98/00531 - A ’

KJ

@

\/

FIG. 7

Page 01350

Page 01351

WO ‘98/37526

9/11

Does application permissions - product type set
encompass personalization data - product type

801 ,803
No—————>

Yes

805 ‘\ Does application permissions - issuer set ,807

encompass personalization data - issuer ”° ’

Yes

809 Does application permissions - date set /3“
No—:>,encompass personalization data - date

Yes

Does application permissions - card no. set

encompass personalization data - card no.

813.

Permission granted

PCT/GB98/00531 ‘

Failure Response
FIG. 8

Page 01351

Page 01352

wo I98/37526

10/ll

MANUFACTURER

102

PERSONALIZATION
BUREAU

1os\

APPLICATION
LOADER

Card Issuer

117

115

~119

PCT/GB98/00531 -

,111

CERTIFICATION
AUTHORITY

107 ,1o9

IC CARD
CARD USER

FIG. 9

Page 01352

Page 01353

W0-'98/37526 PCT/GB98/00531 - . 1

11/11

153

 Application
load/delete

entity

Certification

Authority

Other IC
‘H59

Cards

171

FIG. 10

Page 01353

Page 01354

PCT
WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

G07F 7/10, G06K 19/073

(21) International Application Number: PCT/US98/05674

(22) International Filing Date: 24 March 1998 (24.03.98)

(30) Priority Data:
60/041 ,468
60/061 ,763

US
US

24 March 1997 (24.03.97)
14 October 1997 (l4.l0.97)

(71) Applicant (for all designated States except US): VISA IN-
TERNATIONAL SERVICE ASSOCIATION [US/US]; 900
Metro Center Boulevard, Foster City, CA 94404 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): CHAN, Alfred [US/US];

298 Cerro Drive, Daly City, CA 94015 (US). KEKICH-
EFF, Marc, B. [FR/US]; 2901 Simkins Couit, Palo Alto,
CA 94303 (US). WEISE, Joel, M. [US/US]; 3 Kenmar
Way, Burlingame, CA 94010 (US). WENTKER, David, C.
[US/US]; 933 Stanyan Street, San Francisco, CA 94117
(US).

(74) Agent: YI, Susan, C.; Beyer & Weaver, LLP, P.O. Box 61059,
Palo Alto, CA 94306 (US).

(11) International Publication Number:

(43) International Publication Date:

WO 98/43212

1 October .1998 (0110.98)

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW.
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, 'I'I‘, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international Search report.

(54) Title: A SYSTEM AND METHOD FOR A MULTI—APPLICATION SMART CARD WHICH CAN FACILITATE A
POST—ISSUANCE DOWNLOAD OF AN APPLICATION ONTO THE SMART CARD

(57) Abstract

The embodiments of the present invention teaches
a system and method which allows card issuers to se-
curely add applications (305A~305C) during the lifetime
of the card (304) after the card has already been issued
(post issuance). The system and method according to
embodiments of the present invention allows the load-
ing of an application and/or objects from an application
server via a card acceptance device and its supporting
system infrastructure delivery mechanism, onto a card
post issuance in a secure and confidential manner.

SECURITY DOMAIN 1 3203 sgcugny Dome,“-2

APDU Interface

‘ 08(MEMORY, II0.0RYPTO)

Page 01354

Page 01355

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI Slovenia
AM Armenia FI Finland LT Lithuania SK Slovakia
AT Austria FR France LU Luxembourg SN Senegal
AU Australia GA Gabon LV Latvia SZ Swaziland
AZ Azerbaijan GB United Kingdom MC Monaco TD Chad
BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
BB Barbados GH Ghana MG Madagascar TJ Tajikistan
BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan
BF Burkina Faso GR Greece Republic of Macedonia TR Turkey
BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
BJ Benin IE Ireland MN Mongolia UA Ukraine
BR Brazil IL Israel MR Mauritania UG Uganda
BY Belarus IS Iceland MW Malawi US United States of America
CA Canada IT Italy MX Mexico UZ Uzbekistan
CF Central African Republic JP Japan NE Niger VN Viet Nam
CG Congo KE Kenya NL Netherlands YU Yugoslavia
CH Switzerland KG Kyrgyzstan N0 Norway ZW Zimbabwe
CI Cote d’Ivoire KP Democratic People's NZ New Zealand
CM Cameroon Republic of Korea PL Poland
CN China KR Republic of Korea PT Portugal
CU Cuba KZ Kazakstan R0 Romania
CZ Czech Republic LC Saint Lucia RU Russian Federation
DE Gem1any LI Liechtenstein SD Sudan
DK Denmark LK Sri Lanka SE Sweden

Estonia LR

Liberia SG Singapore

Page 01355

Page 01356

10

15

20

25

WO 98/43212 PCT/US98/05674

A SYSTEM AND METHOD FOR A MULTI— APPLICATION SMART CARD WHICH CAN

FACILITATE A POST—ISSUANCE DOWNLOAD OF AN APPLICATION ONTO THE I

SMART CARD

FIELD OF THE INVENTION

The present invention relates to smart cards. In particular, the present invention relates to a

system and method for providing a multi-application smart card which can facilitate a post-

issuance download of an application onto the smart card.

BACKGROUND OF THE INVENTION

A smart card is typically a credit card-sized plastic card that includes a semiconductor chip

capable of holding data supporting multiple applications.

Physically, a smart card often resembles a traditional “credit” card having one or more

semiconductor devices attached to a module embedded in the card, providing contacts to the

outside world. The card can interface with a point—of-sale terminal, an ATM, or a card reader

integrated into a telephone, a computer, a vending machine, or any other appliance.

A rnicro—controller semiconductor device embedded in a “processor” smart card allows the

card to undertake a range of computational operations, protected storage, encryption and decision

making. Such a micro—controller typically includes a microprocessor, memory, and other

functional hardware elements. Various types of cards are described in “The Advanced Card

Report: Smart Card Primer”, Kenneth R. Ayer and Joseph F. Schuler, The Schuler

Consultancy, 1993.

One example of a smart card implemented as a processor card is illustrated in FIG. 1. Of

course, a smart card may be implemented in many ways, and need not necessarily include a

microprocessor or other features. The smart card may be programmed with various types of

functionality, including applications such as stored-value; credit/debit; loyalty programs, etc.

Page 01356

Page 01357

10

15

20

25

WO 98/43212 PCT/US98/05674

In some embodiments, smart card 5 has an embedded micro-controller 10 that includes a

microprocessor 12, random access memory (RAM) 14, read—only memory (ROM) 16, non-

volatile memory 18, a cryptographic module 22, and a card reader interface 24. Other features of

the rnicro—control1er may be present but are not shown, such as a clock, a random number

generator, interrupt control, control logic, a charge pump, power connections, and interface

contacts that allow the card to communicate with the outside world.

Microprocessor 12 is any suitable central processing unit for executing commands and

controlling the device. RAM 14 serves as storage for calculated results and as stack memory.

ROM 16 stores the operating system, fixed data, standard routines, and look up tables. Non-

volatile memory 18 (such as EPROM or EEPROM) serves to store information that must not be

lost when the card is disconnected from a power source but that must also be alterable to

accommodate data specific to individual cards or any changes possible over the card lifetime.

This information might include a card identification number, a personal identification number,

authorization levels, cash balances, credit limits, etc. Cryptographic module 22 is an optional

hardware module used for performing a variety of crptographic algorithms. Card reader interface

24 includes the software and hardware necessary for communication with the outside world. A

wide variety of interfaces are possible. By way of example, interface 24 may provide a contact

interface, a c1ose—coupled interface, a remote-coupled interface, or a variety of other interfaces.

With a contact interface, signals from the micro-controller are routed to a number of metal

contacts on the outside of the card which come in physical contact with similar contacts of a card

reader device.

Various mechanical and electrical characteristics of smart card 5 and aspects of its

interaction with a card reading device are defined by the following specifications, all of which are

herein incorporated by reference.

Visa Integrated Circuit Card Specification, (Visa International Service Association 1996).

EMV Integrated Circuit Card Specification for Payment Systems, (Visa International

Service Association 1996).

Page 01357

Page 01358

10

15

20

25

WO 98/43212 PCT/US98/05674

EMV Integrated Circuit Card Terminal Specification for Payment Systems, (Visa

International Service Association 1996).

EMV Integrated Circuit Card Application Specification for Payment Systems, (Visa

International Service Association 1996).

International Standard; Identification Cards — Integrated Circuitgs) Cards with Contacts, 1

Parts 1-Q (International Standards Organization 1987-1995).

Prior to issuance of a smart card to a card user, the smart card is initialized such that

some data is placed in the card. For example, during initialization, the smart card may be loaded

with at least one application, such as credit or stored cash value, a file structure initialized with

default values, and some initial cryptographic keys for transport security. Once a card is

initialized, it is typically personalized. During personalization, the smart card is loaded with

data which uniquely identifies the card. For example, the personalization data can include a

maximum value of the card, a personal identification number (PIN), the currency in which the

card is valid, the expiration date of the card, and cryptographic keys for the card.

A limitation of conventional smart cards is that new applications typically can not be added

to an issued smart card. Smart cards are traditionally issued with one or more applications

predefined and installed during the manufacturing process of the card. As a result, with

traditional smart card implementation, once a card has been issued to a card user, the smart card

If a new application is desired, the smart card is typicallybecomes a fixed application card.

discarded and a new smart card, which includes the new application, is issued.

It would be desirable to provide a smart card which would allow applications to be loaded

after the card is issued. Further, it is desirable to provide a mechanism to manage the loading of

an application as well as general management of the applications on the smart card. Additionally,

it is desirable to allow an application provider to keep cryptographic keys confidential from the

issuer of the smart card and to securely allow application from different entities to coexist on a

card.

Page 01358

Page 01359

10

15

20

25

WO 98/43212 PCT/US98/05674

SUMMARY OF THE INVENTION

Embodiments of the present invention teach a system and method which allow card issuers

to add applications during the lifetime of the card after the card has already been issued (referred

to herein as post issuance loading). Downloading an application after the card has been issued to

the card holder will be referred to herein as a “secure install” process.

The system and method according to embodiments of the present invention allow the

loading of an application and/or objects from an application server via a card acceptance device

and its supporting system infrastructure delivery mechanism, onto a card, post issuance in a

secure and confidential manner.

An embodiment of the present invention provides a system and method for controlling at

least one function associated with an issued smart card. In a multi—application smart card, a

privileged application, herein referred to as a card domain, manages multiple functions related to

the smart card. Examples of these functions include card initialization, global card data, card life

cycle, and secure installation of smart card applications.

A method according to an embodiment of the present invention for providing a first

application onto an issued smart card comprises the steps of forwarding the first application to the

issued smart card; and loading the first application onto the issued smart card, wherein the

loading of the first application is managed by a second application.

In another aspect of the invention, a system according to an embodiment of the present

invention for controlling at least one function associated with an issued smart card is disclosed.

The system comprises a first application associated with the issued smart card; and a second

application associated with the issued smart card, the second application being in communication

with the first application, wherein the second application manages at least one function associated

with the first application.

Page 01359

Page 01360

10

15

20

25

W0 98/4321 2 PCT/US98/05674

Furthennore, an embodiment of the present invention provides a system and method for

providing confidential information to an application in a smart card. In a multi-application smart

card, a privileged application, herein referred to as a security domain, is utilized as a confidential

representative of an application provider. The security domain can contain cryptographic keys

which can be kept confidential from the smart card issuer, thus allowing separation of

cryptographic security between the issuer and the application provider. When a new application

is loaded onto a smart card, the newly loaded application can utilize its associated security

doma.in’s cryptographic service. A privileged application representing the issuer, herein referred

to as a card domain, can approve of commands, such as commands for initialization and

personalization, by invoking the security domain’s cryptographic service. In this manner, a post

issuance download of an application onto the issued smart card can be accomplished.

A method according to an embodiment of the present invention for providing confidential

information to an application in a smart card is presented. The method comprises the steps of

providing a first application in the smart card, the first application including a cryptographic

service; loading a second application onto the smart card; and installing the second application,

wherein the cryptographic service of the first application is utilized to install the second

application.

In another aspect of the invention, a system according to an embodiment of the present

invention for providing confidential information to an application in a smart card is presented.

The system comprises a first application associated with the issued smart card, wherein the first

application includes cryptographic service; and a second application associated with the issued

smart card, the second application being in communication with the first application, wherein the

cryptographic service included in the first application is utilized for at least one function related to

the second application.

In yet another aspect of the invention, a method according to an embodiment of the present

invention for providing an application to a smart card is presented. The method comprising the

steps of issuing a smart card; loading a first application onto the issued smart card; and initializing

the first application.

Page 01360

Page 01361

WO 98/43212 PCT/US98/05674

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a smart card system suitable for implementing the present

invention.

Figure 2 is an example of a block diagram of software layers which can be utilized in a

5 smart card.

Figures 3A — 3B are block diagrams of examples of software layers according to

embodiments of the present invention.

Figure 4 is a flow diagram of an example of a method according to an embodiment of the

present invention for installing an application onto an issued smart card utilizing a card domain.

10 Figure 5 is a flow diagram of a method according to an embodiment of the present

invention for providing confidential information to an application in a smart card using security

domains.

Figure 6 is a flow diagram of an example of a method according to an embodiment of the

present invention for installing an application onto an issued smart card utilizing a card domain.

15 Figure 7A is a flow diagram illustrating a sequence of card life states.

Figure 7B is a flow diagram illustrating a sequence of card life states.

Figure 8 is an illustration of an example of a card life cycle.

Figure 9 is a flow diagram of an example of a method according to an embodiment of the

present invention for blocking a card utilizing a card domain.

20 Figure 10 is a block diagram illustrating interactions between a card domain and a security

domain on a smart card according to an embodiment of the present invention.

Page 01361

Page 01362

WO 98/43212 PCT/US98/05674

Figures 1 1A and 1 1B are flow diagrams of an example ofa method according to an

embodiment of the present invention for loading an application by using a security domain after

the smart card has issued.

Figures 12A-12B are flow diagrams of an example of a method according to an alternate

embodiment of the present invention for loading an application using a security domain after the

smart card has issued.

Figure 13 is a block diagram illustrating an example of key management and key

dependencies for post issuance download of applications onto the smart card.

Page 01362

Page 01363

10

15

20

25

WO 98/43212 PCT/US98/05674

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description is presented to enable one of ordinary skill in the an to make

and to use the invention and is provided in the context of a patent application and its

requirements. Various modifications to the preferred embodiments will be readily apparent to

those skilled in the art and the generic principles herein may be applied to other embodiments.

Thus, the present invention is not intended to be limited to the embodiment shown butnis to be

accorded the widest scope consistent with the principles and features described herein.

Figure 2 is a block diagram of an example of software layers which can be utilized in a

smart card. The smart card shown in Figure 2 includes an operating system 200, a card

application programming interface (API) 204, and applications 206A-206B. Operating system

200 can include functionality to control the cards, memory management, input/output (I/O), and

cryptographic features. Card API 204 utilizes the instructions from operating system 200 and

writes these instructions into blocks which can be reused for common routines in multiple

applications. Applications 206A and 206B can run on the smart card via instructions from API

204. These applications can include any application which can run on a smart card, such as

stored value, credit, debit, transit, and loyalty.

One embodiment of the present invention is based upon the Java Card

standard. In this case applications are referred to as 'Applets' and they are written to link to a

Java Card API which is the application programming interface present on smart cards built to the

Java Card standard.

Although the conventional software system shown in Figure 2 allows for multiple

applications, it does not solve the problem of how to load, securely, an application after issuance

of the smart card to a user. If an application is to be loaded post issuance, a mechanism is needed

to manage the loading of an application as well as general management of the applications on the

smart card. Additionally, an application provider may wish to keep cryptographic keys

confidential from the issuer of the smart card. Accordingly, a mechanism is needed to provide

Page 01363

Page 01364

10

15

20

25

WO 98/43212 PCT/US98/05674

for the separation of confidential information between an application provider and an issuer of a

smart card. Embodiments of the present invention address such a need.

Figures 3A — 3B are block diagrams showing software components of a smart card

according to embodiments of the present invention. The arrows indicate dependencies between

components. Figure 3A shows an embodiment of a smart card utilizing a card domain, while

Figure 3B shows an embodiment of a smart card utilizing a security domain, as well as a card

domain.

The example shown in Figure 3A includes an operating system 300, a card API 304,

applications 305A-305C, a card domain 308, and open platform (OP) API 306. The system

shown in Figure 3 allows for a secure and managed post issuance download of an application

onto a smart card.

Open platform API 306 classifies instructions into card domain 308 and security domains

310A-310B (shown in Figure 3B). Accordingly, OP API 306 facilitates the formation of

instructions into sets which can be identified as being included as part of card domain 308 and

security domains 310A-310B.

Applications 305A-305C can include any application which can be supported by a smart

card. Examples of these applications include credit, debit, stored value, transit, and loyalty.

Applications 305A-305C are shown to include command interfaces, such as APDU interfaces

354A—354C which facilitate communication with the external environment.

Applications 305A and 305B can run on the smart card via instructions from card API 304.

Card API 304 is implemented using the instructions from the card operating system and writes

these instructions into blocks which can be reused for common routines for multiple applications.

Those skilled in the art will recognize that a translation layer or interpreter may reside between

API 304 and operating system 300. An interpreter interprets the diverse hardware chip

instructions from vendor specific operating system 300 into a form which can be readily utilized

by card API 304.

Page 01364

Page 01365

10

15

20

25

WO 98/43212 PCT/US98/05674

Card domain 308 can be a “privileged” application which represents the interests of the

smart card issuer. As a “privileged” application, card domain 308 may be configured to perform

multiple functions to manage various aspects of the smart card. For instance, card domain 308

can perform functions such as installing an application on the smartbcard, installing security

domains 310A-3 10B (shown on Figure 3B), personalization and reading of card global data,

managing card life cycle states (including card blocking), performing auditing of a blocked card,

maintaining a mapping of card applications 305A—305C to security domains 310A-310B‘, and

performing security domain functions for applications 305A—305C which are not associated with

a security domain 310.

Card domain 308 is shown to include an API interface 350 and a command interface, such

as Application Protocol Data Unit (APDU) interface 352. APDU interface 352 facilitates

interfacing with the external environment. In compliance with, eg, International Standards

Organization (ISO) Standard 7816-4, entitled “Identification Cards - Integrated circuit(s) cards

with contacts - Part 4, Inter-industry commands for interchange,” which is herein incorporated

by reference.

For example, APDU interface 352 can be used during post issuance installation of an

application or during loading of card global data. An application load and install option is

performed via a set of appropriate APDU commands received by card domain 308. API interface

350 facilitates interfacing with the internal smart card environment. For example, API interface

350 can by used if card domain 308 is being utilized as a default in place of a security domain

310, or if an application requires information such as card global data, key derivation data, or

information regarding card life cycle.

Memory allocations have been performed by the time an application is in an install state. An

application is also personalized after loading and installing. A personalized application includes

card holder specific data and other required data which allows the application to run. In addition

to managing the installation and personalization of the application, card domain 308 can also

manage global card information. Global card information includes information that several

1 O

Page 01365

Page 01366

10

15

20

25

WO 98/43212 PCT/US98/05674

applications may need to perform their functions, such as card holder name and card unique data

utilized in cryptographic key derivations. Card domain 308 can be a repository for the global _-

card information to avoid storing the same data multiple times.

Card domain 308 can also manage card life cycle states including card blocking. The smart

card will typically move through several states during its life cycle. Card domain 308 keeps track

of what state the card is in during its life cycle. Card domain 308 may also manage a block A

request to block virtually all functions of the card. Further details of card domain 308

management of a block request will be discussed in conjunction with Figure 6. Card domain 308

may also keep track of the state of an application during an application’s life cycle. This kind of

information regarding an application can be utilized during an auditing of a card. Auditing can be

performed at any time during a card’s lifetime. For instance, auditing may be performed after a

card has been blocked or prior to installing a new application to validate the card contents.

Although virtually all card functions are no longer functioning when a card is blocked, an issuer

may be able to query card domain 308 for information regarding a state of an application or the

life cycle state of the card. In this manner, the issuer of a card may still access a profile of the

blocked card and its applications.

Figure 3B shows an embodiment of the present invention utilizing a security domain 310,

as well as card domain 308. The example shown in Figure 3B includes a operating system 300’,

a card API 304’, applications 305A—305C’, security domains 310A-310B’, a card domain 308’,

and open platform (OP) API 306’. The system shown in Figure 3B also allows for a secure and

managed post issuance download of an application onto a smart card.

Card domain 308’ can work in conjunction with a security domain 310. Security domain

310 is a logical construct that can be implemented as an application to provide security related

functions to card domain 308’ and to applications associated with security domain 310. Security

domains 310A-310B can assist in secure post issuance loading of an application onto the smart

card. Security domains 310A-310B provide for a mechanism which keeps the application

11

Page 01366

Page 01367

10

15

20

25

WO 98/43212 PCT/US98/05674

provider’s confidential information, such as cryptographic keys, from being disclosed to the

issuer of the smart card.

There may be multiple security domains 310 on a smart card, each represented by a unique

cryptographic relationship. A security domain 310 is responsible for the management and

sharing of cryptographic keys and the associated cryptographic methods which make up the

security domain’s cryptographic relationship. An application which is loaded to the smart card

post issuance can be associated with a security domain, preferably with only one security

domain. However, multiple applications may be associated with the same security domain 310.

Applications installed on a smart card during the pre-issuance phase may optionally be associated

with a security domain 310 on the smart card for purposes of loading confidential personalization

data to those applications using security domain 310 keys.

The software for security domain 310 may be installed by the card manufacturer at the time

of card manufacturing (e.g., when the ROM is masked), or may be added during initialization or

personalization stages. Security domains 310 can be implemented as selectable applications

which are isolated from one another and the rest of the system. If security domain 310 is

implemented in a Java card as an application, standard Java card security can be relied upon to

ensure isolation of security domain 310. In addition, or alternatively, other security mechanisms

such as hardware security which can be utilized through OP API 306 implementation. OP API

306 may utilize special security features to enforce isolation of security domain 310. An example

of such a security feature is the utilization of chip hardware security routines which may be

employed by OP API 306.

Each security domain 3 l0A—3l0B provides a command interface, such as an Application

Protocol Data Unit (APDU) interface 320A-320B, for communication off card and an on card

API interface 322A—322B.

The APDU interface 320A—32OB consists of personalization commands and is intended to

allow the initial loading of security domain keys and to support key rotation if desired during the

life of the security domain. API interfaces 322A—322B may include a signature verification

12

Page 01367

Page 01368

10

15

20

25

WO 98/43212 PCT/US98/05674

method and decryption method which are shared with card domain 308’ for post issuance loading

of applications. Additionally, applications may utilize API interfaces 322A—322B for decrypting

application confidential data. Note that card domain 308’ may always function as a security

domain and does so as the default.

Security domain 310 manages signing and decrypting keys and provides cryptographic

services using those keys. Security domain 310 processes APDU’s for numerousfunctions.

These functions can include key management functions e.g., functions to load or update keys.

During Secure Installation of an application, security domain 310 can provide services to card

domain 308’ to decrypt an application install file and check the signature of an application file.

For an application associated with a security domain 310, that application’s security domain 310

provides decrypt and signature functions, such as MACing on an update key APDU command

during the personalization phase of a newly installed application. Thereafter, the application can

use the updated key to decrypt and check signatures on subsequent key updates.

The smart card issuer may decide whether security domain 310 utilizes a static key or a

session key for transactions. A static key is a cryptographic key which exists prior to processing

APDUS and which exist during and after the processing of APDUs. A session key is a

cryptographic key which can be generated for a particular transaction and is typically no longer

used for APDU processing after the transaction. If a session key is utilized, security domain 310

preferably derives its own session key for processing APDUs.

Figure 4 is a flow diagram of a method accordingly to an embodiment of the present

invention for providing an application onto a smart card. The example illustrated in Figure 4 also

applies to installing a security domain 310 onto a smart card. Note that all of the flow diagrams

in this application are merely examples. Accordingly, the illustrated steps of this and any other

flow diagram herein, can occur in various orders and in varying manners in order to accomplish

virtually the same goal.

A smart card is issued (step 400), and an application is forwarded to the issued smart card

(step 402). The forwarding of the application can occur through any electronic media which can

13

Page 01368

Page 01369

10

15

20

25

wo 93/43212 PCT/US98/05674

interface with a smart card and connect to an appropriate network. For example, devices such as

an automatic teller machine (ATM), a display phone, or a home computer, can be used to forward

an application to the issued smart card. The forwarded application is then loaded onto the smart

card, wherein the loading of the application is managed by card domain 308 (step 404).

Figure 5 is another flow diagram of a method according to an embodiment of the present

invention for providing an application onto an issued smart card. A smart card is created and

provided with a first application, the first application including a cryptographic service (step

1002). A second application is loaded onto the smart card (step 1004). Thereafter, the second

application is installed, wherein the cryptographic service of the first application is utilized to

install the second application (step 1006).

Figure 6 is another flow diagram of an example of a method according to an embodiment of

the present invention for providing an application onto an issued smart card. This method for

providing an application also applies to providing a security domain 310 onto the smart card. In

the example shown in Figure 6, a card issuer deploys smart cards to customers (step 500). A

decision is made to install vendor A’s application onto the issued smart card (step 502). When a

dialogue between the issuer and the smart card is initiated, a pre-signed copy of the application is

forwarded to the smart card (step 504). As previously stated, the dialogue between the issuer

and the smart card can occur via any electronic device which can interface with a smart card and

connect to an appropriate network. The application can be pre-signed with a key equivalent to

that which already exists on the card so that each application has a unique signature that can be

verified by the card.

Card domain 308 can then take the steps to load the application. Card domain 308 decrypts

the forwarded application and checks the signature of the application (step 508). Card domain

308 can decrypt the application with the issuer’s secret key. An appropriate cryptography

method, such as Data Encryption Standard (DES) or 3DES, can be utilized to decrypt at least a

portion of the application. Those skilled in the art will recognize that a number of cryptographic

techniques may be used to implement embodiments of the present invention. For the purpose of

1 4

Page 01369

Page 01370

10

15

20

25

WO 98/43212 PCT/US98/05674

illustration, symmetric key techniques are addressed herein, although asymmetric techniques are

also contemplated. A good general cryptography reference is Schneier, Applied Cryptography,

2d Ed. (John Wiley, 1996), the contents of which are incorporated herein by reference.

It is then determined whether the signature on the application ‘is valid (step 510). If the

signature associated with the application is not valid, then the application is not loaded onto the

card and the process ends (step 520). If, however, the signature associated with the application

is valid the application is then installed and available for personalization. During personalization

the application receives personalization data (step 512). Personalization data includes data which

is unique to the smart card user. For instance, in a airline loyalty application, personalization data

can include the smart card user’s seating preference, meal preference, and eligibility for various

possible perks. This personalization data can also be signed and encrypted.

The application then invokes card domain’s 308 decryption service (step 513). Card

domain 308 can then performs a signature check (step 514). Methods of decrypting

personalization data and performing signature checks are well known in the art. Finally, the

application can then be activated (step 518).

A new application which as been downloaded onto a smart card post-issuance can be stored

in a variety of ways. One example is to store the application into a file. Another example is to

maintain a pointer to the application object.

Figure 7A is a flow diagram illustrating an example of a sequence of card life states. The

sequence is preferably considered irreversible. The first Card life state is when the smart card is

Masked (700). During the Masked state (700), the smart card obtains its operating system, card

identification, and preferably at least one application. The Masked state (700) is achieved as soon

as all of the necessary components for card initialization are made available. An example of when

necessary components are made available is when card domain 308 and OP API 306 are enabled,

as well as the Java card environment being enabled, such as Java card virtual machine 302 and

Java card API 304 (both of Figure 3).

15

Page 01370

Page 01371

10

15

20

25

WO 98/43212 PCT/US98/05674

After the Masked state, the next state is the Initialized (step 702) state. The Initialized state

is achieved once all card activity requiring an initialization key is complete. As part of card

initialization, if not already available, the card domain 308 application must be installed and

registered. In addition , one or more security domains may also be installed and registered.

These installed domains must then be selected and personalized. An initialization key is a secret

key which is typically used by a smart card manufacturer during loading of data onto the smart

card prior to issuance.

The next state is Load Secured (step 704). The Load Secured state is achieved after a

secure install (post—issuance download) mechanism for loading of applications through the

remainder of the card lifetime has been established.

The final card life state is when the card is either expired or blocked (step 706). The

blocked state is achieved as soon as an authorized smart card application has received a command

to block the card.

The card life cycle is preferably an irreversible sequence of states with increasing security.

Initialization and all subsequent card life cycle states and their transition are preferably under the

control of card domain 308. Card domain 308 executes and responds to commands that result in

a transition in a card life cycle from one state to the next. These commands are preferably

Application Protocol Data Unit (APDU) commands. Card domain 308 is also responsible for the

installation of applications on the card, but preferably has no control over the applications’ life

cycle states. Each application is preferably responsible for its own application life cycle state

management but it preferably allows card domain 308 to have access to its life cycle states for

auditing purposes.

The Card Life cycle is designed in such a way to increase the level of security enforced by

the card at each successive state. As stated above, the cycle is also established as a process

which can only ratchet forward to ensure that once the card begins a life cycle state with

associated security policies, the only option is to cycle forward to the next state in the life cycle

with a higher level of security. The Card Domain as the system security manager of the card

16

Page 01371

Page 01372

10

15

20

25

wo 98/43212 PCT/US98/05674

maintains the current life cycle state, enforces the associated security policies, and controls the

state transitions in the Card life cycle.

Figure 7B is a flow diagram illustrating an example of a sequence of an application life

cycle. The application is initially unavailable (step 750). The next‘ state is a loaded state (step

752). The application reaches the loaded state once the application has been loaded onto the

smart card. The application is then installed (step 754), and registered (step 756)." Once the

application is registered, it can be deleted at any time thereafter. The next state is the personalized

state, wherein personalized information is included in the application (step 758). Finally, the

application may expire or be blocked (step 760).

Figure 8 is an illustration of an example of multi-application card life time line. This time

line starts with a Masked ROM stage 800 and ends with a card blocked/expired stage 802. At

Masked ROM stage 800, applications A, B, C and D are shown to be installed. This example

shows applications A and B being installed at a masking stage of the card, applications C and D

being installed at initialization stage, and applications D and F being installed post issuance.

In this example, application A can be installed in ROM and used during the complete life of

the card from Masked ROM stage 800 to card blocked/expired stage 802. Application B is also

in ROM and utilized during a first portion of the life of the smart card. The life of application B

is ended at stage 804A. Application C is located in non—volatile memory, such as EEPROM,

which is loaded during initialization. Application C is shown to expire at stage 804B.

Application D is also located in EEPROM and is used for the complete life of the card until card

blocked/expired stage 802. Application E is installed at stage 806A, sometime after issuance of

the smart card. Application E is located in EEPROM and used until the end of the card life at card

blocked/expired stage 802. Application F is also installed post issuance at stage 806B, and

expires sometime before the end of the card life at stage 804C.

Figure 9 is a flow diagram of a method according to an embodiment of the present

invention for blocking a card. A card be can be blocked if a breach of security is detected by an

application. According to an embodiment of the present invention, a smart card can be blocked

17

Page 01372

Page 01373

10

15

20

25

WO 98/43212 PCT/US98/05674

while an application is in use. A blocked card will no longer operate so that a suspect user cannot

utilize any of the applications on the smart card. Blocking is merely one example of the many —-

functions card domain 308 can perform in managing the other applications on the smart card.

Examples of other functions include installing an application on the smart card, installing security

domains 310A-310B, personalization and reading of card global data, managing card life cycle

states including card blocking, performing auditing of a block card, maintaining a mapping of

card applications to security domains, and performing security domain functions for applications

which are not associated with a security domain.

In the example shown in Figure 9, an application is currently in use (step 600). The

application detects a problem which triggers a card block request from the application (step 602).

The application then sends a card block request to card domain 308 (step 604). Card domain 308

determines whether the card block request is valid (step 606). A card block request can be valid

if the request originates from a predetermined application. If the card block request is not valid,

the card domain 308 does not block the smart card (step 608). However, if the card block

request is valid, then card domain 808 authorizes the card blocking (step 610), and card domain

308 blocks the smart card (step 612) such that the smart card will reject any attempted

transactions for any of the applications on the card.

Figure 10 is a block diagram illustrating the use of security domain 310 by the card domain

308. The method and system according to an embodiment of the present invention allows for

multiple application providers to be represented on a smart card in a secure and confidential

manner. This security and confidentiality can be achieved through the use of security domain

310A-310B shown in Figure 3.

Figure 10 illustrates an example of a smart card which contains two security domains

310A—310B. In this example, it is assumed that a masked application 305A from the smart card

is associated with a security domain, such as security domain 310A, and an additional application

305B will be added post issuance and be associated with a second security domain, such as

security domain 310B. The arrows indicate key relationships between the various smart card

1 8

Page 01373

Page 01374

10

15

20

25

WO 98/43212 PCT/US98/05674

entities. Masked application 305A uses key services from security domain 310A for decrypting

confidential data and optionally for full personalization. Card domain 308 uses key services from

security domain 310B for decrypting and checking the signature of an application loaded post

issuance, such as post issuance loaded application 305B. Post issuance loaded application 305B

uses key services from security domain 310B for decrypting confidential data and optionally for

full personalization.

Figures 11A and 11B are further flow diagrams of an example for a method according to an

embodiment of the present invention for providing an application onto an issued smart card. The

card issuer decides to include a security domain 310 onto a smart card (step 1 100). The issuer

assigns security domain 310 to vendor A (step 1 102). Vendor A, or an application developer on

behalf of vendor A, generates cryptographic keys such as those used in symmetric or asymmetric

cryptography operations (step 1 104). Examples of these cryptography operations include

encryption, decryption, MACing, Hashing, and digital signatures. Examples of cryptographic

methods which utilize such keys and are suitable for implementation for the embodiment of the

method and system of the present invention include Data Encryption Standard (DES) and 3DES.

The card personalization agent receives the keys and loads security domain keys associated with a

specific security domain 310 for each smart card (1 106). The card personalization agent receives

smart cards and collects other data, such as application and card holder specific data, and places

data on the smart card (step 1 108).

The card issuer then deploys the smart card to customers (step 1 110). A decision is then

made to install vendor A’s application on the smart card (step 1 112). When a dialogue between

the smart card issuer and the smart card is initiated, a signed copy of the application is forwarded

to the smart card (step 1 1 14). The application can be signed with a key equivalent to that which

already exists on the smart card so that each application has a unique signature that can be verified

by the smart card.

The smart card’s card domain 308 then takes steps to load the application. Card domain

308 invokes an associated security domain’s cryptographic service to decrypt the application and

1 9

Page 01374

Page 01375

10

15

20

25

WO 98/43212 PCT/US98/05674

check the signature (step 11 18). It is then determined if the signature is valid (step 1 120). If the

signature is not valid, the process ends (step 1122). If, however, the signature is found to be‘

valid, then the application receives personalization data which can be signed and optionally

encrypted (step 1 124). The loaded application then invokes its associated security domain’s

decryption service and signature check (step 1 126). Secret keys required to run or operate the

application on the smart card are used to activate the application by authentication (step 1130).

Figures 12A and 12B are flow diagrams of a method according to another embodiment of

the present invention for providing confidential information to an application using a security

domain 310. The issuer decides to include a security domain 310 on a smart card (step 1200). A

trusted party generates secret cryptographic keys and sends the keys to a card personalization

agent in a secure manner (step 1201). A trusted party is typically a third party who performs the

function of certifying the source of information, such as a signature. A card personalization

agent (which may be the same as the trusted party) receives the key and loads a unique secure

domain key associated with a specific security domain 310 for each smart card (step 1202).

The card personalization agent receives the smart card and collects other data, such as

application and card holder specific data, and places the data on the smart card (step 1204). The

issuer then deploys the smart card to its customers (step 1206). A decision is made to install

vendor A’s application on the issued smart card (step 1208). Vendor A obtains secret keys for

security domain 310 from the trusted party (step 1210). Vendor A then sends the smart card

issuer a signed copy of Vendor A’s application (step 1212).

When a dialogue between the smart card issuer and the smart card is initiated, a signed

copy of the application is forwarded to the smart card (step 1214). The application can be signed

with a key equivalent to that which already exists on the smart card so that each application has a

unique signature that can be verified by the smart card. Card domain 308 invokes security

domain’s cryptographic service to decrypt the associated application and check its signature (step

1218). It is then determined whether the signature is valid (step 1220). If the signature is not

valid, then the process ends (step 1222).

2 0

Page 01375

Page 01376

10

15

20

25

W0 98/43212 PCT/US98/05674

If, however, the signature is valid, then the application receives personalization data, which

can be signed and optionally encrypted (step 1224). The loaded application then invokes security

domain’s decryption service and signature check (step 1226). The cryptographic secret data

required to run or operate the application on the card are used to activate the application (step

1230).

Figure 13 is a block diagram illustrating the use of cryptographic keys for post issuance

loading of an application onto a smart card. Applications that are not masked and not loaded

during card initialization stage or personalization stage need their executables downloaded using a

secure installation method, such as the post issuance download described in previous Figures.

The applications can be loaded using the card domain cryptographic keys. The applications are

then decrypted and can have their signature verified using the key services of the corresponding

security domain 310. Therefore, the desired security domain(s) 310 preferably have encryption

and signature keys installed prior to the post issuance download of the corresponding application.

In the example shown in Figure 13, only one security domain 310 is shown since security

domains 310 for other applications are not relevant to illustrate the downloading of a single

application. Note that the result of the secure installation is initially a loaded application, which

must then be installed, registered and personalized. After loading, the application is installed,

preferably by issuing an install APDU command to card domain 308. An application can be

installed when its install method has executed successfully. Memory allocations have been

performed by the time an application is in an install state. A loaded application should also be

registered. When an application is registered, it is selectable and it is ready to process and

respond to APDU commands. Installation and registration may be performed simultaneously by

the same APDU command. An application is also personalized after loading. A personalized

application includes card holder specific data and other required data which allows the application

[0 Fun.

In the example shown in Figure 13, the cryptographic key and MAC/Signature key are

shown to be included in the functions of card domain 308/security domain 310. If a security

21

Page 01376

Page 01377

10

15

20

WO 98/43212 PCT/US98/05674

domain is associated with the application being loaded, then the security domain will be invoked.

However, if no security domain 310 is associated with the application which is being loaded, —'

then the cryptographic key and the signature key of card domain 308 will be utilized. In contrast

to the install commands sent to the smart card during the initialization phase, the post issuance

install command is not issued in a secured environment, therefore it is preferably protected with a

cryptographic key, such as a MAC/Signature key. Card domain 308 manages the post-issuance

loading of a new application, while secure domain 310 ensures the validity and integrity. of the

new application once the new application has been loaded onto the smart card. If a secure

domain 310 is not associated with the newly loaded application, then card domain 308 performs

secure domain’s 310 functions. Once the new application is post—issuance downloaded, various

keys, such as an cryptographic key and a signature key, are preferably utilized for installation and

personalization of the application.

A method and system for a smart card domain and a security domain has been disclosed.

Software written according to the present invention may be stored in some form of computer-

readable medium, such as memory or CD—ROM, or transmitted over a network, and executed by a

processor.

Although the present invention has been described in accordance with the embodiment

shown, one of ordinary skill in the art will readily recognize that there could be variations to the

embodiment and these variations would be within the spirit and scope of the present invention.

Accordingly, many modifications may be made by one of ordinary skill in the art without

departing from the spirit and scope of the appended claims.

22

Page 01377

Page 01378

10

15

20

25

WO 98/43212 PCT/US98/05674

CLAIMS

1 . A method for providing a first application onto an issued smart card, the method

comprising:

forwarding the first application to the issued smart card; and

loading the first application onto the issued smart card, wherein the loading of the first

application being managed by a second application.

2. The method of claim 1, further including a step of decrypting at least a portion of the first

application.

3. The method of claim 2, wherein the decryption is provided by the second application.

4. The method of claim 1, further including a step of checking a signature associated with

the first application.

5. The method of claim 4, wherein the checking of the signature is performed by the second

application.

6. The method of claim 1, further including a step of providing personalization data to the

first application.

7. The method of claim 6, further including a step of decrypting the personalization data

provided to the first application.

8. The method of claim 7, wherein the decryption is provided by the second application.

9. The method of claim 6, further including a step of checking a signature associated with

the personalization data.

23

Page 01378

Page 01379

10

15

20

25

WO 98/43212 PCT/US98/05674

10. The method of claim 9, wherein the checking of the signature is performed by the second

application.

1 1 . The method of claim 1, further comprising a step of providing a cryptographic key related

to the first application.

12. The method of claim 1, further comprising a step of invoking a third application’s

cryptography service to decrypt at least a portion of the first application.

13. The method of claim 12, wherein the invoking is performed by the second application.

14. The method of claim 1, further comprising a step of invoking a third application to check

a signature associated with the first application.

15. The method of claim 14, wherein the invoking is performed by the second application.

16. The method of claim 1, further comprising a step of invoking a third application’s

cryptography service to decrypt at least a portion of personalization data associated with the first

application.

17. The method of claim 16, wherein the invoking is performed by the second application.

18. A system for controlling at least one function associated with an issued smart card, the

system comprising:

a first application associated with the issued smart card; and

a second application associated with the issued sman card, the second application being in

communication with the first application, wherein the second application manages at least one

function associated with the first application.

24

Page 01379

Page 01380

10

15

20

25

wo 93/43212 PCT/US98/05674

19. The system of claim 18, wherein the at least one function includes personalization of the

first application.

20. The system of claim 18, wherein the at least one function includes card life—cycle states.

21. The system of claim 18, wherein the at least one function includes card blocking.

22. The system of claim 18, wherein the at least one function includes auditing of a blocked

card.

23. The system of claim 18, wherein the at least one function includes maintaining a mapping

of the first application to an associated security domain.

24. The system of claim 18, wherein at least one function includes a cryptographic service

associated with the first application.

25. The system of claim 18, wherein the second application also manages global data related

to the issued smart card.

26. A system for providing a first application onto an issued smart card, the system

comprising:

means for forwarding the first application to the issued smart card; and

means for loading the first application onto the issued smart card, wherein the loading of

the first application being managed by a second application.

27. A computer program product for providing a first application onto an issued smart card,

comprising:

computer code for forwarding the first application to the issued smart card;

25

Page 01380

Page 01381

10

15

20

25

WO 98/43212 PCT/US98/05674

computer code for loading the first application onto the issued smart card, wherein the

loading of the first application being managed by a second application; and

a computer readable medium that stores the computer codes.

28. The computer program product of claim 27, wherein the computer readable medium is

selected from the group consisting of CD—ROM, floppy disk, tape, flash memory,.system

memory, hard drive, EEPROM, ROM, and data signal embodied in a carrier wave.

29. A method for providing confidential information to an application in a smart card, the

method comprising:

providing a first application in a smart card, the first application including a cryptographic

service;

loading a second application onto the smart card; and

installing the second application, wherein the cryptographic service of the first application

is utilized to install the second application.

30. The method of claim 29, wherein the step of loading the second application is performed

after the smart card has issued.

31. The method of claim 29, wherein an association between the first application and the

second application is maintained.

32. The method of claim 29, wherein details of the cryptographic service of the first

application is kept confidential from an issuer of the smart card.

33. The method of claim 29, wherein the cryptographic service accessed in the first

application is used in addition to a second cryptographic service included in a third application to

perform the step of loading the second application.

26

Page 01381

Page 01382

10

15

20

25

wo 93/43212 PCT/US98/05674

34. The method of claim 29, wherein an association between the first application and the

second application can be determined after the smart card has been issued.

35. A system for providing confidential information to an application in a smart card, the

system comprising:

means for accessing a cryptographic service in a first application, the first application

being included in the smart card; and

means for loading a second application in the smart card, wherein the cryptographic

service of the first application is utilized to load the second application.

36. A system for providing confidential information to an application in a smart card, the

system comprising:

a first application associated with the issued smart card, wherein the first application

includes cryptographic service; and

a second application associated with the issued smart card, the second application being in

communication with the first application, wherein the cryptographic service included in the first

application is utilized for at least one function related to the second application.

37. A computer program product for providing confidential information to an application in a

smart card, comprising:

computer code for accessing a cryptographic service in a first application, the first

application being included in the smart card; and

computer code for loading a second application in the smart card, wherein the

cryptographic service of the first application is utilized to load the second application; and

a computer readable medium that stores the computer codes.

38. The computer program product of claim 37, wherein the computer readable medium is

selected from the group consisting of CD—ROM, floppy disk, tape, flash memory, system

memory, hard drive, EEPROM, ROM, and data signal embodied in a carrier wave.

27

Page 01382

Page 01383

10

15

20

25

WO 98/43212 PCT/US98/05674

39. A system for providing confidential information to an application in a smart card,‘ the —'

system comprising:

a first application associated with an issued smart card, wherein the first application

includes cryptographic service;

a second application associated with the issued smart card; and

a third application associated with the issued smart card, the first and second applications

being in communication with the third application, wherein the cryptographic service included in

the first application is utilized for at least a first function related to the second application.

40. The system of claim 39, wherein the second application invokes the cryptographic service

of the first application for utilization on the at least first function related to the second application.

41 . The system of claim 39, wherein the second application manages at least a second

function of the third application.

42. The system of claim 39, wherein the first application includes a command interface.

43. The system of claim 42, wherein the command interface is an APDU interface.

44. The system of claim 39, wherein the first application includes an API interface.

45. A method for providing an application to a smart card, the method comprising:

issuing a smart card;

loading a first application onto the issued smart card; and

initializing the first application.

46. The method of claim 45, wherein the loading of the application is managed by a second

application.

28

Page 01383

Page 01384

10

15

20

25

WO 98/43212 PCT/US98/05674

47. The method of claim 46, wherein the second application is included in the issued smart-

card.

48. The method of claim 45, wherein the initializing of the first application includes a substep

of utilizing a cryptographic service of a third application.

49. The method of claim 48, wherein the third application is included in the issued smart

card.

50. The method of claim 45, wherein the initializing of the first application includes a substep

of invoking a cryptographic service by a fourth application for use by the first application,

wherein the cryptographic service is included in a fifth application.

5 1. The method of claim 50, wherein the fourth and fifth applications are included in the

issued smart card.

52. The method of claim 45, further including a step of personalizing the first application.

53. The method of claim 52, wherein the personalization of the first application includes a

substep of utilizing a cryptographic service of a sixth application.

54. The method of claim 53, wherein the sixth application is included in the issued smart

card.

55. The method of claim 52, wherein the personalization of the first application includes a

substep of invoking a cryptographic service by a seventh application for use by the first

application, wherein the cryptographic service is included in a eighth application.

29

Page 01384

Page 01385

WO 98/43212 PCT/US98/05674

56. The method of claim 55, wherein the seventh and eighthapplications are included in the

issued smart card.

30

Page 01385

Page 01386

PCT/US98/05674W0 98/43212

l/17

mqzoogn=:m<moo+a>mo

—OE

mommmoomaomozdmo<¢mm»z_mmo<mmom<o

SUBSTITUTE SHEET (RULE 26)

Page01386

Page 01387

WO 98/43212 PCT/US98/05674

2/17

206A 2068

APPLET 1

204

200

OS (MEMORY, I/O, CRYPTO)

FIG 2

SUBSTITUTE SHEET (RULE 26)

Page 01387

Page 01388

WO 98/43212 PCT/US98/05674

3/17

308

 CARD DOMAIN

APDU Interface

352

305C

354C

 Interface Interface Interface

304

306

300

OS (MEMORY, l/O, CRYPTO)

FIG 3A

SUBSTITUTE SHEET (RULE 26) Page 01388

Page 01389

W0 93/43212 PCT/US98/05674

4/17

310A 3103

SECUWTYDOMNNZ

APDU Interface

320A SECURITY DOMAIN 1

APDU Interface

308' 322A

3208

CARD DOMAIN

APDU interface

352'

305C‘

354c'
APDU

Interface

3543'

30¢

API

306

300

OS(MEMORY,UO,CRYPTO) _»/

FIG 3B

SUBSTITUTE SHEET (RULE 26) Page 01389

Page 01390

WO 98/43212 PCT/US98/05674

5/17

400

Issue a

smart card

402

FonNard an application to the issued
smart card

Load the application onto the smart 404
card, wherein the loading of the first
application is managed by the card

domain

FIG 4

SUBSTITUTE SHEET (RULE 26)

Page 01390

Page 01391

WO 98/43212

6/17

1002

Create a smart card and provide a

first application to the smart card, the
first application including a

cryptographic service

‘I004

Load a second application onto the
smart card

Install the second application,

wherein the cryptographic service of
the first application is utilized to install

the second application

FIG 5

SUBSTITUTE SHEET (RULE 26)

PCT/US98/05674

Page 01391

Page 01392

W0 93/432” PCT/US98/05674

7/17 500

lssuer deploys cards to
customers

A decision is made to install vendor A's ‘

application on the card

502

When a dialog between the issuer and the card is initiated, a pre-

signed copy of the application is forwarded to the card (the application
can be presigned with a key equivalent to that which already exists on
the card so that each application has a unique signature that can be

verified by the card)

504

508

Card domain decrypts the application and

checks signature

510

520

NO

signature End
and’?

YES
512

Application receives personalization data (signed
and possibly encrypted)

513

Application invokes card domain
decryption service

Card domain performs a signature check

Activate the

application

SUBSTITUTE SHEET (RULE 26) Page 01392

514

FIG 8

Page 01393

WO 98/43212 PCT/US98/05674

8/17

Setstatus: lnitialized

initialized /702

Setslatusz Load_Secured

Load Secured Z704

Card Biock APDU

Blocked

Any command

FIG 7A

SUBSTITUTE SHEET (RULE 26)

Page 01393

Page 01394

W0 98 4/ 3212 PCT/US98/05674

9/17

Nol Avallable

Load

Install0

register

delete . 7 5 6
appm Registered

personalize

'7 S 8
delete -

apmet Personalized
l

block unblock

7 6 D

d 1 t

8:5; Blocked

FIG 7B

SUBSTITUTE SHEET (RULE 26)

Page 01394

Page 01395

WO 98/43212 PCT/US98/05674

l0/l7

l Masked ROM 8 0 0

Applet B is
in ROM and

used during the
first part of the
life of the card

Applet c is Secure Install 8 0 6A
in EEPROM.

loaded at during
initialization, used
not {or complete

life of card

Card Applet D is
L;;e in EEPROM.

I. loaded during
'_me initialization, used

line for the complete 8 0
me of card Secure Install

Applet Eis
in EEPROM

Apple‘ A is post issuance Applet F is
in ROM and '°=d°° “W1 in EEPROM_ post

used during the _ 5°°‘“'° _ issuance loaded,
complete life of install, used unlll not used untilthe card.

end 0! life 0! C2l'd, and 0' card me
l

804B

Card blocked I expired 8 0 2

iFI(} 8

SUBSTITUTE SHEET (RULE 25)

Page01395

Page 01396

WO 98/43212 PCT/US98/05674

11/17

600

An application is in use

602

Application detects a

problem which triggers a
card block request

604

Application sends a card
block request to card

domain

608

Card domain

does not block

card

card block

est valid’?

Card domain

authorizes the

card blocking

Card domain blocks

card

FIG 9

SUBSTITUTE SHEET (RULE 26)

Page 01396

Page 01397

WO 98/43212 PCT/US98/05674

12/17

308

Card Domain

310ASecurity Domain A

Che Cba

310BSecurity Domain 8

Eta Cha

 Masked

Application

Post issuance

loaded application
305B

305A

FIG 10

SUBSTITUTE SHEET (RULE 26)

Page01397

Page 01398

W0 98/43212 PCT/US98/05674

13/ 17

1100

security domain on card

1102

1104

Vendor A (or an application developer on behalf of vendor A) generates secret
keys and sends the keys to a card personalization agent in a secure manner

1106

Card personalization agent receives keys and loads a secure domain
key associated with a specific security domain for each card

1108

Card personalization agent receives cards and collects
other data and places data on card

1110

lssuer deploys cards to customers

1112

A decision is made to install vendor A's application on the card 1114

When a dialog between the issuer and the card is initiated, a pre-signed copy of the
application is fowvarded to the card (the application can be presigned with a key
equivalent to that which already exists on the card so that each application has a

unique signature that can be verified by the card)

FIG 11A

SUBSTITUTE SHEET (RULE 26)

Page 01398

Page 01399

W0 93/43212 PCT/US98/05674

14/17

Card domain ivokes security domain's cryptography service to
decrypt the application and check signature

1118

1120 1122

NO

 signature End
and’?

YES

Application receives personalization data (signed and possibly encrypted)

1126

Application invokes security domain's decryption
service and signature check

1130

Activate the application

FIG 11B

1124

SUBSTITUTE SHEET (RULE 26)

Page 01399

Page 01400

WO 98/43212 PCT/US98/05674

15/17

1200

lssuer decides to include a security domain on card

Trusted party generates secret keys & sends the keys to a card

personalization agent in a secure manner

1201

1202

Card personalization agent receives keys and loads a secure domain key

associated with a specific security domain for each card

_ _ 1204
Card personalization agent receives cards and collects

other data and places data on card

1206

Issuer deploys cards to customers

1208

A decision is made to install vendor A's application on the card
1210

Vendor A obtains secret keys for the security domain from the trusted party

1212

VendorA sends the issuer a pre-signed copy of the application

FIG 12A

SUBSTITUTE SHEET (RULE 26)

Page 01400

Page 01401

W0 93/43212 PCT/US98/05674

16/17

9 1214

When a dialog between the issuer and the card is initiated, a pre-signed copy of the
application is forwarded to the card (the application can be presigned with a key
equivalent to that which already exists on the card so that each application has a

unique signature that can be verified by the card)

121 8

Card domain invokes security domain's cryptography service

to decrypt the application and check signature

1220

i 2 1222
y 5 NO

signature End
and’?

YES 1224

Application receives personalization data (signed and possibly encrypted)

1226

Application invokes security domain's decryption
service and signature check

1230

Activate the application

FIG 12B

SUBSTITUTE SHEET (RULE 26)

Page 01401

Page 01402

wo 93/43212 PCT/US98/05674

17/17

Card Domain/Security
DomainInitialization Key Application ‘

308/310

II MAC/Signature Ke N

Secure Install

Application
executable

FIG 13

SUBSTITUTE SHEET (RULE 26)

Page 01402

Page 01403

PCT
WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

G06K 19/07
(43) International Publication Date:

(21) International Application Number: PCT/GB98/01401

(22) International Filing Date: 14 May 1998 (l4.05.98)

(30) Priority Data:
60/046,5 14
60/046,5 43
09/078,05 1

15 May 1997 (15.05.97)
15 May 1997 (l5.05.97)
13 May 1998 (13.05.98)

US
US
US

(71) Applicant: MONDEX INTERNATIONAL LIMITED
[GB/GB]; 47-53 Cannon Street, London EC4M SSQ (GB).

(72) Inventors: RICHARDS, Timothy, Philip; 32 Craig Mount,
Radlett, Herts. WD7 7LW (GB). PEACHAM, David,
Anthony; 4 Lynwood, Groombridge, Tunbridge Wells, Kent
TN3 9LX (GB).

(74) Agent: POTTER, Julian, Mark; D. Young & Co., 21 New Fetter
Lane, London EC4A 1DA (GB).

(11) International Publication Number: WO 98/52152

19 November 1998 (l9.l 1.98)

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GE, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished
upon receipt of that report.

(54) Title:

(57) Abstract

A multi—app1ication IC card which processes two or more
applications using an Application Abstract Machine architecture. The
AAM architecture only allows one application to be executed at a
time and allows for shared processing by performing a delegation
function to a second application. A data space for each application
is allocated when the application is selected to be executed. The data
space includes a volatile and non—volatile region. The delegation
function temporarily interrupts the execution of the first application,
saves the temporary data of the first application, shares any data
needed with the second application and the second application is
executed until the delegated task is completed. The first application
then retrieves the saved data and completes its execution. A delegator
stack is used to keep track of the delegator’s identity when multiple
delegations occur. The AAM model allows for a high level of
security while transferring data between applications.

COMMUNICATION BETWEEN INTERFACE DEVICE AND IC CARD

'//////////////A
DYNAMIC

V/////////////.
PUBLIC

‘ '///////////////.

STATIC

Page 01403

Page 01404

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados

Belgium
Burkina Faso
Bulgaria
Benin
Brazil
Belams
Canada
Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Cuba
Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain
Finland
France
Gabon
United Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Israel
Iceland
Italy
Japan
Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan
Saint Lucia
Liechtenstein
Sri Lanka
Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho
Lithuania
Luxembourg
Latvia
Monaco

Republic of Moldova
Madagascar
The former Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore

SI
SK
SN
SZ
TD
TG
TJ
TM
TR
TT
UA
UG
US
UZ
VN
YU
ZW

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
Turkmenistan
Turkey
Trinidad and Tobago
Ukraine
Uganda
United States of America
Uzbekistan
Viet Nam
Yugoslavia
Zimbabwe

Page 01404

Page 01405

WO 98/52152 PCT/GB98/0140]

 umQg@

SUBSTITUTE SHEET (RULE 25) page 01405

Page 01406

10

15

20

W0 98/52 1 52 PCT/GB98/0140 1

BACKGROUND OF INVENTION

Integrated circuit (IC) cards are becoming increasingly used for many

different purposes in the world today, principally because they are ideal tools for

the delivery of distributed, secure information processing at a low cost. An IC

card, also called a “smart card,” is a card typically the size of a conventional credit

card, but which contains a computer chip on the card. The computer chip on the IC

card typically includes a microprocessor, read-only-memory (ROM), electrically

erasable programmable read-only-memory (EEPROM), a random access memory

(RAM), an input/output (I/O) mechanism, and other circuitry to support the

microprocessor its operations. The computer chip can execute one or more

applications stored on the card. Examples of applications that IC cards are being

used to store and execute include credit/debit, electronic money/purse, telephone

calling card, and loyalty reward applications.

To enable the inter-operability of various IC cards and IC card

interface devices, the International Organization for Standardization (ISO) has

promulgated a series of standards pertaining to IC cards. For example, ISO 7816-3

is a standard that covers the low-level details of the transmission link between an IC

card and an interface device, such as the signal rates, voltage levels, and

transmission protocols. At a higher level of detail, the ISO 7816-4 standard covers

the format of commands and responses transmitted between an IC card and an

interface device.

As defined by ISO 7816-4, commands always originate from an IC

card interface device. Once an IC card receives a command, it processes the

-2-

SUBSTITUTE SHEET (RULE 26) Page 01406

Page 01407

W0 98/52 1 52

10

15

20

PCT/GB98/01401

command and sends back a response. This set of communication between an IC

card and interface device is referred to as a “command-response pair.” In a

command-response pair, the command and/or response may contain associated data,

thus producing four possible cases of command-response pairs. These four cases

are summarized in Table 1.

Table 1: Command-Response Pair Cases

When an IC card receives a command from an interface device, the

operating system present on the IC card may route the command to an application

stored on the IC card for processing. Preferably, when a command is sent to an IC

card application for processing as part of the regular data exchange specified in the

application program, the IC card application should not be required to concern itself

with the underlying details and protocol of the transmission link _ it would be

desirable for the application to be concerned only with processing the commands it

receives. This independence of layers between the transmission layer and the

-3-

SUBSTITUTE SHEET (RULE 26) Page 01407

Page 01408

WO 98/52152

10

15

20

PCT/GB98/01401

application layer saves programming effort required for the development of an

application and enhances the portability of the application between hardware

platforms that use different transmission protocols.

To properly process a command it receives, an application is required

to know the case of the command __ i.e., an application is required to know whether

the command has any data associated with it or whether it is required to return data.

Because of the way certain standards are promulgated, however, it may not be

possible to know the case of a command without knowing the details of the

underlying transmission protocol. For example, under the T=0 transmission

protocol promulgated under ISO 7816-3, it is explicitly assumed that the IC card

knows the direction of a data transfer. Such information is usually dependent on

the application being executed and the state of the application’s program code.

Therefore, under the T=0 protocol, it is not usually possible for an IC card

operating system to handle all of the low-level details of the transmission layer and

shield the application from such details.

It would advantageous if independence of the transmission and

application layers could be maintained, even when a transmission protocol requires

some intervention by an application.

The foregoing technical problems are addressed by embodiments of

the invention providing technical solutions.

SUBSTITUTE SHEET (RULE 26) Page 01408

Page 01409

WO 98/52152

10

15

20

PCT/GB98/01401

SUMMARY OF THE INVENTION

According to a preferred embodiment of the present invention, there

is provided a method of responding to a command from an interface device by an

integrated circuit card. The integrated circuit card comprises a microprocessor and

a memory coupled to the microprocessor. The method includes the steps of

selecting an expected case for the command representing whether data is to be

transferred between the interface device and the integrated circuit card, determining

whether the expected case is applicable to the command, and processing the

command if the expected case is applicable to the command. An example of an

expected case is one of the four cases defined under ISO 7816-4.

The method in accordance with the preferred embodiment of the

present invention may be used where the command is transmitted from the interface

device to the integrated circuit card under a transmission protocol requiring the

integrated circuit card to have prior information related to the data, if any, to be

transferred. For example, the method of the present invention may be used with the

T=0 protocol defined by ISO 7816-3. The method of the present invention may

also be used when the interface device and the integrated circuit card support a

plurality of transmission protocols.

Preferably, the integrated circuit card comprises an application stored

in the memory, and the selecting and processing steps are performed by the

application. Moreover, before the selecting step, the method of the present

invention preferably further includes the step of determining whether the command

is recognized by the application.

SUBSTITUTE SHEET (RULE 26)
Page 01409

Page 01410

WO 98/52152

10

15

20

PCT/GB98/01401

It is also preferred that the integrated circuit card comprises an

operating system stored in the memory and that the determining step is performed

by a function of the operating system. Before the step of determining whether the

expected case is applicable to the command, the method of the present invention

may also include the step of calling by the application a function of the operating

system with the expected case. The application may then receive a return value

from the function indicative of whether the expected case is applicable to the

command.

Preferably, the memory of the integrated circuit card comprises a

publicly available memory space and a stack. The method of the present invention

may then include the steps of communicating between the operating system and the

application using the publicly available memory space or the stack. In addition, the

application and the operating system may communicate with each other through a

register in the integrated circuit card.

The method of the preferred embodiment of the present invention

may also include the step of determining by the function called by the application

whether data is to be received from the interface device. If data is to be received,

the method may also include the step of receiving such data.

After the application has called the operating system function, the

method of the present invention may also include the step of responding by the

operating system to subsequent commands by the interface device related to the

initial command without interaction between the operating system and the

application. For example, if the T=0 protocol defined under ISO 7816-3 is used,

-5-

SUBSTITUTE SHEET (RULE 26)
Page 01410

Page 01411

WO 98/52152

10

15

20

PCT/GB98/01401

the operating system may respond to GET RESPONSE commands without

interaction with the application, after the application has called the appropriate

operating system function with the expected case of the command.

The method of the preferred embodiment of the present invention

may also include the step of communicating response data by the application to the

operating system if the return value from the called function is positive. The

response data is to be transmitted by the integrated circuit card to the interface

device.

In accordance with another aspect of the present invention, there is

provided an integrated circuit card for use with an interface device. The integrated

circuit card includes a microprocessor, a memory coupled to the microprocessor,

means for selecting an expected case for a command transmitted by the interface

device, where the expected case represents whether data is to be transferred between

the interface device and the integrated circuit card, means for determining whether

the expected case is applicable to the command, and means for processing the

command if the expected case is applicable to the command.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments in accordance with the invention will now be

described, by way of example only, with reference to the accompanying drawings,

in which:

Fig. 1 is a schematic representation of an IC card in accordance with

a preferred embodiment of the present invention;

-7-

SUBSTITUTE SHEET (RULE 26) Page 01411

Page 01412

WO 98/52152 PCT/GB98/01401

Fig. 2 is a perspective view of an IC card and terminal in accordance

with a preferred embodiment of the present invention;

Fig. 3 is a functional block diagram of an IC card in accordance with

a preferred embodiment of the present invention;

5 Fig. 4 is a block diagram illustrating an exemplary code space, data

space, address registers, and control registers for an abstract machine architecture

that may be used in accordance with a preferred embodiment of the present

invention;

Figs. 5 is a diagram illustrating the cases of commands defined by

10 ISO 7816-4;

Fig. 6 is a diagram illustrating the structure of a message under the

T=l protocol defined by ISO 7816-3;

Fig. 7 is a diagram illustrating the chaining function of the T=1

protocol defined by ISO 7816-3;

15 Fig. 8 is a flowchart illustrating the steps for processing a command

received from an interface device by an IC card in accordance with a preferred

embodiment of the present invention;

Fig. 9 is a flowchart illustrating the steps for a routine for checking

the case of a command in accordance with a preferred embodiment of the present

20 invention;

Fig. 10 is a flowchart illustrating the steps for a routine for checking

the case of a command under the T=0 protocol in accordance with a preferred

embodiment of the present invention;

SUBSTITUTE SHEET (RULE 26) Page 01412

Page 01413

10

15

20

WO 98/52152 PCT/GB98/01401

Fig. 11 is a flowchart illustrating the steps for a routine for checking

whether a command is consistent with a case 1 command under the T=0 protocol in

accordance with a preferred embodiment of the present invention;

Fig. 12 is a flowchart illustrating the steps for a routine for checking

whether a command is consistent with a case 2 command under the T=0 protocol in

accordance with a preferred embodiment of the present invention;

Fig. 13 is a flowchart illustrating the steps for a routine for checking

whether a command is consistent with a case 3 command under the T=0 protocol in

accordance with a preferred embodiment of the present invention;

Fig. 14 is a flowchart illustrating the steps for a routine for checking

whether a command is consistent with a case 4 command under the T=0 protocol in

accordance with a preferred embodiment of the present invention;

Fig. 15 is a flowchart illustrating the steps for a routine for checking

the case of a command under the T=1 protocol in accordance with a preferred

embodiment of the present invention;

Fig. 16 is a flowchart illustrating the steps for a routine for

initializing communications information and for processing the GET RESPONSE

command under the T=0 protocol in accordance with a preferred embodiment of the

present invention;

Fig. 17 is a flowchart illustrating the steps for a routine for receiving

data from an interface device under the T=0 protocol in accordance with a preferred

embodiment of the present invention;

Fig. 18 is a diagram illustrating an exemplary communication

-9-

SUBSTITUTE SHEET (RULE 26) Page 01413

Page 01414

W0 98/52 1 52

10

15

20

PCT/GB98/01401

between an interface device and an IC card under the T=0 protocol;

Fig. 19 is a flowchart illustrating the steps for a routine for

transmitting response data and procedure bytes to an interface device in accordance

with a preferred embodiment of the present invention; and

Fig. 20 is a flowchart illustrating the steps for a routine for

initializing communications information and for processing the GET RESPONSE

command under the T=1 protocol in accordance with a preferred embodiment of the

present invention.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 provides a schematic representation of a typical IC card 10

that can be used with the presently claimed invention. The IC card 10 includes an

integrated circuit 12 having one or more electrical contacts 14 connected to the

integrated circuit 12.

Fig. 2 shows an example of a device with which the IC card 10

communicates. As used in this specification and the appended claims, the terms

“interface device” and “terminal” shall be used to generically describe devices with

which an IC card may communicate. A typical terminal 20, as shown in Fig. 2,

includes a card reader 22, a keypad 24, and a display 26. The keypad 24 and the

display 26 allow a user of the IC card 10 to interact with the terminal. The keypad

24 allows the user to select a transaction, to enter a personal identification number

(“PIN”), and to enter transactional information. The display 26 allows the user to

receive informational messages and prompts for data entry. Other types of

-10-

SUBSTITUTE SHEET (RULE 26) Page 01414

Page 01415

10

15

20

WO 98/52152 PCT/GB98/01401

terminals may include IC card—compatible ATM machines and telephones.

Fig. 3 provides a functional block diagram of the integrated circuit

12. At a minimum, the integrated circuit 12 includes a processing unit 100 and a

memory unit 110. Preferably, the integrated circuit 12 also includes control logic

150, a timer 160, security circuitry 170, input/output ports 180, and a co—processor

190. The control logic 150 provides, in conjunction with the processing unit 100,

the control necessary to handle communications between the memory unit 110 and

input/output ports 180. The timer 160 provides a timing reference signal for the

processing unit 100 and the control logic 150. The security circuitry 170 preferably

provides fusible links that connect the input/output ports 180 to internal circuitry for

testing during manufacturing. The fusible links are burned after completion of

testing to limit later access to sensitive circuit areas. The co—processor 190 provides

the ability to perform complex computations in real time, such as those required by

cryptographic algorithms.

The memory unit 110 may include different types of memory, such

as volatile and non-volatile memory and read-only and programmable memory. For

example, as shown in Fig. 3, the memory unit 110 may include read-only memory

(ROM), electrically erasable programmable read-only memory (EEPROM), and

random-access memory (RAM).

The memory unit 110 stores IC card data such as secret

cryptographic keys and a user PIN. The secret cryptographic keys may be any type

of well-known cryptographic keys, such as the private keys of public-key pairs.

Preferably, the secret cryptographic keys are stored in a secure area of ROM or

-11-

SUBSTITUTE SHEET (RULE 26) Page 01415

Page 01416

10

15

20

WO 98/52152 PCT/GB98/01401

EEPROM that is either not accessible or has very limited accessibility from outside

the IC card.

The memory unit 110 also stores the operating system of the IC card.

The operating system loads and executes IC card applications and provides file

management and other basic card services to the IC card applications. Preferably,

the operating system is stored in ROM.

In addition to the basic services provided by the operating system,

the memory unit 110 may also include one or more IC card applications. For

example, if the IC card is to be used as an electronic cash card, an application

called MONDEXTM PURSE (from Mondex International Limited) might be

included on the IC card, which loads an electronic value of a certain currency from

a user’s account in a financial institution onto the IC card. Preferably, the

operating system of the IC card 10 supports multiple applications, such as the

MULTOSTM operating system from Mondex International Limited.

An IC card application may include both program and data files,

which are typically stored in EEPROM. The application program may be written

either in the native programming code of the processing unit 100 or it may be

written in a higher level language that must be translated before it is executed on

the processing unit 100. An example of such a higher level language for use on IC

cards is the MULTOSTM Executable Language (MEL). Advantageously, by using a

higher level language such as MEL, an application program is capable of running

on multiple hardware platforms without any need for re-writing.

Because IC cards typically have limited memory capacity due to the

-12-

SUBSTITUTE SHEET (RULE 25) Page 01416

Page 01417

10

15

20

W0 93/52152 PCT/GB98/01401

size and cost restraints of placing memory on the IC cards, an IC card may also

have primitives stored in ROM, which are subroutines that perform frequently used

functions or procedures, such as mathematical functions. The primitives are usually

written in the native language of the processing unit 100 so that they can be

executed very quickly.

Preferably, the operating system of the IC card 10 imposes a layer of

abstraction between an application and the underlying hardware of the IC card 10.

This abstraction layer permits the application to be hardware independent and to run

on multiple IC cards. From the standpoint of the application, it is executing on an

“abstract machine” defined by the operating system.

Fig. 4 illustrates an exemplary architecture of an operating system

“abstract machine.” The abstract machine contains a memory space for each of the

program code and data of an application, referred to as the code space 200 and the

data space 300, respectively. An exemplary size for each of the code and data

spaces is 64K bytes.

The program code in the code space 200 is stored in non-volatile

memory such as EEPROM and is addressed by the Code Pointer (CP) register 202

which must be at least sixteen (16) bits to address the entire 64K bytes of the code

space.

The data space 300 is divided into three segments: the static segment

302, the dynamic segment 304, and the public segment 306. The static segment

302 contains non-volatile data, which can be stored in EEPROM, while the dynamic

segment 304 and the public segment 306 contain volatile data, which can be stored

-13-

SUBSTITUTE SHEET (RULE 26) Page 01417

Page 01418

10

15

20

WO 98/52152 PCT/GB98/01401

in RAM. As shown in Fig. 4, there may be gaps between the segments, so that not

all of the 64K of data space is used.

The static segment 302 contains the application’s non-volatile data.

Static data includes cardholder data, such as a card user’s name, address, account

number, and PIN. Static data also includes variable transactional data, such as the

electronic value of a purse or the available credit limit of a credit/debit application.

The dynamic segment 306 contains the application’s volatile or

temporary data. Dynamic data includes data which is temporarily used during the

execution of an application such as intermediate values used in calculations or

working variables. For example, a purse application may temporarily store the

value of a transaction in order to reduce the amount of the value in the purse. The

dynamic segment is used in much the same way as a conventional computer

program uses RAM to perform its assigned operations. The dynamic segment

preferably is divided into two parts, the session data portion and the stack data

portion. The size of the session data portion is a constant for each application and

is determined when the application is loaded. The data in the session data portion

retains its value for the duration of a session in which the application is involved.

A typical use for the session data portion is to support the use of a session PIN.

The stack data portion holds variable data which is unique to the particular

transaction being executed. The stack data portion stores data in a last-in-first-out

manner. The stack is initially empty, but expands and contracts during execution of

the application. The data in the dynamic segment is private to an application and

cannot be read by other applications.

-14-

SUBSTITUTE SHEET (RULE 26) Page01418

Page 01419

10

15

W0 98/52152 PCT/GB98/01401

The public segment is used to store commands and response data

passed between an interface device and an application. Applications may also use

the public segment for temporary working storage of data, but any data written into

the public segment may be available to the interface device.

The data space 300 is preferably addressed using seven address

registers: Static Base (SB) 308, Static Top (ST) 310, Public Base (PB) 312, Public

Top (PT) 314, Dynamic Base (DB) 316, Local Base (LB) 318, and Dynamic Top

(DT) 320. Each of these registers is preferably a sixteen-bit register. These

registers define the boundaries of the static, dynamic, and public segments of the

data space 300. Each base register contains the address of the first byte in each

segment, and each top register contains the address of the byte immediately after

the last byte in each segment. The LB register 318 acts as a stack pointer for the

stack data portion of the dynamic segment. The address registers can contain

physical memory addresses but preferably contain offset addresses in order to be

hardware independent.

The abstract machine architecture also contains a Condition Code

Register (CCR) 400, which contains bits that are set or cleared based on the result

of an operating system or primitive instruction call. An exemplary eight-bit CCR is

defined in Table 2.

-15-

SUBSTITUTE SHEET (RULE 26)
Page 01419

Page 01420

10

15

20

PCT/GB98/01401W0 98/52 152

Table 2: Exemplary Code Condition Register

‘
Not defined.

3 Carry (C) This bit indicates a carry or borrow at
the most significant bit. p

This bit is set to 1 when an arithmetic

overflow occurs and cleared to 0 at other
times.

 This bit is set to one to indicate a zero

result and cleared to O to indicate a non-
zero result.

A more complete description of an implementation of an abstract

machine architecture for an IC card operating system is set forth in the U.S. patent

application entitled “Multi-Application IC Card with Delegation Feature” of Everett

et a1., filed April 23, 1998, which is incorporated herein by reference to Annex A

attached hereto.

The low-level communications handler of the operating system may

use the public segment 304 to communicate with an application. Table 3 shows an

exemplary mapping of the communications buffer of the low-level communication

handler onto the public segment. The communication information mapped onto the

public segment in Table 3 is consistent with ISO standards 7816-3 and 7816-4 and

will be better understood in light of the following discussion.

-15-

SUBSTITUTE SHEET (RULE 26)
Page 01420

Page 01421

WO 98/52152 PCT/GB98/01401

Table 3: Public Communications Map

Public Address Use

PB[0] Data field (either command or response)

PT[-17] Protocol Flags, where.

bit 0: P3Valid

bit 1: LcValid

bit 2: LeValid

bit 3: CmdDataRxed

bit 4: Expected_GR

PT[— 16] ProtocolType

PT[— 1 5]

PT[-14] GetResponseSW1

PT[-13] CLA

10 PT[-12] INS

PT[-1 1]

PT[-10]

PT[-9]

PT[-8]

15 PT[-7]

PT[-6]

PT[-5]

PT[-4]

PT[-3] La (lower byte)

20 PT[-2] SW 1

PT[— 1] SW2

U1

GetResponseCLA

P1

P2

P3

Lc (upper byte)

Lc (lower byte)

Le (upper byte)

Le (lower byte)

La (upper byte)

To enable the inter-operability of IC cards, IC cards typically follow

-17..

suasnrurs SHEET (RULE 26) Page 01421

Page 01422

20

W0 98/521 52 PCT/GB98/01401

conventional, industry-wide standards, such as ISO 7816-3 and 7816-4. ISO 7816-3

defines the low-level details of the transmission link between an IC card and an

interface device, such as the transmission protocol. ISO 7816-4 defines the fonnat

of commands exchanged between interface devices and IC cards.

Beginning with the ISO 7816-4 standard, the ISO 7816-4 standard

defines a command having a mandatory header of four (4) bytes and an optional

body of variable length. Table 4 sets forth the definition of the command header

under ISO 7816-4. The CLA class byte of the command header specifies the extent

to which the command and response comply with ISO 7816-4. The INS instruction

byte specifies the command function. For example, ISO 7816-4 defines a

hexadecimal value of “A4” for INS as a SELECT FILE command. The P1 and P2

parameter bytes provide qualifying information for a command. If no qualification

is necessary, then P1 and P2 are set to zero.

Table 4: ISO 7816-4 Command Header

Parameter for the Command 1

Parameter for the Command I

T e comman oy IS conitiona an epens on w et er t ere IS

.18.

SUBSTITUTE SHEET (RULE 25) Page 01422

Page 01423

10

15

W0 98/52152 PCT/GB98/01401

any data associated with the command or expected with the response. For each

case of a command, the structure of the command is illustrated in Figs. 5A to 5D.

In the figures, LC represents the length of the data associated with the command,

and L, represents the maximum length of the data expected to be returned with the

response. LC and Le may be either one, two, or three bytes. When LC and L, are

one byte, the cases are referred to as “short.” In short cases, LC may be a number

between 1 and 255 (zero is not permitted), and L, may be a number between 1 and

256 (zero is interpreted as 256). When Lo and L, are more than one byte, the cases

are referred to as “extended.” In extended cases, LC is coded on three bytes, with

the first byte being zero and the subsequent two bytes being non-zero. Thus, LC

may take on a value from 1 to 65,535. For an extended case 2, L, is also coded on

three bytes with the first byte being zero. For an extended case 4, L, is coded on

only 2 bytes. In both an extended case 2 and an extended case 4, L, may take on a

value from 1 to 65,536 (a zero value representing the number 65,536).

Table 5 shows the decoding of the case of a received command using

the length of the command body (L), the value of the first byte of the command

body (By), and the value of the second and third bytes of the command body (B23).

-19-

SUBSTITUTE SHEET (RULE 26)
Page 01423

Page 01424

W0 98/52152 PCT/GB98/01401

Table 5: Decoding of Command Cases

“’

L25 and B,=0 and B2,3=L-5 4 Extended

15

Turning now to the ISO 7816-3 standard, ISO 7816-3 defines two

transmission protocols, referred to as the “T=O” and “T=1” protocols. The T=0 is

-20-

SUBSTITUTE SHEET (RULE 26) Page 01424

Page 01425

10

20

W0 98/52152 PCT/GB98/01401

an asynchronous, half-duplex, character-oriented protocol, while the T=1 protocol is

an asynchronous, half-duplex, block-oriented protocol.

Under the T=O protocol, an interface device initiates the processing

of a command by transmitting 5 bytes, designated CLA, INS, P1, P2, and P3.

5 CLA, INS, P1, and P2 correspond to the similarly-named command header bytes

defined in ISO 7816-4. P3 is defined as shown in Table 6. In Table 6, B3 refers to

the third byte of the command body.

Table 6: Definition of P3 for T=O Protocol

B

B

3 Extended and Lc2256 Split command data into segments of
length less than 256 and transmit

segments using ENVELOPE command

Le
Ba <Le>

4 Extended and Lc2256 Split command data into segments of
length less than 256 and transmit

segments using ENVELOPE command

Under the T=O protocol, after transmission of the five (5) bytes, the

-21-

SUBSTITUTE SHEET (RULE 25) Page 01425

Page 01426

10

15

20

W0 93/52152 PCT/GB98/01401

interface device waits for a procedure byte from the IC card. The IC card may

respond with three types of procedure bytes: an ACK byte, a NULL byte, or a SW1

byte. An ACK byte permits the subsequent exchange of data to or from the IC

card. A NULL byte resets the waiting time of the interface device. The NULL

byte is used when the IC card needs more time to process a command. A SW1

byte instructs the interface device to wait for an SW2 byte from the IC card.

Together, the SW1 and SW2 bytes provide the interface device with status

information. The particular coding of these procedure bytes is not relevant for the

purposes of this specification.

As shown in Table 6, when the case of a command is an extended

case 2 (with Le greater than 256) or case 4 (either short or extended), L, is either

partially or completely missing from the five-byte header sent from the interface

device to the IC card. In these cases, to receive the appropriate amount of data, the

interface device is required to send one or more subsequent GET RESPONSE

commands with P3 equal to the number of bytes to receive (256 or less).

Fig. 6 shows the structure of messages transmitted between an

interface device and an IC card using the T=1 protocol. The protocol defines a

block having mandatory prologue and epilogue fields and an optional information

field. The prologue field contains three bytes: a node address (NAD) byte, a

protocol control byte (PCB), and a length (LEN) byte. The NAD byte is used to

identify the source and destination of the block. The PCB is used to convey control

information regarding the block. The LEN byte indicates the number of bytes in

the information (INF) field, which may be 0 to 254 bytes. The presence of the INF

-22-

SUBSTITUTE SHEET (RULE 26)
Page 01426

Page 01427

10

15

20

WO 98/52152 PCT/GB98/01401

field is optional. When present, it conveys either application-related or status

information. The epilogue field contains an error detection code (EDC), which may

be either LRC (longitudinal redundancy check) or CRC (cyclical redundancy

check).

As illustrated in Fig. 7, the T=1 protocol supports chaining of blocks.

Chaining refers to the segmentation of data and the transmission of the segmented

data over several blocks. Chaining is used when the data to be transmitted is

greater than 254 bytes, which is the maximum number of bytes supported by the

INF field. Chaining is supported through the PCB, which includes a “More Data

bit” (or M-bit). The M-bit is set when chained data follows in subsequent blocks

and is cleared to indicate the last (or only) block in a chain.

When the T=1 protocol is used, the complete command header and

command body of a command defined under ISO 7816-4 are transmitted in the INF

field of a block. Thus, without knowing anything about the function of a

command, an operating system may determine the case of the command using the

decoding rules in Table 5.

Under the T=O protocol, however, an IC card cannot decode the case

of a command simply from the five-byte header sent from the interface device to

the IC card because the entire command and data may not be transferred in those

initial five bytes. Because of the truncation of information under the T=O protocol,

the same five bytes may be transmitted for different cases. For example, for any

given command, an interface device will transmit exactly the same five CLA, INS,

P1, P2, and P3 bytes for a short case 2 with Lc=256 and an extended case 2 with

-23-

SUBSTITUTE SHEET (RULE 26)
Page 01427

Page 01428

10

15

20

WO 98/52152 PCT/GB98/01401

L,,>256. (In both cases, P3=0.) Moreover, an IC card cannot distinguish between a

case 3 and a case 4 command from the five-byte header sent from an interface

device because LC is not part of that five-byte header.

Indeed, under the T=0 protocol, ISO 7816-3 explicitly assumes that

the IC card and the interface device have information, prior to the transmission of a

command, regarding the direction of data, to distinguish between instructions for

data transfers into and out of the IC card. It is also implicitly assumed that the IC

card has information regarding the number of bytes of data to be transferred.

Such information is, of course, application dependent. The operating

system cannot itself know this information. Thus, to properly process a command

under the T=0 protocol, the intervention of the currently selected application is

necessary. Such intervention typically requires the application to delve into the

details of the transmission protocol. Such intervention is undesirable, however,

because it destroys the independence of the transmission and application layers.

Such layer independence is advantageous because it saves programming effort on

the part of an application developer and does not require an application to be

updated each time a protocol is changed or a new protocol is promulgated.

According to preferred embodiments of the present invention,

however, an application need not delve into the details of the transmission protocol

to determine the case of a command. Instead, the operating system passes to the

application the CLA, INS, P1, and P2 bytes when they are received, and the

application merely checks these bytes to determine whether the command is one

that the application recognizes and supports. The application then calls an operating

-24-

SUBSTITUTE SHEET (RULE 26)
Page 01428

Page 01429

10

15

20

WO 98/52152 PCT/GB98/01401

system function or primitive, referred to as Check_Case, with the expected case of

the command.

It is expected that because most applications on IC cards are written

in conjunction with corresponding applications on interface devices, the applications

will know which case of a command to expect. For example, in an electronic purse

application, the application would probably know that after it has been selected, it

will be required to transfer the value in the purse. Otherwise, if an application does

not expect any particular case for a command, an application may guess a case. In

either instance, the application calls the Check_Case function or primitive, which

determines whether the command is consistent with the case the application has

passed to it. The Check_Case function or primitive returns a “true” or “false” value

to the application, depending on its determination.

Specifically, with regard to the abstract machine architecture

discussed above, an application may PUSH the expected case onto the top of the

stack data portion of the dynamic segment, and CALL the Check_Case function or

primitive. The Check_Case function or primitive may return an answer through the

Z bit of the CCR register.

Advantageously, the use of a Check_Case function or primitive

permits layer independence between the transmission protocol layer and the

application layer. By using the Check_Case command, the application is not

required to know which protocol is being used by the IC card or the details of that

protocol. Therefore, as new protocols are defined, the application need not be re-

-25..

SUBSTITUTE SHEET (RULE 26)
Page 01429

Page 01430

10

15

20

WO 98/52152 PCT/GB98/01401

written to fimction with those protocols. In addition, the operating system is not

required to know the context in which the command is sent to perform the

Check_Case function or primitive. The operating system is only required to

determine whether the expected case is consistent with the format of the command

received. Thus, the Check_Case function or primitive accomplishes true

independence of transmission and application layers even when the transmission

protocol does not explicitly support such independence.

Fig. 8 is an exemplary flowchart illustrating the steps for processing

a command received under the transmission protocol T=O and using the Check_Case

function or primitive. For purposes of illustration, reference will be made to the

communication exchange shown in Fig. 18, which shows an exchange involving an

INTERNAL AUTHENTICATE command. An INTERNAL AUTHENTICATE

command sends challenge data to an IC card, which receives the data, encrypts it

using a secret key, and returns the encrypted data to the interface device. For the

purposes of this illustration, it is assumed that an application is involved in

processing the INTERNAL AUTHENTICATE command.

As shown in Fig. 18, an interface device (IFD) initiates the

communication exchange by sending the command header 1810, consisting of the

five hexadecimal bytes 00, 88, O0, O0, and 03. These bytes correspond to the CLA,

INS, P1, P2, and P3 bytes defined by the T=O protocol. In this case the value of

P3 signifies that L,,=3 __ i.e., there are three bytes of challenge data that the

interface device desires to transmit to the IC card.

-26-

SUBSTITUTE SHEET (RULE 28)
Page 01430

Page 01431

10

15

20

WO 98/52152 PCT/GB98/01401

With reference to Fig. 8, the low-level communications handler of

the operating system of the IC card receives the T=0 command header from the

interface device (IFD) in step 801. In steps 803 and 805, the communications

handler stores these bytes in a communications buffer, called c0mm_bufler, and

calls the subroutine Receive_C0mmand_T0.

The Receive_Command_T0 subroutine initializes communications

variables and processes GET RESPONSE commands under the T=0 protocol. With

reference to Fig. 16, the Receive_C0mmand_T0 subroutine first checks in step 1610

the variable public.protocol__/lags. expecting_gr to determine whether 21 GET

RESPONSE command is expected by the IC card. If the

public.protocol_flags. expecting_gr variable is “false,” which will be the case when a

command header is first received, the Receive_C0mmand__T0 subroutine initializes

the public segment according to the values shown in step 1630. The variables

initialized in step 1630 correspond to those shown in Table 3. Once the variables

in step 1630 are initialized, the Receive_Command_T0 subroutine exits.

With reference to Fig. 8, once the Receive_C0mmand_T0 subroutine

has initialized the public segment, the currently selected application is notified of

the received command header in step 807 by the use of any conventional means,

such as by the use of an interrupt or by setting a bit in the public segment or a

control register that the application can poll.

In step 809, the application checks the bytes public. cla, public. ins,

public.p1, and public.p2 in the public segment. Although other protocol-specific

-27-

SUBSTITUTE SHEET (RULE 26)
Page01431

Page 01432

10

15

20

W0 98/52152 PCT/GB98/01 401

information is available in the public segment, such as public.p3, an application

need not _ and, indeed, should not _._._ check this information in order to maintain

layer independence.

In step 809, if the application recognizes the command defined by

the bytes public. cla, public. ins, public.p1, and public.p2, the application determines

the expected case of the command. Using the INTERNAL AUTHENTICATE

command as an example, the application would expect a case 4, since it expects to

receive and send data. The application pushes this expected case onto the stack

portion of the dynamic segment, and in step 813, calls Check_Case.

In step 815, Check_Case checks the consistency of the command

header received from the interface device against the expected case provided by the

application. Depending on whether the expected case is consistent with the

command header, Check_Case sets the status variable check_case__response.status

equal to “success” or “failed.” In step 817, if the expected case is 3 or 4 (command

data is expected to be received), Check_Case calls the Cmd_Data_Rxed subroutine,

which handles receiving the command data.

With reference to Fig. 17, the Cmd_Data_Rxed subroutine checks in

step 1710 whether the flag public.protocol_/lags. cmd_data_rxd is “false.” If it is

not “false,” indicating data has already been received, the subroutine exits. If it is

“false,” in step 1720, the subroutine transmits an ACK byte to the interface device,

which signals the interface device to send command data. In steps 1730 and 1740,

the subroutine receives the command data from the interface device and sets the

-23-

SUBSTITUTE SHEET (RULE 26)
Page 01432

Page 01433

10

15

20

W0 98/52152 PCT/GB98/01401

command data in the data field of the public segment, pubIic.data_fz‘eId. The

Cmd_Data_Rxed subroutine then sets the flag public.protocol_flags. cmd_data_rxd

to “true,” to indicate that the command data has been received.

Returning to the example of Fig. 18, the Cmd_Data_Rxed subroutine

transmits the ACK byte 1820, which consists of the INS byte of the command

header, hexadecimal value 88. Three bytes of data 1830 are then transmitted by the

interface device and received by the IC card, for storage in the public segment by

the Cmd_Data_Rxed subroutine.

Returning once more to Fig. 8, once the Cmd_Data_Rxed subroutine

is finished receiving data and returns control to the operating system, the operating

system of the IC card in step 821 sets or clears the Z-bit of the CCR register based

on the value of check_case_response.status. Control is then returned to the

application, which checks the Z-bit of the CCR register to determine whether

Check_Case successfully verified its expected case. In step 823, if Check_Case

successfully verified the expected case of the command, the command is processed.

Otherwise, an error routine is called.

In step 825, if the case of the command is either 2 or 4 (data is to be

sent to the interface device), the application sets the data and the length of the data

in the public segment, in pubIic.data_fieId and pubIic.Ia, respectively. The

application then returns control to the operating system by a system call.

In step 827, the operating system calls the Transmit_Resp0nse

subroutine, which transmits the appropriate procedure bytes to the interface device,

-29-

SUBSTITUTE SHEET (RULE 26) Page 01433

Page 01434

WO 98/52152 PCT/GB98/01401

depending on the status of the protocol flags set in the public segment. The

Transmit_Response subroutine also sets the flag public.protocol__flags. expecting_gr

to “true” under appropriate circumstances. For example, in a case 4 command, as

in the INTERNAL AUTHENTICATE example above, a GET RESPONSE

5 command is expected from the interface device. Thus, the Transmit_Response

subroutine would set the flag publiaprotocol_/lags. expectingJgr to “true.”

Fig. 19 is a flowchart illustrating the steps of the Trarzsmz't_Response

subroutine. In step 1910, the subroutine checks whether public. la is equal to zero,

indicating that there is no data to be transmitted from the IC card to the interface

10 device. If public. la is zero, in step 1920, the responsejpdu is set simply to the

procedure bytes public.sw1 and public.sw2.

If public. la is greater than zero, in step 1930, it is checked whether

public. la is greater than the size of the public segment less the size of the

communications parameters stored in the public segment. If this is the case, then

15 public. la is greater than the data field size. Accordingly, in step 1940, the response

is set to hexadecimal value “6F00,” indicating a fatal error.

If public. la is within the bounds of the size of the data field in the

public segment, in step 1950, it is checked whether public.protocol_flags.le_valid is

“false,” indicating that the expected length of the response data is not yet known. It

20 is also checked whether public. le is greater than public. la, indicating that the

interface device requested more data than is actually available from the currently

selected application. If either of these conditions is met, in step 1960, the first

-30-

SUBSTITUTE SHEET (RULE 26) page 01434,

Page 01435

10

15

20

WO 98/52152 PCT/GB98/01401

procedure byte of the response is set to public. get_resp0nse.sw1, indicating that the

IC card has data available for the interface device. The second procedure byte is

set to the length of the data available, either public.Ia if public.la is less than 256

bytes or hexadecimal “00” if public. la is equal to or greater than 256 bytes. In the

case that public. la is equal to or greater than 256 bytes, more than one data

transmission from the IC card to the interface device will be needed. In step 1970,

pubIic.protoc0I_flags.expecting_gr is set to “true,” since it is expected the interface

device will send a GET RESPONSE command to the IC card in response to the

procedure bytes indicating that data is available.

If the expected length of the response data is known and is less than

the actual length of the response data, in step 1980, it is checked whether public. Ie

is greater than zero. If public.Ie is greater than zero, in step 1990, the variable

data, which is initialized to null by the operating system, is set to the data in the

data field of the public segment. In step 1995, the response is set to: (1) an ACK

procedure byte (public. ins), indicating that data may follow; (2) the response data

(either null or the data in the data field of the public segment); and (3) the

procedure bytes public. sw1 and pubIz'c.sw2 (which will normally indicate the

completion of the command).

With reference to the example of Fig. 18, the Transmz't_Response

subroutine transmits the procedure bytes SW1 and SW2 with hexadecimal values of

“6l” and “04,” respectively. The hexadecimal value “61” for SW1 informs the

interface device that the IC card has data to transfer, and the hexadecimal value

-31-

SUBSTITUTE SHEET (RULE 26) Page01435

Page 01436

10

15

20

W0 98/52152 PCT/GB98/01401

“04” for SW2 informs the interface device of the number of bytes to be transferred

(in this case, four). These bytes are transferred in step 1960 of Fig. 19 because it is

not known what the expected length of the data is (since L, is not transmitted with

the T=0 header). In step 1970 of Fig. 19, public.protocoljlags.expecting_gr is set

to “true.”

With reference to Fig. 18, when the interface device receives the

SW1 and SW2 procedure bytes 1840 from the IC card, the interface device sends a

GET RESPONSE command 1850 with LC (P3) equal to the number of bytes to be

transferred (in this case, four).

Returning to Fig. 8, the low-level communications handler once again

receives a T=0 command header in step 801. Again, in steps 803 and 805, the

communications handler stores the header in the comm_bujj’22r and calls the

Receive_Command_T0 subroutine.

Referring once more to Fig. 16, the Receive_Command_T0 subroutine

again checks the status of the flag public.protocol_flag. expecting_gr. Since

Transmit__Response has set the flag to “true,” Receive_Command_T0 proceeds to

step 1620. In step 1620, the Receive_Command_T0 subroutine first determines if

P3 is equal to :r.ero. If it is, then public.le is set to 256. (Since GET RESPONSE

is defined as a case 2 command by ISO 7816-4, then P3=Le as set forth in Table 6.

Moreover, if Le=0, 256 bytes of data are expected.) The Receive_Command_T0

then processes the GET RESPONSE command, which involves transmitting the

data in the data field of the public segment, public. data__field, followed by the

-32-

SUBSTITUTE SHEET (RULE 26) Page 01436

Page 01437

10

15

20

W0 98/52152 PCT/GB98/01401

appropriate procedure bytes.

With reference to Fig. 18, Receive_Command_T0 transmits response

1860, which consists of an ACK byte (set to the INS of the GET RESPONSE

command), the data to be transferred to the interface device, and procedure bytes

SW1 and SW2 (set to Hex “9000,” indicating the completion of the command).

The processing of a command received under the T=l protocol is

similar to the processing shown in Fig. 8 with regard to the T=0 protocol. It is

noted that Check_Case is used for processing the command, even though under the

T=l protocol the operating system may determine the case of a command without

any intervention by an application. Nonetheless, to maintain a consistent interface

and layer independence, all protocols must be supported by Check_Case.

Under the T=l protocol, when the low-level communications handler

of the operating system receives a T=l block, the low-level communications handler

extracts the information contained in the INF field using the control information in

the PCB byte. The low-level communications handler also checks the error

detection code (EDC) to ensure that a communications error has not occurred. If

the PCB indicates that chained blocks follow, the low-level communications handler

waits for the chained blocks. As it receives the blocks, the low-level

communications handler chains the data in the blocks. After the last block is

received, the low-level communications handler calls the Receive__Command_T1

subroutine, which is the T=l counterpart of the Receive_Command_T0 subroutine.

Fig. 20 is a flowchart illustrating the steps for the

-33-

SUBSTITUTE SHEET (RULE 26) Page01437

Page 01438

10

15

20

WO 98/52152 PCT/GB98/01401

Receive_Command_T1 subroutine. In step 2010, the subroutine checks whether

publz'c.pr0tocol_flags.expecting_gr is “true,” indicating the operating system is

expecting a GET RESPONSE command from the interface device. If the flag is set

to “true” and the command is a GET RESPONSE command, in step 2020, the GET

RESPONSE command is processed. If the publiaprotocol_flags. expecting_gr is

“false,” in step 2030, various communications variables are initialized. In step

2040, the communications variables public.protocol_flags. le_valz'd,

publ1'c.pr0tocol_flags.lc_valid, public.protocol__flags. cmd_data_rxd, public. le, and

public. 1c are set according to body of the command received by the low-level

communications handler and stored in comm_bufi‘?:r.TI_body, using the decoding

rules set forth in Table 5.

When the Receive_Command_T1 has completed its processing, the

processing of the received command proceeds in the same way as described with

regard to Fig. 8 for a T=0 command after step 805.

Figs. 9 to 15 are flowcharts setting forth exemplary, detailed steps of

the Check_Case fimction or primitive. In Fig. 9, steps 910 and 930, Check_Case

checks if the protocol type is T=0 or T=1. If the protocol type is one of these

protocols, the appropriate subroutine, Check_Case_T0 or Check_Case_T1, is called

in either of steps 920 and 940. If the protocol type is unrecognized by

Check_Case, then in step 950, check_case_response.status is set to “failed.”

Fig. 10 illustrates an exemplary embodiment of the Check_Case_T0

subroutine. In step 1010, a default value of “success” is assigned to

-34..

SUBSTITUTE SHEET (RULE 26) Page 01438

Page 01439

WO 98/52152 PCT/GB98/01401

check_case_response.status. In step 1020, Check_Case_T0 checks whether the flags

public.pr0t0coI_flags.p3_valid, public.pr0t0c0l_flags.Ic_vaIid, and

public.pr0tocol_flags.le__valid are in the initialized states set by

Receive_Command__T0. If they are not,‘ check_case_response.status is set to

5 “failed.” If the flags contain proper values, in steps 1030 to 1060, Check_Case_T0

checks whether the application expects case 1, 2, 3, or 4. In step 1070, if the

application has passed an expected case that is not 1 to 4,

check_case_response.status is set to “failed.” In the last step, step 1080, if the

subroutine has been successful, public.protocol_flagS.p3_vaIid is set to “false”

10 (indicating that Check_Case has checked the command header) and

public.protocol_flags.lc_valid is set to “true” (since, Check_Case will set the correct

public. lc).

Fig. 11 is a flowchart illustrating the steps for the case 1 logic of the

Check_Case_T0 subroutine. In step 1110, if the T=0 protocol byte P3 is valid and

15 greater than zero, then the command is inconsistent with case 1 (see Table 6).

Thus, check_case_response.status is set to “failed.” In steps 1120 and 1130, if

either of the LC or L, bytes are valid and greater than zero, then the command

header is inconsistent with case 1 (which requires no command or response data).

Thus, check_case_response.status is set to “failed.” Otherwise, public. 1c and

20 public.le are set to zero and the public.protocoljIags.le_valid is set to “true.” (The

flag public.protocoljIags.lc_valid is set by default in step 1080 of Fig. 10.)

Fig. 12 is a flowchart illustrating the steps for the case 2 logic of the

-35-

SUBSTITUTE SHEET (RULE 26) Page 01439

Page 01440

10

15

20

W0 98/52152 PCT/GB98/01401

Check_Case_T0 subroutine. In step 1210, if LC is valid and greater than zero,

Check_Case fails (because case 2 does not expect command data). In step 1220, if

L, is valid and equal to zero, Check_Case fails (because case 2 expects response

data). In step 1230, public.lc is set to zero (indicating no command data is

present). In steps 1240 and 1250, if P3 is valid and greater than zero, the flag

pubIz'c.pr0tocol_fIags.le_valid is set to “true” and public. le is set to pubIic.p3 (see

Table 6). If P3=0, the expected length of the response data is not known (because

P3=0 is consistent with an expected data length of equal to or greater than 256

bytes). Thus, public. le__valid is not set to “true” (it remains “false”). The state of

the public. le_valid variable is used in the Transmit_Resp0nse subroutine to

determine the proper procedural bytes to send (see step 1950 of Fig. 19).

Fig. 13 is a flowchart illustrating the steps for the case 3 logic of the

Check_Case_T0 subroutine. In step 1310, if P3 is valid and greater than zero

(which is required for case 3), public. 1c is set to public.p3 (see Table 6).

Otherwise, in step 1320, other conditions inconsistent with case 3 are checked. In

step 1330, the flag publz'c.pr0tocoI__flags.le_valid is set to “true” and public.le is set

to zero (because no response data is to be sent for case 3). In step 1340, the

Cmd_Data_Rxed subroutine, previously described with reference to Figs. 8 and 17,

is called, to receive the command data from the interface device.

Fig. 14 is a flowchart illustrating the steps for the case 4 logic of the

Check_Case_T0 subroutine. In step 1410, if P3 is valid and greater than zero

(which is required for case 4), public. 1c is set to pubIz'c.p3 (see Table 6).

-35-

SUBSTITUTE SHEET (RULE 26) Page01440

Page 01441

W0 98/52152

10

15

20

PCT/GB98/01401

Otherwise, in step 1420, other conditions inconsistent with case 4 are checked. In

step 1430, the Cmd_Data_Rxed subroutine, previously described with reference to

Figs. 8 and 17, is called, to receive command data from the interface device.

Fig. 15 is a flowchart illustrating the steps for the Check_Case_T1

subroutine. It is noted again that, under the T=1 protocol, the operating system

does not require the intervention of an application to determine the case of a

command. Nonetheless, to maintain a consistent interface and layer independence,

all protocols must be supported by Check_Case.

In step 1510, a default value of “success” is assigned to

check_case_resp0nse.status. In steps 1520, 1540, 1560, and 1580, Check_Case_TI

determines whether the expected case is 1, 2, 3, or 4, respectively. If the expected

case is not one of these cases, in step 1595, a value of “failed” is assigned to

check_case__resporzse.status. In each of steps 1530, 1550, 1570, and 1590,

Check_Case__TI checks for conditions that are inconsistent with the cases 1, 2, 3,

and 4, respectively, using the communications variables set by the

Receive_C0mmand_TI subroutine. If inconsistent conditions are found, the value of

“failed” is assigned to check_case_response.status. Otherwise, Check_Case_TJ

exits (with the default value of “success” assigned to check_case_resp0nse.status).

Although the present invention has been described with reference to

certain preferred embodiments, various modifications, alterations, and substitutions

will be known or obvious to those skilled in the art without departing from the

spirit and scope of the invention, as defined by the appended claims.

-37..

SUBSTITUTE SHEET (RULE 25) Page 01441

Page 01442

10

W0 93/52152 PCT/GB98/01401

The scope of the present disclosure includes any novel feature or

combination of features disclosed therein either explicitly or implicitly or any

generalisation thereof irrespective of whether or not it relates to the claimed

invention or mitigates any or all of the problems addressed by the present invention.

The application hereby gives notice that new claims may be formulated to such

features during the prosecution of this application or of any such further application

derived therefrom. In particular, with reference to the appended claims, features

from dependant claims may be combined with those of the independent claims in

any appropriate manner and not merely in the specific combinations enumerated in

the claims.

-33-

SUBSTITUTE SHEET (RULE 26) Page 01442

Page 01443

WO 98/52152 PCT/GB98/01401

ANNEX H TOTHEE}§S{RiFTl0i*i

ANNEX A

MULTI-APPLICATION IC CARD VVITH DELEGATION FEATURE

-3 9-

SUBSTITUTE SHEET (RULE 26) page 01443

Page 01444

WO 98/52152

5

10

15

20

PCT/GB98/01401

Mill 9 TOTIEDESCRIMII

BACKGROUND OF INVENTION

Integrated circuit (“IC”) cards are becoming increasingly used for

many different purposes in the world today. An IC card (also called a smart card)

typically is the size of a conventional credit card which contains a computer chip

including a microprocessor, read-only-memory (ROM), electrically erasable

programmable read-only-memory (EEPROM), a random access memory (RAM), an

Input/Output (I/O) mechanism and other circuitry to support the microprocessor in

its operations. An IC card may contain a single application or may contain multiple

independent applications in its memory. MULTOSTM is a multiple application

operating system which runs on IC cards, among other platforms, and allows

multiple applications to be executed on the card itself. The multiple application

operating system present on the IC card allows a card user to run many programs

stored in the card (for example, credit/debit, electronic money/purse and/or loyalty

applications) irrespective of the type of terminal (i.e., ATM, telephone and/or POS)

in which the card is inserted for use.

A conventional single application IC card, such as a telephone card

or an electronic cash card, is loaded with a single application card and only

executes that one application when inserted into a terminal. For example, a

telephone card could only be used to charge a telephone call and could not be used

as a credit/debit card. If a card user desires a variety of application functions to be

performed by single application IC cards issued to him or her, such as both an

electronic purse and a credit/debit function, the card user would be required to carry

-40-

SUBSTITUTE SHEET (RULE 26)

Page 01444

Page 01445

WO 98/52152 PCT/GB98/01401

ANNEX H TOTHEDESCRIPIIOH

multiple physical cards on his or her person, which would be quite cumbersome and

inconvenient. If an application developer or card user desired two different

applications to interact or exchange data with each other, such as a purse

application interacting with a frequent flyer loyalty application, the card user would

5 be forced to swap multiple cards in and out of the card-receiving terminal during

the transaction, making the transaction difficult, lengthy and inconvenient.

Therefore, it is beneficial to store multiple applications on the same

IC card. For example, a card user may have both a purse application and a

credit/debit application on the same card so that the user could select which type of

10 payment (by electronic cash or credit card) to use to make a purchase. Multiple

applications could be provided to an IC card if sufficient memory exists and an

operating system capable of supporting multiple applications is present on the card.

The increased flexibility and power of storing multiple applications

on a single card create new challenges to be overcome concerning the integrity and

15 security of the information (including application code and associated data)

exchanged between the individual card and the application provider as well as

within the entire system when communicating information between applications.

For instance, the existence of multiple applications on the same card

allows for the exchange of data between two applications, while one of the

20 applications is being executed. As stated above, a frequent flyer loyalty program

may need to be accessed during the execution of an electronic purse application. If

data is passed between applications in an insecure manner, it may be possible for a

third party monitoring the transaction to determine the contents of the transferred

-41-

SUBSTITUTE SHEET (RULE 25)

Page 01445

Page 01446

WO 98/52152

10

15

20

PCT/GB98/01401

 Fl TllTH?“5€(lllP?l0ll
data or even other private data associated with one or both of the applications.

Thus, it would be beneficial to provide an application architecture and memory

organization which protects an application’s data from being discovered by a third

party when it is exchanged with other applications present on the IC card.

Accordingly, it is an object of the invention to provide an application

architecture and memory organization which provides for a secure data interaction

between applications and allows multiple applications to be accessed while

performing a desired task or fimction.

SUMMARY OF THE INVENTION

The present invention provides for a multiple application architecture

for an IC card called an application abstract machine (AAM) and a method for

implementing that architecture. The processing of multiple applications is

accomplished by generating for at least one application (the “first application”) a

data memory space including at least two segments, a volatile memory segment and

a non—volatile memory segment, commencing the execution of the first

application’s instructions; delegating or switching execution from the first

application to the delegated application and in so doing, saving any data generated

by the first application in the logical data memory space associated with the first

application; executing the second application’s instructions; retrieving the saved

data and completing with this data the execution of the first application's

instructions.

-42-

SUBSTITUTE SHEET (RULE 26)

Page 01446

Page 01447

WO 98/52152 PCT/GB98/01401

ANNEX H TOTHEDESCRIPIION
Additional delegation commands can be issued by the secon

application or other subsequent applications. The command delegated is interpreted

by a delegated application in the same manner as a selection command being issued

directly by a terminal and therefore each application performs the security functions

5 at the same level as if a terminal is issuing the command.

The volatile memory segment can further be separated into public

(“Public”) and dynamic (“Dynamic”) portions. Data can be exchanged between a

plurality of applications and/or a terminal when stored in the Public region of the

data memory. The Dynamic memory region can be used solely as temporary work

10 space for the specific application being executed.

BRIEF DESCRIPTION OF THE DRAWINGS

15 Further objects, features and advantages of the invention will become

apparent from the following detailed description taken in conjunction with the

accompanying figures showing illustrative embodiments of the invention, in which

Fig. 1 is block diagram illustrating the data memory space segment

and associated registers for an IC card application using the AAM organization;

20 Fig. 2 is a block diagram illustrating the code memory and the data

memory spaces for an IC card application using the AAM architecture;

Fig. 3 is a flow diagram illustrating the steps of performing a request

for a delegation function by one application to another;

Fig. 4 is a flow diagram illustrating the steps of performing a return

-43-

SUBSTITUTE SHEET (RULE 26) Page 01447

Page 01448

WO 98/52152 PCT/GB98/01401

lllllill 9 TO THE DESCRIPTION
delegation control function for a delegate application to a delegator application;

Fig. 5 is a flow diagram illustrating the steps of performing an

inquire delegator ID request of a delegation function;

Fig. 6 is a block diagram of an IC card chip which can be used as a

5 platform in accordance with the invention; and

Figures 7A, 7B and 7C illustrate multiple delegation calls made

between three applications.

Throughout the figures, the same reference numerals and characters,

unless otherwise stated, are used to denote like features, elements, components or

10 portions of the illustrated embodiments. Moreover, while the subject invention will

now be described in detail with reference to the figures, it is done so in connection

with the illustrative embodiments. It is intended that changes and modifications can

be made to the described embodiments without departing from the true scope and

spirit of the subject invention as defined by the appended claims.

15

RULE 26)

SUBSTITUTE SHEET (Page 01448

Page 01449

WO 98/52152 PCT/GB98/01401

ANNEX H lOIHlDlS(R|PI|0N

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides for a method and apparatus for

5 processing multiple application programs with associated data stored on an IC card

which can be accessed and executed. An application stored on the card can be

selected by a terminal, or other interface device, or another application. Each

application program which is stored on the IC card when executed is allocated a

memory space organized by the program’s software code (instructions which are

10 executed by a processor located on the IC card) and the associated data which the

application stores and uses during execution of the program.

For example, a multi-application card may store a purse application,

or an electronic money application, and a specific loyalty application such as a

frequent flyer awards application. Each application has software code and

15 associated data to support the execution of that software code. Each application is

allocated a memory space when executed. In this example, there is interaction

between the two applications stored on the card. For each dollar electronically

spent to make a purchase, the user may be entitled to one frequent flyer mile which

is stored and processed by the frequent flyer program. The purse application need

20 not be aware of the specific loyalty program stored on the card, but instead may

contain an instruction to communicate with any loyalty program stored on the card.

The loyalty program will require input data representative of the amount of a

particular electronic value so that it can update its own stored data of current

frequent flyer miles for the user of the card.

-45-

SUBSTITUTE SHEET (RULE 26) Page 01449

Page 01450

W0 98/52 152 PCT/GB98/0 1401

ANNEX 6 TO THE DESCRIPTION
When two applications need to communicate uring the same

transaction, a system architecture is required to process both applications in an

efficient and secure manner. One approach could be a windows type model where

both applications could be running at the same time. Presently, however, IC card

5 platforms are not powerful enough to simultaneously operate multiple programs

efficiently. Also, transferred data may be exposed to unwanted third party access.

The solution to this problem, provided by the current invention, which is described

in greater detail below, is to selectively interrupt the execution of applications in a

secure manner. This allows the integrity of the applications’ data to be maintained

10 and allows the best utilization of the available memory space in the IC card.

An efficient architecture for processing multi applications in an IC

card is termed an Application Abstract Machine (AAM) architecture and is

described herein. The AAM Architecture applies to any platform independent of its

hardware and enables developers to write applications to store on the IC cards

15 which are portable across many different types of platforms (e.g., IC cards built by

different manufacturers with different processor configurations) without the need for

knowledge about the specific hardware of the platform.

An application abstract machine (AAM), a term for the memory

allocation and organization for the data stored and used by each application, is

20 created for each application stored on the IC card which is executed by the

processor on the card. In order to ensure data integrity and security when data is

transferred between applications which are executed on the IC card, only one

application on the IC card is allowed to be executed at a time. Each application has

-46-

SUBSTITUTE SHEET (RULE 26) Page 01450

Page 01451

W0 98/521 52 PCT/GB98/01401

Allliiii H TOTHEEESERIPTIOH
a data memory space which is virtually allocated and mapped onto the physical

memory addresses available in the IC card memories. Data is then passed between

two or more applications within a specified memory location and in a manner

consistent with transferring data to an external terminal or device with which the IC

5 card is securely interacting. At a general level, each AAM space created for each

application being executed includes two separate address spaces, one for the

program code itself and one for the program data which is stored and/or used by the

application. The program data address space is effectively divided into three

segments: a Static segment, a Dynamic segment and a Public segment which are

10 described in more detail in conjunction with Figure 1. As stated above, the Static,

Dynamic and Public segments are logically mapped to the physical memory; they

are virtual memory segments as opposed to physical memory segments. The AAM

data address space is preferably addressed and processed using seven different

address registers and two control registers.

15 Figure 1 shows an illustrative diagram of a logical data space

allocation 101 created for an application used in conjunction with the present

invention. The AAM data portion 101 includes a Static data space 103, a Public

data space 105 and a Dynamic data space 107. Also shown are a series of address

registers: the Static base address register 109, the Static top address register 111,

20 the Public base address register 113, the Public top address register 115, the

Dynamic base address register 117, the Dynamic top address register 121 and local

base address register 119 which serves as a local stack frame pointer in the

Dynamic data space when the application is being executed. The address registers

-47-

SUBSTITUTE SHEET (RULE 26) Page 01451

Page 01452

WO 98/52152 PCT/GB98/01401

 ANNEX F9 TO THE 5-ESCIPTION
can contain physical memory addresses but preferably contain 0 set a - e

the various data address spaces in order to be hardware independent. An example

of the overall address space is 64K bytes, although the size varies with the

applicable platform and the available memory size. The registers can also be

5 considered pointers or can be any other conventional addressing mechanism.

Within the allocated AAM data space 101, the Static portion of the

memory is non-volatile which is not erased after power is removed from the IC

card (such as EEPROM), the Dynamic space is volatile (such as RAM) which may

be erased after power is removed from the card and the Public space is also volatile

10 (such as RAM). An IC card can receive power from a terminal after it is interfaced

into the terminal. Although an IC card may contain a battery to maintain some

power for memory and circuitry, volatile memory will typically be erased after the

IC card is removed from its power source.

The defined AAM data space has bytes in each segment which are

15 contiguous, so that applications can perform pointer and offset arithmetic. For

example, if the segment addresses “1515” and “1516,” or any other pair of

sequential numbers, are both valid and are present within the same segment, then

they address adjacent bytes. This allows offset values stored in registers to

determine the location of a desired memory address. The segment address of the

20 first byte of the Static segment is zero, so that the segment address of a given

location within the Static region is equal to its offset.

Pointers to other specific regions of the Static data area can be stored

in the Static data because the Static region is non-volatile. For example, if the card

-48..

SUBSTITUTE SHEET (RULE 26) Page 01452

Page 01453

WO 98/52152 PCT/GB98/01401

.:ll5NE}l H T0lh'E§ESCRiPTi0ll
user’s name is stored in the Static memory of a credit/debit application, the

application will know the card user’s name will always be stored in the 5"‘ memory

location above the starting point for the Static portion of memory. The location can

be noted as SB[5] or the 5"‘ byte above the Static Bottom. Since the Static memory

5 is non-volatile, it will not be erased after each transaction and the application will

always know of its location relative to the Static segments’ address registers.

On the other hand, the segment address of any location in the

Dynamic or Public segments is not always equal to a particular offset from the

beginning of the respective segment because the contents of those segments change

10 for each operation. The fourth location in the Dynamic segment will be different

for each operation performed by the application. The address of a memory location

of Dynamic or Public segment is fixed preferably only for the duration of one

command-response pair operation. Because segment addresses in Dynamic or

Public are not fixed, MULTOS Executable Language (MEL)TM instructions (or any

15 other program instructions) cannot refer to data using only segment addresses.

Instead, a tagged address preferably is used to identify data which is to be retrieved,

manipulated, transferred and/or stored with the IC card system.

A tagged address is a nineteen bit value consisting of a three bit tag

(address register number) and a sixteen bit offset. Each of the seven address

20 registers for the AAM data space contain a segment physical address. For instance,

the address registers SB 109 and ST 111 point to the boundaries of the Static, the

address registers PB 113 and PT 115 point to the boundaries of the Public and the

address registers DB 117 and DT 121 point to the boundaries of the Dynamic. For

-49..

SUBSTITUTE SHEET (RULE 26) Page 01453

Page 01454

WO 98/52152

10

15

20

PCT/GB98/01401

 Iililliil ti TOTHE 9§S(RlPTl0H
each segment, the top register points to the byte immediately after the last valid

byte. For example, the last valid byte of the Static is ST[-1]. Register LB

fimctions as a stack frame pointer. It points to a location in the Dynamic segment

to indicate a specific byte of local data for the currently executing application.

Referring to Figure 1, the allocated Static segment 103 contains the

application's non-volatile data. Static data includes data which is associated with

each application for every transaction such as the card user’s name, account

number, PIN value and address. Static data also includes variable data which is

stored for use in future transactions using the application. For example, in a purse

transaction, the electronic value data would be read from the Static segment and

later saved in the Static segment at the end of the transaction. Additionally,

transaction information data or available credit limits in the case of a credit/debit

application would be stored in Static data.

The Static data is addressed using register SB (Static Base) and the

register ST (Static Top) as offset registers. These registers contain the offset value

from a physical address in a memory on the IC card. The individual memory

location is then further offset from these starting points such as SB[3] or ST[-5].

SB is defined zero and ST is equal to the size of the application's Static data

which is set when the application is loaded onto the IC card. The multiple

application operating system ensures that no other application can read or write the

data stored in the Static segment of a particular application. Using current

technology, the Static segment is preferably mapped onto an EEPROM (Electrically

Erasable Programmable Read—Only Memory) which is non-volatile.

-50-

SUBSTITUTE SHEET (RULE 26) Page 01454

Page 01455

WO 98/52152 PCT/GB98/01401

 llilllili Fl 10
The Dynamic segment 107 contains e ap . o

IHESIPON

temporary data. Dynamic data includes data which is temporarily used during the

execution of an application such as intermediate values used in calculations or

working variables. For example, a purse application may temporarily store the

5 value of a transaction in order to reduce the amount of the value in the purse. The

temporary data is used much like conventional computer programs use RAM to

perform their assigned operations. The Dynamic segment preferably is divided into

two parts, the session data portion and the stack data portion. The size of the

session data is a constant for each application and is determined when the

10 application is loaded. The stack holds variable data which is unique to the

particular transaction being executed. The stack data portion stores data in a last-in-

first-out manner. The stack is initially empty, but expands and contracts during

execution of the application.

The Dynamic data is addressed from the register DB 117 to register

15 DT 121. Register LB 119 serves as a local stack frame pointer to particular

memory locations in the Dynamic segment for delegate commands or function calls.

Register LB 119 is used to address the topmost frame, that of the currently

executing function's session data. Register DT 121 serves as an address offset for

the stack pointer. A one byte data item at the top of the stack is addressed as DT[-

20 1], the next byte below is addressed by DT[-2], and so on. A push operation

increments the relative value of DT for each item on the stack and a pop operation

decrements the relative value of DT for each item on the stack. For example, a

data element located at DT[-5] will be located at DT[-6] after an additional data

-51-

SUBSTITUTE SHEET (RULE 26) Page 01455

Page 01456

wo 93/52152 PCT/GB98/01401

ANNEX Fl TOIHESESCRIPTION
item is placed on the stack.

When an application is being executed, the Dynamic segment created

for that application also contains the application's session data which is used in

performing the assigned task(s) or operation(s). The multiple application operating

5 system ensures that no other application can read or write the data stored in the

Dynamic segment of a particular application. The session data is set to zero upon

the start of the execution of the application. Stack data will be saved in the stack if

the application delegates a task or operation to another application.

A delegation function occurs when one application selects another

10 application to process a command instead of processing the command itself. An

example of a delegation function occurs when a delegator application receives a

command that it does not recognize or is not programmed to process. The selected

application should not reject the command and provide an error response to the

interface device (IFD), but instead should pass the command to the appropriate

15 receiver, or delegated application. In order to perform a delegation, the delegator

calls the Delegate primitive. The Delegate primitive is a subroutine recognized by

the multiple application operating system which is executed when the operating

system interprets the Delegate instruction. Primitives can be stored as part of the

operating system itself, loaded as a separate routine when the operating system is

20 installed. Primitives are preferably written in machine executable language so that

they can be executed quickly although they could be written in a higher level

language. When a Delegate command is executed, execution of the delegating

application is suspended, and the delegated application is executed instead. The

-52-

SUBSTITUTE SHEET (RULE 26) Page 01456

Page 01457

wo 93/52152 PCT/GB98/01401

lalllllll A TO THE DESCRIPTION

delegated application then generates its own data memory space according to the

AAM architecture. The data stored in the Public memory space of the first

application (stored in RAM) is sent to the Public memory space of the second

application (which could be physically the same memory but is allocated separately

5 for each application) so that data can be passed between the applications. The

Dynamic memory space is also shared although data is saved in a stack for the

delegator and the other portions initialized before the delegated application is

executed because the Dynamic data is secret.

In most cases, the delegated application processes the command

10 exactly as though the command has arrived directly from an interface device.

When the delegated application has finished processing the command, and has

written a response into the allocated Public memory segment, it exits as normal.

The delegator then resumes execution at the instruction address following the

executed instruction which called the Delegate primitive. The response generated

15 by the delegated application is retrieved or accessed from the allocated Public

memory space. The delegator application may simply exit in turn, thus sending the

response to the IFD, or may carry out further processing before exiting.

Another example of a delegation operation occurs when two

applications need to share data. If an application A always returns a data item N

20 when processing a command B, then another application which also returns data

item N in response to a command can delegate the function B to application A in

order to reduce the need for duplicate codes stored on the IC card. For example, if

a PIN needs to be checked before an application is executed, an application stored

-53-

SUBSTITUTE SHEET (RULE 25) Page 01457

Page 01458

wo 93/52152 PCT/GB98/01401

ANNEX fl IOTHEDESIRIPIION

on the card can delegate the “retrieve PIN function” to a PIN application which

returns a stored universal PIN for the card.

Preferably, a new session begins whenever the IFD, e.g. a terminal,

successfully selects an application, even if the application has been previously

5 selected during the transaction. For example, if a card user goes to a terminal and

transfers twenty dollars of electronic cash using a purse application, charges thirty

dollars using a credit/debit application and then transfers ten dollars using the purse

application again, three separate sessions will have occurred even though only two

applications were used during the entire transaction. Each time an application

10 delegates a task or function to another application, the delegated application treats

the delegate function as if the IFD devices had selected the application to perform

the task or ftmction. However, performing a delegation function as described below

has a different effect on session data.

The following examples will help explain when the session data is

15 initialized (i.e., erased) versus when it is saved to be used in further operations. If

application A is selected by an IFD device, and receives commands X, Y and Z

from the terminal, application A may delegate all three commands to application B.

For example, delegations may occur in response to delegation commands in the

program code. Both applications A and B will have their session and stack data in

20 their respective Dynamic segments initialized (set to zero) when they receive

command X, but the stack will not be initialized when they receive the subsequent

commands Y and Z.

In a second example, application A is selected, and receives

-54..

SUBSTITUTE SHEET (RULE 26) Page 01458

Page 01459

WO 98/52152 PCT/GB98/01401

lilllllll Fl IOTHE DESCRIPTION

commands X, Y and Z from the terminal. Application A processes X itself, but

delegates Y and Z to application B. Application A will have its session and stack

data initialized when it receives X, but not when it receives the subsequent

commands Y and Z. Application B will have its session and stack data initialized

5 when it receives Y, but not Z.

One example of a use of session data is to support the use of a

session Personal Identification Number (PIN). The application could reserve one

byte of session data to support the PIN-receiving flag. On receiving the PIN check

command, the selected delegated application could update the flag as follows: if

10 the PIN command is received and the inputted PIN is equal to the stored pin, then

it will set the session data DB[0] to 1. If not, the application will check if the PIN

flag is already set by checking the value in DB[O]. In either of the above cases, the

application will process the rest of the commands in the session because the PIN

has been verified. If neither of the cases is true, then the application will not

15 process the command because the PIN is not proper. The PIN checking function

could be a delegated function from the selected application to a PIN checking

application.

The Public segment 105 is used for command and response data

being passed between an IFD and an application. During a delegate command, the

20 Public segment contains the data passed between two applications, the delegator

(the application initiating the delegation) and the delegated application (the

application which performs the delegated function). An application may also use

the Public segment as a further temporary working storage space if required. The

-55-

SUBSTITUTE SHEET (RULE 26) Page 01459

Page 01460

WO 98/52152

10

15

20

PCT/GB98/01401

Public data is addressed using offsets stored in register PB 113 as a starting address,

to register PT 115 as an ending address. Register PB 113 and Register PT 115 are

fixed for the duration of a command-response pair being initiated by the IFD or

delegator. Public data can include data inputted into or supplied by a terminal such

as a transaction amount, vendor identification data, terminal information,

transmission format or other data required or used by an application resident on the

IC card. Public data can also include data which is to be transmitted to an IFD

device or other application such as an electronic dollar value, card user information

transmission format or other data required or used by the terminal or other

delegated application.

The multiple application operating system ensures that the data stored

in the Public segment remains private to the application until the application exits

or delegates. Preferably, the data in the Public segment is then made available to

other entities as follows: (1) if the application delegates, the whole of the Public

segment becomes available to the delegated application; (2) if the application exits,

and is itself delegated by another, the whole of the Public segment becomes

available to the delegator; or (3) if the application exits, and is not itself delegated,

then a portion of the Public segment containing the I/O response parameters and

data are made available to the IFD.

An application may write secret data into the Public memory segment

during execution of the application, but the application must make sure it overwrites

the secret portion of the Public segment before delegating or exiting. If the

application abnormally ends (abends), then the operating system on the IC card

-56..

SUBSTITUTE SHEET (RULE 26) Page 01460

Page 01461

W0 98/52 1 52

10

15

20

PCT/GB98/01401

Mllllll 0 TO THE DES(RlPll0N
preferably overwrites all of the data in the Public segment automatically so that no

unwanted entities can have access to the secret data. If the MULTOS carrier device

(MCD) is reset, the operating system overwrites data in the Public segment

automatically, so that no secret data is revealed. A portion of the Public memory

segment is also used as a communications buffer. The 1/0 protocol data and

parameters are preferably stored at the top of the Public memory space. In another

preferred embodiment, the top seventeen bytes are reserved for the communications

protocol between the IFD device and the IC card application. However, additional

or less bytes can also be used depending upon the particular application and

operating system being utilized.

The spaces shown between the memory segments in Figure 1 will

vary depending upon the specific application and commands being processed.

There could be no memory space between the memory segments so that the

memory segments are contiguous.

Figure 2 shows an extended illustration of the AAM implemented

architecture. Data memory space 201 includes the three segments Static, Public and

Dynamic as previously described. Code memory space 203 contains the program

instructions for an application stored on the IC card. The application instructions

are preferably stored in an executable form which can be interpreted by the resident

operating system but can also be stored in machine executable form. Instruction

205 is stored at one location in the code memory space 203. Additional instructions

are stored in other locations of memory space 203. Two additional registers 207

and 209 are used in the AAM architecture. A code pointer (CP) register 207

-57-

SUBSTITUTE SHEET (RULE 25) Page 01461

Page 01462

wo 93/52152 PCT/GB98/01401

fills. 8 T0 THE DESCRIPTION

indicates the particular code instruction to be next executed. In the figure, the

register indicates, eg, through an offset or pointer means, that instruction 205 is

the next to be executed. Condition Control Register 209 contains eight bits, four of

which are for use by the individual application and four of which are set or cleared

5 depending upon the results of the execution of an instruction. These condition

codes can be used by conditional instructions such as Branch, Call or Jump. The

condition codes can include a carry bit, an overflow bit, a negative bit and a zero

bit.

All address and control registers are set to defined values prior to

10 executing the selected or delegated application. The values are set either when the

application is first loaded onto the card and the size of the code and non-volatile

data can be ascertained or at the moment when the application passes control to the

application. When the application is loaded, SB is set to zero and ST is equal to

the number of bytes in the application's Static database. The other address

15 registers are initialized when the application is given control. CP 207 is set to zero

and all eight bits in CCR 209 are cleared at the start of executing the application.

A communications interface mechanism is present between the IFD

and an application which includes.the use of the Public data segment as a

communications buffer for command-response parameters. A command-response

20 parameter means an application is given a command to perform and returns a

response to the entity issuing the command. Applications interact with an IFD by

receiving commands, processing them and returning responses across the IFD-

Application Interface. When an application has completed executing a command,

-58-

SUBSTITUTE SHEET (RULE 26) Page 01462

Page 01463

WO 98/52152

10

15

20

PCT/GB98/01 40 1

the application will place the response into the Public segment starting at PB[0]

which can be read by the IFD device and will set the proper interface parameters in

the reserved Public space relative to PT[0].

While an application can be called directly from an IFD and retum a

response directly to an IFD, it can also delegate a request to another application

where appropriate. The subsequently-called application will then process the

request on behalf of the first application. The delegation can be directly in

response to a received command in which the delegator acts as a controller for

delegating commands or subcommands to other appropriate applications.

Alternatively, the delegated command can be embedded in an application’s code

which delegates control of the processor when the first application needs to interact

with another application during its execution, such as updating frequent flyer miles

or verifying a PIN.

Figure 3 shows a flow chart of the steps which are performed when a

delegate request is executed. Step 301 sets the parameter named

delegator_application__id (delegator ID) to be equal to the

selected_f1le.application_id (selected ID). The selected ID indicates the current

application which is selected and which is currently being executed. The delegator

ID indicates the application which delegates a function to another delegated

application stored on the IC card. Step 303 then pushes (stores) the delegator ID

onto the top of the delegate__id_stack (delegate stack). The data referenced in the

Dynamic portion of allocated memory is saved so that the current application can

complete its execution after the delegated function is complete. Data which is to be p

-59-

SUBSTITUTE SHEET (RULE 25) Page 01463

Page 01464

WO 98/52152 PCT/GB98/01401

Will R TO THE DESCRIPTION

shared with the delegated application is referenced in the Public portion of allocated

memory. The delegate stack is preferably stored outside of an application's AAM

memory space and keeps track of which applications have delegated functions.

Each application is suspended when it delegates a function so the delegate stack can

5 act in a Last-In-First-Out (LIFO) maxmer so that if a number of applications are

suspended due to delegation requests, the proper application is started in the right

order. The delegate stack thus keeps track of which application was the last

delegator when multiple layered delegation functions are performed. The delegate

stack preferably operates in a LIFO manner although different stack schemes could

10 be used as appropriate.

Step 305 then sets the selected ID to the delegate_request.delegate_

application_id (delegate ID) value. This step selects the application which will be

called to perform the delegated function or functions. The identities of the

delegated application can be specifically called by the delegator application or a

15 particular function can be matched up with an application in a look up table. For

example, a PIN match operation may be delegated to different applications

depending upon which applications are present on the card. Step 307 then sets the

application_command parameter to the value stored in the

delegate_request.application_command parameter. This step specifies the command

20 to be delegated to the delegate application. Applications typically have the ability

to process many different commands. Alternatively, the entire application could be

executed to perform one or more functions. The delegator application can choose

which command it is delegating to another application. Step 309 then sends the

-50-

SUBSTITUTE SHEET (RULE 26) Page 01464

Page 01465

WO 98/52152 PCT/GB98/01401

ANNEX 0 TOTHEDES(RlPTl0N

application_command to the AAM operating system for execution by the delegatee

application. The delegator application is then suspended (or interrupted). Any data

that is required to pass between the applications is transferred via the Public

memory space.

5 Figure 4 is a flow chart of the steps for performing a “retum

delegation control” command by the delegatee application. This command is

executed by the operating system when a delegated application has completed its

delegated function. Step 401 gets application_responses from the Public memory

space of the delegated AAM. The response data is passed in the Public memory

10 segment of the delegatee AAM. Step 403 then sets the delegate_response.status

variable to a success condition. This means that a delegation operation has been

successfully completed. Step 405 sets the delegate_ response.application_responses

parameter to the application_responses values which were stored in the Public

segment of the delegatee application.

15 Step 407 sets the delegate_response.delegate_application_id parameter

to selected_file.application_id (the delegatee application ID). Step 409 pops the top

(i.e., reads the last data stored in the stack) delegate_application__id from the

delegate_id_stack. This information indicates the identity of the delegator

application for the command which was just delegated and completed by the

20 delegated application. Step 411 sets the select_file.application_id value to the

delegator_application_id value. This selects the delegator application which was

identified from the delegate ID stack as the current application which will resume

running. The Dynamic data for the delegator application will be retrieved for the

-51-

SUBSTITUTE SHEET (RULE 25) Page 01465

Page 01466

WO 98/52152

10

15

20

PCT/GB98/01401

ANNEX H TO THE DESCRIPTION

delegator application from its stored location so that the application will continue to

execute where it left off with all data intact but will also have the response

information from the delegated ftmction. In step 413, the delegate_response data is

sent to the current application for further processing. The response data is passed

through the Public data space which could be the same physical RAM memory

location because all applications share the physical volatile memory space.

Figure 5 shows a flow chart of the steps involved for inquiring about

a delegator ID when a delegate command is received by a delegated application.

The delegated application may need to know the identity of the delegator because it

may perform operations differently for different delegator applications. For

example, an airline loyalty program may need to know if awarded frequent flyers

will be based on actual dollars processed or a lump sum award for some other

activity such as performing a bill payment operation. This information could be

passed to the delegated application as a variable or could be ascertained using an

inquiry. The delegator inquiry operation could be implemented as a primitive as

previously described.

Step 501 receives the delegator_id_enq_request from the AAM

operating system. The request is used to identify the identity of the delegator. Step

503 checks if the de1egate__id_stack is empty. If the stack is empty, then no

delegation operations have occurred and no applications have been suspended.

Thus step 511 sets the delegator_id_enq_response.status parameter to a failure

indicator. Step 513 then sets the value of delegator_is_enq_request.error_cause to a
7,

value indicating “no delegator application. There is no delegator application. The

-52-

SUBSTITUTE SHEET (RULE 26) Page 01466

Page 01467

WO 98/52152

10

15

20

PCT/GB98/01401

 ANNEX A TOTHEEESCRIPTION
process then continues with step 509.

If the delegate__id__stack is not empty, than one or more delegations

have occurred. In that case, step 505 sets the delegator_id_enq_response.status

parameter to a value indicating “success”. Step 507 then sets the

delegator_id__enq_response.delegator_ application_id parameter to the value stored

in delegate__id_stack.delegator_ application_id. This sets the inquiry response to

indicate the delegator application ID at the top of the stack. As explained above,

the stored data at the top of the stack indicates the last delegator application to call

a delegate function. Step 509 then sends the de1egator_id_enq_ response back to

the AAM operator system which delivers the information to the application or IFD

entity requesting the information.

Figure 6 shows an example of a block diagram of an integrated

circuit located on an IC card chip which can be used in conjunction with the

invention. The integrated circuit chip is located on a chip on the card. The IC chip

preferably includes a central processing unit 601, a RAM 603, a EEPROM 605, a

ROM 607, a timer 609, control logic 611, I/O ports 613 and security circuitry 615,

which are connected together by a conventional data bus 617 or other conventional

means.

Control logic 611 in the smart card provides sufficient sequencing

and switching to handle read-write access to the card's memory through the

input/output ports 612. CPU 601 in conjunction with control logic 611 can perform

many different functions including performing calculations, accessing memory

locations, modifying memory contents, and managing input/output ports. Some IC

-63-

SUBSTITUTE SHEET (RULE 26) Page 01467

Page 01468

WO 98/52152 PCT/GB98/01401

EC!'4'. Allflll A IOIH” RlPll0ll
cards also include a coprocessor for handling complex computations like

cryptographic algorithms. Input/output ports 613 are used for communication

between the card and an IFD which transfers information to and from the card.

Timer 609 (which generates and/or provides a clock pulse) drives the control logic

5 611, CPU 601 and other components requiring a clock signal through the sequence

of steps that accomplish functions including memory access, memory reading and/or

writing, processing, and data communication. Security circuitry 615 (which is

optional) preferably includes fusible links that connect the input/output lines to

internal circuitry as required for testing during manufacture, but which are

10 destroyed upon completion of testing to prevent later access. The Static memory

space is preferably mapped to memory locations in EEPROM 605 which is non-

volatile. The Dynamic memory space is preferably mapped to RAM 603 which is

volatile memory which has quick access. The Public memory space is also

preferably mapped to RAM 603 which is volatile memory. The Dynamic data and

15 Public data will be stored in different portions of RAM 603, while RAM is

identified as a preferred non-volatile memory and EEPROM is identified as a

preferred volatile memory. Other types of memory could also be used with the

same characteristics.

Figures 7A, 7B and 7C illustrate an example of a delegation fimction

20 being performed in order to process multiple applications on an IC card. Figure 7A

shows a first application being executed as denoted with a double ringed circle 701.

At some point during the execution of the first application, a delegation function

702 is called to delegate an operation to the second application which is indicated

-54-

SUBSTITUTE SHEET (RULE 26) Page 01468

Page 01469

wo 93/52152 PCT/GB98/01401

by circle 703. Also shown in Figure 7A is an empty delegator ID sck 705. Since

the stack is empty, there is no data associated with it and it is shown only for

illustrative purposes.

The multiple application operating system receives the delegate

5 command and interrupts the execution of the first application 701 and gives control

of the integrated circuit to application 703 as shown in Figure 7B. The execution

of the second application 703 is illustrated with a double ringed circle. The term

“gives control” means that the microprocessor and other circuitry on the card will

process the instructions and allocate memory space for the application which is

10 delegated. When the delegate command is processed, the delegator ID 707 is

placed on top of the stack 705. The delegator ID stack is operated in a LIFO

manner. Also shown in Figure 7B is a third application 709 resident on the card.

At some point during the execution of the second application, a delegate function

711 is called to delegate the operation to the third application.

15 The multiple application operating system receives the delegate

command 711 shown in Figure 7B interrupts the execution of the second

application 703 and gives control of the integrated circuit to the third application

709 as shown in Figure 7C. When the delegate command is processed, the

delegator ID 713 of the second application is pushed onto the delegator ID stack

20 705. The delegator ID 707 of the first application whose execution is still

interrupted is pushed down in the stack consistent with a LIFO stack management.

Thus when the third application has finished its execution, the delegator ID at the

top of the stack is popped to indicate that execution of the second application

-55-

SUBSTITUTE SHEET (RULE 26) Page 01469

Page 01470

WO 98/52152 PCT/GB98/01401

fl !§l_l§%F‘?E5CRlPllON
should be resumed first. The delegator ID 707 from the first application will then

be at the top of the stack so that when the second application is finished executing,

the first application will resume its execution.

Additional applications can be managed by the delegator ID stack in

5 a similar manner. By interrupting the execution of the applications when a delegate

command is processed and keeping track of the order of delegations, the security

and integrity of the data for each individual application can be maintained which is

important because IC cards will store data for applications which is private to the

card user such as account numbers, social security number, address and other

10 personal information.

The foregoing merely illustrates the principles of the invention. It

will thus be appreciated that those skilled in the art will be able to devise numerous

apparatus, systems and methods which, although not explicitly shown or described

herein, embody the principles of the invention and are thus within the spirit and

15 scope of the invention.

-55-

SUBSTITUTE SHEET (RULE 26) Page 01470

Page 01471

W0 98/52152 PCT/GB98/01401

Al'llE}{ fl l0lHEDESfRl?ll0ll
WE CLAIM:

2 1. An integrated circuit card comprising:

3 a microprocessor; a volatile memory coupled to said

4 microprocessor; a non-volatile memory coupled to said microprocessor; and a

5 plurality of applications stored in said non-volatile memory, wherein upon execution

6 of each said application, said microprocessor allocates for each said executing

7 application an associated data memory space comprising at least a volatile memory

8 segment for referencing temporary data and a non-volatile memory segment for

9 referencing static data; and further comprising means for delegating the performance

10 of a function from a first executing application to a second executing application.

1 2. The integrated circuit card of claim 1, wherein said non-volatile

2 memory segment is divided into at least two regions, including a public region and

3 a dynamic region.

1 3. The integrated circuit card of claim 2, wherein said public region is

2 used to share data between said first and second applications.

1 4. The integrated circuit card of claim 2, wherein said dynarnic region

2 is used to reference temporary data utilized during an application’s execution.

-57-

SUBSTITUTE SHEET (RULE 26) Page 01471

Page 01472

wo 93/52152 PCT/GB98/01401

ANNEX 9 TOTHEDESIRIPTIOH
1 5. The integrated circuit card of claim 1, further comprising at least one

2 register coupled to said microprocessor which is used to determine the starting

3 locations of each of said segments.

1 6. The integrated circuit card of claim 5, further comprising at least one

2 register coupled to said microprocessor which is used to determine the top locations

3 of each of said segments.

1 7. The integrated circuit card of claim 6, further comprising at least one

2 register coupled to said microprocessor which is used as a local dynamic pointer.

1 8. The integrated circuit card system of claim 1, wherein each said

2 application comprise a plurality of program instructions and wherein at least one of

3 said program instructions when executed causes said memory referenced by said

4 volatile memory segment to be accessed.

1 9. The integrated circuit card of claim 1, wherein said volatile memory

2 segment references RAM and said non-volatile memory segment references

3 EEPROM.

1 10. A method for processing a plurality of applications stored in a

2 memory of an integrated circuit:

3 selecting a first application for execution;

-63-

SUBSTITUTE SHEET (RULE 26) Page 01472

Page 01473

WO 98/52152 PCT/GB98/01401

ANNEX 9 TOTHEDESCRIPTIGN

4 allocating a data space for said first application including at

5 least two memory segments comprising a volatile memory segment for referencing

6 temporary data and a non-volatile memory segment for referencing static data;

7 executing said first application, interrupting execution of said

8 first application and saving data referenced by said volatile memory segment;

9 executing a second application;

10 utilizing said saved data from said volatile memory segment

11 for execution of said first application; and

12 completing said execution of said first application.

1 11. The method of claim 10, wherein said first application’s identity is

2 stored in a data stack during said delegation step.

1 12. The method of claim 11, wherein said data stack is accessed

2 following said completion of said second application.

1 13. The method of claim 12, further including the step of inquiring said

2 first application’s identity by accessing said delegator stack.

1 14. The method of claim 10, wherein said non-volatile memory segment

2 is divided into at least two regions, including a public region and a dynamic region.

-69-

SUBSTITUTE SHEET (RULE 26) Page 01473

Page 01474

W0 98/52152 PCT/GB98/01401

ANNEX H F0l.li'?3ES(RlPTl0ll
l 15. The method of claim 14, wherein said public region is used to share

2 data between said first application and said second application.

1 16. The method of claim 14, wherein data referenced by said dynamic

2 region is utilized during the execution of said first application.

1 17. The method of claim 10, further including the step of allocating a

2 second data space including at least two memory segments for said second

3 application.

1 18. The method of claim 17, wherein said second data space’s segments

2 comprise a volatile memory segment for referencing temporary data and a non-

3 volatile memory segment for referencing static data.

1 19. The method of claim 18, wherein said second application's non-

2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 20. The method of claim 19, wherein said second app1ication’s public

2 region is used to share data between said first and second applications.

-70-

SUBSTITUTE SHEET (RULE 26) Page 01474

Page 01475

WO 98/52152 PCT/GB98/01 401

ANNEX 6 TO THE DESCRIPTION

1 21. The method of claim 19, wherein said data referenced by second

2 app1ication’s dynamic region is utilized during said execution of said second

3 application.

1 22. The method of claim 10, further including the step of delegating use

2 of said microprocessor from said second application to a third application stored on

said IC card.U.)

1 23. The method of claim 22, wherein a third data space for said third

2 application is allocated which includes a volatile memory segment for referencing

3 temporary data and non-volatile memory segment for referencing static data,

4 wherein said third application’s volatile segment includes a public and dynamic

5 portion.

1 24 An apparatus for processing a plurality of applications stored in a

2 memory of a single integrated circuit card comprising:

3 means for allocating a data space comprising at least a non-

4 volatile memory segment for referencing static data and a volatile memory segment

5 for referencing temporary data; means for executing a first application; means for

6 interrupting execution of said first application, means for saving data from at least a

7 portion of said volatile memory segment; and means for executing a second

8 application; means for retrieving said saved data; and means for completing said

9 execution of said first application.

-71-

SUBSTITUTE SHEET (RULE 26) Page 01475

Page 01476

WO 98/52152 PCT/GB98/01401

ANNEX 4 TO THE DESCRIPTION
1 25. The apparatus of claim 24, further including means for storing said

2 first application’s identity on a data stack.

1 26. The apparatus of claim 25, further including means for inquiring of

2 said first application’s identity.

1 27. The apparatus of claim 24, wherein said first application’s non-

_ volatile memory segment is divided into at least two regions, including a public

3 region and a dynamic region.

1 28. The apparatus of claim 27, wherein said public region references

2 random access memory.

1 29. The apparatus of claim 27, wherein said dynamic region references

2 random access memory.

1 30. The apparatus of claim 24, further including means for allocating a

2 second data space including at least two segments for said second application.

1 31. The apparatus of claim 30, wherein said second data space includes a

2 volatile memory segment for referencing temporary data and a non-volatile memory

3 segment for referencing static data.

-72-

SUBSTITUTE SHEET (RULE 26) Page 01476

Page 01477

wo 93/52152 PCT/GB98/01401

Iii-llllli Fl TOTHEDESCRIPTION
1 32. The apparatus of claim 31, wherein said second data space’s non-

2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 33. The apparatus of claim 32, wherein said public region references

2 random access memory.

1 34. The apparatus of claim 32, wherein said dynamic region references

I\) random access memory.

1 35. The apparatus of claim 24, further including means for delegating

2 operation of said IC card from said second application to a third application stored

3 on said IC card.

1 36. The apparatus of claim 35, wherein a third data space for said third

2 application is allocated which includes a volatile memory segment for referencing

3 temporary data and non-volatile memory segment for referencing temporary data,

4 wherein said third application’s volatile memory segment includes a public and

5 dynamic portion.

1 37. A system for processing a plurality of applications stored on an IC

2 card comprising:

3 a non-volatile memory coupled to a databus;

-73-

SUBSTITUTE SHEET (RULE 26) Page 01477

Page 01478

WO 98/52152 PCT/GB98/01401

AHNEK H TOTHEDEKRIPTION
4 a volatile memory coupled to said databus;

5 a first and second application program stored in said non-volatile

6 memory, wherein each application has an associated identifier;

7 a data stack accessible by said databus for storing said applications’

8 identifier if said application is interrupted during its execution;

9 processor means for executing instructions from said application

10 programs wherein said processor means allocates a data memory space for said

11 application which is being executed and said data memory space is mapped to at

12 least one address in said non-volatile memory and at least one address in said

13 volatile memory; and

14 wherein said processor means interrupts said first application at least

15 once during its execution to execute said second application.

1 38. The system of claim 37, wherein data memory space comprises at

2 least a volatile memory segment for referencing temporaiy data stored in said

3 volatile memory and a non-volatile memory segment for referencing static data

4 stored in said non-volatile memory.

1 39. The system of claim 37, further including means for storing said first

2 application's identity on a data stack.

1 40. The system of claim 39, further including means for inquiring of said

2 first application’s identity.

-74-

ULE 26

SUBSTITUTE SHEET (Fl) Page 01478

Page 01479

WO 98/52152 PCT/GB98/01401

 ll 147%? ”=“?5R!?Tl9H
1 41. The system of claim 38, wherein said first ap‘pli‘cation’s non-vo a e

2 memory segment is divided into at least two regions, including a public region and

3 a dynamic region.

1 42. The system of claim 41, wherein said public region references

2 random access memory.

1 43. The system of claim 41, wherein said dynamic region references

2 random access memory.

1 44. The system of claim 37, further including means for allocating a

2 second data space including at least two segments for said second application.

1 45. The system of claim 44, wherein said second data space comprises at

2 least a volatile memory segment for referencing temporary data and a non—volatile

Lo)
memory segment for referencing static data.

1 46. The system of claim 45, wherein said second data space’s non-

2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 47. The system of claim 46, wherein said public region references

2 random access memory.

-75-

SUBSTITUTE SHEET (RULE 26) Page 01479

Page 01480

WO 98/52152 PCT/GB98/01401

ANNEX :9 TO THE DESCRIPTION
1 48. The system of claim 46, wherein said dynamic region references

2 random access memory.

1 49. The system of claim 37, further including means for delegating use

2 of said processor means from said second application to a third application stored

3 on said IC card.

1 50. The system of claim 49, wherein a third data space for said third

2 application is allocated which includes a volatile memory segment for referencing

3 temporary data and non-volatile memory segment for referencing temporary data,

4 wherein said third application’s volatile memory segment includes a public and

5 dynamic portion.

1 51. An integrated circuit card comprising:

2 a plurality of applications and a microprocessor for controlling

3 execution of said applications wherein execution of at least one first application is

4 interrupted and execution is transferred to another second application, further

5 comprising means for sharing data by said first and second applications and means

6 for resuming execution of said first application at the appropriate location at least

7 after completion of execution of said second application.

-76..

suasrrrure SHEET (RULE 25) Page 01480

Page 01481

WO 98/52152 PCT/GB98/01401

ANNEX 9 T0lHE9iS(RlPll0ll
1 52. The integrated circuit card of claim 51, further comprising means for

2 allocating a data memory space comprises at least a volatile memory segment for

3 referencing temporary data stored in said volatile memory and a non-volatile

4 memory segment for referencing static data stored in said non-volatile memory.

1 53. The integrated circuit card of claim 51, further including means for

2 storing said first application’s identity on a data stack.

1 54. The integrated circuit card of claim 53 further including means for

2 inquiring of said first application’s identity.

1 55. The integrated circuit card of claim 52, wherein said first

2 application’s non-volatile memory segment is divided into at least two regions,

3 including a public region and a dynamic region.

1 56. The integrated circuit card of claim 55, wherein said public region

2 references random access memory.

1 57. The integrated circuit card of claim 55, wherein said dynamic region

2 references random access memory.

-77-

SUBSTITUTE SHEET (RULE 25) Page 01481

Page 01482

wo 98/52152 PCT/GB98/01401

ANNEX/1 F0 THEDT1(RlllTl0ll
1 58. The integrated circuit card of claim 52, further including means for

2 allocating a second data space including at least two segments for said second

3 application.

1 59. The integrated circuit card of claim 58, wherein said second data

2 space comprises at least a volatile memory segment for referencing temporary data

3 and a non—volatile memory segment for referencing static data.

1 60. The integrated circuit card of claim 58, wherein said second data

2 space’s non-volatile segment is divided into at least two regions, including a public

3 region and a dynamic region.

1 61. The integrated circuit card of claim'58, wherein said public region

2 references random access memory.

1 62. The integrated circuit card of claim 60, wherein said dynamic region

2 references random access memory.

1 63. The integrated circuit card of claim 51, further including means for

2 delegating use of said processor means from said second application to a third

3 application stored on said IC card.

-78-

SUBSTITUTE SHEET (RULE 26) Page 01482

Page 01483

WO 98/52152 PCT/GB98/01 401

ANNEX fl TO THE DSCRIPTION
ABSTRACT OF THE DISCLOSURE

A multi-application IC card which processes two or more

applications using an Application Abstract Machine architecture. The AAM

architecture only allows one application to be executed at a time and allows for

shared processing by performing a delegation function to a second application. A

5 data space for each application is allocated when the application is selected to be

executed. The data space includes a volatile and non-volatile region. The

delegation function temporarily interrupts the execution of the first application,

saves the temporary data of the first application, shares any data needed with the

second application and the second application is executed until the delegated task is

10 competed. The first application then retrieves the saved data and completes its

execution. A delegator stack is used to keep track of the delegator’s identity when

multiple delegations occur. The AAM model allows for a high level of security

while transferring data between applications.

-79-

SUBSTITUTE SHEET (RULE 25) Page 01483

Page 01484

W0 98/52152 PCT/GB98/01 401

CLAIMS

I CLAIM:

1 1. A method of responding to a command from an interface

2 device by an integrated circuit card, said integrated circuit card comprising a

3 microprocessor and a memory coupled to said microprocessor, said method

4 comprising the steps of:

5 selecting an expected case for said command representing

6 whether data is to be transferred between said interface device and said integrated

7 circuit card;

8 determining whether said expected case is applicable to said

9 command; and

10 processing said command if said expected case is applicable

11 to said command.

1 2. The method of claim 1, wherein said command is transmitted

2 from said interface device to said integrated circuit card under a transmission

3 protocol requiring said integrated circuit card to have prior information related to

4 the data, if any, to be transferred.

1 3. The method of claim 2, wherein said prior information is

2 related to the direction of the data to be transferred.

-80..

SUBSTITUTE SHEET (RULE 25) Page 01484

Page 01485

wo 93/52152 PCT/GB98/01401

1 4. The method of any of claims 1 to 3, wherein said interface

2 device and said integrated circuit card support a plurality of transmission protocols.

1 5. The method of any of claims 1 to 4, wherein said integrated

2 circuit card comprises an application stored in said memory, and wherein said

3 selecting step is performed by said application.

1 6. The method of any of claims 1 to 5, wherein said integrated

2 circuit card comprises an application stored in said memory, and wherein said

3 processing step is performed by said application.

1 7. The method of any of claims 1 to 6, wherein said integrated

2 circuit card comprises an application stored in said memory, and further comprising

3 the step of determining whether said command is recognized by said application

4 before the selecting step.

1 8. The method of any of claims 1 to 7, wherein said integrated

2 circuit card comprises an operating system stored in said memory, and wherein said

3 determining step is performed by a function of said operating system.

-31-

SUBSTITUTE SHEET (RULE 25) Page

Page 01486

WO 98/52152 PCT/GB98/01401

1 9. The method of any of claims 1 to 8, wherein said integrated

2 circuit card comprises an operating system and an application stored in said

3 memory, and further comprising the step of calling by said application a function of

4 said operating system with said expected case before said determining step.

1 10. The method of claim 9, further comprising the step of

2 receiving by said application a return value from said function of said operating

3 system indicative of whether said expected case is applicable to said command.

1 11. The method of claim 9 or claim 10, wherein said memory

2 comprises a publicly available memory space, and further comprising the step of

3 communicating between said operating system and said application using said

4 publicly available memory space.

1 12. The method of any of claims 9 to 11, wherein said integrated

2 circuit card comprises a register, and further comprising the step of communicating

3 between said operating system and said application using said register.

1 13. The method of any of claims 9 to 12, wherein said memory

2 comprises a stack, and further comprising the step of communicating between said

3 operating system and said application using said stack.

-82-

SUBSTITUTE SHEET (RULE 26) Page 01486

Page 01487

wo 93/52152 PCT/GB98/01401

1 14. The method of any of claims 9 to 13, further comprising the

2 step of determining by said function of said operating system whether data is to be

3 received from said interface device.

1 15. The method of claim 14, further comprising the step of

2 receiving data from said interface device if said step of determining whether data is

3 to be received from said interface device is positive.

1 16. The method of any of claims 9 to 15, further comprising the

2 step of responding by said operating system to subsequent commands by said

3 interface device related to said command without interaction with said application

4 after the step of calling said function by said application.

1 17. The method of claim 10, further comprising the step of

2 communicating response data by said application to said operating system if said

3 return value is positive, said response data being data to be transmitted by said

4 integrated circuit card to said interface device.

1 18. An integrated circuit card for use with an interface device,

2 comprising:

3 a microprocessor;

4 a memory coupled to said microprocessor;

5 means for selecting an expected case for a command

-33-

SUBSTITUTE SHEET (RULE 26) Page 01487

Page 01488

WO 98/52152

10

11

PCT/GB98/01401

transmitted by said interface device, said expected case representing whether data is

to be transferred between said interface device and said integrated circuit card;

means for determining whether said expected case is

applicable to said command; and

means for processing said command if said expected case is

applicable to said command.

19. The integrated circuit card of claim 18, further comprising

means for receiving said command from said interface device under a transmission

protocol requiring said integrated circuit card to have prior information related to

the data, if any, to be transferred with or in response to said command.

20. The integrated circuit card of claim 19, wherein said prior

information is related to the direction of the data to be transferred.

21. The integrated circuit card of any of claims 18 to 20, wherein

said integrated circuit card supports a plurality of transmission protocols.

22. The integrated circuit card of any of claims 18 to 21, further

comprising an application stored in said memory, said application comprising said

means for selecting an expected case.

-34-

SUBSTITUTE SHEET (RULE 25) Page 01488

Page 01489

WO 98/52152 PCT/GB98/01401

1 23. The integrated circuit card of any of claims 18 to 22, further

2 comprising an application stored in said memory, said application comprising said

3 means for processing said command.

1 24. The integrated circuit card of any of claims 18 to 23, further

2 comprising an application stored in said memory, said application comprising means

3 for determining whether said command is recognized by said application.

1 25. The integrated circuit card of any of claims 18 to 24, further

2 comprising an operating system stored in said memory, said operating system

3 comprising said means for determining whether said expected case is applicable to

4 said command.

1 26. The integrated circuit card of any of claims 18 to 25, further

2 comprising:

3 an operating system stored in said memory;

4 an application stored in said memory; and

5 means for calling by said application a function of said

6 operating system with said expected case.

-35-

SUBSTITUTE SHEET (RULE 26) Page 01489

Page 01490

W0 98/521 52 PCT/GB98/01 401

1 27. The integrated circuit card of claim 26, further comprising

2 means for receiving by said application a return value from said function of said

3 operating system indicative of whether said expected case is applicable to said

4 command.

1 28. The integrated circuit card of claim 26 or claim 27, wherein

2 said memory comprises a publicly available memory space, and further comprising

3 means for communicating between said operating system and said application using

4 said publicly available memory space.

1 29. The integrated circuit card of any of claims 26 to 28, further

2 comprising a register and means for communicating between said operating system

3 and said application using said register.

1 30. The integrated circuit card of any of claims 26 to 29, wherein

2 said memory comprises a stack, and further comprising means for communicating

3 between said operating system and said application using said stack.

1 31. The integrated circuit card of any of claims 26 to 30, further

2 comprising means for determining by said function of said operating system

3 whether data is to be received from said interface device.

-86-

SUBSTITUTE SHEET (RULE 25) page 01490

Page 01491

WO 98/52152 PCT/GB98/01401

1 32. The integrated circuit card of claim 31, further comprising

2 means for receiving data from said interface device responsive to said means for

3 determining whether data is to be received from said interface device.

1 33. The integrated circuit card of any of claims 26 to 32, ftuther

2 comprising means for responding by said operating system to subsequent commands

3 by said interface device related to said command without interaction with said

4 application.

1 34. The integrated circuit card of claim 27 or any claim

2 dependent thereon, further comprising means for communicating response data by

3 said application to said operating system if said retLu'n value is positive, said

4 response data being data to be transmitted by said integrated circuit card to said

5 interface device.

-37-

SUBSTITUTE SHEET (RULE 25) Page 01491

Page 01492

PCT/GB98/01401WO 98/52152

1/25

FIG. 1

Page 01492
SUBSTITUTE SHEET (RULE 25)

Page 01493

PCT/GB98/01401W0 98/52 1 52

2/25

ow_

oar

_
mommmooma"-oo_

r.

mEoah3nF3O\h3n_Z_

0:1

goo;+2:>:m:omwmmzz.4om»zooozammooma
\

oh8.R:2:
Page 01493

SUBSTITUTE SHEET (RULE 26)

Page 01494

W0 98/52152 PCT/GB98/01401

3/25

“°° COR FIG. 4

'//////////////'A

DYNAMIC

7///////////////4

PUBLIC

320

306

318

316

304

314 DATA

SPACE

302

310 -/

STATIC

308

CODE 33555
200

SUBSTITUTE SHEET (RULE 26) Page 01494

Page 01495

WO 98/52152 PCT/GB98/01401

4/25

FIG. 5A

HEADER BODY

HEADER BODY

FIG. 5D

SUBSTITUTE SHEET (RULE 25) Page 01495

Page 01496

WO 98/52152 PCT/GB98/01401

5/25

T = 1 TRANSMISSION PROTOCOL

PROLOGUE FIELD 'NFOFF:g'L”gT'ON EPILOGUE FIELD

LENGTH

PCB LEN INF EDC

‘I BYTE O - 254 BYTES 1 - 2 BYTES

FIG. 6

NOISE PROTOCOL ERROR 1
ADDRESS CONTROL DETECTION CODE

BYTE (LRC OR CRC)

NAD

‘I BYTE

SUBSTITUTE SHEET (RULE 26) Page 01496

Page 01497

PCT/GB98/01401W0 98/52 1 52

6/25

m5oo.__nm_.._Z_m5oo._omn_m

N..U_u_zoognmn_Z_m5oo4omn_m5oo4_nm.._z_m:oo._omn_m:oo.__n_mu_z_m5o9o. j \\\\\\\\\\
Page 01497

SUBSTITUTE SHEET (RULE 26)

Page 01498

W0 98/52 1 52

7/25

[— — — — — — — — — — — — —i f "- — -

Operating I I
System I I

| l
I I

Low-Level Communications 801 I 807
Handler Receives TO_Header I

from IFD I
I

Low—Level Communications #803 : 809
Handler Stores TO_Header in

comm__buffer I
I

l

805 I

CALL Receive_Command

Check_Case checks

consistancy of received Header
with expected case

IS Case = "3" or "4" ?CheckCase
823

CALL Cmd_Data__Rxed
Subroutine

825

IF check_case_response.status
= "success"

THEN SET CCR.zbit = 1

ELSE SET CCR.zbit = 0

827 I
CALL Transmit_Response

Subroutine
SUBSTITUTE SHEET (RULE 26)

PCT/GB98/01401

Application

Application is Notified of
Received Command Header

IF Application recognizes the

command defined by pub|ic.cia.
publicins, public.p1. and

pub|ic.p2.
THEN PUSH expected case

onto stack of dynamic segment
ELSE Error

CALL Check_Case

lF CCR.zbit = "1"
THEN PROCESS Command

ELSE Error

IF Case = 2 or 4. SET

pub|ic.data_field and pub|ic.1a
and CALL SYSTEM

FIG. 8

Page 01498

Page 01499

WO 98/52152 PCT/GB98/01401

8/25

Start: Check_Case

CALL Check_Case_TO IS pub|ic.protocol_type = '‘TO''

18 public.protoco|_type = "T1" CALL Check_Case_T1

SET check_case_response.status = "failed"

FIG. 9

SUBSTITUTE SHEET (RULE 26) Page 01499

Page 01500

WO 98/52152 PCT/GB98/01401

9/25

Start:

Check_Case__To

1010

SET check__case_responsestatus = "success"

1020 IF pubiic.protocol_f|ags.p3__va|id = "true" AND
(pubIic.protocol_f|ags.lc_va|id = “true" OR
public.protocol_f|ags.le_valid = "true")

THEN

SET check_case__response.status = "faiIed"

1030

1040
IS case = "2" ?

1050

1060
IS case = "4" ?

1070

\"‘ SET check__case_responsestatus = "failed"

1080 IF check_case_response.status = "success" THEN

SET public.protocol_flags.p3_valid = "false"

SET pub|ic.protocoI_f|ags.|c_valid = "true"

He. 10

SUBSTITUTE SHEET (RULE 26) Page 01500

Page 01501

W0 93/52152 PCT/GB98/01401

10/25

IS public.protocol_f|ags.p3_va|id = "true" AND public.p3 > O ?

IS public.protoco|_flags.|c_valid = "true" AND public.ic > O ?

IS public.protoco|_flags.|e_valid = "true" AND public.le > 0 ?

SET pub£ic.|c = 0

SET public.le = 0

SET public.protoco|_fiags.|e_va|id = "true"

SET check_case_response.status = "fai|ed"

SUBSTITUTE SHEET (RULE 26) Page 01501

Page 01502

WO 98/52152 PCT/GB98/01401

11/25

18 public.protoco|_f|ags.|c_valid = "true" AND public.|c > O ’?

IS public.protocot_f|ags.le_va|id = "true" AND pub|ic.1e > O 7

IS pubiic.protoco|__flags.p3_valid = “true" AND pub|ic.p3 > O 7

SET public.protocol_flags.Ie_valid = "true“
SET pub|ic.|e = pub|ic.p3

SET check_case_response.status = "failed"

SUBSTITUTE SHEET (RULE 26) Page 01502

Page 01503

WO 98/52152 PCT/GB98/01401

12/25

IS public.protocoI_f|ags.p3_va|id = "true" AND pub|ic.p3 > O ? SET pubIic.|c = public.p3

IS

public.protocol_f:ags.lc_va|id = "false"
OR

publiclc = 0
OR

(publictc = "true" AND publicle > 0)’?

SET public.protocol_f|ags.Ie_vaIid = "true"
SET public.le = 0

‘H330

CALL Cmd_Data_Rxed Subroutine
\134o

1360

SET check_case_response.status = "faited"

SUBSTITUTE SHEET (RULE 26) Page 01503

Page 01504

WO 98/52152 PCT/GB98/01401

13/25

 IS public.protoco|_f|ags.p3_valid = "true" AND pub|ic.p3 > O ’? SET pub|ic.lc = pub|ic.p3

IS

public.protoco|_fIags.|c_va|id = "false"
OR

pub|ic.Ic = 0
OR

(public.le = "true" AND public.le = 0) 7

CALL Cmd_Data_Rxed Subroutine

SET check_case_response.status = "failed"

SUBSTITUTE SHEET (RULE 26) Page 01504

Page 01505

W0 98/52152 PCT/GB98/01401

14/25

Check_Case_T1

1 51 0

SET check_case_response.status = "success"

1 530 \

IS pub|ic.|c > 0
OR

(public.protoco|_fIags.le_valid = "true" AND
pubIic.|e > O) ?

Yes

IS pub|ic.lc > 0
OR

(public.protoco|_f|ags.|e_valid = "true" AND
pub|ic.le > O) ?

 [8 case = "2" '?

IS pubIic.Ic > 0
OR

(public.protocol_fIags.|e_vaIid = "true" AND
public.le > 0) ?

1580

IS pubIic.lc > 0
OR

(public.protoco|_fIags.le_valid = "true" AND
pubIic.|e > O) ?

 IS case = "4" '?

SET c:heck__case_response.status = "failed"

FIG. 15

SUBSTITUTE SHEET (RULE 25) Page

Page 01506

WO 98/52152 PCT/GB98/01401

15/25

Start:

Receive_Command_T0

IF pubIic.p3 = 0

IS public.protocol_flags.expecting_gr = "true" THEN
AND SETpublic.|e = 258

IS Command Get Response '? ELSE
SET pubIic.le = public.p3

SET public.cla = comm_buffer.tO_header.cla
SET publiclns = comm_buffer.tO_header.ins

SET publlc.p1 = comm__buffer.tO_header.p1

SET pub|ic.p2 = comm_buffer.t0__header.p2
SET pub|ic.p3 = comm_buffer.tO_header.p3

SET pub|ic.protoco|_fIags.p3_valid = "true"

SET public.protocol_f|ags.le_va|id = "false"

SET public.protocol_flags.lc_valid = "false"

SET public.protoco|__flags.cmd_data_rxd = "false“

SET public.protocoI_fIags.expecting_gr = "false"

SET public.protocol_type = 'TO"

SET public.get__response_c|e = comm_buffer.tO_header.c|a
SET public.get_response.aw1 = Hex "61"
SET pub|ic.lc = 0

SET public.le = 0

SET public.la = 0

SET public.sw1 = Hex "90"

SET public.sw2 = hex "O0"

Process Get

Response Command

SUBSTITUTE SHEET (RULE 26) Page 01506

Page 01507

W0 98/52152 PCT/GB98/01401

16/25

Start:

Cmd_Data_Rxed

IS

public.protoco|_f|ags.cmd_data_rxd = "false" '?

Transmit ACK byte to IFD

GET Command_data from IFD

SET public.data_field =

command_data

SET

public.protoco|_flags.cmd_data_rxd = "true"

FIG. 17

SUBSTITUTE SHEET (RULE 26) Page 01507

Page 01508

WO 98/52152 PCT/GB98/01401

17/25

IFD IC CARD

1810

:>
EIEEEI

1820<=
\

:>

«B40
«sso <3

\

:>
EIEEIEI 1860

/

<:'mm

FIG. 18

SUBSTITUTE SHEET (RULE 26) Page 01508

Page 01509

WO 98/52152 PCT/GB98/01401

18/25

Start:

Transmit_Response
Subroutine

SET response_tpdu =

'8 pubncla = O ? public.sw1 + public.sw2

lspfgfclicblgrgngzsgri-:i;:_ SET response_tpdu = Hex "6F0O"

IF public.la < 256

Is public.protoco|_flags,Ie_valid = "false" THEN SET response_tpdu =
OR pub|ic.get_response.sw1 + public.|a

public.le > pub|ic.|a ? ELSE SET response_tpdu =
public.get__response.sw1 + Hex "OO"

SET pubIic.protoco!_flags.expecting_gr
= "true"

IS public.|e > 0 SET data = pubIic.data_field

SET response_tpdu =

public.ins + data + pubiic.sw1 + public.sw2

FIG. 19

SUBSTITUTE SHEET (RULE 26) Page 01509

Page 01510

W0 98/52152 PCT/GB98/01401

19/25

Start:

Receive_Command_T1

IS public.protocol__flags.expecting_gr = "true"
AND

IS Command Get Response '?

Process Get

Response Command

SET public.c|a = comm_buffer.T1_header.c|a

SET public.ins = comm_buffer.T1_header.ins

SET pubIic.p1 = comm__buffer.T1_header.p1
SET pubIic.p2 = comm_buffer.T1_header.p2
SET pubIic.p3 = 0

SET public.protocol_fIags.p3_valid = “false"

SET pubiic.protoco!_flags.expecting_gr = "false"

SET pub!ic.protoco!_type = "T1"

SET pubIic.get_response_cla = comm_buffer.T1_header.cla
SET public.get_response.sw1 = Hex "631"
SET public.Ie = 0

SET public.sw1 = Hex "90"

SET pub|ic.sw2 = Hex "0O"

 SET public.protocol_f|ags.le_valid. public.protocol_flags.|c_vaiid,

public.protoco|_f|ags.cmd_data_rxd, pub|ic.lc and public.|e

BASED ON comm_buffer. T1_body

SUBSTITUTE SHEET (RULE 25) Page 01510

Page 01511

WO 98/52152

 20/25

101

F:—:_'J"_——'1—_1

DYNAMIC

PUBLIC

 A

STATIC

FIG. 1

121

 107
119

 117

105

 115

 113

103

111

109

FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/GB98/01401

IIIIIIEII F1 TO THE SIIIIIIINGS

Page 01511

Page 01512

WO 98/52152 PCT/GB98/01401

21/25

ANNEX 6 TOTE? ERAWINGS

SET DELEGATOR_APPL|CATlON_lD TO SELECTED_FILE. 301
APPL|CAT|ON_lD

303

PUSH DELEGATOR__APF’L|CATlON_|D ON TO DELEGATE_|D_STACK

SET SELECTED__F|LE_APPLlCAT|ON_|D TO DELEGATE_REQUEST. 305
DELEGATE_APPL|CAT|ON ID

SET APPLlCATlON_COMMAND TO DELEGATE_REQUEST. 307
APPL|CATlON_COMMAND PARAMETER

309

SEND APF’L|CATlON_COMMAND TO AAM OPERATING SYSTEM

@ FIG. 3

SUBSTITUTE SHEET (RULE 26) Page 01512

Page 01513

WO 98/52152 PCT/GB98/01401

22/25

ANNEX H TO THE DRAWINGS

403

SET DELEGATE_RESPONSE_STATUS TO "SUCCESS"

401

GET APPL|CAT|ON_RESPONSES FROM DELEGATEE

SET DELEGATE__RESPONSE__AF’PLlCAT|ON_RESPONSES 405
TO

AF’F’L|CAT|ON_RESPONSES

 SET DELEGATE_RESF’ONSE__DELEGATE_APPL|CAT|ON_ID 407
TO

SELECTED_FlLE_APPLlCATlON_lD

POP OELEGATE_APPLIcATION_IO 409
FROM

DATA STOCK

SET SELECT_F|LE_AF’F’L|CATION_|D 411
TO

DELEGATE_APPLlCAT|ON_ID

SEND 413

DELEGATE_RESPONSE_DATA
TO CURRENT APPLICATION

@ FIG. 4

SUBSTITUTE SHEET (RULE 26) Page 01513

Page 01514

WO 98/52152 PCT/GB98/01401

23/25

AIIIIEII G IOI IIIIIIWIIIGS

 501

RECEIVE DELEGATE

ID REQUEST

SET STATUS TO

FAILURE
IS ID STACK

EMPTY ?

505

 SET STATUS TO

"SUCCESS"

SET RESPONSE TO

"NO DELEGATOR

APPLICATION"

RETRIEVE DATA

FROM STACK AND

SET RESPONSE TO

DELEGATOR ID

509

 SEND RESPONSE TO

OPERATING SYSTEM

 FIG. 5

SUBSTITUTE SHEET (RULE 26) page 01514

Page 01515

WO 98/52152 PCT/GB98/01401

2“’25 ANNEX (1 TO THE DRAWINGS

601

611
CONTROL

LOGK3

609

617

607

605

603

615

/
613

FIG. 6

SUBSTITUTE SHEET (RULE 25) page 01515

Page 01516

WO 98/52152

| 702
1

CO

Q

DELEGATE

7

Q@

25/25

Mix 9 re IHEDRAWIHGS

70

701

(

703

FIG. 7A

01 707

705

03 7“ 709

FIG. 7B

on m~

03 709

FIG. 7c
SUBSTITUTE SHEET (RULE 26)

707

705

PCT/GB98/01401

Page 01516

Page 01517

WORLD INTELLECTUAL PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classincatinn 6 3 (11) International Publication Number: WO 98/52153
GOGK 19/07

(43) International Publication Date: 19 November 1998 (19.11.98)

(21) International Application Number: PCT/GB98/01411 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 14 May 1998 (14.05.98) GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI,

(30) Priority Data: TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
60/046,514 15 May 1997 (1505.97) US (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
60/046,543 15 May 1997 (15.05.97) US (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
09/075,975 11 May 1998 (11.05.98) US (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,

LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

(71) Applicant: MONDEX INTERNATIONAL LIMITED
[GB/GB]; 47-53 Cannon Street, London EC4M 5SQ (GB).

Published

(72) Inventor: RICHARDS, Timothy, Philip; 32 Craig Mount, Without international search report and to be republished
Radlett, Herts WD7 7LW (GB). upon receipt of that report.

(74) Agent: POTTER, Julian, Mark; D. Young & Co., 21 New Fetter
Lane, London EC4A IDA (GB).

(54) Title: IC CARD WITH SHELL FEATURE

1w

PROCES$NG CONTROL gfl?gL4
um LOGIC PORTS

CO-
PROCESSOR

190

There is provided an integrated circuit card having an associated operating mode. The integrated circuit card includes: a
microprocessor; a memory coupled to the microprocessor; data stored in the memory representative of the operating mode; an operating
system stored in the memory for processing selected information in a first IC card format; a shell application stored in the memory for
processing the selected information in a second IC card format; and means for routing the selected information to either the operating system
or the shell application responsive to the operating mode. The selected information may be a command, such as a file access command.

(57) Abstract

Page 01517

Page 01518

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria
Benin
Brazil
Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Cuba
Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain
Finland
France
Gabon
United Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Israel
Iceland
Italy
Japan
Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan
Saint Lucia
Liechtenstein
Sri Lanka
Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho
Lithuania
Luxembourg
Latvia
Monaco

Republic of Moldova
Madagascar
The former Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore

SI
SK
SN
SZ
TD
TG
TJ
TM
TR
TT
UA
UG
US
UZ
VN
YU
ZW

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
Turkmenistan
Turkey
Trinidad and Tobago
Ukraine
Uganda
United States of America
Uzbekistan
Viet Nam
Yugoslavia
Zimbabwe

Page 01518

Page 01519

W0 98/52153 PCT/GB98/01411

IC CARD WITH SHELL FEATURE

SUBSTITUTE SHEET (RULE 25) Page 01519

Page 01520

WO 98/52153 PCT/GB98/01411

BACKGROUND OF INVENTION

Integrated circuit (IC) cards are becoming increasingly used for many

different purposes in the world today, principally because they are ideal tools for

5 the delivery of distributed, secure information processing at a low cost. An IC

card, also called a “smart card,” is a card typically the size of a conventional credit

card, but which contains a computer chip on the card. The computer chip on the IC

card typically includes a microprocessor, read-only-memory (ROM), electrically

erasable programmable read-only-memory (EEPROM), a random access memory

10 (RAM), an input/output (I/O) mechanism, and other circuitry to support the

microprocessor in its operations. The computer chip can execute one or more

applications stored on the card. Examples of applications that IC cards are being

used to store and execute include credit/debit, electronic money/purse, telephone

calling card, and loyalty reward applications.

15 As the use and application of IC cards has increased, IC card

standards have been promulgated. For example, the International Organization for

Standardization (ISO) and the International Engineering Consortium (IEC) have

promulgated several industry—wide standards for IC cards, ISO/IEC 7816-1 through

ISO 7816-8. The ISO/IEC standards provide, for example, general guidelines for

20 file structures and referencing methods so that various applications and IC card

operating systems can understand one another and work in a cohesive manner.

Additionally, in the field of payment systems (such as credit and debit card

systems), the EMV ‘96 Integrated Circuit Card Specification for Payment Systems,

Version 3.0, June 30, 1996, available from MasterCard International Incorporated®,

-2-

SUBSTITUTE SHEET (RULE 25) Page 01520

Page 01521

WO 98/52153

10

15

20

PCT/GB98/01411

specifies file structures and file referencing methods that are generally compliant

with ISO/IEC standards 7816-4 and 7816-5,. Nonetheless, proprietary IC card

standards exist that are not compliant with ISO/IEC standards.

The existence of multiple IC card standards is problematic to the IC

card manufacturer, who is required to produce different versions of its IC cards,

with different operating systems that are compatible with the different standards.

Moreover, since operating systems are typically loaded into the ROM of an IC card

when it is initially produced, each time a standard is updated or a new standard is

adopted, an IC card manufacturer may be required to distribute new IC cards with

an updated operating system compatible with the new or updated standard.

It would advantageous to the card manufacturer, card issuer,

application provider, and card user if the operating system of an IC card was not

required to be updated each time a new or updated IC card standard was

promulgated. These and other technical problems are addressed by embodiments of

the present invention.

SUMMARY OF THE INVENTION

The present invention addresses the aforementioned technical

problems by introducing a “shell” application that executes “on top” of the

operating system and that handles the implementation of IC card standards that are

not compatible with the initially loaded operating system of the IC card.

Advantageously, the shell application supplements the IC card standards with which

the IC card is compatible. Thus, as standards change or new standards are adopted,

an IC card needs to be updated only with a new shell application, rather than

-3-

SUBSTITUTE SHEET (RULE 25) Page 01521

Page 01522

WO 98/52153

10

15

20

PCT/GB98/01411

having to be updated with a new operating system.

According to a preferred embodiment of the present invention, there

is provided an integrated circuit card having an associated operating mode. The

integrated circuit card includes: a microprocessor; a memory coupled to the

microprocessor; data stored in the memory representative of the operating mode; an

operating system stored in the memory for processing selected information in a first

IC card format; a shell application stored in the memory for processing the selected

information in a second IC card format; and means for routing the selected

information to either the operating system or the shell application responsive to the

operating mode. The selected information may be a command, such as a file access

command. In addition, the selected information may be associated with a file

structure format.

In accordance with a further preferred embodiment of the present

invention, there is also provided a method of loading an application onto an IC

card, wherein the application has an associated file mode type and the IC card has

an associated operating mode. The method includes the steps of determining

whether the file mode type of the application is a predetermined file mode type, and

changing the operating mode of the IC card if the file mode type corresponds to the

predetermined file mode type. The predetermined file mode type is, for example, a

“shell” file mode type, and the operating mode of the IC card is, for example, either

“OS” or “shell.” Thus, when an application has an associated file mode type of

“shell,” the operating mode of the IC card is changed from “OS” to “shell.”

Preferably, a shell application is not loaded unless it is the first

-4-

SUBSTITUTE SHEET (RULE 25) Page 01522

Page 01523

WO 98/52153

10

I5

20

PCT/GB98/01411

application loaded. In this way, operability of the non-shell applications loaded

onto the IC card may be guaranteed. Thus, the method of loading an application

according to a further embodiment of the present invention preferably further

includes the steps of: determining whether any other applications have already been

loaded onto the IC card; loading the application onto the IC card if the file mode

type of the application corresponds to the predetermined file mode type and no

other applications have already been loaded onto the IC card; and changing the

operating mode of the IC card if the file mode type corresponds to the

predetermined file mode type and no other applications have already been loaded

onto the IC card.

In accordance with another preferred embodiment of the present

invention, there is also provided a method of routing a command by an operating

system of an IC card, wherein the IC card has an associated operating mode. The

method includes the steps of determining whether the operating mode of the IC card

is a predetermined operating mode; and routing the command directly to an

application if the operating mode of the IC card corresponds to the predetermined

operating mode. For example, assuming a SELECT FILE command is received by

an IC card from a terminal and the IC card has a shell application loaded thereon, if

the operating mode of the IC card and the predetermined operating mode are both

“shell,” the operating system would route the SELECT FILE command to the shell

application.

SUBSTITUTE SHEET (RULE 26) Page 01523

Page 01524

W0 98/52153

10

15

20

PCT/GB98/01411

Preferably, the method of routing further includes the steps of: if the

operating mode of the IC card does not correspond to the predetermined operating

mode, determining whether the command is a select file command supported by the

operating system; and routing the command to an operating system routine

responsible for the select file command if the command is a select file command

supported by the operating system.

Preferably, the IC card further comprises a currently selected file

having an associated file type and the method of routing further comprises the steps

of: if the operating mode of the IC card does not correspond to the predetermined

operating mode, determining whether the file type of the currently selected file is

supported by the operating system; and routing the command to an operating system

routine responsible for the file type if the file type of the currently selected file is

supported by the operating system. If the file type of the currently selected file is

not supported by operating system, the method further comprises the step of routing

the command to an application.

In accordance with another preferred embodiment of the present

invention, there is also provided a method of delegating control between

applications by an operating system of an IC card, wherein the IC card is for use

with a defined IC card format and has an associated operating mode. The method

includes the steps of storing a shell application in the IC card for communicating

with the operating system and for processing information in a format compliant

with the defined IC card format; receiving a request by the operating system from a

first application for delegating control to a second application; determining whether

-5-

SUBSTITUTE SHEET (RULE 25) Page 01524

Page 01525

WO 98/52153 PCT/GB98/01411

the operating mode of the IC card is a predetermined operating mode; determining

whether the second application corresponds to the shell application; and failing the

request for delegating control if the operating mode of the IC card corresponds to

the predetermined operating mode and the second application corresponds to the

5 shell application.

In accordance with another preferred embodiment of the present

invention, there is also provided a method of initiating communication between an

IC card and a terminal, wherein the IC card comprises a microprocessor and a

memory, the memory having stored therein an operating system, a shell application,

10 and data representative of an operating mode of the IC card, the operating mode

representing whether selected information is to be routed to the operating system or

the shell application. The method of initiating includes the steps of receiving a

reset signal by the IC card from the terminal; and returning an answer-to-reset from

the IC card to the terminal based on the operating mode of the IC card.

15 Preferably, a plurality of answer-to-reset files are stored in the

memory of the IC card, and the step of returning an answer-to-reset comprises

selecting one of the answer-to-reset files based on the operating mode. The selected

information may be a command, such as a file access command. In addition, the

selected information may be associated with a file structure format.

SUBSTITUTE SHEET (RULE 26) Page 01525

Page 01526

WO 98/52153

10

15

20

PCT/GB98/01411

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments in accordance with the invention will now be

described by way of example only, with reference to the accompanying drawings, in

which:

Fig. 1 is a schematic representation of an IC card in accordance with

a preferred embodiment of the present invention;

Fig. 2 is a perspective view of an IC card and terminal in accordance

with a preferred embodiment of the present invention;

Fig. 3 is a functional block diagram of an IC card in accordance with

a preferred embodiment of the present invention;

Fig. 4 is an exemplary hierarchical file structure according to the

EMV Specification;

Figs. 5A and 5B are flowcharts illustrating the steps for a load_file

command used in accordance with a preferred embodiment of the present invention;

Fig. 6 is a flowchart illustrating the steps for a delete_f1le command

used in accordance with a preferred embodiment of the present invention;

Fig. 7 is a flowchart illustrating the steps for a route command used

in accordance with a preferred embodiment of the present invention;

Fig. 8 is a flowchart illustrating the steps for a delegate_request

command used in accordance with a preferred embodiment of the present invention;

and

Fig. 9 is a flowchart illustrating the steps for a

determine__ATR__status command used in accordance with a preferred embodiment

-3-

SUBSTITUTE SHEET (RULE 25) Page 01526

Page 01527

W0 98/52153 PCT/GB98/01411

of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 provides a schematic representation of a typical IC card 10

that can be used with the presently claimed invention. The IC card 10 includes an

5 integrated circuit 12 and one or more electrical contacts 14, connected to the

integrated circuit 12, for communication between the integrated circuit 12 and

devices outside the IC card 10.

Fig. 2 shows an example of a device with which the IC card 10

communicates. As used in this specification and the appended claims, the term

10 “terminal” shall be used to generically describe devices with which an IC card may

communicate. A typical terminal 20, as shown in Fig. 2, includes a card reader 22,

a keypad 24, and a display 26. The keypad 24 and the display 26 allow a user of

the IC card 10 to interact with the terminal. The keypad 24 allows the user to

select a transaction, to enter a personal identification number (“PIN”), and to enter

15 transactional information. The display 26 allows the user to receive informational

messages and prompts for data entry. Other types of terminals may include IC card

compatible ATM machines and telephones.

Fig. 3 provides a functional block diagram of the integrated circuit

12. At a minimum, the integrated circuit 12 includes a processing unit 100 and a

20 memory unit 110. Preferably, the integrated circuit 12 also includes control logic

150, a timer 160, security circuitry 170, input/output ports 180, and a co-processor

190. The control logic 150 provides, in conjunction with the processing unit 100,

the control necessary to handle communications between the memory unit 110 and

-9-

SUBSTITUTE SHEET (RULE 26) Page 01527

Page 01528

W0 98/52 1 53

10

15

20

PCT/GB98/01411

input/output ports 180. The timer 160 provides a timing reference signal for the

processing unit 100 and the control logic 150. The security circuitry 170 preferably

provides fusible links that connect the input/output ports 180 to internal circuitry for

testing during manufacturing. The fusible links are burned after completion of

testing to limit later access to sensitive circuit areas. The co-processor 190 provides

the ability to perfonn complex computations in real time, such as those required by

cryptographic algorithms.

The memory unit 110 may include different types of memory, such

as volatile and non—volatile memory and read—only and programmable memory. For

example, as shown in Fig. 3, the memory unit 110 may include read-only memory

(ROM), electrically erasable programmable read—only memory (EEPROM), and

random-access memory (RAM).

The memory unit 110 stores IC card data such as secret

cryptographic keys and a user PIN. The secret cryptographic keys may be any type

of well—known cryptographic keys, such as the private keys of public-key pairs.

Preferably, the secret cryptographic keys are stored in a secure area of ROM or

EEPROM that is either not accessible or has very limited accessibility from outside

the IC card.

The memory unit 110 also stores the operating system of the IC card.

The operating system loads and executes IC card applications and provides file

management and other basic card services to the IC card applications. Preferably,

the operating system is stored in ROM.

In addition to the basic services provided by the operating system,

-10-

SUBSTITUTE sneer (RULE 25) Page 01523

Page 01529

WO 98/52153

10

15

20

PCT/GB98/0141 1

the memory unit 110 may also include one or more IC card applications. For

example, if the IC card is to be used as an electronic cash card, an application

called MONDEXTM PURSE might be included on the IC card, which loads an

electronic value of a certain currency from a user’s account in a financial

institution onto the IC card. An application may include both program and data

files, which may be stored in either ROM or EEPROM.

To enable the inter-operability of different terminals with different IC

cards and applications, standards have been promulgated with respect to the

organization of files stored on an IC card. For example, in the payment systems

industry, the EMV ‘96 Integrated Circuit Card Specification for Payment Systems,

Version 3.0, June 30, 1996, available from MasterCard International Incorporated®

(hereinafter the “EMV Specification”), incorporated herein by reference in its

entirety, sets forth a hierarchical tree structure for accessing files, which is generally

compliant with the ISO/IEC 7816-4 and 7816-5 standards. An illustrative example

of such a hierarchical tree structure is provided in Fig. 4.

In Fig. 4, there are shown four types of file categories: the Directory

Definition File (DDF), the Directory File (DIR), the Application Definition File

(ADF), and the Application Elementary File (AEF). According to the EMV

Specification, each DDF contains one DIR. Each DIR may contain one or more

ADF and/or DDF. Each ADF contains one or more AEF, which are files

containing data related to a particular application.

According to the EMV Specification, files are referenced either by a

unique name or by a short file identifier (SFI). A DDF or ADF is referenced by its

-11-

SUBSTITUTE SHEET (RULE 25) Page 01529

Page 01530

WO 98/52153 PCT/GB98/01411

unique name using a SELECT command. Once a particular DDF or ADF is

selected, a corresponding DIR or AEF is referenced with an SFI using a READ

RECORD command. In the case of a DIR, the SFI is in the range of l to 10. In

the case of an AEF, the SFI is in the range 1 to 30. The EMV Specification sets

5 forth at least one mandatory DDF with a unique name of “lPAY.SYS.DDF0l.”

The format for a SELECT command for selecting a DDF or ADF

according to the EMV Specification is shown in Table 1. In response to a SELECT

command for a DDF, an IC card returns the SFI of the DIR attached to the DDF.

When an ADF is selected, an IC card returns information that the terminal may use,

10 in conjunction with other commands, to retrieve the SFI of AEFs related to the

ADF.

Once the SFI of a DIR or AEF is known, a terminal may use the

READ RECORD command to read the records of the DIR or AEF. The format of

the READ RECORD command according to the EMV Specification is shown in

15 Table 2.

-12-

SUBSTITUTE SHEET (RULE 25) Page 01530

Page 01531

W0 98/52153 PCT/GB98/01411

TABLE 1: SELECT Command Format

Bywumber
1—

Hexadecimal “O4”

Hexadecimal “O0”

5 Length of File Name (Hexadecimal “O5”

_ LL10”)

6-21 File Name (number of bytes variable

depending on length of file name)

Hexadecimal “O0”

10

TABLE 2: READ RECORD Command Format

15

Hexadecimal “OO”

Although the EMV Specification sets a standard for file organization

20

within the payment systems industry, other IC card file organization standards may

-13-

SUBSTITUTE sneer (RULE 25) Page 01531

Page 01532

W0 98/52153 PCT/GB98/0141 I

exist in other industries. Some may be proprietary and may not be generally

compatible with the EMV Specification or ISO/IEC 7816-4 or 7816-5.

Typically, an IC manufacturer who desires to produce IC cards

compatible with the EMV Specification and other proprietary specifications must

5 produce IC cards with different operating systems to implement the different file

structures and different file referencing and access methods defined by the various

specifications. According to embodiments of the presently claimed invention,

however, a manufacturer may produce an IC card with a single operating system

and execute different shell applications to implement the different standards.

10 Figs. 5A to 9 are flowcharts illustrating a preferred embodiment of

IC card operating system routines capable of supporting a shell application. In the

embodiment of Figs. 5A to 9, the operating system is a multiple application

operating system that runs on IC cards, such as the MULTOSTM operating system

from Mondex International Limited. Such an operating system includes routines for

15 loading and deleting applications, routines for routing commands to appropriate

operating system processes or applications, routines for handling delegation of

processing between applications, and routines for handling the answer—to-reset

(ATR) message.

In the embodiment of Figs. 5A to 9, only one shell application can

20 be loaded onto an IC card at any one time. Once the shell application is loaded, it

is valid for all applications loaded on the IC card. Preferably, the operating system

has a delegation feature, such as the delegation feature described in the United

States patent application entitled “Multi-Application IC Card with Delegation

-14-

SUBSTITUTE SHEET (RULE 26) Page 01532

Page 01533

WO 98/52153 PCT/GB98/01411

Feature,” by Everett et al., filed April 23, 1998, which is hereby incorporated by

reference to Annex A attached hereto. When the shell application receives a

command from the operating system, it interprets the command and/or delegates

control to the application associated with the command. If control is delegated to

5 an application, when the application is finished, it returns control to the shell

application. The shell application then returns any response to the operating system

in the proper format for transmission to the terminal.

Although for the sake of simplicity the preferred embodiment loads

only a single shell application at a time, the present invention is not limited to such

10 an embodiment. It is within the scope of embodiments of the present invention for

multiple shell applications to be loaded onto an IC card and to be used with

different sets of applications.

As a matter of notation, the data elements referred to in the

flowcharts of Figs. 5A to 9 follow a dot notation convention where the data element

15 following the dot (“.”) is a component of the data element preceding the dot. For

example, the data element file__m0de includes two components: file__m0de_type and

application_id. In the dot notation used, the first component data element is

referred to as file_mode.file_mode__type and the second component data element is

referred to as file_mode.application_id.

20 Figs. 5A and 5B are flowcharts illustrating the implementation of a

file loading routine by an operating system capable of supporting a shell

application. In step 510, the routine receives the file loading command

-15-

SUBSTITUTE SHEET (RULE 26) Page 01533

Page 01534

WO 98/52153

10

15

20

PCT/GB98/01411

load_flle_command from the security manager of the operating system,

OS_Security_Manager. In step 520, after receiving the command, the routine

checks whether the application identification number associated with the command,

load_file_command. applz‘catz'on_id, is present in the operating system control

information, os_control_info.application_id. If the application identification number

is already present, in step 521, the routine sets the response status

load_file_response.status to “failed” and sets the error description

load_flle_resp0nse. error_cause to “duplicate application id.” This error response

indicates that the application is already loaded and cannot be loaded again. The

error response load_file_resp0nse is then returned to the 0S_Securz'ty_Manager.

If the application identification number of the application to be

loaded is not present, in step 530, the routine checks the file mode type of

load_/ile__command. The file mode type may be, for example, “shell” or “non-

shell.” A “shell” file mode type indicates that the application to be loaded is a shell

application, while a “non-shell” file mode type indicates that the application to be

loaded is not a shell application.

If the application to be loaded is a shell application, the routine

further checks whether os_control_z'nfo is empty. If os_c0ntrol__info is not empty,

then one or more applications have already been loaded onto the IC card. If this is

the case, in step 531, the routine sets the response status load_file_response.status to

“failed” and sets the error description load_file_response. error_cause to “application

already loaded.” This error response is a result of the restriction that the shell

-15-

SUBSTITUTE SHEET (RULE 26) Page 01534

Page 01535

WO 98/52153 PCT/GB98/01411

application is to be valid for all applications loaded onto the IC card. To ensure

that all applications will operate correctly with the shell application, the shell

application must be the first application loaded onto the IC card.

Assuming that an error condition has not been triggered in steps 520

5 and 530, the directory file and os_control_info are updated with the appropriate

application information in steps 540 and 550.

With reference to Fig. 5B, in step 560, the file mode type of

load_file_c0mmand is checked once again. If the file mode type is “shell,” then in

step 570, the file_m0de and the selected_file data elements are updated. The

10 file_mode data element contains both the file_mode__type of the IC card and the

application_z'd of the shell application. The file_mode.file_mode__type variable

represents the operating mode of the IC card and, thus, may also be referred to as

the “operating mode.” The operating mode of the IC card may be, for example,

either “OS” or “shell.” “OS” mode indicates that a shell is not loaded, while

15 “shell” mode indicates that a shell is loaded. The selected__file data element

contains the application_id and the file_type of the currently selected file.

In step 570, file_mode.file_m0de_type is set to “shell.” The

file_mode.file_m0de__type represents the operating mode of the IC card and, thus, is

also referred to as the “operating mode.” In addition, the application identification

20 number of the currently selected file is set to the application identification number

of the shell application. The file__type of the selected file is set to “dedicated file,”

indicating that file commands are not to be handled by the operating system.

-17-

SUBSTITUTE SHEET (RULE 26) Page 01535

Page 01536

WO 98/52153 PCT/GB98/0141 1

In step 580, the response status load_file__response.status is set to

“success” and is returned to the 0S_Security_Manager.

Fig. 6 is .a flowchart illustrating the implementation of a file deleting

routine by an operating system capable of supporting a shell application. In step

5 610, a delete_filé_command is received from the 0S_Security_Manager. In step

620, checking is performed to verify that the application being deleted exists in

os_contr0l_info __ i.e., that the application is loaded on the IC card. If the

application identification number is not in 0s_control_info, then in step 670, the

response status deleteg/ile_resp0nse.status is set to “failed” and the error description

10 delete_file_resp0nse. err0r__cause is set to “application not loaded.”

If the application is loaded on the IC card, in step 630 checking is

performed to determine whether the file mode type of the application being deleted,

delete_file_command.fi1e_mode_type, is equal to “shell.” Checking is also

performed to determine whether the application identification ntunber of the

15 application being deleted, deleteJ‘ile_c0mmand. applz'cation_id, is equal to the

application identification number assigned to the file mode of the IC card,

file_mode.application_id. In short, checking is performed to determine whether a

loaded shell application is being deleted.

If a loaded shell application is being deleted, in step 680,

20 file_m0de.fiIe_mode_type is set to “OS” and selected_/ile.file_type is set to the

default file type for the IC card, i.e., “master file.”

In step 640, the directory file record corresponding to the application

-13-

SUBSTITUTE SHEET (RULE 25) Page 01536

Page 01537

WO 98/52153 PCT/GB98/01411

is deleted from the directory in which it is stored. In step 650, the application

identification number of the application is deleted from os_control_info. In step

660, delete_file_resp0nse. status is set to “success” and the response status is

returned to the 0S_Securz'ty_Marzager.

5 Fig. 7 is a flowchart illustrating the implementation of a command

routing routine by an operating system capable of supporting a shell application. In

step 710, the route routine receives a command from the cardholder __ i.e., a

command from outside of the IC card. In step 720, checking is performed to

determine the operating mode of the IC card. If fz‘le_m0de.file_moa’e_type is not

10 equal to “OS,” a shell application has been loaded onto the IC card. Thus, the

command from the cardholder is sent directly to the currently selected application

or applications. In the typical case, the currently selected application will be the

shell application. It may be the case, however, that the shell application has

delegated control to another application and that that application receives and

15 processes the command directly.

If the operating mode of the IC card is equal to “OS,” the various

conditions defined in steps 730 to 750 are checked. In step 730, if the command is

a seIect_file command, the command is sent to the select_file routine of the

operating system. In step 740, if the file type of the currently selected file is

20 “master file,” the command is sent to the provia'e_card_facz'lz'ties routine of the

operating system, which handles commands associated with the master file type.

Similarly, in step 750, if the file type is “directory file,” the command is sent to the

-19-

suasrrrure SHEET (RULE 25) Page 01537

Page 01538

W0 98/52153

10

15

20

PCT/GB98/01411

read_card-leveI_data_fiIes routine of the operating system, which handles

commands associated with the directory file type. If none of the conditions in steps

730 to 750 are satisfied, then the selected file must be an application. Therefore,

the command is sent to the currently selected applications.

Fig. 8 is a flowchart illustrating a delegate request checking routine

that is necessary if an operating system supports both a shell application and a

delegate feature. In step 810, a delegate_request is received from an application.

In step 820, checking is performed to determine whether the operating mode of the

IC card is “shell” and whether the application identification number of the delegated

application (the application to which control is being sought to be transferred) is the

same as the application identification of the shell application of the IC card. If both

conditions are true, then an application is attempting to delegate control to the shell

application. Since the shell application is the first application loaded and selected,

and thus delegates control to all other applications, such a delegation would be

recursive. Recursive delegation is not allowed. In step 830, therefore,

deIegate_response.status is set to “failed” and delegate_resp0nse.error_cause is set

to “recursive shell delegation.” The delegate response is returned to the delegator

applications. In step 820, if it is determined that the delegator application has

submitted a proper, non-recursive delegate request, the request is processed in

accordance with the operating system’s delegate handling procedures.

When an IC card is inserted into a terminal, it receives a reset signal.

To initiate communication with the terminal, the IC card must respond to the reset

-20-

SUBSTITUTE SHEET (RULE 26) Page 01533

Page 01539

wo 93/52153 PCT/GB98/0141 1

signal with an appropriate answer-to—reset (ATR) message. Fig. 9 is a flowchart

illustrating an ATR routine for an IC card operating system that supports a shell

application.

In step 910, the operating mode of the IC card is checked. If the

5 file_mode.file_mode_type is equal to “OS,” in step 920, the file type of selected_file

is set to the default “master file” and s_ATR_status is set to “default ATR.”

Otherwise, if the operating mode of the IC card is “shell,” in step 930, the file type

and application identification number of the selected file are set to “dedicated file”

and file_mode.app1ication_id, respectively. s_ATR_status is set to “shell ATR.” In

10 both cases, s~ATR_starus is returned to the control_A TR routine of the operating

system. Using s_A TR_status, the controI_ATR routine responds with the

appropriate ATR to the reset signal from the terminal. The appropriate ATR may

be stored in different files on the IC card, which are selected based on

Sv/1 TR_status.

15 Although the present invention has been described with reference to

certain preferred embodiments, various modifications, alterations, and substitutions

will be known or obvious to those skilled in the art without departing from the

spirit and scope of the invention, as defined by the appended claims.

The scope of the present disclosure includes any novel feature or

20 combination of features disclosed therein either explicitly or implicitly or any

generalisation thereof irrespective of whether or not it relates to the claimed

invention or mitigates any or all of the problems addressed by the present invention.

-21-

SUBSTITUTE SHEET (RULE 25) Page 01539

Page 01540

WO 98/52153 PCT/GB98/01411

The application hereby gives notice that new claims may be formulated to such

features during the prosecution of this application or of any such further application

derived therefrom. In particular, with reference to the appended claims, features

from dependant claims may be combined with those of the independent claims in

5 any appropriate manner and not merely in the specific combinations enumerated in

the claims.

-22-

SUBSTITUTE SHEET (RULE 26) Page 01540

Page 01541

WO 98/52153 PCT/GB98/01411

ANNEX e T0THF;BES(R!PTl0H

ANNEX A

MULTI-APPLICATION IC CARD WITH DELEGATION FEATURE

SUBSTITUTE SHEET (RULE 26) Page 01541

Page 01542

wo 93/52153 PCT/GB98/01411

. '. I ‘lllllllllll Pl l'0Tll§l}iSfll:PTi0:-I

BACKGROUND OF INVENTION

Integrated circuit (“IC”) cards are becoming increasingly used for

5 many different purposes in the world today. An IC card (also called a smart card)

10

15

20

typically is the size of a conventional credit card which contains a computer chip

including a microprocessor, read-only-memory (ROM), electrically erasable

programmable read-only-memory (EEPROM), a random access memory (RAM), an

Input/Output (I/O) mechanism and other circuitry to support the microprocessor in

its operations. An IC card may contain a single application or may contain multiple

independent applications in its memory. MULTOSTM is a multiple application

operating system which runs on IC cards, among other platforms, and allows

multiple applications to be executed on the card itself. The multiple application

operating system present on the IC card allows a card user to run many programs

stored in the card (for example, credit/debit, electronic money/purse and/or loyalty

applications) irrespective of the type of terminal (i.e., ATM, telephone and/or POS)

in which the card is inserted for use.

A conventional single application IC card, such as a telephone card

or an electronic cash card, is loaded with a single application card and only

executes that one application when inserted into a terminal. For example, a

telephone card could only be used to charge a telephone call and could not be used

as a credit/debit card. If a card user desires a variety of application functions to be

performed by single application IC cards issued to him or her, such as both an

electronic purse and a credit/debit function, the card user would be required to carry

-24-

SUBSTITUTE SHEET (RULE 25) Page 01542

Page 01543

W0 98/52153

10

15

20

PCT/GB98/0141 1

ANNEX a torllltscautriou
multiple physical cards on his or her person, which would be quite cumbersome and

inconvenient. If an application developer or card user desired two different

applications to interact or exchange data with each other, such as a purse

application interacting with a frequent flyer loyalty application, the card user would

be forced to swap multiple cards in and out of the card—receiving terminal during

the transaction, making the transaction difficult, lengthy and inconvenient.

Therefore, it is beneficial to store multiple applications on the same

IC card. For example, a card user may have both a purse application and a

credit/debit application on the same card so that the user could select which type of

payment (by electronic cash or credit card) to use to make a purchase. Multiple

applications could be provided to an IC card if sufficient memory exists and an

operating system capable of supporting multiple applications is present on the card.

The increased flexibility and power of storing multiple applications

on a single card create new challenges to be overcome concerning the integrity and

security of the information (including application code and associated data)

exchanged between the individual card and the application provider as well as

within the entire system when communicating information between applications.

For instance, the existence of multiple applications on the same card

allows for the exchange of data between two applications, while one of the

applications is being executed. As stated above, a frequent flyer loyalty program

may need to be accessed during the execution of an electronic purse application. If

data is passed between applications in an insecure manner, it may be possible for a

third party monitoring the transaction to determine the contents of the transferred

-25-

SUBSTITUTE SHEET (RULE 25) Page 01543

Page 01544

WO 98/52153 PCT/GB98/01411

 ANNE}! Q 79?!” ‘7"?§?ll(!ll
data or even other private data associated with one or both of the applizations.

Thus, it would be beneficial to provide an application architecture and memory

organization which protects an application’s data from being discovered by a third

party when it is exchanged with other applications present on the IC card.

5 Accordingly, it is an object of the invention to provide an application

architecture and memory organization which provides for a secure data interaction

between applications and allows multiple applications to be accessed while

performing a desired task or function.

10 SUMMARY OF THE INVENTION

The present invention provides for a multiple application architecture

for an IC card called an application abstract machine (AAM) and a method for

15 implementing that architecture. The processing of multiple applications is

accomplished by generating for at least one application (the “first application”) a

data memory space including at least two segments, a volatile memory segment and

a non-volatile memory segment, commencing the execution of the first

application’s instructions; delegating or switching execution from the first

20 application to the delegated application and in so doing, saving any data generated

by the first application in the logical data memory space associated with the first

application; executing the second application’s instructions; retrieving the saved

data and completing with this data the execution of the first application’s

instructions.

-26-

SUBSTITUTE SHEET (RULE 25) Page 01544

Page 01545

WO 98/52153

10

15

20

PCT/GB98/0141 1

Will R TOTHE DESCRIPTION

Additional delegation commands can be issued by the second

application or other subsequent applications. The command delegated is interpreted

by a delegated application in the same manner as a selection command being issued

directly by a terminal and therefore each application performs the security functions

at the same level as if a terminal is issuing the command.

The volatile memory segment can further be separated into public

(“Public”) and dynamic (“Dynamic”) portions. Data can be exchanged between a

plurality of applications and/or a terminal when stored in the Public region of the

data memory. The Dynamic memory region can be used solely as temporary work

space for the specific application being executed.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the invention will become

apparent from the following detailed description taken in conjunction with the

accompanying figures showing illustrative embodiments of the invention, in which

Fig. 1 is block diagram illustrating the data memory space segment

and associated registers for an IC card application using the AAM organization;

Fig. 2 is a block diagram illustrating the code memory and the data

memory spaces for an IC card application using the AAM architecture;

Fig. 3 is a flow diagram illustrating the steps of performing a request

for a delegation function by one application to another;

Fig. 4 is a flow diagram illustrating the steps of performing a return

-27-

SUBSTITUTE SHEET (RULE 25) Page 01545

Page 01546

W0 98/52153 PCT/GB98/01411

 Alilélll Fl ?i}T.h'”3E$Cl!??llQll

delegation control function for a delegate application to a delegator application;

Fig. 5 is a flow diagram illustrating the steps of performing an

inquire delegator ID request of a delegation function;

Fig. 6 is a block diagram of an IC card chip which can be used as a

5 platform in accordance with the invention; and

Figures 7A, 7B and 7C illustrate multiple delegation calls made

between three applications.

Throughout the figures, the same reference numerals and characters,

unless otherwise stated, are used to denote like features, elements, components or

10 portions of the illustrated embodiments. Moreover, while the subject invention will

now be described in detail with reference to the figures, it is done so in connection

with the illustrative embodiments. It is intended that changes and modifications can

be made to the described embodiments without departing from the true scope and

spirit of the subject invention as defined by the appended claims.

15

-23-

SUBSTITUTE SHEET (RULE 25) Page 01546

Page 01547

W0 98/52153

10

15

20

PCT/GB98/01411

lllilllll H I9 THE DE$€?.lPTl0N
DETAILED DESCRIPTION OF THE INVENTION

The present invention provides for a method and apparatus for

processing multiple application programs with associated data stored on an IC card

which can be accessed and executed. An application stored on the card can be

selected by a terminal, or other interface device, or another application. Each

application program which is stored on the IC card when executed is allocated a

memory space organized by the program’s software code (instructions which are

executed by a processor located on the IC card) and the associated data which the

application stores and uses during execution of the program.

For example, a multi-application card may store a purse application,

or an electronic money application, and a specific loyalty application such as a

frequent flyer awards application. Each application has software code and

associated data to support the execution of that software code. Each application is

allocated a memory space when executed. In this example, there is interaction

between the two applications stored on the card. For each dollar electronically

spent to make a purchase, the user may be entitled to one frequent flyer mile which

is stored and processed by the frequent flyer program. The purse application need

not be aware of the specific loyalty program stored on the card, but instead may

contain an instruction to communicate with any loyalty program stored on the card.

The loyalty program will require input data representative of the amount of a

particular electronic value so that it can update its own stored data of current

frequent flyer miles for the user of the card.

-29-

SUBSTITUTE SHEET (RULE 26) Page 01547

Page 01548

W0 98/52153

10

15

20

PCT/GB98/01411

llllllill H l0TllEl3E5(RlPl|0ll

When two applications need to communicate during the same

transaction, a system architecture is required to process both applications in an

efficient and secure manner. One approach could be a windows type model where

both applications could be running at the same time. Presently, however, IC card

platforms are not powerful enough to simultaneously operate multiple programs

efficiently. Also, transferred data may be exposed to unwanted third party access.

The solution to this problem, provided by the current invention, which is described

in greater detail below, is to selectively interrupt the execution of applications in a

secure manner. This allows the integrity of the applications’ data to be maintained

and allows the best utilization of the available memory space in the IC card.

An efficient architecture for processing multi applications in an IC

card is termed an Application Abstract Machine (AAM) architecture and is

described herein. The AAM Architecture applies to any platform independent of its

hardware and enables developers to write applications to store on the IC cards

which are portable across many different types of platforms (e.g., IC cards built by

different manufacturers with different processor configurations) without the need for

knowledge about the specific hardware of the platform.

An application abstract machine (AAM), a term for the memory

allocation and organization for the data stored and used by each application, is

created for each application stored on the IC card which is executed by the

processor on the card. In order to ensure data integrity and security when data is

transferred between applications which are executed on the IC card, only one

application on the IC card is allowed to be executed at a time. Each application has

-30-

suasnrura SHEET (RULE 26) Page 01548

Page 01549

WO 98/52153 PCT/GB98/01411

ANNEX A TO THE DESCRIPTION
a data memory space which is virtually allocated and mapped onto the physical

memory addresses available in the IC card memories. Data is then passed between

two or more applications within a specified memory location and in a manner

consistent with transferring data to an external terminal or device with which the IC

5 card is securely interacting. At a general level, each AAM space created for each

application being executed includes two separate address spaces, one for the

program code itself and one for the program data which is stored and/or used by the

application. The program data address space is effectively divided into three

segments: a Static segment, a Dynamic segment and a Public segment which are

10 described in more detail in conjunction with Figure 1. As stated above, the Static,

Dynamic and Public segments are logically mapped to the physical memory; they

are virtual memory segments as opposed to physical memory segments. The AAM

data address space is preferably addressed and processed using seven different

address registers and two control registers.

15 Figure 1 shows an illustrative diagram of a logical data space

allocation 101 created for an application used in conjunction with the present

invention. The AAM data portion 101 includes a Static data space 103, a Public

data space 105 and a Dynamic data space 107. Also shown are a series of address

registers: the Static base address register 109, the Static top address register 111,

20 the Public base address register 113, the Public top address register 115, the

Dynamic base address register 117, the Dynamic top address register 121 and local

base address register 119 which serves as a local stack frame pointer in the

Dynamic data space when the application is being executed. The address registers

-31-

SUBSTITUTE SHEET (RULE 25) Page 01549

Page 01550

wo 93/52153 PCT/GB98/01411

,m"w

fififig F1_..._:.....-..._... _,_,_,__
can contain physical memory addresses but preferably contain offset addresses for

the various data address spaces in order to be hardware independent. An example

of the overall address space is 64K bytes, although the size varies with the

applicable platform and the available memory size. The registers can also be

5 considered pointers or can be any other conventional addressing mechanism.

Within the allocated AAM data space 101, the Static portion of the

memory is non-volatile which is not erased after power is removed from the IC

card (such as EEPROM), the Dynamic space is volatile (such as RAM) which may

be erased after power is removed from the card and the Public space is also volatile

10 (such as RAM). An IC card can receive power from a terminal after it is interfaced

into the terminal. Although an IC card may contain a battery to maintain some

power for memory and circuitry, volatile memory will typically be erased after the

IC card is removed from its power source.

The defined AAM data space has bytes in each segment which are

15 contiguous, so that applications can perform pointer and offset arithmetic. For

example, if the segment addresses “1515” and “1516,” or any other pair of

sequential numbers, are both valid and are present within the same segment, then

they address adjacent bytes. This allows offset values stored in registers to

determine the location of a desired memory address. The segment address of the

20 first byte of the Static segment is zero, so that the segment address of a given

location within the Static region is equal to its offset.

Pointers to other specific regions of the Static data area can be stored

in the Static data because the Static region is non-volatile. For example, if the card

-32-

SUBSTITUTE SHEET (RULE 25) Page 01550

Page 01551

WO 98/52153

10

15

20

PCT/GB98/01411

fillléil P» 161111 BESCRIPTION

user’s name is stored in the Static memory of a credit/debit application, the

application will know the card user’s name will always be stored in the 5”‘ memory

location above the starting point for the Static portion of memory. The location can

be noted as SB[5] or the 5”‘ byte above the Static Bottom. Since the Static memory

is non-volatile, it will not be erased after each transaction and the application will

always know of its location relative to the Static segments’ address registers.

On the other hand, the segment address of any location in the

Dynamic or Public segments is not always equal to a particular offset from the

beginning of the respective segment because the contents of those segments change

for each operation. The fourth location in the Dynamic segment will be different

for each operation performed by the application. The address of a memory location

of Dynamic or Public segment is fixed preferably only for the duration of one

command—response pair operation. Because segment addresses in Dynamic or

Public are not fixed, MULTOS Executable Language (MEL)TM instructions (or any

other program instructions) carmot refer to data using only segment addresses.

Instead, a tagged address preferably is used to identify data which is to be retrieved,

manipulated, transferred and/or stored with the IC card system.

A tagged address is a nineteen bit value consisting of a three bit tag

(address register number) and a sixteen bit offset. Each of the seven address

registers for the AAM data space contain a segment physical address. For instance,

the address registers SB 109 and ST 111 point to the boundaries of the Static, the

address registers PB 113 and PT 115 point to the boundaries of the Public and the

address registers DB 117 and DT 121 point to the boundaries of the Dynamic. For

-33-

SUBSTITUTE SHEET (RULE 25) Page 01551

Page 01552

WO 98/52153

10

15

20

PCT/GB98/0141]

‘J

it A SERIPTIOM

each segment, the top register points to the byte immediately after the last valid

x-~'1 , FF
). .1‘x

byte. For example, the last valid byte of the Static is ST[-1]. Register LB

functions as a stack frame pointer. It points to a location in the Dynamic segment

to indicate a specific byte of local data for the currently executing application.

Referring to Figure 1, the allocated Static segment 103 contains the

application’s non-volatile data. Static data includes data which is associated with

each application for every transaction such as the card user’s name, account

number, PIN value and address. Static data also includes variable data which is

stored for use in future transactions using the application. For example, in a purse

transaction, the electronic value data would be read from the Static segment and

later saved in the Static segment at the end of the transaction. Additionally,

transaction information data or available credit limits in the case of a credit/debit

application would be stored in Static data.

The Static data is addressed using register SB (Static Base) and the

register ST (Static Top) as offset registers. These registers contain the offset value

from a physical address in a memory on the IC card. The individual memory

location is then further offset from these starting points such as SB[3] or ST[-5].

SB is defined as zero and ST is equal to the size of the application’s Static data

which is set when the application is loaded onto the IC card. The multiple

application operating system ensures that no other application can read or write the

data stored in the Static segment of a particular application. Using current

technology, the Static segment is preferably mapped onto an EEPROM (Electrically

Erasable Programmable Read-Only Memory) which is non-volatile.

-34-

SUBSTITUTE SHEET (RULE 25) Page 01552

Page 01553

W0 98/52 1 53

10

15

20

PCT/GB98/01411

lllllllfl H l0TH§DES(RlPTl0N

The Dynamic segment 107 contains the application’s volatile or

temporary data. Dynamic data includes data which is temporarily used during the

execution of an application such as intermediate values used in calculations or

working variables. For example, a purse application may temporarily store the

value of a transaction in order to reduce the amount of the value in the purse. The

temporary data is used much like conventional computer programs use RAM to

perform their assigned operations. The Dynamic segment preferably is divided into

two parts, the session data portion and the stack data portion. The size of the

session data is a constant for each application and is determined when the

application is loaded. The stack holds variable data which is unique to the

particular transaction being executed. The stack data portion stores data in a last-in-

first-out manner. The stack is initially empty, but expands and contracts during

execufion ofthe apphcafion.

The Dynamic data is addressed from the register DB 117 to register

DT 121. Register LB 119 serves as a local stack frame pointer to particular

memory locations in the Dynamic segment for delegate commands or function calls.

Register LB 119 is used to address the topmost frame, that of the currently

executing function's session data. Register DT 121 serves as an address offset for

the stack pointer. A one byte data item at the top of the stack is addressed as DT[-

1], the next byte below is addressed by DT[-2], and so on. A push operation

increments the relative value of DT for each item on the stack and a pop operation

decrements the relative value of DT for each item on the stack. For example, a

data element located at DT[—5] will be located at DT[-6] after an additional data

-35-

SUBSTITUTE SHEET (RULE 25) Page 01553

Page 01554

WO 98/52153 PCT/GB98/01411

lillillll A ?0 THE DESCRIPTION
item is placed on the stack.

When an application is being executed, the Dynamic segment created

for that application also contains the application’s session data which is used in

performing the assigned task(s) or operation(s). The multiple application operating

5 system ensures that no other application can read or write the data stored in the

Dynamic segment of a particular application. The session data is set to zero upon

the start of the execution of the application. Stack data will be saved in the stack if

the application delegates a task or operation to another application.

A delegation function occurs when one application selects another

10 application to process a command instead of processing the command itself. An

example of a delegation function occurs when a delegator application receives a

command that it does not recognize or is not programmed to process. The selected

application should not reject the command and provide an error response to the

interface device (IFD), but instead should pass the command to the appropriate

15 receiver, or delegated application. In order to perform a delegation, the delegator

calls the Delegate primitive. The Delegate primitive is a subroutine recognized by

the multiple application operating system which is executed when the operating

system interprets the Delegate instruction. Primitives can be stored as part of the

operating system itself, loaded as a separate routine when the operating system is

20 installed. Primitives are preferably written in machine executable language so that

they can be executed quickly although they could be written in a higher level

language. When a Delegate command is executed, execution of the delegating

application is suspended, and the delegated application is executed instead. The

-36-

SUBSTITUTE SHEET (RULE 26) Page 01554

Page 01555

WO 98/52153 PCT/GB98/01411

 lilllllll A lfillli.
delegated application then generates its own data memory space according to the

AAM architecture. The data stored in the Public memory space of the first

application (stored in RAM) is sent to the Public memory space of the second

application (which could be physically the same memory but is allocated separately

5 for each application) so that data can be passed between the applications. The

Dynamic memory space is also shared although data is saved in a stack for the

delegator and the other portions initialized before the delegated application is

executed because the Dynamic data is secret.

In most cases, the delegated application processes the command

10 exactly as though the command has arrived directly from an interface device.

When the delegated application has finished processing the command, and has

written a response into the allocated Public memory segment, it exits as normal.

The delegator then resumes execution at the instruction address following the

executed instruction which called the Delegate primitive. The response generated

15 by the delegated application is retrieved or accessed from the allocated Public

memory space. The delegator application may simply exit in turn, thus sending the

response to the IFD, or may carry out further processing before exiting.

Another example of a delegation operation occurs when two

applications need to share data. If an application A always returns a data item N

20 when processing a command B, then another application which also returns data

item N in response to a command can delegate the function B to application A in

order to reduce the need for duplicate codes stored on the IC card. For example, if

a PIN needs to be checked before an application is executed, an application stored

-37-

SUBSTITUTE SHEET (RULE 25) Page 01555

Page 01556

WO 98/52153 PCT/GB98/01411

Alllllél H ?GTEl§iS(Rl?ll0N

on the card can delegate the “retrieve PIN function” to a PIN application which

returns a stored universal PIN for the card.

Preferably, a new session begins whenever the IFD, e.g. a terminal,

successfully selects an application, even if the application has been previously

5 selected during the transaction. For example, if a card user goes to a terminal and

transfers twenty dollars of electronic cash using a purse application, charges thirty

dollars using a credit/debit application and then transfers ten dollars using the purse

application again, three separate sessions will have occurred even though only two

applications were used during the entire transaction. Each time an application

10 delegates a task or function to another application, the delegated application treats

the delegate function as if the IFD devices had selected the application to perform

the task or function. However, performing a delegation function as described below

has a different effect on session data.

The following examples will help explain when the session data is

15 initialized (i.e., erased) versus when it is saved to be used in further operations. If

application A is selected by an IFD device, and receives commands X, Y and Z

from the terminal, application A may delegate all three commands to application B.

For example, delegations may occur in response to delegation commands in the

program code. Both applications A and B will have their session and stack data in

20 their respective Dynamic segments initialized (set to zero) when they receive

command X, but the stack will not be initialized when they receive the subsequent

commands Y and Z.

In a second example, application A is selected, and receives

-33-

SUBSTITUTE SHEET (RULE 25) Page 01556

Page 01557

WO 98/52153 PCT/GB98/0141 1

 A%1l§§l'l_ Fli'E‘(~'l'.

commands X, Y and Z from the terminal. Application A processes X itself, but

..._._..—....

delegates Y and Z to application B. Application A will have its session and stack

data initialized when it receives X, but not when it receives the subsequent

commands Y and Z. Application B will have its session and stack data initialized

5 when it receives Y, but not Z.

One example of a use of session data is to support the use of a

session Personal Identification Number (PIN). The application could reserve one

byte of session data to support the PIN-receiving flag. On receiving the PIN check

command, the selected delegated application could update the flag as follows: if

10 the PIN command is received and the inputted PIN is equal to the stored pin, then

it will set the session data DB[0] to 1. If not, the application will check if the PIN

flag is already set by checking the value in DB[0]. In either of the above cases, the

application will process the rest of the commands in the session because the PIN

has been verified. If neither of the cases is true, then the application will not

15 process the command because the PIN is not proper. The PIN checking function

could be a delegated function from the selected application to a PIN checking

application.

The Public segment 105 is used for command and response data

being passed between an IFD and an application. During a delegate command, the

20 Public segment contains the data passed between two applications, the delegator

(the application initiating the delegation) and the delegated application (the

application which performs the delegated function). An application may also use

the Public segment as a further temporary working storage space if required. The

-39-

SUBSTITUTE SHEET (RULE 26) Page 01557

Page 01558

WO 98/52153

10

15

20

PCT/GB98/01411

ANNEX R TOTHHESCRIPIION

Public data is addressed using offsets stored in register PB 113 as a starting address,

to register PT 115 as an ending address. Register PB 113 and Register PT 115 are

fixed for the duration of a command-response pair being initiated by the IFD or

delegator. Public data can include data inputted into or supplied by a terminal such

as a transaction amount, vendor identification data, terminal information,

transmission format or other data required or used by an application resident on the

IC card. Public data can also include data which is to be transmitted to an IFD

device or other application such as an electronic dollar value, card user information

transmission format or other data required or used by the terminal or other

delegated application.

The multiple application operating system ensures that the data stored

in the Public segment remains private to the application until the application exits

or delegates. Preferably, the data in the Public segment is then made available to

other entities as follows: (1) if the application delegates, the whole of the Public

segment becomes available to the delegated application; (2) if the application exits,

and is itself delegated by another, the whole of the Public segment becomes

available to the delegator; or (3) if the application exits, and is not itself delegated,

then a portion of the Public segment containing the I/O response parameters and

data are made available to the IFD.

An application may write secret data into the Public memory segment

during execution of the application, but the application must make sure it overwrites

the secret portion of the Public segment before delegating or exiting. If the

application abnormally ends (abends), then the operating system on the IC card

-40-

SUBSTITUTE SHEET (RULE 26) Page 01558

Page 01559

WO 98/52 1 53

10

15

20

PCT/GB98/01411

ANNEX A YOTHEEESERIPIION

preferably overwrites all of the data in the Public segment automatically so that no

unwanted entities can have access to the secret data. If the MULTOS carrier device

(MCD) is reset, the operating system overwrites data in the Public segment

automatically, so that no secret data is revealed. A portion of the Public memory

segment is also used as a communications buffer. The 1/0 protocol data and

parameters are preferably stored at the top of the Public memory space. In another

preferred embodiment, the top seventeen bytes are reserved for the communications

protocol between the IFD device and the IC card application. However, additional

or less bytes can also be used depending upon the particular application and

operating system being utilized.

The spaces shown between the memory segments in Figure 1 will

vary depending upon the specific application and commands being processed.

There could be no memory space between the memory segments so that the

memory segments are contiguous.

Figure 2 shows an extended illustration of the AAM implemented

architecture. Data memory space 201 includes the three segments Static, Public and

Dynamic as previously described. Code memory space 203 contains the program

instructions for an application stored on the IC card. The application instructions

are preferably stored in an executable form which can be interpreted by the resident

operating system but can also be stored in machine executable form. Instruction

205 is stored at one location in the code memory space 203. Additional instructions

are stored in other locations of memory space 203. Two additional registers 207

and 209 are used in the AAM architecture. A code pointer (CP) register 207

-41-

SUBSTITUTE SHEET (RULE 25) Page 01559

Page 01560

WO 98/52153 PCT/GB98/01411

Allllill A TBlHEBES(Rl?ll9ll
indicates the particular code instruction to be next executed. In the figure, the

register indicates, e.g., through an offset or pointer means, that instruction 205 is

the next to be executed. Condition Control Register 209 contains eight bits, four of

which are for use by the individual application and four of which are set or cleared

5 depending upon the results of the execution of an instruction. These condition

codes can be used by conditional instructions such as Branch, Call or Jump. The

condition codes can include a carry bit, an overflow bit, a negative bit and a zero

bit.

All address and control registers are set to defined values prior to

10 executing the selected or delegated application. The values are set either when the

application is first loaded onto the card and the size of the code and non-volatile

data can be ascertained or at the moment when the application passes control to the

application. When the application is loaded, SB is set to zero and ST is equal to

the number of bytes in the application’s Static database. The other address

15 registers are initialized when the application is given control. CP 207 is set to zero

and all eight bits in CCR 209 are cleared at the start of executing the application.

A communications interface mechanism is present between the IFD

and an application which includes the use of the Public data segment as a

communications buffer for command-response parameters. A command-response

20 parameter means an application is given a command to perform and returns a

response to the entity issuing the command. Applications interact with an IFD by

receiving commands, processing them and returning responses across the IFD-

Application Interface. When an application has completed executing a command,

-42-

SUBSTITUTE SHEET (RULE 26) Page 01560

Page 01561

WO 98/52153

10

15

20

PCT/GB98/01411

MAllllil H lélllifr :..,.£tllPl5{)ll

the application will place the response into the Public segment starting at PB[0]

which can be read by the IFD device and will set the proper interface parameters in

the reserved Public space relative to PT[0].

While an application can be called directly from an IFD and return a

response directly to an IFD, it can also delegate a request to another application

where appropriate. The subsequently-called application will then process the

request on behalf of the first application. The delegation can be directly in

response to a received command in which the delegator acts as a controller for

delegating commands or subcommands to other appropriate applications.

Alternatively, the delegated command can be embedded in an application’s code

which delegates control of the processor when the first application needs to interact

with another application during its execution, such as updating frequent flyer miles

or verifying a PIN.

Figure 3 shows a flow chart of the steps which are performed when a

delegate request is executed. Step 301 sets the parameter named

delegator__application_id (delegator ID) to be equal to the

selected_file.application_id (selected ID). The selected ID indicates the current

application which is selected and which is currently being executed. The delegator

ID indicates the application which delegates a function to another delegated

application stored on the IC card. Step 303 then pushes (stores) the delegator ID

onto the top of the delegate__id_stack (delegate stack). The data referenced in the

Dynamic portion of allocated memory is saved so that the current application can

complete its execution after the delegated function is complete. Data which is to be

-43-

SUBSTITUTE SHEET (RULE 26) Page 01561

Page 01562

WO 98/52153 PCT/GB98/01411

shared with the delegated application is referenced in the Public portion of allocated

memory. The delegate stack is preferably stored outside of an application's AAM

memory space and keeps track of which applications have delegated functions.

Each application is suspended when it delegates a function so the delegate stack can

5 act in a Last-In-First—Out (LIFO) manner so that if a number of applications are

suspended due to delegation requests, the proper application is started in the right

order. The delegate stack thus keeps track of which application was the last

delegator when multiple layered delegation functions are performed. The delegate

stack preferably operates in a LIFO manner although different stack schemes could

10 be used as appropriate.

Step 305 then sets the selected ID to the delegate_request.delegate_

application_id (delegate ID) value. This step selects the application which will be

called to perform the delegated function or functions. The identities of the

delegated application can be specifically called by the delegator application or a

15 particular function can be matched up with an application in a look up table. For

example, a PIN match operation may be delegated to different applications

depending upon which applications are present on the card. Step 307 then sets the

application_command parameter to the value stored in the

delegate_request.application_command parameter. This step specifies the command

20 to be delegated to the delegate application. Applications typically have the ability

to process many different commands. Alternatively, the entire application could be

executed to perform one or more functions. The delegator application can choose

which command it is delegating to another application. Step 309 then sends the

-44-

SUBS11TUTE SHEET (RULE 25) Page 01562

Page 01563

W0 98/52153 PCT/GB98/01411

 lllllllli. A Tl%“‘7?fL!%!?ll(lll

application_command to the AAM operating system for execution by the delegatee

application. The delegator application is then suspended (or interrupted). Any data

that is required to pass between the applications is transferred via the Public

memory space.

5 Figure 4 is a flow chart of the steps for performing a “retum

delegation control” command by the delegatee application. This command is

executed by the operating system when a delegated application has completed its

delegated function. Step 401 gets application_responses from the Public memory

space of the delegated AAM. The response data is passed in the Public memory

10 segment of the delegatee AAM. Step 403 then sets the delegate_response.status

variable to a success condition. This means that a delegation operation has been

successfully completed. Step 405 sets the delegate_ response.application_responses

parameter to the application_responses values which were stored in the Public

segment of the delegatee application.

15 Step 407 sets the delegate_response.delegate_application_id parameter

to selected_file.application_id (the delegatee application ID). Step 409 pops the top

(i.e., reads the last data stored in the stack) de1egate_application_id from the

delegate_id_stack. This information indicates the identity of the delegator

application for the command which was just delegated and completed by the

20 delegated application. Step 411 sets the select_file.application_id value to the

delegator_application_id value. This selects the delegator application which was

identified from the delegate ID stack as the current application which will resume

running. The Dynamic data for the delegator application will be retrieved for the

-45-

SUBSTITUTE SHEET (RULE 25) Page 01563

Page 01564

WO 98/52153

10

15

20

PCT/GB98/01411

 lllllllll R TO [BE TEESCRIPTION
delegator application from its stored location so that the application will continue to

execute where it left off with all data intact but will also have the response

information from the delegated function. In step 413, the delegate_response data is

sent to the current application for further processing. The response data is passed

through the Public data space which could be the same physical RAM memory

location because all applications share the physical volatile memory space.

Figure 5 shows a flow chart of the steps involved for inquiring about

a delegator ID when a delegate command is received by a delegated application.

The delegated application may need to know the identity of the delegator because it

may perform operations differently for different delegator applications. For

example, an airline loyalty program may need to know if awarded frequent flyers

will be based on actual dollars processed or a lump sum award for some other

activity such as performing a bill payment operation. This information could be

passed to the delegated application as a variable or could be ascertained using an

inquiry. The delegator inquiry operation could be implemented as a primitive as

previously described.

Step 501 receives the delegator_id_enq_request from the AAM

operating system. The request is used to identify the identity of the delegator. Step

503 checks if the delegate_id_stack is empty. If the stack is empty, then no

delegation operations have occurred and no applications have been suspended.

Thus step 511 sets the delegator_id_enq_response.status parameter to a failure

indicator. Step 513 then sets the value of delegator_is_enq_request.error_cause to a

value indicating “no delegator application.” There is no delegator application. The

-46-

SUBSTITUTE SHEET (RULE 25) Page 01564

Page 01565

WO 98/521 53

10

15

20

PCT/GB98/01411

MJNEX fl 701111’ i?ES€Rl?l|0N
process then continues with step 509.

If the delegate_id_stack is not empty, than one or more delegations

have occurred. In that case, step 505 sets the delegator_id_enq_response.status

parameter to a value indicating “success”. Step 507 then sets the

delegator_id_enq_response.delegator__ application_id parameter to the value stored

in delegate_id_stack.delegator_ application_id. This sets the inquiry response to

indicate the delegator application ID at the top of the stack. As explained above,

the stored data at the top of the stack indicates the last delegator application to call

a delegate function. Step 509 then sends the delegat0r_id_enq_ response back to

the AAM operator system which delivers the information to the application or IFD

entity requesting the information.

Figure 6 shows an example of a block diagram of an integrated

circuit located on an IC card chip which can be used in conjunction with the

invention. The integrated circuit chip is located on a chip on the card. The IC chip

preferably includes a central processing unit 601, a RAM 603, a EEPROM 605, a

ROM 607, a timer 609, control logic 611, I/O ports 613 and security circuitry 615,

which are connected together by a conventional data bus 617 or other conventional

means.

Control logic 611 in the smart card provides sufficient sequencing

and switching to handle read-write access to the card’s memory through the

input/output ports 612. CPU 601 in conjunction with control logic 611 can perform

many different functions including performing calculations, accessing memory

locations, modifying memory contents, and managing input/output ports. Some IC

-47-

suasrrrure SHEET (nuus 26) Page 01565

Page 01566

W0 98/52 1 53

l0

15

20

PCT/GB98/01411

 Will A l(lT!l§?¥?ES€RlPTlQ%l
cards also include a coprocessor for handling complex computations like

cryptographic algorithms. Input/output ports 613 are used for communication

between the card and an IFD which transfers information to and from the card.

Timer 609 (which generates and/or provides a clock pulse) drives the control logic

611, CPU 601 and other components requiring a clock signal through the sequence

of steps that accomplish functions including memory access, memory reading and/or

writing, processing, and data communication. Security circuitry 615 (which is

optional) preferably includes fusible links that connect the input/output lines to

internal circuitry as required for testing during manufacture, but which are

destroyed upon completion of testing to prevent later access. The Static memory

space is preferably mapped to memory locations in EEPROM 605 which is non-

volatile. The Dynamic memory space is preferably mapped to RAM 603 which is

volatile memory which has quick access. The Public memory space is also

preferably mapped to RAM 603 which is volatile memory. The Dynamic data and

Public data will be stored in different portions of RAM 603, while RAM is

identified as a preferred non—volatile memory and EEPROM is identified as a

preferred volatile memory. Other types of memory could also be used with the

same characteristics.

Figures 7A, 7B and 7C illustrate an example of a delegation function

being performed in order to process multiple applications on an IC card. Figure 7A

shows a first application being executed as denoted with a double ringed circle 701.

At some point during the execution of the first application, a delegation function

702 is called to delegate an operation to the second application which is indicated

-43-

SUBSTITUTE SHEET (RULE 26) Page 01566

Page 01567

W0 93/52153 PCT/GB98/0141 1

Alélllll R 1'6 111? DESCRWIIOH

by circle 703. Also shown in Figure 7A is an empty delegator ID stack 705. Since

the stack is empty, there is no data associated with it and it is shown only for

illustrative purposes.

The multiple application operating system receives the delegate

5 command and interrupts the execution of the first application 701 and gives control

of the integrated circuit to application 703 as shown in Figure 7B. The execution

of the second application 703 is illustrated with a double ringed circle. The term

“gives control” means that the microprocessor and other circuitry on the card will

process the instructions and allocate memory space for the application which is

10 delegated. When the delegate command is processed, the delegator ID 707 is

placed on top of the stack 705. The delegator ID stack is operated in a LIFO

manner. Also shown in Figure 7B is a third application 709 resident on the card.

At some point during the execution of the second application, a delegate function

711 is called to delegate the operation to the third application.

15 The multiple application operating system receives the delegate

command 711 shown in Figure 7B interrupts the execution of the second

application 703 and gives control of the integrated circuit to the third application

709 as shown in Figure 7C. When the delegate command is processed, the

delegator ID 713 of the second application is pushed onto the delegator ID stack

20 705. The delegator ID 707 of the first application whose execution is still

interrupted is pushed down in the stack consistent with a LIFO stack management.

Thus when the third application has finished its execution, the delegator ID at the

top of the stack is popped to indicate that execution of the second application

-49-

suasnrure SHEET (RULE 26) Page 01567

Page 01568

WO 98/52153 PCT/GB98/01411

ANNEX fl TOTHEDESCRIPHON
should be resumed first. The delegator ID 707 from the first application will then

be at the top of the stack so that when the second application is finished executing,

the first application will resume its execution.

Additional applications can be managed by the delegator ID stack in

5 a similar manner. By interrupting the execution of the applications when a delegate

command is processed and keeping track of the order of delegations, the security

and integrity of the data for each individual application can be maintained which is

important because IC cards will store data for applications which is private to the

card user such as account numbers, social security number, address and other

10 personal information.

The foregoing merely illustrates the principles of the invention. It

will thus be appreciated that those skilled in the art will be able to devise numerous

apparatus, systems and methods which, although not explicitly shown or described

herein, embody the principles of the invention and are thus within the spirit and

15 scope of the invention.

-50-

SUBSTITUTE SHEET (RULE 26) Page 01568

Page 01569

W0 98/52 153 PCT/GB98/01411

AHNEX fl 1'0 THE DESCRIPTION
WE CLAIM:

2 1. An integrated circuit card comprising:

3 a microprocessor; a volatile memory coupled to said

4 microprocessor; a non-volatile memory coupled to said microprocessor; and a

5 plurality of applications stored in said non-volatile memory, wherein upon execution

6 of each said application, said microprocessor allocates for each said executing

7 application an associated data memory space comprising at least a volatile memory

8 segment for referencing temporary data and a non-volatile memory segment for

9 referencing static data; and further comprising means for delegating the performance

10 of a function from a first executing application to a second executing application.

1 2. The integrated circuit card of claim 1, wherein said non-volatile

2 memory segment is divided into at least two regions, including a public region and

3 a dynamic region.

1 3. The integrated circuit card of claim 2, wherein said public region is

2 used to share data between said first and second applications.

1 4. The integrated circuit card of claim 2, wherein said dynamic region

2 is used to reference temporary data utilized during an application’s execution.

-51-

suasnrurs SHEET (RULE 25) Page 01569

Page 01570

W0 98/52153 PCT/GB98/01411

 ANHEX (1 l0THl.?3r SCEEWIOH........_..___.

1 5. The integrated circuit card of claim 1, further comprising at east one

2 register coupled to said microprocessor which is used to determine the starting

3 locations of each of said segments.

1 6. The integrated circuit card of claim 5, further comprising at least one

2 register coupled to said microprocessor which is used to determine the top locations

3 of each of said segments.

1 7. The integrated circuit card of claim 6, further comprising at least one

2 register coupled to said microprocessor which is used as a local dynamic pointer.

1 8. The integrated circuit card system of claim 1, wherein each said

2 application comprise a plurality of program instructions and wherein at least one of

3 said program instructions when executed causes said memory referenced by said

4 volatile memory segment to be accessed.

1 9. The integrated circuit card of claim 1, wherein said volatile memory

2 segment references RAM and said non-volatile memory segment references

3 EEPROM.

1 10. A method for processing a plurality of applications stored in a

2 memory of an integrated circuit:

3 selecting a first application for execution;

-52-

SUBSTITUTE SHEET (RULE 25) Page 01570

Page 01571

W0 98/52153 PCT/GB98/01411

ANNEX H lOlEiis'}§S{RlPlION

4 allocating a data space for said first application including at

5 least two memory segments comprising a volatile memory segment for referencing

6 temporary data and a non-volatile memory segment for referencing static data;

7 executing said first application, interrupting execution of said

8 first application and saving data referenced by said volatile memory segment;

9 executing a second application;

10 utilizing said saved data from said volatile memory segment

11 for execution of said first application; and

12 completing said execution of said first application.

1 11. The method of claim 10, wherein said first application's identity is

2 stored in a data stack during said delegation step.

1 12. The method of claim 11, wherein said data stack is accessed

2 following said completion of said second application.

1 13. The method of claim 12, further including the step of inquiring said

2 first application’s identity by accessing said delegator stack.

1 14. The method of claim 10, wherein said non-volatile memory segment

2 is divided into at least two regions, including a public region and a dynamic region.

-53-

SUBSTITUTE SHEET (RULE 25) Page 01571

Page 01572

WO 98/52153 PCT/GB98/01411

llNlllll A TOTHEDESCRIPIION

1 15. The method of claim 14, wherein said public region is used to share

2 data between said first application and said second application.

1 16. The method of claim 14, wherein data referenced by said dynamic

2 region is utilized during the execution of said first application.

1 17. The method of claim 10, further including the step of allocating a

2 second data space including at least two memory segments for said second

3 application.

1 18. The method of claim 17, wherein said second data space’s segments

2 comprise a volatile memory segment for referencing temporary data and a non-

3 volatile memory segment for referencing static data.

1 19. The method of claim 18, wherein said second application’s non-

2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 20. The method of claim 19, wherein said second application’s public

2 region is used to share data between said first and second applications.

-54..

SUBSTITUTE SHEET (RULE 25) Page 01572

Page 01573

W0 98/52153 PCT/GB98/0141 1

ANNEX R T0‘iHE!3EStR|PI|0N
1 21. The method of claim 19, wherein said data referenced by second

2 application’s dynamic region is utilized during said execution of said second

3 application.

1 22. The method of claim 10, further including the step of delegating use

2 of said microprocessor from said second application to a third application stored on

3 said IC card.

1 23. The method of claim 22, wherein a third data space for said third

2 application is allocated which includes a volatile memory segment for referencing

3 temporary data and non-volatile memory segment for referencing static data,

4 wherein said third application’s volatile segment includes a public and dynamic

5 portion.

1 24 An apparatus for processing a plurality of applications stored in a

2 memory of a single integrated circuit card comprising:

3 means for allocating a data space comprising at least a non-

4 volatile memory segment for referencing static data and a volatile memory segment

5 for referencing temporary data; means for executing a first application; means for

6 interrupting execution of said first application, means for saving data from at least a

7 portion of said volatile memory segment; and means for executing a second

8 application; means for retrieving said saved data; and means for completing said

9 execution of said first application.

-55-

suas1'n'u11=. SHEET (RULE 25) Page 01573»

Page 01574

WO 98152153 PCT/GB98/01411

ANNEX A TO THE DESCRIPTION
1 25. The apparatus of claim 24, further including means for storing said

2 first application's identity on a data stack.

1 26. The apparatus of claim 25, further including means for inquiring of

2 said first application’s identity.

1 27. The apparatus of claim 24, wherein said first application’s non-

2 volatile memory segment is divided into at least two regions, including a public

3 region and a dynamic region.

1 28. The apparatus of claim 27, wherein said public region references

2 random access memory.

1 29. The apparatus of claim 27, wherein said dynamic region references

2 random access memory.

1 30. The apparatus of claim 24, further including means for allocating a

2 second data space including at least two segments for said second application.

1 31. The apparatus of claim 30, wherein said second data space includes a

2 volatile memory segment for referencing temporary data and a non-volatile memory

3 segment for referencing static data.

-56-

suesrrrure SHEET (RULE 25) Page 01574

Page 01575

WO 98/52153 PCT/GB98/01411

ANNEX A TOTHi:JESCRll‘ll0ll

1 32. The apparatus of claim 31, wherein said second data space’s non-

2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 33. The apparatus of claim 32, wherein said public region references

2 random access memory.

1 34. The apparatus of claim 32, wherein said dynamic region references

2 random access memory.

1 35. The apparatus of claim 24, further including means for delegating

2 operation of said IC card from said second application to a third application stored

3 on said IC card.

1 36. The apparatus of claim 35, wherein a third data space for said third

2 application is allocated which includes a volatile memory segment for referencing

3 temporary data and non-volatile memory segment for referencing temporary data,

4 wherein said third application's volatile memory segment includes a public and

5 dynamic portion.

1 37. A system for processing a plurality of applications stored on an IC

2 card comprising:

3 a non-volatile memory coupled to a databus;

-57-

suasnrure SHEET (RULE 26) Page 01575

Page 01576

W0 98/52153 PCT/GB98/01411

ANNEX R T0lHm3illiFl|0ll

4 a volatile memory coupled to said databus;

5 a first and second application program stored in said non-volatile

6 memory, wherein each application has an associated identifier;

7 a data stack accessible by said databus for storing said applications’

8 identifier if said application is interrupted during its execution;

9 processor means for executing instructions from said application

10 programs wherein said processor means allocates a data memory space for said

11 application which is being executed and said data memory space is mapped to at

12 least one address in said non-volatile memory and at least one address in said

13 volatile memory; and

14 wherein said processor means interrupts said first application at least

15 once during its execution to execute said second application.

1 38. The system of claim 37, wherein data memory space comprises at

2 least a volatile memory segment for referencing temporary data stored in said

3 volatile memory and a non-volatile memory segment for referencing static data

4 stored in said non-volatile memory.

1 39. The system of claim 37, further including means for storing said first

2 -application's identity on a data stack.

1 40. The system of claim 39, further including means for inquiring of said

2 first application’s identity.

-53-

SUBSTITUTE SHEET (RULE 25) Page 01576

Page 01577

W0 93/52153 PCT/GB98/0141 1

ANNEX 4 T0 llli DESCRIPTION

1 41. The system of claim 38, wherein said first application’s non-volatile

2 memory segment is divided into at least two regions, including a public region and

3 a dynamic region.

1 42. The system of claim 41, wherein said public region references

2 random access memory.

1 43. The system of claim 41, wherein said dynamic region references

2 random access memory.

1 44. The system of claim 37, further including means for allocating a

2 second data space including at least two segments for said second application.

1 45. The system of claim 44, wherein said second data space comprises at

2 least a volatile memory segment for referencing temporary data and a non-volatile

3 memory segment for referencing static data.

1 46. The system of claim 45, wherein said second data space’s non-

2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 47. The system of claim 46, wherein said public region references

2 random access memory.

-59-

SUBSTITUTE SHEET (RULE 25) Page 01577

Page 01578

WO 98/52153 PCT/GB98/0141 1

ANNEX H l0TH'E%E3{lll}’Tl€"ll

1 48. The system of claim 46, wherein said dynamic region references

2 random access memory.

1 49. The system of claim 37, further including means for delegating use

2 of said processor means from said second application to a third application stored

3 on said IC card.

1 50. The system of claim 49, wherein a third data space for said third

2 application is allocated which includes a volatile memory segment for referencing

3 temporary data and non—volatile memory segment for referencing temporary data,

4 wherein said third application’s volatile memory segment includes a public and

5 dynamic portion.

1 51. An integrated circuit card comprising:

2 a plurality of applications and a microprocessor for controlling

3 execution of said applications wherein execution of at least one first application is

4 interrupted and execution is transferred to another second application, further

5 comprising means for sharing data by said first and second applications and means

6 for resuming execution of said first application at the appropriate location at least

7 after completion of execution of said second application.

-50-

SUBSTITUTE SHEET (RULE 26) Page 01578

Page 01579

W0 98/52153 PCT/GB98/01411

 ANNEX Fl l0ll§§3ES{’rll?l|0l€
1 52. The integrated circuit card of claim 51, further comprising means for

2 allocating a data memory space comprises at least a volatile memory segment for

3 referencing temporary data stored in said volatile memory and a non—volatile

4 memory segment for referencing static data stored in said non-volatile memory.

1 53. The integrated circuit card of claim 51, further including means for

2 storing said first application’s identity on a data stack.

1 54. The integrated circuit card of claim 53 further including means for

2 inquiring of said first application’s identity.

1 55. The integrated circuit card of claim 52, wherein said first

2 application’s non-volatile memory segment is divided into at least two regions,

3 including a public region and a dynamic region.

1 56. The integrated circuit card of claim 55, wherein said public region

I\) I'6f€I'CI1C€S random access memory.

1 57. The integrated circuit card of claim 55, wherein said dynamic region

2 references random access memory.

-51-

SUBSTITUTE SHEET (RULE 25) Page 01579

Page 01580

W0 98/52153 PCT/GB98/01411

I 58. The integrated circuit card of claim 52, further including means for

2 allocating a second data space including at least two segments for said second

3 application.

1 59. The integrated circuit card of claim 58, wherein said second data

2 space comprises at least a volatile memory segment for referencing temporary data

3 and a non-volatile memory segment for referencing static data.

1 60. The integrated circuit card of claim 58, wherein said second data

2 space’s non-volatile segment is divided into at least two regions, including a public

3 region and a dynamic region.

1 61. The integrated circuit card of claim 58, wherein said public region

2 references random access memory.

1 62. The integrated circuit card of claim 60, wherein said dynamic region

2 references random access memory.

1 63. The integrated circuit card of claim 51, further including means for

2 delegating use of said processor means from said second application to a third

3 application stored on said IC card.

-62-

SUBSTITUTE SHEET (RULE 26) Page 01580

Page 01581

W0 98/52153 PCT/GB98/01411

ANNEX A TO THE BESCRIWION
ABSTRACT OF THE DISCLOSURE

A multi-application IC card which processes two or more

applications using an Application Abstract Machine architecture. The AAM

architecture only allows one application to be executed at a time and allows for

shared processing by performing a delegation function to a second application. A

5 data space for each application is allocated when the application is selected to be

executed. The data space includes a volatile and non—volatile region. The

delegation function temporarily interrupts the execution of the first application,

saves the temporary data of the first application, shares any data needed with the

second application and the second application is executed until the delegated task is

10 competed. The first application then retrieves the saved data and completes its

execution. A delegator stack is used to keep track of the delegator’s identity when

multiple delegations occur. The AAM model allows for a high level of security

while transferring data between applications.

-53-

SUBSTITUTE SHEET (RULE 25) Page 01581

Page 01582

W0 98/52153 PCT/GB98/0141 1

CLAIMS

I CLAIM:

1 1. An integrated circuit card having an associated operating

2 mode, comprising:

3 a microprocessor;

4 a memory coupled to said microprocessor;

5 data stored in said memory representative of said operating

6 mode;

7 an operating system stored in said memory for processing

8 selected information in a first IC card format;

9 a shell application stored in said memory for processing said

10 selected information in a second IC card format; and

11 means responsive to said operating mode for routing said

12 selected information to either said operating system or said shell application.

1 2. The integrated circuit card of claim 1, wherein said second IC

2 card format is different than said first [C card format.

1 3. The integrated circuit card of claim 1 or claim 2, wherein said

2 selected information is a command.

-54-

suasrrrurs SHEET (RULE 25) Page 01582

Page 01583

WO 98/521 53 PCT/GB98/0141 1

1 4. The integrated circuit card of claim 3,'wherein said command

2 is a file access command.

1 5. The method of any preceding claim, wherein said selected

2 information is associated with a file structure format.

1 6. The integrated circuit card of any preceding claim, further

2 comprising:

3 a non—shell application stored in said memory;

4 means for receiving a request by said operating system from

5 said non—shell application for delegating control to a delegated application;

6 means for determining whether said operating mode of said

7 IC card is a predetermined operating mode;

8 means for determining whether said delegated application

9 corresponds to said shell application; and

10 means for failing the request for delegating control if the

11 operating mode of said IC card corresponds to said predetermined operating mode

12 and said delegated application corresponds to said shell application.

1 7. A method of loading an application onto an IC card, wherein

2 said application has an associated file mode type and said IC card has an associated

3 operating mode, comprising the steps of:

-65..

SUBSTITUTE SHEET (RULE 26) Page 01583

Page 01584

WO 98/52153

Lo.)

1

2

3

PCT/GB98/01411

determining whether the file mode type of said application is

a predetermined file mode type; and

changing the operating mode of said IC card if said file mode

type corresponds to said predetermined file mode type.

8. The method of claim 7, further comprising the step of

determining whether any other applications have already been loaded onto the IC

card before the step of changing the operating mode.

9. The method of claim 7 or claim 8, further comprising loading

said application onto the IC card if the file mode type of said application

corresponds to the predetermined file mode type and no other applications have

already been loaded onto the IC card.

10. The method of claim 8, wherein the changing step comprises

changing the operating mode of said IC card if said file mode type corresponds to

said predetermined file mode type and no other applications have already been

loaded onto the IC card.

11. A method of routing a command by an operating system of an

IC card, wherein said IC card has an associated operating mode, comprising the

steps of:

-55-

SUBSTITUTE SHEET (RULE 25) Page 01584

Page 01585

wo 93/52153 PCT/GB98/01411

4 determining whether the operating mode of said IC card is a

5 predetermined operating mode; and

6 routing the command directly to an application if the

7 operating mode of said IC card corresponds to the predetermined operating mode.

1 12. The method of claim 11, further comprising the steps of:

2 if the operating mode of said IC card does not correspond to

3 the predetermined operating mode, determining whether said command is a select

4 file command supported by said operating system; and

5 routing said command to an operating system routine

6 responsible for said select file command if said command is a select file command

7 supported by said operating system.

1 13. The method of claim 11 or claim 12, wherein the IC card

2 further comprises a currently selected file having an associated file type, the method

3 further comprising the steps of:

4 if the operating mode of said IC card does not correspond to

5 the predetermined operating mode, determining whether the file type of said

6 currently selected file is supported by said operating system; and

7 routing said command to an operating system routine

8 responsible for said file type if the file type of said currently selected file is

9 supported by said operating system.

-67-

SUBSTITUTE SHEET (RULE 26) Page 01585

Page 01586

wo 93/52153 PCT/GB98/0141 1

l 14. The method of claim 13, if the file type of said currently

2 selected file is not supported by said operating system, further comprising the step

3 of routing said command to an application.

1 15. A method of delegating control between applications by an

2 operating system of an IC card, wherein said IC card is for use with a defined IC

3 card format and has an associated operating mode, comprising the steps of:

4 storing a shell application in said IC card for communicating

5 with said operating system and for processing information in a format compliant

6 with said defined IC card format;

7 receiving a request by said operating system from a first

8 application for delegating control to a second application;

9 determining whether the operating mode of said IC card is a

10 predetermined operating mode;

11 determining whether said second application corresponds to

12 said shell application; and

13 failing the request for delegating control if the operating mode

14 of said IC card corresponds to said predetermined operating mode and said second

15 application corresponds to said shell application.

1 16. A method of initiating communication between an IC card

2 and a terminal, wherein said IC card comprises a microprocessor and a memory,

3 said memory having stored therein an operating system, a shell application, and data

-63-

SUBSTITUTE SHEET (RULE 26) Page 01586

Page 01587

WO 98/52153 PCT/GB98/01411

4 representative of an operating mode of said IC card, said operating mode

5 representing whether selected information is to be routed to said operating system

5 or said shell application, said method comprising the steps of:

7 receiving a reset signal by said IC card from said terminal;

8 and

9 returning an answer-to-reset from said IC card to said terminal

10 based on said operating mode of said IC card.

1 17. The method of claim 16, wherein a plurality of answer-to-

2 reset files are stored in said memory of said IC card, and said step of returning an

3 answer-to—reset comprises selecting one of said answer-to—reset files based on said

4 operating mode.

1 18. The method of claim 16 or claim 17, wherein said selected

2 information is a command.

1 19. The method of claim 18, wherein said command is a file

2 access command.

1 20. The method of claim 16, wherein said selected information is

2 associated with a file structure format.

-59-

SUBSTITUTE SHEET (RULE 25) Page 01587

Page 01588

PCT/GB98/01411W0 98/52153

FIG. 1

FIG. 2

Page 01588
SUBSTITUTE SHEET (RULE 26)

Page 01589

PCT/GB98/01411W0 98/52153

2/14

om_

om_

_
mommmoommfl-oo_

o:,,7.1.

one

>:m:omw

mm2:.

om?

:.k.IIIIIIIIIIIIIIIIII1::
__

2<m2om¢mm20¢_
_

IIIIIIIIIIIIIIIiIIL9004:23Jomezooozammoomm
\

om_oo_

Page 01589SUBSTITUTE SHEET (RULE 26)

Page 01590

W0 98/52153 PCT/GB98/01411

3/14

DDF1

ADF1 ADF2 DDF2

ADF3

FIG. 4

SUBSTITUTE SHEET (RULE 25) Page 01590

Page 01591

WO 98/52153

510

520

530

540

550

PCT/GB98/01411

4/14

START:

Load_Fi|e_Command
Routine

RECEIVE ioad_fiie_command FROM
OS_Security_Manager

521

IS |oad_fiie_command.app|ication_id =
ANY OF

os_control_info.appIication_id ?

"failed"

"duplicate application id"

IS |oad_file_command.file_mode_type

= "shell" AND IS os_controI_info NOT
EMPTY ?

"failed"

"application already |oaded"

531

ADD the directory file record TO the
directory file

ADD Ioad_fiie_command.application_id
TO os_controi_info FIG. 5A

SUBSTITUTE SHEET (RULE 26)

SET load_fiie_responsestatus =

SET load_fiie_response.error_cause =

SET load_fiie_responsestatus =

SET load_fi|e_response.error_cause =

SEND load_fi|e_response TO
OS_Security__Manager

Page 01591

Page 01592

W0 93/52153 PCT/GB98/01411

5/14

560

!S load_fi|e_command.Tile_mode_type = "sheil" ’?

570 SET file_mode.fi|e_mode_type = "shell"
SET fi|e_mode.appIication_id = Ioad_command.application_id

SET selected_fi|e.file_type = "dedicated file"

SET se|ected_fi|e.application_id = load__command.application_id

580

SET load_file_response.status = "success"

SEND |oad_file_response TO
OS_Security__Manager

FIG. 5B

SUBSTITUTE SHEET (RULE 25) Page 01592

Page 01593

W0 93/52153 PCT/GB98/01411

6/14

 START:

Delete_File_Command
Routine

610

‘' RECEIVE de|ete_file__command FROM

OS_Security_Manager
/ 670

620 SET deiete_fiie_responseistatus =

IS de|ete__fi|e_command.app|ication_id "faiIed"
IN os_controi_info SET delete__fi|e_response.error_cause

= "application not loaded‘'

630 is

SET file_mode.fi|e_mode_type = "OS"
SET seiected_fiIe.fi|e__type = "master

file"
“’ de|ete_file_command.fi|e__mode_type =

"shell" AND fi|e_mode.appiication_id =

delete_fiie_command.application_id '?

640

DELETE directory file record FROM
directory file

650
DELETE

delete_fi|e_command.app1ication_id

FROM os_controI_info

660
_,

SET deiete_file_response.status =
“success”

SEND deiete_file_response TO
OS_Security_Manager

FIG. 6

SUBSTITUTE SHEET (RULE 26) Page 01593

Page 01594

W0 98/52153 PCT/GB98/01411

7/14

START:

Route Routine

710

RECEIVE cardhoider_command FROM
Cardholder

720
NO

IS fi|e_mode.fiIe_type + "os" '2 SENDT‘§f;£l'i:::E:°§ma”d

YES

730

IS cardho|der_command = setect_file YES SEND cardho|der_command
command ’? TO se|ect_fi|e routine

740 SEND cardholder command
' ' = ' -‘

[8 seleCted-f'‘%'lf;_|,‘::‘;type master TO provide_card_faci|ities' routine

750
SEND cardho|der_command ~ ~ = -- - YES

IS se|ected_file.file_type directory To read_card_|eVe|_data_mes
routinefile" ?

NO

SEND cardho|der_command F I G . 7
TO Apptication(s)

SUBSTITUTE SHEET (RULE 25) Page 01594

Page 01595

W0 98/5215?’ PCT/GB98/0141 1

8/14

START;

Delegate_Request
Routine

810
FIG. 8RECEIVE delegate_request FROM Delegator

applicatlon(s)

820

IS fi|e_mode.flle_mode_lype = "shell" AND
delegate_request.delegatee_application_id =

file_mode.application_id ?

PROCESS delegate_request

SEND delegate_response TO

Delegator Application(s)

830

SET delegate_response.status = "failed"
SET delegate_response.error_cause =

"recursive shell delegation"

YES

START:

Determine_AT R_Status
Routine

910
SET selected_fi|e.file_type = "master file"

SET s_ATR_status = "default ATR"

|S file_mode.file_mode_type = "OS" ?

930 SET selected_file.file_lype = “dedicated file"
SET selected_file.applicatlon_id =

file_mode.application__ld

SET s_ATR_status = "shell ATR"

SEND s_ATR_status TO
Control_ATR Routine

SUBSTITUTE SHEET (RULE 25) Page 01595

Page 01596

W0 93/52153 PCT/GB98/01411

W ANNEX H m rmnawmss
F_—?—"__i—_—_T

'////////////////1

107

105

103

109

201

SUBSTITUTE SHEET (RULE 26) Page 01596

Page 01597

W0 98/52153 PCT/GB98/01411

10/14 ANNEX H TO THE DRAWINGS

SET DELEGATOR_APPLlCAT|ON__lD TO SELECTED_FlLE. 30‘
APPLICAT|ON_|D

303

PUSH DELEGATOR_APPLlCATlON_lD ON TO DELEGATE_lD_STACK

SET SELECTED_FlLE_APPL|CATlON_|D TO DELEGATE_REQUEST. 305
DELEGATE_APPL|CAT|ON ID

SET APPLlCATlON_COMMAND TO DELEGATE_REQUEST. 307
APPLICATlON_COMMAND PARAMETER

309

SEND APPLlCATlON__COMMAND TO AAM OPERATlNG SYSTEM

Page 01597
SUBSTITUTE SHEET (RULE 25)

Page 01598

W0 98/5253 PCT/GB98/0l41l

1” 1“ ANNEX A TO THE DRAWINGS

403

SET DELEGATE_RESPONSE_STATUS TO "SUCCESS"

401

GET APPLICATlON_RESPONSES FROM DELEGATEE

SETDELEGATE_RESPONSE_APPLlCATlON_RESPONSES 405
TO

APPLlCAT|ON_RESPONSES

 SET DELEGATE__RESPONSE_DELEGATE_APPLlCAT|ON_ID 407
TO

SELECTED_F|LE_APPLlCAT|ON_lD

POP DELEGATE__APPLICAT|ON_lD 409
FROM

DATA STOCK

SET SELECT_F|LE_APPL|CATION_|D 411
TO

DELEGATE_APPLlCATlON_lD

SEND 413

DELEGATE_RESPONSE_DATA
TO CURRENT APPLICATION

¢ FIG. 4

SUBSTITUTE SHEET (RULE 26) Page 01593

Page 01599

W0 93/52153 PCT/GB98/01411

12/14

ANNEX 9 IOIHIIIIIAWINGS

501

RECEIVE DELEGATE

ID REQUEST

SET STATUS TO

FAILURE

IS ID STACK

EMPTY ?

505

SET STATUS TO

"SUCCESS"

SET RESPONSE TO

"NO DELEGATOR

APPLICATION"

RETRIEVE DATA

FROM STACK AND

SET RESPONSE TO

DELEGATOR ID

509

 SEND RESPONSE TO

OPERATING SYSTEM

FIG. 5

SUBSTITUTE SHEET (RULE 25) Page 01599

Page 01600

PCT/GB98/01411wo 9s/52153

13/14

ANNEX H TO THE DRAWINGS

615

FIG. 6

P 01600
SUBSTITUTE SHEET (RULE 25) age

Page 01601

W0 98/52153 PCT/GB98/01411

. Am a 10 nmnwzucs
702 705

1 E703

Q FIG. 7A

01 707 APP 1

705

 @Q703 71‘ 709

FIG. 7B

701 713'-
IIHEIII

707

705

703 709

FIG. 7c
SUBSTITUTE SHEET (RULE 26) Page 01601

Page 01602

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :

G07F 7/10
(43) International Publication Date:

(21) International Application Number: PCT/GB98/01388

(22) International Filing Date: 14 May 1998 (14.05.98)

(30) Priority Data:
60/046,5 14
60/046,543
09/078,031

US
US
US

15 May 1997 (l5.05.97)
15 May 1997 (l5.05.97)
13 May 1998 (13.05.98)

(71) Applicant: MONDEX INTERNATIONAL LIMITED
[GB/GB]; 47-53 Cannon Street, London EC4M SSQ (GB).

(72) Inventors: EVERETT, David, Barrington; 31 Ashdown Av-
enue, Saltdean, Brighton, East Sussex BN2 8AH (GB).
MILLER, Smart, James; 9 Woodford Green, The Warren,
Bracknell, Berks. RG12 9YQ (GB). PEACHAM, An-
thony, David; 4 Lynwood, Groombridge, 'I‘unbridge Wells,
Kent TN3 9LX (GB). SIMMONS, Ian, Stephens; The
Elms, School Road, Broughton, Cambs. PE17 3AT (GB).
RICHARDS, Timothy, Philip; 32 Craig Mount, Radlett,
Herts. WD7 7LW (GB). VINER, John, Charles; Hydes,
Woodlands Lane, Windlesham GU20 6DL (GB).

(74) Agent: POTTER, Julian, Mark; D. Young & Co., 21 New Fetter
Lane, London EC4A 1DA (GB).

(54) Title:

(57) Abstract

There is provided an integrated circuit card for
loading an application copy thereon and a method of
loading an application copy onto the integrated circuit
card, wherein the application copy is one of a plurality
of copies of an application. The application copy
has an associated application identifier that uniquely
identifies the application from other applications and
an application copy number that is unique for each
copy of the application. The integrated circuit card
includes a microprocessor and a memory coupled to the
microprocessor. The memory includes an application
history list area for storing application identifiers and
application copy numbers of applications that have been
previously loaded onto the integrated circuit card. The
method includes receiving by the integrated circuit card
the application copy, the application identifier, and the
application copy number; determining by the integrated
circuit card whether the application identifier and the
application copy number are contained in the application
history list area; and failing to load the application copy
by the integrated circuit card if the application identifier
and the application copy number are contained in the
application history list area.

(11) International Publication Number: WO 98/52158

19 November 1998 (19.ll.98)

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished
upon receipt of that report.

INTEGRATED CIRCUIT CARD WITH APPLICATION HISTORY LIST

APPLICATION
PROVIDER

Page 01602

Page 01603

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados

Belgium
Burkina Faso
Bulgaria
Benin
Brazil
Belarus
Canada
Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China
Cuba
Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain
Finland
France
Gabon
United Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Israel
Iceland
Italy
Japan
Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan
Saint Lucia
Liechtenstein
Sri Lanka
Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho
Lithuania
Luxembourg
Latvia
Monaco

Republic of Moldova
Madagascar
The fonner Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico

Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore

SI
SK
SN
SZ
TD
TG
TJ
TM
TR
TT
UA
UG
US
UZ
VN
YU
ZW

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
Turkmenistan
Turkey
Trinidad and Tobago
Ukraine
Uganda
United States of America
Uzbekistan
Viet Nam
Yugoslavia
Zimbabwe

Page 01603

Page 01604

WO 98/52158 PCT/GB98/01388

INTEGRATED CIRCUIT CARD WTTH APPLICATION HISTORY LIST

SUBSTITUTE SHEET (RULE 26) Page 01604

Page 01605

WO 98/52158

10

15

20

PCT/GB98/01388

BACKGROUND OF INVENTION

Integrated circuit (IC) cards are becoming increasingly used for many

different purposes in the world today, principally because they are ideal tools for

the delivery of distributed, secure information processing at a low cost. An IC

card, also called a “smart card,” is a card typically the size of a conventional credit

card, but which contains a computer chip on the card. The computer chip on the IC

card typically includes a microprocessor, read-only-memory (ROM), electrically

erasable programmable read-only-memory (EEPROM), a random access memory

(RAM), an input/output (I/O) mechanism, and other circuitry to support the

microprocessor in its operations. The computer chip can execute one or more

applications stored on the card. Examples of applications that IC cards are being

used to store and execute include credit/debit, electronic money/purse, telephone

calling card, and loyalty reward applications.

When an application is initially loaded onto an IC card, the

application may include data that is associated with the application. Such data may

include, for example, data that identifies the cardholder, such as the cardholder's

name and account number. Additionally, the associated data may also include a

promotional or bonus value provided by the application provider to the cardholder

for loading the application. For example, with a telephone calling card application,

an application provider may provide a certain amount of free calling time. As

another example, with an electronic purse application, an application provider may

provide bonus electronic cash. As yet another example, with a frequent flyer

loyalty application, an application provider may provide free miles.

-2-

suasrrrure SHEET (RULE 25) Page 01605

Page 01606

WO 98/52158

10

15

20

PCT/GB98/01388

The use of application data to provide promotional or bonus value

creates a potential problem for the IC card manufacturer and the application

provider regarding the integrity of loading applications. A solution is needed to

prevent a cardholder from intentionally or unintentionally copying an application

when it is first loaded, and reloading the application thereafter to reload the value in

the data associated with the application. By repeated reloading of an application, a

cardholder may potentially obtain an unlimited amount of promotional or bonus

value to which he or she is not entitled. At the same time, however, cardholders

may be required to reload an application for legitimate reasons, such as for updating

an application.

Accordingly, a need exists for a method of loading an application

onto an IC card such that a cardholder is prevented from illegitimately reloading an

application once it has been loaded onto the IC card.

The foregoing technical challenges and needs are addressed by

embodiments in accordance with the invention which provides technical solutions.

SUMMARY OF THE INVENTION

In accordance with a preferred embodiment of the present invention,

there is provided a method of loading an application copy onto an integrated circuit

card, wherein the application copy is one of a plurality of copies of an application.

The application copy has an associated application identifier that uniquely identifies

the application from other applications and an application copy number that is

unique for each copy of the application. The integrated circuit card includes a

-3-

SUBSTITUTE SHEET (RULE 26) Page 01606

Page 01607

WO 98/52158 PCT/GB98/01388

microprocessor and a memory coupled to the microprocessor. The memory

includes an application history list area for storing application identifiers and

application copy numbers of applications that have been previously loaded onto the

integrated circuit card. The method includes receiving by the integrated circuit card

5 the application copy, the application identifier, and the application copy number;

determining by the integrated circuit card whether the application identifier and the

application copy number are contained in the application history list area; and

failing to load the application copy by the integrated circuit card if the application

identifier and the application copy number are contained in the application history

10 list area.

As it is used in this specification and the appended claims, the term

“unique” to refer to application copy numbers refers to two types of numbers: (1)

non-random numbers that are actually determined to be unique, and (2) random

numbers that are determined to be probabilistically unique for a given cardholder.

15 The method in accordance with the preferred embodiment of the

present invention may further include the steps of allocating a predetermined

portion of the memory for the application history list area; determining by the

integrated circuit card whether the application history list area is full; and failing to

load the application copy if the application history list is full.

20 The method in accordance with the preferred embodiment of the

present invention may further include the step of adding the application identifier

and the application copy number to the application history list area if the

application identifier and the application copy number are not contained in the

-4-

SUBSTITUTE SHEET (RULE 26) Page 01607

Page 01608

wo 93/52153 PCT/GB98/01388

application history list area. Thus, once a copy of an application is loaded onto the

integrated circuit card, the application identifier and the application copy number

associated with the copy of the application are stored in the application history list

area for future checking.

5 The method in accordance with the preferred embodiment of the

present invention may also provide a mechanism by which application providers not

concerned with repeated loading of applications may circumvent storage of the

application identifier and the application copy number in the application history list

area. For example, an application copy number of zero can be used to signify that

10 an application may be reloaded as often as desired. Accordingly, the method of the

preferred embodiment of the present invention may further include the step of

adding the application identifier and the application copy number to the application

history list area if the application identifier and the application copy number are not

contained in the application history list area and the application copy number is not

15 zero.

The application copy may include both application code and

application data. The application identifier and the application copy number may

be contained in the application data.

Preferably, the application copy, the application identifier, and the

20 application copy number are transmitted to the integrated circuit card by an

application provider. Preferably, before transmitting the application copy to the

integrated circuit card, the application provider encrypts at least a portion of the

application copy. It is also preferred that an application provider transmit a key

-5-

SUBSTITUTE SHEET (RULE 25) Page 01608

Page 01609

WO 98/52158 PCT/GB98/01388

transformation unit, which includes information relating to the encryption of the

encrypted portion of the application copy. It is further preferred that the integrated

circuit card has a first public key pair and that the application provider encrypts the

key transformation unit with the public key of the first public key pair before

5 transmitting the key transformation unit to the integrated circuit card.

When the application provider encrypts the key transformation unit

with the public key of the first public key pair, the integrated circuit card may

decrypt the encrypted key transformation unit with the secret key of the first public

key pair. Once the key transformation unit is decrypted, the integrated circuit card

10 may decrypt the application copy using the information contained in the decrypted

key transformation unit.

It is also preferred that the application provider has a second public

key pair and that the application provider form a signed application copy by

encrypting the application copy with the secret key of the second public key pair.

15 The application provider may then transmit both the application copy and the signed

application copy to the integrated circuit card.

i It is further preferred that the application provider register the public

key of the second public key pair with a certification authority, which has a third

public key pair. The certification authority may then provide a certificate to the

20 application provider by encrypting the public key of the second public key pair with

the secret key of the third public key pair. The application provider may transmit

the certificate to the integrated circuit card.

When a certificate is transmitted to the integrated circuit card, the

-5-

suasrrrure sneer (RULE 26) Page 01609

Page 01610

WO 98/52158

10

15

20

PCT/GB98/01388

integrated circuit card may obtain the public key of the second key pair by

decrypting the certificate using the public key of the third public key pair. The

integrated circuit card may then verify the signed application copy using the public

key of the second public key pair. The integrated circuit card may fail to load the

application copy if the signed application copy is not verified.

In accordance with another preferred embodiment of the present

invention, there is provided an integrated circuit card that includes a microprocessor

and a memory coupled to the microprocessor. The memory includes an application

history list area for storing application identifiers and application copy numbers,

each application identifier and each application copy number being associated with

an application copy. The application copy is one of a plurality of copies of an

application. Each application identifier uniquely identifies an application from other

applications, and each application copy number uniquely identifies an application

copy from other application copies. The integrated circuit card of the invention

further includes means for determining whether an application identifier and an

application copy ntunber associated with an application copy to be loaded into the

memory area are contained in the application history list area and means for failing

to load the application copy to be loaded if the associated application identifier and

the associated application copy number are contained in the application history list

area.

SUBSTITUTE SHEET (RULE 25) Page 01610

Page 01611

WO 98/52158 PCT/GB98/01388

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments in accordance with the invention will now be

described, by way of example only, with reference to the accompanying drawings in

which:

5 Fig. 1 is a schematic representation of an IC card in accordance with

a preferred embodiment of the present invention;

Fig. 2 is a perspective view of an IC card and terminal in accordance

with a preferred embodiment of the present invention;

Fig. 3 is a functional block diagram of an IC card in accordance with

10 a preferred embodiment of the present invention;

Fig. 4 is a diagram of a system for remotely loading an application

from an application provider onto an IC card in accordance with a preferred

embodiment of the present invention;

Fig. 5 is a schematic representation of an application load unit in

15 accordance with a preferred embodiment of the present invention;

Fig. 6 is a flowchart of exemplary steps for processing the

application load unit of Fig. 5 in accordance with a preferred embodiment of the

present invention; and

Fig. 7 is a flowchart illustrating exemplary steps of a file loading

20 routine, which may be implemented by the operating system of an IC card in

accordance with a preferred embodiment of the present invention.

SUBSTITUTE SHEET (RULE 25) Page 01611

Page 01612

WO 98/52158 PCT/GB98/01388

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 provides a schematic representation of a typical IC card 10

that can be used with the presently claimed invention. The IC card 10 includes an

integrated circuit 12 having one or more electrical contacts 14 connected to the

5 integrated circuit 12.

Fig. 2 shows an example of a device with which the IC card 10

communicates. As used in this specification and the appended claims, the terms

“interface device” and “terminal” shall be used to generically describe devices with

which an IC card may communicate. A typical terminal 20, as shown in Fig. 2,

10 includes a card reader 22, a keypad 24, and a display 26. The keypad 24 and the

display 26 allow a user of the IC card 10 to interact with the tenninal. The keypad

24 allows the user to select a transaction, to enter a personal identification number

(“PIN”), and to enter transactional information. The display 26 allows the user to

receive informational messages and prompts for data entry. Other types of

15 terminals may include IC card-compatible ATM machines and telephones.

Fig. 3 provides a functional block diagram of the integrated circuit

12. At a minimum, the integrated circuit 12 includes a processing unit 100 and a

memory unit 110. Preferably, the integrated circuit 12 also includes control logic

150, a timer 160, security circuitry 170, input/output ports 180, and a co-processor

20 190. The control logic 150 provides, in conjunction with the processing unit 100,

the control necessary to handle communications between the memory unit 110 and

input/output ports 180. The timer 160 provides a timing reference signal for the

processing unit 100 and the control logic 150. The security circuitry 170 preferably

-9-

suasrrrur.-5 sneer (RULE 25) Page 01612

Page 01613

W0 98/52158

10

15

20

PCT/GB98/01388

provides fusible links that connect the input/output ports 180 to internal circuitry for

testing during manufacturing. The fusible links are burned after completion of

testing to limit later access to sensitive circuit areas. The co-processor 190 provides

the ability to perform complex computations in real time, such as those required by

cryptographic algorithms.

The memory unit 110 may include different types of memory, such

as volatile and non-volatile memory and read-only and programmable memory. For

example, as shown in Fig. 3, the memory unit 110 may include read-only memory

(ROM), electrically erasable programmable read-only memory (EEPROM), and

random-access memory (RAM).

The memory unit 110 stores IC card data such as secret

cryptographic keys and a user PIN. The secret cryptographic keys may be any type

of well-known cryptographic keys, such as the private keys of public-key pairs.

Preferably, the secret cryptographic keys are stored in a secure area of ROM or

EEPROM that is either not accessible or has very limited accessibility from outside

the IC card.

The memory unit 110 also stores the operating system of the IC card.

The operating system loads and executes IC card applications and provides file

management and other basic card services to the IC card applications. Preferably,

the operating system is stored in ROM.

In addition to the basic services provided by the operating system,

the memory unit 110 may also include one or more lC card applications. For

example, if the IC card is to be used as an electronic cash card, an application

-10-

SUBSTITUTE SHEET (RULE 25) Page 01613

Page 01614

WO 98/52158 PCT/GB98/01388

called MONDEXT” PURSE (from Mondex International Limited) might be

included on the IC card, which loads an electronic value of a certain currency from

a user's account in a financial institution onto the IC card. Preferably, the

operating system of the IC card 10 should support multiple applications, such as the

5 MULTOSTM operating system from Mondex International Limited.

An IC card application may include both program and associated data

files, which are typically stored in EEPROM. The application program may be

written either in the native programming code of the processing unit 100 or it may

be written in a higher level language that must be translated before it is executed on

10 the processing unit 100. An example of such a higher level language for use on IC

cards is the MULTOSTM Executable Language (MEL). Advantageously, by using a

higher level language such as MEL, an application program is capable of running

on multiple hardware platforms without any need for re-writing.

Because IC cards typically have limited memory capacity due to the

13 size and cost restraints of placing memory on the IC cards, an IC card may also

have primitives stored in ROM, which are subroutines that perform frequently used

functions or procedures, such as mathematical functions. The primitives are usually

written in the native language of the processing unit 100 so that they can be

executed very quickly.

20 In Fig. 4, there is shown a diagram of a system for remotely loading

an application from an application provider 401 onto an IC card 403. The

application provider 401 may be a card issuer, a bank, or any other entity that

provides application loading services. The IC card 403 communicates with the

-1]-

SUBSTITUTE SHEET (RULE 25) Page 01614

Page 01615

WO 98/52158 PCT/GB98/01388

application provider 401 through an interface device 405, which may be a bank

terminal, an ATM, or any other device that communicates with an IC card. The

application provider 401 and the interface device 405 communicate by way of a

data conduit 407, which can be a telephone line, a cable line, a satellite link, an

5 Internet connection, an intra-net connection, or any other type of communications

link.

When loading applications onto an IC card remotely, an application

provider is required to address several security issues. First, an application provider

must ensure that an application is sent only to the cardholder who is intended to

10 receive the application. Second, the application provider must ensure the privacy of

any confidential or trade secret information contained in the applications to be

loaded. Third, because the data conduit 407 may be an open link and subject to

third parties possibly intercepting or replacing applications being transmitted, an

application provider must take security measures to enable the IC card to

15 authenticate the application.

The solutions to these security issues typically involve encryption

using symmetric and/or asymmetric cryptography techniques. Symmetric

cryptography involves encoding and decoding data using the same mathematical

number, called a “key,” which must be kept secret. On the other hand, asymmetric

20 cryptography, or “public key” cryptography as it is also called, involves encoding

data with one key and decoding data with another key. The two keys are referred

to as a key pair, and one of the key pair must be kept secret while the other of the

key pair may be publicly distributed. Each key of a key pair may be used to

-12-

suasrnrure SHEET (RULE 25) Page 01615

Page 01616

WO 98/52158 PCT/GB98/01388

encode data; however, once data is encoded by using one key, it can only be

decoded by using the other key.

In the system of Fig. 4, it is assumed that the application provider

401 and the IC card 403 each have cryptographic key pairs. The generation of

5 cryptographic keys is performed by any manner known by those skilled in the art.

The system also utilizes a Certification Authority (CA) 409, which also has a

cryptographic key pair. The CA 409 may be any entity that is trusted to keep the

secret key of its public key pair private and to authenticate the identity of other

entities __ as, for example, the identity of the application provider 401.

10 In the system of Fig. 4, the application provider 401 applies for

registration of its public key with the CA 409. To do so, the application provider

401 must meet the identification requirements of the CA 409. If the application

provider 401 meets these identification requirements, the CA 409 will issue an

Application Load Certificate (ALC) 413, which includes the public key of the

15 application provider 401 encoded or “signed” by the secret key of the CA 409. The

ALC 413 may be decoded using the public key of the CA 409, which is publicly

distributed. Since the CA 409 is trusted to keep its secret key private and to

authenticate the identity of the application provider 401, any entity receiving the

ALC 413 is assured that the public key contained within the certificate belongs to

20 the application provider 401.

To load an application onto the IC card 403, the application provider

401 transmits an Application Load Unit (ALU) 411 to the interface device 405 via

the data conduit 407. The contents of the ALU 411 are shown schematically in

-13-

SUBSTITUTE SHEET (RULE 25) Page 01616

Page 01617

WO 98/52158

10

15

20

PCT/GB98/01388

Fig. 5. The ALU preferably includes an Application Unit (AU) 415, a signed

Application Unit (AUS) 417, a Key Transformation Unit (KTU) 419, and the ALC

413.

The AU 415 contains the application code and data that are to be

stored on the IC card. Some or all of the application code and data may be

encrypted to protect confidential or trade secret portions of the application code and

data.

The AUS 417 is the application code and data AU 415 signed with

the secret key of the application provider 401. Using the public key of the

application provider 401 provided in the ALC 413, the IC card 403 may decode the

AUS 417 and compare it to the AU 415 to ensure that the AU 415 has not been

tampered with during transmission.

The KTU 419 contains information relating to the encrypted portions

of the AU 415. This information allows the IC card 403 to decode those encrypted

portions so that the application code and data can be accessed by the IC card 403.

The KTU 419 is signed with the public key of the IC card 403, which ensures that

only the intended IC card 403 can decode the KTU 419 (using the IC card’s secret

key). Once the KTU 419 is decoded, the IC card 403 may use the information

contained in the KTU 419 to decode the encrypted portions of the application code

and data of AU 415.

Fig. 6 shows a flow chart of the steps for processing the ALU 411

when it is received by the IC card 403. In step 601, the IC card 403 receives the

ALU 411 from the application provider 401. The ALU 411 is placed in the

-14-

SUBSTITUTE SHEET (RULE 26) Page 01617

Page 01618

WO 98/52158

10

15

20

PCT/GB98/01388

EEPROM of the IC card 403 along with header information indicating the location

in memory of AU 415, AU,417, KTU 419 and ALC 413.

In step 603, the ALC 413 is decoded using the public key of the CA

409. The IC card 403 preferably stores in its memory a copy of the CA public key

because it may be used in many transactions. Alternatively, the IC card could

obtain the public key from a trusted storage location, such as the interface device

405. Once decoded, the ALC 413 provides the IC card 403 with a trusted copy of

the public key of the application provider 401.

In step 605, the IC card 403 uses the application provider’s public

key to verify the AU 415 was not tampered with during transmission. Using the

public key of the application provider 401, the IC card 403 decodes the AU, 417,

which was signed with the secret key of the application provider 401. Once the

AUS 417 is decoded, the decoded AU, 417 is compared to the AU 415. If the two

units match, then the AU 415 is verified.

In step 607, the KTU 419, which has been encrypted with the public

key of the IC card 403, is decoded using the private key of the IC card 403. In

step 609, the information in the decoded KTU 419 is used to decode the encrypted

portions of the AU 415. The KTU 419 may contain, for example, either an

algorithm or a key for use in decoding the AU 415.

In addition to the security and authentication measures discussed

above, other security and authentication measures may also be employed.

Additional methods of security and authentication have been addressed, for

example, in the related International Patent Application No. PCT/GB98/00531

-15-

SUBSTITUTE SHEET (RULE 25) Page 01613

Page 01619

W0 98/52 1 58

10

15

20

PCT/GB98/01388

entitled "Multi-Application IC Card System" by Everett et al., filed February 19,

1998, and US Application entitled "Key Transformation Unit for an IC Card" by

Richards et al., filed May 11, 1998. Both of these applications are hereby

incorporated by reference to Annex A and Annex B respectively, and Annex C, all

attached herewith.

In accordance with a preferred embodiment of the present invention,

the data portion of the AU 415 includes an application identifier for the application

to be loaded onto the IC card 403 and an application copy number, which is unique

for each copy of an application to be loaded onto the IC card 403. As it is used in

this specification and the amended claims, the use of the term “unique” in relation

to application copy numbers refers both to non—random numbers that are actually

determined to be unique and to random numbers that are determined to be

probabilistically unique for a given IC card. Preferably, the data portion of the AU

415 containing the application identifier and the application copy number is

encoded (and the KTU 419 contains the information necessary to decode this data

portion).

Fig. 7 is a flowchart illustrating the steps of a file loading routine

that may be implemented by the operating system of the IC card 403 to take

advantage of the application identifier and the application copy number contained in

the AU 415 to prevent a cardholder from repeatedly loading the same application

onto the IC card 403. In the embodiment of Fig. 7, the application copy number is

a random number, also called a “random seed.” In step 701, the file loading

routine receives the file loading command load_fz‘le_command from the security

-15-

SUBSTITUTE SHEET (RULE 25) Page 01619

Page 01620

WO 98/52158

10

20

PCT/GB98/01388

manager of the operating system, 0S_Securz'ty_Manager. The

0S_Security_Manager of the operating system is responsible for verification and

decoding of the ALU 411 as discussed with regard to Fig. 6.

In step 703, the application identifier and random seed associated

with the application, referred to as load_file_command. applz'carion_id and

load_file_c0mmand. random_seed, respectively, are checked against entries in an

application history list stored on the IC card, referred to as

os_global_data.app_history__list. The application history list contains entries for

each set of application identifier and random seed associated with an application

loaded onto the IC card 403. It is preferred that the application history list be

stored in a secure area of EEPROM that is not accessible from outside the IC card.

If the application identifier and random seed associated with the

application to be loaded are found in the application history list, in step 705, the

response status load_file__response.status is set to “failed” and the error description

1oad_file_response.error_cause is set to “application previously loaded.” The error

response load_file_response is retumed to the 0S_Security_Manager, indicating that

the load file routine failed to load the application because the application had

previously been loaded onto the IC card.

If the application identifier and random seed associated with the

application to be loaded are not found in the application history list, in step 707, the

random seed is checked to determine whether it is equal to zero and the application

history list is checked to determine whether it is full. A random seed with a value

-17-

SUBSTITUTE SHEET (RULE 25) Page 01620

Page 01621

wo 93/52153 PCT/GB98/01388

of zero indicates that the application does not contain any economic value included

in its data, and thus may be reloaded as often as desired. If the random seed

associated with the application is not zero (indicating there is an economic value

included with the application) and the application history list is full, the response

5 status loadjile_response.status is set to “failed” and the error description

loadjz‘le_response. error_cause is set to “application history list full.” In this case,

the application cannot be loaded because the application history list is full and,

therefore, the application identifier and random seed cannot be added to the

application history list for future checking.

10 If an error condition has not been triggered in steps 703 or 707, in

step 711, the directory file record associated with the application is added to the

directory file of the IC card -- i.e., the application is loaded onto the IC card 403.

In step 713, it is checked whether the random seed is equal to zero. If the random

seed is not equal to zero (indicating that there is an economic value included with

13 the application), the application identifier and the random seed are added to the

application history list for checking against subsequent applications sought to be

loaded onto the IC card. After updating the application history list, the response

status load_/iIe_response.status is set to “success” and sent to the

0S_Security_Manager.

20 If the random seed is equal to zero (indicating that there is no

economic value included with the application), the application identifier and random

seed are not added to the application history list. Instead, step 717 is skipped, and

-18-

SUBSTITUTE SHEET (RULE 25) Page 01621

Page 01622

WO 98/52158

10

15

20

PCT/GB98/01388

the response status load_file_response.status is set to “success” and sent to the

0S_Security_Manager.

Advantageously, the file loading routine of Fig. 7 prevents a

cardholder from illegitimately reloading an application. If a cardholder intercepts

and copies an application to be loaded onto an IC card, the cardholder cannot later

reload the application because, once the application is loaded, the application

identifier and random seed are stored permanently on the IC card. If a cardholder

attempts to reload the application, the operating system of the IC card will fail to

reload the application because the application identifier and random seed of the

application will match an entry in the application history list of the IC card.

On the other hand, a cardholder is not prevented from legitimately

reloading an application from an application provider. Since an application

provider will generate a new random seed for each copy of an application it

provides, it will be unlikely for a cardholder to receive a second copy of the

application from the application provider with the same random seed. Of course,

the application provider must use a random seed of sufficient length to ensure that

the probability of any cardholder twice receiving the same random seed is

sufficiently unlikely.

Alternatively, instead of using a random number, an application

provider may use any unique number associated with copies of applications it

provides to each cardholder. For example, an application provider may keep a

counter that tracks the number of copies of an application that is has provided. The

-19-

SUBSTITUTE SHEET (RULE 25) Page 01622

Page 01623

WO 98/52158 PCT/GB98/01388

application provider may use the value of the counter to provide a unique number

each time it provides a copy of the application to a cardholder. The random seed

embodiment is preferred, however, because it is easier to manage (i.e., there is no

information that is required to be stored or managed).

5 Although the present invention has been described with reference to

certain preferred embodiments, various modifications, alterations, and substitutions

will be known or obvious to those skilled in the art without departing from the

spirit and scope of the invention, as defined by the appended claims.

The scope of the present disclosure includes any novel feature or

10 combination of features disclosed therein either explicitly or implicitly or any

generalisation thereof irrespective of whether or not it relates to the claimed

invention or mitigates any or all of the problems addressed by the present invention.

The application hereby gives notice that new claims may be formulated to such

features during the prosecution of this application or of any such further application

15 derived therefrom. In particular, with reference to the appended claims, features

from dependant claims may be combined with those of the independent claims in

any appropriate manner and not merely in the specific combinations enumerated in

the claims.

-20-

SUBSTITUTE SHEET (RULE 25) Page 01623

Page 01624

WO 98/52158 PCT/GB98/01388

 ANNEX A

MULTI—APPLICATION IC CARD SYSTEM

Integrated circuit (“IC") cards are becoming increasingly used for many

diiferent purposes in the world today. An IC card (also called a smart card) typically is

the size of a conventional credit card which contains a computer chip including a..

microprocessor, read-only-memory (ROM), electrically erasable programmable read-

only-memory (EEPROM), an Input/Output (I/O) mechanism and other circuitry to

support the microprocessor in its operations. An IC card may contain a single application

or may contain multiple independent applications in its memory. MULTOSTM is a

multiple applicafion operating system which runs on IC cards, among other platforms,

and allows multiple applications to be executed on the card itself. This allows a card user

to run many programs stored in the card (for example, credit/debit, electronic

money/purse and/or loyalty applications) irrespective of the type of terminal (i.e., ATM,

telephone and/or POS) in which the card is inserted for use.

A conventional single application IC card, such as a telephone card or an

electronic cash card, is loaded with a single application at its personalization stage. That

application, however, cannot be modified or changed after the card is issued even if the '

modification is desired by the card user or card issuer. Moreover, if a card user wanted a

variety of application functions to be performed by IC cards issued to him or her, such as

-21-

SUBSTITUTE SHEET (RULE 25) Page 01624

Page 01625

WO 98/52158 PCT/GB98/01388

AHi!EX H TOW‘: S€R|?Tl8l%
both an electronic purse and a credit/debit function, the card user would be required to

carry multiple physical cards on his or her person, which would be quite cumbersome and ‘

inconvenient. If an application developer or card user desired two different applications

to interact or exchange data with each other, such as a purse application interacting with a

frequent flyer loyalty application, the card user would be forced to swap multiple cards in

and out of the card-receiving terminal, malcing the transaction dificult, lengthy and

inconvenient. _

The Applicant has recognised therefore, that it is beneficial to store multiple

applications on the same IC card. For example, a card user may have both a purse

application and a credit/debit application on the same card so that the user could select

which type ofpayment (by electronic cash or credit card) to use to make a purchase.

Multiple applications could be provided to an IC card if suficient memory exists and

an operating system capable of supporting multiple applications is present on the card.

Although multiple applications could be pre-selected and placed in the memory ofthe

card during is production stage, it would also be beneficial to have the ability to load

and delete applications for card post-production as needed.

The increased flexibility and power of storing multiple applications on a

single card create new challenges to be overcome concerning the integrity and security. of

the information (including application code and associated data) exchanged between the

individual card and the application provider as well as within the entire system when

loading and deleting applications. The Applicant has fiirther recognised that it

would be beneficial to have the capability of the IC

card system to exchange data among cards, card issuers, system operators and application

-22-

SUBSTITUTE SHEET (RULE 25) Page 01625

Page 01626

W0 9852158 PCT/GB98/01388

lllllll H TOTH£§ES il!l’ll0ll

providers securely and to load and delete applications securely at any time from either a

terminal or remotely over a telephone line, intemet or intranet connection or other data

conduit. Because these data transmission lines are not typically secure lines, a number of

security and enfity-authentication techniques must be implemented to make sure that

applications being sent over the transmission lines are only loaded on the intended cards.

As mentioned, it is important -- particularly where there is a continuing

wide availability of new applications to the cardholder -- that the system has the

capability of adding applications onto the IC card subsequent to issuance. This is

highly advantageous since it protects the longevity of the IC cards; otherwise, once an

application becomes outdated, the card would be useless. In this regard, to protect

against the improper or undesired loading of applications onto IC cards, the

Applicant has further recognised that it would be beneficial for the IC card

system to have the capability of controlling the loading process and restricting, when

necessary or desirable, the use of certain applications to a limited group or number of

cards such that the applications are “selectively available” to the IC—cards in the system.

This “selective capability” would allow the loading and deleting of applications at, for

example, a desired point in time in the card’s life cycle. It would also allow the loading

of an application only to those cards chosen to receive the selected application.

Accordingly, it is an advantage of a preferred embodiment of the invention that

it provides these important features and specifically a secure IC-card system that

allows for selective availability of smart card applications which may be loaded onto IC

cards.

23.

suasrrrure sneer (RULE 25) Page 01626

Page 01627

WO 98/52158 PCT/GB98/01388

ANNEX :9 TOTHEDESCRIPTIOH
These and other advantages are achieved by an embodiment

ofthe present invention which proves an IC card system comprising

at least one IC card and an application to be loaded onto the card

wherein the IC card contains card personalization date and the

application is assigned application permissions data designating which IC card or group

ofIC cards upon which the application may be loaded. The system checks to determine

whether the card’s personalization data falls the permissible set indicated by the

application’s permissions data. If it does, the application may be loaded onto the card.

In a preferred embodiment, the card personalization data is transferred

onto the card by the personalization bureau afier the card is manufactured. The data

preferably includes data representing the card number, the issuer, product class (i.e., such

as gold or platinum cards), and the date on which the card was personalized. The card

further preferably contains enablement data indicating whether or not the card has been

enabled with personalized data.

In a further preferred embodiment, the IC card secure system checks the

enablement data prior to loading an application to determine whether or not the card has

been enabled. Preferably, if the card has been enabled, the system checks if the card

number, the issuer, the product class and/or the date on which the card was personalized

are within the acceptable set indicated by the application’s permissions data. If so, the

application may be loaded onto the IC card.

-24-

Page 01627
SUBSTITUTE SHEET (RULE 25)

Page 01628

“'0 9352153 PCT/GB98/01388

ANNEX 9 TOTHHEESCRIPTION

In yet another preferred embodiment, the application’s permissions data

may contain data representative of a blanket permission such that all cards would pass for

application loading.

Further aspects, features and advantages of embodiments ofthe invention will .

become apparent fiom the following detailed description taken in conjtmction the
accompanying figures showing illustrative embodiments of the invention, in which

Fig. l is block diagram illustrating the three stages in the life of a multi-

application IC card in a secure system;

Fig. 2 is a block diagram illustrating the steps of the card manufacture

process;

Fig. 3 is a flow diagram illustrating the steps involved in enabling each of

the IC cards in the secure system;

Fig. 4 is a block diagram of an IC card chip which can be used in

accordance with an embodiment of the invention;

Fig. 5 is a block diagram illustrating the data stored on the IC card as

indicated in block 307 of Fig. 3;

Fig. SA is a schematic of the data structures residing in an IC card and

representing personalization data;

-25..

SUBSTITUTE SHEET (RULE 25) Page 01623

Page 01629

WO 98/52158

10

15

PCT/GB98/01388

Alélliil Fl TOTHEBESCRIPTION

Fig. 6 is a flowchart illustrating the steps of loading an application onto an

IC card in the secure system;

Fig. 7 is a flow chart illustrating the checking steps as indicated in block

601 ofFig. 6; ‘A

Fig. 8 is a flowchart illustrating the steps undertaken in determining if

loading of an application may proceed;

Fig. 9 is a block diagram showing the components of the system

architecture for the enablement process of ai1IC card in a secure multi-application IC

card system;

Fig. 10 is a system diagram of entities involved with the use of the IC card

once it has been personalized.

Throughout the figures, the same reference numerals and characters,

unless otherwise stated, are used to denote like features, elements, components or

portions of the illustrated embodiments. Moreover, while the subject invention will now

be described in detail with reference to the figures, it is done so in connection with the

- illustrative embodiments. It is intended that changes and modifications can be made to

the described embodiments without departing from the true scope and spirit of the subject

invention as defined by the appended claims.

25

SUBSTITUTE SHEET (RULE 25) Page 01629

Page 01630

wo 98/52158 PCT/GB98/01388

Allllili H lllllli BESCRIPTION

An embodiment ofthe present invention provides an IC card system and

process which allow the flexibility to load and delete selected applications over the

lifetime ofa multi-application IC card in response to the needs or desires ofthe card

user, card issuers and/or application developers. A card user who has such a card can

selectively load and delete applications as desired if allowed by the card issuer in

conjimction with the system operator or Certification Authority (“CA”) which controls

the loading and deleting process by certifying the transfer ofinformation relating to the

process.

By allowing applications to be selectively loaded and deleted from the

card, a card issuer can extend additional functionality to an individual IC card without

having to issue new cards. Moreover, application developers can replace old applications

with new enhanced versions, and applications residing on the same card using a common

multiple application operating system may interact and exchange data in a safe and secure

manner. For example, a frequent flyer loyalty program may automatically credit one

frequent flyer mile to a card user’s intemal account for every dollar

spent with an electronic purse such as the

Mondex purse or with a credit/debit application. By allowing the ability to selectively

load and delete applications, the card user, subject to the requirements of the card issuer,

also has the option of changing loyalty programs as desired.

A card issuer or application developer may intend that a particular

application be loaded on only one card for a particular card user in a card system. A

regional bank may desire to have a proprietary application reside only on the cards which

27

SUBSTITUTE SHEET (RULE 25) Page 01630

Page 01631

W0 98/52158 PCT/GB98/01388

ANNEX H TOTH§DES(RlPll0N

the bank issues. Embodiments in accordance with the present invention would allow

for this selective loading and specifically allow for the prevention of loading

proprietary applications onto unauthorized cards issued by others.

To achieve these desired objectives, embodiments ofthe present invention give

each card a specific indentity by storing “card personalization data” on the card.‘

Morover, each application to be loaded or deleted on one or more cards in the system

is assigned “application permissions data” which specify the cards up on which the

applications may be loaded.

The type of personalized data can vary depending upon the needs and

requirements of the card system. In the preferred embodiment, described in greater detail

below, the personalization data include unique card identification designation data, the

card issuer, the product class or type (which is defined by the card issuer) and the date of

personalization. However, not all of these data elements are required to be used and

additional elements could also be included.

The application permissions data associated with an application, also

described in greater detail below, can be a single value in an identity field or could

include multiple values in the identity field. For example, the application permissions

data in the card issuer field could represent both product class A and product class B from

a certain Bank X, indicating that the application could be loaded onto cards designated as

product classes A and B issued by Bank X (as indicated in the card product ID field of the

card’s personalization data).

-23-

SUBSTITUTE SHEET (RULE 25) Page 01631

Page 01632

WO 98/52158

10

15

20

PCT/GB98/01388

llllllll H lOl'HEEl5(RlPll0N

In addition, a “global value” could be stored in the issuer field (or other

field) of the application permissions data indicating that all IC cards in the system

regardless ofwho issued the card would match this permissions field. In this case, for

example, a data value of zero stored in the application permissions card-issuer field will

match all of the cards’ personalization card-issuer fields.

Figure 1 shows the three steps involved in providing an operational multi-

application IC card in a secure system. The first step is the card manufacturing step 101.

The second step is the personalization step 103 where card personalization data (also

called entity authentication data) is loaded onto the card. The third step is the application

loading step 105 which checks to see if a card is qualified to receive an application, i.e.,

when the personalization data is checked against the application permissions data

associated with the application to be loaded. Each of these three steps is described in

detail below.

Qggg Manufacture

Figure 2 shows the steps necessary in manufacturing an IC card in a secure

system. Step 201 manufactures the physical IC card by creating the integrated circuit on

silicon and placing it on the card. The integrated circuit chip will include RAM, ROM ‘

and EEPROM memories. When the card is first manufactured, a global public key of the

system operator (in this case called the Certification Authority (CA)) is stored on each

card in ROM in step 203. This will allow the card to authenticate that the source of any

message to it is from the CA since the public key on the card will be matched to the CA’s

secret key.

-29-

SUBSTITUTE SHEET (RULE 25) Page 01632

Page 01633

WO 98/52158

10

15

20

PCT/GB98/01388

ANNEX H TO THE DESCRIPTION

More specifically, this public key stored on the card will allow the

individual card to verify data signed with the CA’s private key. The public key of the

CA, which is stored on the card, is used only for determining if the data sent to the card

was signed with the proper CA private key. This allows the card to verify the source of

any message coming from the CA.

Step 205 inserts a card enablement key in a secure portion ofEEPROM in

the card to facilitate card specific confidentiality during enablement, and step 207 inserts

a card identifier in EEPROM of the card. The identifier, which can be accessed by any

terminal, will allow the system to determine the identity of the card in later processes.

The identifier is freely available and will not be used to authenticate messages.

Step 209 stores the operating system code in ROM on the card including

any primitives which are called or supported by the operating system. The primitives are

written in native language code (e.g., assembly language) and are stored in ROM. The

primitives are subroutines which may be called by the operating system or by

applications residing on the card such as mathematic functions (multiply or divide), data

retrieval, data manipulation or cryptographic algorithms. The primitives can be executed

very quickly because they are written in the native language of the processor. -

After the IC cards are manufactured, they are sent to a personalization bureau

(“PB") to enable and personalize the card by storing card personalization data in the

memory of the card. The terms enablement and personalization are used interchangeably

herein to indicate the preparatory steps taken to allow the card to be loaded securely with

-30-

SUBSTITUTE SHEET (RULE 26) Page 01633

Page 01634

W0 98/52158

10

15

20

PCT/GB98/01388

ANNEX 8 TOTHEDEKRIPTION

an application. The individual cards are preferably manufactured in batches and are sent

to a personalization bureau in a group for processing.

Qmdfimmkmgmflgxmfltamn

Figure 3 shows the steps of the card enablement process when the card

arrives at a personalization bureau. The personalization bureau may be the ‘card issuer

(e.g., a bank or other financial institution) or;may be a third party that performs the

service for the card issuer. The personalization bureau configures the card to a specific

user or user class.

Figure 3 specifically shows the steps taken to enable and personalize each

IC card which will work within the system. The cards can be placed in a terminal which

communicates with IC cards and which reads the card identifier data (previously placed

on the card during the manufacturing process - see step 207). This card identification

data is read from the card in step 301. The terminal will effectively send a “get

identification data" command to the card and the card will return the identification data to

the terminal.

The PB typically processes a group of cards at the same time, and will first

compile a list of IC card identification data for the group of cards it is personalizing. The

PB then sends electronically (or otherwise) this list of identification data to the

Certification Authority ("CA") which creates a personalization (or enablernent) data

block for each card identifier. The data block includes the card personalization data

organized in a number of identity fields and an individual key set for the card, discussed

below. These data blocks are then encrypted and sent to the PB in step 302. By using the
31

SUBSTITUTE SHEET (RULE 26) Page01634

Page 01635

WO 98/52158

20

PCT/GB98/01388

ANNEX 9 EQTHEDESWPTION

card identification data, the PB then matches the cards with the encrypted data blocks and

separately loads each data block onto the matched card. To insure that the CA cont1'o1s

the identity of the card and the integrity of the system, the PB never obtains knowledge of

the content of the data blocks transferred. Some aspects of the personalization are

requested by the card issuer to the CA in order to affect their preferred management of

the cards they issue. The following additional steps are performed.

Step 303 first checks to see if an enablement bit stored in EEPROM of the

card has been already set. If it already has been set, the card has already been configured

and personalized and the enablement process will end as shown in step 304. A card

carmot be enabled and personalized twice. If the bit has not been set, then the process

continues with step 305.

In step 305, the individualized card key set for the card being enabled

(which key set is generated at the CA) is stored on the card. The keys can be used later in

ofi-card verification (i.e., to verify that the card is an authentic card). This verification is

necessary to further authenticate the card as the one for which the application was

intended.

Step 307 generates four different MULTOS Security Manager (MSM?)

characteristic data elements (otherwise referred to herein as personalization data) for the

card at the CA which are used for securely and correctly loading and deleting applications

from a particular card. The MSM characteristics also allow for the loading of

applications" on specific classes of identified cards. (These MSM characteristics are

further described in connection with Figure 5.)
-32-

SUBSTITUTE SHEET (RULE 25) Page 01635

Page 01636

WO 98/52158

10

15

20

PCT/GB98/01388

ANNEX H TO THE DESCRIPTION

Other data can also be stored on the card at this time as needed by the

system design such as an address table or further subroutines.

Step 311 sets the enablement bit in EEPROM ofthe card which indicates

that the enablement process has been completed for the particular card. When this bit is

set, another enablement process cannot occur on the card. This ensures that only one

personalization and enablement process will occur to the card thus preventing illegal

tampering of the card or altering the card by mistake. In the preferred embodiment, the

enablement bit is initially not set when the card is manufactured and is set at the end of

the enablement process.

Figure 4 shows an example of a block diagram of an IC card chip which

has been manufactured and personalized. The IC card chip is located on an IC card for

use. The IC card preferably includes a central processing unit 401, a RAM 403, a

EEPROM 405, a ROM 407, a timer 409, control logic 411, an I/O parts 413 and security

circuitry 415, which are connected together by a conventional data bus.

Control logic 411 in memory cards provides suficient sequencing and

switching to handle read-write access to the card’s memory through the input/output

ports. CPU 401 with its control logic can perform calculations, access mory locations,

modify memory contents, and manage input/output ports. Some cards have a coprocessor

for handling complex computations like cryptographic algorithms. Input/output ports

413 are used under the control of a CPU and control logic alone, for communications

between the card and a card acceptance device. Timer 409 (which generates or provides a

clock pulse) drives the control logic 411 and CPU 401 through the sequence of steps that

-33-

SUBSTITUTE SHEET (RULE 26) Page 01636

Page 01637

WO 98/52158

10

15

20

PCT/GB98/01388

Allllill H lfllliilllllllllllflll

accomplish memory access, memory reading or writing, processing, and data

communication. A timer may be used to provide application features such as call

duration. Security circuitry 415 includes fusible links that connect the input/output lines

to internal circuitry as required for testing during manufacture, but which are destroyed

(“blown”) upon completion of testing to prevent later access. The personalization data to

qualify the card is stored in a secured location ofEEPROM 405. The comparing ofthe

personalization data to applications permissions data is performed by the CPU 401.

Figure 5 shows the steps of generating and loading the four elements of

the card personalization data into the memory of the IC cards, and Fig. 5A shows a

schematic ofbit maps for each identity field residing in the memory of an IC card

containing personalization data in accordance with the present invention. Each data

structure for each identity field has its own descriptor code. Step 501 loads the data

structure for the identity field “card ID" called “msm_mcd_permissions_mcd_no.” This

nomenclature stands for MULTOS system manager _ MULTOS card device _

permissions_ MULTOS card device number. Although this number is typically 8 bytes

long as shown in Fig. 5A, the data "could be any length that indicates a unique number for

the card. In the preferred embodiment, 2 bytes are dedicated as a signal indicator, 2 "bytes

_ comprise a M'ULTOS Injection Security Module ID (MISM ID) indicating which security

module injected the card with its injected keys when it was manufactured, and 4 bytes

comprise an Integrated Circuit Card (ICC) serial number which identifies the individual

card produced at the particular MISM.

-34-

SUBSTITUTE SHEET (RULE 25) Page 01637

Page 01638

WO 98/52158

10

15

20

PCT/GB98/01388

AHHEX Ki TOIHi3§SCRlPl!OEi...__j:——--

Step 503 loads the data structure for the identity field “issuer ID" called

“msm__mcd_permissions__ mcd_issuer_id." This nomenclature stands for a MULTOS

card device issuer identification number. Each card issuer (such as a particular bank,

financial institution or other company involved with an application) will be assigned a

unique number in the card system. Each IC card in the MULTOS system will contain

information regarding the card issuer which personalized the card or is responsible for the

card. A card issuer will order a certain number of cards from a manufacturer and perform

or have performed the personalization process as described herein. For example, a

regional bank may order 5,000 cards to be distributed to its customers. The

“mcd_issuer__id” data structure on these cards will indicate which issuer issued the cards.

In the preferred embodiment, the data structure is 4 bytes long (as shown in Fig. 5A at

503A) to allow for many different issuers in the system although the length of the data

structure can vary with the needs of the card system.

Step 505 loads the data structure for the identity field “product ID" called

“msm_mcd_perrnissions_mcd_ issuer_product__id.” This nomenclature stands for

MULTOS card device issuer product identification number. Each card issuer may have

difi'erent classes ofproducts or cards which it may want to diflerentiate. For example, a.

bank could issue a regular credit card with one product ID, a gold credit card with another

product ID and a platinum card with still another product ID. The card issuer may wish

to load certain applications onto only one class of credit cards. A gold credit card user

who pays an armual fee may be entitled to a greater variety of applications than a. regular

credit card user who pays no annual fee. The product ID field identifies the card as a
-35-

SUBSTITUTE SHEET (RULE 25) Page 01638

Page 01639

W0 98/52 1 58

10

15

20

PCT/GB98/01388

 ANNEX 6 -10 THE ¥ES€§liPTl0H
particular class and will later allow the card issuer to check the product ID and only load

applications onto cards which match the desired class.

Another way to differentiate products is by application type, such as by

categorizing the application as financial, legal, medical and/or recreational, or by

assigning particular applications to a group of cards. For example, one card issuer may

have different loyalty programs available with difierent companies to different sets of

card users. For example, a bank may have an American Airlines® loyalty program and a

British Airways® loyalty program for different regions of the country dependent on

where the airlines fly. The product type allows the issuer to fix the product classification

of the card during the personalization process. When loading applications onto the card,

the product type identification number on each card will be checked to make sure it

matches the type of card onto which the issuer desires to load. The product type data

structure is preferably an indexing mechanism (unlike the other personalization data

structure) of 8 bits (as shown at 505A in Fig. 5A) but could be any length depending

upon the needs of the card system: In the illustrated embodiment, the resulting

instruction would be to locate the second bit (since the byte’s indicated value is 2) in the

--array to be searched (see discussion of step 809 below).

Step 507 loads the data structure for the identity field data called

“msm_mcd_permissions_mcd_ conu’ols_data_ date." This nomenclature stands for the

MULTOS card device controls data date or, in other words, the date on which the card

was personalized so that, for example, the application loader can load cards dated only

afier a certain date, load cards before a certain date (e.g., for application updates) or load
-35-

SUBSTITUTE SHEET (RULE 25) Page 01639

Page 01640

WO 98/52158

10

15

20

PCT/GB98/01388

ANNEX 6 l'0lHE .‘)lS(RPll0N
cards with a particular data date. The information can include the year, month and day of

personalization or may include less information, if desired. The data__date data structure

is preferably 1 byte in length (see 507A in Fig. 5A) although it could be any length

depending upon the needs of the particular card system used.

Once all of the personalization data structures are loaded and stored in the

card, the card has been identified by issuer, product class, date and identification number

(and other data fields, if desired), and the card cannot change its identity: these fields

cannot be changed in the memory of the card. If a card user wants to change the

product__id stored in the card to gain access to different applications available to another

product type, a new card will have to be issued to the user containing the correct

personalization data. This system is consistent a gold card member receiving a new

card when the classification is changed to platinum.

After the card has been enabled and personalized by storing its individual

card key set, MSM personalization characteristics and enablement bit as described in Fig.

3, the card is ready to have applications loaded into its memory.

The application loading process contains a number of security and card

configuration checks to ensure the secure and proper loading of an application onto the

intended IC card. The application loading process is preferably performed at the

personalization bureau so that the card will contain one or more applications when the

card is issued. The card may contain certain common applications which will be present

on every card the issuer sends out, such as an electronic purse application or a credit/debit
37

suasrrrure SHEET (RULE 25) Page 01640

Page 01641

WO 98/52158

10

15

20

PCT/GB98/01388

ANNEX 9 TO THE DESCRIPTION
application. Alternatively, the personalization bureau could send the enabled cards to a

third party for the process of loading applications. The multiple application operating

system stored in the ROM of each card and the card MSM personalization data is

designed to allow future loading and deleting of applications alter the card has been

issued depending upon the desires ofthe particular card user and the responsible card

issuer. Thus, an older version ofan application stored on the IC card could be replaced

with a new version of the application. An: additional loyalty application could also be

added to the card after it has been initially sent to the card user because the application is

newly available or the user desires to use the new application. These loading and deleting

functions for applications can be performed directly by a terminal or may be performed

over telephone lines, data lines, a network such as the Internet or any other way of

transmitting data between two entities. In the present IC card system, the process of

transmitting the application program and data ensures that only IC cards containing the

proper personalization data and which fit on application permissions profile will be

qualified and receive the corresponding application progam and data.

Figure 6 shows the preferred steps performed in loading an application

onto an IC card in the MULTOS IC card system. For this example, the personalization

H bureau is loading an application from a terminal which enabled the same card. Step 601

performs an “open command” initiated by the terminal which previews the card to make

sure the card is qualified to accept the loading of a specific application. The open

command provides the card with the application’s permissions data, the application’s

size, and instructs the card to determine (1) if the enablement bit is set indicating the card
-38-

SUBSTITUTE SHEET (RULE 25) Page 01641

Page 01642

WO 98/52158

10

15

20

PCT/GB98/01388

ANNEX 6 lllllllllllllllllllll
has been personalized; (2) whether the application code and associated data will fit in the

existing memory space on the card; and (3) whether the personalization data assigned to

the application to be loaded allows for the loading of the application onto the particular

card at issue. The open command could also make additional checks as required by the

card system. These checking steps during the open command execution will be described

in detail in conjunction with Figure 7.

Afier the open command has been executed, the application loader via the

terminal will be advised if the card contains the proper identification personalization data

and if enough room exists in the memory of the card for the application code and related

data. If there is insumcient memory, then a negative response is returned by the card and

the process is abended (abnormally ended). If the identification personalization data does

not match the applications permissions data, a warning response is given in step 603, but

the process continues to the load and create steps. Alternatively, if there is no match, the

process may automatically be abended. If a positive response is returned by the card to

the terminal in step 605, the application loader preferably proceeds to next steps. The

open command allows the application to preview the card before starting any transfer of

the code and data.

Step 607 then loads the application code and data onto the IC card into

EEPROM. The actual loading occurs in conjunction with create step 609 which

completes the loading process and enables the application to execute on the IC card after

it is loaded.” The combination of the open, load and create commands are sent by the

terminal, or another application provider source, to the IC card to perform the application
-39-

SUBSTITUTE SHEET (RULE 25) Page 01642

Page 01643

W0 98/52 1 58

10

15

20

PCT/GB98/01388

ANNEX H TO THE DESCRIPTION
loading process. The operating system in the IC cards is programmed to perform a

specific set of instructions with respect to each of these commands so that the IC card will

communicate with and properly carry out the instructions from the terminal.

Step 609 performs the create command which at least: (1) checks ifan

application load certificate is signed (encrypted) by the CA and therefore authenticates

the application as a proper application for the system; and (2) checks the card

personalization data stored on the card against the permissions profile for the application

to be loaded to qualify the card for loading. It may do other checks as required. If one of

the checks fails, then a failure response 610 is given and the process aborts. The

application after it has passed these checks will be loaded into the memory of the card.

Figure 7 shows the various steps of the open step 601 ofFig. 6 in more

detail. Step 701 determines if the enablement (i.e., control) bit is set. This bit is set when

the card has completed its personalization process and has been assigned its

personalization data. An application can be loaded on an IC card in the card system only

if the card contains the personalization data. If the enablement bit is not set, the card has

not been personalized and therefore the card returns a negative response 703 to the

terminal. Ifthe enablement bit is set, then the card has been enabled and the test

conditions continue with step 711.

Step 711 checks if there is sufficient space in the memory on the card to

store the application code and its associated data. Applications will typically have

associated data related to their functions. This data will be used and manipulated when

the application is rim. Storage space in the memory of an IC card is a continuing concern
-40-

suasrarure SHEET (RULE 26) Page 01643

Page 01644

W0 98/52 158

10

15

20

PCT/GB98/01388

ANNEX 6 T0lHi:“::£S(RlPTl0a'l

due to the relatively large physical space required for EEPROM and how it fits in the

integrated circuit which is desired to be small enough to fit on a credit card sized card.

An example of the size ofa preset EEPROM on an IC card is 16K bytes although the

actual size varies. Applications can range fi'om 1K byte or less for a very simple

application up to the size of available memory for a more sophisticated application. The

data associated with an application can range from no data being stored in the card

memory to a size constrained by the amount of available memory. These varied sizes of

application code and data continually increase as applications become more advanced and

diverse.

MULTOS as an operating system is not limited by the number of

applications and associated data it can store on the card. Thus, if five applications can fit

in the available memory of the card, the card user will have greatly increased

fimctionality than if one or two applications were stored on the card. Once a card’s

memory is filled to its capacity, however, a new application cannot be loaded onto the

card unless another application including its code and data of sufficient size can be

deleted. Therefore, checking the amount of available space on the card is an impormnt

step. If there is not sufficient space, then an insufficient space response 713 will be

returned to the terminal. The application loader can then decide if another existing

application on the card should be deleted to make room for the new application. Deletion

depends upon the card issuer having an application delete certificate from the CA. If

there is suficient space on the card, then the process continues with step 715.

-41-

SUBSTITUTE SHEET (RULE 26) Page 01644

Page 01645

W0 98/52158

10

15

20

PCT/GB98/01388

Allllil 6 l0lHE't}ESfRlPT|0ll
An example of the testing ofmemory spaces in step 711 is now described.

The numbers used in this example in no way limit the scope of the invention but are used

only to illustrate memory space requirements. An IC card may have 16K available

EEPROM when it is first manufactured. The operating system data necessary for the

operating system may take up 2K ofmemory space. Thus, 14K would remain. An

electronic purse application’s code is stored in EEPROM and may take up 8K of memory

space. The purse application’s required data may take up an additional 4K ofmemory

space in EEPROM. The memory space which is firee for other applications would thus be

2K (16K-2K-8K-4K=2K). If a card issuer wants to load a credit/debit application whose

code is 6K bytes in size onto the card in this example, the application will not fit in the

memory of the IC card. Therefore, the application cannot load the new application

without first removing the purse application from the card. If a new credit/debit

application was loaded into EEPROM_of the IC card, then it would have to overwrite

other application’s code or data. The application loader is prevented from doing this.

Figure 8 shows the steps performed in determining whether the card's

personalization data falls within the permissible set of cards onto which the application at

issue may be loaded. These steps are preferably performed during the execution of the

“create” command. However, these steps may be performed at any time during the

loading or deleting of an application. As described previously, the card is personalized

by storing data specific to the card (MSM personalization data) including: a card ID

designationspecific to an individual card, the card issuer number indicating the issuer of

the card, the product type of the card, such as a gold or platinum card, and the date the
42

SUBSTITUTE SHEET (RULE 26) Page 01645

Page 01646

WO 98/52158

10

15

20

PCT/GB98/01388

Alllllll H TOTHE DESCRIPTION

card was personalized. This data uniquely identifies the card apart from all other IC cards

in the system.

Accordingly, applications can be selectively stored on individual cards in

the IC card system on virtually any basis, including the following. An application can be

loaded selectively to cards containing one or more specific card numbers. An application

can be selectively loaded on one or more cards containing a specified card issuer ID.

Moreover, an application can be loaded only upon one type ofproduct specified by the

particular card issuer, and/or the application can be loaded only on cards which have a

specified date or series of dates ofpersonalization. Each of the personalization data

allows an application to be selectively loaded onto certain cards or groups of cards and

also ensures that cards without the proper permissions will not receive the application.

Personalization data types in addition to the four described can also be used as needed.

The selection of IC cards upon which a particular application may be

loaded is made possible by the use of “applications permissions data” which is assigned

to the application and represents at least one set of cards upon which the application may

be loaded. The set may be basedgon virtually any factor, including one or more of the

following: card numbers, card issuers, product types or personalization dates. Although

- the individual card’s personalization data typically identify one specific number, one card

issuer, one product type and one date, the application’s permissions data may indicate a

card numbers or a blanket permission, a card issuer or a blanket permission, and a

number ofproduct types and dates.

-43..

suasrrrure SHEET (RULE 25) Page 01646

Page 01647

W0 98/52 1 58

10

15

20

PCT/GB98/01388

llllllll Q l0lHl§ES£RlPl|0ll

For example, a frequent loyalty program may be configured to allow its

loading and use on cards in different product classes belonging to one card issuer. In

addition, the application permissions data may indicate that the loyalty program can be

used on gold and platinum product types if the card was issued after May, 1998. Thus,

the MSM permissions check will determine if the card’s individual personalization data is

included in the allowed or permissible set of cards upon which the application may be

loaded. If it is, the application will be loaded.

To expedite the comparison process, an alternative embodiment may

include setting one or more permissions data at zero representing a blanket permission for

that particular data. For instance, by placing a zero for the “card number” entry in the

application permissions data or some other value indicating that all cards may be loaded

regardless oftheir number, the system knows not to deny any cards based on their card

number. Moreover, if a zero is placed in the application’s permissions data “issuer ID,"

then all cards similarly will pass the “issuer” test comparison. This feature allows greater

flexibility in selecting groups of cards. The zero indicator could also be used for other

permissions data, as required.

Referring to Figure 8, each of the permissions data is checked in the order

shown, but other orders could be followed because if any one of the permissions fails, the

application will be prevented from being loaded on the IC card being checked. The

permissions are preferably checked in the order shown. Step 801 checks if the

application permissions product type set encompasses the card’s product type number

stored in the memory of the card. Each card product type is assigned a number by the
-44-

suasrrrure SHEET (RULE 25) Page 01647

Page 01648

WO 98/52158

10

15

20

PCT/GB98/01388

Allllill A TO THE DESCRIPTION

system operator. The product types are specified for each card issuer because difierent

card issuers will have different product types. The cards are selectively checked to ensure

that applications are loaded only on cards of authorized product type. The application

permissions product type set can be 32 bytes long which includes multiple acceptable

product types .or can be a different length depending upon the needs of the system. Using

data structure 505A as an example, the operating system would check bit number 2 in the

256 bit array (32 bytes x 8 bits per byte) resulting from the 32 byte long application

permissions data structure. If the permissions check fails, then the card returns a failure

message to the terminal in step 803. If the product type check passes (for example, the

value ofbit no. 2 being 1), then the process continues with step 805.

Step 805 checks if the application permissions allowable card issuer

number set encompasses the card’s issuer number stored in the memory of the card or if

the application permissions issuer data is zero (indicating all cards pass this individual

permissions check). Each card issuer is assigned a number by the system operator and

the cards are selectively checked to ensure that applications are loaded only on cards

distributed by authorized card issuers. The application permissions card issuer num_ber

set can be 4 bytes long if one issuer is designated or can be longer depending upon the .

needs of the system. If the issuer check fails, then the card retums a failure message to

the terminal in step 807. If the check passes, then the process continues with step 809.

Step 809 checks if the application permissions date set encompasses the

card’s data date stored in the memory of the card. The date that the IC card was

personalized will be stored and will preferably include at least the month and year. The
45

SUBSTITUTE SHEET (RULE 26) Page 01648

Page 01649

W0 98/52158

10

15

20

PCT/GB98/01388

ANNEX .4 ?_C?llilEES(RiPll0fl
cards are selectively checked to ensure that applications are loaded only on cards with the

authorized personalization date. The application permissions date set can be 32 bytes

long which includes multiple dates or can be a difierent length depending upon the needs

of the system. If the date permissions check fails, then the card returns a failure message

to the terminal in step 811. If the date check passes, then the process continues with step

813.

Step 813 checks if the application permissions allowable card number set

encompasses the card’s ID number stored in the card memory or if the application

permissions allowable card number data is zero (indicating all cards pass this individual

permissions check). The testing of the permissions is performed on the card during the

execution of the open, load and create commands. The application permissions card

number data set can be 8 bytes long ifone number is designated or can be longer

depending upon the needs of the system. If the card number check fails, then the card

returns a failure message to the terminal in step 815. If the check passes, then the process

continues with step 817.

 s

Figure 9 shows the components of the system architecture for the card

initialization process of an IC card in a secure multiple application IC card system. The

system includes a card manufacturer 102, a personalization bureau 104, an application

loader l06,”the IC card 107 being initialized, the card user 109 and the certification

authority 111 for the entire multiple application secure system. The card user 131 is the
45

SUBSTITUTE SHEET (RULE 25) Page 01649

Page 01650

WO 98/52158

10

15

20

PCT/GB98/01388

ANNEX 4% T0? 'iDES(RH|N
person or entity who will use the stored applications on the IC card. For example, a card

user may prefer an IC card that contains both an electronic purse containing electronic

cash (such as MONDEXTM) and a credit/debit application (such as the MasterCard®

EMV application) on the sa.me IC card. The following is a description of one way in

which the card user would obtain an IC card containing the desired applications in a

secure manner.

The card user would contact a card issuer 113, such as a bank which

distributes IC cards, and request an IC card with the two applications both residing in

memory of a single IC card. The integrated circuit chip for the IC card would be

manufactured by manufacturer 102 and sent to the card issuer 113 (or an entity acting on

its behalf) in the form of an IC chip on a card. As discussed above (see steps 201-209),

during the manufacturing process, data is transmitted 115 via a data conduit from the

manufacturer 102 to card 107 and stored in IC card 107's memory. (Any of the data

conduits described in this figure could be a telephone line, Internet connection or any

other transmission medium.) Thecertification authority 111, which maintains

encryption/decryption keys for the entire system, transmits 117 security data (i.e., global

public key) to the manufacturer over a data conduit which is placed on the card by the

manufacturer along with other data, such as the card enablement key and card identifier.

The card's multiple application operating system is also stored in ROM and placed on the

card by the manufacturer. Afier the cards have been initially processed, they are sent to

the card issuer for personalization and application loading.

-47-

suesrrrure sneer (RULE 25) Page 01650

Page 01651

WO 98/52158

10

15

20

PCT/GB98/01388

ANHEX H TOTHEEESCRIPIION

The card issuer 113 performs, or has performed by another entity, two

separate functions. First, the personalization bureau 104 personalizes the IC card 107 in

the ways described above, and second, the application loader 106 loads the application

provided the card is qualified, as described.

Regarding personalization, an individualized card key set is ‘generated by

the CA and stored on the card (see Fig. 3). The card is further given a specific identity

using MSM personalization (see Fig. 3, step 307 and Fig. 5) including a card ID number,

an issuer ID number identifying the card issuer which processed the card, a card product

type number which is specified by the card issuer and the date upon which the

personalization took place. After the card has been personalized, applications need to be

loaded onto the card so that the card can perform desired functions.

The application loader 106, which could use the same terminal or data

conduit as personalization bureau 104, first needs to have determined if the card is

qualified to accept the application. This comparison process takes place on the card itself

(as instructed by its operating system) using the permissions information. The card, if it

is qualified, thus selectively loads the application onto itself based upon the card's

identity and the card issuer’s instructions. The application loader communicates 119 with

the IC card via a terminal or by some other data conduit. After the applications have been

loaded on the card, the card is delivered to the card user 109 for use.

The secure multiple application IC card system described herein allows for

selective loading and deleting of applications at any point in the life cycle of the IC card

afier the card has been personalized. Thus, a card user could also receive a personalized
43

SUBSTITUTE SHEET (RULE 25) Page 01651

Page 01652

WO 98/52158

10

15

20

PCT/GB98/01388

ANNEX 9 l0THi'3ESCRlPl|0ll

card with no applications and then select a desired application over a common

transmission line such as a telephone line or Internet connection.

Figure 10 is a system diagram of entities involved with the use of an IC

card once it has been personalized. The system includes an IC card 151, a terminal 153,

an application load/delete entity 155, the certification authority 157, a card issuer 171 and

other IC cards 159 in the system. The arrows indicate communication between the

respective entities. The CA 157 facilitates loading and deleting of applications. After

providing the MSM permissions data and card specific keyset to the card during card

enablements, the CA allows applications to be later loaded and deleted preferably by

issuing an application certificate. Application specific keys are required to authticate

communication between a card and terminal. The IC card 151 also can communicate

with other IC cards 159. Card issuer 171 is involved with all decisions of loading and

deleting applications for a card which it issued. All communications are authenticated

and transmitted securely in the system.

For instance, IC card 151 will use the following procedure to load a new

application onto the card. IC card. 101 is connected to terminal 153 and the terminal

requests that an application be loaded. Terminal 153 contacts application load/delete

entity 155 which, as a result and in conjunction with card issuer 171, sends the

application code, data and application permissions data (along with any other necessary

data) to terminal 153. Terminal 153 then queries card 151 to ensure it is the correct card

onto which the application may be loaded. If IC card passes the checks discussed above,

the application is loaded onto card 151. The CA 157 provides the application load or

-49-

SUBSTITUTE SHEET (RULE 25) Page 01652

Page 01653

WO 98/52158

10

15

20

PCT/GB98/01388

ANNEX 9 10 THE DESCRIPTION

delete certificate that enables the application to be loaded or deleted from the card. This

example shows one way to load the application, but other variations using the same

principles could be performed, such as directly loading the application at the application

load/delete entity 155.

The foregoing merely illustrates the principles of the invention. It will

thus be appreciated that those skilled in the art will be able to devise numerous systems

and methods which, although not explicitly shown or described herein, embody the

principles of the invention and are thus within the spirit and scope of the invention.

For example, it will be appreciated that the MSM personalization and

permissions data may not only be used for loading applications onto IC cards but also for

deleting applications from said cards. The same checks involving MSM permissions and

loading applications are made for deleting applications. A delete certificate from the CA

authorizing the deletion of an application will control from which cards the application

may be deleted. This is accomplished through the personalization data stored on each IC

card and the permissions check as described herein.

Moreover, the data may also be applicable to personal computers or ‘other

units onto which applications may be loaded which are not physically loaded on cards. In

addition, the application’s permissions data may actually include data representative of a

set or sets of cards to be excluded, instead of included -- cards that cannot be loaded with

the application.

-50-

SUBSTITUTE SHEET (RULE 25) Page 01653

Page 01654

WO 93/52153 PCT/GB98/01388

ANHEE 9 ':'0lHEDESCRiPl0H
The scope ofthe present disclosure includes any novel feature or combination

of features disclosed therein either explicitly or implicitly or any generalisation thereof

irrespective ofwhether or not it relates to the claimed invention or mitigates any or all

ofthe problems addressed by the present invention. The applicant hereby gives notice

that new claims may be formulated to such features during the prosecution ofthis

application or of any such fiirther application derived therefrom. In particular, with

reference to the appended claims, features from dependent claims may be combined

with those ofthe independent claims in any appropriate manner and not merely in the

specific combinations enumerated in the claims.

_5]__

SUBSTITUTE SHEET (RULE 25) Page 01654

Page 01655

WO 98/52158 PCT/GB98/01388

Alllllll 9 DESCRIPTION

CLAIMS:

1 1. An IC card system comprising at least one [C card, an application

2 to be loaded onto said card and means for determining whether said card is qualified to

3 accept the loading of said application onto said card.

1 2. The IC card system of claim 1, wherein said IC card contains card

2 personalization data, and said application is assigned application permissions data

3 representing at least one set ofIC cards upon which said application may be loaded.

1 3. The IC card system of claim 2, wherein said determining means

2 compares said card personalization data with said application permissions data.

1 4. The IC card system of claim 3, wherein whether said application is

2 loaded onto said IC card depends on the result of said comparison, such that in the event

3 the card personalization data matches said permissions data set the card is qualified and

4 the application is loaded.

5. The IC card system of any of claims 2 to claim 4, wherein said

personalization data comprises data representative of a unique card identification

designation.

-52-

655suasrrrure SHEET (RULE 25) Page 01

Page 01656

W0 98/52158 PCT/GB98/01388

I AllNEX__6__;§0lHE!)ES(R|Pll0N l
1 6. The IC card system of any of claims 2 to claim 5, wherein said

2 personalization data comprises data representative of a card issuer.

1 7. The IC card system of any of claims 2 to claim 6, wherein said

2 personalization data comprises data representative of a product class.

1 8. The IC card system ofany of claims 2 to claim 7, wherein said

2 personalization data comprises data representative of a date.

1 9. An IC card system comprising at least one IC card and an

2 application, wherein said IC card contains personalization data representative of that card

3 and said application is assigned a permissions data set representing at least one IC card

4 upon which said application may be loaded, said system further comprising means for

5 determining whether said personalization data falls within said permissions data set.

1 10. The IC card system of claim 9 wherein said application is loaded

2 .. onto said IC card in the event said determining means determines that said

3 personalization data falls within said set.

1 11. The IC card system of claim 9 or claim 10 wherein said personalization

2 data comprises data representing a card identification designation, and an issuer of said

card.
-53-

SUBSTITUTE SHEET (RULE 26) Page 01656

Page 01657

wo 93/52153 PCT/GB98/01388

ANEEX H TOTHEDESCRIPIION

12. The IC card system of any of claims 9 to claim 1 1 wherein said

2 personalization data comprises data representing a product class and a date.

I 13. The IC card system of any of claims 9 to l2 wherein said permissions

2 data set includes a plurality of card identification designations.

l 14. The IC cardisystem of any of claims 9 to 13 wherein said permissions

2 data set includes one or more issuers ofIC cards.

1 15. The IC card system of any of claims 9 to 14 wherein said permissions

2 data set includes one or more product classes.

1 16. The IC card system of any of claims 9 to 15 wherein said permissions

2 data set includes a plurality range of dates.

1 17. The IC card system of any of claims 9 to 16 wherein said permissions

2 data set includes all IC cards which attempt to load the application.

1 18. An IC card system comprising at least one IC card, an application

2 to be loaded onto said card and means for enabling said card to be loaded with said

3 application.

54

suasrrrurs SHEET (RULE 25) Page 01657

Page 01658

W0 93/52153 PCT/GB98/01388

 ANNEX B 10 THE QEECREPTION

1 19. The IC card system of claim 18 wherein said enabling means

2 comprises means for storing personalization data onto said card-

1 20. The IC card system of claim 18 wherein said enabling means

2 comprises means for setting an enablement bit.

1 21. The IC card system of claim 19 wherein said enabling means

2 comprises means for setting an enablement bit.

1 22. The IC card system of claim 20 further comprising means for

2 checking the enablement bit prior to enabling said IC card to determine whether or not

3 said card has already been enabled.

1 23. The IC card system of claim 21 fiirther comprising means for

2 checking the enablement bit prior to enabling said IC card to determine whether or not

3 said card has already been enabled.

1 24. A process for loading an application onto an IC card comprising

2 the step of determining whether said IC card is qualified to accept the loading of said

3 application onto said card.

55

suasrnure SHEET (RULE 26) Page 01658

Page 01659

W0 98/52158 PCT/GB98/01388

ANNEX 9 TO THE DESClllPl'lGlai
25. The process of claim 24 wherein said determining step includes the

steps of: providing said card with personalization data;

assigning to said application permissions data representing at least

one set of IC cards upon which said application may be loaded;

comparing said personalization data with said permissions data;

and

loading said application onto said IC card provided said

personalization data falls within said set of cards upon which said application may be

loaded.

26. The process of claim 25, wherein said personalization data

comprises data representative of a card identification designation.

27. The process of claim 25 or claim 26, wherein said personalization data

comprises data representative of a card issuer.

28. The process of any of claims 25 to claim 27, wherein said

personalization data comprises data representative of a product class.

29. The process of any of claims 25 to claim 28. wherein said

personalization data comprises data representative of a date.
-55-

SUBSTITUTE SHEET (RULE 25) Page 01659

Page 01660

WO 98/52158

IQ

PCT/GB98/01388

30. The process of any of claims 25 to claim 29 fiirther comprising the first

step of enabling said card to be loaded with said application.

31. The process of claim 30 wherein said enabling step includes the

step of storing personalization data onto said card.

32. The process of claim 30 wherein said enabling step includes the

step of setting an enablement bit indicating that the card has been enabled.

33. The process of claim 31 wherein said enabling step further includes

the step of setting an enablement bit indicating that the card has been enabled.

34. The process of claim 32 wherein prior to said enabling step a

checking step is performed to determine whether said card has been enabled.

35. The process of claim 33 wherein prior to said enabling step a

checking step is performed to determine whether said card has been enabled.

36. A process for deleting an application fi'om an IC card comprising

the step of determining whether said IC card is qualified to delete said application based

upon permissions data associated with said application.
-57-

SUBSTITUTE SHEET (RULE 25) Page 01660

Page 01661

wo 93/52153 PCT/GB98/01388

ANNEX 6 TOTHEDESCRIPTION
1 37. The process of claim 36 wherein said determining stepincludes the

2 steps of:

3 providing said card with personalization data;

4 assigning to said application permissions data representing at least

5 one set of IC cards from which said application may be deleted;

6 comparing said personalization data with said permissions data;

7 and

8 deleting said application fi'om said IC card provided said

9 personalization data falls within said set of cards fiom which said application may be

10 deleted.

1 38. The process of claim 37, wherein said personalization data

2 comprises data representative of a card identification designation.

1 39. The process of claim 37 or claim 38, wherein said personalization data

2 comprises data representative of a card ismer.

1 40. The process of any of claims 3 7 to claim 3 9, wherein said

2 personalization data comprises data representative of a product class.

1 41. The process of any of claims 37 to claim 40, wherein said

2 personalization data fiirther comprises data representative of a date.

-58- .

Page 01661
SUBSTITUTE SHEET (RULE 26)

Page 01662

WO 98/52158 PCT/GB98/01388

ANNEX 9 TO THE DESCRIPTION

1 42. An IC card system comprising at least one IC card, an application

2 to be deleted fiom said card and means for determining whether said card is qualified to

3 delete said application from said card.

1 43. The IC card system of claim 42, wherein said IC card contains card

2 personalization data, and said application is assigned application permissions data set

3 representing at least one set of IC cards from which said application may be deleted.

1 44. The IC card system of claim 43, wherein said determining means

2 compares said card personalization data with said application permissions data

1 45. The IC card system of claim 44, wherein whether said application

2 is deleted from said IC card depends on the result of said compauison, such that in the

3 event the card personalization data matches said permissions data set the card is qualified

4 and the application is deleted.

-59-

SUBSTITUTE SHEET (RULE 25) Page 01662

Page 01663

WO 98/52158 PCT/GB98/01388

Multi-ApplicationiIC Card System

A rnulti-application IC card system is disclosed having selective

application loading and deleting capability. Prior to loading an application onto an IC

card a test is conducted to determine if the card is qualified to receive the application

using personalization data stored on the card and comparing it with permissions data

associated with the application indicating one or more sets of cards upon which the

application may be loaded. If the personalization data of the card falls within the

allowable set of permissions for that application then the card may be loaded with the

application. Preferably, the personalization data includes data representative of the card

number, issuer, a product class and the date on which the card is personalized.

50

SUBSTITUTE SHEET (RULE 25) Page 01663

Page 01664

Page 01665

Page 01666

Page 01667

Page 01668

Page 01669

Page 01670

Page 01671

Page 01672

Page 01673

Page 01674

Page 01675

Page 01676

Page 01677

Page 01678

Page 01679

Page 01680

Page 01681

Page 01682

Page 01683

Page 01684

Page 01685

Page 01686

Page 01687

Page 01688

Page 01689

Page 01690

Page 01691

Page 01692

Page 01693

Page 01694

Page 01695

Page 01696

Page 01697

Page 01698

Page 01699

Page 01700

Page 01701

Page 01702

Page 01703

Page 01704

Page 01705

Page 01706

Page 01707

Page 01708

Page 01709

Page 01710

Page 01711

Page 01712

Page 01713

Page 01714

Page 01715

Page 01716

Page 01717

Page 01718

Page 01719

Page 01720

Page 01721

Page 01722

Page 01723

Page 01724

Page 01725

Page 01726

Page 01727

Page 01728

Page 01729

Page 01730

Page 01731

Page 01732

Page 01733

Page 01734

Page 01735

Page 01736

Page 01737

Page 01738

Page 01739

Page 01740

Page 01741

Page 01742

Page 01743

Page 01744

Page 01745

Page 01746

Page 01747

Page 01748

Page 01749

Page 01750

Page 01751

Page 01752

Page 01753

Page 01754

Page 01755

Page 01756

Page 01757

Page 01758

Page 01759

Page 01760

Page 01761

Page 01762

Page 01763

Page 01764

Page 01765

Page 01766

Page 01767

Page 01768

Page 01769

Page 01770

Page 01771

Page 01772

Page 01773

Page 01774

Page 01775

Page 01776

Page 01777

Page 01778

Page 01779

Page 01780

Page 01781

Page 01782

Page 01783

Page 01784

Page 01785

Page 01786

Page 01787

Page 01788

Page 01789

Page 01790

Page 01791

Page 01792

Page 01793

Page 01794

Page 01795

Page 01796

Page 01797

Page 01798

Page 01799

Page 01800

Page 01801

Page 01802

Page 01803

Page 01804

Page 01805

Page 01806

Page 01807

Page 01808

Page 01809

Page 01810

Page 01811

Page 01812

Page 01813

Page 01814

Page 01815

Page 01816

Page 01817

Page 01818

Page 01819

Page 01820

Page 01821

Page 01822

Page 01823

Page 01824

Page 01825

Page 01826

Page 01827

Page 01828

Page 01829

Page 01830

Page 01831

Page 01832

Page 01833

Page 01834

Page 01835

Page 01836

Page 01837

Page 01838

Page 01839

Page 01840

Page 01841

Page 01842

Page 01843

Page 01844

Page 01845

Page 01846

Page 01847

Page 01848

Page 01849

Page 01850

Page 01851

Page 01852

Page 01853

Page 01854

Page 01855

Page 01856

Page 01857

Page 01858

Page 01859

Page 01860

Page 01861

Page 01862

Page 01863

Page 01864

Page 01865

Page 01866

Page 01867

Page 01868

Page 01869

Page 01870

Page 01871

Page 01872

Page 01873

Page 01874

Page 01875

Page 01876

Page 01877

Page 01878

Page 01879

Page 01880

Page 01881

Page 01882

Page 01883

Page 01884

Page 01885

Page 01886

Page 01887

Page 01888

Page 01889

Page 01890

Page 01891

Page 01892

Page 01893

Page 01894

Page 01895

Page 01896

Page 01897

Page 01898

Page 01899

Page 01900

Page 01901

Page 01902

Page 01903

Page 01904

Page 01905

Page 01906

Page 01907

Page 01908

Page 01909

Page 01910

Page 01911

Page 01912

Page 01913

Page 01914

Page 01915

Page 01916

Page 01917

Page 01918

Page 01919

Page 01920

Page 01921

Page 01922

Page 01923

Page 01924

Page 01925

Page 01926

Page 01927

Page 01928

Page 01929

Page 01930

Page 01931

Page 01932

Page 01933

Page 01934

Page 01935

Page 01936

Page 01937

Page 01938

Page 01939

Page 01940

Page 01941

Page 01942

Page 01943

Page 01944

Page 01945

Page 01946

Page 01947

Page 01948

Page 01949

Page 01950

Page 01951

Page 01952

Page 01953

Page 01954

Page 01955

Page 01956

Page 01957

Page 01958

Page 01959

Page 01960

Page 01961

Page 01962

Page 01963

Page 01964

Page 01965

Page 01966

Page 01967

Page 01968

Page 01969

Page 01970

Page 01971

Page 01972

Page 01973

Page 01974

Page 01975

Page 01976

Page 01977

Page 01978

Page 01979

Page 01980

Page 01981

Page 01982

Page 01983

Page 01984

Page 01985

Page 01986

Page 01987

Page 01988

Page 01989

Page 01990

Page 01991

Page 01992

Page 01993

Page 01994

Page 01995

Page 01996

Page 01997

Page 01998

Page 01999

Page 02000

Page 02001

Page 02002

Page 02003

Page 02004

Page 02005

Page 02006

Page 02007

Page 02008

Page 02009

Page 02010

Page 02011

Page 02012

Page 02013

Page 02014

Page 02015

Page 02016

Page 02017

Page 02018

Page 02019

Page 02020

Page 02021

Page 02022

Page 02023

Page 02024

Page 02025

Page 02026

Page 02027

Page 02028

Page 02029

Page 02030

Page 02031

Page 02032

Page 02033

Page 02034

Page 02035

Page 02036

Page 02037

Page 02038

Page 02039

Page 02040

Page 02041

Page 02042

Page 02043

Page 02044

Page 02045

Page 02046

Page 02047

Page 02048

Page 02049

Page 02050

Page 02051

Page 02052

Page 02053

Page 02054

Page 02055

Page 02056

Page 02057

Page 02058

Page 02059

Page 02060

Page 02061

Page 02062

Page 02063

Page 02064

Page 02065

Page 02066

Page 02067

Page 02068

Page 02069

Page 02070

Page 02071

Page 02072

Page 02073

Page 02074

Page 02075

Page 02076

Page 02077

Page 02078

Page 02079

Page 02080

Page 02081

Page 02082

Page 02083

Page 02084

Page 02085

Page 02086

Page 02087

Page 02088

Page 02089

Page 02090

Page 02091

Page 02092

Page 02093

Page 02094

Page 02095

Page 02096

Page 02097

Page 02098

Page 02099

Page 02100

Page 02101

Page 02102

Page 02103

Page 02104

Page 02105

Page 02106

Page 02107

Page 02108

Page 02109

Page 02110

Page 02111

Page 02112

Page 02113

Page 02114

Page 02115

Page 02116

Page 02117

Page 02118

Page 02119

Page 02120

Page 02121

Page 02122

Page 02123

Page 02124

Page 02125

Page 02126

Page 02127

Page 02128

Page 02129

Page 02130

Page 02131

Page 02132

Page 02133

Page 02134

Page 02135

Page 02136

Page 02137

Page 02138

Page 02139

Page 02140

Page 02141

Page 02142

Page 02143

Page 02144

Page 02145

Page 02146

Page 02147

Page 02148

Page 02149

Page 02150

Page 02151

Page 02152

Page 02153

Page 02154

Page 02155

Page 02156

Page 02157

Page 02158

Page 02159

Page 02160

Page 02161

Page 02162

Page 02163

Page 02164

Page 02165

Page 02166

Page 02167

Page 02168

Page 02169

Page 02170

Page 02171

Page 02172

Page 02173

Page 02174

Page 02175

Page 02176

Page 02177

Page 02178

Page 02179

Page 02180

Page 02181

Page 02182

Page 02183

Page 02184

Page 02185

Page 02186

Page 02187

Page 02188

Page 02189

Page 02190

Page 02191

Page 02192

Page 02193

Page 02194

Page 02195

Page 02196

Page 02197

Page 02198

Page 02199

Page 02200

Page 02201

Page 02202

Page 02203

Page 02204

Page 02205

Page 02206

Page 02207

Page 02208

Page 02209

Page 02210

Page 02211

Page 02212

Page 02213

Page 02214

Page 02215

Page 02216

Page 02217

Page 02218

Page 02219

Page 02220

Page 02221

Page 02222

Page 02223

Page 02224

Page 02225

Page 02226

Page 02227

Page 02228

Page 02229

Page 02230

Page 02231

Page 02232

Page 02233

Page 02234

Page 02235

Page 02236

Page 02237

Page 02238

Page 02239

Page 02240

Page 02241

Page 02242

Page 02243

Page 02244

Page 02245

Page 02246

Page 02247

Page 02248

Page 02249

Page 02250

Page 02251

Page 02252

Page 02253

Page 02254

Page 02255

Page 02256

Page 02257

Page 02258

Page 02259

Page 02260

Page 02261

Page 02262

Page 02263

Page 02264

Page 02265

Page 02266

Page 02267

Page 02268

Page 02269

Page 02270

Page 02271

Page 02272

Page 02273

Page 02274

Page 02275

Page 02276

Page 02277

Page 02278

Page 02279

Page 02280

Page 02281

Page 02282

Page 02283

Page 02284

Page 02285

Page 02286

Page 02287

Page 02288

Page 02289

Page 02290

Page 02291

Page 02292

Page 02293

Page 02294

Page 02295

Page 02296

Page 02297

Page 02298

Page 02299

Page 02300

Page 02301

Page 02302

Page 02303

Page 02304

Page 02305

Page 02306

Page 02307

Page 02308

Page 02309

Page 02310

Page 02311

Page 02312

Page 02313

Page 02314

Page 02315

Page 02316

Page 02317

Page 02318

Page 02319

Page 02320

Page 02321

Page 02322

Page 02323

Page 02324

Page 02325

Page 02326

Page 02327

Page 02328

Page 02329

Page 02330

Page 02331

Page 02332

Page 02333

Page 02334

Page 02335

Page 02336

Page 02337

Page 02338

Page 02339

Page 02340

Page 02341

Page 02342

Page 02343

Page 02344

Page 02345

Page 02346

Page 02347

Page 02348

Page 02349

Page 02350

Page 02351

Page 02352

Page 02353

Page 02354

Page 02355

Page 02356

Page 02357

Page 02358

Page 02359

Page 02360

Page 02361

Page 02362

Page 02363

Page 02364

Page 02365

Page 02366

Page 02367

Page 02368

Page 02369

Page 02370

Page 02371

Page 02372

Page 02373

Page 02374

Page 02375

Page 02376

Page 02377

Page 02378

Page 02379

Page 02380

Page 02381

Page 02382

Page 02383

Page 02384

Page 02385

Page 02386

Page 02387

Page 02388

Page 02389

Page 02390

Page 02391

Page 02392

Page 02393

Page 02394

Page 02395

Page 02396

Page 02397

Page 02398

Page 02399

Page 02400

Page 02401

Page 02402

Page 02403

Page 02404

Page 02405

Page 02406

Page 02407

Page 02408

Page 02409

Page 02410

Page 02411

Page 02412

Page 02413

Page 02414

Page 02415

Page 02416

Page 02417

Page 02418

Page 02419

Page 02420

Page 02421

Page 02422

Page 02423

Page 02424

Page 02425

Page 02426

Page 02427

Page 02428

Page 02429

Page 02430

Page 02431

Page 02432

Page 02433

Page 02434

Page 02435

Page 02436

Page 02437

Page 02438

Page 02439

Page 02440

Page 02441

Page 02442

Page 02443

Page 02444

Page 02445

Page 02446

Page 02447

Page 02448

Page 02449

Page 02450

Page 02451

Page 02452

Page 02453

Page 02454

Page 02455

Page 02456

Page 02457

Page 02458

Page 02459

Page 02460

Page 02461

Page 02462

Page 02463

Page 02464

Page 02465

Page 02466

Page 02467

Page 02468

Page 02469

Page 02470

Page 02471

Page 02472

Page 02473

Page 02474

Page 02475

Page 02476

Page 02477

Page 02478

Page 02479

Page 02480

Page 02481

Page 02482

Page 02483

Page 02484

Page 02485

Page 02486

Page 02487

Page 02488

Page 02489

Page 02490

Page 02491

Page 02492

Page 02493

Page 02494

Page 02495

Page 02496

Page 02497

Page 02498

Page 02499

Page 02500

Page 02501

Page 02502

Page 02503

Page 02504

Page 02505

Page 02506

Page 02507

Page 02508

Page 02509

Page 02510

Page 02511

Page 02512

Page 02513

Page 02514

Page 02515

Page 02516

Page 02517

Page 02518

Page 02519

Page 02520

Page 02521

Page 02522

Page 02523

Page 02524

Page 02525

Page 02526

Page 02527

Page 02528

Page 02529

Page 02530

Page 02531

Page 02532

Page 02533

Page 02534

Page 02535

Page 02536

Page 02537

Page 02538

Page 02539

Page 02540

Page 02541

Page 02542

Page 02543

Page 02544

Page 02545

Page 02546

Page 02547

Page 02548

Page 02549

Page 02550

Page 02551

Page 02552

Page 02553

Page 02554

Page 02555

Page 02556

Page 02557

Page 02558

Page 02559

Page 02560

Page 02561

Page 02562

Page 02563

Page 02564

Page 02565

Page 02566

Page 02567

Page 02568

Page 02569

Page 02570

Page 02571

Page 02572

Page 02573

Page 02574

Page 02575

Page 02576

Page 02577

Page 02578

Page 02579

Page 02580

Page 02581

Page 02582

Page 02583

Page 02584

Page 02585

Page 02586

Page 02587

Page 02588

Page 02589

Page 02590

Page 02591

Page 02592

Page 02593

Page 02594

Page 02595

Page 02596

Page 02597

Page 02598

Page 02599

Page 02600

Page 02601

Page 02602

Page 02603

Page 02604

Page 02605

Page 02606

Page 02607

Page 02608

Page 02609

Page 02610

Page 02611

Page 02612

Page 02613

Page 02614

Page 02615

Page 02616

Page 02617

Page 02618

Page 02619

Page 02620

Page 02621

Page 02622

Page 02623

Page 02624

