
Virtual Network Computing
Tristan Richardson, Quentin Stafford-Fraser,

Kenneth R. Wood and Andy Hopper

Reprint from

IEEE Internet Computing
Volume 2, Number 1

January/February 1998

© 1998 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights
therein are retained by authors or by other copyright
holders. All persons copying this information are expected
to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright
holder.

Starbucks Corp. Exhibit 1051f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

.

F E A T U R E

33

1089-7801/ 9 8 /$10.00 ©1998 IEEE h t tp ://computer.org/ in te rne t/ JANUARY • FEBRUARY 1998

VIRTUAL
NETWORK
COMPUTING
TRISTAN RICHARDSON, QUENTIN STAFFORD-FRASER,
KENNETH R. WOOD, AND ANDY HOPPER*
The Olivetti & Oracle Research Laboratory

T he so-called network computer (NC) aims to give users access
to centralized resources from simple, inexpensive devices.
These devices act as clients to more powerful server machines

that are connected to the network and provide applications, data, and
storage for a user’s preferences and personal customizations. We have
taken this idea a stage further. In the virtual network computing
(VNC) system, server machines supply not only applications and data
but also an entire desktop environment that can be accessed from any
Internet-connected machine using a simple software NC. Whenever
and wherever a VNC desktop is accessed, its state and configuration
(right down to the position of the cursor) are exactly the same as when
it was last accessed.

In contrast to many recent Internet applications, which have
focused on giving users access to resources located anywhere in the
world from their home computing environments, VNC provides
access to home computing environments from anywhere in the
world. Members of the Olivetti & Oracle Research Laboratory
(ORL) use VNC to access their personal Unix and PC desktops from
any office in our Cambridge building and from around the world on
whatever computing infrastructure happens to be available—includ-
ing, for example, public Web-browsing terminals in airports. VNC
thus provides mobile computing without requiring the user to carry
any device whatsoever. In addition, VNC allows a single desktop to
be accessed from several places simultaneously, thus supporting appli-

VNC is an ultra-thin

client system based on a

simple display protocol

that is platform-

independent. It achieves

mobile computing

without requiring the

user to carry any

hardware.

*Andy Hopper is also affiliated with Cambridge University Engineering Department.

Starbucks Corp. Exhibit 1051f

Find authenticated court documents without watermarks at docketalarm.com.

http://www.uk.research.att.com/~tjr
http://www.uk.research.att.com/~qsf
http://www.uk.research.att.com/~krw
http://www.uk.research.att.com/~hopper
http://www.uk.research.att.com/
http://www.uk.research.att.com/
https://www.docketalarm.com/

cation sharing in the style of computer-supported cooper-
ative work (CSCW).

The technology underlying VNC is a simple remote-
display protocol. It is the simplicity of this protocol that
makes VNC so powerful. Unlike other remote display pro-
tocols such as the X Window System and Citrix’s ICA, the VNC
protocol is totally independent of operating system, win-
dowing system, and applications (see the sidebar, “Thin
Clients”). The VNC system is freely available for download
from the ORL Web site at http://www.orl.co.uk/vnc/.

We begin this article by summarizing the evolution of
VNC from our work on thin-client architectures. We then
describe the structure of the VNC protocol, and conclude by
discussing the ways we use VNC technology now and how
it may evolve further as new clients and servers are developed.

THE ORIGINS OF VNC
The X Window System allows applications to display a user
interface on a remote machine. ORL extended this func-
tionality in our Teleporting System by allowing the user inter-
face of a running X application to be dynamically redirect-
ed to a different display.1,2 Teleporting has been in daily use
at ORL for several years now. There are, however, several
problems with X that restrict its use in the wide area and, in
turn, restrict systems based on it, such as Teleporting:

■ X requires the display machine to run an X server pro-
gram. This heavyweight piece of software requires sub-
stantial resources, which machines such as NCs and per-
sonal digital assistants (PDAs) cannot be expected to run.

■ The X security model makes it inherently dangerous to
allow a remote machine to use your display. According-
ly, most system administrators stop X traffic from pass-
ing in or out of their sites.

■ Application startup is extremely slow on high-latency links
due to the number of round-trips performed by a typical
application (though there are special proxies that alleviate
this problem, such as Low Bandwidth X [LBX]3).

In addition to these technical problems, there is also the
nontechnical problem that X is not Windows, and the world
is becoming increasingly Microsoft-dominated.

Videotile: An Ultra-Thin Client
In 1994, ORL built the Videotile as an experiment in ultra-
thin-client technology. The Videotile is a display device with
an LCD screen, a pen, and an ATM network connection. It
was designed to display good-quality video, but we also
wanted to use it to interact with applications. As a first
experiment toward this end, we treated a remote computer
screen as a video source and simply shipped the user inter-
face as raw video onto the tile. This worked surprisingly well,
but used a significant amount of bandwidth.

By adding a little more intelligence at the application
side, we were able still to treat the user interface as video, but
to send only those parts of the screen that changed. This idea
developed into the VNC protocol.

Java: Access Through a Browser
When Sun Microsystems released the alpha version of the Java
language and the HotJava browser in 1995, we realized we
could implement the Videotile mechanism in Java to access
applications through a Web browser. The thin-client paradigm
made the adaptation to Java very straightforward. We wrote
the original Java client in a day and the resulting class file was
a mere 6 kilobytes in size. This eventually became the VNC
applet described in more detail elsewhere.4 Any Java-capable
browser could now provide access to a user’s desktop, giving
the mobility of the Teleporting system, but on a global scale.

M O B I L E C O M P U T I N G

34

JANUARY • FEBRUARY 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

THIN CLIENTS
The Virtual Networking Computing (VNC) system is a thin-
client system. Like all such systems, it reduces the amount of
state maintained at the user’s terminal. VNC viewers are
exceedingly thin because they store no unrecoverable state at
the endpoint. This contrasts with systems like X Windows,
and allows arbitrary disconnection and reconnection of the
client with no effect on the session at the server. Since the
client can reconnect at a different location—even on the other
side of the planet—VNC achieves mobile computing with-
out requiring the user to carry computing hardware.

Of course, VNC is not the only thin-client system. Others
include those built around the Citrix ICA protocol (for exam-
ple, Citrix’s Winframe and Insignia Solutions’ Ntrigue),
SCO’s Tarantella, Graphon’s RapidX, and Microsoft’s Win-
dows-based Terminal Server (previously code-named
Hydra). The problem with all of these systems except
Microsoft’s is that, unlike X, they use proprietary protocols,
so reliable information about them is difficult to obtain. Cit-
rix’s ICA protocol is a popular mechanism for remote inter-
action with PCs, but it appears to be closely tied to the
Microsoft Windows GUI, so it may not be an ideal general-
purpose remote display protocol.

Microsoft has developed its own protocol, T.Share, based
on the ITU T.120 protocol.1 This is already used in Microsoft’s
NetMeeting conferencing software product. Preliminary
details suggest that Microsoft’s protocol is more like VNC than
ICA—the Hydra white paper refers to a “super-thin” client.

We hope that VNC, or something like it, can become an
open cross-platform standard for very-thin-client computing.

REFERENCE
1. “Microsoft Windows NT ‘Hydra’ and Windows-Based Terminals,”

white paper available at http://microsoft.com/ntserver/guide/

hydrapapers.asp.

Starbucks Corp. Exhibit 1051f

Find authenticated court documents without watermarks at docketalarm.com.

http://www.uk.research.att.com/
http://www.uk.research.att.com/vnc/
https://www.docketalarm.com/

THE VNC PROTOCOL
The technology underlying the VNC system is a simple pro-
tocol for remote access to graphical user interfaces. It works
at the framebuffer level and therefore applies to all operating
systems, windowing systems, and applications—indeed to any
device with some form of communications link. The proto-
col will operate over any reliable transport such as TCP/IP.

The endpoint with which the user interacts (that is, the
display and/or input devices) is called the VNC client or
viewer. The endpoint where changes to the framebuffer orig-
inate (that is, the windowing system and applications) is
known as the VNC server (see Figure 1).

VNC is truly a “thin-client” system. Its design makes very
few requirements of the client, and therefore simplifies the
task of creating clients to run on a wide range of hardware.

A Single Graphics Primitive
The display side of the protocol is based on a single graphics
primitive:

Put a rectangle of pixel data at a given x, y position.

At first glance this might seem an inefficient way to draw
some user interface components. However, allowing various
encoding schemes for the pixel data gives a large degree of
flexibility in trading off parameters such as network band-
width, client drawing speed, and server processing speed.

The lowest common denominator is the so-called raw
encoding, where the pixel data for a rectangle is simply sent in
left-to-right scanline order. All VNC clients and servers must
support this encoding. However, the encodings actually used
on a given connection can be negotiated according to the
capabilities of the server and client and the connection
between them.

For example, copy-rectangle encoding is very simple and effi-
cient, and can be used when the client already has the same
pixel data elsewhere in its framebuffer. The encoding on the
wire is simply an x, y coordinate. This gives a position in the
framebuffer from which the client can copy the rectangle of
pixel data. This encoding is typically used when the user moves
a window across the screen or scrolls a window’s contents.

Most clients will support copy-rectangle encoding, since
it is generally easy to implement, saves bandwidth, and is
likely to be faster than sending raw data again. However, in
a case where a client cannot easily read back from its frame-
buffer, the client could specify that it should not be sent data
encoded this way.

A typical workstation desktop has large areas of solid
color and text. One of our most effective encodings takes
advantage of this phenomenon by describing rectangles con-
sisting of one majority (background) color and “sub-rectan-
gles” of different colors. There are numerous other possible
schemes. We could use a JPEG encoding for efficient trans-

mission of still images or an MPEG encoding for moving
images. A pixel-data caching scheme could efficiently encode
multiple occurrences of the same text character by referring
to the first occurrence.

Adaptive Update
A set of rectangles of pixel data makes a framebuffer update
(or simply, update). An update represents a change from one
valid framebuffer state to another. In this sense, an update
is similar to a frame of video. It differs, however, in that it
usually affects only a small area of the framebuffer. Each rec-
tangle may be encoded using a different scheme. The server
can therefore choose the encoding most appropriate for the
particular screen content being transmitted and the avail-
able network bandwidth.

The update protocol is demand-driven by the client. That
is, an update is only sent by the server in response to an explic-
it request from the client. All screen changes since the client’s
last request are coalesced into a single update. This gives the
protocol an adaptive quality: the slower the client and the net-
work, the lower the rate of updates. On a fast network, for
example, as the user drags a window across the screen it will
move smoothly, being drawn at all the intermediate positions.
On a slower link—for example, over a modem—the client
will request updates less frequently, and the window will
appear at fewer of these positions. This means that the display
will reach its final state as quickly as the network bandwidth
will allow, thus maximizing the speed of interaction.

Input
The input side of the VNC protocol is based on a standard
workstation model of a keyboard and multibutton pointing
device. The client sends input events to the server whenev-
er the user presses a key or pointer button, or moves the
pointing device. Input events can also be synthesized from
other nonstandard I/O devices. On the Videotile, for exam-
ple, a pen-based handwriting recognition engine generates
keyboard events.

Connection Setup and Shutdown
To establish a client-server connection, the server first requests
authentication from the client, using a challenge-response

V I R T U A L N E T W O R K C O M P U T I N G

35

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JANUARY • FEBRUARY 1998

.

VNC server VNC viewer (client)

VNC protocol

Figure 1. VNC architecture.

Starbucks Corp. Exhibit 1051f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

scheme; the client typically requires the user to enter a pass-
word at this point. The server and client then exchange mes-
sages to negotiate desktop size, pixel format, and encoding
schemes. The client requests an update for the entire screen,
and the session begins. Because of the stateless nature of the
client, either side can close the connection at any time with-
out adverse consequences.

VNC Viewers
In day-to-day use, we prefer the more descriptive term
viewer to the rather overloaded word client. Writing a VNC
viewer is a simple task, as indeed it should be for any thin-
client system. It requires only a reliable transport (usually
TCP/IP), and a way of displaying pixels (either writing
directly to the framebuffer or going through a windowing
system).

We have written viewers for all the networked display
devices available at ORL. These include the Videotile (the
original VNC viewer), an X-based viewer (which runs on
Solaris, Linux, and Digital Unix workstations), a Win32
viewer that runs on Windows NT and 95, and a Java applet
that runs on any Java-capable browser (including Sun’s
JavaStation). Members of our lab use these viewers on a daily
basis to access their personal computing environments.

The images in Figure 2
show a variety of X and Win-
dows desktops being accessed
from both Java and native X
and Windows viewers.

VNC Servers
Writing a VNC server is
slightly harder than writing
a viewer. Because the proto-
col is designed to make the
client as simple as possible,
it is usually up to the server
to perform any necessary
translations (for example,
the server must provide
pixel data in the format the
client wants). We have writ-
ten servers for our two main
platforms, X (that is, Unix)
and Windows NT/95.

The X-based server was
the first one we developed. A
single Unix machine can run
a number of VNC servers
for different users, each rep-
resenting a distinct VNC
desktop. Each desktop is like
a virtual X display, with a

root window on which several X applications can appear.
The Windows VNC server was a little more difficult to

create. Windows has fewer places to insert hooks into the sys-
tem to monitor display updates, and the model of multiuser
operation is less clearly defined. Our current server simply
mirrors the real display to a remote client, which means that
only a single VNC desktop is available from any one PC.

The X-based server, the X viewer, the Win32 server, and
Win32 viewer can all fit on a single floppy disk.

We have also created “thin” servers which produce dis-
plays other than desktops, using a simple toolkit. A “VNC
CD player,” for example, generates a CD player user inter-
face using VNC directly without any reference to a win-
dowing system or framebuffer (see figure 3 on the following
page). Such servers can run on very simple hardware, and
can be accessed from any of the standard VNC viewers.

ANY USER INTERFACE, ANYWHERE
At ORL, we have used VNC to add mobility to workstation
GUIs, where the concept of at least some form of remote inter-
action is not new. But the protocol’s simplicity could allow it to
be used on a much wider range of hardware. Consumer elec-
tronics devices, such as CD players, usually have a highly spe-
cialized user interface and typically employ customized phys-

M O B I L E C O M P U T I N G

36

JANUARY • FEBRUARY 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

Figure 2. A variety of desktops being accessed from different viewers: (a) a Unix desktop from
a Windows viewer, (b) a Windows 95 desktop from an X viewer, (c) a Unix desktop from a
Java applet within Internet Explorer, and (d) a Windows desktop using Netscape on Unix.

(a) (b)

(c) (d)

Starbucks Corp. Exhibit 1051f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

